

Lecture Notes in Computer Science 3958
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Moti Yung Yevgeniy Dodis
Aggelos Kiayias Tal Malkin (Eds.)

Public Key
Cryptography –
PKC 2006

9th International Conference
on Theory and Practice of Public-Key Cryptography
New York, NY, USA, April 24-26, 2006
Proceedings

13

Volume Editors

Moti Yung
RSA Laboratories
and
Columbia University
Computer Science Department
1214 Amsterdam Avenue, New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Yevgeniy Dodis
New York University
Department of Computer Science
251 Mercer Street, New York, NY 10012, USA
E-mail: dodis@cs.nyu.edu

Aggelos Kiayias
University of Connecticut
Department of Computer Science and Engineering Storrs
CT 06269-2155, USA
E-mail: aggelos@cse.uconn.edu

Tal Malkin
Columbia University
Department of Computer Science
1214 Amsterdam Avenue, New York, NY 10027, USA
E-mail: tal@cs.columbia.edu

Library of Congress Control Number: 2006924182

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-33851-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33851-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11745853 06/3142 5 4 3 2 1 0

Preface

The 9th International Conference on Theory and Practice of Public-Key Cryp-
tography (PKC 2006) took place in New York City. PKC is the premier interna-
tional conference dedicated to cryptology focusing on all aspects of public-key
cryptography. The event is sponsored by the International Association of Cryp-
tologic Research (IACR), and this year it was also sponsored by the Columbia
University Computer Science Department as well as a number of sponsors from
industry, among them: EADS and Morgan Stanley, which were golden sponsors,
as well as Gemplus, NTT DoCoMo, Google, Microsoft and RSA Security, which
were silver sponsors. We acknowledge the generous support of our industrial
sponsors; their support was a major contributing factor to the success of this
year’s PKC.

PKC 2006 followed a series of very successful conferences that started in
1998 in Yokohama, Japan. Further meetings were held successively in Kamakura
(Japan), Melbourne (Australia), Jeju Island (Korea), Paris (France), Miami
(USA), Singapore and Les Diablerets (Switzerland). The conference became an
IACR sponsored event (officially designated as an IACR workshop) in 2003 and
has been sponsored by IACR continuously since then. The year 2006 found us
all in New York City where the undertone of the conference was hummed in the
relentless rhythm of the city that never sleeps.

This year’s conference was the result of a collaborative effort by four of us:
Moti Yung served as the conference and program chair. Moti orchestrated the
whole project and led the Program Committee’s efforts in the careful selection
of the 34 papers that you will find in this volume. Yevgeniy Dodis served as
the general and sponsorship chair, coordinating the sponsorship efforts. Aggelos
Kiayias served as the publicity and publication chair, tending to the conference’s
publicity aspects, Web-site, submission and reviewing site as well as the edito-
rial preparation of the present volume. Tal Malkin served as the general and
local arrangements chair and was responsible for the very critical job of hosting
PKC 2006 at Columbia University.

The selection of papers for this year’s program was a delicate and laborious
task. PKC 2006 had received a total of 124 submissions by the day of the sub-
mission deadline, November 15, 2005. Each paper was refereed by at least four
committee members who were frequently assisted by external reviewers. The on-
line discussions together with the reviews that were posted on the online review-
ing site, if printed, would require more than 450 pages of densely printed text.
The present proceedings volume contains the revised versions of the accepted
extended abstracts as submitted by the authors after an alloted three week re-
vision period based on the Program Committee’s comments. The PKC 2006
Program Committee had the pleasure of according this year’s PKC Best Pa-
per Award to Daniel Bleichenbacher and Alexander May for their advancement

VI Preface

of RSA cryptanalysis in their paper entitled “New Attacks on RSA with Small
Secret CRT-Exponents.”

We would like to thank the Program Committee members as well as the
external reviewers for their volunteered hard work invested in selecting the pro-
gram. We thank the PKC Steering Committee for their support. We also wish
to thank the following individuals: Shai Halevi for providing his Web-review and
submission system to be used for the conference and for providing technical sup-
port; the submission and reviewing-site administrator David Walluck as well as
the other students of the CryptoDRM Lab at the University of Connecticut for
providing technical support; and Michael Locasto for Web-site administration
support at Columbia University. Finally big thanks are due to all authors of sub-
mitted papers whose quality contributions make this research area a pleasure to
work in, and made this conference a possibility.

March 2006 Moti Yung
Yevgeniy Dodis
Aggelos Kiayias

Tal Malkin

Organization

PKC Steering Committee

Ronald Cramer CWI and Leiden University, The Netherlands
Yvo Desmedt University College London, UK
Hideki Imai (Chair) University of Tokyo, Japan
Kwangjo Kim Information and Communications University,

Korea
David Naccache École Normale Supérieure, France
Tatsuaki Okamoto NTT Labs, Japan
Jacques Stern École Normale Supérieure, France
Moti Yung RSA Laboratories and Columbia University,

USA
Yuliang Zheng (Secretary) University of North Carolina at Charlotte,

USA

Organizing Committee

Conference and Program Chair Moti Yung
General and Sponsorship Chair Yevgeniy Dodis
Publicity and Publication Chair Aggelos Kiayias
General and Local Arrangements Chair Tal Malkin

Industrial Sponsors

EADS
Morgan Stanley

Gemplus
NTT DoCoMo

Google
Microsoft

RSA Security

VIII Organization

Program Committee

Masayuki Abe NTT Japan
Feng Bao I2R, Singapore
Paulo S.L.M. Barreto University of São Paulo, Brazil
Amos Beimel Ben Gurion University, Israel
Xavier Boyen Voltage Technology, USA
Serge Fehr CWI, The Netherlands
Pierre-Alain Fouque ENS Paris, France
Juan Garay Bell Labs, USA
Rosario Gennaro IBM Research, USA
Nick Howgrave-Graham NTRU Cryptosystems, USA
Dong Hoon Lee Korea University, Korea
Wenbo Mao HP Labs, China
Alexander May Paderborn University, Germany
David Naccache ENS, France
Rafail Ostrovsky UCLA, USA
Kenny Paterson Royal Holloway, U. of London, UK
Giuseppe Persiano University of Salerno, Italy
Benny Pinkas Haifa University, Israel
Leonid Reyzin Boston University, USA
Kazue Sako NEC Japan
Jean-Sébastien Coron University of Luxembourg
Alice Silverberg U. C. Irvine, USA
Jessica Staddon PARC, USA
Ron Steinfeld Macquarie University, Australia
Edlyn Teske University of Waterloo, Canada
Wen-Guey Tzeng NCTU, Taiwan
Susanne Wetzel Stevens Institute, USA
Yiqun Lisa Yin Independent Consultant, USA
Adam Young MITRE, USA
Moti Yung RSA Labs and Columbia U., USA

External Reviewers

Michel Abdalla
Ben Adida
Luis von Ahn
Giuseppe Ateniese
Joonsang Baek
Paulo Barreto
Daniel Brown
Jan Camenisch

Ran Canetti
Melissa Chase
Lily Chen
Liqun Chen
Benôıt Chevallier-Mames
Chen-Kang Chu
Mathieu Ciet
Scott Contini

Yang Cui
Martin Döring
Paolo D’Arco
Michael De Mare
Breno de Medeiros
Nenad Dedić
Alex Dent
Glenn Durfee

Organization IX

Pooya Farshim
Marc Fischlin
Jun Furukawa
Steven Galbraith
Clemente Galdi
David Galindo
Decio Gazzoni
Kristian Gjøsteen
Dorian Goldfeld
Philippe Golle
Vanessa Gratzer
Shai Halevi
Wei Han
Darrel Hankerson
Anwar Hasan
Javier Herranz
Jason Hinek
Dennis Hofheinz
Nicholas Hopper
Toshiyuki Isshiki
Stanislaw Jarecki
Markus Kaiser
Jonathan Katz
Tim Kerins
Eike Kiltz
Hugo Krawczyk
Sebastien Kunz-Jacques
Kaoru Kurosawa
Eonkyung Lee

Xiangxue Li
Benôıt Libert
Shia-Yin Lin
Yehuda Lindell
Pierre Loidreau
Anna Lysyanskaya
John Malone-Lee
Gwenaëlle Martinet
Barbara Masucci
Bernd Meyer
Ulrike Meyer
Peter Montgomery
Kengo Mori
Volker Müller
James Muir
Chanathip Namprempre
Phong Nguyen
Jesper Buus Nielsen
Satoshi Obana
Daniel Page
Adriana Palacio
Josef Pieprzyk
David Pointcheval
Geraint Price
Karl Rubin
Tomas Sander
Oliver Schirokauer
Katja Schmidt-Samoa
Michael Scott

Hovav Shacham
Junji Shikata
Nigel Smart
Diana Smetters
Jerry Solinas
Rainer Steinwandt
Willy Susilo
Koutaro Suzuki
Isamu Teranishi
Nicholas Theriault
Richard M. Thomas
Xiaojian Tian
Ivan Visconti
Guilin Wang
Huaxiong Wang
Brent Waters
Ralf-Philipp Weinmann
Enav Weinreb
Kai Wirt
Duncan Wong
David Woodruff
Rui Zhang
Yunlei Zhao
Sheng Zhong
Huafei Zhu
Sebastien Zimmer

Table of Contents

Cryptanalysis and Protocol Weaknesses

New Attacks on RSA with Small Secret CRT-Exponents
Daniel Bleichenbacher, Alexander May . 1

An Attack on a Modified Niederreiter Encryption Scheme
Christian Wieschebrink . 14

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm
Sébastien Kunz-Jacques, Gwenaëlle Martinet, Guillaume Poupard,
Jacques Stern . 27

Distributed Crypto-computing

Efficient Polynomial Operations in the Shared-Coefficients Setting
Payman Mohassel, Matthew Franklin . 44

Generic On-Line/Off-Line Threshold Signatures
Chris Crutchfield, David Molnar, David Turner, David Wagner 58

Linear Integer Secret Sharing and Distributed Exponentiation
Ivan Damg̊ard, Rune Thorbek . 75

Encryption Methods

Encoding-Free ElGamal Encryption Without Random Oracles
Benôıt Chevallier-Mames, Pascal Paillier, David Pointcheval 91

Parallel Key-Insulated Public Key Encryption
Goichiro Hanaoka, Yumiko Hanaoka, Hideki Imai 105

Provably Secure Steganography with Imperfect Sampling
Anna Lysyanskaya, Mira Meyerovich . 123

Cryptographic Hash and Applications

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited
Ilya Mironov . 140

XII Table of Contents

Higher Order Universal One-Way Hash Functions from the Subset Sum
Assumption

Ron Steinfeld, Josef Pieprzyk, Huaxiong Wang . 157

Number Theory Algorithms

An Algorithm to Solve the Discrete Logarithm Problem with the
Number Field Sieve

An Commeine, Igor Semaev . 174

Efficient Scalar Multiplication by Isogeny Decompositions
Christophe Doche, Thomas Icart, David R. Kohel 191

Curve25519: New Diffie-Hellman Speed Records
Daniel J. Bernstein . 207

Pairing-Based Cryptography

Strongly Unforgeable Signatures Based on Computational
Diffie-Hellman

Dan Boneh, Emily Shen, Brent Waters . 229

Generalization of the Selective-ID Security Model for HIBE Protocols
Sanjit Chatterjee, Palash Sarkar . 241

Identity-Based Aggregate Signatures
Craig Gentry, Zulfikar Ramzan . 257

On the Limitations of the Spread of an IBE-to-PKE Transformation
Eike Kiltz . 274

Cryptosystems Design and Analysis

Inoculating Multivariate Schemes Against Differential Attacks
Jintai Ding, Jason E. Gower . 290

Random Subgroups of Braid Groups: An Approach to Cryptanalysis of
a Braid Group Based Cryptographic Protocol

Alexei Myasnikov, Vladimir Shpilrain, Alexander Ushakov 302

High-Order Attacks Against the Exponent Splitting Protection
Frédéric Muller, Frédéric Valette . 315

Table of Contents XIII

Signature and Identification

New Online/Offline Signature Schemes Without Random Oracles
Kaoru Kurosawa, Katja Schmidt-Samoa . 330

Anonymous Signature Schemes
Guomin Yang, Duncan S. Wong, Xiaotie Deng, Huaxiong Wang 347

The Power of Identification Schemes
Kaoru Kurosawa, Swee-Huay Heng . 364

Authentication and Key Establishment

Security Analysis of KEA Authenticated Key Exchange Protocol
Kristin Lauter, Anton Mityagin . 378

SAS-Based Authenticated Key Agreement
Sylvain Pasini, Serge Vaudenay . 395

The Twist-AUgmented Technique for Key Exchange
Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry,
David Pointcheval . 410

Password-Based Group Key Exchange in a Constant Number of Rounds
Michel Abdalla, Emmanuel Bresson, Olivier Chevassut,
David Pointcheval . 427

Multi-party Computation

Conditional Oblivious Cast
Cheng-Kang Chu, Wen-Guey Tzeng . 443

Efficiency Tradeoffs for Malicious Two-Party Computation
Payman Mohassel, Matthew Franklin . 458

PKI Techniques

On Constructing Certificateless Cryptosystems from Identity Based
Encryption

Benôıt Libert, Jean-Jacques Quisquater . 474

Building Better Signcryption Schemes with Tag-KEMs
Tor E. Bjørstad, Alexander W. Dent . 491

XIV Table of Contents

Security-Mediated Certificateless Cryptography
Sherman S.M. Chow, Colin Boyd, Juan Manuel González Nieto 508

k-Times Anonymous Authentication with a Constant Proving Cost
Isamu Teranishi, Kazue Sako . 525

Author Index . 543

New Attacks on RSA with

Small Secret CRT-Exponents

Daniel Bleichenbacher1 and Alexander May2

1 daniel bleichenbacher@yahoo.com
2 Department of Computer Science,

TU Darmstadt,
64289 Darmstadt, Germany

may@informatik.tu-darmstadt.de

Abstract. It is well-known that there is an efficient method for decrypt-
ing/signing with RSA when the secret exponent d is small modulo p− 1
and q − 1. We call such an exponent d a small CRT-exponent. It is one
of the major open problems in attacking RSA whether there exists a
polynomial time attack for small CRT-exponents, i.e. a result that can
be considered as an equivalent to the Wiener and Boneh-Durfee bound
for small d. At Crypto 2002, May presented a partial solution in the case
of an RSA modulus N = pq with unbalanced prime factors p and q.
Based on Coppersmith’s method, he showed that there is a polynomial
time attack provided that q < N0.382. We will improve this bound to
q < N0.468 . Thus, our result comes close to the desired normal RSA case
with balanced prime factors. We also present a second result for balanced
RSA primes in the case that the public exponent e is significantly smaller
than N . More precisely, we show that there is a polynomial time attack

if dp, dq ≤ min{(N/e)
2
5 , N

1
4 }. The method can be used to attack two

fast RSA variants recently proposed by Galbraith, Heneghan, McKee,
and by Sun, Wu.

Keywords: RSA, small exponents, lattices, Coppersmith’s method.

1 Introduction

Let N = pq be an RSA modulus. The public exponent e and the secret exponent
d satisfy the equation ed = 1 mod φ(N), where φ(N) = (p− 1)(q − 1) is Euler’s
totient function. The main drawback of RSA is its efficiency. A normal RSA
decryption/signature generation requires time Θ(log d log2N).

Therefore, one might be tempted to use small secret exponents to speed up
the decryption/signing process. Unfortunately, Wiener[14] showed in 1991 that
if d < N

1
4 then the factorization of N can be found in polynomial time using

only the public information (N, e). In 1999, Boneh and Durfee[1] improved the
bound to d < N0.292. One can view these bounds as a benchmark for attacking
RSA (see also the comments in the STORK-roadmap [11]). Thus, improving
these bounds is a major research issue in public key cryptanalysis.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 1–13, 2006.
c© International Association for Cryptologic Research 2006

2 D. Bleichenbacher and A. May

It remains an important open problem whether there is an analogue of these
attacks in the case of small secret CRT-exponents d, i.e. exponents d such that
dp = d mod p− 1 and dq = d mod q − 1 both are small. For the construction of
such small CRT-exponents with a given bit-size, we refer to Boneh, Shacham [2].
Notice that small CRT-exponents enable to efficiently raise to the dth power
modulo p and modulo q, respectively. The results are then combined using the
Chinese Remainder Theorem (CRT), yielding a solution modulo N . For the nor-
mal RSA case with balanced prime factors p, q and full-size e, the best algorithm
that is currently known has time and space complexity O(

√
min{dp, dq}).

At Crypto 2002, May[9] presented two polynomial time attacks for the case
of imbalanced prime factors p and q. His attacks are based on Coppersmith’s
method for finding small roots of modular equations. His first attack is rigorous
and solves a polynomial equation modulo p. This attack works whenever q <
N0.382. May’s second attack is a heuristic method that is based on a resultant
heuristic for Coppersmith’s method in the multivariate modular case. This attack
works whenever q < N

3
8 .

Let us have a look at the size of dp that can be attacked by May’s approaches
as a function of the size of q. In Fig. 1 we present both of these sizes as a fraction
of the bits of N .

0.5

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

0.5

MAY1

MAY2

NEW RESULT

logN dp

logN q

Fig. 1. The attacks of [9] in comparison with the new approach

A close look at the functions presented in Fig. 1 reveals that there is a tiny
region where May’s first method is better than his second one. Hence, it is a
natural question to ask whether there is a unifying method that covers both
regions of the key space.

In this work, we present a new attack that solves this question. In Fig. 1, we
give the improved sizes of dp that can be attacked by our new approach as a
function of q. One can see that the new attack works up to q < N0.468 and covers
the key spaces of the previously known attacks. Thus, we are able to improve
the benchmark for attacking CRT-RSA up to almost balanced prime factors.

New Attacks on RSA with Small Secret CRT-Exponents 3

Interestingly, we get the improvement by making just a small twist to May’s
second method. He solved a polynomial equation f(x, y) = x(N − y)+N with a
small root (x0, q) modulo e. In this work, we make additional use of the fact that
the desired small solution contains the prime factor q. Namely, we introduce a
new variable z for the prime factor p and further use the equation yz = N .

Our new approach immediately raises an interesting open problem: The poly-
nomial f(x, y) = x(N − y) + N used here is very similar to the polynomial
g(x, y) = x(N + 1 − y) + 1 that is used in the Boneh-Durfee approach to show
the currently best bound of d < N0.292 for attacking small secret exponent RSA.
Notice that both polynomials f(x, y) and g(x, y) have the same set of monomials,
i.e. the same Newton polytope. In contrast to f(x, y), the polynomial g(x, y) has
a small root (x′0, p+ q). It is a natural question to ask whether one can improve
the Boneh-Durfee bound by using the fact that this root contains the sum of the
prime factors p and q.

We should point out that our new attack works for small dp and arbitrary
sizes of dq. It is an open problem how to make use of a small parameter dq in
this attack. Maybe a clever use of dq could already help to push the bound from
q < N0.468 to the desired normal RSA-case of balanced prime factors.

As a second result, we are able to give a different lattice-based attack on RSA
with small CRT-exponents that works in the case of balanced prime factors, but
with the restriction that the parameter e is significantly smaller than N . This
second attack makes use of small dp and small dq. The result is achieved by mul-
tiplying the equations edp = 1 mod p−1 and edq = 1 mod q−1 and then using a
linearization technique. Our attack works whenever dp, dq<min{ 1

4 (N/e)
2
5 ,13N

1
4 },

i.e., up to roughly half of the bit-size of p, q for sufficiently small e. The attack
requires to find a shortest vector in a 3-dimensional lattice and is extremely fast.
As an application of our second result, we show that recently proposed RSA vari-
ants by Galbraith, Heneghan and McKee [5] and Sun, Wu [12] are vulnerable to
the new attack.

We would like to point out that both new attacks are heuristic methods. We
implemented both methods and provide several experiments that show that the
heuristics work well in practice.

The organization of the paper is as follows. In Section 2, we state some lattice
basis theory and in Section 3 we review May’s result. In Section 4, we show
how to achieve the improved bound of q < N0.468 . In Section 5, we present our
second attack for dp, dq < min{ 1

4 (N/e)
2
5 , 1

3N
1
4 } and show how this attack breaks

recently proposed fast RSA variants. We conclude our work by providing some
experimental results for our attacks in Section 6.

2 Lattice Theory and Definitions

Let b1, . . . , bn ∈ Zn be linearly independent. Then these vectors span a lattice
of dimension n defined by

L :=
{
x ∈ Zn | x =

n∑
i=1

aibi, where ai ∈ Z
}
.

4 D. Bleichenbacher and A. May

We call the set B = {b1, . . . , bn} a basis of L. There are infinitely many bases.
A basis can be transformed into another basis by a unimodular transformation,
i.e. a multiplication by a matrix with determinant ±1. Therefore, the absolute
value of the determinant of a basis matrix is an invariant of the lattice L. We
call this invariant the determinant of L, which is denoted by det(L) = | det(B)|.

A famous theorem of Minkowski gives an upper bound for the length of a
shortest vector v in a lattice in terms of a function of the determinant and the
dimension n:

||v|| ≤
√
n dim(L)n.

In lattices with fixed dimension, a shortest vector can be found in polynomial
time. In arbitrary dimension, approximations of a shortest vector can be obtained
in polynomial time by applying the well-known L3 basis reduction algorithm of
Lenstra, Lenstra and Lovász [8].

Theorem 1 (Lenstra, Lenstra, Lovász). Let B = {b1, . . . , bn} be a basis.
On input B, the L3-algorithm outputs another basis {v1, . . . , vn} with

||v1|| ≤ ||v2|| ≤ 2
n
4 det(L)

1
n−1 ,

in time polynomial in n and in the bit-size of the entries in B.

Let f(x, y) =
∑

i,j ai,jx
iyj ∈ Z[x, y]. We define the norm of f by the Euclidean

norm of its coefficient vector: ||f ||2 =
∑

i,j a
2
i,j .

Based on the L3-algorithm, Coppersmith [4] presented in 1996 a method that
finds small solutions to modular polynomial equations. The idea behind Cop-
persmith’s method is to construct a polynomial which has the desired small root
over the integers. Howgrave-Graham [7] in turn formulated a useful condition
how to find such a polynomial in terms of the norm of a polynomial.

Theorem 2 (Howgrave-Graham). Let f(x1, . . . , xk) be a polynomial in k
variables with n monomials. Furthermore, let m be a positive integer. Suppose
that

(1) f(r1, . . . , rk) = 0 mod bm where |ri| ≤ Xi, i = 1, . . . , k and
(2) ||f(x1X1, . . . , xkXk)|| < bm

√
n
.

Then f(r1, . . . , rk) = 0 holds over the integers.

3 Revisiting May’s Attack on Small CRT-Exponents

Throughout this paper, we assume that e < φ(N). Furthermore, we assume
that q ≤ Nβ for some β ≤ 1

2 . We start by writing the RSA equation edp =
1 mod (p− 1) in the form

edp = 1 + k(p− 1),

for some unknown k ∈ N. Rewriting terms yields

edp = (k − 1)(p− 1) + p. (1)

New Attacks on RSA with Small Secret CRT-Exponents 5

A multiplication with q leaves us with the equation

edpq = (k − 1)(N − q) +N.

We assign the variables x and y to the unknown parameters on the right-hand
side and obtain a bivariate polynomial

f(x, y) = x(N − y) +N, (2)

with the root (x0, y0) = (k − 1, q) modulo e. In order to bound the term k − 1,
we observe that by Eq. (1)

k − 1 =
edp − p
p− 1

<
e

p− 1
dp < (q − 1)X < NβX.

Let us fix a parameter m. We define the following collection of polynomials that
all have the root (x0, y0) modulo em:

gi,j(x, y) = em−ixjf i(x, y) for i = 0, . . . ,m; j = 0, . . . ,m− i and
hi,j(x, y) = em−iyjf i(x, y) for i = 0, . . . ,m; j = 1, . . . , t. (3)

The parameter t has to be optimized as a function of m.
Since each polynomial of the collection has the small root (x0, y0) modulo e,

every linear combination of these polynomials also has the same root modulo e.
A lower triangular lattice basis can be build from the coefficient vectors of

gi,j(xX, yY) and hi,j(xX, yY). According to Howgrave-Graham’s theorem (The-
orem 2), linear combinations of the vectors with sufficiently small norm give raise
to bivariate polynomials that have the root (x0, y0) not only modulo e but over
the integers. Having two polynomials f1(x, y) and f2(x, y) with this root over the
integers, one can take resultants in order to extract the desired root. However,
the last step is a heuristic, since the resultant computation may fail due to a
non-trivial gcd of f1 and f2.

In [9], it was shown that with the optimal choice of parameters one obtains
an attack that works up to q < N

3
8 , see also Fig. 1 in Section 1.

4 An Approach That Works for q < N0.468

Our improvement of the algorithm presented in Section 3 is based on the obser-
vation that in Eq. (2) the polynomial f(x, y) contains in its small root (x0, y0) =
(dp, q) modulo e the prime factor q. We will use the fact that we do not deal
with just an arbitrary small root but that q is already determined by N .

Let us introduce a new variable z for p. We multiply the polynomial f(x, y)
by a power zs for some s that has to be optimized. Additionally, we can replace
every occurence of the monomial yz by N . Let us look at the following new
collection of trivariate polynomials that we obtain by multiplying the former
collection from (3) with zs:

g′i,j(x, y, z) = em−ixjzsf i(x, y) for i = 0, . . . ,m; j = 0, . . . ,m− i and

h′i,j(x, y, z) = em−iyjzsf i(x, y) for i = 0, . . . ,m; j = 1, . . . , t.

6 D. Bleichenbacher and A. May

What is the impact of a multiplication with zs, i.e. the changes from the collec-
tion g, h to the collection g′, h′? Every monomial xiyj, j ≥ s with coefficient ai,j

in the former collection is transformed into a monomial xiyj−s with coefficient
ai,jN

s in the new collection. In case of a monomial xiyj with j < s, we obtain
a new monomial xizs−j with new coefficient ai,jN

j .
The obvious advantage is that the coefficient vectors of g′(xX, yY, zZ) and

h′(xX, yY, zZ) contain less powers of Y , which decreases the determinant of
the lattice spanned by these vectors. On the other hand, the coefficient vectors
contain powers of Z, which in turn increases the determinant. Hence, there is a
trade-off and one has to optimize the parameter s subject to a minimization of
the lattice determinant.

As in Section 3, the resulting lattice basis built from the coefficient vectors of
g′(xX, yY, zZ) and h′(xX, yY, zZ) is lower triangular. Therefore, every polyno-
mial from our new collection contributes with just one coefficient to the diagonal.
If the coefficient of this diagonal entry has a factor of N j, we eliminate this factor
by multiplying the polynomial with the inverse of N j modulo e. I.e., we elimi-
nate powers of N in the diagonal entries in order to keep the lattice determinant
as small as possible.

Let B be the lattice basis defined by the coefficient vectors g′(xX, yY, zZ) and
h′(xX, yY, zZ), where we eliminated powers of N on the diagonal as explained
above. Moreover, let L be the lattice spanned by these vectors with dimension
dim(L) and determinant det(L).

We have to find two vectors in L that are shorter than the bound em/
√

dim(L)
given in Howgrave Graham’s theorem (Theorem 2). These vectors are the coeffi-
cient vectors of two trivariate polynomial f1(xX, yY, zZ) and f2(xX, yY, zZ). By
Howgrave-Graham’s theorem, f1(x, y, z) and f2(x, y, z) have the root (x0, q, p)
over the integers. We will later show that the desired short vectors can be ob-
tained by applying the L3-algorithm to our lattice basis B.

Suppose for now that we have computed two such trivariate polynomials f1
and f2 with the previous property. Then we can eliminate z from the polynomials
by setting z = N/y. Since the resulting bivariate polynomials are rational we
multiply them by a suitable power of y in order to obtain polynomials f̄1, f̄2
in Z[x, y]. Afterwards, we take the resultant of these integral polynomials f̄1, f̄2
with respect to the variable x. We obtain a univariate polynomial g(y) with root
q. If f̄1 and f̄2 do not share a non-trivial gcd, g(y) is not the zero-polynomial and
we can easily extract q with standard root finding algorithms. This completes
the description of the attack. The only heuristic assumption that we make in
our approach is that g(y) �= 0.

Assumption 3. The construction described above yields a non-zero polynomial
g(y).

We are able to confirm Assumption 3 by various experiments in Section 6. This
shows that our attack works very well in practice.

It remains to give a condition under which we can efficiently find two suf-
ficiently short vectors in the lattice L spanned by the basis B. The following

New Attacks on RSA with Small Secret CRT-Exponents 7

lemma gives an explicit condition, under which the L3-algorithm finds two such
vectors.

Lemma 4. Let ε > 0, t = τm and s = σm. Let N and m be sufficiently large
and

X2+3τY 1+3(τ−σ)(1+τ−σ)Z3σ2 ≤ e1+3τ−ε.

Then on input B, the L3-algorithm will output two vectors that are shorter than
em√

dim(L)
.

Proof: Let n = dim(L). By the L3 theorem (Theorem 1), the second shortest
vector of an L3-reduced basis satifies

||v2|| ≤ 2
n
4 det(L)

1
n−1 .

Suppose that we can upperbound the right-hand side term by em
√

n
, then the claim

follows. That leaves us with the condition

det(L) < cem(n−1), (4)

where c = (2−
n
4 /
√
n)n−1. Since c does not depend on N , we let c contribute to

the error term ε and omit it in the further calculations. Now we have to find an
expression for the determinant of L.

It is not hard to see that the contribution of the coefficient vectors in g′i,j
to the determinant contains powers of X , Y and Z that correspond to the
monomials that appear in zsfm(x, y). The coefficient vectors in h′ contribute
to det(L) with powers of X , Y and Z from the additional monomials that ap-
pear in zsyifm(x, y), for i = 1, . . . , t. A straight-forward but tedious computation
(details are provided in Appendix A) yields that

det(L) =
(
(eX)2+3τY 1+3(τ−σ)(1+τ−σ)Z3σ2

) 1
6 m3(1+o(1))

.

Now, we have an expression for the left-hand side of our condition in (4). In
order to find an expression for the right-hand side, we observe that n = dim(L) =
(3+6τ)1

6m
2(1+o(1)) (for details of the calculation, see Appendix A). Neglecting

low-order terms, we obtain the desired new condition

X2+3τY 1+3(τ−σ)(1+τ−σ)Z3σ2 ≤ e1+3τ .

We are now able to state our main theorem for our first attack.

Theorem 5. Let ε > 0. Under Assumption 3, the following holds for sufficiently
large N : Let N = pq be an RSA-modulus with q ≤ Nβ and p ≤ 2N1−β. More-
over, let e = Nα be an RSA-public exponent satisfying edp = 1 mod p − 1 for
some dp = N δ with

δ ≤ 1
3

(
3 − 2β − β2 −

√
12αβ − 12αβ2 + 4β2 − 5β3 + β4

)
− ε.

Then N can be factored in polynomial time.

8 D. Bleichenbacher and A. May

Proof: We can define the upper bounds Y = Nβ and Z = 2N1−β for q and
p, respectively. Notice that the parameter β must not necessarily be known in
advance. If β is unknown, we can brute-force search in polynomial time over the
bit-size of q and obtain a suitable parameter β that satisfies our preconditions.

From Section 3, we know that the polynomial f(x, y) = x(N −y)+N has the
small root (x0, y0) = (k − 1, q) modulo e. Using Eq. (1), we obtain

x0 = k − 1 ≤ edp

p− 1
≤ Nα+δ

N1−β − 1
≤ 2Nα+β+δ−1.

Let us define X = 2Nα+β+δ−1. Now we take the condition from Lemma 4 and
plug in our bounds X , Y and Z. Neglecting low-order terms and the error term
ε, we obtain the new condition

(α+β+δ−1)(2+3τ)+β(1+3(τ−σ)(1+τ −σ))+(1−β)(3σ2)−α(1+3τ) < 0.

Our goal is to minimize the expression on the left-hand side. Therefore, we dif-
ferentiate the term with respect to τ and σ. After some calculations, we observe
that the expression is minimized for the parameter choices

τ =
(1 − β)2 − δ
2β(1 − β)

and σ =
1 − β − δ
2(1− β)

.

Plugging in these values, we obtain the desired condition

δ ≤ 1
3

(
3 − 2β − β2 −

√
12αβ − 12αβ2 + 4β2 − 5β3 + β4

)
.

In Fig. 1 (see Section 1), we presented the function from Theorem 5 for the
special case α = 1, i.e. for the important case where the magnitude of e is of the
order of the size of N . In this case, our attack works up to β = 1

6 (
√

61 − 5) ≈
0.468.

In [5] and [12], the authors suggested to combine medium size e with small
CRT-exponents. In the balanced RSA-case, i.e. for β = 1

2 , our bound from
Theorem 5 yields a polynomial time attack whenever α ≤ 7

8 . However, in the
subsequent section we present a polynomial time attack on RSA with balanced
prime factors whenever α < 1.

5 An Attack for dp, dq < min
{

1
4

(
N
e

)2
5 , 1

3
N

1
4

}
In this section we assume both that dp < min{ 1

4 (N/e)2/5, 1
3N

1/4} and dq <

min{ 1
4 (N/e)2/5, 1

3N
1/4}. We want to point out that we did not optimize the

constant terms 1
4 , 1

3 in the bounds for dp, dq in order to keep the calculations
simple. We further assume that e < φ(N) and 1/2 < p/q < 2, i.e. that p and

New Attacks on RSA with Small Secret CRT-Exponents 9

q have about the same size. We show heuristically that the modulus N can be
factored under these assumptions.

We start with the RSA equations edp = 1 mod p− 1 and edq = 1 mod q − 1.
We rewrite these equations as

edp = 1 + k(p− 1) and
edq = 1 +
(q − 1), (5)

where k and
 are positive integers. Hence we get

edp + k − 1 = kp and
edq +
− 1 =
q.

Multiplying these two equations gives

(edp + k − 1)(edq +
− 1) = k
N.

Next we linearize this equation as

ex+ y(1 −N) + e2w = z,

with the unknowns

w = dpdq,

x = dp(
− 1) + dq(k − 1),
y = k
,

z = k +
− 1.

In the following, we show that the unknowns can be obtained heuristically by
lattice reduction techniques. Using our bound dp, dq ≤ 1

4e
− 2

5N
2
5 , we can upper-

bound
k =

edp − 1
p− 1

≤ 2edpN
− 1

2 ≤ 1
2
e

3
5N− 1

10 .

The same bound holds for
. This enables us to give the following upper bounds
for x, y and z:

x ≤ 1
4
e

1
5N

3
10 ,

y ≤ 1
4
e

6
5N− 1

5 ,

z ≤ e
3
5N− 1

10 .

Let us look at the lattice L1 that is spanned by the row vectors of the following
lattice basis

B1 =

⎛⎝1 0 e
0 1 1 −N
0 0 e2

⎞⎠ .

10 D. Bleichenbacher and A. May

Notice that L1 contains the target vector v1 = (x, y, w) ·B1 = (x, y, z). We want
to balance the target vector, i.e. to make every entry in v1 approximately of the
same size. Therefore, we multiply the columns of B1 with suitable factors, such
that the size of each entry of the resulting target vector is bounded by e

6
5N

3
10 .

This gives us the lattice L2 defined by the span of the row vectors in the basis

B2 =

⎛⎝4e 0 e
8
5N

2
5

0 4N
1
2 e

3
5N

2
5 (1 −N)

0 0 e
13
5 N

2
5

⎞⎠ .

The new target vector v2 = (x, y, w) · B2 has norm at most ||v2|| ≤
√

3e
6
5N

3
10 .

We want to argue that v2 is among the shortest vectors in L2. By Minkowski’s
theorem, L2 contains a vector with norm smaller than

√
3 det(L2)

1
3 =

√
3
(
42e

18
5 N

9
10

) 1
3

= 4
2
3 ·

√
3e

6
5N

3
10 .

We use the heuristic assumption that the vector v2 is the shortest vector in L2,
i.e. v2 is the only vector with norm below the Minkowski bound. Notice that L2

also contains the vectors (x−λe, y, w+λ) ·B2 = (x−λe, y, z) with λ ∈ Z. Thus
v2 = (x, y, z) clearly is not the shortest vector in L2 if x > e/2. However, this is
not a problem because the condition dp, dq <

1
3N

1/4 implies

x = dp(
− 1) + dq(k − 1) <
1
3
N

1
4 (
+ k) ≤ 1

3
N

1
4 · 4

3
eN− 1

4 <
e

2
.

Under the heuristic assumption that there are no vectors shorter than v2, we
can recover v2 by a shortest vector computation in L2. We confirm our heuristic
by experiments in Section 6.

Notice that v2 gives us the unknowns w, x, y and z. From y and z, we can
recover the unknowns k and
. This enables us to recover from w and x the
unknown parameters dp and dq. Finally, we obtain p and q by solving Eq (5).
This completes the description of our second attack.

5.1 Applications

As applications of our attack, we present the cryptanalysis of two fast RSA-
variants that were recently proposed by Galbraith, Heneghan, McKee [5] and
Sun, Wu [12]. In [5], the following parameter choice is suggested: 1024-bit N ,
508-bit e and 200-bit d. Similarly in [12], the suggested parameters are: 1024-bit
N , 512-bit e and 199-bit d.

Both schemes are vulnerable to our new attack, i.e. the factorization of N
can be obtained from the public parameters (N, e) in a fraction of a second.
However, the construction in [5] allows to arbitrarily tune the RSA parameters
within some constraints. Thus, the parameters can easily be adapted in such a
way that our attack becomes infeasible. Indeed, after learning from our attack
Galbraith, Heneghan and McKee [6] as well as Hinek, Sun and Wu [13] revised
their constructions in such a way that the present attack does not work. On the
other hand, we want to warn that a lack of an attack for a certain part of the
RSA key space is not a guarantee of security!

New Attacks on RSA with Small Secret CRT-Exponents 11

6 Experiments

We implemented the attack described in Section 4 using Shoup’s NTL [10]. We
ran our experiments on a 2.4Ghz-Pentium under Linux. In each test, we used
an 1000-bit RSA-modulus N with varying bit-size of q. The sizes of dp and the
lattice parameters are given in Fig. 2. We would like to point out that we could
not find one example, where Assumption 3 failed. Thus, the resultant heuristic
seems to work perfectly in practice.

q dp Lattice parameters L3-time

405 bit 10 bit m = 3, t = s = 2, dim(L) = 18 5 sec
370 bit 50 bit m = 3, t = s = 2, dim(L) = 18 5 sec
330 bit 100 bit m = 3, t = s = 2, dim(L) = 18 5 sec
280 bit 160 bit m = 3, t = s = 2, dim(L) = 18 5 sec

420 bit 10 bit m = 4, t = s = 3, dim(L) = 30 50 sec
385 bit 50 bit m = 4, t = s = 3, dim(L) = 30 50 sec
340 bit 100 bit m = 4, t = s = 3, dim(L) = 30 50 sec
290 bit 160 bit m = 4, t = s = 3, dim(L) = 30 50 sec

430 bit 10 bit m = 5, t = s = 4, dim(L) = 45 6 min
395 bit 50 bit m = 5, t = s = 4, dim(L) = 45 6 min
345 bit 100 bit m = 5, t = s = 4, dim(L) = 45 7 min
300 bit 160 bit m = 5, t = s = 4, dim(L) = 45 9 min

440 bit 10 bit m = 6, t = s = 5, dim(L) = 63 35 min
405 bit 50 bit m = 6, t = s = 5, dim(L) = 63 35 min
355 bit 100 bit m = 6, t = s = 5, dim(L) = 63 44 min
305 bit 160 bit m = 6, t = s = 5, dim(L) = 63 53 min

Fig. 2. Experimental results for the attack from Section 4

An implementation of the attack in Section 5 using PARI/GP [3] needs
approximately 15 ms on an 3Ghz-Pentium to find the factors of an 1024-bit
RSA modulus. In a test we generated 1000 RSA moduli with 512-bit e, and
dp, dq < 2200. Our implementation was in all cases successful. The success rate
however fell to about 90% when we generated the moduli such that dp, dq < 2204.

Acknowledgements. We thank the anonymous reviewers of PKC 2006 for their
very helpful comments.

References

1. D. Boneh, G. Durfee, “Cryptanalysis of RSA with private key d less than N0.292”,
IEEE Trans. on Information Theory, Vol. 46(4), pp. 1339–1349, 2000

2. D. Boneh, H. Shacham, “Fast Variants of RSA”, CryptoBytes Vol. 5, No. 1, pp.
1–9, 2002

3. H. Cohen et al. “PARI/GP”, http://www.pari.math.u-bordeaux.fr

12 D. Bleichenbacher and A. May

4. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Vol. 10(4), pp. 223–260, 1997.

5. S. D. Galbraith, C. Heneghan, and J. F. McKee, “Tunable Balancing of RSA”,
Proceedings of ACISP 2005, Lecture Notes in Computer Science Vol. 3574, pp.
280–292, 2005

6. S. D. Galbraith, C. Heneghan, and J. F. McKee, “Tunable Balancing of
RSA”, full version of [5], online available at http://www.isg.rhul.ac.uk/~sdg/

full-tunable -rsa.pdf

7. N. Howgrave-Graham, “Finding small roots of univariate modular equations re-
visited”, Proceedings of Cryptography and Coding, Lecture Notes in Computer
Science Vol. 1355, Springer-Verlag, pp. 131–142, 1997

8. A. K. Lenstra, H. W. Lenstra, and L. Lovász, ”Factoring polynomials with rational
coefficients,” Mathematische Annalen, Vol. 261, pp. 513–534, 1982

9. A. May, “Cryptanalysis of Unbalanced RSA with Small CRT-Exponent”, Ad-
vances in Cryptology – Crypto 2002, Lecture Notes in Computer Science Vol. 2442,
Springer-Verlag, pp. 242–256, 2002

10. V. Shoup, NTL: A Library for doing Number Theory, online available at http://

www.shoup.net/ntl/index.html

11. STORK, Strategic Roadmap for Crypto, http://www.stork.eu.org/index.html
12. H.-M. Sun, M.-E. Wu, “An Approach Towards Rebalanced RSA-CRT with Short

Public Exponent”, Cryptology ePrint Archive: Report 2005/053, online available
at http://eprint.iacr.org/2005/053

13. H.-M. Sun, M. J. Hinek, and M.-E. Wu, “An Approach Towards Rebalanced RSA-
CRT with Short Public Exponent”, revised version of [12], online available at
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf

14. M. Wiener, “Cryptanalysis of short RSA secret exponents”, IEEE Transactions on
Information Theory, Vol. 36, pp. 553–558, 1990

A Details of the Calculations in Lemma 4

It remains to give the dimension and determinant calculation from the proof of
Lemma 4. Therefore, we recall our collection of polynomials from Section 4:

g′i,j(x, y, z) = em−ixjzsf i(x, y) for i = 0, . . . ,m; j = 0, . . . ,m− i and

h′i,j(x, y, z) = em−iyjzsf i(x, y) for i = 0, . . . ,m; j = 1, . . . , t. (6)

The dimension of L is the number of polynomials in this collection:

dim(L) =
m∑

i=0

m−i∑
j=0

1 = (3 + 6τ) · 1
6
m3(1 + o(1)).

We order the monomials in our collection such that the coefficient of the mono-
mial which appears on the lattice basis diagonal corresponds to the monomial
xiyi in f i(x, y). I.e., the coefficient of the monomial from g′i,j(xX, yY, zZ) which
contributes to the lattice determinant is the coefficient of xjzs(xy)i, where we
cancel out all terms yz using the relation yz = N . As explained in Section 4,
we also eliminate all powers of N from the coefficient. Analogously, we proceed
with the coefficient vectors of h′i,j(xX, yY, zZ).

New Attacks on RSA with Small Secret CRT-Exponents 13

Let us first calcute the contribution of the coefficient vectors of gi,j(xX, yY, zZ)
to the determinant. We denote by eg, Xg, Yg and Zg the contribution of all of
the coefficient vectors of gi,j(xX, yY, zZ) to the exponents of e,X, Y, Z in the
determinant of L, respectively.

From the description of our collection in (6), we derive

eg =
m∑

i=0

m−i∑
j=0

m− i = 2 · 1
6
m3(1 + o(1)),

Xg =
m∑

i=0

m−i∑
j=0

i+ j = 2 · 1
6
m3(1 + o(1)),

Yg =
m∑

i=s

m−i∑
j=0

i− s = (1 − σ)3 · 1
6
m3(1 + o(1)),

Zg =
s∑

i=0

m−i∑
j=0

s− i = (3σ2 − σ3) · 1
6
m3(1 + o(1)).

Similarly, we derive the contribution of the coefficient vectors of hi,j(xX, yY, zZ)
to the determinant of L:

eh =
m∑

i=0

t∑
j=1

m− i = 3τ · 1
6
m3(1 + o(1)),

Xh =
m∑

i=0

t∑
j=1

i = 3τ · 1
6
m3(1 + o(1)),

Yh =
m∑

i=0

t∑
j=max{1,s−i}

j + i− s = (σ3 + 3(τ + τ2) − 6στ) · 1
6
m3(1 + o(1)),

Zh =
s∑

i=0

s−i∑
j=1

s− i− j = σ3 · 1
6
m3(1 + o(1)).

Summarizing we obtain the determinant

det(L) = eeg+ehXXg+XhY Yg+YhZZg+Zh

=
(
(eX)2+3τY 1+3(τ−σ)(1+τ−σ)Z3σ2

) 1
6 m3(1+o(1))

.

An Attack on a Modified Niederreiter

Encryption Scheme

Christian Wieschebrink

Federal Office for Information Security (BSI),
Godesberger Allee 185-189, 53175 Bonn, Germany

christian.wieschebrink@bsi.bund.de

Abstract. In [1] a Niederreiter-type public-key cryptosystem based on
subcodes of generalized Reed-Solomon codes is presented. In this paper
an algorithm is proposed which is able to recover the private key of the
aforementioned system from the public key and which is considerably
faster than a brute force attack. It is shown that the example parame-
ters proposed in [1] are insecure.

Keywords: Public key cryptography, McEliece encryption, Niederre-
iter encryption, error-correcting codes, generalized Reed-Solomon codes,
Sidelnikov-Shestakov attack.

1 Introduction

The McEliece [2] and Niederreiter [3] encryption scheme are the most well-known
code-based public key cryptosystems. Their security rests on two intractability
assumptions: on the one hand it is difficult to decode an arbitrary linear code,
on the other hand it is difficult to recover the structure of the underlying code
from an arbitrary generator matrix which forms the public key in these sys-
tems. Indeed, the general syndrome decoding problem was shown in [4] to be
NP-complete. Moreover there is practical evidence, that it is hard for random
instances, too. Several quite sophisticated algorithms to attack the decoding
problem were published (for example [5, 6]), but their running times remain
exponential.

The hardness of the structural problem crucially depends on the kind of codes
being used. The original Niederreiter scheme made use of generalized Reed-
Solomon (GRS) codes. A polynomial time algorithm reconstrucing the code pa-
rameters from an arbitrary generator matrix was found afterwards by Sidelnikov
and Shestakov [7]. Therefore the original Niederreiter scheme is completely bro-
ken. On the other hand McEliece proposed Goppa codes for his scheme. Up to
now no efficient way is known to compute the parameters of these codes from
the public key.

In [1] Berger and Loidreau propose a variant of the Niederreiter scheme which
is intended to resist the Sidelnikov-Shestakov attack. The idea is to work with
a subcode of a GRS code instead of a complete GRS code in order to hide its
structure. In this paper we develop an attack on the modified system which is

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 14–26, 2006.
c© International Association for Cryptologic Research 2006

An Attack on a Modified Niederreiter Encryption Scheme 15

feasible if the subcode is chosen too large. It can be considered as a generalization
of the Sidelnikov-Shestakov algorithm.

The rest of the article is structured as follows: after having presented the
Berger-Loidreau variant in detail in Sect. 2 we describe the basic attack in Sect.
3. In Sect. 4 we show how to speed up this attack considerably and in Sect. 5
we give some results of a test implementation.

2 The Modified Scheme

First of all let’s recall some basic facts about generalized Reed-Solomon codes.
In the following let F be a finite field.

Definition 1. Let m, k, n ∈ N, k ≤ n, α = (α1, . . . , αn) ∈ Fn, x = (x1, . . . , xn)∈
(F\{0})n, where the αi are pairwise distinct. The generalized Reed-Solomon
code (or GRS code) GRSn,k(α, x) is a linear code over F given by the generator
matrix

Gα,x =

⎛⎜⎜⎜⎝
x1 x2 · · · xn

x1α1 x2α2 . . . xnαn

...
. . .

x1α
k−1
1 x2α

k−1
2 · · · xnαk−1

n

⎞⎟⎟⎟⎠ .

Consequently GRSn,k(α, x) consists exactly of those words c in Fn which can be
written c = (x1f(α1), . . . , xnf(αn)) for a polynomial f(x) ∈ F [x] with deg f < k.
GRS codes allow efficient error correction. Given x and α one can apply the
Berlekamp-Massey algorithm which can correct up to

⌊
n−k

2

⌋
errors in polynomial

time. (For details see [8, 9].) In context of cryptography it is always assumed that
GRSn,k(α, x) has full length, i.e. n = #F and char F = 2. For a fixed GRS code
GRSn,k(α, x) the parameters α and x are not uniquely determined:

Proposition 1. Let α, x be defined as above. Then

GRSn,k(α, x) = GRSn,k((aα1 + b, . . . , aαn + b), (cx1, . . . , cxn))

for all a, b, c ∈ F, a, c �= 0.

Proof. See [9]. �	

It follows for example that two of the αi can be chosen arbitrarily. Each of
the different parameters for a given GRS code is equally suited for the above
mentioned decoding algorithm.

Proposition 2. Let α, x be defined as above and u := (u1, . . . un) where ui :=
x−1

i

∏
j �=i(αi − αj)−1. Then the dual code of GRSn,k(α, x) is given by

GRSn,k(α, x)⊥ = GRSn,n−k(α,u) .

Proof. See [9]. �	

Proposition 2 will be helpful later for reconstructing x if α is known.

16 C. Wieschebrink

The Berger-Loidreau modification of the Niederreiter public-key scheme works
as follows (we present the dual version of the scheme given in [1], which has the
same security, see [10]):

Key creation: Let n = #F, k ∈ N≤n and a small l ∈ N≤k be given. Alice
chooses a random GRS code GRSn,k(α, x) with generator matrix Gα,x and a
random (k− l)× k−matrix A over F of rank k− l. Then her public key is given
by T := A ·Gα,x. The secret key is (α, x). (A must be kept secret, too.)

Encryption: To encrypt a message m ∈ F k−l Bob chooses a (secret) vector
e ∈ Fn of Hamming weight ≤

⌊
n−k

2

⌋
and computes the cipertext c := mT + e.

Decryption: Using (α, x) Alice applies the decoding algorithm to c getting
mT. By multiplying this with a right-side inverse of T she gets m.

3 The Attack

We fix some additional notation. For a (k × n)−matrix T = (ti,j) let E(T) be
the echelon form of T and < T > the code generated by T. The i−th row of
T is denoted by ti. Given a permutation π : {1, . . . , n} → {1, . . . , n} let Tπ

denote the matrix (ti,π(j)), i.e. the columns of T are permuted according to π.
Analogically for v = (v1, . . . vn) ∈ Fn we define vπ := (vπ(1), . . . vπ(n)). If T is
a generator matrix of GRSn,k(α, x) then obviously Tπ is a generator matrix of
GRSn,k(απ , xπ).

Now let T be the public key of the aforementioned encryption scheme. Clearly
T is a generator matrix of a (k− l)−dimensional subcode of GRSn,k(α, x). Our
aim is to find the parameters α and x (or equivalent parameters, see Proposition
1) where only T is given. The attack consists of two steps. In the first step (which
is the more expensive one) the permutation of the field elements α is calculated.
In the second step x is recovered.

Let c ∈< T >. Recall that c can be written in the form

c = (x1f(α1), . . . , xnf(αn)) , (1)

where f ∈ F [x] with deg f≤ k − 1. Now let d ∈< T > be another codeword,
d = (x1g(α1), . . . , xng(αn)). For all i = 1, . . . , n we then have

ci

di
=

xif(αi)
xig(αi)

=
f

g
(αi) ,

unless di = 0. The main idea of the attack is based on the following

Proposition 3. Let T be the generator matrix of a (k− l)-dimensional subcode
of GRSn,k(α, x) and E(T) := (ti,j) = [1k−l|A] the echelon form of T . Then for
each pair (i, b) ∈ {1, . . . , k − l}2 there are polynomials Pi(x),Pb(x) ∈ F [x] of
degree ≤ l such that

ti,j
tb,j

=
(αj − αb)Pi(αj)
(αj − αi)Pb(αj)

(2)

for all j = 1, . . .n with tb,j �= 0.

An Attack on a Modified Niederreiter Encryption Scheme 17

Proof. For given i, b let ti, tb the respective rows of E(T). Since E(T) is in echelon
form both rows contain (at least) k− l−1 zeros, and there are (at least) k− l−2
positions where ti, tb have common zeros. Let a1, . . . , ak−l−2 ∈ {1, . . . , k − l} be
these positions. According to the properties of a GRS code there are polynomials
fi(x), fb(x) ∈ F [x] of degree ≤ k − 1, s.t.

(tc,1, . . . , tc,n) = (x1fc(α1), . . . , xnfc(αn))

for c = i, b and they must have the form

fi(x) = (x − αb) · Pi(x) ·
k−l−2∏

r=1

(x − αar) ,

fb(x) = (x − αi) · Pb(x) ·
k−l−2∏

r=1

(x − αar)

with Pi and Pb having degree l at most. So for all j = 1, . . . , n with tb,j �= 0 we
have

ti,j
tb,j

=
fi(αj)
fb(αj)

=
(αj − αb)Pi(αj)
(αj − αi)Pb(αj)

. �	

Note that Pi,Pb in the above proposition may have common factors, so these
polynomials are not unique in general. Since Pi and Pb have low degree we
can now try to reconstruct the coefficients of both polynomials. If we do so for
different rows ti of E(T) it is possible to recover the αi as we will see below.

First of all we need a simple

Lemma 1. Let f(x) = P (x)
Q(x) be a rational function over F with deg P,Q ≤ i ∈ N,

P,Q relatively prime and Q monic. Let x1, . . . , x2i+1 ∈ F be pairwise distinct
values, for which f is defined. Then the coefficients of P and Q are uniquely
determined by the pairs (xj , f(xj)), j = 1, . . . , 2i + 1 and can be computed in
polynomial time.

Proof. Let P̄ , Q̄ be another pair of relatively prime polynomials over F with
f(x) = P̄ (x)

Q̄(x)
, deg P̄ , Q̄ ≤ i and Q̄monic. Then we have P (xj)Q̄(xj)= P̄ (xj)Q(xj)

for j = 1, . . . , 2i+1. Since PQ̄ and P̄Q are polynomials of degree ≤ 2i it follows
PQ̄ = P̄Q. According to our assumptions P and Q have no common divisiors,
so we have Q|Q̄ and analogically Q̄|Q. Q̄ and Q are monic, so Q̄ = Q. It follows
P̄ = P immediately. This shows the uniqueness of P and Q.

Now let P (x) = pix
i + · · · + p1x + p0, Q(x) = qix

i + · · · + q1x + q0. As the
f(xj) are defined, we get

f(xj)qix
i
j + · · ·+ f(xj)q1xj + f(xj)q0 − pix

i
j − · · · − p1xj − p0 = 0

for j = 1, . . . , 2i+1. This yields a (inhomogenous) linear system in the unknowns
qi, . . . q0, pi, . . . , p0, which can be solved with O(i3) operations in F . The solution

18 C. Wieschebrink

space may have dimension d > 1. In this case the unique solution polynomials
P,Q in the above sense have both degree less than i. To find them one has to
compute the element of the solution space with qi = qi−1 = · · · = qi−(d−2) = 0,
qi−(d−1) = 1. Obviously this can be done in polynomial time, too. �	

Now consider (2) again. We’re fixing an arbitrary b, for example b = k − l =: r,
and put

P̃i(x) := (x − αr)Pi(x), Q̃i(x) := (x − αi)Pr(x) (3)

and gi(x) := P̃i(x)

Q̃i(x)
for i = 1, . . . , r − 1. The first step is to reconstruct the

coefficients of P̃i and Q̃i. These polynomials have degree ≤ l + 1 so according
to the lemma above we need to know 2l + 3 pairs (αj , gi(αj)) to do so. The
gi(αj) = ti,j

tr,j
are given, but the αj are unknown. The strategy is now to guess the

values αr+1, . . . , αr+2l+3 (for example) and sieve out the wrong guesses. W.l.o.g.
we assume that tr,r+1, . . . , tr,r+2l+3 all are nonzero (otherwise we can choose a
different set of 2l+ 3 indices i1, . . . , i2l+3 ∈ {r + 1, . . . , n} with ti1 , . . . , ti2l+3 �= 0
and guess the values αi1 , . . . , αi2l+3) and that αr+1 = 0, αr+2 = 1 (by Proposition
1), s.t. in fact only αr+3, . . . , αr+2l+3 have to be guessed. Given the pairs (αj ,

ti,j

tr,j
)

we calculate relatively prime P ∗
i ,Q∗

i of degree ≤ l + 1 with P∗
i

Q∗
i

= gi for i =
1, . . . , r − 1 by solving the appropriate linear systems, see Lemma 1. Note that
P̃i and Q̃i may have a nontrivial common factor, so in general P̃i �= P ∗

i and
Q̃i �= Q∗

i . However, if the guess was correct then the following conditions hold:

C1. The P ∗
i (x) have a common linear factor (namely (x − αr)).

C2. There is a sequence α1, . . . , αr−1 of pairwise distinct elements of F different
from the αr+1, . . . , αr+2l+3, such that (x−αi) divides Q∗

i (x), and the least
common multiple of the Q∗

i (x)
(x−αi)

has degree ≤ l (the least common multiple
divides Pr(x)).

If there are two distinct polynomials P ∗
i ,P ∗

j with degree l+1 then Q∗
i = Q̃i and

Q∗
j = Q̃j (assuming that these polynomials are monic), and condition C2 can be

replaced by

C3. Let Q := gcd(Q∗
i ,Q

∗
j). Then Q∗

w(x)
gcd(Q∗

w(x),Q(x)) = (x − αw), w = 1, . . . , r − 1 for
pairwise distinct α1, . . . , αr−1 different from αr+1, . . . , αr+2l+3 (it isQ = Pr).

The advantage of C3 is that it is straightforward to check from an algorithmic
point of view, while C2 is more complicated (but also can be checked in polyno-
mial time). So we always assume first that there is such a pair P ∗

i ,P ∗
j , which is

the case with high probability. Condition C1 can be verified easily, too, by the
Euclidian algorithm. If the guess was right we can reconstruct the parameter
α = (α1, . . . , αn) of the GRS code from the P ∗

i ,Q∗
i : αr can be reconstructed

from condition C1 and the values α1, . . . , αr−1 can be derived from condition
C3. αr+1, . . . , αr+2l+3 are given so it remains to find the αr+2l+4, . . . , αn.

Suppose αi1 , . . . , αir−1 belong to the unknown values. Choose a permutation
π : {1, . . . , n} → {1, . . . , n} with π(j) = ij and π(ij) = j for j = 1, . . . , r− 1 and

An Attack on a Modified Niederreiter Encryption Scheme 19

π(b) = b for b = r + 1, . . . , r + 2l+ 3. Let β := (β1, . . . , βn) := (απ(1), . . . , απ(n)).
The matrix Tπ is a generator matrix of a subcode of GRSn,k(β, xπ). Since the
βi = αi, i = r + 1, . . . r + 2l + 3 are given, the β1, . . .βr−1 – and thereby the
αi1 , . . . , αir−1– can be determined exactly the same way as described above when
working with E(Tπ) instead of E(T). This process can be repeated for different
suitable permutations until all αi are found.

We summarize the complete procedure in Algorithm 1. It makes use of the
function getAlpha which is defined in Algorithm 2.

Algorithm 1. Reconstruction of α

Input: Generator matrix T of a subcode of GRSn,k(α, x) of dimension r = k − l
Output: Set B of candidates for α

1: B ← ∅
2: β1 ← 0
3: β2 ← 1
4: for all (β3, . . . , β2l+3) ∈ (F\{0, 1})2l+1 with βi pairwise distinct do
5: I ← {1, . . . , r − 1, r, r + 2l + 4, . . . , n}
6: repeat
7: b ← min(r − 1, #I)
8: for j ← 1, . . . , b do
9: ij ← least element of I

10: I ← I\{ij}
11: end for
12: for j ← 1, . . . , b do
13: π(j) ← ij
14: π(ij) ← j
15: end for
16: for j ← b + 1, . . . , n do
17: if j �= i1, . . . , ib then
18: π(j) ← j
19: end if
20: end for
21: calculate Tπ

22: γ := (γ1, . . . , γr−1) ← getAlpha(β1, . . . , β2l+3, Tπ)
23: if γ �= NULL then
24: for j ← 1, . . . , b do
25: αij ← γj

26: end for
27: end if
28: until I = ∅ or γ = NULL
29: if γ �= NULL and α1, . . . , αn pairwise distinct then
30: B ← B ∪ {(α1, . . . , αn)}
31: end if
32: end for
33: return B

20 C. Wieschebrink

Algorithm 2. getAlpha(β1, . . . , β2l+3,T)
Input: (r × n)-matrix T over F , β1, . . . , β2l+3 ∈ F pairwise distinct
Output: (α1, . . . , αr−1) ∈ F r−1

1: (ti,j) ← echelon form of T
2: for i ← 1, . . . , r − 1 do
3: calculate relatively prime P ∗

i (x),Q∗
i (x) ∈ F [x] with degree ≤ l+1 and Q∗

i monic
and

P ∗
i (βj)

Q∗
i (βj)

=
ti,r+j

tr,r+j

for all j = 1, . . . , 2l + 3
4: end for
5: if the P ∗

i (x),Q∗
i (x) satisfy conditions C1 and C3 then

6: Q ← gcd(Q∗
i , Q

∗
j) with i, j such that i �= j and deg P ∗

i = deg P ∗
j = l + 1

7: for i ← 1, . . . , r − 1 do

8: αi ← root(
Q∗

i
gcd(Q∗

i ,Q)
)

9: end for
10: return (α1, . . . , αr−1)
11: else
12: return NULL
13: end if

Once the set of candidates B is given is remains to check for each α′ ∈ B if
there is a x = (x1, . . .xn), s.t. < T >⊂ GRSn,k(α′, x). (We know that there is at
least one such α′.) This can be done using Algorithm 3.

According to Proposition 2 the dual code of GRSn,k(α, x) is also a GRS code
G = GRSn,n−k(α, x′). Let g be a row of the canonical generator matrix of G.
Since each row vector t of T is an element of GRSn,k(α, x) the inner product
t · g is equal to zero. That’s why x′ = (x′

1, . . . , x
′
n) has to be a solution of the

linear system

ti,1α
j
1x

′
1 + . . .+ ti,nαj

nx′
n = 0, i = 1, . . . , r, j = 0, . . . , n− k − 1 .

If such a x′ is found, the vector x can be calculated with help of Proposition 2.
Let’s analyze the running time of the above algorithms in the worst case.

First consider the function getAlpha. It is dominated by the computation of the
echelon form in line 1, which takes O(r2n) operations in F , and the for-loop
in lines 3–4. In each step of the loop a linear system with O(l) equations and
unknowns has to be solved, which can be done with O(l3) operations. Verification
of C1 and C3 and computation of the αi takes O(rl2) operations at most. This
yields a total running time of O(r2n + rl3) for Algorithm 2.

The main loop in lines 4–32 of Algorithm 1 is run (n−2)!
(n−2l−3)! ∈ O(n2l+1) times.

(We assumed n = #F). The inner loop in lines 6–28 is called
⌈

n−2l−3
r−1

⌉
times.

Since in practice n
3 ≤ r ≤ 2n

3 we can assume that this value is bounded by a
constant. With the above result we get a total running time ofO(n2l+1(r2n+rl3))
operations in F. Note that the procedure can be optimized by computing the

An Attack on a Modified Niederreiter Encryption Scheme 21

Algorithm 3. Reconstruction of x

Input: T = (vi,j), B as in Algorithm 1
Output: (α, x′) s.t. < T >⊂ GRSn,k(α, x′)

1: while B �= ∅ do
2: (α1, . . . , αn) ← arbitrary element of B
3: X ← solution space of the linear system in x1, . . . , xn given by

vm,1α1x
j
1 + vm,2α2x

j
2 + · · · + vm,nαnxj

n = 0

for j = 0, . . . , k − 1 and m = 1, . . . , r
4: if dim(X) > 0 then
5: (x1, . . . , xn) ← arbitrary nonzero element of X
6: for i ← 1, . . . , n do
7: x′

i ← (xi j �=i(αi − αj))
−1

8: end for
9: B ← ∅

10: else
11: B ← B\{(α1, . . . , αn)}
12: end if
13: end while
14: return ((α1, . . . , αn), (x′

1, . . . , x
′
n))

echelon forms E(Tπ) for a fixed set of suitable permutations π in advance instead
of computing them in each call of getAlpha. In this case we get an upper bound
O(r2n + n2l+1rl3).

In Algorithm 3 the main loop is run #B times, and the dominant step in each
loop is the linear system. It has n unknowns and (k − 1)r equations so it takes
at most O(n2kr) operations to find a nontrivial solution. We get a worst case
complexity of O(#B · n2kr) operations. In general #B is expected to be quite
small so that Algorithm 3 is feasible.

In [1] an attack on the cryptosystem is given, which uses the original Sidelni-
kov-Shestakov attack as a black box algorithm. Its average running time is lower
bounded by Ω(nkl) operations, so for practical choices of n, k, l the attack given
here is much faster.

4 Refinement of the Attack

The above algorithm can be improved if there are two rows in the echelon form
E(T) = (ti,j) which have more than k − l − 2 zeros in common. Suppose the
i-th and the b-th row, i �= b, have k − l − 2 + s zeros in common positions. It is
0 ≤ s ≤ l. With the same argument as in proof of Proposition 3 there are two
polynomials P ∗(x),Q∗(x) ∈ F [x] of degree ≤ l − s + 1 (instead of l + 1) s.t.

ti,j
tb,j

=
P ∗(αj)
Q∗(αj)

22 C. Wieschebrink

for all j = 1, . . . , n with tb,j �= 0. So to find these polynomials only 2(l−s+2)−1 =
2(l−s)+3 of the αj have to be known according to Lemma 1, and the number of
guesses which have to be made is reduced by a factor O(n2s). To check whether
the guess is correct we make use of the following

Definition 2. Let S be a (finite) set, n, k ∈ N, n ≥ k and v = (v1, . . . , vn) ∈
Sn,w = (w1, . . . , wk) ∈ Sk. We say that v dominates w, if

#{i|vi = s} ≥ #{j|wj = s}

for all s ∈ S.

Obviously for given v ∈ Sn, w ∈ Sk it can be checked with O(n) operations if v
dominates w.

Let J ⊂ {1, . . . , n} be the set of those j, where ti,j �= 0 or tb,j �= 0. For
γ ∈ F with γ �= 0 we define γ

0 =: ∞. Suppose the elements of F are ordered
in some way. If the guess of the αj is correct then the vector (P∗(γ)

Q∗(γ))γ∈F has

to dominate the vector (ti,j

tb,j
)j∈J . In this case it may be possible to reconstruct

some of the (not yet assigned) αj : suppose the function f(x) := P∗(x)
Q∗(x) takes the

value δ ∈ F ∪ {∞} for exactly one γ ∈ F , f(γ) = δ, and there is a j ∈ J with
ti,j

tb,j
= δ. Then αj = γ. If we can find at least 2s additional αj with tb,j �= 0 this

way we can try to compute relatively prime polynomials P ∗
i′(x),Q∗

i′ (x) ∈ F [x] of
degree ≤ l + 1 for i′ ∈ {1, . . . k − l}\{i, b} with

ti′,j
tb,j

=
P ∗

i′ (αj)
Q∗

i′(αj)
(4)

for all j = 1, . . . , n with tb,j �= 0. Of course the right polynomials have to comply
with conditions C1 and C2 / C3. This allows us to reconstruct the remaining αj

as seen above.
If there are not enough δ s.t. f(γ) = δ can be solved uniquely, then at least

we can extract a list of candidates for each αj , j ∈ J, which consists of all γ with
f(γ) = ti,j

tb,j
. We can then choose a sufficient number of short candidate lists and

try to solve (4) with the different possible assignments for the αj .
What can we do now, if a pair of rows in E(T) with more than k−l−2 common

zeros does not exist? In this case we can try to find such a pair in the echelon form
of an equivalent code of <T >⊂ GRSn,k(α, x). Let π : {1, . . . , n} → {1, . . . , n} be
a permutation. Remember that due to the definition of GRS codes the matrix Tπ

is a generator matrix of a subcode of GRSn,k(απ , xπ). So we can replace T by Tπ

for distinct permutations π and look for rows in the echelon form E(Tπ) which
have more than k− l−2 common zeros. When such a pair is found we apply the
above method which eventually finds a set of candidates for απ, which can easily
be transformed to a set of candidates for α. When choosing the permutations
we can restrict ourselves to those π which satisfy π(i) > k − l for at least one
i ∈ {1, . . . , k − l}, since otherwise E(T π) differs from E(T) only by the order
of rows.

An Attack on a Modified Niederreiter Encryption Scheme 23

Note however that such a pair of rows does not necessarily exist in any equiv-
alent code. For example the subcode C can itself be a GRS code of dimension
k − l. As such it is a MDS code and any pair of rows in the echelon form can
have k− l− 2 common zeros at most. But for random instances there should be
a good chance of finding a pair at least for small s.

The improved approach is summarized in Algorithms 4 and 5.
We try to give a rough estimate for the running time of Algorithm 5. The main

loop in lines 12–30 is run O(n2(l−s)+1) times. Solving the linear system in line 13
takesO((l−s)3) operations. If the condition in line 15 is passed (verification takes
O(n(l−s)) operations) the for-loop in lines 21–28 is called O(maxj{Bj}2s) times
at most. Each loop takes O(r2n+rl3) operations. Since maxj{Bj} ≤ l−s+1 we
get an upper bound O(t1 +n2(l−s)+1((l−s)3 +n(l−s)+(l−s+1)2s(r2n+rl3)))
for the complete algorithm, where t1 is the (undetermined) running time of
Algorithm 4. Here we assumed that the condition in line 15 is always passed,
which won’t be the case in practice. The average running time should be well
below the given bound.

Note that there are still several possibilities to improve the presented algo-
rithms but for the sake of clarity we didn’t include them here.

5 Experimental Results

Algorithms 4 and 5 were implemented in JAVA (with some minor modifications)
and executed for different instances of the encryption scheme. We always chose
s such that l− s = 1. Table 1 shows some example running times on a 2.6 GHz
Pentium 4, 512 MB system. In particular we see that findP emutation performs
well for small s.

Algorithm 4. findP ermutation(T , s)
Input: (r × n)-matrix T as in Algorithm 1; s ∈ N≤l

Output: (π, i, b) s.t. i-th and b-th row of E(Tπ) have r + s − 2 common zeros

1: S ← set of all permutations π ∈ Sn with π(i) > r for some i ∈ N≤r

2: repeat
3: π ← random element of S
4: S ← S\{π}
5: calculate E(Tπ)
6: for all (i, b) ∈ {1, . . . , r}2 with i < b do
7: if rows i and b of E(Tπ) have r + s − 2 common zeros then
8: return (π, i, b)
9: end if

10: end for
11: until S = ∅
12: return NULL

24 C. Wieschebrink

Algorithm 5. Reconstruction of α, improved version
Input: Generator matrix T of a subcode of GRSn,k(α, x) of dimension r = k − l,

s ∈ N≤l

Output: Set B of candidates for α

1: (π, i, b) ← findP ermutation(T, s)
2: if (π, i, b) = NULL then
3: return NULL
4: end if
5: compute (ti,j) := E(Tπ)
6: (a1, . . . , an) ← i−th row of E(Tπ)
7: (b1, . . . , bn) ← b−th row of E(Tπ)
8: B ← ∅
9: β1 ← 0

10: β2 ← 1
11: find pairwise distinct i1, . . . , i2(l−s)+3 s.t. bij �= 0 for all j
12: for all (β3, . . . , β2(l−s)+3) ∈ (F\{0, 1})2 with βi pairwise distinct do
13: compute relatively prime P ∗(x),Q∗(x) ∈ F [x] with deg P ∗(x), Q∗(x) ≤ l−s+1

s.t.
P ∗(βj)

Q∗(βj)
=

aij

bij

for all j = 1, . . . , 2(l − s) + 3
14: c ← (ai

bi
)i∈{1,...,n},ai �=0 or bi �=0

15: if (P∗(γ)
Q∗(γ)

)γ∈F dominates c then

16: I ← {r + 1, . . . , n}\{i1, . . . , i2(l−s)+1}
17: find pairwise distinct i2(l−s)+4, . . . , i2l+3 ∈ I with bij �= 0
18: for j ← 2(l − s) + 4, . . . , 2l + 3 do

19: Bj ← set of all γ ∈ F\{β1, . . . , β2(l−s)+3} with P∗(γ)
Q∗(γ)

=
aij

bij

20: end for
21: for all (β2(l−s)+4, . . . , β2l+3) with pairw. distinct βj ∈ Bj do
22: for all a ∈ {1, . . . , r − 1}\{b} do
23: compute relatively prime P ∗

i (x), Q∗
i (x) ∈ F [x] with degree ≤ l + 1

s.t.
P ∗

i (x)

Q∗
i (x)

=
ta,ij

bij

for all j = 1, . . . , 2l + 3
24: end for
25: if the P ∗

i , Q∗
i suffice conditions C1 and C2/C3 and απ can be computed

as in Algorithms 1,2 then
26: B ← B ∪ {α}
27: end if
28: end for
29: end if
30: end for
31: return B

An Attack on a Modified Niederreiter Encryption Scheme 25

Table 1. Perfomance for different key parameters

running time

n k l s findP ermutation total

32 16 3 2 3 sec < 1 min

64 32 3 2 2 sec 16 min

64 40 3 2 2 sec 16 min

64 32 4 3 2 min 18 min

128 64 4 3 20 min 5 h 44 min

6 Conclusion

In [1] the values n = 256, k = 133, l = 4 are given as secure example parameters
for the modified Niederreiter encryption scheme. It is claimed that ≈ 22000 exe-
cutions of the Sidelnikov-Shestakov algorithm for a structural break are needed
in a brute force approach. However the above results suggest that these choices
for the modified Niederreiter encryption scheme are highly insecure. Extrapolat-
ing the data above we estimate that an optimized implementation of the above
attack can break such a system in a few days or even hours on a PC.

The encryption scheme is not completely broken though. To thwart the attack
n and l should be chosen sufficiently large. However this has other drawbacks. A
large n leads to large public keys and a large l causes bigger message expansion.
It is unclear if the parameters can be chosen in such a way that it has higher
efficiency and security than the McEliece cryptosystem.

References

1. Berger, T., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Designs, Codes and Cryptography 35(1) (2005) 63–79

2. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, Jet Prop. Lab., California Inst. Tech. 42-44 (1978) 114–116

3. Niederreiter, N.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15 (1986) 159–166

4. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3) (1978)
384–386

5. Brickell, E., Lee, J.: An observation on the security of McEliece’s public-key cryp-
tosystem. In: EUROCRYPT ’88. Number 330 in Lecture Notes in Computer Sci-
ence, Springer-Verlag (1988) 275–280

6. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1) (1988) 367–
378

7. Sidelnikov, V., Shestakov, S.: On insecurity of cryptosystems based on generalized
Reed-Solomon codes. Discrete Math. Appl. 2(4) (1992) 439–444

8. Gabidulin, E.: Public-key cryptosystems based on linear codes (1995) http://
citeseer.ist.psu.edu/gabidulin95publickey.html.

26 C. Wieschebrink

9. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North Hol-
land (1997)

10. Deng, R., Li, Y., Wang, X.: On the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems. IEEE Transactions on Information Theory 40(1) (1994)
271–273

11. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company (1979)

12. Overbeck, R.: A new structural attack for GPT and variants. In: Mycrypt 2005.
Number 3715 in Lecture Notes in Computer Science, Springer-Verlag (2005)

Cryptanalysis of an Efficient Proof of Knowledge

of Discrete Logarithm

Sébastien Kunz-Jacques1,2, Gwenaëlle Martinet1,
Guillaume Poupard1, and Jacques Stern2

1 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg,
F-75700 Paris 07 SP, France

{Sebastien.Kunz-Jacques, Gwenaelle.Martinet,

Guillaume.Poupard}@sgdn.pm.gouv.fr
2 École normale supérieure, Département d’informatique,

45 rue d’Ulm, F-75230 Paris Cedex 05, France
Jacques.Stern@ens.fr

Abstract. At PKC 2005, Bangerter, Camenisch and Maurer proposed
an efficient protocol to prove knowledge of discrete logarithms in groups
of unknown order. We describe an attack that enables the verifier to re-
cover the full secret with essentially no computing power beyond what is
required to run the protocol and after only a few iterations of it. We also
describe variants of the attack that apply when some additional simple
checks are performed by the prover.

Keywords: Public key cryptanalysis, discrete logarithm, proof of
knowledge.

1 Introduction

Since the seminal paper of Diffie and Hellman [10], the discrete logarithm prob-
lem has been considered a fundamental stone of public key cryptography. In
order to define this problem in a general setting, we consider a multiplicative
group G and an element g ∈ G. We note ω the multiplicative order of g in G i.e.
the smallest non-zero positive integer ω such that gω = 1. The set 〈g〉 =

{
gi
}

i∈Z

of powers of g is a subgroup of G with ω elements. For any member y ∈ 〈g〉, there
exists a unique integer x ∈ {0, ...ω − 1} such that y = gx; by definition x is the
discrete logarithm of y in base g. The computation of such discrete logarithms
is considered to be intractable in many groups of cryptographic interest such as
modular groups or elliptic curves.

An interesting question is how to prove knowledge of a discrete logarithm of
a public data without revealing any other information about this value. Such a
problem is closely related to the concept of zero-knowledge introduced in 1985
by Goldwasser, Micali and Rackoff [13]. A well-known and very nice solution was
proposed by Schnorr [17] in 1989. In this two party-protocol, a prover who knows
the discrete logarithm x of a public value y interacts with a verifier; if the prover
is able to correctly answer the verifier’s challenges, he proves knowledge of x. Two

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 27–43, 2006.
c© International Association for Cryptologic Research 2006

28 S. Kunz-Jacques et al.

complementary security aspects can be analyzed; firstly, the soundness property
shows that if a prover is able to correctly answer the challenges then he must
know the secret x. This proof is based on the notion of knowledge extractor that
can extract the secret from the prover using rewinding techniques. Secondly, the
zero-knowledge property shows that the execution of the protocol does not leak
any information about the secret x, even if the verifier tries to bias its challenges.
The proof is based on the notion of simulation of the communications.

In the Schnorr scheme, the soundness property can be easily proved since the
secret is immediately derived from two correct and distinct answers correspond-
ing to the same “commitment” sent by the prover as its first message. Deciding
if the protocol is zero-knowledge is still an open problem when large challenges
are used and if they are not randomly chosen by the verifier. It is significant to
note that the proof of soundness strongly relies on the knowledge of the order ω
of the basis g. Surprisingly, if this order is not known, for example is the context
or RSA groups, the basic extraction strategy no longer applies. It is still possible
to prove the security of the scheme used as an identification scheme [12, 16] but,
in groups of unknown order, Schnorr based proofs cannot be considered as proofs
of knowledge. This interesting open problem has attracted the interest of several
research papers [11, 9] and, at PKC 2005, Bangerter, Camenisch and Maurer [1]
proposed an efficient protocol, the so-called Σ+-Protocol to prove knowledge of
discrete logarithms in groups of unknown order. This scheme is derived from the
Σ-Protocol whose paternity is unclear. The name was first proposed in 1997 by
Cramer [7] in his PhD thesis and used by Cramer and Damg̊ard [8] but original
ideas can be found in the Schnorr scheme [17] and even previously in [5, 4, 2].
However, Girault [12] was the first to observe, in 1991, that the knowledge of
the underlying group order was not necessary to carry Schnorr’s like proofs.

In this paper, we show that the proposal in [1] is not secure since a dishonest
verifier can obtain the secret of the prover. The main flaw in [1] is that the
authors assume that some parameters needed for a protocol run are honestly
chosen by the verifier; in the Σ+ protocol, the prover never checks, and is not
able to check, that these parameters actually have the correct form. Our attack
takes advantage of this mistake. Thus, even if the protocol if proved in [1] to be
a zero-knowledge proof of knowledge, the assumptions made in the proof cannot
be verified with the described protocol. To fulfil the proof’s assumptions, some
additional and non obvious checks are needed which may drastically reduce the
protocol efficiency. Some other solutions may be considered but they require to
revise the protocol’s proof.

Notations and Organization of the Paper. Throughout this paper, we use
the following notation: for any integer n,

– Zn is the set of integers modulo n,
– Zn

∗ is the multiplicative group of invertible elements of Zn,
– ϕ(n) is the Euler totient function, i.e. the cardinality of Zn

∗,
– ord(g) is the order of an element g ∈ Zn

∗,
– λ(n) is the Carmichael’s lambda function defined as the largest order of the

elements of Zn
∗.

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 29

It is well known that if the prime factorization of an odd integer n is
∏η

i=1 qi
fi

then ϕ(n) =
∏η

i=1 qi
fi−1(qi − 1) and λ(n) = lcmi=1...η

(
qi

fi−1(qi − 1)
)
.

The paper is organized as follows: section 2 recalls the Σ+-protocol [1]. Then,
in section 3, we make some security related observations which lead to a practical
cheating strategy. We also observe in this section and in section 4 that several
simple and natural countermeasures do not succeed into defeating our strategy.
Finally, annex A gives a detailed analysis of the attack complexity and annex B
describes a detailed algorithm of independent interest, strongly inspired of the
Pohlig-Hellman algorithm [14], to compute discrete logarithms in our setting.

2 The Σ+-Protocol

Let us now briefly recall the Σ+-protocol using the notations of [1]. Let H be an
arbitrary group whose order needs not to be known. For example, H can be the
set Zn

∗ for a composite RSA modulus n. Let h be an element of H such that
the computation of discrete logarithms in base h is intractable.

The Σ+-protocol is a proof of knowledge of discrete logarithms of elements in
H , in base h. Roughly speaking, this means that, for a given y ∈ H , a prover can
convince a verifier that he knows an integer x such that y = hx. As we will see in
the rest of this paper, this protocol is not a zero-knowledge proof of knowledge
of discrete logarithm since the prover reveals some information about his secret
x when interacting with a dishonest verifier.

The proof requires a generator DS(k) that outputs a pair (n, g) s.t. n is an
RSA modulus, g ∈ Zn

∗ and it is hard to compute u ∈ Zn
∗ and an integer

e > 1 fulfilling ue = g mod n. It is stated in [1] that “[the authors] assume that
n = (2p + 1)(2q + 1) with p, q, (2p + 1) and (2q + 1) being primes, and that
g ∈ QRn, where QRn is the subgroup of quadratic residues of Zn

∗”. However
even if this assumption appears to be used in the security analysis, at least in a
side remark to prove the statistical zero-knowledge property of the protocol, it
is not guaranteed by the protocol itself.

We still need a few additional notations coming from [1]:

– k is a security parameter,
– a ∈U A means that the element a is randomly chosen in the set A using a

uniform distribution,
– the equality symbol =̇ is used to denote definitions,
– the secret exponent x is in the range [−Δx,Δx] and the related public ele-

ment of H is y = hx,
– lz is an integer parameter related to the security parameter k,
– c+ is another parameter that determines the set {0, . . . , c+} in which the

verifier picks its challenges c,
– commit(γ, r) is a computationally binding and statistically hiding commit-

ment scheme that commits γ using the random value r; to open the com-
mitment one reveals γ and r.

The typographic convention of [1] is to use sans serif font for elements related to
computations in Zn

∗ and standard italic font when dealing with elements of H .

30 S. Kunz-Jacques et al.

Prover Verifier

Private input : x in [−Δx, Δx]
Common input : h and y = hx both in H

(n, g) ← DS(k)
ρ ∈U [0, 2k	n/4
]
g1=̇gρ mod n

(g1, g, n)
←−−−−−−−−−−

x ∈U [0, 	n/4
]
y=̇gx

1gx mod n

r ∈U [−2lzc+Δx, 2lz c+Δx]
t=̇hr

r ∈U [−2lz c+	n/4
, 2lzc+	n/4
]
t=̇gr

1gr

Choose ry; y=̇commit(y, ry)
Choose rt; t=̇commit(t, rt)

(y, t, t)
−−−−−−−−−−→

c ∈U

{
0, . . . , c+

}
c←−−−−−−−−−−

s=̇r + cx
s=̇r + cx

(s, s)
−−−−−−−−−−→

ρ←−−−−−−−−−−
If g1 �= gρ mod n, then halt.

((t, rt), (y, ry))−−−−−−−−−−→
If the equalities
y = commit(y, ry)
t = commit(t, rt)
hs = tyc

gs
1g

s = tyc mod n
hold, then output 1
else output 0

Fig. 1. The Σ+-Protocol from [1]

The Σ+-protocol described in figure 1 performs a kind of parallel proof of
knowledge of discrete logarithms in two mathematical structures, H and Zn

∗,
in a way similar to proofs of equality of discrete logarithms. However, the main
original part is that the second structure is not a parameter of the system but
is chosen by the verifier and changes from one proof to another.

3 Some Security Related Observations

3.1 A Preliminary Observation

Afirst simple security related observation is that somebasic checks shouldbe added
to the scheme, exactly as for the original Σ-Protocol. This may be considered

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 31

implicit but it is probably better to make checks explicit in order to avoid dramatic
consequences in practical implementations.

More precisely, a remark made by D. Bleichenbacher about the GPS iden-
tification scheme during the NESSIE selection process [6] is relevant to the
present context; consider a cheating verifier that does not choose the chal-
lenge c uniformly in the range [0, c+] but sends a value much larger than c+.
If the prover does not check that c ∈ [0, c+], he reveals s = r + cx with
r ∈ [−2lzc+Δx, 2lzc+Δx]. Then, s/c = x+r/c and, if c > 2lz+1c+Δx, the verifier
obtains s/c− 1/2 < x < s/c + 1/2 and consequently the secret x = �s/c + 1/2�.

As a consequence, a check on the range of c must be performed by the prover.
In the same vein, even if the consequences are not so important, the verifier
should also check that the answers s and s lie in consistent ranges; this may be
important to perform a full security proof.

This preliminary observation is not used in the sequel and we consider that
the order of magnitude of any transmitted data is always checked.

3.2 First Observation: n Can Be Chosen in Such a Way That
Discrete Logarithms in Zn

∗ Can Be Efficiently Computed

The first immediate idea to attack the Σ+-Protocol is to make the verifier choose
a group Zn

∗ in which he can efficiently compute discrete logarithms. For example,
such a computation can be made if the Pohlig-Hellman algorithm [14] can be
applied efficiently, i.e. if the multiplicative order of g is the product of only
small prime integers. This situation occurs if n is computed as the product of
two primes p and q s.t. p−1 and q−1 are “smooth”, i.e. are equal to the product
of only small prime factors.

Note that this kind of attack was somewhat considered by the authors of [1]
since, as we already mentioned, they explicitly restricted themselves to the op-
posite situation where p and q are strong primes i.e. (p− 1)/2 and (q− 1)/2 are
also primes. But, even if such a choice seems to be specified for a honest verifier
in order to protect him against dishonest provers, a dishonest verifier can choose
different kind of parameters to try to attack a honest prover. Such a cheating
strategy does not seem to be taken into account since the prover does not try
to detect it. The situation is even worse since the prover does not have enough
information to check the correctness of n as a product of two unknown strong
primes. In [3], Camenisch and Michels have shown how to prove that a modulus
is the product of two safe primes. Adding such a proof in Σ+ would drastically
reduce the claimed efficiency of the protocol and render it totally unpractical.

The consequence of this first observation is that a cheating verifier can choose
the modulus n s.t. he can further compute easily the following information:

1. xρ+ x mod ord(g) (= logg(y))
2. rρ+ r mod ord(g) (= logg(t))

Furthermore, he obtains from the regular execution of the protocol the answers
s and s:

32 S. Kunz-Jacques et al.

3. s = xc + r
4. s = xc + r

However, even if we obtain four equations with four unknowns (x, x, r and r),
this system cannot be solved to recover the secret x since the equations are not
independent. Some more work is therefore needed.

3.3 Second Observation: Some Information May Be Revealed by a
Honest Prover

If a dishonest verifier chooses the prime numbers p and q s.t. (p − 1)/2 and
(q − 1)/2 are relatively prime, we know that the maximal order of an element
in Zn

∗ is given by the Carmichael lambda function λ(n) = lcm(p − 1, q − 1) =
(p−1)(q−1)/2. The verifier can choose an element g with such a maximal order
which is close to n/2. In this case, g is not a quadratic residue in Zn

∗.
Then, an idea is to choose ρ = 1 in combination with a group Zn

∗ where the
verifier can compute discrete logarithms. The consequence is that the attacker
learns logg(y) = (x + x) mod ord(g) which can be seen as the secret x mod
ord(g) masked with x randomly chosen in the range [0, �n/4�]. Since ord(g) ≈
n/2, the mask x does not fully hide the value of x mod ord(g) and, from an
information theoretic point of view, one bit of information is revealed if x is
uniformly distributed modulo ord(g).

It is quite plausible that by repeating this approach one can deduce the exact
value of the secret x from this partial information. However, we propose an
additional trick to make the attack straightforward and effective.

3.4 Third Observation: Parameter ρ Can Be Chosen in Such a Way
That the Multiplicative Order of g1 Is Small

Using both previously exposed ideas, let us consider that the verifier chooses n
and g s.t.

– p and q are prime integers,
– (p − 1)/2 and (q − 1)/2 are relatively prime,
– p− 1 and q − 1 are smooth,
– g is an element of Zn

∗ of maximal order λ(n) = (p − 1)(q − 1)/2.

Let us now choose ρ = λ(n)/2. As a consequence, g1 = gρ = gλ(n)/2 mod n has
multiplicative order 2.

As explained previously, a cheating verifier is able to compute discrete loga-
rithms and thus obtains from a regular proof

logg(y) = xρ+ x mod ord(g)

=
(

x × λ(n)
2

)
+ x mod λ(n)

= (x mod 2)× λ(n)
2

+ x mod λ(n)

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 33

As a consequence, since the mask x is chosen in a range of size approximately
λ(n)/2, the observation of the most significant bit of logg(y) reveals the least
significant bit of x, i.e. the value x mod 2.

Indeed, if x mod 2 = 0, then logg(y) = x is uniformly distributed in the range
[0, �n

4 �]. If x mod 2 = 1, then logg(y) = x + λ(n)
2 is now uniformly distributed in

[λ(n)
2 , λ(n)

2 + �n
4 �]. These intervals are not disjoint but their intersection contains

approximately only p+q
4 points. Thus, with overwhelming probability, the least

significant bit of x leaks from a single execution of the protocol with such a
cheating verifier.

In short, we have seen that a dishonest verifier can choose special parameters
n, g and ρ in such a way that he can learn the secret x modulo two. Note that
this is not detected by a prover who follows the protocol.

Then, the next bits of x can also be obtained by extending this attack. Sup-
pose the verifier knows the k least significant bits x0, . . . , xk−1 of x, where
x =

∑�
i=0 xi2i. He then tries to infer the bit xk. To this end, he chooses the

parameters n and g as before with the extra condition that 2k+1 divides λ(n)
and ρ = λ(n)/2k+1. From the prover’s answers during the protocol, he computes
logg(y) = x + x × λ(n)/2k+1 mod λ(n) and considers the value

logg(y) −
k−1∑
i=0

xi2i × λ(n)
2k+1

= x +
�∑

i=k

xi2i × λ(n)
2k+1

= x + xk ×
λ(n)

2
+

�∑
i=k+1

xi2i−(k+1) × λ(n)

= x + xk ×
λ(n)

2
mod λ(n)

which is either in the range [0, �n
4 �] or in the range [λ(n)

2 , λ(n)
2 + �n

4 �] according
to the value of the bit xk. As before, the verifier can deduce xk with very high
probability from a single execution of the protocol. The precise algorithm is given
in figure 2. In this description, for clarity, the commitment of the values y, t and
t are not described. This does not change anything in the attack.

A strategy for breaking the protocol is thus to choose a special value for n, i.e.
a modulus computed as the product of two primes p and q with smooth values
p − 1 and q − 1, and a generator g which is of maximal order and thus not a
quadratic residue in Zn

∗.
The total number of protocol executions to recover a �-bit secret x is finally

�× (1 + 1/
√

n), since each bit requires at least one protocol execution, and the
intersection of the intervals contains approximately

√
n points.

The attack is no longer possible if the prover checks the correctness of n or g.
However, as we will see in the next subsection, if only the quadratic residuosity
is checked, a variant of the attack can be applied.

In annex B, we review some technical details related to the computation of
discrete logarithms in groups of smooth order in order to provide a complete

34 S. Kunz-Jacques et al.

– Inputs: the bits x0, x1, . . . , xk−1 of x
– Output: the bit xk of x

1. Generate n = p×q, with p and q prime, (p−1)/2 and
(q − 1)/2 relatively primes, p − 1 and q − 1 smooth
and p − 1 is divisible by 2k+1;

2. Generate g ∈ Zn
∗ of order λ(n) = (p − 1)(q − 1)/2;

3. Set ρ = λ(n)/2k+1 and compute g1 = gρ mod n;
4. Execute a protocol with the prover:

(a) Send (n, g, g1) to the prover;
(b) Receive y = gx

1 gx mod n, t = gr
1gr mod n and

t = hr;
(c) Finish correctly the protocol with the prover;

5. Compute the discrete logarithm of y in base g using
the Pohlig-Hellman algorithm (see annex B):

logg(y) = ρ × x + x mod ord(g)

6. If logg(y)−
k−1∑
i=0

xi2
i×ρ ∈ [0, 	λ(n)

2

[then set xk = 0;

7. Else, if logg(y)−
k−1∑
i=0

xi2
i ×ρ ∈]	n/4
, λ(n)

2
+ 	n/4
],

then set xk = 1;
8. Else, go to step 4;
9. Return: xk

Fig. 2. The attacker strategy to recover xk from x0, x1, . . . , xk−1

description of the attack. We also provide in section 5 practical complexity esti-
mates for realistic parameter sizes.

3.5 Final Observation: The Modulus n Can Be Prime

Let us assume that the protocol is slightly modified so that the prover checks the
quadratic residuosity of g. This can be easily implemented: the verifier sends g0

of maximal order λ(n) and the prover sets g = g2
0 mod n. We still assume that

the prover does not make any verification on the modulus n so that it can be
chosen by the cheating verifier without any restriction.

The verifier can then choose n as a prime number such that n−1 is smooth and
divisible by 2�. In this case, he can still compute discrete logarithms. The generator
g is a quadratic residue of maximal order λ(n)/2 = (n−1)/2. The attack we have
described previously takes advantage of the short size of the mask x so it can be
applied here. Indeed, by iteratively choosing the value ρ equal to λ(n)/2i+1 for all
the values i less than � (the bit length of the secret x), the verifier is able to recover
x bit by bit with approximately � executions of the protocol.

In thenext section,we describe an extension of the attackwhen the prover checks
that n is not a prime number. This extension works for any unbalanced modulus,
but its complexity grows exponentially with the length of the smallest factor of n.

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 35

4 Extension of the Attack for an Unbalanced Modulus

In this section we consider the special case where the prover checks that g is
chosen in the subgroup of quadratic residues of Zn

∗. This can simply be done by
sending g and g0 such that g = g2

0 mod n. We also assume that g is a quadratic
residue of maximal order λ(n)/2. However we still consider that the sole check
that the prover performs on n is that n is not prime. In that case, the attack of
section 3.5 applies. Thus, n can be chosen by the verifier so that :

– n is unbalanced: its prime factor p is much smaller than q. With such a
choice for n, the approximation of ord(g) by n/4 might not be tight, and the
bias could be exploited by a dishonest verifier;

– p is small enough, and q− 1 is smooth and divisible by a large enough power of
2, so that it is possible for the verifier to compute discrete logarithms in Zn

∗.

– Inputs: the bits x0, x1, . . . , xk−1 of x and a bound k̃ depending
on the allowed error probability

– Output: the bit xk of x

1. Generate n = p×q, with p and q prime, (p−1)/2 and (q−1)/2
relatively primes, p < 220, q−1 smooth, and 2k+1 divides q−1;

2. Generate g0 ∈ Zn
∗ of order λ(n) = (p − 1)(q − 1)/2;

3. Compute g = g2
0 mod n;

4. Set ρ = λ(n)/2k+1 and compute g1 = gρ mod n;
5. Set j = 0 and S = 0;
6. While j < k̃, do:

(a) Execute a protocol with the prover:
i. Send (n, g, g1) to the prover;
ii. Receive y = gx

1 gx mod n, t = gr
1gr mod n and t = hr;

iii. Finish correctly the protocol with the prover;
(b) Compute the discrete logarithm of y in base g using the

Pohlig-Hellman algorithm of annex B:

logg(y) = (x × ρ + x) mod ord(g)

(c) If logg(y) −
k−1∑
i=0

xi2
i × ρ ∈ [0, μ] then j = j + 1;

(d) If logg(y) −
k−1∑
i=0

xi2
i × ρ ∈ [

ord(g)

2
,
ord(g)

2
+ μ], then S =

S + 1 and j = j + 1;
7. End while;
8. If S < k̃/2, set xk = 0,
9. Else xk = 1;

10. Return: xk

Fig. 3. The attacker strategy to recover xk from x0, x1, . . . , xk−1 in the unbalanced
case

36 S. Kunz-Jacques et al.

From the value y = gx
1gx = gρx+x, the verifier can recover X = ρx+x mod ord(g),

where x is uniformly distributed in [0, �n
4 �].

Let ρ = ord(g)/2. Then X is either x mod ord(g) or x + ord(g)/2 mod ord(g),
depending on the least significant bit of x. The distribution of the X values is
thus dependent on this bit. Since g is a quadratic residue of maximal order in
Zn

∗, we have:

ord(g) =
λ(n)

2
=

n

4
− p + q − 1

4
We set μ = (p + q − 1)/4. Thus, n/4 = ord(g) + μ.

The cheating verifier’s strategy is detailed in figure 3. The attack consists in
computing the discrete logarithm of y for each execution of the protocol, with a
suitably chosen value ρ. The distribution of this value, translated according to
previously computed bits, allows to infer one additional bit of the secret x.

The complexity is larger than in the previous attacks since many protocol
executions are required to obtain a single bit of x. This complexity and the attack
analysis are both given in annex A. With error probability 1/B, an average of
8p ln(B)/9 executions of the protocol are needed for a cheating verifier to recover
each bit of x from the distribution of logg(y).

Figure 3 describes the attacker strategy to infer a bit of x knowing all the
previous ones.

5 Practical Application of the Attack

The attack has been implemented using NTL. Using RSA moduli with very
small prime factors in λ(n), a log can be computed in less than 1 second for
a 2GHz PC with a 1024-bit RSA modulus. The optimum seems to be reached
when using prime factors of about 5 bits.

In the cases where g is a non quadratic residue or n is prime, only one
protocol run is required per secret bit, and the attack is therefore very prac-
tical: for a 160-bit secret, it requires 160 protocol runs and a few minutes of
computations.

In the unbalanced case, several protocol interactions and log computations
per secret bit are needed. Typically, 200 runs per bit ensures an overall success
probability above 90% for a 1024-bit modulus and a 160-bit secret: only several
hours of computations are required, but the secret must be extracted from the
data of 160× 200 = 32000 protocol runs, which might prove difficult to acquire
with a real prover device.

6 Conclusion

We have described a cheating strategy for an attacker acting as a verifier in
the Σ+ proof of knowledge of discrete logarithm described in [1]. It enables
to recover the full secret with essentially no computational power beyond what

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 37

is required to run the protocol and after only a few iterations of it since each
iteration reveals one bit of secret. We have also described variants of the attack
that apply when some additional simple checks are performed by the prover,
namely verifying that the modulus chosen by the verifier is indeed a composite
integer and that the basis is a quadratic residue.

The correction of the Σ+-protocol is out of the scope of this paper but it
clearly appears that additional checks would probably be a sound idea. Some
solutions, such as adding a proof that the RSA modulus provided by the ver-
ifier is the product of two safe primes, would drastically reduce the claimed
efficiency of the protocol. Another direction would be to choose the parameter
x in a large enough interval so that there is no usable bias in x mod ord(g),
even if the parameters n and g are chosen by a dishonest verifier. While this
option only adds negligible complexity to the Σ+ protocol and thwarts all
our attacks, it does not address the question of the soundness of the protocol
proof.

References

1. E. Bangerter, J. Camenisch, and U. Maurer. Efficient Proofs of Knowledge of Dis-
crete Logarithms and Representations in Groups with Hidden Order. In PKC 2005,
LNCS 3386, pages 154–171. Springer-Verlag, 2005.

2. T. Beth. Efficient Zero-Knowledge Identification Scheme for Smart Cards. In
Eurocrypt ’88, LNCS 330, pages 77–86. Springer-Verlag, 1988.

3. J. Camenisch and M. Michels. Proving in Zero-Knowledge That a Number Is
the Product of Two Safe Primes. In Eurocrypt ’99, LNCS 1592, pages 107–122.
Springer-Verlag, 1999.

4. D. Chaum, J. Evertse, and J. van de Graaf. An Improved Protocol for Demonstrat-
ing Possession of Discrete Logarithms and some Generalizations. In Eurocrypt ’87,
LNCS 304, pages 127–141. Springer-Verlag, 1988.

5. D. Chaum, J. Evertse, J. van de Graaf, and R. Peralta. Demonstrating Possession
of a Discrete Logarithm without Revealing it. In Crypto ’86, LNCS 263, pages
200–212. Springer-Verlag, 1987.

6. NESSIE consortium. Portfolio of recommanded cryptographic primitives, 2003.
Available from http://www.cryptonessie.org.

7. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol, 1997.
PhD thesis, University of Amsterdam.

8. R. Cramer and I. Damg̊ard. Zero-Knowledge Proofs for Finite Field Arithmetic
or: Can Zero-Knowledge Be for Free. In Crypto ’98, LNCS 1462, pages 424–441.
Springer-Verlag, 1998.

9. I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In Asiacrypt 2002, LNCS 2501, pages 125–
142. Springer-Verlag, 2002.

10. W. Diffie and M. E. Hellman. New Directions in Cryptography. In IEEE Trans-
actions on Information Theory, volume IT–22, no. 6, pages 644–654, november
1976.

38 S. Kunz-Jacques et al.

11. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modu-
lar Polynomial Relations. In Crypto ’97, LNCS 1403, pages 16–30. Springer-Verlag,
1997.

12. M. Girault. Self-Certified Public Keys. In Eurocrypt ’91, LNCS 547, pages 490–497.
Springer-Verlag, 1992.

13. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM journal of computing, 18(1):186–208, february 1989.

14. S. C. Pohlig and M. E. Hellman. An Improved Algorithm for Computing Log-
arithms over GF(p) and its Cryptographic Significance. IEEE Transactions on
Information Theory, IT–24(1):106–110, january 1978.

15. J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation, 32(143):918–924, July 1978.

16. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authen-
tication and Signature Generation. In Eurocrypt ’98, LNCS 1403, pages 422–436.
Springer-Verlag, 1998.

17. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Crypto ’89, LNCS 435, pages 235–251. Springer-Verlag, 1990.

18. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with
Short Exponents. In Eurocrypt ’96, LNCS 1070, pages 332–343. Springer-Verlag,
1996.

A Analysis of the Unbalanced Modulus Case

In the following we show that the attack, described in section 4 in the case of
prime modulus, can also applied if the modulus is unbalanced. In that case, we
will show that its complexity grows exponentially with the length of the smallest
factor.

We recall that the modulus n is unbalanced and that g is a quadratic residue of
maximal order. In the following, we analyze the attack in detail. We briefly recall
some notations already given in section 4. Let x0 denote the least significant bit
of x, i.e. x0 = x mod 2, X0 the value of X for x0 = 0 and X1 the value of X for
x0 = 1. Since g is a quadratic residue of maximal order in Zn

∗, we have:

ord(g) =
λ(n)

2
=

n

4
− p + q − 1

4

We set μ = (p + q − 1)/4. Thus, n/4 = ord(g) + μ.
For x0 = 0, X0 = x is uniformly distributed in the interval [0, �n

4 �] =
[0, ord(g) + �μ�]. Taking the values modulo ord(g), we have :

Pr(X0 ∈ [0, �μ�]) = Pr(x ∈ [0, �μ�] ∪ [ord(g), ord(g) + �μ�])

=
2�μ�

ord(g) + �μ� ≈
8μ
n

Pr(X0 ∈ [�μ�, ord(g)]) ≈ 1 − 8μ
n

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 39

We can easily infer the distribution for x0 = 1 with a circular shift of width
ord(g)/2. Since X1 = x + ord(g)/2 is uniformly distributed in the interval
[ord(g)

2 , 3 ord(g)
2 + �μ�], we thus obtain

Pr(X1∈ [0, ord(g)/2] ∪ [ord(g)/2 + �μ, ord(g)]) = Pr(x ∈ [ord(g)/2 + �μ, 3 ord(g)/2])

=
ord(g) − �μ
ord(g) + 	μ
 ≈ 1 − 8μ

n

Pr(X1 ∈ [ord(g)/2, ord(g)/2 + 	μ
]) ≈ 8μ

n

x0 = 0

�μ� ord(g)
2 ord(g) ord(g)ord(g)

2 ord(g)
2 + �μ�

x0 = 1

8
N

8
N

4
N

4
N

Fig. 4. The distribution of X0 and X1

The verifier should run the protocol several times to distinguish these two
distributions. Each time the value X obtained is not in the intervals [0, �μ�]
or [ord(g)/2, ord(g)/2 + �μ�] the verifier gains no information. Accordingly we
consider only the values X in these intervals and try to distinguish x0 = 0 from
x0 = 1. We set X̃ = 0 if X ∈ [0, �μ�] and X̃ = 1 if X ∈ [ord(g)/2, ord(g)/2+�μ�].
We ignore the other cases so that we keep in average only 3μ values amongst
ord(g) + μ. Depending on the bit x0, X̃ has the following distribution:

if x0 = 0, Pr(x̃ = 0) =
2
3

and Pr(x̃ = 1) =
1
3

if x0 = 1, Pr(x̃ = 0) =
1
3

and Pr(x̃ = 1) =
2
3

Let k̃ be the number of values collected by the verifier lying in the suitable
ranges. Let Sb

k̃
the sum of the x̃ depending on the value b of the bit x0. The

Chernoff bound shows that, for every ε > 0,

Pr

(
S0

k̃

k̃
− 1

3
≥ ε

)
≤ e−k̃ε2× 3

4

and

Pr

(
S1

k̃

k̃
− 2

3
≤ ε

)
≤ e−k̃ε2× 1

6

If ε is the sample mean of the two distributions, i.e. ε = 1/2, this allows us to
have a bound on the number of values needed so that the error value is not too

40 S. Kunz-Jacques et al.

large. For an error probability less than 1/B, then the number k̃ of collected x̃
values should be such that k̃ ≥ 16 ln(B)/3.

Taking into account the number of unused values X , we obtain that the total
number of verifications to learn 1 bit of information with probability 1/B is:

k ≥ 16
ln(B)

3
× ord(g) + μ

3μ

≥ 16 ln(B)
3

× n

3(p + q − 1)

≥ 16p ln(B)
9(1 + p−1

q)

>
8p ln(B)

9

Practical Results. Such a bound on the number of runs needed to learn one
bit of information allows us to estimate the complexity of the attack depending
on p and q. If p is really small, for example if p = 3, we obtain k ≥ 26 for an
error probability per bit equal to 1/1000.

When p is larger, the number of runs explodes. Indeed, the number of queries
strongly depends on the length of p and becomes too large as soon as p is larger
than say 230. For such a value, and for a 256 bits secret x, the total complexity
of the attack can be approximated by 240, for an error probability for each bit
of x which is 1/B = 1/1000.

Using Additional Information in X. To improve the overall success prob-
ability of the attack, we can analyze what happens when a bit was guessed
incorrectly. In that case, when treating the next bit, one gets the distributions
of figure 4, with a circular shift of ord(g)/4. Irrespectively of the correctness of
the previous guess, the two candidate distributions for X are equal up to a shift
by ord(g)/2. As a consequence, the distribution of 2X mod ord(g) can take
two values: a distribution D1 when the previous bit was guessed correctly, and a
distribution D2 otherwise. D1 and D2 have the same shape as the distributions
of figure 4, with μ = 2 p+q−1

4 = p+q−1
2 . Because of the multiplication by 2, the

peak is only 3/2 as high as the rest of the distribution.
These remarks can be used to add new experiments regarding bit xi when

performing the experiments on bit xi+1. D1 and D2 are harder to distinguish
than the distributions of X0 and X1; therefore, the new experiences are less con-
clusive, and ”weight” less than the first series; the weight ratio is ln(3/2)/ ln(2).
This is partly compensated by the higher probability to land in the peaks of
distributions D1 and D2, which are twice as wide as for the distributions of
X0 or X1. Overall, with the same success probability per bit, these additional
experiences save up to 54% of the log computations, depending on μ. The most
attractive case is when the two μ-wide peaks of distributions D1 and D2 do not
overlap, in which case the saving ratio is 2 ln(3/2)

2 ln(3/2)+ln(2) ≈ 0.54.
The algorithm finally obtained is described figure 5.

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 41

– Inputs: a bound k̃ depending on the allowed error probability
– Output: the secret x

1. Generate n = p × q, with p and q prime, p = 3 mod 4, p small,
p − 1 and q − 1 smooth, (p − 1, q − 1) = 2 and 2k+1 divides q − 1;

2. Generate g0 ∈ Zn
∗ of order λ(n) = (p − 1)(q − 1)/2;

3. Compute g = g2
0 mod n;

4. S[i] = 0, i = 0, . . . , k − 1
5. X[j] = 0, j = 0, . . . , k̃
6. z = 0, η = ord(g)/2
7. For i = 0, . . . , k − 1, do

(a) Set ρ = λ(n)/2i+2 = ord(g)/2i+1 and g1 = gρ mod n;
(b) While j < 	k̃ × ord(g)/(2μ)
, do:

i. Execute a protocol run and extract

logg(y) = (x × ρ + x) mod ord(g)

ii. X[j] = logg(y) − z × ρ
iii. If i > 0, do

A. If 2X[j] ∈ [max(0, 2μ−η), min(2μ, η)] then S[i−1]− =
ln(3/2);

B. If 2X[j] ∈ [max(η, 2μ), min(ord(g), η + 2μ))], then
S[i − 1]+ = ln(3/2);

(c) End while;
(d) If i > 0, do

i. If S[i − 1] < 0, set xi−1 = 0;
ii. Else xi−1 = 1;
iii. z = z + xi−12

i−1

(e) While j < 	k̃ × ord(g)/(2μ)
, do:
i. If X[j] ∈ [0, μ] then S[i]− = ln(2);
ii. If X[j] ∈ [η, η + μ], then S[i]+ = ln(2);

(f) End while;
8. End For;
9. If S[k − 1] < 0, set xk−1 = 0;

10. Else xk−1 = 1;
11. Return: x =

∑k−1
i=0 xi2

i

Fig. 5. The attacker improved strategy to recover x in the unbalanced case

B Practical Computation of Discrete Logarithms in
Groups of Smooth Order

In the following we show how to compute discrete logarithms when the order’s
factorization of the group element is unknown, but only small factors are known.

Let G be a multiplicative group. We do not assume any specific property of
this group in this section. Let g be an element of multiplicative order ω.

Generic algorithms to compute discrete logarithms, such as Baby step-Giant
step or Pollard rho and lambda methods [15, 18] have complexity O(

√
ω).

42 S. Kunz-Jacques et al.

1. input: y ∈ 〈g〉
2. initialization: Y = y, G = g, Ω = ω, P = 1, X = 0
3. for i from 1 to do

(a) for j from 1 to ei do
i. Ω = Ω/pi

ii. z = logGΩ

(
Y Ω

)
iii. Y = Y/Gz

iv. G = Gpi

v. X = X + P × z
vi. P = P × pi

4. return: X

Fig. 6. A variant of the Pohlig-Hellman algorithm to compute discrete logarithms

However, in some cases, more efficient techniques apply. The well-known
Pohlig-Hellman algorithm [14] takes advantage of the factorization of the order
ω when it is applicable. If we choose the group parameters such that this order
is smooth, this algorithm enables to compute discrete logarithms efficiently.

We now describe a variant strongly inspired from the original Pohlig-Hellman
algorithm. We note

ω =
k∏

i=1

pei

i with

⎧⎨⎩
∀i ∈ [1, k] pi is a prime integer
∀i ∈ [1, k] ei ∈ N∗

1 ≤ i < j ≤ k ⇒ pi < pj

and we consider the algorithm of figure 6.
Note that if we use this algorithm with � = k, it just computes discrete

logarithms using the Pohlig-Hellman idea, performing the Chinese remainder
computation whenever it is possible. We can also use it with � < k; in this
case we can compute some partial information about the discrete logarithms.
This may have important consequences when some optimizations such as so-
called short exponents, i.e. exponents much smaller than the order ω but larger
than 160 bits are used for efficiency reasons. In such a situation, the complete
factorization of the order of g may be unknown but enough small factors pi may
still enable to recover some secrets.

Theorem 1. On input y ∈ 〈g〉 and � ∈ [1, k], the algorithm of figure 6 computes
X = logg(y) mod

∏�
i=1 pei

i . The time complexity is O
(∑�

i=1 ei ×
√

pi

)
.

Proof. The justification of the result is done recursively. For any value of indexes
i and j, we have, just before line “i.” the following relations:

– P =
∏i−1

α=1 peα
α × pj−1

i

– G = gP

– Ω = ω/P
– X = x mod P
– Y = g(x div P)×P = y/gX

Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm 43

After execution of line “i.”, the new value of Ω is Ω = ω/(P × pi). Then, in line
“ii.”, we have

GΩ = g
P× ω

P×pi = gω/pi

and Y Ω = g
(x div P)×P× ω

P×pi = g
(x div P)× ω

pi

so the computation of z = logGΩ

(
Y Ω

)
leads to

z = loggω/pi

((
gω/pi

)x div P
)

= (x div P) mod pi

An important fact for the complexity of the algorithm is that z is an integer in
the range [0, pi − 1] because gω/pi has multiplicative order pi. Consequently, if
pi is small, we can use generic discrete logarithm algorithms with running time
O(

√
pi) to efficiently compute z.

Then, after computation “iii.”, we have

Y = g(x div P)×P−(x div P) mod pi = g(x div (P×pi))×(P×pi)

After the next computation, G =
(
gP
)pi = gP×pi and then

X = x mod P +P × z = x mod P +P × ((x div P) mod pi) = x mod P × pi

and finally P =
i−1∏
α=1

peα
α × pj−1

i × pi =
i−1∏
α=1

peα
α × pj

i

The result X which is returned is X = x mod
∏i

α=1 peα
α .

The main computation is the evaluation of z on line “ii.”. Its complexity is
O(

√
pi) so the global time complexity of the algorithm is O

(∑�
i=1 ei ×

√
pi

)
.
�	

Efficient Polynomial Operations in the

Shared-Coefficients Setting

Payman Mohassel and Matthew Franklin

Department of Computer Science, University of California, Davis CA 95616
mohassel@cs.ucdavis.edu, franklin@cs.ucdavis.edu

Abstract. We study the design of efficient and private protocols for
polynomial operations in the shared-coefficients setting. We propose ef-
ficient protocols for polynomial multiplication, division with remainder,
polynomial interpolation, polynomial gcd, and a few other operations. All
the protocols introduced in this paper are constant-round, and more ef-
ficient than the general MPC. The protocols are all composable, and
can be combined to perform more complicated functionalities. We focus
on using a threshold additively homomorphic public key scheme due to
the applications of our protocols. But, our protocols can also be securely
computed in the information-theoretic setting. Finally, we mention some
applications of our protocols to privacy-preserving set-operations.

Keywords: secure multi-party computation, passive adversary, polyno-
mial operations, threshold homomorphic encryption, privacy-preserving
set operations.

1 Introduction

Secure multiparty computation (MPC) is an important and classic problem in
the realm of cryptography and distributed computing. In this problem, a group
of parties want to compute a function of their inputs while keeping their inputs
private. The special case of two-party computation was first studied by Yao
[Yao82, Yao86]. Classic works such as [GMW87], [BGW88], and [CCD88] give
solutions for the more general case of multiparty computation. These works
solve the problem of general multiparty computation by performing gate by
gate secure computation of a circuit (boolean or arithmetic) that implements
the desired function.

As the function being computed becomes more complicated, so does the cir-
cuit that computes such a function. This, in turn, makes the general MPC solu-
tions inefficient. Therefore, researchers have turned to designing special-purpose
protocols for specific functions in order to improve on the complexity of general
MPC solutions.

Polynomials have turned out to be useful tools for designing efficient and
secure distributed protocols for specific functionalities. [FNP04], [FIPR05], and
[KS05] use polynomials to design efficient multiparty protocols. In these papers,

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 44–57, 2006.
c© International Association for Cryptologic Research 2006

Efficient Polynomial Operations in the Shared-Coefficients Setting 45

coefficients of polynomials are encrypted using an additively homomorphic cryp-
tosystem. Then, different operations on polynomials such as polynomial evalua-
tion, and polynomial multiplication are performed.

These works motivated us to take a closer look at different operations on
polynomials. Furthermore, polynomials have appeared (and will continue to ap-
pear) in many schemes, or algorithms. Some of these schemes might have privacy
concerns, and require a set of parties to securely perform some operations on the
polynomials. Anywhere that such operations on polynomials are being performed
and privacy is a concern, our protocols can be useful.

1.1 Our Contribution

We propose efficient protocols for polynomial multiplication, division with re-
mainder, polynomial interpolation, polynomial gcd, and other polynomial oper-
ations. These protocols are composable and can be combined to perform more
complicated functionalities. In this paper, we are concerned with both commu-
nication and round complexity of our protocols. Particularly, all protocols intro-
duced in this paper have constant number of rounds, while we try to optimize
their communication complexity wherever possible.

We propose several applications of our methods to privacy-preserving set-
operations. In this setting, parties hold sets of data, and want to perform joint
operations on their sets. These operations could be union, intersection, subtrac-
tion, or any other operation on sets. In many cases, sets are represented by poly-
nomials. Different operations on polynomials lead to different set-operations. The
coefficients of such polynomials are often encrypted using a threshold additively-
homomorphic public-key cryptosystem. That is why we also use such a cryptosys-
tem to distribute secrets among the parties and to operate on those secrets.

But, we would like to note that our protocols can be implemented using
tools other than a threshold additively-homomorphic cryptosystem. For exam-
ple, any threshold linear secret-sharing scheme can be used to replace such a
cryptosystem.

For simplicity, and with slight abuse of terminology, we will use the single
term shared throughout this paper to refer to both distribution methods: thresh-
old additively-homomorphic encryption, and threshold linear secret-sharing. See
Section 2.1 for more detail.

Our protocols are secure against a semi-honest (passive) adversary. Such an
adversary will follow the steps of protocol but will try to learn extra information
from the messages it receives during every round of the protocol. The security
of our protocols are guaranteed as along as the underlying protocols (multi-
plication, addition, sharing random values, ...) that are discussed in section 2,
can be performed securely. In the computational setting, we require that the
threshold homomorphic cryptosystem used be semantically secure. This leads
to secure implementation of the multiplication protocol described in section 2.1.
The threshold version of Paillier’s cryptosystem is semantically secure and is
suited for this purpose. Similarly, in the information-theoretic setting, [BGW88]
and [CCD88] provide such secure protocols.

46 P. Mohassel and M. Franklin

1.2 Organization

In section 2, we describe all the tools we need for our protocols. In section 3, we
describe an efficient protocol for multiplying two shared polynomials. A protocol
for Division with remainder is described in section 4. Multiplying many shared
polynomials in constant-round is explained in section 5. An efficient protocol for
polynomial interpolation is give in section 6. In section 7, we design constant-
round protocols for gcd of two and many shared polynomials. We also describe
a protocol for determining if two shared polynomials are coprime or not.

2 Preliminaries

Throughout this paper, F is a finite field of size q. F [x] is the ring of polynomials
over F . F [x]/f is the extension field where f is an irreducible polynomial.

In this paper, by a shared value, we mean a value that has been distributed
among the parties using either (1) a threshold additively-homomorphic public
key encryption scheme or (2) a threshold linear secret sharing scheme. The tech-
niques described in this paper will not depend on which method is used. See
Section 2.1 for more details.

Throughout this paper, by a shared polynomial, we mean a polynomial whose
coefficients have been individually encrypted or shared using one of the methods
mentioned in the preceding paragraph. A shared polynomial leaks an upper
bound on the degree of the polynomial. For some of our protocols, the exact
degrees of some shared polynomials may be leaked.

In this paper, by a shared matrix, we mean a matrix whose elements have
been individually encrypted or shared using one of the methods described above.

We measure the complexity of our protocols by the number of multiplications
of shared values that are necessary. This is a natural measure due to the fact
that addition of shared values (for either of the two aforementioned methods)
can be performed non-interactively. When the context is clear, we may refer to
this complexity measure as simply multiplications.

2.1 Shared Values

In this paper, we assume that we either have a threshold additively-homomorphic
public key encryption scheme or a threshold linear secret-sharing scheme. As
noted above, we may use the term shared value to refer to a value that has been
distributed according to either method.

Threshold Additively-Homomorphic Encryption. We use a threshold
cryptosystem with homomorphic properties such as Paillier’s cryptosystem
[Pai00]. Paillier’s cryptosystem is additively homomorphic, and supports thresh-
old decryption [FP00]. Such a cryptosystem has the following four properties:

1. To share a value between the parties, a party can encrypt the value using the
public key to the cryptosystem, and broadcast the ciphertext.

Efficient Polynomial Operations in the Shared-Coefficients Setting 47

2. Parties can jointly reveal an encrypted value using the threshold decryption.
3. Given the ciphertexts, Epk(a), and Epk(b), and a public plaintext c, parties

can compute Epk(a + b), and Epk(ca) non-interactively.
4. Given the ciphertexts Epk(a) and Epk(b) parties can securely compute Epk

(ab) in constant number of rounds.

The first three properties are automatically satisfied by any threshold ad-
ditively homomorphic cryptosystem. We give a simple constant-round protocol
to satisfy the fourth property here1. Let’s assume that parties are holding the
ciphertexts Epk(a), and Epk(b). They want to compute Epk(ab). The protocol
follows:

1. Party i broadcasts Epk(ri) to all the parties, where ri is a randomly chosen
plaintext.

2. Parties compute Epk(a+
∑

i ri), and decrypt the result to get a′ = a+
∑

i ri.
3. Each party computes a′Epk(b) = Epk(a′b).
4. Party i computes riEpk(b) = Epk(rib), and broadcasts it to other parties.
5. Parties compute Epk(a′b)−

∑
iEpk(rib) = Epk(ab).

One minor issue is that the domain of Paillier’s cryptosystem is the ring Zn,
where n is the product of two large and secret primes. Note that Zn has all of
the properties of a finite field except that some of the non-zero elements in Zn

are not invertible. However, an extended gcd algorithm on x and n either finds
the inverse of x mod n, or finds a non-trivial factor of n. So in practice we can
describe computations in Zn as if it were a finite field.

Threshold Linear Secret Sharing. We require a threshold linear secret-
sharing scheme over a field with the following properties:

1. Parties can share a value in constant number of rounds.
2. Parties can reveal their shares in a constant number of rounds.
3. Given shares of values a and b, and a publicly known value c, parties can

compute shares of (a + b), and ca without any interaction.
4. Given shares of values a, and b, parties can compute shares of ab in constant

number of rounds.

The secret-sharing scheme can be unconditionally or computationally se-
cure. Shamir’s polynomial-based threshold linear secret sharing scheme [Sha79]
is unconditionally secure. One example of a secret-sharing scheme for the com-
putational setting is given in [GRR98].

2.2 Existing Constant-Round Protocols

In this section, we review some of the existing protocols with constant number
of rounds. We would like to remind the reader that the term shared value (and
shared polynomial and shared matrix) is used throughout the remainder of this
1 See [CDN01] for a similar protocol.

48 P. Mohassel and M. Franklin

paper regardless of whether the underlying distribution method is by threshold
additively-homomorphic encryption or by threshold linear secret sharing.

Shares of a polynomial P in F [x], are simply the collection of shares of all of
P ’s coefficients. In a similar way, shares of a matrix M over F are the collection
of shares of all the elements in M .

We will use or refer to the following techniques throughout the paper. Most
of these protocols have appeared in [BB89], and [CD01].

Sharing a Secret Random Field Element, Polynomial, or Matrix. A
protocol in which parties generate shares of a random and secret value r ∈ F .
This can be done by letting each party share a random value between the parties.
Then, parties take the sum of all of those values as r. We can extend this protocol
to share random polynomials in F [x] or F [x]/f . In a similar way, we can also
share random matrices over F .

Constant-Round Multiplication and Division. Consider the polynomials
PA and PB in F [x]. If PA, and PB are both secret and shared among the parties,
then the parties can use the basic polynomial multiplication to compute shares
of PAPB in constant-round. We will describe a more communication-efficient
protocol for this task in Section 3. If at least one of the polynomials is publicly
known, the multiplication does not need any interaction. The case of matrices is
similar.

If PA is shared, and PB is publicly known, parties can compute shares of Q
and R such that PA = QPB +R and deg(R) ≤ PB. This can be done using the
synthetic division, and does not require any interaction between the parties. In
Section 4, we describe an efficient division protocol for the case where both PA

and PB are secret and shared.

Sharing Secret Invertible Field Elements and Matrices. This is a pro-
tocol that generates a sharing of a secret, random non-zero field element, or an
invertible matrix. The protocol securely generates two random elements (matri-
ces), securely multiplies them, and reveals the result. If this is non-zero (invert-
ible), one of the secret elements(matrices) is taken as the desired output of the
protocol. The probability that a random n by n matrix is invertible is greater
than 1

4 , and at least 1− n
q .

Constant-Round Inversion of Matrices and Field Elements. In this
protocol, given shares of a field element (matrix) X , parties compute shares
of the inverse of that element (matrix). As it is described in [BB89], parties
first generate shares of a random non-zero (invertible) field element (matrix)
R. Then, they compute shares of RX , and reveal the result. Parties compute
(RX)−1 = X−1R−1 non-interactively. Finally, they compute X−1R−1∗R = X−1

non-interactively.

Unbounded Fan-In Multiplication in Constant-Round. Given shares of
polynomially many field elements (matrices) X1, . . . , Xl, parties want to compute

Efficient Polynomial Operations in the Shared-Coefficients Setting 49

shares of their product. Parties generate shared random non-zero (invertible)
field elements (matrices) R1, . . . ,Rl. They compute P1 = X1R1, and Pi =
R−1

i−1XiRi for i ≥ 2. They publicly announce all the Pi values, compute
∏

i Pi,
and multiply the result by Rl, all non-interactively. This gives them shares of∏

i Xi.

Linear Algebra in Constant-Round. consider the following protocols: (1)
Given shares of a matrix A, parties want to compute shares of det(A) (2) Given
shares of a matrix A, and shares of vector b, parties want to compute shares of
solution(s) to the linear system Ax = b. [CD01] proposes efficient and constant-
round protocols for these two problems, and others. These protocols are more
elaborate, and we will not describe them here.

2.3 Privacy-Preserving Set-Operations

[KS05] uses polynomials to represent sets of data. The polynomial representation
of a set S of elements in F is the polynomial P =

∏
i(x − si), where si ∈ S.

Then, different operations on polynomials lead to different operations on the
underlying set. For instance, to compute the union of two disjoint sets, one can
simply multiply the two polynomials.

By performing different operations on the polynomials, [KS05] designs pri-
vacy preserving operations on sets. These operations include, set-intersection,
set-union, element reduction, and others. For these protocols to be private,
coefficients of polynomials can be shared using either a threshold additively-
homomorphic encryption scheme or a threshold linear secret-sharing scheme.
In fact, the results in [KS05] are presented using only threshold additively-
homomorphic encryption, but it is easy to translate their results to the threshold
linear secret-sharing setting. For consistency we will use the single term shared
(as discussed in Section 2.1) throughout this section to describe their results.

Their protocols gain efficiency compared to general multiparty solutions,
due to the fact that the following operations can be performed without any
interaction:

1. If a party knows the polynomial PA, and is given the shared polynomial PB ,
then he can compute shared polynomial PAPB without any interaction.

2. A party can compute the derivative of a shared polynomial P without any
interaction with other parties.

In case of polynomial multiplication, if both polynomials are shared, the most
efficient solution is the general multiparty computation. An appropriate general
MPC for this case is [CDN01]. For instance, the classic polynomial multipli-
cation algorithm (polynomials of degree O(n)), gives us a circuit with O(n2)
multiplication gates over a ring, each of which requires interaction between the
parties. The most efficient polynomial multiplication algorithm has a circuit with
O(npolylog(n)) gates.

Another interesting operation on polynomials that has not been considered
in the privacy-preserving setting, is the division with remainder of polynomials.

50 P. Mohassel and M. Franklin

Such a protocol leads to operations for set deletion/subtraction (when the ele-
ment(s) is known to be in the set).

One can verify that if a party A knows polynomial PA and is given the shared
polynomial PB, he can perform the synthetic division algorithm to compute the
shared polynomials Q and R without any interaction with other parties, where
PB = QPA + R, and deg(R) ≤ PA. But, if both polynomials are shared, the
most efficient protocols are the general MPC protocols.

In later sections, we will propose protocols for these, and other tasks. Our
protocols will be constant-round , and more efficient than the general MPC.

3 Multiplying Two Polynomials

Consider two shared polynomials f(x), g(x) ∈ F [x], where F is a finite field,
and deg(f) = deg(g) = n. Parties want to compute shares of the polynomial
h(x) = f(x)∗g(x). The following is a simple and efficient constant-round protocol
for computing the shared product polynomial, with communication complexity
of O(n) multiplications. To the best of our knowledge, this protocol has not been
published previously.

1. Each party computes his/her share of f(i) and g(i) for all 0 ≤ i ≤ 2n.
2. Parties engage in 2n multiplications to get their shares of h(i) = f(i) ∗ g(i).
3. Each party can perform the Lagrange Interpolation on its own to get his/her

share of coefficients of h(x).

In step 1, no interaction is necessary. All the i’s are public, and therefore,
parties are computing a linear function of shared coefficients. In step 2, par-
ties perform 2n multiplications of shared elements in the field. Step 3 is also
performed without any interaction between the parties. This leads to the com-
munication complexity of O(n) multiplications. This also provides an efficient
privacy-preserving set union protocol for the setting of [KS05].

4 Division with Remainder

Let f(x) and g(x) be two polynomials in F [x] where deg(f) = n, deg(g) = m,
and m ≤ n. Given shares of f and g, parties want to compute shares of q
and r such that f(x) = g(x)q(x) + r(x), and deg(r) ≤ deg(g). The synthetic
polynomial division is sequential and does not directly lead to a constant-round
protocol for polynomial division. Furthermore, it requires O(n2) multiplication
of elements of a field. The fastest division algorithm still requires O(npolylog(n))
such multiplications.

Next, we give a constant-round protocol for the division with remainder of
two shared polynomials. The communication complexity of our protocol is O(n)
multiplications. The idea is borrowed from a division algorithm using Newton’s
iteration (See chapter 9 of [GG03] for more information).

Efficient Polynomial Operations in the Shared-Coefficients Setting 51

Consider the equation

f(x) = g(x)q(x) + r(x) (1)

By substituting 1
x for the variable x in the polynomials, we have the following

equation:

xnf(1/x) = [xn−mq(1/x)] ∗ [xmg(1/x)] + (xn−m+1) ∗ [xm−1r(1/x)] (2)

Let revk(a) = xka(1/x) for an arbitrary polynomial a(x) . When deg(a) = k,
this operation simply reverses the order of coefficients of a(x). We can rewrite
the above equation as:

revn(f) = revn−m(q) ∗ revm(b) + xn−m+1 ∗ revm−1(r) ⇒
revn(f) = revn−m(q) ∗ revm(g) mod xn−m+1 ⇒

revn−m(q) = revn(f) ∗ revm(g)−1 mod xn−m+1

(3)

If parties can compute shares of revn−m(q) efficiently and in constant-round,
they can also compute shares of q(x), and r(x) = f(x) − g(x)q(x) efficiently.
Note that we already have an efficient protocol for multiplying two polynomials
from section 3. The division algorithm follows:

1. Parties compute shares of revn(f) and revm(g) without any interaction.
2. Now, parties need to compute shares of revm(g)−1 mod xn−m+1. We will

give an efficient sub protocol for this operation later in this section.
3. They can use the protocol for multiplying two polynomials to compute shares

of revv(f) ∗ revm(g)−1.
4. Parties reduce the result mod xn−m+1 and reverse the coefficients to get q(x)

shared without any interaction.
5. By performing another polynomial multiplication, parties compute shares of

g(x)q(x).
6. Parties compute shares of r(x) = f(x) − g(x)q(x) without any interaction.

Note that division with remainder is reduced to two polynomial multiplica-
tions (step 3, 5) and one polynomial inversion (step 2). We already know how to
do the polynomial multiplication in an efficient way. It suffices to give an efficient
protocol for inverting an invertible polynomial f mod xt, where t is known to all
parties. It is important to note that revm(g) is invertible mod xt for any t ≥ 1.
To see that, note that deg(g) = m. This means that the leftmost coefficient of
g(x) is non-zero. Therefore, the free coefficient (constant term) of revm(g) is
also non-zero. This implies that revm(g) is not divisible by x, and is invertible
mod xt for any t ≥ 1. This observation implies that for our division algorithm
to work properly, we need to guarantee that the given (maximum) degrees for
the polynomials are in fact the exact degrees of those polynomials.

Consider the ring F [x]/xt. Consider the multiplicative subgroup (F [x]/xt)∗

that contains all the invertible polynomials in F [x]/xt. To invert a polynomial
f ∈ (F [x]/xt)∗, we adapt the matrix inversion technique of [BB89].

52 P. Mohassel and M. Franklin

1. Parties compute shares of a uniformly random polynomial s in F [x]/xt.
2. Parties compute shares of f(x) ∗ s(x) mod xt, and publicly announce their

shares.
3. Parties compute their shares of g(x) = (f(x) ∗ s(x))−1 mod xt = s(x)−1 ∗

f(x)−1 mod xt. We expect s to be invertible in F [x]/xt, because gcd(s, xt) = 1
with high probability (1− 1/q).

4. Parties compute their shares of f(x)−1 mod xt = s(x) ∗ g(x) mod xt.

Step 2 requires a polynomial multiplication. Steps 3 and 4 do not require
any interaction between the parties. Therefore, the communication complexity
of this inversion is O(n) multiplications.

Our division with remainder protocol also provides an efficient privacy pre-
serving subset deletion protocol for the setting of [KS05].

5 Multiplying Many Polynomials

Let f1, f2, . . . , fl be polynomials in F [x], where deg(fi) = ni. Given shares of fi

for all 1 ≤ i ≤ l, parties want to compute shares of h(x) =
∏l

i=1 fi(x). In this
section, we will give an efficient constant-round protocol for this task.

We would like to use the technique of [BB89] for unbounded fan-in multipli-
cation of elements in a field. But, note that F[x] is not a field. An appropriate
field that contains all the fi’s and their product h(x) is the extension field F [x]/f
where f is an irreducible polynomial of degree n1 +n2 + . . .+nl +1. To multiply
two polynomials in F [x]/f , parties can multiply the polynomials using the pro-
tocol in section 3, and compute the result mod f . Since f is a publicly known
polynomial, the second step doesn’t require any interaction. The protocol for
multiplying many polynomials follows:

1. One party computes an irreducible polynomial f of degree n1 + . . .+ nl + 1,
and announces it to other parties.

2. Parties share l random polynomials r1, . . . , rl in the field F [x]/f .
3. Parties compute shares of ri(x)−1 for all i ∈ {0..l}.
4. Parties compute and publicly announce (f1(x)r1(x) mod f), (r1(x)−1f2(x)r2

(x) mod f) , (r2(x)−1f3(x)r3(x) mod f), . . . , (rl−1(x)−1fl(x)rl(x) mod f).
5. Parties compute the product of the l public polynomials, and multiply the

result by rl(x)−1.
6. Parties reduce the result mod f to obtain shares of h(x).

The above protocol is constant-round. The communication complexity is
dominated by step 4, which requires O(l(

∑l
i=1 ni)) multiplications.

6 Polynomial Interpolation

Let xi and yi be shared elements of the field F for i ∈ {1..n}. Parties would
like to compute shares of the polynomial f ∈ F [x] such that f(xi) = yi for all
i ∈ {1..n}.

Efficient Polynomial Operations in the Shared-Coefficients Setting 53

A simple and constant-round protocol for this problem is possible based on
the existing techniques. Consider the Vandermonde matrix:

V =

⎡⎢⎢⎢⎢⎢⎢⎣
1 x1 x2

1 ... xn
1

1 x2 x2
2 ... xn

2

.

.

.
1 xn x2

n ... xn
n

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

Parties can compute the matrix V , and solve the linear system VX =
[y1, y2, ..., yn]T . The components of the solution to the linear system are the
coefficients of f . If xi’s are distinct, the system will be non-singular, and solving
the linear system is reduced to matrix inversion. [BB89] gives an efficient and
constant-round algorithm for inverting matrices. The communication complexity
of this method will be O(n3) multiplications.

Using the protocol from section 5 for multiplying many polynomials, we can
improve on that, and achieve a constant-round protocol with communication
complexity of O(n2) multiplications. The protocol follows:

1. Parties compute shares of the polynomial P = (x − x1)(x − x2)...(x − xn).
2. Parties compute shares of n polynomials Pi = P/(x − xi) for all i ∈ {1..n}.
3. Parties compute shares of Pi(xi) and Pi(xi)−1 for all i ∈ {1..n}.
4. Parties compute shares of the Lagrange coefficients, γi = Pi(x) ∗Pi(xi)−1 for

all i ∈ {1..n}.
5. Parties compute shares of f =

∑n
i=1 γi ∗ yi.

The above protocol is constant round. For step 1, we will use the protocol
for multiplying many polynomials which requires O(n2) multiplications. Step 2
requires n runs of polynomial division protocol, and also requires O(n2) multi-
plications. Step 3 consists of n polynomial evaluation (or equivalently, n runs
of unbounded fan-in multiplication of n field elements), and n inversion of field
elements. Therefore, it requires a total of O(n2) multiplications. It is easy to
see that steps 4 and 5 also require O(n2) multiplications. Therefore, the above
protocol has a total communication complexity of O(n2) multiplications.

7 Computing GCD of Polynomials

Given shares of f(x), and g(x) in F [x], where deg(f) = n, deg(g) = m, and
n ≥ m, parties want to compute shares of d(x) = gcd(f, g). Here, we assume
that we leak the degree of the gcd (so that everyone learns number of coefficients
of the gcd).

Euclid’s Algorithm for computing the gcd of two polynomials is sequential in
nature. Particularly, it requires the parties to perform O(n) division protocols
in a sequential manner. Furthermore, we cannot use the division algorithm we
introduced in Section 4, to improve the communication complexity of a Euclid-
based protocol. The reason is that, as we mentioned earlier, the division protocol

54 P. Mohassel and M. Franklin

assumes that the polynomials have non-zero coefficients for their highest degree.
This might not be true during all the steps of Euclid’s Algorithm. Therefore, we
take a different approach to solving the polynomial gcd problem efficiently and
in constant number of rounds.

7.1 Extended Euclidean Algorithm and Subresultants

Consider the Extended Euclidean Algorithm (EEA) below:

r0 = f s0 = 1 t0 = 0
r1 = g s1 = 0 t1 = 1

r2 = r0 − r1 ∗ q1 s2 = s0 − s1 ∗ q1 t2 = t0 − t1 ∗ q1

. . .

. . .

. . .

ri+1 = ri−1 − ri ∗ qi si+1 = si−1 − si ∗ qi ti+1 = ti−1 − ti ∗ qi

. . .

. . .

. . .

0 = rl−1 − ql ∗ rl sl+1 = sl−1 − ql ∗ rl tl+1 = tl−1 − ql ∗ rl (5)

One invariant of the EEA is that ri = si ∗ f + ti ∗ g for all i ∈ {0..l}. Note
that d(x) = rl(x), and sl(x), and tl(x) are the Bezout coefficients. We denote
the degree sequence of EEA by (n0, n1, n2, . . . , nl), where ni = deg(ri) for all
i ∈ {0..l}.

Next, we review some of the properties of subresultants of two polynomials.
These properties will help us design a constant-round protocol for polynomial gcd.

Some Properties of the Subresultants. Consider the polynomials f(x) =∑n
j=0 ajx

j and g(x) =
∑m

j=0 bjx
j . The subresultant matrix Si (for i ∈ {0..m})

is a (n + m− 2i) ∗ (n + m− 2i) matrix of the form:

Si =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an bm

an−1 an bm−1 bm

...
. . .

...
. . .

an−m+i+1 · · · · · · an bi+1 · · · · · · bm

...
...

...
. . .

ai+1 · · · · · · am bm−n+i+1 · · · · · · · · · · · · bm

...
...

...
...

...
...

...
...

a2i−m+1 · · · · · · ai b2i−n+1 · · · · · · · · · · · · bi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Efficient Polynomial Operations in the Shared-Coefficients Setting 55

All the entries in the Si’s are coefficients of f and g. The following two
theorems about the subresultant matrices will be useful (please refer to [GG03]
for proof details).

Theorem 1. Integer k appears in the degree-sequence of EEA, iff det(Sk) �= 0.

Theorem 2. If k = ni, where ni is the ith element in the degree sequence of
EEA, the linear system Sk ∗ x = [0, ..., 0, 1]T has a unique solution x such that
si = x[1...(m − k)], and ti = x[(m − k + 1)...(m + n− 2k)].

7.2 Shared GCD of Two Polynomials

Here is the intuition behind our protocol for computing shares of the gcd of two
shared polynomials. First, parties compute p = deg(d(x)) = deg(rl(x)) without
learning anything else. Note that based on Theorem 1, p is the only element in
the degree sequence with the property that:

det(Sp) �= 0, and det(Si) = 0 for all 0 ≤ i < p. (7)

Parties then jointly solve a linear system (Theorem 2) to compute shares
of the Bezout coefficients sl(x) and tl(x) from which shares of the gcd can be
derived. The polynomial gcd protocol follows:

The Protocol

1. Parties compute shares of det(Si) for all i ∈ {0..m}.
2. Parties compute shares of non-zero random field elements h1, ..., hm.
3. Parties compute shares of b0, ..., bm such that bk =

∑k
i=0 hi ∗ det(Si) for all

k ∈ {0..m}. (Note: bi = 0 for all 0 ≤ i < p. bi �= 0 for all p ≤ i ≤ m, with
high probability).

4. Parties generate shares of non-zero random elements r1, ..., rm of the field.
5. Parties compute and announce shares of values ci = ri ∗ bi.
6. Note that ci = 0 for all 0 ≤ i < p, and ci �= 0 for all p ≤ i ≤ m . By counting

the non-zero ci’s, parties learn p = deg(d(x)) (Nothing else is learned, since
all the non-zero ci’s are random).

7. Parties compute shares of the solution to the linear system Sp∗X = [0, ..., 1]T ,
and extract shares of the sl(x) and tl(x) from the unique shared solution
(based on Theorem 2).

8. Parties compute shares of d = f ∗ sl + g ∗ tl. (Parties only consider the first
p + 1 coefficients of the result).

All the steps of the protocol can be performed in constant number of rounds.
[CD01] introduces an efficient, and constant-round algorithm for computing de-
terminant of a shared matrix (step 1). Since Sp is always invertible, the linear
system of step 7 can be solved using the matrix inversion protocol of [BB89].

The communication complexity of the protocol is dominated by step 1, in
which determinants of O(n) matrices are computed, and each matrix is O(n) by

56 P. Mohassel and M. Franklin

O(n). In the computational setting, our protocol is not very appealing. In partic-
ular, the general MPC protocol of [BMR90] can compute the gcd of two polyno-
mials in constant number of rounds and with communication complexity ofO(n2)
multiplications. Our protocol is more interesting in the information-theoretic
setting. In the information-theoretic setting, we only know of general constant-
round protocols for problems in NL (please see [FKN94],[IK97],[IK00]). It is
unlikely that these general techniques would lead to the same communication-
efficiency as our protocol for polynomial gcd.

7.3 Are Two Shared Polynomials Coprime?

Given shares of f(x) and g(x) in F [x], parties want to compute shares of the bit
b such that b = 0 if gcd(f, g) = 1, and b = 1 otherwise.

Let us consider the Syslvester matrix (S0) of the two polynomials. The de-
terminant of this matrix is also called the resultant of two polynomials. The
following is a corollary of theorem 1:

Corollary 1. gcd(f, g) = 1 iff det(S0) �= 0.

This leads to the following protocol:

1. Parties compute shares of the determinant of S0.
2. Parties compute shares of the bit b such that b = 0 if det(S0) = 0 and b = 1

otherwise.

This reduces the problem to a protocol for testing equality of a shared value
with zero. One can use the protocol given in [DFNT05] to implement such a
functionality in constant-round.

7.4 Shared GCD of Many Polynomials

Given shares of polynomials f1, f2, . . . , ft in F [x], parties want to compute shares
of gcd(f1, ..., ft).

Let g = f2 +
∑

3≤i≤t rifi, where ri’s are chosen independently at random
from F . The following theorem shows that gcd(f1, . . . , ft) = gcd(g, f1) with very
high probability (see Chapter 6 of [GG03] for proof details).

Theorem 3. The probability that gcd(f1, . . . , ft) �= gcd(g, f1) is less than
(max1≤i≤t deg(fi))/q.

This leads to the following protocol for computing the shared gcd of many shared
polynomials:

1. Parties generate shares of random field elements ri for all i ∈ {1..t}.
2. Parties compute shares of g = f2 +

∑
3≤i≤t rifi.

3. Parties compute shares of d = gcd(g, f1) using the given constant-round poly-
nomial gcd.

Efficient Polynomial Operations in the Shared-Coefficients Setting 57

References

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proceedings of ACM PODC,
pp. 201-209, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings
of ACM STOC, pages 1-10, 1988.

[BMR90] D. Beaver, S. Micali, P. Rogaway. The Round Complexity of Secure Pro-
tocols. In Proceedings of 22nd ACM STOC, pp. 503-513, 1990.

[CCD88] D. Chaum, C. Crepeau, and I. Damgard. Multi-party unconditionally
secure protocols. In Proceedings of ACM STOC, pages 11-19, 1988.

[CD01] R. Cramer and I. Damgard. Secure distributed linear algebra in a constant
number of rounds. In Proceedings of Crypto, pages 119-136, August 2001.

[CDN01] R. Cramer, I. Damgard, and J. Nielsen. Multiparty computation from ho-
momorphic encryption. In Proceedings of Eurocrypt, pages 280-300, 2001.

[DFNT05] I. Damg̊ard, M. Fitzi, J. Buus Nielsen, and T. Toft. How to split a shared
secret into shared bits in constant-round. Cryptology ePrint Archive, Re-
port 2005/140, 2005. http://eprint.iacr.org/.

[FIPR05] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and
oblivious pseudorandom functions. In Proceedings of Theory of Cryptog-
raphy Conference, 2005.

[FKN94] U. Feige, J. Kilian, M. Naor. A Minimal Model for Secure Computation.
In Proceedings of ACM STOC ’94, pp. 554-563, 1994.

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and
set intersection. In Proceedings of Eurocrypt, 2004.

[FP00] P. Fouque and D. Pointcheval. Threshold cryptosystems secure against
chosen-ciphertext attacks. In Proceedings of Asiacrypt, pages 573-84, 2000.

[GG03] J. Von Zur Gathen and J. Gerhard. Modern Computer Algebra. University
Press, Cambridge, 2nd edition, 2003.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. Proceedings
of the 19th Annual ACM symposium on Theory of Computing, pages 218-
229, 1987.

[GRR98] R. Gennaro, M. Rabin, and T. Rabin. Simplified vss and fast-track multi-
party computations with applications to threshold cryptography. In Pro-
ceedings of ACM PODC, pages 101-111, 1998.

[IK97] Y. Ishai and E. Kushilevitz. Private Simultaneous Messages Protocols
with Applications. In Proceedings of 5th Israel Symposium on Theoretical
Comp. Sc., pp. 174-183, 1997.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A New Paradigm
for Round-efficient Secure Computation. In Proceedings of FOCS, 2000.

[KS05] Lea Kissner and Dawn Song. Privacy preserving set operations. In Pro-
ceedings of CRYPTO ’05, August 2005.

[Pai00] P. Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Proceedings of Asiacrypt, pages 573-84, 2000.

[Sha79] A. Shamir. How to share a secret. In CACM, pages 612-613, 1979.
[Yao82] A. C. Yao. Protocols for secure computation. In Proceedings of Focs, pp.

160-164, 1982.
[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of 27th

FOCS, pages 162-167, 1986.

Generic On-Line/Off-Line Threshold Signatures

Chris Crutchfield, David Molnar, David Turner, and David Wagner

University of California, Berkeley
{cyc, dmolnar, dbturner, daw}@cs.berkeley.edu

Abstract. We present generic on-line/off-line threshold signatures, in
which the bulk of signature computation can take place “off-line” during
lulls in service requests [6]. Such precomputation can help systems using
threshold signatures quickly respond to requests. For example, tests of
the Pond distributed file system showed that computation of a threshold
RSA signature consumes roughly 86% of the time required to service
writes to small files [12]. We apply the “hash-sign-switch” paradigm of
Shamir and Tauman [16] and the distributed key generation protocol
of Gennaro et al. [7] to convert any existing secure threshold digital
signature scheme into a threshold on-line/off-line signature scheme. We
show that the straightforward attempt at proving security of the re-
sulting construction runs into a subtlety that does not arise for Shamir
and Tauman’s construction. We resolve the subtlety and prove our sig-
nature scheme secure against a static adversary in the partially syn-
chronous communication model under the one-more-discrete-logarithm
assumption [2]. The on-line phase of our scheme is efficient: comput-
ing a signature takes one round of communication and a few modular
multiplications in the common case.

Keywords: On-line/Off-line, Signature Schemes, Threshold Cryptogra-
phy, Chameleon Hash Functions, Bursty Traffic.

1 Introduction

We present generic on-line/off-line threshold signatures to improve the perfor-
mance of threshold signature schemes, and we show how to construct such signa-
tures from existing threshold signature schemes. In a threshold signature scheme,
given a group of n players, and a threshold t < n, no subset of the players of size
at most t can generate a signature. In other words, unlike standard signature
schemes — in which a single player must protect his or her secret key — at most
t of the n players in a threshold signature scheme may be compromised without
endangering the security of the signature scheme.

Threshold signatures have been applied in several areas to avoid concentrat-
ing trust in any single entity. For example, OceanStore [10, 12] is a large-scale
distributed data storage system that requires the computation of threshold sig-
natures by an “inner ring” of servers for performing a Byzantine agreement when
writing a file. Latency tests in Pond [12], the OceanStore prototype, show that
for a 4 KB write, 77.8 ms out of 90.2 ms total time to service the write operation
is spent on computing Shoup’s RSA threshold signature scheme [17]. Therefore,

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 58–74, 2006.
c© International Association for Cryptologic Research 2006

Generic On-Line/Off-Line Threshold Signatures 59

computation is the dominant factor; although network communication and local
file system access contribute to the time, the bulk of the contribution to service
time comes from computing the threshold signatures [12].

Optimizing threshold signature computation is particularly important for dis-
tributed file systems because small file writes are common [14]. For example,
Baker et al. found that for a file trace from the Sprite file system, 80% of all
sequential transfers were less than 2300 bytes in length [1]. For larger files in
Pond (2 MB), there is little change in the time spent computing the threshold
signature; instead, the time spent on writing the file dominates the threshold
signature time. Even so, because threshold signature computation takes up 86%
of the time to service a small write in Pond, optimizing this computation im-
proves the common case. Threshold signatures have also been applied as part of
other applications, such as distributed certificate authorities, so increasing their
performance can help these applications as well [20].

Our Approach. In an on-line/off-line scheme [6], servers can perform the bulk
of the computation in an off-line phase before even seeing the message to be
signed. The results of this precomputation are saved and then used in the on-
line phase when a message must be signed. Because distributed systems often
have “bursty” traffic, resources are available for such precomputation. For ex-
ample, during the day and evening, traffic is high, but during the night and
morning, traffic is low. Enabling threshold signatures to be computed off-line al-
lows systems such as OceanStore to build up a stockpile of precomputed values
while traffic is low. These values can be used to quickly sign messages later when
traffic is high. Furthermore, other distributed file systems have been observed
to have bursty traffic [15, 19], and so they can enjoy the benefits of our on-
line/off-line threshold signature scheme. Although there do exist on-line/off-line
schemes such as threshold DSS [8], our scheme has the advantage that any ex-
isting threshold signature scheme that is secure against random message attack
can be used with our on-line/off-line scheme to create a threshold scheme that
is secure against an adaptive chosen message attack.

The main idea of our scheme is to apply the “hash-sign-switch” paradigm of
Shamir and Tauman [16] to a threshold signature scheme. In this paradigm, we
make use of a chameleon hash function, which is a special type of two-argument
hash function CHHK(m, r) endowed with a public and secret key [9]. Knowledge
of the public key HK allows one to evaluate the hash function, while knowledge
of the secret key allows one to find collisions. Shamir and Tauman show that
any standard signature scheme can be converted to an on-line/off-line scheme
as follows: for the off-line phase, compute a standard signature on CHHK (a, r),
where a and r are chosen randomly. Then, at the on-line phase, given the message
m, use the secret key to find an r′ such that CHHK (m, r′) = CHHK(a, r). The
signature on CHHK(a, r) together with r′ then forms a signature on the message
m; in a sense, we “switch” m for the random value a. We refer to the signed value
of CHHK (a, r) as the signature stamp. If finding a collision in the chameleon
hash is more efficient than signing the message directly (as is the case for several
chameleon hash functions), this is a net performance win.

60 C. Crutchfield et al.

Overview of Our Construction. For our work, we focus on the specific
chameleon hash function CHHK(m, r) = grhm mod p with public key HK =
(p, g, h) and the secret key y is the discrete logarithm of h to the base g. We
show how to use the discrete logarithm distributed key generation algorithm of
Gennaro et al. [7] to perform chameleon hash key generation and computation
of the signature stamp. We then show an efficient distributed algorithm for find-
ing collisions with low overhead per player. We stress that no trusted dealer is
required by our scheme; given an underlying threshold signature scheme with
distributed key generation and distributed signing algorithms, we obtain a fully
distributed signature scheme.

We also show methods for guaranteeing the robustness of our scheme us-
ing zero-knowledge proofs for verification. We provide two variants. The first is
non-interactive and secure in the Random Oracle Model. The second uses an
observation of Damg̊ard and Dupont to obtain robustness at the cost of limited
interaction but is secure without random oracles [4]. In both cases, instead of
running verification each time a signature must be generated, we decide to forego
this step and be optimistic because, as observed in [4], the signature shares will
be correct almost always. If the signature created is not valid, then we can run
the verification procedure in order to expose the corrupted players. The full
details for our signature scheme appear in Sect. 3.

A Subtlety In The Proof. Surprisingly, the straightforward adaptation of
the proof of Shamir and Tauman for non-threshold on-line/off-line signature
schemes fails to establish security for our new on-line/off-line threshold scheme.
The subtlety is that in our scheme, the “signature stamp” value CHHK(m, r)
is disclosed to all players at the close of our off-line threshold phase, including
the adversary. While m and r are not disclosed, the output of the chameleon
hash must be broadcast to allow for “black-box” use of the underlying threshold
signature scheme in creating the stamp. As a result, any attempt at simulating
the adversary’s view of a signature query is “pinned down” by the value of the
chameleon hash encoded in the stamp. In contrast, Shamir and Tauman do not
reveal any chameleon hash values associated with a message to the adversary
until after a signing query for that message is made. Therefore, their reduction
is not “pinned down” in the same way and can easily answer adversary sign-
ing queries by simply evaluating the chameleon hash function on the queried
message. While this is not an attack on the threshold on-line/off-line scheme, it
shows that a new idea appears necessary to prove the scheme secure.

We resolve this subtlety by first introducing a new assumption for chameleon
hash functions, which we call the one-more-r assumption. Informally, the new
assumption says that given a sequence of random “challenge” outputs v1, . . . , vn

of the chameleon hash function, the adversary may adaptively pick values vi,
provide messages mi, and then learn ri such that CHHK(mi, ri) = vi. Then,
even given this extra information, the adversary has negligible advantage at
inverting the chameleon hash on any given challenge value not picked. We show
that this new assumption is sufficient to prove security of our scheme. Then we
justify the assumption in the case of the grhm mod p chameleon hash by showing

Generic On-Line/Off-Line Threshold Signatures 61

it is implied by the one-more-discrete-logarithm assumption of Bellare et al [2].
This establishes the security of our scheme based on a standard assumption. The
details for showing our scheme is existentially unforgeable and robust against a
static adversary are in Sect. 5.

Performance Results. We analyze the performance of our scheme in Sect. 6.
We show the cost of our off-line phase is dominated by the cost of the dis-
tributed discrete logarithm key generation protocol. While our off-line phase in
consequence requires several rounds of communication and computation, we ar-
gue that this overhead uses resources that would otherwise sit idle. If a new
request arrives at a server during a busy time, the servers can simply fall back
to directly computing a threshold signature.

Finally, we show that our optimistic on-line phase obtains a factor of O
(

k
t

)
improvement in computation compared to Shoup’s RSA threshold signature
scheme, where k is a security parameter, while also requiring only one round
of communication [17]. For example, with the parameters suggested for Pond,
this is a factor of 1024 improvement. Our scheme does, however, make a tradeoff
by incurring a larger cost in the off-line phase to obtain a quick on-line phase.

1.1 Previous Work

The first on-line/off-line signature scheme was developed by Even, Goldreich,
and Micali [6]. This scheme allowed for the conversion of any standard signature
scheme into a one-time on-line/off-line signature scheme. Their result, however,
increased the size of the signature by a quadratic factor. In order to mitigate
this, Shamir and Tauman [16] applied the results of Krawczyk and Rabin [9],
using chameleon hash functions to construct a one-time on-line/off-line signature
scheme that only increases the size of the signature by a factor of two. Although
smart cards appear to be an important application of on-line/off-line signatures
as noted in [6, 16], the application to bursty traffic has received little attention.

The origins of threshold signatures and threshold cryptography can be traced
back to Desmedt and Frankel [5]. Some examples of threshold signatures include
a robust threshold DSS signature scheme, which is an on-line/off-line scheme, by
Gennaro et al. [8], and a robust, non-interactive threshold RSA signature scheme
by Shoup [17]. The latter construction is the signature scheme implemented in
Pond [12], a prototype version of the OceanStore [10] design, and partly our
motivation for this paper.

1.2 Our Results

We compare our optimistic on-line/off-line threshold signature scheme with that
of Shoup’s signature scheme [17]. Shoup describes two variants of an RSA thresh-
old signature scheme, and it is the first variant that we compare our scheme
against. In both schemes, let n be the number of players, t < n

3 be the thresh-
old1, and k ∈ N be a security parameter. Our construction requires 2t+1 players
1 Shoup’s RSA threshold signature scheme can actually tolerate a threshold of t < n

2

and only needs t + 1 players to generate a signature.

62 C. Crutchfield et al.

Table 1. Comparison between Shoup’s Threshold RSA and our On-line/Off-line
Threshold Scheme where in this paper KDKG ∈ O(tk3)

Threshold Sig. Schemes: Shoup’s RSA Scheme Our On-line/Off-line Scheme

Key Generation O(k2nt log t + k3) + KRSA KOn/Off + KDKG

Off-line Phase None 3KDKG + O(k2) + τ

On-line Player O(k3) O(k2)

On-line Reconstruction O(tk3) O(t2k2)

On-line Rounds of Comm. 1 1

to construct a signature and tolerates the participation of at most t corrupted
players. We analyze the bit complexity of both schemes using the following met-
rics and show the results in Table 1:

– Key Generation Complexity — Work done to perform key generation and
distributing private key shares among the players. Let KRSA denote the bit
complexity for generating the RSA public and private keys, let KOn/Off de-
note the bit complexity for generating public and private keys in our scheme,
and let KDKG denote the bit complexity for distributed key generation.

– Off-line Phase Complexity — Work done to perform precomputation, mean-
ing the computation performed for a signature before a message arrives.
Furthermore, let τ be the bit complexity for generating a standard threshold
signature.

– On-line Player Complexity — Work done by a player in computing its sig-
nature share when a message arrives. Note that all players compute their
signature share in parallel.

– On-line Reconstruction Complexity — Work done by the players in combin-
ing all of the signature shares and creating a signature.

– On-line Rounds of Communication — Number of rounds the players need to
generate a signature.

Note that Shoup’s RSA signature scheme is not considered to be an on-line/off-
line scheme because no precomputation is performed. Furthermore, an optimistic
version of Shoup’s scheme does not reduce its asymptotic complexity in the on-
line phase. Finally, referring to Table 1, we see that both schemes only require
one round of communication because all of the members of the group do not have
to wait for each other when a message m arrives; instead, they can immediately
compute their signature shares for m. Because we can set the modulus in both
schemes to be of the same size, we can compare fairly based on the bit complexity.
A more complete analysis that includes robustness can be found in Sect. 6.

2 Preliminaries

Definition 1 (Negligible Function). A function η : N → R is negligible if
for all c > 0, η(n) < 1

nc for all sufficiently large n.

Generic On-Line/Off-Line Threshold Signatures 63

Definition 2 (Discrete Logarithm Assumption). Let p = 2q+1 be a prime
where q is a random k-bit prime, and let g be a generator for a subgroup of Z∗

p

with order q. For all probabilistic polynomial time algorithms A, if x is chosen
uniformly at random from Zq and h = gx (mod p), then Pr[A(p, q, g, h) = x] ≤
η(k), where η is a negligible function.

Definition 3 (Chameleon Hash Function). Given a public key HK and
a private key or trapdoor TK, which are generated with respect to a security
parameter k, a message m ∈ M, and a random r ∈ R where M is the message
space, and R is some finite space, we denote a chameleon hash function [9] by
CHHK(m, r), which is a hash function with the following properties:

– Collision Resistance. Given any probabilistic polynomial time malicious
entity A that does not know the private key TK, but only the public keyHK,
define its advantage to be the probability of finding (m1, r1) and (m2, r2)
such that CHHK(m1, r1) = CHHK(m2, r2). We require the advantage of A
to be negligible.

– Trapdoor Collisions. There exists a polynomial time algorithm A such
that on inputs the pair (HK,TK), a pair (m1, r1) ∈ M×R, and a message
m2 ∈ M, then A outputs r2 such that CHHK(m1, r1) = CHHK(m2, r2).

– Uniform Probability Distribution. If r1 ∈ R is distributed uniformly,
m1 ∈ M, and (m2, r2) ∈M×R such that CHHK(m1, r1) = CHHK(m2, r2),
then r2 is computationally indistinguishable from uniform over R.

Throughout the rest of this paper, we will work with a particular family of
chameleon hash functions based on discrete logarithms. We do so because the
discrete logarithm-based hash function is best suited for using Lagrange inter-
polation. There are also other chameleon hash functions, such as those based on
factoring, for example, but the mathematics involved in the interpolation would
not be as convenient.

Let k ∈ N be a security parameter. We begin by picking a k-bit Germain
prime p′ ∈ N, which has the property that p = 2p′ + 1 and p′ are both primes.
Although it is not known if there are infinitely many Germain primes, we will
assume that we can find one of the appropriate size. Let g′ be a generator
for Z∗

p. Now let Qp ⊂ Z∗
p denote the subgroup of quadratic residues generated

by g ≡ (g′)2 (mod p), so that |Qp| = p−1
2 = p′. Finally, pick the private key

y ∈ Z∗
p′ . Then we define our chameleon hash function CHHK : Zp′ × Zp′ → Qp

to be
CHHK(m, r) = gr+ym ≡ grhm (mod p)

where h ≡ gy (mod p) and the public key is HK = (p, g, h). Although we choose
to work over the group Z∗

p, one could also work with ECC groups or any other
group of prime order.

Definition 4 (Signature Scheme). A signature scheme S is a triple of ran-
domized algorithms (Key-Gen, Sig, Ver) where:

64 C. Crutchfield et al.

– Key-Gen: 1∗ → PK × SK is a key generation algorithm such that on input
1k, where k ∈ N is a security parameter, it outputs (PK,SK), such that
PK ∈ PK, the set of all public verification keys, and SK ∈ SK, the set of
all secret keys.

– Sig: SK × M → SIGS is a signing algorithm such that M is the mes-
sage space and SIGS is the signature space. For shorthand, let SSK(m) =
Sig(SK, m) for all m ∈ M.

– Ver: PK×M×SIGS → {Reject, Accept} is a verification algorithm such that
Ver(PK, m, σ) = Accept if and only if σ is a possible output of Sig(SK, m).
Again, for shorthand, let VPK(m, σ) = Ver(PK, m, σ) for all m ∈ M and
σ ∈ SIGS .

Definition 5 (Threshold Signature Scheme). Given a signature scheme
S = (Key-Gen, Sig, Ver), a threshold signature scheme T S for S is a triple of
randomized algorithms (Thresh-Key-Gen, Thresh-Sig, Ver) for a set of n players
P = {P1,P2, . . . ,Pn} with threshold value t where:

– Thresh-Key-Gen is a distributed key generation algorithm used by the players
to create (PK,SK) ∈ PK×SK such that each Pi ∈ P receives a share SKi

of the secret key SK.
– Thresh-Sig is a distributed signing algorithm used by the players to create

a signature for a message m ∈ M such that the output of the algorithm is
SSK(m). This algorithm can be decomposed into two algorithms: signature
share generation and signature reconstruction.

In this paper, we assume that T S is simulatable, as defined in Gennaro et
al. [8]. This means that there exists a simulator SIMT S

1 which, on input PK,
simulates the view of the adversary for a run of Thresh-Key-Gen that fixes the
public key to be PK. In addition, there exists a simulator SIMT S

2 for Thresh-
Sig, such that on input the public key PK, the message v, the signature σ
of v, and the key shares xi1 , xi2 , . . . , xit of the servers controlled by the ad-
versary, simulates the view of the adversary for a run of Thresh-Sig on v that
produces σ.

Definition 6 (Signature Stamp). In an on-line/off-line signature scheme, we
call the precomputed signature from the off-line phase a signature stamp.

Definition 7 (Distributed Key Generation). A Distributed Key Genera-
tion (DKG) protocol is often used in threshold signature schemes in order to
construct the public key and private key. In a DKG protocol with n players,
the public key is made known to all players, whereas the private key is known
by none. Instead, each player receives a key share, from which they can — act-
ing in concert — recover the private key. A DKG protocol is, of course, fully
distributed, and requires no trusted dealer.

In this paper, we use a discrete logarithm-based DKG protocol (where the
private key is y and the public key is h = gy for some g), namely the New-DKG

Generic On-Line/Off-Line Threshold Signatures 65

protocol as defined by Gennaro et al. [7]. This protocol has the property that
there exists a simulator SIMDKG that on input h can simulate the interactions
of the DKG protocol with a set PA ⊂ P of players controlled by the adversary
A, where |PA| ≤ t, such that the resulting public key produced is fixed to be h.
In addition, as a result of this simulation, SIMDKG is able to recover the key
shares held by the adversary’s players PA.

3 An On-Line/Off-Line Threshold Signature Scheme

We shall construct an optimistic, generic on-line/off-line threshold signature
scheme T SOn/Off = (On/Off-Thresh-Key-Gen, Thresh-Sig-Off-line, Thresh-Sig-On-
line, Ver) that does not require the use of a trusted dealer, and we show how
existing threshold signature schemes can be used in performing a threshold com-
putation of the signature stamp off-line. Furthermore, we use the New-DKG pro-
tocol from Gennaro et al. [7].

3.1 Key Generation (Done Once)

On/Off-Thresh-Key-Gen

Inputs: A threshold signature scheme T S = (Thresh-Key-Gen, Thresh-Sig,
Ver), a set of n players P = {P1,P2, . . . ,Pn}, a threshold t < n

3 , and a
security parameter k ∈ N.
Public Output: A set of public keys.
Private Output: All players Pi ∈ P receive a set of private keys.

1. Run Thresh-Key-Gen on input 1k to obtain (PK,SK) ∈ PK × SK and
each Pi ∈ P receives the secret key share SKi.

2. Create a random k bit Germain prime p′ ∈ N, where p = 2p′ + 1 is also
a prime, and let g be a generator for Qp.

3. Use the DKG protocol to create h = gy, where y ∈ Zp′ is the secret key
and Pi ∈ P receives the share yi for a degree t polynomial py(x) ∈ Zp′ [x]
such that py(0) = y.

4. Check that n < p′ so that each player Pi ∈ P has index i ∈ Z∗
p′ . Other-

wise abort.
5. Publish the public keys (PK,HK = (p, g, h)). All players Pi ∈ P retain

(SKi, yi).

3.2 Off-Line Phase (Done Per Message)

In the off-line phase, we will show how to construct the chameleon hash function
and create the signature stamp in a distributed manner.

66 C. Crutchfield et al.

Thresh-Sig-Off-line

Inputs: The same set of n players P and a threshold t < n
3 .

Private Output: A signature stamp.

1. Use the DKG protocol to create gr, where r ∈ Zp′ so that Pi receives
the share ri for another degree t polynomial pr(x) ∈ Zp′ [x] such that
pr(0) = r.

2. Use the DKG protocol to create hm where m ∈ Zp′ . Each player Pi

receives a share mi for a degree t polynomial pm(x) ∈ Zp′ [x] such that
pm(0) = m.

3. Finally, the DKG protocol is used to generate shares zi for each Pi ∈ P
of a degree 2t polynomial p0(x) ∈ Zp′ [x] such that p0(0) = 0.

4. Now gr and hm are both known to the players, so CHHK(r, m) = grhm

(mod p).
5. Use Thresh-Sig to compute the signature stamp SSK(CHHK(r, m)).

3.3 On-Line Phase (Done Per Message)

Thresh-Sig-On-line

Inputs: A subset P ′ ⊂ P of size 2t + 1 and a message m′ ∈ Zp′ .
Public Output: A signature for m′.

1. For each Pi ∈ P ′, define col-1i = ri − yim
′ and col-2i = yimi + zi, which

are Pi’s share of the trapdoor collision. Then, Pi broadcasts the pair
(col-1i, col-2i) to all of the other players in P ′.

2. Define fi(x) to be fi(x) =
∏

Pj∈P′\{Pi}
j−x
j−i , as in the definition of La-

grange interpolation. Now use Lagrange interpolation on the shares to
compute the trapdoor collision

r′ =
∑

Pi∈P′
(col-1i + col-2i)fi(0)

=
∑

Pi∈P′
(ri + yimi + zi − yim

′)fi(0)

≡ r + ym− ym′ (mod p′).

3. In this way, the signature for message m′ is

(SSK(CHHK(m, r)), m′, r′).

Notice that the definition of col-2i requires adding the share zi. This is nec-
essary because we have to multiply the secrets y and m, so each player com-
putes yimi which becomes a share of a degree 2t polynomial that is not chosen

Generic On-Line/Off-Line Threshold Signatures 67

uniformly at random; thus, adding the share zi will make the polynomial ran-
dom. Furthermore, this degree 2t polynomial is the reason for requiring t < n

3 .

3.4 Verification (Done Per Message)

Given the signature (σ, m′, r′), where σ ∈ SIGS, simply check that

VPK(CHHK(m′, r′), σ) = Accept

holds true, as in the standard signature scheme.

3.5 Signature Share Verification (Performed If Necessary)

If VPK(CHHK (m′, r′), σ) = Reject, then some players are sending incorrect
shares. In order to ensure robustness, we must be able to construct a valid
signature. The näıve solution of trying all possible subsets of size 2t + 1 to con-
struct a valid signature is unacceptable because there are an exponential number
of such subsets. Instead, we will identify and remove the corrupted players. To
do so, we have each player in P check the validity of the pair (col-1i, col-2i) for
each player Pi ∈ P ′:

1. Verifying col-1i. Because gri and gyi are known values from the DKG pro-
tocol, we can compute for each Pi ∈ P ′, gri · (gyi)−m′

= gri−yim
′

(mod p)
and confirm that gcol-1i = gri−yim

′
as desired.

2. Verifying col-2i. Although we have access to gzi from the DKG protocol,
we do not have gyimi . Instead, what we will do is confirm that the discrete
logarithm of gcol-2ig−zi = gcol-2i−zi to the base gmi is equal to the discrete
logarithm of gyi to the base g. Now we can apply Chaum and Pedersen’s
ZKP for equality of discrete logarithms [3] with the Fiat-Shamir heuristic:
Let d = gyi , e = gmi , and f = gcol-2i−zi . Player Pi ∈ P ′ chooses r ∈ Zp′

uniformly at random and computes H(g, d, e, f, gr, er) = c, where H is
a random oracle and c is the challenge. Pi computes v = yic + r and
broadcasts the pair (c, v). Finally, all players compute and confirm that
H(g, d, e, f, gvd−c, evf−c) = c.

If any of the shares are deemed incorrect, then broadcast a complaint against
Pi. If there are at least t + 1 complaints, then clearly Pi must be corrupt since
with at most t malicious players, there can be at most t false complaints. Also,
if Pi is corrupt, there will always be enough honest players to generate at least
t + 1 complaints and Pi will surely be disqualified in this case. Once eliminated,
Pi is removed from P ′ and is replaced with a new player, thus resulting in a
new signature. As long as at most t players are corrupted, there will always be
enough honest players to create a valid signature.

4 Security Model

4.1 Security Definitions

We define two assumptions that we will use in our proof. The first is the one-
more-discrete-logarithm assumption introduced by Bellare et al. [2]

68 C. Crutchfield et al.

Definition 8 (One-More-Discrete-Logarithm Assumption). We let p =
2q + 1 be a prime where q is a random k-bit prime, and let g be a generator for
a subgroup of Z∗

p with order q. We let n : N → N be a function of k. Now let(
x1, x2, . . . , xn(k), xn(k)+1

)
be elements of Zq chosen uniformly at random, and

for each i ∈ {1, 2, . . . , n(k) + 1}, define zi = gxi (mod p). Now let the adversary
A have access to a discrete log oracle DLog such that if x ∈ Zq, z = gx (mod p),
then DLog(g, z) = x. In the one-more discrete-logarithm problem [2], ADLog

is given
(
z1, z2, . . . , zn(k)+1

)
and must output

(
x1, x2, . . . , xn(k)+1

)
by querying

DLog at most n(k) times. The assumption is Pr[ADLog(g, z1, z2, . . . , zn(k)+1) =(
x1, x2, . . . , xn(k)+1

)
] ≤ η(k), where η is a negligible function.

We define a similar assumption that is related to finding collisions in a
chameleon hash function. We will use this assumption to show our new scheme
is secure. In Sect. 5.2, we show that this assumption is implied by the one-more-
discrete-logarithm assumption for the chameleon hash function we use.

Definition 9 (One-More-R Assumption). As above, we let g be a gen-
erator for a subgroup of Z∗

p with order q, a k-bit prime. In addition, we let
k′ be randomly chosen from Zq and let h = gk′

. We let n : N → N be
a function of k. Now let

(
v1, v2, . . . , vn(k), vn(k)+1

)
be randomly chosen ele-

ments in the range of CHHK(·). Now we give the adversary A access to a
Get-An-R(v, m) oracle, such that if v is an output of the chameleon hash func-
tion and r = Get-An-R(v, m), then CHHK(m, r) = v. In the One-More-R prob-
lem, AGet-An-R is given

(
v1, v2, . . . , vn(k)+1

)
and with at most n(k) queries to

Get-An-R, must output
(
(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)

)
such that vi =

CHHK(mi, ri). The assumption is that Pr[AGet-An-R(g, h, v1, v2, . . . , vn(k)+1) =(
(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)

)
] ≤ η(k), where η is a negligible

function.

4.2 Adversarial Model

We assume that there is a static adversary A that corrupts some subset of the
players in P before beginning the threshold signature scheme. Furthermore, we
can analyze two different types of static adversaries: one that compromises before
the off-line phase and the other compromises after the off-line phase terminates.
We assume the former case in our proof of existential unforgeability. As for
the communication model, we assume that all players are connected by secure
point-to-point channels. Furthermore, we will assume a partially synchronous
communication model during the key generation and off-line phases for the pur-
pose of using the DKG protocol of Gennaro et al. [7].

5 Proof of Security

5.1 Robustness

Theorem 1. Suppose that an adversary corrupts at most t < n
3 players. Then,

our on-line/off-line threshold signature scheme T SOn/Off is robust.

Generic On-Line/Off-Line Threshold Signatures 69

Proof. We need to show completeness, soundness, and zero knowledge simu-
latability of the signature share verification protocol when verifying col-2i from
player Pi ∈ P ′.

– Completeness: An honest player Pi ∈ P ′ should convince any verifier that
the protocol was followed with high probability. In fact, if the signature share
verification protocol is correctly followed, then the verifier will accept with
probability 1.

– Soundness: No corrupted player Pi ∈ P ′ should be able to fool any verifier
into accepting incorrect shares with high probability. Using the definitions
for e, d, and f from Sect. 3.5, we require that both

gvd−c ≡ gr (mod p)
evf−c ≡ er (mod p) .

Therefore, gvd−c ≡ gv−yic ≡ gr (mod p) if and only if v ≡ yic + r (mod p′).
In addition, evf−c ≡ gmivg(col-2i−zi)(−c) ≡ (gmi)r (mod p), which implies
that miv − c(col-2i − zi) ≡ mir (mod p′). By using evf−c ≡ er (mod p)
from above, we see that miyic ≡ c(col-2i − zi) (mod p′). If c �≡ 0 (mod p′),
then clearly col-2i is the correct share. If c ≡ 0 (mod p′), then col-2i may
be incorrect. By the Discrete Logarithm Assumption, no probabilistic
polynomial time adversary can produce such a v with non-negligible
probability.

– Zero Knowledge Simulatability: No cheating verifier should learn any-
thing useful after running the protocol. We can easily construct a simulator
S which simulates the view of the verifier when verifying Pi’s col-2i. To do so,
S selects c and v uniformly at random and fixes H(g, d, e, f, gvd−c, evf−c)
to be c, since we are working in the Random Oracle model. Thus, S has
recreated the view of the verifier without knowing Pi’s secret key share yi,
so the signature share verification protocol has zero knowledge.

As a result, our on-line/off-line threshold signature scheme is robust. We sketch
an alternative approach without random oracles in Sect. 7. �	

5.2 Existential Unforgeability

The proof of existential unforgeability will be in a similar style to the proof in
Shamir and Tauman [16]. First we make use of the following Lemma to show
that our One-More-R assumption is implied by a standard assumption:

Lemma 1. Suppose that there exists an adversary B that breaks the One-More-
R assumption for the discrete logarithm chameleon hash with advantage greater
than ε. Then there exists an algorithm A that breaks the One-More-Discrete-Log
assumption with advantage greater than ε.

Proof. We let A respond to B’s queries in the One-More-R problem. A is given
as input g and

(
z1, z2, . . . , zn(k)+1

)
. Let A be described as follows:

70 C. Crutchfield et al.

1. Pick y uniformly at random in Zp′ .
2. Let h = gy, and initialize B with g and h.
3. For 1 ≤ i ≤ n(k) + 1, pick mi uniformly in Zp′ and let vi = zih

mi .
4. Send B the tuple

(
v1, v2, . . . , vn(k)+1

)
.

5. Whenever B makes a Get-An-R(v, m) query, receive t = DLog(g, v). Return
the value t− ym to B.

6. If B successfully outputs
(
(m′

1, r
′
1), (m

′
2, r

′
2), . . . , (m

′
n(k)+1, r

′
n(k)+1)

)
where

CHHK(m′
i, r

′
i) = vi for all i, A returns

(
x1, x2, . . . , xn(k)+1

)
where xi =

r′i + y(m′
i −mi). Otherwise, abort.

Clearly, we have ε < Adv B ≤ Adv A. �	

Using the One-More-R assumption, we can prove that our on-line/off-line thresh-
old signature scheme is secure against adaptive chosen message attack.

Theorem 2. Let T S = (Thresh-Key-Gen, Thresh-Sig, Ver) be a given simulat-
able threshold signature scheme. Then we let T SOn/Off = (On/Off-Thresh-Key-
Gen, Thresh-Sig-Off-line, Thresh-Sig-On-line, Ver) be the resulting On-line/Off-line
Threshold Signature scheme. If T SOn/Off is existentially forgeable by an q-adaptive
chosen message attack with success probability ε, then one of the following must
hold:

1. There exists a probabilistic algorithm that breaks either the One-More-R as-
sumption or the collision resistance of CHHK with probability at least ε

2 .
2. The underlying threshold signature scheme T S is existentially forgeable by a

q-random message attack with probability at least ε
2 .

Proof. Suppose that an adversary A forges a signature in the T SOn/Off scheme
with a q-chosen message attack with probability ε. Now let {m1, m2, . . . , mq}
be the q messages chosen by A to be signed by the T SOn/Off scheme. Let
{(σ1, m1, r1), . . . , (σq, mq, rq)} be the signatures produced in this fashion by
the T SOn/Off scheme. Then A outputs a signature forgery (σ, m, r) such that
VPK(CHHK(m, r), σ) = Accept and m �= mi for all i, with probability ε. More-
over, either there exists an i such that CHHK(mi, ri) = CHHK(m, r) or there
does not exist such an i. One of these cases occurs with probability at least ε

2 .
If the first case holds with probability at least ε

2 , then we define a simulator
S that breaks the One-More-R assumption. S is given as input the public bases
g and h, as well as the set of challenges

(
v1, v2, . . . , vn(k)+1

)
.

S simulates the On/Off-Thresh-Key-Gen phase with A. When the simulation
gets to the point where h is to be generated by using the DKG protocol, S uses
SIMDKG(h), the DKG simulator, to “fix” the result of the DKG run to be h.

On the ith run of the Thresh-Sig-Off-line phase, S simulates the phase as
normal. However, when it reaches the point where hm is to be generated using
the DKG protocol, it uses SIMDKG(vig

−r) to fix the value of hm so that the
resulting chameleon hash grhm equals the given vi value. S then simulates the
rest of the phase as normal.

Generic On-Line/Off-Line Threshold Signatures 71

On the jth run of the Thresh-Sig-On-line phase, with input m′
j specified by A,

S simulates the phase as normal. Suppose that the players involved are P ′ ⊂ P .
Of the players in P ′, without loss of generality let PA = {P1,P2, . . . ,Pt} ⊂ P ′

be the players controlled by the adversary A. Since S “controls” more than t
players, it is able to reconstruct the values of ri, yi, mi, and zi for all Pi ∈ PA
from its own shares, since all were generated by the DKG protocol. Hence S
is able to recover col-1i and col-2i for all Pi ∈ PA. Now S fixes Pl ∈ P ′ \ PA.
For each Pi ∈ P ′ \ (PA ∪ {Pl}), S picks col-1i and col-2i uniformly at random
and broadcasts them. In addition, S queries the Get-An-R oracle on m′

j and vj

to receive r′j . With this information S can simply fix the value of (col-1l, col-2l)
such that the interpolation of all the col-1i + col-2i values comes out to be r′j .

At the end, A produces (σ, m, r) such that VPK(CHHK (m, r), σ) = Accept
and there exists an i such that CHHK (m, r) = vi. If vi was not used by S in
a run of Thresh-Sig-On-line, then S has produced One-More-R value, namely r.
On the other hand, if vi was used by S, then we have a collision with CHHK .

If the second case holds with probability at least ε
2 , then we define a simulator

S that existentially forges a signature under a random message attack on the
underlying threshold signature T S. In addition, we let SIMT S

1 and SIMT S
2 be

defined as in Definition 5.
S simulates the On/Off-Thresh-Key-Gen phase as normal, except during the

execution of Thresh-Key-Gen. In this case, S uses SIMT S
1 to fix the public key

for T S to be the public key for the signing oracle SigT S .
On the ith run of the off-line phase, let S simulate it as normal, except for the

computation of hm and running Thresh-Sig. Let S query SigT S , which outputs
(vi, σi), where vi is chosen uniformly at random and VPK(vi, σi) = Accept. Next,
use SIMDKG(vig

−r) to fix hm. Finally, S then uses SIMT S
2 to simulate a run of

Thresh-Sig with S on input vi, such that the output is fixed to σi. We can do
this because our assumption is that Thresh-Sig is simulatable.

Each run of the on-line phase is simulated as normal by S. At the end,
A produces (σ, m, r) such that VPK(CHHK(m, r), σ) = Accept and for all i,
vi �= CHHK(m, r). But in this case, S has forged a signature σ on a message
CHHK(m, r) not queried to the signing oracle SigT S . �	

From this, we can derive the following theorem:

Theorem 3. Suppose that a static adversary corrupts at most t < n
3 players

before beginning the off-line phase. Then our on-line/off-line threshold signature
scheme T SOn/Off is existentially unforgeable against adaptive chosen message
attacks assuming that the underlying threshold signature scheme T S is existen-
tially unforgeable against random message attacks.

6 Evaluation

We analyze the number of bit operations required by our scheme, as previously
shown in Table 1. First, in our scheme, is the threshold key generation. The bit
complexity of Thresh-Key-Gen for T S, as well as generating a Germain prime is

72 C. Crutchfield et al.

included in KOn/Off. Afterwards, we invoke the New-DKG protocol [7] once, and
an analysis shows that it requires 3t + 4 exponentiations, so KDKG ∈ O(tk3)
since an exponentiation requires O(k3) bit operations over Zp. Thus, the key
generation phase takes KOn/Off +KDKG bit operations.

Next, we analyze our off-line phase. First, we invoke the New-DKG protocol
three times, so this gives 3KDKG. Next, we have gr and hm, so we multiply both
terms to get CHHK(r, m). Moreover, a single multiplication requires O(k2) bit
operations over Zp. Finally, the signature stamp SSK(CHHK (m, r)) requires τ
bit operations. Thus the off-line phases requires a total of 3KDKG + O(k2) + τ
bit operations.

For our on-line complexity, we can separate a player’s computational complex-
ity for generating a signature share from the signature reconstruction complexity.
Each player Pi ∈ P ′ performs two additions and two multiplications when com-
puting col-1i and col-2i. The on-line signature reconstruction requires computing
fi(0), which is 2t multiplications, and this is done for all Pi ∈ P ′, so we have
a total of (2t + 1)2 multiplications when we compute r′. Only addition of the
2(2t + 1) shares as well as performing 2t subtractions when computing fi(0) is
required giving a total of 2t(2t + 1) + 2(2t + 1) − 1 = 4t2 + 6t + 1 additions.
Furthermore, each addition over Zp requires O(k) bit operations. Already we
see that the number of multiplications in the on-line phase is substantially fewer
than k since the threshold t is quite small when compared to a k bit prime.
If verification of the signature shares is required, then each share requires six
modular exponentiations. A summary of the number of operations performed
appears in Table 2.

Table 2. Our On-line Phase Computational Complexity

Our On-line Phase Complexity Additions Multiplications Exponentiations

Player Signature Share 2 2 0

Signature Reconstruction 4t2 + 6t + 1 4t2 + 4t + 1 0

Signature Share Verification 0 3 6

We review the complexity of Shoup’s RSA threshold signature scheme [17],
which was also shown in Table 1. The key generation phase of Shoup’s signature
scheme requires a trusted party, but asymptotically the computation cost is the
same as our distributed key generation. In Shoup’s on-line phase, the recon-
struction complexity, once again, can be separated from the share verification
complexity. The reconstruction of the signature requires t modular exponenti-
ations, t − 1 modular multiplications, and one invocation of the extended Eu-
clidean algorithm. Finally, verifying an individual signature share also requires
six modular exponentiations and three modular multiplications. Although both
threshold signature schemes have approximately the same signature share veri-
fication complexity, we have managed to avoid any modular exponentiations in
the reconstruction complexity of our signature scheme.

Generic On-Line/Off-Line Threshold Signatures 73

7 Extensions

7.1 Using Merkle Trees for Batching

We explained earlier that computing a threshold signature when performing
writes for small files in Pond [12] is expensive, while for large files, the time
spent computing the threshold signature is negligible compared to the actual
write. In the event that a threshold signature must be quickly computed on
demand, our scheme immediately becomes attractive over other schemes. This
is especially true for Pond when computing threshold signatures for small writes.

One way of improving performance is to batch messages, an idea due to Wong
and Lam [18], by using Merkle hash trees [11]. Instead of signing messages one
by one, we wait for n messages to arrive and then build a Merkle tree over these
messages. If there are a total of n messages and the batch size is B, then a
total of

⌈
n
B

⌉
signature stamps are needed. This approach does trade latency for

throughput, and it depends on how much time can be spent waiting for messages
to arrive on-line. In fact, Merkle trees for batching has been applied to Shoup’s
scheme in OceanStore in order to increase throughput for small updates [13].

7.2 Eliminating Random Oracles

By using the techniques in [4], which eliminates the random oracle from the
verification step in Shoup’s RSA threshold scheme, we can eliminate the random
oracle H , but at the cost of including interaction.

Acknowledgments

We thank Lea Kissner, Emil Ong, Naveen Sastry, Umesh Shankar, and Hoeteck
Wee for providing helpful feedback on an earlier draft of this work, as well as
the anonymous referees for their helpful comments. This research was supported
by grant NSF CNS-0093337.

References

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a Distributed File System. In Proceed-
ings of 13th ACM Symposium on Operating Systems Principles, pages 198–212.
Association for Computing Machinery SIGOPS, 1991.

[2] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Sig-
nature Scheme. Journal of Cryptology, 16(3):185–215, 2003.

[3] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In
CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 89–105.
Springer-Verlag, 1992.

[4] Ivan Damg̊ard and Kasper Dupont. Efficient Threshold RSA Signatures with
General Moduli and No Extra Assumptions. In Public Key Cryptography, volume
3386 of Lecture Notes in Computer Science, pages 346–361. Springer-Verlag, 2005.

74 C. Crutchfield et al.

[5] Yvo Desmedt and Yair Frankel. Threshold Cryptosystems. In CRYPTO, volume
435 of Lecture Notes in Computer Science, pages 307–315. Springer-Verlag, 1989.

[6] Shimon Even, Oded Goldreich, and Silvio Micali. On-Line/Off-Line Digital
Schemes. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages
263–275. Springer-Verlag, 1989.

[7] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Distributed Key Generation for Discrete Logarithm Cryptosystems. To appear,
Journal of Cryptology. http://www.research.ibm.com/security/dkg03.ps.

[8] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
Threshold DSS Signatures. Inf. Comput., 164(1):54–84, 2001.

[9] Hugo Krawczyk and Tal Rabin. Chameleon Signatures. In Proceedings of the
Network and Distributed System Security Symposium, pages 143–154, 2000.

[10] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of ACM Architectural Support for Programming
Languages and Operating Systems, Novemeber 2000.

[11] Ralph Merkle. Protocols for Public Key Cryptosystems. In IEEE Symposium on
Security and Privacy, pages 122–134, April 1980.

[12] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and
John Kubiatowicz. Pond: The OceanStore Prototype. In Proceedings of the Con-
ference on File and Storage Technologies. USENIX, 2003.

[13] Sean Rhea and John Kubiatowicz. The OceanStore Write Path. http://

roc.cs.berkeley.edu/retreats/summer 02/slides/srhea.pdf, June 2002.
[14] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation

of a Log-Structured File System. In ACM Transactions on Computer Systems,
volume 10, pages 26–52, February 1992.

[15] Chris Ruemmler and John Wilkes. UNIX Disk Access Patterns. In USENIX
Winter 1993 Conference Proceedings, January 1993.

[16] Adi Shamir and Yael Tauman. Improved Online/Offline Signature Schemes. In
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 355–367.
Springer-Verlag, 2001.

[17] Victor Shoup. Practical Threshold Signatures. In EUROCRYPT, volume 1807 of
Lecture Notes in Computer Science, pages 207–220. Springer-Verlag, 2000.

[18] Chung Kei Wong and Simon S. Lam. Digital Signatures for Flows and Multicasts.
IEEE/ACM Trans. Netw., 7(4):502–513, 1999.

[19] Zhiyong Xu, Yingwu Zhu, Rui Min, and Yiming Hu. Achieving Better Load
Balance in Distributed Storage System. In International Conference on Parallel
and Distributed Processing Techniques and Applications, June 2002.

[20] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A Secure
Distributed Online Certification Authority. ACM Trans. Computer Systems,
20(4):329–368, 2002.

Linear Integer Secret Sharing and Distributed

Exponentiation

Ivan Damg̊ard� and Rune Thorbek

BRICS��, Dept. of Computer Science, University of Aarhus

Abstract. We introduce the notion of Linear Integer Secret-Sharing
(LISS) schemes, and show constructions of such schemes for any access
structure. We show that any LISS scheme can be used to build a secure
distributed protocol for exponentiation in any group. This implies, for
instance, distributed RSA protocols for arbitrary access structures and
with arbitrary public exponents.

1 Introduction

In a secret sharing scheme, a dealer distributes shares of a secret to a number
of shareholders, such that only certain designated subsets of them - the qualified
sets can reconstruct the secret, while other subsets have no information about
it. The collection of qualified sets is called the access structure. In particular,
the access structure consisting of all sets of cardinality greater than t is called a
threshold-t structure.

Secret Sharing was first introduced[20] as a way to store critical information
such that we get at the same time protection of privacy and security against
loosing the information. Later, secret sharing has proved extremely useful, not
just as a passive storage mechanism, but also as a tool in interactive protocols,
for instance in threshold cryptography. Here, the private key in a public key
scheme is secret shared among a set of servers, and the idea is that a qualified
subset of the servers can use their shares to help a client to decrypt or sign
an input message, but without having to reconstruct the private key in a single
location. As long as an adversary cannot corrupt too large a subset of the servers,
he cannot prevent the system from working, nor can he learn any information
on the private key.

The central operation we need to perform securely in these applications is
typically an exponentiation, that is, we are given some finite group G and an
input a ∈ G, and we want to compute as, where s is a secret exponent which
has been secret-shared among the servers. In some cases the group order is a
public prime q. The problem is then straightforward to solve since we can use
any standard linear secret sharing scheme over the field Zq. The observation is

� FICS, Foundations in Cryptography and Security, center supported by the Danish
research Council.

�� Basic Research in Computer Science, Center of the Danish National research
Foundation.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 75–90, 2006.
c© International Association for Cryptologic Research 2006

76 I. Damg̊ard and R. Thorbek

simply that for any linear scheme (such as Shamir’s) over Zq, the secret can be
written as a linear combination s =

∑
i∈I αisi mod q, where I is any qualified

set of servers holding shares {si| i ∈ I}, and where the αi’s can be computed
from the index set I. Now, if the servers provide ai = asi (and prove they did so
correctly), we can compute as =

∏
i∈I aαi

i . However, there are other cases where
the group order is not prime and is not public (or even unknown to everyone),
such as when G is Z∗

N for an RSA modulus N or when G is a class group. This
leads to various problems: it would be natural to try to build a secret sharing
scheme over Zt where t is the order of G, but the standard constructions do not
immediately work if t is not a prime. Matters are of course even worse if t is
unknown to everyone.

The literature contains many techniques for getting around these problems.
The techniques work in various particular scenarios, but they all have shortcom-
ings in general. We give a short overview here:

– The black-box secret sharing schemes of [8, 13, 21] can be used to share a
secret chosen from any Abelian group, including Zt. This requires, of course,
that the dealer knows t so he can do computations in Zt. This is never
the case if G is a class group, and if G = Z∗

N , the dealer must know the
factorization of N . Note that in proactive threshold RSA schemes, each
player typically has to reshare his share of the private key from time to
time, however, we can of course not afford to reveal the factorization of N
to every shareholder.

– In Shoup’s threshold RSA protocol[22], the idea is to restrict the modulus
N to be a safe prime product, which allows us to work in a subgroup of Z∗

N

whose order is the product of two large primes. This is “close enough” to a
prime so that standard Shamir sharing of s will work. This requires that the
dealer knows the factorization. Moreover, for technical reasons, the protocol
can only compute as·n! where n is the number of servers. This is solved
by exploiting that we have the public exponent e available. Assuming e is
relatively prime to n!, we can compute as efficiently. The problem in general
is of course that we may not always be able to choose the group order as
we like, and the inverse of s modulo the group order may not always be
available or it may not be prime to n!. For instance, we cannot use small
public exponents such as 3.1

– The secret sharing scheme of [15] which was also used in [12, 10] is a variant
of Shamir’s scheme, where we use polynomials over the integers. Using this
to share s does not require any knowledge of the order of G. However, the
scheme does not allow reconstruction of s by a linear combination of shares,
instead one obtains the secret times some constant, typically s·n!. This causes
the protocol to produce as·n! as output, and we have the same problem as
with Shoup’s protocol.

1 Shoup suggests an alternative solution where any public exponent can be used, but
this requires that one additionally assumes that the DDH assumption holds in the
RSA group.

Linear Integer Secret Sharing and Distributed Exponentiation 77

– Finally, the method of Rabin [18] uses secret sharing in “two levels”, i.e., the
secret exponent s is shared additively, such that s = s1+ ...+sn where server
i knows si, and then si is itself secret shared among the servers. Schemes of
this type require no knowledge of the group order to do the sharing since in
principle, any secret-sharing scheme can be used to share the si’s. On the
other hand, shares become larger than with other schemes and extra rounds
of interaction is needed (to reconstruct si) as soon as even one server i fails
to participate correctly. Hence (in contrast to the other types of protocols)
this approach cannot be made non-interactive, not even in the random oracle
model.

A final issue with current state of the art of distributed exponentiation is that
known solutions (except the two-level method) do not generalize to non-threshold
access structures. The point of general structures is that when we secret share the
private key according to a threshold structure, we are implicitly assuming that all
servers are equally easy to break into, and so the only important parameter is the
number of corrupted servers. In reality, some servers may well be more reliable
than others, and so we may need to specify which sets should be qualified in a
more flexible way, that is, we need a more general access structure.

1.1 Our Results

In this paper, we introduce a type of secret sharing scheme called Linear Integer
Secret-Sharing (LISS). In a LISS scheme, the secret is an integer chosen from
a (publically known) interval, and each share is computed as an integer linear
combination of the secret and some random numbers chosen by the dealer. Re-
construction of the secret is also by computing a linear combination with integer
coefficients of the shares in a qualified set.

LISS schemes are closely related to - but not the same as - the black-box secret
sharing schemes (BBSS) mentioned earlier of Desmedt-Frankl[13] and Cramer-
Fehr[8]. Whereas BBSS schemes are designed to secret share elements from any
finite abelian group and use computations in this group to do it, our computa-
tions are done over the (infinite) ring of integers. This difference has a number of
consequences that we return to below. LISS schemes are also different from the
method in [15] based on integer polynomials, since they require a final division
to get the secret while for LISS schemes we insist that linear combinations be
sufficient.

Note that it was shown in [5, 6] that perfect secret sharing and private com-
putation over countably infinite domains (like the integers) is not possible. How-
ever, this does not rule out schemes of our type since we restrict our secrets to
be chosen from a publically known interval and only aim for statistical rather
than perfect privacy.

Cramer and Fehr introduce the concept of an integer span program (ISP) and
use it to construct BBSS schemes. We show that any ISP can also be used to
build a secure LISS scheme. Roughly speaking, an ISP is specified by a matrix
with integer entries, and these entries are used as coefficients in the linear com-
binations that produce the shares from secret and randomness. In particular, the

78 I. Damg̊ard and R. Thorbek

construction from [8] of an ISP for threshold-t access structures implies a LISS
scheme for the same structure. Moreover, we revisit the well known construc-
tion of Benaloh and Leichter [1] based on monotone formulas that was originally
conceived for a finite Abelian group, and we show that a LISS scheme can be
built from any monotone formula. This implies that a LISS schemes exists for
any access structure, though not necessarily an efficient one.

The ISP construction of Cramer and Fehr was shown to imply optimal thresh-
old BBSS schemes. We show that this is not always the case for LISS schemes:
if we base the Benaloh-Leichter construction on a monotone formula for the
threshold function, we obtain threshold LISS schemes. It now turns out that, de-
pending on how small a formula we can produce, this construction may produce
a threshold LISS scheme with smaller shares or smaller randomness complexity
than those coming from the Cramer-Fehr construction. With current of state of
the art, this does not happen in general, but we find that for a fixed threshold
and a large number of players, there are monotone formula constructions that
produce smaller shares than Cramer-Fehr2.

It is interesting to note that if the known lower bound on the montone formula
size for the threshold function [3] turn out to be tight, this would make the
Benaloh-Leichter construction more efficient in general than the Cramer-Fehr
construction. While this may not seem likely with our current knowledge, it
does mean that determining the efficiency of an optimal threshold LISS scheme
remains an open question. The reason why BBSS schemes are different from LISS
schemes in this respect is that when we use an ISP for building a BBSS scheme,
the size of shares we get is independent of the size of the integers occurring in the
description of the ISP, but this is no longer true when we build a LISS scheme.

Finally, we show that any LISS scheme can be used to build a distributed ex-
ponentiation protocol. The protocol does not use multilevel secret sharing. Thus,
it can be made non-interactive using any of the known techniques for this pur-
pose, such as the Fiat-Shamir heuristic (the random oracle model) or [7, 11, 16].
Furthermore, no player, including the dealer, needs to know the order of the
group involved. This implies that we obtain the first non-interactive distributed
exponentiation protocol that works for any group and any access structure.

We also look at the particular case of distributed RSA. We generalize the re-
sults of Damg̊ard and Dupont[10] to arbitrary access structures, and thus obtain
a distributed RSA signature scheme for any access structure, any public expo-
nent and any modulus, efficiently and in constant-round without using random
oracles or any assumptions other than the RSA assumption.

We emphasize that our result that all LISS schemes can be used for distributed
exponentiation does not hold for BBSS schemes, not even if we assume that the
dealer knows the group order3. The reason for this is that in order to do the proof

2 Note that in a later paper[9], Cramer, Fehr and Stam propose a construction that
they conjecture to be more efficient than[8], but so far, the asymptotic efficiency of
the scheme remains unproved.

3 We note that the BBSS constructions of [13, 8] are in fact applicable to distributed
exponentiation, but this is due to special properties of those constructions.

Linear Integer Secret Sharing and Distributed Exponentiation 79

of security for an exponentiation protocol using known simulation techniques,
the secret sharing scheme needs to have the so called share completion property:
given an unqualified set of shares and the secret, we can compute by linear
combinations a complete set of shares consistent with what we were given. It
is not known whether BBSS or LISS schemes have this property in general, in
fact the answer is probably no. Here, we get around this problem by coming
up with a different simulation technique where share completion is not needed.
This technique always works with a LISS scheme, but fails with BBSS when the
group order is not public.

2 Linear Integer Secret Sharing

First we formally define the required access structures.

Definition 1. A monotone access structure on {1, . . . , n} is a non-empty col-
lection Γ of sets A ⊆ {1, . . . , n} such that ∅ /∈ Γ and such that for all A ∈ Γ
and for all sets B with A ⊆ B ⊆ {1, . . . , n} it holds that B ∈ Γ .

Definition 2. Let t and n be integers with 0 < t < n. The threshold-t access
structure Tt,n is the collection of sets A ⊆ {1, . . . , n} with |A| > t.

Let P = {1, . . . , n} denote the n shareholders (or players) and D the dealer. Let
Γ be a monotone access structure on P . The dealer D wants to share a secret
s from the publically known interval [0..2l] to the shareholders P over Γ , such
that every set of shareholders A ∈ Γ can reconstruct s, but such that a set of
shareholders A /∈ Γ get no or little information on s. We call the sets which are
allowed to reconstruct the secret qualified and the sets which should not be able
to obtain any information about the secret forbidden.

For this purpose we use a distribution matrix M ∈ Zd×e and a distribution
vector ρ = (s, ρ2, . . . , ρe)T , where s is the secret, and the ρi’s are uniformly
random chosen integers in [0..2l0+k] for 2 ≤ i ≤ e, where k is the security
parameter and l0 is a constant that is part of the description of the scheme. The
dealer D calculates shares by

M · ρ = (s1, . . . , sd)T , (1)

where we denote each si as a share unit for 1 ≤ i ≤ d. Let ψ : {1, . . . , d} → P be
a surjective function. The i’th share unit is then given to the ψ(i)’th shareholder,
we say that ψ(i) owns the i’th row in M . If A ⊆ P is a set of shareholders, then
MA denotes the restriction of M to rows jointly owned by A. We denote dA

for the number of rows in MA. Similarly, for s ∈ Zd let sA ∈ ZdA denote the
restriction of s to the coordinates jointly owned by A. The share of shareholder j
is then defined to be sψ−1(j), which denotes all the entries in s which shareholder
j owns, i.e., the share of shareholder j is the share units owned by j.

More formally, we let [0..2l] be the set of secrets, then each shareholder j is
associated a positive integer dj = |ψ−1(j)| for 1 ≤ j ≤ n, such that the set of
possible shares for shareholder j, is a subset Sj ⊆ Zdj of the Z-module Zdj . Each

80 I. Damg̊ard and R. Thorbek

possible share for shareholder j is in the subset Sj . The size of shareholder j share
is defined to be the number of bits used to uniquely represent the share from Sj .
Note, that d =

∑n
j=1 dj , where d is the number of share units. Then let S = S1×

. . .× Sn ⊆ Zd, which defines the subset of possible shares for the shareholders.
Define the expansion rate to be μ = d/n, where d is the number of share units and
n is the number of shareholders. Note, that for a given distribution of a secret,
the shares of the shareholdes can be considered as an element in the subset S. If
we use m bits to uniquely represent the shares in S, then we define the average
share size to be m/μ, which is the number of share bits each shareholder will
get on average.

Definition 3. A LISS scheme is correct, if the secret is reconstructed from
shares {si | i ∈ A} where A is a qualified set of shareholders, by taking an
integer linear combination of the shares, with coefficient that depend only on the
index set A.

Definition 4. A LISS scheme is private, if for any two secrets s, s′, independent
random coins r, r′ and any forbidden set A of shareholders, the distribution of
{si(s, r, k) | i ∈ A} and {si(s′, r′, k) | i ∈ A} are statistically indisinguishable.
More precisely, the statistical distance between the two distributions is negligible
in k.

In the following we define the notion of an Integer Span Program (ISP, introduced
in [8]) and show how any ISP can be used to build a correct and private LISS
scheme.

Definition 5. M = (M,ψ, ε) is called an Integer Span Program (ISP), if M ∈
Zd×e and the d rows of M are labelled by a surjective function ψ : {1, . . . , d} →
{1, . . . , n}. Finally, ε = (1, 0, . . . , 0)T ∈ Ze is called the target vector. We define
size(M) = d, where d is the number of rows of M .

Definition 6. Let Γ be a monotone access structure and let M = (M,ψ, ε) be
a integer span program. Then M is an ISP for Γ , if for all A ⊆ {1, . . . , n} the
following holds.

– If A ∈ Γ , then there is a vector λ ∈ Zd such that MT
Aλ = ε.

– If A /∈ Γ , then there exists κ = (κ1, . . . ,κe)T ∈ Ze such that MAκ = 0 ∈ Zd

with κ1 = 1, which is called the sweeping vector for A.

In other words, the rows owned by a qualified set must include the target vector
in their span, while for a forbidden set, there must exist a sweeping vector which
is orthogonal to all rows of the set, but has inner product 1 with the target vector.
We also say that M computes Γ .

We define κmax = max{|a| | a is an entry in some sweeping vector}.

Note 1. In the case of a span program, which works over a field, the explicit
requirement of a sweeping vector is not necessary. This is because the following
holds for fiels, ε ∈ im(MT

A) if and only if there exists a sweeping vector. When
working with the integers then only the “only if” implication is guaranteed.

Linear Integer Secret Sharing and Distributed Exponentiation 81

If we have an ISP M = (M,ψ, ε) which computes Γ , we build a LISS scheme for
Γ as follows: we use M as the distribution matrix, and set l0 = l+�log2(κmax(e−
1))�+ 1, where as before l is the length of the secret.

Now, the first requirement in Definition 6 obviously makes the scheme correct,
in that a qualified set A can compute the secret by taking a linear combination
of their values, since there exsists λA ∈ ZdA such that MT

A ·λA = ε which gives

sT
A · λA = (MA · ρ)T · λA = ρT · (MT

A · λA) = ρT · ε = s

The Lemma below shows that the second requirement is sufficient to make
the scheme private.

Lemma 1. If s ∈ [0..2l] and the ρi’s are chosen uniformly at random in [0..2l0+k]
for all 2 ≤ i ≤ e, then the LISS scheme derived from M is private.

Proof. We have chosen ρ = (s, ρ2, . . . , ρe)T , with ρi ∈ [0..2l0+k] as uniformly
random numbers for 2 ≤ i ≤ e, and the secret s ∈ [0..2l].

Let s′ ∈ [0..2l] be arbitrary. We first observe, that sA = MAρ are shares that
a subset A can see. If A /∈ Γ , then we by definition know that there exists a
sweeping vector κ such that MAκ = 0 ∈ ZdA .

Define s′ = M(ρ + (s′ − s)κ). We note that s′
A = sA, i.e., the shareholders

in A see the same shares, but the secret s′ was shared instead of s. Define ρ to
be good if ρ′ = ρ + (s′ − s)κ has entries in the specified range. Then the above
implies that if we restrict the distribution of A’s shares of s to the cases where
ρ is good, the resulting distribution equals the one generated from s′ and ρ′.

It follows that the statistical distance between the distributions of A’s shares
of s and s′ is at most twice the probability that ρ is not good, which we can
estimate by the union bound as e − 1 times the probability that a single entry
is out of range. So since |s′ − s| ≤ 2l, the distance is at most

2 · 2lκmax(e− 1)
2l0+k

≤ 2−k

3 Constructions

3.1 Benaloh-Leichter

In this section we show how to construct an ISP based on Benaloh and Leichter
Generalized Secret Sharing scheme [1]. This scheme was already shown to work
for secret sharing in any finite group, but to use it over the integers, we need
to revisit the scheme to make sure that the required sweeping vectors exist and
check the size of their coordinates.

As pointed out in [1], there is a one-to-one correspondence between monotone
access structures and monotone formulas. Every monotone access structure can
be described by a monotone formula, and every monotone formula describes a
monotone access structure, where each variable in the formula is associated with
a shareholder in P . A subset of the shareholders corresponds to an input to the

82 I. Damg̊ard and R. Thorbek

formula by setting an input variable to 1 iff the corresponding shareholder is in
the the subset. A subset is in the access structure represented by the formula if
the formula accepts the corresponding setting of the variables. So it is enough
to show how to construct an ISP from an arbitrary monotone formula f .

The details of this follow from Benaloh and Leichter’s original construction
and can be found in the full version of this paper [14]. Here, we only summarize
the conclusions:

One can efficiently construct a distribution matrix M ∈ Zd×e for the access
structure representing monotone formula f , where d, e are at most the size of f .
Moreover, each row has only 0 or 1 entries and there are at most depth(f) 1’s in
every row. Finally, sweeping vectors have only 0, 1,−1 as entries.

So when sharing a secret using M we need at most d · depth(f) additions to
calculate all the d share units from (1). Each share unit is the result of adding
at most of depth(f) integers of (l0 + k)-bit, i.e., each share unit is at most
l0 + k + log depth(f) bits long.

From [23] we have the existence of a monotone formula for the majority func-
tion of size O

(
n5.3

)
and of depth O (log n). A threshold-t function Tt,n can be

constructed from the majority function, by fixing some of the inputs of the ma-
jority function. This construction implies that we need a majority function of
size at most 2n to construct the threshold-t function Tt,n, i.e. [23] gives the ex-
istence of a monotone formula for the threshold-t function Tt,n of size O

(
n5.3

)
and of depth O (log n).

It follows from the above that each share unit is of size O (l0 + k + log log n)
and the time to compute all share units is O

(
n5.3 log n(l0 + k + log log n)

)
, where

we assume it takes O (b) time to add two b-bit numbers and O (b) time to
generate a b-bit random integer. This implies that the average share size is
O
(
n4.3(l0 + k + log log n)

)
bits.

Boppana, generalizing Valiant’s result in [2], showed that every threshold t
function Tt,n can be represented by a monotone formula of size O

(
t4.3n log n

)
.

Each share unit size is still the same, hence the average share size becomes
O
(
t4.3 log n(l0 + k + log log n)

)
bits. The total computation time of alle the

shares is O
(
t4.3n log2 n(l0 + k + log log n)

)
.

3.2 Cramer-Fehr

In this section we consider the ISP’s constructed by Cramer and Fehr in [8].
As described, if we have an ISP M = (M,ψ, ε) we use M ∈ Zd×e as the

distribution matrix and we calculate the shares from (1). If we define mmax to be
the maximal entry in the distribution matrix M . We need d ·e multiplications of
O (l0 + k + mmax)-bit numbers and d·(e−1) additions of O (l0 + k + mmax + e)-
bit numbers to calculate the shares.

From the proof of Corollary 1 in [8] we have that for a threshold-t access
structure Tt,n that

d = n(�log n� + 2)
e = t(�log n�+ 2) + 1

Linear Integer Secret Sharing and Distributed Exponentiation 83

We also know, that mmax = O
(
n2
)
. If we assume that we use O (b) time to choose

a b-bit random number, O (b) time to add two b-bit numbers, and O
(
b log2 b

)
time to multiply two b-bit numbers. Then we need

O
(
tn log2 n(l0 + k + n2) log2(l0 + k + n2) + tn log2 n(l0 + k + n2 + t log n)

)
= O

(
tn log2 n(l0 + k + n2) log2(l0 + k + n2)

)
time to compute the shares. Furthermore, we have that each share unit is of size
O
(
l0 + k + n2 + log(t log n)

)
= O

(
l0 + k + n2

)
-bit, hence the average share size

is O
(
log n(l0 + k + n2)

)
.

3.3 Comparison

In this section we compare the average share size, the number of random bits
required to do the computations, and the computation complexity of the LISS
scheme based on Benaloh-Leichter construction (BLc) with the scheme based on
the Cramer-Fehr construction (CFc) in the threshold-t case.

First we make some observations. Recall that l0 = l+ �log2(κmax(e−1))�+1.
For BLc we get that l0 = l+�log2(n5.3−1)�+1, which asymptotically reduces to
l0 ∈ O (l + log n). In the CFc we have that κmax = c2n and e = t(�log n�+2)+1,
i.e., l0 = l�log2(c2nt(�log n� + 2))� + 1, which asymptotically reduces to l0 ∈
O (l + n).

First we will compare the results of the CFc with the BLc based on the
threshold-t function build from Valiant [23] majority function. The results are
compared in the table below, where we use l instead of the more scheme de-
pendent l0. Let ss denote the share size of each shareholder, rb the number of
random bits used in the computation of the shares, and ct the computation time
of the shares.

CFc BLc (Valiant)
ss O

(
(l + k + n2) log n

)
O
(
(l + k + log log n)n4.3

)
rb O ((l + k + n)t log n) O

(
(l + k + log log n)n5.3

)
ct O

(
tn log2 n(l + k + n2) log2(l + k + n2)

)
O
(
n5.3 log n(l + k + log log n)

)
These results show a great advantage of the CFc if n is a dominating factor

of the parameters, if this is not the case, the asymptotic bounds are of the same
magnitute.

We may also base the BLc on the result from Boppana [2], which states that
the size of the formula for the threshold function Tt,n is O

(
t4.3n logn

)
. We now

compare it against the CFc and let t be fixed while n grows. This implies that the
formula size is O (n log n) for a fixed value of t. This can be a reasonable model
in some cases: we may have a large number of share holders, while we believe
that the adversary can only corrupt a small number of them. In the table below
we compare the results to the CFc for a constant value of t,

84 I. Damg̊ard and R. Thorbek

CFc BLc (Boppana)
ss O

(
(l + k + n2) log n

)
O ((l + k + log log n) log n)

rb O ((l + k + n) log n) O ((l + k + log log n)n log n)
ct O

(
n log2 n(l + k + n2) log2(l + k + n2)

)
O
(
n log2 n(l + k + log log n)

)
Note that in this case, the BLc actually has a better share size and computa-

tion time complexity than the CFc. This indicates that the BLc with the current
state of the art can compete with the CFc in special cases.

Results of Radhakrishnan [3] show that the lower bound for a monotone for-
mula that computes the threshold-t function Tt,n for 2 ≤ t ≤ n

2 , has size at least
� t

2�n log(n
t−1). As he notes, that in the monotone formulas model, the complex-

ities of computing Tt,n and Tn−t+1,n are the same. Hence, the lower bound of
� t

2�n log(n
t−1) holds for the function Tn−t+1,n, 2 ≤ t ≤ n

2 , as well. This result is
far below Valiants [23] and Boppana [2], so in particular BLc is in general better
than CFc if the bound turns out to be tight.

To summarize the results of this section, we find that CFc seems better in
the general case of the threshold-t function, but if n is small compared to the
other factors, then the BLc can be just as good. Furthermore, for fixed t and
large n, the BLc has an advantage over the CFc. The result of Radhakrishnan
gives a big gab for improvements from the current state of the art of threshold
functions, which would favor BLc. Finally, it must be stressed, of course, that the
BLc has the advantage that it can be used over any monotone access structure.
However, the BLc is only efficient if there is a polynomial-size monotone formula
describing the access structure.

4 Distributed Exponentiation

In this section we will consider solutions to the the distributed exponentiation
problem based on LISS. The set-up is as follows: we have n servers P1, ...,Pn, an
access structure Γ with an ISP M = (M,ψ, ε), and an adversary Adv who may
corrupt any subset of servers not in Γ . The family of subsets not in Γ is called
the adversary structure Γ̄ . Finally, we have a special player C called the client
who may also be corrupted, independently of which servers are corrupt.

In this first solution we give, we consider non-adaptive corruption in the semi-
honest model, i.e., the adversary must choose which players to corrupt before
the protocol starts, he sees all internal data and communication of corrupt play-
ers, he may cause them to stop playing at any time, but all players follow the
protocol as long as they participate. In order to solve the problem in this model,
we must assume that the adversary structure is Q2, i.e., any set of form A ∪B,
A, B ∈ Γ̄ is strictly smaller than {P1, ...,Pn}. This ensures that the set of honest
servers is in Γ .

We will use Canetti’s Universal Composability (UC) framework to state and
prove our protocols. For details on this framework, refer to [4]. In order to focus
on the actual protocol for exponentiation, we will assume a trusted dealer who
chooses the group to use and secret-shares the exponent. In the UC framework,

Linear Integer Secret Sharing and Distributed Exponentiation 85

this means we assume a functionality representing the dealer is given, as detailed
below. We assume for simplicity synchronous communication and also that the
client C can broadcast information to all servers. But we do not assume any
private channels so all communication between players is seen by the adversary.

Functionality FDeal

1. Upon receiving “start” from all honest players, choose the group G to use
and an exponent s (in principle any efficient algorithm for this could be used
here).

2. Generate the distribution vector ρ = (s, ρ2, . . . , ρe)T and calculate the shares
from

M · ρ = (s1, . . . , sd)T ,

finally distributes the shares, such that si is sent privately to Pψ(i) for 1 ≤
i ≤ d. Finally, send a description of G to all players and the adversary (in-
formation allowing to represent group elements and computing the group
operation).

Such a functionality together with the protocol we give below will implement
the following functionality

Functionality FDeal−and−Exp

1. Upon receiving “start” from all honest players, choose the group G to use
and an exponent s (same algorithm as used in FDeal). Send a description of G
(information allowing to represent group elements and computing the group
operation) to all players and the adversary.

2. At any later time, upon receiving “Exponentiate a” for a ∈ G from the client,
send “Exponentiate a”, to all players and the adversary. In the next round,
send “Result as” to the client and the adversary.

The protocol proceeds as follows:

Protocol Exponentiate

1. Initially, each player sends “start” to FDeal, and stores the description of G
and shares of s received from FDeal.

2. On input a ∈ G, C broadcasts a to the servers.
3. Each Pj sends to C ai = asi for each component si of the share held by Pj .
4. Since Γ̄ is Q2, C is guaranteed to receive valid contributions from a qualified

set of players A ∈ Γ . C uses the entries in the reconstruction vector for A λ =
(λ1, . . . , λdA)T together with the contributions (a1 = as1 , . . . , adA = asdA) to
construct

as = ΠdA

i=1a
λi

i .

Theorem 1. The Exponentiate protocol when given access to FDeal and a broad-
cast channel from C to the servers, securely implements FDeal−and−Exp. The
adversary is assumed to non-adaptively corrupt any set in Q2 structure Γ̄ in a
semi-honest fashion.

86 I. Damg̊ard and R. Thorbek

Proof. Security is proved by constructing an ideal model adversary which works
in a setting where it may communicate with ideal functionality FDeal−and−Exp

and must simulate everything the real life adversary Adv would see in a real
attack. This works by running internally a copy of Adv and proceeds as follows:

1. Let B be the set of servers corrupted by Adv. Having received the description
of G from FDeal−and−Exp, compute a sharing of 0 to simulate the action of
FDeal, i.e., the distribution vector is ρ = (0, ρ2, . . . , ρe)T and the shares are

s = (s1, . . . , sd)T = M · ρ (2)

Give to the Adv the shares from (2) belonging to the servers in B.
2. Upon receiving “Exponentiate a” and “Result as” from FDeal−and−Exp, we

must simulate the contributions that honest players send to C. To this end,
note that if we had used ρ′ = ρ + sκB as distribution vector in (2), then the
corrupted servers in B would get the same shares, but the secret value would
be s instead of 0.

Now, let R be a row in the distribution matrix M belonging to honest
server Pj , say the i’th row, and let si be the share unit we computed from
this row in (2). Had we used ρ′ instead of ρ, then the share unit coming from
R would have been s′i = (ρ+sκB) ·R = si +sκB ·R instead. The observation
is now that because we know as and si, we can compute as′

i even though we
do not know s. Concretely, we simulate the contribution from Pj by

asi(as)κB ·R = asi+sκB ·R

= as′
i

Give all simulated contributions to Adv.

We now need to prove that no environment can distinguish between the real
protocol and the simulated game. The is straightforward: First, the shares com-
puted in step 1 of the simulation are statistically indistinguishable from the
shares computed by FDeal by privacy of the LISS scheme and since B in un-
qualified. Second, in both the simulated game and real protocol, honest players
output always the correct value as, by definition of FDeal−and−Exp, respectively
correctness of the LISS scheme. Finally, given a, as, the simulated and real con-
tributions from honest players are statistically indistinguishable, since the vector
we use for the simulated sharing is ρ′ = ρ + sκB which is statistically close to
a uniformly chosen sharing vector for s. �	

4.1 Active Adversaries and Distributed RSA

If we are not guaranteed that corrupted players follow the protocol, we can
expand the Exponentiate protocol in a natural way by having players prove
in zero-knowledge that their contributions are correct. Given any appropriate
scheme for proving correctness of contributions, a corrupt player must either give
correct information or be disqualified. Since this is equivalent to the semihonest

Linear Integer Secret Sharing and Distributed Exponentiation 87

model, security essentially follows from security of the zero-knowledge proofs
and the proof we already gave above.

Depending on the structure of the group and the assumptions we are willing
to make, there are many different ways to do the zero-knowledge proofs, see for
instance [21, 19, 22, 7, 11, 10, 12, 16]. Most of the techniques can be made non-
interactive in the random oracle model, or are already non-interactive given
some set-up assumption. If all else fails, generic zero-knowledge techniques can
be used[17].

However, a detailed account of all possibilities is out of scope of this paper. We
concentrate instead on distributed RSA as a particularly interesting special case.
The functionality for initial set-up and the functionality we want to implement
are modified from the general case as follows:

Functionality FRSA−Deal

1. Upon receiving “start” from all honest players, choose the modulus n to use,
secret and public exponents s, e and a random square v in G = Z∗

N .
2. Generate the distribution vector ρ = (s, ρ2, . . . , ρe)T and calculate the shares

from
M · ρ = (s1, . . . , sd)T ,

finally distributes the shares, such that si is sent privately to Pψ(i) for 1 ≤
i ≤ d. Finally, send N, e, v and vi = vsi mod N for every share unit si to all
players and the adversary .

Functionality FRSA

1. Upon receiving “start” from all honest players, choose the modulus N to use,
secret and public exponents s, e. Send N, e to all players and the adversary

2. At any later time, upon receiving “Exponentiate a” for a ∈ Z∗
N from the

client, send “Exponentiate a”, to all players and “Exponentiate a, as mod N”
to the adversary. Two rounds later, send “Result as mod N” to all players.

The protocol we will use is the Exponentiate protocol from the previous sec-
tion, with the extension that C will check each contribution ai = asi mod N
from server Pj . We want to show that a sufficient check can be done in constant-
round without using random oracles to ensure soundness and zero-knowledge,
and regardless of which modulus and public exponent is used. To do this, we
generalize the results from [10]. Concretely, we use the following well known
protocol, which we will repeat in parallel �2 + 2 log2 n� times:

1. Pj chooses a random k + max- bit number r and sends to C u1 = ar mod
N,u2 = vr mod N . Here, max is the maximal bitlength of any si that can
occur.

2. C sends a random bit b to Pj .
3. Pj sends z = r + bsi, and C checks that az = u1a

b
i mod N, vz = u2v

b
i mod N .

88 I. Damg̊ard and R. Thorbek

The following Lemma is an easy consequence of corresponding results in [10]:

Lemma 2. The above protocol is statistical zero-knowledge. Furthermore, if ai �=
as mod N then a polynomial time prover who can make C accept with probability
more than 1/(4n2) can compute efficiently a multiple of the order of v.

Note that the last result in the lemma implies that if an adversary can cheat
the protocol on input a random v, he can factor N by a standard reduction and
hence also break RSA.

Even though the soundness error for this protocol is not negligible, we can
show that checking the contributions in this way is sufficient to allow C to
reconstruct the correct result efficiently. This is done by a generalization of the
results from [10]. There it was observed that as long as the expected number of
accepted incorrect contributions is small enough, C can reconstruct efficiently
by searching exhaustively for a set of correct contribution. In [10], this was done
for the case of a threshold access structure. Here we have to be more careful
with the search algorithm and the analysis because we have no lower bound on
the number of honest players for a general access structure.

Algorithm Reconstruct

1. On input public key N, e, a ∈ Z∗
N and a set of contributions to finding as mod

N , execute the protocol above with each server to check the correctness of
each contribution.

2. Let the set of accepted contributions be Acc. Do the following for j =
0, ..., |Acc|:

3. For each subset B ⊂ Acc of size |Acc|−j, run the reconstruction algorithm from
the Exponentiate protocol on the contributions in B, attempting to compute
as mod N . Let z be the result. If ze = a mod N , output z and stop.

Lemma 3. The expected number of subsets considered by Reconstruct is at most 2.

Proof. Let m be the number of incorrect contributions submitted by corrupt
players. Clearly, the worst case is if all corrupt players submit bad contributions,
so we may assume that the number of honest players is n − m. Let p be the
probability that an incorrect contribution is accepted. Then

pi = P r(i incorrect shares accepted) = pi(1 − p)i

(
m

i

)
≤ pimi

Given that i incorrect shares are accepted, we have n−m+ i contributions, and
we finish at the latest when we have searched all subsets of size n − m. This
means checking a total of(

n−m + i

n−m + i

)
+
(

n −m + i

n−m + i− 1

)
+ ...+

(
n−m + i

n−m

)
≤ (i + 1)

(
n −m + i

n −m

)
= (i + 1)

(
n −m + i

i

)
≤ (i + 1)(n −m + i)i

subsets. It follows that the expected number of subsets we check is at most

Linear Integer Secret Sharing and Distributed Exponentiation 89

m∑
i=0

pimi · (i + 1)(n−m + i)i ≤
m∑

i=0

pimi2ini ≤
m∑

i=0

(2pn2)i ≤
m∑

i=0

2−i ≤ 2

using the above and the fact that p ≤ 1/(4n2). �	

A final observation is that by choosing z at random in Z∗
N , and setting v =

z2e mod N , a simulator can easily create a random square v for which vs mod
N is known (namely z2 mod N). It is then easy to simulate the information
FRSA−Deal sends to corrupt players. Using this, the proof of Theorem 1, Lemma 3
and Lemma 2, it is straightforward to show:

Theorem 2. Under the RSA assumption, the Exponentiate protocol expanded
with the above Reconstruction algorithm and given access to the FRSA−deal func-
tionality implements the FRSA functionality. The adversary may non-adaptively
and actively corrupt any set in Q2 structure Γ̄ .

We believe that the interest of this result is that it buys us full generality in access
structure and choice of keys and no dependency on extra set-up or complexity
assumptions. Since the number of servers n can be expected to be quite small
in practice, the overhead compared to more standard solutions is moderate: a
factor of log n in complexity and potentially 2 extra moves. However, in practice,
faults are usually rare, so if the the client attempts to get the result from all
contributions first and only asks to have the proofs completed if this fails, then
the scheme will be non-interactive “almost always”.

Acknowledgements

Thomas Mølhave, Peter Bro Miltersen, Gudmund Skovbjerg Frandsen, and the
anonymous reviewers from the committee for helpful comments.

References

1. Josh Cohen Benaloh, Jerry Leichter: Generalized Secret Sharing and Monotone
Functions. Proc. of CRYPTO 1988: 27-35

2. R. B. Boppana: Amplification of Probabilistic Boolean Formulas. Advances in Com-
puting Research 5: 27-45 (1989)

3. Jaikumar Radhakrishnan: Better Lower Bounds for Monotone Threshold Formulas.
J. Comput. Syst. Sci. 54(2): 221-226 (1997)

4. Ran Canetti: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, FOCS 2001: 136-145.

5. Benny Chor and Eyal Kushilevitz: Secret Sharing Over Infinite Domains., J. Cryp-
tology 6(2): 87-95 (1993)

6. Benny Chor, Mihály Geréb-Graus and Eyal Kushilevitz Private Computations over
the Integers., SIAM J. Comput. 24(2): 376-386 (1995)

7. Cramer and Damg̊ard: Secret-Key Zero-Knowlegde and Non-interactive Verifiable
Exponentiation, Proc. of TCC 04, Springer Verlag LNCS.

90 I. Damg̊ard and R. Thorbek

8. Ronald Cramer, Serge Fehr: Optimal Black-Box Secret Sharing over Arbitrary
Abelian Groups. Proc. of CRYPTO 2002: 272-287

9. Cramer, Fehr and Stam: Black-Box Secret Sharing from Primitve Sets in Algebraic
Number Fields, Proc. of Crypto 05, Springer Verlag LNCS.

10. Ivan Damg̊ard, Kasper Dupont: Efficient Threshold RSA Signatures with General
Moduli and No Extra Assumptions. Proc. of Public Key Cryptography 2005: 346-
361

11. Damg̊ard, Fazio and Nicolosi: Non-Interactive Zero-Knowledge Proofs from Homo-
morphic Encryption Proc. of TCC 06, Springer Verlag LNCS.

12. Ivan Damg̊ard, Maciej Koprowski: Practical Threshold RSA Signatures without a
Trusted Dealer. Proc. of EUROCRYPT 2001: 152-165

13. Yvo Desmedt, Yair Frankel: Perfect Homomorphic Zero-Knowledge Threshold
Schemes over any Finite Abelian Group. SIAM J. Discrete Math. 7(4): 667-679
(1994)

14. Ivan Damg̊ard and Rune Thorbek: Linear Integer Secret Sharing and Distributed
Exponentiation (full version), the Eprint archive, www.iacr.org

15. Yair Frankel, Peter Gemmell, Philip D. MacKenzie, Moti Yung: Optimal Resilience
Proactive Public-Key Cryptosystems. FOCS 1997: 384-393

16. Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk: Robust and
Efficient Sharing of RSA Functions. J. Cryptology 2000 13(2): 273-300

17. Oded Goldreich, Silvio Micali, Avi Wigderson: Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems J. ACM
38(3): 691-729 (1991).

18. Tal Rabin: A Simplified Approach to Threshold and Proactive RSA. Proc. of
CRYPTO 1998: 89-104

19. Claus-Peter Schnorr: Efficient Signature Generation by Smart Cards. J. Cryptology
4(3): 161-174 (1991)

20. Adi Shamir: How to Share a Secret. Commun. ACM 22(11): 612-613 (1979)
21. Alfredo De Santis, Yvo Desmedt, Yair Frankel, Moti Yung: How to share a function

securely. STOC 1994: 522-533
22. Victor Shoup: Practical Threshold Signatures. Proc. of EUROCRYPT 2000: 207-

220
23. Leslie G. Valiant: Short Monotone Formulae for the Majority Function. J. Algo-

rithms 5(3): 363-366 (1984)

Encoding-Free ElGamal Encryption

Without Random Oracles

Benôıt Chevallier-Mames1,2, Pascal Paillier3, and David Pointcheval2

1 Gemplus, Security Technology Department,
La Vigie, Avenue du Jujubier, ZI Athélia IV,

F-13705 La Ciotat Cedex, France
benoit.chevallier-mames@gemplus.com

2 École Normale Supérieure,
Département d’Informatique, 45 rue d’Ulm,

F-75230 Paris 05, France
david.pointcheval@ens.fr

3 Gemplus, Security Technology Department,
34 rue Guynemer,

F-92447 Issy-les-Moulineaux, France
pascal.paillier@gemplus.com

Abstract. ElGamal encryption is the most extensively used alterna-
tive to RSA. Easily adaptable to many kinds of cryptographic groups,
ElGamal encryption enjoys homomorphic properties while remaining se-
mantically secure providing that the DDH assumption holds on the cho-
sen group. Its practical use, unfortunately, is intricate: plaintexts have
to be encoded into group elements before encryption, thereby requir-
ing awkward and ad hoc conversions which strongly limit the number
of plaintext bits or may partially destroy homomorphicity. Getting rid
of the group encoding (e.g., with a hash function) is known to ruin the
standard model security of the system.

This paper introduces a new alternative to group encodings and hash
functions which remains fully compatible with standard model security
properties. Partially homomorphic in customizable ways, our encryptions
are comparable to plain ElGamal in efficiency, and boost the encryption
ratio from about 13 for classical parameters to the optimal value of 2.

Keywords: Cryptography, ElGamal encryption, Diffie-Hellman, Resid-
uosity classes, Group encodings.

1 Introduction

Since the discovery of public-key cryptography [7], very few practical cryptosys-
tems have been suggested that sustain a strong evidence of security in the stan-
dard model.

Factoring vs. Discrete-Log Encryption Schemes. In brief, there
exist two main families of provably secure cryptosystems. The first family re-
lates to integer factoring (Rabin [21], RSA [22], Naccache-Stern [16], Okamoto-
Uchiyama [18], Paillier [19]). The others are based on the discrete logarithm

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 91–104, 2006.
c© International Association for Cryptologic Research 2006

92 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

or the Diffie-Hellman problems. Within this family, ElGamal encryption [8] is
certainly the most extensively used for cryptographic applications.

Cryptosystems belonging to the first family support the encryption of mes-
sages without prior formatting in the sense that any fixed-size integer is a proper
input of the encryption algorithm. However, all known discrete-log-based en-
cryption schemes which feature standard-model security such as Cramer-Shoup
encryption [5], are restricted to encrypt group elements.

This drawback, often overlooked, seems inherent to the nature of these cryp-
tosystems. Variants and alternate designs either drastically degrade bandwidth
and efficiency, or imply extra (and possibly questionable) assumptions in their
security analysis.

Historically, the first designs suggested to work in the largest possible sub-
group over which the encryption takes place. By virtue of the fact that invok-
ing the DDH assumption requires to use a prime order subgroup (or at least a
subgroup which order does not have small factors), the subgroup of quadratic
residues in Z∗

p appears as the best choice in this respect. However, one then
has to perform operations in the group of order q = (p − 1)/2 which implies
exponentiations with large exponents.

A standard lesser evil consists in applying a hash function to the Diffie-
Hellman session key before masking the plaintext. The price to pay then amounts
to making stronger assumptions, such as the Hash Diffie-Hellman assumption
[1, 12] or the random oracle model [2].

Our Contributions. This paper introduces a novel encryption technique that
does not require message encoding before encryption and enjoys strong security
against chosen-plaintext attacks without any extra assumption i.e., the security
of our cryptosystems stands in the standard model. One-wayness and indistin-
guishability rely on the use of new specifically introduced integer-theoretic prob-
lems which we call the (computational/decision) Class Diffie-Hellman problems
(CCDH, resp. DCDH).

Most interestingly, we provide a proof that CCDH is in fact equivalent to CDH,
meaning that the one-wayness of our schemes is identical to the one of ElGamal
encryption while providing an optimal encryption ratio of 2 instead of 13. The
study of DCDH, however, remains a challenging open problem.

In terms of performance, the encryption and decryption procedures are equiv-
alent to respectively 6 and 5 exponentiations in a subgroup of prime order q with
e.g., log q = 160. No group encoding is required before encryption. Finally the
ciphertext size is identical to an ElGamal ciphertext, although the encryption
ratio reaches its optimum level: one may encrypt 1024-bit strings into a 2048-bit
ciphertext while still relying on a 160-bit subgroup.

Our cryptosystems also provide a weak form of additive or multiplicative
homomorphic property, in the sense that one can add a constant or multiply by
a constant an encrypted value. However, one cannot re-randomize encryptions.
This amounts to say that if two ciphertexts were created using this property
(with the same random coins), every one may recover the difference or the ratio
between the plaintexts, without any private material.

Encoding-Free ElGamal Encryption Without Random Oracles 93

Our encryption schemes are based on the mathematical properties of integers
modulo p2 where p is a prime number. Interestingly, one would note that ho-
momorphicity has often been achieved by relying on the properties of special
moduli: Okamoto and Uchiyama [18] use properties of integers modulo n = p2q,
while Paillier [19] and Bresson, Catalano and Pointcheval [3] rather employ mod-
uli of the form n2. Damg̊ard and Jurik [6] use operations modulo ns for s > 2.
In all of these schemes, however, various forms of RSA moduli constitute ba-
sic scheme parameters and the trapdoor technique relates to factoring rather
than to discrete-log problems. Our work, by opposition, makes exclusive use of
prime-order groups.

Outline of the paper. Our work is divided as follows. Section 2 reviews
standard definitions and security notions for public-key encryption. Section 3
briefly recalls ElGamal encryption and variants thereof. In Section 4, we intro-
duce the Class Diffie-Hellman problems, then proceed to define and comment
on our encryption schemes. Their security is further discussed in Section 5. We
finally provide extensions to Zpk in Section 6.

2 Preliminaries

2.1 Public-Key Encryption

We identify a public-key encryption scheme S to a tuple of probabilistic algo-
rithms S = (K, E ,D) defined as follows:

Key Generation. Given a security parameter k, K(1k) produces a pair (pk, sk)
of public and private keys.

Encryption. Given a message m and a public key pk, Epk(m) produces a ci-
phertext c. If the procedure is probabilistic, we write c = Epk(m; r) where r
denotes the randomness used by E .

Decryption. Given a ciphertext c and a private key sk, Dsk(c) returns a plain-
text m or possibly ⊥ if the ciphertexts is invalid.

2.2 Security Notions for Encryption Schemes

One-Wayness. A most important security notion that one would expect from
an encryption scheme to fulfil is the property of one-wayness (OW): an attacker
should not be able to recover the plaintext matching a given ciphertext. We
capture this notion more formally by saying that for any adversary A, succeed-
ing in inverting the effects of E on a ciphertext c should occur with negligible
probability. A is said to (k, ε, τ)-break OW when

Succow
S (A) = Pr

m,r
[(pk, sk) ← K(1k) : A(pk, Epk(m; r)) = m] ≥ ε ,

94 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

where the probability is taken over the random coins of the experiment and
the ones of the adversary, and A halts after τ elementary steps. An encryption
scheme is said to be one-way if no probabilistic algorithm (k, ε, τ)-breaks OW
for τ ≤ poly (k) and ε ≥ 1/poly (k).

Semantic Security. The notion of semantic security (IND) [13], a.k.a., in-
distinguishability of encryptions captures a strong notion of privacy. Here, the
attacker should not learn any information whatsoever about a plaintext given
its encryption. The adversary A = (A1,A2) is said to (k, ε, τ)-break IND when

Advind
S (A) = 2 × Pr

b,r

[
(pk, sk) ← K(1k), (m0, m1, s) ← A1(pk),
c = Epk(mb; r) : A2(m0, m1, s, c) = b

]
− 1 ≥ ε,

where again the probability is taken over the random coins of the experiment
as well as the ones the adversary. A must run in at most τ steps and it is
imposed that |m0| = |m1|. An encryption scheme is said to be semantically
secure or indistinguishable if no probabilistic algorithm can (k, ε, τ)-break IND
for τ ≤ poly (k) and ε ≥ 1/poly (k).

2.3 Computational Assumptions

We now briefly recall the definition of the discrete-log and related problems
needed for the sake of this work. In what follows, G denotes an abelian group
(denoted multiplicatively) of prime order q. We also consider a generator g of
G = 〈g〉.

Definition 1 (Discrete Logarithm – DL). Given gx ∈ G where x ← Zq,
compute x.

Definition 2 (Computational Diffie-Hellman – CDH). Given gx ∈ G and
gy ∈ G for x, y ← Zq, compute gxy ∈ G.

Definition 3 (Decision Diffie-Hellman – DDH). Let us consider the two
distributions D = (gx, gy, gxy) and R = (gx, gx, gz) for randomly distributed
x, y, z ← Zq. Distinguish D from R.

It is easily seen that DDH ⇐ CDH ⇐ DL where ⇐ denotes polynomial reduc-
tion between computational problems. In most cryptographic applications, the
structure of the group G is chosen in such a way that these three computational
problems seem intractable. A typical example is to choose G ⊆ F∗

p where q divides
(p − 1) where classically, p is a 1024-bit prime and q a 160-bit prime. Another
widely used family of groups is elliptic curves over large prime fields [15, 14].

3 The ElGamal Cryptosystem

ElGamal encryption was introduced by T. ElGamal in 1985 [8]. The algebraic
framework requires a cryptographic group G of order q given with some
generator g.

Encoding-Free ElGamal Encryption Without Random Oracles 95

One generates a public-private key pair by randomly selecting x ← Zq and
computing y = gx. The public key is then y while the private key is x. In order
to encrypt a message m, one randomly selects r ← Zq and computes u = gr and
v = yrm. The ciphertext is c = (u, v). Using the private key x, the ciphertext
c = (u, v) can be decrypted as m = v · u−x.

The key point here resides in the definition of the message space M. As
defined originally in [8], the group G was chosen to be the set of integers modulo
a large prime p (i.e., G = Zp), q was set to p − 1 and M was identified to Z∗

p.
Unfortunately, using this definition, the cryptosystem is not indistinguishable:
given a ciphertext c = (u, v), an attacker can well decide with non negligible
probability whether c encrypts a given message m0. To this end, the attacker
computes v′ = v · m−1

0 , and then computes a = u(p−1)/2 and b = v′(p−1)/2. If
only one of the elements a or b is equal to 1, the adversary knows that c does
not encrypt m0. This simple attack actually checks the parity of the logarithms
of u and v′ with respect to g and y respectively: if c = (u, v) encrypts m0, it is
needed that these parities be identical.

This attack against indistinguishability shows that the order of the group G
must be relatively prime to any small integer (the attack described just above
can be extended trivially for any small divisor of q), and most preferably, the
order of group G must be chosen to be prime.

Description. Unfortunately, the above constraint translates into a restriction
on the message space M: it has to be embedded into the group G. Hence, before
encryption takes place, the message must be encoded into a group element, and
this group encoding must be efficiently invertible in order to allow the origi-
nal message to be recovered during the decryption process. Such an encoding
may be time-consuming, and may also partially or totally destroy the inherent
homomorphic property of the system. Also, using a group encoding remains in-
compatible with the optimization which consists in working in a small subgroup
of Z∗

p of prime order q where q is a 160-bit prime, a setting in which group
exponentiations are much faster.

Set up: Let p be an �p-bit prime and q an �q-bit prime so that q divides (p−1).
Let G be the subgroup of Z∗

p of order q, and g be a generator of G. Let Ω
be a one-to-one encoding map from Zq onto G.

Key generation: The private key is x ← Zq. The corresponding public key is
y = gx.

Encryption: To encrypt a message m ∈ Zq, one encodes m by computing
ω = Ω(m), randomly selects r ← Zq and computes (u, v) = (gr, yrω). The
ciphertext is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one computes ω = v · u−x and
recovers the original plaintext m = Ω−1(ω).

This cryptosystem is known to be one-way under the CDH assumption, and
indistinguishability holds under the DDH assumption. These security notions are
reached in the context of chosen-plaintext attacks, in the standard model.

96 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

3.1 The Hash-ElGamal Cryptosystem

In order to overcome the issue of group encoding, a hash variant of ElGamal
encryption was suggested.

Set up: Let p be an �p-bit prime and q an �q-bit prime so that q divides (p−1).
Let G be the subgroup of order q of Z∗

p, and g be a generator of G. Let
H : G → {0, 1}�m be a hash function.

Key generation: The private key is again x ← Zq. The corresponding public
key is y = gx.

Encryption: To encrypt a message m ∈ {0, 1}�m, one randomly selects r ← Zq

and computes (u, v) = (gr,H(yr) ⊕m). The ciphertext is c = (u, v).
Decryption: To decrypt a ciphertext c = (u, v), one computes m = H(ux)⊕ v.

This cryptosystem features one-wayness and indistinguishability under chosen
plaintext attacks under the sole CDH assumption. The security proof, however,
stands in the random oracle model. Alternatively, under the DDH assumption,
one can apply a randomness extractor in place of the random oracle, in order to
generate a truly random mask. But this either requires large groups, or drasti-
cally reduces the size of the mask [4].

4 Encoding-Free ElGamal Encryption

We now proceed to describe our new technique for encoding-free ElGamal en-
cryption. Our cryptosystems enjoy performances similar to plain ElGamal but
do not require group encoding, nor randomness extractors. Furthermore, their
security holds in the standard model under new intractability assumptions that
we introduce below. We start by providing definitions as well as the mathemat-
ical facts underlying our proposal.

4.1 The Class Function

Let p and q be prime numbers such that q | p − 1. Let g be an integer of order
pq modulo p2 and G = 〈g〉 the group formed by all elements of order pq modulo
p2. Hence Gp = 〈g mod p〉 is the subgroup of order q in Z∗

p. By the Chinese
Remainder Theorem, there is a canonical mapping between Zp × Zq and Zpq .
For any x ∈ Zp and y ∈ Zq, 〈x, y〉 stands for the unique integer modulo pq such
that 〈x, y〉 = x mod p and 〈x, y〉 = y mod q.

Definition 4 (Class of an element of G). Each and every element w of G
can be written as w = g〈x, y〉 mod p2 for a unique x ∈ Zp and a unique y ∈ Zq.
The integer x = [[w]] is said to be the class of w with respect to g.

It is easily seen that if w = g〈x, y〉 mod p2, then w = gy mod p. In other words, y
is the discrete log of w mod p with respect to g mod p. This means that, unless
extracting discrete logs over Gp is easy, y cannot be easily computed from w. It
appears, however, that computing the class of elements of G can be done publicly
and efficiently.

Encoding-Free ElGamal Encryption Without Random Oracles 97

Lemma 1. Define over G the function L(w) = (wq −1 mod p2)/p. The class of
w = g〈x, y〉 mod p2 can be computed as x = L(w)L(g)−1 mod p.

This property is well-known and we refer the reader to [18, 19] for a proper proof.
Now let a be an integer modulo q and consider w = ga mod p. Since w can also be
viewed as an element of G, there exist integers x, y such that w = g〈x, y〉 mod p2.
However, g〈x, y〉 = gy mod p and therefore y = a by unicity of y. It appears that
the value of x can be recovered as a function of a:

Lemma 2. Let us define

Upper(ga) =
ga mod p2 − ga mod p

p

and

Δ(ga) =
q

L(g)
· Upper(ga)

ga
mod p .

Then
[[ga mod p]] = a−Δ(ga) mod p .

Proof. Noting ga = A + p · Ā mod p2 for A, Ā ∈ Zp with A �= 0, and using the
identity 1 + p · L(g) = g〈q, 0〉 mod p2, we have

ga = A

(
1 + p · Ā

A

)
= A (1 + p)

Ā
A = A · g〈

q
L(g)

Ā
A , 0〉 mod p2 .

Taking the class of the left and right terms, we get a · [[g]] = [[A]] +Δ(ga) which
leads to the above using the trivial fact that [[g]] = 1. �	

Lemma 3. The mapping a → [[ga mod p]] is random self-reducible.

Proof. Assume we want [[A]] for some given A = ga mod p. We make use of the
fact that for any r ∈ Zq, we have

[[Ar mod p]] = [[Ar mod p2]]−Δ(Ar) = r · [[A]] −Δ(Ar) mod p .

If r is drawn uniformly at random from Z∗
q , Ar mod p is a random element of

Gp. Knowing [[Ar mod p]] and r, [[A]] is easily recovered as

[[A]] = r−1 ([[Ar mod p]] +Δ(Ar)) mod p . �	

4.2 The Class Diffie-Hellman Problems

We now turn to defining the computational problems over which we base the
encryption schemes suggested in the forthcoming sections.

Definition 5 (Computational Class Diffie-Hellman). Let Gp = 〈g mod
p〉 be defined as above. Given group elements ga mod p and gb mod p, compute
[[gab mod p]].

98 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

Definition 6 (Decision Class Diffie-Hellman). Distinguish the two distri-
butions D = (ga mod p, gb mod p, [[gab mod p]]) and R = (ga mod p, gb mod p, z)
for a, b ← Zq and z ← Zp.

We denote these problems CCDH and DCDH throughout the paper. As we shall
now see, CCDH is in fact closely related to CDH.

Theorem 1. CCDH and CDH are equivalent.

Proof. [CCDH ⇐ CDH]. Assume we are given a probabilistic algorithm A such
that A(ga mod p, gb mod p) outputs gab mod p with probability ε and time
bound τ , the success probability being taken over the random variables of A
and the random selections a, b ← Zq. Given A, B ← Gp, we run A(A, B) to
get DH(A, B) and deduce [[DH(A, B)]], thereby succeeding in solving CCDH with
probability ε and no more than τ + poly (log p) steps.

[CDH ⇐ CCDH]. Assume there exists a probabilistic algorithm A which solves
CCDH. By virtue of Lemma 3, we may assume that the input distribution of
A need not be uniform and that the success probability of A is overwhelming.
We build a reduction algorithm B that computes C = DH(A, B) for arbitrary
elements A, B ← Gp. B first runs A(A, B) to get [[C]]. B now sets A′ = Ag mod p
and runs A again to get [[C′]] = A(A′, B) where C′ = DH(A′, B) = BC mod p.
We must have

[[C′]] = [[BC mod p]] = [[BC mod p2]] −Δ(BC) = [[B]] + [[C]] −Δ(BC)

wherefrom Δ(BC) = [[B]] + [[C]] − [[C′]] mod p. Since

BC = C′ + p · Upper(BC) = C′
(

1 + p · L(g)
q

·Δ(BC)
)

mod p2 ,

B now remains with the problem of finding a solution to the modular equation

C

C′ = B−1

(
1 + p · L(g)

q
·
(
[[B]] + [[C]] − [[C′]]

))
mod p2 (1)

where the unknowns are C,C′ ∈ Zp. Setting the right-hand term to μ < p2,
B applies the extended Euclidean algorithm to μ and p2 in order to find small
solutions C,C′ < p satisfying C/C′ = μ mod p2. The validity of C is easily
checked by making sure that C′C−1 mod p is equal to B. This stage finishes
with probability one in time bounded by log3 p resulting in that C = DH(A, B)
is found with no more than two calls to A and polynomial extra time. �	

So far, the study of DCDH remains a challenging open question. In particu-
lar, the relations between DCDH and DDH are somewhat unclear. Although
we do not provide evidence of that fact, we suspect these two problems to be
extremely closely connected. We will make the assumption that DCDH is in-
tractable throughout the rest of this paper.

Encoding-Free ElGamal Encryption Without Random Oracles 99

4.3 Encoding-Free Additive Encryption

As discussed above, our goal is to render ElGamal encryption truly practical by
getting rid of intricate group encoding mechanisms while maintaining a security
level in the standard model (in opposition to Hash-ElGamal encryption for in-
stance). The basic idea, instead of embedding the message into a group element,
consists in converting the session key output by the Diffie-Hellman exchange1

into an integer modulo p using the class function.

Set up: Let p an �p-bit prime and q an �q-bit prime divisor of p − 1. Let g be
a generator of the subgroup Gp of order q of Z∗

p.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

Encryption: To encrypt a message m ∈ Zp, one picks a random r ∈ Zq and
computes u = gr mod p and v = [[yr mod p]] + m mod p. The ciphertext is
c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes m =
v − [[ux mod p]] mod p.

4.4 Encoding-Free Multiplicative Encryption

Since the message and the class of gxy mod p are both integers modulo p, en-
cryption may also be performed using modular multiplication instead of modular
addition.

Set up: Let p an �p-bit prime and q an �q-bit prime divisor of p − 1. Let g be
a generator of the subgroup Gp of order q of Z∗

p.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

Encryption: To encrypt a message m ∈ Z∗
p, one picks a random r ∈ Zq and

computes u = gr mod p and v = [[yr mod p]] · m mod p. The ciphertext is
c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes m =
v[[ux mod p]]−1 mod p.

4.5 Properties of Our Encryption Schemes

No conversion. Our encryption schemes do not require any conversion: the
message space is really the ring Zp (or the multiplicative subgroup Z∗

p in the
multiplicative version.) Therefore, any string of bitlength lesser than k, where
p > 2k, can be encrypted directly. This is a strong property since we may
have q much smaller than p without impact on the encryption and decryption
procedures.
1 ElGamal encryption can indeed be viewed as a Diffie-Hellman key exchange where

the publication of the public-key y plays the role of the first pass.

100 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

Efficiency. It is easily seen that ciphertexts have a similar size as with ElGa-
mal encryption. The bandwidth is exactly 1

2 (i.e., the encryption ratio is exactly
2), by opposition to ElGamal encryption for which the bandwidth is q

2p . We
recall that for p = 1024 and q = 160, the bandwidth of ElGamal is close to 1

13).
From the viewpoint of computational performances, it appears that in ad-

dition to the two exponentiations that are inherent to ElGamal encryption, we
require an additional exponentiation in Zp2 with a �q-bit exponent. This amounts
to four times the execution time of the same exponentiation in Zp. Totaling ev-
erything, we need 6 exponentiations vs. 2 exponentiations in ElGamal. However,
no encoding is needed, which are basically done with exponentiations.

When decrypting an ElGamal encryption, an exponentiation of �q bits in Zp

is required, as well as a group decoding. In our schemes, however, we require an
exponentiation in Zp2 with an exponent of size �q and another exponentiation
with an exponent of size �q. Finally, we require 5 exponentiations to be compared
to the single exponentiation needed in ElGamal. Once again, no inverse of the
encoding is needed.

Multiplicative or Additive Homomorphism. Last but not least, our sche-
mes feature a partial homomorphic property over the ring of integers modulo p.
We mean for instance that one could add some constant to an encrypted plaintext
without needing the private key. Although these properties do forbid
resistance against chosen-ciphertext attacks, these are perceived as most de-
sirable in many cryptographic applications such as electronic voting, and we
expect to see applications of our work in this regard. However, our schemes do
not allow to re-randomize a ciphertext per se.

5 Security Analysis

We now proceed to assessing the security of our schemes. Obviously, one cannot
prevent chosen-ciphertext attacks due to the partial malleability described above.
However, generic conversions do exist to convert CPA-secure schemes into CCA-
secure schemes (in the random oracle model)[9, 10, 11, 20, 17] when the context
of use demands CCA security.

One-Wayness. Focusing on the additive version of our encoding-free encryption
scheme, we state:

Theorem 2. Let A be an adversary which can invert our cryptosystem with
success probability ε under a chosen-plaintext attack within time τ . Then the
Computational Class Diffie-Hellman problem can be solved with success proba-
bility ε within time similar to τ .

Proof. Given a Computational Class Diffie-Hellman instance (g, y = gx mod
p, w = gs mod p), our goal is to compute z = [[gxs mod p]]. To this aim, we use
the OW − CPA attacker A against our scheme, where g is the public generator,
and set the public key to y. We submit to A the ciphertext (u, v) = (w, a)

Encoding-Free ElGamal Encryption Without Random Oracles 101

for a randomly chosen a ∈ Zp. This is a truly random ciphertext of a random
message, for which we have set r = s, and so A succeeds with probability ε to
find the corresponding plaintext m. If A succeeds, we thus learn [[gxs mod p]],
our expected result z = a−m mod p. �	

It is easily seen that the same theorem holds for the multiplicative encryption
scheme. One would simply note that the message space in this latter version is
Z∗

p, and not Zp, as one needs to compute the inverse m−1 mod p to deduce z
from a and m.

Indistinguishability. About indistinguishability, we state a similar result:

Theorem 3. Let A be an adversary breaking the indistinguishability of our cryp-
tosystem with advantage ε under a chosen-plaintext attack within time τ . Then
the Decisional Class Diffie-Hellman problem can be solved with advantage ε/2
within time similar to τ .

Proof. Assume we are given an instance (g, y = gx mod p, w = gs mod p, z) of
the Decisional Class Diffie-Hellman problem in Zp, and want to decide whether
z is randomly selected in Zp or whether z = [[gxs mod p]].

As above, we make use an IND − CPA attacker A against our scheme, where
g is the public generator, and set the public key to y. We let the adversary
to choose two messages m0 and m1, pick a random bit b, and encrypt mb as
(u, v) = (w, z + mb mod p). Finally, we send this ciphertext to the A as the
challenge ciphertext.

Clearly, if z = [[gxs mod p]], c is a valid ciphertext of mb, where we set r = s,
and consequently the attacker A can guess the value b with advantage ε. On the
contrary, if z is a random element of Zp, z′ = z + mb mod p is also a random
element of Zp, thereby making the ciphertext independent from the message mb.
The advantage of A is then necessarily zero.

Hence, to solve our decisional problem, we reply True if the guess of A is
correct, otherwise a random bit is replied. Our reduction solves DCDH with
advantage at least ε/2. �	

6 Generalization to Zpk

As the scheme suggested by Damg̊ard-Jurik [6] is a generalization of Paillier
encryption, we may generalize our systems using Zpk for any integer k > 2.
For any integer k > 2, we denote naturally Lk the function defined by X �→
Xq−1 mod pk

p , and let the class of w as [[w]]k = Lk(w)Lk(g)−1 mod pk−1. Then
the generalization of our technique to Zpk is as follows:

Set up: Let p an �p-bit prime and q an �q-bit prime divisor of (p− 1). Let g be
a generator of the subgroup Gp of order q of Zp.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

102 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

Encryption: To encrypt a message m ∈ Zpk−1 , one picks a random r ∈ Zq and
computes u = gr mod p and v = [[yr mod p]]k +m mod pk−1. The ciphertext
is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes

m = v − [[ux mod p]]k mod pk−1.

We may equally well use modular multiplication instead of addition of course.
In these cryptosystems, the encryption bandwidth is equal to k−1

k , and therefore
can be made nearly optimal. Furthermore, the property of partial malleability
is still a feature of the scheme. Regarding security, one refer the reader to [6]
for proofs that the generalizations of CCDH and DCDH are equivalent to their
version for k = 2. We then adapt the proof of the scheme in Zp2 to show that
the one-wayness and that indistinguishability of the generalized schemes are
identical to the extended versions of CCDH and DCDH.

7 Conclusion and Open Issues

In this paper, we have proposed new cryptosystems based on new computational
problems related to the Diffie-Hellman problems. Encryption does not require
messages to be converted into group elements by opposition to all known discrete-
log-based cryptosystem proven secure in the standard model.

Our cryptosystems feature a better encryption ratio (decreased by a factor 6.5
for common parameters), an identical ciphertext size, and remain comparable
in speed with ElGamal encryption. Their security in the standard model under
chosen-plaintext attacks is based on the CDH assumption for one-wayness, and
on the assumption that the Decision Class Diffie-Hellman for indistinguishability.

Our encryption schemes are partially homomorphic, either additively or mul-
tiplicatively. To the best of our knowledge, this gives the only example of an
additive encryption (even if partial) featuring standard-model security in the
discrete-log setting.

An open research area would be to find a discrete-log-based cryptosystem
that would provide a fully additive or multiplicative homomorphism. Another
independent but challenging topic would be to provide a more accurate study
on the connections between DCDH and DDH.

Acknowledgements

The first author would like to thank Jean-François Dhem and Philippe Proust,
as well as his colleague Eric Brier for fruitful and enjoying discussions about the
difficulty of the DCDH problem.

This work was funded in part by the European project Ecrypt and in part
by the French RNRT project Crypto++.

Encoding-Free ElGamal Encryption Without Random Oracles 103

References

1. M. Abdalla, M. Bellare, and P. Rogaway. DHAES: An Encryption Scheme Based
on the Diffie-Hellman Problem. Submission to IEEE P1363a. September 1998.
Available from http://grouper.ieee.org/groups/1363/.

2. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin,
1995.

3. E. Bresson, D. Catalano, and D. Pointcheval. A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and its Applications. In Asiacrypt
’03, LNCS 2894, pages 37–54. Springer-Verlag, Berlin, 2003.

4. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. The Twist-Augmented
Technique for Key Exchange. In PKC ’06, LNCS. Springer-Verlag, Berlin, 2006.

5. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages
13–25. Springer-Verlag, Berlin, 1998.

6. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In PKC ’01, LNCS 1992, pages
119–137. Springer-Verlag, Berlin, 2001.

7. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6):644–654, November 1976.

8. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–
472, July 1985.

9. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost. In PKC ’99, LNCS 1560, pages 53–68. Springer-Verlag,
Berlin, 1999.

10. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Crypto ’99, LNCS 1666, pages 537–554. Springer-Verlag,
Berlin, 1999.

11. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key En-
cryption at Minimum Cost. IEICE Transaction of Fundamentals of Electronic
Communications and Computer Science, E83-A(1):24–32, January 2000.

12. R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over
Non-DDH Groups. In Eurocrypt ’04, LNCS 3027, pages 361–381. Springer-Verlag,
Berlin, 2004.

13. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

14. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

15. V. Miller. Uses of Elliptic Curves in Cryptography. In Crypto ’85, LNCS 218,
pages 417–426. Springer-Verlag, Berlin, 1986.

16. D. Naccache and J. Stern. A New Public-Key Cryptosystem. In Eurocrypt ’97,
LNCS 1233, pages 27–36. Springer-Verlag, Berlin, 1997.

17. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-
Verlag, Berlin, 2001.

18. T. Okamoto and S. Uchiyama. A New Public Key Cryptosystem as Secure as
Factoring. In Eurocrypt ’98, LNCS 1403, pages 308–318. Springer-Verlag, Berlin,
1998.

104 B. Chevallier-Mames, P. Paillier, and D. Pointcheval

19. P. Paillier. Public-Key Cryptosystems Based on Composite-Degree Residuosity
Classes. In Eurocrypt ’99, LNCS 1592, pages 223–238. Springer-Verlag, Berlin,
1999.

20. D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In
PKC ’00, LNCS 1751, pages 129–146. Springer-Verlag, Berlin, 2000.

21. M. O. Rabin. Digitalized Signatures and Public Key Functions as Intractible as
Factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of
Technology – Laboratory for Computer Science, January 1979.

22. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

Parallel Key-Insulated Public Key Encryption

Goichiro Hanaoka1, Yumiko Hanaoka2, and Hideki Imai1,3

1 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology,

1102 Akihabara Daibiru, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan
hanaoka-goichiro@aist.go.jp

2 NTT DoCoMo, Inc.,
3-5 Hikarino-oka, Yokosuka 239-8536, Japan

hanaoka@nttdocomo.co.jp
3 Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

imai@iis.u-tokyo.ac.jp

Abstract. Security is constantly been infringed by inadvertent loss of
secret keys, and as a solution, Dodis, Katz, Xu, and Yung [11], in Eu-
rocrypt 2002, proposed a new paradigm called key-insulated security
which provides tolerance against key exposures. Their scheme introduces
a “helper key” which is used to periodically update the decryption key.
The most attractive part of this scheme is that even if a decryption key
of a time period is exposed, the security of the rest of the periods are
unaffected. But how does this helper key managed? Can it be done effi-
ciently? As, to alleviate the damage caused by key exposures, decryption
key has to be updated at very short intervals, although frequent updating
will, in contrary, increase the risk of helper key exposure. In this paper,
we propose parallel key-insulated public key encryption in which two dis-
tinct helper keys alternately update a decryption key. The helper key of
one system is independent from the other. Not only does it decrease the
chance of helper key exposures, it also allows frequent updating of the
decryption key, and over all, increases the security of the system.

1 Introduction

Background. The problem of key exposure is an important issue in practice,
regardless. No matter how strong the encryption scheme is, if the key is exposed,
we lose the security. Leaving it just under users’ care and responsibility is too
high of a risk to take: Loss of important documents and personal information
that results from careless handling by humans happens nothing out of the or-
dinary, and the damage exerted, can be immeasurable. Classic approach was to
try to earn the time before system collapse, although not solving the problem
fundamentally, secret keys leaked eventually. Dodis, Katz, Xu and Yung looked
at this problem from a different prospective: Their idea was to minimize the
damage instead of just trying to gain time. Their proposed scheme was called,
key-insulated public-key encryption (KIPE) [11]. In their KIPE, a helper key
is introduced and is stored in the helper device which is kept isolated from the

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 105–122, 2006.
c© International Association for Cryptologic Research 2006

106 G. Hanaoka, Y. Hanaoka, and H. Imai

network except for times it is used to update the decryption key. Encryption in
KIPE is carried out using a fixed public key and time (e.g. date), and so, the
need to announce new public key to others after each key updating (like what
the certificate authority does in PKI) can be omitted. Regarding its security,
security for all time periods except for time period exposed, both forward and
backward security, are guaranteed.

Now, to increase the system tolerance against key exposures for KIPE system,
the first thing that comes into mind is to update the decryption key at short
timing (i.e. frequent intervals), however, this will, in turn, increase the frequency
of helper device connection to the network and increase the risk of helper key
exposure. This is due to that the KIPE assumes helper key exposures to less
likely occur than decryption key exposures: Helper key and decryption key are
managed independently and helper device can be stored in a physically much
safer place as it is used only at key updates. Frequent updating of the decryption
key will in turn put the helper key in a higher risk of exposure (as it will be
connected to the network more often). So, a trade-off between decryption key
and helper key exposures exists. For deeper understanding, let’s consider the
next example: Suppose you are a busy office worker who wishes to increase
system tolerance by frequently updating the key. You think that updating twice
each day is manageable. You decide to update the key once at home (at approx.
midnight) and once at the office (at approx. noon). Since you leave the helper
device at home, now, you will need to remind yourself not to forget to bring the
device to work each day, or otherwise, make a copy of the device and leave one
copy at your office for convenience. In either case, security of the decryption key
is increased but the risk of helper key exposure is also increased (doubled). So,
as we can see, unless the KIPE model is changed, it is impossible to increase the
security of both decryption key and helper key simultaneously.

Our Results. In this paper, we propose parallel key-insulated public key en-
cryption (PKIPE). Our PKIPE allows frequent updating of the decryption key,
and at the same time, reduces the risk of helper key exposure. PKIPE differs
from the original KIPE in that two distinct helper devices are introduced and
each device is alternately used to update a single decryption key (so, you don’t
have to carry your helper device to-and-from work and office each day).

Initialization in PKIPE involves providing two auxiliary helpers H1 and H2

with master helper keys mst1 and mst2, respectively, and the user’s terminal
with a stage 0 user secret key usk0. Similarly to the original KIPE, user’s public
encryption key pk is treated like that of an ordinary encryption scheme with
regard to certification, but its lifetime is divided into stages i = 1, 2, ..., N(= 2n)
with encryption in stage i performed as a function of pk, i and the plaintext, and
decryption in stage i performed by using a stage i user secret key uski obtained
by the following key-update process performed at the beginning of stage i:

– If i = 2k−1 for k ∈ {1, 2, ..., n},H1 sends to the user’s terminal over a secure
channel, a stage i helper key hski computed as a function of mst1 and i,

– If i = 2k for k ∈ {1, 2, ..., n}, similarly to the above, H2 sends hski computed
as a function of mst2 and i,

Parallel Key-Insulated Public Key Encryption 107

the user computes uski as a function of uski−1 and hski, and erases uski−1. Like
the original KIPE, our PKIPE also address random access key update [11] in
which the user computes an arbitrary stage user secret key (that could also be
a past key).

The security intentions are:

1. If none of the helpers is compromised, similar to the original KIPE, ex-
posure of any of user secret keys does not compromise the security of the
non-exposed stages, and
2. even if one of H1 and H2 is compromised in addition to the exposure of
any of user secret keys, it still does not compromise the security of the non-
exposed stages except for the ones whose corresponding user secret keys can
be trivially determined from the exposed keys.

For case 2., consider a situation where an adversary obtains mst1, uski0 and
uski1 such that i0 and i1 are even and odd, respectively. Obviously, stages i0 and
i1 are compromised. The security of stage i0 + 1 may also be compromised since
uski0+1 is easily computable from uski0 and mst1. Similarly, security of stage
i1 − 1, too, may be compromised. (Notice that we address random access key
update and so we can recover past keys). On the other hand, for example, the
security of stage i1 +1 is not compromised as uski1+1 is computed as a function
of uski1 and mst2, and not mst1. So, in this case, security of all stages except
for i0, i0 + 1, i1 and i1 − 1 remain secure. Furthermore, if only one of H1 or
H2 is compromised but none of the user secret key is exposed, then all stages
remain secure. In other words, even for the case when one of helper keys, mst1
and mst2 is exposed, the security of our PKIPE is guaranteed to maintain at
least the security level of the original KIPE.

Similar to the original KIPE, we can further address the case when all of the
helper keys are exposed:

3. Even if both helpers H1 and H2 are compromised, security of all stages re-
main secure as long as user secret key (of even one stage) is not compromised
in addition to the helper keys.

Our proposed schemes are proven to be semantically secure in the random
oracle model.

Related Works. Followed by the earlier proposal made by Dodis, Katz, Xu
and Yung [11], Dodis, Franklin, Katz, Miyaji and Yung proposed an intrusion-
resilient public key encryption (IRPKE) [13] which strengthened the forward
security of KIPE. The security of IRPKE has enhanced, only, it became less
convenient as it did not allow random access key update. There were proposal of
signature schemes as well with the same intention to provide tolerance against
key exposures: Key-insulated signature [12] and intrusion-resilient signature [17].
On the other hand, as an encryption scheme that allows key update, there is,
the KIPE and also, forward secure public key encryption (FSPKE). FSPKE was
introduced by Anderson [1] and the first efficient construction was proposed by
Canetti, Halevi and Katz [10]. Dodis, Franklin, Katz, Miyaji and Yung showed

108 G. Hanaoka, Y. Hanaoka, and H. Imai

that by using FSPKE with a homomorphic property, a generic IRPKE can be
constructed [14]. Not to mention, many variations of forward secure signatures
have also been introduced, e.g. [8, 2].

Identity-based encryption (IBE) [18, 5, 9] works as a crucial building block in
the construction of KIPE. Bellare and Palacio showed in [7] that a KIPE (OT-
KIPE)1 which allows unlimited number of key updating is equivalent to an IBE,
and so, constructing a provably secure OT-KIPE in the standard model with
[3], [4] or [19] can be done also. In this paper, we show that [5] is used as a basic
building block to construct PKIPE.

2 Definitions

First, we give the model of PKIPE and the security notion. We follow by showing
the characteristics of bilinear maps and a related computational assumption.

2.1 Model: Parallel Key-Insulated Public Key Encryption

A PKIPE scheme E consists of five efficient algorithms (KeyGen, Δ-Gen,
Update, Encrypt, Decrypt).

KeyGen: Takes a security parameter k and returns mst1, mst2, usk0 and pk.
Public key pk includes a description of finite message space M, and descrip-
tion of finite ciphertext space C.

Δ-Gen: Takes as inputs, mstj and i, and returns stage i helper key hski if
j = i mod 2, or ⊥ otherwise.

Update: Takes as inputs, uski−1, hski and i, and returns stage i user secret
key uski.

Encrypt: Takes as inputs, pk, i and M ∈ M, and returns ciphertext C ∈ C.
Decrypt: Takes as inputs, pk, uski and C ∈ C, and returns M ∈ M or ⊥.

These algorithms satisfy ∀i ∈ {1, ..., N}, ∀M ∈ M, Decrypt(pk,uski,C) =
M where C = Encrypt(pk, i,M).

2.2 Security Notion

Here, we define the notion of semantic security for PKIPE. This is based on
the security definition in the original KIPE [11, 7]. It should be noticed that the
definition in [7] looks simpler than in [11] but they are essentially the same.

We say that a PKIPE scheme E is semantically secure against an adaptive
chosen ciphertext attack under an adaptive chosen key exposure attack (IND-KE-
CCA) if no polynomially bounded adversary A has a non-negligible advantage
against the challenger in the following IND-KE-CCA game:

Setup: The challenger takes a security parameter k and runs the KeyGen
algorithm. He gives pk to A and keeps usk0, mst1 and mst2 to himself.

1 key-insulated public key encryption with optimum threshold.

Parallel Key-Insulated Public Key Encryption 109

Phase 1: A issues queries q1, · · · , qm where each of the queries qi is one of:
– Exposure query 〈j, class〉: If class = “user”, the challenger responds

by running the algorithms Δ-Gen and Update to generate uskj and
sends it to A. If class = “helper”, the challenger sends mstj to A.

– Decryption query 〈j,C〉: The challenger responds by running the algo-
rithms Δ-Gen and Update to generate uskj . He then runs Decrypt
to decrypt the ciphertext C using uskj and sends the result to A.

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, · · · , qi−1.

Challenge: Once A decides that Phase 1 is over, she outputs two equal length
plaintexts M0,M1 ∈ M and j∗ ∈ {1, 2, ..., N} on which she wishes to be
challenged. The challenger picks a random bit β ∈ {0, 1} and sets C∗ =
Encrypt(pk, j∗,Mβ). The challenger sends C∗ as the challenge to A.

Phase 2: A issues additional queries qm+1, · · · , qmax where each of the queries
is one of:
– Exposure query 〈j, class〉: Challenger responds as in Phase 1.
– Decryption query 〈j,C〉: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, A outputs β′ ∈ {0, 1}. She wins the game if β′ = β and

1. 〈j∗,C∗〉 does not appear in Decryption queries,
2. 〈j∗, “user”〉 does not appear in Exposure queries,
3. both 〈j∗−1, “user”〉 and 〈2−(j∗ mod 2), “helper”〉 do not simultaneously

appear in Exposure queries,
4. both 〈j∗+1, “user”〉 and 〈(j∗ mod 2)+1, “helper”〉 do not simultaneously

appear in Exposure queries,
5. both 〈1, “helper”〉 and 〈2, “helper”〉 do not simultaneously appear in Ex-

posure queries.

We refer to such an adversary A as an IND-KE-CCA adversary. We define
A’s advantage in attacking the scheme E as AdvE,A = Pr[β′ = β] − 1/2. The
provability is over the random bits used by the challenger and A. As usual, we
can define chosen plaintext security similarly to the game above except that the
adversary is not allowed to issue any Decryption queries. We call this adversary
IND-KE-CPA adversary.

Definition 1. We say that a PKIPE system E is (t, ε)-adaptive chosen cipher-
text secure under adaptive chosen key exposure attacks if for any t-time IND-
KE-CCA adversary A, we have AdvE,A < ε. As shorthand, we say that E is
IND-KE-CCA secure. Also, we say that E is (t, ε)-adaptive chosen plaintext se-
cure under adaptive chosen key exposure attacks if for any t-time IND-KE-CPA
adversary A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CPA
secure.

IND-KE-CCA is already a strong security notion, but its security can be en-
hanced further to cover the compromise of both the helper keys. Concretely, as
a constraint on the above adversary’s Exposure query, we can modify 5. so that:

110 G. Hanaoka, Y. Hanaoka, and H. Imai

5′. 〈1, “helper”〉, 〈2, “helper”〉, and 〈j, “user”〉 do not simultaneously appear
in Exposure queries for any j ∈ {1, 2, ..., N}.

Such modification allows A to obtain both mst1 and mst2 if A doesn’t ask
any of user secret keys. Let this adversary be a strong IND-KE-CCA adversary.
Similarly, we can define strong IND-KE-CPA adversary, and here as well, she is
not allowed to issue any Decryption queries.

Definition 2. We say that a PKIPE system E is (t, ε)-adaptive chosen cipher-
text secure under strongly adaptive chosen key exposure attacks if for any t-time
strong IND-KE-CCA adversary A, we have AdvE,A < ε. As shorthand, we say
that E is strongly IND-KE-CCA secure. Also, we say that E is (t, ε)-adaptive cho-
sen plaintext secure under strongly adaptive chosen key exposure attacks if for
any t-time strong IND-KE-CPA adversary A, we have AdvE,A < ε. As shorthand,
we say that E is strongly IND-KE-CPA secure.

A Remark. In the discussion we had so far, it may seem like we may have
overlooked the exposure of stage i helper key, but actually, we haven’t. It is
obvious that if hski can be computed from uski−1 and uski for any stage i,
then exposure of hski can be emulated by using the responses to the Exposure
queries. So, the security definition so far given is sufficient as it is even against
exposure of stage i helper keys for any i, if we assume that such property holds.
As a matter of fact, all of our constructions satisfy this property.

2.3 Bilinear Maps and the CBDH Assumption

Throughout this paper, we let G1 and G2 be two multiplicative cyclic groups of
prime order q, and g be a generator of G1. A bilinear map e : G1 × G1 → G2

satisfies the following properties: (i) For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab. (ii) e(g, g) �= 1. (iii) There is an efficient algorithm to compute e(u, v)
for all u, v ∈ G1. The Computational Bilinear Diffie-Hellman (CBDH) problem
[5] in 〈G1, G2, e〉 is as follows: given a tuple (g, ga, gb, gc) ∈ (G1)4 as input, output
e(g, g)abc ∈ G2. An algorithm Acbdh solves CBDH problem in 〈G1, G2, e〉 with
the probability εcbdh if Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εcbdh, where the
probability is over the random choice of generator g ∈ G1\{1}, and a, b, c ∈ Zq

and random coins consumed by Acbdh.

Definition 3. We say that the (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2,
e〉 if no tcbdh-time algorithm has advantage of at least εcbdh in solving the CBDH
problem in 〈G1, G2, e〉.

3 Chosen Plaintext Secure Construction

In this section, we propose our PKIPE schemes and prove its security under
CBDH assumption in the random oracle model. Intuitively, picture two inde-
pendent Boneh-Franklin IBEs (BF-IBE) [5, 6] integrated to one another and the
master key of one BF-IBE is free to leak. Applying a straightforward 2-out-of-
2 threshold key generation of BF-IBE [5] is not the correct answer since then

Parallel Key-Insulated Public Key Encryption 111

the master keys of both BF-IBEs will be required to update a decryption key.
Instead, in our PKIPE schemes, master keys of the two independent BF-IBEs
are alternately used to update a single key (so, only one master key is used
at a time). Furthermore, interestingly, decryption key size, ciphertext size and
computational cost for decryption in our PKIPE remain unchanged (and public
key size and encryption cost is increased but only slightly for one element in
G1 and one pairing computation, respectively) as in the original BF-IBE. In our
schemes, we let N = O(poly(k)).

3.1 Construction

Let G1 and G2 be two groups of order q of size k, and g be a generator of G1. Let
e : G1 × G1 → G2 be a bilinear map. Let G,H be cryptographic hash functions
G : G2 → {0, 1}n for some n, H : {0, 1}∗ → G1, respectively. The message space
is M = {0, 1}n. The PKIPE1 scheme consists of the following algorithms:

PKIPE1: IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm:
1. generates G1, G2, g and e.
2. picks s1, s2 ∈ Z∗

q uniformly at random, and sets h1 = gs1 and h2 = gs2 ,
3. chooses cryptographic hash functions G and H ,
4. computes u−1 = H(−1) and u0 = H(0),
5. computes d−1 = us1

−1 and d0 = us2
0 ,

6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2,G,H〉, mst1 = s1, mst2 = s2 and
usk0 = d−1 · d0.

Δ-Gen: For given mstj and i ∈ {1, 2, ..., N}, Δ-Gen algorithm:
1. outputs ⊥ if i �≡ j mod 2,
2. computes ui−2 = H(i − 2) and ui = H(i),
3. computes di−2 = u

sj

i−2 and di = u
sj

i ,
4. outputs hski = d−1

i−2 · di.
Update: For given uski−1, hski and i, Update algorithm:

1. computes uski = uski−1 · hski,
2. deletes uski−1 and hski,
3. outputs uski.

Encrypt: For given pk, i and a message M ∈ {0, 1}n, Encrypt algorithm:
1. chooses random r ∈ Z∗

q ,
2. computes ui−1 = H(i − 1) and ui = H(i),
3. if i = 0 mod 2, computes W = (e(h1,ui−1) · e(h2,ui))r ,
4. if i = 1 mod 2, computes W = (e(h1,ui) · e(h2,ui−1))r ,
5. sets C = 〈i, gr, G(W) ⊕M〉,
6. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. computes W ′ = e(c0,uski),
2. computes M ′ = c1 ⊕G(W ′),
3. outputs M ′ as a plaintext.

112 G. Hanaoka, Y. Hanaoka, and H. Imai

3.2 Security

Now, we prove that PKIPE1 is IND-KE-CPA under the CBDH assumption. For
readers who are already familiar with KIPE and/or IBE, here we give an overview
of the proof. PKIPE1 is based on [5, 6], so, a proof technique similar to [5, 6] can
be applied. However, there are still some technical hurdles to overcome due to the
peculiar key-updating mechanism using two different helper keys. Namely, em-
bedding the given CBDH instance into the responses to the adversary’s queries
cannot be straightforwardly carried out since the keys are mutually dependent
on one another, and that the simulation fails if inconsistency of the responses
is noticed by the adversary. For example, suppose that the simulator embeds
the given instance into uskα(= dα−1dα) for some stage α. Here, the simulator
does not know the value of uskα but has to respond to any Exposure queries
(except for uskα) including uskα−1(= dα−2dα−1) and uskα+1(= dαdα+1). We
notice that both factors of uskα, i.e. dα−1 and dα appear in uskα−1 or uskα+1,
and so, responding to uskα−1 and uskα+1 without knowing uskα is not easy.

Theorem 1. Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and
hash functions G and H are random oracles. Then, PKIPE1 is (tpkipe, εpkipe)-
IND-KE-CPA secure as long as εpkipe ≤ 3qGN

2 εcbdh and tpkipe ≤ tcbdh+Θ(τ(2qH +
3qE)), where IND-KE-CPA adversary Apkipe issues at most qH H-queries and qE

Exposure queries. Here, τ is the maximum time for computing an exponentiation
in G1, G2, and pairing e.

Proof. We show that we can construct an algorithm Acbdh that can solve the
CBDH problem in 〈G1, G2, e〉 by using an adversary Apkipe that breaks IND-KE-
CPA security of our scheme. The algorithm Acbdh is given an instance 〈g, ga, gb,
gc〉 in G1 from the challenger and tries to output e(g, g)abc using Apkipe. Let
g1 = ga, g2 = gb, g3 = gc. The algorithm Acbdh works by interacting with Apkipe

in an IND-KE-CPA game as follows:
Before starting the simulation, Acbdh flips a coin COIN ∈ {0, 1} such that we

have Pr[COIN = 0] = δ for some δ which we will determine later. If COIN = 0,
Acbdh simulates the responses to Apkipe’s queries expecting that Apkipe will never
submit 〈j, “helper”〉 as Exposure query for any j. If COIN = 1, Acbdh carries
out the simulation expecting that Apkipe will submit 〈j, “helper”〉 for some j.

If COIN = 0, Acbdh responses to Apkipe’s queries will be as follows:

Setup: Acbdh picks a random s ∈ Z∗
q . Also, Acbdh gives Apkipe the system

parameter pk = 〈q, G1, G2, e, n, g, h1, h2,G,H〉, where h1 = g1 and h2 = gs
1,

and random oracles G,H are controlled by Acbdh as described below.
G-queries: Apkipe issues up to qG queries to the random oracle G. To respond

to these queries algorithm, Acbdh forms a list of tuples 〈W, x〉 as explained
below. We call this list Glist. The list is initially empty. When Apkipe gives
Acbdh a query W to the oracle G, Acbdh responds as follows:

1. If the query W already appears on the Glist in a tuple 〈W, x〉, then
outputs G(W) = x.

Parallel Key-Insulated Public Key Encryption 113

2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W, x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Apkipe issues up to
qH queries to the random oracle H . To respond to these queries algorithm,
Acbdh forms a list of tuples 〈i,ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Apkipe gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i,ui, ri〉, then

outputs H(i) = ui.
2. If i = α, Acbdh sets ui = g2 and rα = 0.
3. If i < α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
4. If i > α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gz
2 · gri , where

– z = 1 if i = α mod 2,
– z = −s if i = 1 mod 2 and α = 0 mod 2,
– z = −s−1 if i = 0 mod 2 and α = 1 mod 2, where s−1 is the inverse

of s mod q,
5. Acbdh adds the tuple 〈i,ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messagesM0,M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = μ, where μ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Exposure queries: Apkipe issues up to qE Exposure queries. When Apkipe gives
a query 〈i, class〉, Acbdh responds as follows:
1. If class = “helper” or i = α, Acbdh aborts the simulation.
2. Acbdh runs the algorithm for responding to H-queries to obtain 〈i,ui, ri〉

and 〈i− 1,ui−1, ri−1〉.
3. Acbdh sets uski = h

ri−1
1 ·hri

2 if i = 0 mod 2, or uski = hri

1 ·hri−1
2 otherwise,

and outputs uski to Apkipe. Observe that uski is the user secret key
corresponding to the stage i. Especially, when i > α,

u
logg h1

i−1 · ulogg h2

i = (g−s
2 · gri−1)a · (g2 · gri)s·a = h

ri−1
1 hri

2

(if i = 0 mod 2, α = 0 mod 2)

= (g2 · gri−1)a · (g−s−1

2 · gri)s·a = h
ri−1
1 hri

2

(if i = 0 mod 2, α = 1 mod 2)

u
logg h2

i−1 · ulogg h1

i = (g2 · gri−1)s·a · (g−s
2 · gri)a = h

ri−1
2 hri

1

(if i = 1 mod 2, α = 0 mod 2)

= (g−s−1

2 · gri−1)s·a · (g2 · gri)a = h
ri−1
2 hri

1

(if i = 1 mod 2, α = 1 mod 2)

Guess: When Apkipe decides that Phase 2 is over, Apkipe outputs its guess bit
β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W, x〉 uniformly at random from the Glist, and
computes T = (W

e(g1,g3)rα−1)s−1
if α = 0 mod 2, or T = (W

e(g1,g3)s·rα−1) if
α = 1 mod 2. Finally, Acbdh outputs T .

114 G. Hanaoka, Y. Hanaoka, and H. Imai

Claim 1. If i∗ = α and Acbdh does not abort, then Apkipe’s view is identical to
its view in the real attack until Apkipe submits W ∗ as a G-query, where W ∗ =
e(g1, g3)rα−1 · e(g, g)s·abc if α = 0 mod 2, or W ∗ = e(g1, g3)s·rα−1 · e(g, g)abc if
α = 1 mod 2.

Proof. It is obvious that the responses to G and H are as in the real attack.
Interestingly, the responses to Exposure queries are perfect if Acbdh does not
abort. Finally, we show that the response to Challenge is indistinguishable from
the real attack until Apkipe submits W ∗. Let the response to Challenge be C∗ =
〈α, c∗0, c

∗
1〉. Then, c∗0 is uniformly distributed in G1 due to random logg g3(= c),

and therefore are as in the real attack. Also, since c∗1 = Mβ ⊕ G(W ∗), it is
information-theoretically impossible to obtain any information on Mβ unless
Apkipe asks G(W ∗). �	

Next, let us define by E1, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E2, an event assigned to be true if and only if a G-
query coincides with W ∗, and by Emsk, an event assigned to be true if and only
if an Exposure query coincides with 〈i, “helper”〉 for any i ∈ {1, 2}.

Claim 2. We have that Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk].

Proof. It is clear that
∑

i∈{1,...,N} Pr[β′ = β|i∗ = i,¬Emsk] Pr[i∗ = i|¬Emsk] =
Pr[β′ = β|¬Emsk]. Since α is uniformly chosen from {1, ...N} at random, we have
Pr[β′ = β|i∗ = α,¬Emsk]] Pr[i∗ = α|¬Emsk] ≥ 1

N Pr[β′ = β|¬Emsk]. Therefore,
we have Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk], which proves the claim. �	

Claim 3. We have that Pr[β′ = β|E1,¬E2,¬Emsk] = 1/2.

Proof. Let C∗ be 〈α, c∗0, c
∗
1〉. Since c∗1 = Mβ ⊕G(W ∗), it is impossible to obtain

any information on Mβ without asking W ∗ as a G-query. �	

Claim 4. We have that Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0] ≥ 1
qGN ·

Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ ap-
pears in Glist with probability Pr[E2]. We have Pr[E2] ≥ Pr[E2|E1,¬Emsk] ·
Pr[E1|¬Emsk] · Pr[¬Emsk] and Pr[E1|¬Emsk] = 1/N . Hence, by choosing a tu-
ple from Glist uniformly at random, Acbdh can correctly output e(g, g)abc with
probability of at least 1/qG · 1/N · Pr[E2|E1,¬Emsk] Pr[¬Emsk]. �	

Finally, we calculate p0 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0]. Let-
ting γ := Pr[β′ = β|Emsk] − 1/2, from Claims 1 and 2, we have

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk]− 1
2

= Pr[β′ = β|¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ) Pr[Emsk] − 1
2

≤ Pr[β′ = β|E1,¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ) Pr[Emsk]− 1
2
.

Parallel Key-Insulated Public Key Encryption 115

From Pr[β′ = β|E1,¬Emsk] = Pr[β′ = β|E1,E2,¬Emsk] · Pr[E2|E1,¬Emsk] +
Pr[β′ = β|E1,¬E2,¬Emsk] · Pr[¬E2|E1,¬Emsk] and Claim 3, we have

Pr[β′ = β] − 1
2
≤ (Pr[E2|E1,¬Emsk] +

1
2
(1 − Pr[E2|E1,¬Emsk]))(1 − Pr[Emsk])

+(
1
2

+ γ) Pr[Emsk]− 1
2

=
1
2

Pr[E2|E1,¬Emsk] Pr[¬Emsk] + γ Pr[Emsk].

From Claim 4, we have p0 ≥ 2
qGN (εpkipe − γ Pr[Emsk]).

Next, we discuss for the COIN = 1 case. If COIN = 1, Acbdh responses to
Apkipe’s queries as follows:

Setup: Acbdh picks random s ∈ Z∗
q and b ∈ {1, 2}. Let b̄ be 1 (resp. 2)

if b = 2 (resp. 1). Also, Acbdh gives Apkipe the system parameter pk =
〈q, G1, G2, e, n, g, h1, h2,G,H〉, where hb = g1 and hb̄ = gs, and random
oracles G,H are controlled by Acbdh as described below.

G-queries: Apkipe issues up to qG queries to the random oracle G. To respond
to these queries algorithm Acbdh forms a list of tuples 〈W, x〉 as explained
below. We call this list Glist. The list is initially empty. When Apkipe gives
Acbdh a query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W, x〉, then

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W, x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Apkipe issues up to
qH queries to the random oracle H . To respond to these queries algorithm
Acbdh forms a list of tuples 〈i,ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Apkipe gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i,ui, ri〉, then

outputs H(i) = ui.
2. If i = α − 1 and α ≡ b̄ mod 2, Acbdh sets ui = g2 and ri = 0.
3. If i = α and α ≡ b mod 2, Acbdh sets ui = g2 and ri = 0.
4. Else, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
5. Acbdh adds the tuple 〈i,ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messagesM0,M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = μ, where μ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Exposure queries: Apkipe issues up to qE Exposure queries. When Apkipe gives
a query 〈i, class〉, Acbdh responds as follows:
1. If i = b and class = “helper”, Acbdh aborts the simulation.
2. If i = b̄ and class = “helper”, Acbdh returns s to Apkipe.

116 G. Hanaoka, Y. Hanaoka, and H. Imai

3. If i = α and class = “user”, Acbdh aborts the simulation.
4. If i = α − 1, class = “user” and α ≡ b̄ mod 2, Acbdh aborts the simu-

lation.
5. If i = α + 1, class = “user” and α ≡ b mod 2, Acbdh aborts the simu-

lation.
6. Else2, Acbdh runs the algorithm for responding to H-queries to obtain

〈i,ui, ri〉 and 〈i−1,ui−1, ri−1〉, and sets uski = h
ri−1
1 ·hri

2 if i = 0 mod 2,
or uski = hri

1 · hri−1
2 otherwise. Acbdh outputs uski to Apkipe.

Guess: When Apkipe decides that Phase 2 is over, Apkipe outputs the guess bit
β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W, x〉 uniformly at random from the Glist, and
computes T = W · e(g, g3)−s·rα if α ≡ b̄ mod 2, or T = W · e(g, g3)−s·rα−1 if
α ≡ b mod 2. Finally, Acbdh outputs T .

Claim 5. If i∗ = α, Apkipe submits 〈b̄, “helper”〉 as an Extraction query, and
Acbdh does not abort, then Apkipe’s view is identical to its view in the real attack
until Apkipe submits W ∗ as a G-query, where W ∗ = e(g, g3)s·rα · e(g, g)abc if
α ≡ b̄ mod 2, or W ∗ = e(g, g3)s·rα−1 · e(g, g)abc if α ≡ b mod 2.

Next, let us define by E3, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E4, an event assigned to be true if and only if a G-
query coincides with W ∗, by E5, an event assigned to be true if and only if an
Exposure query coincides with 〈b, “helper”〉, and by Emsk, an event assigned
to be true if and only if an Exposure query coincides with 〈i, “helper”〉 for any
i ∈ {1, 2}. Notice that Emsk is identical to that in the case of COIN = 0.

Claim 6. We have that Pr[β′ = β|E3,¬E5,Emsk] ≥ Pr[β′ = β|Emsk].

Claim 7. We have that Pr[β′ = β|E3,¬E4,¬E5,Emsk] = 1/2.

Proofs of Claims 5, 6 and 7 are given in the full version of this paper.

Claim 8. We have that Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1] ≥ 1
2qGN ·

Pr[E4|E3,¬E5,Emsk] Pr[Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ ap-
pears in Glist with probability Pr[E4]. We have Pr[E4] ≥ Pr[E4|E3,¬E5,Emsk] ·
Pr[E3|¬E5,Emsk] · Pr[¬E5,Emsk]. Furthermore, we have Pr[E3|¬E5,Emsk] =
1/N , and Pr[¬E5,Emsk] = 1/2 ·Pr[Emsk]. Hence, by choosing a tuple from Glist

uniformly at random, Acbdh can correctly output e(g, g)abc with probability of
at least 1/qG · 1/N · 1/2 · Pr[E4|E3,¬E5,Emsk] Pr[Emsk]. �	

Finally, we calculate p1 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1]. Let-
ting η := Pr[β′ = β|¬Emsk] − 1/2, from Claims 5 and 6, we have

2 Notice that in this case, class is always “user”.

Parallel Key-Insulated Public Key Encryption 117

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk]− 1
2

= (
1
2

+ η) Pr[¬Emsk] + Pr[β′ = β|Emsk](1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η) Pr[¬Emsk]

+ Pr[β′ = β|E3,¬E5,Emsk](1 − Pr[¬Emsk]) − 1
2
.

Since we have Pr[β′ = β|E3,¬E5,Emsk] = Pr[β′ = β|E3,E4,¬E5,Emsk] ·
Pr[E4|E3,¬E5,Emsk] + Pr[β′ = β|E3,¬E4,¬E5,Emsk] ·Pr[¬E4|E3,¬E5,Emsk],
from Claim 7, we have

Pr[β′ = β] − 1
2
≤ (

1
2

+ η) Pr[¬Emsk]

+(Pr[E4|E3,¬E5,Emsk] +
1
2
(1 − Pr[E4|E3,¬E5,Emsk]))

·(1 − Pr[¬Emsk]) − 1
2

=
1
2

Pr[E4|E3,¬E5,Emsk] Pr[Emsk] + ηPr[¬Emsk].

From Claim 8, we have p1 ≥ 1
qGN (εpkipe − ηPr[¬Emsk]).

Claim 9. We have that εpkipe ≥ γ Pr[Emsk] + ηPr[¬Emsk].

Proof. By the definitions of γ and η, we have γ + 1/2 = Pr[β′ = β|Emsk] and
η + 1/2 = Pr[β′ = β|¬Emsk], and consequently, εpkipe + 1

2 ≥ Pr[β′ = β] =
(γ + 1

2) Pr[Emsk] + (η + 1
2) Pr[¬Emsk]. Hence, we have εpkipe ≥ γ Pr[Emsk] +

ηPr[¬Emsk], which proves the claim. �	

Now, we calculate εcbdh(= Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc]). From Claim 9,
we have

εcbdh = δ · p0 + (1 − δ) · p1

≥ δ(
2

qGN
(εpkipe − γ Pr[Emsk])) + (1 − δ)(

1
qGN

(εpkipe − ηPr[¬Emsk]))

≥ δ(
2

qGN
(εpkipe − γ Pr[Emsk])) + (1 − δ)(

1
qGN

γ Pr[Emsk])

≥ 1
qGN

(2δεpkipe + (1 − 3δ)γ Pr[Emsk])

By letting δ = 1/3, we finally have εcbdh ≥ 2
3qGN εpkipe.

From the above discussions, we can see that the claimed bound of the running-
time of Acbdh holds. This completes the proof of the theorem. �	

118 G. Hanaoka, Y. Hanaoka, and H. Imai

3.3 Strongly IND-KE-CPA Scheme

We can build a construction of a strongly IND-KE-CPA scheme PKIPE2 by only
slightly modifying PKIPE1. The PKIPE2 consists of the following algorithms:

PKIPE2: Strongly IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm does the same as
that of PKIPE1 except that it:

2. picks random, s1, s2, s3 ∈ Z∗
q , and sets h1 = gs1s3 and h2 = gs2s3 ,

6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2,G,H〉, mst1 = s1, mst2 = s2

and usk0 = 〈ds3
−1 · ds3

0 , s3〉.
Δ-Gen: Same as in PKIPE1.
Update: For given uski−1 = 〈usk′i−1, s3〉, hski and i, Update algorithm:

1. computes usk′i = usk′i−1 · hsks3
i ,

2. deletes usk′i−1 and hski,
3. outputs uski = 〈usk′i, s3〉.

Encrypt: Same as in PKIPE1.
Decrypt: For given uski = 〈usk′i, s3〉 and C = 〈i, c0, c1〉, Decrypt algorithm

does the same as that of PKIPE1 except that it:
1. computes W ′ = e(c0,usk

′
i).

The security proof of PKIPE2 can be done similarly to PKIPE1. Here we
briefly explain why both master keys, mst1 and mst2, can be exposed and still
guarantee security. Since plaintext M is perfectly hidden by G(e(gr,usk′i)), it is
necessary to compute e(gr,usk′i) for compromising semantic security of PKIPE2.
However, this is almost as difficult as the CBDH problem without knowing s3

even if the adversary knows both mst1 and mst2. Hence, PKIPE2 is more secure
than PKIPE1 against exposure of master helper keys.

4 Chosen Ciphertext Secure Construction

In this section, we construct chosen ciphertext secure PKIPE schemes by ex-
tending PKIPE1 and PKIPE2 with Fujisaki-Okamoto padding [15, 16]. It should
be noticed that the proofs of security of our schemes cannot be straightforwardly
done since the model of PKIPE significantly differs from the standard public key
encryption.

4.1 Construction

Let F,G,H be cryptographic hash functions F : {1, ..., N}× {0, 1}n ×{0, 1}� →
Z∗

q , G : G2 → {0, 1}n+� for some n and �, and H : {0, 1}∗ → G1, respectively.
The message space is M = {0, 1}n. Except for the ones that are mentioned,
the notions are the same as in PKIPE1. The PKIPE3 consists of the following
algorithms:

Parallel Key-Insulated Public Key Encryption 119

PKIPE3: IND-KE-CCA Construction

KeyGen: Given a security parameter k, KeyGen algorithm does the same as
that of PKIPE1 exceptthat it:

3. chooses cryptographic hash functions F , G and H ,
6. outputs pk = 〈q, G1, G2, e, n, g, h1, h2,F,G,H〉, mst1 = s1, mst2 = s2

and usk0 = d−1 · d0.
Δ-Gen: Same as in PKIPE1.
Update: Same as in PKIPE1.
Encrypt: For given pk, i and a message M ∈ {0, 1}n, Encrypt algorithm:

1. chooses random R ∈ {0, 1}�,
2. computes σ = F (i,M,R),
3. computes ui−1 = H(i − 1) and ui = H(i),
4. if i = 0 mod 2, computes W = (e(h1,ui−1) · e(h2,ui))σ ,
5. if i = 1 mod 2, computes W = (e(h1,ui) · e(h2,ui−1))σ ,
6. sets C = 〈i, gσ, G(W) ⊕ (M ||R)〉,
7. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. outputs ⊥ if C �∈ ZN × G1 × {0, 1}n+�,
2. computes W ′ = e(c0,uski),
3. computes (M ′||R′) = c1 ⊕G(W ′),
4. outputs M ′ as a plaintext if c0 = gσ′

, or ⊥ otherwise, where σ′ =
F (i,M ′,R′).

4.2 Security

Now, we prove that PKIPE3 is IND-KE-CCA under the CBDH assumption.

Theorem 2. Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1, G2, e〉 and
hash functions G and H are random oracles. Then, PKIPE3 is (tpkipe, εpkipe)-
IND-KE-CCA secure as long as εpkipe ≤ 3qGN

2 εcbdh + 2qF

2� + 2qD

q and tpkipe ≤
tcbdh+Θ(τ(5qF +2qH +3qE +5qD)), where IND-KE-CPA adversary Apkipe issues
at most qF F -queries, qH H-queries, qD Decryption queries and qE Exposure
queries. Here, τ is the maximum time for computing an exponentiation in G1, G2,
and pairing e.

Proof. The proof of theorem is almost identical to Theorem 1 except that here,
Acbdh has to simulate responses to Decryption queries as well. For either the case
for COIN = 0 and 1, if i �= α, then it will be easy for Acbdh to calculate uski on
his own, so the decryption will be easily done as well. Therefore, we only need
to consider the case for i = α. Concretely, Acbdh’s responses to Apkipe’s queries
can be simulated as follows:

120 G. Hanaoka, Y. Hanaoka, and H. Imai

F -queries: Apkipe picks a random R∗ ∈ {0, 1}� in advance. Apkipe issues up to
qF queries to the random oracle F . To respond to these queries, algorithm
Acbdh forms a list of tuples 〈i,M,R, σ〉 as explained below. We call this list
Flist. The list is initially empty. When Apkipe gives Acbdh a query (i,M,R)
to the oracle F , Acbdh responds as follows:
1. If R = R∗, Acbdh aborts the simulation.
2. If the query (i,M,R) already appears on the Flist in a tuple 〈i,M,R, σ〉,

then outputs F (i,M,R) = σ.
3. Acbdh chooses a random σ ∈ Z∗

q .
4. Acbdh adds the tuple 〈i,M,R, σ〉 to the Flist and outputs F (i,M,R) = σ.

Challenge: Once algorithm Apkipe decides that Phase 1 is over, it outputs a
target stage i∗ and two messagesM0,M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = μ, where μ ∈R {0, 1}n+�.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Apkipe.

Decryption queries: Apkipe issues up to qD Decryption queries. When Apkipe

gives a query C = 〈i, c0, c1〉, Acbdh responds as follows:
1. If i �= α, Acbdh runs the algorithm to respond to Exposure queries to

obtain uski, decrypts C, and outputs the decryption result to Apkipe.
2. If i = α, Acbdh searches for a tuple 〈α,M,R, σ〉 from Flist such that

c0 = gσ,

c1 = G((e(h1,uα−1) · e(h2,uα))σ) ⊕ (M ||R) if α = 0 mod 2,

= G((e(h1,uα) · e(h2,uα−1))σ) ⊕ (M ||R) if α = 1 mod 2.

3. If there exists such a tuple, Acbdh outputs M to Apkipe. Otherwise, Acbdh

outputs ⊥.

Responses to G-queries, H-queries and Exposure queries can be simulated sim-
ilarly to the proof in Theorem 1.

Next, let us define by F -Fail an event assigned to be true if and only if there
exists a F -query 〈i,M,R〉 such that R = R∗. Similarly, let us define by D-Fail
an event assigned to be true if and only if Acbdh returns ⊥ for a Decryption
query which should not be rejected.

Using this, and following the proof of Theorem 1, we get the next inequalities:

p0 ≥
2

qGN
(εpkipe − γ Pr[Emsk]− Pr[F -Fail]− Pr[D-Fail]),

p1 ≥
1

qGN
(εpkipe − ηPr[¬Emsk]− Pr[F -Fail]− Pr[D-Fail]),

where pw := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = w] for w ∈ {0, 1}, and
qG, γ, η and Emsk are denoted similarly as in Theorem 1.

We then calculate Pr[F -Fail] and Pr[D-Fail]. Since it is information the-
oretically impossible to obtain any informaion on R∗, Apkipe submits R∗ as
in one of F -queries with probability at most qF /2�. Acbdh fails to respond

Parallel Key-Insulated Public Key Encryption 121

to a Decryption query only when Apkipe succeeds to generate a ciphertext
C = Encrypt(pk, α,M ;R) without submitting a F -query 〈α,M,R〉. Hence,
Pr[D-Fail] will be at most qD/q.

Finally, by letting δ = 1/3, we have εcbdh ≥ 2
3qGN (εpkipe − 2qF

2� − 2qD

q).
From the above discussions, we can easily see that the claimed bound of the

running-time of Acbdh holds. This completes the proof of the theorem. �	

Strongly IND-KE-CCA Construction. We can build a strongly IND-KE-CCA
scheme by combining the ideas of PKIPE2 and PKIPE3. A concrete construction
of the scheme is given in the full version of this paper.

Acknowledgement

The authors would like to thank Nuttapong Attrapadung, Yang Cui, Yevgeniy
Dodis, Jun Furukawa, Moti Yung, Rui Zhang, and anonymous referees for their
comments and suggestions.

References

1. R. Anderson, “Two remarks on public key cryptology,” Invited Lecture, ACM
CCCS’97, available at http://www.cl.cam.ac.uk/users/rja14/.

2. M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” Proc.
of Asiacrypt’00, LNCS 1976, Springer-Verlag, pp. 116-129, 2000.

3. D. Boneh and X. Boyen, “Efficient selective-ID secure identity-based encryption
without random oracles,” Proc. of Eurocrypt’04, LNCS 3027, Springer-Verlag,
pp.223-238, 2004.

4. D. Boneh and X. Boyen, “Secure identity based encryption without random ora-
cles,” Proc. of Crypto’04, LNCS 3152, Springer-Verlag, pp.443-459, 2004.

5. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Proc. of Crypto’01, LNCS 2139, Springer-Verlag, pp.213-229, 2001.

6. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
SIAM J. of Computing, vol. 32, no. 3, pp.586-615, 2003 (full version of [5]).

7. M. Bellare and A. Palacio, “Protecting against key exposure:
strongly key-insulated encryption with optimal threshold,” available at
http://eprint.iacr.org/2002/064/ .

8. M. Bellare and S.K. Miner, “A forward-secure digital signature scheme,” Proc. of
Crypto’99, LNCS 1666, Springer-Verlag, pp. 431-448, 1999.

9. C. Cocks, “An identity based encryption scheme based on quadratic residues,”
Proc. of IMA Int. Conf. 2001, Coding and Cryptography, LNCS 2260, Springer-
Verlag, pp. 360-363, 2001.

10. R. Canetti, S. Halevi and J. Katz, “A forward secure public key encryption
scheme,” Proc. of Eurocrypt’03, LNCS 2656, Springer-Verlag, pp.255-271, 2003.

11. Y. Dodis, J. Katz, S. Xu and M. Yung, “Key-insulated public key cryptosystems,”
Proc. of Eurocrypt’02, LNCS 2332, Springer-Verlag, pp.65-82, 2002.

12. Y. Dodis, J. Katz, S. Xu and M. Yung, “Strong key-insulated signature schemes,”
Proc. of PKC’03, LNCS 2567, Springer-Verlag, pp.130-144, 2003.

13. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “Intrusion-resilient public-
key encryption,” Proc. of CT-RSA’03, LNCS 2612, Springer-Verlag, pp.19-32, 2003.

122 G. Hanaoka, Y. Hanaoka, and H. Imai

14. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “A generic construction
for intrusion-resilient public-key encryption,” Proc. of CT-RSA’04, LNCS 2964,
Springer-Verlag, pp.81-98, 2004.

15. E. Fujisaki and T. Okamoto, “How to enhance the security of public-key encryption
at minimum cost,” Proc. of PKC’99, LNCS 1560, Springer-Verlag, pp.53-68, 1999.

16. E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.537-554,
1999.

17. G. Itkis and L. Reyzin, “SiBIR: signer-base intrusion-resilient signatures,” Proc.
of Crypto’02, LNCS 2442, Springer-Verlag, pp.499-514, 2002.

18. A. Shamir, “Identity-based cryptosystems and signature schemes,” Proc. of
Crypto’84, LNCS 196, Springer-Verlag, pp.47-53, 1985.

19. B. Waters, “Efficient identity based encryption without random oracles,” Proc. of
Eurocrypt’05, LNCS 3494, Springer-Verlag, pp.114-127, 2005.

Provably Secure Steganography with Imperfect

Sampling

Anna Lysyanskaya and Mira Meyerovich

Brown University,
Providence RI 02912, USA

{anna, mira}@cs.brown.edu

Abstract. The goal of steganography is to pass secret messages by dis-
guising them as innocent-looking covertexts. Real world stegosystems
are often broken because they make invalid assumptions about the sys-
tem’s ability to sample covertexts. We examine whether it is possible
to weaken this assumption. By modeling the covertext distribution as a
stateful Markov process, we create a sliding scale between real world and
provably secure stegosystems. We also show that insufficient knowledge
of past states can have catastrophic results.

Keywords: Information hiding, steganography, digital signatures,
Markov processes.

1 Introduction

The goal of steganography is to pass secret messages by sending innocuous data.
The sender may give the receiver covertexts that are distributed according to a
covertext distribution. A covertext is made up of multiple documents. For exam-
ple, a digital camera can define a covertext distribution of photographs, in which
pixels, tiles, or even entire pictures can be considered documents. A stegosystem
transforms a secret message, called a hiddentext, into a stegotext that looks like
a covertext.

Real-world stegosystems are broken because they make invalid assumptions
about the covertext distribution. Often, this is an assumption about an adver-
sary’s lack of knowledge about the distribution. For example, for a long time,
modifying the least significant bits of pixels values in bitmaps was considered
a good idea because these bits looked random. Then Moskowitz, Longdon and
Chang [MLC01] showed that there is a strong correlation between the least sig-
nificant bit and the most significant bit (see Figures 7-10 in their paper for an
instructive example).

Provably secure steganography attacks the problem by quantifying the
stegosystem’s need for knowledge. Anderson and Petitcolas [AP98] observe that
every covertext can be compressed to generate a hiddentext. Therefore, to hide
a message, we can “decompress” it into a stegotext. Le [Le03] and Le and Kuro-
sawa [LK03] construct a provably secure compression-based stegosystem that
assumes both the sender and receiver know the covertext distribution exactly.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 123–139, 2006.
c© International Association for Cryptologic Research 2006

124 A. Lysyanskaya and M. Meyerovich

Independently, Sallee [Sal03] implemented a compression-based stegosystem for
JPEG images that lets the sender and receiver estimate the covertext distribu-
tion. Compression-based schemes need to know the exact probability of every
possible covertext.

Cachin [Cac98] proposed using rejection-sampling to generate stegotexts that
look like covertexts. A publicly known hash function assigns a bit value to docu-
ments. To send one bit, the stegosystem samples from the covertext distribution
until it selects a document that evaluates to the message XOR K, where K is
a session key both parties derive from their shared secret key. Sending multiple
bits requires stringing several documents together. Cachin’s scheme is secure if
the hash function is unbiased. Because the stegosystem only needs to be able to
sample from the covertext distribution, it is known as a black-box stegosystem.
This paper examines the nature of the black-box required for steganography.

Hopper, Langford and von Ahn [HLvA02] improve on Cachin’s results. They
give the first rigorous definition of steganographic security by putting it in terms
of computational indistinguishability from the covertext distribution. Their
stegosystem uses Cachin’s rejection-sampling technique, but generalizes it to
be applicable to any distribution, assuming it (1) has sufficient entropy and (2)
can be sampled perfectly based on prior history. Reyzin and Russell [RR03] im-
prove the robustness and efficiency of the Hopper et al. scheme. Von Ahn and
Hopper [vAH04] create a public-key provably secure stegosystem and Backes and
Cachin [BC05] and Hopper [Hop05] consider chosen covertext attacks. Despite
these improvements, the two assumptions necessary for provably secure steganog-
raphy remain in the literature. The entropy assumption appears inherent to the
problem. We address the possibility of weakening the sampling assumption.

Some prior work focuses on the performance measures of black-box stegosys-
tems. In particular, there is the rate of a stegosystem, which measures how
many bits of the message you can pack per document transmitted. There is also
the query complexity per document which measures how many times you need
to query the sampler in order to create a document of the stegotext. Notably,
Dedic et al. [DIRR05] showed that if the rate is w, then the query complexity per
document is 2w. We do not worry about query complexity, but rather about the
very nature of the sampler at the disposal of a stegosystem, so the underlying
question is very different.

Black-box stegosystems [Cac98, HLvA02, RR03, vAH04, BC05, Hop05] as-
sume that they have access to an adaptive sampler. The sampler must be able
to take an arbitrary history of documents as input and output a document dis-
tributed according to the covertext distribution conditioned on the prior history.
For example, if our covertext distribution consists of images of teddy-bears, and
each document is an 8 × 8 pixel tile, then the sampler’s input is the first k − 1
tiles of the image (say, the ears of the teddy bear), and the output is the kth

tile of the image (say, the nose). The stegosystem needs to be able to query the
sampler multiple times on the same input: it continues to sample until it gets a
document that corresponds to the message it wants to hide. The sampler must
output many noses that correspond to the same set of ears.

Provably Secure Steganography with Imperfect Sampling 125

Sampling teddy-bear noses based on teddy-bear ears is an absurd example.
We use it because in the real world there are no known naturally occuring dis-
tributions that can be sampled based on history.1 Our work examines whether
accurate adaptive sampling is really neccessary. We come to the somewhat un-
surprising conclusion that a stegosystem must assume that the sampler it uses
is accurate. Our chief contribution is to examine what it really means to have a
bad sampler.

There are many ways to characterize the abilities of a sampler. It can be con-
textual: given documents di, . . . , dj−1, dj+1, . . . , dk, it produces possible values
for dj . A special case of a context sampler is a history-based sampler: given
di, . . . , dj−1, it produces possible values for dj . Since history-based samplers are
sufficient for secure steganography, we limit our examination to those. Past ex-
perience has shown that stegosystems are broken when there is a statistical
correlation between documents of the covertext distribution. For example, the
least-significant and most-significant bits in a bitmap are correlated, which leads
to Moskowitz et al’s [MLC01] attack. Therefore, a history-based sampler might
make a mistake when it does not consider some of the history (usually, due to
either ignorance or memory and computational limitations). This means we can
characterize a history-based sampler by the length of history it considers. We
call a sampler that considers only some of the history a semi-adaptive sampler,
while one that ignores the history entirely is called non-adaptive.

Some samplers may be limited by the number of times they can be queried
on the same input. For example, Hopper et al [HLvA02] point out that hu-
man beings have difficulty generating multiple independent samples of e-mails
on the same topic. The distribution of the output of the sampler and the cover-
text distribution may gradually (or even sharply) diverge after several draws.
This problem can be analyzed in terms of query complexity, which is discussed
in [DIRR05]. We do not consider it further.

Semi-adaptive samplers lead us naturally to consider Markov processes. Sup-
pose the actual covertext distribution is D. The distribution D′ from which a
semi-adaptive sampler draws is a Markov process. Since a stegosystem approxi-
mates the distribution it samples, security requires that D and D′ are sufficiently
close. We introduce the concept of an α-memoryless distribution, a distribution
that is computationally indistinguishable from some Markov process of order α.
We design the definition of α-memorylessness so that it is necessary and sufficient
for secure black-box steganography with semi-adaptive sampling.

We have three results:

1. We analyze what happens to the von Ahn and Hopper public key stegosys-
tem [vAH04] when the sampler only considers the last α documents of the
history. We calculate how inaccuracy in the sampler translates into insecurity
in the stegosystem. Our results show that assuming the covertext distribu-
tion is α-memoryless is neccessary and sufficient for maintaining security.

1 Artificial distributions, such as the output of randomized algorithms and encryption
functions, can be sampled perfectly. However, they tend to arouse suspicion, thus
making them unsuitable for steganography.

126 A. Lysyanskaya and M. Meyerovich

2. We analyze the security of non-adaptive black-box stegosystems. Indepen-
dently,2 Petrowski et al. [PKSM] implemented a non-adaptive stegosystem
for JPEG images, giving empirical evidence that memoryless distributions
exist and can be used for secure steganography.

3. We construct a pathological α-memoryless high-entropy distribution for
which black-box steganography is infeasible if the stegosystem’s sampler
considers only the last α − 1 documents of the history (under the discrete
logarithm assumption). An efficient adversary can detect any attempt at
covert communication with overwhelming probability.

Organization: Section 2 presents notation and definitions. Section 3 analyzes
the von Ahn and Hopper stegosystem [vAH04] in the context of semi-adaptive
sampling. Section 4 examines non-adaptive stegosystems. Section 5 constructs a
pathological covertext distribution for which black-box steganography is infeasi-
ble. Section 6 concludes. We have omitted some of the proofs; they can be found
in the full paper [LM05].

2 Notation

We call a function ν : N → (0, 1) negligible if for all c > 0 and for all sufficiently
large k, ν(k) < 1/kc.

The hiddentext will always be in {0, 1}∗. A covertext is composed of a se-
quence of documents. Each document comes from the alphabet A; |A| may be
exponential. We denote concatenation with the ◦ operator; a string s can be
parsed to s = s1 ◦ s2 ◦ ... ◦ sn, where |s| = n. The symbol λ denotes the empty
string.

Our main results measure the security of stegosystems; we calculate the prob-
ability of a stegosystem being broken in terms of the probability of an adversary
breaking other cryptographic primitives. The term Advgame

P (A, k) refers to the
probability of adversary A breaking the security of primitive P in the context
of a scenario defined by game when the security parameter is k. For example,
Advsig

DSA(A, 160) is the probability that A forges a 160-bit DSA signature. What
we really care about is attacks by an a large class of adversaries, where each
class defines the maximum amount of time and other resources an adversary can
use. InSecgame

P (class) is the maximum probability that any adversary in class
can break the security of primitive P while in the scenario defined by game. For
example, InSecowf

F (t, k) is the maximum probability of any adversary inverting
the one-way function F if it runs in t(k) time, where k is the security parameter.
Therefore, if we say 3InSecsig

Σ (t, q, k) ≤ InSecowf
F (t, k), this means that signature

scheme Σ is three times as hard to break as one-way function F .
To define the probability of an attacker winning in a scenario, we need to

consider the outcome of several events. The expression Pf [e1, e2, . . . , en : c] is the
probability that condition c holds given that events e1, e2, . . . , en occured (and in
that order). For example, let A be some algorithm that takes as input an integer

2 We presented preliminary results of this work in August 2004 [LM04].

Provably Secure Steganography with Imperfect Sampling 127

and outputs a single bit. The expression P r[x ← Z; b ← A(x) : b = x mod 2] is
the probability that b = x mod 2, given that first x was randomly chosen from Z
and then b was generated by executing A(x). In other words, it is the probability
that A correctly calculates x mod 2 on a randomly chosen integer x.

We say that a function f : A → {0, 1} is ε-biased with respect to distribution
D if |P r[d← D : f(d) = 0]− 1/2| < ε. A ε(k)-biased function is called an un-
biased function if ε is a negligible function.3 A covertext distribution that has
sufficient minimum entropy for steganography is called always informative (see
Hopper et al [HLvA02] for details).

We write x ← D〈h, n〉 to denote sampling n documents from D conditioned
on the prior history h; D〈h, n〉 defines a distribution over An. A semi-adaptive
sampler samples one document from the distribution D conditioned only on the
last α documents of h. Dα〈h, n〉 generates an n-document string by calling a
semi-adaptive samper n times, each time appending the result to h. When we
give a player sampling access to a distribution, we use · to denote the parameters
that the player can pick. For example, the oracle D〈·, 2〉 samples two documents
from D based on a history supplied by the player.

An α-memoryless distribution is indistinguishable from a Markov process of
order α. (A sequence of random variablesX1, . . . , Xn such that for α < i ≤ n, the
conditional distribution {Xi | Xi−α, . . . , Xi−1} is identical to the conditional dis-
tribution {Xi | X1, . . . , Xi−1}.) Since we require computational indistinguisha-
bility, we parameterize everything by k (e.g. Dk, a family of distributions).

Definition 1 (α-Memoryless). Let Dk be a family of distributions indexed
by a public parameter k and let Dα

k be the best Markov model of order α that
approximates Dk. We define the advantage of an adversary A against the Markov
model as:

Advmem
D,α (A, k) = |P r[h← Dk〈λ, n(k) − 1〉;x← Dα

k 〈h, 1〉 : A(h ◦ x) = 1]

−P r[x← Dk〈λ, n(k)〉 : A(x) = 1]|

We let InSecmem
D,α (t, n, k) = maxA∈A(t,n,k) Advmem

D,α (A, k), where A(t, n, k) is the
set of all adversaries that run in time t(k) and get a sample n(k) documents long.
We say that Dk is α-memoryless if InSecmem

D,α (t, n, k) ≤ ν(k) for some negligible
function ν. Dk is strictly α-memoryless if InSecmem

D,β (t, n, k) is non-negligible for
all β < α.

Remark 1. This property is necessary and sufficient for steganography with semi-
adaptive sampling.

The following definitions are either standard or come from von Ahn and Hopper
[vAH04]. We assume that all adversaries are probabilistic polynomial-time Tur-
ing machines. However, the distributions we work with are arbitrary and may act
as arbitrarily powerful adversaries. For example, someone who can adaptively
sample a distribution might be able to use it to calculate discrete logarithms.
3 The function f is typically chosen after we fix the distribution (and the security

parameter). A universal hash function is often used in practice.

128 A. Lysyanskaya and M. Meyerovich

We define InSecdist
X,Y (t, n, k) as the maximum probability that an adversary

can distinguish distributionXk from Yk if it runs in time t(k) and gets a n(k) doc-
ument long sample. Steganography requires an IND$-CPA cryptosystem whose
ciphertext is indistinguishable from random. InSeccpa

E (t, q, n, k) is the insecurity
of cryptosystem E against a chosen plaintext attack by an adversary that runs in
t(k) time, makes q(k) queries and gets responses totaling n(k) bits (see Hopper
et al. [HLvA02] or full paper for details).

The standard specification [vAH04] of a public-key stegosystem is:

Definition 2 (Public Key Stegosystem). A public key stegosystem is the
triple S = (SG,SE,SD). SG(1k) generates a key-pair (SK,PK). SE(PK,m)
takes the public key PK and a message m ∈ {0, 1}∗, and returns some stegotext
s. SD(SK, s) takes the secret key SK and stegotext s and returns a hiddentext
m. For all m ∈ {0, 1}∗, the probability that SD(SK,SE(PK,m)) fails to recover
m should be negligible.

Von Ahn and Hopper [vAH04] define the security of a public-key stegosystem
against a chosen hiddentext attack. An adversary A queries an oracle with hid-
dentexts. The oracle responds either with stegotexts generated by SE(PK, ·) or
with covertexts of the appropriate length, generated by D∗(·). A should not be
able to distinguish the two cases.

Definition 3 (SS-CHA). The advantage of an adversary A against a public-
key stegosystem S = (SG,SE,SD) in a chosen hiddentext attack (CHA) is:

Advcha
S,D(A, k) =

∣∣∣P r[PK ← SG(1k) : A
SE(PK,·),D
k = 1] − P r[AD∗(·),D

k = 1]
∣∣∣

We let InSeccha
S,D(t, q, n, k) = maxA∈A(t,q,n,k) Advcha

S,D(A, k) where A(t, q, n, k)
is the set of all adversaries that run in t(k) time, make q(k) queries and get
responses totaling n(k) bits. A stegosystem is considered secure against a chosen
hiddentext attack (SS-CHA) if InSeccha

S,D(t, q, n, k) ≤ ν(k) for some negligible
function ν.

Remark 2. We restrict the usual definition of security. Typically, the adversary
is allowed to query the stegosystem with any history and message. In our model,
we assume that an adaptive sampler does not exist. A stegosystem that is secure
against such an attack is an adaptive sampler (see Hopper [Hop04] Section 3.3.2).
We force the adversary to always query the stegosystem with history λ (the
empty string).

3 Semi-adaptive Stegosystem

In this section we examine what happens to the von Ahn and Hopper [vAH04]
public-key stegosystem when we replace the adaptive sampling oracle with a
semi-adaptive one. We show that if the oracle samples based on the last α docu-
ments of the history, then an α-memoryless distribution is necessary and sufficent
for maintaining security.

Provably Secure Steganography with Imperfect Sampling 129

3.1 The vAH04 Stegosystem with Semi-adaptive Sampling

The von Ahn and Hopper stegosystem [vAH04] (Construction 2 in their paper)
is a public-key provably secure stegosystem; See Algorithm 3.1. and 3.2 for the
encoding and decoding algorithms (we have modified them slightly to fit our
notation). Their stegosystem uses an IND$-CPA public-key cryptosystem E =
(G,EPK ,DSK) and a publicly known function f : Σ → {0, 1} that is ε-biased
with respect to the covertext distribution Dk. The encoder first encrypts the
message using EPK . Next, for each bit b of ciphertext, the encoder samples
the covertext distribution until it gets a document d such that f(d) = b. The
encoder appends all of the resulting documents together to form the stegotext.
The decoder extracts the ciphertext by evaluating f on every document of the
stegotext and then decrypts the ciphertext.

Algorithm 3.1. Encode
Input: Public key PK, message m, number of times to sample T
step 1: Encrypt message

c ← EPK(m) ;

step 2: Stegocode ciphertext

parse c as c1 ◦ c2 ◦ ... ◦ cn ;
h ← λ ;
for j ← 1 to n do

i ← 1 ;
repeat

sj ← Dk〈h, 1〉, increment i ;
until f(sj) = cj or i > T ;
h ← h ◦ sj ;

end
s ← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

Algorithm 3.2. Decode
Input: Secret key SK, stegotext s
step 1: Extract ciphertext

c ← f(s1) ◦ f(s2) ◦ ... ◦ f(sn) ;

step 2: Decrypt message

m ← DSK(c) ;
return m

For the remainder of Section 3, we will refer to the von Ahn and Hopper
stegosystem as S = (SG,SE,SD) and assume that Dk is the covertext distri-
bution. We define a length function L : Z → Z that calculates the length of a
ciphertext for a message m: L(|m|) = |EPK(m)|. Von Ahn and Hopper [vAH04]
prove that their stegosystem is secure:

130 A. Lysyanskaya and M. Meyerovich

Theorem 1 ([vAH04]). If Dk is an always informative distribution and f is
ε-biased on Dk, then S is a SS-CHA secure stegosystem:

InSeccha
S,D(t, q, n, k) ≤ InSeccpa

E (t+ O(kn), q, n, k) + L(n)ε

Remark 3. What Theorem 1 really states is that the output of S is indistin-
guishable from the distribution it samples.

S uses a perfect sampler. We now consider the stegosystem T = (TG,TE,TD)4

that functions identically to S, except that its only access to Dk is via Dα
k , an

oracle that only considers the last α documents of the history. The main result
of this section is the proof that T is correct and that T is secure if and only if
Dk is α-memoryless.

3.2 Analysis of T

Lemma 1. Assume that Dk is an always informative α-memoryless distribu-
tion and f is an ε-biased function on Dk. For all hiddentexts m ∈ {0, 1}∗, the
probability that T fails to encode m is negligible:

P r[(PK,SK) ← TG(1k); s← TE(PK,m);m′ ← TD(SK, s) : m′ �= m]

≤ L(|m|)(1/2 + ε+ InSecmem
D,α (O(1),L(|m|), k))k

Proof. The probability of error is at most the length of the ciphertext multiplied
by the probability that any individual bit of ciphertext is encoded incorrectly.
See full paper for details.

Theorem 2. If Dk is an always informative α-memoryless distribution and f
is ε-biased on Dk, then T is a SS-CHA secure stegosystem:

InSeccha
T ,D(t, q, n, k) ≤ InSeccpa

E (t+ O(kn), q, n, k)

+ nInSecmem
D,α (t+ O(n), n, k) + L(n)ε

Proof. The probability that T can be broken is the probability that an adversary
distinguishes the IND$-CPA cryptosystem E from random plus the probability
that an adversary can distinguish Dk from Dα

k ; both these values are negligible.
See full paper for details.

Theorem 3. Let Dk be an always informative distribution and f an ε-biased
function on Dk. If Dk is not α-memoryless then T is not a SS-CHA secure
stegosystem:

InSeccha
T ,D(t+ O(1), 1, n, k) ≥ InSecmem

D,α (t, n, k)

− InSeccpa
E (t+ O(kn), 1, n, k)− nε

4 As a mnemonic device, think of S as the stegosystem with a Standard sampler and
T as having a sampler that considers only the Tail of the history.

Provably Secure Steganography with Imperfect Sampling 131

Remark 4. Note that InSecmem
D,α (t, n, k) is not negligible because Dk is not α-

memoryless. Any adversary that can distinguish Dk from Dα
k can be used to

attack T .

Proof. Assume Dk is not α-memoryless. By definition, there exists an adversary
A such that Advmem

D,α (A, k) is non-negligible. Let A run in time t and require a
challenge sample of length n. We use A to create an adversary B that can tell
whether it is querying an oracle representing T or Dk. B will ask its oracle for a
single covertext of length n and pass the output to A. B will output whatever A
outputs. B’s advantage in distinguishing T from Dk is at least as much as A’s
advantage in distinguishing Dα

k from Dk minus the probability of distinguishing
T from Dα

k :

Advcha
T ,D(B, k) ≥ Advmem

D,α (A, k) − InSeccha
T ,Dα(t, 1, n, k)

Using Theorem 1, we get:

Advcha
T ,D(B, k) ≥ Advmem

D,α (A, k) − InSeccpa
E (t+ O(kn), 1, n, k) − nε

B runs in time t+ O(1) and gets 1 challenge string of length n, therefore:

InSeccha
S,D(t+ O(1), 1, n, k) ≥ InSecmem

D,α (t, n, k)

− InSeccpa
E (t+ O(kn), 1, n, k)− nε

This means that if Dk is not α-memoryless, then there exists an adversary that
can launch a successful SS-CHA attack on T with non-negligible probability.

Remark 5. The above proof would probably work for any black-box stegosystem.
However, because it is unclear how to deal with a stegosystem that somehow uses
outside information (or how to rule out this possibility), we limit our analysis
to the stegosystem T .

4 Non-adaptive Stegosystems

In this section, we show how to apply public-key black-box steganography as
proposed by von Ahn and Hopper [vAH04] to real world covertext distribu-
tions. (Independently, Petrowski et. al. [PKSM] implemented a similar system
for JPEG images, but their work has no security analysis.) The key insight is
that multiple digital photographs of a still scene are almost but not completely
identical. We can break up each image into 8 × 8 pixel tiles.5 A cryptographic
hash function assigns a value to each tile. The stegosystem choses the appro-
priate tiles to create a composite photo that encodes the secret message. The
scheme assumes each 8 × 8 pixel tile is independent of its neighbors.

This stegosystem is equivalent to using D0
k to sample Dk and assuming that

the covertext distribution is 0-memoryless, as shown in Algorithm 4.1. Non-
adaptive steganography can be applied to any digital image format, TCP time-
stamp intervals, etc.
5 The dimensions of the tile are an artifact of the JPEG compression algorithm.

132 A. Lysyanskaya and M. Meyerovich

Algorithm 4.1. Non-adaptive stegosystem
Input: Public key PK, message m, T covertexts x(1), . . . , x(T) (each covertext

x(i) is of length |EPK(m)|
step 1: Encrypt message

c ← EPK(m) ;

step 2: Stegocode ciphertext

parse c as c1 ◦ c2 ◦ ... ◦ cn ;
for j ← 1 to n do

i ← 1 ;
repeat

sj ← x
(i)
j , increment i ;

until f(sj) = cj or i > T ;
end
s ← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

The analysis of Algorithm 4.1 follows directly from Section 3. Correctness: The
probability that the stegosystem fails to encode a hiddentext m is: L(|m|)(1/2+
ε+ InSecmem

D,0 (O(1),L(|m|), k))k . Security: Algorithm 4.1 is secure if and only if
D is 0-memoryless: an independent, but not necessarily identically distributed,
sequence of random variables.

5 Pathological Covertext Distribution

In this section, we construct a pathological strictly α-memoryless distribution
and prove that no computationally bounded algorithm can use it to hide mes-
sages without access to Dα

k . The distribution will publish a verification key that
can be used by anyone to check if a covertext is legitimate. The probability that
steganography will be detected is 1 − ν(k), where ν is a negligible function.

We give a stegosystem a list of covertexts generated by D〈λ, ·〉 and access
to Dα−1〈·, 1〉, a semi-adaptive oracle with insufficient memory. For example, a
stegosystem might store a database of photographs (this corresponds to D〈λ, ·〉)
and maintain an internal Markov model about pixel color distributions based
on the 8 adjacent pixels (this corresponds to Dα−1〈·, 1〉, where α − 1 = 8). We
show that any stegotext produced by a stegosystem is really just a quote of a
covertext in its database.

5.1 The Distribution

Our goal is to devise a covertext distribution where (1) each document depends
on only the α documents that came before it (so it is α-memoryless); (2) a
stegosystem cannot by itself compute the ith document di in a legitimate cover-
text; finally (3) it is very unlikely that the output of Dα−1〈h, 1〉 is a valid con-
tinuation of the last α documents of h.

Provably Secure Steganography with Imperfect Sampling 133

The first construction that comes to mind is to make each document be a
concatenation of a random number ri and a signature on the previous α random
numbers: σi = σ(ri−α, . . . , ri). This will meet requirements (1) and (2). There
is a subtle problem with this as far as requirement (3) is concerned. Suppose
we are given α − 1 documents rn−α+1σn−α+1, . . . , rn−1σn−1. The signatures
σn−α+1, . . . , σn−1 can leak partial information about the value rn−α. As a result,
Dα−1〈·, 1〉, even though not explicitly given dn−α, may nevertheless calculate
rn−α and compute the correct signature σn = σ(rn−α, . . . , rn).

In order to fix this problem, we need to construct a signature function σ
for which the following property holds: We fix a sequence of 2α − 1 integers
r1, . . . , r2α−1. Then the sequence of α− 1 documents rα+1σα+1, . . . , r2α−1σ2α−1

should be information theoretically independent of rα. This property ensures
that Dα−1 cannot learn rα and so will be unable to compute the correct signature
σ2α based on the previous α documents of h, as required by (3) above.

Consider the following hash function h : Zα
p → G, where p is a k-bit prime

and G is a group of order p. The hash function hp,G,g1,...,gα+1 is parameterized
by p,G and α + 1 generators of G: g1, . . . , gα+1. (We will omit the subscript of
h in the future). On input (r1, . . . , rα+1) ∈ Zα+1

p the hash function returns:

h(r1, r2, . . . , rα+1)
.= gr1

1 · gr2
2 · · · · · grα+1

α+1

The hash function h has the information hiding property that we need because
it reveals only a linear combination of its inputs (see the proof of Lemma 4 in
the full paper).

We now formalize the above discussion. We define a secure stateless signa-
ture scheme, show how to combine it with h and prove the result is secure
under the discrete logarithm assumption. Then we construct our pathological
distribution.

Definition 4 (Stateless Signature Scheme). A stateless signature scheme
Σ = (G, σ,V) is a triple of polynomial time algorithms where: G(1k) is the key
generation algorithm, σ : {0, 1}k×Mk → {0, 1}poly(k) is a probabilitic algorithm
that on input (SK,m) outputs a poly(k) bit signature, and V : {0, 1}k ×Mk ×
{0, 1}poly(k) → {0, 1} is the signature verification function that accepts valid
signatures.

We define InSecsig
Σ (t, q, k) as the insecurity of signature scheme Σ against an

adaptive chosen message attack by an adversary that runs in time t(k) and
makes q(k) queries to the signing oracle (see Goldreich [Gol04] for details).

Goldreich [Gol04] shows that stateless signature schemes exist if one-way func-
tions exist. It is also known that the discrete logarithm assumption implies one-
way functions. Therefore, the discrete logarithm assumption also implies the
existence of stateless signature schemes. We let DL(t, k) be the maximum prob-
ability that any algorithm running in time t(k) can solve the discrete logarithm
problem.

134 A. Lysyanskaya and M. Meyerovich

We construct a signature scheme using the hash function h:

Construction 1. Let Σ′ = (G′, σ′,V ′) be a secure stateless signature scheme
that takes messages in {0, 1}2k and outputs signatures in {0, 1}poly(k). We use
(G′, σ′,V ′) and the hash function h to construct a new stateless signature scheme
Σ = (G, σ,V). We let G = G′.

The signature function σ : {0, 1}k × (Z∗
p)

α+1 → {0, 1}poly(k):

σ(SK, r1 ◦ · · · ◦ rα+1) = σ′(SK, h(r1, . . . , rα+1))

The verification function V : {0, 1}k × (Z∗
p)α+1 × {0, 1}poly(k) → {0, 1}:

V (V K, s, r1 ◦ · · · ◦ rα+1) = V ′(V K, s, h(r1, . . . , rα+1))

We further define σ on input from (Z∗
p)β, where β < α + 1 as follows:

σ(r1, . . . , rβ) = σ′(h(0, . . . , 0, r1, . . . , rβ)). V extends in the obvious way.

Lemma 2. Σ = (G, σ,V) from Construction 1 is a secure stateless signature
scheme under the discrete logarithm assumption:

InSecsig
Σ (t, q, k) ≤ InSecsig

Σ′(t+ O(q), q, k) + DL(t+ O(q), k).

Proof. The intuition behind the proof is that any adversary that can attack Σ
can be used to either attack the underlying signature scheme or calculate discrete
logarithms. See full paper for details.

We use the signature scheme from Construction 1 to construct a distribution
DV K over the alphabet {Z∗

p × {0, 1}poly(k)}∗, where p is a k bit prime and
poly(k) is the length of a signature in Σ. Each document consists of an element
in Z∗

p and a signature on the previous α+ 1 elements.

Construction 2 (Pathological Distribution DV K). Let Σ = (G, σ,V) be a
secure stateless signature scheme from Construction 1. We use G to generate
the keys (SK,V K) and index distribution DV K via the public verification key.
If di is the ith document, then di = riσ(SK, ri−α ◦ · · · ◦ ri), where ri is chosen
randomly from Zp. The output of DV K〈λ, n〉 looks like:

DV K〈λ, n〉 →r1σ(SK, r1)
◦ r2σ(SK, r1 ◦ r2) ◦ · · ·
· · · ◦ rα+1σ(SK, r1 ◦ r2 ◦ · · · ◦ rα+1) ◦ · · ·
· · · ◦ rnσ(SK, rn−α ◦ · · · ◦ rn)

We define σi = σ(SK, ri−α, . . . , ri).

Definition 5 (Γ). Suppose we query DV K〈λ, n〉 q times and record the result
on tape Q. We define the probability that any one sequence r1, . . . , rd appears
two or more times in Q as Γ (d, n, q, k).

Lemma 3. Γ (d, n, q, k) is a negligible function in k.

Proof. The proof relies on the fact that |Zp| = Θ(2k). See full paper for details.

Provably Secure Steganography with Imperfect Sampling 135

5.2 Pathology of the Distribution

We now show that any computationally bounded stegosystem for DV K is guar-
anteed to be caught with overwhelming probability.

Theorem 4. Let S be an arbitrary probabilistic polynomial time stegosystem for
distribution DV K that has a database of q1 covertexts of length n generated by
DV K〈λ, ·〉 and is allowed to make q2 queries to Dα−1

V K 〈·, 1〉. Suppose it takes S
time t to generate a stegotext of length N > α. Then there exists an adversary
that can distinguish S from DV K with probability 1− ν(k), for a negligible func-
tion ν. The adversary uses only the verification key V K and q1 +1 samples from
the oracle of length N each; it runs in time O((t +N)(q1 + 1)).

Remark 6. The stegosystem needs to forge signatures if it wants to generate
more than q1 distinct stegotexts. All the adversary does is ask for q1 +1 samples
and checks them for duplicates and/or invalid signatures.

We will prove Theorem 4 in three steps. First we will construct an oracle D∗α−1
V K

that is information theoretically indistinguishable from Dα−1
V K 〈·, 1〉. Then we will

show that a stegosystem whose only resource is D∗α−1
V K cannot create stegotexts

longer than α with more than negligible probability. Finally, we will augment the
stegosystem by giving it access to DV K〈λ, ·〉 and prove Theorem 4 by showing
that it still cannot generate new stegotexts.

Algorithm 5.1. D ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: h = r1σ1, . . . , rn−1σn−1

If the history is more than α − 1 documents long, D∗α−1
V K randomly

chooses r̂n and r̂n−α and signs the result.

if n ≤ α − 1 then return DV K〈h, 1〉 ;
else

r̂n ← Random ;
r̂n−α ← Random ;
û ← h(r̂n−α, rn−α+1, . . . , rn−1, r̂n) ;
σ̂n ← σ(û) ;

end
return r̂nσ̂n ;
We use x̂ to signify that the value of x was assigned by D ∗α−1

V K 〈·, 1〉

Lemma 4. Consider D ∗α−1
V K 〈·, 1〉 (Algorithm 5.1). D ∗α−1

V K 〈·, 1〉 = Dα−1
V K 〈·, 1〉.

Proof. Lemma 4 follows from the information-theoretic hiding property of h, see
full paper for proof.

Lemma 5. DV K is strictly α-memoryless.

Proof. Lemma 5 follows from Lemma 4, see full paper for proof.

136 A. Lysyanskaya and M. Meyerovich

Lemma 6. Let S be any stegosystem that has oracle access to Dα−1
V K 〈·, 1〉, but

with no direct access to DV K - i.e. S does not know SK and has no oracle access
to σ(SK, ·). Suppose it takes S t time and q queries to Dα−1

V K 〈·, 1〉 to output a
stegotext s = r1σ1 ◦ · · · ◦ rnσn of length n > α. Then there exists an efficient
adversary that can distinguish S from DV K with overwhelming probability using
only one sample of length α and running in time O(t):

InSeccha
S,D(t, 1, α+ 1, k) ≥ 1 − InSecsig

Σ (t+ O(1), q, k) −DL(t+ O(q), k)

Furthermore, ∀i > α, the probability that an arbitrary signature σi is valid is at
most:

InSecsig
Σ (t+ O(1), q, k) + DL(t+ O(q), k).

Proof. Assume we have a secure stegosystem S with no direct access to DV K . We
construct an adversary A that uses S to forge signatures or calculate discrete
logs. A tells S to generate a single stegotext of any length n > α. While S
is working, A intercepts all of S’s queries to Dα−1

V K 〈·, 1〉 and redirects them to
D ∗α−1

V K 〈·, 1〉. Finally, S outputs a stegotext s = r1σ1 ◦ r2σ2 ◦ · · · ◦ rnσn.
Choose any i > α. We have three cases to consider:

1. If σi is not a valid signature on ri−α ◦ · · ·◦ ri then the stegosystem is insecure.
The probability that this happens is InSeccha

S,D(t+ O(1), 1, n, k).
2. If σi is a valid signature on ri−α ◦ · · · ◦ ri and it was not generated by D ∗α−1

V K

〈·, 1〉 then S violated the security of Σ. The probability that this happens is
InSecsig

Σ (t+ O(1), q, k).
3. If σi is a valid signature that was generated by D∗α−1

V K 〈·, 1〉 then we use S and
D∗α−1

V K 〈·, 1〉 to calculate discrete logarithms. We set up a reduction algorithm

Algorithm 5.2. D ∗ ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: r1σ1, . . . , rn−1σn−1

if n < α then return DV K〈h, 1〉 ;
else

r̂n ← Random ;

r̂ ← Random ;

û ← y · gr̂ · h(1, rn−α+1, . . . , rn−1, r̂n) ;

σ̂n ← σ(û) ;
end
return r̂nσ̂n ;
D ∗ ∗α−1

V K 〈h, 1〉 is almost identical to D ∗α−1
V K 〈h, 1〉. We highlighted the

differences.

that uses the stegosystem as a black box and controls the actions of Dα−1
V K 〈·, 1〉.

The reduction would get a challenge string y = gx, where g is a generator of
the group G and x is unknown. Next, the reduction would ask the stegosystem
to generate a stegotext. Whenever the stegosystem queries Dα−1

V K 〈·, 1〉, the

Provably Secure Steganography with Imperfect Sampling 137

reduction would redirect the call to D ∗ ∗α−1
V K 〈·, 1〉. Algorithm 5.2 shows how

D ∗ ∗α−1
V K 〈·, 1〉 inserts y into every signature. D ∗ ∗α−1

V K 〈·, 1〉 ensures that the
returned signature σ̂n is valid only if rn−α = logg (y · gr̂) = logg (gx+r̂) =
x+ r̂, where r̂ is chosen by D ∗ ∗α−1

V K 〈·, 1〉. Since the signature σi is generated
by D ∗∗α−1

V K 〈·, 1〉, we know that si−α = x+ r̂. The reduction outputs si−α− r̂,
thereby calculating the discrete logarithm. As a result, the probability that
this case occurs is DL(t+ O(q), q, k).

Based on our case analysis, we see that InSeccha
S,D(t, 1, n, k) ≥ 1 − InSecsig

Σ (t +
O(1), q, k) − DL(t + O(q), k). Substituting n = α + 1 proves the first part of
Lemma 6. Furthermore, we’ve shown that ∀i ≥ 1, the probability that an arbi-
trary signature σi is valid is at most InSecsig

Σ (t+ O(1), q, k) + DL(t+ O(q), k).

Proof (Theorem 4). Assume a stegosystem S has a database of q1 covertexts
generated by DV K〈λ, n〉 and the ability to query Dα−1

V K 〈·, 1〉 q2 times. We can
create an adversary A that distinguishes the output of DV K from S. A gets V K
as input and permission to query a mystery oracle that is either DV K or S. A
will ask its oracle to generate q1 + 1 covertexts of length N . A outputs 1 if the
oracle returns any duplicate or invalid covertexts. If the oracle is DV K〈λ, ·〉, then
A outputs 1 with probability Γ (N,N, q1 + 1, k) (the probability that duplicate
covertexts occur). We examine what happens when the oracle is S.

S can use its covertext database to generate stegotexts. Each covertext of
length n can generate at most 1 valid stegotext of length N (the stegosystem
can take an N document prefix). The stegosystem cannot take an arbitrary
substring of a covertext because it would have to forge a signature on the new
first integer and the α dummy arguments.

S gives A a list of q1 + 1 stegotexts: s(1), . . . , s(q1+1). Each stegotext s(i) can
be parsed as r(i)1 σ

(i)
1 ◦ · · · ◦ r(i)N σ

(i)
N . S can easily create q1 distinct stegotexts from

its covertext dictionary. We examine how S generates the q1 + 1st stegotext.
There are 3 cases:

1. S has generated a new message signature pair that is not in the covertext
database and that did not come from Dα−1

V K 〈·, 1〉. Then S has broken the
security of the signature scheme Σ. S ran in (q1 +1)t time and made nq1 + q2
queries to σ(SK, ·) (via its queries to DV K〈λ, ·〉 and Dα−1

V K 〈·, 1〉). Therefore,
this case occurs with probability at most InSecsig

Σ ((q1 + 1)t, nq1 + q2, k).
2. S used a signature generated by Dα−1

V K 〈·, 1〉. By Lemma 6, we know that
∀i, j > α, S can use Dα−1

V K 〈·, 1〉 to generate a valid σ(i)
j with probability at most

InSecsig
Σ (t+O(1), q2, k)+DL(t+O(q2), k). Therefore, the probability that this

case occurs is the total number of such signatures (N − α)(q1 + 1) times the
probability that any particular one was generated by Dα−1

V K 〈·, 1〉. This gives a
total probability of: (N−α)(q1+1)(InSecsig

Σ (t+O(1), q2, k)+DL(t+O(q2), k))
3. The covertext database contains two identical sequences of α integers, thus let-

ting S cut and paste two covertexts. This occurs with probability Γ (α, n, q2, k).

138 A. Lysyanskaya and M. Meyerovich

Adding up the probabilities from the case analysis above, we get that

Advcha
S,D(A, k) ≥ 1− Γ (N,N, q1 + 1, k)− InSecsig

Σ ((q1 + 1)t, nq1 + q2, k)

− (N − α)(q1 + 1)(InSecsig
Σ (t+ O(1), q2, k) + DL(t+ O(q2), k))

− Γ (α, n, q2, k)

A runs in O((t+N)(q1+1)) time and makes q1+1 queries of total lengthN(q1+1).
Therefore, InSeccha

S,D(O((t +N)(q1 + 1)), q1 + 1, N(q1 + 1)) ≥ Advcha
S,D(A, k) ≥

1−ν(k) for the negligible function ν defined above. This gives us the lower bound
of 1− ν(k) on the insecurity of S.

6 Conclusion

Our results link current theoretical research to real world stegosystems. We show
that a stegosystem must assume that its approximation of the covertext distribu-
tion is correct. A slight error, or a missed correlation, can lead to almost certain
detection. It is impossible to leverage incomplete or incorrect information to
somehow create properly distributed covertexts.

Acknowledgements

Anna Lysyanskaya is supported by NSF CAREER grant CNS-0374661. Mira
Meyerovich is supported by a U.S. Department of Homeland Security (DHS)
Fellowship under the DHS Scholarship and Fellowship Program and NSF grant
CNS-0374661. The DHS Scholarship and Fellowship Program is administered by
the Oak Ridge Institute for Science and Education (ORISE) for DHS through
an interagency agreement with the U.S Department of Energy (DOE). ORISE
is managed by Oak Ridge Associated Universities under DOE contract number
DE-AC05-06OR23100. All opinions expressed in this paper are the authors’ and
do not necessarily reflect the policies and views of NSF, DHS, DOE, or ORISE.

References

[AP98] Ross J. Anderson and Fabien AP Petitcolas. On the limits of steganography.
IEEE Journal on Selected Areas in Communications, 16(4):474–481, May
1998.

[BC05] Michael Backes and Christian Cachin. Public-key steganography with ac-
tive attacks. In Joe Kilian, editor, Theory of Cryptography Conference
Proceedings, volume 3378 of LNCS, pages 210–226. Springer Verlag, 2005.

[Cac98] Christian Cachin. An information-theoretic model for steganography. In
David Aucsmith, editor, Proc. 2nd Information Hiding Workshop, volume
1525 of LNCS, pages 306–318. Sprinter Verlag, 1998.

[DIRR05] Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Russell. Upper and
lower bounds on black-box steganography. In Joe Kilian, editor, The-
ory of Cryptography Conference Proceedings, volume 3378 of LNCS, pages
227–244. Springer Verlag, 2005.

Provably Secure Steganography with Imperfect Sampling 139

[Gol04] Oded Goldreich. Foundations of cryptography: Volume 2, basic applica-
tions. 2004.

[HLvA02] Nicholas J. Hopper, John Langford, and Louis von Ahn. Provably secure
steganography. In Moti Yung, editor, Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of LNCS.
Springer, 2002.

[Hop04] Nicholas J. Hopper. Toward a theory of steganography. CMU Ph.D. Thesis,
2004.

[Hop05] Nicholas J. Hopper. On steganographic chosen covertext security. In ICALP
2005, 32nd Annual International Colloquium on Automata, Languages and
Programming, Lisboa, Portugal, July 11-15 2005, Proceedings, 2005.

[Le03] Tri Van Le. Efficient provably secure public key steganography. Techni-
cal report, Florida State University, 2003. Cryptography ePrint Archive,
http://eprint.iacr.org/2003/156.

[LK03] Tri Van Le and Kaoru Kurosawa. Efficient public key steganogra-
phy secure against adaptively chosen stegotext attacks. Technical re-
port, Florida State University, 2003. Cryptography ePrint Archive,
http://eprint.iacr.org/2003/244.

[LM04] Anna Lysyanskaya and Mira Meyerovich. Steganography with imperfect
sampling. At: CRYPTO 2004 Rump Session, August 2004, 2004.

[LM05] Anna Lysyanskaya and Mira Meyerovich. Steganography with imper-
fect sampling. Technical Report ePrint Archive 2005/305, Brown Univer-
sity, 2005. Cryptography ePrint Archive, from http://eprint.iacr.org/

2005/305.
[MLC01] Ira S. Moskowitz, Garth E. Longdon, and LiWu Chang. A new paradigm

hidden in steganography. In Proceedings of the 2000 workshop on New
Security Paradigms. ACM Press, 2001.

[PKSM] Kyle Petrowski, Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon.
Psteg: steganographic embedding through patching. In 2005 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing.

[RR03] Leonid Reyzin and Scott Russell. Simple stateless steganography. Technical
Report ePrint Archive 2003/093, Boston University, 2003. Cryptography
ePrint Archive, from http://eprint.iacr.org/2003/093.

[Sal03] Phil Sallee. Model-based steganography. In IWDW, pages 154–167, 2003.
[vAH04] Louis von Ahn and Nicholas J. Hopper. Public-key steganography. In

Christian Cachin and Jan Camenisch, editors, Advances in Cryptology —
EUROCRYPT 2004, volume 3027 of LNCS, pages 323–341. Springer Ver-
lag, 2004.

Collision-Resistant No More:

Hash-and-Sign Paradigm Revisited

Ilya Mironov

Microsoft Research (Silicon Valley Campus)
mironov@microsoft.com

Abstract. A signature scheme constructed according to the hash-and-
sign paradigm—hash the message and then sign the hash, symbolically
σ(H(M))—is no more secure than the hash function H against a
collision-finding attack. Recent attacks on standard hash functions call
the paradigm into question. It is well known that a simple modification
of the hash-and-sign paradigm may replace the collision-resistant hash
with a weaker primitive—a target-collision resistant hash function (also
known as a universal one-way hash, UOWHF). The signer generates
a random key k and outputs the pair (k, σ(k||Hk(M))) as a signature
on M . The apparent problem with this approach is the increase in the
signature size. In this paper we demonstrate that for three concrete
signature schemes, DSA, PSS-RSA, and Cramer-Shoup, the message
can be hashed simultaneously with computing the signature, using one
of the signature’s components as the key for the hash function. We
prove that our constructions are as secure as the originals for DSA
and PSS-RSA in the random oracle model and for the Cramer-Shoup
signature scheme in the standard model.

Keywords: TCR, UOWHF, collision-resistance, signatures, Cramer-
Shoup, DSA, PSS-RSA.

1 Introduction

History of relation between cryptographically secure hash functions and digi-
tal signature schemes is one of co-evolution and divergence. Early constructions
of dedicated hash functions were motivated by their applications to signature
schemes [Riv91, NIS95]; by now the hash functions have extended their applica-
tion domain to include MACs [BCK96] and public-key encryption [Sho00b]. In
turn, unforgeability of many signature schemes crucially depends on security of
the underlying hash function. This paper is concerned with divesting signature
schemes of their reliance on collision-resistant hash functions by replacing them
with a strictly weaker primitive. The general approach is well known; the novelty
is in doing so without increasing the signature length.

Hash functions often play a dual role of a domain extender and a random
oracle in constructions of signature schemes.

The first role, that of a domain extender, is due to the fact that it is much
easier to design a scheme secure for signing messages of a fixed length than

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 140–156, 2006.
International Association for Cryptologic Research 2006

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 141

of unrestricted length. Consider, for example, the RSA signature defined as
σRSA(M) = Md mod N . If the message domain were unrestricted, a forgery
would be trivial since σRSA(M) = σRSA(M + N). Virtually all practical signa-
ture schemes follow the hash-and-sign paradigm: apply a hash function to the
message and sign the result, which we represent symbolically as σ(H(M)). The
natural security requirement for H is that the hash function must be collision-
resistant. Otherwise, if two messages have identical hashes H(M1) = H(M2) a
signature on one of them is a signature on the other. In light of recent attacks
on standard hash functions, such as [WY05, WYY05a], feasibility of construct-
ing efficient collision-resistant hash functions appears problematic; bypassing the
requirement would make signatures more robust and may potentially increase
their efficiency.

The following simple attack on the RSA function, whose domain is restricted
to 1 ≤M < N , motivates the second role of hash functions: σRSA(M2 mod N) =
σRSA(M)2 mod N . Coincidentally, hashing the message before applying the RSA
function thwarts this attack, at least in practice. Many practical signature
schemes are vulnerable to similar attacks, which are remedied by a judicious
application of a hash function. Thus, the Fiat-Shamir heuristic [FS87], which
gives a generic way of transforming an identification scheme into a signature,
and the full-domain hash [BR93], which is suitable for signatures based on a
trapdoor permutation such as RSA or Rabin functions, elevated the status of the
hash function from a technical prop to an indispensable element of the construc-
tion, in the same time upping the ante for design of the hash function. Not only
must the hash be collision-resistant, it should be a real-world implementation
of a certain idealized abstraction, called the random oracle. This methodology
is adopted by many practical signatures, although there is evidence that it may
never be proved secure in the standard model [DOP05, PV05].

By explicitly decoupling the two roles of the hash function we can have more
transparent security proofs and more efficient designs of signature schemes. In
this paper we relax the collision-resistant requirement, without addressing the
need for a random oracle. For the basic Cramer-Shoup signature scheme [CS00],
provable in the standard model, this means a strictly better signature scheme
(computationally equivalent scheme which relies on a weaker assumption). For
discussion of our result as applied to two signature schemes provably secure in
the random oracle model, DSA and PSS-RSA, see Section 6.

The primitive, which we prefer to collision-resistant hash functions, is
due to Naor and Yung [NY89]. Simultaneous with development of practi-
cal signature schemes offering only heuristic security, a series of seminal pa-
pers [GMR88, NY89, Rom90] established that provably secure signature schemes
can be constructed from one-way functions. An intermediate step of this con-
struction is a family of universal one-way hash functions, also called target-
collision resistant (TCR) hashes. TCR hashes is a class of keyed hash functions
formally defined in Section 2. Further validating this approach, Simon [Sim98]
demonstrated that a collision-resistant hash is a fundamentally stronger prim-
itive (and hence more difficult to construct) than a TCR function by proving

142 I. Mironov

impossibility of a black-box construction of a collision-resistant hash from a one-
way function.

Moreover, a TCR hash may replace a collision-resistant function as the first
step of the hash-and-sign signature scheme. Most importantly, it can be done
via a little tweak of the hash-and-sign paradigm rather than by going through
the theoretically secure but inefficient construction of [NY89]. Informally, if σ(·)
is secure for signing fixed-length messages and Hk(·) is TCR, the hybrid scheme
(k, σ(k||Hk(M))), where key k is chosen uniformly at random by the signer,
is secure as well. The obvious problem with the scheme is the increase in the
signature length, since the key k becomes part of the signature (discussion of
the length of the key is deferred to Section 6).

We observe that for many signature schemes, such as Cramer-Shoup, those
based on Fiat-Shamir heuristic and probabilistic full-domain hash, the signature
already includes some randomly generated data, which is independent of the
message. We demonstrate that this data can double as the key of the TCR hash,
thus eliminating the need for extra key material. The resulting schemes retain
the signature length of the originals and are at least as secure.

Some schemes and results of this paper were independently discovered and
presented by Halevi and Krawczyk [HK05a, HK05b].

2 Definitions

Our definitions of signature schemes and TCRs follow [GMR88] and [NY89]
except that we recast the definitions in the language of exact security.

Signature scheme. A signature scheme S consists of a triple of algorithms:

– Key generation algorithm KeyGen(1k) = (PK, SK), a randomized algorithm
producing a public-private key pair for a given security parameter.

– Verification algorithm VerifyPK(M, σ) ∈ {accept, reject}. We say that σ
is a valid signature on M if VerifyPK(M, σ) = accept.

– Signing algorithm SignSK(M) = σ ∈ {0, 1}n. The signing algorithm outputs
a valid signature on M with an overwhelming probability taken over its own
coin tosses.

A signature scheme S is (t, ε, qS)-secure against existential forgery under
adaptive chosen-message attack if the attacker running in time less than t and
making no more than qS signing queries cannot succeed with probability more
than ε in producing a valid signature on a messageM , which has not been previ-
ously signed by the signing oracle. In other words, the adversary obtains at most
qS valid signatures on adaptively chosen (queries may depend on the answers to
the previous queries) messages. The adversary wins if he can compute a valid
signature on a message not in the list of queries.

TCR. A (t, ε)-target collision-resistant hash function (TCR), also known as a
universal one-way hash function (UWOHF) is a keyed hash functionH : {0, 1}k×
{0, 1}∗ �→ {0, 1}n such that no adversary running in time less than t can win the
following game with probability more than ε:

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 143

Step 1. Output X ∈ {0, 1}∗.
Step 2. Receive K randomly chosen from {0, 1}k.
Step 3. Produce Y so that HK(X) = HK(Y).

As a warm-up exercise, we sketch a proof that combining a TCR hash with
a signature scheme secure for signing fixed-length strings results in a signature
scheme secure for messages of unrestricted length.

Proposition 1. Assume a signature scheme S = (KeyGen ,Sign,Verify) is
(t, εS , qS)-secure against existential forgery under an adaptive chosen-message
attack where the messages are restricted to length n. Assume further that
H : {0, 1}k × {0, 1}∗ �→ {0, 1}n−k is a (t, εH)-TCR. Then there exists a
(t, εS + εHqS , qS)-secure signature scheme for arbitrary-length messages.

Proof. Let the signature scheme S′ be the following:

Sign ′: Verify ′:
Step 1. Generate K ←− {0, 1}k. Step 1. Parse signature as (K, σ).
Step 2. σ ← SignSK(K||HK(M)). Step 2. Run VerifyPK(K||HK(M), σ).
Step 3. Output signature K||σ.

(KeyGen is the same as in S).
Assume that there exists an adversary capable of producing a valid signa-

ture (M, (K, σ)) having queried the signing oracle on messages M1,. . . ,MqS ,
such that M �= Mi for 1 ≤ i ≤ qS . Let the signatures output by the or-
acle be (K1, σ1),. . . ,(KqS , σqS). Two cases are possible. Either K||HK(M) �=
Ki||HKi(Mi) for all i ∈ [1, qS] or there is i such that K||HK(M) = Ki||HKi(Mi)
and M �= Mi. In the former case the adversary can be trivially used to forge
a signature for the scheme S. In the latter, draw a random index j ∈ [1, qS]
and, when the adversary makes query Mj, send Mj as the first message of the
TCR-game. Upon receiving key K ′, set Kj = K ′. With probability 1/qS the
adversary outputs a message-signature pair so that K||HK(M) = K ′||HK′(Mj).
Since the keys have fixed size k bits, it follows that K = K ′ and we win the
TCR-game by outputting M , which collides with Mj under key K ′.

The probability that a t-time adversary forges a signature is less than the
sum of εS—the probability that he succeeds in breaking the signature scheme
S—and εHqS , where εH is the probability that it breaks H . �

Pseudo-random generator. We say that a function F : A �→ B is (t, ε, qF)-
pseudo-random generator if no adversary running in time less than t and making
less than qF queries of F can distinguish F (x), where x ←− A, from the uniform
distribution on B with probability more than ε. We relax the standard defini-
tion [BM82] by dropping the usual requirement that the function stretches its
input (i.e., that |A| < |B|). Although compressing pseudo-random generators are
trivial to construct, the assumption that a particular function, such as SHA-1,
is a pseudo-random generator, is substantive.

144 I. Mironov

3 DSA Scheme

We present the original DSA scheme together with our variant, which we call
TCR-DSA, see Figure 1. The new signature scheme uses three hash functions:
H : {0, 1}�2 × {0, 1}∗ �→ {0, 1}�1, which we assume to be a (tH , εH)-TCR, and
two functions F1 : Zp �→ {0, 1}�2 and F2 : {0, 1}�1+�2 �→ {0, 1}n, which we model
as random oracles.

DSA TCR-DSA
Key selection:

p, q—prime, |p| = n, |q| = m, p|q − 1
g ∈ Zq, ord g = p

a ←− Zp; h = ga mod q
public key: p, q, g,h
private key: a

Hash functions:

G : {0, 1}∗ �→ {0, 1}n H : {0, 1}�2 × {0, 1}∗ �→ {0, 1}�1—TCR

F2 : {0, 1}�1+�2 �→ {0, 1}n

F1 : Zp �→ {0, 1}�2
random oracles

Signature generation:

k ←− Zp k ←− Zp

r = (gk mod q) mod p r = (gk mod q) mod p

r1 = F1(r)

s = k−1(G(M) + ra) mod p s = k−1(F2(r1, Hr1(M)) + ra) mod p

σ = (r, s) σ = (r, s)

Signature verification:

r1 = F1(r)

u = g
G(M)

hr mod q u = g
F2(r1,Hr1 (M))

hr mod q

w = us−1 mod p mod q w = us−1 mod p mod q
accept if w mod p = r accept if w mod p = r

Fig. 1. DSA and TCR-DSA (differences are enclosed in boxes)

In this section we tie security of TCR-DSA to that of the DSA instantiated
with any concrete function, which is a good {0, 1}2n �→ {0, 1}n pseudo-random
generator, and under the δ-min-entropy of r assumption (defined below) in the
random oracle model.

First, we formulate an assumption on uniformity of r (in both schemes), also
discussed in [Bro05].

Assumption of “δ-min-entropy of r”. Define the min-entropy of distribution
D as

H∞(D) = − logmaxPr[x ∈ D].

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 145

Let R be the distribution of r = (gk mod q) mod p, where k is uniform in
Zp. We assume that H∞(R) > δ.

[NS02, Lemma 10] proves that r has min-entropy O(δ log p) for some δ that
depends on log q/ log p. In practice, we expect r to be distributed much smoother,
having min-entropy of the order of log p − c log log p for some small c (consider
the occupancy problem applied to p balls and 2n bins).

Theorem 1. Under the assumptions that

– DSA is (t, εDSA, qS)-secure for some G : {0, 1}∗ �→ {0, 1}n;
– G restricted to inputs of length 2n is (t, εG)-pseudo-random generator;
– H is (t, εH)-TCR;
– r has (log p − δ)-min-entropy;
– F1,F2 are modeled as random oracles, which together are queried no more

than qF times;

then TCR-DSA is (t, 2εDSA + εG + εHqS + (2−δqSp + qF)2−δqS , qS)-secure.

Proof. We demonstrate how to transform any forgery of TCR-DSA into either
an attack on H as a TCR or a forgery of DSA instantiated with G. We do so
by defining Game 0 that consists of the challenger interacting with the TCR-
DSA adversary A and the DSA signing oracle. A queries F1 and F2, requests
signatures, and attempts to forge a TCR-DSA signature. In the spirit of [Sho04]
we describe a sequence of games that transforms the initial game to one whose
success probability we can easily analyze.

Game 0. Obtain the public key for the DSA oracle and pass it on as the public
key of TCR-DSA. We keep two lists L1, L2, initially empty, of inputs on which
F1 and F2 are defined. Queries to F1 are answered randomly; queries to F2 are
answered by randomly choosing M ′ ←− {0, 1}2n and returning G(M ′) (M ′ is
stored; if M ′ appeared previously, the process is repeated). Notice that under
the assumption of computational indistinguishability of G’s output, F2 cannot
be distinguished from a true random oracle with probability more than εG. Upon
receiving a new signing query M do the following:

Step 1. Generate M ′ ←− {0, 1}2n. Repeat if M ′ appeared previously.
Step 2. Obtain (r, s) by querying the DSA signing oracle on M ′.
Step 3. Fail if r ∈ L1. Define r1 = F1(r) randomly, appending the result to

L1.
Step 4. Fail if (r1,Hr1(M)) ∈ L2. Otherwise let F2(r1,Hr1(M)) = G(M ′),

add (r1,Hr1(M)) to L2 and store M ′ together with r1,Hr1(M).
Step 5. Output (r, s) as a TCR-DSA signature on M .

Finally, if A outputs M∗, (r∗, s∗) as a forgery of TCR-DSA, do the following:

Step 6. Compute r∗1 = F1(r∗).
Step 7. Fail if F2 has not been queried on (r∗1 ,Hr∗

1
(M∗)).

Step 8. Fetch M∗
0 such that F2(r∗1 ,Hr∗

1
(M∗)) = G(M∗

0).

146 I. Mironov

Step 9. Fail if the DSA oracle has been queried on M∗
0 .

Step 10. Output M∗
0 , (r∗, s∗) as a DSA forgery.

Observe that if Game 0 succeeds, the challenger aided by A queried the DSA
oracle no more than qS times and successfully forged a DSA signature. The
probability of this event is no more than εDSA. In order to complete the proof
we shall bound the probability that Game 0 fails (Steps 3, 4, 7, 9).

To bound the failure probability of Step 3 of Game 0 we need the following
lemma.

Lemma 1. Let D be a distribution on set X. Let τ = 2−H∞(D)|X |. We claim
that for any set A ⊂ X and any x1, . . . , xn ←−D X (n elements chosen from X
independently at random according to D) the following holds:

Pr[∃i, j(i �= j, xi = xj)
∨

∃i(xi ∈ A)] < (τ2n2)/|X |+ τ |A|n/|X |.

Proof. Observe that

Pr[∃i, j : i �= j, xi = xj] ≤ E[#{i < j : xi = xj}] =∑
i<j

E[xi = xj] < n2τ2/|X |. (1)

To analyze the probability that xi ∈ A for some i, consider p = Pr[x ←−D
X : x ∈ A]. Then, Pr[∃i : xi ∈ A] = 1 − (1 − p)n < pn. Further, p =∑

a∈A Pr[x ←−D X : x = a] < τ |A|/|X |, which, together with (1), completes
the proof. �(Lemma 1)

By applying Lemma 1 to the distribution of r and A defined as the set of inputs
on which F1 is queried directly, we obtain that Step 3 fails with probability at
most 2−2δq2

Sp + 2−δqF qS = (2−δqSp + qF)2−δqS .
Since r1 never repeats, the probability that Step 4 fails is at most q2

F 2−�2/2.
If Step 7 fails, it means that the forger produced a valid signature (r∗, s∗)

without knowing the value of (r∗1 ,Hr∗
1
(M∗)). Since the value is distributed ran-

domly, same forger can be used against DSA. The probability of the failure is
thus at most εDSA.

Now we rewrite Step 3 of Game 0, replacing it with the following:

Step 3a′. Submit M as the first move of the TCR game.
Step 3b′. Obtain κ ∈ {0, 1}�2 as the key. Set r1 = F1(r) = κ.

Step 9 fails if the DSA oracle has been previously called on M∗
0 , which can only

happen if (r∗1 ,Hr∗
1
(M∗)) = (r′1,Hr′

1
(M ′)) for some other M ′. It implies that

r∗1 = r′1 and the result is obviously a collision under Hr1(·), which we output by
rewriting Step 9:

Step 9′. If DSA oracle has been queried on M∗
0 , fetch (r′1,Hr′

1
(M ′)) =

(r∗1 ,Hr∗
1
(M∗)). Find the game (started in Step 3a′), where the M ′ was the

first move and r′1 was the key. Complete the game by outputting M∗. Fail.

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 147

The new game fails with exactly the same probability as Game 0. To complete the
proof we notice that Step 9′ fails with probability at most qSεH . �[Theorem 1]

We proved that TCR-DSA signature scheme is as secure as DSA for arbitrary G,
which can, in particular, be modeled as a random oracle, or be extremely slow
and provably (under, say, the discrete-logarithm assumption) collision-resistant.
Although a direct proof of security of TCR-DSA under some standard assump-
tions would be tempting, we are concerned with the tightness of the reduction.
Best known reductions, even in the random oracle model, tie the forgery prob-
ability of DSA variants to the hardness of discrete logarithm with qF (number
of random oracle queries) factor [BPVY00]. In order to shave off the factor,
we may either assume additionally that the underlying group can be accurately
modeled in the generic group model [Bro05], or make some non-standard as-
sumptions [PV05]. Our reduction is tight in respect to the forgery probability
of DSA and loose with respect to the security of H . The latter is hardly a bot-
tleneck, since neither the key nor the output length of H affects the length of
the signature and therefore boosting security of H should only be constrained
by efficiency considerations.

Our proof does rely on one non-standard assumption, that of δ-min entropy
of r. For our result to be meaningful, δ should be sufficiently high (of the order
of log p), which ensures that all values of r are unique with high probability. Two
points are in order. First, for δ ≈ − log ε the assumption can be derived from
(t, ε, 0)-security of DSA, where t is the time required to do 2δ DSA verifications.
Second, the proof of Theorem 1 can be restructured to accommodate δ ≈ − log ε.
The proof will appear in the full version of the paper.

4 RSA-PSS Signature Scheme

RSA-based probabilistic signature scheme (PSS-RSA) was proposed by Bellare
and Rogaway [BR96] as a strengthening of the full domain hash scheme [BR93].
PSS-RSA enjoys tight security reduction to the underlying hard problem—the
RSA assumption—in the random oracle model. In other words, assuming that
certain hash functions are ideal, forging PSS-RSA is computationally equivalent
to inverting the RSA function. Later, Coron proved an even tighter reduction to
the RSA assumption [Cor02], which we use as a basis for our security claim.

Strictly speaking, PSS-RSA does not follow the hash-and-sign paradigm, since
the message is concatenated with some random salt and only then is hashed using
a hash function, modeled as a random oracle. We propose to hash the message,
whose length is unrestricted, using a conventional TCR function keyed with the
salt, and hash the short TCR function’s output with a conservatively designed
“oracle” (see Section 6).

Security of TCR-PSS-RSA (see Figure 2) relies on the following:

(t, ε)-RSA assumption. No algorithm running in time less than t can solve
xr = y mod N for x with probability more than ε, where N is a random RSA
modulus, y ←− Z∗

N , and r is fixed.

148 I. Mironov

RSA-PSS TCR-RSA-PSS
Key selection:

p, q—prime, |p| = |q| = n/2, N = pq
e, d ∈ ZN , ed = 1 (mod N)
public key: N, d
private key: e

Hash functions:

H : {0, 1}k0 × {0, 1}∗ �→ {0, 1}k1—TCR

h : {0, 1}∗ �→ {0, 1}k1 h : {0, 1}k0+k2 �→ {0, 1}k1

g1 : {0, 1}k1 �→ {0, 1}k0 g1 : {0, 1}k1 �→ {0, 1}k0

g2 : {0, 1}k1 �→ {0, 1}n−k0−k1−1 g2 : {0, 1}k1 �→ {0, 1}n−k0−k1−1

h, g1, g2—random oracles

Signature generation:

r ←− {0, 1}k0 r ←− {0, 1}k0

w = h(M ||r) w = h(r||Hr(M))

r∗ = g1(w) ⊕ r r∗ = g1(w) ⊕ r
y = 0||w||r∗||g2(w) y = 0||w||r∗||g2(w)

σ = yd mod N σ = yd mod N

Signature verification:
y = σe mod N y = σe mod N
check y = b||w||r∗||γ check y = b||w||r∗||γ
r = r∗ ⊕ g1(w) r = r∗ ⊕ g1(w)

accept if

h(M ||r) = w

g2(w) = γ

b = 0

accept if

h(r||Hr(M)) = w

g2(w) = γ

b = 0

Fig. 2. PSS-RSA and TCR-PSS-RSA (differences are enclosed in boxes)

Theorem 2. If all of the following hold:

– (t, εRSA)-RSA assumption;
– H is (t, εH)-TCR;
– h, g1, g2 are modeled as random oracles and queried no more than qF times;

then TCR-PSS-RSA is (t, εRSA(1+6qS2−k0 +2(qS +qF)22−k1 +εHqS , qS)-secure.

Proof [sketch]. Let M1, . . . ,MqS be the signing queries made by the adversary,
r1, . . . , rqS be the r values from the corresponding signatures output by the
signer, M ′ �= Mi for 1 ≤ i ≤ qS be the message with forged signature, and r′

be its r-value. The proof from [Cor02] of PSS-RSA applies virtually without any
changes, where Hr(M) replaces M . We have to make sure that Coron’s proof
also rules out “weak” forgeries (which corresponds to Hr′(M ′) = Hri(Mi), and
r′ �= ri for some i), which it does, and bound the probability that Hri(Mi) =
Hr′(M ′) and ri = r′.

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 149

To bound the probability of the latter event, consider a simulator that knows
the private key of the signature scheme. Upon receiving a signing query for Mi,
it starts a TCR game, submitting Mi as the first message. It receives a random
key ri, which it uses in computing a signature onMi. If the adversary succeeds in
creating a collision, the simulator is able to complete one of the TCR games. �

5 Cramer-Shoup Signature Scheme

Historically, the Cramer-Shoup signature scheme [CS00] was the first efficient
signature scheme provably secure in the standard model (i.e., without random
oracles). The scheme relies on the strong RSA assumption, introduced in [BP97].

The basic Cramer-Shoup signature scheme, which uses a collision-resistant
hash function, was presented in [CS00] together with a variant, where the hash

CS TCR-CS
Key selection:

p, q—strong primes, |p| = |q| = 1, n = pq

h, x ←− QRn; e′ ←− P�+1

k′ ←− {0, 1}�2

public key: n, h, x, e′, k′

private key: p, q

Hash function
H : {0, 1}�2 × {0, 1}∗ �→ {0, 1}�—TCR

μ : {0, 1}�+1 �→ {0, 1}�2—projection

Signature generation:
generate e ∈ P�+1, e �= e′ generate e ∈ P�+1, e �= e′

y′ ←− QRn y′ ←− QRn

k ←− {0, 1}�2

x′ = (y′)e′h
− Hk(M)

x′ = (y′)e′h
− Hμ(e)(M)

y = xh
− Hk′ (k,x′)

1/e

y = xh
Hk′ (x′)

1/e

σ = (e, y, y′, k) σ = (e, y, y′)

Signature verification:
check e is odd, |e| = + 1, e �= e′ check e is odd, |e| = + 1, e �= e′

check x′ = (y′)e′h
− Hk(M)

check x′ = (y′)e′h
− Hμ(e)(M)

check x = yeh
− Hk′ (k,x′)

check x = yeh
− Hk′ (x′)

Fig. 3. CS and TCR-CS (differences are enclosed in boxes). P� is the set of prime
numbers of length ; QRn is the set of quadratic residues modulo n. Function μ(·)
returns most significant 2 bits of the input.

150 I. Mironov

function is presumed to be a TCR. Our scheme combines the short signature
length of the former and security of the latter. The TCR-based variant (CS) and
our scheme (TCR-CS) are compared in Figure 3.

CS scheme makes use of a TCR by applying the generic transformation, out-
lined in the introduction,—the TCR’s key is generated by the signer and trans-
mitted as part of the signature. We propose to derive the hash function’s key
from the randomly chosen prime number e, which is already included in the
signature.

Our proof follows closely Cramer-Shoup’s original proof [CS00]. The main
technical difficulty in constructing the reduction, which is not present in the
original proof, consists in incorporating the hash function’s key into a prime
with a special structure. We expand on it below.

In addition to standard modular arithmetic, in the CS scheme the signer gen-
erates a fresh (l+1)-bit prime e with each signature (following [CS00] we assume
� = 160). The prime numbers need not be uniformly distributed; the only re-
quirement is that the probability that the same prime number is generated twice
be negligible. Efficiency of the scheme (especially relative to [GHR99], which is
otherwise comparable in terms of security and signature length) critically de-
pends on the signer’s ability to generate primes quickly. To this end, [CS00]
proposes to use primes of special structure, namely e = 2PR + 1, where P is
a 53-bit prime, which can be tested for primality much faster than the average
(�+1)-bit integer. For TCR-CS to be as efficient, we would prefer to use the same
procedure. On the other hand, our reduction technique prescribes taking a ran-
dom key obtained as part of the TCR game and using it in the signature. If e were
a random 161-bit prime, doing so would be trivial—a random 161-bit number
is prime with probability approximately 1/112, hence the reduction would only
suffer a factor of 112. Primes of the special structure 2PR+ 1, where |P | = 53,
are more rare (a random 161-bit number has this structure with probability no
more than 2−13), and testing for it is prohibitively expensive.

Instead of using e as a key, we solve the problem by taking μ(e), where
μ : {0, 1}161 �→ {0, 1}106 is a projection function, which simply drops 55 least
significant bytes of its input. To reverse the procedure, which is what the re-
duction is to do, we adapt the prime generation algorithm from [CS00]. For a
given key k ∈ {0, 1}106, generate a random prime P in the range (252, 253), take
a random number R in the range ((k255−1)/2P, (k+1)255−2)/2P), and accept
e = 2PR+ 1 if e is prime. If the procedure completes, μ(e) = k trivially holds.
[CS00] shows that the expected number of trials until P is prime is 64 (for the
purpose of the reduction, a pool of 53-bit long primes can be precomputed), and
for any fixed P the expected probability that e is prime is at least 1/128.

Before can sketch the proof of the following theorem, whose exact security
claim is based on [SS00], we introduce the strong RSA assumption.

(t, ε)-strong RSA assumption. No algorithm running in time less than t can
solve xr = y mod N for x and r > 1 with probability more than ε given random
RSA modulus N , and random y ∈ Z∗

N .

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 151

Theorem 3. Fix � = 160. Let Te is the time required to do 161-bit exponentia-
tion. If the following holds:

– (t + TeqS log qS , εRSA)-RSA assumption;
– (t + TeqS log qS , εSRSA)-strong RSA assumption;
– A concrete pseudo-random number generator used for generating e and y′ is

(t, εG)-secure;
– H is (t, εH)-TCR;

then TCR-CS is (t, qS , εRSA(qS+1)+εSRSA·1.01+εHqS128+εG+q2
S2−145+2−80)-

secure.

Proof [sketch]. For a detailed proof we refer the reader to [CS00, SS00]. Con-
sider an adversary that makes qS signing queries Mi, obtains signatures σi =
(ei, yi, y

′
i), and then forges a signature σ = (e, y, y′) on M �= Mi for 1 ≤ i ≤ qS .

Let x′
i = (y′

i)
e′

h−Hμ(ei)(Mi) and x′ = (y′)e′
h−Hμ(e)(M

′). We distinguish between
three kinds of forgeries:

Type I. There is 1 ≤ i ≤ qS , such that e = ei and x′ = x′
i.

Type II. There is 1 ≤ i ≤ qS , such that e = ei and x′ �= x′
i.

Type III. For all 1 ≤ i ≤ qS , e �= ei.

Proof from [CS00, SS00] applies without change for Type II and III forgeries
(it suffices to check that nowhere in the proof does the choice of e depend on
the hash of the message). To invoke the original proof for Type I forgery we
have to bound the probability that Hμ(e)(M) = Hμ(e)(M ′). We argue that such
a forgery cannot happen with probability more than εHqS128, where εH is the
security parameter of H . The proof is analogous to Theorem 2, with the only
difference being the embedding process, described earlier in the section, that is
used to map a random TCR key to a prime of 2PR+ 1 form. �
Finally, we observe that our modification applies to Fischlin’s variant of the
Cramer-Shoup scheme [Fis03], which is optimized for the size of the signature.

6 Discussion

In this section we address two points often raised in discussions of using TCR
hashes as a building block of signature schemes: the problem of hash function’s
keylength, which is message size-dependent, and the random oracle assumption,
which directly implies existence of collision-resistant functions.

Keylength of TCR hash. Bellare and Rogaway observed in [BR97] that adapt-
ing the iterative Merkle-Damg̊ard [Mer90, Dam90] paradigm for TCR construc-
tion is not straightforward. Namely, even the second iteration of a TCR hash may
be insecure (in contrast with a composition of collision-resistant hash functions,
which is provably collision-resistant). They proposed interleaving applications of
the compression function with XORing the chaining variable with independent
masking keys, which increases the key length logarithmically with the size of

152 I. Mironov

the message. Their method was improved by Shoup [Sho00a], whose scheme was
shown to be optimal among a concrete class of algorithms in [Mir01, Sar03]. For
example, the key length required to hash a 1Gb message by going through the
Shoup method applied to a keyed variant of the SHA-1 compression function is
more than 4.8Kb. The proofs of optimality are exact and hence leave no hope of
reducing the keylength if we are to stay within the existing paradigm.

We emphasize that the proofs of optimality only apply to a specific class
of “masking-based” domain extenders. There are two potential ways to beat
the lower bounds: design a dedicated TCR function, whose security is not de-
graded by chaining, or demonstrate a provably secure generic way of composing
TCR hashes without key expansion. Both approaches are reasonable (see, for
instance, [HPL04] which strengthens the definition of TCR to allow application
of the Merkle-Damg̊ard construction), and we expect that the interest in TCR
functions rekindled by recent attacks on collision-resistant hash functions will
spur further research in this area.

Random oracles and TCR functions. Pondering on the difference between
collision-resistant hash functions and TCRs might appear rather pointless in the
presence of the random oracle paradigm. Indeed, if we assume that a concrete
hash function instantiates a random oracle, it is implicit that the function is
collision-resistant and its domain can be trivially extended by going through the
Merkle-Damg̊ard construction, hence obliterating the need for TCRs. We claim
that although this reduction is sound in theory, it may not be practical and may
lead to bad design choices.

Hash functions must work for message lengths ranging from a few bytes to
several hundred megabytes, which forces hash function designers to make cer-
tain trade-offs and defend against new classes of attacks. Designing an “oracle-
like” hash function that accepts long inputs is inherently more challenging than
designing a short-input function (for theoretical analysis of some of the dif-
ficulties see [KS05, CDMP05], for practical attacks that span several blocks
see [WY05, BCJ+05, WYY05b]). It suffices to point out that the latest gener-
ation of hash functions, such as SHA-256,512 or Whirlpool, works at a fraction
of the speed of MD5 and is much slower than AES [NES03, NM02].

Constructing an “oracle”—a function that thoroughly but slowly hashes one
block (0.5–1Kb long) is conceivable, but it would be inadequate as a general-
purpose hash function. It is plausible that the trend towards slower hash func-
tions can be reversed if, instead of designing one-size-fits-all collision-resistant
hash functions, we settle for fast TCR functions able to handle long messages
and relatively slow “oracles” for fixed-length inputs.

In support of our view we cite the performance characteristics of signature
schemes and hash functions from the NESSIE report [NES03, Table 50]. For three
signature schemes (Cramer-Shoup, ECDSA, and RSA-PSS) the speed of the sign
and verify operations ranged from 1.6M (RSA-PSS verify) to 62M (RSA-PSS
sign) CPU cycles on Pentium IV. For comparison, one-block SHA-256 evaluation,
which takes about 1.5K CPU cycles [NM02], is faster by approximately three
orders of magnitude. It means that the hash function (applied to one block!)

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 153

can be slowed down by two orders of magnitude without the schemes’ overall
performance taking notice.

Finally, we note that the “oracle” functions may find applications in prac-
tical solutions to the problem raised in the beginning of this section, namely
the keylength of TCR functions. Shoup’s masking-based solution to domain ex-
pansion requires a long key, which can be derived from a shorter key using an
“oracle.” The resulting scheme would be provably secure in the random oracle
world and enjoy efficiency of a cheap TCR construction.

7 Conclusions

For any hash-and-sign signature scheme a collision-finding attack on the un-
derlying hash function is devastating. Recent attacks on MD5 and SHA-1
[WY05, WYY05a] suggest that designing efficient collision-resistant hash func-
tions is harder than it has been commonly thought.

TCR hashes provide a good alternative to collision-resistant hash functions
in the context of digital signatures. Traditionally, replacing collision-resistant
hashes with TCRs, which are by definition keyed hash functions, resulted in
an increase in the signature size, which has to additionally accommodate the
hash function’s key. We argue that for specific signature schemes the key can be
derived from the already present part of the signature. For the Cramer-Shoup
signature scheme we prove in the standard model our variant of the scheme,
which provides a shorter signature while offering the same security.

Security of signature schemes provable in the random oracle model relies on
the assumption that some concrete hash functions are real-world implementa-
tions of a certain ideal functionality. We revisit two popular signature schemes,
DSA and PSS-RSA, and propose their TCR-based variants, whose proofs of se-
curity, while still dependent on random oracles, only require short-input ones.
We argue that a short-input oracle might be easier to construct, since it can
afford to be much slower than a conventional hash function.

References

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe
Lemuet, and William Jalby. Collisions of SHA-0 and reduced SHA-1.
In Cramer [Cra05], pages 36–57.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash func-
tions for message authentication. In Neal Koblitz, editor, Advances in
Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 1–15. Springer, 1996.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo random bits. In 23rd Annual Symposium on Founda-
tions of Computer Science, pages 112–117, Chicago, Illinois, 3–5 November
1982. IEEE.

154 I. Mironov

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Walter Fumy, editor, Advances
in Cryptology—EUROCRYPT ’97, volume 1233 of Lecture Notes in Com-
puter Science, pages 480–494. Springer, 1997.

[BPVY00] Ernest F. Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung.
Design validations for discrete logarithm based signature schemes. In
Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography—PKC
2000, volume 1751 of Lecture Notes in Computer Science, pages 276–292.
Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures—how to sign with RSA and Rabin. In Ueli M. Maurer, ed-
itor, Advances in Cryptology—EUROCRYPT ’96, volume 1070 of Lecture
Notes in Computer Science, pages 399–416. Springer, 1996.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards
making UOWHFs practical. In Burton S. Kaliski Jr., editor, Advances
in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 470–484. Springer, 1997.

[Bra90] Gilles Brassard, editor. Advances in Cryptology—CRYPTO ’89, 9th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20–24, 1989, Proceedings, volume 435 of Lecture Notes in
Computer Science. Springer, 1990.

[Bro05] Daniel R. L. Brown. Generic groups, collision resistance, and ECDSA.
Designs, Codes and Cryptography, 35(1):119–152, 2005.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard revisited: How to construct a hash function. In
Shoup [Sho05], pages 430–448.

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signa-
ture schemes. In Knudsen [Knu02], pages 272–287.

[Cra05] Ronald Cramer, editor. Advances in Cryptology—EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22–26, 2005, Proceed-
ings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. ACM Trans. on Information and System Security (TIS-
SEC), 3(3):161–185, 2000.

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Brassard [Bra90],
pages 416–427.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic
insecurity of the full domain hash. In Shoup [Sho05], pages 449–466.

[Fis03] Marc Fischlin. The Cramer-Shoup Strong-RSA signature scheme revisited.
In Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 116–129. Springer, 2003.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology—CRYPTO ’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, 1987.

Collision-Resistant No More: Hash-and-Sign Paradigm Revisited 155

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign sig-
natures without the random oracle. In Jacques Stern, editor, Advances
in Cryptology—EUROCRYPT ’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 123–139. Springer, 1999.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17:281–308, 1988.

[HK05a] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via
randomized hashing. Internet-Draft, Crypto Forum Research Group, May
2005.

[HK05b] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via
randomized hashing. Talk at Cryptographic Hash Workshop (NIST), Oct
31–Nov 1. 2005.

[HPL04] Deukjo Hong, Bart Preneel, and Sangjin Lee. Higher order universal one-
way hash functions. In Pil Joong Lee, editor, Advances in Cryptology—
ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science,
pages 201–213. Springer, 2004.

[Knu02] Lars R. Knudsen, editor. Advances in Cryptology—EUROCRYPT 2002,
International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28–May 2, 2002, Proceed-
ings, volume 2332 of Lecture Notes in Computer Science. Springer, 2002.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Cramer [Cra05], pages 474–490.

[Mer90] Ralph C. Merkle. One way hash functions and DES. In Brassard [Bra90],
pages 428–446.

[Mir01] Ilya Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In Birgit
Pfitzmann, editor, Advances in Cryptology—EUROCRYPT 2001, volume
2045 of Lecture Notes in Computer Science, pages 166–181. Springer, 2001.

[NES03] NESSIE Consortium. Performance of optimized implementations of the
NESSIE primitives, version 2.0. Deliverable report D21, February 2003.
NES/DOC/TEC/WP6/D21/2.

[NIS95] NIST. Secure hash standard. FIPS PUB 180-1, National Institute of
Standards and Technology, April 1995.

[NM02] Junko Nakajima and Mitsuru Matsui. Performance analysis and parallel
implementation of dedicated hash functions. In Knudsen [Knu02], pages
165–180.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital sig-
nature algorithm with partially known nonces. J. Cryptology, 15(3):151–
176, 2002.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, pages 33–43, 15–17 May 1989.

[Pre00] Bart Preneel, editor. Advances in Cryptology—EUROCRYPT 2000, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14–18, 2000, Proceeding, volume 1807
of Lecture Notes in Computer Science. Springer, 2000.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures
may not be equivalent to discrete log. In Bimal Roy, editor, Advances
in Cryptology—ASIACRYPT 2005, Lecture Notes in Computer Science,
pages 1–20. Springer, 2005.

156 I. Mironov

[Riv91] Ronald L. Rivest. The MD4 message digest algorithm. In Alfred Menezes
and Scott A. Vanstone, editors, Advances in Cryptology—CRYPTO
’90, volume 537 of Lecture Notes in Computer Science, pages 303–311.
Springer, 1991.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the Twenty Second Annual ACM Symposium
on Theory of Computing, pages 387–394, 14–16 May 1990.

[Sar03] Palash Sarkar. Masking based domain extenders for UOWHFs: Bounds
and constructions. Cryptology ePrint Archive, Report 2003/225, 2003.
http://eprint.iacr.org/.

[Sho00a] Victor Shoup. A composition theorem for universal one-way hash func-
tions. In Preneel [Pre00], pages 445–452.

[Sho00b] Victor Shoup. Using hash functions as a hedge against chosen ciphertext
attack. In Preneel [Pre00], pages 275–288.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[Sho05] Victor Shoup, editor. Advances in Cryptology—CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14–18, 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science. Springer, 2005.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor,
Advances in Cryptology—EUROCRYPT ’98, volume 1403 of Lecture Notes
in Computer Science, pages 334–345. Springer, 1998.

[SS00] Thomas Schweinberger and Victor Shoup. ACE: The advanced crypto-
graphic engine. Manuscript, 2000. http://shoup.net/papers/ace.pdf .

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. In Cramer [Cra05], pages 19–35.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the
full SHA-1. In Shoup [Sho05], pages 17–36.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Shoup [Sho05], pages 1–16.

Higher Order Universal One-Way Hash

Functions from the Subset Sum Assumption

Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons, josef, hwang}@comp.mq.edu.au

http://www.ics.mq.edu.au/acac/

Abstract. Universal One-Way Hash Functions (UOWHFs) may be used
in place of collision-resistant functions in many public-key cryptographic
applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the
stronger security notion of higher order UOWHFs to allow construction
of long-input UOWHFs using the Merkle-Damg̊ard domain extender.
However, they did not provide any provably secure constructions for
higher order UOWHFs.

We show that the subset sum hash function is a kth order Universal
One-Way Hash Function (hashing n bits to m < n bits) under the Subset
Sum assumption for k = O(log m). Therefore we strengthen a previous
result of Impagliazzo and Naor, who showed that the subset sum hash
function is a UOWHF under the Subset Sum assumption. We believe our
result is of theoretical interest; as far as we are aware, it is the first ex-
ample of a natural and computationally efficient UOWHF which is also a
provably secure higher order UOWHF under the same well-known cryp-
tographic assumption, whereas this assumption does not seem sufficient
to prove its collision-resistance. A consequence of our result is that one
can apply the Merkle-Damg̊ard extender to the subset sum compression
function with ‘extension factor’ k+1, while losing (at most) about k bits
of UOWHF security relative to the UOWHF security of the compression
function. The method also leads to a saving of up to m log(k + 1) bits in
key length relative to the Shoup XOR-Mask domain extender applied to
the subset sum compression function.

Keywords: hash function, provable security, subset sum.

1 Introduction

Motivation. Universal One-Way Hash Functions (UOWHFs), introduced by
Naor and Yung [14] (also known as ‘Target Collision Resistant’ functions),
achieve weaker security than collision-resistant hash functions, but still suffice
for important cryptographic applications – in particular they suffice for hashing
long messages prior to signing with a digital signature scheme [14, 3, 16] (and
even can be used to construct digital signature schemes).

A common methodology for designing hash functions consists of two stages.
In the first stage, one designs an (efficient) compression function f which hashes
a (relatively short) n-bit string to a shorter m-bit string (e.g. a compression

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 157–173, 2006.
c© International Association for Cryptologic Research 2006

158 R. Steinfeld, J. Pieprzyk, and H. Wang

function may hash a n = 600 bit input to a m = 400 bit output, compressing
by n − m = 200 bits). The compression function f is designed to achieve some
well defined security property (such as UOWHF security). Then in the second
stage, one specifies a domain extender algorithm, which uses the compression
function f to build a hash function f ′ hashing �-bit inputs (for � > n) to an
m-bit output. The domain extender is designed to ensure that if f satisfies its
security property, then the extended function f ′ will satisfy the desired security
property (e.g. UOWHF security).

The simplest and most natural domain extender is the well-known Merkle-
Damg̊ard (MD) extender [11, 5]. It was shown in [11, 5] that the MD extender
preserves the collision-resistance security of the compression function, i.e. the
MD extended function f ′ is collision-resistant if the compression function f
is collision-resistant. However, as pointed out in [3], efficient collision-resistant
compression functions seem difficult to design, and weakening the security re-
quirement on the compression function is desirable.

A typical example that we focus on in this paper is the subset sum compres-
sion function, a computationally efficient function which was shown in [9] to
achieve UOWHF security under the well known subset sum assumption (while
the collision-resistance of this function depends on a less known and potentially
much easier ‘weighted knapsack’ problem). It is natural to attempt to apply
the MD extender to the subset sum compression function, and hope that the
resulting function also achieves UOWHF security. Unfortunately, it was shown
in [3] that the MD extender is not guaranteed to preserve UOWHF security of
a compression function. Thus the result of [9] does not guarantee the security
of the MD extended subset sum hash function, even assuming the subset sum
assumption. Although other domain extenders exist [14, 3, 16] which do preserve
the UOWHF property of the compression function, they are less simple than the
MD extender and also (at least slightly) increase the length of the hash function
key depending on the extension input length �.

A possible way to use the MD extender for building UOWHF functions was
proposed at Asiacrypt 2004 by Hong, Preneel and Lee [7]. They defined a stronger
security property for compression functions called higher order UOWHF secu-
rity. The 0th order UOWHF property is just the normal UOWHF property, but
for k > 0, a kth order UOWHF is a stronger requirement than UOWHF. They
showed that if a compression function f has the stronger kth order UOWHF
property, then the MD extended function f ′ is guaranteed to have the UOWHF
property, as long as the MD ‘extension factor’ is at most k + 1. However, it is
known that there exist UOWHFs which are not kth order UOWHFs for any
k > 0, so it is dangerous in general to simply take an UOWHF and assume that
it is also a higher order UOWHF - in particular, the security loss as a function
of k is unknown. Motivated by this concern in applying this result to the MD
extended subset sum function, we were led to the following natural questions:
Does the subset sum compression function satisfy the kth order UOWHF prop-
erty for some k > 0, assuming only the subset sum assumption? If so, can we
give an upper bound on the security lost as a function of k?

Higher Order UOWHFs from the Subset Sum Assumption 159

Our Results. We show that the subset sum hash function is a kth order
UOWHF family (hashing n bits to m < n bits) under the Subset Sum as-
sumption for k = O(log m). Thus our result strengthens the one of Impagliazzo
and Naor [9], who showed that the subset sum hash function is a UOWHF (i.e.
UOWHF of order k = 0) under the Subset Sum assumption. Concretely, we
show that the function’s security as a kth order UOWHF deteriorates by (at
most) about k bits (relative to the UOWHF case k = 0). Combined with the
result of [7], we conclude that one can apply the MD extension to the subset sum
compression function with ‘extension factor’ k+ 1, while losing (at most) about
k bits of UOWHF security relative to the UOWHF security of the compression
function (which is almost equivalent to the subset sum problem). We believe our
result is of theoretical interest; in particular, as far as we are aware, our result
is the first example of a natural UOWHF which is also a provably secure higher
order UOWHF under the same well-known cryptographic assumption (while this
assumption does not seem sufficient to prove its collision-resistance). In addition
to showing that the natural MD extender can be applied to the subset sum com-
pression function for small extension factors, our result also allows to shorten the
key length of the extended hash function (compared with the total key length
of the most efficient known UOWHF domain extender due to Shoup [16]).

Organization. The paper is organized as follows. In Section 2, we recall the
definition of hash function security properties (in particular UOWHFs and higher
order UOWHFs), and the construction of the subset sum compression function.
Section 3 contains our main result on the kth order UOWHF security of the
subset sum function. In Section 4, we discuss the application of our result to
the extended subset sum function. Section 5 concludes the paper. Due to page
limits, proofs of some claims in the paper were omitted – they can be found in
the full version of the paper, available on the authors’ web page.

2 Preliminaries

Collision-Resistant Hash Functions (CRHFs). Ideally, we would like a
hash function to satisfy the strong security notion of collision-resistance, which
is defined as follows.

Definition 1 (CRHFs). A (t, ε) Collision-Resistant Hash Function (CRHF)
family is a collection F of functions fK : {0, 1}n → {0, 1}m indexed by a key
K ∈ K (where K denotes the key space), and such that any attack algorithm A
running in time t has success probability at most ε in the following game:

– Key Sampling. A uniformly random key K ∈ K is chosen and revealed
to A.

– A Collides. A runs (on input K) and outputs a pair of hash function inputs
s1, s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK, i.e.
if s1 �= s2 but fK(s1) = fK(s2).

160 R. Steinfeld, J. Pieprzyk, and H. Wang

Universal One-Way Hash Functions (UOWHFs). Naor and Yung [14]
(see also [3]) showed that for several important cryptographic applications (such
as hashing prior to signing a message with a digital signature scheme) one can
weaken the collision-resistance requirement on a hash function, to a notion called
Universal One-Way Hash Function (UOWHF), which is defined as follows.

Definition 2 (UOWHFs). A (t, ε) Universal One-Way Hash Function
(UOWHF) family [14] is a collection F of functions fK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the
following game:

– Key Sampling. A uniformly random key K ∈ K is chosen (but not yet
revealed to A).

– A Commits. A runs (with no input) and outputs a hash function input
s1 ∈ {0, 1}n.

– Key Revealed: The key K is given to A.
– A Collides. A continues running and outputs a second hash function input

s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK, i.e.
if s1 �= s2 but fK(s1) = fK(s2).

Higher Order UOWHFs. Hong, Preneel and Song [7] strengthened the def-
inition of UOWHFs (while still being weaker than the CRHF requirement) by
allowing the attacker to query an oracle for the hash function k times before
commiting to the first input. A function that is secure even under this stronger
attack is called a kth order UOWHF.

Definition 3 (kth Order UOWHFs). A (t, ε) kth order Universal One-Way
Hash Function family [7] is a collection F of functions fK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the
following game:

– Key Sampling. A uniformly random key K ∈ K is chosen (but not yet
revealed to A).

– Oracle Queries. A runs (with no input) and makes k adaptive queries
q1, . . . , qk (with qi ∈ {0, 1}n for i = 1, . . . , k) to an oracle for fK(·), receiving
answers y1, . . . , yk (where yi = fK(qi) for i = 1, . . . , k).

– A Commits. A outputs a hash function input s1 ∈ {0, 1}n.
– Key Revealed: The key K is given to A.
– A Collides. A continues running and outputs a second hash function input

s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK, i.e.
if s1 �= s2 but fK(s1) = fK(s2).

Higher Order UOWHFs from the Subset Sum Assumption 161

Note that a 0th order UOWHF is just a UOWHF, and a kth order UOWHF
is also a rth order UOWHF for any r ≤ k, but a UOWHF is not necessarily
a higher order UOWHF; indeed, there exist UOWHFs which are not even first
order UOWHFs [3].

The Subset-Sum Problem. This is defined as follows.

Definition 4 (Subset Sum Problem SubSum(n, m, p)). Let n and m < n be
positive integers, and let p denote a positive integer satisfying 2m−1 < p ≤ 2m.
The SubSum(n, m, p) problem is the following: Given p, a vector of n uniformly
random integers a = (a[1], . . . ,a[n]) ∈R ZZn

p and an independent uniform target
integer T ∈R ZZp, find a subset s = (s[1], . . . , s[n]) with s[i] ∈ {0, 1} for i =
1, . . . , n such that

∑n
i=1 s[i] · a[i] ≡ T (mod p).

We say that problem SubSum(n, m, p) is (t, ε)-hard if, any algorithm A for
SubSum(n, m, p) having run-time at most t has success probability at most ε,
where the probability is over the uniformly random choice of a ∈ ZZn

p , T ∈ ZZp

and the random coins of A.

A related, but possibly easier problem than Subset Sum is the Weighted Knap-
sack problem.

Definition 5 (Weighted Knapsack Problem WKnap(n, m, p)). Let n and
m < n be positive integers, and let p denote a positive integer satisfying 2m−1 <
p ≤ 2m. The WKnap(n, m, p) problem is the following: Given p, a vector of
n uniformly random integers a = (a[1], . . . ,a[n]) ∈R ZZn

p and an independent
uniform target integer T ∈R ZZp, find a weight vector s = (s[1], . . . , s[n]) with
s[i] ∈ {−1, 0, 1} for i = 1, . . . , n such that

∑n
i=1 s[i] · a[i] ≡ T (mod p).

We say that problem WKnap(n, m, p) is (t, ε)-hard if, any algorithm A for
WKnap(n, m, p) having run-time at most t has success probability at most ε,
where the probability is over the uniformly random choice of a ∈ ZZn

p , T ∈ ZZp

and the random coins of A.

A decision variant of the subset sum problem was one of the first problems to
be proven NP Complete [10]. The problem is well known in cryptography (also
known as the knapsack problem) due to its role in the early history of public-key
cryptosystems. The security of the Merkle-Hellman public key cryptosystem [12]
was intended to based on the hardness of subset sum, but was later broken [15]
due to the special non-random choice of the knapsack integers a[1], . . . ,a[n].
Later attacks based on lattice reduction work even for random knapsack integers,
but only when m is sufficiently larger than n (i.e. when the function is used in
expansion mode). According to [9], the best known provable lattice attack of this
type [4] succeeds with high probability over a random choice of a[1], . . . ,a[n],
assuming a perfect lattice shortest vector oracle is available, whenever m >
1.0629 · n.

Let us make a few other remarks:

– We use m < n in our hash functions, which avoids the above-mentioned di-
rect lattice attacks. However, one can still pick the (say) first n′ ≤ m/1.0629

162 R. Steinfeld, J. Pieprzyk, and H. Wang

integers a[1], . . . ,a[n′] and try to use the method of [4] to find a solution
involving only those integers (i.e. set the n− n′ remaining weights to zero).
A solution involving only the first n′ integers is expected to exist with proba-
bility 1/2m−n′

, so to make this probability at most 2−δ we need m−n′ ≥ δ.
It follows that we need m ≥ (1.0629/0.0629)δ, e.g. for δ = 80, we need
m ≥ 1352 bit.

– A series of papers, starting from [1, 6] and up to the recent [13] have given
reductions showing that the average-case weighted knapsack problem is as
hard as various worst-case lattice problems, such as SVP approximation
problems with a small polynomial approximation factor. However, although
the average-case to worst-case connections exhibited in these papers are the-
oretically impressive, the concrete complexity of these ‘polynomial approxi-
mation factor’ lattice problems (even in the worst case) is currently unknown,
and they may turn out to be substantially easier than subset sum due to the
good performance of lattice reduction algorithms in practice.

– The Weighted knapsack problem may also be easier than the subset sum
problem (see [2] for more discussion). Hence the subset sum hash function
may not be as secure a collision-resistant function as it is as a UOWHF (or
as we show, as a higher order UOWHF).

The Subset Sum Hash Function

Definition 6 (Subset Sum Hash Function Family FSS(n, m, p)). Let n
and m < n be positive integers, and let p denote a positive integer satisfying
2m−1 < p ≤ 2m. The subset sum hash function family FSS(n, m, p) is defined as
follows. The key space is K = ZZn

p . Given a key a = (a[1], . . . ,a[n]) ∈ ZZn
p , the

associated hash function fa : {0, 1}n → {0, 1}m is defined by fa(s) =
∑n

i=1 s[i] ·
a[i] mod p ∈ {0, 1}m for s = (s[1], . . . , s[n]) ∈ {0, 1}n.

We observe that that the subset sum hash function is a public coin function
(see [8]), since the key consists of uniformly random integers in ZZp.

3 The Security of the Subset Sum Hash Function

It is easy to see that the subset sum hash function family FSS(n, m, p) is a CRHF
family assuming the hardness of the weighted knapsack problem WKnap(n, m, p).
However, as discussed above, the problem WKnap(n, m, p) may be easier than
the subset sum problem SubSum(n, m, p). It is therefore desirable to have a
hash family whose security relies only on the hardness of SubSum(n, m, p).
With this motivation, Impagliazzo and Naor [9] relaxed their requirement from
CRHF to a UOWHF, and showed that the subset sum hash function family
FSS(n, m, p) is a UOWHF assuming only the hardness of the subset sum prob-
lem SubSum(n, m, p). When translated to our concrete notation, the result of [9]
can be stated as follows.

Theorem 1 (Impagliazzo-Naor). If the Subset Sum problem SubSum(n, m, p)
is (t, ε)-hard, then the the Subset Sum hash function family FSS(n, m, p) is a
(t′, ε′) Universal One-Way Hash Function (UOWHF) family, where:

Higher Order UOWHFs from the Subset Sum Assumption 163

t′ = t−O(m · n) and ε′ = 2n · ε.

In this section we strengthen Theorem 1 by showing that the subset sum
hash function family FSS(n, m, p) is actually a kth order UOWHF for small k =
O(log m), still assuming only the hardness of the subset sum problem SubSum(n,
m, p). More concretely, we bound the way the security of FSS(n, m, p) as a kth
order UOWHF deteriorates with increasing k.

To begin with, we observe that for k ≥ m+2, the security of FSS(n, m, p) as a
kth order UOWHF already deteriorates to the hardness of a weighted knapsack
problem, i.e. the collision resistance of a related subset sum function.

Proposition 1. For k ≥ m + 2, if the subset sum hash family FSS(n, m, p) is a
(t, ε) kth order UOWHF then the weighted knapsack problem WKnap(min(k, n)−
1, m, p) is (t′, ε′) hard, where:

t′ = t −O(n) and ε′ = ε.

Proof. Let A′ be an attacker for weighted knapsack problem WKnap(n′, m, p) for
n′ = min(k, n)−1 with run-time/succ. prob. (t′, ε′). Consider attacker A against
the kth order UOWHF notion of the subset sum hash family FSS(n, m, p) which
runs as follows.

After a random key a = (a[1], . . . ,a[n]) ∈ ZZn
p is chosen, A queries to fa(.) the

min(k, n) singleton subsets qi for i = 1, . . . , n′ + 1, where qi[j] = 1 if j = i and
qi[j] = 0 for j �= i. Thus A obtains answers yi = a[i] for i = 1, . . . , n′ + 1. Now
A runs A′ on input modulus p, knapsack vector a′ = (a[1], . . . ,a[n′]) and target
T = a[n′+1]. After time t and with probability ε, A′ returns s = (s[1], . . . , s[n′]) ∈
{−1, 0, 1}n′

satisfying
∑n′

i=1 s[i] · a[i] ≡ a[n′ + 1] (mod p). So A has a collision
fa(s1) = fa(s2), where for i = 1, . . . , n′ − 1, s1[i] = 1 if and only if s[i] = 0,
s2[i] = 1 if and only if s[i] = −1, (s1[n′], s2[n′]) = (0, 1) (so s1 �= s2) and for
i ≥ n′ + 1 we set s1[i] = s2[i] = 0. A outputs s1 and then s2 as his collision pair
and breaks kth order UOWHF notion of FSS(n, m, p). The attacker A has run-
time t = t′ +O(n) and success probability ε = ε′. The proposition follows. �	

For k ≤ m+1, the reduction of Proposition 1 continues to hold, but in this case
the associated weighted knapsack instance WKnap(k − 1, m, p) has a solution
with probability at most 3k−1/p ≤ 3k−1/2m−1, which for fixed m decreases
exponentially as k decreases towards 0. Thus for k sufficiently smaller than m
we may hope that the subset sum hash family FSS(n, m, p) is secure as a kth
order UOWHF even if the weighted knapsack problem is easy to solve when a
solution exists. Indeed, we next show that for k = O(log m) the subset sum hash
function is a kth order UOWHF assuming only the hardness of subset sum. For
technical reasons we also restrict in this result the modulus p to be prime.

Theorem 2. Let n and m < n be positive integers, let p denote a prime
satisfying 2m−1 < p ≤ 2m, and k < log3(p) − 1. If the Subset Sum prob-
lem SubSum(n, m, p) is (t, ε)-hard, then the Subset Sum hash function family

164 R. Steinfeld, J. Pieprzyk, and H. Wang

FSS(n, m, p) is a (t′, ε′) kth order Universal One-Way Hash Function (UOWHF)
family, where:

t′ = t −O(k2nTM (p)) and ε′ = 2k+1 · (n − k) · ε +
3k+1

2m
,

and TM (p) denotes the time to perform a multiplication modulo p.

Proof. Let A′ be a kth order UOWHF attacker against the subset sum hash
function family FSS(n, m, p) with run-time/succ. prob. (t′, ε′). We show how to
use A′ to construct an attacker A against subset sum problem SubSum(n, m, p)
with run time t = t′ +O(k2nTM (p)) and succ. prob. ε ≥ 1

2k+1·(n−k) · (ε′ −
3k+1

2m),
which establishes the claimed result.

The basic idea of the reduction at a high level and its relation to the one
in [9] is as follows. Given its subset sum instance (a,T), A runs A′, answering its
oracle queries using key a to obtain the first colliding input s1, but then reveals
a different key a′ ≡p a+d to A′. The new key a′ is chosen by A based on s1 and
the target sum T . In the reduction of [9], d is chosen to have Hamming weight
1 (in a random bit position) and such that

∑
i s1[i] · a′[i] ≡p T . This implies

that a successful colliding s2 will be a solution to subset sum instance (a,T) if
s2 has a zero in the position where d is non-zero. The authors in [9] are able to
argue that such a zero position in s2 will exist (and equal the randomly chosen
non-zero position in d with probability 1/n). In our case, however, a′ must also
be consistent with the k earlier oracle query answers. This implies that d is
restricted to be a solution of a linear system of rank k + 1, so the minimum
allowable Hamming weight of d increases to k + 1, and the proof of [9] seems
difficult to extend – we need that certain k + 1 bits of s2 are zero (e.g. such
bits may not exist). Instead, we use an alternative approach which only requires
guessing the values (whatever they are) of the k+1 bits of s2 in positions where
d is non-zero (hence we succeed with probability 1/2k+1). To do this, we choose
d of weight k+ 1 such that

∑
i s1[i] · (a[i] +d[i]) ≡p T +

∑
i ŝ2[i] ·d[i] (where we

use our guesses ŝ2 for the k+1 bits of s2 on the right hand side) – note that this
requirement is equivalent to equation (4) in the proof below. Then a colliding
s2 gives

∑
i s2[i] · (a[i] + d[i]) ≡p T +

∑
i ŝ2[i] · d[i] which implies that s2 is a

solution to instance (a,T) if our guesses of k + 1 bits of s2 were right (note the
simplified discussion above ignores some other issues handled by the proof).

We now present the detailed reduction game.

1. Subset Sum Instance Generation. A random subset sum instance (a,T)
(where a ∈R ZZn

p and T ∈R ZZp) is generated and given to A.
2. Oracle Queries. A runs A′ with no input. When A′ makes its ith oracle

query qi ∈ {0, 1}n, A responds with answer yi = fa(qi) =
∑n

j=1 qi[j] ·
a[j] mod p (for i = 1, . . . , k). A also stores the queries q1, . . . ,qk for
later use.

3. A′ Commits. A′ outputs hash function input s1 ∈ {0, 1}n.
4. Key Revealed. A samples a difference vector d ∈ ZZn

p (using the algorithm
detailed below) and gives A′ the key a′ = a + d mod p. The difference vector
d is sampled by A as follows:

Higher Order UOWHFs from the Subset Sum Assumption 165

(a) A uses the stored queries of A′ to build a k×n matrix Q having qi as its
ith row for i = 1, . . . , k. Remark : The difference vector d will satisfy the
matrix equation Q · d ≡ 0 (mod p), which implies that Q · a′ ≡ Q · a
(mod p), i.e. a′ is consistent with the answers to queries q1, . . . ,qk.

(b) A performs Gaussian elimination on the matrix Q (by performing O(k2)
elementary row operations over the field ZZp and O(k) column swapping
operations). Let Q̂ be the resulting k × n matrix (with entries in ZZp)
which is in reduced row echelon form:

Q̂ =

⎛⎜⎜⎜⎝
1 0 · · · 0 q′

1[k + 1] · · · q′
1[n]

0 1 · · · 0 q′
2[k + 1] · · · q′

2[n]
...

...
. . .

...
... · · ·

...
0 0 . . . 1 q′

k[k + 1] · · · q′
k[n]

⎞⎟⎟⎟⎠ . (1)

A also keeps track of the column swapping operations to compute
the corresponding column permutation π : {1, . . . , n} → {1, . . . , n}
such that d ∈ ZZn

p satisfies Qd ≡ 0 (mod p) if and only if d̂ =
(d[π(1)], . . . ,d[π(n)])T satisfies Q̂d̂ ≡ 0 (mod p). Remark : We assume,
without loss of generality, that the k query vectors q1, . . . ,qk are lin-
early independent over ZZp – If some query vector qi of A′ is a linear
combination of the i− 1 previous query vectors (the linear combination
coefficients can be efficiently computed by Gaussian elimination over
ZZp), A′ can itself answer the query by the same linear combination of
the i − 1 previous query answers. Hence we can always modify A′ so
that it always makes k linearly independent queries, without affecting
the success probability of A′.

(c) A picks a uniformly random integer � ∈R {k + 1, . . . , n}, and k + 1
independent uniformly random bits (ŝ[1], . . . , ŝ[k]) ∈ {0, 1}k and ŝ[�] ∈
{0, 1}. A defines ŝ[j] = 0 for j �∈ {1, . . . , k} ∪ {�} and computes (as
detailed later) the unique vector d ∈ ZZn

p (if it exists) satisfying

d[π(j)] = 0 for j ∈ {k + 1, . . . , n} \ {�}. (2)

and
Q · d ≡ 0 (mod p) (3)

and
n∑

j=1

(ŝ[j] − s1[π(j)]) · d[π(j)] ≡ T ′ − T (mod p), (4)

where T ′ =
∑n

j=1 s1[j] · a[j] mod p. If no solution d ∈ ZZn
p satisfying (2),

(3) and (4) exists or if the solution exists but is not unique (because
T ′ − T ≡ 0 (mod p)), then A sets d = 0.

5. A′ Collides. A′ continues running and outputs a second hash function input
s2 ∈ {0, 1}n.

6. A Output. A outputs s2 as its solution to the subset sum instance (a,T).

166 R. Steinfeld, J. Pieprzyk, and H. Wang

This completes the description of A. For clarity, and also for reference in
later analysis, we now give more details on how A efficiently computes a unique
d ∈ ZZn

p satisfying (2), (3) and (4) (or determines that such d does not exist or
is not unique). Using (1), the conditions (3) and (4) are equivalent to requiring
that d̂ = (d[π(1)], . . . ,d[π(n)])T satisfies the (k + 1) × n linear system

Q̂′ · d̂ ≡ t (mod p), (5)

where Q̂′ is the (k + 1) × n matrix having Q̂ as its first k rows and the row
vector s′ = (ŝ[1] − s1[π(1)], . . . , ŝ[n] − s1[π(n)]) as the (k + 1)th row, and t =
(0, 0, . . . , 0,T ′ − T)T . By adding the multiple −(ŝ[j] − s1[π(j)]) of row j to row
k+1 for j = 1, . . . , k, A transforms the linear system (5) to the equivalent system

Q̂′′ · d̂ ≡ t (mod p), (6)

where Q̂′′ is a (k+ 1)× n matrix having Q̂ as its first k rows and its last row s′′

has its first k entries equal to 0 (i.e. s′′[j] = 0 for j = 1, . . . , k). Now there are
two cases. In the case s′′[�] ≡ 0 (mod p), clearly either there are no solutions
to (6) satisfying (2) (if T ′ − T �≡ 0 (mod p)), or the solution is not unique (if
T ′ − T ≡ 0 (mod p)), so A sets d = 0. In the second case s′′[�] �≡ 0 (mod p),
A uses back substitution to compute the unique solution d to (6) satisfying (2),
i.e from the (k + 1)th row of (6):

d[π(�)] = s′′[�]−1 · (T ′ − T) mod p (7)

and from the first k rows:

d[π(j)] = −q′
j [�] · d[π(�)] mod p for j = 1, . . . , k. (8)

The running-time of A is t = t′ + O(k2nTM (p)) as claimed. Now we analyse
the success probability ε of A. Let us define several events in the above game:

1. SucA′: A′ succeeds, i.e. s2 − s1 �= 0 and
n∑

i=1

(s2[i]− s1[i]) · a′[i] ≡ 0 (mod p). (9)

2. SucA′
1: SucA′ occurs and s2 − s1 is linearly independent of {q1, . . . ,qk} over

ZZp.
3. SucA′

2: SucA′ occurs and s2 − s1 is a linear combination of {q1, . . . ,qk} over
ZZp.

Notice that events SucA′
1 and SucA′

2 partition the event SucA′ so

Pr[SucA′] = Pr[SucA′
1] + Pr[SucA′

2]. (10)

Claim 1. If event SucA′
1 occurs then there exist ‘good’ values (�∗, ŝ∗, ŝ∗[�∗]) ∈

{k+1, . . . , n}×{0, 1}k×{0, 1} such that if A correctly guessed those values when
choosing its random variables (�, ŝ, ŝ[�]) (i.e. if (�, ŝ, ŝ[�]) = (�∗, ŝ∗, ŝ∗[�∗])) then A
succeeds in solving its subset sum instance (i.e.

∑n
i=1 s2[i] · a[i] ≡ T (mod p)).

Higher Order UOWHFs from the Subset Sum Assumption 167

Proof. If SucA′
1 occurs, then substituting a′ ≡ a+d (mod p) and the definition

of T ′ in (9) we obtain
n∑

i=1

s2[i] · a[i] − T ′ ≡
n∑

i=1

−(s2[i]− s1[i]) · d[i].

Hence if d satisfies
n∑

i=1

(s2[i]− s1[i]) · d[i] ≡ T ′ − T (mod p) (11)

then
∑n

i=1 s2[i] · a[i] ≡ T (mod p) and A succeeds as claimed.
Now consider the equations (2),(3) and (4) and suppose for a moment that

we had ŝ[i] = s2[π(i)] for all i = 1, . . . , n (i.e. A correctly guessed all the n
bits of s2). Because s2 − s1 is linearly independent of {q1, . . . ,qk} over ZZp, we
know that the last row s′′ of the reduced matrix Q̂′′ in (6) has a non-zero entry
s′′[�∗] �≡ 0 (mod p) where �∗ ∈ {k+1, . . . , n}, so if � = �∗ then a unique solution
d = d∗ satisfying (2),(3) and (4) exists. Now observe that because of (2), the
solution d∗ depends only on �∗ and a subset of k + 1 bits of s2, namely the bits
s2[π(1)], . . . , s2[π(k)] and s2[π(�∗)]. So if A correctly guesses just those values
(i.e. � = �∗ and ŝ[i] = s2[π(i)] for i ∈ {1, . . . , k} ∪ {�∗} with ŝ[i] = 0 for all other
values of i) then d = d∗ is still a unique solution satisfying (2),(3) and (4) which
is computed by A′ (using (7) and (8)), so from (2) and (4) we conclude that (11)
is satisfied and A succeeds as claimed. This completes the proof of the claim. �	
Claim 2. In the above game, A perfectly simulates the distribution of the view
of A′ as in the real kth order UOWHF attack game. Furthermore, the simulated
view of A′ is statistically independent of the random choices (�, ŝ, ŝ[�]) made by A.

Proof. See full version of the paper.
From the above Claims we obtain the following lower bound on the success

probability ε of A:

ε ≥ Pr[SucA′
1 ∧ (�, ŝ, ŝ[�]) = (�∗, ŝ∗, ŝ∗[�∗])] using Claim 1

≥ 1
(n− k)2k+1

· Pr[SucA′
1] using independence Claim 2

≥ 1
(n− k)2k+1

· (ε′ − Pr[SucA′
2]) using (10) and Claim 2. (12)

The following claim therefore completes the proof of the theorem’s lower bound
on the success probability of A. It is obtained by an information theoretic ar-
gument based on the fact that the answers yi to the oracle queries of A′ are
independent and uniformly random in ZZp (over the random choice of a).

Claim 3. Pr[SucA′
2] ≤ 3k+1

2m .

Proof. See full version of the paper.
Plugging the bound of Claim 3 in (12) establishes the claimed lower bound

ε ≥ 1
(n−k)2k+1 ·

(
ε′ − 3k+1

2m

)
on A’s success probability, completing the proof of

the theorem. �	

168 R. Steinfeld, J. Pieprzyk, and H. Wang

4 Application to Construction of Long-Input UOWHFs

In this section we discuss the application of our result to constructing UOWHFs
used to hash long messages using a subset-sum compression function, in con-
junction with the results of [7].

Let us suppose we wish to use the compression function family FSS(n, m, p)
(hashing n bits to m < n bits) to construct a hash function family F ′

SS(�, m)
hashing a long l-bit message to m bits, where � could be much larger than n. We
want to ensure that F ′

SS(�, m) is a UOWHF family, assuming that the underlying
family FSS(n, m, p) is a UOWHF family (or a higher order UOWHF family).
A well-known and natural ‘domain-extension’ method is the Merkle-Damg̊ard
(MD) transform [11, 5], which works as follows. We assume for simplicity that
� = m + L · (n −m) for a positive integer L. Then the MD family F ′

SS(�, m) is
defined as follows. A key a ∈ ZZn

p of F ′
SS(�, m) is just a uniformly random key of

FSS(n, m, p). An input message M ∈ {0, 1}� is hashed using f ′
a as follows:

1. Split M ∈ {0, 1}� into one m-bit block x0 ∈ {0, 1}m and L = (�−m)/(n−m)
(n−m)-bit blocks (M [0], . . . ,M [L− 1]).

2. For i = 0, . . . ,L − 1, compute xi+1 = fa(xi,M [i]). Return xL ∈ {0, 1}m.

It has been proved in [11, 5] that if the compression family FSS(n, m, p) is
collision-resistant, then so is the MD family F ′

SS(�, m). However, as discussed
above, the collision-resistance of FSS(n, m, p) relies on the hardness of the
weighted knapsack problem WKnap(n, m, p), which may be substantially easier
than the subset sum problem SubSum(n, m, p). So, using the fact that UOWHF
security is enough for many hashing applications, and in order to rely only on
the hardness of SubSum(n, m, p), one could hope to use Theorem 1, which shows
that FSS(n, m, p) is a (0th order) UOWHF family assuming only the hardness
of SubSum(n, m, p). Unfortunately, as shown in [3], the MD construction does
not preserve the UOWHF property in general, i.e. the fact that FSS(n, m, p) is
a UOWHF family does not imply that F ′

SS(�, m) is a UOWHF family.
However, Hong, Preneel and Lee [7] have shown that if FSS(n, m, p) is a

(t, ε) kth order UOWHF for some k > 0 and L ≤ k + 1, then the MD fam-
ily F ′

SS(�, m) is approximately a (t,L · ε) UOWHF. Combined with our result
(Theorem 2), we conclude that for k = O(log m), the MD family F ′

SS(�, m) is a
UOWHF for L ≤ k + 1, assuming only the hardness of SubSum(n, m, p). More
precisely, if subset sum problem SubSum(n, m, p) is (t, ε)-hard for some large
time bound t, then F ′

SS(�, m) is approximately a (t, 2k+1(n− k)L · ε)-UOWHF.
Comparing with Theorem 1, we see that the proven kth order UOWHF security
of FSS(n, m, p) (defined as the log of attacker’s run-time/success probability ra-
tio) is at most about k + log(L) bits lower than the proven UOWHF security
of FSS(n, m, p) (which in turn, by Theorem 1, is essentially equivalent to the
hardness of SubSum(n, m, p)).

4.1 Comparison with Shoup XOR-Mask UOWHF Domain Extender

Besides the basic MD construction, several other domain extenders for UOWHF
hash families are known [14, 3, 16] which do preserve the UOWHF security of the

Higher Order UOWHFs from the Subset Sum Assumption 169

underlying compression family; however, unlike the MD extension above, they all
have the property that the length of key increases with the length of the message.
The most efficient (in terms of key length) known extender of this type is the
Shoup XOR-Mask variant of MD [16]. Let us denote this construction (hashing
� = m + L · (n − m) bits to m bits for a positive integer L) by = F ′′

SS(�, m). It
is built from the compression family FSS(n, m, p) as follows. A key for family
F ′′

SS(�, m) consists of a key a ∈ ZZn
p for FSS(n, m, p) and �log(L)� + 1 random

‘masks’ K∗ = (K∗[0], . . . ,K∗[�log(L)�]), where K∗[i] ∈ {0, 1}m for all i and
L = (�−m)/(n−m). To hash an input message M ∈ {0, 1}� using f ′′

a,K∗ ,

1. Split M ∈ {0, 1}� into one m-bit block x0 ∈ {0, 1}m and L = (�−m)/(n−m)
blocks of (n −m)-bit each, (M [0], . . . ,M [L− 1]).

2. For i = 0, . . . ,L−1, compute xi+1 = fa(xi⊕K∗[ν2(i+1)],M [i]), where ν2(i)
denotes the largest integer ν such that 2ν divides i. Return xL ∈ {0, 1}m.

Hence, for L ≤ k + 1, the key length for the Shoup XOR-Mask extension
F ′′

SS(�, m) is lenF ′′ = n · m + (�log(L)� + 1) · m compared to lenF ′ = n · m
for the MD extension discussed above, so the MD extension achieves a saving of
up to (�log(k + 1)�+ 1) ·m bits by taking advantage of our result (Theorem 2).
The MD extension method is also simpler. On the other hand, because the key
length n ·m for the compression family FSS(n, m, p) dominates, the relative sav-
ing in total key length is small, and is only about (log(k+1)�+1)

n . However, as we
explain in the next section, the total key length is not so important in applica-
tions and more significant relative savings in per use key length can be achieved
in certain cases by combining our result with the ‘XOR Mask Transform’.

Hashing Longer Messages. One can also take advantage of our result for
hashing longer messages of arbitrary length � > (k + 1) · (n − m). To do so
(still assuming only the kth order UOWHF security of the compression family
FSS(n, m, p)), it is possible to combine the MD extension with the Shoup ex-
tension. Namely, first apply the MD extension to FSS(n, m, p) to construct the
UOWHF family F ′

SS((k+1)·(n−m)+m, m) (hashing (k+1)·(n−m)+m bits to
m bits), then apply the Shoup XOR-Mask extension to the compression family
F ′

SS(�, m) to hash � bits to m bits. Compared to applying the Shoup extension
directly to FSS(n, m, p), this ‘combined’ method reduces the number of blocks
in the Shoup extension by a factor of k+ 1, leading to a saving in key length by
an additive amount of log(k + 1) · m bits.

4.2 Using the ‘Semi-Public Key’ XOR Mask Transform

In this section we show that more significant relative savings in UOWHF key
length can be achieved in certain cases by combining our result with the
‘Semi-Public Key XOR Mask Transform’.

The Semi-Public Key XOR Mask Transform. As remarked in [9], UOWHF
hash families have the following useful property, namely that the UOWHF prop-
erty is preserved by what we call the ‘Semi-Public Key XOR-Mask Transform’.
First, let us define the ‘XOR-Mask Transform’.

170 R. Steinfeld, J. Pieprzyk, and H. Wang

Definition 7 (‘XOR-Mask Transform’). Let F(n, m) be a hash family (hash-
ing n bits to m bits). Define the XOR-Mask Ttransform hash family F ′(n, m)
(hashing n bits to m bits) as follows. A key of F ′(n, m) consists of a key a of
F(n, m) and a random ‘mask’ K ∈ {0, 1}n. An input M ∈ {0, 1}n is hashed
using key (a,K) as follows f ′

a,K(M) = fa(M ⊕K).

We call the XOR-Mask Transform a ‘Semi-public Key’ transform, if the portion
a of the key (a,K) of f ′

a,K is published before the attacker commits to its first
collision input. Then we have the following simple but useful result.

Lemma 1. [‘Semi-public Key XOR-Mask Transform’ Preserves UOWHF Secu-
rity] Let F(n, m) be a hash family (hashing n bits to m bits), and let F ′(n, m)
denote the corresponding XOR-Mask transform of F(n, m). If F(n, m) is a (0th
order) UOWHF family, then F ′(n, m) is a (0th order) UOWHF family, even
against ‘Semi-Public Key’ UOWHF attacks on F ′(n, m), in which the random
key a of F(n, m) is given to the attacker before committing to the first colliding
input s1 ∈ {0, 1}n (i.e. only the ‘XOR-Mask’ K ∈ {0, 1}n is kept hidden from
the attacker until he commits to s1).

As remarked in [9], the practical implication of Lemma 1 for hash function
applications (e.g. hashing a message prior to signing with a digital signature
scheme) is that one can publish the long key a of F(n, m) once and for all (e.g.
in the public key of a signature scheme, or in a hashing standard document),
and then each use of the hash function (e.g. hashing and signing a message)
only requires appending (to the signature) a relatively short fresh ‘mask key’
K ∈ {0, 1}n.

Key Savings with the XOR Mask Transform. To construct a long �-bit
input UOWHF function (with � = m+L· (n−m) for integer L) from the subset
sum compression family F(n, m, p) using the XOR Mask Transform, the stan-
dard method is to apply the Semi-Public Key XOR-Mask transform to F(n, m, p)
(with mask key length n bit) and then the Shoup XOR-Mask domain exten-
der from the previous section. Note that an m-bit part of the XOR transform
mask key K can be ‘absorbed’ into the Shoup mask keys. Hence the result is a
UOWHF family F ′(�, m) mapping {0, 1}l to {0, 1}m with ‘per-use’ key length
l′ = (�log(L)� + 1) ·m + (n−m) = n + �log(L)� ·m. In terms of provable secu-
rity, combining the reduction in [16] with Theorem 1, we obtain that if subset
sum problem SubSum(n, m, p) is (t, ε)-hard, then F ′(�, m) is approximately a
(t, 2nL · ε) UOWHF.

We now show that one can shorten the ‘per use’ key length of the standard
method using our result, if the compression ratio τ = n/m of the building block
subset sum compression function family F(n, m, p) is close to 1 (the relative sav-
ing increases as τ gets close to 1 and decreases with increasing message length).
We remark that the hardness of subset sum can only improve as τ gets close
to 1, and indeed some efficient attacks are known which exploit a large value of
τ > 1 (see [9]); therefore the use of τ close to 1 may be necessary to achieve
sufficient security.

Higher Order UOWHFs from the Subset Sum Assumption 171

Assume that k + 1 is a divisor of L so L = L′ · (k + 1) for positive integer
L′. We first apply the MD extender with extension factor k+ 1 to F(n, m, p) to
obtain a UOWHF family F2 mapping {0, 1}m+(k+1)·(n−m) to {0, 1}m. Next we
apply the Semi-Public XOR Mask Transform to F2 to obtain UOWHF F3 with
same domain and range and XOR mask key length m + (k + 1) · (n − m) bit.
Finally we apply the Shoup XOR-Mask extender with L′ blocks to F3 obtain
UOWHF F ′′(�, m) mapping {0, 1}�=m+L·(n−m) to {0, 1}m, with ‘per-use’ key
length l′′ = (�log(L′)�+1) ·m+(k+1) · (n−m) = n+ �log(L′)� ·m+k · (n−m).
In terms of provable security, we combine the reductions in [16] and [7] with our
Theorem 2 to obtain that if subset sum problem SubSum(n, m, p) is (t, ε)-hard
then F ′′(�, m) is approximately a (t, 2k+1(n− k)L · ε) UOWHF, so our method’s
provable security is about 2k times lower than the standard method.

The relative saving S(k) def= (l′ − l′′)/l′ in ‘per use’ key length of our method
over the standard method is

S(k) =
(�log(L′ · (k + 1))� − �log(L′)�) ·m− k · (n −m)

n + �log(L)� ·m . (13)

Dropping the floor functions and using τ = n/m, we obtain the continuous
approximation

S(k) ≈ log(k + 1)− (τ − 1) · k
log(L) + τ

.

It is clear that for fixed L and τ close to 1, there is an optimum choice ko for k
which maximises S(k). Using the continuous approximation for S(k) above it is
easy to show that the optimum values are given by

ko ≈
1

ln(2)(τ − 1)
− 1, S(ko) ≈

log(1
ln(2)(τ−1)) + τ − 1 − 1/ ln(2)

log(L′
ln(2)(τ−1)) + τ

, (14)

corresponding to an absolute additive saving in ‘per use’ key length of l′ − l′′ ≈
(log(1

ln(2)(τ−1))+τ−1−1/ ln(2))·m bits. Because the total ‘per use’ key length l′

of the Shoup method increases only logarithmically with the message length, this
constant additive saving remains significant even for quite long message lengths.
On the other hand, the above comparison does not take into account that the
proven security of our method is lower than the standard method by a factor of
about 2k relative to the subset sum problem. Let T (τ, m) denote the security (run
time to success probability ratio) of subset sum problem SubSum(τ ·m, m, p). To
compare the key length at equal proven security level, we may assume a larger
modulus length m′ > m in our method (but same compression ratio τ = n′/m′ =
n/m) chosen such that T (τ, m′) = 2k · T (τ, m). Assuming T (τ, m) = C(τ) · 2c·m

for some function C(τ) and constant c > 0 (e.g. c = 0.0629/(1.0629) ≈ 0.059
may be reasonable as discussed in Section 2), we obtain m′ = m + k/c. This
leads to a reduced relative key length saving (for equal length messages)

S′(k) ≥
(

1 +
k/c

m

)
S(k) − k/c

m
. (15)

172 R. Steinfeld, J. Pieprzyk, and H. Wang

This relative saving is still significant for short messages when m is sufficiently
large compared to k/c, although the saving decreases (and actually becomes
negative) for very long messages. Table 1 shows an example of the achievable
savings.

Table 1. Example of savings in ‘per use’ key length using our method combined with
the Shoup method (‘our’ column), compared to the Shoup method alone (‘std’ column).
The savings have been corrected for equal provable security as explained in the text,
assuming parameter values m = 2000, τ = 1.07, k = 19, c = 0.059, m′ = 2321.

Msg Len (kbit) Key Len std (kbit) Key Len our (kbit)) Savings (%)

5.6 10.1 5.6 45.2
8.8 12.1 7.9 35.1
15.3 14.1 10.2 27.8
106 20.1 17.2 14.8
1661 28.1 26.5 6.0
6637 32.1 31.1 3.3

One could obtain slightly greater savings with our method if Lemma 1 could
be generalized to higher order UOWHFs. However we point out that this is not
true in general, and in particular, the kth order UOWHF property of the subset
sum function is not preserved by the ‘Semi-Public Key XOR-Mask Transform‘ –
we refer the reader to the full version of the paper for more details.

5 Conclusion

We have shown that the subset sum hash function is a kth order UOWHF
for k = O(log m). Concretely, we have shown that its security as a kth order
UOWHF is at most about k bits lower than its security as a (0th order) UOWHF
(which in turn is almost equivalent to the subset sum problem), and showed an
application of this result to shortening the key length of long-input UOWHFs
built from the subset sum compression function using the Shoup XOR-mask
domain extender. An interesting research problem is to find other applications
for higher order UOWHFs (for which UOWHFs are not sufficient).

Acknowledgements. This work was supported by Australian Research Council
Discovery Grants DP0345366 and DP0451484.

References

1. M. Ajtai. Generating Hard Instances of Lattice Problems. In Proc. 28th STOC,
pages 99–108, New York, 1996. ACM Press.

2. M. Bellare and D. Micciancio. A New Paradigm for Collision-free Hashing: Incre-
mentality at Reduced Cost. In EUROCRYPT ’97, volume 1233 of LNCS, pages
163–192, Berlin, 1997. Springer-Verlag.

Higher Order UOWHFs from the Subset Sum Assumption 173

3. M. Bellare and P. Rogaway. Collision-Resistant hashing: Towards making
UOWHFs Practical. In CRYPTO ’97, volume 1294 of LNCS, pages 470–484,
Berlin, 1997. Springer-Verlag.

4. M.J. Coster, B.A. LaMacchia, A.M. Odlyzko, and C.P. Schnorr. An Improved
Low-Density Subset Sum Algorithm. In EUROCRYPT ’91, volume 547 of LNCS,
pages 54–67, Berlin, 1991. Springer-Verlag.

5. I. Damg̊ard. A Design Principle for Hash Functions. In CRYPTO ’89, volume 435
of LNCS, pages 416–427, Berlin, 1989. Springer-Verlag.

6. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Technical Report TR96-056, Electronic Colloquium on Computational
Complexity (ECCC), 1996.

7. D. Hong, B. Preneel, and S. Lee. Higher Order Universal One-Way Hash Func-
tions. In ASIACRYPT 2004, volume 3329 of LNCS, pages 201–213, Berlin, 2004.
Springer-Verlag.

8. C. Hsiao and L. Reyzin. Finding Collisions on a Public Road, or Do Secure Hash
Functions Need Secret Coins? In CRYPTO ’04, volume 3152 of LNCS, pages
92–105, Berlin, 2004. Springer-Verlag.

9. R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure
as Subset Sum. Journal of Cryptology, 9:199–216, 1996.

10. R. M. Karp. Reducibility among Combinatorial Problems. In R. E. Miller and J.W.
Thatcher, editors, Complexity of Computer Computation. Plenum, New York, 1972.

11. R. Merkle. One Way Hash Functions and DES. In CRYPTO ’89, volume 435 of
LNCS, pages 428–446, Berlin, 1989. Springer-Verlag.

12. R. Merkle and M. Hellman. Hiding Information and Signatures in Trapdoor Knap-
sacks. IEEE Trans. on Information Theory, 24:525–530, 1978.

13. D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions based on
Gaussian Measures. In Proc. FOCS 2004, pages 372–381. IEEE Computer Society
Press, 2004.

14. M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic
Significance. In Proc. 21st STOC, pages 33–43, New York, 1989. ACM Press.

15. A. Shamir. A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem. IEEE Trans. on Information Theory, 30:699–704, 1984.

16. V. Shoup. A Composition Theorem for Universal One-Way Hash Functions. In
EUROCRYPT 2000, volume 1807 of LNCS, pages 445–452, Berlin, 2000. Springer-
Verlag.

An Algorithm to Solve the Discrete Logarithm

Problem with the Number Field Sieve

An Commeine1 and Igor Semaev2

1 Katholieke Universiteit Leuven, Departement Wiskunde, Afdeling Algebra,
Celestijnenlaan 200B, B-3001 Leuven, Belgium

2 Universitetet i Bergen, Institutt for informatikk, HIB - Thormhlensgt. 55,
N-5020 Bergen, Norway

Abstract. Recently, Shirokauer’s algorithm to solve the discrete log-
arithm problem modulo a prime p has been modified by Matyukhin,
yielding an algorithm with running time Lp[1

3
, 1.9018 . . .], which is, at

the present time, the best known estimate of the complexity of finding
discrete logarithms over prime finite fields and which coincides with the
best known theoretical running time for factoring integers, obtained by
Coppersmith. In this paper, another algorithm to solve the discrete loga-
rithm problem in F∗

p for p prime is presented. The global running time is
again Lp[

1
3
, 1.9018 . . .], but in contrast with Matyukhins method, this al-

gorithm enables us to calculate individual logarithms in a separate stage
in time Lp[

1
3
, 31/3], once a Lp[

1
3
, 1.9018 . . .] time costing pre-computation

stage has been executed. We describe the algorithm as derived from [6]
and estimate its running time to be Lp[

1
3
, (64

9
)1/3], after which individual

logarithms can be calculated in time Lp[
1
3
, 31/3].

Keywords: Discrete Logarithms, Number Field Sieve.

1 Introduction

Given a prime p and integers a and b, the discrete logarithm of b to the base
a in the multiplicative group of the finite field Fp is defined as the smallest
nonnegative integer x such that ax ≡ b (mod p), if it exists.

The security of many, widely used public key cryptosystems, as the well-known
Diffie-Hellman key exchange algorithm and the ElGamal Digital signature algo-
rithm, depends on the assumption that for suitably chosen primes, discrete logs
are hard to compute. As such, one of the most stimulating factors in research on
the complexity of discrete logs is the fact that fast discrete logarithm algorithms
could easily undermine these cryptosystems ([12],[13] for a survey).

General methods that can also be applied in other groups than F∗
p, are Shanks

deterministic “baby steps, giant steps” attack ([14]) and two other randomized
algorithms due to Pollard ([16]), such as the Pollard ρ-method. For both meth-
ods, the number of operations to compute a discrete logarithm roughly equals
q1/2, where q is the largest prime factor of p − 1, but Pollards methods use al-
most no space in contrast with Shanks method, which has space requirement
q1/2. Moreover, the Pollard ρ-method was parallelized in 1993 by van Oorschot

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 174–190, 2006.
c© International Association for Cryptologic Research 2006

An Algorithm to Solve the Discrete Logarithm Problem 175

and Wiener ([23]) in such a way that the expected number of steps that each
processor performs to obtain a discrete logarithm is about q1/2/t, where t is the
number of processors. These attacks have an exponential worst case complexity,
since the largest prime factor of p− 1 can be almost as large as p.

Making use of additional knowledge of the underlying group, index calculus
methods, based on an idea of Kraitchik ([11]), provide subexponential algo-
rithms. These methods typically consist of three phases: generating relations,
solving equations and computing individual logarithms using the results of the
first two steps. The first two steps, called the pre-computation stage, determine
the running time of the algorithm. Once the pre-computation stage is finished
for a prime p, individual logarithms modulo that prime can be computed more
efficiently. Running time bounds of the earliest index calculus algorithms are of
the form Lp[12 , c] for some constant c > 0. Large c however yield impractical
algorithms, so many researchers tried to lower this value c during 1970s and
1980s ([11],[14] for references). Both the Linear Sieve Method and the Gaussian
Integer Method ([4]), where the use of an imaginary quadratic number field was
introduced, achieved the value c = 1. In 1998, work on the latter allowed Joux
and Lercier to compute discrete logs modulo a 90-digit prime number in [6]. The
asymptotic running time bound with c = 1 was a record value for a long time.

Speeding up the pre-computation stage was possible due to advances in linear
algebra, namely solving sparse systems with n unknowns in not much more than
n2 steps ([15]). This is achieved by the Wiedemann algorithm ([24]), based on the
Berlekamp-Massey algorithm and the Cayley-Hamilton theorem and, by adap-
tations of the finite field version of Lanczos and conjugate gradient algorithms
([4],[14]), that can be combined with structured Gauss Elimination ([14]).

In 1988, Pollard found a new approach for factoring integers. This technique
was developed into the special number field sieve by Hendrik Lenstra. It factors
integers of special forms in time LN [13 , c] with c = (32

9)1/3 = 1.5262 . . ., where N
is the number to be factored. Later the method was extended to factor arbitrary
integers in time LN [13 , c] with c = (64

9)1/3 = 1.9229 . . . in the general number field
sieve, that arose through a collaboration of several researchers ([8] for details).
The value of c was improved to c = 1.9018 . . . by Coppersmith in [3].

The general number field sieve was adapted to the computation of discrete
logs modulo a prime by Gordon in [5] in 1992. He obtained running time Lp[13 , c]
with c = 2.0800 The value of c was lowered by Shirokauer in [19] to c =
(64

9)1/3 = 1.9229 . . . in 1993. Adapting this algorithm following the ideas of Cop-
persmith, Matyukhin in [10] achieved the same constant as Coppersmith in [3],
thus c = 1.9018 With the latter two algorithms however, it’s impossible to
efficiently compute individual logarithms, since the linear algebra must be redone
for every new logarithm. For special prime numbers, this deficiency was over-
come by Semaev in [21], moreover yielding a running time of Lp[13 , (32

9)1/3] and
Lp[13 , 1+2

√
2

181/3] = Lp[13 , 1.4608 . . .] for an individual logarithm. Joux and Lercier
were able to separate the pre-computation stage and the computation of individ-
ual logarithms for primes lacking any special structure in [6], which formed the
base of their computation of discrete logs modulo a 130-digits prime, the current

176 A. Commeine and I. Semaev

record for general primes ([7]). Since their objective was to describe the main
ideas behind their C-implementation, they didn’t write down the actual algo-
rithm they used to compute individual logarithms nor performed an asymptotic
time analysis however.

To achieve a separate individual logarithm stage, we adapt the method in [6]
for the pre-computation part and modify the individual logarithm algorithm
of [21]. Instead of working with real numbers, we choose to work with a ‘loga-
rithmic map’ as in [19], though an approach developed in [21] apparently gives
the same asymptotic results. The improvements of Coppersmith in [3] are taken
into account, to achieve a global running time of Lp[13 , 1.9018 . . .]. In contrast
with Matyukhin however, individual logarithms can be calculated separately in
time Lp[13 , 31/3] = Lp[13 , 1.44225 . . .] after a Lp[13 , 1.9018 . . .]-time costing pre-
computation stage. In order to compare the method in [6] with ours, we give a
precise theoretical description of the algorithm as we’ve understood and built
it out of the ideas given in [6]. A running time analysis of this algorithm is
performed, using the theoretical settings developed in the analysis of our algo-
rithm. We show that the optimal cost for this algorithm is Lp[13 , (64

9)1/3], with
the possibility to calculate individual logarithms separately in time Lp[13 , 31/3].

The core idea, which allows us to achieve this running time for the individual
logarithm stage, is expressing logarithms of medium-sized prime numbers into
logarithms of smaller numbers and the reduction of first degree prime ideals
into first degree prime ideals with smaller norm. Inspiration for this was found
in [2]. This idea of reducing unknown into known information is also applicable
in the one-polynomial variant of the Number Field Sieve, yielding a very similar
separate individual logarithm algorithm, again with running time Lp[13 , 31/3],
not changing the pre-computation time of Lp[13 , (64

9)1/3]. (The most expensive
reduction will take more time in this setting however; see Remark, Section 4.2.)

We want to remark that running times of all recent algorithms of the form
Lp[13 , c], as the one presented in this paper, are based on heuristic assumptions.
There’s no proof that they’ll run fast. It’s possible to obtain rigorous probabilistic
algorithms, with running time bounded by Lp[12 , c] with high probability ([18]).

2 Preliminaries

Definition 1. An integer n is B-smooth if and only if q ≤ B for all (natural)
prime numbers q that divide n.

When assessing a running time analysis of the algorithm, we make use of the
complexity-function

Lp[t, s] = es(1+o(1))(ln p)t(ln ln p)1−t

,

where o(1) denotes a function tending to 0 as p → ∞. The expression o(1) in
the exponent hides a lot: this notation is meant as a first order approximation
to the real computational complexity.

The following theorem gives an estimation of the probability that a number
smaller or equal to x is y-smooth in terms of the above complexity function.

An Algorithm to Solve the Discrete Logarithm Problem 177

Theorem 1. Let 0 < y1 < x1 ≤ 1 and y2, x2 > 0. Let x = Lp[x1, x2] and
y = Lp[y1, y2], then

ψ(x, y)
x

= Lp[x1 − y1,−
x2

y2
(x1 − y1)] ,

where ψ(x, y) =the number of natural numbers smaller or equal to x which are
y-smooth.

This follows from a more general theorem of Canfield, Erdös and Pomerance:

Theorem 2. ([1]) If x ≥ 10 and y > lnx, then it holds that

ψ(x, y) = xu−u(1+o(1)) with u =
log x

log y
,

where the limit implicit in the o(1) is for x →∞.

We recall some useful results from algebraic number theory. Let f = Xd +
f1X

d−1 + · · · + fd be a monic, irreducible polynomial of degree d with root α.
We denote the field Q(α) = K and ϑK the ring of algebraic integers of K.
Following propositions are useful:

Proposition 1. ([21]) If q does not divide [ϑK : Z[α]] and

f(X) =
∏

i

hei

i (X) in Fq[X] ,

where hi(X) are distinct irreducible polynomials in Fq[X], then

qϑK =
∏

i

Uei

i ,

for distinct prime ideals Ui = hi(α)ϑK + qϑK in ϑKand Norm(Ui) = qdeg hi(X).

This proposition suggests making a distinction between prime ideals in ϑK .

Definition 2. A prime ideal P of ϑK of degree 1 is bad if its norm divides the
index [ϑK : Z[α]]. All other prime ideals of degree 1 are called good.

Good prime ideals appear in factorizations as mentioned below.

Proposition 2. ([21]) If a, b �= 0 are coprime integers such that

bdf
(a

b

)
= ad + f1ba

d−1 + · · ·+ fdb
d

is coprime to [ϑK : Z[α]], then

(a − bα)ϑK = U l1
1 U l2

2 . . .U ls
s ,

where Ui are distinct good prime ideals of ϑK for i = 1, . . . , s and Norm(Ui) = qi

for distinct qi. Moreover,

|bdf
(a

b

)
| =

s∏
i=1

qli
i .

178 A. Commeine and I. Semaev

For ease of exposition, suppose p − 1 = 2q with q a large prime that doesn’t
ramify in K. Let ΓK = {γ ∈ ϑK | gcd(Norm(γ), q) = 1}. We use a map l as
in [19]: set εK = lcm

{∣∣(ϑK/Q)∗
∣∣ | Q prime ideal in ϑK lying above q

}
, then

l : ΓK −→ qϑK/q2ϑK

γ �−→ (γεK − 1) + q2ϑK .

Consider qϑK/q2ϑK as a Z/qZ-vectorspace. We generate a sequence of length a
little more than the unity rank of ϑK of random units u ∈ ϑ∗K and calculate the
images l(u). The linear independent vectors amongst these images l(u) span the
subspace l(ϑ∗K) ⊆ qϑK/q2ϑK with high probability. Assume they form a basis
{qbj + q2ϑK | j = 1, . . . , tK} of l(ϑ∗K). Expand this basis to a basis {qbj + q2ϑK |
j = 1, . . . , d} of the whole Z/qZ-vectorspace qϑK/q2ϑK . Denote

λK,j : ΓK −→ Z/qZ
γ �−→ λK,j(γ)

such that l(γ) =
∑d

j=1 λK,j(γ)(qbj + q2ϑK). Remark that l(γγ′) = l(γ) + l(γ′),
such that λK,j(γγ′) = λK,j(γ) + λK,j(γ′) for j = 1, . . . , d.

The largest contribution to the time needed for the practical determination
of all λK,j(γ) for γ ∈ ΓK , comes from the exponentiation to the power εK < qd

in the ring Z[X]/(f, q2), costing O(d3 ln3 p) bit operations.

3 The Algorithm

3.1 Needs and Assumptions

Choose two natural numbers d = δ(1+o(1)) (ln p/ ln ln p)1/3 and m = p(1+o(1))/d,
both depending on p, where the limit implicit in the o(1) is for p → ∞. The
parameter δ will be defined later. Suppose f is an irreducible polynomial of
degree d with coefficients bounded by m, such that f(m) ≡ 0 mod p, obtained
as in the Number Field Sieve setting (NFS). Remark that use of polynomials
as in [6], namely a degree d + 1-polynomial with small coefficients and having
a root μ modulo p and a degree d-polynomial with the same root μ modulo p,
having coefficients of the order p1/(d+1), is thought of giving the best practical
results.

For simplicity, we assume f = f0 to be monic. We work with polynomials

fi(X) = f0(X) + i(X −m) for i = 1, . . . ,V

that are irreducible and such that neither p nor q divide their discriminants.
These conditions are easily checked ([5]). For simplicity, we assume all values
of i determine valid polynomials. Remark that the coefficients of these polyno-
mials get somewhat larger, becoming ≤ (V + 1)m = V Lp[23 , 1

δ] in first order
estimate.

An Algorithm to Solve the Discrete Logarithm Problem 179

Let αi be a root of fi, Ki = Q(αi) an algebraic number field of degree d over
Q and ϑKi the ring of algebraic integers of Ki. Remark that αi is an algebraic
integer in Ki by the assumption that fi is monic. The number p doesn’t divide
the discriminant of the polynomial fi, hence it doesn’t divide [ϑKi : Z[αi]].
According to Proposition 1, Pi = (αi − m)ϑKi + pϑKi then is a first degree
prime ideal, and we denote πi(ε) = ε for πi the projection-map

πi : ϑKi −→
ϑKi

Pi
(∼= Fp) , αi = m . (1)

For every fieldKi, we denote the maps λKi,j and the set ΓKi , defined as above,
as λi,j and Γi respectively. Let ri be the torsion free rank of ϑ∗Ki

. Since q doesn’t
divide the discriminant of fi, ϑ∗Ki

contains no primitive q’th roots of unity. This
implies that the dimension tKi of the Z/qZ-subspace l(ϑ∗Ki

) ⊆ qϑKi/q2ϑKi is
less then or equal to ri. We assume that gcd(hKi , q) = 1 and {u ∈ ϑ∗Ki

| u ≡
1 mod q2} ⊆ (ϑ∗Ki

)q for every i. One can check that, under these conditions, the
well-defined homomorphisms

λi : ϑ∗Ki
/(ϑ∗Ki

)q −→ (Z/qZ)ri

γ(ϑ∗Ki
)q �−→ (λi,1(γ), . . . , λi,ri(γ))

are isomorphisms (thus tKi = ri).

3.2 The Algorithm

Choose bounds E = Lp[13 , ε], B1 = Lp[13 , β] and B2 = Lp[13 , γ], where ε, β, γ are
parameters with β ≥ γ.

Finding Relations

1. Let Si be the set of good prime ideals in ϑKi with norm ≤ B2 and coprime
to q. As in the modified number field sieve due to Coppersmith, we set
V = π(B1)/(π(B2) + d) = Lp[13 , β − γ] and determine triples (a, b, i) with
|a| ≤ E, 1 ≤ b ≤ E, called good, such that, for qj ranging over prime
numbers ≤ B1 and Ui ranging over prime ideals in Si, it holds that

a− bm = ±
∏

qj≤B1

q
eabj

j (2)

(a − bαi)ϑKi =
∏

Ui∈Si

UnabUi

i . (3)

To achieve about 2(|Si| + ri) triples per field Ki, we take ε = (3γ2δβ + γ +
β)/((6γ − δ)δβ) and 6γ − δ > 0. It is shown in [3] that finding appropriate
triples takes time

Lp[
1
3
, max{β, 2ε}] + Lp[

1
3
, 2ε− 1

3δβ
+ β − γ] . (4)

180 A. Commeine and I. Semaev

2. Since λi are isomorphisms for i = 0, . . . ,V , it follows from [20] that there
exist unique elements XUi , Xi,j ∈ Z/qZ, not depending on the set Si of ideals,
such that for all triples (a, b, i) collected, it holds that

logg πi(a− bαi) ≡
∑

Ui∈Si

XUinabUi +
ri∑

j=1

Xi,jλi,j(a − bαi) (mod q) ,

using (3). Together with (2) and taking into account that logg ±1 ≡ 0 (mod
q), this equivalence leads to the equation

−
∑

qj≤B1

eabj logg qj +
∑

Ui∈Si

XUinabUi +
ri∑

j=1

Xi,jλi,j(a − bαi) ≡ 0 (mod q) .

To establish these equations, we only need to evaluate λi,j(a − bαi) for j =
1, . . . , ri for all good triples (a, b, i). This takes asymptotic time
O(d3 ln3 p)

(∑V
i=0 2(|Si|+ ri)

)
≈ O(d3 ln3 p)2(V + 1)(π(B2) + d) = π(B1).

Solving the System. Through finding relations as above, we get a homo-
geneous system of about

∑V
i=0 2(|Si|+ ri) ≈ 2(V + 1)(π(B2) + d) ≈ 2π(B1)

equations, which has to be solved for π(B1) +
∑V

i=0 (|Si|+ ri) ≈ π(B1) +
(π(B2) + d)(V + 1) ≈ 2π(B1) unknowns logg qj and XUi ,Xi,j . In order to
get a unique non-zero solution to the system, take g a B1-smooth number
g =

∏
qj≤B1

q
egj

j , generating F∗
p, what can be done under the assumption of

the Extended Riemann Hypothesis ([22]), and expand the system with the
equation ∑

qj≤B1

egj logg qj ≡ logg g ≡ 1 (mod q).

Let U be the matrix with blocks Ui = (eabij)(a,b,i),j on its rows, where eabij =
eabj in (2) for a good triple (a, b, i) and let P , respectively L, be matrices
with blocks Pi = (nabUi)(a,b,i),Ui

, respectively Li = (λi,j(a − bαi))(a,b,i),j, on
the diagonal for i from 0 to V . The rows of these matrices run over good
triples (a, b, i). Let Ug be the rowvector (egj)j , then the matrix of the system
has layout:

(
1 , −Ug , 0 , 0
0 , −U , P , L

)
=

⎛⎜⎜⎜⎜⎜⎝
1 −Ug 0 0 . . . 0 0 0 . . . 0
0 −U0 P0 0 . . . 0 L0 0 . . . 0
0 −U1 0 P1 . . . 0 0 L1 . . . 0
...

...
.

0 −UV 0 0 . . . PV 0 0 . . . LV

⎞⎟⎟⎟⎟⎟⎠ .

This sparse system can be solved combining structured Gaussian elimina-
tion with a sparse matrix technique, such as Wiedemann’s algorithm ([24])
or Lanczos and conjugate gradient methods ([4],[14]). According to [15],
asymptotical time cost to solve the system is

O(π(B1)2) = Lp[
1
3
, 2β] . (5)

An Algorithm to Solve the Discrete Logarithm Problem 181

As stated in [20], we can choose whatever ‘logarithmic’ maps μi,j instead of
the mappings λi,j used here (as in [19], see above). In this way we can make
the system more sparse, so sparse matrix techniques to solve the system
work faster. We’ve for example found maps μi,j such that each Li contained
at most ri(|Si| + 1) non-zero entries. However, one has to make sure that
the advantage of having a sparser system doesn’t get lost by the cost of
evaluating the mappings μi,j . This still has to be examined.

3.3 Running Time Analysis Pre-computation

With running time considerations (4),(5), and taking γ ≤ β, ε as above and
6γ − δ > 0, total pre-computation time becomes

Lp[
1
3
, max {2ε, 2ε− 1

3δβ
+ β − γ, 2β}] ,

which has optimal value Lp[13 , 2β] = Lp[13 , 1.9018 . . .] as in [3], by taking

β =

(
46 + 13

√
13

108

) 1
3

, γ = β

(√
13− 1

3

)
, δ = β

(
4
√

13 − 10
3

)
.

4 The Individual Logarithm

4.1 The Algorithm

In this section we determine loga b (mod p− 1) for a generator a of F∗
p by making

use of the logg qk, XUi and Xi,j calculated in the former section.
Use the procedure below to calculate logg z (mod p− 1) for z = a and z = b.

Once these logarithms are calculated, the asked for loga b is found as loga b ≡
logg b/ logg a (mod p− 1).

1. Let Q ≤ B1 be the largest prime number in the factorbase for which the
logarithm is known. Factor Qhz using the Elliptic Curve Method (ECM)
([9]) for random integers h ∈ {1, . . . , p − 1}, until you find one for which
Qhz mod p is Lp[23 , (1

3)1/3]-smooth. Thus

Qhz ≡ qn1
1 . . . qnr

r (mod p) , qi prime numbers ≤ Lp[23 , (1
3)

1
3] . (6)

To check for factors ≤ Lp[23 , (1
3)1/3], each application of ECM takes asymp-

totic time Lp[13 , 2(1
3)2/3] ([10]), such that the total time to find a good h

is

Lp[
1
3
,

(
1
3

) 2
3

]Lp[
1
3
, 2
(

1
3

) 2
3

] = Lp[
1
3
, 3

1
3] = Lp[

1
3
, 1.44225 . . .] ,

where we estimate the probability for a number < p to be Lp[23 , (1
3)1/3]-

smooth as Lp[13 ,−(1
3)2/3], using Theorem 1.

182 A. Commeine and I. Semaev

2. For all qi(> B1) in (6), we need to find logg qi. This is done by expressing
these logarithms in terms of known logarithms by means of reductions, which
are described in the next subsection.

3. Calculate logg z ≡ −h logg Q +
∑r

i=1 ni logg qi (mod q) as a sum of known
logarithms. Then, compute logg z (mod p−1) as (logg z mod q)+φq, testing
whether φ = 0 or φ = 1 using modular exponentiation.

The computation loga b ≡ logg b/ logg a (mod p − 1) after applying the
procedure to z = a, b, together with the above calculations,take timeO(ln3 p).

4.2 Reductions

We explain how to reduce a number and a prime ideal. Time for whatever re-
duction is of the form Lp[13 , c], with c ≤ 31/3 for a good choice of parameters.

Reduction of a Number l′. We need to reduce numbers l′ with B1 < l′ ≤
Lp[23 ,

(
1
3

)1/3]. Depending on the largeness of the number that needs to be re-
duced, we use different parameters. Let M = Lp[12 , cM] for some constant cM .
If l′ ∈ [B1,M], we use a parameter ν1 with δ/(6β) = 0.2456 . . . < ν1 < 1 and
set e1 = (3ν1β

6ν1β−δ)(2
3ν1δβ + δ

6ν1
− β + γ); for larger l′ we use a parameter ν2 with

0 < ν2 < 1 and set e2 = (γ − β)/2 + δ/(12ν2).
Choose a pair of coprime integers (a, b) with |a|, |b| ≤ Lp[13 , ei]l′1/2 in the

lattice generated by (m, 1) and (l′, 0), which implies that l′ divides a − bm. We
expect about Lp[13 , 2ei] such couples. If |a− bm/l′| is l′νi-smooth, check whether
|Norm(a − bαj)| = |bdfj(a/b)| is l′νi -smooth, for j such that Norm(a − bαj) is
simultaneously coprime with q and [ϑKj : Z[αj]]. If so, Proposition 2 implies
that we have a couple (a, b) and j such that at the same time

a− bm = l′
∏

l

lel′,l l ≤ l′νi , prime (7)

(a− bαj)ϑKj =
∏
Uj

U
ml′,Uj

j Norm(Uj) ≤ l′νi , Uj good prime ideal . (8)

This allows us to express logg l
′ in terms of logg l with l ≤ l′νi and XUj for good

prime ideals Uj with Norm(Uj) ≤ l′νi as follows. Equality (8) implies that

logg πj(a − bαj) ≡
∑
Uj

XUj ml′,Uj +
rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

where Uj runs over ideals as in (8). Combining this equivalence with (7) yields

logg l
′ ≡

∑
Uj

XUj ml′,Uj +
rj∑

k=1

Xj,kλj,k(a− bαj) −
∑

l≤l′νi

el′,l logg l (mod q) , (9)

where l runs over prime numbers as in (7) and Uj are prime ideals as in (8).
Using Theorem 2, one can check that the probability for the number |(a −

bm)/l′|, respectively |bdfj(a/b)|, to be l′νi-smooth can be estimated to be at
least P11 = Lp[13 ,− 1

3δν1β], respectively P21 = Lp[13 ,−(1
3ν1δβ + e1δ

3ν1β + δ
6ν1

)] for

An Algorithm to Solve the Discrete Logarithm Problem 183

l′ ∈ [B1,M] and at least P12 = Lp[16 ,− 1
6δν2cM

], respectively P22 = Lp[13 , −δ
6ν2

] for
larger l′. Remark that Lp[13 , 2ei]P1iV ≥ 1/P2i for i = 1, 2, so enough pairs (a, b)
are considered to finish the procedure with a successful triple (a, b, j).

To find a good triple (a, b, j), we have to test Lp[13 , 2ei] values |(a − bm)/l′|
and 1/P2i values |bdfj(a/b)| for l′νi-smoothness, using ECM. According to [10],
this takes time at most Lp[14 ,

√
ν1cM] for a number l′ ∈ [B1,M], while for larger

l′ it costs time Lp[13 , 2
√

ν2(1
3)2/3]. Using the fact that 1/(3ν1δβ) − β + γ > 0

since 1/(3δβ(β − γ)) = 2, reducing a number l′ ∈ [B1,M] takes time at most

Lp[
1
3
, 2e1] + Lp[

1
3
,

1
3ν1δβ

+
e1δ

3ν1β
+

δ

6ν1
] = Lp[

1
3
, 2e1] .

For a choice 0.6942 . . . = 4+δ2β+31/3δ2

6δβ(β−γ+31/3)
≤ ν1 < 1, this won’t exceed Lp[13 , 31/3] .

For larger numbers l′ time cost will be at most

Lp[
1
3
, 2e2+2

√
ν2

(
1
3

) 2
3

]+Lp[
1
3
,

δ

6ν2
+2

√
ν2

(
1
3

) 2
3

] = Lp[
1
3
,

δ

6ν2
+2

√
ν2

(
1
3

) 2
3

] ,

which has minimal value Lp[13 , 1.1338 . . .] for a choice ν2 =
(
δ2/(3

2
3 4)

)1/3

< 1.

Remark that for a choice (1 >)ν1 ≥ 4+δ2β+xδ2

6δβ(β−γ+x) = 0.7406 . . . with x =
1.1338 . . ., reducing a number l′ ∈ [B1,M] takes time ≤ Lp[13 , 1.1338 . . .].

Reduction of a Prime Ideal in the Ring ϑKj . In expression (9), there can
appear XU ′

j
with B2 <Norm(U ′

j) = k′ ≤ Lp[23 , ν2/31/3]. To determine such an
unknown number, we reduce the ideal U ′

j , which is, according to Proposition 1,
generated by αj −αj,k′ and k′, for 0 ≤ αj,k′ < k′ a root of fj(X) ≡ 0 (mod k′).

As with reducing numbers, we distinguish between k′ ∈ [B2,M] and larger
k′, with M as in the reduction of numbers. Likewise we introduce parameters ν̃1

with 0.28287 . . . = δ/(6γ) < ν̃1 < 1 and set ẽ1 =
(

3γν̃1
6γν̃1−δ

)(
2

3γν̃1δ + δ
6ν̃1

)
, and

ν̃2 with 0 < ν̃2 < 1 and set ẽ2 = δ/(6ν̃2).
Choose a pair of coprime integers (a, b) with |a|, |b| ≤ Lp[13 , ẽi]k′1/2, subject

to the usual restriction that |bdfj(a/b)| is simultaneously coprime with q and
[ϑKj : Z[αj]] and the new restriction that U ′

j divides (a − bαj)ϑKj , by taking
couples in the lattice spanned by (αj,k′ , 1) and (k′, 0). When both |bdfj(a/b)|/k′
and |a−bm| are k′ν̃i -smooth, which can be checked using ECM, we have a couple
(a, b) such that simultaneously

a − bm =
∏

l

l
eU′

j
,l l ≤ k′ν̃i prime numbers, (10)

(a − bαj)ϑKj = U ′
j

∏
Uj

U
mU′

j
,Uj

j Norm(Uj) ≤ k′ν̃i , Uj good prime ideals. (11)

Similarly as before, equality (11) implies that

logg πj(a− bαj) ≡ XU ′
j
+
∑
Uj

XUj mU ′
j,Uj

+
rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

184 A. Commeine and I. Semaev

where Uj runs over ideals as in (11). Combining this with (10) yields

XU ′
j
≡
∑

l

eU ′
j,l logg l −

∑
Uj

XUj mU ′
j ,Uj

−
rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

with l prime numbers as in (10) and Uj prime ideals as in (11).
Deduced as with the reduction of numbers, time-cost of a reduction for ide-

als with norm k′ ∈ [B2,M] is Lp[13 , 2
3γν̃1δ + ẽ1δ

3γν̃1
+ δ

6ν̃1
], which doesn’t exceed

Lp[13 , 31/3] for a choice 0.9308 . . . = 4+δ2γ+31/3δ2

6δγ31/3 ≤ ν̃1 < 1. For ideals with larger

norm the reduction takes time Lp[13 , δ
6ν̃2

+ 2
√

ν2ν̃2

(
1
3

)2/3], which is minimal for

ν̃2 =
(
δ2/(12ν2b2)

)1/3
< 1, and time-cost is then equal to Lp[13 , 0.9658 . . .].

Remark that for a choice (1 >)ν̃1 ≥ 4+δ2γ+xδ2

6δγx = 0.9967 . . . with x =
1.1338 . . ., time for the reduction of an ideal with norm k′ ∈ [B2,M] will be
≤ Lp[13 , 1.1338 . . .].

Remark. This strategy of ‘reducing’ can also be used with the classical Num-
ber Field Sieve setting, where only one polynomial is used at the algebraic side.
In a similar way as above, one can show that the reduction of a number l or a
prime ideal U with Norm(U) = l takes time Lp[13 , (3

2)1/3] = Lp[13 , 1.1447 . . .] if
Lp[12 , cm] ≤ l < Lp[23 , (1

3)1/3] by taking ν = (1/2)2/3. Since for smaller medium-
sized l time needed for a reduction can be made less than Lp[13 , (3

2)1/3] by taking
(1 >)ν ≥ (21/36+61/38+241/33)/36, this is the most time consuming reduction.
We’ve shown above that the most time-consuming reduction in our many poly-
nomial case has time cost Lp[13 , 1.1338 . . .]. Hence, the most expensive reduction
in the one polynomial variant takes more time than the most expensive reduc-
tion in our case. The algorithm to separately compute individual logarithms
after the pre-computation is done with the original Number Field Sieve setting,
using the idea of reductions, is the same as the one above and has the same
running time, namely Lp[13 , 31/3]. Thus, asymptotically there is no difference in
time-usage between the one or more polynomial setting to calculate individual
logarithms once the pre-computation has been executed (recall however that the
pre-computation is more expensive with the one polynomial setting!).

Reductions: An Example. Suppose we want to find discrete logarithms in
F∗

83 to the base g = 2. Take d = 2 and m = 30. Set f(X) = X2 + 13, since for
this irreducible polynomial, we have f(30) ≡ 0 (mod 83) and neither p = 83 nor
q = 41 divide the discriminant −52 of f . Hence, we work in the extension field
Q(

√
−13), for which it is known that ϑ = ϑQ(

√
−13) = Z +

√
−13Z, such that

[ϑ, Z[
√
−13]] = 1. The unity rank of ϑ is 0, such that no maps λj are needed. Note

that in fact ϑ∗ = {−1, 1}, such that it holds that {u ∈ ϑ∗ | u ≡ 1 mod 412} ⊆
(ϑ∗)41. Further on, we have hQ(

√
−13) = 2, thus hQ(

√
−13) is co-prime with 41.

Let t̄ = t + pZ ∈ Fp for every t ∈ Z. Denote with Ul,r the degree one prime
ideal generated by the prime number l and −r +

√
−13 for r ∈ N. We take

smoothness-bound B1 = 19 at the rational side, and smoothness-bound B2 = 17

An Algorithm to Solve the Discrete Logarithm Problem 185

at the algebraic side. Let S be the set of all good degree one prime ideals with
norm ≤ 17. Suppose the pre-computation stage is executed.

Suppose we have to calculate logg 71. We use a reduction of the number 71.
Take ν = 0.91. For the coprime integers a = 1, b = −26, we have that

(1 + 26× 30)/71 = 11 and Norm(1 + 26
√
−13) = 1 + 13× 262 = 11× 17× 47

are simultaneously 710.91-smooth. The conditions for Norm(1 + 26
√
−13) to be

coprime with 41 and [ϑ, Z[
√
−13]] are fulfilled, so Proposition 2 implies that

1 + 26 × 30 = 71× 11,

(1 + 26
√
−13)ϑ = U11,8U17,15U47,9,

simultaneously. This leads to the result that

logg 71 ≡ XU11,8 + XU17,15 + XU47,9 − logg 11 (mod 41) . (12)

In this expression for logg 71, XU47,9 is (the only) unknown.
Let ν′ = 0.8. Applying the Gaussian Algorithm, we find a short vector (2,−5)

in the lattice spanned by (9, 1) and (47, 0), for which we know U47,9 divides
(a − b

√
−13)ϑ for elements (a, b). Since Norm(2 + 5

√
−13) is coprime with 41

and [ϑ, Z[
√
−13]] and since Norm(2 + 5

√
−13)/47 = (22 + 13 × 52)/47 = 7 and

2 + 5 × 30 = 23 × 19 are both 470.8-smooth, we use (2,−5) to reduce U47,9.
Proposition 2 implies that simultaneously

2 + 5 × 30 = 23 × 19 ,

(2 + 5
√
−13)ϑQ(

√
13) = U7,1U47,9, ,

what results in the expression

XU47,9 ≡ 3 logg 2 + logg 19 −XU7,1

≡ 3 + 6 − 32 ≡ 18 (mod 41) ,

where XU7,1 ≡ 32 (mod 41) and logg 19 ≡ 6 (mod 41) were pre-computed.
Getting back to computation (12) of logg 71, we see that

logg 71 ≡ 34 + 5 + 18− 24 ≡ 33 (mod 41) ,

where XU11,8 ≡ 34, XU17,15 ≡ 5, logg 11 ≡ 24 (mod 41) were pre-computed. One
can check that indeed 233 ≡ 71 (mod 83). Remark that the above expression for
logg 71 is exactly expression (9) for this particular case.

4.3 Running Time Analysis Individual Logarithm

We analyze the time needed to perform step 2 of the algorithm. Set ν = max
{ν1, ν2, ν̃1, ν̃2}. When a number or a prime ideal is reduced, (7) or respectively
(10) introduces O((ln p/ ln ln p)1/3) new medium-sized prime numbers B1 ≤
l < Lp[23 ,

(
1
3

)1/3
] with unknown logarithms. Via (8) or (11), any reduction

186 A. Commeine and I. Semaev

will also invoke O((ln p/ ln ln p)2/3) new medium-sized prime ideals Uj (ide-
als for which B2 ≤Norm(Uj) < Lp[23 ,

(
1
3

)1/3]) for which XUj is unknown. Let
Z be the maximal number of the total of new unknowns induced by one re-
duction, thus Z = O((ln p/ ln ln p)2/3). To calculate logg qi for qi as in (6),
1+Z +Z2 + . . .+Zw̃−1 ≤ Zw̃ reduction-steps will be needed to get all logg l and
XUj in the original factorbase, where w̃ is a natural number such that qνw̃

i ≤ B2.

Since qi ≤ Lp[23 ,
(

1
3

)1/3], it suffices to find w̃ such that Lp[23 ,
(

1
3

)1/3]ν
w̃ ≤ B2

or, in other words, such that νw̃ lnLp[23 ,
(

1
3

)1/3] ≤ lnB2. Since this holds for
w̃ ≥ 1

ln ν ln ln B2

ln Lp[23 ,(1
3)

1/3
]

= O(ln ln p), we can take w̃ = O(ln ln p). Hence, the

number of reductions won’t exceed

O((ln p/ ln ln p)2/3)O(ln ln p) = eO((ln ln p)2) .

Combining all results of the reductions into the value logg qi (mod q) uses
time O((ln p)3)eO((ln ln p)2) ≈ eO((ln ln p)2).

Let c be the constant such that time cost for the most expensive reduction is
Lp[13 , c]. It takes time at most

Lp[
1
3
, c]eO((ln ln p)2) + eO((ln ln p)2) = Lp[

1
3
, c]

to compute logg qi for a medium-sized number qi, so all desired unknown loga-
rithms in (6) can be determined in time O((ln p/ ln ln p)

2
3)Lp[13 , c] = Lp[13 , c].

We conclude that the total running time for the individual logarithm algo-
rithm is Lp[13 , max{31/3, c}]. By choosing parameters as described above, c can be
taken not to exceed 31/3. Hence, given the results of the pre-computation stage, a
calculation of an individual logarithm takes time Lp[13 , 31/3] = Lp[13 , 1.44225 . . .].

5 The Algorithm of Joux and Lercier

To make a running time analysis of the method in [6], we describe the algorithm
as we understood it, using the theoretical background we developed before, in-
troducing constants sd, sα, sβ, sl, sk, cd, cα, cβ , cl, ck ∈ R, which we determine
to get a minimal running time. Assume that the optimal degree d behaves as
d = cd(1 + o(1))(ln p/ ln ln p)sd .

Choose d such that d + 1 is a prime number. Let fβ be an irreducible poly-
nomial of degree d + 1 with root μ in Fp and coefficients of order O(1), such
that its Galois group has order d + 1. Take fα an irreducible polynomial of de-
gree d such that fα(μ) ≡ 0 (mod p). By construction, the coefficients of this
polynomial are of order p1/(d+1) = Lp[1 − sd, 1/cd]. In general, fα isn’t monic.
For ease of exposition however, we assume fα and fβ to be monic. Let α and β
be roots of fα, fβ respectively. The ring of algebraic integers in Q(α), respec-
tively Q(β), is denoted as ϑα, respectively ϑβ . Let rα, respectively rβ , be the
torsion-free rank of ϑ∗α, respectively ϑ∗β . At the side of fα, respectively fβ, we

An Algorithm to Solve the Discrete Logarithm Problem 187

work with smoothness-bound Bα = Lp[sα, cα], respectively Bβ = Lp[sβ, cβ]. Let
Sα, respectively Sβ , denote the set of degree one prime ideals in ϑα, respectively
ϑβ , with norm less then Bα, respectively Bβ. Denote λQ(α),j = λj . Let g denote
a generator of F∗

p.
Let L = Lp[sl, cl]. Sieving coprime pairs (a, b) with |a| ≤ L, 1 ≤ b ≤ L,

appropriate for the algorithm in [6], takes asymptotic time ([10],[19])

Lp[sα, cα] + Lp[sβ , cβ] + Lp[sl, 2cl] ,

and results in pairs (a, b) such that simultaneously

(a + bα)ϑα =
∏

P∈Sα

P e(a,b),P , (13)

(a + bβ)ϑβ =
∏

Q∈Sβ

Qe(a,b),Q . (14)

Since, using Theorem 1, the probability for |Norm(a − bβ)| to be Bβ-smooth,
for |Norm(a − bα)| to be Bα-smooth respectively, is estimated as Lp[sl + sd −
sβ ,−(sl +sd−sβ)cdcl/cβ] and as Lp[s1−sα,−(s1−sα)c1/cα] respectively, where
s1 = max{1−sd, sl +sd} and c1 = 1/cd, cdcl +1/cd or cdcl if respectively sl <, =
or > 1− 2sd, the condition to have |Sα|+ |Sβ |+ rα + rβ +O(1) surviving pairs,
becomes the following on the parameters s:

sl ≥ sα , sl ≥ sβ , sl ≥ sl + sd − sβ , sl ≥ 1− sd − sα , sl ≥ sl + sd − sα . (15)

Once these parameters are determined, we get conditions on the constants c.
Assume conditions as in [20] are fulfilled. Let XP , Xj be the so called vir-

tual logarithms. According to [20] and using (13), every couple (a, b) invokes an
immediate congruence

logg(a + bμ) ≡
∑

P∈Sα

e(a,b),PXP +
rα∑

j=1

λj(a + bα)Xj (mod q) . (16)

Since the polynomial fβ has very small coefficients, it is assumed that the
resulting number field has a simple structure, namely that the class field number
is 1, and that all fundamental units of ϑβ can be computed. A similar approach
as in [17] can then be used. (Note however that if this approach would run too
slowly, one can continue as on the fα-side, as shown in [20].) For every Q in
Sβ , let Q = γQϑβ with γQ ∈ ϑβ and U the set of fundamental units in ϑβ .
Expression (14) leads to

logg(a + bμ) ≡
∑
u∈U

e(a,b),u logg u+
∑

Q∈Sβ

e(a,b),Q logg γQ (mod q) . (17)

Combining (16) and (17) now yields |Sα| + |Sβ |+ rα + rβ +O(1) equations∑
P∈Sα

e(a,b),PXP +
∑rα

j=1 λj(a − bα)Xj ≡∑
u∈U e(a,b),u logg u+

∑
Q∈Sβ

e(a,b),Q logg γQ (mod q)

188 A. Commeine and I. Semaev

in unknowns XP , Xj , logg γQ and logg u. This sparse system is solved for its
unknowns in time Lp[sα, 2cα] + Lp[sβ , 2cβ], using a sparse matrix technique. In
order to get a unique non-zero solution of the system, we set logg γQ = 1 for a
Q ∈ Sβ such that γQ is a generator in F∗

p. This ends the pre-computation stage.
The running time for this stage is optimal for parameters sα = sβ = sd = sl = 1

3 ,

cα = cβ = cl =
(

8
9

)1/3, cd =
(

3
8

)1/3 and then equals Lp[13 ,
(

64
9

)1/3].
Set K = Lp[sk, ck]. To find an individual logarithm loga b (mod p − 1) for

a, b ∈ F∗
p and a a generator of F∗

p, the following procedure for y = a and y = b
is executed. Let s be the largest small prime whose logarithm can be computed
from the factor bases. Set z = siy mod p for i = 1. (Increase i if no good
representation can be found.) Use lattice basis reduction to find quotients

z ≡ a0 + a1μ+ · · ·+ adμ
d

b0 + b1μ+ · · · + bdμd
(mod p), (18)

where a0, a1, . . . , ad, b0, b1, . . . , bd are integers of size O(p1/(2d+2)) such that gcd
(a0, a1, . . . , ad) = gcd(b0, b1, . . . , bd) = 1. Check whether both |Norm(a0 + a1β +
· · · + adβ

d) | and |Norm(b0 + b1β + · · · + bdβ
d) | are coprime with the index

[ϑβ , Z[β]] andK-smooth, using a Lp[sk

2 ,
√

2skck]-costing ECM-test. From Propo-
sition 2 of [21], applied for h1(X) = a0+a1X+· · ·+adX

d and h2(X) = b0+b1X+
· · · + bdX

d , it follows that both norms are ≤ Lp[sd,
3sdcd

2]Lp[1, 1
2] = Lp[1, 1

2].
Using Theorem 1, we see that the probability for these numbers to be simul-
taneously K-smooth is Lp[1 − sk,− 1−sk

ck
]. Since the lattice-reduction only costs

time Lp[0, 3], we conclude that finding a good representation of z takes time
Lp[1 − sk, 1−sk

ck
]Lp[sk

2 ,
√

2skck], which is minimal for sk = 2/3, ck = (1/3)1/3

and then equals Lp[13 , 31/3]. We show that the time needed to execute the rest
of the individual logarithm algorithm is less.

One can easily show that the ideals (a0 + a1β + · · ·+ adβ
d)ϑβ and (b0 + b1β +

· · ·+ bdβ
d)ϑβ split completely into first degree prime ideals. Thus,

(a0 + a1β + · · ·+ adβ
d)ϑβ =

∏
Q∈S̃β

QvQ ,

(b0 + b1β + · · ·+ bdβ
d)ϑβ =

∏
Q∈S̃β

QwQ ,

for S̃β a set of degree one prime ideals in ϑβ with norm less then K. These
equalities imply the equations

logg(a0 + a1μ+ · · ·+ adμ
d) ≡

∑
u∈U ev,u logg u+

∑
Q∈S̃β

vQ logg γQ(mod q) ,

logg(b0 + b1μ+ · · · + bdμ
d) ≡

∑
u∈U ew,u logg u+

∑
Q∈S̃β

wQ logg γQ(mod q) .

Remark that logg γQ is unknown for all Q ∈ S̃β \ Sβ . To find these unknown
logarithms, we reduce the ideal Q in a similar way as described above, searching
numbers a, b in an appropriate lattice such that | bd+1fβ(a/b) | /Norm(Q)(∈ Z)
and | bdfα(a/b) | are simultaneously Norm(Q)ν - smooth for a ν < 1. Medium-
sized prime ideals at the fα-side are reduced similarly. One can check that the
asymptotical running time for the reduction of prime ideals Q (at any side) with
Lp[12 , cm] < Norm(Q) ≤ Lp[23 , (1

3)1/3] is minimal for ν = (1/2)2/3 and then

An Algorithm to Solve the Discrete Logarithm Problem 189

equals Lp[13 , (3
2)1/3]. By taking ν ≥ (4 + 41/3)/2561/3, time for the reduction of

an ideal Q (at any side) with Bα = Bβ < Norm(Q) ≤ Lp[12 , cm] is less then
Lp[13 , (3

2)1/3], where cm is a constant. Following an analogous reasoning as in
Section 4.3, one can then see that all unknown logg γQ in the above equalities
can be determined in time Lp[13 , (3

2)1/3].
Finally, compute logg y as

logg y ≡ −i logg s+logg(a0+a1μ+· · ·+adμ
d)−logg(b0+b1μ+· · ·+bdμ

d) (mod q) ,

(see (18)) and then determine the asked for loga b (mod p− 1) in the same way
as in the former individual logarithm algorithm, thus costing time O(ln3 p).

We conclude that a seperate individual logarithm stage takes asymptotic time
Lp[13 , 31/3], after a Lp[13 , (64

9)1/3]-costing pre-computation stage .

Acknowledgement

The paper was partially written when Professor I.Semaev was staying at the
Department of Mathematics, Section Algebra, Catholic University of Leuven
under the project Flanders FWO G.0186.02.

We want to thank the anonymous referees for their very detailed and valuable
comments.

References

1. Canfield, E., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning
“factorisatio numerorum”. J.Number Theory 17 (1983) 1–28

2. Coppersmith, D.: Fast Evaluation of Logarithms in Fields of Characteristic Two.
IEEE Transactions on Information Theory IT-30 (1984) 587–594

3. Coppersmith, D.: Modifications to the Number Field Sieve. J. Cryptology 6 (1993)
169–180

4. Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF (p). Al-
gorithmica 1 (1986) 1–15

5. Gordon, D.: Discrete logarithms in GF (p) using the number field sieve. SIAM
Journal of Discrete Mathematics 6 (1993) 124–138

6. Joux, A., Lercier, R.: Improvements to the general Number Field Sieve for discrete
logarithms in prime fields. Mathematics of Computation 72 (2003) 953–967

7. Joux, A., Lercier, R.: Calcul de logarithmes discrets dans GF (p) — 130 chiffres.
CRYPTO Mailing List (6/2005)

8. Lenstra, A., Lenstra, H. (eds): The Development of the Number Field Sieve. Lecture
Notes in Mathematics 1554 , Springer-Verlag, 1993

9. Lenstra, H.: Factoring integers with elliptic curves. Annals of Mathematics 126
(1987) 649–673

10. Matyukhin, D.: On asymptotic complexity of computing discrete logarithms over
GF (p). Discrete Mathematics and Applications 13 (2003) 27–50

11. McCurley, K.: The discrete logarithm problem, in: Pomerance,C. (ed): Cryptogra-
phy and Computational Number Theory. Proc. Symp.Appl.Math. 42, Amer. Math.
Soc.,1990, 49–74

190 A. Commeine and I. Semaev

12. Odlyzko, A.: Discrete logarithms: The past and the future. Designs, Codes and
Cryptography 19 (2000), 129–145.

13. Odlyzko, A.: Discrete Logarithms and Smooth Polynomials, in: Mullen, G., Shiue,
P. (eds): Finite Fields: Theory, Applications and Algorithms. Contemporary Math
168, Amer. Math. Soc.,1994, 269–278

14. Odlyzko, A.: Discrete logarithms in finite fields and their cryptographic sig-
nificance, in: Beth, T.,Cot, N., Ingemarsson, I. (eds): Advances in Cryptology:
Proceedings of Eurocrypt ’84. Lecture Notes in Computer Science 208, Springer-
Verlag,1985,224–314

15. Odlyzko, A.: On the complexity of Computing Discrete Logarithms and Factoring
Integers, in: Cover,T. and Gopinath,B. (eds.): Open Problems in Communication
and Computation. Springer, 1987, 113-116

16. Pollard, J.: Monte Carlo methods for index computations mod p. Mathematics of
Computation 32 (1978) 918–924

17. Pollard, J.: Factoring with cubic integers, in:[8].Springer-Verlag, 1993, 4–10
18. Pomerance, C.: Fast, rigorous factorization and discrete logarithm algorithms, in:

Nozaki, N., Johnson, D., Nishizaki, T.,Wilf, H.(eds): Discrete Algorithms and Com-
plexity. Academic Press, 1987, 119–143

19. Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions of
the Royal Society of London (A) 345 (1993) 409–423

20. Schirokauer, O.: Virtual Logarithms. Journal of Algorithms 57 (2005) 140–147
21. Semaev, I.: Special prime numbers and discrete logs in prime finite fields. Mathe-

matics of Computation 71 (2002) 363–377
22. Shoup, V.: Searching for primitive roots in finite fields. Mathematics of Computa-

tion 58 (1992) 918–924
23. van Oorschot, P., Wiener, M.: Parallel collision search with cryptanalytic applica-

tions. J. Cryptology 12 (1999) 1–28
24. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE

Trans.Inform. Theory 32 (1986) 54–62

Efficient Scalar Multiplication

by Isogeny Decompositions

Christophe Doche1, Thomas Icart2, and David R. Kohel3

1 Department of Computing,
Macquarie University, Australia

doche@ics.mq.edu.au
2 Laboratoire d’Informatique de l’École Polytechnique, France

thomas.icart@polytechnique.org
3 School of Mathematics and Statistics, University of Sydney, Australia

kohel@maths.usyd.edu.au

Abstract. On an elliptic curve, the degree of an isogeny corresponds
essentially to the degrees of the polynomial expressions involved in its
application. The multiplication–by– map [] has degree 2, therefore
the complexity to directly evaluate [](P) is O(2). For a small prime
 (= 2, 3) such that the additive binary representation provides no bet-
ter performance, this represents the true cost of application of scalar
multiplication. If an elliptic curve admits an isogeny ϕ of degree then
the costs of computing ϕ(P) should in contrast be O() field operations.
Since we then have a product expression [] = ϕ̂ϕ, the existence of an
-isogeny ϕ on an elliptic curve yields a theoretical improvement from
O(2) to O() field operations for the evaluation of [](P) by näıve ap-
plication of the defining polynomials. In this work we investigate actual
improvements for small of this asymptotic complexity. For this pur-
pose, we describe the general construction of families of curves with a
suitable decomposition [] = ϕ̂ϕ, and provide explicit examples of such
a family of curves with simple decomposition for [3]. Finally we derive a
new tripling algorithm to find complexity improvements to triplication
on a curve in certain projective coordinate systems, then combine this
new operation to non-adjacent forms for -adic expansions in order to
obtain an improved strategy for scalar multiplication on elliptic curves.

Keywords: Elliptic curve cryptography, fast arithmetic, efficiently com-
putable isogenies, efficient tripling, -adic NAFw.

1 Introduction

Given an elliptic curve E/K, together with a point P ∈ E(K) and an inte-
ger k, the efficient computation of the scalar multiple [k]P is central in elliptic
curve cryptography. Many ways to speed up this computation have been actively
researched. For instance, one can cite

• the use of alternative representations for the scalar multiple k (non-adjacent
forms [MO90, CMO97, TYW04], ternary/binary approach [CJLM05], or the
Dual Base Number System [DJM99, CS05]).

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 191–206, 2006.
c© International Association for Cryptologic Research 2006

192 C. Doche, T. Icart, and D.R. Kohel

• the improvement of existing operations by use of other systems of coordinates
(projective , weighted projective [CMO98]) and the introduction of new basic
operations like [2]P ± Q, [3]P , [3]P ± Q, [4]P , [4P] ± Q (see [CJLM05,
DIM05]).

• the use of endomorphisms (first on a singular curve that appeared to be
insecure [MV90], later with Koblitz curves [Kob92, Sol00, Lan05] and GLV
curves [GLV01, CLSQ03]).

See [ACD+05, chaps. 9, 13, and 15] and [HMV03] for a more comprehensive
description of all the techniques involved.

The purpose of this article is to investigate new and more efficient ways to
compute the multiplication–by–� map. Our method relies on the use of isogenies
but is different from the one developped in [BJ03]. Indeed, given an integer � � 2,
it is possible in some cases and for well chosen families of curves to split the map
[�] as the product of two isogenies. A direct computation of [�]P involves the
evaluation of rational polynomials of degree �2. The interest of this approach is
that the isogenies ϕ and ϕ̂ such that [�] = ϕ̂ϕ will be both of degree �. Therefore
it should be possible to obtain more efficient formulas to compute [�] this way.
We investigate this idea for small values of �, especially 2 and 3 and obtain a
more efficient tripling leading to a very fast scalar multiplication algorithm.

2 Splitting Multiplication by �

In this section we describe the definitions and background results for existence
and construction of an �-isogeny ϕ such that [�] = ϕ̂ϕ.

2.1 Subgroup (Schemes) Defined over K

Let E be an elliptic curve over a field K, with defining equation

F (x, y) = y2 + (a1x + a3)y − (x3 + a2x
2 + a4x + a6) = 0.

We give an elementary background on concepts and conditions for torsion sub-
groups to be defined over the base field K.

Definition 2.1. Let N be an integer greater than 1 and let E[N] be the group
of N -torsion points in K. A torsion subgroup G of E[N] is said to be defined
over K or to be K-rational if G\{O} is the zero set of a finite set of polynomials
{f1(x, y), . . . , fn(x, y)} in K[x, y]/

(
F (x, y)

)
.

A torsion subgroup can be specified by two polynomials, one of which is the
polynomial ψG(x) whose roots are the x-coordinates of the points P = (x, y)
in G. If N is odd, then this polynomial suffices to define the torsion subgroup.
If N is even, then the full ideal of polynomials which have zeros on G cannot
be specified as a single polynomial in x. As an example, if G = {O, (x0, y0)},
where (x0, y0) is a 2-torsion point, then G is determined as the zero set of the
polynomial x−x0, but both y− y0 and 2y + a1x+ a3 are zero on {(x0, y0)}, but
are not in the ideal (x − x0).

Efficient Scalar Multiplication by Isogeny Decompositions 193

From the odd case, we see that the condition for a subgroup to be K-rational
is not that the points have coefficients in K, but that the symmetric functions
in these coefficients must lie in K. Since every finite subgroup G of E

(
K
)

is the
kernel of an isogeny ϕG : E → E′, the question of whether the subgroup can be
defined over K, is related to the K-rationality of the isogeny ϕG. The following
classical theorem states that these concepts are equivalent.

Theorem 2.1. A finite subgroup G of E is K-rational if and only if G is the
kernel of an isogeny ψ : E → E′ defined over K.

Since the subgroup E[N] of E
(
K
)

is the kernel of the scalar multiplication [N],
which is defined over K, we obtain:

Corollary 2.1. Every torsion subgroup E[N] is K-rational.

The defining polynomials for the N -torsion subgroups are the division polyno-
mials ψN (x, y), which are computable by explicit recursive formulas.

Corollary 2.2. Let G and H be two finite K-rational subgroups of E. Then
G ∩H and G+H are K-rational subgroups of E.

Proof 2.1. The intersection property holds immediately since if G and H are
the zero sets of S = {g1, . . . , gr}, and T = {h1, . . . , hs}, respectively, then G∩H
is the zero set of S∪T . To prove that G+H is K-rational we apply the theorem
to the isogeny ϕH′ ◦ ϕG where H ′ = ϕG(H).
Combining the previous two corollaries we obtain:

Corollary 2.3. Suppose that E admits an isogeny E → E′ with cyclic kernel of
order N . Then E[�] contains a rational subgroup of order � for every � dividing N .

These corollaries permit us to find a product decomposition for any isogeny, or
its defining kernel subgroup, into scalar multiplications [�] (determined by E[�])
and isogenies of prime degree (given by a rational subgroup G of order �), for
primes � dividing the degree of the isogeny. Since efficient algorithms for scalar
multiplication [�] by small primes have been well-investigated, in the next section
we focus on isogenies of prime order � which “split” the isogeny [�] into a product
of isogenies ϕ and ϕ̂.

2.2 Parameterizations of Cyclic �-Torsion Subgroups

The theory of modular curves gives a means of achieving explicit parameteriza-
tions of families of elliptic curves with the structure of an isogeny of degree �. We
describe the general background to this construction to motivate the examples.

It is well-known that the j-invariant of an elliptic curve E over any field K
determines the isomorphism class of that curve over K. Conversely, any value
j �= 0, 123 is the j-invariant of an elliptic curve

Ej : y2 + xy = x3 − 36
j − 123

x − 1
j − 123

·

The j-invariant can be identified with a generator of the function field K
(
X(1)

)
of the modular curve X(1), classifying elliptic curves up to isomorphism. We

194 C. Doche, T. Icart, and D.R. Kohel

view the above equation Ej as a family of elliptic curves over the “j-line”
X(1)\{0, 1,∞} ∼= A1\{0, 1}.

In order to determine similar models for elliptic curves which admits an
�-isogeny, or equivalently aK-rational cyclic subgroupG of E[�], we use the mod-
ular curves X0(�) covering X(1).

For the values � = 2, 3, 5, 7, and 13 the curve X0(�) has genus 0, which means
that there exists a modular function u on X0(�) such thatK

(
X0(�)

)
= K(u). The

coveringX0(�) → X(1) is determined by an inclusion of function fieldsK
(
X(1)

)
→

K
(
X0(�)

)
, which means that we can express j as a rational function in u.

For the above values of �, we may use quotients of the Dedekind η function
on the upper half plane

u(q) =
(
η(τ)
η(�τ)

)r

= q−1
∞∏

n=1

(
1 − qn

1 − qn�

)r

where r = 24/ gcd(12, � − 1) and q = exp(2πiτ), to find a relation with the
q-expansion j(q) for the j-function to solve for the expression for the j-function.
Substituting into the above equations we then twist the curve or make a change
of variables to simplify the resulting equation to obtain the models for which
the �-torsion contains a parameterized rational subgroup of order � (over K(u)
or over K for any particular value of u in K). The models used in the isogeny
decompositions which follow may be derived by this technique, with the kernel
polynomial determined by factorization of the �-division polynomial of this curve.

2.3 Parameterized Models

Applying these ideas, we have built families of curves for which [2] or [3] splits
into 2 isogenies of degree respectively 2 and 3. For instance, an elliptic curve
defined over a field of characteristic different from 2 and 3 with a rational 3-
torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + 3u(x + 1)2

with the 3-torsion subgroup defined by x = 0; we note that the curve E does not
necessarily have a point of order 3. The image curve, under a certain 3-isogeny
to be specified below, is defined by an equation:

Et : y2 = x3 − u(3x− 4u+ 9)2.

Note that the same thing holds in characteristic 2. In fact, an elliptic curve
with a rational 3-torsion subgroup can be expressed in the form (up to twists):

E : y2 + (x + u)y = x3.

It has a rational 3-torsion subgroup defined by x = 0. The image curve is defined
by an equation:

Et : y2 + (x + u+ 1)y = x3 + x2 + (u+ 1)(x + u+ 1).

Explicit formulas of the curves and isogenies to split [2] in characteristic
greater than 2 and to split [3] in characteristic greater than 3 can be found
in Section 3.

Efficient Scalar Multiplication by Isogeny Decompositions 195

2.4 On Special Versus Generic Elliptic Curves

Since we propose curves of a particular form, it is relevant to make a distinction
between curves of a special form and generic curves.

A family of elliptic curves is a parameterized equation of different elliptic
curves E/K(u1, . . . ,ut) in indeterminates u1, . . . ,ut. We say that a family of
elliptic curves is geometrically special if, for (u1, . . . ,ut) ∈ K

n
, there exists a

finite set of j-invariants of curves in the family. Otherwise, we say that the
family is geometrically general. Standard examples of families are the family of
elliptic curves y2 = x3 + ax + b, over K(a, b) which is geometrically general,
or the family of Koblitz curves y2 + xy = x3 + ax2 + 1 over F2(a) which are
geometrically special.

Any family of curves obtained by the CM construction are geometrically spe-
cial because there exists only a finite set of j-invariants for each fixed discrim-
inant D. Even if D is allowed to vary, in practice there are only a finite set of
candidates D with |D| bounded by the time to compute a class polynomial for
D. Similarly, any family of supersingular elliptic curves is geometrically special,
since there are only finitely many j-invariants of supersingular elliptic curves.

The curves that we introduce lie in geometrically general families because
their invariants give infinitely many j-invariants j = j(u), and conversely, every
j-invariant arises as j(u) for some u in K.

We say that a family is arithmetically special if the properties of the curves in
the family are in some way special with respect to a random curve over K. This
is more imprecise, but to make it more precise one should speak of an arithmetic
invariant, like group order or discriminant of the endomorphism ring which can
distinguish curves in the family and those outside of it. Every special construc-
tion will be arithmetically special. For instance, Jao et al. [JMV05] observe that
curves produced by CM construction are arithmetically special and distinguished
by properties of the discriminant of their endomorphism rings. By construc-
tion we build curves that are arithmetically special, since they all have a cyclic
�-isogeny. In contrast, a curve over a finite field has a 50% chance of such a ra-
tional �-isogeny, and a curve with such a rational isogeny over a number field is
exceptional. Supersingular elliptic curves are arithmetically special with respect
to existence of rational isogenies: over a finite degree extension L/K, all � + 1
cyclic �-isogenies for all � become simultaneously L-rational.

Despite the fact that our families have arithmetically special �-torsion, by
virtue of the criterion by which they are constructed, for any prime n �= �, the
n-torsion and n-isogenies follow the general behavior, and we have no reason
to expect any special properties of the group orders |E(K)| for curves in our
families, apart from the potential factors of � which arise.

3 Efficiently Applicable Isogenies

Let us investigate at present how the multiplications by [2] and [3] can be effi-
ciently split as a product of 2 isogenies in practice.

196 C. Doche, T. Icart, and D.R. Kohel

3.1 Elliptic Curves with Degree 2 Isogenies

An elliptic curve defined over a field Fq of characteristic �= 2 with a rational
2-torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + ux2 + 16ux

with a 2-torsion point (0, 0). The corresponding isogeny of degree 2 is:

(x1, y1) �→ (xt, yt) =
(

x1 + u

(
1 +

16
x1

)
, y1

(
1 − 16u

x2
1

))
,

to an image curve defined by an equation:

Et : y2 = x3 − 2ux2 + u(u− 64)x.

The isogeny dual to the first isogeny is given by

(xt, yt) �→ (x2, y2) =
(

1
22

(
xt − 2u+

u(u− 64)
xt

)
, 1

23
yt

(
1 − u(u− 64)

x2
t

))
·

The composition of these maps gives the multiplication–by–2 map on E.
A general quadratic twist of E can be put in the standard Weierstraß form

by a change of variables (x, y) to (x − λu/3, y):

y2 = x3 + λux2 + 16λ2ux −→ y2 = x3 − λ2u(u− 48)
3

x + λ3 u
2(2u− 144)

27
,

over any field of characteristic different form 2 or 3. Conversely, the elliptic curve
y2 = x3 + ax + b has j-invariant j = 6912a3/(4a3 + 27b2). The corresponding
values for (λ,u) are λ = −9b(u − 48)/

(
au(2u − 144)

)
, where u is a root of the

cubic polynomial (u− 48)3 − j(u− 64).

Effective scalar multiplication by splitting [2]. To take advantage of this
splitting, let us introduce a new system of coordinates. Since they are similar to
López-Dahab coordinates (LD) introduced in characteristic 2, cf. [LD98], let us
call them modified López-Dahab coordinates (LDm). A point (x1, y1) in affine co-
ordinates (A) on the elliptic curveE will be represented by (X1, Y1, Z1, Z

2
1) where

x1 = X1/Z1 and y1 = Y1/Z
2
1 . It is a simple exercise to check that (X2, Y2, Z2, Z

2
2)

corresponding to (x2, y2) = [2](x1, y1) is given by

A = X2
1 , B = X2

1 − 16uZ2
1 , Yt = Y1 ×B,

X2 = B2, Z2 = 4Y 2
1 , C = X2

1 × uZ2
1 ,

D = Z2
2 , E = u(Z2 − 4C), Y2 = Yt

(
2X2 + E + 256C

)
.

The number of elementary operations needed to obtain (X2, Y2, Z2, Z
2
2) is thus

5M + 4S, where M and S respectively denotes the cost of a multiplication and
a squaring in the field Fq. However, if u is chosen so that a multiplication by u
is negligible, the costs for a doubling drop to 3M + 4S. Note that it is sufficient

Efficient Scalar Multiplication by Isogeny Decompositions 197

to choose u to fit in a word, or to have a low Hamming weight representation
in order to achieve this property. Clearly, the number of suitable values of u for
a given p is extremely large and therefore this assumption has a limited impact
on the rest of the system.

Note also that the fastest system of coordinates for doubling corresponds to
modified Jacobian coordinates Jm (see for instance [CMO98]) where a point
(x1, y1) is represented by (X1, Y1, Z1, aZ4

1) with x1 = X1/Z
2
1 and y1 = Y1/Z

3
1 .

Indeed, to perform a double on the curve y2 = x3+ax+b, one needs only 4M+4S.
It is to be noted that choosing a special value for a does not change the overall
complexity, except when a = −3. Note that in that particular case, Bernstein
showed how to perform a doubling in Jacobian coordinates using 3M + 5S. His
method also saves one field reduction [Ber01]. The addition Jm + Jm = Jm

needs 13M + 6S whereas the mixed addition Jm + A = Jm only 9M + 5S.
Again this complexity is independent of the value of the parameters so that no
advantage can be obtained from a special choice of a curve in modified Jacobian
coordinates.

Now, let us give addition formulas for LDm. We will only address the mixed
coordinates case, since it is the most important in practice. So let (X1, Y1, 1) in
A and (X2, Y2, Z2, Z

2
2) in Jm be two points on E. Again it is a simple exercise

to check that (X3, Y3, Z3, Z
2
3) is given that:

A = Y1 × Z2
2 − Y2, B = X1 × Z2 −X2, C = B × Z2,

Z3 = C2, D = X1 × Z3, E = A2,

F = X2 ×B × C, X3 = E − uZ3 −D − F, G = Z2
3 ,

H = A× C, Y3 = H × (D −X3) − Y1 ×G.

These computations require 9M + 3S if a multiplication by u is negligible. So,
choosing a special value for u provides an improvement and makes modified
López–Dahab coordinates faster than modified Jacobian coordinates. At present
let us generalize the concept to the multiplication–by–[3] map.

3.2 Elliptic Curves with Degree 3 Isogenies

As mentioned earlier, an elliptic curve defined over a field of characteristic dif-
ferent from 2 and 3 with a rational 3-torsion subgroup can be expressed in the
form (up to twists):

E : y2 = x3 + 3u(x + 1)2

with the 3-torsion subgroup defined by x = 0; we note that the curve E does not
necessarily have a point of order 3. The corresponding isogeny of degree 3 is:

(x1, y1) �→ (xt, yt) =
(

x1 + 4u+ 12u
x1 + 1

x2
1

, y1

(
1 − 12u

x1 + 2
x3

1

))
·

The image curve is defined by an equation:

Et : y2 = x3 − u(3x− 4u+ 9)2

198 C. Doche, T. Icart, and D.R. Kohel

which subsequently has a 3-torsion subgroup defined by x = 0, defining the
kernel of the dual isogeny. This isogeny takes form

(xt, yt) �→ (x3, y3) =
(

1
32

(
xt − 12u+

12u(4u− 9)
xt

− 4u(4u− 9)2

x2
t

)
,

1
33

yt

(
1 − 12u(4u− 9)

x2
t

+
8u(4u− 9)2

x3
t

))
·

The composition of these maps gives the multiplication–by–3 map on E.
A general quadratic twist of E can be put in the standard Weierstraß form

by a change of variables (x, y) to (x − λu, y):

y2 = x3 + 3λu(x + λ)2 −→ y2 = x3 − 3λ2u(u− 2)x + λ3u(2u2 − 6u+ 3).

Conversely, the elliptic curve y2 = x3 +ax+ b has j-invariant j = 6912a3/(4a3 +
27b2). The corresponding values for (λ,u) are determined by λ = −3b(u −
2)/

(
a(2u2 − 6u + 3)

)
, where u is a root of the quartic polynomial 6912u(u −

2)3 − j(4u− 9).

Effective scalar multiplication by splitting [3]. As above, to take advantage
of this splitting, we will use weighted projective coordinates. More precisely let
us represent the affine point P1 = (x1, y1) by (X1, Y1, Z1, Z

2
1) where x1 = X1/Z

2
1

and y1 = Y1/Z
3
1 . These coordinates are called new Jacobian and are denoted by

J n. We will also describe doublings and mixed additions for this system. The
term Z2

1 will contribute to make the mixed addition more efficient. First let us
give the formulas to compute [3]P1 = (X3, Y3, Z3, Z

2
3):

A = (X1 + 3Z2
1)2, B = uZ2

1 ×A, Xt = Y 2
1 + B,

Yt = Y1 × (Y 2
1 − 3B), Zt = X1 × Z1, C = Z2

t ,

D =
(
(4u− 9)C −Xt

)2
, E = −3uC ×D, X3 = (Y 2

t + E),

Y3 = Yt(X3 − 4E), Z3 = 3Xt × Zt, Z2
3 .

It is easy to see that 6M + 6S are needed to obtain [3]P1 in J n when u is suitably
chosen so that a multiplication by u is negligible. Otherwise, 8M+6S arenecessary.

Now let us see how a doubling can be efficiently obtained in that system. In
fact, it is sufficient to slightly modify the formulas existing for Jacobian coordi-
nates. We have:

A = Y1 × Z1, Z2 = 2A, B = 4Y 2
1 ×X1,

C = B + 6uA2, Z2
2 = 4A2, D = 3X2

1 ,

E = D + 6uZ2
1 × (Z2

1 + X1), X2 = −2B + E2, Y2 = −8Y 4
1 + E × (B −X2).

Thus a doubling in J n requires 4M + 5S as long as we neglect multiplications
by u, otherwise a doubling can be obtained with 6M + 4S.

Finally, let us detail the addition of an affine point (X1, Y1, 1) and a point
(X2, Y2, Z2, Z

2
2) in J n. Again, they slightly differ from the ones for the addition

in Jacobian coordinates, see [ACD+05].

Efficient Scalar Multiplication by Isogeny Decompositions 199

A = X1 × Z2
2 , B = Y1 × Z2

2 × Z2, C = X2 −A,

D = Y2 −B, Z3 = Z2 × C, E = Z2
3 ,

F = C2, G = C × F, H = A× F,

X3 = −G− 3uE − 2H +D2, Y3 = −B ×G+D × (H −X3).

In total, one needs 8M+3S to compute an addition. If u is a random element
in the field, then an extra multiplication is required. Note that the extra element
Z2

2 in J n allows to save one squaring in the addition above.

Comparison with other algorithms. Direct tripling formulas have been in-
troduced by Ciet et al. [CJLM05]. The general idea is to avoid computing in-
termediate values for the doubling. This allows to get rid of one inversion at
the cost of more multiplications. Recently, Dimitrov et al. succeeded in totally
avoid using inversions [DIM05]. Usually, no special value for the parameters of
the curve is considered, probably because this has a limited impact anyway on
the complexity of the operations. In our case, important savings can be made
if the parameter u of the curve is specially chosen, as suggested by the next
table comparing the complexities of different operations in different coordinate
systems. Note that we only require that a multiplication by u is trivial so that
a very large scope of values are still available, like a small u or more generally u
with a low Hamming weight expansion.

System This work [DIM05] [CJLM05]

Equation y2 = x3 + 3u(x + 1)2 y2 = x3 + ax + b y2 = x3 + ax + b

Coordinates New Jacobian J n Jacobian J Affine A

Tripling 8M + 6S 10M + 6S I + 7M + 4S

special u or a 6M + 6S 9M + 6S —

Doubling 6M + 4S 4M + 6S I + 2M + 2S

special u or a 4M + 5S 4M + 5S —

a = −3 NA 4M + 4S —

Mixed Addition 9M + 3S 8M + 3S I + 2M + S

special u or a 8M + 3S — —

Note also that there exist formulas to directly compute [2]P ±Q and [3]P ±Q
with respectively I + 9M + 2S and 2I + 9M + 3S; see [CJLM05] for details.

Since we have a very efficient tripling algorithm, it is natural to consider the
expansion of k in base 3 leading to a “triple and add algorithm” as well as other
generalizations, like expansions in non-adjacent form. We discuss this at present.

200 C. Doche, T. Icart, and D.R. Kohel

4 Non-adjacent Forms for �-Adic Expansions

Given two integers k and � � 2, it is well-known that k can be expressed in
a unique way in base �. For computer applications, � is usually chosen to be 2
or a power of 2. In the context of multiplication and of exponentiation/scalar
multiplication other representations have been considered, for instance the bi-
nary non-adjacent form and width-w non-adjacent form, respectively denoted
by NAF and NAFw, see [ACD+05].

Recently, Takagi et al. [TYW04] have generalized the concept of width-w
non-adjacent form to any radix � and introduced an �-NAFw.

Definition 4.1. Let � and w be two integers greater than 1. Let k be a positive
integer, then a signed-digit expansion of the form

k =
m∑

i=0

ki�
i

where

• there is at most 1 nonzero digit among any w adjacent coefficients
• ki belongs to {0,±1,±2, . . . ,±� �w−1

2 �} \ {±r,±2r, . . . ,±� �w−1−1
2 �r}

• the leftmost nonzero digit is positive

is called a width-w non-adjacent expansion in basis �, �-NAFw for short, and is
denoted by (km . . . k0)�-NAFw .

It can be shown that such an expansion always exists for any positive integer.
In fact, it is trivial to derive an algorithm to compute the �-NAFw generalizing
the one existing for the NAFw.

Algorithm 1. -NAFw representation

Input: A positive integer k, a radix � 2 and a parameter w > 1.

Output: The -NAFw representation (km . . . k0)�-NAFw of k.

1. i ← 0

2. while k > 0 do

3. if k �≡ 0 (mod) then

4. ki ← k mod w

5. if ki > w/2 then ki ← ki − w

6. k ← k − ki

7. else ki ← 0

8. k ← k/ and i ← i + 1

9. return (km . . . k0)�-NAFw

Efficient Scalar Multiplication by Isogeny Decompositions 201

Remarks

• The classical NAF corresponds to the choice � = w = 2.
• Takagi et al. [TYW04] proved that this expansion is unique and that it has

the smallest Hamming weight among all signed representations for k having
digits ki’s such that |ki| < �w/2.

It is well-known that the density of the classical NAFw is 1/(w + 1). This result
can be generalized to �-NAFw, as shown in [TYW04]. See also [HT05] for further
results.

Proposition 4.1. The average density of the �-NAFw is equal to
�− 1

(�− 1)w + 1
·

Proof 4.1. For that matter, we compute the average length E(�, w) of running
0’s between two nonzero coefficients. From the definition, it is clear that there are
at least w−1 consecutive zeroes between two nonzero coefficients in the �-NAFw

expansion.
Assuming that k �≡ 0 (mod �) then ki �= 0 and k ← k − ki is now a multi-

ple of �w. Let t = k/�w. There are different possibilities for the integer t which
can take any value. If t is not a multiple of �, there will be exactly w − 1 con-
secutive zeroes until the next nonzero coefficient is found. Now the probability
that t is not a multiple of � is (� − 1)/�. In the same way, there will be ex-
actly w − 2 + i consecutive zeroes until the next nonzero coefficient is found if
and only if t is a multiple of �i−1 but not a multiple of �i. This event occurs
with a probability equal to (�− 1)/�i, namely �− 1 choices (�i−1, 2�i−1, . . . , (�−
1)�i−1) out of �i possible residues. This implies that the average length of running
zeroes is

E(�, w) = w − 2 +
∑
i≥1

i(�− 1)/�i

and a simple computation gives E(�, w) = w − 2 + �/(�− 1). Since the average
density of the �-NAFw is 1/

(
E(�, w) + 1

)
, we obtain the expected result.

5 Experiments

In the following, we count the number of elementary operations needed to per-
form a scalar multiplication on an elliptic curve (with generic or special param-
eters) defined over a finite field Fp of size respectively 160 and 200 bits with
various methods. More precisely we investigate

• the double and add, also known as the binary method and denoted by Bin.
• the �-NAFw for � = 2 and w = 2, 3, 4, and 5.
• the triple and add, also known as the ternary method and denoted by Tern.
• the 3-NAF2.
• the sextuple and add method, denoted by Sext.

202 C. Doche, T. Icart, and D.R. Kohel

Table 1. Complexities with a 160bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2384M 80I + 1552M 10.4 160I + 1136M 7.8

NAF — 1/3 2076M 53I + 1503M 10.8 160I + 947M 7.1

NAF3 2 1/4 1928M 40I + 1480M 11.2 160I + 856M 6.7

NAF4 4 1/5 1837M 32I + 1466M 11.6 160I + 800M 6.5

NAF5 8 1/6 1780M 27I + 1457M 12 160I + 765M 6.3

Tern. — 2/3 2057M 134I + 1321M 5.5 168I + 1164M 5.3

3-NAF2 2 2/5 1749M 80I + 1391M 4.5 141I + 1110M 4.5

3-NAF3 8 2/7 1623M 58I + 1419M 3.5 130I + 1088M 4.1

Sext. — 5/6 1957M 52I + 1557M 7.7 124I + 1220M 5.9

6-NAF2 6 5/11 1683M 28I + 1514M 6.1 124I + 1052M 5.1

Tern./bin. — — 1773M 36I + 1507M 7.4 127I + 1067M 5.6

DBNS — — 1883M 45I + 1519M 8.1 129I + 1113M 6

• the 6-NAF2.
• the ternary/binary approach [CJLM05], denoted by Tern./bin.
• the Dual Base Number System (DBNS) as explained in [DIM05]. Note how-

ever that we did not try to tune the values of bmax and tmax, i.e. the biggest
possible values for the powers of 2 and 3 in the expansion of k. This would
certainly lead to big improvements.

In each case, we give the number #P of precomputations needed to compute
[k]P when combined with a left-to-right approach. The density δ of the obtained
expansion is also given. The different situations under scrutiny are:

A. Curve: y2 = x3 + u(x + 1)3 defined over a finite field of odd characteristic.
Operations:
• tripling map [3] obtained as the composition of 2 isogenies expressed in

new Jacobian coordinates
• doubling and addition in new Jacobian coordinates

B. Curve: y2 = x3 + ax + b defined over a finite field of odd characteristic.
Operations:
• direct tripling formulas explained in [DIM05].
• direct [2]P ± Q and [3]P ± Q explained in [CJLM05] whenever it is

possible.
C. Same curve and same operations as in B. except that the direct tripling

formulas come from [CJLM05].

We assume that the cost of a squaring is 0.8M. This allows us to express the
complexity only in terms of inversions and multiplications. All the complexities

Efficient Scalar Multiplication by Isogeny Decompositions 203

Table 2. Complexities with a 160bit size for a special curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2112M 80I + 1424M 8.6 160I + 1136M 6.1

NAF — 1/3 1831M 53I + 1332M 9.4 160I + 947M 5.5

NAF3 2 1/4 1696M 40I + 1288M 10.2 160I + 856M 5.2

NAF4 4 1/5 1613M 32I + 1261M 11 160I + 800M 5.1

NAF5 8 1/6 1561M 27I + 1244M 11.7 160I + 765M 5

Tern. — 2/3 1788M 134I + 1287M 3.7 168I + 1164M 3.7

3-NAF2 2 2/5 1507M 80I + 1330M 2.2 141I + 1110M 2.8

3-NAF3 8 2/7 1392M 58I + 1347M 0.8 130I + 1088M 2.3

Sext. — 5/6 1706M 52I + 1479M 4.4 124I + 1220M 3.9

6-NAF2 6 5/11 1457M 28I + 1397M 2.1 124I + 1052M 3.3

Tern./bin. — — 1541M 36I + 1394M 4.1 127I + 1067M 3.7

DBNS — — 1643M 45I + 1415M 5 129I + 1113M 4.1

Table 3. Complexities with a 200bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2980M 100I + 1940M 10.4 200I + 1420M 7.8

NAF — 1/3 2604M 67I + 1881M 10.8 200I + 1189M 7.1

NAF3 2 1/4 2410M 50I + 1850M 11.2 200I + 1070M 6.7

NAF4 4 1/5 2296M 40I + 1832M 11.6 200I + 1000M 6.5

NAF5 8 1/6 2216M 33I + 1819M 12 200I + 951M 6.3

Tern. — 2/3 2570M 168I + 1646M 5.5 210I + 1453M 5.3

3-NAF2 2 2/5 2183M 100I + 1735M 4.5 176I + 1385M 4.5

3-NAF3 8 2/7 2023M 72I + 1771M 3.5 162I + 1357M 4.1

Sext. — 5/6 2424M 64I + 1932M 7.7 154I + 1511M 5.9

6-NAF2 6 5/11 2093M 35I + 1880M 6.1 154I + 1308M 5.1

Tern./bin. — — 2221M 45I + 1887M 7.4 159I + 1337M 5.6

DBNS — — 2378M 58I + 1905M 8.1 162I + 1403M 6

are obtained in a theoretical way except for the ternary/binary and the DBNS
approaches. In these cases, an average over 104 exponents has been computed. In
each case, we provide the ratio between a multiplication and an inversion so that
the complexities of this work and [DIM05] (resp. [CJLM05]) are equal. Thus, if

204 C. Doche, T. Icart, and D.R. Kohel

Table 4. Complexities with a 200bit size for a special curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2640M 100I + 1780M 8.6 200I + 1420M 6.1

NAF — 1/3 2297M 67I + 1668M 9.4 200I + 1189M 5.5

NAF3 2 1/4 2120M 50I + 1610M 10.2 200I + 1070M 5.2

NAF4 4 1/5 2016M 40I + 1576M 11 200I + 1000M 5.1

NAF5 8 1/6 1943M 33I + 1552M 11.8 200I + 951M 5

Tern. — 2/3 2234M 168I + 1604M 3.7 210I + 1453M 3.7

3-NAF2 2 2/5 1881M 100I + 1659M 2.2 176I + 1385M 2.8

3-NAF3 8 2/7 1735M 72I + 1681M 0.7 162I + 1357M 2.3

Sext. — 5/6 2113M 64I + 1835M 4.4 154I + 1511M 3.9

6-NAF2 6 5/11 1812M 35I + 1736M 2.2 154I + 1308M 3.3

Tern./bin. — — 1933M 45I + 1743M 4.2 159I + 1332M 3.8

DBNS — — 2077M 58I + 1777M 5.1 162I + 1404M 4.2

I/M is bigger than the indicated value, our method will be more efficient. See
Tables 1, 2, 3, and 4 for details.

6 Conclusion

We have described a family of elliptic curve defined over a prime field of large
characteristic for which the multiplication–by–3 map, can be decomposed into
the product of 2 isogenies. Explicit formulas indicate that a tripling can be
done with 8M + 6S, and even 6M + 6S if the parameter of the curve is suitably
chosen. Since 3 plays an major role, we also tested generalizations of the width-w
NAF expansion to deal with �-adic expansions. We then tested our new tripling
algorithm in different situations. When there is no memory constraints, the 3-
NAF2, 6-NAF2, and 3-NAF3 give excellent results for respectively only 2, 6 and
8 precomputed values and outclass their binary counterparts. Also, this system
performs better than those described in [CJLM05] and [DIM05] for most methods
(especially the most efficient ones) under very realistic assumptions concerning
the ratio I/M (typically I/M is between 4 and 10). For that range of ratio, if we
precompute and store two values, the 3-NAF2 combined with our method on a
special curve will give an improvement of 9 to 30% over [DIM05] for both sizes
160 and 200bit.

Of course, it would be desirable to extend this work and different directions
are of interest. Indeed, the same study should be carried out in characteristic 2
and bigger values of � should be investigated, the first candidate being 5. Also,
the Dual Base Number System (DBNS) when combined with this new tripling

Efficient Scalar Multiplication by Isogeny Decompositions 205

method should give very good results with appropriate settings that need to be
found. Also, designing direct formulas for [2]P ±Q and [3]P ±Q in new Jacobian
coordinates would lead to further improvements.

References

[ACD+05] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptogra-
phy, CRC Press, Inc., 2005.

[Ber01] D. J. Bernstein, A software implementation of NIST P-224, slides of a
talk given at ECC 2001.

[BJ03] É. Brier and M. Joye, Fast point multiplication on elliptic curves through
isogenies, Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes – AAECC 2003, Lecture Notes in Comput. Sci., vol. 2643,
Springer-Verlag, Berlin, 2003, pp. 43–50.

[CJLM05] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery, Trading inversions
for multiplications in elliptic curve cryptography, Des. Codes Cryptogr.
(2005), To appear. Also available from Cryptology ePrint Archive.

[CLSQ03] M. Ciet, T. Lange, F. Sica, and J.-J. Quisquater, Improved algorithms
for efficient arithmetic on elliptic curves using fast endomorphisms, Ad-
vances in Cryptology – Eurocrypt 2003, Lecture Notes in Comput. Sci.,
vol. 2656, Springer-Verlag, Berlin, 2003, pp. 388–400.

[CMO97] H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation,
Information and Communication Security – ICICS 1997, Lecture Notes
in Comput. Sci., vol. 1334, Springer-Verlag, Berlin, 1997, pp. 282–290.

[CMO98] , Efficient elliptic curve exponentiation using mixed coordinates,
Advances in Cryptology – Asiacrypt 1998, Lecture Notes in Comput.
Sci., vol. 1514, Springer-Verlag, Berlin, 1998, pp. 51–65.

[CS05] M. Ciet and F. Sica, An Analysis of Double Base Number Systems and a
sublinear scalar multiplication algorithm, Progress in Cryptology – My-
crypt 2005, Lecture Notes in Comput. Sci., vol. 3715, Springer-Verlag,
Berlin, 2005, pp. 171–182.

[DIM05] V. S. Dimitrov, L. Imbert, and P. K. Mishra, Efficient and secure el-
liptic curve point multiplication using double-base chains, Advances in
Cryptology – Asiacrypt 2005, Lecture Notes in Comput. Sci., vol. 3788,
Springer-Verlag, Berlin, 2005, pp. 59–78.

[DJM99] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, Theory and applications
of the double-base number system, IEEE Trans. on Computers 48 (1999),
no. 10, 1098–1106.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone, Faster point mul-
tiplication on elliptic curves with efficient endomorphisms, Advances in
Cryptology – Crypto 2001, Lecture Notes in Comput. Sci., vol. 2139,
Springer-Verlag, Berlin, 2001, pp. 190–200.

[HMV03] D. Hankerson, A. J. Menezes, and S. A. Vanstone, Guide to elliptic curve
cryptography, Springer-Verlag, Berlin, 2003.

[HT05] D.-G. Han and T. Takagi, Some analysis of radix-r representations,
preprint, 2005. See http://eprint.iacr.org/2005/402/

206 C. Doche, T. Icart, and D.R. Kohel

[JMV05] D. Jao, S. D. Miller, and R. Venkatesan, Do all elliptic curves of the same
order have the same difficulty of discrete log?, Advances in Cryptology
– Asiacrypt 2005, Lecture Notes in Comput. Sci., vol. 3788, Springer-
Verlag, Berlin, 2005, pp. 21–40.

[Kob92] N. Koblitz, CM-curves with good cryptographic properties, Advances in
Cryptology – Crypto 1991, Lecture Notes in Comput. Sci., vol. 576,
Springer-Verlag, Berlin, 1992, pp. 279–287.

[Lan05] T. Lange, Koblitz curve cryptosystems, Finite Fields Appl. 11 (2005),
no. 2, 220–229.

[LD98] J. López and R. Dahab, Improved algorithms for elliptic curve arithmetic
in GF(2n), Tech. Report IC-98-39, Relatório Técnico, October 1998.

[MO90] F. Morain and J. Olivos, Speeding up the computations on an elliptic
curve using addition-subtraction chains, Inform. Theory Appl. 24 (1990),
531–543.

[MV90] A. J. Menezes and S. A. Vanstone, The implementation of elliptic curve
cryptosystems, Advances in Cryptology – Auscrypt 1990, Lecture Notes
in Comput. Sci., vol. 453, Springer-Verlag, Berlin, 1990, pp. 2–13.

[Sol00] J. A. Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Cryp-
togr. 19 (2000), 195–249.

[TYW04] T. Takagi, S.-M. Yen, and B.-C. Wu, Radix-r non-adjacent form, Infor-
mation Security Conference – ISC 2004, Lecture Notes in Comput. Sci.,
vol. 3225, Springer-Verlag, Berlin, 2004, pp. 99–110.

Curve25519: New Diffie-Hellman Speed Records

Daniel J. Bernstein�

djb@cr.yp.to

Abstract. This paper explains the design and implementation of a high-
security elliptic-curve-Diffie-Hellman function achieving record-setting
speeds: e.g., 832457 Pentium III cycles (with several side benefits: free
key compression, free key validation, and state-of-the-art timing-attack
protection), more than twice as fast as other authors’ results at the same
conjectured security level (with or without the side benefits).

Keywords: Diffie-Hellman, elliptic curves, point multiplication, new
curve, new software, high conjectured security, high speed, constant time,
short keys.

1 Introduction

This paper introduces and analyzes Curve25519, a state-of-the-art elliptic-curve-
Diffie-Hellman function suitable for a wide variety of cryptographic applications.
This paper uses Curve25519 to obtain new speed records for high-security Diffie-
Hellman computations.

Here is the high-level view of Curve25519: Each Curve25519 user has a 32-
byte secret key and a 32-byte public key. Each set of two Curve25519 users has
a 32-byte shared secret used to authenticate and encrypt messages between the
two users.

Medium-level view: The following picture shows the data flow from secret keys
through public keys to a shared secret.

Alice’s secret key a

��

��

Public string 9

�� ��

Bob’s secret key b

��

��

Public function
Curve25519

�� ��

		��
��

��
��

��
��

��
��

��
�

�
��

��
��

��
��

��
��

��
��

Alice’s public key
Curve25519(a, 9)

������������������������

Bob’s public key
Curve25519(b, 9)

������������������������

{Alice,Bob}’s shared secret
Curve25519(a,Curve25519(b, 9))

= {Bob,Alice}’s shared secret
Curve25519(b,Curve25519(a, 9))

� Thanks to Tanja Lange for her extensive comments. Date of this document:
2006.02.09. Permanent ID of this document: 4230efdfa673480fc079449d90f322c0.
This document is final and may be freely cited.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 207–228, 2006.
c© International Association for Cryptologic Research 2006

208 D.J. Bernstein

A hash of the shared secret Curve25519(a,Curve25519(b, 9)) is used as the key
for a secret-key authentication system (to authenticate messages), or as the key
for a secret-key authenticated-encryption system (to simultaneously encrypt and
authenticate messages).

Low-level view: The Curve25519 function is Fp-restricted x-coordinate scalar
multiplication on E(Fp2), where p is the prime number 2255 − 19 and E is the
elliptic curve y2 = x3 + 486662x2 + x. See Section 2 for further details.

Conjectured security level. Breaking the Curve25519 function—for example,
computing the shared secret from the two public keys—is conjectured to be
extremely difficult. Every known attack is more expensive than performing a
brute-force search on a typical 128-bit secret-key cipher.

The general problem of elliptic-curve discrete logarithms has been attacked
for two decades with very little success. Generic discrete-logarithm algorithms
break prime groups that are not sufficiently large, but the prime group used
in this paper has size above 2252. Elliptic curves with certain special algebraic
structures can be broken much more quickly by non-generic algorithms, but
E(Fp2) does not have those structures. See Section 3 of this paper for more
detailed comments on the security of the Curve25519 function.

If large quantum computers are built then they will break Curve25519 and
all other short-key discrete-logarithm systems. See [56] for details of a general
elliptic-curve-discrete-logarithm algorithm. The ramifications of this observation
are orthogonal to the topic of this paper and are not discussed further.

Efficiency. My public-domain Curve25519 software provides several efficiency
features, thanks in large part to the choice of the Curve25519 function:

• Extremely high speed. My software computes Curve25519 in just 832457
cycles on a Pentium III, 957904 cycles on a Pentium 4, 640838 cycles on a
Pentium M, and 624786 cycles on an Athlon. Each of these numbers is a
new speed record for high-security Diffie-Hellman functions. I am working
on implementations for the UltraSPARC, PowerPC, etc.; I expect to end up
with similar cycle counts.

• No time variability. Most speed reports in the cryptographic literature are
for software without any protection against timing attacks. See [12], [51],
and [50] for some successful attacks. Adding protection can dramatically
slow down the computation. In contrast, my Curve25519 software is already
immune to timing attacks, including hyperthreading attacks and other cache-
timing attacks. It avoids all input-dependent branches, all input-dependent
array indices, and other instructions with input-dependent timings.

• Short secret keys. The Curve25519 secret key is only 32 bytes. This is
typical for high-security Diffie-Hellman functions.

• Short public keys. The Curve25519 public key is only 32 bytes. Typical
elliptic-curve-Diffie-Hellman functions use 64-byte public keys; those keys
can be compressed to half size, as suggested by Miller in [46], but the time
for decompression is quite noticeable and usually not reported.

• Free key validation. Typical elliptic-curve-Diffie-Hellman functions can be
broken if users do not validate public keys; see, e.g., [14, Section 4.1] and [3].

Curve25519: New Diffie-Hellman Speed Records 209

The time for key validation is quite noticeable and usually not reported. In
contrast, every 32-byte string is accepted as a Curve25519 public key.

• Short code. My software is very small. The compiled code, including all
necessary tables, is around 16 kilobytes on each CPU, and can easily fit
alongside other networking tools in the CPU’s instruction cache.

The new speed records are the highlight of this paper. Sections 4 and 5 explain
the computation of Curve25519 in detail from the bottom up.

One can improve speed by choosing functions at lower security levels; for
example, dropping from 255 bits down to 160 bits. But—as discussed in Section
3—I can easily imagine an attacker with the resources to break a 160-bit elliptic
curve in under a year. Users should not expose themselves to this risk; they
should instead move up to the comfortable security level of Curve25519.

Of course, when users exchange large volumes of data, their bottleneck is a
secret-key cryptosystem, and the Curve25519 speed no longer matters.

Comparison to previous work. There is an extensive literature analyzing the
speed of various implementations of various Diffie-Hellman functions at various
conjectured security levels.

In particular, there have been some reports of high-security elliptic-curve
scalar-multiplication speeds: [17, Table 8] reports 1920000 cycles on a 400 MHz
Pentium II for field size 2256 − 2224 + 2192 + 296 − 1; [33, Table 7] reports
1740000 cycles on a 400 MHz Pentium II for field size 2283 using a subfield curve;
[4, Table 4] reports 3086000 cycles on a 1000 MHz Athlon for a random 256-bit
prime field. At a lower security level: [7, Table 3] reports 2650000 cycles on a
233 MHz Pentium MMX for field size (231 − 1)6; [58, Table 4] reports 4500000
cycles on a 166 MHz Pentium Pro for field size (231 − 19)6; [26, Table 6] reports
1720000 cycles on an 800 MHz Pentium III for field size 2233.

The Curve25519 timings are more than twice as fast as the above reports. The
comparison is actually even more lopsided than this, because the Curve25519
timings include free key compression, free key validation, and state-of-the-art
timing-attack protection, while the above reports do not.

I have previously reported preliminary implementation work achieving about
half of this speedup using a standard NIST curve. The other half of the speedup
relies on switching to a better-designed curve. This paper covers both halves of
the speedup.

At a lower level, designing and implementing an elliptic-curve-Diffie-Hellman
function means making many choices that affect speed. Making a few bad choices
can destroy performance. In the design and implementation of Curve25519 I have
tried to globally optimize the entire sequence of choices:

• Use large characteristic, not characteristic 2.
• Use curve shape y2 = x3 + Ax2 + x, with (A − 2)/4 small, rather than
y2 = x3 − 3x+ a6.

• Use x as a public key, not (x, y).
• Use a secure curve that also has a secure twist, rather than taking extra time

to prohibit keys on the twist.

210 D.J. Bernstein

• Use x/z inside scalar multiplication, not (x/z, y/z) or (x/z2, y/z3).
• Convert variable array indexing into arithmetic.
• Use a fixed position for the leading 1 in the secret key.
• Multiply the secret key by a small power of 2 to account for cofactors in the

curve group and the twist group.
• Use a prime field, not an extension field.
• Use a prime extremely close to 2b for some b.
• Use radix 2b/w for some w, even if b/w is not an integer.
• Allow coefficients slightly larger than the radix, rather than reducing each

coefficient as soon as possible.
• Put coefficients into floating-point registers, not integer registers. Choose w

accordingly.

See Sections 4 and 5 for details and credits. Beware that these choices interact
across many levels of design and implementation: for example, there are other
curve shapes and prime shapes for which (x/z2, y/z3) is better than x/z. This
type of interaction makes the optimal sequence of choices difficult to identify
even when all possible choices are known.

2 Specification

This section defines the Curve25519 function. Readers not familiar with rings,
fields, and elliptic curves should consult Appendix A for definitions and for a
proof of Theorem 2.1.

Theorem 2.1. Let p be a prime number with p ≥ 5. Let A be an integer such
that A2 − 4 is not a square modulo p. Define E as the elliptic curve y2 = x3 +
Ax2 + x over the field Fp. Define X0 : E(Fp2) → Fp2 as follows: X0(∞) = 0;
X0(x, y) = x. Let n be an integer. Let q be an element of Fp. Then there exists
a unique s ∈ Fp such that X0(nQ) = s for all Q ∈ E(Fp2) such that X0(Q) = q.

In particular, define p as the prime 2255 − 19. Define Fp as the prime field
Z/p = Z/(2255 − 19). Note that 2 is not a square in Fp; define Fp2 as the field
(Z/(2255−19))[

√
2]. Define A = 486662. Note that 4866622−4 is not a square in

Fp. Define E as the elliptic curve y2 = x3 + Ax2 + x over Fp. Define a function
X0 : E(Fp2) → Fp2 as follows: X0(∞) = 0; X0(x, y) = x. Define a function
X : E(Fp2) → {∞} ∪ Fp2 as follows: X(∞) = ∞; X(x, y) = x.

At this point I could say that, given n ∈ 2254 + 8
{
0, 1, 2, 3, . . . , 2251 − 1

}
and

q ∈ Fp, the Curve25519 function produces s in Theorem 2.1. However, to match
cryptographic reality and to catch the types of design error explained by Menezes
in [45], I will instead define the inputs and outputs of Curve25519 as sequences
of bytes.

The set of bytes is, by definition, {0, 1, . . . , 255}. The encoding of a byte as
a sequence of bits is not relevant to this document. Write s �→ s for the stan-
dard little-endian bijection from

{
0, 1, . . . , 2256 − 1

}
to the set {0, 1, . . . , 255}32 of

32-byte strings: in other words, for each integer s ∈
{
0, 1, . . . , 2256 − 1

}
, define

s = (s mod 256, �s/256� mod 256, . . . ,
⌊
s/25631

⌋
mod 256).

Curve25519: New Diffie-Hellman Speed Records 211

The set of Curve25519 public keys is, by definition, {0, 1, . . . , 255}32; in
other words,

{
q : q ∈

{
0, 1, . . . , 2256 − 1

}}
. The set of Curve25519 secret keys

is, by definition, {0, 8, 16, 24, . . . , 248}× {0, 1, . . . , 255}30 × {64, 65, 66, . . . , 127};
in other words,

{
n : n ∈ 2254 + 8

{
0, 1, 2, 3, . . . , 2251 − 1

}}
.

Now Curve25519 : {Curve25519 secret keys} × {Curve25519 public keys} →
{Curve25519 public keys} is defined as follows. Fix q ∈

{
0, 1, . . . , 2256 − 1

}
and

n ∈ 2254 + 8
{
0, 1, 2, 3, . . . , 2251 − 1

}
. By Theorem 2.1, there is a unique integer

s ∈
{
0, 1, 2, . . . , 2255 − 20

}
with the following property: s = X0(nQ) for all

Q ∈ E(Fp2) such that X0(Q) = q mod 2255 − 19. Finally, Curve25519(n, q) is
defined as s. Note that Curve25519 is not surjective: in particular, its final output
bit is always 0 and need not be transmitted.

3 Security

This section discusses attacks on Curve25519. The bottom line is that all known
attacks are extremely expensive.

Responsibilities of the user. The legitimate users are assumed to generate
independent uniform random secret keys. A user can, for example, generate 32
uniform random bytes, clear bits 0, 1, 2 of the first byte, clear bit 7 of the last
byte, and set bit 6 of the last byte.

Large deviations from uniformity can eliminate all security. For example, if
the first 16 bytes of the secret key n were instead chosen as a public constant,
then a moderately large computation would deduce the remaining bytes of n
from the public key Curve25519(n, 9). This is not Curve25519’s fault; the user
is responsible for putting enough randomness into keys.

Legitimate users are also assumed to keep their secret keys secret. This means
that a secret key n is not used except to compute the public key Curve25519(n, 9)
and to compute the shared-secret hash H(Curve25519(n, q)) given q.

Users are not assumed to throw n away after a single q. Diffie-Hellman secret
keys can—and, for efficiency, should—be reused with many public keys, as in
[23, Section 3]. Each user’s secret key n is combined with many other users’
public keys q1, q2, q3, . . ., producing shared-secret hashes H(Curve25519(n, q1)),
H(Curve25519(n, q2)), H(Curve25519(n, q3)),

Choice of key-derivation function. There are no theorems guaranteeing the
safety of any particular key-derivation function H with, e.g., 512-bit output.
Some silly choices of H are breakable. As an extreme example, if H outputs just
64 bits followed by all zeros, then an attacker can perform a brute-force search
for those 64 bits.

On the other hand, from the perspective of a secret-key cryptographer, it
seems very easy to design a safe function H . A small amount of mixing, far less
than necessary to make a safe secret-key cipher, stops all known attacks.

For concreteness I will define H(x0, x1, x2, x3, x4, x5, x6, x7) as the 64-byte
string Salsa20(c0, x0, 0, x1, x2, c1, x3, 0, 0, x4, c2, x5, x6, 0, x7, c3). Here Salsa20 is

212 D.J. Bernstein

the function defined in [13, Section 8]; (c0, c1, c2, c3) is “Curve25519output” in
ASCII; and each xi has 4 bytes.

If fewer than 64 bytes are needed then the Salsa20 output can simply be
truncated. If more than 64 bytes are needed then Salsa20 can be invoked again
with (c0, x0, 1, x1, . . .) to produce another 64 bytes.

Powers of the attacker. An attacker sees public keys q1 = Curve25519(n1, 9),
q2 = Curve25519(n2, 9), . . . generated from the legitimate users’ independent
uniform random secret keys n1, n2,

The attacker also sees messages protected by a secret-key cryptosystem C
where the keys for C are the shared-secret hashes H(Curve25519(ni, qj)) =
H(Curve25519(nj , qi)) for various sets {i, j}. The attacker’s goal is to decrypt
or forge these messages.

The attacker can also compute a public key q′ /∈ {q1, q2, . . .} and—by using
q′ in the Diffie-Hellman protocol—see messages protected by C where the keys
for C are H(Curve25519(n1, q

′)), H(Curve25519(n2, q
′)), This would be

pointless if the attacker generated q′ in the normal way, but the attacker is not
required to generate q′ in the normal way; legitimate users are not assumed to
check that q′ was generated from a secret key, let alone a secret key known to
the attacker. The attacker might take q′ = 1, for example, or q′ = q1 ⊕ 1. The
attacker can adaptively generate many public keys q′.

Of course, security depends on the choice of secret-key cryptosystem C. One
could make a poor choice of C, allowing messages to be decrypted or forged
without any weakness in Curve25519. But standard choices of C are conjectured
to be safe. Further discussion of the choice of C is outside the scope of this
document.

Simplified attack notions. There are many papers using simpler models of
Diffie-Hellman attackers, and proving theorems of the form “a fast attack in
complicated-security-model implies a fast attack in simplified-security-model.”
The reader might wonder why I am not using one of these simplified notions.

Example: Bentahar in [10], improving an algorithm by Muzereau, Smart, and
Vercauteren in [48] based on an idea by Maurer in [44], showed that one can
evaluate discrete logarithms on typical elliptic curves using roughly 213 calls to
a reliable oracle for the function (mQ, nQ) �→ mnQ. Bentahar then repeated
the standard conjecture that computing discrete logarithms on a typical 256-bit
elliptic curve costs at least 2128 (never mind the question of exactly what “cost”
means), and deduced the conjecture that computing (mQ, nQ) �→ mnQ costs at
least 2115. Why, then, should one make a conjecture regarding the difficulty of
computing (mQ, nQ) �→ mnQ, rather than a simplified conjecture regarding the
difficulty of computing discrete logarithms?

Answer: A standard conjecture says that computing (mQ, nQ) �→ mnQ costs
at least 2128. This conjecture is quantitatively stronger than anything that can
be obtained by applying Bentahar’s theorem to a simplified conjecture.

Similar comments apply to other theorems of this type; see, e.g., [39, Section
3.2]. Often the theorems are so weak that they say nothing about any real-world
system. To focus attention on the security properties that applications actually

Curve25519: New Diffie-Hellman Speed Records 213

need, I have chosen to make a complicated but strong conjecture about security,
rather than a simplified but weak conjecture.

Generic discrete logarithms by the rho and kangaroo methods. The
attacker can expand Curve25519(n, 9) into a point (x, y) on E(Fp2), namely the
nth multiple of the base point (9, . . .). The attacker can then use Pollard’s rho
method or Pollard’s kangaroo method to compute the discrete logarithm of this
point, namely n. The main cost in either method is the cost of performing a huge
number of additions of elliptic-curve points; both methods are almost perfectly
parallelizable, with negligible communication costs. See [63], [55], [61], and [60].

The number of additions here is about the square root of the length of the
n interval: in this case, about 2125. The computation can finish after far fewer
additions, but the success chance is at most (and conjecturally at least) about
a2/2251 after a additions.

How many elliptic-curve additions can an attacker perform? The traditional
estimate is roughly 270 elliptic-curve additions: a modern CPU costs about 26

dollars; a modern CPU cycle is about 2−31 seconds; each elliptic-curve addition
in the rho or kangaroo method costs about 210 CPU cycles for roughly 22 field
multiplications that each cost 28 cycles; the attacker is willing to spend a year,
i.e., 225 seconds; the attacker can afford to spend 230 dollars.

I don’t agree with the traditional estimate. I agree that modern circuitry
takes about 2−21 seconds for a single rho/kangaroo step; but it is a huge error to
assume that this circuitry costs as much as 26 dollars. One can fit many parallel
rho/kangaroo circuits into the same amount of circuitry as a modern CPU. A
reasonable estimate for “many” is 210; see [28] for a fairly detailed chip design,
and [28, Section 5.2] for the estimate. By switching to this chip, the attacker
can perform roughly 280 elliptic-curve additions. The attacker has an excellent
chance of computing a 160-bit discrete logarithm, but only about a 2−90 chance
of computing a 251-bit discrete logarithm.

Of course, one must adjust these estimates as chip technology improves. It
is not enough to account for increases in cycle speed and for decreases in chip
cost; one must also account for increases in chip size. However, the Curve25519
security level will remain comfortable for the foreseeable future.

Batch discrete logarithms. Silverman and Stapleton observed, and Kuhn
and Struik proved in [41, Section 4] assuming standard conjectures, that the rho
method can compute u discrete logarithms using about

√
u times as much effort

as computing a single discrete logarithm.
For example, given public keys Curve25519(n1, 9), . . . ,Curve25519(nu, 9), the

attacker can discover most of the secret keys n1, . . . , nu using only about 2125
√

u
additions, i.e., about 2125/

√
u additions per key.

This does not mean, however, that one of the keys will be found within the
first 2125/

√
u additions. On the contrary: the attacker is likely to wait for 2125

additions before finding the first key, then another 2125(
√

2 − 1) additions be-
fore finding the second key, etc. Curve25519 is at a comfortable security level
where finding the first key is, conjecturally, far out of reach, so the reduced cost
of finding subsequent keys is not a threat. The attacker can perform only 2125ε

214 D.J. Bernstein

additions for small ε, so the attacker’s chance of success—of finding any keys—is
only about ε2.

Generic discrete logarithms are often claimed to be about as difficult as brute-
force search for a half-size key. But brute-force search computes a batch of u keys
with about the same effort as computing a single key. Furthermore, brute-force
search has probability roughly uε of finding some key after the first ε of the
computation, whereas discrete logarithms have only an ε2 chance. Evidently
generic discrete logarithms are more difficult than brute-force search for a half-
size key: uε is much larger than ε2, except in the extreme case where u and ε are
both close to 1.

Small-subgroup attacks. If the subgroup of E(Fp2) generated by the base
point (9, . . .) has non-prime order then the attacker can use the Pohlig-Hellman
method to save time in computing discrete logarithms. See, e.g., [5, Section 19.3].

This attack fails against Curve25519. The order of the base point is a prime,
namely 2252 + 27742317777372353535851937790883648493.

An active attacker has more options. Say there is a point (x, y) ∈ E(Fp2)
of order b, with x ∈ Fp and with b not very large. The attacker can issue a
public key x. The legitimate user will then authenticate and encrypt data under
H(Curve25519(n, x)) = H(X0(n(x, y))) = H(X0((n mod b)(x, y))); the attacker
can compare the results to all possibilities for n mod b, presumably determining
n mod b.

The active attack also fails against Curve25519. The group {∞} ∪ (E(Fp2) ∩
(Fp × Fp)) has size 8p1, where p1 = 2252 + · · · is the prime number displayed
above. The “twist” group {∞}∪(E(Fp2)∩(Fp×

√
2Fp)) has size 2(p+1)−8p1 =

4p2, where p2 is the prime 2253 − 55484635554744707071703875581767296995.
Consequently, the only possibilities for b below 2252 are 1, 2, 4, 8. Secret keys n
by definition have n mod 8 = 0 and thus n mod b = 0.

History: Lim and Lee in [42] pointed out active attacks on Diffie-Hellman in
the group F∗

p. They recommended in [42, Section 4] that, rather than taking
the time to test that public keys are in a particular subgroup of prime order q,
one choose a prime p such that “each prime factor of (p − 1)/2q is larger than
q.” Biehl, Meyer, and Müller in [14, Section 4.1] pointed out analogous attacks
on elliptic curves when public keys are represented as pairs (x, y); they did not
propose any workaround other than testing keys. In a November 2001 sci.crypt
posting I wrote “You can happily skip both the y transmission and the square
root. In fact, if both the curve and its twist have nearly prime order, then you
can even skip square testing.”

Other attacks. The kangaroo method actually searches simultaneously for n/8
and p1 − n/8 in an interval. The range of n/8 is

{
2251, . . . , 2252 − 1

}
, so either

n/8 or p1 − n/8 is in the range
{
(p1 + 1)/2, . . . , 2252 − 1

}
. However, p1 is only

marginally above 2252, so this range has length only marginally below 2251.
More generally, when a group G has an easily computed automorphism ϕ of

small order b, one can apply the kangaroo method to the orbits of ϕ, using only
about

√
#G/b steps rather than

√
#G steps. See, e.g., [5, Section 19.5.5]. But

my elliptic curve has no structure of this type other than negation. In fact, it

Curve25519: New Diffie-Hellman Speed Records 215

has no complex endomorphisms of small norm. To prove this, compute the trace
t = p+ 1 − 8p1, and observe that t2 − 4p is not a small multiple of a square: it
is divisible once by the prime 8312956054562778877481, for example.

My elliptic curve also resists the transfer attacks surveyed in [30, Chapter
22]. The primes p1 and p2 do not equal the field characteristic p. The order of p
modulo p1 is not small: in fact, it is (p1 − 1)/6. The order of p modulo p2 is not
small: in fact, it is p2 − 1. Weil descent simply splits E(Fp2) into the subgroup
E(Fp), of order 8p1, and the twist, of order 4p2; there are no proper subfields of
Fp to exploit.

4 Fast Arithmetic Modulo 2255 − 19

This section explains one way to use common CPU instructions, specifically
floating-point instructions, to quickly multiply and add in the field Fp where
p = 2255 − 19. I will focus on the Pentium M for concreteness, but the same
techniques work well for a wide variety of CPUs. This section also discusses the
choice of field structure and the choice of prime.

In this section, “floating-point” is abbreviated “fp.”

Representing integers modulo 2255−19. Define R as the ring of polynomials∑
i uix

i where ui is an integer multiple of 2�25.5i�. One way to see that R is a
ring is to observe that it is the intersection of the subrings Z[x] and Z[225.5x] of
Z[x], where Z is the ring of algebraic integers in C.

Elements of R represent elements of Z/(2255−19): each polynomial represents
its value at 1. Often a polynomial is chosen to meet two restrictions:

• The polynomial degree is small, to limit the number of coefficients that need
to be multiplied as part of polynomial multiplication. Specifically, reduced-
degree polynomials have degree at most 9.

• Each coefficient ui is a small multiple of 2�25.5i�, to limit the effort of
multiplying coefficients. Specifically, reduced-coefficient polynomials have
ui/2�25.5i� ∈

{
−225,−225 + 1, . . . ,−1, 0, 1, . . . , 225 − 1, 225

}
.

To summarize: A reduced-degree reduced-coefficient polynomial is a polynomial
u0+u1x+· · ·+u9x

9 with u0/20, u1/226, u2/251, u3/277, u4/2102, u5/2128, u6/2153,
u7/2179, u8/2204, u9/2230 all in

{
−225,−225 + 1, . . . ,−1, 0, 1, . . . , 225 − 1, 225

}
.

This polynomial represents the integer u0 + u1 + · · ·+ u9.
Note that integers are not converted to a unique “smallest” representation

until the end of the Curve25519 computation. Producing reduced representations
is generally much faster than producing “smallest” representations.

Representing coefficients inside CPUs. The Pentium M has eight “fp
registers,” each of which holds a real number 2ef for integers e and f with
f ∈

{
−264, . . . , 264

}
and with e in an adequate range for all the computations

discussed here. My computations hold polynomial coefficients in fp registers to
the extent possible, as in [11, Section 4].

216 D.J. Bernstein

The Pentium M has many more “L1-cache doublewords” that can hold 2ef
with f limited to the range

{
−253, . . . , 253

}
; e.g., reduced coefficients. To perform

arithmetic on numbers in L1-cache doublewords, the Pentium M must take time
to copy (“load”) the numbers into registers; but this is not a big problem, because
these loads can be overlapped with arithmetic if they are not too frequent.

Why split 255-bit integers into ten 26-bit pieces, rather than nine 29-bit pieces
or eight 32-bit pieces? Answer: The coefficients of a polynomial product do not
fit into the Pentium M’s fp registers if pieces are too large. The cost of handling
larger coefficients outweighs the savings of handling fewer coefficients. The overall
time for 29-bit pieces is sufficiently competitive to warrant further investigation,
but so far I haven’t been able to save time this way. I’m sure that 32-bit pieces,
the most common choice in the literature, are a bad idea.

Of course, the same question must be revisited for each CPU. The Pentium 1,
Pentium MMX, Pentium Pro, Pentium II, Pentium III, Pentium 4, Athlon, and
Athlon XP work well with 26-bit pieces; on the Athlon 64 and Opteron, 32-bit
pieces might be slightly better. On the UltraSPARC and PowerPC, fp registers
use

{
−253, . . . , 253

}
rather than

{
−264, . . . , 264

}
, and I recommend twelve 22-

bit pieces. The UltraSPARC and PowerPC can overlap fp additions with fp
multiplications, so I expect them to end up with comparable cycle counts to the
Pentium M despite the larger number of pieces.

Given that there are 10 pieces, why use radix 225.5 rather than, e.g., radix
225 or radix 226? Answer: My ring R contains 2255x10 − 19, which represents
0 in Z/(2255 − 19). I will reduce polynomial products modulo 2255x10 − 19 to
eliminate the coefficients of x10, x11, etc. With radix 225, the coefficient of x10

could not be eliminated. With radix 226, coefficients would have to be multiplied
by 25 · 19 rather than just 19, and the results would not fit into an fp register.

Using floating-point operations. The Pentium M has circuits for three fast
operations on numbers stored in fp registers: sum, difference, and product. These
are exact operations if the results fit into the 64-bit fp precision; otherwise the
results are rounded to the nearest fp numbers.

The Pentium M can perform, at best, one fp operation per cycle. About 92% of
the cycles in my Curve25519 computation (589825 out of 640838) are occupied
by fp operations. One can understand the cycle counts fairly well by simply
counting the fp operations. Similar comments apply to other CPUs, although
the details depend on the CPU.

Warning: Writing an fp program in the C programming language, and feeding
the result to a C compiler, often produces machine language that takes 3 or more
Pentium M cycles for each fp operation. Further discussion of this phenomenon
is outside the scope of this paper. My Curve25519 software is actually written
in qhasm, a new programming language designed for high-speed computations.

Beware that a few CPUs have input-dependent fp timings. An old example
is the Sun microSPARC-IIep. A newer example is the IBM PowerPC RS64 IV,
which takes an extra cycle to multiply by 0. Fast constant-time computations
on these CPUs need extra effort.

Curve25519: New Diffie-Hellman Speed Records 217

Adding integers modulo 2255 − 19. If two integers are represented by two
polynomials u and v then the sum of the two integers is represented by u + v.
Similarly, the difference of the two integers is represented by u − v.

If u and v are reduced-degree reduced-coefficient polynomials then computing
u + v (or u − v) involves 10 additions (or subtractions) of fp numbers. Note
that the sum is reduced-degree but usually not reduced-coefficient. In a long
chain of sums one would occasionally have to take extra time to reduce the
coefficients. This is never necessary in the Curve25519 computation: every sum
(and difference) is used solely as input to products, as Appendix B illustrates.

Statistics: Each addition or subtraction takes 10 fp operations. There are 8
additions and subtractions, totalling 80 fp operations, in each iteration of the
Curve25519 main loop. There are 2040 additions and subtractions, totalling
20400 fp operations, in the entire Curve25519 computation.

Multiplying integers modulo 2255 − 19. If two integers are represented by
polynomials u and v then their product is represented by the polynomial product
uv. If u and v are reduced-degree reduced-coefficient polynomials, or sums of
two such polynomials, then computing uv in the simplest way involves 100 fp
multiplications and 81 fp additions; I am experimenting with other polynomial-
multiplication algorithms and expect to end up with slightly better results. The
product uv is then replaced by a reduced-degree reduced-coefficient polynomial:

• The coefficients of x10, x11, . . . , x18 in uv are eliminated by reduction modulo
2255x10−19. For example, the coefficient of x18 is multiplied by 19·2−255 and
added to the coefficient of x8. Each reduction involves 1 fp multiplication
and 1 fp addition.

• The “high” part of each coefficient is subtracted from that coefficient and
added (“carried”) to the next coefficient. The high part is, by definition, the
nearest multiple of the power of 2 for the next coefficient. One carry involves
4 fp additions: 2 to identify the high part (by a rounded addition and then
subtraction of a large constant), 1 to subtract, and 1 to add.

Starting from uv, I carry from x8 to x9, then from x9 to x10; then I eliminate
coefficients of x10, x11, . . . , x18; then I carry from x0 to x1, from x1 to x2, . . . ,
from x7 to x8, and once more from x8 to x9. Note that the coefficient of x9 is a
multiple of 2230, and is between −2254 and 2254 after subtraction of its original
high part, so the final carry from x8 to x9 produces reduced coefficients. Overall
there are 18 fp operations to eliminate 9 coefficients, and 44 fp operations for
11 carries. There are many other reasonable carry sequences; on some CPUs it
might be a good idea to have two parallel carry chains, decreasing latency at the
expense of an extra carry.

Squaring is easier than general multiplication, because polynomial squaring
is easier than general polynomial multiplication. Overall a squaring eliminates
92 +9 coefficient multiplications at the expense of 9 initial coefficient doublings;
note that doubling coefficients at the beginning is slightly better than doubling
products later. Multiplication by a small constant is also easier than general
multiplication, because the constant is represented by a polynomial of degree 0.

218 D.J. Bernstein

Statistics: Each multiplication by a small constant takes 55 fp operations.
Each squaring takes 162 fp operations. Each general multiplication takes 243 fp
operations. Each iteration of the Curve25519 main loop has 1 multiplication by a
small constant, using 55 fp operations; 4 squarings, using 648 fp operations; and
5 general multiplications, using 1215 fp operations; in total 10 multiplications,
using 1918 fp operations. The Curve25519 computation has 255 multiplications
by small constants, using 14025 fp operations; 1274 squarings, using 206388 fp
operations; and 1286 general multiplications, using 312498 fp operations; in total
2815 multiplications, using 532911 fp operations.

Note that the squaring-to-multiplication floating-point-operation ratio is only
162/243 = 2/3, far below the 0.8 ratio often used in the literature for estimating
the costs of elliptic-curve operations.

Selecting integers. Consider the problem of computing x[b], where x[0], x[1]
are integers modulo 2255−19 and b is an input-dependent bit. Using b as an array
index—without taking extra time for preloads, interrupt elimination, etc.—could
allow hyperthreading attacks and other cache-timing attacks; see [12, Sections
8–15]. I instead compute x[b] as (1−b)x[0]+bx[1]. Similarly, if I need to compute
the pair (x[b], x[1 − b]), I compute (x[0] − b(x[0]− x[1]), x[1] + b(x[0]− x[1])).

Statistics: Each iteration of the Curve25519 main loop has 2 fp operations
inside computing b and 1 − b; 2 paired selections, taking 80 fp operations; and
2 more selections, taking 60 more fp operations. The total is 142 fp operations.
The entire Curve25519 computation spends 36210 fp operations, about 6% of
the total, on selection. Of course, these operations could be eliminated if timing
attacks were not a concern.

Why this field? CPUs include fast integer-multiplication circuits (usually
buried inside fp-multiplication circuits aimed at the large fp market) but not
circuits for fast multiplication of polynomials modulo 2. Characteristic-2 fields
allow several other speedups—see, e.g., [35, Section 3.4] and [25, Section 15.1]—
but I can’t see any way for them to set speed records on existing CPUs.

“Optimal extension fields,” such as degree-10 extensions of prime fields of size
around 226, are advertised in [7] and [6] as allowing faster multiplication and
much faster inversion, perhaps so fast as to make affine-coordinate elliptic-curve
computations faster than projective-coordinate elliptic-curve computations. My
current assessment is that these fields have some slight advantages: there are no
carry chains, so operations are easier to reorder; there are 10 reductions modulo
a prime, rather than 11 carries, although one reduction is usually slightly more
expensive than one carry; inversion is faster, although not fast enough to make
affine coordinates worthwhile; and, most importantly, degree 9 might fit into
64-bit fp. Unfortunately, these fields have a huge disadvantage: even if they are
slightly faster on some CPUs, they are much slower on other CPUs. A 255-bit
integer can be split into 4 or 8 or 10 or 12 pieces to accommodate the capabilities
of different processors; an “optimal extension field” is tied to a particular number
of pieces.

Curve25519: New Diffie-Hellman Speed Records 219

So I selected a prime field. Prime fields also have the virtue of minimizing
the number of security concerns for elliptic-curve cryptography; see, e.g., [29]
and [22].

I chose my prime 2255 − 19 according to the following criteria: primes as close
as possible to a power of 2 save time in field operations (as in, e.g, [9]), with no
effect on (conjectured) security level; primes slightly below 32k bits, for some
k, allow public keys to be easily transmitted in 32-bit words, with no serious
concerns regarding wasted space; k = 8 provides a comfortable security level. I
considered the primes 2255 + 95, 2255 − 19, 2255 − 31, 2254 + 79, 2253 + 51, and
2253 + 39, and selected 2255 − 19 because 19 is smaller than 31, 39, 51, 79, 95.

5 Fast Curve25519 Computation

This section explains fast x-coordinate point addition on my elliptic curve y2 =
x3 + 486662x2 + x; explains fast x-coordinate scalar multiplication, i.e., fast
computation of Curve25519; and compares this curve to other elliptic curves.

Recall that Section 2 defines two x-coordinate functions. One function X0

maps ∞ to 0; the other function X maps ∞ to ∞. Curve25519 is defined using
X0, but inside the computation it is convenient to use X until the last moment.

Addition. Montgomery in [47, Section 10.3.1] published formulas to compute
X(2Q) given X(Q), and to compute X(Q+ Q′) given X(Q), X(Q′), X(Q−Q′),
assuming that Q �= ∞, Q′ �= ∞, Q − Q′ �= ∞, Q + Q′ �= ∞. It turns out that
Montgomery’s formulas also work for ∞, provided that Q−Q′ /∈ {∞, (0, 0)}, so
the Curve25519 computation can avoid checking for ∞. See Appendix B of this
paper.

Montgomery’s formulas represent each X value as a fraction x/z, replacing
divisions with multiplications. Montgomery commented that, when d is large,
one can perform d divisions in Fp at about the same cost as 4d multiplications
in Fp, so dividing x by z may be a good idea when there are many separate
elliptic-curve computations to perform at once; I have not implemented this
option yet.

The formula for X(2Q) involves 2 squarings, 1 multiplication by 121665 =
(486662− 2)/4, and 2 more multiplications. The formula for X(Q+Q′) involves
2 squarings and 3 more multiplications when z1 in Theorem B.2, the denominator
of X(Q − Q′), is known to be 1; otherwise it involves 2 squarings and 4 more
multiplications. The Curve25519 computation always has z1 = 1.

Scalar multiplication. Montgomery suggested using his formulas to obtain
X(nQ+Q), X(nQ), X(Q) given X(�n/2�Q+Q), X(�n/2�Q), X(Q): if n is even
then nQ = 2�n/2�Q and nQ + Q = (�n/2�Q + Q) + (�n/2�Q); if n is odd then
nQ + Q = 2(�n/2�Q + Q) and nQ = (�n/2�Q + Q) + (�n/2�Q). Either case
involves one doubling and one addition.

The formulas, repeated k times, produce X(nQ + Q), X(nQ), X(Q) with k
doublings and k additions starting from X(

⌊
n/2k

⌋
Q+Q), X(

⌊
n/2k

⌋
Q), X(Q). I

compute X(nQ) for any n ∈ 2254 +8
{
0, 1, . . . , 2251 − 1

}
with 255 doublings and

220 D.J. Bernstein

255 additions starting from X(Q), X(0), X(Q). The first and last few iterations
could be simplified.

The final X(nQ), like other X values, is represented as a fraction x/z. I
compute X0(nQ) = xzp−2 using a straightforward sequence of 254 squarings
and 11 multiplications. This is about 7% of the Curve25519 computation. An
extended-Euclid inversion of z, randomized to protect against timing attacks,
might be faster, but the maximum potential speedup is very small, while the
cost in code complexity is large.

Theorems B.1 and B.2 justify the above procedure if X0(Q) �= 0. The same
formulas also work for X0(Q) = 0: every computed fraction has denominator 0,
so the final output is 0 as desired.

Other addition chains. Montgomery pointed out that one can replace the
addition chain

{⌊
n/2k

⌋}
∪
{⌊
n/2k

⌋
+ 1

}
with any differential addition chain (any

“Lucas chain”), i.e., any addition chain where each sum is already accompanied
by a difference. One can find such a chain with only about 384 elements, as
discussed in [59, Section 5]. On the other hand, most of the additions then
require z1 �= 1 in Theorem B.2, costing extra multiplications in Fp. It is also
not clear how easily these addition chains can be protected against cache-timing
attacks. Further investigation is required.

A more common strategy is to drop the difference requirement, compensate
by computing more coordinates of each multiple of Q (Jacobian coordinates,
for example, or Chudnovsky coordinates), and use an addition chain with only
about 320 elements. See, e.g., [17] or [4]. Unfortunately, even if A is selected
so that y2 = x3 + Ax2 + x is isomorphic to a curve y2 = x3 − 3x − a6, each
doubling in known coordinate systems takes at least 8 field multiplications, and
each general addition takes even more. All of my experiments with this strategy
have ended up using more field operations, more floating-point operations, and
more cycles than the x-coordinate strategy.

One can save a large fraction of the time for computing Curve25519(n, q)
when q is fixed—in particular, for computing public keys Curve25519(n, 9)—
by precomputing various multiples of (q, . . .). An essentially optimal algorithm,
published by Pippenger in [52] in 1976, computes u public keys with only about
256/lg 8u additions per key. This speedup is negligible in the Diffie-Hellman
context (and is not provided by my current software), since each key is used
many times; but the speedup is useful for other applications of elliptic curves.

Why this curve? I chose the curve shape y2 = x3 + Ax2 + x, as suggested
by Montgomery, to allow extremely fast x-coordinate point operations. Curves
of this shape have order divisible by 4, requiring a marginally larger prime for
the same conjectured security level, but this is outweighed by the extra speed
of curve operations. I selected (A − 2)/4 as a small integer, as suggested by
Montgomery, to speed up the multiplication by (A − 2)/4; this has no effect on
the conjectured security level.

To protect against various attacks discussed in Section 3, I rejected choices
of A whose curve and twist orders were not {4 · prime, 8 · prime}; here 4, 8 are
minimal since p ∈ 1+4Z. The smallest positive choices for A are 358990, 464586,

Curve25519: New Diffie-Hellman Speed Records 221

and 486662. I rejected A = 358990 because one of its primes is slightly smaller
than 2252, raising the question of how standards and implementations should
handle the theoretical possibility of a user’s secret key matching the prime;
discussing this question is more difficult than switching to another A. I rejected
464586 for the same reason. So I ended up with A = 486662.

Special curves with small complex automorphisms have potential benefits,
as discussed in [31], and are worth further investigation, but so far I have not
succeeded in saving time using them.

References

1. — (no editor), 17th annual symposium on foundations of computer science, IEEE
Computer Society, Long Beach, California, 1976. MR 56:1766. See [52].

2. Kazimierz Alster, Jerzy Urbanowicz, Hugh C. Williams (editors), Public-key cryp-
tography and computational number theory: proceedings of the international con-
ference held in Warsaw, September 11–15, 2000, Walter de Gruyter, Berlin, 2001.
ISBN 3–11–017046–9. MR 2002h:94001. See [60].

3. Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik, Scott Vanstone, Vali-
dation of elliptic curve public keys, in [21] (2003), 211–223. MR 2171928. Citations
in this paper: §1.

4. Roberto M. Avanzi, Aspects of hyperelliptic curves over large prime fields in soft-
ware implementations, in [36] (2004), 148–162. Citations in this paper: §1, §5.

5. Roberto M. Avanzi, Generic algorithms for computing discrete logarithms, in [19]
(2005), 477–494. MR 2162735. Citations in this paper: §3, §3.

6. Roberto M. Avanzi, Preda Mihăilescu, Generic efficient arithmetic algorithms for
PAFFs (processor adequate finite fields) and related algebraic structures (extended
abstract), in [43] (2004), 320–334. Citations in this paper: §4.

7. Daniel V. Bailey, Christof Paar, Efficient arithmetic in finite field extensions with
application in elliptic curve cryptography, Journal of Cryptology 14 (2001), 153–
176. ISSN 0933–2790. Citations in this paper: §1, §4.

8. Mihir Bellare (editor), Advances in cryptology—CRYPTO 2000: proceedings of
the 20th Annual International Cryptology Conference held in Santa Barbara, CA,
August 20–24, 2000, Lecture Notes in Computer Science, 1880, Springer-Verlag,
Berlin, 2000. ISBN 3–540–67907–3. MR 2002c:94002. See [14].

9. Andreas Bender, Guy Castagnoli, On the implementation of elliptic curve cryp-
tosystems, in [16] (1990), 186–192. MR 91d:11154. Citations in this paper: §4.

10. Kamel Bentahar, The equivalence between the DHP and DLP for elliptic curves
used in practical applications, revisited (2005). URL: http://eprint.iacr.org/
2005/307. Citations in this paper: §3.

11. Daniel J. Bernstein, The Poly1305-AES message-authentication code, in [32]
(2005), 32–49. URL: http://cr.yp.to/papers.html#poly1305. ID 0018d9551b5

546d97c340e0dd8cb5750. Citations in this paper: §4.
12. Daniel J. Bernstein, Cache-timing attacks on AES (2005). URL: http://cr.yp.to/

papers.html#cachetiming. ID cd9faae9bd5308c440df50fc26a517b4. Citations in
this paper: §1, §4.

13. Daniel J. Bernstein, Salsa20 specification (2005). URL: http://cr.yp.to/

snuffle.html. Citations in this paper: §3.

222 D.J. Bernstein

14. Ingrid Biehl, Bernd Meyer, Volker Müller, Differential fault attacks on elliptic curve
cryptosystems (extended abstract), in [8] (2000), 131–146. URL: http://lecturer.
ukdw.ac.id/vmueller/publications.php. Citations in this paper: §1, §3.

15. Colin Boyd (editor), Advances in cryptology—ASIACRYPT 2001: proceedings of
the 7th international conference on the theory and application of cryptology and
information security held on the Gold Coast, December 9–13, 2001, Lecture Notes
in Computer Science, 2248, Springer-Verlag, Berlin, 2001. ISBN 3–540–42987–5.
MR 2003d:94001. See [59].

16. Gilles Brassard (editor), Advances in cryptology—CRYPTO ’89, Lecture Notes in
Computer Science, 435, Springer-Verlag, Berlin, 1990. ISBN 0–387–97317–6. MR
91b:94002. See [9].

17. Michael Brown, Darrel Hankerson, Julio López, Alfred Menezes, Software im-
plementation of the NIST elliptic curves over prime fields (2000); see also
newer version [18]. URL: http://www.cacr.math.uwaterloo.ca/techreports/

2000/corr2000-56.ps. Citations in this paper: §1, §5.
18. Michael Brown, Darrel Hankerson, Julio López, Alfred Menezes, Software imple-

mentation of the NIST elliptic curves over prime fields, in [49] (2001), 250–265;
see also older version [17]. MR 1907102.

19. Henri Cohen, Gerhard Frey (editors), Handbook of elliptic and hyperelliptic curve
cryptography, CRC Press, 2005. ISBN 1–58488–518–1. See [5], [24], [25], [30].

20. Yvo Desmedt (editor), Advances in cryptology—CRYPTO ’94, Lecture Notes in
Computer Science, 839, Springer-Verlag, Berlin, 1994. See [44].

21. Yvo Desmedt, Public Key Cryptography—PKC 2003, 6th international workshop
on theory and practice in public key cryptography, Miami, FL, USA, January
6–8, 2003, proceedings, Lecture Notes in Computer Science, 2567, Springer, Berlin,
2003. ISBN 3–540–00324–X. See [3].

22. Claus Diem, The GHS attack in odd characteristic, Journal of the Ramanujan
Mathematical Society 18 (2003), 1–32. MR 2004a:14030. URL: http://www.math.
uni-leipzig.de/~diem/preprints. Citations in this paper: §4.

23. Whitfield Diffie, Martin Hellman, New directions in cryptography, IEEE Transac-
tions on Information Theory 22 (1976), 644–654. ISSN 0018–9448. MR 55:10141.
URL: http://cr.yp.to/bib/entries.html#1976/diffie. Citations in this paper:
§3.

24. Christophe Doche, Tanja Lange, Arithmetic of elliptic curves, in [19] (2005), 267–
302. MR 2162729. Citations in this paper: §A.

25. Christophe Doche, Tanja Lange, Arithmetic of special curves, in [19] (2005), 355–
387. MR 2162731. Citations in this paper: §4.

26. Kenny Fong, Darrel Hankerson, Julio López, Alfred Menezes, Field inversion and
point halving revisited (2003); see also newer version [27]. URL: http://www.

cacr.math.uwaterloo.ca/techreports/2003/tech reports2003.html. Citations
in this paper: §1.

27. Kenny Fong, Darrel Hankerson, Julio López, Alfred Menezes, Field inversion and
point halving revisited, IEEE Transactions on Computers 53 (2004), 1047–1059;
see also older version [26]. ISSN 0018–9340.

28. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, Mar-
tin Simka, Colin Stahlke, An efficient hardware architecture for factoring integers
with the elliptic curve method, Workshop Record of SHARCS 2005 (2005), 51–62.
URL: http://www.best.tuke.sk/simka/pub.html. Citations in this paper: §3, §3.

29. Gerhard Frey, How to disguise an elliptic curve (Weil descent) (1998).
URL: http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.

html. Citations in this paper: §4.

Curve25519: New Diffie-Hellman Speed Records 223

30. Gerhard Frey, Tanja Lange, Transfer of discrete logarithms, in [19] (2005), 529–543.
MR 2162738. Citations in this paper: §3.

31. Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, Faster point multiplica-
tion on elliptic curves with efficient endomorphisms, in [38] (2001), 190–200. MR
2003h:14043. Citations in this paper: §5.

32. Henri Gilbert, Helena Handschuh (editors), Fast software encryption: 12th interna-
tional workshop, FSE 2005, Paris, France, February 21–23, 2005, revised selected
papers, Lecture Notes in Computer Science, 3557, Springer, 2005. ISBN 3–540–
26541–4. See [11].

33. Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software imple-
mentation of elliptic curve cryptography over binary fields (2000); see also
newer version [34]. URL: http://www.cacr.math.uwaterloo.ca/techreports/

2000/corr2000-42.ps. Citations in this paper: §1.
34. Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software implementa-

tion of elliptic curve cryptography over binary fields, in [40] (2000), 1–24; see also
older version [33].

35. Darrel Hankerson, Alfred Menezes, Scott Vanstone, Guide to elliptic curve cryp-
tography, Springer, New York, 2004. ISBN 0–387–95273–X. MR 2054891. Citations
in this paper: §4.

36. Marc Joye, Jean-Jacques Quisquater (editors), Cryptographic hardware and embed-
ded systems—CHES 2004: 6th international workshop, Cambridge, MA, USA, Au-
gust 11–13, 2004, proceedings, Lecture Notes in Computer Science, 3156, Springer,
2004. ISBN 3–540–22666–4. See [4].

37. Burton S. Kaliski Jr. (editor), Advances in cryptology—CRYPTO ’97: 17th an-
nual international cryptology conference, Santa Barbara, California, USA, August
17–21, 1997, proceedings, Lecture Notes in Computer Science, 1294, Springer, 1997.
ISBN 3–540–63384–7. MR 99a:94041. See [42].

38. Joe Kilian (editor), Advances in cryptology: CRYPTO 2001, 21st annual inter-
national cryptology conference, Santa Barbara, California, USA, August 19–23,
2001, proceedings, Lecture Notes in Computer Science, 2139, Springer, 2001. ISBN
3–540–42456–3. MR 2003d:94002. See [31].

39. Neal Koblitz, Alfred J. Menezes, Another look at “provable security”
(2004). URL: http://www.cacr.math.uwaterloo.ca/~ajmeneze/publications/

provable.pdf. Citations in this paper: §3.
40. Çetin Kaya Koç, Christof Paar, Cryptographic hardware and embedded systems—

CHES 2000: Proceedings of the 2nd International Workshop held in Worcester,
MA, USA, August 2000, Lecture Notes in Computer Science, Springer, 2000. ISBN
3–540–42521–7. See [34].

41. Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard’s rho
algorithm for computing multiple discrete logarithms, in [64] (2001), 212–229. URL:
http://www.distcomp.ethz.ch/publications.html. Citations in this paper: §3.

42. Chae Hoon Lim, Pil Joong Lee, A key recovery attack on discrete log-based
schemes using a prime order subgroup, in [37] (1997), 249–263. URL: http://

dasan.sejong.ac.kr/~chlim/english pub.html. Citations in this paper: §3, §3.
43. Mitsuru Matsui, Robert Zuccherato (editors), Selected areas in cryptography: 10th

annual international workshop, SAC 2003, Ottawa, Canada, August 14–15, 2003,
revised papers, Lecture Notes in Computer Science, 3006, Springer, 2004. ISBN
3–540–21370–8. See [6].

44. Ueli M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms, in [20] (1994), 271–281. URL: http://www.

crypto.ethz.ch/~maurer/publications.html. Citations in this paper: §3.

224 D.J. Bernstein

45. Alfred Menezes, Another look at HMQV (2005). URL: http://eprint.iacr.org/
2005/205. Citations in this paper: §2.

46. Victor S. Miller, Use of elliptic curves in cryptography, in [65] (1986), 417–426. MR
88b:68040. Citations in this paper: §1.

47. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of fac-
torization, Mathematics of Computation 48 (1987), 243–264. ISSN 0025–5718.
MR 88e:11130. URL: http://cr.yp.to/bib/entries.html#1987/montgomery. Ci-
tations in this paper: §5.

48. A. Muzereau, Nigel P. Smart, Frederik Vercauteren, The equivalence between the
DHP and DLP for elliptic curves used in practical applications, LMS Journal of
Computation and Mathematics 7 (2004), 50–72. URL: http://www.lms.ac.uk/
jcm/7/lms2003-034/. Citations in this paper: §3.

49. David Naccache (editor), Topics in cryptology—CT-RSA 2001: Proceedings of the
Cryptographers’ Track at the RSA Conference held in San Francisco, CA, April
8–12, 2001, Lecture Notes in Computer Science, 2020, Springer, 2001. ISBN 3–
540–41898–9. MR 2003a:94039. See [18].

50. Dag Arne Osvik, Adi Shamir, Eran Tromer, Cache atacks and countermeasures:
the case of AES (extended version) (2005). URL: http://www.wisdom.weizmann.
ac.il/~tromer/. Citations in this paper: §1.

51. Colin Percival, Cache missing for fun and profit (2005). URL: http://www.

daemonology.net/hyperthreading-considered-harmful/. Citations in this pa-
per: §1.

52. Nicholas Pippenger, On the evaluation of powers and related problems (preliminary
version), in [1] (1976), 258–263; newer version split into [53] and [54]. MR 58:3682.
URL: http://cr.yp.to/bib/entries.html#1976/pippenger. Citations in this pa-
per: §5.

53. Nicholas Pippenger, The minimum number of edges in graphs with prescribed
paths, Mathematical Systems Theory 12 (1979), 325–346; see also older version
[52]. ISSN 0025–5661. MR 81e:05079. URL: http://cr.yp.to/bib/entries.html#
1979/pippenger.

54. Nicholas Pippenger, On the evaluation of powers and monomials, SIAM Journal
on Computing 9 (1980), 230–250; see also older version [52]. ISSN 0097–5397. MR
82c:10064. URL: http://cr.yp.to/bib/entries.html#1980/pippenger.

55. John M. Pollard, Kangaroos, Monopoly and discrete logarithms, Journal of Cryp-
tology 13 (2000), 437–447. ISSN 0933–2790. Citations in this paper: §3.

56. John Proos, Christof Zalka, Shor’s discrete logarithm quantum algorithm for el-
liptic curves (2003). URL: http://www.cacr.math.uwaterloo.ca/techreports/

2003/tech reports2003.html. Citations in this paper: §1.
57. Nigel P. Smart, A comparison of different finite fields for use in elliptic curve

cryptosystems (2000); see also newer version [58]. URL: http://www.cs.bris.ac.
uk/Publications/pub info.jsp?id=1000458.

58. Nigel P. Smart, A comparison of different finite fields for elliptic curve cryptosys-
tems, Computers and Mathematics with Applications 42 (2001), 91–100; see also
older version [57]. MR 2002c:94033. Citations in this paper: §1.

59. Martijn Stam, Arjen K. Lenstra, Speeding up XTR, in [15] (2001), 125–143. MR
2003h:94049. Citations in this paper: §5.

60. Edlyn Teske, Square-root algorithms for the discrete logarithm problem (a survey),
in [2] (2001), 283–301. MR 2003c:11156. URL: http://www.cacr.math.uwaterloo.
ca/~eteske/publications.html. Citations in this paper: §3.

Curve25519: New Diffie-Hellman Speed Records 225

61. Edlyn Teske, Computing discrete logarithms with the parallelized kangaroo method
(2001); see also newer version [62]. URL: http://www.cacr.math.uwaterloo.ca/
techreports/2001/tech reports2001.html. Citations in this paper: §3.

62. Edlyn Teske, Computing discrete logarithms with the parallelized kangaroo method,
Discrete Applied Mathematics 130 (2003), 61–82; see also older version [61]. MR
2004h:11112.

63. Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptana-
lytic applications, Journal of Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL:
http://members.rogers.com/paulv/papers/pubs.html. Citations in this paper:
§3.

64. Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th
annual international workshop, SAC 2001, Toronto, Ontario, Canada, August
16–17, 2001, revised papers, Lecture Notes in Computer Science, 2259, Springer,
2001. ISBN 3–540–43066–0. MR 2004k:94066. See [41].

65. Hugh C. Williams (editor), Advances in cryptology: CRYPTO ’85, Lecture Notes
in Computer Science, 218, Springer, Berlin, 1986. ISBN 3–540–16463–4. See [46].

A Appendix: Rings, Fields, and Curves

This appendix reviews elliptic curves at the level of generality of Theorem 2.1.
See [24, Chapter 13] for much more information about elliptic curves.

The base field. Let p be a prime number with p ≥ 5. Define Fp as the set
{0, 1, . . . , p− 1}. Define a binary operation + on Fp as addition mod p. Define
a binary operation · on Fp as multiplication mod p. Define a unary operation −
on Fp as negation mod p.

Fp is a commutative ring under 0, 1,−,+, ·. This means that it satisfies every
0, 1,−,+, · identity satisfied by Z; e.g., the identity a(b + c+ 1) = ab + ac + a.
Furthermore, because p is prime, Fp is a field: every nonzero element of Fp has
a reciprocal in Fp.

Squares in the base field. Squaring is a 2-to-1 map on the nonzero elements
of Fp, so there are exactly (p − 1)/2 non-squares in Fp. Find the smallest δ ∈
{1, 2, . . . , p− 1} such that δ is not a square in Fp.

Fermat’s little theorem implies that α(p−1)/2 = 1 if α is a nonzero square
in Fp; α(p−1)/2 = −1 if α is a non-square in Fp; and α(p−1)/2 = 0 if α = 0.
Consequently, if α is a non-square in Fp, then α/δ is a nonzero square in Fp.

The extension field. Define Fp2 as the set Fp ×Fp. Define a unary operation
− on Fp2 by −(c, d) = (−c,−d). Define a binary operation + on Fp2 by (a, b) +
(c, d) = (a + c, b + d). Define a binary operation · on Fp2 by (a, b) · (c, d) =
(ac+ δbd, ad+ bc).

Fp2 is a commutative ring under 0, 1,−,+, ·. Furthermore, each nonzero (a, b)
∈ Fp2 has a reciprocal (a/(a2 − δb2),−b/(a2 − δb2)) ∈ Fp2 .

The injection a �→ (a, 0) from Fp to Fp2 is a ring morphism: it preserves
0, 1,−,+, ·. Thus (a, 0) is abbreviated a without risk of confusion. The element
(0, 1) of Fp2 is abbreviated

√
δ; it satisfies

√
δ2 = (δ, 0) = δ.

226 D.J. Bernstein

The elliptic curve. Let A be an integer such that A2−4 mod p is not a square
in Fp. Define E(Fp2) as {∞} ∪

{
(x, y) ∈ Fp2 : y2 = x3 + Ax2 + x

}
.

Define a unary operation− on E(Fp2) as follows: −∞ = ∞; −(x, y) = (x,−y).
Define a binary operation + on E(Fp2) as follows:

• ∞ + ∞ = ∞.
• ∞ + (x, y) = (x, y).
• (x, y) + ∞ = (x, y).
• (x, y) + (x,−y) = ∞.
• If y �= 0 then (x, y) + (x, y) = (x′′, y′′) where λ = (3x2 + 2Ax + 1)/2y,
x′′ = λ2 −A− 2x = (x2 − 1)2/4y2, and y′′ = λ(x− x′′)− y. Here / refers to
division in Fp2 .

• If x′ �= x then (x, y) + (x′, y′) = (x′′, y′′) where λ = (y′ − y)/(x′ − x),
x′′ = λ2 −A− x− x′, and y′′ = λ(x − x′′)− y.

Standard (although lengthy) calculations show that E(Fp2) is a commutative
group under ∞,−,+. This means that every 0,−,+ identity satisfied by Z is
also satisfied by E(Fp2) when 0 is replaced by ∞.

Note that the following three sets are subgroups of E(Fp2):

• {∞, (0, 0)}. Indeed, ∞+∞ = ∞; (0, 0)+(0, 0) = ∞; and (0, 0)+∞ = (0, 0).
• {∞} ∪ (E(Fp2) ∩ (Fp × Fp)). Indeed, if x, y, x′, y′ ∈ Fp then the quantities
λ, x′′, y′′ defined above are in Fp.

• {∞} ∪ (E(Fp2) ∩ (Fp ×
√
δFp)). This time λ is a ratio of an element of Fp

and an element of
√
δFp, and is therefore an element of

√
δFp, producing

x′′ ∈ Fp and y′′ ∈
√
δFp.

Note also that if x3 + Ax2 + x = 0 in Fp then x = 0. (Otherwise A2 − 4 =
(x − 1/x)2 in Fp, so A2 − 4 mod p is a square in Fp, contradiction.) In other
words, (x, 0) /∈ E(Fp2) if x �= 0.

Proof of Theorem 2.1. Let n be an integer. Let q be an element of Fp. Define
α = q3+Aq2+q. DefineX0 : E(Fp2) → Fp2 as follows:X0(∞) = 0;X0(x, y) = x.

I will show that there are exactly two Q ∈ E(Fp2) such that X0(Q) = q, that
both of them have the same value of X0(nQ), and that the value is in Fp. Here
nQ means the nth multiple of Q under the above group operations on E(Fp2).

Case 1: α = 0. Then q = 0. The only square root of 0 in Fp2 is 0, so{
Q ∈ E(Fp2) : X0(Q) = q

}
is exactly the group {∞, (0, 0)}. Thus each Q ∈

E(Fp2) with X0(Q) = q has nQ ∈ {∞, (0, 0)}; i.e., X0(nQ) = 0.
Case 2: α is a nonzero square in Fp. Select a square root r. Now q �= 0, and the

only square roots of q3 +Aq2 +q in Fp2 are ±r, so
{
Q ∈ E(Fp2) : X0(Q) = q

}
=

{(q, r), (q,−r)}. Define s = X0(n(q, r)). The group {∞} ∪ (E(Fp2)∩ (Fp ×Fp))
contains (q, r), so it contains n(q, r), so s ∈ {0, 1, 2, 3, . . . , p− 1}. Furthermore
n(q,−r) = n(−(q, r)) = −n(q, r), so X0(n(q,−r)) = X0(n(q, r)) = s. Thus
X0(nQ) = s for all Q ∈ E(Fp2) such that X0(Q) = q.

Case 3: α is a non-square in Fp. Then α/δ is a nonzero square in Fp. Select
a square root r. Now q �= 0, and the only square roots of q3 + Aq2 + q in

Curve25519: New Diffie-Hellman Speed Records 227

Fp2 are ±r
√
δ, so

{
Q ∈ E(Fp2) : X0(Q) = q

}
= {(q, r

√
δ), (q,−r

√
δ)}. Define

s = X0(n(q, r
√
δ)). The group {∞}∪ (E(Fp2)∩ (Fp ×

√
δFp)) contains (q, r

√
δ),

so it contains n(q, r
√
δ), so s ∈ {0, 1, 2, 3, . . . , p− 1}. Furthermore n(q,−r

√
δ) =

n(−(q, r
√
δ)) = −n(q, r

√
δ), so X0(n(q,−r

√
δ)) = X0(n(q, r

√
δ)) = s. Thus

X0(nQ) = s for all Q ∈ E(Fp2) such that X0(Q) = q. �	

B Appendix: Montgomery’s Double-and-Add Formulas

This appendix states Montgomery’s x-coordinate double-and-add formulas, and
proves that the formulas work whenever Q−Q′ /∈ {∞, (0, 0)}.

The following diagram summarizes Montgomery’s formulas in the case z1 = 1.
As in Theorems B.1 and B.2, x/z and x′/z′ are the x-coordinates of points Q,Q′;
x2/z2 is the x-coordinate of 2Q; x1 is the x-coordinate of Q −Q′; and x3/z3 is
the x-coordinate of Q + Q′.

x

�� ����������� z

�������������

��

x′

����������

��

z′

������������

��
+

���� ����������������������������������� −

���� ���������� +

��

−

��
×

��	
		

		
		

		
		

		
		

		
	

�� ���������� ×

�������������� ×

�� ���������� ×

��������������

×

��

−

��

��

+

����

−

����
(A − 2)/4 �� ×

��

×

��

×

��
+

��

×

��

x1��

×

��
x2 z2 x3 z3

One can see at a glance that there are 4 squarings, 1 multiplication by (A−2)/4,
and 5 other multiplications; and that there are 8 additions/subtractions, none
of which produce input to another addition/subtraction.

Theorem B.1. Let p be a prime number with p ≥ 5. Let A be an integer such
that A2 − 4 is not a square modulo p. Define E as the elliptic curve y2 = x3 +
Ax2 + x over the field Fp. Define X : E(Fp2) → {∞} ∪Fp2 as follows: X(∞) =
∞; X(x, y) = x. Fix x, z ∈ Fp with (x, z) �= (0, 0). Define

x2 = (x2 − z2)2 = (x− z)2(x+ z)2,

z2 = 4xz(x2 + Axz + z2)

= ((x + z)2 − (x− z)2)
(

(x+ z)2 +
A− 2

4
((x+ z)2 − (x − z)2)

)
.

228 D.J. Bernstein

Then X(2Q) = x2/z2 for all Q ∈ E(Fp2) such that X(Q) = x/z.

Here x/z means the quotient of x and z in Fp if z �= 0; it means ∞ if x �= 0 and
z = 0; it is undefined if x = z = 0.

Proof. Case 1: z = 0. Then x2 = x4 �= 0 and z2 = 0. Also X(Q) = x/0 = ∞ so
Q = ∞ so 2Q = ∞ so X(2Q) = ∞ = x2/0 = x2/z2.

Case 2: z �= 0 and x = 0. Then x2 = z4 �= 0 and z2 = 0. Also X(Q) = 0/z = 0
so Q = (0, 0) so 2Q = ∞ so X(2Q) = ∞ = x2/0 = x2/z2.

Case 3: z �= 0 and x �= 0. Then Q = (x/z, y) for some y ∈ Fp2 satisfying
y2 = (x/z)3 + A(x/z)2 + (x/z) and thus 4y2z4 = 4(x3z + Ax2z2 + xz3) = z2.
The non-squareness of A2 − 4 implies that y �= 0; hence z2 �= 0. Also X(2Q) =
((x/z)2 − 1)2/4y2 by definition of doubling; thus z2X(2Q) = z4((x/z)2 − 1)2 =
(x2 − z2)2 = x2. �	

Theorem B.2. In the context of Theorem B.1, fix x, z, x′, z′, x1, z1 ∈ Fp with
(x, z) �= (0, 0), (x′, z′) �= (0, 0), x1 �= 0, and z1 �= 0. Define

x3 = 4(xx′ − zz′)2z1 = ((x − z)(x′ + z′) + (x + z)(x′ − z′))2z1,
z3 = 4(xz′ − zx′)2x1 = ((x − z)(x′ + z′)− (x + z)(x′ − z′))2x1.

Then X(Q+Q′) = x3/z3 for all Q,Q′ ∈ E(Fp2) such that X(Q) = x/z, X(Q′) =
x′/z′, and X(Q−Q′) = x1/z1.

Proof. Case 1: Q = Q′. Then X(Q−Q′) = X(∞) = ∞, so z1 = 0, contradiction.
Case 2: Q = ∞. Then z = 0 and x �= 0; alsoX(Q−Q′) = X(−Q′) = X(Q′), so

x1/z1 = x′/z′, so x′ �= 0 and z′ �= 0. Finally x3 = 4(xx′)2z1 and z3 = 4(xz′)2x1

so x3/z3 = (x′/z′)2z1/x1 = x′/z′ = X(Q′) = X(Q + Q′).
Case 3: Q′ = ∞. Then z′ = 0 and x′ �= 0; also X(Q − Q′) = X(Q), so

x1/z1 = x/z, so x �= 0 and z �= 0. Finally x3 = 4(xx′)2z1 and z3 = 4(zx′)2x1 so
x3/z3 = (x/z)2z1/x1 = x/z = X(Q) = X(Q + Q′).

Case 4: Q = −Q′. Then X(Q′) = X(Q) so x/z = x′/z′ so xz′ = zx′ so z3 = 0.
Suppose that x3 = 0. Then (x − z)(x′ + z′) + (x + z)(x′ − z′) = 0 and

(x−z)(x′+z′)−(x+z)(x′−z′) = 0, so (x−z)(x′+z′) = 0 and (x+z)(x′−z′) = 0.
If x+z �= 0 then x′−z′ = 0 so x′ +z′ = 2x′ �= 0 so x−z = 0; i.e., X(Q) = 1 and
X(Q′) = 1. Otherwise x = −z so x − z = 2x �= 0 so x′ = −z′; i.e., X(Q) = −1
and X(Q′) = −1. Either way X(Q − Q′) = X(2Q) = (X(Q)2 − 1)2/ · · · =
(1 − 1)2/ · · · = 0 by definition of doubling, so x1 = 0, contradiction.

Thus x3 �= 0, and x3/z3 = ∞ = X(∞) = X(Q + Q′).
Case 5: Q �= ∞; Q′ �= ∞; Q �= Q′; and Q �= −Q′. Then z �= 0, z′ �= 0,

and x/z �= x′/z′, so z3 �= 0. Find y, y′ ∈ Fp2 such that Q = (x/z, y) and
Q′ = (x′/z′, y′). Write α = x′/z′−x/z and β = A+x/z+x′/z′. ThenX(Q+Q′) =
((y′ − y)/α)2 − β and X(Q−Q′) = ((−y′ − y)/α)2 − β by definition of Q±Q′,
so X(Q+Q′)X(Q−Q′) = β2 − 2β((y′)2 + y2)/α2 +((y′)2 − y2)2/α4. Substitute
y2 = (x/z)3 + A(x/z)2 + (x/z) and (y′)2 = (x′/z′)3 + A(x′/z′)2 + (x′/z′) and
simplify to see that X(Q+Q′)X(Q−Q′) = (xx′−zz′)2/(xz′−x′z)2; this is what
Montgomery did. FinallyX(Q+Q′) = (xx′−zz′)2z1/(xz′−x′z)2x1 = x3/z3. �	

Strongly Unforgeable Signatures Based on

Computational Diffie-Hellman

Dan Boneh1,�, Emily Shen1, and Brent Waters2

1 Computer Science Department, Stanford University, Stanford, CA
{dabo, emily}@cs.stanford.edu
2 SRI International, Palo Alto, CA

bwaters@csl.sri.com

Abstract. A signature system is said to be strongly unforgeable if the
signature is existentially unforgeable and, given signatures on some mes-
sage m, the adversary cannot produce a new signature on m. Strongly
unforgeable signatures are used for constructing chosen-ciphertext se-
cure systems and group signatures. Current efficient constructions in the
standard model (i.e. without random oracles) depend on relatively strong
assumptions such as Strong-RSA or Strong-Diffie-Hellman. We construct
an efficient strongly unforgeable signature system based on the standard
Computational Diffie-Hellman problem in bilinear groups.

1 Introduction

A digital signature system is said to be secure if it is existentially unforgeable
under a chosen-message attack [20]. Roughly speaking, this means that an ad-
versary who is given a signature for a few messages of his choice should not be
able to produce a signature for a new message. For a variety of applications,
however, a stronger security property called strong unforgeability is needed [1].
Strong unforgeability ensures the adversary cannot even produce a new signature
for a previously signed message. In other words, suppose an adversary obtains
a message-signature pair (m, σ) along with other message-signature pairs of his
choice. The signature system is strongly unforgeable if the adversary cannot pro-
duce a new signature σ̂ for m. We give a precise definition in the next section.

Strongly unforgeable signatures have a number of applications. They are use-
ful for building chosen-ciphertext secure encryption systems [14, 8] as well as
group signatures [2, 5]. To see the relation to chosen-ciphertext security recall
that chosen-ciphertext secure systems in the standard model often incorporate
a (one-time) signature in the ciphertext. This signature is generated by the en-
cryptor and is a signature on the ciphertext. Strong unforgeability is needed to
ensure that the adversary cannot somehow modify the signature in the chal-
lenge ciphertext and come up with an alternate valid signature on the same
ciphertext. This alternate signature would give the adversary a valid ciphertext
that is different from the challenge ciphertext. The adversary could then issue
a decryption query for this new ciphertext and break the system. Consequently,
� Supported by NSF and the Packard Foundation.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 229–240, 2006.
c© International Association for Cryptologic Research 2006

230 D. Boneh, E. Shen, and B. Waters

a signature system that is existentially unforgeable but not strongly unforge-
able would result in an insecure encryption system. A similar issue comes up in
several group signature constructions.

Several existing signature systems are strongly unforgeable. In the random
oracle model, constructions based on the full domain hash [3, 9, 6] and other
methods [3, 18, 26] are strongly unforgeable.

Without random oracles, several constructions can be shown to be strongly
unforgeable; however, they typically depend on relatively strong assumptions:

– Gennaro, Halevi, and Rabin [17] and Cramer and Shoup [11] construct
strongly unforgeable signatures based on the Strong-RSA assumption.

– Boneh and Boyen [4] construct a strongly unforgeable signature based on
the Strong-Diffie-Hellman assumption.

– A Verifiable Unpredictable Function (VUF) gives a signature system where
each message has a unique signature. Such signatures are clearly strongly
unforgeable. VUFs were defined by Micali, Rabin, and Vadhan [25] where
they give a proof-of-concept construction based on the (large exponent) RSA
assumption. A different VUF was proposed by Lysyanskaya [23] using the
Many-Diffie-Hellman assumption (a.k.a. the n-party Diffie-Hellman assump-
tion) in bilinear groups. This construction was extended by Dodis [13] to
obtain a Verifiable Random Function under a much stronger assumption.

– Tree-based signatures [20, 19, 27, 15, 10, 7] can be proven secure without ran-
dom oracles and based on standard assumptions. However, they generally
tend to be less efficient than signatures presented in this paper.

Our contribution. In this paper we construct a strongly unforgeable signature
system (without random oracles) based on the standard Computational Diffie-
Hellman (CDH) problem in bilinear groups. The system is simple, efficient, and
produces signatures that are only 2 group elements plus a short string.

Currently, the only (efficient) signature that is known to be existentially un-
forgeable based on CDH (in the standard model) is due to Waters [28]. This
signature, however, is not strongly unforgeable — given a signature on some
message m it is easy to derive many other signatures on the same message.
Nevertheless, we use the Waters signature scheme as our starting point. We
show how to strengthen the signature to obtain a strongly unforgeable signature
based on the standard CDH. We actually do a little more — we provide a general
transformation that converts any unforgeable signature of a certain type into a
strongly unforgeable signature. We then apply this transformation to the Waters
signature to obtain a strongly unforgeable signature based on CDH.

2 Preliminaries

Before presenting our construction we briefly review the security definitions, a
few facts about bilinear maps, and our complexity assumptions.

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman 231

2.1 Strong Existential Unforgeability

A signature system consists of three algorithms: KeyGen, Sign, and Verify.
Strong existential unforgeability under an adaptive chosen-message attack is
defined using the following game:

Setup. The challenger runs KeyGen. It gives the adversary the resulting public
key PK and keeps the private key SK to itself.

Signature Queries. The adversary issues signature queries m1, . . . , mq. To
each query mi the challenger responds by running Sign to generate a signa-
ture σi of mi and sending σi to the adversary. These queries may be asked
adaptively so that each query mi may depend on the replies to m1, . . . , mi−1.

Output. Finally the adversary outputs a pair (m, σ). The adversary wins if σ
is a valid signature of m according to Verify and (m, σ) is not among the
pairs (mi, σi) generated during the query phase.

We define the advantage of an adversary A in attacking the signature scheme as
the probability that A wins the above game, taken over the random bits of the
challenger and the adversary.

Definition 1. A signature scheme is (t, q, ε)-strongly existentially unforgeable
under an adaptive chosen-message attack if no t-time adversary A making at
most q signature queries has advantage at least ε in the above game.

2.2 Existential Unforgeability

We will also use the traditional security property of (weak) existential unforge-
ability under an adaptive chosen-message attack [20]. It is defined using the
following game.

Setup and Signature Queries. Same as in the strong unforgeability game.
Output. The adversary outputs a pair (m, σ). The adversary wins if σ is a

valid signature of m according to Verify and m is not among the messages
mi queried during the query phase.

We define the advantage of an adversary A in weakly attacking a signature
scheme as the probability that A wins the above game, taken over the random
bits of the challenger and the adversary.

Definition 2. A signature scheme is (t, q, ε)-existentially unforgeable under an
adaptive chosen-message attack if no t-time adversary A making at most q sig-
nature queries has advantage at least ε in the above game.

2.3 Bilinear Groups

We use the following notation:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G;

232 D. Boneh, E. Shen, and B. Waters

3. e is a computable map e : G × G → G1 with the following properties:
– Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group [21] if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above.

2.4 Computational Diffie-Hellman (CDH) Assumption

The computational Diffie-Hellman problem in a cyclic group G of order p is
defined as follows. Given g, ga, gb ∈ G, output gab ∈ G. We say that algorithm
A has advantage ε in solving CDH in G if

Pr[A(g, ga, gb) = gab] ≥ ε ,

where the probability is over the random choice of generator g ∈ G, the random
choice of a, b ∈ Zp, and the random bits of A.

Similarly, we say that algorithm A has advantage ε in solving discrete log in
G if

Pr[A(g, ga) = a] ≥ ε ,

where the probability is over the random choice of generator g ∈ G, the random
choice of a ∈ Zp, and the random bits of A.

Definition 3. The (t, ε)-CDH assumption holds in G if no t-time adversary
has advantage at least ε in solving CDH in G. Similarly, the (t, ε)-Dlog as-
sumption holds in G if no t-time adversary has advantage at least ε in solving
discrete log.

2.5 Collision-Resistant Hashing

Let H = {Hk} be a keyed hash family of functions Hk : {0, 1}∗ → {0, 1}n

indexed by k ∈ K. We say that algorithm A has advantage ε in breaking the
collision-resistance of H if

Pr[A(k) = (m0, m1) : m0 �= m1, Hk(m0) = Hk(m1)] ≥ ε ,

where the probability is over the random choice of k ∈ K and the random bits
of A.

Definition 4. A hash family H is (t, ε)-collision-resistant if no t-time adversary
has advantage at least ε in breaking the collision-resistance of H.

Our construction makes use of collision-resistant hashing. We note, however, that
collision-resistant hashing can be easily built based on the CDH assumption [12].
Therefore, in theory, assuming the existence of collision-resistant functions does
not strengthen the complexity assumption we are making. In practice, of course,
one would use a standard hash function such as SHA-256 and assume that it is
collision-resistant.

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman 233

3 From Weak Unforgeability to Strong Unforgeability

Our goal is to construct a strongly unforgeable signature based on CDH. We
begin by presenting a general transformation that converts any partitioned un-
forgeable signature (defined below) into a strongly unforgeable signature. In the
next section we apply this transformation to the Waters signature.

Definition 5. We say that a signature system is partitioned if it satisfies two
properties:

– Property 1. The signing algorithm can be broken into two deterministic
algorithms F1 and F2 so that a signature on a message m using secret key
SK is computed as follows:
1. Select a random r in R.
2. Set σ1 ← F1(m, r,SK) and σ2 ← F2(r,SK).
3. Output the signature σ ← (σ1, σ2).

– Property 2. Given m and σ2 there is at most one σ1 so that (σ1, σ2) verifies
as a valid signature on m under PK.

In other words, a signature is partitioned if half the signature, namely σ2, does
not depend on m. Furthermore, given m and σ2 the signature is fully determined.
Many standard discrete-log-based signature systems in the literature can be
partitioned. For example, for DSS [24] using x to denote the secret key, the
functions F1,F2 are:

F1(m, r, x) = r−1
(
m + xF2(r, x)

)
mod q

F2(r, x) = (gr mod p) mod q

We note, however, that property 2 may not hold for DSS.
Next, we present our transformation. Let G be a group of prime order p and let

H = {Hk} be a collision-resistant hash family of functions Hk : {0, 1}∗ → {0, 1}n

indexed by k ∈ K. We assume p ≥ 2n so that hash outputs can be viewed as
elements of Zp. Furtheremore, we assume that each element of Zp has a unique
encoding, say as an integer in [0, p). In describing the system we use the notation
x‖y to denote the marked concatenation of the two strings x and y.

Let Σ = (KeyGen,Sign,Verify) be a partitioned signature where the signing
algorithm is partitioned using functions F1 and F2. Suppose the randomness for
signature generation is picked from some set R. We build a new strongly un-
forgeable signature system Σnew = (KeyGennew,Signnew,Verifynew) as follows:

KeyGennew. To generate the public key, select random generators g, h ∈ G
and a random hash key k ∈ K. Next, run KeyGen to obtain a secret key SK
and public key PK. The public and secret keys for the new system are:

PK′ = (PK, g, h, k) and SK′ = (SK)

Signnew(SK,M). A signature on a messageM ∈ {0, 1}� is generated as follows.
1. Select a random exponent s ∈ Zp and a random r ∈ R.

234 D. Boneh, E. Shen, and B. Waters

2. Set σ2 ← F2(r, SK).
3. Compute t ← Hk(M‖σ2) ∈ {0, 1}n and view t as an element of Zp.
4. Compute m ← gths ∈ G.
5. Compute σ1 ← F1(m, r, SK) and output the signature σ ← (σ1, σ2, s).

Verifynew(PK,M, σ). A signature σ = (σ1, σ2, σ3) on a message M is verified
as follows:
1. Compute t̃ ← Hk(M‖σ2) and view t̃ as an element of Zp.
2. Compute m̃ ← gt̃hσ3 .
3. Output Verify

(
PK, m̃, (σ1, σ2)

)
.

The basic idea. To give some intuition for signature generation, note that in
Step 4 we derive a new message m that is then signed by the underlying signature
system in Step 5. This m is derived from the original message M and from σ2.
The σ2 is derived from the randomness r. Hence, in effect, the signer is signing
both the message M and the secret randomness r that is used to create the
signature. The adversary, as a result, cannot “re-randomize” a given signature
without invalidating the signature. This may suggest that the resulting signature
scheme is strongly unforgeable. Unfortunately, in creating this circularity —
making the message m being signed depend on the randomness r — we break
the proof of security for the underlying signature. Because of Steps 3 and 4 we
can no longer prove that the system is secure.

To repair the damage we introduce an additional hashing step (Step 4) where
we hash again using a chameleon hash [22]. The extra randomness s of the
chameleon hash lets us break the circularity in the proof of security. This lets
us repair the proof and prove strong unforgeability based strictly on the weak
unforgeability of the underlying system. In particular, the randomness of the
chameleon hash is crucial for responding to signature queries from a Type III
adversary in the proof of security below.

In summary, the high level structure of the signing algorithm is as follows: (1)
first, hash M‖σ2 using a chameleon hash to obtain a new message m, (2) then,
use the underlying signature to sign m with randomness r, (3) finally, output
the resulting signature along with the randomness s of the chameleon hash. The
proof of security in the next subsection shows that the resulting signature is
strongly unforgeable.

3.1 Security

Let Σ = (KeyGen,Sign,Verify) be a partitioned signature scheme and let Σnew

= (KeyGennew,Signnew,Verifynew) be the signature system resulting from the
transformation described above. The following theorem proves strong unforge-
ability of Σnew.

Theorem 1. The signature scheme Σnew is (t, q, ε)-strongly existentially un-
forgeable assuming the underlying signature scheme Σ is (t, q, ε/3)-existentially
unforgeable, the (t, ε/3)-Dlog assumption holds in G, and H is (t, ε/3)-collision-
resistant.

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman 235

Proof. Suppose A is a forger that (t, q, ε)-breaks strong unforgeability of Σnew.
Forger A is first given a public key (PK, g, h, k).

Forger A asks for signatures on messages M1, . . . ,Mq and is given signatures
σi = (σi,1, σi,2, si) for i = 1, . . . , q on these messages. Let ti = Hk(Mi‖σi,2) and
mi = gtihsi for i = 1, . . . , q. Let

(
M̂ , σ̂ = (σ̂1, σ̂2, ŝ)

)
be the forgery produced by

A, let t̂ = Hk(M̂‖σ̂2), and let m̂ = gt̂hŝ. We distinguish among three types of
forgeries:

Type I. A forgery where m̂ = mi and t̂ = ti for some i ∈ {1, . . . , q}.
Type II. A forgery where m̂ = mi and t̂ �= ti for some i ∈ {1, . . . , q}.

Type III. Any other forgery (m̂ �= mi for all i ∈ {1, . . . , q}).

A successful forger must output a forgery of Type I, Type II, or Type III.
We show that a Type I forgery can be used to break the collision-resistance
of H, a Type II forgery can be used to solve discrete log in G, and a Type III
forgery can be used to break existential unforgeability of the underlying signature
scheme Σ. Our simulator can flip a coin at the beginning of the simulation to
guess which type of forgery the adversary will produce and set up the simulation
appropriately. In all three cases the simulation is perfect. We start by describing
how to use a Type III forgery which is the more interesting case.

Type III forger: Suppose algorithm A is a Type III forger that (t, q, ε)-breaks
strong unforgeability of Σnew. We construct a simulator B that (t, q, ε)-breaks
existential unforgeability of Σ. B is given a public key PK. B’s goal is to produce
a pair (m, σ) where σ is a valid signature on m and m is not among B’s chosen
message queries. B runs A as follows.

Setup. Algorithm B generates the public key PK′ as follows.
1. Select a random generator g ∈ G.
2. Select a random exponent a ∈ Zp

∗ and set h ← ga.
3. Select a random hash key k ∈ K.
4. Provide the public key PK′ ← (PK, g, h, k) to A.

Signature Queries. Algorithm A issues up to q signature queries. Algorithm
B responds to a query on a message M as follows.
1. Select a random exponent w ∈ Zp and set m ← gw.
2. Ask B’s challenger for a signature on message m. Obtain a signature

(σ1, σ2) on m.
3. Compute t ← Hk(M‖σ2).
4. Set s ← (w − t)/a.
5. Return σ ← (σ1, σ2, s) to A.

Indeed, m = gw = gas+t = gths and s is uniform in Zp as required. Hence,
σ is a valid signature on M .

Output. Finally, algorithm A outputs a forgery
(
M̂ , (σ̂1, σ̂2, ŝ)

)
. Algorithm B

produces a weak forgery on the underlying scheme as follows.
1. Compute t̂ ← Hk(M̂‖σ̂2).
2. Compute m̂ ← gt̂hŝ.
3. Output

(
m̂, (σ̂1, σ̂2)

)
.

236 D. Boneh, E. Shen, and B. Waters

Note that m̂ /∈ {m1, . . . , mq} because if m̂ = mi for some i ∈ {1, . . . , q}
then, either t̂ = ti (a Type I forgery) or t̂ �= ti (a Type II forgery). Therefore B
produces a forgery on some new message m̂ for the underlying scheme whenever
A produces a Type III forgery, as required.

Type I forger: Next we show how to use a Type I forger. Suppose A is a Type I
forger that (t, q, ε)-breaks strong unforgeability of Σnew. We construct an algo-
rithm B that (t, ε)-breaks the collision-resistance of H. Algorithm B is given a
random key k′ ∈ K. B’s goal is to output a pair of messages (m1, m2) such that
m1 �= m2 and Hk′(m1) = Hk′(m2). B runs A as follows.

Setup. Algorithm B sets k ← k′ and generates the remaining elements of the
public key and the private key according to KeyGennew. B gives A the re-
sulting public key PK′ = (PK, g, h, k) and keeps the secret key SK′.

Signature Queries. A issues up to q signature queries. B responds to a query
on a message Mi by running Signnew(SK′,Mi) and returning the signature
σi to A.

Output. A outputs a forgery
(
M̂ , σ̂ = (σ̂1, σ̂2, ŝ)

)
such that

(M̂ , σ̂) /∈
{
(M1, σ1), . . . , (Mq, σq)

}
and m̂ = mi and t̂ = ti

for some i ∈ {1, . . . , q}. More precisely, t̂ = ti means that Hk(M̂‖σ̂2) =
Hk(Mi‖σi,2). Similarly, m̂ = mi means that gt̂hŝ = gtihsi .
Then B outputs the pair (M̂‖σ̂2, Mi‖σi,2) as a collision on Hk.

We show that algorithm B succeeds in producing an Hk-collision whenever A
produces a Type I forgery. Since Hk(M̂‖σ̂2) = Hk(Mi‖σi,2) we only need to
show that M̂‖σ̂2 �= Mi‖σi,2.

Suppose towards a contradiction that M̂ = Mi and σ̂2 = σi,2. Since t̂ = ti
and m̂ = mi we know that ŝ = si. (We require that any exponent s ∈ Zp

has a unique encoding.) Furthermore, since σ̂2 = σi,2 and m̂ = mi, the second
property of partitioned signatures implies that σ̂1 = σi,1. Hence, we have just
shown that M̂ = Mi and σ̂ = σi which contradicts the fact that (M̂ , σ̂) is a
strong existential forgery. Therefore, M̂‖σ̂2 �= Mi‖σi,2, implying that whenever
A produces a Type I forgery, B produces an Hk-collision.

Type II forger: Finally, we show how to use a Type II forger. Suppose A is a
Type II forger that (t, q, ε)-breaks strong unforgeability of Σnew. We construct
an algorithm B that (t, ε)-solves discrete log in G. Algorithm B is given a random
pair (g′, h′) and its goal is to output a such that h′ = (g′)a. B runs A as follows.

Setup. Algorithm B sets g ← g′, h ← h′, and generates the remaining elements
of the public key and the private key according to KeyGennew. B gives A
the resulting public key PK′ = (PK, g, h, k) and keeps the private key SK′.

Signature Queries. A issues up to q signature queries. B responds to a query
on a message Mi by running Signnew(SK′,Mi) and returning the signature
σi to A.

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman 237

Forgery. A outputs a forgery
(
M̂ , σ̂ = (σ̂1, σ̂2, ŝ)

)
such that m̂ = mi and t̂ �= ti

for some i ∈ {1, . . . , q}. Then we have gt̂hŝ = gtihsi , which can be written as
gt̂(ga)ŝ = gti(ga)si . Then B computes a = (ti − t̂)/(ŝ− si) ∈ Zp and outputs
a in response to its discrete log challenge. Note that ŝ − si �= 0 since ŝ = si

and gt̂hŝ = gtihsi imply t̂ = ti.

Algorithm B succeeds in solving its discrete log challenge wheneverA produces
a Type II forgery, as required.

In summary, we showed how to use all three forgery types to break existential
unforgeability of the underlying signature scheme, collision-resistance of H, or
discrete log. This completes the proof of Theorem 1. �	

4 A Concrete Construction: Strong Unforgeability from
CDH

We now apply Theorem 1 to the Waters signature which is based on CDH
without random oracles. It is straightforward to verify that the Waters signature
is partitioned. The functions F1 and F2 are:

F1(m, r, SK) = SK ·
(
u′

n∏
i=1

umi

i

)r ∈ G

F2(r, SK) = gr ∈ G

where u′,u1, . . . ,un ∈ G are part of the public key and m = m1 . . .mn ∈ {0, 1}n.
The second property of partitioned signatures holds since given m and σ2 =
F2(r, SK) there is only one σ1 for which the verification equation will hold. Note
that we are assuming that each element g ∈ G has a unique encoding (otherwise
an attacker can invalidate property 2 by simply changing the encoding of a group
element).

Thus, applying Theorem 1 to the Waters signature system we obtain a strongly
unforgeable scheme based on CDH without random oracles. The resulting system
is as follows. Let G be a bilinear group of prime order p and let e : G × G →
G1 denote the bilinear map and g be the corresponding generator. Let H =
{Hk} be a collision-resistant hash family of functions Hk : {0, 1}∗ → {0, 1}n

indexed by k ∈ K. We assume p ≥ 2n so that hash outputs can be viewed as
elements of Zp.

KeyGen. To generate the public key, select a random generator g ∈ G and
a random α ∈ Zp and set g1 = gα. Next, select random g2, h ∈ G. Select
random u′,u1, . . . ,un ∈ G and let U = (u1, . . . ,un). Finally, select a random
hash key k ∈ K. The public and secret keys are:

PK = (g, g1, g2, h,u′,U, k) and SK = (gα
2)

Note that the secret key is a single group element, but the public key contains
n + 5 group elements where n is the hash output size.

238 D. Boneh, E. Shen, and B. Waters

Sign. A signature on a message M ∈ {0, 1}� is generated as follows.
1. Select random exponents r, s ∈ Zp.
2. Set σ2 ← gr ∈ G.
3. Compute t ← Hk(m‖σ2) ∈ {0, 1}n and view t as an element of Zp.
4. Compute m ← Hk(gths) and write m as m1 . . .mn ∈ {0, 1}n.
5. Compute σ1 ← gα

2 · (u′
∏n

i=1 u
mi

i)r and output the signature (σ1, σ2, s).
Verify. A signature σ = (σ1, σ2, σ3) on a message M is verified as follows:

1. Compute t̃ ← Hk(M‖σ2) and view t̃ as an element of Zp.
2. Compute m̃ ← Hk(gt̃hσ3) and write m̃ as m̃1 . . . m̃n ∈ {0, 1}n.
3. Check that

e(σ1, g) ?= e(σ2,u
′

n∏
i=1

um̃i

i) · e(g1, g2) .

Accept if this holds and reject otherwise.

Corollary 1. The signature system above is (t, q, ε)-strongly existentially un-
forgeable assuming the (t, ε/24(n + 1)q)-CDH assumption holds in G, and H is
(t, ε/3)-collision-resistant.

Proof. The Waters system is known to be (t, q, ε)-existentially unforgeable as-
suming (t, ε/8(n + 1)q)-CDH holds in G. It follows that the system is (t, q, ε/3)-
existentially unforgeable assuming (t, ε/24(n + 1)q)-CDH holds in G. When
(t, ε/3)-CDH holds in G then (t, ε/3)-Dlog must also hold in G. Hence, since
the system is partitioned, all the requirements of Theorem 1 are satisfied. Con-
sequently, the signature system above is strongly unforgeable.

Efficiency. Our signature system is only slightly worse than the Waters signature
system in terms of performance. The signing operation in our scheme takes four
exponentiations and n/2 + 2 group operations in G on average. The verification
algorithm consists of two pairings, two exponentiations, n/2+1 group operations
in G and one group operation in G1 on average. Like the Waters signature scheme
public keys are approximately n group elements. However, we note that the
values u′,U = (u1, . . . ,un) can actually come from a common reference string
and be shared by all users in a system. If this is the case each user’s public key
can be short.

5 Conclusions

We constructed a strongly unforgeable signature system based on the standard
Computational Diffie-Hellman problem in bilinear groups. The signature is effi-
cient and contains only two group elements (plus a short random string). The
public key size is proportional to the output size of the hash function used. We
presented the construction in two steps. First, we showed a general mechanism
for transforming any partitioned (weakly) unforgeable system into a strongly
unforgeable system. We then applied this transformation to a specific system.

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman 239

Surprisingly, our signature system does not seem to naturally extend to give
an efficient threshold signature [16]. In fact, the only known efficient strongly
unforgeable threshold signatures (in the standard model) appear to be the unique
signatures of Lysyanskaya [23] and Dodis [13]. Thresholdizing these signatures,
however, requires multiple rounds of interaction with the signing servers and
the resulting signatures are somewhat long. We leave as an open problem the
question of constructing a threshold unforgeable signature based on a standard
assumption.

References

1. J. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In L. R. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS,
pages 83–107. Springer-Verlag, 2002.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 255–70. Springer-Verlag, Aug. 2000.

3. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In U. Maurer, editor, Proceedings of Eurocrypt ’96, volume
1070 of LNCS, pages 399–416. Springer-Verlag, 1996.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
56–73. Springer-Verlag, 2004. Full version at: http://eprint.iacr.org/2004/171.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-
Verlag, 2004.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
of Cryptology, 17(4):297–319, 2004. Early version in Asiacrypt ’01.

7. D. Boneh, I. Mironov, and V. Shoup. A secure signature scheme from bilinear
maps. In M. Joye, editor, Proceedings of RSA-CT ’03, volume 2612 of LNCS,
pages 98–110. Springer-Verlag, 2003.

8. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. In C. Cachin and J. Camenisch, editors, Pro-
ceedings of Eurocrypt 2004, LNCS, pages 207–222. Springer-Verlag, 2004.
http://eprint.iacr.org/2003/182/ .

9. J.-S. Coron. On the Exact Security of Full Domain Hash. In M. Bellare, editor,
Proceedings of Crypto 2000, volume 1880 of Lecture Notes in Computer Science,
pages 229–235. Springer-Verlag, 2000.

10. R. Cramer and I. Damg̊ard. New generation of secure and practical rsa-based
signatures. In N. Koblitz, editor, Proceedings of Crypto ’96, volume 1109 of LNCS,
pages 173–185. Springer-Verlag, 1996.

11. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM TISSEC, 3(3):161–185, 2000. Extended abstract in Proc. 6th ACM CCS,
1999.

12. I. Damg̊ard. Collision free hash functions and public key signature schemes. In
D. Chaum and W. L. Price, editors, Proceedings of Eurocrypt ’87, volume 304 of
LNCS, pages 203–216. Springer-Verlag, 1987.

240 D. Boneh, E. Shen, and B. Waters

13. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
Y. Desmedt, editor, Workshop on Public Key Cryptography (PKC), volume 2567
of LNCS, pages 1–17. Springer-Verlag, 2003.

14. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. of
Computing, 30(2):391–437, 2000.

15. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and
its applications. J. of Cryptology, 11(2):187–208, 1998. Early version in Crypto
’94.

16. P. Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7–
12, 1997.

17. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In J. Stern, editor, Proceedings of Eurocrypt 1999, volume 1592 of
LNCS, pages 123–139. Springer-Verlag, 1999.

18. E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman
problem. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 401–415. Springer-Verlag, 2003.

19. O. Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In A. M. Odlyzko, editor, Proceedings of Crypto’86, volume 263 of LNCS,
pages 104–110. Springer-Verlag, 1987.

20. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

21. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Proceedings of ANTS IV, volume 1838 of LNCS, pages 385–94. Springer-Verlag,
2000.

22. H. Krawczyk and T. Rabin. Chameleon signatures. In Proceedings of NDSS 2000.
Internet Society, 2000. http://eprint.iacr.org/1998/010/.

23. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-
DDH separation. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of
LNCS, pages 597–612. Springer-Verlag, 2002.

24. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

25. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proceedings
of the 40th Annual Symposium on the Foundations of Computer Science, pages
120–130, New York, NY, October 1999. IEEE.

26. S. Micali and L. Reyzin. Improving the exact security of digital signature schemes.
J. of Cryptology, 15(1):1–18, 2002.

27. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of STOC’89, pages 33–43, 1989.

28. B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
114–127. Springer-Verlag, 2005.

Generalization of the Selective-ID Security

Model for HIBE Protocols

Sanjit Chatterjee and Palash Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203, B.T. Road, Kolkata, India 700108
{sanjit t, palash}@isical.ac.in

Abstract. We generalize the selective-ID security model for HIBE by
introducing two new security models. Both these models allow the adver-
sary to commit to a set of identities and in the challenge phase choose any
one of the previously committed identities. Two constructions of HIBE
are presented which are secure in the two models. One of the HIBE con-
structions supports an unbounded number of levels, i.e., the maximum
number of levels does not need to be specified during the set-up. Further,
we show that this HIBE can be modified to obtain a multiple receiver
IBE which is secure in the selective-ID model without the random oracle
assumption.

1 Introduction

Identity based encryption (IBE) was introduced by Shamir [16]. This is a public
key encryption protocol where the public key can be any string. The correspond-
ing private key is generated by a private key generator (PKG) and provided to
the user in an offline phase. The notion of IBE can simplify many applications
of public key encryption (PKE) and is currently an active research area.

The notion of the IBE was later extended to hierarchical IBE (HIBE) [14, 15].
In an IBE, the PKG has to generate the private key for any identity. The notion
of the HIBE reduces the workload of the PKG by delegating the private key gen-
eration task to lower level entities, i.e., entities who have already obtained their
private keys. Though a HIBE by itself is an interesting cryptographic primitive,
it can also be used to construct other primitives like forward secure encryption
and broadcast encryption protocols.

The first efficient construction of an IBE was provided by Boneh and
Franklin [9]. This paper also introduced an appropriate security model for IBE.
The proof of security in [9] used the so-called random oracle assumption. This
started a search for constructions which can be proved to be secure without
the random oracle assumption. The first such construction of a HIBE was given
in [11]. However, the HIBE in [11] can only be proved to be secure in a weaker
model (the selective-ID model) as opposed to the full model considered in [9].
Later Boneh and Boyen [4] presented a more efficient construction of HIBE
which is also secure in the selective-ID (sID) model without the random oracle
assumption.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 241–256, 2006.
c© International Association for Cryptologic Research 2006

242 S. Chatterjee and P. Sarkar

The full security model in [9] allows an adversary to adaptively ask the PKG
for private keys of identities of its choosing. (The security model also allows de-
cryption queries, which we ignore for the present.) Then it submits two messages
M0,M1 and an identity v∗ and is given an encryption of Mγ under v∗, where γ
is a randomly chosen bit. The identity v∗ can be any identity other than those
for which the adversary has already obtained the private key or can easily ob-
tain the private key from the information it has received. The main difficulty in
obtaining an efficient construction of a HIBE which is secure in this model is the
wide flexibility of the adversary in choosing v∗.

The sID model attempts to curb the adversary’s flexibility in the following
manner. In the game between the adversary and the simulator, the adversary
has to commit to an identity even before the HIBE protocol is set-up by the
simulator. The simulator then sets up the HIBE. This allows the simulator to
set-up the HIBE based on the identity committed by the adversary. In the actual
game, the adversary cannot ask for the private key of the committed identity
(or of any of its prefix, in the case of HIBE). During the challenge stage, the
adversary submits two messages M0,M1 as usual and is given an encryption of
Mγ under the previously fixed identity v∗. Note that this is significantly more
restrictive than the full model since the adversary has to commit to an identity
even before it sees the public parameters of the HIBE.

Our Contributions: In this paper, we generalize the sID model and introduce
two new models of security for HIBE protocols. The basic idea is to modify the
security game so as to allow the adversary to commit to a set of identities (instead
of one identity in the sID model) before set-up. During the game, the adversary
can execute key extraction queries on any identity not in the committed set.
In the challenge stage, the challenge identity is chosen by the adversary from
among the set that it has previously committed to.

For IBE, this is a strict generalization of the sID model, since we can get the
sID model by enforcing the size of the committed set of identities to be one. On
the other hand, for HIBE, there are two ways to view this generalization leading
to two different security models M1 and M2.

In M1, the adversary commits to a set I∗. It can then ask for the private
key of any identity v = (v1, . . . , vτ) as long as all the vis are not in I∗. Further,
during the challenge stage, it has to submit an identity all of whose components
are in I∗. If we restrict the adversary to only single component identities (i.e.,
we are considering only the IBE protocols), then this is a clear generalization of
the sID model for IBE. On the other hand, in the case of HIBE, we cannot fix
the parameters of this model to obtain the sID model for HIBE.

The second model, M2, is an obvious generalization of the sID model for
HIBE. In this case, the adversary specifies τ sets I∗

1 , . . . , I∗
τ . Then it can ask for

private key of any identity v as long as there is an i such that the ith component
of v is not in I∗

i . In the challenge stage, the adversary has to submit an identity
such that for all i, the ith component of the identity is in I∗

i .
Even though M2 generalizes the sID model for HIBE, we think M1 is also

an appropriate model for a HIBE protocol. The adversary would be specifying

Generalization of the Selective-ID Security Model for HIBE Protocols 243

a set of “sensitive” keywords to be I∗. It can then ask for the private key of
any identity as long as one component of the identity is not sensitive and in the
challenge stage has to submit an identity all of whose components are sensitive.
The added flexibility in M2 is that the adversary can specify different sets of
sensitive keywords for the different levels of HIBE. In practice, this flexibility
might not be required since keywords like root, admin, dba, etcetera will be
sensitive for all levels.

We present two constructions of HIBE denoted by H1 and H2. H1 is proved to
be secure in the model M1 under the DBDH assumption while H2 is proved to
be secure in the model M2 also under the DBDH assumption. Our constructions
and proofs of security are very similar to that of the Boneh-Boyen HIBE (BB-
HIBE) [4]. The actual technical novelty in the proofs is the use of a polynomial,
which in the case of the BB-HIBE is of degree one. The use of an appropriate
polynomial of degree greater than one allows us to prove security in the more
general models M1 and M2. However, this flexibility comes at a cost. In the
case of H2, the number of required scalar multiplications increases linearly with
the size of the committed set of identities.

One interesting feature about H1 is that it can support unbounded number of
levels. In other words, the set-up for H1 does not specify the maximum number of
levels of the HIBE. This is an added advantage and to the best of our knowledge
is not present in any of the previous HIBE constructions.

The situation for H1 is also interesting in another aspect. If we consider
only IBE, then the number of scalar multiplications increases with the size of
the committed set of identities. On the other hand, in the case of BB-HIBE,
the number of scalar multiplications increases linearly with the depth of the
HIBE. Since H1 can support HIBE of unbounded depth, this feature is not
present in H1.

Multiple receiver IBE (MR-IBE) is an interesting concept which was intro-
duced by Baek, Safavi-Naini and Susilo [1]. In an MR-IBE, an encryptor can
encrypt a message in such a way that any one of a set of identities can decrypt
the message. A trivial way to achieve this is to separately encrypt the message
several times. It turns out that the efficiency can be improved. A more efficient
construction of MR-IBE was presented in [1]. The proof of security was in the
sID model under the random oracle assumption.

We show that the HIBE H1 when restricted to IBE can be easily modified
to obtain an efficient MR-IBE. Our MR-IBE is proved to be secure in the sID
model without the random oracle assumption and to the best of our knowledge
this is the first of such kind.

2 Security Model for HIBE

2.1 HIBE Protocol

Following [15, 14] a hierarchical identity based encryption (HIBE) scheme is spec-
ified by four algorithms: Setup, Key Generation, Encryption and Decryption.

244 S. Chatterjee and P. Sarkar

Setup: It takes input a security parameter and returns the system parameters
together with the master key. The system parameters are publicly known while
the master key is known only to the private key generator (PKG).

The system parameters include a description of the message space, the ci-
phertext space and the identity space. The system parameters may also specify
a positive integer h, which denotes the maximum number of levels that are al-
lowed in the HIBE. If h is not specified, then the HIBE can support an unbounded
number of levels. An identity of depth τ is a tuple (v1, . . . , vτ), where each vj is
an element of a set I. From an application point of view, we would like I to be
the set of all binary strings. On the other hand, for construction purposes, this
is too general and one usually requires I to have an algebraic structure. The two
requirements are met by assuming that a collision resistant hash function maps
an arbitrary string to the set I having an algebraic structure.

A special case of a HIBE protocol arises when only single component identities
are allowed. In this case, the protocol is said to be simply an identity based
encryption (IBE) protocol.

Key Generation: The task of this algorithm is to assign a private keyDv for an
identity v of depth τ . To this end, it takes as input an identity v = (v1, . . . , vτ)
of depth τ and the private key D|τ−1 corresponding to the identity v|τ−1 =
(v1, . . . , vτ−1) and returns Dv. In the case τ = 1, the private key D|τ−1 is the
master key of the PKG and the key generation is done by the PKG. In the case
τ > 1, the private key corresponding to v = (v1, . . . , vτ) is done by the entity
whose identity is v|τ−1 = (v1, . . . , vτ−1) and who has already obtained his/her
private key D|τ−1.

Encryption: It takes as input the identity v and a message from the message
space and produces a ciphertext in the cipher space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

2.2 Security Model

The security model for HIBE is defined as an interactive game between an ad-
versary and a simulator. Currently, there are two security models for HIBE – the
selective-ID (sID) model and the full model. We will be interested in defining
two new security models. We present the description of the interactive game in
a manner which will help in obtaining a unified view of the sID, full and the new
security models that we define.

In the game, the adversary is allowed to query two oracles – a decryption
oracle Od and a key-extraction oracle Ok. The game has several stages.

Adversary’s Commitment: In this stage, the adversary commits to two sets S1

and S2 of identities. The commitment has the following two consequences as we
will define later.

Generalization of the Selective-ID Security Model for HIBE Protocols 245

1. The adversary is not allowed to query Ok on any identity in S1.
2. In the challenge stage, the adversary has to choose one of the identitites from

the set S2.

There is a bit of technical difficulty here. Note that the adversary has to commit
to a set of identities even before the HIBE protocol has been set-up. On the
other hand, the identity space is specified by the set-up algorithm of the HIBE
protocol. In effect, this means that the adversary has to commit to identities
even before it knows the set of identities. Clearly, this is not possible.

One possible way out is to allow the adversary to commit to binary strings
and later when the set-up program has been executed, these binary strings are
mapped to identities using a collision resistant hash functions. Another solution
is to run the set-up program in two phases. In the first phase, the identity space
is specified and is made available to the adversary; then the adversary commits
to S1 and S2; and after obtaining S1 and S2 the rest of the set-up program is
executed.

The above two approaches are not necessarily equivalent and may have dif-
ferent security consequences. On the other hand, note that if S1 = ∅ and S2 is
the set of all identities (as is true in the full model), then this technical difficulty
does not arise.

Set-Up: The simulator sets up the HIBE protocol and provides the public pa-
rameters to the adversary and keeps the master key to itself. Note that at this
stage, the simulator knows S1,S2 and could possibly set-up the HIBE based on
this knowledge. However, while doing this, the simulator must ensure that the
probability distribution of the public parameters remains the same as in the
specification of the actual HIBE protocol.

Phase 1: The adversary makes a finite number of queries where each query is
addressed either to Od or to Ok. In a query to Od, it provides the ciphertext as
well as the identity under which it wants the decryption. The simulator has to
provide a proper decryption. Similarly, in a query to Ok, it asks for the private
key of the identity it provides. This identity cannot be an element of S1. Further,
the adversary is allowed to make these queries adaptively, i.e., any query may
depend on the previous queries as well as their answers.

Certain queries are useless and we will assume that the adversary does not
make such queries. For example, if an adversary has queried Ok on any identity,
then it is not allowed to present the same identity to Od as part of a decryption
query. The rationale is that since the adversary already has the private key, it
can itself decrypt the required ciphertext.

Challenge: The adversary chooses an identity v∗ ∈ S2 with the restriction
that it has not queried Ok for the private key of v∗ or any of its prefixes and
two messages M0,M1 and provides these to the simulator. The simulator ran-
domly chooses a γ ∈ {0, 1} and returns the encryption of Mγ under v∗ to the
adversary.

246 S. Chatterjee and P. Sarkar

Phase 2: The adversary issues additional queries just as in Phase 1, with the
(obvious) restriction that it cannot ask Od for the decryption of C∗ under v∗

nor Ok for the private key of any prefix of v∗.

Guess: The adversary outputs a guess γ′ of γ.

Adversary’s Success: The adversary wins the game if it can successfully guess γ,
i.e., if γ = γ′. The advantage of an adversary A in attacking the HIBE scheme
is defined as:

AdvHIBE
A = 2|Pr[(γ = γ′)] − 1/2|

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making at most
qC queries to Od and at most qID queries to Ok.

A HIBE protocol is said to be secure if AdvHIBE(t, qID, qC) is negligible. Any
HIBE protocol secure against such an adversary is said to be secure against
chosen ciphertext attack (CCA). A weaker version of security does not allow the
adversary to make decryption queries, i.e., the adversary is not given access to
Od. A HIBE protocol secure against such a weaker adversary is said to be secure
against chosen plaintext attack (CPA). AdvHIBE(t, q) in this context denotes the
maximum advantage where the maximum is taken over all adversaries running
in time at most t and making at most q queries to the key-extraction oracle.
There are several generic as well as non-generic methods for converting a CPA-
secure HIBE into a CCA-secure HIBE. Hence, in this paper, we will only consider
construction of CPA-secure HIBE.

2.3 Full Model

Suppose S1 = ∅ and S2 is the set of all identities. By the rules of the game, the
adversary is not allowed to query Ok on any identity in S1. Since S1 is empty,
this means that the adversary is actually allowed to query Ok on any identity.
Further, since S2 is the set of all identities, in the challenge stage the adversary is
allowed to choose any identity. In effect, this means that the adversary does not
really commit to anything before set-up and hence in this case, the commitment
stage can be done away with. This particular choice of S1 and S2 is called the
full model and is currently believed to be the most general notion of security for
HIBE.

Note that the other restriction that the adversary has not asked for the private
key for any prefix of the challenge identity as well as the restriction in Phase 2
still applies.

2.4 Selective-ID Model

Let S1 = S2 be a singleton set. This means that the adversary commits to one
particular identity; never asks for its private key; and in the challenge phase is
given the encryption of Mγ under this particular identity. This model is signifi-
cantly weaker than the full model and is called the selective-ID model.

Generalization of the Selective-ID Security Model for HIBE Protocols 247

2.5 New Security Models

We introduce two new security models by suitably defining the sets S1 and S2.
In our new models, (as well as the sID model), we have S1 = S2. (Note that in
the full model, S1 = S2.)

Model M1: Let I∗ be a set. We define S1 = S2 to be the set of all tuples
(v1, . . . , vτ), (τ ≥ 1), such that each vi ∈ I∗. First consider the case of IBE, i.e.,
where only single component identities are allowed. Then, we have S1 = S2 = I∗.
Let |I∗| = n. If we put n = 1, then we obtain the sID model for IBE as discussed
in Section 2.4. In other words, for IBE protocol, M1 is a strict generalization of
sID model.

Let us now see what this means. In the commit phase, the adversary commits
to the set of identities I∗; never asks for the private key of any of these identities;
and during the challenge phase presents one of these identities to the simulator.
This is the generalization of the sID model, where instead of a single identity,
the adversary may choose one from a set of identities.

In the case of HIBE, the situation is different. Model M1 is no longer a
strict generalization of the usual sID model for HIBE. We cannot restrict the
parameters of the model M1 in any manner and obtain the sID model for HIBE.
Thus, in this case, M1 must be considered to be a new model. We later discuss
the interpretation of this model as well as the other ones.

Model M2: Let I∗
1 , . . . , I∗

τ be sets and |I∗
j | = nj for 1 ≤ j ≤ τ . We set

S1 = S2 = I∗
1 × · · · × I∗

τ .

This model is a strict generalization of the sID model for HIBE. This can be
seen by setting n1 = · · · = nτ = 1, i.e., I∗

1 , . . . , I∗
τ to be singleton sets.

3 Interpreting Security Models

The full security model is currently believed to provide the most general security
model for HIBE. In other words, it provides any entity (having any particular
identity) in the HIBE with the most satisfactory security assurance that the
entity can hope for. The notion of security based on indistinguishability is de-
rived from the corresponding notion for public key encryption and the security
assurance provided in that setting also applies to the HIBE setting.

The additional consideration is that of identity and the key extraction queries
to Ok. We may consider the identity present during the challenge stage to be
a target identity. In other words, the adversary wishes to break the security
of the corresponding entity. In the full model, the target identity can be any
identity, with the usual restriction that the adversary does not know the private
key corresponding to this identity or one of its prefixes.

From the viewpoint of an individual entity e in the HIBE structure, the
adversary’s behaviour appears to be the following. The adversary can possibly

248 S. Chatterjee and P. Sarkar

corrupt any entity in the structure, but as long as it is not able to corrupt that
particular entity e or one of its ancestors, then it will not be able to succeed in
an attack where the target identity is that of e. In other words, obtaining the
private keys corresponding to the other identities does not help the adversary.
Intuitively, that is the maximum protection that any entity e can expect from
the system.

Let’s reflect on the sID model. In this model, the adversary commits to an
identity even before the set-up of the HIBE is done. The actual set-up can
depend on the identity in question. Now consider the security assurance obtained
by an individual entity e. Entity e can be convinced that if the adversary had
targeted its identity and then the HIBE structure was set-up, in that case the
adversary will not be successful in attacking it. Alternatively, e can be convinced
that the HIBE structure can be set-up so as to protect it. Inherently, the sID
model assures that the HIBE structure can be set-up to protect any identity, but
only one.

Suppose that a HIBE structure which is secure in the sID model has already
been set-up. It has possibly been set-up to protect one particular identity. The
question now is what protection does it offer to entities with other identities?
The model does not assure that other identities will be protected. Of course, this
does not mean that other identities are vulnerable. The model simply does not
say anything about these identities.

The system designer’s point of view also needs to be considered. While setting
up the HIBE structure, the designer needs to ensure security. The HIBE is known
to be secure in the sID model and hence has a proof of security. The designer will
play the role of the simulator in the security game. In the game, the adversary
commits to an identity and then the HIBE is set-up so as to protect this identity.
However, since the actual set-up has not been done, there is no real adversary and
hence no real target identity. Thus, the designer has to assume that the adversary
will probably be targetting some sensitive identity like root. The designer can
then set-up the HIBE so as to protect this identity. However, once the HIBE
has been set-up, the designer cannot say anything about the security of other
possible sensitive identities like sysadmin. This is a serious limitation of the sID
model.

This brings us to the generalization of the sID model that we have introduced.
First consider the model M1 as it applies to IBE. In this model, the designer
can assume that the adversary will possibly attack one out of a set of sensitive
identities like {root, admin, dba, sysadmin}. It can then set-up the IBE so as to
protect this set of identities. This offers a strictly better security than the sID
model.

Now consider the model M1 as it applies to HIBE. In this case, the set I∗ can
be taken to be a set of sensitive keywords such as {root, admin, dba, sysadmin}.
The adversary is not allowed to obtain private keys corresponding to identities
all of whose components lie in I∗. For the above example, the adversary cannot
obtain the private key of (root, root), or (admin, root, dba). On the other hand,
it is allowed to obtain keys corresponding to identities like (root, abracadabra).

Generalization of the Selective-ID Security Model for HIBE Protocols 249

Thus, some of the components of the identities (on which key extraction query
is made) may be in I∗; as long as all of them are not in I∗, the adversary can
obtain the private key. On the other hand, all the components of the target
identity have to be sensitive keywords, i.e., elements of I∗. Clearly, model M1

provides an acceptable security notion for HIBE. Intuitively, it provides better
security than the sID model for HIBE, though we cannot fix the parameters of
M1 so that it collapses to the sID model for HIBE.

The model M2 is a clear generalization of the usual sID model for HIBE.
The adversary fixes the sensitive keywords for each level of the HIBE upto the
level it wishes to attack. It cannot make a key extraction query on an identity
of depth τ , such that for 1 ≤ i ≤ τ , the ith component of the identity is among
the pre-specified sensitive keywords for the ith level of the HIBE. Further, the
target identity must be such that each of its component is a sensitive keyword
for the corresponding HIBE level. As mentioned earlier, by fixing exactly one
keyword for each level of the HIBE, we obtain the sID model.

The difference between models M1 and M2 is that from a technical point of
view, in M2, for each level of the HIBE, the adversary is allowed to indepedently
choose the set of possible values which the corresponding component of the target
identity may take. In M1, the set of possible values for all components are the
same. It is due to this difference, that we cannot collapse M1 to the sID model.
On the other hand, in practical applications, the sensitive keywords for all levels
are likely to be the same. In such a situation, M1 provides a more cleaner notion
of security. Of course, this is still much less comprehensive than the full security
model.

4 Constructions

We present two HIBE protocols H1 and H2. The HIBE H1 can be proved to
be secure in model M1, whereas the HIBE H2 can be proved to be secure in
model M2.

4.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we
write G1 additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is
called a cryptographic bilinear map if it satisfies the following properties:

– Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Zp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P,P)〉.
– Computability : There exists an efficient algorithm to compute e(P,Q) for

all P,Q ∈ G1.

Since e(aP, bP) = e(P,P)ab = e(bP, aP), e() also satisfies the symmetry prop-
erty. Modified Weil pairing [8] and Tate pairing [2, 13] are examples of crypto-
graphic bilinear maps.

250 S. Chatterjee and P. Sarkar

4.2 HIBE H1

Set-Up: The identity space consists of all tuples (v1, . . . , vτ), where each vi ∈ Zp.
Note that we do not fix a upper bound on τ . The message space is G2. (In
practical applications, the protocol will be converted into a hybrid encryption
scheme where the message can be any binary string.) The ciphertext correspond-
ing to an identity (v1, . . . , vτ) is a tuple (A, B,C1, . . . ,Cτ), where A ∈ G2 and
B,C1, . . . ,Cτ ∈ G1.

Randomly choose x ∈ Zp and set P1 = xP . Randomly choose P2, P3,
Q1, . . . ,Qn from G1 where n is a parameter of the model. The public parame-
ters are (P,P1,P2,P3,Q1, . . . ,Qn) and the master secret key is xP2. Note that,
the public parameter size does not depend on the levels of the HIBE. In other
words, potentially H1 can support unbounded number of levels. Since, P1,P2 are
not directly required in Encryption or Decryption, we may replace them in the
public parameters by e(P1,P2). This will save the pairing computation during
the encryption.

Key Generation: Let v = (v1, . . . , vτ) be an identity. For any y ∈ Zp define

V (y) = ynQn + · · · + yQ1.

Let Vi = P3 + V (vi). The private key dv corresponding to v is defined to be

(xP2 + r1V1 + . . .+ rτVτ , r1P, . . . , rτP) = (d0, d1, . . . , dτ)

where r1, . . . , rτ are random elements of Zp. It is standard [4] to verify that
the knowledge of a random private key corresponding to the tuple (v1, . . . , vτ−1)
allows the generation of a random private key corresponding to v.

Encryption: Suppose a message M is to be encrypted under the identity v =
(v1, . . . , vτ). Choose a random t ∈ Zp. The ciphertext is (A, B,C1, . . . ,Cτ), where

A = M × e(P1,P2)t; B = tP ; Ci = tVi, for 1 ≤ i ≤ τ.

Decryption: Suppose (A, B,C1, . . . ,Cτ) is to be decrypted using the private key
(d0, d1, . . . , dτ) corresponding to the identity v = (v1, . . . , vτ). Compute

A×
∏τ

i=1 e(di,Ci)
e(d0, B)

.

Again, it is standard to verify that the above computation yields M .

4.3 HIBE H2

The description of H2 is similar to that of H1. The only differences are in the
specification of the maximum depth of the HIBE, the public parameters and the
definition of Vi’s.

Generalization of the Selective-ID Security Model for HIBE Protocols 251

1. Define the maximum depth of the HIBE to be h. Additionally, a tuple
(n1, . . . , nh) of positive integers is required.

2. Replace P3 in H1, by the tuple (P3,1, . . . ,P3,h) where each P3,i is an element
of G1. Also the points Qi’s (1 ≤ i ≤ n) are replaced by the points Qi,j ’s,
where 1 ≤ i ≤ h and 1 ≤ j ≤ ni.

3. Define V (i, y) = yniQi,ni + . . . + yQi,1. Given an identity v = (v1, . . . , vτ),
define Vi = P3,i + V (i, vi).

With these differences, the rest of set-up, key generation, encryption and de-
cryption algorithms remain the same.

5 Security Reduction

In this section, we show that the breaking of H1 amounts to solving the DBDH
problem and similarly for H2.

5.1 Hardness Assumption

Assume the bilinear map notation from Section 4.1. The DBDH problem in
G1,G2, e() [9] is as follows: Given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2,
decide whether Z = e(P,P)abc which we denote as Z is real or Z is random.
The advantage of a probabilistic algorithm B, which takes as input a
tuple 〈P, aP, bP, cP, Z〉 and outputs a bit, in solving the DBDH problem is
defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|

where the probability is calculated over the random choice of a, b, c ∈ Zp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries running in time at
most t.

5.2 Security Reduction for H1

The security reduction is to show that if there is an adversary which can break
H1 then one obtains an algorithm to solve DBDH. The heart of such an algo-
rithm is a simulator which is constructed as follows. On given an instance of
DBDH as input, the simulator plays the security game with an adversary for
H1. The adversary executes the commitment stage; then the simulator sets up
the HIBE based on the adversary’s commitment as well as the DBDH instance.
The simulator gives the public parameters to the adversary and continues the
game by answering all queries made by the adversary. In the process it guesses
the bit γ and encrypts Mγ using the DBDH instance provided as input. Finally,
the adversary outputs γ′. Based on the value of γ and γ′, the simulator decides
whether the instance it received is real or random. Intuitively, if the adversary

252 S. Chatterjee and P. Sarkar

has an advantage in breaking the HIBE protocol, the simulator also has a good
advantage in distinguishing between real and random instances. This leads to an
upper bound on the advantage of the adversary in terms of the advantage of the
simulator in solving DBDH. The details of the reduction are given below.

DBDH Instance: The simulator receives an instance (P,P1 = aP,P2 = bP,Q =
cP, Z) ∈ G4

1 ×G2 of DBDH. It has to decide whether Z = e(P,P)abc (i.e., Z is
real) or whether Z is random. Note that it does not know a, b, c.

The simulator now starts the security game for model M1. This consists
of several stages which we describe below. We will consider security against
chosen plaintext attacks and hence the adversary will only have access to the
key extraction oracle Ok.

Adversary’s Commitment: The adversary commits to a set I∗. We will assume
that the elements of I∗ are elements of Zp. Alternatively, if these are bit strings,
then (as is standard) they will be hashed using a collision resistant hash function
into elements of Zp. We write I∗ = {v∗1, . . . , v∗n}.

Set-Up: Define a polynomial in Zp[x] by

F (x) = (x − v∗1) · · · (x − v∗n) (1)
= xn + an−1x

n−1 + · · ·+ a1x + a0 (2)

where the coefficients ai’s are in Zp and are obtained from the values {v∗1 , . . . , v∗n}.
(Since F (x) is a polynomial of degree n over Zp and v∗1 , . . . , v

∗
n are its n distinct

roots, we have F (v) �= 0 for any v ∈ Zp \ {v∗1 , . . . , v∗n}.) Note that, these coeffi-
cients depend on the adversary’s input and one cannot assume any distribution
on these values. For notational convenience, we define an = 1. Randomly choose
b0, . . . , bn from Zp and define another polynomial

J(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0 (3)

Define P3 = a0P2 + b0P and for 1 ≤ i ≤ n, define Qi = aiP2 + biP . Note that,
Qis are random elements of G1. Now note that for y ∈ Zp,

V (y) = P3 + yQ1 + y2Q2 + · · ·+ ynQn

= F (y)P2 + J(y)P.

The public parameters are (P,P1,P2,P3,Q1, . . . ,Qn) which has the same distri-
bution as the public parameters in the protocol specification. These are given to
the adversary. The master secret is aP2, which is not known to the simulator.

Phase 1: In this stage, the adversary can make queries to Ok, all of which have to
be answered by the simulator. Suppose the adversary queries Ok on an identity
v = (v1, . . . , vτ). By the constraint of model M1 all the vi’s cannot be in I∗.
Suppose ı is such that vı is not in I∗. Then F (vı) �= 0.

Generalization of the Selective-ID Security Model for HIBE Protocols 253

As in the protocol, define Vi = P3 + V (vi). Choose r1, . . ., rı−1, r′ı, rı+1, . . .,
rτ randomly from Zp. Define W =

∑τ
i=1,i�=ı riVi. The first component d0 of the

secret key for v = (v1, . . . , vτ) is computed in the following manner.

d0 = − J(vı)
F (vı)

P1 + r′ı(F (vı)P2 + J(vı)P) +W.

The following computation shows that d0 is a properly formed.

d0 = ±aP2 −
J(vı)
F (vı)

P1 + r′ı(F (vı)P2 + J(vı)P) +W

= aP2 + (r′ı −
a

F (vı)
)(F (vı)P2 + J(vı)P) +W

= aP2 +
τ∑

i=1

riVi

where rı = r′ı − a/F (vı). Since r′ı is random, so is rı. The quantities d1, . . . , dτ

are computed in the following manner.

di = riP 1 ≤ i ≤ τ, i �= ı;
= r′ıP − 1

F (vı)
P1 = rıP i = ı.

This technique is based on the algebraic techniques introduced by Boneh and
Boyen [4]. The generalization is in the definition of F () and J(). Here we take
these to be polynomials, which allows us to tackle the case of adversary commit-
ting to more than one identity. In case the polynomials are of degree one, then
we get exactly the Boneh-Boyen HIBE [4].

Challenge Generation: The adversary submits messages M0,M1 and an identity
v = (v1, . . . , vτ). By the rules of model M1, each vi ∈ I∗ and so F (vi) = 0 for
1 ≤ i ≤ τ . Consequently, Vi = F (vi)P2 + J(vi)P = J(vi)P and cVi = cJ(vi)P =
J(vi)(cP) = J(vi)Q = Wi (say), where Q = cP was supplied as part of the
DBDH instance. Note that it is possible to compute cVi even without knowing
c. The simulator now randomly chooses a bit γ and returns

(Mγ × Z,Q,W1, . . . ,Wτ)

to the adversary. This is a proper encryption of Mγ under the identity v.

Phase 2: The key extraction queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess γ′. The simulator outputs 1 if γ = γ′,
else it outputs 0.

If Z = e(P,P)abc, then the simulator provides a perfect simulation of the M1

game. On the other hand, if Z is random, the adversary receives no information
about the message Mγ from the challenge ciphertext. Formalizing this argument
in the standard manner shows that AdvH1

A (t, q) ≤ AdvDBDH
B (t +O(σnq)) where

σ is the time for scalar multiplication in G1 and q is the maximun number of
queries allowed to the adversary.

254 S. Chatterjee and P. Sarkar

5.3 Security Reduction for H2

The security reduction for H2 in model M2 is similar to that of H1 in model
M1. We mention only the differences.

Adversary’s Commitment: Following model M2, the adversary commits to sets
I∗

1 , . . . , I∗
τ , where |I∗

i | = ni.

Set-Up: The simulator defines polynomialsF1(x), . . . ,Fτ (x), and J1(x), . . ., Jτ (x)
where

Fi(x) =
∏
v∈Ii

(x − v)

= xni + ai,ni−1x
ni−1 + · · ·+ ai,1x + ai,0;

Ji(x) = bi,nix
ni + bi,ni−1x

ni−1 + · · ·+ bi,1x + bi,0

where bi,j ’s are random elements of Zp. For notational convenience, we define
ai,ni = 1. For 1 ≤ i ≤ τ , define P3,i = ai,0P2 + bi,0P and Qi,j = ai,jP2 + bi,jP ,
1 ≤ j ≤ ni.

Key Extraction Query: Suppose the private key of v = (v1, . . . , vν) is required.
According to model M2, there is at least one i such that vi /∈ I∗

i . Then this i
can be used to generate the private key in a manner similar to the key generation
by the simulator for H1 in model M1.

Challenge Generation: Suppose the challenge identity is v∗ = (v∗1 , . . . , v∗ν). Then
by the constraint of M2 for each i, v∗i ∈ I∗

i and consequently Fi(v∗i) = 0.
This allows the generation of a proper ciphertext as in the simulation of H1 in
model M1.

Finally, we obtain the following result.

AdvH2
A (t, q) ≤ AdvDBDH

B (t +O(σ
h∑

i=1

niq)).

6 Multi-Receiver IBE

A multi-receiver IBE (MR-IBE) is an extension of the IBE, which allows a sender
to encrypt a message in such a way that it can be decrypted by any one of a
particular set of identities. In other words, there is one encryptor but more than
one valid receivers. In IBE, the number of valid receivers is one. One trivial way
to realize an MR-IBE from an IBE is to encrypt the same message several times.
A non-trivial construction attempts to reduce the cost of encryption.

This notion was introduced in [1] and a non-trivial construction based on the
Boneh-Franklin IBE (BF-IBE) was provided. The construction was proved to be
secure in the selective-ID model under the random oracle assumption. Note that
the BF-IBE is secure in the full model under the random oracle assumption.

We show that H1 restricted to IBE can be modified to obtain an MR-IBE.
The required modifications to the protocol are as follows.

Generalization of the Selective-ID Security Model for HIBE Protocols 255

1. The encryption is converted into a hybrid scheme. Instead of multiplying the
message with the “mask” Z = e(P1,P2)t, the value Z is provided as input to
a pseudorandom generator and the message (considered to be a bit string)
is XORed with the resulting keystream.

2. The private key corresponding to an identity v is dv = (xP2+rVv, rP), where
Vv = P3 + V (v) as defined in in Section 4.2.

3. Suppose the intended set of receivers is {v1, . . . , vτ}. Then the ciphertext
consists of the encryption of the message as mentioned above plus a header
of the form (tP, tV1, . . . , tVτ), where Vi is as defined in the construction of
H1 in Section 4.2 and t is a random element of Zp.

4. The receiver possessing the secret key dvi (1 ≤ i ≤ τ) can compute e(P1,P2)t

in the standard manner and hence obtain the input to the pseudorandom
generator. Thus it can decrypt the message.

The MR-IBE described above can be proved to be secure in the selective-ID
model without the random oracle assumption. The security model for MR-IBE
is the following. In the commitment stage, the adversary commits to a set of
identities; does not ask for the private key of these identities in the key extraction
queries and finally asks for the encryption under this set of identities. Note that
this is very similar to the model M1 restricted to IBE. The only difference is that
during the generation of the challenge ciphertext, in M1, the adversary supplies
only one identity out of the set of identities it had previously committed to,
whereas in the model for MR-IBE, the adversary asks for the encryption under
the whole set of these identities.

This difference is easily tackled in our proof in Section 5.2 which shows that
H1 is secure in model M1. Recall that the construction of the polynomial F (x)
is such that F (v) = 0 for all v ∈ I∗, where I∗ is the set of committed identities.
In the challenge stage of the security proof for H1 as an IBE, we use this fact for
only one identity (the identity given by the adversary). In the proof for MR-IBE,
we will need to generate cVi for all v ∈ I∗. Since F (v) = 0 for any such v, this
can be done in the standard fashion.

The above argument does not provide any security degradation. Hence, we
obtain an MR-IBE which can be proved to be secure in the selective-ID model
without the random oracle assumption.

7 Conclusion

In this paper, we have generalized the notion of selective-ID secure HIBE. Two
new security models M1 and M2 have been introduced. In the security game,
both these models allow an adversary to commit to a set of identities (as opposed
to a single identity in the sID model) before the set-up. During the challenge
stage, the adversary can choose any one of the previously committed identities
as a challenge identity. We provide two HIBE constructions H1 and H2 which
are secure in the models M1 and M2 respectively. Interestingly, the HIBE H1

allows delegation of an unbounded number of levels, i.e., the maximum number
of delegation levels is not fixed during the protocol set-up. Further, we also show

256 S. Chatterjee and P. Sarkar

that H1 can be modified to obtain an MR-IBE protocol which is secure in the
sID model without random oracles. The only previous construction of MR-IBE
is secure in the sID model under the random oracle assumption.

Acknowledgement

The authors express their sincere gratitude to the anonymous reviewers of PKC
2006.

References

1. J. Baek, R. Safavi-Naini and W. Susilo. Efficient Multi-Receiver Identity-Based
Encryption and Its Application to Broadcast Encryption. PKC 2005, LNCS 3386,
pp 380–397, 2005.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott. Efficient Algorithms for
Pairing-Based Cryptosystems. CRYPTO 2002, LNCS 2442, pp. 354–368, 2002.

3. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In ACM Conference on Computer and Communications
Security - CCS 1993, pp 62–73, 1993.

4. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity Based Encryption With-
out Random Oracles, EUROCRYPT 2004, LNCS 3027, pp 223–238, 2004.

5. D. Boneh, X. Boyen. Secure Identity Based Encryption without Random Oracles.
CRYPTO 2004, LNCS 3152, pp 443–459, 2004.

6. D. Boneh, X. Boyen, E. Goh, Hierarchical Identity Based Encryption with Constant
Size Ciphertext, EUROCRYPT 2005, LNCS 3494, pp 440-456, 2005.

7. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from
Identity-Based Encryption. Journal Submission. Available from D. Boneh’s web-
site.

8. D. Boneh, M. Franklin. Identity Based Encryption from the Weil Pairing. CRYPTO
2001, LNCS 2139, pp. 213–229, 2001.

9. D. Boneh, M. Franklin. Identity Based Encryption from the Weil Pairing. SIAM
J. of Computing, Vol. 32, No. 3, pp. 586–615, 2003.

10. D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity Based Encryption. RSA-CT 2005, LNCS 3376, pp. 87-103, 2005.

11. R. Canetti, S. Halevi and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. EUROCRYPT 2003, LNCS 2656, pp 255-271. 2003.

12. R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext Security from Identity Based
Encryption. EUROCRYPT 2004. LNCS 3027, pp 207–222, 2004.

13. S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate Pairing. ANTS
V, LNCS 2369, pp. 324-337, 2002.

14. C. Gentry and A. Silverberg, Hierarchical ID-Based Cryptography, ASIACRYPT
2002, LNCS 2501, pp 548–566, 2002.

15. J. Horwitz and B. Lynn. Towards Hierarchical Identity-Based Encryption. EURO-
CRYPT 2002, LNCS 2332, pp 466–481, 2002.

16. A. Shamir. Identity-based Cryptosystems and Signature Schemes. CRYPTO 1984,
LNCS 196, pp 47–53, 1985.

17. B. Waters. Efficient Identity-Based Encryption without Random Oracles. EURO-
CRYPT 2005, LNCS 3494, pp 114–127, 2005. Also available from Cryptology ePrint
Archive, Report 2004/180, http://eprint.iacr.org/2004/180/.

Identity-Based Aggregate Signatures

Craig Gentry1,� and Zulfikar Ramzan2

1 Stanford University
cgentry@cs.stanford.edu

2 DoCoMo Communications Laboratories USA, Inc.
ramzan@docomolabs-usa.com

Abstract. An aggregate signature is a single short string that convinces
any verifier that, for all 1 ≤ i ≤ n, signer Si signed message Mi, where
the n signers and n messages may all be distinct. The main motivation of
aggregate signatures is compactness. However, while the aggregate sig-
nature itself may be compact, aggregate signature verification might re-
quire potentially lengthy additional information – namely, the (at most)
n distinct signer public keys and the (at most) n distinct messages being
signed. If the verifier must obtain and/or store this additional informa-
tion, the primary benefit of aggregate signatures is largely negated.

This paper initiates a line of research whose ultimate objective is to
find a signature scheme in which the total information needed to verify is
minimized. In particular, the verification information should preferably
be as close as possible to the theoretical minimum: the complexity of
describing which signer(s) signed what message(s). We move toward this
objective by developing identity-based aggregate signature schemes. In
our schemes, the verifier does not need to obtain and/or store various
signer public keys to verify; instead, the verifier only needs a description
of who signed what, along with two constant-length “tags”: the short ag-
gregate signature and the single public key of a Private Key Generator.
Our scheme is secure in the random oracle model under the computa-
tional Diffie-Hellman assumption over pairing-friendly groups against an
adversary that chooses its messages and its target identities adaptively.

1 Introduction

Authentication is crucial for many cryptographic applications. Improving the
performance of building blocks, like digital signatures, that provide a means
for authentication is therefore an essential goal. While time complexity is a well-
known traditional measure for evaluating performance, communication complex-
ity is becoming increasingly important for two reasons. First, consider wireless
devices (e.g., PDAs, cell phones, RFID chips, and sensors). Here battery life is
often more of a limiting bottleneck than processor speed. Communicating a sin-
gle bit of data consumes several orders of magnitude more power than executing
a basic 32-bit arithmetic instruction [BA05]. Second, consider wireless network
scenarios (e.g., MANETS, cellular networks, tactical networks, and sensor nets).

� This research was conducted while the author was at DoCoMo Labs, USA.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 257–273, 2006.
c© International Association for Cryptologic Research 2006

258 C. Gentry and Z. Ramzan

Here reliable bandwidth may be more of a limiting factor than computation. In
these cases it would be preferable to limit the communication requirements (i.e.,
the size) of a digital signature. An aggregate signature is one technique towards
achieving this aim.

Aggregate Signatures. In an aggregate signature scheme [BGLS03], mul-
tiple signatures can be aggregated into a compact “aggregate signature,” even
if these signatures are on (many) different documents and were produced by
(many) different signers. This is useful in many real-world applications. For ex-
ample, certificate chains in a hierarchical PKI of depth n consist of n signatures
by n different CAs on n different public keys; by using an aggregate signature
scheme, this chain can be compressed down to a single aggregate certificate.
Another application is secure routing. In Secure BGP [KLS00], each router suc-
cessively signs its segment of a path in the network, and forwards the collection
of signatures associated with the path to the next router; forwarding these sig-
natures entails a high transmission overhead that could be reduced by using
aggregate signatures. Aside from compactness, aggregate signatures have other
advantages. For example, in scenarios such as database outsourcing [MNT04]
and dynamic content distribution [SRF+04] one may want to prevent a mali-
cious party from removing a signature from a collection of signatures without
being detected. An aggregate signature scheme makes this possible, since a sig-
nature that has been aggregated cannot (under certain conditions) be separated.

Currently, two aggregate signature schemes exist. The first [BGLS03] uses bi-
linear maps and supports flexible aggregation – i.e., given n individual signatures
σ1, . . . , σn, anyone can aggregate them in any order into an aggregate signature
σ. The second [LMRS04] uses a weaker assumption – namely, certified trapdoor
permutations – but it permits only sequential aggregation – i.e., the n-th signer
must aggregate its own signature into the aggregate signature formed by the
first n− 1 signers.

For both schemes above, the aggregate signature is compact (i.e., its size is
independent of n). However, the total information V needed to verify the aggre-
gate signature – namely, the aggregate signature itself, the public keys of the
individual signers, and a description of the respective messages that they signed
– is not necessarily compact at all. Of course, V must (information-theoretically)
contain a description D of what signer signed what message, since the verifica-
tion information must convince the verifier that certain signers signed certain
messages. But |D| can grow slowly with the number of individual signatures n;
e.g., in a routing application, one can use IP addresses as identities, and we can
reduce communication further since the higher-order bits of the IP addresses of
consecutive routers may be identical, so only need to be transmitted once.

Beyond this information-theoretic minimum, however, V in current aggregate
signature schemes must also contain individual signer public keys, whose length
is dictated by the security parameter of the signature scheme (not by basic
information-theoretic considerations). Theoretically, this means that |V| − |D|
grows linearly with n. Practically speaking, this means that current aggregate
signature schemes may not perform significantly better than traditional signature

Identity-Based Aggregate Signatures 259

schemes in situations where verifiers cannot be expected to already have the
signers’ public keys – e.g., in a dynamic multi-hop network in which a node is
unlikely to have a prior relationship with a neighboring node. Clearly, it would
be preferable if V could specify the signers by their identities rather than by
their individual public keys.

Identity-Based Signatures. In identity-based cryptography (IBC) [Sha84],
the central idea is to simplify public-key and certificate management by using a
user’s “identity” (e.g., its email address) as its public key. For this to be possible,
the IBC system requires a trusted third party, typically called a “Private Key
Generator” (PKG), to generate user private keys from its “master secret” and
the user’s identity. Only the PKG has a traditional “random-looking” public key.
In an identity-based encryption (IBE) scheme, the sender encrypts a message
using the recipient’s identity and the PKG’s public key; it need not obtain the
recipient’s public key and certificate before encrypting, since the recipient has
no traditional public key and since the sender knows that the recipient (or an
attacker) will not be able to decrypt unless it has received an identity-based
private key from the PKG (in effect, an implicit certificate). In an identity-based
signature (IBS) scheme, the verifier verifies a signature by using the signer’s
identity and PKG’s public key; the verification information does not include any
certificate or any individual public key for the signer.

Research on IBS has experienced a revival in the wake of the discovery – in-
dependently by Boneh and Franklin [BF03] and by Cocks [Coc01] – of practical
IBE schemes. (Early schemes include [Sha84, FS86, GQ88]; recent schemes and
analyses include [CC03, Boy03, LQ04, BNN04].) Unfortunately, IBS does not
have the significant infrastructural advantages over traditional public-key sign-
ing that IBE has over traditional public-key encryption. In IBE, the fact that the
sender does not need to obtain the recipient’s public key and certificate before
encrypting means that no infrastructure (i.e., public-key infrastructure (PKI))
needs to be deployed to distribute such information to third parties (includ-
ing non-clients); rather, the authority (the PKG) only needs infrastructure to
distribute private keys directly to its clients. On the other hand, IBS and public-
key signing (PKS) are analogous infrastructurally: in IBS (resp. PKS), the PKG
(resp. CA) sends a private key (resp. certificate) to each client. Thus, the main
advantage of IBS over PKS, at least abstractly, turns out to be communication-
efficiency, since (unlike PKS) the signer does not need to send an individual
public key and certificate with its signature.

This advantage of IBS becomes more compelling when we consider multiple
signers, all of which are clients of the same PKG. In this setting, the verifier
needs only one traditional public key (the PKG’s) to verify multiple identity-
based signatures on multiple documents. Unfortunately, current identity-based
signatures are not aggregable. Interestingly, multiple-signer IBS therefore has
precisely the opposite problem of aggregate signing: for IBS, the public key is
(in some sense) aggregable, while the individual signatures are not.

Goals and Challenges. Our goal is simple: a signature scheme (allowing
distinct signers to sign distinct documents) in which the total verification

260 C. Gentry and Z. Ramzan

information is minimized. We cannot do better than the information-theoretic
lower bound of describing who signed what, but we would like to get as close to
this lower bound as possible.

Based on the above discussion, onenatural approach is to construct an“identity-
based aggregate signature” (IBAS) scheme – i.e., a scheme in which the verification
information (apart from the required description of who signed what) consists only
of a single aggregate signature and a single public key (of the PKG). In a sense,
identity-based aggregate signatures would really address the motivating applica-
tions consideredfirst in the context of regular (non ID-based) aggregate signatures.

However, there certainly does not appear to be any generic way of combining
an aggregate signature scheme with an IBS scheme to achieve this desideratum.
To see the difficulty, note that each of the current aggregate signature schemes
are deterministic, and with good reason; if each successive signer contributed
randomness to the aggregate signature in a trivial way, this randomness would
cause the size of the signature to grow linearly with n – hence the signature would
not be compact. On the other hand, identity-based signature schemes tend to be
randomized; typically, the signer uses the Fiat-Shamir heuristic (which involves
choosing a random commitment and treating the output of a hash function as the
challenge to which the signer responds) to prove knowledge of the authority’s
signature on its identity. In short, current approaches for constructing aggre-
gate signatures appear to be fundamentally at odds with current approaches for
constructing identity-based signatures. To construct an IBAS scheme, it seems
we must somehow find a way to “aggregate the randomness” provided by the
multiple signers.

Our Results. Our first contribution is a formal definition of identity-based
aggregate signatures and a corresponding formal security model. Second, we
describe, as a stepping stone, an identity-based multi-signature scheme (which
may be of independent interest). Third, we present a concrete IBAS scheme that
meets our definition. As desired, our scheme allows multiple signers to sign mul-
tiple documents in such a way that the total verification information, apart from
a description of who signed what, consists only of a short aggregate signature
(which consists of only 2 group elements and a short (e.g., 160-bit) string) and
the PKG’s public key (which is also short – about the same size as the PKG’s
public key in Boneh-Franklin). Our scheme is also very efficient computation-
ally. In fact, it allows more efficient verification than the aggregate signature
scheme of [BGLS03], since verification requires only three pairing computations,
regardless of the value of n, while [BGLS03] uses O(n) pairing computations.
(Note: verification in our scheme uses O(n) elliptic curve scalar multiplications,
but these can be computed quite quickly.) Later we describe certain extensions
and additional benefits of our scheme.

Our scheme is provably secure in the random oracle model, assuming the
hardness of computational Diffie-Hellman over groups with bilinear maps. In
our security model, the adversary can make qE adaptive key extraction queries
(wherein he receives the signing key corresponding to any ID of his choice), qS

adaptive signature queries (wherein he receives the signature on any message

Identity-Based Aggregate Signatures 261

of his choice), and qH hash queries (wherein he receives the output of a hash
function, modeled as a random oracle, on inputs of his choice). The adversary
succeeds if he constructs a single non-trivial forgery. The concrete security loss
in our scheme is roughly qE · qH · qS . While one would prefer a smaller loss, it
is worth noting that typical ID-based signature schemes usually suffer from a
concrete security loss of roughly qE · qS because the simulator usually has to
guess the ID and message that will be used in the forgery. We further note that
such a quadratic loss is also inherent in schemes where security is proved using
the forking lemma [PS96],[PS00]).

We remark that in our scheme all signers must use the same (unique) random
string w when signing – this step seems necessary to enable signature aggrega-
tion. Choosing such a w may be straightforward in certain settings. For example,
if the signers have access to loosely synchronized clocks, then w could be chosen
based on the current time. Further, if w is sufficiently long (i.e., accounting for
birthday bounds), then it will be statistically unique. In order to alleviate any
cost incurred in choosing w, we describe a simple extension of our scheme that
allows a signer to securely re-use the same w a constant number of times.

Aside from requiring a common value of w, aggregation in our scheme is
very flexible. Anybody can aggregate individual identity-based signatures into an
identity-based aggregate signature, and aggregate smaller aggregates into larger
aggregates. Moreover, our scheme permits aggregation across multiple trusted
authorities; i.e., signers under different PKGs can aggregate their signatures. As
a stepping stone to IBAS, we also describe an identity-based multisignature (in
which all signers sign the same message) that may be of independent interest.

Other Related Work. Aggregate signatures are related to, but more flexible
than, multisignatures [Oka98, OO99, MOR01, Bol03]. Although the term “mul-
tisignature” has been used in the literature to denote a variety of different types
of schemes, we will use the term to denote an aggregate signature in which all
users sign the same message. Aggregate signatures are also tenuously related to
threshold signatures [Sho00]. Recall that, in a threshold signature scheme, t sig-
nature components from any t signers can be combined into a single signature,
for some threshold t ≤ n. The signers must undergo a large setup cost, they
all sign the same message, and the verifier cannot tell which signers contributed
components to a complete threshold signature. Secure identity-based threshold
signature schemes are known [BZ04].

Subsequent to our work, a recent paper claimed an ID-based aggregate signa-
ture construction [CLW05]. However, “identity-based aggregate signatures” may
not be the best term to describe this result since each signer Si that participates
in the creation of a signature must first generate a random scalar ri and broadcast
riP (for a certain elliptic curve point P) to all of the other signers so that they
can each compute (

∑
ri)P . Signer Si then inputs (

∑
ri)P and its message mi

into a hash function to obtain a signature scheme via the Fiat-Shamir heuristic.
Later, individual signatures can be aggregated. However, because of the large
setup cost (in which the users essentially broadcast their key shares) and the
fact that the signature cannot be verified until all of the signers contribute, this

262 C. Gentry and Z. Ramzan

scheme actually bears some resemblance to an identity-based threshold signature
scheme. Also subsequent to our work, Herranz [Her05] describes a Schnorr-based
IBAS scheme that permits “partial” aggregation – that is, signatures can only
be aggregated if they all come from the same signer.
Organization of the Paper. After providing some preliminaries in Section 2,
we propose a definition of identity-based aggregate signatures in Section 3, to-
gether with the security model. Next, as a stepping stone to our IBAS construc-
tion, we give a simple identity-based multisignature scheme in Section 4. We
provide our IBAS construction in Section 5 and describe the security proof in
Section 6. Finally, we conclude and mention open problem in Section 7.

2 Preliminaries

Let λ denote the security parameter, which will be an an implicit input to the
algorithms in our scheme. For a set S, we let |S| denote the number of elements in
S, and x

D←− S denote the experiment of choosing x ∈ S according to probability
distribution D.

2.1 Bilinear Maps

Our IBAS scheme uses a bilinear map, which is often called a “pairing.” Typ-
ically, the pairing used is a modified Weil or Tate pairing on a supersingular
elliptic curve or abelian variety. However, we describe bilinear maps and the
related mathematics in a more general format here.

Let G1 and G2 be two cyclic groups of some large prime order q. We write
G1 additively and G2 multiplicatively.

Admissible pairings: We will call ê an admissible pairing if ê : G1×G1 → G2

is a map with the following properties:

1. Bilinear: ê(aQ, bR) = ê(Q,R)ab for all Q,R ∈ G1 and all a, b ∈ Z.
2. Non-degenerate: ê(Q,R) �= 1 for some Q,R ∈ G1.
3. Computable: There is an efficient algorithm to compute ê(Q,R) for any
Q,R ∈ G1.

Notice that ê is also symmetric – i.e., ê(Q,R) = ê(R,Q) for all Q,R ∈ G1 –
since ê is bilinear and G1 is a cyclic group.

2.2 Computational Assumptions

The security of our schemes is based on the assumed hardness of the computa-
tional Diffie-Hellman (CDH) problem in G1.

Definition 1 (Computational Diffie-Hellman Problem in G1 (CDHG1

Problem)). Given P, aP, bP ∈ G1, as well as an admissible pairing ê : G1 ×
G1 → G2, compute abP (for unknown randomly chosen a, b ∈ Z/qZ).

Identity-Based Aggregate Signatures 263

An algorithm A has an advantage ε in solving CDHG1 if Pr[A(P, aP, bP) =
abP] ≥ ε, where the probability is over the choice of P in G1, the random scalars
a and b in Zq, and the random bits used by A. Our computational assumption
is now formally defined as follows.

Definition 2 (ComputationalDiffie-HellmanAssumption in G1 (CDHG1

Assumption)). We say that the (t, ε)-CDHG1 Assumption holds if no t-time algo-
rithm A has advantage ε in solving the CDHG1Problem.

We may occasionally refer to the CDHG1 Assumption without specifying t or ε.
The CDHG1 Assumption underlies the security of numerous cryptosystems (e.g.,
[BLS01, BGLS03, CC03]), and is weaker than other commonly-used assumptions
relating to bilinear maps, such as the “Bilinear Diffie-Hellman” assumption used
in Boneh-Franklin (given P, aP, bP, cP ∈ G1 and the bilinear map ê : G1×G1 →
G2, it is hard to compute ê(P,P)abc ∈ G2).

3 Identity-Based Aggregate Signatures

We now define the procedures involved in an IBAS scheme, and thereafter specify
what it means for IBAS scheme to be secure.

3.1 Components of an Identity-Based Aggregate Signature

An IBAS scheme is composed of five algorithms: key generation by the PKG,
private key extraction by the PKG for individual users, signing by an individual
user, aggregation of multiple individual signatures or aggregates of signatures,
and verification of an identity-based aggregate signature:

– KeyGen takes 1λ as input and outputs a suitable key pair (Pk,Sk).
– KeyExt takes Sk and a user identity IDi as input and outputs a user private

key USki.
– Sign takes USki, message mi and possibly some state information w as input

and outputs an individual identity-based signature σi.
– Agg takes as input Pk, w, two sets of identity-message pairs S1 and S2,

and two identity-based (aggregate) signatures σS1 and σS2 on the identity-
message pairs contained in sets S1 and S2 respectively; if Verify(Pk, w,S1, σS1)
= Accept and Verify(Pk, w,S2, σS2) = Accept, it outputs the identity-based
aggregate signature σS1∪S2 on the identity-message pairs in S1 ∪ S2 (where
identity-message pairs may be repeated).

– Verify takes as input Pk, w, an identity-based aggregate signature σS , and a
description of the identity-message pairs in set S, and outputs Accept if and
only if σS could be a valid output of Sign or Agg for Pk, w and S.

Remark 1. Depending on the instantiation, the state information w may be
empty. Also, it is possible that Sign and Agg may be inseparably combined
into a single step in certain instantiations – e.g., if the IBAS scheme permits
only sequential aggregation.

264 C. Gentry and Z. Ramzan

3.2 Security Model

An IBAS scheme should be secure against existential forgery under an adaptive-
chosen-message and an adaptive-chosen-identity attack. Informally, existential
forgery here means that the adversary attempts to forge an identity-based ag-
gregate signature on identities and messages of his choice.

We formalize the identity-based aggregate signature model as follows. The
adversary’s goal is the existential forgery of an aggregate signature. We give
the adversary the power to choose the identities on which it wishes to forge a
signature, the power to request the identity-based private key on all but one of
these identities, and the power to choose the state w used in its forgery. The
adversary is also given access to a signing oracle on any desired identity. The
adversary’s advantage AdvIBASA is defined as its probability of success (taken
over the coin tosses of the key-generation algorithm and of A) in the following
game.
Setup: The adversary A is given the public key Pk of the PKG, an integer n,
and any other needed parameters.
Queries: Proceeding adaptively, A may choose identities IDi and request the
private key USki. Also, A may request an identity-based aggregate signature σS

on (Pk, w,S, {mi}k−1
i=1) where S = {IDi}k−1

i=1 . We require that A has not made a
query (Pk, w,S′, {m′

i}k−1
i=1) where IDi ∈ S ∩ S′ and m′

i �= mi.

Response: For some (Pk, {IDi}l
i=1, {mi}l

i=1) for l ≤ n, A outputs an identity-
based aggregate signature σl.
A wins if σl is a valid signature on (Pk, {IDi}l

i=1, {mi}l
i=1), and the signature is

nontrivial – i.e., for some i, 1 ≤ i ≤ l, A did not request the private key for IDi

and did not request a signature including the pair (IDi, mi).

Definition 3. An IBAS adversary A (t, ε, n, qH , qE , qS)-breaks an IBAS scheme
in the above model if: for integer n as above, A runs in time at most t; A makes
at most qH hash function queries, at most qE private key extraction queries and
at most qS signing oracle queries; and AdvIBASA is at least ε.

Definition 4. An IBAS scheme is (t, ε, n, qH , qE , qS)-secure against existential
forgery if no adversary (t, ε, n, qH , qE , qS)-breaks it.

4 An Identity-Based Multisignature Scheme

Before presenting our construction of an IBAS scheme, we address, as a step-
ping stone, the simpler problem of constructing an identity-based ad-hoc mul-
tisignature scheme. In this scheme, all signers sign the same message, possibly
in a completely decentralized fashion. Thereafter, any subset of the individual
identity-based signatures on the message can be aggregated by anyone in any
order. We use the term “ad hoc” to stress this flexibility.

Interestingly, the individual signatures in this identity-based multisignature
scheme are very similar to one-level hierarchical identity-based signatures as

Identity-Based Aggregate Signatures 265

presented by Gentry and Silverberg [GS02]. We modify their scheme slightly by
hashing the message by itself, rather than together with the signer’s identity,
to enable aggregation; this makes our security reduction slightly looser. This
construction will be instructive as to how one can “aggregate the randomness”
provided by multiple signers. The scheme is as follows.
Setup: The Private Key Generator (PKG) generates parameters and keys es-
sentially as in [GS02]. Specifically, it:

1. generates groups G1 and G2 of prime order q with admissible pairing ê: G1×
G1 → G2;

2. chooses an arbitrary generator P ∈ G1;
3. picks a random s ∈ Z/qZ and sets Q = sP ;
4. chooses cryptographic hash functions H1,H2 : {0, 1}∗ → G1.

The PKG’s public key is (G1, G2, ê,P,Q,H1,H2); its secret is s ∈ Z/qZ.

Private key extraction: The client with identity IDi receives the value sPi

from the PKG as its private key, where Pi = H1(IDi) ∈ G1.

Individual Signing: To sign m, the signer with identity IDi:

1. computes Pm = H2(m) ∈ G1;
2. generates random ri ∈ Z/qZ;
3. computes its signature (S′

i,T
′
i), where S′

i = riPm + sPi and T ′
i = riP .

Aggregation: Anyone can aggregate a collection of individual signatures (on
the same m) into a multisignature. In particular, individual signatures (S′

i,T
′
i)

for 1 ≤ i ≤ n can be aggregated into (Sn,Tn), where Sn =
∑n

i=1 S
′
i and Tn =∑n

i=1 T
′
i .

Verification: Let (Sn,Tn) be the multisignature (where n is the number of
signers). The verifier checks that:

ê(Sn,P) = ê(Tn,Pm)ê(Q,
n∑

i=1

Pi) ,

where Pi = H1(IDi) and Pm = H2(m).
Notice how, although each of the individual identity-based signatures is ran-

domized, the randomness is “aggregated” into the scalar coefficient of Pm, the
element of G1 corresponding to the common message being signed. Notice also
that aggregation is perfectly flexible. Users generate their signatures in a de-
centralized fashion; later, anyone can aggregate them. The users do not need to
maintain any state. Verification requires only three pairing computations (and
n point additions).

In the full version [GR06], we give a proof of the following theorem.

Theorem 1. Let A be an adversary that (t, ε, n, qE, qS)-breaks the identity-based
multisignature scheme. Then, there exists an algorithm B that solves CDHG1 in
time O(t) +O(log3 q) with probability at least ε(1 − 1/q)/64(qE + qS)2.

266 C. Gentry and Z. Ramzan

5 Construction of an Identity-Based Aggregate Signature
Scheme

In our identity-based multisignature scheme, we were able to aggregate the ran-
domness contributed by the individual signers into the scalar coefficient of the
common message point Pm. However, for IBAS, signers may sign distinct mes-
sages, and aggregating the signers’ randomness seems difficult. Our solution to
this problem, at a high level, is simply to create a “dummy message” w that is
mapped to an element Pw of G1 whose scalar coefficient provides a place where
individual signers can aggregate their randomness, and to embed messages into
individual signatures using a different mechanism. The details follow.

Setup: The Private Key Generator (PKG) generates parameters and keys es-
sentially as above. Specifically, it:

1. generates groups G1 and G2 of prime order q and an admissible pairing ê:
G1 × G1 → G2;

2. chooses an arbitrary generator P ∈ G1;
3. picks a random s ∈ Z/qZ and sets Q = sP ;
4. chooses a cryptographic hash functions H1,H2 : {0, 1}∗ → G1 and H3 :

{0, 1}∗ → Z/qZ.

The system parameters are params = (G1, G2, ê,P,Q,H1,H2,H3). The root
PKG’s secret is s ∈ Z/qZ.

Private key generation: The client with identity IDi receives from the PKG
the values of sPi,j for j ∈ {0, 1}, where Pi,j = H1(IDi, j) ∈ G1.

Individual Signing: The first signer chooses a string w that it has never used
before. Each subsequent signer checks that it has not used the string w cho-
sen by the first signer. (Alternatively, different signers may arrive at the same
w independently – e.g., if they issue signatures according to a pre-established
schedule.) To sign mi, the signer with identity IDi:

1. computes Pw = H2(w) ∈ G1;
2. computes ci = H3(mi, IDi, w) ∈ Z/qZ;
3. generates random ri ∈ Z/qZ;
4. computes its signature (w,S′

i,T
′
i), where S′

i = riPw + sPi,0 + cisPi,1 and
T ′

i = riP .

Aggregation: Anyone can aggregate a collection of individual signatures that
use the same string w. For example, individual signatures (w,S′

i,T
′
i) for 1 ≤ i ≤ n

can be aggregated into (w,Sn,Tn), where Sn =
∑n

i=1 S
′
i and Tn =

∑n
i=1 T

′
i .

Our security proof does not permit the aggregation of individual (or aggregate)
signatures that use different w’s.

Verification: Let (w,Sn,Tn) be the identity-based aggregate signature (where
n is the number of signers). The verifier checks that:

Identity-Based Aggregate Signatures 267

ê(Sn,P) = ê(Tn,Pw)ê(Q,

n∑
i=1

Pi,0 +
n∑

i=1

ciPi,1) ,

where Pi,j = H1(IDi, j), Pw = H2(w) and ci = H3(mi, IDi, w), as above.

Remark 2. This scheme is reasonably efficient. Unlike the BGLS [BGLS03] ag-
gregate signature, this scheme requires a constant number of pairing compu-
tations for verification (though the total work is still linear in the number of
signers).

Remark 3. If we were to just set the signature to be sPi,0 + c1sPi,1, then after
two signatures an adversary will likely be able to recover the values of sPi,0

and sPi,1 using linear algebra. The purpose of the one-time-use Pw is to disturb
this linearity, while providing a place where all the signers can “aggregate their
randomness.”

Remark 4. To allow each signer to produce k individual identity-based sig-
natures with a single value of w, we can change private key generation so
that the client with identity IDi receives from the PKG the values of sPi,j

for j ∈ [0, k], where Pi,j = H1(IDi, j) ∈ G1. To sign, the signer computes
cij = H3(mi, IDi, w, j) for 1 ≤ i ≤ k, and sets S′

i = riPw + sPi,0 +
∑k

j=1 cijsPi,j .
The result of the signing procedure is the same, and verification is modified in
the obvious fashion.

Remark 5. It is possible to aggregate individual identity-based signatures even if
the signers have different PKGs, and the security proof goes through. However,
to verify such a multiple-PKG identity-based aggregate signature, the verifier
needs the public key of every PKG. Thus, from a bandwidth perspective, the
single-PKG case is optimal.

6 The Security of Our IBAS Construction

We start by providing some intuition for how an algorithm B can solve a com-
putational Diffie-Hellman problem – i.e., compute sP ′ from P , sP , and P ′ –
by interacting with an algorithm A that breaks our IBAS scheme. The security
proof for the multisignature scheme in the full version [GR06] provides addi-
tional intuition. During the interaction, B must either respond correctly to A’s
queries, or abort. A can make several types of queries:

1. H1 and Extraction Queries: A can ask for the identity-based private keys
sPi,j for j ∈ {0, 1} that correspond to identity IDi. B handles these queries
through its control of the H1 oracle. In particular, it usually generates Pi,j

in such a way that it knows bi,j = logP Pi,j ; then, it can compute sPi,j =
bi,jsP . However, B occasionally sets Pi,j = bi,jP + b′i,jP

′. In this case, B
cannot respond to an extraction query on IDi, but if A later chooses IDi as a
target identity, A’s forgery may help B solve its computational Diffie-Hellman
problem.

268 C. Gentry and Z. Ramzan

2. H2 queries: B, through its control over the H2 oracle, will usually generate
Pw in such a way that it knows dw = logP ′ Pw, but occasionally generates Pw

so that it knows cw = logP Pw instead.
3. H3 and signature queries: B’s control over the H2 and H3 oracles helps

it to respond to signature queries regarding the tuple (IDi, mj , wk) when it
cannot even extract the private key corresponding to IDi. How can B generate
valid and consistent values of Pi,0, Pi,1, Pwk

, di,j,k = H3(IDi, mj , wk), S′
i =

rPwk
+ sPi,0 + dijksPi,1 and T ′

i = rP in such a situation? In particular, how
can it generate S′

i, which seems to require that B know sP ′? If B knows
logP ′ Pw , it can compute the value of r′ such that r′sPw “cancels out” the
multiple of sP ′ that comes from the final two terms; it then sets T ′

i to be r′sP .
If B doesn’t know logP ′ Pw, it has one more trick it can use; occasionally, B
sets dijk to be the unique value in Z/qZ that causes the multiples of sP ′ in
the final two terms to cancel. In this case, B can produce a valid signature.
Once this unique value is revealed for a given IDi, it cannot use this trick
again (otherwise, the simulation will not be convincing to A).

If B is lucky, its simulation does not abort and A produces a forgery on a tuple
(IDi, mj , wk) for which it does not know logP Pi,j , does know logP Pw, and where
dijk was not chosen using the trick above. In this case, A’s forgery gives B the
value of sP ′ with extremely high probability.

The following theorem characterizes the security of our IBAS scheme.

Theorem 2. Let A be an adversary that (t, ε, n, qH3 , qE , qS ,)-breaks the IBAS
scheme. Then, there exists an algorithm B that solves CDHG1 in time O(t) +
O(log3 q) with success probability at least ε/1024qEqS(qH3 − qS).

Proof: Algorithm B is given an instance (P,Q,P ′, ê) (for Q = sP) of the
CDHG1 problem, and will interact with algorithm A as follows in an attempt to
compute sP ′.

Setup: B sets the public key of the PKG to be (G1, G2, ê,P,Q,H1,H2,H3), and
it transmits this key to A. Here the Hi’s are random oracles controlled by B.

Hash Queries: A can make an H1-query, H2-query, or H3-query at any time.
B gives identical responses to identical queries, maintaining lists relating to its
previous hash query responses for consistency. B also maintains H3-list2, which
addresses certain special cases of the H3 simulation. B responds to A’s H1-query
on (IDi, j) as follows:

For A’s H1-query on (IDi, j) for j ∈ {0, 1}:

1. If IDi was in a previous H1-query, B recovers (bi0, b
′
i0, bi1, b

′
i1) from its H1-list.

2. Else, B generates a random H1-coini ∈ {0, 1} so that Pr[H1-coini = 0] = δ1

for δ1 to be determined later. If H1-coini = 0, B generates random bi0, bi1 ∈
Z/qZ and sets b′i0 = b′i1 = 0; else, it generates random bi0, b

′
i0, bi1, b

′
i1 ∈ Z/qZ.

B logs (IDi,H1-coini, bi0, b
′
i0, bi1, b

′
i1) in its H1-list.

3. B responds with H1(IDi, j) = Pij = bijP + b′ijP
′.

Identity-Based Aggregate Signatures 269

For A’s H2-query on wk:

1. If wk was in a previous H2-query, B recovers ck from its H2-list.
2. Else, B generates a random H2-coink ∈ {0, 1} so that Pr[H1-coini = 0] = δ2

for δ2 to be determined later. B generates a random ck ∈ (Z/qZ)∗. It logs
(wk,H2-coink) in its H2-list.

3. If H2-coink = 0, B responds with H2(wk) = Pwk
= ckP

′; otherwise, it re-
sponds with H2(wk) = Pwk

= ckP .

For A’s H3-query on (IDi, mj, wk):

1. If (IDi, mj, wk) was in a previous H3-query, B recovers dijk from its H3-list.
2. Else, B runs an H1-query on (IDi, 0) to recover b′i0 and b′i1 from its H1-list. B

generates a random H3-coinijk ∈ {0, 1} so that Pr[H3-coinijk = 0] = δ3 for
δ3 to be determined later.
(a) If H1-coini = 1, H2-coink = 1, and H3-coinijk = 0, B checks whether

H3-list2 contains a tuple (IDi′ , mj′ , wk′) �= (IDi′ , mj′ , wk′) with IDi′ =
IDi. If so, B aborts. If not, it puts (IDi, mj , wk) in H3-list2 and sets
dijk = −b′i0/b′i1(modq).

(b) If H1-coini = 0, H2-coink = 0, or H3-coinijk = 1, B generates a random
dijk ∈ (Z/qZ)∗.

(c) B logs (IDi, mj , wk,H3-coinijk, dijk) in its H3-list.
3. B responds with H3(IDi, mj , wk) = dijk .

Extraction Queries: When A requests the private key corresponding to IDi,
B recovers (H1-coini, bi0, b

′
i0). If H1-coini = 0, B responds with (sPi,0, sPi,1) =

(bi0Q, bi1Q). If H1-coini = 1, B aborts.

Signature Queries: When A requests a (new) signature on (IDi, mj , wk), B
first confirms that A has not previously requested a signature by IDi on wk

(otherwise, it is an improper query). Then, B proceeds as follows:

1. If H1-coini = H2-coink = H3-coinijk = 1, B aborts.
2. If H1-coini = 0, B generates random r ∈ Z/qZ and outputs the signature

(wk,S′
i,T

′
i), where S′

i = sPi,0 + dijksPi,1 + rPwk
= bi0Q + dijkbi1Q + rPwk

and T ′
i = rP .

3. If H1-coini = 1 and H2-coink = 0, B generates random r ∈ Z/qZ and outputs
the signature (wk,S′

i,T
′
i), where

S′
i = sPi,0 + dijksPi,1 + (r − (b′i0 + dijkb′i1)sc

−1
k)Pwk

= bi0Q+ b′i0sP
′ + dijkbi1Q+ dijkb′i1sP

′ + rckP
′ − (b′i0 + dijkb′i1)sP

′

= bi0Q+ dijkbi1Q+ rckP
′, and

T ′
i = (r − (b′i0 + dijkb′i1)sc

−1
k)P = rP − (b′i0 + dijkb′i1)c

−1
k Q .

4. If H1-coini = H2-coink = 1 and H3-coinijk = 0, B generates random r ∈
Z/qZ and outputs the signature (wk,S′

i,T
′
i), where T ′

i = rP , and

S′
i = sPi,0 + dijksPi,1 + rPwk

= bi0Q+ b′i0sP
′ + dijkbi1Q− (b′i0/b′i1)b

′
i1sP

′ + rckP

= bi0Q+ dijkbi1Q+ rckP .

270 C. Gentry and Z. Ramzan

A’s Response: Finally, with probability at least ε, A outputs {IDi}l
i=1 and

{mj}l
j=1 with l ≤ n, and string wK , such that there exists I, J ∈ [1, l] such

that it has not extracted the private key for IDI or requested a signature for
(IDI , mJ , wK). In addition, it also outputs an identity-based aggregate signature
(wK ,Sl,Tl) satisfying the equation

ê(Sl,P) = ê(Tl,PwK)ê(sP,

l∑
i=1

Pi,0 +
l∑

i=1

ciPi,1) ,

where Pi,b = H1(IDi, b), PwK = H2(wK) and ci = H3(mj , IDi, wK) as required.

B’s Final Action: If it is not the case that the above (I, J,K) can satisfy H1-
coinI = H2-coinJ = H3-coinIJK = 1, then B aborts. Otherwise, it can solve its
instance of CDHG1 with probability 1− 1/q as follows.

A’s forgery has the form (Sl,Tl), where Tl = rP and Sl = rPwK +
∑l

i=1 sPi,0+
cisPi,1, where we let ci = H3(IDi, mj , wK) be the hash of the tuple “signed” by
the entity with identity IDi. Since H2-coink = 1, B knows the discrete logarithm
cK of PwK with respect to P . It can therefore compute:

Sl − cKTl =
l∑

i=1

sPi,0 + cisPi,1 = s

(
l∑

i=1

bi,0P + b′i,0P
′ + ci(bi,1P + b′i,1P

′)

)

= s

(
l∑

i=1

(bi,0 + cibi,1)

)
P + s

(
l∑

i=1

(b′i,0 + cib
′
i,1)

)
P ′ .

If H1-coini = H3-coinijk = 1 for at least one of the signed tuples, then the
probability that

∑l
i=1(b

′
i,0 + cib

′
i,1) �= 0 is 1 − 1/q; if

∑l
i=1(b

′
i,0 + cib

′
i,1) �= 0, B

can easily derive sP ′ from the expression above.
We now demonstrate that the above simulation is perfect. The analysis as-

sumes that A makes no redundant queries and that A must make an H3 query
on a tuple (IDi, mj, wk) before making a signature query on it. Let E represent
the set of extraction query responses that B has made up to a specified point in
the simulation; similarly, let S be the set of signature query responses, and Hi be
the set of Hi query responses for i ∈ {1, 2, 3}. Let E1,∗,∗ be the event that H1-
coini = 1; here, “*” means that H2-coink and H3-coinijk may each be 0 or 1. Let
E1,1,∗, E1,1,1 and E1,1,0 denote the corresponding events in the obvious way.

Perfect Simulation: We claim that, if B does not abort, A’s view is the same
as in the “real” attack. In the “real” attack, each of the hash functions Hi

behave like random functions. Then, given the values of Pi,j = H1(IDi, j), Pwk
=

H2(wk), and dijk = H3(IDi, mj , wk), we choose a signature uniformly from:

{(wk,S′
i,T

′
i) : S′

i = sPi,0 + dijksPi,1 + rPw ,T ′
i = rP, r ∈ Z/qZ}.

Similarly, in the simulation, we choose a signature uniformly from {(wk,S′
i,T

′
i) :

S′
i = sPi,0+dijksPi,1+rPw,T ′

i = rP, r ∈ Z/qZ} given values of Pi,j = H1(IDi, j),
Pwk

= H2(wk), and dijk = H3(IDi, mj, wk). Also, the Hi behave like random

Identity-Based Aggregate Signatures 271

functions – i.e., they are one-to-one and the outputs are chosen with uniform
distribution. The only case in which this may not be obvious is when H1-coini =
H2-coink = 1 and H3-coinijk = 0. In this case, unless A has made a previous
H3 query on (IDi, mj′ , wk′) �= (IDi, mj , wk) for which H1-coini = H2-coink′ = 1
and H3-coinij′k′ = 0 (in which case B aborts), B sets H3(IDi, mj , wk) to be
−b′i0/b′i1(modq) (rather than choosing the H3 output uniformly randomly).

However, the value of −b′i0/b′i1(modq) is itself uniformly random. More
specifically, given A’s view up until the H3 query on (IDi, mj , wk) – namely,
the sets E , S, and {Hi} – we have that

Pr[H3(IDi, mj , wk) = c | E ,S,H1,H2,H3,E1,1,0] = 1/q

for every c ∈ Z/qZ, as long as B does not abort. Most surprisingly, the value
H3(IDi, mj , wk) = −b′i0/b′i1(modq) is independent of an H1 query response on
IDi even though H1(IDi, j) = bijP +b′ijP

′, since, given H1(IDi, 0) = bi0P +b′i0P
′,

the pairs (bi0, b
′
i0) with b′i0 = logP ′(H1(IDi, 0)) − bi0 logP ′(P) are equally likely.

It should be clear that the value of H3(IDi, mj, wk) is also independent of H1

queries on identities other than IDi, all extraction query responses (since they
are completely dependent on H1 query responses), all H2 queries, all H3 queries
on tuples other than (IDi, mj , wk) (again, assuming B does not abort), and all
signature queries on tuples other than (IDi, mj , wk).

To complete the proof, we need to bound from below the probability that B
aborts. The details are provided in the full version [GR06].

7 Summary and Open Problems

We presented an IBAS scheme which allows distinct signers to sign distinct doc-
uments in such a way that the total information needed to verify the signatures
is about as close as possible to the information-theoretic minimum. The aggre-
gate signature can be generated in a completely decentralized fashion, without
requiring a complicated setup procedure. Our scheme was quite efficient - requir-
ing only 4 elliptic curve scalar multiplications and 2 point additions for signature
generation; 2 extra point additions for aggregation; and 3 pairing computations
(independent of the number of signers), 1 point multiplication, 2n−1 point addi-
tions, and n scalar multiplication (where n is the number of signatures that are
aggregated) for verification. Verification in our scheme is much faster than the
BGLS aggregate signature scheme [BGLS03] which requiresO(n) pairing compu-
tations. Further, our scheme allows aggregation even if the signers have different
PKGs. Finally, our scheme is provably secure in the random oracle model under
Computational Diffie-Hellman against an adversary who could choose both its
target identities and messages adaptively.

It may be possible to construct practical IBAS schemes using different ap-
proaches and assumptions – e.g., based on strong RSA – but, again, aggregating
individual signer randomness is a problem. With strong RSA, one might even
consider a deterministic scheme, roughly as follows. The PKG publishes a mod-
ulus N , a base a ∈ Z∗

N , and hash functions H1 : {0, 1}∗ → {0, 1}d (e.g., d = 160)

272 C. Gentry and Z. Ramzan

and H2 : {0, 1}∗ → P (where P is a suitable set of prime numbers). To a user
with identity IDi who wants to generate up to t signatures, the PKG gives the
value a1/Pi(modN), where Pi =

∏k∈[1,d]
j∈[1,t] H2(IDi, j, k). To sign m for its j-th

signature, the user computes a1/Pi,j,m(modN) for

Pi,j,m =
k∈[1,d]∏

H2(IDi, j, k)H1(IDi,j,m)k ,

where H1(IDi, j, m)k is the k-th bit of H1(IDi, j, m). With this approach the “de-
accumulation” that a user performs is computationally-intensive if t is reasonably
large. One could amortize the expense of de-accumulation by using tree-traversal
(pebbling-type) techniques – e.g., as described in [Szy04] – but this restricts the
users to using the j-values in order, which makes it less likely that distinct users
will use the same j, which increases the amount of verification information.

References

[BA05] K.C. Barr and K. Asanovic. Energy aware lossless data compression. In
Proc. of Mobisys 2005, 2005.

[BF03] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. of Computing, 32(3):586–615, 2003.

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifi-
ably encrypted signatures from bilinear maps. In Proc. of Eurocrypt 2003,
volume 2656 of LNCS, pages 416–432. Springer-Verlag, 2003.

[BLS01] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.
In Proc. of Asiacrypt 2001, volume 2248 of LNCS, pages 514–532. Springer-
Verlag.

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security
proofs for identity-based identification and signature schemes. In Proc.
of Eurocrypt 2004, volume 3027 of LNCS, pages 268–286. Springer-Verlag,
2004.

[Bol03] A. Boldyreva. Efficient threshold signature, multisignature and blind signa-
ture schemes based on the gap-Diffie-Hellman-group signature scheme. In
Proc. of PKC 2003, volume 2567 of LNCS, pages 31–46. Springer-Verlag,
2003.

[Boy03] X. Boyen. Multipurpose identity-based signcryption (a swiss army knife
for identity-based cryptography). In Proc. of Crypto 2003, volume 2729 of
LNCS, pages 383–399. Springer-Verlag, 2003.

[BZ04] J. Baek and Y. Zheng. Identity-based threshold signature scheme from the
bilinear pairings. In Proc. of ITCC (1), pages 124–128, 2004.

[CC03] J.C. Cha and J.H. Cheon. An identity-based signature from gap diffie-
hellman groups. In Proc. of PKC 2003, volume 2567 of LNCS, pages 18–30.

[CLW05] X. Cheng, J. Liu, and X. Wang. Identity-based aggregate and verifiably
encrypted signatures from bilinear pairing. In Proc. of ICCSA 2005, pages
1046–1054, 2005.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues.
In Proc. of IMA Int. Conf. 2001, volume 2260 of LNCS, pages 360–363.

Identity-Based Aggregate Signatures 273

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Proc. of Crypto 1986, volume 263 of
LNCS, pages 186–194. Springer, 1986.

[GR06] C. Gentry and Z. Ramzan. Identity-Based Aggregate Signatures. Full
Version. Cryptology E-print Archive, 2006.

[GQ88] L.C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based sig-
nature scheme resulting from zero-knowledge. In Proc. of Crypto 1988,
volume 403 of LNCS, pages 216–231. Springer-Verlag, 1988.

[GS02] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Proc.
of Asiacrypt 2002, volume 2501 of LNCS, pages 548–566. Springer-Verlag,
2002.

[Her05] J. Herranz. Deterministic identity-based signatures for partial aggre-
gation. Cryptology ePrint Archive, Report 2005/313, 2005. http://

eprint.iacr.org/.
[KLS00] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (secure-bgp).

IEEE J. Selected Areas in Comm., 19(4):582–592, 2000.
[LMRS04] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggre-

gate signatures from trapdoor permutations. In Proc. of Eurocrypt 2004,
volume 9999 of LNCS, pages 74–90. Springer-Verlag, 2004.

[LQ04] B. Libert and J.-J. Quisquater. Identity based undeniable signatures. In
Proc. of CT-RSA 2004, pages 112–125, 2004.

[MNT04] E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets: Im-
mutability for aggregated/condensed signatures. In Proc. of ESORICS
2004, pages 160–176, 2004.

[MOR01] S. Micali, K. Ohta, and L. Reyzin. Accountable subgroup multisignatures
(extended abstract). In Proc. of CCS 2001, pages 245–54. ACM Press,
2001.

[Oka98] T. Okamoto. A digital multisignature scheme using bijective public-key
cryptosystems. ACM Trans. Computer Systems, 6(4):432–441, 1998.

[OO99] K. Ohta and T. Okamoto. Multisignature schemes secure against active
insider attacks. IEICE Trans. Fundamentals, E82-A(1):21–31, 1999.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Proc.
of Eurocrypt. Springer-Verlag, 1996.

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In Proc.
of Crypto 1984, volume 196 of LNCS, pages 47–53. Springer-Verlag, 1984.

[Sho00] V. Shoup. Practical threshold signatures. In Proc. of Eurocrypt 2000,
volume 1807 of LNCS, pages 207–220. Springer-Verlag, 2000.

[SRF+04] T. Suzuki, Z. Ramzan, H. Fujimoto, C. Gentry, T. Nakayama, and R. Jain.
A system for end-to-end authentication of adaptive multimedia content. In
Proc. of Conference on Communications and Multimedia Security, 2004.

[Szy04] M. Szydlo. Merkle tree traversal in log space and time. In Proc. of Euro-
crypt, volume 3027 of LNCS, pages 541–554. Springer-Verlag, 2004.

On the Limitations of the Spread of an

IBE-to-PKE Transformation

Eike Kiltz

CWI Amsterdam, The Netherlands
kiltz@cwi.nl

http://kiltz.net

Abstract. By a generic transformation by Canetti, Halevi, and Katz
(CHK) every Identity-based encryption (IBE) scheme implies a chosen-
ciphertext secure public-key encryption (PKE) scheme. In the same work
it is claimed that this transformation maps the two existing IBE schemes
to two new and different chosen-ciphertext secure encryption schemes,
each with individual advantages over the other.

In this work we reconsider one of the two specific instantiations of the
CHK transformation (when applied to the “second Boneh/Boyen IBE
scheme”). We demonstrate that by applying further simplifications the
resulting scheme can be proven secure under a weaker assumption than
the underlying IBE scheme.

Surprisingly, our simplified scheme nearly converges to a recent encryp-
tion scheme due to Boyen, Mei, and Waters which itself was obtained from
the other specific instantiation of the CHK transformation (when applied
to the “first Boneh/Boyen IBE scheme”). We find this particularly inter-
esting since the two underlying IBE schemes are completely different.

The bottom line of this paper is that the claim made by Canetti,
Halevi, and Katz needs to be reformulated to: the CHK transformation
maps the two known IBE schemes to nearly one single encryption scheme.

1 Introduction

Chosen-ciphertext secure encryption schemes. One of the main fields of
interest in cryptography is the design and the analysis of the security of encryp-
tion schemes in the public-key setting. In this work we consider such schemes for
which one can provide theoretical proofs of security (without relying on heuris-
tics such as the random oracle), but which are also efficient and practical.

The notion of chosen-ciphertext security was introduced by Naor and
Yung [13] and developed by Rackoff and Simon [14], and Dolev, Dwork, and
Naor [9]. In a chosen ciphertext attack, the adversary is given access to a de-
cryption oracle that allows him to obtain the decryptions of ciphertexts of his
choosing. Intuitively, security in this setting means that an adversary obtains (ef-
fectively) no information about encrypted messages, provided the corresponding
ciphertexts are never submitted to the decryption oracle. For different reasons,
the notion of chosen-ciphertext security has emerged as the “right” notion of
security for encryption schemes.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 274–289, 2006.
c© International Association for Cryptologic Research 2006

On the Limitations of the Spread of an IBE-to-PKE Transformation 275

As an example of an encryption scheme that meets this strong security prop-
erty in the standard model we have the scheme from Cramer and Shoup [7, 8]
which was recently improved by Kurosawa and Desmedt [11]. Until 2004 the
Cramer-Shoup scheme and its variants remained basically the only practical
schemes with such strong security properties that could be proved secure in the
standard model (under a reasonable complexity-theoretic assumption).

From identity-based Encryption to Chosen-Ciphertext Secure
Encryption. One of the recent celebrated applications of identity-based encryp-
tion (IBE) is the work due to Canetti, Halevi, and Katz [6, 2] showing an elegant
black-box transformation from any IBE (plus a one-time signature) into an en-
cryption scheme without giving up its efficiency. We will refer to this as the CHK
transformation. If the IBE scheme is weakly (selective-identity) chosen-plaintext
secure then the resulting encryption scheme is chosen-ciphertext secure. Efficient
constructions of IBE schemes in the standard model were recently developed by
Boneh and Boyen [1] so the CHK transformation provides further alternative
instances of chosen-ciphertext secure encryption schemes in the standard model.

Boneh and Katz [4] later improve the efficiency of the CHK transformation
by basically replacing the one-time signature by a message authentication code
(MAC). The latter BK transformation results in shorter ciphertexts and more
efficient encryption/decryption.

Specific instantiations of the CHK transformation. Until now there are
only two different identity-based encryption schemes known, both due to Boneh
and Boyen [1]. The CHK transformation maps each individual IBE scheme to a
new chosen-ciphertext secure encryption scheme [6]. In particular, in Chapter 7
of [2] the following two encryption schemes are proposed:

1. IBE-to-PKE[BB1]: the first Boneh/Boyen IBE scheme [1] plugged into the
CHK-transformation

2. IBE-to-PKE[BB2]: the second Boneh/Boyen IBE scheme [1] plugged into
the CHK-transformation

It is claimed in [6, 4, 2] that the two encryption schemes have different properties.
In particular, the second scheme offers more efficient decryption while relying
on a stronger assumption.

Revisiting the IBE-to-PKE[BB1] scheme. Boyen, Mei, and Waters [5] re-
cently revisited the IBE-to-PKE[BB1] scheme, i.e. the encryption scheme ob-
tained from the CHK transformation instantiated with the first IBE scheme
from [1]. By avoiding the CHK transformation they show how to make the re-
sulting scheme more efficient in terms of computational time and ciphertext ex-
pansion. In particular, they come up with a chosen-ciphertext secure encryption
scheme with security based on the Bilinear Decisional Diffie-Hellman (BDDH)
assumption in the standard model.

1.1 Our Results

Revisiting the IBE-to-PKE[BB2] scheme. In this work we reconsider
the IBE-to-PKE[BB2] scheme, i.e. the encryption scheme obtained by the

276 E. Kiltz

CHK-transformation instantiated with the second IBE scheme from Boneh and
Boyen. Similar to the work from [5] we obtain a direct construction avoiding the
CHK transformation. The resulting scheme is again simple and practical.

We can prove security of the resulting encryption scheme with respect to a
weaker assumption than the security assumption needed for the IBE scheme. In
particular, our scheme can be proved secure under the new square Bilinear De-
cisional Diffie-Hellman (square-BDDH) assumption, whereas the original IBE
scheme can only be proved secure under the q-Bilinear Decisional Diffie-Hellman
(q-BDDHI) assumption.1 (We stress that unfortunately our results do not im-
ply that the underlying IBE scheme can be proved secure under this weaker
assumption).

Comparison with the encryption scheme from Boyen, Mei, and
Waters. Surprisingly, our simplified IBE-to-PKE[BB2] encryption scheme turns
out to be (nearly) equivalent to the encryption scheme from Boyen, Mei, and
Waters [5] which itself was a simplification of the IBE-to-PKE[BB1] scheme.

Our main result can be formulated as follows: In contrast to what was
claimed in [6, 4, 2] for the two different IBE schemes BB1 and BB2, we have

IBE-to-PKE[BB1] ≈ IBE-to-PKE[BB2] ,

where “≈” reads “nearly converges to” and will be further explained below. In
other words, the CHK IBE-to-PKE transformation does not seem to spread the
IBE schemes well over all encryption schemes, i.e. the transformation maps the
two different IBE schemes from Boneh and Boyen to nearly the same encryption
scheme.

We stress that the equivalence is not obtained by “simplifying away” all possi-
ble differences between the two schemes. In fact, the “core” of the two schemes is
the same and already the raw schemes IBE-to-PKE[BB1] and IBE-to-PKE[BB2]
can be shown to be equivalent by removing the unnecessary overhead of the two
respective decryption algorithms.

We now explain the meaning of the above “≈”. There is only a small difference
between the two simplified schemes “hidden” in the respective key generation
algorithms. Intuitively, in the BMW construction key generation involves the
generation of one more independent random element (let’s call it y), whereas
our scheme “recycles” the randomness. More precisely, this value y contains
some redundant information and therefore depends on some other element from
the key.

Complexity Theoretic Assumptions. We study the relations between all
mentioned assumptions, in particular showing the (assumption-wise) hierarchy
q-BDDHI (for any q ≥ 1) implies square-BDDH implies BDDH.

Discussion. We study the spread of the CHK transformation, i.e. how well the
CHK transformation spreads different IBE schemes over the set of all encryp-
tion schemes. Our results indicate that the CHK transformation maps the two
1 Here q is an upper bound on the decryption queries made by an adversary attacking

the choosen-ciphertext security of the scheme.

On the Limitations of the Spread of an IBE-to-PKE Transformation 277

different IBE schemes to one single encryption scheme. Unfortunately these two
IBE schemes are the only IBE schemes we know until today.

In light of the number of different encryption schemes secure against chosen-
ciphertext attacks in the standard model the implication of our result is purely
destructive. Due to its similarities we propose to “remove” the IBE-to-PKE[BB2]
scheme from our toolbox of different practical encryption schemes: instead of two
we only get one new scheme from identity-based techniques.

From a theoretical side we find it interesting that two completely different
identity-based encryption schemes finally lead to very similar encryption schemes
after applying the CHK transformation and some simplifications. Again we stress
that this does not imply that the two different IBE schemes from [1] also converge
to one (and there are reasons that they don’t).

Presentation. To simplify our presentation all schemes will be described as key
encapsulation mechanisms rather than full public-key encryption schemes. We
remark that since a secure key encapsulation mechanism plus a secure symmetric
encryption scheme implies secure public-key encryption this is a more general
concept.

In Section 2 we formally define the concept of a key encapsulation mechanism.
Next, in Section 3 we state all relevant complexity-theoretic assumptions and clas-
sify them by their strength. The two schemes, the original one by Canetti, Halevi,
and Katz, and our proposed simplification are presented in Section 4. We conclude
this paper with an efficiency comparison of the two schemes in Section 5.

2 Notation and Definitions

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s

$← S
denotes the operation of picking an element s from S uniformly at random.
We write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . .

and by z
$← A(x, y, . . .) we denote the operation of running A with inputs

(x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate
that A is an algorithm with inputs x, y, . . . and access to oracles O1,O2, . . . and
by z

$← AO1,O2,...(x, y, . . .) we denote the operation of running A with inputs
(x, y, . . .) and access to oracles O1,O2, . . ., and letting z be the output.

We now formally introduce the notions of a key-encapsulation mechanism
together with a security definition.

2.1 Public Key Encapsulation Schemes

A public-key encapsulation mechanism (KEM) KEM = (KEMkg, KEMencaps,
KEMdecaps) with key-space KeySp(k) consists of three polynomial-time
algorithms. Via (pk , sk) $← KEMkg(1k) the randomized key-generation algorithm
produces keys for security parameter k ∈ N; via (K,C) $← KEMencaps(pk)
a key K ∈ KeySp(k) together with a corresponding ciphertext C is created;

278 E. Kiltz

via K ← KEMdecaps(sk ,C) the possessor of secret key sk decrypts ciphertext
C to get back a key. For consistency, we require that for all k ∈ N, and all
(K,C) $← KEMencaps(pk) we have Pr [KEMdecaps(sk ,C) = K] = 1, where the
probability is taken over the choice of (pk , sk) $← KEMkg(1k), and the coins of
all the algorithms in the expression above.

Formally, we associate with an adversary A the following experiment:

Experiment Expkem-cca
KEM ,A (k)

(pk , sk) $← KEMkg(1k)
K∗

0
$← KeySp(k) ; (K∗

1 ,C ∗) $← KEMencaps(pk)
δ

$← {0, 1}
δ′

$← ADec(pk ,K∗
δ ,C ∗)

If δ �= δ′ then return 0 else return 1

where the oracle Dec(C) returns K $← KEMdecaps(sk ,C) with the restriction
that A is not allowed to query oracle Dec(·) for the target ciphertext C ∗. We
define the advantage of A in the experiment as

Advkem-cca
KEM ,A (k) =

∣∣∣∣Pr
[
Expkem-cca

KEM ,A (k) = 1
]
− 1

2

∣∣∣∣ .
A KEM scheme KEM is said to be secure against adaptively-chosen ciphertext
attacks if the advantage function Advkem-cca

KEM ,A (k) is a negligible function in k for
all polynomial-time adversaries A.

2.2 Target Collision Resistant Hash Functions

Let (CRs)s∈S be a family of hash functions for security parameter k and with seed
s ∈ S = S(k). F is said to be collision resistant if, for a hash function CR = CRs

(where the seed is chosen at random from S), it is infeasible for any polynomial-
time adversary to find two distinct values x �= y such that CR(x) = CR(y).

A weaker notion is that of target collision resistant hash functions. Here it
should be infeasible for a polynomial-time adversary to find, given a randomly
chosen element x and a randomly drawn hash function TCR = TCRs, a distinct
element y �= x such that TCR(x) = TCR(y). (In collision resistant hash functions
the value x may be chosen by the adversary.) Such hash functions are also called
universal one-way hash functions [12] and can be built from arbitrary one-way
functions [12, 15]. We define

Advhash-tcr
TCR,A (k) = Pr[A finds a collision].

Hash function family TCR is said to be a target collision resistant if the advan-
tage function Advhash-tcr

TCR,A is a negligible function in k for all polynomial-time
adversaries A.

3 Assumptions

In this section we give a parameter generating algorithm for bilinear groups and
pairings and state our complexity assumptions.

On the Limitations of the Spread of an IBE-to-PKE Transformation 279

3.1 Parameter Generation Algorithms for Bilinear Groups

The scheme will be parameterized by a bilinear parameter generator. This is a
polynomial-time algorithm BilinGen that on input 1k returns the description of
a multiplicative cyclic group G1 of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group GT of the same order, a random
element g that generates G1, and a bilinear pairing ê: G1 × G1 → GT . This
bilinear pairing should be efficiently computable and satisfy the conditions below.

Bilinear: For all g, h ∈ G1, x, y ∈ Z, ê(gx, hy) = ê(g, h)xy

Non-degenerate: ê(g, g) �= 1G2

We use G∗
1 to denote G1 \ {0}, i.e. the set of all group elements except the

neutral element. Throughout the paper we use BG = (G1, GT , p, ê, g) (obtained
by running BilinGen) as shorthand for the description of bilinear groups.

3.2 The Square BDDH Assumption

Let BG be the description of bilinear groups and let g ∈ G1 be a random element
from group G1. Consider the following problem: Given (g, ga, gb,W) ∈ G3

1 ×GT

as input, output yes if W = ê(g, g)a2b and no otherwise. More formally we
associate with an adversary B the following experiment:

Experiment Expsbddh
BilinGen,B(1k)

BG $← BilinGen(1k)
a, b, w

$← Z∗
p

γ
$← {0, 1} ; if γ = 0 then W ← ê(g, g)a2b else W ← ê(g, g)w

γ′
$← B(1k, BG , g, ga, gb,W)

If γ �= γ′ then return 0 else return 1
We define the advantage of B in the above experiment as

Advsbddh
BilinGen,B(k) =

∣∣∣∣Pr
[
Expsbddh

BilinGen,B(1k) = 1
]
− 1

2

∣∣∣∣ .
We say that the Square Bilinear Decision Diffie-Hellman (square BDDH) as-
sumption relative to generator BilinGen holds if Advsbddh

BilinGen,B is a negligible func-
tion in k for all polynomial-time adversaries B.

3.3 The BDDH Assumption

Let BG be the description of bilinear groups and let g ∈ G1 be a random
element from group G1. Consider the following problem formalized by Boneh
and Franklin [3]: Given (g, ga, gb, gc,W) ∈ G4

1 × GT as input, output yes if
W = ê(g, g)abc and no otherwise. The corresponding BDDH assumption can be
formalized the same way as the square BDDH assumption in the last paragraph.

3.4 The q-BDDHI Assumption

Let BG be as above and let z ∈ G1 be a random element from group G1. For
a function q = q(k) ≥ 1 polynomial in the security parameter k consider the

280 E. Kiltz

following problem introduced by Boneh and Boyen [1]: Given (z, zy, z(y2), . . . ,
z(yq),W) ∈ Gq+1

1 ×GT as input, output yes if W = ê(z, z)1/y and no otherwise.

3.5 Relation Between the Assumptions

The next lemma classifies the strength of the different assumptions we intro-
duced. Here “A ≤ B” means that assumption B implies assumption A, i.e. as-
sumption B is a stronger assumption than A.

Lemma 1. BDDH ≤ square BDDH ≤ 1-BDDHI ≤ 2-BDDHI . . .

In partiuclar this means that square BDDH is a stronger assumption than
BDDH, but weaker than q-BDDHI (for any q ≥ 1). The simple proof of Lemma 1
is postponed until Appendix B.

4 Key Encapsulation Based on the Second Boneh/Boyen
IBE Scheme

In this section we revisit the encryption scheme from [6, 4] obtained by applying
the CHK transformation to the second Boneh/Boyen IBE scheme from [1]. As
already mentioned in the Introduction the scheme is presented as a key encap-
sulation mechanism (KEM) instead of an encryption scheme as in the original
paper. After reminding the reader of the original scheme we then move on to
present our simplifications.

For both schemes let the global system parameters be BG = (G1, GT , p, ê, g),
a random bilinear group obtained by running BilinGen(1k).

4.1 CHK2: The Original Scheme from [6]

In this construction, we use a one-time signature scheme OTS = (Skg, Sign, Vfy).
The key generation algorithm Skg is run to obtain a random pair of verifica-
tion/signing keys (v , s) $← Skg(1k); the signing key s is used to sign a message
M to obtain a signature σ

$← Signs(M) on a message M ; using the public veri-
fication key v , a signature σ can be verified by running Vfyv (M, σ). We require
that this scheme be secure in the sense of strong unforgeability, see [6] for exact
definitions and constructions (details can be skipped here).

The key encapsulation mechanism proposed by Canetti, Halevi, and Katz [6]
which we will denote by CHK2 is given in Fig. 1 (in order to simplify the com-
parison, compared to [6] we made some slight change of variables). It is straight-
forward to verify the correctness of the scheme. In terms of security the following
theorem was derived in [6]:

Theorem 2. Assuming the q-BDDHI assumption holds relative to the generator
BilinGen, OTS is a strong, one-time signature scheme, then the KEM from Fig. 1
is chosen-ciphertext secure. Here q = q(k) is an upper bound on the decapsulation
queries made by an adversary attacking the scheme.

On the Limitations of the Spread of an IBE-to-PKE Transformation 281

KEMkg(1k)

x1, x2
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; z ← ê(h2, h2)
pk ← (h1, h2, z) ; sk ← (x1, x2)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

(v , s) $← Skg(1k) ; c2 ← hr
1 · hv·r

2

K ← zr

σ
$← Signs(c1||c2)

C ← (c1, c2, v , σ)
Return (K,C)

KEMdecaps(sk ,C)
Parse C as (c1, c2, v , σ)
If Vfyv(c1||c2, σ) = reject

then return reject.
Else

r′ $← Zp

K ← ê cr′
1 c2, h

1/(v+x1/x2+r′/x2)
2

Fig. 1. The original CHK2 scheme

4.2 CHK2’: An Equivalent Depcapsulation Algorithm

A closer inspection of the decapsulation algorithm of the CHK2 scheme from
Fig. 1 shows that it implicitly rejects inconsistent ciphertexts (i.e., ciphertexts
that were not obtained running the encapsulation algorithm with the correct
public key) by returning a random session key in that case. Once consistency of
the ciphertext is established, recovering the session key can be greatly improved.

For a value v ∈ Zp we have

cx1+x2v
1 = c2 ⇔ ê(g, cx1+x2v

1) = ê(g, c2)

⇔ ê(gx1+x2v , c1) = ê(g, c2)

⇔ ê(h1h
v
2 , c1) = ê(g, c2).

Therefore it can be publicly verified (using the public key only) if cx1+x2v
1 = c2

by checking if ê(h1h
v
2 , c1) = ê(g, c2). A tuple (c1, c2) meeting this property is

dubbed to be consistent with v . Note that any tuple (c1, c2) correctly generated
by the encapsulation algorithm is always consistent with its verification key v . (A
correctly generated ciphertext has the form C = (c1, c2, v , σ) = (gr, hr

1 ·hvr
2 , v , σ).

Therefore cx1+x2v
1 = (gr)x1+x2v = (gx1)r(gx2v)r = hr

1 · hrv
2 .)

An equivalent way to compute the session keyK, given that the signature was
successfully verified, is as follows: First, a random key K is returned if (c1, c2)
is not consistent with v , i.e. if cx1+x2·v

1 �= c2 which can be checked as bescribed
above. Otherwise, the key is recovered as K = ê(hx2

2 , c1).
We claim that this decapsulation algorithm is equivalent to the one from

CHK2 (Fig. 1). It is easy to verify that

ê(cr′
1 c2, h

1/(v+x1/x2+r′/x2)
2) = ê(hx2

2 , c1)Δ(r′),

where Δ(r′) = (r′ + logc1
c2)/(r′ + x1 + v · x2) is a random element from Zp if

cx1+x2v
1 �= c2 (i.e., if (c1, c2) is not consistent with v) and Δ(r′) = 1 otherwise.

We have seen that if (c1, c2) is consistent with v decapsulation computes the key
K as

282 E. Kiltz

= ê(hx2
2 , gr)1

= ê(h2, g
x2)r

= ê(h2, h2)r = zr ,

as the key computed in the encapsulation algorithm. This shows correctness.
We note that, equivalently, instead of returning a random key K the decap-

sulation algorithm could as well reject the ciphertext.

4.3 CHK2”: Our Simplification

In this section we show how to avoid the one-time signature scheme by replacing
it with a (determinstic) target collision resistant hash function applied to parts
of the ciphertext. We note that the usage of the hash function is somewhat
reminiscent of the Cramer/Shoup scheme [7].

Let TCR : G1 → Zp be a target collision resistant hash function. Our simplifi-
cation of the above construction is depicted in Fig. 2.Correctness of decapsulation
follows from the correctness of the last scheme.

KEMkg(1k)

x1, x2
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; z ← ê(h2, h2)
pk ← (h1, h2, z) ; sk ← (x1, x2, y = hx2

2)

Return (pk , sk)
KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

v ← TCR(c1) ; c2 ← hr
1 · hv·r

2

K ← zr

C ← (c1, c2)
Return (C ,K)

KEMdecaps(sk ,C)
Parse C as (c1, c2)
v ← TCR(c1)

If cx1+x2·v
1 �= c2 then reject

Else K ← ê(y, c1)
Return K

Fig. 2. CHK2”: Our simplification of CHK2

Let C = (c1, c2) be an arbitrary ciphertext and let v = TCR(c1). We call C
consistent if it passes the verification check in the decapsulation algorithm, i.e.
if cx1+x2v

1 = c2. By the discussion above we note that our KEM allows for public
verification of the consistency of a ciphertext by testing if ê(h1h

v
2 , c1) = ê(g, c2).

This public consistency check will play a crucial role in the proof of security. We
note that the original CHK2 scheme from Fig. 1 already has a similar public
verification property (using the one-time signature scheme).

4.4 Security

Theorem 3. Assume TCR is a target collision resistant hash function. Under
the square BDDH assumption relative to the generator BilinGen the KEM from
Fig. 2 is secure against chosen-ciphertext attacks.

On the Limitations of the Spread of an IBE-to-PKE Transformation 283

The security reduction is tight. The proof of Theorem 3 is given in Appendix A.
We will try to provide some intuition instead.

Security of the scheme CHK2’. Let C ∗ = (c∗1, c
∗
2, v

∗, σ∗) be the challenge
ciphertext output by the simulator in the security experiment. It is clear that,
without any decryption oracle queries, the value of the bit δ remains hidden to
the adversary. This is so because (c∗1, c

∗
2) comes from a chosen-plaintext secure

encryption scheme, v∗ is independent of the message, and σ∗ is the result of
applying the one-time signing algorithm to c∗1||c∗2.

We claim that decryption oracle queries cannot further help the adversary in
guessing the value of δ. Consider an arbitrary ciphertext query (c1, c2, v , σ) �=
(c∗1, c

∗
2, v

∗, σ∗) made by the adversary during the experiment. If v = v∗ then
(c1, c2, σ) �= (c∗1, c∗2, σ∗) and the decryption oracle will answer reject since the
adversary is unable to forge a new valid signature σ with respect to v∗. Now
let v �= v∗. Intuitively, a query with v �= v∗ does not help the adversary since
the underlying IBE scheme is selective-identity secure. In a nutshell, this IBE
security property exactly translates to what we need here. I.e, any decryption
query made for the “identity” v distinct from “target identity” v∗ (which is is
completely independent of the adversary’s view until it sees the target ciphertext;
therefore the simulator may as well choose v∗ in the beginning of the experiment)
does not help the adversary further. Details will be given in the proof.

Security of the scheme CHK2”. To argue for security we again claim that
decryption oracle queries cannot further help the adversary in guessing the value
of δ. If v �= v∗ we can still argue as in the CHK2’ scheme. If v = v∗ then by the
target collision resistance of TCR we may assume c1 = c∗1. In this case consistency
implies c∗2 = c2 and therefore C ∗ = C .

5 Comparison and Efficiency

5.1 Relation Between CHK2 and CHK2”

In terms of functionality of the CHK2” scheme we note that the element y =
hx2

2 is contained in the secret key for the sole reason of improving efficiency of
decapsulation when recovering the key as K = ê(hx2

2 , c1) = ê(y, c1). Apart from
that, key-generation is equivalent to the CHK2 scheme from Section 4.1.

The value y gives rise to a tradeoff between the length of the secret key
and decryption speed. In particular, the secret value y = hx2

2 can always be
reconstructed by the owner of the secret key on-line during decapsulation. This
variant makes the secret-key one element shorter with the drawback of one more
exponentiation during decapsulation.

Every IBE scheme can be viewed as a more general concept, a tag-based
encryption (TBE) scheme. It was recently shown [10] that TBE is already suffi-
cient for the CHK transformation to obtain a chosen-ciphertext secure encryp-
tion scheme. We note that the TBE scheme implied by the BB2 IBE scheme
already can be proved secure under the (weaker) square BDDH assumption
meaning that the original CHK2 scheme is also secure under square BDDH. To

284 E. Kiltz

be more precise, in the transformation chain IBE ⇒ TBE ⇒ “chosen-ciphertext
secure encryption”, the security improvement is already obtained after the first
implication.

5.2 Relation Between CHK1” and CHK2”

As we instantly notice, our CHK2” scheme from Section 4.3 is very similar to
the scheme from Boyen, Mei, and Waters [5] which we will refer to as CHK1”.
(For completeness we remind the reader of CHK1” in Appendix C.) Let us point
out the differences.

The only difference is that the key generation algorithm of CHK1” chooses (in
an information theoretical sense) a new independent secret value y. In contrast,
our scheme derives the secret value y = hx2

2 from h2 and x2, i.e. the secret key
contains some redundant information. (The sole reason the value y is included
in our scheme is to save one exponentiation in the decapsulation algorithm.)
This dependence of y is the reason why we need a stronger assumption to prove
security. Performance of the two KEMs is exactly the same.

5.3 Relation Between CHK1 and CHK2

We denote by CHK1 the scheme obtained by plugging the first Boneh/Boyen IBE
scheme into the CHK transformation. We note that the CHK1 scheme (which
for completeness is also presented in Appendix C) is already equivalent to the
CHK2 scheme.

Similar to our scheme CHK2’ between CHK2 and CHK2” from Section 4.4
(which was equivalent to CHK2) we can also build a scheme CHK1’ between
CHK1 and simple CHK1 scheme that still uses the one-time signature but sim-
plifies decryption by equivalently replacing the original randomized decryption
by a consistency check plus a deterministic computation of the key. Again this
scheme CHK1’ can be shown to be equivalent to CHK1.

Both schemes, CHK1’ and CHK2’ already give nearly the same schemes with
the same small difference as the two schemes CHK1” and CHK2”.

5.4 Efficiency

We summarize our results and present a quick efficiency comparison of our pro-
posed scheme with the original scheme from Canetti, Halevi, and Katz [6].

The scheme CHK2 is the scheme obtained from the second Boneh/Boyen
IBE scheme plugged into the CHK transformation from Section 4.1. We give the
performance values for the more MAC-based BK transformation [4]. The scheme
CHK2” from Section 4.3 is our simplified version of CHK2. For comparison the
schemes CHK1 and its simplified variant CHK1” are given in Appendix C. For
comparison we borrowed some figures from [2, 5]. Ciphertext overhead represents
the difference (in bits) between the ciphertext length and the message length,
and |p| is the length of a group element.

On the Limitations of the Spread of an IBE-to-PKE Transformation 285

Scheme Assumption Encapsulation Decapsulation Ciphertext Keysize
#pairings + #[multi,reg]-exp + ... Overhead (pk, sk)

CHK2” square-BDDH 0 + [1, 2] + TCR 1 + [0, 1] + TCR 2|p| (3, 3)
CHK2 q-BDDHI 0 + [1, 2] + MAC 1 + [0, 2] + MAC 2|p| + 768 (3, 2)
CHK1” [5] BDDH 0 + [1, 2] + TCR 1 + [0, 1] + TCR 2|p| (3, 3)
CHK1 BDDH 0 + [1, 2] + MAC 1 + [1, 0] + MAC 2|p| + 768 (3, 3)

6 Conclusion

We have shown that, after removing an unnecessary decryption overhead, CHK1
is nearly the same scheme as CHK2. Furthermore, their respective simplifications
CHK1” [5] and CHK2” are also nearly the same. This contradicts the statement
from [6, 4, 2] that the two schemes are different schemes, with different perfor-
mance and security properties. In our point of view the fact that the CHK
IBE-to-PKE transformation maps two different IBE schemes to nearly the same
encryption scheme is very surprising.

For any new IBE scheme, even though it seems to be very different from the
two known IBE schemes, care should be taken when claiming that the CHK
transformation applied to it yields a new encryption scheme.

Acknowledgments

We thank Ronald Cramer for proposing the title and the anonymous PKC ref-
erees for their detailed comments. This research was supported by the research
program Sentinels (http://www.sentinels.nl). Sentinels is being financed by
Technology Foundation STW, the Netherlands Organization for Scientific Re-
search (NWO), and the Dutch Ministry of Economic Affairs.

References

1. D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption with-
out random oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 223–238. Springer-Verlag, May 2004.

2. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. Accepted to SIAM Journal on Computing, January
2006.

3. D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

4. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 87–103. Springer-Verlag, Feb. 2005.

5. X. Boyen, Q. Mei, and B. Waters. Simple and efficient CCA2 security from IBE
techniques. In ACM Conference on Computer and Communications Security—CCS
2005, pages 320–329. New-York: ACM Press, 2005.

286 E. Kiltz

6. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 207–222. Springer-Verlag, May 2004.

7. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 13–25. Springer-Verlag, Aug. 1998.

8. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

9. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991.

10. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer-
Verlag, Mar. 2006.

11. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442.
Springer-Verlag, Aug. 2004.

12. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In 21st ACM STOC, pages 33–43. ACM Press, May 1989.

13. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

14. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 433–444. Springer-Verlag, Aug. 1991.

15. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, pages 387–394. ACM Press, May 1990.

A Proof of Theorem 3

Suppose there exists a polynomial time adversary A that breaks the chosen-
ciphertext security of the encapsulation scheme with (non-negligible) advantage
Advkem-cca

KEM ,A (k). We show that there exists an adversary B that runs in about
the same time as A and runs adversary A as a subroutine to solve a random
instance of the square BDDH problem with advantage

Advsbddh
G,B (k) ≥ Advkem-cca

KEM ,A (k) −Advhash-tcr
TCR,H (k) . (1)

Now Eqn. (1) proves the Theorem.
We now give the description of adversary B. Adversary B inputs an instance

of the square BDDH problem, i.e. B inputs the values (1k, BG , g, ga, gb,W).
B’s goal is to determine whether W = ê(g, g)a2b or W is a random element in
GT . Adversary B runs adversary A simulating its view as in the original KEM
security experiment as follows:

Key Generation and Challenge. Initially adversary B picks a random value
d ∈ Z∗

p and defines the target ciphertext

C ∗ = (c∗1 = gb, c∗2 = (gb)d) . (2)

On the Limitations of the Spread of an IBE-to-PKE Transformation 287

and the challenge key as K∗ = W . We denote v = TCR(c∗1) as the target
tag (associated with the target ciphertext). The public key pk = (h1, h2) is
defined as

pk = (h1 = (ga)−v∗
· gd), h2 = ga, z = ê(ga, ga)) . (3)

This implicitly defines the secret key sk = (x1, x2, v) as x2 = a, x1 =
logg(h1) = −v∗a + d, and v = hx2

2 = g(a2) where x1, x2 and v are not
known to adversary B. Note that the public key is identically distributed as
in the original KEM.

With each ciphertext C = (c1, c2) we associate a tag v = TCR(c1). Recall
that we call a ciphertext consistent (i.e., it passes the consistency test in the
decapsulation algorithm) if cx1+x2·v

1 = c2. Note that the way the keys are
setup this condition can be rewritten as

c2 = cx1+x2v
1 = cx2v−v∗x2+d

1 = (cx2
1)v−v∗ · cd

1 . (4)

Given a consistent ciphertext C = (c1, c2) with associated tag v �= v∗ the
session key K = ê(y, c1) can alternatively be computed by Eqn. (4) as

K = ê(y, c1) = ê(hx2
2 , c1) = ê(h2, c

x2
1) = ê(h2, c2/cd

1)
(v−v∗)−1

. (5)

By Eqn. (4) and since v∗ = TCR(c∗1) the challenge ciphertext C ∗ = (c∗1, c
∗
2) =

(gb, (gb)d) = (c∗1, (c
∗
1)

d) is consistent. If W = ê(g, g)a2b then it follows by
Eqn. (3) (since x2 = a and h2 = gx2) that C ∗ = (gb, (gb)d) is a correct ci-
phertext of key K∗ = W = ê(g, g)a2b = ê(ga, ga)b = zb, distributed as in the
original experiment. On the other hand, whenW is uniform and independent
in GT then C ∗ is independent of K∗ = W in the adversary’s view.

Adversary B runs A on input (pk ,K∗,C ∗) answering to its queries as
follows:

Decryption Queries. The KEM decapsulation queries are simulated by B as
follows: Let C = (c1, c2) be an arbitrary ciphertext submitted to the decap-
sulation oracle Dec(·). First B performs a consistency check as explained in
Section 4.3, i.e. it checks if ê(h1h

v
2 , c1) = ê(g, c2) using the bilinear map from

BG . If C is not consistent then B returns reject. Otherwise, if the ciphertext
is consistent B computes v = TCR(c1) and distinguishes the following three
cases:
Case 1. v = v∗ and c1 = c∗1: adversary B rejects the query. In this case con-

sistency (c.f. Eqn. (4)) implies c2 = cd
1 = (c∗1)

d = c∗2 and hence C = C ∗

and the query made by A is illegal. Therefore it may be rejected by B.
Case 2. v = v∗ and c1 �= c∗1: adversary B found a collision c1 �= c∗1 in TCR

with TCR(c1) = TCR(c∗1). In that case B returns the collision and aborts.
Case 3. v �= v∗: adversary B computes the correct session key by Eqn. (5)

as K ← ê(h2, c2/cd
1)

(v−v∗)−1
.

This completes the description of the decapsulation oracle.
We have shown that unless B finds a collision in TCR (Case 2) the simu-

lation of the decapsulation oracle is always perfect, i.e. the output of oracle
Dec(C) is identically distributed as the output of KEMdecaps(sk ,C).

288 E. Kiltz

Guess. Eventually, A outputs a guess δ′ ∈ {0, 1} where δ′ = 1 means that K∗

is the correct key. Algorithm B concludes its own game by outputting γ′ = δ′

where γ′ = 1 means thatW = ê(g, g)a2b and γ′ = 0 means thatW is random.

This completes the description of adversary B.

Analysis. We have shown that as long as there is no hash collision in TCR
found by B, adversary A’s view in the simulation is identically distributed to its
view in the real attack game.

Note that c∗1 is a random element from G1 (provided from outside of B’s view),
therefore finding a value c1 with TCR(c1) = TCR(c∗1) really contradicts to the
security property of the target collision resistant hash function. The probability
that B finds a collision in the hash function TCR is bounded by Advhash-tcr

TCR,H (k),
where H is an adversary against the target collision resistance of TCR, running
in about the same time as B.

Define ”B wins” to be the event that B wins its square BDDH game, i.e. it
outputs δ′ = 1 if W = ê(g, g)a2b and δ′ = 0 if W is random in GT . Assume there
was no hash collision found by B. On the one hand, if W is uniform and indepen-
dent in GT then the challenge ciphertext C ∗ is independent of K∗ = W in the
adversary’s view. In that case we have Pr [B wins] = Pr [δ′ = 0] = 1

2 . On the
other hand, when W = ê(g, g)a2b then C ∗ is a correct ciphertext of the challenge
key K∗, distributed as in the original experiment. Then, by our assumption, A
must make a correct guess δ′ = 1 with advantage at least Advkem-cca

KEM ,A (k) and we
have |Pr [B wins] − 1

2 | = |Pr [δ′ = 1]− 1
2 | ≥ Advkem-cca

KEM ,A (k).
Therefore, adversary B’s advantage in the square BDDH game is bounded

by Advsbddh
G,B (k) ≥ Advkem-cca

KEM ,A (k) − Advhash-tcr
TCR,H (k) which proves Eqn. (1) and

completes the proof of the theorem.

B Proof of Lemma 1

The implications BDDH ≤ square BDDH and 1-BDDHI ≤ 2-BDDHI ≤
3-BDDHI ≤ . . . are obvious. To prove “square BDDH assumption ≤ 1-BDDHI
assumption”, assume there exists a polynomial-time adversary A that breaks
the square BDDH assumption with non-negliglible probability of success. We
show that then there exists a polynomial-time adversary B with oracle access to
A that breaks the 1-BDDHI assumption. Let (h, hz ,W) ∈ G2

1 × GT be an in-
put instance of the 1-BDDHI problem given to B. B’s goal is to decide whether
W = ê(h, h)1/z or W is random. B picks two random values x0, y0 and define its
output as the bit γ := γ′, where γ′ is input from A as

γ′ ← A(hz , hx0 , hy0 ,W ′ = W x2
0y0).

Defining g = hz (and hence h = g1/z), x = x0/z, and y = y0/z we have
(hz, hx0 , hy0) = (g, (g1/z)x0 , (g1/z)y0) = (g, gx, gy). If W = ê(h, h)1/z then

W ′ = W x2
0y0 = ê(h, h)1/z·x2

0y0 = ê(g, g)1/z3·x2
0y0 = ê(g, g)x2y.

On the Limitations of the Spread of an IBE-to-PKE Transformation 289

If W is a random element, so is W ′. Therefore B solves 1-BDDHI with the
same success probability as A solves square BDDH, which was non-negliglible
by assumption. This proves the lemma.

C The Schemes CHK1 and CHK1”

For completeness we include the complete description of the schemes CHK1 [6]
and CHK1” [5] in Fig. 3 and Fig. 4, respectively.

KEMkg(1k)

x, x1, x2,
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; y ← gx ; z ← ê(g, y)
pk ← (h1, h2, z) ; sk ← (x1, x2, x)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

(v , s) $← Skg(1k) ; c2 ← hr
1 · hv·r

2

K ← zr

σ
$← Signs(c1||c2)

C ← (c1, c2, v , σ)
Return (K,C)

KEMdecaps(sk ,C)
Parse C as (c1, c2, v , σ)
If Vfyv(c1||c2, σ) = reject

then return reject.
Else

r′ $← Zp

K ← ê c
x+r′(x1+x2·v)
1 · c−r′

2 , g

Fig. 3. The CHK1 scheme from [6]

Theorem 4 ([6]). Assume OTS is a strong, one-time signature scheme. Under
the BDDH assumption relative to generator G, the CHK1 scheme from Fig. 3 is
secure against chosen-ciphertext attacks.

Theorem 5 ([5]). Under the BDDH assumption relative to generator G, the
CHK1” scheme from Fig. 4 is secure against chosen-ciphertext attacks.

KEMkg(1k)

x1, x2, x
$← Z∗

p

h1 ← gx1 ; h2 ← gx2 ; y ← gx ; z ← ê(g, y)
pk ← (h1, h2, z) ; sk ← (x1, x2, y)
Return (pk , sk)

KEMencaps(pk)

r
$← Z∗

p ; c1 ← gr

v ← TCR(c1) ; c2 ← hr
1 · hv·r

2

K ← zr

C ← (c1, c2)
Return (C , K)

KEMdecaps(sk ,C)
Parse C as (c1, c2)
v ← TCR(c1)

If cx1+x2·v
1 �= c2 then reject

Else K ← ê(y, c1)
Return K

Fig. 4. The CHK1” scheme from [5]

Inoculating Multivariate Schemes

Against Differential Attacks

Jintai Ding and Jason E. Gower

Department of Mathematical Sciences,
University of Cincinnati,

Cincinnati, OH 45221-0025, USA
ding@math.uc.edu, gowerj@math.uc.edu

Abstract. We demonstrate how to prevent differential attacks on mul-
tivariate public key cryptosystems using the Plus (+) method of external
perturbation. In particular, we prescribe adding as few as 10 Plus poly-
nomials to the Perturbed Matsumoto-Imai (PMI) cryptosystem when
g = 1 and r = 6, where θ is the Matsumoto-Imai exponent, n is the
message length, g = gcd (θ, n), and r is the internal perturbation dimen-
sion; or as few as g + 10 when g �= 1. The external perturbation does
not significantly decrease the efficiency of the system, and in fact has the
additional benefit of resolving the problem of finding the true plaintext
among several preimages of a given ciphertext. We call this new scheme
the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem.

Keywords: multivariate, public key, cryptography, Matsumoto-Imai,
perturbation, plus, differential.

1 Introduction

Though number theory based cryptosystems such as RSA are currently nearly
ubiquitous, they are not appropriate for all implementations. Most notably, such
schemes are not well-suited for use in small devices with limited computing
resources. Multivariate public key cryptography provides one alternative since
computations in small finite fields can be faster than working with large numbers.
Furthermore, solving systems of multivariate quadratic polynomial equations
over a finite field appears to be a difficult problem (analogous to integer factor-
ization, though it is unknown precisely how difficult either problem actually is),
so it seems reasonable to expect that we will be able to build secure multivari-
ate public key cryptosystems and signature schemes from systems of quadratic
polynomials that appear to be randomly chosen. Indeed, such systems may even
resist future quantum computer attacks. In the last ten years, there has been sig-
nificant effort put into realizing practical implementations, such as Matsumoto-
Imai, HFE, HFEv, Sflash, Oil & Vinegar, Quartz, TTM, and TTS, to name but
a few. So far the most secure encryption scheme seems to be HFE [13], though
such an implementation with 280 security would be very slow. On the other hand,

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 290–301, 2006.
c© International Association for Cryptologic Research 2006

Inoculating Multivariate Schemes Against Differential Attacks 291

Sflash [1] has been recommended by the New European Schemes for Signatures,
Integrity, and Encryption (NESSIE, [11]) as a signature scheme for constrained
environments.

Internal perturbation was recently introduced by Ding [3] as a general method
to improve the security of multivariate public key cryptosystems. Roughly speak-
ing, the idea is to “internally perturb” the system using a randomly chosen sub-
space of small dimension to create “noise” to be added to the system so that the
resulting system still works efficiently and is much more difficult to break. The
first application of this method was to the Matsumoto-Imai (MI) cryptosystem
[10], a system that is otherwise vulnerable to the linearization attack [12]. The
resulting system, called the perturbed Matsumoto-Imai cryptosystem (PMI), is
slower as one needs to go through a search process on the perturbation space,
though it is much faster than a 1024-bit implementation of RSA [15]. However,
the recent attack of Fouque, Granboulan, and Stern [8] has shown that PMI
is insecure. The basic idea of this attack is to use differentials to create a test
for membership in the subset K of plaintexts that produce no noise. Once K
is known, one can effectively “denoise” the system and thereby eliminate the
internal perturbation. The linearization attack can then be applied to break the
system as in the case of MI.

1.1 Our Results

In this paper we will show that PMI is easily protected from this attack by adding
a small amount of external perturbation in the form of Plus (+) polynomials
[14]. To put things in more concrete terms, let g = gcd (θ, n), where θ is the
Matsumoto-Imai exponent and n is the message length. Then by adding as few
as 10 Plus polynomials to PMI when g = 1 and r = 6, or as few as g + 10 when
g �= 1, we will have a new scheme that resists the differential attack. The resulting
scheme, called the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem, uses
the externally added random quadratic polynomials to create a situation in
which almost all plaintexts satisfy the test for membership used in the differential
attack on PMI. Not only is PMI+ then protected from the differential attack, we
can use the theory of Markov chains to pick an optimal amount of perturbation
so that the resulting efficiency degradation is slight. Moreover, the extra Plus
polynomials can be used to solve the problem of finding the true plaintext from
among several preimages of a given ciphertext.

1.2 Outline of the Paper

The remainder of this paper is organized as follows. After briefly recalling MI
and PMI in Section 2.2, we describe the differential attack on PMI in Section 3.
We show how to protect PMI from the differential attack in Section 4, and
discuss how to use the theory of Markov chains to choose the optimal amount of
external perturbation in the form of Plus polynomials. We conclude the paper
in Section 5.

292 J. Ding and J.E. Gower

2 Matsumoto-Imai and Perturbed Matsumoto-Imai

In this section we provide a brief description of the Matsumoto-Imai cryptosys-
tem, its variant, the Perturbed Matsumoto-Imai cryptosystem, and the most
serious non-differential attacks on each.

2.1 Matsumoto-Imai

Let k be a finite field of size q and characteristic two, and fix an irreducible
polynomial of g(x) ∈ k[x] of degree n. Then K = k[x]/(g(x)) is an extension of
degree n over k. We also have a k-vector space isomorphism φ : K −→ kn defined
by φ(a0+· · ·+an−1x

n−1) = (a0, . . . , an−1). Fix θ so that gcd (1 + qθ, qn − 1) = 1
and define F : K −→ K by

F (X) = X1+qθ

.

Then F is invertible and F−1(X) = Xt, where t(1 + qθ) ≡ 1 mod qn − 1. De-
fine the map F̃ : kn −→ kn by F̃ (x1, . . . , xn) = φ ◦ F ◦ φ−1(x1, . . . , xn) =
(F̃1, . . . , F̃n). In this case, the F̃i(x1, . . . , xn) are quadratic polynomials in the
variables x1, . . . , xn. Finally, let L1 and L2 be two randomly chosen invertible
affine transformation over kn and define F̄ : kn −→ kn by

F̄ (x1, . . . , xn) = L1 ◦ F̃ ◦ L2 (x1, . . . , xn) = (F̄1, . . . , F̄n).

The public key of the Matsumoto-Imai cryptosystem (referred to as C∗ or MI)
consists of the polynomials F̄i(x1, . . . , xn). See [10] for more details.

2.2 Perturbed Matsumoto-Imai

Fix a small integer r and randomly choose r invertible affine linear functions
z1, . . . , zr, written

zj(x1, . . . , xn) =
n∑

i=1

αijxi + βj ,

for j = 1, . . . , r. This defines a map Z : kn −→ kr by Z(x1, . . . , xn) = (z1, . . . , zr).
Randomly choose n quadratic polynomials f1, . . . , fn in the variables z1, . . . , zr.
The fi define a map f : kr −→ kn by f(z1, . . . , zr) = (f1, . . . , fn). Define
f̃ : kn −→ kn by f̃ = f ◦ Z, and ¯̄F : kn −→ kn by

¯̄F = F̃ + f̃ .

The map ¯̄F is called the perturbation of F̃ by f̃ , and as with MI, its components
are quadratic polynomials in the variables x1, . . . , xn. Finally, define the map
F̂ : kn −→ kn by

F̂ (x1, . . . , xn) = L1 ◦ ¯̄F ◦ L2(x1, . . . , xn) = (y1, . . . , yn),

where the Li are randomly chosen invertible affine maps on kn. The public key of
the Perturbed Matsumoto-Imai (PMI) cryptosystem consists of the components
yi of F̂ . See [3] for more details.

Inoculating Multivariate Schemes Against Differential Attacks 293

Although for MI there is a bijective correspondence between plaintext and
ciphertext, PMI does not enjoy this property. Indeed, for a given ciphertext
c ∈ kn, F̂−1(c) may have as many as qr elements, though we may add some
redundancy to the plaintext in order to distinguish it from the other preimages.

2.3 Non-differential Attacks on MI and PMI

Patarin’s linearization attack [12] is the most successful attack against MI, and
it is clear that it cannot be used to attack a general PMI with a reasonable r.
However, Gröbner bases algorithms, such as Faugère’s F4 [6], can be used to
attack any multivariate scheme. Though the exact running time complexity is
unknown, there is evidence [5] which strongly suggests that PMI is resistant to
attacks using F4. More specifically, experiments from [5] indicate that within
a reasonably range of n, a polynomial model is appropriate for predicting the
security of PMI with r < 6, while an exponential model is appropriate for r ≥ 6.
For example, the exponential model is used to predict a security level of 2160

against F4 for instances of PMI with parameters (q, n, r, θ) = (2, 136, 6, 40).
In the next section we will recall the new differential attack of Fouque,

Granboulan, and Stern [8]. Both MI and PMI as previously described are sus-
ceptible to this attack. In particular, it is claimed that this attack applied to
PMI will have a computation complexity of at most 249 binary operations.

3 Differential Attack on PMI

We begin by establishing the notation used in the sequel; see [8] for proofs of
quoted results. For each plaintext message v ∈ kn, define the differential

Lv(x) = F̂ (x+ v) + F̂ (x) + F̂ (v) + F̂ (0),

for a given instance of PMI. It is straightforward to show that Lv is linear in x.
Let K be the “noise kernel,” the kernel of the linear part of the affine trans-

formation Z ◦ L2. Then it can also be shown that

v ∈ K =⇒ dim (ker (Lv)) = gcd (θ, n).

The differential attack amounts to computing a basis for K, followed by qr MI-
type attacks, each attack being against PMI restricted to one of the qr affine
planes parallel to K. For the MI-type attack to begin, K must be computed. In
order to more clearly see how to thwart this attack, we now recall the particulars
of this computation.

3.1 Testing for Membership in K

For each v ∈ kn, define the function T by

T (v) =

{
1, if dim (ker (Lv)) �= gcd (θ, n);
0, otherwise.

294 J. Ding and J.E. Gower

Let α = P [T (v) = 0] and β = P [v ∈ K] = q−r; in other words, α is the
probability that T (v) = 0, and β is the probability that v ∈ K. We can use T
to devise a test for detecting whether or not a given v is very likely to be in K,
assuming the following proposition: If for many different v′i such that T (v′i) = 0
we have T (v + v′i) = 0, then v ∈ K with high probability. Suppose we pick N
vectors v′1, . . . , v

′
N such that T (v′i) = 0. Define p(v) = P [T (v+v′i) = 0 |T (v′i) = 0].

If v is chosen at random, then p(v) = α; otherwise, p(v) = β
α + (α−β)2

α(1−β) . In this

latter case it is not hard to show that p(v)
α −1 = β

1−β (1
α −1)2 .= β(1

α −1)2, where
β

1−β = β+β2 +β3 + · · · .= β if β is very small. Thus we have the approximation
p(v) .= α + αβ(1

α − 1)2 whenever v ∈ K. It follows that one way to decide
whether or not v ∈ K is to approximate p(v) and decide whether it is closer to
α or α+ αβ(1

α − 1)2.
At this point we note that it seems more natural to consider the function

T ′(v + v′i) = 1−T (v+v′
i)

α − 1, which has expected value E[T ′(v + v′i)] = p(v)
α − 1,

and then consider the average 1
N

∑N
i=1 T ′(v + v′i), which we expect to be close

to p(v)
α − 1, for large enough N by the Central Limit Theorem (see [7]). Then

our task would be to determine whether this average is closer to 0 or β(1
α − 1)2.

The new function T ′ is defined as above in terms of T , and is such that

T ′(v + v′i) =

{
1
α − 1, with probability p(v);
−1, with probability 1− p(v).

Also μ = E[T ′(v + v′i)] = p(v)
α − 1 and σ2 = V ar[T ′(v + v′i)] = p(v)(1−p(v))

α2 . Let
Xi be independent and identically distributed random variables with the same
distribution as T ′, and define SN =

∑N
i=1Xi. Then the Central Limit Theorem

states that

P

[
SN −Nμ

σ
√
N

< x

]
−→ N(x) as N −→ ∞,

where

N(x) =
1√
2π

∫ x

−∞
e−y2/2 dx

is the standard normal distribution function. In other words, the Central Limit
Theorem implies that the following approximation is valid for large N :

AN ≈ μ +
σ√
N
χ,

where AN = 1
N SN and χ is a random variable with standard normal distribution.

3.2 Efficiency of the Test

Suppose v ∈ K. In this case μ = p(v)
α − 1 = β(1

α − 1)2, and σ2 = p(v)(1−p(v))
α2 ,

which can be computed in terms of α and β. We also take N = 1
(αβ)2 , as in [8].

Inoculating Multivariate Schemes Against Differential Attacks 295

We first consider the probability that the question “AN > β(1
α − 1)2?” will

return true. Equivalently, we consider the probability that

μ +
σ√
N
χ > β

(
1
α
− 1

)2

= μ,

which is the probability thatχ > 0. But this probability is 1−N(0) = 1−0.5 = 0.5.
In other words, the “efficiency” of this test is such that it detects a vector v ∈ K
(which is actually in K) roughly half of the time. If we are to collect n− r linearly
independent vectors in K, then we must perform on average 2(n− r)qr tests.

3.3 Reliability of the Test

Let us now compute the probability that this question returns a false-positive;
i.e., the question “AN > β(1

α − 1)2?” returns true for v �∈ K. Here we must
consider the probability that

μ +
σ√
N
χ > β

(
1
α
− 1

)2

, (1)

where now μ = 0 and σ2 = 1−α
α . For example, if we take α = 0.59 and β = 2−6 as

in the examples given in [8], then this is the probability that χ > 0.9819, which
is 1−N(0.9819) .= 1− 0.8369 = 0.1631. This quantity gives us a measure of the
“reliability” of this test in the sense that it tells us that roughly 16% of the n−r
vectors that our test leads us to believe are in K actually are not in K. Though
this might seem like a serious problem, it can be remedied by repeating the test
a few times, each time with a different set of vectors v′1, . . . , v

′
N . In the example

above, by taking 8N vectors v′i, performing the test 8 times with a new set of
N vectors each time, and rejecting the vector v if any of the 8 tests fails, the
probability that we correctly conclude that v ∈ K is 1 − (.1631)8 .= 0.9999995.
This in turn means that the probability that there are no false-positives among
our final set of n − r vectors is (1 − (.1631)8)130 .= 0.9999349. Therefore, if we
perform 8 tests on 2(n−r)qr

0.1631 vectors, then the probability that we have n − r
vectors in K is 0.9999349.

We note that the above is a description of a modified version of Technique 1
for which a much higher degree of reliability is obtained. The authors in [8] do
not necessarily require such a high level of reliability from Technique 1 since they
also use Technique 2, which we have not yet addressed, as a filter to find those
elements from Technique 1 which are actually in K. Later in this paper we will
show that Technique 2 will not be practical once we add external perturbation
in the form of the Plus method. Therefore, we have presented Technique 1 is it
must be implemented to be used without filters.

4 Preventing Differential Attacks on PMI

One way to prevent the differential attack is to perturb the system so that the
dimension of the kernel of the differential Lv is the same for nearly every vector

296 J. Ding and J.E. Gower

in kn. This can be achieved by adding a sufficient number of randomly chosen
quadratic polynomials according to the Plus method [14].

4.1 Perturbed Matsumoto-Imai-Plus

We now present the Perturbed Matsumoto-Imai-Plus cryptosystem. We will
use the same notation as before. In particular, let L2 and ¯̄F be as defined in
Section 2.2. Randomly pick a quadratic polynomials qi(x1, . . . , xn) and define
the map ¯̄F+ : kn −→ kn+a

¯̄F+ =
(

¯̄F1,
¯̄F2, . . . ,

¯̄Fn, q1, ..., qa

)
.

Let L̂1 be a randomly chosen invertible affine map on kn+a and define the map
F̂+ : kn −→ kn+a by

F̂+(x1, . . . , xn) = L̂1 ◦ ¯̄F+ ◦ L2(x1, . . . , xn) = (ŷ1, . . . , ŷn+a),

The public key of the Perturbed Matsumoto-Imai-Plus (PMI+) cryptosystem
consists of the n+ a quadratic polynomial components ŷi of F̂ . Clearly PMI+ is
simply PMI with a additional random quadratic polynomials (externally) mixed
into the system by L̂1.

To decrypt, we must first invert L̂1. After we set aside the last a components,
we can then apply the decryption process for the associated PMI. We note that
the extra a components can be used to determine the true plaintext from among
the (possibly qr) preimages of the given ciphertext. We now study the effect that
the Plus polynomials have on the computation of K using the differential attack.

4.2 PMI+ and the Effect on K

We begin with the case where gcd (θ, n) = 1. Here dim (ker (Lv)) = 1 for every
v ∈ K. The fact that dim (ker (Lv)) �= 1 for many v �∈ K is the very fact that
Technique 1 exploits in computing K. So our task is to perturb PMI so that
dim (ker (Lv)) = 1 for nearly every v �∈ K.

Consider the effect on the linear differential Lv(x) upon adding Plus poly-
nomials. We write Mv,a for the matrix associated with the linear differential
obtained after adding a Plus polynomials, and in particular, Mv,0 for the matrix
associated with the linear differential Lv with no Plus polynomials. Let R(a) be
the rank of the matrix Mv,a. Note that R(a) < n, since Mv,a v

T = 0 for any a.
Suppose we add one more Plus polynomial (increase a by one). What is the

probability that R(a + 1) = R(a) + 1? Note that if R(a) = n − 1, then this
probability is zero since R(a) < n. So let’s assume R(a) = n − i, where i =
2, 3, . . . , n − 1. This probability is equivalent to the probability that we choose
a new row-vector to be added to form Mv,a+1 from Mv,a, which is orthogonal
to v and is not in the span of the row-vectors of Mv,a. The space of vectors
orthogonal to v is of dimension n− 1, and the span of the row-vectors of Mv,a

is of dimension n − i, hence the probability that R(a + 1) = R(a) + 1 will be

Inoculating Multivariate Schemes Against Differential Attacks 297

1 − 21−i, where i = 2, 3, ..., n− 1. Thus, if nδ,a is the number of vectors v with
dim (ker (Mv,a)) = δ, for a given a and δ = 1, 2, . . . , n− 1, then we expect:

nδ,a+1 = nδ,a · 21−δ + nδ+1,a ·
(
1 − 2−δ

)
In order to obtain the distribution for nδ,a when a = 0, and to predict how large
we must choose a in order to protect PMI+ from the differential attack, we will
use the language of Markov chains [9]. Let P = (pij) be the n× n matrix with
entries given by:

pij =

⎧⎪⎨⎪⎩
2−i+1, if i = j;
1 − 2−i+1, if i = j + 1;
0, otherwise.

Then for a fixed vector v ∈ kn, pij gives the 1-step transition probability from
state si to sj upon appending a randomly chosen row vector to Mv,a, where
state si corresponds to nullity(Mv,a) = i. Here s1 is an absorbing state and for
all other i �= 1, si is a transient state.

Let Mv be the matrix associated with MI for a given v. Without loss of
generality, assume that L2 is chosen so the the perturbation Z is a function
only of r variables, say x1, . . . , xr. Adding the perturbation then is analogous
to removing the first r columns of Mv and replacing them with r randomly
chosen column vectors. Deleting r columns will increase the nullity to either
r + 1 with probability

(
n−1

r

)
/
(
n
r

)
= 1− r

n , or r with probability
(
n−1
r−1

)
/
(
n
r

)
= r

n .
If we then add r random column vectors to this matrix one at a time, the
nullity will increase according to r-step transition probability matrix P r

r , where
Pr is the top-left (r + 1) × (r + 1) submatrix of P . In particular, if we let
π0 = (0, 0, . . . , 0, r

n , 1 − r
n) be the initial state distribution vector, then π0P

r
r

can be used to calculate the probability that nullity(Mv,0) = i. For example, if
n = 31 and r = 6, then these probabilities are given by:

π0P
6
6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.350125
0.539086
0.106813

3.94582× 10−3

3.01929× 10−5

4.67581× 10−8

1.17354× 10−11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Finally, to obtain the probability that nullity(Mv,a) = i, we let π′ = π0P

r
r and

compute π′P a

We performed experiments to test the validity of our model. Each experiment
was characterized by an instance of PMI defined by the parameters (q, n, r, θ),
the number of Plus polynomials a, and κ randomly chosen test vectors. For
each test vector v, we computed dim (ker (Mv,a)). Tables 1 and 2 report the
observed (predicted) values of nδ,a for two experiments performed with param-
eters (q, n, r, θ,κ) = (2, 31, 6, 2, 215) and (2, 36, 6, 4, 215), respectively, each with
a = 0, 1, 2, . . . , 11. The predictions for a = 0 are obtained from the matrix

298 J. Ding and J.E. Gower

Table 1. Observed (predicted) values of nδ,a for (q, n, r, θ, κ) = (2, 31, 6, 2, 215) and
a = 0, 1, . . . , 11

v �∈ K v ∈ K
a δ = 1 δ = 2 δ = 3 δ = 4 δ = 1

0 19003 (11304) 12182 (17404) 1081 (3448) 19 (127) 483

1 25081 (25094) 6906 (6902) 298 (287) 0 (2) 483

2 28548 (28534) 3660 (3676) 77 (74) 0 (0) 483

3 30366 (30378) 1896 (1888) 23 (19) 0 (0) 483

4 31334 (31314) 944 (965) 7 (6) 0 (0) 483

5 31810 (31806) 473 (477) 2 (2) 0 (0) 483

6 32040 (32046) 244 (238) 1 (0) 0 (0) 483

7 32154 (32162) 130 (123) 1 (0) 0 (0) 483

8 32208 (32219) 77 (66) 0 (0) 0 (0) 483

9 32246 (32246) 39 (38) 0 (0) 0 (0) 483

10 32263 (32266) 22 (20) 0 (0) 0 (0) 483

11 32278 (32274) 7 (11) 0 (0) 0 (0) 483

Table 2. Observed (predicted) values of nδ,a for (q, n, r, θ, κ) = (2, 36, 6, 4, 215) and
a = 0, 1, . . . , 11

v �∈ K v ∈ K
a δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 1 δ = 2 δ = 3 δ = 4

0 14602 (101) 14942 (2274)2610 (16272)120 (1865)2 (37) 0 0 0 492

1 21975 (22073) 9550 (9428) 722 (758) 28 (17) 1 (0) 0 (0) 0 (0) (0) 433 (430)59 (62)

2 26693 (26750) 5367 (5316) 210 (205) 6 (4) 0 (0) 0 (0) 322 (325)165 (160) 5 (7)

3 29380 (29376) 2838 (2841) 58 (58) 0 (1) 0 (0) 167 (161)273 (285) 52 (46) 0 (1)

4 30810 (30799) 1457 (1462) 9 (14) 0 (0) 0 (0) 295 (304)180 (176) 17 (13) 0 (0)

5 31519 (31538) 756 (735) 1 (2) 0 (0) 0 (0) 383 (385)106 (103) 3 (4) 0 (0)

6 31916 (31897) 359 (379) 1 (0) 0 (0) 0 (0) 433 (436) 57 (55) 2 (1) 0 (0)

7 32095 (32096) 181 (180) 0 (0) 0 (0) 0 (0) 460 (462) 30 (30) 2 (0) 0 (0)

8 32205 (32186) 71 (90) 0 (0) 0 (0) 0 (0) 470 (475) 21 (16) 1 (0) 0 (0)

9 32246 (32240) 30 (36) 0 (0) 0 (0) 0 (0) 481 (480) 11 (11) 0 (0) 0 (0)

10 32258 (32261) 18 (15) 0 (0) 0 (0) 0 (0) 487 (486) 5 (6) 0 (0) 0 (0)

11 32270 (32267) 6 (9) 0 (0) 0 (0) 0 (0) 490 (490) 2 (2) 0 (0) 0 (0)

π′ = π0P
r
r , while the predictions for a > 0 are obtained by using the observed

distribution from a− 1 and the 1-step transition matrix Pr.
We note that although the predictions for a = 0 are not as accurate as those

for a > 0, this is likely due to the fact that we chose the perturbation variables
z1, . . . , zr in a simplified way for the experiments.

It remains to predict how large a must be in order to protect PMI+ against
a differential attack. As was previously stated, the effect of adding Plus poly-
nomials is to increase the value of α. In the example given in [8] α .= 0.59 and
so the question “AN > β(1

α − 1)2?” is answered with a false-positive with the
probability that χ > 0.9819, which is 0.1631. Now suppose the attacker is willing

Inoculating Multivariate Schemes Against Differential Attacks 299

to do as much as 22w work to correctly decide the answer to this test with this
same probability. Then Inequality (1) becomes

χ >

√
N

σ

[
β

(
1
α
− 1

)2

− μ

]
= 2w−r

(
1 − α
α

)3/2

.

If we assume that we are using Technique 1 as described in Section 4, then
our total work (for the entire attack) will be

8N · n
3

6
· 2(n− r)qr

0.1631
.= 22w+38.32,

which if we want less than 280 then we must have w < 20.84. This implies that
we must take 214.84

(
1−α

α

)3/2
< 0.9819, or α > 0.998962 if we wish to thwart

this attack. To compute the value of a necessary to insure α > 0.998962, we use
the matrix P . In particular, we must compute a so that the first entry of π′P a

is greater than 0.998962. If we take n = 136, r = 6, and gcd (θ, n) = 1, then we
must take a ≥ 10.

Finally, we consider gcd (θ, n) �= 1. Let g = gcd (θ, n). If v ∈ K, then nullity
(Mv,0) = g; otherwise nullity(Mv,0) ∈ {g − r, . . . , g + r}. We must now add
roughly g Plus polynomials just to get to a situation similar to the g = 1 case.
Thus, by taking a .= g + 10, we can protect the special case of g �= 1 from the
differential attack.

4.3 Using Filters with the Differential Attack and Other Security
Concerns

We now address Technique 2 of [8]. The idea of this technique is to look for a
maximal clique in the graph with vertices v ∈ kn such that T (v) = 0, where two
vertices v, v′ are connected if T (v + v′) = 0. Since K is a subspace of kn, the
elements of K form a clique. The hypothesis underlying Technique 2 is that if
we look at a big enough subgraph then the maximal clique in this subgraph will
consist almost exclusively of vectors from K. However, by increasing the value
of α near one, this clique is now very likely to have many elements not in K (in
fact almost every element of kn is in the clique) and therefore membership in
this clique cannot be used as a filter to Technique 1.

We must be careful not to add too many extra polynomials since otherwise
we may create a weakness to Gröbner bases attacks [2, 16]. From [5], we know
that if we choose r = 6 and n > 83, then we can expect the PMI cryptosystem
to have the security of 280 against such an attack using F4. In order to create a
secure PMI+ scheme from these parameters, we suggest (q, n, r, θ) = (2, 84, 6, 4)
and a = 14. Since we have added relatively very few extra polynomials, the
attack complexity of F4 will be essentially the same as it is for the corre-
sponding PMI. Other secure implementations include the now-salvaged scheme
(q, n, r, θ) = (2, 136, 6, 8) with a = 18, or any (q, n, r, θ) with a = 11, g = 1, r = 6
and n > 84. In summary, when designing PMI+, one must be careful with the

300 J. Ding and J.E. Gower

choice of g = gcd (θ, n), as g + 10 extra polynomials will be needed in order to
defend against the differential attack, but if g is too large the extra polynomials
may increase the vulnerability to a Gröbner basis attack.

Of course, it may also be possible to attack PMI+ by looking for ways to
somehow separate the PMI polynomials from the Plus polynomials. If this was
possible, the differential attack could then proceed as with PMI alone. However
this approach has yet to be successfully applied to the MI-Minus-Plus cryptosys-
tem [14], as we have no such method to differentiate between MI polynomials
and random polynomials. Therefore, it seems unlikely that such an approach
will be successfully applied to PMI+.

As we mentioned before, the extra Plus polynomials can be used to identify
the true plaintext from among all preimages of a given ciphertext. Though the
Plus polynomials slightly decrease the efficiency and increase the key sizes of the
scheme, they do serve to both protect against the differential attack and aid in
finding the true plaintext during the decryption process.

Recently, the perturbation method was also applied to the HFE cryptosystem
to improve its security and efficiency [4]. Our preliminary experiments suggest
that the differential analysis attack cannot be used to attack HFE, though further
experiments and theoretical arguments are needed to confirm this hypothesis.

5 Conclusion

We have presented a method for preventing differential attacks against multi-
variate schemes. In particular, we have shown that by externally adding as few
as 10 Plus polynomials in the case where gcd (θ, n) = 1, we create a new scheme
(PMI+) which is resistant to the differential attack. Since very few extra polyno-
mials are needed, the threat posed by Gröbner bases attacks is not significantly
increased. If g = gcd (θ, n) �= 1, then as few as g + 10 Plus polynomials will be
needed to protect PMI+, though we do not claim PMI+ will be secure against
Gröbner bases attacks if g is large. In any case, as long as the external perturba-
tion is not too large, the efficiency of PMI+ will not be significantly degraded.
In fact, the extra Plus polynomials can be used to identify the true plaintext
from among all pre-images of a given ciphertext. For use in practical implemen-
tations, which will enjoy a security level of 280, we suggest that n ≥ 83, r = 6
and a = 14 whenever g ≤ 4. In particular the scheme (q, n, r, θ) = (2, 136, 6, 8)
with a = 18 will be both very efficient and have a security level of 280. Sizes
for the public keys of these implementations are roughly 41 kilobytes and 175
kilobytes, respectively.

References

1. M.-L. Akkar, N. T. Courtois, R. Duteuil, and L. Goubin. A Fast and Secure Im-
plementation of Sflash. In PKC 2003, LNCS 2567:267–278.

2. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. In Eurocrypt 2000,
LNCS 1807:392–407.

Inoculating Multivariate Schemes Against Differential Attacks 301

3. Jintai Ding. A New Variant of the Matsumoto-Imai Cryptosystem Through Per-
turbation. In PKC 2004, LNCS 2947:305–318.

4. J. Ding and D. Schmidt. Cryptanalysis of HFEv and Internal Perturbation of HFE.
In PKC 2005, LNCS 3386:288–301.

5. J. Ding, J. E. Gower, D. Schmidt, C. Wolf, and Z. Yin. Complexity Estimates for
the F4 Attack on the Perturbed Matsumoto-Imai Cryptosystem. In the proceedings
of the Tenth IMA International Conference on Cryptography and Coding, LNCS,
3796:262–277.

6. Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases
(F4). In Journal of Applied and Pure Algebra, 139:61–88, June 1999.

7. William Feller. An Introduction to Probability Theory and Its Applications. Third
edition, vol. I, Wiley & Sons, 1968.

8. P.-A. Fouque, L. Granboulan, and J. Stern. Differential Cryptanalysis for Multi-
variate Schemes. In Eurocrypt 2005, LNCS 3494:341–353.

9. J. G. Kemeny and J. L. Snell. Finite Markov Chains. D. Van Nostrand Company,
Inc., 1960.

10. T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In Eurocrypt 1988, LNCS 330:
419–453.

11. NESSIE. European project IST-1999-12324 on New European Schemes for Signa-
ture, Integrity and Encryption. http://www.cryptonessie.org.

12. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88. In Crypto 1995, LNCS 963:248–261.

13. Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In Eurocrypt 1996, LNCS
1070:33–48. Extended version: http://www.minrank.org/hfe.pdf.

14. J. Patarin, L. Goubin, and N. Courtois. C∗
−+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai. In Asiacrypt 1998, LNCS 1514:35–50.
15. B.-Y. Yang, J.-M. Chen, and Y.-H. Chen. Private communication.
16. B.-Y. Yang, J.-M. Chen, and N. Courtois. On Asymptotic Security Estimates in

XL and Gröbner Bases-Related Algebraic Cryptanalysis. In ICICS 2004, LNCS
3269:410–413.

Random Subgroups of Braid Groups:

An Approach to Cryptanalysis of a Braid Group
Based Cryptographic Protocol

Alexei Myasnikov1,�, Vladimir Shpilrain2,�, and Alexander Ushakov3

1 Department of Mathematics, McGill University, Quebec H3A 2T5, Montreal
alexeim@math.mcgill.ca

2 Department of Mathematics, The City College of New York, NY 10031, New York
shpilrain@yahoo.com

3 Department of Mathematics, Stevens Institute of Technology, NJ 07030, Hoboken
aushakov@mail.ru

Abstract. Motivated by cryptographic applications, we study subgroups
of braid groups Bn generated by a small number of random elements of
relatively small lengths compared to n. Our experiments show that “most”
of these subgroups are equal to the whole Bn, and “almost all” of these
subgroups are generated by positive braid words. We discuss the impact
of these experimental results on the security of the Anshel-Anshel-Goldfeld
key exchange protocol [2] with originally suggested parameters as well as
with recently updated ones.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [2], [11]) using braid groups as a platform.
We refer to [3], [5] for more information on braid groups.

Here we start out by giving a brief description of the Anshel-Anshel-Goldfeld
key exchange protocol [2] (subsequently called the AAG protocol) to explain our
motivation.

Let Bn be the group of braids on n strands and Xn = {x1, . . . , xn−1} the set
of standard generators. Thus,

Bn = 〈x1, . . . , xn−1; xixi+1xi = xi+1xixi+1, xixj = xjxi for |i− j| > 1〉.

Let N1, N2 ∈ N, 1 ≤ L1 ≤ L2, and L ∈ N be preset parameters. The AAG
protocol [2] is the following sequence of steps:

(1) Alice randomly generates an N1-tuple of braid words a = {a1, . . . aN1}, each
of length between L1 and L2, such that each generator of Bn non-trivially
occurs in a. The tuple a is called Alice’s public set.

(2) Bob randomly generates an N2-tuple of braid words b = {b1, . . . bN2}, each
of length between L1 and L2, such that each generator of Bn is non-trivially
involved in b. The tuple b is called Bob’s public set.

� Partially supported by the NSF grant DMS-0405105.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 302–314, 2006.
c© International Association for Cryptologic Research 2006

Random Subgroups of Braid Groups 303

(3) Alice randomly generates a product A = aε1
s1
. . .aεL

sL
, where 1 ≤ si ≤ N1 and

εi = ±1 (for each 1 ≤ i ≤ L). The word A is called Alice’s private key.

(4) Bob randomly generates a product B = bδ1
t1 . . . b

δL
tL

, where 1 ≤ ti ≤ N2 and
δi = ±1 (for each 1 ≤ i ≤ L). The word B is called Bob’s private key.

(5) Alice computes b′i = D(A−1biA) (1 ≤ i ≤ N2) and transmits them to Bob.
Here D(w) denotes Dehornoy’s form of a braid word w (see the beginning
of the next Section 2).

(6) Bob computes a′
i = D(B−1aiB) (1 ≤ i ≤ N1) and transmits them to Alice.

(7) Alice computes KA = A−1a′ε1
s1
. . .a′εL

sL
. It is straightforward to see that KA =

A−1B−1AB in the group Bn.

(8) Bob computes KB = b′−δL
tL

. . . b′−δ1
t1 B. Again, it is easy to see that KB =

A−1B−1AB in the group Bn.

Thus, Alice and Bob end up with the same element K = KA = KB = A−1B−1

AB of the group Bn. This K is now their common secret key.
Note that for an intruder to get the common secret key K, it is sufficient to

find any element C = aτ1
r1
. . .aτm

rm
such that b

′
= C−1bC in the group Bn (see e.g.

[11], [15]). Finding such an element is an instance of the following problem (call
it subgroup-restricted conjugacy search problem for future reference):

Let G be a group, A a subgroup of G generated by some {a1, . . . ar}, and
let g = (g1, . . . gk), h = (h1, . . .hk) be two tuples of elements of G. Find
x ∈ A, as a word in {a1, . . .ar}, such that h = x−1gx, provided that at
least one such x exists.

Without the restriction x ∈ A, this would be a well-known (multiple simul-
taneous) conjugacy search problem. While the latter problem for braid groups
is not known to have polynomial-time solution, some important recently made
inroads [7], [12] suggest that it may be solved quite efficiently by a deterministic
algorithm for at least some inputs, e.g. if one of the tuples g or h consists of pos-
itive braid words only. Thus, having the above subgroup A ≤ Bn significantly
different from Bn should be important for the security of the AAG protocol.

In the present paper, we experimentally show that the parameters

N = 80, N1 = 20, N2 = 20, L1 = 5, L2 = 8, L = 100

for the AAG protocol suggested in [1] may not provide sufficient level of security
because the relevant subgroup A ≤ Bn is either the whole Bn or is “very close”
to the whole Bn.

More specifically, out of 100 experiments that we performed, a randomly
selected tuple a = (a1, . . . , aN1) with parameters as above (see our Section
5 for details on producing random tuples) generated the whole group Bn

in 63 experiments. In the remaining 37 experiments, the subgroups were
“close” to the whole group Bn, and in 36 of them, the subgroups were
generated by positive braid words. See Section 4 for more details.

304 A. Myasnikov, V. Shpilrain, and A. Ushakov

Similar results were obtained in [9] using homomorphisms of braid groups
onto permutation groups. In this paper we go further and extend these results to
recently suggested greater parameter values; this is discussed later in this section.
Our approach to cryptanalysis of the AAG protocol (we call it the “subgroup
attack”) is rather general and can be used in cryptanalysis of commutator key
exchange schemes based on other groups.

In the AAG protocol, there are two subgroups a = (a1, . . . , aN1) and b =
(b1, . . . , bN2) each of which is generated independently of the other. The following
procedure can be used to attack the AAG protocol:

(1) Given two tuples a and b, simplify them using the procedure(s) in our
Section 3.

(2) Both simplified tuples will consist of positive braid words with probability
98% (99% each), see the list in the beginning of our Section 4. In that case, the
corresponding multiple simultaneous conjugacy search problem can be efficiently
solved by the method of [12] (using super summit sets).

(3) With probability 98% (99% each), the centralizer of Alice’s and Bob’s sub-
group coincides with the center of Bn. Therefore, any solution of the multiple
simultaneous conjugacy search problem obtained by using, say, the method of
[12] mentioned above, will differ from the actual Alice’s (Bob’s) private key by
a factor lying in the center of Bn. This will yield the correct common secret key
K because K is the commutator K = A−1B−1AB, and therefore its value does
not change if either A or B or both are multiplied by elements from the center of
the ambient group Bn. Thus, one does not have to solve the subgroup-restricted
conjugacy search problem in this case.

The above claim that the centralizer of any subgroup (except the last one)
on the list in the beginning of Section 4 coincides with the center of Bn, follows
from the following fact: any element in the group Bn that commutes with xk

i for
some positive k, also commutes with xi. This, in turn, follows from the results
of [8].

Thus, it appears that with probability at least 98% · 98% ≈ 96%, the
AAG protocol (with parameters as in [1]) can be successfully attacked
by the procedure outlined above.

We note that by increasing the crucial parameters L1 and L2 (and therefore
increasing the lengths of the private keys), it is probably possible to downsize
the relevant subgroup so that the method of [12] would not work. However, for
public sets with longer elements, length-based attacks, as described in [6], [9],
[10], may become a threat, although it seems that the existing experimental base
is insufficient to draw any definitive conclusions on using longer keys in the AAG
protocol.

Another possible way of improving security of the AAG protocol might be
increasing the rank of the ambient braid group. However, we have run similar
experiments with N = 150, N1 = 20, N2 = 20, L1 = 10, L2 = 13, L = 100

Random Subgroups of Braid Groups 305

and arrived at similar results: with probability at least 92%, the AAG protocol
with these parameters can be successfully attacked by our procedure.

The arrangement of the paper is as follows. In Section 2, we introduce some
more notation and describe an algorithm from [13] producing a shorter word
representing a given braid word. In Section 3, we describe a heuristic procedure
which allows us to simplify a given set of generators of a subgroup in Bn. In
Section 4, we describe results of our experiments. In Section 5, we explain how
these experimental results affect the security of the AAG protocol. Finally, in
Section 5, we describe our procedure for producing random subgroup generators
as in the AAG protocol.

2 Preliminaries

Let F (Xn) be the free group generated by Xn. An element of F (Xn) is a reduced
word over X±1

n referred to as a braid word. For a braid word w = w1 . . .wk ∈
F (Xn) we will denote by |w| its length k and by |w|Bn the length of a shortest
braid word w′ defining the same element of Bn as w does. There is no efficient
way to compute |w|Bn ; in [14] the authors prove that the problem of computing
a geodesic for a braid word is co-NP-complete. We will employ Algorithm 1 from
[13] to obtain a shorter word representing a given braid word w; description of
this algorithm is given below, for the sake of completeness. For relatively short
words w considered in this paper, one almost always has |Shorten(w)| = |w|Bn

(where |Shorten(w)| is the output of Algorithm 1 in [13]; see [13] for more
information).

By Dehornoy’s form of a braid we mean a braid word without any “handles”,
i.e. a completely reduced braid word in the sense of [4]. The procedure that
computes Dehornoy’s form for a given word chooses a specific (“permitted”)
handle inside of the word and removes it (see [1] or [4]). This can introduce new
handles but the main result about Dehornoy’s forms states that any sequence of
handle reductions eventually terminates. Of course, the result depends on how
one chooses the handles at every step. Let us fix any particular strategy for
selecting handles. For a word w = w(Xn) we denote by D(w) the corresponding
Dehornoy’s form (i.e., the result of handle reductions where handles are chosen
by the fixed strategy).

Now we describe Algorithm 1 from [13]. This algorithm tries to minimize a
given braid word. It uses the property of Dehornoy’s form that for a “generic”
braid word one has |D(w)| < |w|.

Algorithm 1. (Minimization of braids)
Signature. w′ = Shorten(w).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

306 A. Myasnikov, V. Shpilrain, and A. Ushakov

A. Increment i.
B. Put wi = D(wi−1).
C. If |wi| < |wi−1| then

1) Put wi = wΔ
i .

2) Goto A.
D. If i is even then output wΔ

i+1.
E. If i is odd then output wi+1.

3 Subgroup Simplification

In this section we describe a heuristic procedure which allows us to simplify a
given set of generators of a subgroup in Bn.

3.1 Reducing Generating Sets

Let S be a set of words in the alphabet Xn. We say that the set S is reduced if:

1) |w| = |w|Bn for each w ∈ S, i.e., each word from S is geodesic in Bn.
2) For each pair of words u, v ∈ S and any numbers ε, δ ∈ {−1, 1}, one has

|uεvδ|Bn > ||u|Bn − |v|Bn |.

(Otherwise, the total length of elements of S can be reduced by replacing the
longer of the words u, v by uεvδ).

Let 〈S〉 denote the subgroup generated by S. We say that two sets S,T ⊆ Bn

are equivalent if 〈S〉 = 〈T 〉 in Bn.
The following algorithm tries to reduce a given set S, i.e., tries to find a reduced

set equivalent to S. As mentioned above, the problem of finding a geodesic for a
given braid word is computationally hard. Instead, we are using here the procedure
Shorten (Algorithm 1 in [13]) to minimize the length of braid words. Thus, in
general, the output of Algorithm 2 may not be a reduced set of braid words, but
for generating sets meeting the requirements in [1], this is usually the case.

Algorithm 2. (Reduction of a generating set)
Signature. T = Reduce(S).
Input. A finite set S of braid words.
Output. A finite reduced set T of braid words which is equivalent to S.
Initialization. Put T = S.
Computations.

A. For each word w ∈ T , replace w with the word Shorten(w) (cf. Algorithm 1
in [13]). Remove the empty word if produced.

B. For each pair of words u, v ∈ T and numbers ε, δ ∈ {−1, 1}, compute w =
Shorten(uεvδ).
1) If |w| = ||u| − |v|| = 0 then remove v from the current set T .
2) If |w| = ||u| − |v|| �= 0 then remove from T the longer of the words u, v

and add w to T .

Random Subgroups of Braid Groups 307

C. When all pairs of words u, v ∈ T are handled (including the new words)
output the current set T .

Proposition 1. Algorithm 2 terminates on any finite subset S of F (Xn). Fur-
thermore, if T = Reduce(S), then 〈T 〉 = 〈S〉.
Proof. Since each reduction decreases the total length of the generating set, the
number of reductions Algorithm 2 performs is finite and limited by L(S), the
total length of elements of S.

To prove the second statement observe that the transformations used in Algo-
rithm 2 are Nielsen transformations; they do not change the subgroup generated
by a given set.

Let (a, a′) be a pair of conjugate tuples of braid words and (z, z′) be a pair
of conjugate tuples of braid words. We say that tuples (a, a′) and (z, z′) are
equivalent if the following conditions hold:

(E1) The tuples a and z define the same subgroup (i.e., 〈a〉 = 〈z〉).
(E2) For any braid word x ∈ Bn x−1ax = a′ if and only if x−1zx = z′.

Observe that from (E1), (E2), and the fact that tuples are conjugate follows that
〈a′〉 = 〈z′〉.

Now assume that we have two conjugate tuples a and a′ of braid words as in
the AAG protocol. The next algorithm reduces the pair (a, a′).

Algorithm 3. (Reduction of conjugate tuples)
Signature. (z, z′) = Reduce(a, a′).
Input. Conjugate tuples a = {a1, . . . , aN1} and a′ = {a′

1, . . . , a
′
N1
} of braid

words.
Output. Conjugate tuples (z, z′) equivalent to (a, a′).
Initialization. Put z = a and z′ = a′.
Computations.

A. Replace each word zi ∈ z′ with the word Shorten(zi) (cf. Algorithm 1 in
[13]) and each z′i ∈ z′ with Shorten(z′i). Remove empty words if produced.

B. For each pair of words zi, zj ∈ z (i �= j) and numbers ε, δ ∈ {−1, 1}, compute
w = Shorten(zε

i z
δ
j).

1) If |w| = ||zj | − |zi|| = 0, then remove zi from z and remove z′i from z′.
2) If |w| = |zj | − |zi| > 0, then replace zj ∈ z with w and replace z′j ∈ z′

with Shorten(z′εi z′δj).
C. Repeat Step B. while applicable (i.e., while the set S′ keeps changing).
D. Output the obtained set S′.

Proposition 2. Let (a, a′) be a pair of conjugate tuples. Algorithm 3 terminates
on (a, a′). Furthermore, if (z, z′) = Reduce(a, a′), then (z, z′) is equivalent to
(a, a′).

Proof. The transformations used in Algorithm 3 are Nielsen transformations;
they do not change the subgroup generated by a given set. Hence (E1) holds.
Furthermore, by transforming zi ∈ z, we transform z′i ∈ z′ the same way. Thus,
the property (E2) holds and the output (z, z′) is equivalent to the input (a, a′).

308 A. Myasnikov, V. Shpilrain, and A. Ushakov

3.2 Extending Generating Sets

We say that a set S ∪ S′ is an extension of S. The next algorithm heuristically
extends a reduced set of generators S by adding words (one at a time) of length
2 from the subgroup 〈S〉, and then reduces the set. Basically, the algorithm
generates words from 〈S〉 using a few patterns and, in case a new word has
length 2, adds it to the current set and reduces the result.

Algorithm 4. (Extension of a generating set)
Signature. T = Extend(S).
Input. A set S of braid words.
Output. A reduced set S′ of braid words equivalent to S.
Initialization. Put T = S.
Computations.

A. For each pair of words (u, v) ∈ T , and each pair of numbers ε, δ ∈ {−1, 1}:
1) Compute w = Shorten(v2εuδv−εu−δv−ε) and T ′ = Reduce(T ∪ {w}). If

|w| = 2 and T �= T ′, then put T = T ′.
2) Compute w = Shorten(vεuδ) and T ′ = Reduce(T ∪{w}). If |w| = 2 and

T �= T ′, then put T = T ′.
B. When all pairs of words u, v ∈ T are handled (including the new ones),

output the current set T .

Proposition 3. Algorithm 4 terminates on any finite set S of braid words and,
if T = Extend(S), then 〈S〉 = 〈T 〉.

Proof. The latter statement is obviously true by Proposition 1 and since each
braid word we add to T defines an element of 〈S〉.

Note that Algorithm 4 extends the current set T with braid words w of length
2 only. Moreover, a word w = xε

i x
δ
j of length 2 cannot be added twice (the second

time T ′ = T). Thus, Algorithm 4 can add at most 4n2 new words to T .

Now assume that we have two conjugate tuples a and a′ of braid words as in
the AAG protocol. The next algorithm computes an extended conjugated pair
of tuples (z, z′) equivalent to (a, a′). In Algorithm 5, for a tuple a = (a1, . . . , ak)
and a braid word w, by a ∪ w we denote a tuple (a1, . . . , ak, w).

Algorithm 5. (Extension of conjugate tuples)
Signature. (z, z′) = Extend(a, a′).
Input.Conjugate tuples a = {a1, . . . , ak} and a′ = {a′

1, . . . , a
′
k} of braid words.

Output. Conjugate ”extended” tuples (z, z′) equivalent to (a, a′).
Initialization. Put z = a and z′ = a′.
Computations.

A. For each distinct pair of words (zi, zj) ∈ a, and each pair of numbers ε, δ ∈
{−1, 1}:
1) Perform the following:

– Compute w = Shorten(z2ε
i zδ

j z−ε
i z−δ

j z−ε
i).

Random Subgroups of Braid Groups 309

– Compute w′ = Shorten(z′2ε
i z′δj z′−ε

i z′−δ
j z′−ε

i).
– Compute (y, y′) = Reduce(z∪{w}, z′∪{w′}). If |w| = 2 and (z, z′) �=

(y, y′), then put (z, z′) = (y, y′).
2) Perform the following:

– Compute w = Shorten(zε
i z

δ
j).

– Compute w′ = Shorten(z′εi z′δj).
– Compute (y, y′) = Reduce(z∪{w}, z′∪{w′}). If |w| = 2 and (z, z′) �=

(y, y′), then put (z, z′) = (y, y′).
B. When all pairs of words zi, zj ∈ S are handled (including the new words),

output the current pair (z, z′).

Proposition 4. Let (a, a′) be a pair of conjugate tuples. Algorithm 5 terminates
on (a, a′). Furthermore, if (z, z′) = Extend(a, a′), then (z, z′) is equivalent to
(a, a′).

Proof. Each time we extend the tuples (z, z′) with elements w, w′ which follows
from the tuples (i.e., w ∈ 〈z〉 and w′ ∈ 〈z′〉). So, now the property (E1) follows
from Proposition 2. Furthermore, braid words w and w′ were obtained the same
way. Thus, the property (E2) holds and the output (z, z′) is equivalent to the
input (a, a′).

We therefore have

Proposition 5. Let (a, a′) and (b, b
′
) be two pairs of conjugated tuples as in

AAG-protocol. Let (y, y′) = Extend(a, a′) and (z, z′) = Extend(b, b
′
). Then to

break the AAG protocol with (a, a′) and (b, b
′
) it is sufficient to break AAG-

protocol with (y, y′) and (z, z′).

Proof. Obvious.

The main point of Proposition 5 is that the obtained instance (y, y′) and (z, z′) of
the AAG protocol is easier to break than the original (a, a′) and (b, b

′
). (It will be

clear from the experimental results described in the next section.) Furthermore,
(y, y′) and (z, z′) can be computed quite efficiently.

4 Experimental Results

We performed a series of 100 experiments with randomly generated subgroups
of B80. In each experiment we

1) Generated Alice’s and Bob’s public and private keys a, b, A, B (as described
in the Introduction).

2) Computed a′ and b
′
.

3) Computed (y, y′) = Extend(a, a′).

The obtained sets of results are as follows:

1) In 63 cases, y = (x1, . . . , x79).
2) In 25 cases, y = (x1, . . . , xi−1, x

2
i , xi+1, . . . , x79) for some i.

310 A. Myasnikov, V. Shpilrain, and A. Ushakov

3) In 5 cases, y = (x1, . . . , xi−1, x
2
i , xi+1, . . . , xj−1, x

2
j , xj+1, . . . , x79) for some

i, j.
4) In 5 cases, y = (x1, . . . , xi−1, x

2
i , xix

2
i+1xi, xi+2, . . . , x79) for some i.

5) In 1 case,
y = (x1, . . . , xi−1, x

2
i , xix

2
i+1xi, xi+1, . . . , xj−1, x

3
j , xj+1, . . . , x79) for some i, j.

6) In 1 case, y = (x1, . . . , xi−1, x
−1
i xi+1xi, xi+2 . . . , x79) for some i.

Thus, randomly generated tuples of braid words a and b of “AAG-type” gen-
erate either the whole Bn or a subgroup which is “close” to the whole group
Bn.

To explain this phenomenon, consider two particular braid words in B80:

w1 = x71x47x11x
−1
45 x9x6x

−1
72 and w2 = x64x

−1
32 x−1

39 x17x8x26x
−1
31 x78.

It is easy to check that w2
1w2w

−1
1 w−1

2 w−1
1 = x2

9x8x
−1
9 x−1

8 x−1
9 = x9x

−1
8 . This

happens, basically, because all generators in w1 commute with all generators in
w2 except x8 which does not commute with x9.

In general, if we pick two random braid words w1 and w2 (of length 5 − 8
over the alphabet {x1, . . . , x79}) in a such that w1 contains some fixed generator
x±1

i and w2 contains x±1
i+1, then there is a big chance that all other generators

that occur in w1 or w2 commute with each other and with xi and xi+1. In other
words, for each 1 ≤ i ≤ 79, with significant probability, there are two words w1

and w2 such that

1. w1 = w′
1x

±1
i w′′

1 ;
2. w2 = w′

2x
±1
i+1w

′′
2 ;

3. xi commutes with w′
1, w′

2, w′′
1 , and w′′

2 ;
4. xi+1 commutes with w′

1, w′
2, w′′

1 , and w′′
2 ;

5. w′
1 commutes with w′

2 and w′′
2 , and w′′

1 commutes with w′
2 and w′′

2 .

In this case, for some ε, δ ∈ {−1, 1}, we have w2ε
1 wδ

2w
−ε
1 w−δ

2 w−ε
1 = xε

i x
−ε
i+1.

Somewhat informally, Algorithm 5 works as follows. First, a lot of words of
the form xε

i x
−ε
i+1 are being produced (using the pattern v2εuδv−εu−δv−ε). Then,

using generators of the form xε
i x

−ε
i+1, Algorithm 4 produces all kinds of genera-

tors of the form xε
i x

δ
j (using the pattern vεuδ). Finally, after sufficient number

of words of length 2 is produced, the algorithm reduces the initial subgroup
generators to generators of the whole group Bn.

Remark 1. We note that increasing the parameters L1 and L2 decreases the
probability for pairs of words w1, w2 to satisfy the properties (1)–(5) above.
However, if the increase is moderate, then it is quite likely that w1 and w2 will
contain two pairs of non-commuting generators, say, xi, xj in w1 and xi±1, xj±1

in w2. Then, for some ε, δ ∈ {−1, 1}, we have w2ε
1 wδ

2w
−ε
1 w−δ

2 w−ε
1 = xε

i x
−ε
i±1x

ε
jx

−ε
j±1

which is a word of length 4. In this case, performance of the algorithm 5 can
be improved by allowing to add words of length 4 to the generating set (at the
cost of somewhat reducing the speed of computation). As the parameter values
L1 and L2 are increased further, the pattern w2ε

1 wδ
2w

−ε
1 w−δ

2 w−ε
1 produces longer

Random Subgroups of Braid Groups 311

and longer words, and for some of these words the algorithm may fail to prove
that the relevant subgroup is the whole group Bn (sometimes the subgroup may
actually be different from Bn).

We used this modification of the algorithm to test the following parameters:
N = 80, N1 = 20, N2 = 20, and L1 = 11, L2 = 13. Even with the generators
that long, many subgroups do generate the whole BN . As we have mentioned
before, further increase of the length of the generators can make the protocol
vulnerable to length-based attacks.

5 The Impact of the Experimental Results on the
Security of the AAG Protocol

As described in the previous section, our experiments show that with the choice
of parameters for the AAG protocol suggested in [1], the subgroups generated
by a and b tend to have the following properties:

(G1) They are either the whole group Bn or “almost” the whole Bn.
(G2) They have cyclic centralizer which coincides with the center of Bn. (The

latter is generated by the element Δ2.)
(G3) They are generated by short (of length up to 3) positive braid words.

Furthermore, Algorithm 5 efficiently transforms an initial generating tuple
into a simplified generating tuple of type (G1)–(G3). In this section, we explain
how these results affect the security of the AAG protocol. The techniques used
in this section were developed by S. J. Lee and E. Lee in [12] and by J. Gonzalez-
Meneses in [7]. We refer the reader to these two papers for more information on
the algorithms; here we just recall some notation that we need.

For a ∈ Bn, the number inf(a) denotes the maximum integer k such that
a = Δkp in the group Bn, where Δ ∈ Bn is the half-twist braid and p is a
positive braid. For an r-tuple of braids a = (a1, . . . , ar), denote by Cinf (S) the
set of all r-tuples (b1, . . . , br) ∈ Br

n such that inf(bi) ≥ inf(ai) (i = 1, . . . , r) and
there exists w ∈ Bn such that b = w−1aw.

The following algorithm combines two ingredients: the subgroup simplification
algorithm of the present paper and the summit attack of [7], [12] into one attack
on Alice’s (or Bob’s) key.

Algorithm 6. (Attack on AAG-protocol)
Signature. w = GetConjugator(a, a′).
Input. Conjugate tuples (a, a′) of AAG-type.
Output. A braid word w such that a′ = w−1aw.
Computations.

A. Compute (a1, a
′
1) = Extend(a, a′).

B. Using technique from [12], compute (a2, a
′
2), u, and v satisfying the following

properties:
1) a2 ∈ Cinf (a′

2) ⊆ Cinf (a′
1) and a′

2 ∈ Cinf (a2) ⊆ Cinf (a1).

312 A. Myasnikov, V. Shpilrain, and A. Ushakov

2) a2 = u−1a1u.
3) a′

2 = v−1a′
1v.

C. Using technique from [7], compute a braid word s such that a2 = s−1a′
2s.

D. Output us−1v−1.

By Theorem 2 of [12], the step B of Algorithm 6 can be performed very
efficiently (by a polynomial time algorithm). The time complexity of the step
C is proportional to the size of Cinf (a1) which is large in general, but for all
subgroups obtained in our experiments these sets were small. For instance, if the
tuple a consists of all generators of Bn, then |Cinf (a1)| = 2 as shown in the next
proposition.

Proposition 6. Let x = (x1, . . . , xn−1). Then Cinf (x) = {x,Δ−1xΔ}.
Proof. Let c0 ∈ Bn be such that c−1

0 xc0 ∈ Cinf (x). Then for each i = 1, . . . , n−1
one has

c−1
0 xic0 = xsi

for some 1 ≤ si ≤ n − 1. Since conjugation is an automorphism, it is easy to
see that either (s1, . . . , sn−1) = (1, . . . , n − 1) or (s1, . . . , sn−1) = (n − 1, . . . , 1)
which proves the proposition.

For other generating tuples obtained in our experiments the sizes of the summit
set Cinf (x) are small, too. Therefore, we can say that Algorithm 6 is efficient on
a randomly generated subgroup as described in the AAG protocol. We should
mention that the obtained conjugator may not be exactly Alice’s (Bob’s) private
key; we compute it up to the centralizer of Bob’s (Alice’s) subgroup. However,
since in almost all examples the centralizer is generated by the element Δ2 (i.e.,
coincides with the center of Bn), this is not a problem. We would like to point
out that without the first step the attack may not be efficient since the size of
the summit set would be huge.

Now, with Algorithm 6 it is easy to find the shared key obtained by Alice and
Bob in the AAG protocol:

Algorithm 7. (Attack on the AAG protocol)
Signature. w = GetSharedKey(a, a′, b, b

′
).

Input. Conjugate tuples (a, a′) and (b, b
′
) of as in the AAG protocol.

Output. The shared key K.
Computations.

A. Let wa = GetConjugator(a, a′).
B. Let wb = GetConjugator(b, b

′
).

C. Output w−1
a w−1

b wawb.

References

1. I. Anshel, M. Anshel, B. Fisher, D. Goldfeld, New Key Agreement Protocols in
Braid Group Cryptography. In: Progress in Cryptology – CT-RSA 2001, 13–27.
Lecture Notes Comp. Sc., vol. 2020. Berlin Heidelberg New York Tokyo: Springer
2001.

Random Subgroups of Braid Groups 313

2. I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography,
Math. Res. Lett. 6 (1999), 287–291.

3. J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies 82,
Princeton Univ. Press, 1974.

4. P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), 200–235.
5. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P.

Thurston, Word processing in groups. Jones and Bartlett Publishers, Boston, MA,
1992.

6. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne, Probabilistic solutions of
equations in the braid group, preprint. http://arxiv.org/abs/math.GR/0404076

7. J. Gonzalez-Meneses, Improving an algorithm to solve Multiple Simultaneous Con-
jugacy Problems in braid groups, Contemp. Math., Amer. Math. Soc. 372 (2005),
35–42.

8. J. Gonzalez-Meneses and B. Wiest, On the structure of the centraliser of a braid,
Ann. Sci. École Norm. Sup. 37 (5) (2004), 729–757.

9. Hofheinz, D., Steinwandt, R., A practical attack on some braid group based cryp-
tographic primitives. In: Public Key Cryptography, 6th International Workshop on
Practice and Theory in Public Key Cryptography, PKC 2003 Proceedings, 187–198
(Y. G. Desmedt, ed., Lecture Notes Comp. Sc., vol. 2567) Berlin Heidelberg New
York Tokyo: Springer 2002.

10. Hughes, J., Tannenbaum, A., Length-based attacks for certain group based encryp-
tion rewriting systems. In: Workshop SECI02 Securitè de la Communication sur
Intenet, September 2002, Tunis, Tunisia. http://www.network.com/˜hughes/

11. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-key cryp-
tosystem using braid groups. In: Advances in cryptology – CRYPTO 2000 (Santa
Barbara, CA), 166–183 (Lecture Notes Comp. Sc., vol. 1880) Berlin Heidelberg
New York Tokyo: Springer 2000.

12. S. J. Lee, E. Lee, Potential Weaknesses of the Commutator Key Agreement Protocol
Based on Braid Groups. In: Advances in cryptology – EUROCRYPT 2002, 14–28
(Lecture Notes Comp. Sc., vol. 2332) Berlin Heidelberg New York Tokyo: Springer
2002.

13. A. Myasnikov, V. Shpilrain, A. Ushakov, A practical attack on some braid group
based cryptographic protocols. In: Advances in cryptology – CRYPTO 2005 (Santa
Barbara, CA). Lecture Notes Comp. Sc. 3621 (2005), 86–96.

14. M. Paterson, A. Razborov, The set of minimal braids is co-NP-complete, J. Algo-
rithms 12 (1991), 393–408.

15. V. Shpilrain and A. Ushakov, The conjugacy search problem in public key cryptog-
raphy: unnecessary and insufficient, Applicable Algebra in Engineering, Commu-
nication and Computing, to appear. http://eprint.iacr.org/2004/321/

Appendix: Generating Random Subgroups

The question of how one could produce a random generating set of a required
type for a subgroup of Bn is by no means trivial. We used the following proce-
dure for producing random subgroup generators as in the AAG protocol. In the
description of the algorithm below, when we say “uniformly choose an integer”
from a given interval, that means all integers from this interval are selected with
equal probabilities.

314 A. Myasnikov, V. Shpilrain, and A. Ushakov

Algorithm 8. (Subgroup generator)
Input. The rank n of the braid group, the rank k of a subgroup, and numbers
L1, L2 such that L1 < L2.
Output. Braid words w1, . . . , wk over Xn such that L1 ≤ |wi| ≤ L2 and each
generator x ∈ Xn non-trivially occurs in at least one of the wi’s.
Computations.

A. For each 1 ≤ i ≤ k, uniformly choose an integer li, L1 ≤ li ≤ L2, and
compute L =

∑k
i=1 li.

B. Construct a sequence {a1, . . . , aL} ∈ (X±1)∗ the following way:
1) For each 1 ≤ i ≤ n− 1, uniformly choose εi ∈ {−1, 1} and put ai = xεi

i .
2) For each n ≤ i ≤ L, uniformly choose ji ∈ {1, . . . , n − 1} and εi ∈

{−1, 1}, and put ai = xεi

ji
.

C. Randomly permute elements in {a1, . . . , aL}.
D. For each 1 ≤ j ≤ k, compute sj =

∑j−1
i=1 li and put

wj = Shorten(a(sj)+1 . . .as(j+1)).
E. If some braid generator xi does not occur in the obtained sequence w1, . . . , wk,

then repeat all the steps.

Note that, in theory, Algorithm 8 might go into an infinite loop if the subgroup
generators {w1, . . . , wk} do not involve some braid generator xi. But in real life,
such a situation is extremely rare. In fact, the greatest number of iterations
Algorithm 8 performed in our experiments was 5.

High-Order Attacks Against the Exponent

Splitting Protection

Frédéric Muller1 and Frédéric Valette2

1 HSBC-France
Frederic.Muller@m4x.org

2 CELAR, RENNES, France
Frederic.Valette@m4x.org

Abstract. Exponent splitting is a classical technique to protect mod-
ular exponentiation against side-channel attacks. Although it is rarely
implemented due to efficiency reasons, it is widely considered as a highly-
secure solution. Therefore it is often used as a reference to benchmark
new countermeasure proposals.

In this paper, we make new observations about the statistical behavior
of the splitting of the exponent. We look at the correlations between the
two shares, and show an important imbalance. Later, we show how to
use this imbalance in higher-order attacks (mostly based on address-bit,
safe-error and fault analysis). We also present experimental results to
estimate their feasibility.

1 Introduction

Modular exponentiation is frequently used by public-key cryptosystems, for ex-
ample RSA [17] or DSA [16]. However, data manipulated during these compu-
tations should generally be kept secret, since any leakage of information (even
only a few bits of secret information) may be useful to an attacker. For example,
during the generation of an RSA signature by a cryptographic device, the secret
exponent is used to transform an input related to the message into a digital
signature via modular exponentiation.

In recent years, many methods have been proposed to attack these algorithms,
using a physical source of information, instead of the usual cryptographic inputs
and outputs. The first important result was due to Kocher who suggested to
use timing information to retrieve secret keys manipulated by the cryptographic
operations [14]. Another interesting idea was proposed by Boneh et al. who
suggested to modify the physical environment of a cryptographic device to create
a fault during the computations [3]. Faulty results sometimes leak information
about the secret key.

These attacks, generally called side-channel attacks, may represent an im-
portant threat for systems. Indeed it is often assumed that cryptographic devices
are tamper-resistant, while naive implementations often leak information about
the secrets stored and manipulated by the device. Many attacks, either passive
(like Kocher’s timing attack) or active (like Boneh et al.’s fault attack), have been

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 315–329, 2006.
c© International Association for Cryptologic Research 2006

316 F. Muller and F. Valette

studied, and some generic countermeasures were proposed. Among the possible
protection methods, an interesting direction [4], inspired by the well-known se-
cret sharing techniques [18] consists in splitting the secret data in two (or more)
shares. Then two (or more) separate computations are performed (one on each
share), such that the actual output can be retrieved from the different results.
This idea, initially introduced by Chari et al. in [4] was further developed by
Clavier and Joye in the case of modular exponentiation [6]. Similar methods
also exist for secret-key algorithms [10] and for scalar multiplication on elliptic
curves [19].

For modular exponentiation, it is called the exponent splittingmethod and
is widely considered as a secure solution to thwart side-channel attacks. However
its inefficiency (it roughly doubles the execution time) is an important limitation
in practice. Recent countermeasures (see [5] for instance) often use the exponent
splitting method as a reference to evaluate the security level they achieve.

In this paper, we make new observations about the statistical behavior of the
sharing method. As a result, the two separate modular exponentiations have
strong correlations. Later, we exploit these correlations in higher-order side-
channel attacks, i.e. attacks that analyse simultaneously the physical informa-
tion at two different instants in the computation. More precisely, we describe
4 new higher-order attacks against this countermeasure. They work when all
the exponentiation are protected against Simple Power Analysis (SPA), and can
even defeat some extra randomization countermeasures. Three of the four at-
tacks are active attacks, and as such require the injection of faults during the
cryptographic computations.

Our paper is constructed as follows : first, we remind the Exponentiation
Splitting method, as well as several popular side-channel attack techniques in
this context. Then, we describe our new results : we start by our new statistical
observations, and we continue by suggesting three new high-order fault attacks.

2 The Exponent Splitting Countermeasure

The idea to share a secret in several parts was first introduced by Shamir in [18]
for a cryptographic purpose. Later, Chari et al. suggested to split a cryptographic
computation in several shares [4], in such a way that :

– The actual output can be retrieved from the outputs of each partial
computation.

– One needs to attack the scheme as many times as the number of shares in
order to retrieve the secret.

In particular, they argued that this approach was a reasonable countermeasure
against side-channel attacks. For instance, randomizing the splitting algorithm
allows to counter attacks based on statistical analysis.

More specifically in the case of modular exponentiation, Clavier and Joye
introduced the idea of exponent splitting to thwart side-channel attacks [6].
Similar ideas were described in [19] in the case of scalar exponentiation on elliptic

High-Order Attacks Against the Exponent Splitting Protection 317

curves. Besides the switching from multiplicative to additive notation, the idea
of both methods is essentially the same.

2.1 Definition

Let us consider a secret exponent, noted

d =
n−1∑
i=0

di.2i

In many cryptographic algorithms (RSA for instance), one needs to raise some
input M to the power d, modulo some large number N . The result is noted :

S = Md mod N =
n−1∏
i=0

Mdi.2
i

mod N

The main idea of the splitting technique is to pick a random r (smaller than
d)1 and to compute the value r∗ = d− r. Then, one computes separately (Sr =
M r mod N) and (Sr∗ = M r∗

mod N) from which it is easy to recover S by :

S = Sr · Sr∗ = M (r+r∗) mod N = Md mod N

A natural idea is that, since any of the two exponentiations consists in basi-
cally raising M to a random exponent, it is sufficient to protect one of the two
exponentiations against side-channel attacks.

2.2 Alternative Solutions

Because r is purely random, it seems that this countermeasure offers a very high
level of security. Alternative protection methods can be grouped in two classes :

– Those based on randomizing the input data (either M or d), prior to the
exponentiation algorithm [7, 14].

– Those based on randomizing the exponentiation algorithm itself (see [5, 11]).

For many of these countermeasures used alone, some problems have been iden-
tified [8]. So it is customary to combine several countermeasures in implementa-
tions, provided it does not affect too badly the performances.

No attack is known against the exponent splitting method, even without ad-
ditional countermeasure (some basic SPA-protection is still needed, as shown in
the next Section). However, the exponent splitting is much less efficient than
the alternative propositions, since it doubles the length of the computation. The
goal of some recent proposals (see [5] for instance) is to reach the same level of
security than exponent splitting, at a more reasonable cost.

1 One could think of picking a random r smaller than ϕ(N). Although this does not
totally thwart our attacks, it changes the analysis as pointed out in Section 5.4.

318 F. Muller and F. Valette

3 Some Usual Side-Channel Attacks

In this section, we describe some popular side-channel attacks against modular
exponentiations. In general, one distinguishes between passive attacks where
an attacker observes some physical variable in the environment, and active
attacks where the physical environment is modified by the attacker.

Attacks can also be sorted according to which physical mean is used. As an
example, many papers focus on power attacks, where the source of information
is the power consumption of the cryptographic device. Regarding active attacks
(e.g. fault attacks), it is not always specified which mean is used to inject a fault.
Popular methods used in practice include light and power glitches.

3.1 SPA

Modular exponentiation is generally implemented using a sequence of squaring
and multiplication modulo N . Simple Power Analysis (SPA) [15] is based on the
natural idea that multiplication and squaring may not result in the same power
consumption. It is therefore a passive attack, where one monitors power traces
of a cryptographic device executing a modular exponentiation2. One expects to
retrieve the sequence of squaring and multiplication that was actually executed,
from the power traces.

In a naive implementation of modular exponentiation, the multiplication at
step i is executed if and only if di = 1. Therefore an attacker learns if di = 1
by simply looking if a multiplication was executed at step i. It is quite
simple to thwart SPA by always executing the squaring and the multiplication at
step i. When di = 0, the multiplication is a useless operation, so the “square-and-
multiply always” algorithm, as depicted in Figure 1 is slightly slower than a naive
implementation. It is a very popular algorithm, often implemented in practice

Input: a message M , an n-bit integer d = n−1
i=0 di2

i

Output: Md

Q[0] = 1
for i from n − 1 down to 0

Q[0] = Q[0]2

Q[1] = Q[0] × M
Q[0] = Q[di]

return Q[0]

Fig. 1. “Square-and-multiply always” algorithm, resistant against SPA

(sometimes in addition to other countermeasures). This SPA-protection remains
a requirement for the security of Exponent Splitting. Otherwise an attacker can
learn separately r and r∗ by running the SPA twice and then reconstruct
2 SPA has been primarily developed as a power attack, however it adapts very simply

to other physical sources of information, like electromagnetic radiations.

High-Order Attacks Against the Exponent Splitting Protection 319

d = r + r∗

However it may seem sufficient to protect only one of the two exponentiations if
one considers only SPA. Indeed, since r is random, an attacker learns basically
nothing about d if he obtains only r or d − r. However, protecting only one of
the two modular exponentiations is not a very natural solution.

3.2 Fault Attacks

Cryptographic devices are often sensitive to perturbations of their environ-
ment [3]. Fault attacks are based on the assumption that the normal execution of
the modular exponentiation can be modified by such physical perturbation. This
goal is generally reached by light or power glitches, or temperature variations.

For instance, assume that an attacker is able to flip the value of the bit di

during the exponentiation of the input M . Then, instead of the correct result S,
the attacker obtains the “faulty” result :

S′ = S ·M2i

if di = 0 and
S′ = S ·M−2i

if di = 1. Therefore an attacker learns one bit of the secret exponent, by
comparing one correct and one faulty modular exponentiation.

3.3 Safe Errors Attacks

Safe errors attacks can be viewed as an enhancement of fault attacks, adapted
to thwart some countermeasures. The attacker uses the fact that some of the
operations that are executed can be useless. For instance, in the “square-and-
multiply always” algorithm of Figure 1, the multiplication is useless when di = 0.

If a fault is injected at this step of the computation, the result of the expo-
nentiation will be S′ = S when di = 0 and an invalid value otherwise. Like for a
basic fault attack, comparing one correct and one faulty modular exponentiation
allows an attacker to learn one bit of d. Moreover, the underlying assumptions
are much lighter : it is easier to inject an arbitrary fault, than a fault
that specifically flips one bit of the exponent.

Both faults and safe-error attacks do not apply to exponent splitting, because
learning one bit of r (or r∗) does not provide any information about d.

3.4 Address-Bit Attacks

The address-bit attack is a specific attack to target algorithms like the “square-
and-multiply always” of Figure 1, where the fact that di is 0 or 1 does not affect
the intermediate values that are computed, but affects instead the addresses
that are manipulated. For instance, when di = 1, Q[1] will be manipulated at
the last stage of round i, while it is Q[0] otherwise.

320 F. Muller and F. Valette

Power attacks [15] or ElectroMagnetic (EM) analysis [9] are often based on
a correlation between the manipulated data and the physical source of infor-
mation. However, it is also known that addresses of manipulated registers
can affect the power dissipation or the EM radiation. Address-bit attacks have
been developed to take advantage of such properties [12]. Suppose we use EM
as the physical source of information and that our probe is physically closer to
register A than register B. If a group of experiments all read the register A, their
EM signature will be significantly different from a group of experiments reading
register B.

This idea has been used to break the basic “square-and-multiply-always” al-
gorithm : since there is no extra randomization, the address-bit is always di at
step i. Therefore the EM signature at this stage of the computation depends on
di. However this attack no longer works for the exponent splitting method, since
the address-bits are randomized at each execution.

3.5 Impact on Exponent Splitting

We observed that, taken separately, none of this well-known attack techniques
allows to break the Exponent Splitting protection. Indeed, each exponentiation
uses a random exponent, so attacks requiring some degree of randomization are
not possible.

In addition, provided at least one of the exponentiation is SPA-protected, SPA
does not work against the Exponent Splitting. However, in practice, it is better
to protect both exponentiations against SPA. Otherwise, an attacker could
mount a combined attack : apply SPA to the unprotected exponentiation to
learn (for instance) r, then attack the remaining SPA-protected exponentiation
by other means.

For instance, one could think of an address-bit attack on M r∗
, assuming prior

knowledge of r : the attacker repeats several time the computation for a fixed
given M . He makes an assumption about the i Least Significant Bits (LSB)
of the secret d. From this guess and from r, he gets one candidate for the i
LSB’s of r∗ of each computation. Then he looks at the i-th step of M r∗

and
performs an address-bit attack, as described in Section 3.4. If the guess is right,
he will observe two groups with significantly different EM signatures. Otherwise,
he will just observe some random data. So he learns the i LSB’s of d and it is
straightforward to repeat the process to learn more bits of d.

To summarize, it is recommended to protect both exponentiations
against SPA, in order to thwart combined attacks. With this assumption, no
attack is known against the exponent splitting protection. In particular no ad-
ditional countermeasure (like exponent randomization for instance) is needed.

4 New Attacks Against the Exponent Splitting

We focus on some statistical properties of the exponent splitting, at the bit
level. Since r is randomly drawn, it does not leak information about d when

High-Order Attacks Against the Exponent Splitting Protection 321

considered alone3. However, the pair (r, r∗) is not uniformly distributed, since it
always satisfies

r + r∗ = d

We explore the statistical impact of this relation at the bit-level. Later, we use
the observed imbalance to mount side-channel attacks.

4.1 Statistical Properties of the Exponent Splitting

Although each bit of r and r∗ takes the values 0 or 1 with probability 0.5,
there is a bias in the distribution of the i-th bits of the pair (r, r∗). We denote
respectively by ri, r∗i and di the i-th bits of r, r∗ and d. Besides, the i-th carry
bit in the addition r + r∗ = d is noted ci. At the bit level, the following relation
is satisfied :

ci + ri + r∗i = di + 2.ci+1 (1)

In particular, we have
ci ⊕ ri ⊕ r∗i = di (2)

Let also pi denote the probability that ci = 0. The probability is taken over
all the possible choices of r and r∗. Initially, p0 = 1.

Suppose that di = 0. Since ri is drawn at random, when ci = 0, we get from
(2) that :

(ri, r
∗
i) = (0, 0)

with probability 0.5 and
(ri, r

∗
i) = (1, 1)

with probability 0.5. In the first case, we obtain from (1) that ci+1 = 0, while in
the second case ci+1 = 1.

Similarily, when ci = 1, it is equaly likely that (ri, r
∗
i) is equal to (0, 1) or

(1, 0). In both cases, we get ci+1 = 1. Therefore, the transition rule for these
probabilities can be summarized as in Table 1.In the case di = 1, we obtain
another rule for probability transitions which is given in Table 2.

Table 1. Probability transition when di = 0

Pr[(ri, r
∗
i) = (0, 0)] = 0.5 × pi

Pr[(ri, r
∗
i) = (0, 1)] = 0.5 × (1 − pi)

Pr[(ri, r
∗
i) = (1, 0)] = 0.5 × (1 − pi)

Pr[(ri, r
∗
i) = (1, 1)] = 0.5 × pi

pi+1 = 0.5 × pi

From these equations, we can observe that the two bits (ri, r
∗
i) are not uni-

formly distributed (unless pi = 0.5) and that the imbalance depends on the
3 Actually, it is not true : r is generally drawn at random in the interval [0, d] which is

not exactly equivalent to drawing at random an n-bit integer. This results in (small)
imbalances that have already been used for cryptanalysis purpose [1].

322 F. Muller and F. Valette

Table 2. Probability transition when di = 1

Pr[(ri, r
∗
i) = (0, 0)] = 0.5 × (1 − pi)

Pr[(ri, r
∗
i) = (0, 1)] = 0.5 × pi

Pr[(ri, r
∗
i) = (1, 0)] = 0.5 × pi

Pr[(ri, r
∗
i) = (1, 1)] = 0.5 × (1 − pi)

pi+1 = (0.5 × (1 − pi)) + pi = 0.5 × (1 + pi)

value of the bits from 0 to i of the secret exponent. Acutally, what we have is
a Markov chain where the bit-level probabilities of step i can be derived from
those of step i− 1 using one of the two previous probability transition rules.

4.2 An Example

To illustrate our ideas, we have drawn at random an exponent d of length 24
bits and repeated the splitting method a large number of times. We computed
experimentally the probability distribution of (ri, r

∗
i) for all steps i. Table 3

summarizes these results.

Table 3. An example of bit-level imbalance for a 24-bit secret d

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23
(ri, r∗

i) 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1
(0, 0) 50 25 38 31 35 33 34 16 8 4 2 1 50 25 13 45 28 14 8 47 23 11 5 2
(1, 0) 0 25 12 19 15 17 16 34 41 46 48 49 0 25 37 5 22 36 42 3 27 39 45 48
(0, 1) 0 25 13 18 15 17 16 33 42 46 49 49 0 25 36 6 22 36 43 4 28 40 46 49
(1, 1) 50 25 37 32 35 33 34 17 9 4 1 1 50 25 14 44 28 14 7 46 22 10 4 1

Intuitively, when the secret exponent has a long run of bits equal to 0 or 1, it is
very likely that the bits of r and r∗ are different. In the case of a run of 0’s, we can
see that pi becomes very close to 0, so there is generally no carry bit. However,
after a long run of 1’s, pi gets close to 1, so a carry bit is likely to propagate. In the
next section, we show applications of these bit-level observations to mount safe-
error attacks, fault attacks and address-bit attacks. We assume that an attacker
can infer the value of the bits of d from the probability distribution
of (ri, r

∗
i). This problem (called the Hidden Markov Problem) has already been

handled by Karlof and Wagner in [13]. We also mention that the paper [8] deals
with a similar problem to break the Ha-Moon countermeasure [11].

4.3 Application to Safe Error Attack

In this section, we assume that an attacker is able to create faults with enough pre-
cision to target a specific step in the “square-and-multiply always” algorithm. We
consider a second-order safe-error attack, i.e. the attacker injects two faults
during the same computation and observes if the result remains valid or not.

Suppose the attacker injects a fault during the multiplication at step i of
the exponentiation M r, and a fault during the multiplication at step i of the

High-Order Attacks Against the Exponent Splitting Protection 323

exponentiation M r∗
. These two faults have no effect on the final computation,

as long as (ri, r
∗
i) = (0, 0).

By repeating the process, the attacker obtains an estimation of the probability
Pr[(ri, r

∗
i) = (0, 0)] for the positions i of his choice. We have seen in Section 4.1

that, this probability is strongly correlated with the value of the bits di (see
Table 3 for a concrete example). This observation allows the attacker to learn
the secret exponent (refer to Section 5 for further analysis).

4.4 Application to Fault Attacks

In this section, we use an idea similar to the previous attack, although we are
not specifically focusing on safe-errors, i.e. faults which will keep the output of
the exponentiation unchanged. We suppose that an attacker is able to “flip” the
value of the bit ri by fault injection, like in the usual fault attack (see Section 3.2).

Depending on the value of the bit ri, the output can be modified to S ·M2i

(if
ri = 0) or S ·M−2i

(if ri = 1). Since ri is random, this provides no information
about d. However, suppose that we consider a second-order fault attack where
we simultaneously flip the bit ri and the bit r∗i . Depending on the value of these
two bits, the observed result can take 4 values :

if (ri, r
∗
i) = (0, 0) then we get S ·M2i+1

if (ri, r
∗
i) = (0, 1) then we get S

if (ri, r
∗
i) = (1, 0) then we get S

if (ri, r
∗
i) = (1, 1) then we get S ·M−2i+1

Like in the previous section, we obtain a safe-error in 2 of the 4 cases. This
allows us to tell when ri �= r∗i , although we cannot tell between the two cases
(0, 1) and (1, 0). In addition, we can also detect here the case (0, 0) and (1, 1)
because we obtained specific faults in the output of the modular exponentiation.

By repeating the process over several experiments, we get much more infor-
mation than in the previous section, since we learn estimates for

– Pr[(ri, r
∗
i) = (0, 0)]

– Pr[(ri, r
∗
i) = (1, 1)]

– Pr[(ri, r
∗
i) = (0, 1) or (1, 0)]

This information makes the analysis of the Hidden Markov Model [13] easier,
however the injected faults need to specifically flip one bit of the exponent. This
is more difficult to obtain in practice than an arbitrary fault on the multiplica-
tion. Therefore it is not clear that our second-order fault attack will require less
messages than the second-order safe-error attack, although it provides a better
statistical information.

4.5 Application to Address-Bit Attack

In this section, we suggest to mount a statistical address-bit attack. The
idea is similar to the usual address-bit attacks, although here we only know
probabistically if the two address-bits are equal or not.

324 F. Muller and F. Valette

Suppose that we already know the i − 1 less significant bits of d. Therefore
we know that the carry bit ci is equal to 0 with a probability pi, that can be
computed using the rules given in Section 4.1.

If di = 0 then ri = r∗i with probability pi.
If di = 1 then ri = r∗i with probability 1− pi.

This observation allows us to learn the bit di (using EM radiations for instance,
as described in Section 3.4), by comparing the addresses manipulated at stage
i of both modular exponentiations. Suppose, for example, that pi > 0.5. Then
the address-bits should be equal more often if and only if di = 0. Clearly, the
“bad case” here is when pi = 0.5, since we are unable to determine the value
of di. However, such bad cases remain unlikely, as illustrated in Table 3. The
advantage of this address-bit attack is that it is a passive attack. See Section 5
for more details about implementation of this attack.

4.6 Combining Safe-Error and Address-Bit Attacks

The efficiency of the previous safe-error attack can be improved, by combining it
with fault attacks. We want to improve the prediction of the carry bit ci, so we
inject one fault at step i−1, while we simultaneously monitor the EM radiations
of step i. This might look complicated, but it is not necessarily more difficult
than injecting two faults during the same cryptographic computation.

In order to predict the carry bit ci, we need some information about the step
i − 1. So, we inject an arbitrary fault during the multiplication at round i − 1,
for any one of the two modular exponentiations. If the result remains valid, we
learn that ri−1 = 0. Otherwise ri−1 = 1.

– In the case di−1 = 1. We inject a fault at the (i − 1)-th step until we
find an exponentiation where ri−1 = 0. Then from relation (1) we see that
necessarily, ci = 0. Therefore the address bits ri and r∗i are equal if and only
if di = 0. This allows to apply the usual address-bit attack, as described in
Section 3.4.

– In the case di−1 = 0, we inject a fault until we find an exponentiation where
ri−1 = 1. Then, we see that necessarily, ci = 1. Therefore the address bits ri

and r∗i are equal if and only if di = 1.

The advantage of this combined attack is that it no longer requires any Markov
model analysis, so the number of required message is much smaller.

4.7 Summary

We proposed a variety of attacks against the exponent splitting countermeasure,
based on statistical properties of the sharing method, at the bit-level. We pro-
posed a passive attack based on statistical address-bit analysis and several
active attacks, either based on faults or safe-errors. See Table 4 for a summary
of our proposed attacks.

High-Order Attacks Against the Exponent Splitting Protection 325

Table 4. Summary of our proposed attacks. The number of faults is given per sample.

Type of attack Needs Markov analysis ? Active ? Number of Faults

Safe-error yes yes 2

Fault yes yes 2

Address-bit yes no 0

Combined no yes 1

5 Experimental Results

In this Section, we implemented software simulations for the safe-error attack and
the statistical address-bit attack. Both are based on a Markov model analysis,
where one wants to retrieve di from partial information about the distribution
of (ri, r

∗
i). We want to obtain a more accurate estimation of the real cost of this

analysis. As we have seen previously, some problem will arise. For instance, when
pi = 0.5, it is impossible to tell whether di is equal to 0 or 1. In particular, such
problems happen after a long run of consecutive 0’s or 1’s. We want to estimate
the impact of this “difficult” positions.

Besides, we did not implement the fault attack, since it relies essentially on the
same principle than the safe-error attack, although the underlying assumptions
are much stronger (we need the ability to inject faults that specifically flip the
value of some exponent bits). We did not implement the combined attack either,
since it is an improvement of the statistical address-bit attack. Besides, there is
no Markov model analysis in this attack (see Table 4), so its complexity depends
on the quality of our address-bit observations : in theory, 2 observations per bit
of the secret exponent should be sufficient.

5.1 Safe-Error Attack

Let qi = Pr[(ri, r
∗
i) = (0, 0)]. From the probability transition rules of Table 1

and 2, we obtain :

if di−1 = di = 0 then qi = 0.5 · qi−1

if di−1 = di = 1 then qi = 0.5 · qi−1

if di−1 = 0 and di = 1 then qi = 0.5 · (1 − qi−1)
if di−1 = 1 and di = 0 then qi = 0.5 · (1 − qi−1)

Then, we adopt a recursive approach : we learn di from di−1, by testing
whether the probability qi is closer to 0.5 · qi−1 or from 0.5 · (1 − qi−1). Clearly,
the only problem arises when qi−1 & 0.5 where it is very difficult to make a
decision. The following Table 5 summarizes our experimental results, where L
denotes the exponent length and D the number of experiments, i.e. the number
of fault injections here. Besides, this process must be repeated for each bit of
the scalar, so the number of experiments is about L × D in total. Actually,
the parameter D was chosen such that we could derive the value of the most

326 F. Muller and F. Valette

Table 5. Experimental results for the safe-error attacks

L D Errors Unable to decide

40 20 3.93 5.21

40 100 2.22 2.40

160 100 8.48 6.79

160 300 6.06 1.81

160 1000 3.58 1.22

1024 100 52.25 39.90

1024 1000 7.26 37.48

“difficult” bits. For many positions, the value of di is easy to determine with
much less than D faults. This was not taken into account in our evaluation of
the cost. To average these figures, we repeated the attack several hundred times,
for randomly chosen exponents. To conclude, if one wants to remove most errors
and “no decision” cases, one needs about 100 faults for a 160-bit scalar, and
1000 faults for a 1024-bit scalar.

5.2 Statistical Address-Bit Attack

We implemented the statistical address-bit attack. We suppose that the i LSB’s
of the scalar are known and try to determine if the next bit is 0 or 1 by looking at
the equality of the address-bits ri and r∗i . The results are summarized in Table 6.
We observe that these figures are slightly better than those of Table 5. Besides,
the attack does not need to be repeated for each bit of the scalar, since we can
monitor the N steps of the exponentiation algorithm. So this attack is actually
much more efficient than the safe-error attack. However, these two attacks rely
on different physical assumptions : the safe-error attack is active, although the
underlying assumption is much weaker than for fault attacks (where one bit of
the exponent needs specifically to be flipped). On the other hand, the address-bit
attack is passive.

Table 6. Experimental results for the statistical address-bit attack

l D Errors Unable to decide

40 20 2.57 1.83

40 100 1.65 0.40

160 100 5.78 1.64

160 300 3.82 0.49

160 1000 2.35 0.12

1024 100 35.90 9.52

1024 1000 12.49 1.10

High-Order Attacks Against the Exponent Splitting Protection 327

5.3 Dealing with Errors and the “Unable to Decide” Case

In the previous statistical attacks, it occured that we were unable to make a
decision between di = 0 and di = 1. In particular, this occurs after long runs of
0 or 1’s, where the statistical behavior is quite special.

Actually, it is not necessarily a problem if some bits of the secret scalar remain
unknown at the end of the attack. Indeed, there are some mathematical solutions
to deal with it. First, if the number of unknowns is small, we can simply guess
these bits. Secondly, there exist some algorithms to take advantage of (even
relatively small) partial key exposure for an RSA exponent (see the paper by
Blömer and May, for instance [2]). Therefore, we may retrieve the “missing” bits
by mathematical means, once several bits have been leaked using side-channels.

5.4 Additional Countermeasures

A natural question is to tell whether such attacks can be thwarted by putting
more countermeasures (in addition to the SPA countermeasures).

– Countermeasures based on randomizing the message will not work here.
Indeed, our attacks do not exploit the actual values that are manipulated
during the exponentiations. So it does not matter that the message is initially
randomized.

– There is another way to initially split the secret exponent : draw at
random r in the interval [0, ϕ(N)], then compute r∗ = d−r mod ϕ(N). This
is not likely to be implemented, because ϕ(N) is not always known by the
device (although it could be recomputed from d and e). The problem with
this alternative splitting is that we could face two possible targets instead of
one :

r + r∗ = d and r + r∗ = d′ = d + ϕ(N)

It is better if d is far from ϕ(N)
2 , because one of the two targets is over-

represented, and the other one just acts as noise. So we would recover, either
d or d + ϕ(N), but in both cases this is equivalent to the secret key. The
tricky case is when d & ϕ(N)

2 , because d and d′ occur equally often. An open
problem is to propose a dedicated analysis, in order to recover two such
exponents simultaneously.

– However, as soon as the device knows ϕ(N), it is very likely that the expo-
nent randomization would be implemented. The idea of this countermea-
sure is to draw a random x for each exponentiation, and to perform each
exponentiation with exponent d + x ·ϕ(N) instead of the actual exponent d.
Implementing this protection apparently thwarts our attacks.

– Countermeasures based on randomizing the exponentiation algorithm
itself (see [5] for a nice example) seem also to thwart our attacks.

6 Conclusion

Contrarily to a widespread belief, the exponent splitting countermeasure does
not offer, by itself, a satisfying level of security against side-channel attacks.

328 F. Muller and F. Valette

Although analyzing a single modular exponentiation is useless, attacks become
possible as soon as one considers both exponentiations together.

We described statistical weaknesses of the countermeasure at the bit-level,
which show that the i-th stages of both modular exponentiations are strongly
correlated. We showed a variety of attacks that break the exponent splitting
countermeasure (safe-error, fault, address-bit, combined attacks). All of them
are higher-order attacks, i.e. they require to exploit simultaneously both expo-
nentiations. There are some technical difficulties to realize second-order attacks
(like injecting two faults in the same cryptographic computations), however it
is unreasonable for the security to rely on this difficulty only. Therefore, we
recommand not to use the exponent splitting protection alone. One should ei-
ther combine it with additional countermeasures like the randomization of the
exponent, or use some of the recent alternative, like [5], which has the advantage
of being much more efficient.

References

1. D. Bleichenbacher. On the Generation of DSA One-time Keys. Presented at the
Workshop on Elliptic Curve Cryptography – ECC’02 , 2002.

2. J. Blömer and A. May. New Partial Key Exposure Attacks on RSA. In D. Boneh,
editor, Advances in Cryptology – CRYPTO’03, volume 2729 of Lectures Notes in
Computer Science, pages 27–43. Springer, 2003.

3. D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults (Extended Abstract). In W. Fumy, editor, Advances
in Cryptology – Eurocrypt’97, volume 1233 of Lectures Notes in Computer Science,
pages 37–51. Springer, 1997.

4. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lectures Notes in Computer Science, pages 398–412.
Springer, 1999.

5. B. Chevallier-Mames. Self-Randomized Exponentiation Algorithms. In
T.Okamoto, editor, CT-RSA 2004, volume 2964 of Lectures Notes in Computer
Science, pages 2.3–249. Springer, 2004.

6. C. Clavier and M. Joye. Universal Exponentiation Algorithm. In Ç. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems (CHES) – 2001, volume 2162 of Lectures Notes in Computer Science, pages
300–308. Springer, 2001.

7. J-S. Coron. Resistance Against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES) – 1999, volume 1717 of Lectures Notes in Computer Science,
pages 292–302. Springer, 1999.

8. P-A. Fouque, F. Muller, G. Poupard, and F. Valette. Defeating Countermeasures
Based on Randomized BSD Representations. In M. Joye and J-J. Quisquater,
editors, Cryptographic Hardware and Embedded Systems (CHES) – 2004, volume
3156 of Lectures Notes in Computer Science, pages 312–327. Springer, 2004.

9. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis : Concret Re-
sults. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems (CHES) – 2001, volume 2162 of Lectures Notes in Computer
Science, pages 251–261. Springer, 2001.

High-Order Attacks Against the Exponent Splitting Protection 329

10. L. Goubin and J. Patarin. DES and Differential Power Analysis, The ”Duplication”
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES) – 1999, volume 1717 of Lectures Notes in Computer Science,
pages 158–172. Springer, 1999.

11. J. Ha and S. Moon. Randomized signed-scalar Multiplication of ECC to resist
Power Attacks. In B. Kaliski, Ç. Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems (CHES) – 2002, volume 2523 of Lectures Notes in Computer
Science, pages 551–563. Springer, 2002.

12. K. Itoh, T. Izu, and M. Takenaka. Address-Bit Differential Power Analysis of
Cryptographic Schemes OK-ECDH and OK-ECDSA. In B. Kaliski, Ç. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES) – 2002,
volume 2523 of Lectures Notes in Computer Science, pages 129–143. Springer, 2002.

13. C. Karlof and D. Wagner. Hidden Markov Model Cryptanalysis. In C. Walter, Ç.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES)
– 2003, volume 2779 of Lectures Notes in Computer Science, pages 17–34. Springer,
2003.

14. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Others Systems. In N. Koblitz, editor, Advances in Cryptology – Crypto’96, volume
1109 of Lectures Notes in Computer Science, pages 104–113. Springer, 1996.

15. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – Crypto’99, volume 1666 of Lectures Notes in Computer
Science, pages 388–397. Springer, 1999.

16. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS) FIPS Publication 186-2, February 2000. Available at http://

csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf.
17. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. In Communications of the ACM 21(2), pages 120–
126, 1978.

18. A. Shamir. How to Share a Secret. Communications of the ACM (CACM),
22(11):612–613, November 1979.

19. E. Trichina and A. Bellezza. Implementation of Elliptic Curve Cryptography with
Built-In Counter Measures against Side Channel Attacks. In B. Kaliski, Ç. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES) –
2002, volume 2523 of Lectures Notes in Computer Science, pages 98–113. Springer,
2002.

New Online/Offline Signature Schemes

Without Random Oracles

Kaoru Kurosawa1 and Katja Schmidt-Samoa2

1 Department of Computer and Information Sciences, Ibaraki University, Japan
2 Fachbereich Informatik, Technische Universität Darmstadt, Germany

Abstract. In this paper, we propose new signature schemes provably
secure under the strong RSA assumption in the standard model. Our
proposals utilize Shamir-Tauman’s generic construction for building EF-
CMA secure online/offline signature schemes from trapdoor commit-
ments and less secure basic signature schemes. We introduce a new natu-
ral intractability assumption for hash functions, which can be interpreted
as a generalization of second pre-image collision resistance. Assuming
the validity of this assumption, we are able to construct new signature
schemes provably secure under the strong RSA assumption without ran-
dom oracles. In contrast to Cramer-Shoup’s signature scheme based on
strong RSA in the standard model, no costly generation of prime num-
bers is required for the signer in our proposed schemes. Moreover, the
security of our schemes relies on weaker assumptions placed on the hash
function than Gennaro, Halevi and Rabin’s solution.

Keywords: Online/offline signatures, trapdoor hash, strong RSA as-
sumption, division intractability.

1 Introduction

Digital signatures are intended to replace handwritten signatures in the elec-
tronic world. The security goal here is authenticity, e.g., the proof of authorship
of messages. Besides obvious applications in electronic commerce, digital signa-
tures are important building blocks for various kinds of cryptographic protocols,
and traditional public key infrastructures rely on digital signatures for certifying
public keys.

Until 1999, all provably secure solutions for efficient digital signature schemes
relied on the random oracle methodology [BR93]. In the random oracle model
(ROM), all parties (the legitimate ones as well as the adversary) have black-
box access to functions which behave like truly random functions. Under this
idealized assumption it became possible to develop cryptosystems that are both
efficient and provably secure. In concrete implementations, however, truly ran-
dom functions are out of reach and the random oracles are replaced by concrete
objects like cryptographic hash functions. Thus it is obvious that even a rig-
orously analyzed security proof in the random oracle model does not guaranty
security in the real world. As a real world adversary may exploit some weak-
nesses of the hash functions used, a proof in the ROM can only exclude generic

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 330–346, 2006.
c© International Association for Cryptologic Research 2006

New Online/Offline Signature Schemes Without Random Oracles 331

attacks against the scheme. Even worse, recently published results show sepa-
rations between the random oracle scenario and standard model as there exist
cryptosystems provably secure in the ROM that nevertheless are breakable when
implemented with any concrete realization [CGH98, CGH04].

Then, in 1999, Cramer and Shoup on the one hand and Gennaro, Halevi and
Rabin on the other hand independently came up with practical solutions for
digital signature schemes provably secure without random oracles, i.e., in the
standard model [CS99, GHR99]. Interestingly, the security of both proposals
relies on the same intractability assumption, namely the hardness of the flexible
RSA problem, also known as the strong RSA assumption. However, none of
these solutions is free from disadvantages. The major drawback of the Cramer-
Shoup scheme—referred to as CS scheme in the following—is that the signer
is required to generate a prime number for producing a signature. According
to heuristics given in [CS99], the costs for prime number generation are one
third of the total signing costs on average. The most crucial disadvantage of the
Gennaro-Halevi-Rabin scheme—referred to as GHR scheme in the following—
is that its security relies on a strong non-standard assumption placed on the
hash function used. Gennaro et al. prove the existence of suitable hash functions
under the strong RSA assumption by constructing a concrete implementation,
however, when utilizing this fully proved hash function the entire system becomes
less efficient than the CS scheme. Our aim in this paper is to overcome both
drawbacks.

On the first glance, the CS scheme and the GHR scheme seem quite different.
But in the light of more recent results about generic constructions of provably
secure signature schemes, one may observe a common design principle (here, we
consider the fully proved GHR scheme): In both cases, first a commitment to
the message is constructed, followed by signing the commitment with a “weak”
signature scheme. For the first step a trapdoor commitment scheme is utilized,
which enables the simulator in the security proof to answer signature queries
based on previously computed commitments. Although the weak basic signature
schemes are different in CS and GHR, both make use of prime numbers to permit
the reduction of the flexible RSA problem to the security of the basic signature
scheme1. In 2001, Shamir and Tauman universalized this approach and proposed
a generic construction for online/offline signature schemes [ST01]. As now the
mechanisms to enhance the security of “weak” signature schemes by the means
of trapdoor commitments are better understood, it seems worthwhile to revisit
the CS and GHR schemes.

Our goal is to get rid off the need for prime number generation as well as off
the strong assumption placed on the hash function. Therefore, the GHR basic
signature scheme seems to be a more promising candidate to start with because

1 In the GHR scheme, the hash function used in the basic signature scheme has to
satisfy a rather strong assumption. Gennaro et al. show that a trapdoor commitment
scheme combined with a collision resistant hash function producing prime digests
only is a possible implementation for the hash function. Thus, formally the task of
prime number generation is assigned to the hash function here.

332 K. Kurosawa and K. Schmidt-Samoa

prime number generation is incorporated directly in its CS pendant. An analysis
of this scheme reveals that the weak security conditions necessary for a Shamir-
Tauman-like construction can be fulfilled if the utilized hash function possesses
a property that is similar but intuitively less demanding than its analog in the in
the GHR framework. To be more concrete, Gennaro et al. introduced the notion
of a division-intractable family of hash functions H, which briefly states that
given H ∈ H, it is infeasible to find values X1, . . . , Xn, Y such that H(Y) divides
the product

∏n
i=1H(Xi). In contrast, our construction only requires what we

call weak division-intractability, meaning that givenH ∈ H and X1, . . . , Xn, it is
infeasible to find Y such that H(Y) divides the product

∏n
i=1H(Xi). Thus, the

values Xi are not longer under the attacker’s control. Note that our newly defined
property relaxes Gennaro et al.’s notion of (strong) division intractability in
exactly the same way as second pre-image resistance relaxes collision resistance.

2 Preliminaries

Throughout this paper, we use the following notations: For any positive integer
N we write ZN for the ring of residue classes modulo N , and Z×

N for its mul-
tiplicative group. |N |2 denotes the bit-length of N , and we write [N]k for the
integer corresponding to the k most significant bits of N . As usual, a probability
Pr(k) is called negligible if Pr(k) decreases faster than the inverse of any poly-
nomial in k, i.e. ∀c∃kc(k > kc ⇒ Pr(k) < k−c). In contrast, a probability Pr(k)
is called overwhelming, if 1 − Pr(k) is negligible.

We abbreviate probabilistic polynomial time by PPT.

2.1 Digital Signature Schemes

A digital signature scheme is denoted by Ω = (Gsign , Sign, Verify). Gsign is a PPT
algorithm which on input a security parameter generates (sk, vk), where vk and
sk are the secret signing and the public verification key, respectively. Sign is a
PPT algorithm which produces a signature σ on input a message m and the
secret key sk. Verify is a polynomial time algorithm which checks the validity
of (m, σ) by using vk, say Verify(vk, m, σ) = valid or invalid. It is required that
Verify(vk, m, σ) = valid holds if and only if σ is a possible outcome of Sign(sk, m).
For brevity, we also write Signsk(m) instead of Sign(sk, m) and Verifyvk(m, σ)
instead of Verify(vk, m, σ).

In the following, we review security notions for digital signature schemes.
All the notions below have been introduced by Goldwasser, Micali and Rivest
[GMR88].

The standard security notion of signature schemes is existential unforgeability
under adaptive chosen message attacks (EF-CMA). Here, the attacker is allowed
to query the signing oracle adaptively.

Definition 1 (EF-CMA). A digital signature scheme Ω = (Gsign , Sign, Verify)
is said to be existentially unforgeable under adaptive chosen message attacks if
for any PPT adversary A the following probability is negligible in �:

New Online/Offline Signature Schemes Without Random Oracles 333

Pr

⎡⎢⎢⎢⎢⎣
(sk, vk) ←� Gsign(1�),
FOR i = 1, . . . , k:

{mi ←� A(vk, m1, σ1, . . . , mi−1, σi−1); σi ←� Signsk(mi)} ,
(m∗, σ∗) ←� A(vk, m1, σ1, . . . , mk, σk) :
m∗ �∈ {m1, . . . , mt} ∧ Verifyvk(m∗, σ∗) = valid

⎤⎥⎥⎥⎥⎦ .
In this paper, we call a signature scheme is adaptively secure if it is EF-CMA.

A much weaker security notion is existential unforgeability against random
message attacks, a.k.a. known message attacks (EF-KMA). Here, the adversary
is just given the verification key and a list of randomly generated valid mes-
sage/signature pairs without any control over the messages.

Definition 2 (EF-KMA). A digital signature scheme Ω = (Gsign , Sign, Verify)
is said to be existentially unforgeable under known message attacks if for any
PPT adversary A the following probability is negligible in �:

Pr

⎡⎢⎢⎣
(sk, vk) ←� Gsign(1�),
FOR i = 1, . . . , k: {mi ←� M, σi ←� Signsk(mi)} ,
(m∗, σ∗) ←� A(vk, m1, σ1, . . . , mk, σk) :
m∗ �∈ {m1, . . . , mt} ∧ Verifyvk(m

∗, σ∗) = valid

⎤⎥⎥⎦ .
In this paper, we call EF-KMA secure signature schemes weakly secure.

2.2 Trapdoor Commitment Schemes

A trapdoor commitment scheme is defined by T C = (GTC , Tcom, Topen), where
Topen is Twopen or Tsopen as shown below. GTC is a PPT algorithm which
generates (pk, tk), where pk is the public key and tk is the trapdoor. Associated
to T C are the spaces of messages M, randomness R and commitments C.

Tcom is the algorithm that computes a commitment to m as x = Tcom
(pk, m, r), where r ∈ R is a random nonce. To open the commitment x, the
sender reveals m, r and the receiver recomputes x.

Twopen is the algorithm that weakly opens a commitment in any desired
way with the trapdoor tk. For given m, r and a target message m′, it outputs
r′ = Twopen(tk, m, r, m′) such that x = Tcom(pk, m, r) = Tcom(pk, m′, r′).

Hence, the trapdoor holder is able to create a “dummy commitment” and
later open this commitment to any message of his choice.

However, for some applications a strictly stronger property turns out to be
useful; namely, the owner of the trapdoor key should be able to open a com-
mitment arbitrarily even without knowledge of the pre-image values r, m. We
call this mechanism strong trapdoor opening2 and the corresponding schemes
strong. In such a strong trapdoor commitment scheme there exists an algorithm
Tsopen such that for a given commitment x and a target message m it outputs
r = Tsopen(tk, m, x) with x = Tcom(pk, m, r).

The existence of (strong or weak) trapdoor opening algorithms Topen implies
that the receiver cannot obtain any information about m given x.
2 In [ST01], this property is referred to as inversion property.

334 K. Kurosawa and K. Schmidt-Samoa

The security of trapdoor commitment schemes requires that without
knowledge of the trapdoor key it should be hard to find collisions. Moreover,
randomness r obtained by invoking the trapdoor opening algorithm should be
indistinguishable from properly generated r. Again, we simplify the notation by
writing the keys as indices.

Definition 3. We say that a trapdoor commitment scheme T C = (GTC , Tcom,
Topen) is secure if the following properties hold:

Collision resistance: For any PPT A the following probability is negligible in
�:

Pr
[
(pk, tk) ←� GTC (1�),A(pk) = (r, m, r′, m′),
m �= m′ ∧ Tcompk(r, m) = Tcompk(r′, m′)

]
.

Uniformity: The outcome of Topen is computationally indistinguishable from
uniform in R provided that
– in case of weak altering the input r is uniformly distributed in R, resp.
– in case of strong altering the following holds: for any m ∈ M the dis-

tribution of the input x is computationally indistinguishable from the
distribution of Tcompk(m, r), where r is uniformly distributed in R.

2.3 Hash Functions

A hash function is an efficiently computable procedure that maps strings of ar-
bitrary length to strings of fixed length. The sequence H = (Hk)k∈N is called a
family of hash functions if each Hk is a collection of hash functions with output
length k. Analog to signature and trapdoor commitment schemes, collections
of hash functions can also be defined via a key generation algorithm, but for
better readability, we utilize less formal notations below. Within the scope of
this paper, the most important security properties of hash functions are the
standard requirements (second pre-image) collision resistance (dating back to
Damg̊ard [Dam87]) and the non-standard ones weak/strong division intractabil-
ity (the strong version introduced by Gennaro, Halevi and Rabin [GHR99], the
weak version introduced and defined below in the present paper).

Definition 4 ((Second pre-image) collision resistance). A family H =
(Hk)k∈K of hash functions is said to be

collision resistant if for any PPT adversary A, the following probability is
negligible in k:

Pr
H∈Hk

[A(H) = (X, Y) : X �= Y ∧H(X) = H(Y)],

second pre-image collision resistant if for any PPT adversary A, the fol-
lowing probability is negligible in k:

Pr
H∈Hk,X

[A(H, X) = (Y) : X �= Y ∧H(X) = H(Y)].

New Online/Offline Signature Schemes Without Random Oracles 335

It is obvious that collision resistance implies second pre-image collision resis-
tance.

Definition 5 (Weak/strong division intractability). A family H =
(Hk)k∈N of hash functions is said to be

strongly division intractable if for any PPT adversary A, the following
probability is negligible in k:

Pr
H∈Hk

[
A(H) = (X1, X2, . . . , Xn, Y) :
Y �∈ {X1, X2, . . . , Xn} ∧H(Y) divides

∏n
i=1H(Xi)

]
,

weakly division intractable if for any PPT adversary A, the following prob-
ability is negligible in k for any n which is polynomially bounded by k:

Pr
H∈Hk ,X1,...,Xn

[
A(H, X1, X2, . . . , Xn) = Y :
Y �∈ {X1, X2, . . . , Xn} ∧H(Y) divides

∏n
i=1H(Xi)

]
.

Note that our newly defined property of weak division intractability relaxes Gen-
naro et al.’s notion of (strong) division intractability in exactly the same way
as second pre-image collision resistance lessens full collision resistance. More-
over, while division intractability obviously implies collision resistance, it is also
easy to see that weak division intractability implies second pre-image collision
resistance. The opposite directions, however, are not true. We will discuss the
relationship between strong and weak division intractability further in Section 5.

2.4 Intractability Assumptions

Our proposed online/offline signature schemes rely on the following standard
intractability assumptions:

Claim (Blum Factorization Assumption). Given N = pq for two random primes
p, q with |p|2 ≈ |q|2 and p = q = 3 mod 4, it is hard to factor N .

The integer N from the preceeding assumption is called a Blum integer. If N is a
Blum integer, then squaring is a permutation on the group QR(N) of quadratic
residues modulo N .

Claim (p2q Factorization Assumption). Given N = p2q for two random primes
p, q with |p|2 ≈ |q|2, it is hard to factor N .

The following assumption has been first described by Barić and Pfitzmann [BP97].

Claim (Strong RSA Assumption). Given N = pq for two random primes p, q
and a randomly chosen s ∈ Z×

N , it is hard to find values r ∈ Z×
N and e > 1 such

that re = s mod N .

In the preceeding claim, the tuple (N, s) is called an instance of the flexible RSA
problem. In the rest of this paper, we sometimes use special moduli such as Blum
integers or products of safe primes3. In this case, the Strong RSA Assumption
has to be understood with respect to these kind of moduli.

We now state a useful lemma, which is proved, for example, in [CL02].
3 A prime p is called a safe prime if (p − 1)/2 is also prime.

336 K. Kurosawa and K. Schmidt-Samoa

Lemma 1. Let N = pq be the product of two distinct safe primes p = 2p′+1, q =
2q′ + 1. Given s, t ∈ QR(N) along with 0 < a < b such that sb = ta mod N
and gcd(a, b) < a, one can efficiently compute values r, e > 1 such that re =
s mod N .

Proof. By using extended Euclidean algorithm, we can efficiently find u, v ∈ Z
such that au+ bv = gcd(a, b) =: c. In particular, we have (a/c)u+ (b/c)v = 1.

Without loss of generality, we may assume gcd(c, p′q′) = 1, because otherwise
we can factor N (either directly from the knowledge of p′ resp. q′, or by applying
Miller’s algorithm [Mil75] on a multiple of ϕ(N) = 4p′q′). Therefore, from sb =
ta mod N , we conclude sb/c = ta/c mod N , leading to

s = s(a/c)u+(b/c)v = s(a/c)ut(a/c)v = (sutv)(a/c) mod N.

Hence, we obtain e = a/c and r = sutv mod N . �	

Note that as one quarter of the elements of Z×
N are quadratic residues, we have

that if the Strong RSA Assumption is true at all, then it is also true for instances
(N, s) where s is randomly chosen from QR(N). Thus efficiently finding t, a, b
given N, s as in Lemma 1 above violates the Strong RSA Assumption.

2.5 Online/Offline Signature Schemes

The notion of online/offline signatures was introduced by Even et al. [EGM96].
In such schemes, the online phase of the signing algorithm is made very fast
due to the precomputation performed in the offline phase before the message
actually to be signed is known.

In 2001, Shamir and Tauman improved this generic construction [ST01]. In-
formally, their new approach can be described as using the well-known hash-
then-sign paradigm, where the ordinary hash function is replaced by a trapdoor
commitment scheme: LetΩ = (Gsign , Sign, Verify) and T C = (GTC , Tcom, Topen)
be a weakly secure signature scheme and a trapdoor commitment scheme, respec-
tively. The key generation algorithm of the entire online/offline signature scheme
runs both individual key generation algorithms Gsign , GTC , and the signer is
given the secret signing key sk as well as the secret trapdoor key tk. The public
key is (vk, pk), where vk is the verification key of Ω and pk is the public key of
T C.

Offline phase: Choose a dummy message m̃ and a random number r̃. Compute
hash = Tcompk(m̃, r̃), σ = Signsk(hash) and store (m̃, r̃, σ).

Online phase: Given a message m, first retrieve (m̃, r̃, σ) from memory. Then,
by using tk, find r such that Tcompk(m, r) = Tcompk(m̃, r̃) holds. Output
(σ, r) as the signature of m.

Verification is straightforward, as by construction σ is a valid hash-then-sign
signature of m.

Fortunately, this generic construction also enhances the security of the basic
signature scheme: If Ω is existentially unforgeable against generic message at-
tacks (EF-GMA), then the online-offline scheme as described above is adaptively

New Online/Offline Signature Schemes Without Random Oracles 337

secure (EF-CMA). Moreover, if T C also allows strongly trapdoor opening, then
Ω is only required to be existentially unforgeable under known message attacks
(EF-KMA).

Therefore, Shamir and Tauman’s construction might also be useful in envi-
ronments where the distinction between online and offline costs is not an issue.
In this case, the composed signature algorithm simply consists of committing to
the message and signing the commitment, and there is no need for the signer
to know the trapdoor key. The ability of arbitrarily opening commitments is
only required in the security proof to enable the simulator to respond to the sig-
nature queries. In the following, we call this construction the commit-then-sign
approach. As mentioned in the Introduction, the CS scheme also follows this
design principle4.

Remark 1. The technique of commiting to a message with a trapdoor commit-
ment scheme and signing the commitment has also been used by Krawczyk and
Rabin for introducing chameleon signatures [KR00]. In contrast to the approach
above, in a chameleon signature scheme the recipient is the trapdoor holder.
Whilst in case of Shamir/Tauman, the intended goal is efficient online signing
and a security enhancement of the basic signature scheme, the aim of chameleon
signatures is to distract the receiver of a signature from revealing the signed
message to any third party.

3 The Primitives

In this section, we present the building blocks for our proposed full signature
schemes. As noted above, the basic primitives are a (strong) trapdoor commit-
ment scheme and a weakly secure signature scheme.

3.1 A Trapdoor Commitment Scheme with Strongly Trapdoor
Opening Based on Factoring

We propose a factorization-based trapdoor commitment scheme T C2k = (GTC ,
Tcom, Topen) resting on the 2k identification scheme of Shoup [Sho99] as follows:

GTC : Let � be a security parameter. Choose two �-bit prime numbers p and q
such that p = q = 3 mod 4. Let N = pq. Pick v ∈ QR(N) randomly and
define a parameter k such that 2k grows faster than any polynomial in �.
The public key consists of (N, v, k) and the trapdoor key is (p, q).

Tcom: To commit to a message m ∈ {0, . . . , 2k−1 − 1}, the commiter chooses a
random value r ∈ Z×

N and computes Tcompk(r, m) = r2k

vm mod N .
Topen: Given a target message m and a commitment x, the strong trapdoor

opening algorithm computes r ∈ Z×
N such that x = r2k

vm mod N . Weak
trapdoor opening is realized by Twopentk(m, r, m′) = r′ = rv(m−m′)2−k

mod N .
4 In fact, Cramer and Shoup also proposed an online/offline version of their scheme

by providing the signer with the trapdoor key. Thus, Shamir and Tauman’s idea is
not new.

338 K. Kurosawa and K. Schmidt-Samoa

We have the following theorem:

Theorem 1. Under the Blum Factorization Assumption the above construction
T C2k is a strong trapdoor commitment scheme secure in the sense of Definition 3.

Proof. The correctness of the trapdoor opening algorithms is obvious.
To prove the collision resistance, we assume that A is a PPT collision finder.

We then construct a PPT algorithm I which can factor Blum integers N as
follows: On input N , I chooses a such that(a

N

)
= −1

randomly, where
(·
·
)

denotes the Jacobi symbol. I computes v = a2 mod N and
runs A on input (N, v). A eventually outputs (m, r), (m′, r′) such that m �=
m′, Tcom(r, m) = Tcom(r′, m′). It holds that

r2k

vm = r′2
k

vm′
mod N.

Therefore, we obtain that

(r/r′)2
k

= vm′−m mod N.

Wlog, assume that m′ > m and let m′−m = u2t, where u is odd. Then t < k−1.
Let z = r/r′ mod N . Now

z2k

= vu2t

= (a2)u2t

mod N.

Since p = q = 3 mod 4, we have

(z2k−t−1
)2 = (au)2 mod N.

From k − t − 1 > 0, we have (
z2k−t−1

N

)
= 1.

On the other hand, (
au

N

)
= −1

because u is odd. Therefore, we can factor N with probability 1 by computing
gcd(au − z2k−t−1

, N).
Finally, we note that for each message m ∈ {0, . . . , 2k−1 − 1} and for each

commitment x ∈ QR(N) there are exactly four r ∈ Z×
N with x = Tcom(r, m).

Consequently, uniformity holds for both trapdoor opening algorithms. �	

Remark 2. If weak altering is sufficient, we define v2−k

mod N as the trap-
door key.

New Online/Offline Signature Schemes Without Random Oracles 339

As we will see, combined with a weakly secure signature scheme, T C2k yields an
adaptively secure commit-then-sign scheme as described in Section 2.5. However,
as the opening algorithms require a modular exponentiation, it is not reasonable
to use T C2k as a building block for a full online/offline signature scheme.

For the construction of schemes with real online/offline properties, trapdoor
commitments with extremely fast weak trapdoor opening are required. A variant
of the following scheme T Cp2q = (GTC , Tcom, Topen) has recently been proposed
by Schmidt-Samoa and Takagi [SST05]:

GTC : Let � be a security parameter. Randomly choose two �-bit primes p, q with
p � q− 1, q � p− 1 and compute N = p2q. Define a parameter k minimal with
respect to 2k > pq

√
p, and a parameter l maximal with respect to lpq < 2k.

The public key is pk = (N, k), and the trapdoor key is tk = (p, q, l).
Tcom: To commit to a message m ∈ {0, . . . , [N]|N |2−k − 1}, a value r ∈ {0, . . . ,

2k−1} is chosen uniformly at random and Tcom(r, m) = (2km+r)N mod N
is computed, where [N]|N |2−k stands for the integer corresponding to the
|N |2 − k most significant bits of N .

Topen: Given a target message m and a commitment x, the strong trapdoor
opening algorithm first computes aux = x1/N − 2km mod pq. Then, 0 ≤
s < l is chosen uniformly at random, and the output r is computed as
r = aux + spq.

Weak trapdoor opening on the input m, r, m′ is realized by first computing
aux = 2k(m−m′) + r mod pq, and then proceeding as before.

Theorem 2 ([SST05]). T Cp2q = (GTC , Tcom, Topen) is a secure trapdoor
commitment scheme in the sense of Definition 3.

Remark 3. In the original scheme from [SST05], the randomness is chosen from
Zpq. In this case, however, a polynomial number of trapdoor openings reveals a
logarithmic number of the most significant bits of the secret pq. Although this
is not a thread in the light of current factoring achievements (lattice methods
like [Cop97] require the knowledge of the O((pq)1/3) most significants bit of pq
to factor p2q), we slightly modified the scheme as described above. Now, the ran-
domness is sampled from the set {0, . . . , 2k − 1}, and the r constructed by the
opening algorithms Topen is uniformly distributed over the set {0, . . . , lpq − 1}.
These distributions are statistically close (a simple computation shows that the
distance is upperbounded by 2/

√
p). This modification also ensures that the sim-

ulator in the commit-then-sign security proof is able to compute commitments
properly.

Note that weak trapdoor opening only requires a modular addition, a short
integer multiplication, and a bit-shift, and therefore can be computed extremely
fast.

3.2 A Weakly Secure Signature Scheme Based on Strong-RSA

In this section, we analyze a simple RSA-type hash-then-sign signature scheme.
The proposed scheme is essentially the same as Gennaro, Halevi and Rabin

340 K. Kurosawa and K. Schmidt-Samoa

introduced in [GHR99]. In that paper, Gennaro et al. proved that when instan-
tiated with a so-called suitable hash function, their scheme is adaptively secure
(EF-CMA) under the Strong RSA Assumption. The most crucial demands on a
suitable hash function are (strong) division intractability, which can be achieved
by forcing the output to be a prime, and the property that collision finding does
not help solving the flexible RSA problem, i.e., the two associated intractabil-
ity assumptions should be unrelated in a sense. The latter requirement is dealt
with by implementing the hash function as a trapdoor commitment scheme. In
the following, we prove that if we relax the hash requirement to weak division
intractability, then the signature scheme is still weakly secure.

Let us now describe the basic signature scheme ΩS−RSA = (Gsign , Sign, Verify).

Gsign : On input a security parameter �, choose two safe �-bit primes p, q. Set
N = pq and randomly select y ∈ QR(N). Finally, pick a weakly division
intractable hash function H from a family of hash functions. We assume
that H always outputs odd integers5. The public key consists of N, y and
H ; the secret key is p, q.

Sign: To sign a message m ∈ {0, 1}∗, first compute the hash e = H(m). Then,
with knowledge of p and q, compute an e-th root of y modulo N :

σ = y
1
e mod N.

Then, σ is the signature of m.
Verify: Given (m, σ), output valid if σH(m) = y mod N holds and invalid,

otherwise.

Note that the signing algorithm can compute an appropriate root modulo N
with overwhelming probability because N is a product of safe primes. Namely,
four is the only small factor of ϕ(N) and thus, any odd element not co-prime
with ϕ(N) reveals the factorization of N .

Theorem 3. Provided the Strong RSA Assumption is valid, the basic signature
scheme ΩS−RSA above is existentially unforgeable under known message attacks
(EF-KMA).

Proof. Let F be a EF-KMA adversary against ΩS−RSA. We construct an attacker
A against the Strong RSA Assumption, which uses F as a subroutine. A is given
a quadratic instance (N, s) of the flexible RSA problem for safe moduli, i.e., N
is a product of two safe primes and s is a quadratic residue modulo N . A picks
dummy messages m1, . . . , mk at random and defines

y = s
k
i=1 H(mi) mod N.

Moreover, A computes

σj = s
k
i=1,i�=j H(mi) mod N

5 This can be easily achieved by setting the least significant output bit to one.

New Online/Offline Signature Schemes Without Random Oracles 341

for j = 1, . . . , k. Observe that, by construction, σj is a valid signature on mj .
A gives the forger F the public key N, y as well as the signature/message pairs
(m1, σ1), . . . , (mk, σk). Eventually, F outputs a forgery (m, σ). Validity of this
forgery implies

σH(m) = y = s
k
i=1 H(mi) mod N.

As H is weakly division intractable and m �∈ {m1, . . . , mk}, we must have
gcd(

∏k
i=1H(mi),H(m)) < H(m). Thus, by applying Lemma 1, A can efficiently

find values r, e > 1 with re = s mod N . Consequently, A could break the Strong
RSA Assumption if the advantage of F were non-negligible. �	

4 New Adaptively Secure Signatures Based on
Strong-RSA

In this section, we eventually combine the primitives described in the section
above using Shamir-Tauman’s approach. As mentioned before, we utilize the
trapdoor commitment T C2k to enhance the weak security of the basic signature
scheme ΩS−RSA to full adaptive security, whereas the usage of T Cp2q additionally
provides online/offline functionality. The reason why we have introduced T C2k

is that its underlying intractability assumption (Blum Factorization) is implied
by the Strong RSA Assumption, and thus we can base the entire construction
on the latter only.

In the following, we assume that H is a hash function that always outputs
odd integers. Our first proposal is as follows:

Gsign : Choose two safe primes p1, q1 as well as two primes p2, q2 with p2 = q2 =
3 mod 4. Set N1 = p1q1, N2 = p2q2 and randomly select y ∈ QR(N1), v ∈
QR(N2). Define a parameter k such that 2k grows faster than any polynomial
in the security parameter. The public key consists of N1, N2, y, v, k; the secret
key is p1, q1.

Sign: To sign a message m ∈ {0, . . . , 2k−1 − 1}, first commit to m by choosing
a random value r ∈ Z×

N2
and computing x = r2k

vm mod N2. Then build the
hash e = H(x). Finally, with knowledge of p1 and q1, construct an e-th root
of y modulo N1:

σ = y
1
e mod N1.

Output (σ, r) as the signature of m.
Verify: Given (m, σ, r), first compute x = r2k

vm mod N2. Output valid if σH(x) =
y mod N1 holds and invalid, otherwise.

Theorem 4. If H is weakly division intractable and the Strong RSA Assump-
tion is valid, then the signature scheme above is existentially unforgeable under
adaptive chosen message attacks (EF-CMA).

Proof. From Theorem 1 we have that the commitment scheme utilized in the con-
struction above is a secure trapdoor commitment scheme which allows strongly

342 K. Kurosawa and K. Schmidt-Samoa

trapdoor opening. Theorem 1 states that the basic signature scheme used to sign
the commitments is weakly secure under the Strong RSA Assumption. The gen-
eration of different moduli ensures that the underlying problems are unrelated,
i.e., even with knowledge of p2, q2, which enables to open the commitments in
any desired way, it is still assumed to be infeasible to solve the flexible RSA prob-
lem with respect to N1. Thus, from the results of Shamir and Tauman [ST01],
the assertion follows.

A direct proof without using the result from Shamir and Tauman is given in
the full version of this paper [KSS06]. �	

Now we replace the commitment scheme to achieve online/offline functionality.

Gsign : Choose two safe primes p1, q1 as well as two primes p2, q2 with p2 � q2 −
1, q2 � p2 − 1. Set N1 = p1q1, N2 = p2

2q2 and randomly select y ∈ QR(N1).
Define a parameter k minimal with respect to 2k > pq

√
p, and a parameter

l maximal with respect to lpq < 2k. The public key consists of N1, N2, y, k;
the secret key is p1, q1, p2, q2, l.

Sign: 1. Offline phase: Pick a dummy message m̃ ∈ {0, . . . , [N2]|N2|2−k − 1},
and commit to m̃ by choosing a random value r̃ ∈ Zp2q2 and computing
x = (2km̃ + r̃)N2 mod N2. Then build the hash e = H(x). Finally, with
knowledge of p1 and q1, construct an e-th root of y modulo N1:

σ = y
1
e mod N1.

Store σ, m̃, r̃.
2. Online phase: To finish the signature generation when the message m

to be signed is known, first retrieve σ, m̃, r̃ from memory. Then compute
aux = 2k(m̃ − m) + r̃ mod p2q2. Finally, 0 ≤ s < l is chosen uniformly
at random, and r is computed as r = aux + spq. Output (σ, r) as the
signature of m.

Verify: Given (m, σ, r), first compute x = (2km + r)N2 mod N2. Output valid if
σH(x) = y mod N1 holds and invalid, otherwise.

The following theorem can be proved exactly as the theorem above because
the commitment scheme utilized in the construction above is a secure trapdoor
commitment scheme [SST05] which allows strongly trapdoor opening.

Theorem 5. Assume the Strong RSA Assumption and the p2q Factorization
Assumption are valid. If H is weakly division intractable, then the signature
scheme above is existentially unforgeable under adaptive chosen message attacks
(EF-CMA).

Remark 4. In the schemes above, we restricted the message spaces according to
the requirements of the trapdoor commitment schemes. Extensions to arbitrary
message spaces are possible when utilizing families of collision-resistant hash
functions.

New Online/Offline Signature Schemes Without Random Oracles 343

5 Comparison

In this section, we compare our proposals with the CS and GHR schemes6. Under
the assumption that weak, resp. strong division intractable hash functions exist,
neither GHR nor our proposals require the signer to perform costly prime number
generations as in (modified) CS.

We next discuss why we regard weak division intractability as more reason-
able than its strong pendant. First note that a random oracle is weakly as well as
strongly division intractable. Assuming a hash function behaving like a random
oracle, Coron and Naccache analyzed the complexity of an attack against strong
division intractability [CN00]. The outline of their proposed attack is to find a
smooth hash value first, and then, for each of its (small) prime divisors p, to
search for another hash value divisible by p. Based on theoretical results on the
density of smooth numbers, Coron and Naccache show that the running time of
this attack is sub-exponential in the digest length. Thus, they recommend a di-
gest length of at least 1024 bits, which is twice as large as suggested by Gennaro
et al. in [GHR99]. We want to point out that this attack does not work against
weak division intractability where the adversary has no control over the hash
values that should be divided.

Table 1. Experiments on weak division intractability

n�k 20 40 60 80 100(+)

k 1 56 1 41 21555 606 2256 18490671 93702 − −
k1.5 <1 9 1 3 415 4 105 33631 229 5566 3141452 14240 −
k2 <1 3.5 1 <1 44 1 5 941 11 208 28883 431 10823 493263 13613

k2.5 <1 2.2 1 <1 14 1 <1 135 2 8 1383 7 342 13749 1289

k3 <1 1.5 1 <1 5 1 − − −

We conducted some experiments to investigate weak division intractability
(of random oracles) heuristically. For each pair (n, k), we performed 200 experi-
ments: n k-bit numbers were chosen uniformly at random, and we counted the
number of random k-bit numbers x to pick, until x divides the product of the
others. The measured data suggests that the expected value of numbers x to pick
is lower bounded by n−1.52k/3 for n chosen polynomial in k. Table 1 shows the
results of some of these experiments. For each pair (n, k), the table contains three
entries: the first one is the evaluation of n−1.52k/3, the second one is the mean
of all performed experiments, and the third one is the second-smallest number
appearing in the 200 experiments (an entry “-” indicates that no experiments
have been performed at all, whilst the index “+” denotes that the respective
data is based on less than 200 experiments).
6 In [CL02], Camenisch and Lysyanskaya also propose a signature scheme based on

strong RSA in the standard model. As their scheme is less efficient as CS–it has
other qualities instead–we exclude it from our considerations.

344 K. Kurosawa and K. Schmidt-Samoa

If the assumed bound n−1.52k/3 is correct, than the probability that for n fixed
uniformly distributed k-bit integers a randomly chosen k-bit integer divides the
product of the others is upperbounded by n1.52−k/3. That is, asymptotically
this probability is independent from n (provided that n is polynomial in k). For
a more practical-oriented interpretation, recall that in our schemes the number
n describes the number of the adversary’s signature queries. It is common to
upperbound this number by 230. Therefore, we assume that moderate digest
lengths, say 256-512 bits, are reasonable for our proposals. We leave the theo-
retical investigation of weak division-intractability as further work.

Gennaro et al. showed how to build strongly division intractable hash func-
tions from collision resistant hash functions essentially by forcing the output to
be a prime. Although this approach is not of practical relevance (because in this
case CS is clearly more efficient), note that to achieve weak division intractabil-
ity in that way only second pre-image collision resistant hash functions instead
of collision resistant ones were required.

We finally compare the computational efficiency. For a fair comparison, in case
of GHR we refer to the variant where suitability of the hash function is achieved
by combining a division intractable hash function with a trapdoor commitment
scheme. Referring to the computational costs for the modular exponentiations,
the differences between all schemes are within a small margin. There is one full
modular exponentiation needed for signing in the basic signature scheme, but
this task can be significantly sped up by using standard techniques like Chinese
remaindering and efficient exponentiation based on precomputation. For the lat-
ter, comb methods like [LL94] can be applied because the base of the exponenti-
ation is fixed (this is immediate in our proposals and in the GHR scheme, whilst
it requires appropriately chosen verification keys and additional secret keys in
the CS scheme and in its modification proposed by Fischlin [Fis03]). In addi-
tion, all schemes require a short exponentiation for commiting to the message7.
In Fischlin’s modification of CS, this short exponentiation is eliminated at the
expense of a slightly more costly full exponentiation and an increased length of
the verification key. Verification requires two short exponentiation in CS, one
short plus one short double exponentiation in Fischlin’s modified CS and in our
first proposal, and one short plus one full exponentiation in our second proposal.
The verification costs for GHR depend on the trapdoor commitment used.

6 Conclusion

In this paper we utilized a Shamir-Tauman-like framework to construct new sig-
nature schemes based on the strong RSA assumption. Our proposals are existen-
tially unforgeable under adaptive chosen message attacks in the standard model.
As in the well-known Gennaro-Halevi-Rabin scheme, we utilized a hash function
with a special property, namely division intractability. However, we significantly
relaxed this requirement such that for our proposal weak division intractability
7 This exponentiation is full in our second proposal, but there only the offline costs

are affected.

New Online/Offline Signature Schemes Without Random Oracles 345

is sufficient. The relation between weak and strong division intractability can be
compared to the relation between second pre-image resistance and collision resis-
tance. This newly defined property may be of independent interest. In contrast to
the Cramer-Shoup signature scheme based on strong RSA, in our schemes there
is no need for the signer to generate a fresh prime number for each message to
be signed.

Acknowledgments

The authors wish to thank anonymous referees for useful comments. The second
author was supported by the Japanese Society for Promotion of Science (JSPS)
for doing research in Japan.

References

[BP97] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signa-
ture schemes without trees. In Walter Fumy, editor, EUROCRYPT, volume
1233 of Lecture Notes in Computer Science, pages 366 – 377, Berlin, 1997.
Springer-Verlag.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proc. of the 1st ACM Conference on
Computer and Communications Security (CCS), pages 62–73. ACM Press,
1993.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited (preliminary version). In Proc. of the 30th Annual ACM Sympo-
sium on Theory of Computing (STOC ’98), pages 209–218, New York, NY,
USA, 1998. ACM Press.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology
as applied to length-restricted signature schemes. In Moni Naor, editor,
TCC, volume 2951 of Lecture Notes in Computer Science, pages 40–57.
Springer, 2004.

[CL02] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient pro-
tocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors,
SCN, volume 2576 of Lecture Notes in Computer Science, pages 268–289.
Springer, 2002.

[CN00] J.-S. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-
Rabin signature scheme. In Bart Preneel, editor, EUROCRYPT, volume
1807 of Lecture Notes in Computer Science, pages 91–101. Springer, 2000.

[Cop97] D. Coppersmith. Small solutions to polynomial equations, and low exponent
rsa vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[CS99] R. Cramer and V. Shoup. Signature schemes based on the strong RSA as-
sumption. In ACM Conference on Computer and Communications Security,
pages 46–51, 1999.

[Dam87] I. Damg̊ard. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, EUROCRYPT, volume 304 of
Lecture Notes in Computer Science, pages 203–216. Springer, 1987.

[EGM96] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures.
Journal of Cryptology, 9(1):35–67, 1996.

346 K. Kurosawa and K. Schmidt-Samoa

[Fis03] M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited.
In Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 116–129. Springer, 2003.

[GHR99] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures with-
out the random oracle. In Jacques Stern, editor, EUROCRYPT, volume
1592 of Lecture Notes in Computer Science, pages 123–139. Springer, 1999.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In Proc. of the Sympo-
sium on Network and Distributed Systems Security (NDSS). The Internet
Society, 2000.

[KSS06] K. Kurosawa and K. Schmidt-Samoa. New online/offline signature
schemes without random oracles. Cryptology ePrint Archive, 2006.
http://eprint.iacr.org/.

[LL94] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputa-
tion. In Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in
Computer Science, pages 95–107. Springer, 1994.

[Mil75] G. L. Miller. Riemann’s hypothesis and tests for primality. In Proc. of the
7th annual ACM symposium on Theory of computing (STOC ’75), pages
234–239, New York, NY, USA, 1975. ACM Press.

[Sho99] Victor Shoup. On the security of a practical identification scheme. J.
Cryptology, 12(4):247–260, 1999.

[SST05] K. Schmidt-Samoa and T. Takagi. Paillier’s cryptosystem modulo p2q and
its applications to trapdoor commitment schemes. In Ed Dawson and Serge
Vaudenay, editors, Mycrypt, volume 3715 of Lecture Notes in Computer
Science, pages 296–313. Springer, 2005.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 355–367. Springer, 2001.

Anonymous Signature Schemes

Guomin Yang1, Duncan S. Wong1,�, Xiaotie Deng1, and Huaxiong Wang2

1 Department of Computer Science,
City University of Hong Kong,

Hong Kong, China
{csyanggm, duncan, deng}@cs.cityu.edu.hk

2 Department of Computing,
Macquarie University, Australia

hwang@ics.mq.edu.au

Abstract. Digital signature is one of the most important primitives
in public key cryptography. It provides authenticity, integrity and non-
repudiation to many kinds of applications. On signer privacy however,
it is generally unclear or suspicious of whether a signature scheme itself
can guarantee the anonymity of the signer. In this paper, we give some
affirmative answers to it. We formally define the signer anonymity for
digital signature and propose some schemes of this type. We show that
a signer anonymous signature scheme can be very useful by proposing
a new anonymous key exchange protocol which allows a client Alice to
establish a session key with a server Bob securely while keeping her iden-
tity secret from eavesdroppers. In the protocol, the anonymity of Alice
is already maintained when Alice sends her signature to Bob in clear,
and no additional encapsulation or mechanism is needed for the signa-
ture. We also propose a method of using anonymous signature to solve
the collusion problem between organizers and reviewers of an anonymous
paper review system.

1 Introduction

Digital signature is one of the most important primitives in public key cryp-
tography. It is a very useful tool for providing authenticity, integrity and non-
repudiation while it has seldom been considered to provide user privacy by its
own. In many applications such as e-voting, e-auction, authentication protocols,
and many others, we need to protect a signer’s identity from being known by
eavesdroppers or other parties in a system. For example, in an anonymous elec-
tronic transaction processing system [11] or an anonymous key exchange protocol
[18], additional mechanisms or encapsulation techniques such as extra layers of
encryption are applied onto their underlying signature schemes for protecting
the signer’s identity. In some other examples such as [6], several requirements
for the signer anonymity of a signature scheme are informally given. However,
� The work was supported by a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (RGC Ref. No. CityU 1161/04E) and a
grant from CityU (Project No. 9360087).

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 347–363, 2006.
c© International Association for Cryptologic Research 2006

348 G. Yang et al.

among these solutions or discussions, they usually require significant increase
of system complexities or lack formal methodologies for analyzing the level of
anonymity being provided to signers. Although it is widely believed that a sig-
nature scheme by itself may provide a certain degree of anonymity to its signers,
there is no formal treatment on this subject. It is still generally unclear on ex-
actly what conditions that a signature itself can provide anonymity of its signer.
Comparing with the progress on the decryptor identity exposure issue of public
key encryption schemes [2], it has been far lagged behind on the research of the
signer anonymity of signature schemes themselves.

Consider the following example (Fig. 1) which is a key transport protocol
proposed by Boyd and Park [6] for a mobile client A to transport a session key
σ to a server B. The protocol is also targeted to provide client anonymity by
protecting A’s identity IDA from being known by eavesdroppers.

A → B : PKEB(IDA, σ, count)
A ← B : Encσ(count, rB)
A → B : SigA(IDB, h(count, σ, rB))

Fig. 1. Boyd-Park Authenticated Key Transport Protocol

In the first message of the protocol, A encrypts IDA, σ and a field count
under B’s public key encryption function PKEB which is assumed to be publicly
known. This protects A’s identity from being known by eavesdroppers. In the
third message of the protocol however, A also needs to generate and send a
signature to B in clear. Obviously, to hide the identity of A, this signature should
not provide any meaningful information about A’s identity to eavesdroppers.

To illustrate some subtleties of making a signature signer anonymous, we
describe several potential attacking techniques which can be used to compromise
a signer’s identity.

Redundant Structure Attack. As remarked by the authors in [6], it is impor-
tant to make sure that the signature does not contain any “redundant” struc-
ture, which can be revealed during the signature verification procedure and does
not require the signed message to be known, while such a redundant structure
may help an eavesdropper identify the mobile client. For example, a recoverable
signature scheme [5] allows the message to be recovered and verified from the
redundant structure of such a signature once the correct signature verification
function is given. Hence if the signature scheme SigA in the protocol above is re-
coverable, an eavesdropper can find out the identity of A by trying the signature
verification functions of all mobile clients one by one until a message starting
with IDB is recovered and verified.

Different Domain Attack. In order to prevent Redundant Structure Attack,
a signature scheme which appears to be immune from such an attack, an ElGa-
mal or Schnorr [16] type signature scheme was chosen for this key transport
protocol [6]. However, we notice that an eavesdropper may still be able to

Anonymous Signature Schemes 349

identify the mobile client by examining the signature from another aspect: sim-
ply from the length of a signature. Suppose there are two mobile clients in the
system and one of them is communicating with the server using this anonymous
key transport protocol. When Schnorr signature scheme is used, the two mobile
clients may select their own keys in different groups that could have different
sizes. By examining the length of the signature in the protocol, the eavesdropper
can tell which mobile client is communicating with the server.

Sparse Message Attack. For signature schemes where redundant structure
does not exist and all signers have the same signature domain, an adversary
may still be able to find out the signer from just the given signature. Below is
an example.

Consider a trapdoor one-way permutation family indexed by signers’ public
keys (e.g. RSA [15]), a signature of a message is generated by computing the
permutation inverse of the message using a signer’s private signing key (i.e.
a trapdoor information). If the message space is sparse in the image of the
permutation family (e.g. the image of the permutation family contains only a few
meaningful messages), the adversary is able to find out who the actual signer is.
Given a signature, the adversary can find out the actual signer’s identity using
the following elimination method: For a trial signer, the adversary computes
the one-way permutation of the signature indexed by the signer’s public key
and checks if the result is in the corresponding message space. If it is not, then
the adversary is sure that this signer is not the actual signer of the signature.
The adversary will simply repeat this elimination procedure until a signer is
found.

Contributions. We formally introduce signer anonymous digital signature and
define two security models subsequently for it. The first one is static, it pro-
vides an intuitive way to screen off signatures which do not have the anonymity
property; the second one, a stronger model, combines the static model with the
adaptive chosen message attack, and this adaptive model is then used in the
security analyses of the signer anonymity of our proposed schemes.

Some commonly used signature schemes are examined. We show that the
basic RSA signature scheme [15] is in general not signer anonymous, except in a
special case where some restrictive assumptions are applied. We then show that
PSS [5] is not signer anonymous even with those restrictive assumptions. We also
show that Schnorr and ElGamal signature schemes are not signer anonymous,
except all signers are choosing keys under a common domain.

To transform those signature schemes to signer anonymous versions, we pro-
pose some extensions of them and show that they are signer anonymous even
under our adaptive model. We also propose a new anonymous key exchange pro-
tocol which allows a client Alice to establish a session key with a server Bob
securely while keeping her identity secret from eavesdroppers. In the protocol
Alice sends her signer anonymous signature to Bob in clear, while the anonymity
of Alice is already maintained. As another application, we propose a method of

350 G. Yang et al.

using anonymous signature to solve the collusion problem between organizers
and reviewers of an anonymous paper review system.

Paper Organization. In Sec. 2, we review some related work. This is followed
by Sec. 3 in which we introduce a security model for signer anonymous signature.
In Sec. 4, we review some commonly used signature schemes and show that
they are not signer anonymous. In Sec. 5, we introduce a stronger model for
signer anonymous signature and call it the adaptive model. In Sec. 6, we propose
some modifications of the signature schemes reviewed in Sec. 4 and show their
anonymity under the stronger adaptive model. In Sec. 7, we apply our anonymous
signature schemes on the design of anonymous key establishment protocols and
the construction of an anonymous paper review system which solves the collusion
problem between organizers and reviewers.

2 Related Work

For the counterpart of digital signature in public key cryptography, the public
key encryption with key privacy was introduced and first formalized by Bellare
et al. in [2]. In their model, a secure key-privacy-enabled encryption scheme not
only ensures that an encrypted message is semantically secure against adaptive
chosen-ciphertext attacks but also prevents the public from getting the decryp-
tor’s identity from the encrypted message. Several techniques were also pro-
posed in [2] for converting a conventional encryption scheme to a key-privacy-
enabled encryption scheme. However, these techniques cannot be simply ap-
plied to digital signature schemes for converting them to anonymous version.
The main challenge of constructing an anonymous signature scheme is that
signature schemes are not designed for hiding messages. It is different from
a public key encryption scheme. For a secure key-privacy-enabled encryption
scheme, an attacker (i.e. the one who wants to find out the identity of the
decryptor) has access to both the message and the corresponding ciphertext
(and of course the public keys of all decryptors in a system). For construct-
ing a secure anonymous signature scheme, on the other hand, we need to con-
sider the impacts of messages to the anonymity of signatures more carefully.
For example, if a signature and the corresponding message are given, it is im-
possible to have a signature scheme be anonymous because the signature is
publicly verifiable and the number of public keys in a system is usually lim-
ited. Another example, if the message of a challenge signature is not given
but the message space is small, it would still be easy to find out the iden-
tity of the signer by searching over all the possible messages for each possible
signer.

Notice that signer anonymity is not the same as sender anonymity while the
latter is not new. In signcryption schemes with key privacy [7, 17], or in desig-
nated verifier signature schemes [12, 13], the identity of the sender is protected
(i.e. sender anonymity) using the intended decryptor/verifier’s public key. Their
techniques are similar to that of key-privacy-enabled encryption schemes [2]. An

Anonymous Signature Schemes 351

anonymous signature scheme, on the other hand, does not have an intended re-
cipient when a signature is generated. It solely focuses on the signer anonymity
of a signature scheme itself.

3 A Static Security Model for Signer Anonymity

Definition 1. A digital signature scheme is a tuple of four algorithms denoted
by (K,M,S,V).

1. The key generation algorithm K is a randomized algorithm which on input
1k, where k ∈ N is a security parameter, returns in polynomial time a pair
(pk, sk) of matching public and secret keys.

2. The message space generator M is an algorithm which on input a public key
pk returns in polynomial time a set M (called the message space with respect
to pk). Formally, the output is a description of M and for simplicity, we
denote M by M(pk).

3. The signing algorithm S is a (possibly randomized) algorithm which on input
1k, a message m and the secret key sk returns in polynomial time a signature
σ for m.

4. The verification algorithm V is a deterministic algorithm which on input 1k,
a message m, the public key pk, and a candidate signature σ for m returns in
polynomial time a bit indicating the validity of the signature.

(Correctness.) We require that V(1k, m, pk,S(1k, m, sk)) = 1 for any (pk, sk) ←
K(1k) and m ∈ M(pk).

In the following, we specify a basic model which captures our fundamental
notion of signer anonymity. For simplicity, we omit the expression of 1k from the
inputs of S and V in the rest of the paper.

3.1 Static Model

Definition 2. Let SD = (K,M,S,V) be a digital signature scheme. Suppose the
key generationalgorithm is run twicewith the security parameterk, and (pk0 , sk0)←
K(1k) and (pk1, sk1) ← K(1k) are generated. SD is said to produce computation-
ally indistinguishable signatures (or signatures with signer anonymity in the static
model) if for every probabilistic polynomial time (PPT) algorithmD, every positive
polynomial p(·), and all sufficiently large k’s,

|Pr[D(1k, pk0, pk1, σ0) = 1]− Pr[D(1k, pk0, pk1, σ1) = 1]|

<
1

p(k)

where σ0 ← S(m0, sk0), σ1 ← S(m1, sk1) and m0 ∈R M(pk0), m1 ∈R M(pk1).

By x ∈R X , we mean that an element x is randomly chosen from a set X .

352 G. Yang et al.

3.2 Discussions

A message-recoverable signature scheme, such as PSS-R [5], allows the message
of each of its signatures to be recovered directly from the signature once the cor-
responding public key is given while having negligible chance to have a message
recovered from the signature if an incorrect public key is supplied. In Def. 2,
since public keys are known to D, we can see that a message-recoverable signa-
ture scheme cannot be anonymous.

Although messages m0 and m1 are unknown to the distinguisher D, the corre-
sponding message spaces are publicly known (since M, pk0 and pk1 are known).
Hence for satisfying Def. 2, it is required that all message spaces should be suf-
ficiently large so that it is negligible for D to guess correctly the message. One
may consider that every message space should have at least 2k messages. We
will give a more precise specification to the message space. One should also note
that the size of the message space is a necessary requirement to the anonymity
of a signature scheme, but it is not sufficient.

On the signature spaces, Def. 2 also indicates that D should not be able to
distinguish computationally a signature from one space to another. As a coun-
terexample, if the signature space correlates to the length of the corresponding
public key (mentioned earlier in the introduction section), D may be able to
compromise the anonymity of a signature from this information.

4 Signature Signatures That Are Not Signer Anonymous

4.1 The Basic RSA Signature Scheme

In the following, we show that unless intentionally specified, the basic RSA
signature scheme [15] (the primitive one without using hash function), in its
general use, is not signer anonymous according to Def. 2.

Consider two signers Signer0 and Signer1 with RSA moduli N0 and N1,
respectively. Without loss of generality, let N0 > N1. If the two moduli are of
different length, it is obvious that signatures generated by the two signers can
easily be identified by checking the length of a given signature. Even if N0 and
N1 are of equal length, we can still distinguish signatures for most of the cases.
In the following, we elaborate this in detail.

Let us evaluate the probability that a signature of Signer0 falls into the range
of ZN0−ZN1 . Let Δ = N0−N1. The probability that a signature of Signer0 falls
into {N1, · · · , N0 − 1} will be Δ/N0. This value is upper bounded by Δ/2k−1

if |N0| = k. Hence if |Δ| is in the order of log(k), then the probability will be
negligible for sufficiently large k. This is the case when we say that N0 and N1

are “very close” to each other. In this case, the basic RSA signature scheme may
be anonymous. However, this is true only if all message spaces in the system are
dense in the corresponding ranges, for example, every element in ZNi , i = 0, 1, is
valid/meaningful. On the other hand, if the message space of Signer0 or Signer1

is sparse in ZNi , i = 0/1, that is, there are only a few elements in ZNi that
are valid (or meaningful) messages. Then the scheme cannot be anonymous.

Anonymous Signature Schemes 353

For example, suppose a signature σ = md0
0 mod N0 is given where d0 is the

private exponent of Signer0, the distinguisher D can determine if Signer1 is the
actual signer by computing m′ = σe1 mod N1, where e1 is the public exponent of
Signer1 and then determining if m′ is in the message space of Signer1. Since the
message space of Signer1 in ZN1 is sparse, it will have a non-negligible chance
that m′ is not in the message space, which allows D to find out the actual signer
with non-negligible advantage.

All of the above are concerning about special cases. In the general case where
N0 and N1 are generated by following a conventional procedure, that is, each
of N0 and N1 is a product of two randomly chosen equal-length primes and
|N0| = |N1| = k, the following theorem implies that with at least a constant
probability that a RSA signature can be distinguished successfully (i.e. not signer
anonymous under Def. 2).

Theorem 1. If N0 and N1 are generated by following the conventional proce-
dure, then the probability that |N0 −N1| ≥ 2k−2 is at least 1

400 .

Due to page limitation, readers please refer to our full paper [19] for the proof.

PSS. Based on the results above, we can see that PSS [5] is not signer anony-
mous either. Due to page limitation, readers please refer to our full paper [19]
for details.

4.2 Schnorr Signature Scheme [16]

On input a security parameter 1k, the key generation algorithm K returns a
public key pk which consists of a set of group parameters I = (p, q, g,G, h) and
an element y ∈ G, and a secret key sk which is a random element x ∈R Zq, such
that y = gx mod p. In I, p, q are two large primes chosen randomly such that
q|p−1,G is a subgroup of Z∗

p with order q, g is a generator of G so that computing
discrete logarithms to the base g is difficult, and h : {0, 1}∗ → {0, 1, · · · , 2k − 1}
is a hash function where 2k < q.

In the original Schnorr signature scheme, the message space can be arbitrarily
specified as any subset of {0, 1}∗. For allowing us to specify the minimum size of
the message space that an anonymous Schnorr signature scheme should be in the
later part of this paper, we quantify the message space. We define the message
space generator M such that on input pk, which is generated by K(1k), M(pk)
outputs the description of a message space MSchnorr such that |MSchnorr| ≥ 2k.
Below are the signature generation and verification algorithms.

Signing algorithm. On input a message m ∈ MSchnorr and a secret
key x, S(m, x) is computed as follows:
1. Choose a random w ∈R Zq and compute t = gw mod p.
2. Compute r = h(t, m).
3. Compute s = w − xr mod q.

The signature for m is the pair (r, s).

354 G. Yang et al.

Verification algorithm. To verify a signature (r, s) for message m
under public key (I, y), compute t = gsyr mod p and output 1 if
r = h(t, m), otherwise output 0.

Since signers generate their public key pairs independently, it is pretty likely
that different signers have their keys under different sets of group parameters.
We can see that the scheme is not signer anonymous as identity information
will be leaked from the value of s by applying similar arguments to that in
Sec. 4.1. Interestingly, in a special case where all signers are sharing a common
set of group parameters, the scheme can actually be shown to provide signer
anonymity under the random oracle model [4] without any modification. The
proof technique is similar to that for Lemma 2.

5 An Adaptive Security Model for Signer Anonymity

Def. 2 is static as the distinguisher cannot adaptively acquire additional infor-
mation about the challenging signature from the environment. In the following,
we define a stronger model which allows the distinguisher to adaptively obtain
signatures generated by the entity who generates the challenging signature.

Definition 3 (SA-CMA). Let k be a security parameter. A digital signature
scheme SD is signer anonymous against chosen message attack (SA-CMA) if
for all sufficiently large k, no PPT adversary (or distinguisher) D can win the
following game with a probability non-negligibly larger than 1

2 . The game is sim-
ulated by a challenger.

1. (Key Generation Phase.) The challenger runs K(1k) multiple times for gen-
erating polynomially many public and secret key pairs. All the public keys are
accessible by D.

2. (Training Phase.) D adaptively queries the challenger with a public key pki

and a message m ∈ M(pki). The challenger produces σ ← S(m, ski) and
replies D with σ if pki is generated in the Key Generation Phase; otherwise,
a ‘⊥’ is returned indicating that signature generation has failed.

3. (Key Selection Phase I.) D picks two public keys from the public keys gener-
ated in the Key Generation Phase. We denote these two key pairs by (pk0, sk0)
and (pk1, sk1).

4. (Key Selection Phase II.) The challenger gives all the secret keys to D except
sk0 and sk1.

5. (Challenge Phase.) The challenger tosses a random coin �
R← {0, 1}, then

uniformly picks a message m ∈ M(pk�), and returns a challenge signature
σ ← S(m, sk�) to D.

6. (Cracking Phase.) D can still adaptively make signing queries as in the Train-
ing Phase but the associated public key with each query can only be pk0 or
pk1.

7. (Output Phase.) At the end of the game, D outputs a bit �′ and wins if
�′ = �.

Anonymous Signature Schemes 355

D’s advantage is defined as Advsa−cma = Pr[�′ = �]− 1
2 and Pr[�′ = �] is the

probability that D wins the game. The probability is taken over the coin tosses
of both D and the challenger, including the coin toss for �.

If a scheme satisfies this definition, we say that the scheme is SA-CMA secure.
Note that in the Cracking Phase we only allow the distinguisher to query with
public key pk0 or pk1, since the secret keys corresponding to all other public
keys have already been given to the distinguisher.

As the distinguisher D of the adaptive model has an additional signing oracle
to access, the model is obviously stronger than the static one given in Def. 2.
Another seemingly “stronger” definition is to let D perform the Challenge Phase
and the Cracking Phase in the following way:

Definition 4. ...
5. The challenger tosses a random coin � R← {0, 1}.
6. D can adaptively perform the following queries:

(a) D performs signing queries as in the Training Phase except that now the
allowable public keys are pk0 and pk1 only.

(b) D queries a special oracle called challenging oracle. The challenging ora-
cle uniformly picks a message m ∈ M(pk�), and returns σ ← S(m, sk�)
to D.

...

But the following result shows that Def. 3 and Def. 4 are equivalent.

Theorem 2. If there exists no PPT algorithm that has a non-negligible advan-
tage in winning the game in Def. 3, then there exists no PPT algorithm that has
a non-negligible advantage in winning the game in Def. 4.

Due to page limitation, readers please refer to our full paper [19] for the proof.

6 Modified Signature Schemes for Signer Anonymity

In this section, we propose some modifications on the schemes described in Sec. 4
and show that they are signer anonymous under the adaptive model (i.e. SA-
CMA in Def. 3). We start with Schnorr signature scheme and provide the full
proof for its signer anonymity. Then we modify the basic RSA signature scheme
and subsequently the PSS. Due to page limitation, readers please refer to our
full paper [19] for the discussions of the last two schemes.

Extended Schnorr Signature Scheme for Signer Anonymity. The key
generation algorithm K and the message space generator M are almost the same
as the original Schnorr signature scheme described in Sec. 4.2, except that the
public key now also contains an additional parameter denoted by b ∈ N. Let
qmin and qmax denote the lower bound and upper bound of the group orders of
all signers, respectively. Let 2b be an integer which is � bits longer than qmax

and � = k + 1. One may imagine k = 160 and hence � = 161. Let h : {0, 1}∗ →
{0, 1, · · · , 2k − 1} be a hash function where 2k < qmin.

356 G. Yang et al.

For a signer with public key pk = (I, b, y) and secret key x generated by
K(1k) where I = (p, q, g,G, h) and y = gx mod p, the signature generation and
verification algorithms are as follows. Let n be the largest integer such that
nq < 2b.

Signing algorithm. On input a message m ∈ M(pk) and secret key
x, S(m, x) is computed as follows:
1. Choose a random w ∈ Zq and compute t = gw mod p.
2. Compute r = h(t, m) and then s = w − xr mod q.
3. Choose a number λ

R← {0, 1, · · · , n− 1} and compute s′ = s + λq
The signature for m is the pair (r, s′).

Verification algorithm. To verify signature (r, s′) for message m
and public key (I, y), compute s = s′ mod q and t = gsyr mod p,
and output 1 if r = h(t, m), otherwise, output 0.

Consider two arbitrary signers Signeri and Signerj whose sets of group parame-
ters are denoted by Ii = (pi, qi, gi,Gi, h) and Ij = (pj , qj , gj ,Gj , h), respectively.
Let ni and nj be the largest integers such that niqi < 2b and njqj < 2b, respec-
tively. Without loss of generality, we assume niqi < njqj .

Lemma 1. For the extended Schnorr signature scheme above, if signer Signeri

generates a signature (ri, s
′
i) and signer Signerj generates a signature (rj , s

′
j),

then the probability that s′j is in Δ = {niqi, · · · , njqj − 1} is at most 2−k.

Proof. First, note that s′i and s′j are uniformly distributed on {0, 1, · · · , niqi−1}
and {0, 1, · · · , njqj − 1}, respectively. Second, since njqj < 2b and niqi ≥ 2b − qi,
njqj − niqi < 2b − (2b − qi) = qi ≤ qmax. Hence,

Pr[s′j ∈ Δ] < qmax/(2b − qmax) < 1/2l−1 = 1/2k. �	

In the following, we assume that h behaves like a random oracle [4]. If an algo-
rithm A runs in time at most t and completes successfully with probability at
least ε > 0, then A is said to be a (t, ε)-algorithm. The probability is taken over
the input domain and the coin tosses of A.

Lemma 2. In the extended Schnorr signature scheme above, suppose for any
pair of signers Signeri and Signerj, qi = qj . Then if there exists a (t, ε + 1

2)-
algorithm (distinguisher) D which wins the game of Def. 3 after performing at
most qH hash queries and qS signing queries, there exists a (t′, ε′)-algorithm
F which existentially forges under the chosen message attack [9] a signature
after performing at most qH + qS hash queries and qS signing queries, where
t′ ≤ t + qKc and ε′ ≥ (1− qH+qS

2k)(1− qS

2k) ε
qK

for qK being some polynomial in k
and c being the time required for generating one key pair in the extended Schnorr
signature scheme.

Proof. We construct an algorithm F which runs D under a simulated environ-
ment of Def. 3 and forges a Schnorr signature.

Anonymous Signature Schemes 357

At the beginning of the simulation, F is given a security parameter k, a set
of group parameters I = (p, q, g,G, h), a challenge element y ∈ G, an auxiliary
parameter b ∈ N and a message space MSchnorr such that |MSchnorr| ≥ 2k.
F is to forge a signature σ∗ = (r∗, s∗) with message m∗ ∈ MSchnorr such
that r∗ = h(gs∗

yr∗
mod p, m∗) where h is provided as a random oracle by the

unforgeability game simulator of F . Note that F has access to the random oracle
of h and a signing oracle corresponding to the challenge public key y. The signing
oracle, on input a message m ∈ MSchnorr, returns a signature σ = (r, s) such
that r = h(gsyr mod p, m). We denote the random oracle for h by HO and the
signing oracle by SO.

In the Key Generation Phase of the game defined in Def. 3, F randomly
generates qK−1 public key pairs where qK is some polynomial in k. For each of the
public key pairs, say the i-th, the set of group parameters Ii = (pi, qi, gi,Gi, h)
is generated such that qi = q, qi|pi−1, and gi is the generator of Gi whose order
is qi. Also an element yi is generated as gxi

i mod pi where xi is randomly chosen
from Zqi . The public key of i-th public key pair is set to pki = (Ii, b, yi) and the
corresponding secret key is xi. Let L = {pki}1≤i≤qK be the set of public keys
generated in this phase except pkj , which instead is assigned to (I, b, y). The
value of j is chosen randomly from 1 to qK .

In the Training Phase and the Cracking Phase, F answers all oracle queries
made by D. For a hash query, the query is relayed by F to HO for an answer.
The answer is then relayed back to D. F also maintains a list Ψ of queried values
and their returns. For a signature query with message m in the corresponding
message space, there are two cases. Case 1: if the public key is not y, F follows
the signing algorithm of the scheme to generate a signature. This can be done
as F knows the corresponding signing key (or secret key). Case 2: if the public
key is y, F relays the query to SO and relays the signature back to D. Note that
the list Ψ should also be updated for hash values. In addition to these steps, in
the Cracking Phase, we will see shortly that F needs to carry out a few more
checkings when relaying queries and answers between D and the oracles HO,
SO to and fro.

In the Key Selection Phase I, if D picks two public keys such that none of
the keys is y, F fails and halts. Let the two public keys be (Î0, b, ŷ0), (Î1, b, ŷ1).
Suppose F does not fail and proceeds successfully to the Challenge Phase, F
sets the challenge signature σ∗ = (r∗, s∗) by randomly picks r∗

R← {0, 1}k and
s∗

R← {0, 1, · · · , nq−1} where n is the largest integer so that nq < 2b. If r∗ is
already in the list Ψ as a queried hash oracle answer, F fails and halts (we will
see below that this event is called E2). Otherwise, an entry (', r∗) is added into
the list Ψ , where ' represents some hash input whose value is not known yet
but its hash value has been given as r∗.

The simulation proceeds until D reaches the Output Phase. When D outputs
and halts, F also halts and outputs nothing. That means F has failed to forge a
signature. However during the Cracking Phase, whenever D makes a hash query,
F checks if the answer of HO is r∗. If this is the case and at the same time
the hash evaluation is of the form h(gs∗

yr∗
mod p, m∗) where m∗ ∈ MSchnorr

358 G. Yang et al.

and m∗ is not involved in a signing query in the Training phase, F outputs the
forged signature σ∗ = (r∗, s∗) and message m∗, and halts. In addition, during
the Cracking Phase, whenever D makes a signing query with some message
m∗ ∈MSchnorr under y, F first queriesHO for the value of h(gs∗

yr∗
mod p, m∗).

If the hash value is equal to r∗ and m∗ is not involved in a signing query in
the Training Phase, F outputs the forged signature σ∗ = (r∗, s∗) and message
m∗, and halts; if the hash value is not r∗, F then relays the query to SO and
continues the simulation as described above. Note that if m∗ turns out to have
been queried in some signing query during the Training Phase, F fails and halts
(we will see below that this event is called E3).

Analysis. First of all, it is easy to see that the running time of F is in poly-
nomial of that of D and F perfectly simulates the game of Def. 3 except during
the Challenge Phase. In this phase, the challenger in a real game (that is, F in
the simulated game described above) should have randomly picked a key among
two given public keys, then picked a message randomly from the message space
corresponding to the chosen public key and generated a challenge signature ac-
cordingly.

First, we investigate the distribution of the messages which produce a sig-
nature (r∗, s∗) with respect to each of (Î0, b, ŷ0) and (Î1, b, ŷ1). For each of
(Î�∗ , b, ŷ�∗), �∗ = 0, 1, define two sets

M�∗ = {m : r∗ ← h(gs∗
�∗ ŷr∗

�∗ mod p�∗ , m), m ∈ MSchnorr
�∗ }.

Under the assumption that h is a random function [4], M�∗ is uniformly dis-
tributed, and the expected number of messages inM�∗ is equal to |MSchnorr

�∗ |/2k.
From the fact that log2(|MSchnorr

�∗ |) ≥ k, we have at least half chance (derived
from 1− (1− 2−k)|M

Schnorr�∗ | ≥ 1/2) that the challenge signature σ∗ = (r∗, s∗),
generated by F in the Challenge Phase of the simulated game above, is a valid
signature of some message in MSchnorr

�∗ .
Let E1 be the event that the hash evaluation

r∗ ← h(gs∗
�∗ ŷr∗

�∗ mod p�∗ , m∗) (1)

is carried out during the cracking phase where �∗ = 0/1. If event E1 does
not occur, it is indistinguishable from D’s point of view between the Challenge
Phase of a real game and that of the simulated game by F . By the random oracle
assumption, it is unknown on which message m∗ will make Eq. (1) hold. Hence
D has no advantage in winning the game.

Since the position of (I, b, y) in L is randomly chosen, the probability of
selecting (I, b, y) in Key Selection Phase I is 2/qK . Due to the same reason, in
event E1, the chance that ŷ�∗ = y is 1/2. Note that Pr[D wins] ≥ ε + 1/2. Let
Pr[D wins |E1] = λ + 1/2. We have

ε +
1
2
≤ Pr[D wins]

= (λ +
1
2
)Pr[E1] + Pr[D wins |E1]Pr[E1]

Anonymous Signature Schemes 359

= (λ +
1
2
)Pr[E1] +

1
2
Pr[E1].

Hence λPr[E1] ≥ ε. Since ε > 0, we have 0 < λ ≤ 1/2. Therefore Pr[E1] ≥ 2ε.
To find out the lower bound of the winning probability of F , we only have

two events left to evaluate, that is, the chance that F fails due to the following
two events.

Event E2: During the Challenge Phase, r∗ is found to be in the list of Ψ .
Event E3: During the Cracking Phase, if evaluation r∗ ← h(gs∗

yr∗
mod

p, m∗) occurs while m∗ has been involved in a signing query during the
Training Phase.

Since r∗ is randomly chosen from {0, 1}k and h is a random function, we have
Pr[E2] ≤ qH+qS

2k . Similarly, we have Pr[E3] ≤ qS

2k .
Combining all the events above, they include the case that y is one of ŷ0 and

ŷ1, the case that (r∗, s∗) is a valid signature of y, E1 occurs, the case that y is
involved in the event E1, the case that r∗ is not in the list Ψ during the Challenge
Phase (i.e. E2), and the case that the forged message m∗ has not been involved
in any signing query during the Training Phase (i.e. E3), we have

Pr[F wins] ≥ (1 − qH + qS

2k
)(1 − qS

2k
)

ε

qK
.

On the running time of F , we can see that besides running D, F needs to
generates qK −1 key pairs during the Key Generation Phase and at most qS

additional hash queries during the Cracking Phase. Let c be the time required
for generating one key pair. The running time of F is at most t + qKc. Also F
performs at most qH + qS hash queries and qS signing queries. �	

Theorem 3. The extended Schnorr signature scheme described above is SA-
CMA secure.

Proof. Without loss of generality, suppose in the game of Def. 3, the distinguisher
D picks the public keys corresponding Signeri and Signerj in the Key Selection
Phase I, and Signerj is picked by the challenger in the Challenge Phase. We
follow the notations used above and in the proof of Lemma 1, we assume that
niqi < njqj . Let E be the event that s′j �∈ Δ. In other words, E is the event that
s′j ∈ {0, 1, · · · , niqi − 1}, that is, in the same domain as Signeri has been picked
by the challenger. According to Lemma 2, we have Pr[D wins the game |E] ≤
1
2 + ε(k) under the assumption that the extended Schnorr signature scheme is
existentially unforgeable [9], where ε is a negligible function. Since Pr[E] ≤ 1,
we have

Pr[D wins the game ∧E] ≤ 1
2

+ ε(k) (2)

According to Lemma 1, we have Pr[E] ≤ 2−k. Since Pr[D wins the game |E] ≤ 1,
we have

Pr[D wins the game ∧E] ≤ 2−k (3)

360 G. Yang et al.

Combining Eq. (2) and (3), we have

Pr[D wins the game] ≤ 1
2

+ ε(k) + 2−k �	

The extended Schnorr signature scheme still maintains existential unforgeability
against adaptive chosen message attack (euf-cma) [9], namely, given a signing
oracle, an adversary cannot forge a signature for a message m which has not
been queried to the signing oracle before. However, the extended scheme does
not satisfy the strong unforgeability [3, 1], namely, given a signing oracle, an
adversary cannot forge a valid pair of message m and signature σ which has not
been a query output of the signing oracle for m before.

7 Applications

7.1 Anonymous Key Exchange

As shown in Fig. 1 and discussed in the introduction section, the protocol cannot
provide client anonymity if the Different Domain Attack is feasible. In order to
make it client anonymous, we modify the last message flow from A to B by using
an anonymous signature scheme and change the message to

A→ B : SigA(h(IDB, count, σ, rB))

where h : {0, 1}∗ → {0, 1}k is a hash function which behaves like a random
oracle.

The example above is an anonymous key transport protocol. Next, we con-
struct an anonymous key exchange protocol which not only ensures the
anonymity of the client but also allows the client and the server to establish
a session key from both of their session key contributions. The protocol is based
on a key exchange protocol called “SIG-DH” [8] which is a signature-based vari-
ation of the Diffie-Hellman key exchange protocol with provable security against
various active attacks defined in the Canetti-Krawczyk model [8].

Let k be a security parameter. Let G be a group generated by g with large
prime order q so that computing discrete logarithms to be base g is difficult. Let
H : {0, 1}∗ → {0, 1}3k be a hash function. Each party has a secret signing key
for a signature algorithm Sig. By SigA(m), we mean the signature on message m
generated by party A with identity IDA ∈ {0, 1}k. Assume the public keys of all
parties in the system are publicly known. Let E be a block cipher (e.g. AES [14])
of block size k. Suppose a client (the initiator) A and a server (the responder) B
already have a session-id s shared. We will explain shortly on how the session-id
s is established. The following protocol is carried out between them.

1. A randomly chooses a temporal identity alias ∈R {0, 1}k, x ∈R Zq, and sends
(alias, s, α = gx) to B.

2. Upon receipt of (alias, s, α), B randomly chooses y ∈R Zq, then computes
κ1‖κ2‖κ3 ← H(αy) such that |κi| = k for i = 1, 2, 3, erases y, and sends to A
the message (B, s, β = gy) together with SIGB(B, s, β, α, alias).

Anonymous Signature Schemes 361

3. Upon receipt of (B, s, β = gy) and B’s signature, A computes κ′1‖κ′2‖κ′3 ←
H(βx), erases x, and verifies the signature. If the signature is valid, A sends
to B the message (alias, s,C1 = Eκ1(A)) together with its signature σ =
SigA(h(alias,A, s, α, β, B,κ′2)) where h : {0, 1}∗ → {0, 1}k is a hash function.
A outputs the session key κ′3 under session-id s.

4. Upon receipt of (alias, s,C1) and a signature σ, B computes A′ = E−1
κ1

(C1),
and verifies the identity A′ (e.g. for access control) and signature σ. If all
verifications are passed, B outputs the session key κ3 under session-id s.

A B
alias, s, α = gx

�

B, s, β = gy, SigB(B, s, β, α, alias)�

alias, s, Eκ1(A),SigA(h(alias, A, s, α, β, B, κ′
2))�

Fig. 2. Anonymous SIG-DH Protocol

(Analysis.) The protocol described above (Fig. 2) supports anonymity of the
client A if Sig is an anonymous signature scheme. In the protocol, all hash
functions are assumed to behave like random oracles. The session-id s should
also be randomly selected each time for ensuring A’s anonymity. As suggested
by the authors of [8], in practice, the session-id s can be a pair (s1, s2) where
s1 is a value randomly chosen by A such that it is different from the values in
other of A’s sessions and s2 is randomly chosen by B in a similar way. These
values can be exchanged by the parties as a prologue [10]. Alternatively, s1 can
be included by A in the first message of the protocol, and s2 be included by B
in the second message.

The protocol assumes that the signature verification keys of all parties are
publicly known. In practice, we can add the client’s certificate into the encryption
in the third message provided that the certificates of all clients are of the same
length. Also, we assume that the server does not know the client at the beginning
of the communication. In case it is already known, the encryption operation in
the third message can be removed from the protocol.

Comparing with the original “SIG-DH” protocol [8], the anonymous version
proposed above has an additional message component κ′2 in the signature of A.
κ′2 is used for satisfying the anonymity requirement of an anonymous signature
scheme, that is, preventing an adversary from compromising A’s anonymity by
searching through the list of all possible ‘messages’ of the signature.

7.2 Anonymous Paper Review

In a conventional anonymous paper review system for a conference, authors sepa-
rate their authorship information from the paper bodies before submitting them
to the conference organizer. The paper bodies are required to be fully anony-
mous, that is, no author name, affiliation, acknowledgement, or obvious reference
should appear in them. The organizer then keeps the authorship information of

362 G. Yang et al.

the papers secret from the reviewers and only sends those anonymized paper
bodies to reviewers to review. One problem of the current system is that the
anonymity of the papers will be compromised once the authorship information
of the papers is leaked to the reviewers from the organizer. The organizer or
some insider in the organizing institute, for example a graduate student who is
responsible for maintaining the paper submission server, may leak the author-
ship information of the papers to the reviewers. In the following, we describe a
method which uses anonymous signature to solve this collusion problem.

Consider the paper submission server is now a bulletin board which posts and
timestamps any message received. Once posted, the message cannot be altered.
Let PaperA be a paper which is fully anonymous. Let A be the identity of the
paper’s author and assume that each author already has his public key (for signa-
ture verification) published. To submit the paper PaperA, the author randomly
picks a long binary string r ∈ {0, 1}k where k is the security parameter, and
generates a signature σA = AnonSigA(h(PaperA, r)) using his anonymous sig-
nature generation algorithm denoted by AnonSigA on the message h(PaperA, r)
where h : {0, 1}∗ → {0, 1}k is a hash function which behaves like a random
oracle. The author posts PaperA and σA onto the bulletin board for review.
When all the reviews are completed and the acceptance decision on each paper
has been made, the decision will be posted on the bulletin board. If PaperA is
accepted, the author A will reveal the value of r for claiming his authorship on
PaperA. From this point on, everyone is able to verify his authorship using σA,
(PaperA, r) and A’s public key.

Discussions: In the review stage, no author has given out any authorship
information and the secrecy of r prevents anyone from identifying the signer of
σA. This new system can also let the public access the bulletin board instead
of restricting its access to reviewers only. In this way, everyone can access those
papers once they are posted. Since every paper is timestamped when it is first
submitted and posted to the bulletin board, this helps paper authors to claim
that they are the first ones who obtained those new results described in their
papers without compromising the process of anonymous review. In addition, it
will also help discover parallel submissions.

References

1. J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Proc. EUROCRYPT 2002, pages 83–107. Springer-Verlag, 2002. LNCS 2332.

2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In Proc. ASIACRYPT 2001, pages 566–582. Springer-Verlag, 2001.
LNCS 2248.

3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Proc. ASIACRYPT
2000, pages 531–545. Springer-Verlag, 2000. LNCS 1976.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communications
Security, pages 62–73, Fairfax, 1993. ACM.

Anonymous Signature Schemes 363

5. M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign
with RSA and Rabin. In Advances in Cryptology - Eurocrypt’96, pages 399–416.
Springer-Verlag, 1996. LNCS 1070.

6. C. Boyd and D. Park. Public key protocols for wireless communications. The
1st International Conference on Information Secuirty and Cryptology (ICISC’98),
pages 47–57, 1998.

7. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In Proc. CRYPTO 2003, pages 383–399. Springer-
Verlag, 2003. LNCS 2729.

8. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Proc. EUROCRYPT 2001, pages 453–474. Springer-
Verlag, 2001. LNCS 2045. http://eprint.iacr.org/2001/040/.

9. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing, 17(2):281–308, April 1988.

10. D. Harkins, C. Kaufman, and R. Perlman. The internet key exchange (IKE) pro-
tocol <draft-ietf-ipsec-ikev2-00.txt>. INTERNET-DRAFT, November 2001.

11. E. Van Herreweghen. Secure anonymous signature-based transactions. In ES-
ORICS ’00: Proc. of the 6th European Symposium on Research in Computer Secu-
rity, pages 55–71. Springer-Verlag, 2000. LNCS 1895.

12. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Proc. EUROCRYPT 96, pages 143–154, 1996. LNCS 1070.

13. F. Laguillaumie and D. Vergnaud. Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In Proc. of the 4th Intl. Conference
on Security in Communication Networks (SCN 2004), pages 105–119, 2004. LNCS
3352.

14. NIST FIPS PUB 197. Announcing the ADVANCED ENCRYPTION STANDARD
(AES), November 2001.

15. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

16. C. Schnorr. Efficient identification and signatures for smart cards. In Proc.
CRYPTO 89, pages 239–252. Springer, 1990. LNCS 435.

17. G. Yang, D. Wong, and X. Deng. Analysis and improvement of a signcryption
scheme with key privacy. In Proc. of the 8th Information Security Conference
(ISC ’05), pages 218–232. Springer-Verlag, 2005. LNCS 3650.

18. G. Yang, D. Wong, and X. Deng. Efficient anonymous roaming and its security
analysis. In Proc. of the 3rd International Conference on Applied Cryptography
and Network Security (ACNS 2005), pages 334–349. Springer-Verlag, 2005. LNCS
3531.

19. G. Yang, D. S. Wong, X. Deng, and H. Wang. Anonymous signature schemes.
Cryptology ePrint Archive, Report 2005/407, 2005. http://eprint.iacr.org/.

The Power of Identification Schemes

Kaoru Kurosawa1 and Swee-Huay Heng2

1 Department of Computer and Information Sciences,
Ibaraki University,

4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
kurosawa@mx.ibaraki.ac.jp

2 Faculty of Information Science and Technology,
Multimedia University,

Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
shheng@mmu.edu.my

Abstract. In this paper, we show that identification schemes (ID-
schemes) are very powerful in some areas of cryptography. We first prove
an equivalence between non-interactive trapdoor commitment schemes
and a natural class of identification schemes. We next propose a more
efficient on-line/off-line signature transformation than Shamir-Tauman.
As an application, we present a variant of Boneh-Boyen (BB) signature
scheme which is not only on-line/off-line but also has a smaller public key
size than the original BB scheme. Finally, we present the first identity-
based ID-scheme which is secure against concurrent man-in-the-middle
attack without random oracles by using our variant of BB signature
scheme.

Keywords: Identification scheme, signature scheme, trapdoor commit-
ment scheme, on-line/off-line, identity-based.

1 Introduction

1.1 Background

A commitment scheme consists of two phases: in the commit phase, a sender
commits to a message, while in the decommit phase, the sender reveals the
committed message. A trapdoor commitment scheme admits a trapdoor whose
knowledge allows to open a commitment in any possible way. Gennaro gener-
alized trapdoor commitment schemes to multi-trapdoor commitment schemes
[12]. A multi-trapdoor commitment scheme is a family of secure trapdoor com-
mitment schemes such that it admits a master trapdoor whose knowledge allows
to open any commitment in the family in any possible way. He also showed a
compiler which transforms any proof of knowledge (identification scheme) into
one which is secure against the concurrent man-in-the-middle attack, where the
compiler needs a multi-trapdoor commitment scheme and a strong one-time sig-
nature scheme in addition. We can thus have the following relationship:

ID-scheme + multi-trapdoor commitment + strong one-time signature
→ ID-scheme secure against concurrent man-in-the-middle attack.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 364–377, 2006.
c© International Association for Cryptologic Research 2006

The Power of Identification Schemes 365

On the other hand, the notion of on-line/off-line signature schemes was intro-
duced by Even et al. [9]. The on-line phase of this kind of signatures can be made
very fast due to the pre-computation of the off-line phase. Shamir and Tauman
showed how to transform a non-adaptively secure signature scheme to an adap-
tively secure on-line/off-line signature scheme by using trapdoor commitment
schemes [25]. That is,

Non-adaptive signature + trapdoor commitment →Adaptive on-line/off-line signature
(1)

This result is important because there exist only a few adaptively secure sig-
nature schemes in the standard model: Cramer-Shoup scheme [8] and Gennaro-
Halevi-Rabin scheme [13] under the strong RSA assumption, and Boneh-Boyen
scheme [1] under the strong Diffie-Hellman assumption.

Meanwhile, the idea of identity (ID)-based cryptography was formulated by
Shamir [24] in 1984. An ID-based scheme is an asymmetric system wherein the
public key is effectively replaced by a user’s publicly available identity informa-
tion or any arbitrary string which derived from the user’s identity. It enables
any pair of users to communicate securely without exchanging public or private
keys and without keeping any key directories. Many ID-based schemes appeared
in the literature since then, for example ID-based encryption schemes [4, 2, 3],
ID-based signature schemes [21, 16, 7], etc.

The notion of ID-based identifications was formalized in Kurosawa and Heng
[18] and Bellare et al. [6] independently. All the ID-based ID-schemes presented
in the above two papers are provably secure in the random oracle model only.
Provably secure ID-based ID-schemes in the standard model were first appeared
in [19], but they are not secure against concurrent man-in-the-middle attack. In
this paper, we propose the first ID-based ID-scheme which is provably secure
against concurrent man-in-the-middle attack in the standard model.

1.2 Our Contributions

In this paper, we show that identification schemes (ID-schemes) are very powerful
in some areas of cryptography.

We first prove an equivalence between non-interactive trapdoor commitment
schemes and a natural class of identification schemes. This class includes Schnorr
scheme [23], GQ scheme[15], Fiat-Shamir scheme [11] and the 2�-th root
scheme [26].

Next, we show a more efficient transformation from a non-adaptively secure
signature to an adaptively secure on-line/off-line signature than equation (1)
by directly employing the canonical ID-scheme as a tool. The proposed trans-
formation requires lesser memory in the off-line phase than Shamir-Tauman
transformation [25] which is indicated by equation (1)).

Additionally, we present an on-line/off-line variant of Boneh-Boyen signa-
ture scheme (BB scheme) [1] as an example of the above transformation. The
proposed scheme is not only on-line/off-line, but also the public key size is
smaller than that of the original BB scheme. Although a similar scheme can be

366 K. Kurosawa and S.-H. Heng

obtained by applying Shamir-Tauman transformation, our scheme, however, re-
quires lesser memory in the off-line phase.

Finally, we present the first ID-based ID-scheme which is provably secure
against concurrent man-in-the-middle attack in the standard model, deriving
from our proposed variant of BB signature scheme.

All our results hold without relying on the random oracle heuristic. In the ran-
dom oracle model, it is well-known that a canonical identification scheme can be
transformed to a signature scheme by using the Fiat and Shamir technique [11].
Many signature schemes are obtained by this transformation [10, 15, 23, 20].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we briefly review
some preliminaries. In Section 3, we prove the equivalence between identifica-
tion scheme and trapdoor commitment scheme. In Section 4, we present a general
transformation from any non-adaptively secure signature to the adaptively se-
cure on-line/off-line signature by employing a canonical ID-scheme as a tool. In
Section 5, we exhibit a concrete example by applying the above transformation
to Boneh-Boyen signature scheme. In Section 6, we propose the first ID-based
ID-scheme which is secure against concurrent man-in-the-middle attack in the
standard model. Finally, we conclude this paper in Section 7.

2 Preliminaries

Throughout this paper, � denotes the security parameter and a PPT algorithm
denotes a probabilistic polynomial time algorithm.

2.1 Identification Scheme

In an identification scheme (ID-scheme), a prover P proves to a verifier V that
she knows a witness sI related to a public instance pI . A canonical ID-scheme
can be formalized by ID = (GID, Commit, Response, Check), where GID is a PPT
algorithm which generates (pI , sI). Commit , Response and Check are algorithms
which specify the protocol (P,V) as follows.

Step 1. P chooses r at random from a certain domain Cmt and computes
x = Commit(r). P then sends x to V .

Step 2. V chooses a challenge c at random from a certain set Cha and sends
it to P .

Step 3. P computes a response y = Response(sI , r, c) and sends y to V . Let
Res denote the set of possible y for pI .

Step 4. V checks if
x = Check(pI , c, y). (2)

V accepts P if and only if equation (2) holds.

The above protocol (P,V) is often called a Σ-protocol. We say that (x, c, y)
is a valid transcript for pI if it satisfies equation (2).

The Power of Identification Schemes 367

Definition 1. We say that ID is a Σ-ID-scheme if the following holds:

Completeness. Pr(equation (2) holds) = 1.
Special Soundness. It is hard to compute two valid transcripts (x, c, y) and

(x, c′, y′) such that c �= c′ on input pI .
y-Uniformity. For any fixed (sI , c), y = Response(sI , r, c) is uniformly dis-

tributed over Res if r is uniformly distributed over Cmt.

It is easy to see that y-uniformity implies that the protocol (P,V) is honest-verifier
zero-knowledge. All the important identification schemes in cryptographic appli-
cations are Σ-ID-schemes.

2.2 Trapdoor Commitment Scheme

A trapdoor commitment scheme is defined by T C = (GTC , Tcom, Topen). GTC

is a PPT algorithm which generates (pk, tk), where pk is the public key and tk
is the trapdoor.

Tcom is the algorithm that computes a commitment on m as x = Tcom
(pk, m, r), where r is a random number. To open the commitment x, the sender
reveals m, r and the receiver recomputes x.

Topen is the algorithm that opens a commitment in any possible way with
the trapdoor tk. For given m, r and m′ �= m, it outputs r′ = Topen(tk, m, r, m′)
such that x = Tcom(pk, m, r) = Tcom(pk, m′, r′).

This implies that the receiver has no information on m given x. We require
that the sender cannot find a collision such as follows.

Definition 2. We say that a trapdoor commitment scheme T C is secure if it
is hard to compute (m, r) and (m′, r′) such that Tcom(m, r) = Tcom(m′, r′) on
input pk where m �= m′.

An example of trapdoor commitment scheme under the discrete logarithm as-
sumption [22] is shown in Appendix A.

2.3 Signature Scheme

A signature scheme is denoted by Ω = (Gsign, Sign, Verify). Gsign is a PPT
algorithm which generates (vk, sk), where vk is a verification key and sk is the
secret key. Sign is a PPT algorithm which generates a signature σ on input a
message m and the secret key sk. Verify is a polynomial time algorithm which
checks the validity of (m, σ) by using vk, say Verify(vk, m, σ) = accept or reject.

Adaptive Security. The standard security notion of signature schemes is exis-
tential unforgeability against adaptive chosen message attack [14]. It is defined
using the following game between a challenger and an adversary A:

1. The challenger runs Gsign to obtain (vk, sk). A is given vk.
2. A queries some message mi to the challenger for i = 1, . . . , t adaptively. The

challenger responds to each query with a signature σi = Sign(sk, mi).

368 K. Kurosawa and S.-H. Heng

3. Eventually, A outputs a forgery (m∗, σ∗). A wins the game if m∗ �∈ {m1, . . . ,
mt} and Verify(vk, m∗, σ∗) = accept.

We say that Ω is adaptively secure if Pr(A wins) is negligible for any PPT
adversary A as shown above.

Non-adaptive Security. A much weaker security notion is existential unforge-
ability against weak non-adaptive chosen message attack. It is defined using the
following game between a challenger and an adversary A:

1. On input the security parameter 1�, the adversary A submits messages m1,
. . . , mt (non-adaptively) to the challenger.

2. The challenger generates (vk, sk) randomly and computes the signatures
σ1, . . . , σt. He then sends vk, σ1, . . . , σt to A.

3. A outputs a forgery (m∗, σ∗). A wins the game if m∗ �∈ {m1, . . . , mt} and
Verify(vk, m∗, σ∗) = accept.

We say that Ω is non-adaptively secure if Pr(A wins) is negligible for any
PPT adversary A as shown above.

There is another notion called one-time signature, informally this means that
the adversary A is given the verification key vk and the signature σ on a message
m of her choice (chosen after seeing vk), then it is infeasible for A to compute
the signature of a different message, say (m∗, σ∗) such that m∗ �= m.

A strong one-time signature scheme means that it is infeasible for A to also
generate (m∗, σ∗) such that (m∗, σ∗) �= (m, σ).

3 Equivalence Between ID and T C
We say that a Σ-ID-scheme is reversible if there exists a polynomial time algo-
rithm Reverse which computes r such that

x = Commit(r) = Check(pI , c, y)

from pI , sI , c and y. All the important identification schemes in cryptographic
applications are reversible Σ-ID-schemes.

For example, we have a look at the famous Schnorr ID-scheme [23]. Suppose
that the Schnorr ID-scheme is defined as ID = (GID, Commit, Response, Check).
Let G be a group of prime order q and g be the generator of G. GID is a PPT
algorithm which generates (pI , sI) = (gs, s) where s is randomly chosen from Zq.
Commit , Response and Check are algorithms which specify the protocol (P,V)
as follows.

Step 1. P chooses r at random from Zq and computes x = Commit(r) = gr. P
then sends x to V .

Step 2. V chooses a challenge c at random from Zq and sends it to P .
Step 3. P computes a response

y = Response(s, r, c) = r + cs mod q (3)

and sends y to V .

The Power of Identification Schemes 369

Step 4. V checks if
x = Check(gs, c, y).

More precisely, V checks whether x = gr = gy/(gs)c. V accepts P if and
only if the above equation holds.

Thus, it is not difficult to see that the Schnorr ID-scheme is a Σ-ID-scheme
since it satisfies all the conditions in Definition 1. It is also a reversible Σ-ID-
scheme since there exists a polynomial time algorithm Reverse which computes
r such that

x = Commit(r) = Check(gs, c, y),

given gs, s, c and y. That is, r can be computed from equation (3) via

r = y − cs mod q.

Next, we prove that non-interactive trapdoor commitment schemes are equiv-
alent to reversible Σ-ID-schemes.

Theorem 1. If there exists a reversible Σ-ID-scheme, then there exists a trap-
door commitment scheme.

Proof. We first prove that a reversible Σ-ID-scheme implies a trapdoor com-
mitment scheme. Suppose that there exists a reversible Σ-ID-scheme. We then
construct a trapdoor commitment scheme T C = (GTC , Tcom, Topen) as follows.
Let H be a collision-resistant hash function. Let GTC = GID. That is, the key
pair of T C is given by (pk, tk) = (pI , sI), where (pI , sI) ← GID(1�).

(Commitment). For a message m, let x=Tcom(pk, m, y)=Check(pI ,H(m), y),
where y is chosen at random. That is, we consider an execution of ID on input pI

such that x is a commit, H(m) is a challenge and y is a response.

(Trapdoor). Suppose that m, y and m′ �= m are given. Then we compute y′

such that x = Check(pI ,H(m), y) = Check(pI ,H(m′), y′) as follows. By using
Reverse, compute r such that x = Commit(r) from pI , sI ,H(m) and y. Then let
y′ = Response(sI , r,H(m′)).

(Security). The above T C is secure from the special soundness of ID. �	
Theorem 2. If there exists a trapdoor commitment scheme, then there exists a
reversible Σ-ID-scheme.

Proof. We prove that a trapdoor commitment scheme implies a reversible Σ-
ID-scheme. Suppose that there exists a trapdoor commitment scheme T C =
(GTC , Tcom, Topen). We then construct a reversible Σ-ID-scheme as follows. Let
H be a collision-resistant hash function.

Let GID = GTC . That is, let (pI , sI) = (pk, tk). Let x = Commit(R) =
Tcom(pI , m, r), where R = (m, r) is randomly chosen.

From R = (m, r) and a given challenge c, compute y such that

Tcom(pI , c, y) = Tcom(pI , m, r)

by using the trapdoor key tk. Let Response(tk,R, c) = y.
Define Check(pI , c, y) = Tcom(pI , c, y).

370 K. Kurosawa and S.-H. Heng

We show that the above scheme is a reversible Σ-ID-scheme. It is easy to see
that Pr(equation (2) holds) = 1. The special soundness holds from the security
of T C. The y-uniformity is clearly satisfied. Finally, we need to show Reverse
which computes R = (m, r) such that

x = Commit(T) = Check(pI , c, y)

from tk, c and y. From our definition of Commit and Check, the above equation
is written as

Tcom(pI , m, r) = Tcom(pI , c, y).

Next, Reverse chooses r at random and computes r which satisfies the above
equation by using tk. This completes the proof. �	

4 New On-Line/Off-Line Signature Scheme

The notion of on-line/off-line signature schemes was introduced by Even et al. [9].
In these schemes, the on-line phase of the signing algorithm is made very fast
due to the pre-computation in the off-line phase. Shamir and Tauman showed
how to transform a non-adaptively secure signature scheme to an on-line/off-
line signature scheme which is adaptively secure by using trapdoor commitment
schemes [25].

In this section, we show a more efficient transformation which requires lesser
memory than Shamir-Tauman transformation by directly using Σ-ID-schemes
instead of using our equivalence of Section 3 (see Table 1).

4.1 Proposed Transformation

Let Ω = (Gsign, Sign, Verify) be a non-adaptively secure signature scheme.
Let ID = (GID, Commit, Response, Check) be a Σ-ID-scheme, where Cha is

the set of challenges and Res is the set of responses. Let H : {0, 1}∗ → Cha be
a collision-resistant hash function.

Then our on-line/off-line signature scheme is constructed as follows.

Key generation. Run Gsign to generate (vk, sk), and run GID to generate
(pI , sI). The verification key is vk′ = (vk, pI) and the secret key is sk′ = (sk, sI).

Signing. The signing algorithm operates as follows.

1. Off-line phase: Choose r ∈ Cmt randomly and compute x = Commit(r). For
x, compute σ = Sign(sk, x) and store (r, σ).

2. On-line phase: Given a message m ∈ {0, 1}∗, the on-line phase proceeds as
follows. Retrieve (r, σ) from the memory. Compute y = Response(sI , r,H(m)).
Let σ′ = (σ, y) be a signature of m.

Note that (x,H(m), y) is a valid transcript of ID.

Verification. For m and σ′ = (σ, y), first compute x = Check(pI ,H(m), y).
Next accept (m, σ′) if and only if (x, σ) is a valid message-signature pair under
vk, that is, Verify(vk, x, σ) = accept.

The Power of Identification Schemes 371

Note that the on-line phase is efficient because it computes only y = Response
(sI , r,H(m)).

Theorem 3. The above signature scheme Ω′ is adaptively secure if Ω is non-
adaptively secure and ID is a Σ-ID-scheme.

Proof. Suppose that there exists a PPT adversaryA for Ω′ such that Pr(A wins)
is non-negligible in the adaptive chosen message attack. Then we show that Ω
is not non-adaptively secure or ID is not a Σ-ID-scheme.

The challenger gives vk′ = (vk, pI) to A as the verification key. Assume that
A queries messages mi to the challenger and the challenger returns signature
σ′ = (σi, yi) for i = 1, . . . , t. Eventually, A outputs a forgery m∗ and z = (σ∗, y∗).
Let x∗ = Check(pI ,H(m∗), y∗) and xi = Check(pI ,H(mi), yi) for i = 1, . . . , t.

We then distinguish two types of forgeries, Type-1 in which x∗ = xj for some
j, and Type-2 in which x∗ �= xi for any i. Type-1 forgery or type-2 forgery occurs
with non-negligible probability.

(Type-1 forgery). In this case, we show a PPT algorithm M which breaks the
special soundness of ID. On input pI , M behaves as follows.

1. M runs Gsign to obtain (vk, sk). M then acts as a challenger and sends
vk′ = (vk, pI) to A.

2. M simulates the challenger of A as follows. Suppose that A asks for a sig-
nature on mi. Then M chooses yi ∈ Res randomly and computes xi =
Check(pI ,H(mi), yi). M next computes σi = Sign(sk, xi) by using sk and
returns a signature σ′

i = (σi, yi) to A.
3. Eventually, A returns a valid forgery m∗ and z = (σ∗, y∗) such that m∗ �= mj

and x∗ = xj for some j.

M thenoutputs twovalid transcripts (x∗(= xj),H(m∗), y∗)and (xj ,H(mj), yj)
for pI . Note that H(m∗) �= H(mj) with overwhelming probability because m∗ �=
mj and H is collision-resistant. This means that M breaks the special soundness
of ID.

(Type-2 forgery). In this case, we show a PPT adversary B that breaks Ω by
non-adaptive chosen message attack. On input 1�, B behaves as follows.

1. M runs GID to obtain (pI , sI). For i = 1, . . . , t, B chooses ri ∈ Cmt ran-
domly and computes xi = Commit(ri). B sends x1, . . . , xt as messages to its
challenger.

2. The challenger runs Gsign to obtain (vk, sk). It computes σi = Sign(sk, xi)
for i = 1, . . . , t. It then returns vk, σ1, . . . , σt to B.

3. B runs A on input vk′ = (vk, pI).
4. M simulates the challenger of A as follows. Suppose that A asks for a signa-

ture on mi. Then B computes yi = Response(sI , ri,H(mi)) by using sI and
returns a signature σ′

i = (σi, yi) to A.
5. Eventually, A returns a valid forgery m∗ and z = (σ∗, y∗) such that x∗ �= xi

for any i because it is a type-2 forgery.

372 K. Kurosawa and S.-H. Heng

B then outputs a forgery (x∗, σ∗). Now B wins because x∗ �= xi for any i and
σ∗ is a valid signature on x∗.

This completes the proof. �	

4.2 Comparison

Shamir-Tauman [25] showed a transformation using trapdoor commitment
schemes T C = (GTC , Tcom, Topen) as follows.

Let Ω = (Gsign, Sign, Verify) be a non-adaptively secure signature scheme. A
secret key of the on-line/off-line signature scheme is (sk, tk), where sk is a secret
key of Ω and tk is a trapdoor key of T C. The public key is (vk, pk), where vk is
a verification key of Ω and pk is a public key of T C.

1. Off-line phase: Choose a random message m′ and a random number r′. Com-
pute hash = Tcom(pk, m′, r′) and σ = Sign(sk, hash). Then store (m′, r′, σ).

2. On-line phase: Given a message m, the on-line phase proceeds as follows.
Retrieve (m′, r′, σ) from the memory. By using tk, find r such that Tcom
(pk, m, r) = Tcom(pk, m′, r′). Let σ′ = (σ, r) be a signature of m.

Now in Shamir-Tauman scheme, the off-line phase must store (m′, r′, σ). On
the other hand, our off-line phase stores only (r, σ). Hence our memory size is
smaller if |r| = |r′|.

Table 1. On-line/Off-line Signature Transformation

Tool Memory

Shamir-Tauman [25] trapdoor commitment (m′, r′, σ)

Proposed Σ-ID-scheme (r,σ)

5 Application to BB Signature Scheme

Boneh and Boyen showed a signature scheme under the strong Diffie-Hellman
assumption in the standard model [1].

In this section, we show an on-line/off-line variant of BB signature scheme
as an application of our transformation. The proposed scheme is not only on-
line/off-line, but also the public key size is smaller than that of BB scheme while
the other parameters are of the same size. A similar scheme can be obtained
by using Shamir-Tauman transformation. Our scheme, however, requires lesser
memory in the off-line phase as shown in Table 1.

5.1 BB Signature Scheme

Let (G1,G2) be bilinear groups such that |G1| = |G2| = p, where p is a prime.
Let e : G1×G2 → GT be a pairing, where |GT | = p. Let g1 be a generator of G1

and g2 be a generator of G2. Let H : {0, 1}∗ → Z∗
p be a collision-resistant hash

function.

The Power of Identification Schemes 373

The basic BB scheme is non-adaptively secure under the strong DH assump-
tion. A verification key is v(= gα

2), where α ∈ Zq is the secret key. For a message

m ∈ {0, 1}∗, a signature is given by σ = g
1

α+H(m)
1 . Given (m, σ), verify that

e(σ, v · gH(m)
2) = e(g1, g2).

The full BB scheme is adaptively secure under the same assumption. A ver-
ification key is u(= gα

2) and v(= gβ
2), where α, β ∈ Zq are the secret key. For a

message m ∈ {0, 1}∗, a signature is given by (σ = g
1

α+H(m)+βr

1 , r), where r ∈ Zq

is randomly chosen by the signer. Given (m, σ, r), verify that

e(σ,u · gH(m)
2 · vr) = e(g1, g2).

5.2 Proposed On-Line/Off-Line Signature Scheme

We now apply our transformation of Section 4.1 to the basic BB scheme Ω and
Schnorr identification scheme. Let H : {0, 1}∗ → Z∗

p and H̃ : G1 → Z∗
p be two

collision-resistant hash functions.

Key generation. Choose α ∈ Zp randomly and compute v = gα
2 . Let g̃1 be a

generator of G1. Choose s ∈ Zp randomly and compute w = g̃1
−s. Let (v, w) be

a verification key and (α, s) be the secret key. Note that (v, α) is a key-pair of
the basic BB scheme and (w, s) is a key-pair of Schnorr identification scheme.

Signing.

1. Off-line phase: Choose r ∈ Zp randomly and compute x = g̃1
r. For x, com-

pute σ = g
1

α+H(x)
1 and store (r, σ). (Note that σ is a signature on x in the

basic BB scheme.)
2. On-line phase: Given a message m ∈ {0, 1}∗, the on-line phase proceeds as

follows. Retrieve (r, σ) from the memory. Compute y = r + sH(m) mod p.
Let σ′ = (σ, y) be a signature of m.

Verification. Given (m, σ, y), first compute x = g̃1
ywH(m). Next by using x,

verify that
e(σ, v · gH(x)

2) = e(g1, g2). (4)

Theorem 4. The above on-line/off-line signature scheme is adaptively secure
under strong DH assumption in the standard model.

Proof. The basic BB scheme is non-adaptively secure under strong DH assump-
tion [1] and Schnorr scheme is a Σ-ID-scheme under the discrete logarithm as-
sumption. Therefore, from Theorem 3, the above signature scheme is adaptively
secure under strong DH assumption. �	

Note that the on-line phase computes only y = r+sH(m) mod p. Hence it is very
efficient. Moreover, our scheme has a smaller verification key as shown below.
In [5], it is suggested to use an elliptic curve over GF (3�) for G1 and one over
GF (36�) for G2. Hence in our scheme, the verification key size is approximately
a half of the full BB signature scheme as shown in the following table.

374 K. Kurosawa and S.-H. Heng

Table 2. BB Scheme and Our Variant

verification key secret key signature

Full BB scheme [1] u, v ∈ G2 α, β ∈ Zp σ ∈ G1, r ∈ Zp

Our scheme v ∈ G2, w ∈ G1 α, s ∈ Zp σ ∈ G1, y ∈ Zp

6 ID-Based ID-Scheme Without Random Oracles

The main differences of ID-based identification schemes from the usual identi-
fication schemes are that: (1) The adversary can choose a target identity ID of
her choice to impersonate as opposed to a random public key; (2) The adversary
can possess private keys of some users which she has chosen. The formal model
of ID-based identification scheme was formalized in [18, 6].

In this section, we show the first ID-based ID-scheme which is provably secure
against man-in-the-middle attack in the standard model by using our variant of
BB signature scheme in Section 5.2. By applying Gennaro’s technique [12] to the
BB on-line/off-line signature scheme, we manage to transform it to an ID-based
ID-scheme secure against concurrent man-in-the-middle attack under the strong
DH assumption.

Gennaro [12]: Σ-ID-scheme → Very secure ID-scheme
Proposed: BB signature scheme → Very secure ID-based ID-scheme

6.1 Another Tool

We adopt the strong DH-based multi-trapdoor commitment scheme introduced
by Gennaro into our construction since our BB on-line/off-line signature scheme
is also based on the strong DH assumption.

The master key generation algorithm selects a random μ ∈ Zp which will be
the master trapdoor. The master public key will be the pair (g, g′) where g′ = gμ

in G. Each commitment in the family will be identified by a specific public key
which is simply an element n ∈ Zp. The specific trapdoor of this scheme is
the value fn in G such that fμ+n

n = g. To commit a message m ∈ Zp with
public key n, the sender runs Pedersen’s commitment [22] with bases g, hn, where
hn = gn ·g′. That is, it selects a random γ ∈ Zp and computes com = gmhγ

n. The
commitment to m is the value com. To open a commitment, the sender reveals
m and F = gγ . The receiver accepts the opening if (g,F, gn · g′, com · g−m) is a
DH-tuple.

We also use a strong one-time signature scheme Ω = (Gsign, Sign, Verify).

6.2 Proposed ID-Based ID-Scheme

Let IBI = (S, E ,P ,V) be four PPT algorithms known as setup, extract, and
the identification protocol (P ,V). Basically, our proposed scheme employs the
key generation algorithm of BB on-line/off-line signature scheme as the setup
algorithm and its signing algorithm as the extract algorithm.

The Power of Identification Schemes 375

Let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p.
As usual, g1 is a generator of G1 and g2 is a generator of G2. Our proposed
construction is as follows.

Setup. Choose α ∈ Zp randomly and compute v = gα
2 . Let g̃1 be a generator

of G1. Choose s ∈ Zp randomly and compute w = g̃1
−s. Choose two collision-

resistant hash functions H : {0, 1}∗ → Z∗
p and H̃ : G1 → Z∗

p .
We also need the following extra common reference string: g′1 = gμ

1 for a
random μ ∈ Zp and a collision-resistant hash function H ′ with output in Zp.
The system parameters params is (g1, g

′
1, g̃1, g2, v, w,H, H̃ ,H ′) and the master-

key is (α, s).

Extract. Given a master-key (α, s) and an identity ID ∈ {0, 1}∗, pick a random

r ∈ Z∗
p and compute x = g̃1

r. For x, compute σ = g
1

α+H(x)
1 ∈ G1. Next, compute

y = r + sH(ID) mod p. The user private key is (σ, y).

Protocol (P ,V).

1. P first computes (vk, sk) ← Gsign(1�) (run the key generation of the strong
one-time signature scheme) and computes n = H(vk), where n is a specific
public key of the multi-trapdoor commitment scheme.
It next chooses R ∈ G1 randomly and computes X = e(R, v · gH(x)

2). It also
does the following: sets hn = gn

1 g′1; chooses γ ∈ Zp randomly and computes
the commitment com = g

H′(X)
1 hγ

n. It finally sends (y, com, vk) to V .
2. V chooses c ∈ Zp randomly and sends c to P .
3. P computes S = R + cσ and sig = Sign(sk, ID, v, w, com, c, X, γ,S). It then

sends (X, γ,S, sig) to V .
4. V first computes x = g̃1

ywH(ID). V accepts if and only if com = g
H′(X)
1 hγ

n,

Verify(vk, ID, v, w, com, c, X, γ,S) = accept and e(S, v ·gH(x)
2) = X ·e(g1, g2)c.

Note that (v, w) is a verification key, (α, s) is a secret key and (σ, y) is a
signature on a message ID of our variant of BB signature scheme. In the basic
Σ-ID-scheme, the prover reveals y at step 1, and then proves that it knows σ
satisfying equation (4), where (X, c,S) is a valid transcript of the Σ-ID-scheme.

W can prove the following theorem even if the prover reveals y at step 1.

Theorem 5. The above scheme is an ID-based ID-scheme which is secure
against concurrent man-in-the-middle attack under the strong DH assumption.

The above theorem can be proven similarly to Theorem 2 of the full version of
[12] by adapting the proof for the identity-based setting.

7 Conclusion

We proved an equivalence between non-interactive trapdoor commitment
schemes and a natural class of identification schemes. We also showed an efficient

376 K. Kurosawa and S.-H. Heng

transformation from any non-adaptively secure signature to an adaptively secure
on-line/off-line signature by using a canonical ID-scheme as a tool. For instance,
we applied the above transformation to Boneh-Boyen signature scheme and we
managed to obtain an on-line/off-line signature scheme with smaller public key
size than that of the original Boneh-Boyen scheme. Finally, we presented the
first ID-based ID-scheme which is provably secure against concurrent man-in-
the-middle attack in the standard model.

References

1. D. Boneh and X. Boyen. Short signatures without random oracles. Advances in
Cryptology — EUROCRYPT ’04, LNCS 3027, pp. 56–73, Springer-Verlag, 2004.

2. D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. Advances in Cryptology — EUROCRYPT ’04, LNCS
3027, pp. 223–238, Springer-Verlag, 2004.

3. D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
Advances in Cryptology–CRYPTO ’04, LNCS 3152, pp.443–459, Springer-Verlag,
2004.

4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. Ad-
vances in Cryptology — CRYPTO ’01, LNCS 2139, pp. 213–229, Springer-Verlag,
2001.

5. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing.
Advances in Cryptology — ASIACRYPT ’01, LNCS 2248, pp. 514–532, Springer-
Verlag, 2001.

6. M. Bellare, C. Namprempre and G. Nevan. Security proofs for identity-based
identification and signature schemes. Advances in Cryptology — EUROCRYPT
’04, LNCS 3027, pp. 268–286, Springer-Verlag, 2004.

7. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. Public Key Cryptography — PKC ’03, LNCS 2567, pp. 18–30, Springer-
Verlag, 2003.

8. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM Transactions on Information and System Security — ACM TIDSEC ’00, vol.
3, no. 3, 2000. Extended abstract in Proc. 6th ACM CCS, 1999.

9. S. Even, O. Goldreich and S. Micali. On-line/Off-line digital signatures. Journal of
Cryptology, vol. 9, no. 1, pp. 35–67, Springer-Verlag, 1996.

10. U. Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, vol. 1, pp. 77–94, Springer-Verlag, 1988.

11. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. Advances in Cryptology — CRYPTO ’86, LNCS 263, pp.
186–194, Springer-Verlag, 1987.

12. R. Gennaro. Multi-trapdoor commitments and their applications to proofs
of knowledge secure under concurrent man-in-the-middle attacks. Advances
in Cryptology — CRYPTO ’04, LNCS 3152, pp. 220–236, Springer-Verlag,
2004. Full version is available from IACR ePrint archive Report 2003/114 at
http://eprint.iacr.org/2003/214.

13. R. Gennaro, S. Halevi and T. Rabin. Secure hash-and-sign signatures without the
random oracle. Advances in Cryptology — EUROCRYPT ’99, LNCS 1592, pp.
123–139, Springer-Verlag, 1999.

The Power of Identification Schemes 377

14. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing, vol. 17, no. 2, pp.
281–308, 1988.

15. L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted to se-
curity microprocessors minimizing both transmission and memory. Advances in
Cryptology — EUROCRYPT ’88, LNCS 330, pp. 123–128, Springer-Verlag, 1989.

16. F. Hess. Efficient identity based signature schemes based on pairings. Selected
Areas in Cryptography — SAC ’02, LNCS 2595, pp. 310–324, Springer-Verlag,
2002.

17. E. van Heyst and T. P. Pedersen. How to make efficient fail-stop signatures. Ad-
vances in Cryptology — EUROCRYPT ’92, LNCS 658, pp. 366–377, Springer-
Verlag, 1992.

18. K. Kurosawa and S.-H. Heng. From digital signature to ID-based identifica-
tion/signature. Public Key Cryptography — PKC ’04, LNCS 2947, pp. 248–261,
Springer-Verlag, 2004.

19. K. Kurosawa and S.-H. Heng. Identity-based identification without random oracles.
Information Security and Hiding — ISH ’05 (in conjuction with ICCSA ’05), LNCS
3481, pp. 603–613, Springer-Verlag, 2005.

20. T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. Advances in Cryptology — CRYPTO ’92, LNCS 740, pp.
31–53, Springer-Verlag, 1993.

21. K. G. Paterson. ID-based signatures from pairings on elliptic curves. Electronic
Letters, vol. 38, no. 18, pp. 1025–1026, 2002.

22. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. Advances in Cryptology — CRYPTO ’91, LNCS 576, pp. 129–140,
Springer-Verlag, 1992.

23. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
vol. 4, pp. 161–174, Springer-Verlag, 1991.

24. A. Shamir. Identity-based cryptosystems and signature schemes. Advances in
Cryptology — CRYPTO ’84, LNCS 0196, pp. 47–53, Springer-Verlag, 1985.

25. A. Shamir and Y. Tauman. Improved online/offline signature schemes. Advances
in Cryptology — CRYPTO ’01, LNCS 2139, pp. 355–367, Springer-Verlag, 2001.

26. V. Shoup. On the security of a practical identification scheme. Journal of Cryp-
tology, vol. 12, no. 4, pp. 247–260, Springer-Verlag, 1999.

A DLOG-Based Trapdoor Commitment

The public key consists of a group G of prime order p and its two generators g1

and g2 = gt
1, where t is the trapdoor key. Let Tcom(m, r) = gm

1 gr
2. From m, r

and m′ �= m, it is easy to compute r′ such that Tcom(m, r) = Tcom(m′, r′) by
using t. Just solve

m + tr = m′ + tr′ mod p. (5)

On the other hand, if one can find such a collision pair, then he can compute
the discrete logarithm t of g2 on base g1 by solving equation (5) on t.

Security Analysis of KEA Authenticated Key

Exchange Protocol

Kristin Lauter1 and Anton Mityagin2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052
klauter@microsoft.com

2 Department of Computer Science, University of California, San Diego,
9500 Gilman Dr., La Jolla, CA 92037

amityagin@cs.ucsd.edu

Abstract. KEA is a Diffie-Hellman based key-exchange protocol devel-
oped by NSA which provides mutual authentication for the parties. It
became publicly available in 1998 and since then it was neither attacked
nor proved to be secure. We analyze the security of KEA and find that
the original protocol is susceptible to a class of attacks. On the positive
side, we present a simple modification of the protocol which makes KEA
secure. We prove that the modified protocol, called KEA+, satisfies the
strongest security requirements for authenticated key-exchange and that
it retains some security even if a secret key of a party is leaked. Our secu-
rity proof is in the random oracle model and uses the Gap Diffie-Hellman
assumption. Finally, we show how to add a key confirmation feature to
KEA+ (we call the version with key confirmation KEA+C) and discuss
the security properties of KEA+C.

1 Introduction

Authenticated Key Exchange. Generally, key exchange protocols allow 2
parties who share no secret information to compute a secret key via public
communication. Authenticated key exchange (AKE) not only allows parties to
compute the shared key but also ensures authenticity of the parties. A party can
compute a shared key only if it is the one it claims to be. AKE protocols operate
in a public key infrastructure and the parties use each other’s public keys to
construct a shared secret.

Natural Solution: Signed Diffie-Hellman. One possible solution for au-
thenticated key exchange is to execute a Diffie-Hellman key exchange and to
sign all the communication sent between the parties. Such an AKE protocol is
sometimes referred to as Signed Diffie-Hellman. Let G be a group of prime order
and denote by g a generator of G. Assume that the parties have secret/public
keys for some digital signature scheme SIG and that parties know each other’s
registered public keys. Denote the signature of a message M under the secret
key of a party A as SIGA(M).

The protocol has 2 passes. First, an initiator A picks an ephemeral secret key x
at random and sends to a responder B a tuple {gx, SIGA(gx, B)}. The responder

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 378–394, 2006.
c© International Association for Cryptologic Research 2006

Security Analysis of KEA Authenticated Key Exchange Protocol 379

A B

x
gx, SIGA(gx, B) �

gy, SIGB(gy, A)� y

K = gxy K = gxy

Fig. 1. Signed Diffie-Hellman authenticated key-exchange

B picks an ephemeral secret key y and replies with a tuple {gy, SIGB(gy, A)}.
Parties then verify each other’s signatures and if accepted, compute a shared
session key K = gxy. The protocol is depicted in Figure 1. This protocol was
formally analyzed by Shoup [17] and it is proven to be secure (we will discuss
below in detail what security means) against an adversary who can reveal session
keys of honest key-exchange sessions but who cannot reveal ephemeral secret
keys.

It is worth noting that Signed Diffie-Hellman AKE can be broken if an ad-
versary can reveal ephemeral secret keys of the parties. Exposure of ephemeral
secret keys can occur in practical implementations of AKE protocols if ephemeral
keys are precomputed or if they are stored in insecure storage. If an adversary
M reveals an ephemeral secret key x used by A in some session with B, then
M can impersonate A to B by starting a session with B and sending the same
tuple {gx,SIGA(gx, B)}. B will accept this tuple because the signature is valid
and then M can compute a session key using the knowledge of x.

Security of Authenticated Key Exchange. For AKE protocols there are
a surprisingly large number of possible attack scenarios and there is no single
security definition. We sketch 3 security notions which seem to capture all pos-
sible attacks, and give their precise definitions in Section 2:

1. The main security requirement (we will call it AKE security) as intro-
duced by Bellare and Rogaway [4] and further refined by Bellare, Pointcheval
and Rogaway [3] and by Canetti and Krawczyk [9], considers a multi-party ex-
periment with unauthenticated communication channels (called the AKE ex-
periment). The adversary controls all the communication and can corrupt some
of the parties. Moreover, the adversary selects honest parties to participate in
key-exchange sessions. The adversary must select an uncorrupted session called
a test session and then he is given a challenge, which is either the session key
of the test session or a randomly selected key. The goal of the adversary is to
distinguish between these 2 cases.

2. One of the properties not captured by AKE security is Perfect Forward
Secrecy (PFS). Perfect Forward Secrecy says that an adversary in the AKE ex-
periment who corrupted one of the parties (that is, revealed the long-term secret
key), should not be able to reveal session keys of past sessions executed by that

380 K. Lauter and A. Mityagin

party. Krawzcyk [11] shows that no 2-pass AKE protocol can achieve perfect
forward secrecy. Alternatively, he presents a notion of weak perfect forward se-
crecy (wPFS). Weak perfect forward secrecy guarantees security only for those
previous sessions executed without the adversary’s intrusion.

3. The last security requirement is resistance to key compromise imperson-
ation (KCI). An adversary who reveals a long-term secret key of some party
A should be unable to impersonate other parties to A (still, an adversary can
impersonate A to anyone else).

All these security notions can involve either a “weak” or a “strong” adversary:
a weak adversary can reveal session keys of sessions executed by honest parties
while a strong adversary can reveal both session keys and ephemeral secret keys.
Both adversaries can also do total corruptions, i.e. take full control over honest
parties. We assume that a certificate authority (CA), upon registering a public
key, doesn’t require a party to prove knowledge of the corresponding secret key.
That is, a certificate authority will register arbitrary public keys presented by
parties, even ones matching existing public keys of other parties. In contrast,
proof of knowledge of the secret key is required by many existing AKE protocols,
but these checks are rarely done in practice.

KEA Protocol. KEA authenticated key exchange [15] was designed by NSA
in 1994 and originally its design was kept secret. It was declassified and became
available to the public in 1998. KEA involves 2 parties, A and B, with respec-
tive secret keys a and b and public keys ga and gb. We assume that parties
know each other’s registered public keys. The protocol first executes a standard
Diffie-Hellman communication: parties select ephemeral secret keys x and y at
random and exchange ephemeral public keys gx and gy. Then each party com-
putes gay and gbx and computes a session key K by applying a hash function F
to gay⊕gbx. The original description of KEA specifies F to be a certain function
built on the SKIPJACK block cipher [15]. The design of KEA closely resembles
Protocol 4 from Blake-Wilson et al. [5]. They suggest computing a session key
as H(gay, gbx), where H is a cryptographic hash function. Blake-Wilson et al.
conjectured (without proof) the security of their protocol providedH is modeled
by a random oracle.

Attacks on KEA. We observe that AKE security of KEA (even against a
weak adversary) can be violated if an adversary can register arbitrary public
keys. Consider the following adversary M. M registers a public key ga of some
honest party A as M’s own public key. Then M intercepts a key-exchange session
between A and some other honest party B and at the same time starts a session
between M and B. Now M forwards ephemeral public key gx from A to B and
ephemeral public key gy from B to A. Since M has the same public key as A,
both A and B will compute identical session keys, however they participate in
two different key-exchange sessions. B participates in a session with M while A
participates in a session with B. Finally, M reveals a session key of one of the
sessions and announces the other session as a test session. Given a challenge key,
M compares it to the revealed key. If they are the same, M decides that the

Security Analysis of KEA Authenticated Key Exchange Protocol 381

challenge is a correct key for the test session and if different, M decides that
the challenge key was chosen at random. The demonstrated attack breaks AKE
security against a weak adversary (who can only reveal session keys). This attack
is often called as Unknown Key Share (UKS) attack.

One possible counter-measure to the above attack is not to allow 2 parties to
have the same public key, and this check can be done by a certificate authority.
We note that this counter-measure also wouldn’t work. In the previous attack’s
scenario, an adversary can pick any exponent k, register a public key gak and
instead of sending gy as a response to A, send a value gyk. This way, both A and
B will again have the same session key H(gayk ⊕ gbx).

Security fix: KEA+. We present a modified version of the KEA protocol,
called KEA+, which is resistant to the above attacks. We prove that no such
attacks on KEA+ are possible and that KEA+ satisfies the strongest known
security requirement. The main idea behind KEA+ is to incorporate parties’
identities in the computation of a session key. Interestingly, this simple feature
of the protocol turns out to be crucial in the security analysis and avoids the
proof-of-possession requirement.

The KEA+ protocol proceeds as follows. First, parties A and B randomly
select ephemeral secret keys x and y and exchange ephemeral public keys gx

and gy. Then parties verify that the received ephemeral public keys are in the
group G and compute a session key K as H(gay, gbx, A, B), where H can be an
arbitrary cryptographic hash function. In the security analysis we model H by
a random oracle. Figure 2 depicts actions performed by the parties. We note
that verifying that the ephemeral public keys are in the group G is essential for
the security of the protocol. Otherwise, the protocol is vulnerable to a so-called
“small subgroup” attack.

A : a, ga
B : b, gb

x
gx

�

ygy
�

K = H(gay, gbx, A, B) K = H(gay, gbx, A, B)

Fig. 2. New KEA+ protocol

We prove that KEA+ protocol satisfies AKE security, weak perfect forward se-
crecy and security againstKCI attacks. All these results involve a strong adversary
who can reveal ephemeral secret keys of the parties as well as session keys. The re-
sults hold under either the standard Gap Diffie-Hellman (GDH) assumption in a
groupG, as defined by Okamoto and Pointcheval [16], or under a stronger Pairing
Diffie-Hellman (PDH) assumption. The latter assumption means hardness of the

382 K. Lauter and A. Mityagin

computational Diffie-Hellman problem, where a solver is given access to a bilin-
ear pairing oracle. The reason for having two reductions (one to GDH and one to
PDH) lies in the concrete security analysis. The reduction to PDH achieves better
concrete security compared to the reduction to GDH.

We stress that KEA+ does not require parties to prove possession of secret
keys upon key registration. Parties can register arbitrary public keys, even ones
matching somebody else’s keys. Moreover, an adversary can register keys for
corrupted parties at any time in the experiment. Our security results imply that
these powers do not allow the adversary to break the security of KEA+.

Key Confirmation: KEA+C. The 2-pass KEA+ protocol is optimized for
communication and has exactly the same communication as the original Diffie-
Hellman protocol. While satisfying the strongest security requirement, it doesn’t
provide delivery guarantees which might be desirable for some applications.
Namely, KEA+ doesn’t provide assurance that the other party actually com-
pleted the session. To address this issue, we add one more pass of communication
to KEA+ to obtain a protocol called KEA+C, or KEA+ with key confirmation.

KEA+C involves a message authentication code to construct a confirmation
message. KEA+C achieves a key confirmation property [11], namely it assures
that the other party is able to compute the session key. As well, KEA+C satisfies
the full perfect forward secrecy requirement lacking in KEA+. Finally, results of
Canetti and Krawczyk [9] imply that KEA+C satisfies Universally Composable
security defined by [6], which ensures that KEA+C can be securely executed
concurrently with arbitrary other protocols.

History and Related Work. Defining security of authenticated key exchange
dates back to the work Bellare and Rogaway [4] from 1993. Following work of
Bellare, Pointcheval and Rogaway [3] and Shoup [17], the current security defini-
tion was formulated by Canetti and Krawczyk [9]. We refer the reader to [7] for
a comparison and a discussion of existing security definitions for authenticated
key exchange.

To date, a great number of AKE protocols have been proposed and many
of them were subsequently broken. Currently, there exist a number of protocols
that satisfy AKE security against adversaries who cannot reveal ephemeral se-
cret keys (weak adversaries), and only a few protocols which are secure against
strong adversaries. AKE protocols proved to be secure against strong adversaries
include SIG-DH from [9], SIGMA [10] and HMQV [11].

We compare our KEA+ protocol with the recent HMQV protocol [11], which
combines great efficiency with the highest security level. KEA+ and HMQV are
both proven to achieve AKE security, security against KCI and wPFS1. However,
the security of HMQV relies on the knowledge of the exponent assumption2 [2]

1 In fact, the wPFS requirement from [11] is stronger than ours. They allow an ad-
versary to reveal long-term keys of both parties, while we only allow revealing the
long-term key of at most one of the parties.

2 We remark that in the analysis of HMQV this assumption is only needed to ensure
security against strong adversaries (who can reveal ephemeral secret keys).

Security Analysis of KEA Authenticated Key Exchange Protocol 383

and doesn’t have a concrete security analysis. As noted by Menezes [14], the
concrete security reduction of [11] appears to be inefficient. Our security proof
doesn’t employ the knowledge of exponent assumption and provides a tight se-
curity reduction (under the Pairing Diffie-Hellman assumption). Our protocol
requires the same number of exponentiations as HMQV (although one of the
exponentiations in HMQV involves half-size exponents).

After submitting our paper we discovered the parallel independent work of
Kudla and Paterson [13]. They use very similar techniques to prove the security
of a modification of Protocol 4 from Blake-Wilson et al [5], which can be viewed
as the KEA+ protocol where identities of the parties are excluded from the
key computation. We want to highlight some differences between our work and
theirs. First, their protocol is vulnerable to the UKS attack. This attack is not
captured by their security analysis, as the security model of [13] requires that
all parties (even ones controlled by the adversary) do key-generation properly.
Second, they only prove security against weak adversaries (which cannot reveal
ephemeral keys) and their security proof doesn’t contain a concrete security
analysis. Finally, we discuss a key-confirmation property and analyze the security
of our KEA+C protocol.

2 Definitions

Notation. All protocols in the paper use a mathematical group G of a known
prime order q where the Diffie-Hellman problem is computationally infeasible.
The group G can be implemented either as a multiplicative subgroup of a finite
field or as a group of points on an elliptic curve. We denote by g a generator of
G and write the group operation in a multiplicative manner.

Throughout the paper, we will apply hash functions and signature schemes to
lists of several arguments. In these cases, we write function arguments separated
by commas, for example H(X, Y, Z). Doing that, we assume that we have a
collision-free encoding which maps lists of arguments to binary strings. Also, we
assume that parties’ identities are arbitrary binary strings.

Gap Diffie-Hellman (GDH). A computational Diffie-Hellman (CDH) prob-
lem is, given gx and gy (for randomly chosen x and y) to compute gxy. A Deci-
sional Diffie-Hellman (DDH) Oracle DDH takes input a triple (gx, gy, Z) ∈ G3

and outputs 1 if Z = gxy and 0 otherwise. The Gap-Diffie-Hellman [16] prob-
lem is the CDH problem, where the solver algorithm is additionally given access
to a DDH oracle. The advantage of such a solver M, denoted as AdvGDH(M),
is M’s winning probability in the CDH problem. We say that G satisfies the
Gap-Diffie-Hellman (GDH) assumption if no feasible adversary exists to solve
the CDH problem, even provided with a DDH-oracle. Gap Diffie-Hellman is a
standard cryptographic assumption which was used to establish the security of
several key agreement protocols [1, 18, 12].

Pairing Diffie-Hellman (PDH). Let G′ be another mathematical group of
the same order as G with efficiently computable group operation. A function

384 K. Lauter and A. Mityagin

e : G × G → G′ is a bilinear pairing if it is non-degenerate and if for any pair
ga, gb ∈ G, e(ga, gb) = e(g, g)ab. A pairing oracle P associated with the pairing
function e and the group G′ takes two elements X, Y ∈ G and returns e(X, Y).
The Pairing Diffie-Hellman problem is the CDH problem, where the solver is
additionally given access to the pairing oracle P. The advantage AdvPDH(M) of
a PDH solver M is the probability of M solving the CDH problem. We say that
G satisfies the PDH assumption if no feasible adversary exists to solve the CDH
problem provided with an arbitrary PDH-oracle.

In the groups which have a bilinear pairing, PDH problem is equivalent to the
original CDH problem. As well, one can consider PDH problem in the groups
where no efficient pairing operation is known. We find the Pairing Diffie-Hellman
assumption to be as justified as GDH since the only known way to compute DDH
in groups where CDH is hard is via a pairing function.

AKE Security. The AKE experiment involves multiple honest parties and an
adversary M connected via an unauthenticated network. The adversary selects
parties to execute key-exchange sessions and selects an order of the sessions.
It can also corrupt some of the parties. An adversary has full control over the
communications and he can delay/cancel/modify any message.

There is a special party, CA, called the certificate authority, who registers
the public keys of the parties. We model a CA as a trusted directory. The CA
registers arbitrary keys (even those matching keys of other parties) with the
only restriction that no party can have more than one registered public key. In
the beginning of the AKE experiment all honest parties generate their public
keys and register them with the CA. The adversary can register public keys
of adversary-controlled parties at any time in the experiment, even during the
execution of an AKE session. That is, the adversary is allowed to mount the
Unknown Key Share attack and related attacks.

To start an AKE session, the adversary activates an honest party and specifies
that party’s role in the exchange (initiator or responder) and the identity of the
other participant. We identify an AKE session by a 4-tuple (A, B, role,Comm),
where A is the executing party, B is the other party, role ∈ {initiator, responder}
is A’s role in the protocol and Comm consists of all messages sent and received
by A. We stress that an AKE session is executed by a single party: since all
communication is controlled by an adversary, a party executing a session cannot
know for sure whom it is talking to. We call the session which is supposed
to be executed by the other party as the matching AKE session. For example
the session (A, B, initiator,Comm) matches (B, A, responder,Comm) and vice
versa. A party completes the session when it receives the last message from the
other party and computes the session key.

An adversary can corrupt honest parties as well as reveal session information.
When an adversary corrupts a party (often referred to as a Corrupt query),
he learns the long-term secret key of that party and gets full control of that
party from that moment on. Revealing session information (often referred to as
a Reveal query) only affects a single AKE session. We distinguish between 2
reveal scenarios. First, an adversary can learn only a session key of a completed

Security Analysis of KEA Authenticated Key Exchange Protocol 385

session. We call it a session key reveal and we call an adversary who only makes
session key reveals (in addition to total corruptions) a “weak” adversary. A
second type of adversary, called a “strong” adversary, is also allowed to reveal
an ephemeral secret key of a party executing a session.

We say that a completed session is “clean” if this session as well as its matching
session (if it exists) is not corrupted (neither session key nor ephemeral secret
key were revealed by M) and if none of the participating parties is corrupted.

Eventually an adversary should select a clean completed session (A, B, role,
Comm), which is called a test session. A challenger tosses a coin to obtain
b ∈ {0, 1}; if b = 0 he sets KC to be the session key of the test session and
otherwise he setsKC to be a random string of the same length. A challenger gives
the challenge KC to the adversary. After receiving the challenge, the adversary
continues the experiment, but is not allowed to corrupt the test session nor any of
the parties involved in the test session. The experiment ends when the adversary
outputs a guess bit b′.

The advantage of the adversary M participating in the above AKE experiment
against AKE protocol Π is defined as

AdvAKE
Π (M) = P r[b = b′] − 1

2
.

We say that an AKE protocol is secure if no feasible AKE adversary has more
than a negligible advantage in the AKE experiment.

Perfect Forward Secrecy (PFS). The Perfect Forward Secrecy property
of an AKE protocol guarantees that an adversary who corrupts a party cannot
gain any information about session keys of previous AKE sessions. We formally
define PFS by modifying the AKE experiment as follows. Now we allow the
adversary to corrupt at most one of the two participants of the test session after
the test session is completed. As in the original AKE experiment, the adversary
must distinguish between the session key of the test session and a random key.

Krawczyk [11] observed that no 2-pass AKE protocol can achieve full PFS in a
presence of strong adversaries. To address forward secrecy of 2-pass protocols, he
suggests a relaxed notion, called weak PFS (wPFS). Weak PFS only guarantees
security of those AKE sessions executed without active adversarial intrusion.
We define weak PFS by limiting the set of clean sessions to only those executed
without active adversarial intrusion. That is, the adversary is only allowed to
forward communications in the test session and its matching session and is not
allowed to cancel or modify them.

We remark that our definitions of PFS and wPFS are weaker than the ones
by Krawczyk [11]. Krawczyk’s definitions allow an adversary to corrupt both
participants of the test session, while our definition only allows corruption of at
most one of the participants.

Security against Key Compromise Impersonation (KCI). KCI security
considers a scenario when an adversary reveals a long-term secret key of some
party A without corrupting A (that is, without taking full control over A). Note
that in this case an adversary can impersonate A to anyone else. KCI security

386 K. Lauter and A. Mityagin

guarantees that an adversary should be unable to impersonate other parties
to A.

We define KCI security by the following modification of the AKE experiment.
We allow an adversary to make a new type of corruption: to reveal a long-term
secret key of a party without taking control over it. Now, a test session is allowed
to be a clean session, where the party running the session had its long-term secret
key revealed. Still, an adversary is not allowed to corrupt or reveal the long-term
secret key of the other party.

3 Security of KEA+

AKE security of KEA+. We show that the KEA+ protocol with a hash
function modeled as a random oracle satisfies AKE security against a strong
adversary under the GDH or PDH assumptions in a group G.

Reduction to a Forging Attack. Assume by contradiction that there exists
some efficient adversary M against the KEA+ protocol. Let (A, B, initiator, X, Y)
be a test session in some AKE experiment. Let A be the public key of A and B
be the public key of B. Denote by CDH(·, ·) the computational Diffie-Hellman
function. We observe that since the session key of a test session is computed as
a hash value of a 4-tuple {CDH(A, Y),CDH(B, X), A, B}, the adversary M has
only 2 ways to distinguish K from a random string:

1. Forging attack. At some point M queries H on the tuple

σ = (CDH(A, Y),CDH(B, X), A, B).

2. Key-replication attack. M succeeds in forcing the establishment of a session
that has the same signature (and subsequently, the same session key) as the
test session. In this case M can learn the test-session key by simply making
a reveal query on the session with the same key, without having to learn the
value of the test signature.

We denote a 4-tuple σ = (gay, gbx, A, B) as the “signature” of a key exchange
session. Recall that the key for the test session is the value of a random oracle
H on the test signature σ. Since H is a truly random function, an adversary has
only 2 ways of learning H(σ): M can either query σ to H himself or σ can be
queried to H by some honest party and M can reveal H(σ) by corrupting that
party. Otherwise, M cannot distinguish information-theoretically between H(σ)
and a random string. Note that these cases correspond to a forging attack and
a key-replication attack respectively. If M doesn’t mount either of these attacks,
then it cannot win the experiment with probability any better than 1/2.

Let’s see that a key-replication attack is impossible. In that case, if an adver-
sary finds some session with the same signature σ as the test session, then this
session must be executed by the same 2 parties, A and B. Let the ephemeral
public keys of this session be X ′ and Y ′. Since the session has the same sig-
nature as the test session, CDH(A, Y ′) must be equal to CDH(A, Y) and

Security Analysis of KEA Authenticated Key Exchange Protocol 387

CDH (B, X ′) – equal to CDH(B, X). This implies that X ′ = X and Y ′ = Y ,
and thus the sessions must be identical.

We’re left to show impossibility of a forging attack. We are going to show
that given an efficient forging adversary against KEA+, we can construct an
adversary which efficiently solves the GDH problem. We first establish a reduc-
tion to GDH and then show how to modify it to obtain an improved reduction
to PDH.

Security against a Simplistic Adversary. First we show how the reduction
works in the simplistic case of a certain (very limited) adversary and then proceed
to the general case. Assume that the AKE experiment only involves 2 honest
parties A and B and that the adversary M passively observes a single AKE
session executed by these parties and selects it as a test session. In this case the
reduction to the GDH problem is natural: given a GDH challenge (X0, Y0) the
GDH solver S runs the AKE experiment with parties A and B and the adversary
M. S sets the first challenge value X0 to be the long-term public key of A and
selects keys for B in the usual way. When A and B execute a test session, A picks
a random x and sends gx to B, while B responds with Y0. Note that a view of M
in this simulated AKE experiment is distributed identically to a view of M in a
true AKE experiment and thus M wins with the same probability. As we justified
earlier, if M wins, he should query H a signature σ = (CDH(X0, Y0), gbx, A, B).
Note that in this case σ contains CDH(X0, Y0), which is a solution to the original
CDH problem.

Idea of the General-Case Reduction. The idea of the reduction is very
similar to the simple case with the difference that S selects at random a party A
(to put a first challenge value in A’s public key) and a session executed by A and
some other party B (to put a second challenge value in B’s ephemeral public key).
The complication that arises in the general case is how to handle session-corrupt
queries involving the selected party A. Since S doesn’t know a secret key for A’s
public key, it cannot compute a signature (nor a session key) for such a session.
We handle this case by picking a session key at random without computing a
signature. Then S uses the DDH oracle to test if M queries H with a signature
for such a session and if “yes”, returns the previously selected session key. We
proceed with a formal description and analysis of the reduction.

Construction of a GDH Solver S. Let M be an AKE adversary against
KEA+. Consider the following GDH adversary S:
S takes input a pair (X0, Y0) ∈ G2. S is also given access to a DDH oracle DDH.
S creates an AKE experiment which includes a number of honest parties and
an adversary M. We assume that the experiment involves at most n parties and
that each party participates in at most k AKE sessions. S randomly selects one
of the honest parties (say, this is a party A) and sets the public key of A to be
X0. All the other parties compute their keys normally. S picks a number ik at
random from {1, . . . , k} and initializes the counter at i = 1 (i counts sessions that

388 K. Lauter and A. Mityagin

A participates in). S runs an AKE experiment with adversary M and handles
queries made by M as follows:

1. When M queries a hash functionH on a string v, return the value of Hsim(v).
The procedure Hsim(·) which simulates a random oracle H is described
later on.

2. When M starts a session (B, C, role) between parties B and C both different
from a selected party A, S follows the protocol for KEA+. Denote B’s secret
key as b, B’s public key as B = gb and C’s public key as C. If role = initiator,
B picks a random exponent x, returns X = gx, waits for the reply Y and
computes a session key K = Hsim(Y b,Cx, B, C). If role = responder, B
waits for C’s initiating message X , picks a random exponent y, replies with
gy and computes a session key K = Hsim(Cy , Xb, C, B).

3. When M starts a session (A, C, role) (here A is the special party whose
public key is a GDH challenge X0), S cannot follow the protocol since it
doesn’t know a secret for A’s public key. Denote C’s public key as C. If A
is an initiator, it picks a random exponent x, sends gx to C and waits for
the reply Y . Now it sets a session key to be Hspec(1, Y,Cx, A, C), see the
description of the procedure Hspec below. If A is the responder, it waits
for an initiating message X , picks a random exponent y, replies with gy and
computes a session key K = Hspec(2, X,Cy, C, A).

4. When M starts a session (B, A, role) for some party B, where the second
party is the selected party A, S first checks if i = ik. If “no”, S increments
the counter i and behaves according to the rule for Query 2. If the check
succeeds, S declares (B, A, role) to be a “special session”. In a special session,
B outputs a message Y0 (which is the second part of the GDH challenge)
and doesn’t compute a session key.

5. When M makes a session key-reveal or ephemeral secret key-reveal query
against some session (different from the special session), S returns to M a
session key or an ephemeral secret key for this session (which was computed
previously in Queries 2, 3 or 4). If M tries to reveal a session key or an
ephemeral secret key of the special session, S declares failure and stops the
experiment.

6. When M makes a corruption on some party C (different from A and B), S
returns the secret key of C as well as ephemeral secret keys of all current
AKE sessions executed by C and gives M full control over C. If M tries to
corrupt A or B (after a special session is selected), S declares failure.

When M stops, S goes over all random oracle queries made by M and checks
(using a DDH oracle DDH) if any of them includes the value of CDH(X0, Y0).
If “yes”, return CDH(X0, Y0) to the GDH challenger. If “no”, S declares failure.

Function Hsim(Z1, Z2, B, C). This function implements a random oracle on
valid signatures of the KEA+ protocol. The function proceeds as follows:

– If the value of the function on that input has been previously defined, return it.
– If not defined, go over all the previous calls to Hspec(·) and for each previous

call of the form Hspec(i, Y, Z, B′, C′) = v check if

Security Analysis of KEA Authenticated Key Exchange Protocol 389

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
– If not found, pick a random w from {0, 1}l, define Hsim(Z1, Z2, B, C) = w

and return w.

Function Hspec(i, Y, Z, B, C). Informally, Hspec implements a random oracle
on signatures which are not known to S. Specifically, the input corresponds to
a signature (Z1, Z2, B, C), where Zi = CDH(X0, Y) (here X0 is a part of the
GDH challenge) and Z3−i = Z. This signature is not known to S since S cannot
compute CDH(X0, Y). The function proceeds as follows:

– If the value of the function on that input has been previously defined, return
it.

– If not defined, go over all the previous calls to Hsim(·) and for each previous
call of the form Hsim(Z1, Z2, B

′, C′) = v check if

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
– If the check failed for all the calls, pick a random w from {0, 1}l, define

Hspec(i, Y, Z, B, C) to be w and return w.

Analysis of S. The the running time of S is the time needed to run an AKE
experiment and M plus the time needed to handle H-queries. Each call to Hsim
or Hspec requires S to pass over all the previously made queries. Thus, time
needed to handle H-queries is proportional to a squared number of queries. Since
the number of H-queries is upper-bounded by the running time of M, we can
bound the running time of S by O(t2), where t is the running time of M.

We are now going to show that if M doesn’t corrupt A and doesn’t reveal a
session key or an ephemeral secret key for the special session, then the simulation
of an AKE experiment is perfect. That is, the view of M in the experiment run
by S is identically distributed to the view of M in an authentic experiment. To be
precise, the view of M consists of public keys of all the parties, secret keys of the
corrupted parties, ephemeral public keys of all the sessions, ephemeral secret keys
and session keys of the corrupted sessions and of the random oracle’s responses.

We start by observing that secret/public key pairs of all honest parties except
A are distributed correctly. A public key of A is also distributed correctly, how-
ever S doesn’t know the secret key for it. By assumption, M doesn’t corrupt A
and thus M wouldn’t notice that. Similarly, ephemeral secret/public values of all
sessions except the test session are distributed as in the original protocol. The
ephemeral public key Y0 in the test session is also distributed correctly, although
S doesn’t know a secret for it. Again, we assume that M doesn’t corrupt the test
session and so S wouldn’t have to reveal it.

The adversary can obtain the random oracle’s responses either by querying
H directly or by revealing session keys from honest parties. Without loss of
generality, we can assume that the adversary queries a random oracle only on

390 K. Lauter and A. Mityagin

tuples of the form (Z1, Z2, B1, B2), where Z1, Z2 ∈ G and B1 and B2 are identities
of some parties. To ensure that the simulation is perfect, we need to verify that
i) the oracle responses are selected at random and ii) if the same argument is
queried several times, the same value is returned.

Recall that S handles two types of queries differently. Queries of the first type
are fully specified 4-tuples and such queries are made both by M and by honest
parties. They are handled by the function Hsim. Queries of the second type are
made only by A and such queries have one of the components unspecified. That
is, a value Zi (for some i = 1, 2) is unknown and it is specified by Y ∈ G such
that Zi = CDH(X0, Y). These queries are handled by Hspec. Note that distinct
Hspec arguments correspond to distinct queries to H .

In our construction of Hsim and Hspec, a new random value of H is chosen
every time the argument wasn’t found in the record of previous queries. Thus,
condition i) is satisfied and we only need to show that by querying the same
argument several times, M always receives the same answers. If the same query
is made for the second time either to Hsim or to Hspec, the same answer is
returned. The only conflicts can arise if a query previously handled by Hsim
is queried again to Hspec or vice versa. That is, Hsim was called on a tuple
(Z1, Z2, B, C) and Hspec — on (i, Y, Z, B, C) where Zi = CDH(X0, Y) and
Z3−i = Z. Note that one can check whether these queries correspond to identical
signatures by checking that Z3−i = Z and that DDH(X0, Y, Zi) = 1. Whichever
of the functions was called first, on the second call (to the other function) S will
go over all previous calls to the first function and do such a check. If a match is
found, the previously defined value is returned. This guarantees that condition
ii) is also satisfied.

We showed that, provided M doesn’t corrupt A or the special session, the
simulation of the AKE experiment is perfect. Since the party A and the special
session are chosen at random, a test session selected by M matches the special
session with probability 1/nk (recall that n is the number of parties in the
experiment and k is the maximal number of sessions any party can participate
in). In this case, the simulation is perfect since M doesn’t corrupt the test session.
We know that a successful adversary must reveal the signature of the test session.
Whenever M wins in the AKE experiment and the test session was guessed
correctly, S reveals the signature of the test session which contains CDH(X0, Y0),
and therefore wins in the GDH experiment. To summarize the lengthy proof, for
any AKE adversary M running in time t we constructed a GDH solver S which
runs in time O(t2) such that

AdvGDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Improving Concrete Security Reduction. The above reduction trans-
forms a time t AKE adversary to a GDH solver which runs in time O(t2) and
makes O(t2) calls to a DDH oracle, which is fairly inefficient. We observe that
given access to a pairing oracle, we can solve the CDH problem in time O(t log t)
by making O(t) calls to a pairing oracle.

Security Analysis of KEA Authenticated Key Exchange Protocol 391

The construction of the solver S remains the same except for the Hsim and
Hspec functions. We create an array T and implement Hsim and Hspec as
follows:

Function Hsim(Z1, Z2, B, C):

– Compute δ = (P(g, Z1), P(g, Z2), B, C).
– Look up δ in T .
– If T contains a record (δ, v), return v.
– If not, pick w at random, add a record (δ, w) to T and return w.

Function Hspec(i, Y, Z, B, C).

– Compute Z ′
i = P(X0, Y), Z ′

3−i = P(g, Z) and set δ = (Z ′
1, Z

′
2, B, C).

– Look up δ in T .
– If T contains a record (δ, v), return v.
– If not, pick w at random, add a record (δ, w) to T and return w.

First, note that the queries to Hsim and Hspec which correspond to the same
arguments to a random oracle will be mapped to the same values of δ. Thus a
random oracle will be perfectly simulated and S will win the CDH experiment
with the same probability as in the original proof.

Second, each call to Hsim or Hspec requires only one oracle call to P. More-
over, if T is implemented as a balanced search tree indexed by values of δ, each
search and insert operation in T takes logarithmic time in the size of T . Thus
the processing of each call to Hsim or Hspec takes at most O(log t) time, where
t is the maximal running time of M.

For any AKE adversary M running in time t we have a PDH solver S which
runs in time O(t log t) and makes O(t) oracle queries such that

AdvPDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Weak PFS. We observe that our proof of AKE security can be modified to
establish wPFS security of KEA+. Consider the same party S who runs an AKE
experiment with an adversary M. Consider the test session selected by M and
its matching session. By the definition of wPFS, M did not cancel or modify
communications sent between the parties involved in these sessions. The test
session (as well as its matching session) must be clean at the time of completion.
After the test session and its matching session are completed, M can corrupt
either one of the involved parties but not both of them. Now consider that
session, (out of the test session and its matching session), where the executing
party can be corrupted and the other party is not corrupted. We observe that
with probability 1/nk this session matches the special session (B, A, role), which
is randomly selected by S.

Since S knows the long-term secret key of the party B executing the special
session, S can handle corruptions of B which are made after the test session is
completed. When M launches a corruption of B, S hands to M the long-term
secret key of B and ephemeral secret keys of all current sessions being executed

392 K. Lauter and A. Mityagin

by B. Since the test session is already completed, B will know all the ephemeral
secret keys for the current session (provided that the test session matches the
special session). Therefore, the simulation of an AKE experiment remains perfect
and the GDH/PDH solver S has the same advantage.

KCI Security. The same proof of AKE security can be used to show that
KEA+ also satisfies KCI security. The only difference is that now S has to
handle long-term secret key reveals made by M. Since S knows the long-term
secret keys of all the parties other than A, S can answer all such long-term
secret key reveals anytime. We note that in the event that the special session
matches the test session, M is not allowed to reveal the long-term secret key of
A. Therefore, in this case the simulation remains perfect and the GDH/PDH
solver S has the same advantage in a CDH experiment.

4 Key Confirmation: KEA+C

Protocol Description. We assume that both parties know each other’s regis-
tered public keys. Let H be an arbitrary cryptographic hash function and MAC
be an arbitrary message authentication code.

The KEA+C protocol is illustrated in Figure 3. First, A selects a random
ephemeral secret key x and sends an ephemeral public key gx to B. In turn, B
verifies that gx ∈ G, selects a random ephemeral secret key y and computes a
verification key L = H(0, gay, gbx, A, B). B then sends back to A an ephemeral
public key gy together with a key confirmation value sigB = MACL(0). On
receipt of the tuple (gy, sigB), the party A first verifies that gy ∈ G and if ac-
cepted, computes a verification key L = H(0, gay, gbx, A, B), checks that sigB

is valid, sends to B a key confirmation value sigA and computes a session key
K = H(1, gay, gbx, A, B). Finally, B verifies the validity of sigA and if accepted,
computes a session key K = H(1, gay, gbx, A, B). The session key K should be
used as a shared key between the parties while the confirmation key L as well as

A : a, ga
B : b, gb

x
gx

� y

L = H(0, gay, gbx, A, B)

sigB = MACL(0)
gy, sigB�

L = H(0, gay, gbx, A, B)

sigB
?
= MACL(0)

sigA = MACL(1) sigA � sigA
?
= MACL(1)

K = H(1, gay, gbx, A, B) K = H(1, gay, gbx, A, B)

Fig. 3. KEA+C protocol

Security Analysis of KEA Authenticated Key Exchange Protocol 393

all the intermediate information (except possibly ephemeral secret keys) should
be erased immediately after completion of a session. We remark that despite
the visible similarity, the keys K and L are computationally independent. In a
practical implementation, one might alternatively derive them from a 4-tuple
(gay, gbx, A, B) by applying 2 independent hash functions. When a hash func-
tion is modeled by a random oracle H(0, ·) and H(1, ·) are independent random
oracles.

Security Analysis. We show that KEA+C has key confirmation, AKE secu-
rity against a strong adversary, full PFS, KCI security and is also secure in the
Universally Composable model as defined by Canetti and Krawczyk [9].

First of all, we observe that repeating the proof of security for KEA+ we ob-
tain the same security guarantees for KEA+C, namely AKE security against a
strong adversary, weak PFS and KCI security. Universally Composable security
[6, 9] ensures that a key-exchange protocol can securely run concurrently with
arbitrary other applications. In fact, UC-security of KEA+C automatically fol-
lows from the result of Canetti and Krawczyk [9]. They establish UC security
of authenticated key exchange provided that the protocol satisfies AKE security
and also enjoys the so-called “ACK property”. The latter requires that at the
time when the initiator party outputs its session key, the other party’s state can
be “simulated” given only the session key and public information in the protocol.
We observe that Claim 15 in [9] implies that KEA+C has this property, thus
establishing UC security of KEA+C. Finally, we observe that the full Perfect
Forward Secrecy property follows from UC security.

Acknowledgements

The work for this paper was done while the second author was visiting Microsoft
Research. The authors thank Josh Benaloh, Brian LaMacchia, Gideon Yuval and
anonymous reviewers for helpful comments and suggestions.

References

1. M. Abdalla, O. Chevassut and D. Pointcheval, One-Time Verifier-Based Encrypted
Key Exchange, Public Key Cryptography — PKC ’05, pp. 47–64, Springer-Verlag,
2005

2. M. Bellare, A. Palacio, The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols, Advances in Cryptology — CRYPTO ’04, pp. 273–289,
Springer-Verlag, 2004

3. M. Bellare, D. Pointcheval, P. Rogaway, Authenticated Key Exchange Se-
cure Against Dictionary Attacks, Advances in Cryptology — Eurocrypt ’00,
pp. 139–155, Springer-Verlag, 2000

4. M. Bellare and P. Rogaway, Entity Authentication and Key Distribution, Advances
in Cryptology — CRYPTO ’93, pp. 110–125, Springer-Verlag, 1993

5. S. Blake-Wilson, D. Johnson, and A. Menezes, Key Agreement Protocols and their
Security Analysis, 6th IMA International Conference on Cryptography and Coding,
LNCS 1355, pp. 30-45, Springer-Verlag, 1997

394 K. Lauter and A. Mityagin

6. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations of
Computer Science, IEEE Computer Society, 2001

7. K.-K. R. Choo, C. Boyd and Y. Hitchcock, Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols, to appear in Advances in Cryptol-
ogy — Asiacrypt ’05, Springer-Verlag, 2005

8. I. R. Jeong, J. Katz, D. H. Lee, One-Round Protocols for Two-Party Authenticated
Key Exchange, ACNS ’04, 2004

9. R. Canetti and H. Krawczyk, Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels, Advances in Cryptology — EUROCRYPT ’01, pp.
453–474, Springer-Verlag, 2001

10. H. Krawczyk, SIGMA: The “SIGn-and-MAc” Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols, Advances in Cryptology —
CRYPTO ’03, LNCS 2729, pp. 400–425, Springer-Verlag, 2003

11. H. Krawczyk, HMQV: A High-Performance Secure Diffie-Hellman Protocol, Ad-
vances in Cryptology — CRYPTO ’05, LNCS 3621, pp. 546–566, Springer-Verlag,
2005

12. M. Jakobsson and D. Pointcheval, Mutual Authentication for Low-Power Mobile
Devices, Financial Cryptography ’01, pp. 178–195, Springer-Verlag, 2001

13. C. Kudla and K. G. Paterson, Modular Security Proofs for Key Agreement Proto-
cols, Advances in Cryptology — ASIACRYPT ’05, pp. 549–565, Springer-Verlag,
2005

14. A. Menezes, Another look at HMQV, IACR Eprint archive, http://

eprint.iacr.org/2005/205, 2005
15. NIST, SKIPJACK and KEA Algorithm Specification, http://csrc.nist.gov/

encryption/skipjack/skipjack.pdf, 1998
16. T. Okamoto and D. Pointcheval, The Gap Problems: A New Class of Problems for

the Security of Cryptographic Schemes, Public Key Cryptology — PKC ’01, LNCS
1992, pp. 104–118, Springer-Verlag, 2001

17. V. Shoup, On Formal Models for Secure Key Exchange, Theory of Cryptography
Library, http://www.shoup.net/papers/skey.ps, 1999

18. Y. S. T. Tin, C. Boyd and J. M. González Nieto, Provably Secure Mobile Key
Exchange: Applying the Canetti-Krawczyk Approach, ACISP ’03, pp. 166–179,
Springer-Verlag, 2003

SAS-Based Authenticated Key Agreement

Sylvain Pasini and Serge Vaudenay

EPFL, CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. Key agreement protocols are frequently based on the Diffie-Hellman
protocol but require authenticating the protocol messages in two ways. This can
be made by a cross-authentication protocol. Such protocols, based on the assump-
tion that a channel which can authenticate short strings is available (SAS-based),
have been proposed by Vaudenay. In this paper, we survey existing protocols and
we propose a new one. Our proposed protocol requires three moves and a single
SAS to be authenticated in two ways. It is provably secure in the random oracle
model. We can further achieve security with a generic construction (e.g. in the
standard model) at the price of an extra move. We discuss applications such as
secure peer-to-peer VoIP.

1 The SAS-Based Authenticated Key Agreement Problem

Secure communication channels are usually set up by authenticated key agreement pro-
tocols. This can be performed by relying on a public-key infrastructure, e.g. based on
RSA [RSA78] or the Diffie-Hellman protocol [DH76]. Clearly, this is not well suited to
the advent of mobile ad-hoc communications where ephemeral or bootstrap connections
are needed “at once”: we certainly would not like to register a certificate to connect a
PDA to a cell phone or to print to the neighbor available printer device. Secure commu-
nications can also be manually set up. For instance, peer-to-peer links using PGP can be
set up by checking the digest of a public key over the telephone. Wireless devices can
be securely connected by having the user to manually check a hashed value as well. To
save the human user load, the string to be manually checked must be as short as possi-
ble. Recently, protocols based on Short Authenticated Strings (SAS) have been studied
by Vaudenay [Vau05]. It was shown how to design and analyze a protocol to authenti-
cate an arbitrary string assuming that we can authenticate a short one over a dedicated
secure channel. Those protocols are based on commitment schemes. It was also briefly
proposed how to design message cross-authentication protocols, namely protocols to
authenticate arbitrary strings in two ways.

A SAS-based Authenticated Key Agreement (AKA) protocol can be easily designed
by running the Diffie-Hellman protocol over an insecure channel, then by authenticating
the digest of the protocol transcript using a SAS-based message cross-authentication
protocol. This typically results in a 5-move protocol in addition to the bidirectional
SAS transmission. In the present work, we show how to decrease the interaction cost.
Namely, we design a generic construction which can use a 4-move protocol in addition
to the bidirectional SAS exchange. This construction can rely on the standard model

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 395–409, 2006.
c© International Association for Cryptologic Research 2006

396 S. Pasini and S. Vaudenay

(without random oracles). We also design an optimal 3-move protocol which is provably
secure (with tight reduction) in the random oracle model.1

2 Preliminaries

We adopt the security model from [Vau05, Vau06, PV06] based on the one from Bellare-
Rogaway [BR93]. We consider a network of participants which are located at some
nodes. A participant at node n is associated to a given identity IDn. He locally main-
tains a database of (Kj, ID j) pairs meaning that he can use the symmetric key Kj to
securely communicate with ID j in a private and authenticated way. Participants can
run concurrent protocols. A protocol specifies a sequence of steps which consist of re-
ceiving a message and sending a response. An internal short-term state keeps track on
previously completed steps. Once the protocol is completed, the short-term state is re-
moved. A protocol starts with some specified inputs and an initial state (in terms of
database content). It ends with some specified outputs (or an error message) and a final
state. The difference between an input (resp. output) and an initial (resp. final) state is
that the adversary has control on the first one but not on the second one, except if the
node was corrupted or some information leaked. Protocol instances on a node n are de-
noted by a unique tag πi

n. (Note that the state of a protocol related to a given tag changes
with time as new steps are made.)

Nodes can communicate through an insecure broadband channel. In addition, they
have access to peer-to-peer narrowband channels which can be used to authenticate
short messages. A node receiving a message from one of these channels is ensured
that this message was sent at some time in the past by a node whose identity is spec-
ified by the channel itself. In this paper, we concentrate on key agreement and cross-
authentication protocols, so we assume that nodes share no prior exchanged keys.

2.1 Adversarial Model

By default, the adversary is assumed to have a full control on which node makes a new
step of a given protocol instance, on the insecure channel, can influence the delivery
of messages (without modifying them) over the authenticated channels, can choose the
inputs of the protocols, and has access to the outputs. Occasionally, the adversary can
violate the privacy of the internal state of a given node or even corrupt the node so that
his behavior with respect to future runs of any protocol is no longer guaranteed. More
formally, the adversary has access to the following oracles.

Launch. launch(n, role,x) launches a new protocol instance on node n playing role
(e.g. either Alice or Bob) with input x. It returns a new instance tag πi

n. Note that
the instance inherits of the current node state as its input state.

Send. send(π,y) sends an incoming message y to the instance π. It returns an outgoing
message z, or the final output of the protocol if it completed.

1 After the present paper was submitted, a preprint was posted by Laur, Asokan, and Ny-
berg [LAN05]. This paper includes another 3-move protocol which is provably secure based
on a generic commitment (e.g. in the standard model) but not optimal.

SAS-Based Authenticated Key Agreement 397

Test. test(n,k, ID) tells whether (k, ID) is an entry of the database of node n. In practice,
this oracle may be implemented by an active adversary trying to impersonate node
n to communicate with ID. If the attempt succeeds, it means that k was the right
key to use.

Remove. remove(n, ID) removes any (k, ID) entry in the database of node n. In prac-
tice, this oracle may be implemented by an adversary making denial-of-services
attacks in the communication link between n and ID so that n decides not to trust
this connection anymore and to remove it.

Reveal. reveal(n) reveals the full current state of node n. This models side channels or
careless uses.

Corrupt. corrupt(n) injects a malicious code in node n so that its behavior is no longer
guaranteed.

The attack cost is measured by

– the number Q of launched instances of Alice or Bob, i.e. the online complexity.
– the additional complexity C, i.e. the offline complexity.
– the probability of success p.

We call one-shot attacks the attacks which launch only two instances in total, i.e. Q = 2.
By convention, we describe protocols by putting a hat on the notation for messages

received by a node (i.e. inputs of the send oracle) which are not authenticated since
they can differ from messages which were sent (i.e. outputs of the receive oracle) in the
case of an active attack. A message m from a node of identity ID over an authenticated
channel is denoted authenticateID(m).

2.2 Key Agreement, Cross-Authentication, and Mutual Authentication

Authenticated key agreement. An Authenticated Key Agreement (AKA) protocol be-
tween Alice and Bob starts with no input, is independent from the current state, and
ends with no output but a final state specifying an entry (k, ID) to be inserted in the
database: Alice of identity IDA ends with (k, IDB) and Bob of identity IDB ends with
(k, IDA). An attack is successful if a test(n,k, ID) query positively answered where n
and ID correspond to nodes on which no reveal nor corrupt query was made. For sim-
plicity, we do not consider attacks making Alice and Bob end on some inconsistent
states. Namely, mutual authentication is assumed to be (implicitly or explicitely) made
by further communications.

To construct AKA protocols, we use the following building blocks.

Message cross-authentication. A Message Cross-Authentication (MCA) protocol be-
tween Alice and Bob of identity IDA and IDB starts with inputs mA and mB and ends
with outputs (mB, IDB) and (mA, IDA), respectively. An adversary is successful if some
instance ended on an incorrupted node with a pair (m, ID) but no instance on the node
of identity ID with input m was launched. Note that test, remove, and reveal oracles are
not relevant in this case.

Message mutual-authentication. A Message Mutual-Authentication (MMA) protocol
between Alice and Bob of identity IDA and IDB starts with inputs mA and mB and ends
with outputs IDB and IDA, respectively. A honest run of an MMA protocol must have

398 S. Pasini and S. Vaudenay

mA = mB. An adversary is successful if some instance on an incorrupted node started
with any m and ended with any ID such that no instance on the node of identity ID with
input m was launched. As for MCA protocols, test, remove, and reveal oracles are not
relevant. Obviously, we can transform an MCA protocol into an MMA protocol by just
checking that the output message is equal to the input one on both sides.

MCA from MMA. We can also transform an MMA protocol with at least one move
over the insecure channel into an MCA protocol at the price of an extra move: Bob
of identity IDB first sends his input message mB and Alice of identity IDA initiates an
MMA protocol with input mA||m̂B by sending mA together with the first MMA protocol
message. Bob then follows the MMA protocol with input m̂A||mB. The final outputs of
Alice and Bob are (m̂B, IDB) and (m̂A, IDA) respectively.

To compare protocols we focus on the number of message moves over the insecure
channel and on the length of authenticated messages. Furthermore, a protocol with two
equal SAS to be sent in both directions (called symmetric SAS) will be considered as
better than a protocol with two SAS of similar length (but not necessarily equal) to be
exchanged. Indeed, some authentication channels may provide symmetric authentica-
tion at no extra cost.

2.3 Equivocable Commitment and Random Oracle Commitment

In this paper, we consider (tag-based) equivocable commitment schemes as defined by
two algorithms commit and open and three oracles setup, simcommit, and equivocate.

Setup. KP ← setup generates a public key KP to be used as a common reference string
and a secret key KS to set up the simcommit and equivocate oracles. The public key
KP is implicitly used by all other algorithms and oracles but omitted in the notations
for simplicity.

Commit. (c,d) ← commit(m,r) generates a commit value c and a decommit value
d for a key r with a tag m. We assume that the distribution of the generated c is
independent from r: the commitment is perfectly hiding.

Open. r ← open(m,c,d) yields r if (c,d) is a possible output for commit(m,r).
Simcommit. (c, i) ← simcommit(m) simulates a commit value c for a tag m and pro-

duces extra information ξ to be used later. The distribution of c should be the same
as for the distribution of c generated by any commit(m,r). It also creates a unique
identifier i (a nounce) and inserts (i,m,c,ξ) in a database. This oracle uses the se-
cret key KS and should be secured. Access to the database must be restricted to this
oracle and equivocate.

Equivocate. d ← equivocate(i,r) yields d such that r = open(m,c,d) where (i,m,c,ξ)
is in the database of simcommit. This entry is further removed. (Namely, a simu-
lated c can be equivocated only once.)

Access to simcommit and equivocate oracles is restricted depending on the applica-
tion. The normal usage of the commitment scheme should be limited to commit and
open but we stress that our security model assumes that the adversary may cheat on
some commitments by having access to simcommit and equivocate oracles. Indeed,

SAS-Based Authenticated Key Agreement 399

our notion of equivocable commitment relates to the notion of simulation-sound com-
mitment [MY04].

The hiding game between a challenger C and an adversary A runs as follows.

1. C runs setup and sends KP to A
2. A sends a tag m to C
3. C commits to a random key with tag m and sends a commit value c to A
4. A computes some r and sends it to C
5. C releases a decommit value d and A wins if r ← open(m,c,d)

In that case, the adversary has access to the simcommit and equivocate oracles but
cannot query simcommit with the selected tag m. Since the commitment is perfectly
hiding, no adversary can win this game with a probability larger than 2−k where k is the
length of the key r.

The binding game between a challenger C and an adversary A runs as follows.

1. C runs setup and sends KP to A
2. A sends a tag m and a commit value c to C
3. C picks a random r and sends it to A
4. A produces a decommit value d and wins if r ← open(m,c,d)

We say that the commitment with k-bit keys r is (T,ε)-secure is any adversary with com-
plexity limited to T has a wining probability of at most 2−k + ε. In that case, the adver-
sary has access to the simcommit and equivocate oracles but cannot query simcommit
with the selected tag m.

Secure equivocable commitment schemes can be easily constructed based on
simulation-sound trapdoor commitments by MacKenzie-Yang [MY04] as detailed in
[Vau05]. Constructions can be in the standard model with a common reference string,
e.g. based on the security of DSA signatures [DSS00] or Cramer-Shoup signatures
[CS02]. We can also build an efficient equivocable commitment scheme based on the
random oracle model.

Random oracle commitment scheme. Let
c,
e, and k be three integers. The setup
algorithm is unused, but we assume that we can use three oracles:

H. c ← H(e,r,m) queried with an
e-bit string e and a k-bit string r, looks whether an
entry (e,r,m,c) in a list exist. If not, the oracle creates one with a random
c-bit
string c. In any case, the oracle answers c.

Simcommit. (c, i) ← simcommit(m) simply picks a random
c-bit string c and a
nounce i and stores (i,c,m) in a list.

Equivocate. d ← equivocate(i,r) gets (i,c,m) and removes it form the list. The oracle
then picks a random
e-bit string e. If (e,r,m, ·) exists in the H list, the oracle fails.
Otherwise, (e,r,m,c) is inserted. Clearly, if the number of oracle accesses to H and
simcommit is limited by q, the probability that the oracle fails at least once is less
than q2×2−
e−1.

The algorithm commit(m,r) simply picks e at random, queries H(e,r,m) and outputs
d = (e,r). The algorithm open(m,c,d) simply checks that H(d,m) = c and parses

400 S. Pasini and S. Vaudenay

d = (e,r) to yield r. Unless equivocate fails, this scheme is clearly an equivocable
commitment scheme as previously defined. Since all commit values c are generated in
an independent way, there are no collisions with probability at least 1− q2 × 2−
c−1.
Clearly, being able to decommit any c to two values would lead H to a collision. Hence,
the scheme is (q,2−k + q2×2−
e−1 + q2×2−
c−1)-secure. In practice, simcommit and
equivocate are unused. So, we can just instantiate H by a standard hash function, pro-
vided that instantiation of that kind of random oracle makes sense [CGH98].

3 Previous SAS-Based Key Agreement Protocols

A classical authenticated Diffie-Hellman [DH76] protocol over a multiplicative group
spanned by a generator g consists, for Alice (resp. Bob) of picking a random integer xA

(resp. xB), sending the Diffie-Hellman public keys, yA = gxA (resp. yB = gxB) over the au-
thenticated channel, computing zA = yxA

B (resp. zB = yxB
A) and ending with state (zA, IDB)

(resp. (zB, IDA)). In this case, authenticated messages are pretty long, but authentication
is necessary to thwart man-in-the-middle attacks.

We first informally present an AKA protocol from Hoepman [Hoe04]. It is based on
the Diffie-Hellman protocol and it uses an authenticated channel for the authentication
of each Diffie-Hellman value. This protocol runs in three steps: commitment, authenti-
cation, and opening. (The original protocol has a fourth step: the key validation.) Instead
of revealing its Diffie-Hellman public key, each party first commits on it, keeping it hid-
den. In the next step, each participant authenticates a piece of its Diffie-Hellman public
key. Finally, they open their commitments and check their respective commitment and
authenticated string before completing the regular Diffie-Hellman protocol.

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

commit to yA−−−−−−−−−−−−−−−−→
yB←−−−−−−−−−−−−−−−−

zA ← ŷxA
B

open commitment−−−−−−−−−−−−−−−−→ zB ← ŷxB
A

SAS ← truncH(yA||ŷB)
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS ?= truncH(ŷA||yB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

final state: Bob,zA final state: Alice,zB

Fig. 1. PGPfone 1995 Key Agreement Protocol

Another AKA protocol, depicted on Fig. 1, was used by Zimmermann for the PGP-
fone in 19952. Its advantage is to reduce the number of moves in the insecure channel
and to make both authenticated strings equal. In this protocol, only the first participant
Alice commits to its public key. The commitment is immediately opened when the other

2 Personal communication.

SAS-Based Authenticated Key Agreement 401

public key is received. Finally, the authenticated string is a piece of the digest (denoted
truncH on Fig. 1) of the Diffie-Hellman protocol transcript.

For both the Hoepman and the PGPfone protocols, the security is not formally
proven ([Hoe04] only provides a sketch of argument for the security). Another ap-
proach consists of authenticating the transcript of a classical key agreement proto-
col by using an MMA protocol. The MANA protocols by Gehrmann-Mitchell-Nyberg
[GMN04, GN01, GN04] illustrates this. Finally, we study in what follows a generic con-
struction reducing the amount of authenticated bits in AKA protocols. Using it with the
Diffie-Hellman key agreement protocol and the MCA protocol of [Vau05], we obtain
the DH-SC protocol of Čagalj-Čapkun-Hubaux [ČČH06]. Using an optimized MCA
protocol we can save one protocol move. In what follows we describe the generic con-
struction, analyze it, and study 3-move MMA and MCA protocols with symmetric SAS.

4 Reducing Key Agreement to Message Authentication

We can build an AKA protocol by exchanging Diffie-Hellman keys through a message
cross-authentication protocol.

We propose a generic SAS-based construction for an AKA protocol that we call the
constructed AKA protocol or simply the AKA protocol. For this, we use an initial AKA
protocol (with longer strings to be authenticated), that we call the AKA0 protocol, and
an MCA protocol with short SAS. Consider that the AKA0 protocol requires nk ≥ 2
moves, the nk − 1-th being from Alice to Bob, and the MCA protocol requires na ≥ 2
moves over the insecure channel, the first one being from Alice to Bob. In the AKA
protocol, the nk −2 first moves of the AKA0 are performed over the insecure channel.
Then, both participants assembles his view on the protocol transcript τ by concatenat-
ing all protocol messages (sent and received ones). Then, an MCA protocol starts. Alice
wishes to authenticate τ concatenated with her nk − 1-th message α in the AKA0 pro-
tocol. Bob wishes to authenticate the same τ||α concatenated with his last message β
in the AKA0 protocol. (Note that Bob selects the message to be authenticated after re-
ceiving Alice’s first message in the MCA protocol.) At the end, both participants use
the authenticated messages to complete the AKA0 protocol and end with final states as
specified in the AKA0 protocol. We have nk + na−2 moves in total.

Note that MCA can have na < 2. (For instance the trivial MMA protocol exchanging
authenticated digests has no move and thus we can build an MCA with only one move.)
In that case, we augment the MCA protocol by virtual moves and we obtain nk moves
in total. However, MCA protocols with na < 2 must have pretty large SAS to exchange
the messages.

We can make a similar construction based on an n′a-move MMA protocol instead of
an MCA protocol. In that case, we can only encapsulate the last move β of the AKA0

protocol in the MMA protocol, leading us to max(nk,nk + n′a−1) moves in total.

Theorem 1. Let us consider an nk-move AKA protocol (the AKA0 protocol) and an
na-move MCA protocol. The generic construction is essentially an AKA protocol with
max(nk,nk + na−2) moves in which the structure of authenticated messages is similar
as in the MCA protocol. There exists a constant μ such that for any T , if ε1 resp. ε2

denotes the best success probability of an adversary bounded by T against the AKA0

402 S. Pasini and S. Vaudenay

protocol resp. the MCA protocol, then any adversary bounded by T ×μ against the AKA
protocol has probability of success at most ε1 + ε2.

Using the Diffie-Hellman protocol and an na-move MCA protocol leads us to a max
(2,na)-move AKA protocol in which the structure of authenticated messages is similar
as in the MCA protocol. With the construction based on an MMA protocol, we obtain
max(2,n′a + 1) moves. In the case where we want to achieve small SAS, we must have
na ≥ 2, leading us to na moves using MCA protocols and n′a + 1 moves using MMA
protocols. Since (n′a + 1)-move MCA protocols can be made from n′a-move protocols,
we may decrease the total number of moves in AKA protocols by starting from MCA
protocols directly.

Proof. For each instance of Alice, we let τA be the constructed transcript of the nk −2
first messages in the AKA protocol and we let αA be her last message, i.e. the nk −
1-th message in the protocol. We further let τ̂B||α̂B||β̂ be the accepted message from
Bob at the end of the MCA protocol. Similarly, for each instance of Bob, we let τB

be the constructed transcript of the nk − 2 first messages in the AKA protocol, τ̂A||α̂A

be the accepted message at the end of the MCA protocol, and β be his last message in
the AKA0 protocol assuming that Alice’s last one is α̂A. We let αB = α̂A. Bob’s message
to be authenticated is τB||αB||β.

Given an adversary A against the AKA protocol, we construct a simulator B inter-
acting with A and attacking the MCA protocol. We simply simulate instances running
the AKA0 protocol and launch the MCA protocol instances when appropriate. test,
remove, reveal and corruct queries can easily be simulated. Clearly, the attack against
the MCA protocol does not succeed with probability at least 1− ε. In those cases, we
have τB = τ̂B, τA = τ̂A, αA = α̂A = αB = α̂B, and β = β̂, just as if the instance of Alice
and Bob had the AKA0 protocol run over an authenticated channel.

We construct a simulator C interacting with A and attacking the AKA0 protocol
over an authenticated channel. The simulator simply replaces inputs to the send oracle
by authenticated ones when possible, or fails, and simulates the MCA protocol. Clearly,
running A in parallel with B and C with the same random source, we derive that when-
ever A succeeds, either B or C succeed. �	

A trivial MMA protocol consists of authenticating the digest of the input message from
a collision-resistant hash function. This protocol can be transformed into an MCA pro-
tocol by using 2 moves (to exchange mA and mB) plus the authentication of a SAS in
two ways as for the construction in Section 2.2. We obtain a 2-move AKA protocol with
symmetric SAS, but the length of the SAS is quite long (typically, 160 bits).

A SAS-based cross-authentication protocol was proposed in [Vau05] by interleav-
ing two SAS-based message authentication protocols. It is a 4-move MCA protocol
with symmetric SAS and can thus be transformed into a 4-move AKA protocol with
symmetric SAS based on Diffie-Hellman.

5 A New SAS-Based Message Mutual-Authentication Protocol

We propose a new protocol improving the number of exchanged messages. As depicted
on Fig. 2, and without any attack, Alice and Bob start with the same message, i.e.

SAS-Based Authenticated Key Agreement 403

Alice Bob
input: mA input: mB

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

(c,d) ← commit(mA,RA) c−−−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−−−→ R̂A ← open(mB, ĉ, d̂)

SAS ← RA ⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS ?= R̂A⊕RB

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

output: Bob output: Alice

Fig. 2. A New SAS-Based Message Mutual-Authentication Protocol

mA = mB. Each participant chooses a k-bit random value RA and RB, respectively. Alice
starts by committing on her random value RA by sending c, keeping it hidden. Bob
sends the random value RB. Then, Alice opens her value by sending the decommit
value d. Finally, both authenticate the SAS which has been computed using a simple
XOR function. Using the generic construction with Diffie-Hellman we obtain a 4-move
AKA protocol with symmetric SAS.

Theorem 2. We consider adversaries against the MMA protocol of Fig. 2 who are
bounded by complexity T , QA instances of Alice, and QB instances of Bob. We as-
sume that we have an (TC,ε)-secure equivocable commitment scheme. There exists
a (small) constant μ such that any adversary wins either with probability limited to
QA · (QA + QB)(2−k + ε) or with complexity T ≥ TC −μ.

Proof. Any adversary which would attack an instance of either Alice or Bob needs one
SAS to send her/him so that she/he can complete. This required SAS can easily be
obtained from any instance of Alice since she does not need any prior authenticated
message. It can also be obtained from any instance of Bob in which case he must be
sent another SAS before. The output SAS by Bob is equal to the sent one. Indeed, a
successful adversary interaction defines the first attacked instance and a prior sequence
initiated by one instance of Alice followed by a chain (possibly empty) of instances
of Bob and ended by the attacked instance. Every (unattacked) instance of Bob in this
sequence is sending a SAS identical to the received one to the next instance. Every
intermediate instance of Bob terminates with an output message which must be equal
to the input message of the previous instance in the sequence (otherwise, they would be
successfully attacked). However, the final instance in the sequence outputs a message
which is different than the input of the previous instance. Hence, every instance in the
sequence but the final one has the same input message and all instances yield the same
SAS. Clearly, sending the output SAS from the leading Alice to the tailing instance
produces a successful attack with no intermediate instance of Bob.

Let A0 be an adversary who launches at most QA instances of Alice and QB instances
of Bob. We transform it into an adversary A who launches an instance of Alice and a
single target instance (of either Alice or Bob) as follows:

404 S. Pasini and S. Vaudenay

1. A first picks two random numbers I,J such that 1 ≤ I ≤ QA and 1 ≤ J < QA + QB.
2. We initialize counters i and j to 0 and run A0 step by step.

– Every time A0 would like to make a launch query to launch an instance of
Alice, we increment i. If i = I, we really launch it and call the instance Alice π.
Otherwise, we increment j and if j = J, we really launch it and call the target
instance π′. Otherwise, we simulate the oracle call.

– Every time A0 would like to make a launch query to launch an instance of
Bob, we increment j. If j = J, we really launch it and call the target instance
π′. Otherwise, we simulate the oracle call.

– If we have to send a SAS to π, we just simulate the oracle call.
– If we have to send a SAS to π′ and we already got a SAS from π which is equal

to the expected one, we just send it. Otherwise, the attack fails.

Due to the previous discussion, if A0 succeeds, if π′ is the first attacked instance for A0

and if π is the leading instance of Alice in the sequence, then A succeeds. Hence, the
probability of success of A is at least 1

QA(QA+QB−1) times the probability of success p
of A0.

We now have an adversary A with Alice and a target instance. We assume that the
adversary complexity is bounded by TC − μ for some constant overhead μ to be deter-
mined by the following reductions. We consider two cases: attacks targeting an instance
of Bob and attacks targeting an instance of Alice. Let pA resp. pB be the probability
of a target Alice resp. Bob and qA resp. qB be the success probability conditioned to
both cases, respectively. The success probability of A is p = qA pA +qB pB and we have
pA + pB = 1.

In both cases, we define a simulator B who simulates the two instances as follows.
We first pick a random k-bit SAS. When an instance of Alice is launched for the first
time by the adversary A , we simulate a commitment c by using simcommit. Then the
corresponding R̂B is sent to this instance of Alice, the commit value is equivocated
so that it opens to the key SAS⊕ R̂B. This simulation of Alice is perfect and has the

A B C

select SAS
· · · (equivocate with tag m′

A)
mA−−−→ mA−−−→
c←−−− c←−−−
·· ·
R̂B−−−→ RA ← SAS⊕ R̂B

RA−−−→
d←−−− d←−−−
·· ·

Goal: mA �= m′
A, open(mA,c,d) = RA

target Alice: hiding game

A B C

select SAS
· · · (equivocate with tag mA)
mB,ĉ−−−→ mB,ĉ−−−→
RB←−−− RB ← SAS⊕ R̂A

R̂A←−−−
·· ·
d̂−−−→ d̂−−−→
· · ·

Goal: mA �= mB, open(mB, ĉ, d̂) = R̂A
target Bob: binding game

Fig. 3. Simulator Playing the Hiding/Binding Game

SAS-Based Authenticated Key Agreement 405

property to determine the final SAS at the beginning. If the attack succeeds, the other in-
stance will have to deal with a commit value with a different tag. Depending on whether
the other instance is an Alice or a Bob, we simulate it so that we can win the hiding
game or the binding game against a challenger C as depicted on Fig. 3. In the case of
a target Alice, the adversary succeeds if R̂B leads the target instance to derive SAS. In
that case we can correctly derive RA and win the hiding game. Since the equivocable
commitment is always perfectly hiding, we deduce qA = 2−k. We could have played the
binding game in a trivial way and won with the same probability 2−k. In the case of
a target Bob, the adversary succeeds if d̂ decommits to a key which leads Bob to the
right SAS, thus to the key R̂A. In that case, we win the binding game with probability
qB. To summarize, we made an adversary playing the binding game with probability of
success p. Therefore, p ≤ 2−k + ε. �	

6 A New SAS-Based Message Cross-Authentication Protocol

We propose a new protocol based on the previous one, but improving the number of
exchanged messages through the broadband insecure channel. Our protocol uses an
almost strongly universal hash function family h [Sti91, Sti94]. In practice, one can use
hK(x) = trunc(hash(K||x)) where hash is a collision-resistant hash function and trunc
truncates to the leading ρ bits. Our protocol also uses a commitment scheme to commit
on a κ-bit key K. Contrarily to our previous protocol, the committed key K can now be
pretty large. Using the generic construction with Diffie-Hellman we obtain a 3-move
AKA protocol with symmetric SAS. Note that we added an identity test on Alice’s side
to avoid trivial reflection attacks.

Theorem 3. Let
e,
c be the parameters of the random oracle commitment scheme. Let
q be the upper bound on the number of H queries. Let ε = q22−
e + q22−
c . Let h be
an εh-almost strongly universal hash function family with ρ-bit digests, i.e. Pr[hK(a) =

Alice Bob
input: mA input: mB

pick K ∈U {0,1}κ pick R ∈U {0,1}ρ

(c,d) ← commit(mA,K)
mA,c−−−−−−−−−−−−−−−−→
mB,R←−−−−−−−−−−−−−−−−

d−−−−−−−−−−−−−−−−→ K̂ ← open(m̂A, ĉ, d̂)

SAS ← R̂⊕hK(m̂B)
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS ?= R⊕hK̂(mB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

check Alice �= Bob

output: Bob, m̂B output: Alice, m̂A

Fig. 4. A New SAS-Based Message Cross-Authentication Protocol

406 S. Pasini and S. Vaudenay

α,hK(b) = β] ≤ 2−2ρ + 2−ρεh for any a,b,α,β such that a �= b with a random K.3

We consider adversaries against the message cross authentication protocol of Fig. 4
who are bounded by Q instances of Alice or Bob and by q queries to H. The success
probability is limited by Q(Q−1)

2 (2−ρ + ε+ εh).

By launching Q instances of either Alice or Bob with pairwise different input messages
and by picking independent uniformly distributed R̂, all SAS are independent and uni-
formly distributed so we have one matching with probability 1− 2−Qρ · 2ρ!/(2ρ −Q)!
which is roughly Q(Q−1)

2 2−ρ when Q * 2
ρ
2 . Hence, this bound is essentially tight. Note

that the above attack can apply to any MCA protocol of similar structure (see [PV06]),
so our protocol is optimal.

Proof. We let ε1 = ε2 = εh (h is almost uniform). We have Pr[hK(a) = α] ≤ 2−ρ +
ε1 and Pr[hK(a)⊕ hK(b) = α] ≤ 2−ρ + ε2 for any a,b,α such that a �= b and with K
uniformly distributed (h is ε-almost XOR universal [Kra94]). In what follows, only
those properties will be used. Namely, we could replace the condition on h by those
two properties.

We define a new character: the flipped Bob who proceeds as Bob but first issues a
SAS equal to R⊕hK̂(mB) then receives a SAS for verification. In a new protocol, Alice
and the flipped Bob can interact with two crossing SAS exchange.

We consider an adversary successfully running his attack with many instances for
the original MCA protocol. We say that a given instance is attacked if it completed the
protocol during which a SAS was received, with an output which is not consistent with
the input of the instance who issued the received SAS. (Note that a successful adver-
sary must have an attacked instance.) An attacked (target) instance (of either Alice or
Bob) must receive one SAS from a (sending) instance. Note that those two instances
must be different. (Indeed, no instance of Bob can send a SAS to himself otherwise it
would have to be received before being sent. Similarly, no instance of Alice can accept
a SAS coming from herself.) Clearly, both instances must agree on the SAS to com-
plete. Hence, if the SAS sent by the target instance is forwarded to the sending instance
then both instances fully interact. We can guess the pair of instances with probability
2/(Q(Q−1)). Hence, we can simulate all instances except the two guessed ones. Since
the SAS verification phase is the last step on both instances, there is no trouble to make
the two instances exchange their SAS. We thus transform the initial adversary against
the MCA protocol with success probability p into a one-shot adversary against our new
protocol with success probability at least 2p(Q(Q−1))−1.

The interaction of the transformed adversary with an instance of Alice consists of
two steps

A1 sending her her message mA (for the launch query) and getting her commit value c
(for the first send query)

A2 giving her Bob’s alleged message m̂B and random value R̂ and getting her decommit
value d.

3 Note that this definition of almost strongly universal hashing is slightly different from [Sti91,
Sti94] in the sense that perfect uniformity is not required.

SAS-Based Authenticated Key Agreement 407

Alice’s SAS equals R̂⊕hK(m̂B) where K is the result of open(mA,c,d). The second step
must be performed after the first one.

The interaction of the adversary with an instance of Bob consists of two steps

B1 sending him his message mB (for the launch query) and Alice’s alleged message
m̂A and commit value ĉ and getting his random value R (for the first send query)

B2 giving him Alice’s alleged decommit value d̂.

The adversary wins if the two instances complete and compute the same SAS and
if the input message of one instance is different from the output message of the other
instance.

In what follows we show that all cases can be simulated so that we can win a hard
game, proving that the probability of success is at most 2−ρ + ε+ max(ε1,ε2).

Cases Alice-Alice. We number 2 the instance of Alice whose A2 step is the last. Since
the commitment is perfectly hiding, this Alice leaks no information about K2 (variable
K for Alice number 2) until this very last step. Hence, K2 is independent from the rest
and R̂1⊕ R̂2⊕hK1(m̂1

B) = hK2(m̂2
B) with probability at most 2−ρ + ε1.

On Bob’s Incoming ĉ (Step B1). In the random oracle commitment model, we only
consider the event where no collision occurred. Hence, a commit value ĉ issued by the
adversary for an instance of Bob is either a real output by H and can only be opened in a
single way, or no output from H. In the latter case, we can consider (⊥,⊥,⊥, ĉ) as a new
entry in the H list and count it as an extra oracle call. This way, ĉ can never be opened.
Hence, with probability at least 1− (q+1)(q+2)2−
e−1− (q+1)(q+2)2−
c−1, which
is larger than 1−ε, the commit value(s) ĉ by the adversary are either openable in a single
fixed way or not openable. If they are not openable, the adversary fails. If openable ĉ
are issued by an oracle call to H by the adversary, we can thus virtually replace the
adversary release of ĉ by an adversary release of K̂ and step B2 can be ignored. If
openable ĉ are issued by other oracle calls to H, it can only be by a simulation of Alice,
leading us to c = ĉ, thus K̂ = K and mA = m̂A.

Cases Bob-Bob. We number 2 the instance of Bob whose B1 step is the last one. Those
cases produce no oracle calls to H by Alice, so K̂1 and K̂2 are selected by the ad-
versary before the B2

1 step. Note that R1 is already released. The attack succeeds if
R2 = R1 ⊕ hK̂1(m1

B)⊕ hK̂2(m2
B) where R2 is independent of the righthand term and se-

lected at random by the second Bob. Clearly, this succeeds with probability 2−ρ.

Cases Alice-Bob. Without loss of generality, we can assume that B2 is the last step.
In cases A1A2B1B2, R is selected in step B1 so the adversary succeeds with probabil-

ity 2−ρ.
In cases A1B1A2B2 with c �= ĉ or in cases B1A1A2B2 (necessarily with c �= ĉ), the ad-

versary has no information about K until step A2 and succeeds when R̂⊕R⊕hK̂(mB) =
hK(m̂B). Hence succeeds with probability at most 2−ρ + ε1.

In cases A1B1A2B2 with c = ĉ, we must have mA = m̂A. This can only be an attack for
mB �= m̂B. The adversary has no information about K until step A2 and succeeds when
R̂⊕R = hK(mB)⊕hK(m̂B), hence with probability at most 2−ρ + ε2. �	

408 S. Pasini and S. Vaudenay

With the same analysis as in [Vau05], in a network of N participants, each limited to R
runs of the protocol, and a maximal attack probability at large p, we should use ρ ≈
log2

N2R2

2p . When p is the probability to attack a target node, we should use ρ≈ log2
NR2

2p .

With N ≈ 220, R ≈ 210, and p ≈ 2−10, we obtain ρ ≈ 49. In an ATM-like environment,
we can take N = 2, R = 3, and p = 3 ·10−4, leading us to ρ≈ 15. In between, we believe
that ρ = 20 bits provides enough security in a small community of human users.

7 Conclusion

We have shown how to construct efficient SAS-based AKA protocols based on existing
ones and SAS-based MMA or MCA protocols. We have proposed a new 3-move MMA
protocol using a generic commitment scheme. It can make a secure and efficient SAS-
based AKA protocol with 4 moves over the insecure channel. We have also proposed
a new 3-move MCA protocol using random oracle commitments. It can make a secure
and efficient SAS-based AKA protocol with 3 moves in the random oracle model. For
both constructions, we can have e.g. a SAS of 20 bits. Note that our two constructions
use the same authenticated strings in both directions.

Applications of such protocols can be traditional key agreement, but run in an ad-hoc
way. For instance, it can be used to exchange PGP public keys to be authenticated by
a human-to-human telephone conversation. It can also be used to secure peer-to-peer
VoIP communications. Other straightforward applications can be the Bluetooth-like es-
tablishment of symmetric key between associated wireless devices, e.g. for wireless
USB.

References

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93: 13th Annual
International Cryptology Conference, volume 773 of Lecture Notes in Computer
Science, pages 232–249, Santa Barbara, California, U.S.A., 1993. Springer-Verlag.

[ČČH06] Mario Čagalj, Srdjan Čapkun, and Jean-Pierre Hubaux. Key agreement in peer-
to-peer wireless networks. Proceedings of the IEEE, Special Issue in Security and
Cryptography, 94(2):467–478, 2006.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology
revisited (preliminary version). In STOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 209–218, New York, NY, USA,
May 1998. ACM Press.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
Advances in Cryptology – EUROCRYPT ’02: International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 2332 of Lecture Notes in
Computer Science, Amsterdam, The Netherlands, April 2002. Springer-Verlag.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT–22(6):644–654, November 1976.

[DSS00] Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186-2, U.S. Department of Commerce, National Institute of Standards and
Technology, 2000.

SAS-Based Authenticated Key Agreement 409

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authentication
for wireless devices. RSA Cryptobytes, 7(1):29–37, January 2004.

[GN01] Christian Gehrmann and Kaisa Nyberg. Enhancements to Bluetooth baseband secu-
rity. In Nordsec ’01, Copenhagen, Denmark, November 2001.

[GN04] Christian Gehrmann and Kaisa Nyberg. Security in personal area networks. Security
for Mobility, pages 191–230, 2004.

[Hoe04] Jaap-Henk Hoepman. The ephemeral pairing problem. In Ari Juels, editor, Financial
Cryptography: the 8th International Conference (FC ’04), volume 3110 of Lecture
Notes in Computer Science, pages 212–226, Key West, FL, USA, February 2004.
Springer-Verlag.

[Kra94] Hugo Krawczyk. LFSR-based hashing and authentication. In Yvo Desmedt, editor,
Advances in Cryptology – CRYPTO ’94: 11th Annual International Cryptology Con-
ference, volume 839 of Lecture Notes in Computer Science, pages 129–139, Santa
Barbara, California, U.S.A., August 1994. Springer-Verlag.

[LAN05] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient mutual data authentication using
manually authenticated strings. Cryptology ePrint Archive, Report 2005/424, 2005.
http://eprint.iacr.org/.

[MY04] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT ’04 : International Conference on the Theory and Applications of Cryp-
tographic Techniques, volume 3027 of Lecture Notes in Computer Science, pages
382–400, Interlaken, Switzerland, May 2004. Springer-Verlag.

[PV06] Sylvain Pasini and Serge Vaudenay. An optimal non-interactive message authentica-
tion protocol. In David Pointcheval, editor, Topics in Cryptology – CT-RSA ’06: The
Cryptographers’ Track at the RSA Conference 2006, volume 3860 of Lecture Notes
in Computer Science, pages 280–294, San Jose, California, U.S.A., February 2006.
Springer-Verlag.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, Februar 1978.

[Sti91] Douglas Stinson. Universal hashing and authentication codes. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO ’91: 11th Annual International Cryptol-
ogy Conference, volume 576 of Lecture Notes in Computer Science, pages 74–85,
Santa Barbara, California, U.S.A., August 1991. Springer-Verlag.

[Sti94] Douglas Stinson. Universal hashing and authentication codes. Designs, Codes and
Cryptography, 4:369–380, 1994.

[Vau05] Serge Vaudenay. Secure communications over insecure channels based on short au-
thenticated strings. In Victor Shoup, editor, Advances in Cryptology – CRYPTO
’05: The 25th Annual International Cryptology Conference, volume 3621 of Lec-
ture Notes in Computer Science, pages 309–326, Santa Barbara, California, U.S.A.,
August 2005. Springer-Verlag.

[Vau06] Serge Vaudenay. On Bluetooth repairing: Key agreement based on symmetric-key
cryptography. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, Informa-
tion Security and Cryptology: First SKLOIS Conference, CISC’05, volume 3822 of
Lecture Notes in Computer Science, pages 1–9, Beijing, China, December 2006.
Springer-Verlag.

The Twist-AUgmented Technique

for Key Exchange

Olivier Chevassut1, Pierre-Alain Fouque2,
Pierrick Gaudry3, and David Pointcheval2

1 Lawrence Berkeley National Lab. – Berkeley, CA, USA
OChevassut@lbl.gov

2 CNRS-École normale supérieure – Paris, France
{Pierre-Alain.Fouque, David.Pointcheval}@ens.fr

3 CNRS-LORIA – Nancy, France
Pierrick.Gaudry@loria.fr

Abstract. Key derivation refers to the process by which an agreed upon
large random number, often named master secret, is used to derive keys
to encrypt and authenticate data. Practitioners and standardization bod-
ies have usually used the random oracle model to get key material from
a Diffie-Hellman key exchange. However, formal proofs in the standard
model require randomness extractors to formally extract the entropy
of the random master secret into a seed prior to deriving other keys.
Whereas this is a quite simple tool, it is not easy to use in practice –or
it is easy to misuse it–.

In addition, in many standards, the acronym PRF (Pseudo-Random
Functions) is used for several tasks, and namely the randomness extrac-
tion. While randomness extractors and pseudo-random functions are a
priori distinct tools, we first study whether such an application is cor-
rect or not. We thereafter study the case of Z�

p where p is a safe-prime
and the case of elliptic curve since in IPSec for example, only these two
groups are considered. We present very efficient and provable random-
ness extraction techniques for these groups under the DDH assumption.
In the special case of elliptic curves, we present a new technique —the so-
called ’Twist-AUgmented’ technique— which exploits specific properties
of some elliptic curves, and avoids the need of any randomness extractor.
We finally compare the efficiency of this method with other solutions.

1 Introduction

Key exchange is an important problem in practice and several schemes have been
designed to solve it since the seminal work of Diffie and Hellman [13]. Recently, dif-
ferent works have been published in order to analyze the security of those schemes
in various settings (password, public-key, hybrid setting) and security models
(random oracle, common reference string, standard model). But for several years,
efficiency and security in the standard model have become the main goals to
achieve in cryptography. The most widely used network security protocols nowa-
days are TLS [34], a.k.a SSL, SSH, and the Internet Key Exchange (IKE) pro-
tocols [18, 24] from the IPSec standard of the IETF. In all the descriptions, the

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 410–426, 2006.
c© International Association for Cryptologic Research 2006

The Twist-AUgmented Technique for Key Exchange 411

extraction of the master-key froma common (random) secret element is performed
using a PRF, which is often instantiated by HMAC [5] (this is for example the case
in IKE). However, it is well-known that such a primitive is not a priori well-suited
for such a task [15], and the formal analysis requires unusual assumptions.

1.1 The Key Derivation Problem

Diffie-Hellman (DH) based key exchanges establish a secure communication
channel between two parties by securely negotiating a large random element in
a given cyclic group, called pre-master secret. Then, this secret is used to derive
keys for encrypting and authenticating data. These keys must be bit-strings of
some specific length uniformly distributed and used as input parameters to sym-
metric ciphers (for privacy), message authentication codes (for authentication),
and pseudo-random functions (for expansion of a seed into a longer bit-string).
However, they cannot be initialized with the simple bit-string encoding of the
pre-master secret. Even though this secret is indistinguishable from a random el-
ement in the cyclic group under some classical computational assumptions, such
as the Decisional Diffie-Hellman assumption (DDH), its encoding is not indis-
tinguishable from a random bit-string with a uniform distribution. The entropy
of the bit-string encoded secret is indeed high but not high enough to immedi-
ately obtain an almost uniformly distributed random bit-string: pseudo-entropy
generators are not pseudo-random generators even when only considering the
property of computational indistinguishability [19].

Most of the cryptographic protocols do not take into account this practi-
cal problem since it only appears during the implementation. Cryptographers
indeed use “elements in sets” when designing their algorithms while standard-
ization bodies represent and encode these elements. Engineers are left clueless
when elements in a given set do not necessarily admit a compact encoding —in
bijection with a set of �-bit strings— even for a well-chosen �. Practitioners have
no choice but to make educated guesses on which encoding to use and so, may
introduce security breaches. This is the case of the Diffie-Hellman version of the
SSL protocol [34] where the binary encoding of the random element is used as
it. IKE raises this problem too. It explicitly deals with the extraction issue via a
mechanism analyzed in [15], and follows the general framework described below.

1.2 Randomness Extraction and Key Derivation

In order to correctly derive several keys from a common (random) secret element
—the so-called pre-master key—, two steps are required, with two different tools:

Randomness Extraction – in a first stage, one uses a family of functions F
keyed by random and public nonces and applies it to the pre-master secret,
to get the master key;

Key Derivation – in the second stage, the output is used as a key to a family
of functions G, with known inputs in order to derive further key material to
create a secure channel.

412 O. Chevassut et al.

This two-phase protocol also appears in the random generator architecture of
Barak and Halevi [2]. The aim of the randomness extractor phase is to generate a
short seed concentrating the entropy of the source and then in the key derivation,
this seed will be used to generate keys. It is important to separate these stages,
since different cryptographic primitives are needed. However, in many specifi-
cations, F and G are asked to be Pseudo-Random Function Families (with the
same notation prf, such as in IKE [18, 24]).

Before going into more details, let us review informally the main difference
between randomness extractors and PRF. A PRF is a family of functions, from
a set D on a set R, such that it is computationally hard to distinguish the
inputs/outputs of a function taken at random from the set of all functions from
D to R and of a function taken at random in the PRF family. It is important
to note that the key, or the index of the function taken in the PRF family, must
be kept secret, otherwise the distinction becomes easy. A randomness extractor
has the property that the output distribution is close to the uniform one, if the
input distribution has enough entropy. If the index is known, the randomness
extractor is called a strong randomness extractor. Hereafter, we only look at
strong randomness extractors, where the index is implicitly made public, and we
thus simply call them randomness extractors.

As a consequence, one can easily note that the notation prf has two different
purposes: (1) first stage, prf is used as a randomness extractor, with a public
and random key and a high-entropy input (but not as a PRF); (2) second stage,
prf is used as a PRF, to build a PRG. The HMAC function [5], designed and
analyzed as a secure MAC, is furthermore the default prf in several standards.

In this article, we primarily focus on the randomness extraction phases for
DH-based protocol and we show efficient and provable techniques for this task.
The key derivation phases can be solved by using techniques coming from the
random oracle methodology (see the recently proposed internet draft by Dang
and Polk in [12]) or by using a PRP in the counter mode.

1.3 HMAC as a Randomness Extractor

HMAC, as well as some other constructions, have been recently studied as ran-
domness extractors by Dodis et al. in [15]. This is the first formal analysis of
practical randomness extractors. They namely prove that variants of these con-
structions are almost universal hash functions under various assumptions. They
basically show how to construct a variable-input length almost universal hash
function family from a fixed-input length almost universal hash function family
(or even random functions/permutations). Thereafter, a little modification of
the Leftover Hash Lemma (LHL) [20] with a randomly chosen function from a
family of (almost) universal hash functions can be used to extract the entropy
of a random source.

Therefore, if the key of the (almost) universal hash function is correctly cho-
sen (not biased by the adversary), the whole construction is correct. But the
latter remark is important and not trivial in practice, since this key is not always

The Twist-AUgmented Technique for Key Exchange 413

(cannot always be) authenticated [10]. Finally, although this solution can be
proven in the standard model, it is overkill compared with our solutions.

1.4 Randomness Extractors

The notion of a randomness extractor is thus very important from a practical
point of view and is often ignored or misused by cryptographers, since solutions
are quite theoretical and requirements are strong.

In complexity theory, randomness extraction from a distribution has been
extensively studied (see [28] for a survey). For certain random sources, it has
been shown that it is impossible to extract even one bit of randomness [26]. One
way to solve this last problem is to use a small number of uniformly random
bits as a catalyst in addition to the bits from the weak random source as in the
LHL as said in [23]. However, in some cases, we can eliminate the need for the
random catalyst by restricting the class of weak random sources. Trevisan and
Vadhan and later Dodis [35, 14] have called such functions deterministic extrac-
tors. In cryptography, randomness extractors have been studied under different
adversaries to construct truly random generators [3], and deterministic extrac-
tors have been used to built All-Or-Nothing-Transforms (AONTs) schemes and
Exposure-Resilient Functions (ERF) [9, 16].

In the key exchange setting, the problem is to transform the random common
secret of small entropy rate into a common secret of entropy rate 1, where the
entropy rate is the ratio k/n of a random source of block-length n and of min-
entropy k (basically the number of random bits). For example, under the DDH
assumption in a 160-bit prime order q subgroup in Z�

p, we know that the input
random source (in a DH-based key exchange protocol) has 160 bits of min-
entropy. So, for a 1024-bit prime p, the entropy rate of the initial source is
160/1024. Because of the specific structure of the source, deterministic extractors
(which exploit the algebraic structure) may be used to derive cryptographic
keys. They would avoid problems with probabilistic randomness extractors if
the key of a universal hash function can be controlled by the adversary. On the
other hand, as we will see, large groups may be required, which would make the
overall protocol too inefficient. We will thus introduce a new technique to avoid
extractors, which takes advantage of the specific structure of elliptic curves.

1.5 Contribution and Organization

In this paper, we first focus on various techniques to derive a uniformly dis-
tributed bit-string from a high-entropy bit-string source. We explain their ad-
vantages and drawbacks. Then, we apply Kaliski’s technique [22], with quadratic
twists of elliptic curves, to avoid them. It is quite well-suited to authenticated
key exchange, since it already works on cyclic groups. Therefore, it is more effi-
cient than the Leftover Hash Lemma while retaining the same security attributes
(and namely, no additional assumption).

The basic idea is to run twice in parallel, an authenticated Diffie-Hellman
protocol on an elliptic curve E and on the quadratic twist Ẽ of E. This produces

414 O. Chevassut et al.

two points K and K̃ uniformly distributed on E and Ẽ respectively. With well-
chosen elliptic curves, the random choice of the abscissa of either K or K̃ is an
�-bit long random string. Randomness extractors are thus not needed anymore.

This “Twist AUgmented” (TAU) technique is provably secure assuming only
the intractability of the decisional Diffie-Hellman problem on elliptic curves.

Even though quadratic twists were previously introduced in the literature [7, 8]
in other contexts or with binary curves, we also show here that appropriate prime
order curves can be efficiently generated.

2 The Leftover Hash Lemma

In this section, we focus on the most well-known randomness extractor, which
makes use of the Leftover Hash Lemma [21, 20]. It provides a probabilistic ex-
tractor, which is optimal in general. Whereas in theory, (almost) universal hash
functions (AUH) should be used, in practice, one often asks for pseudo-random
functions (PRF). Let us see whether the practical way to do it is correct or not,
from a theoretical point of view. The definitions are given in the full version [11].

Lemma 1 (LHL [21]). Let D be a probabilistic distribution over {0, 1}n with
min-entropy at least σ. Let e be an integer and m = σ − 2e. Let H = {hk}k,
with hk ∈ Fn,m for any k ∈ {0, 1}�, be an almost universal hash function family.
Let H be a random variable uniformly distributed on H, X denotes a random
variable taking value in {0, 1}n, and H, X are independent. Then, (H,H(X)) is
2−(e+1)-uniform on H× {0, 1}m.

Impagliazzo and Zuckerman in [21] prove the lemma with an almost universal
hash function where ε = 1/2n. In [15], it is proved for any ε-almost universal
hash function family for ε* 1/2m. See also [31] for a proof. Therefore, combined
with the analysis of NMAC as an ε-AUH function, this may justify the design of
IKE when HMAC is used under a specific assumption on the independence of
the two keys in NMAC. We show in the following that the same result holds for
some PRFs provided ε be taken into account to estimate the size of the output.
However, we begin to prove a slight generalization of the LHL, similar to [15].

Lemma 2 (LHL with ε-AUH). Let D be a probabilistic distribution over
{0, 1}n with min-entropy at least σ. Let e be an integer and m ≤ α − 2e where
α = min(σ, log2(1/ε)). Let H = {hk}k, with hk ∈ Fn,m for any k ∈ {0, 1}�, be a
ε-almost universal hash function family. Let H be a random variable uniformly
distributed on H, X denotes a random variable taking value in {0, 1}n, and H, X
are independent. Then, (H,H(X)) is 2−e-uniform on H× {0, 1}m.

Proof. The proof relies on two claims. The first one comes from [31]. It applies
to a random variable X distributed according to a distribution D, taking values
on the finite set S and of collision probability κ = κ(X). If X is δ-uniform on
S, then κ ≥ (1 + 4δ2)/|S|.

The second claim studies the collision probability κ = κ(H,H(X)) where H
denotes a random variable with uniform probability on H, X denotes a random

The Twist-AUgmented Technique for Key Exchange 415

variable on the set {0, 1}n, and H and X are independent. We can easily adapt
the proof of [31] to prove that the statistical distance between the distribution
of (H,H(X)) and the uniform distribution on H×{0, 1}m is δ, which is at most
(1/2) ·

√
2m · (κ+ ε). So it can be upper-bounded by (1/2) ·

√
2m · (2−σ + ε),

since the collision probability κ is less than the guessing probability γ as noted
in [11]. If we denote by α = min(σ, log2(1/ε)), then we can upper-bound δ by
(1/2) ·

√
2m · 2 · 2−α and so if we want a bias of 2−e we need m ≤ α − 2e. �	

Remark 3. This requires ε* 1/2m as it is observed in [15], but ε ≤ 1/2m+2e is
enough. Anyway, this definitely excludes function families where the key-length
is the same as the output-length (as compression functions), unless they are
completely balanced, with ε = 0, which is quite a strong assumption.

2.1 Pseudo-random Functions vs. Almost Universal Hash Functions

We have already discussed the practical meaning of the universal hashing prop-
erty for compression functions. However, many standards (such as IKE [18, 24])
use the acronym prf at several places, for different purposes: randomness extrac-
tors and actual PRF. Let us recall here the crucial difference between pseudo-
random functions and randomness extractors: the former use random secret keys,
while the latter use random but known keys. We thus show below that the strong
assumption of PRF implies the almost universal hashing property. Therefore, the
Leftover Hash Lemma 2 applied with some PRF (namely keyed with uniform
random bit-strings and with advantage sufficiently small) provides a good ran-
domness extractor.

Theorem 4. If a family of functions F is a (2, ε, 2Tf)-PRF in Fn,m, then it is
an ε-AUH function family, where Tf denotes the maximal time to evaluate an
instance of F for all x ∈ {0, 1}n.

Proof. We want to show that if the hash function family F is not ε− AUH, i.e.
there exist x, y such that Prk[fk(x) = fk(y)] > 1/2m + ε, then there exists an
adversary against the PRF property with advantage at least ε.

Let us consider the following family of distinguishers, Dx,y for each pair (x, y)
of elements in {0, 1}n. The distinguisher Dx,y queries the oracle (either fk for
a random k or a random function) to get X = f(x) and Y = f(y), and simply
answers 1 if X = Y and 0 otherwise.

Suppose that F is not an ε-AUH function family. It means there exists a pair
(x, y) for which Prk[fk(x) = fk(y)] > 1/2m + ε. Let us consider the advantage
of the corresponding distinguisher Dx,y: if f is a truly random function in Fn,m,
the set of all functions from {0, 1}n to {0, 1}m, then Pr[Dx,y = 1] = 1/2m; if f
is a randomly chosen fk in F , then Pr[Dx,y = 1] > 1/2m + ε. As a consequence,
the advantage of Dx,y is not less than ε, which is in contradiction with the above
PRF property. �	

Therefore, we have the following corollary by combining lemma 2 with the pre-
vious theorem.

416 O. Chevassut et al.

Corollary 5. Let F be a family of functions in Fn,m, and Tf denote the maxi-
mal time to evaluate an instance of F on any x ∈ {0, 1}n. If F is a (2, ε, 2Tf)-
PRF, when applied on a random source with min-entropy at least σ, then it is a
good randomness extractor, of bias bounded by 1/2e, as soon as

m ≤ min(σ, log2(1/ε))− 2e.

Remark 6. This result is not in contradiction with the example described in [15],
since if ε = 1/2m with m bits of output, then clearly min(σ, log2(1/ε)) ≤ m. The
above corollary just claims that the bias is less than 1. As a consequence, we
cannot extract m bits.

2.2 The Leftover Hash Lemma in Practice

Even if there exist efficient universal hash functions, practitioners and designers
usually apply pseudo-random functions, or HMAC, which are clearly less efficient
than a simple linear operation. Anyway, a correct application would be valid in
both cases (according to the analysis for HMAC [15] — incomplete because of the
above problem with compression functions). However, the Leftover Hash Lemma
requires the key of the function family to be uniformly distributed, which is not
an easy task, since it may be (partly) chosen by a malicious user. This is the
case in IKEv1 [18], for compatibility reasons, and thus nothing can be formally
proved.

A simple way to guarantee such a uniform distribution is for the users to sign
this key (as done in IKEv2). However, such a signature is not always possible,
or available, according to the context such as in password-based authenticated
key exchange.

Another solution to cope with the randomness extraction error is, as noticed
by Shoup [31] and also by Barak et al. in [3], to use the same “certified key” or
the same hard-coded key in the software. Indeed, they suggest an extension of
the LHL which allows the derivation of many random bit-strings with a unique
random key, and thus a public and fixed hash function. However, the quality of
the extracted randomness decreases linearly with the number of extractions –
due to the hybrid technique. Nevertheless, this is often the unique solution.

3 Deterministic Randomness Extractors

Other alternatives to the LHL are also available, namely when no certification is
available, as in the password-based setting, by using deterministic randomness
extractors. Several of them exist in the literature and have already been employed
by standardization bodies to convert a random element of a group into a random
bit-string as in [29].

3.1 Hash-Diffie-Hellman

The simplest one, and perfectly reasonable in practice, is the use of a cryp-
tographic hash function. In the random oracle model [6], this gives a perfect

The Twist-AUgmented Technique for Key Exchange 417

random bit-string, under the so-called computational Diffie-Hellman assump-
tion. In the standard model, a weaker assumption has been defined, the Hash
Diffie-Hellman assumption [1, 17]. But this assumption is, in some sense, the
assumption that a hash function is perfectly suited to this goal, while this is
not the applications that designers of hash functions have in mind. Everybody
may agree on the practical validity of such a construction, but it definitely re-
quires non-standard assumptions, from a theoretical point of view. We would
thus prefer to avoid this solution.

3.2 A Simple Deterministic Extractor

Basically, when we want an extractor of the entropy from a random (uniformly
distributed) element in a cyclic group G of order q, a bijection from G to Zq

would do the job, since it would transfer the uniform distribution G into a
uniform distribution in Zq (an appropriate choice for q thereafter allows the
truncation to the log q-rightmost bits to get an almost uniformly distributed
bit-string). Let us briefly review such a well-known bijection in the specific case
where G is the group of the quadratic residues modulo p, for a safe prime p,
close enough to a power of 2. This result is in the folklore, but some lemmas are
useful for the following, we thus briefly review the whole technique.

Theorem 7. There is an efficient bijection from a subgroup G of prime order
q in Z�

p to Zq, when p = 2q + 1.

Proof. Let us use a finite field Zp, with p = 2q+1 (a safe prime) and work in the
cyclic group of order q: the group G of the quadratic residues modulo p. Since
p = 3 mod 4, this is a Blum prime, and thus −1 does not lie in G.

We can define the following extractor, for any y ∈ G: if y ≤ q, then f(y) =
f1(y) = y, else f(y) = f2(y) = p − y. Since −1 is not in G, and p − y = −y =
(−1)×y mod p, f1 maps G to G (the identity function) and f2 maps G to Zp\G.
Therefore, f is an injective mapping and for y ∈ G, f1(y), f2(y) are in Zq. A
simple counting argument proves that this is a bijection. �	
The following lemma analyzes the security when truncation is used in order to get
� bits uniformly distributed. The proof of the lemma is done in the full version [11].

Lemma 8. Let us denote by Uq the uniform distribution on the space Zq and
by U2� the uniform distribution on the space {0, 1}� ∼ {0, . . . , 2� − 1}. If |q| = �

and |q − 2�| ≤ 2�/2, then the statistical distance is bounded by 1/
√

2�.

Therefore, the truncation of f gives a deterministic randomness extractor from
G onto Zq. However, this requires the use of a safe prime, and thus quite large
groups, which make DH-protocols quite inefficient.

4 The “Twist-AUgmented” Technique

In this section, we describe a new mechanism which excludes all the above draw-
backs: it does not require any authenticated random value (needed for proba-
bilistic extractors); it is provably secure in the standard model, under classical

418 O. Chevassut et al.

assumptions; it works in small groups (contrary to the above deterministic
example.)

In the early 90’s, Kaliski [22] used elliptic curves and their twists for making a
random permutation from a random function. This construction can be used to
make a uniform distribution in Z2q from points uniformly distributed on a curve
or its quadratic twist, both on the finite field Fq. More recently, quadratic twists
have also been used in the context of password-authenticated key exchange [8].
The goal was to make the Bellovin et al.’s encrypted key exchange protocol [4]
immune to partition attacks but did not explain how to specify the key-derivation
function. It has also been applied to the context of public-key encryption [7].

We can take advantage of elliptic curves and their quadratic twists, as done
by Kaliski [22], to come up with a technique that does not require stronger
assumptions. This technique, called “Twist-AUgmented” (TAU), uses the fact
that a random point on a curve over Fp has an abscissa uniformly distributed
in a set E and that a random point over its twist has an abscissa uniformly
distributed in the set Ẽ as well, i.e. it is the complementary set of E in Fp.
Therefore by choosing one of the two abscissae at random, we will get an element
almost uniformly distributed in Fp. For well-chosen fields, we thus efficiently
get an almost uniformly distributed bit-string, which may be 256 bits long: it
is enough to derive two keys (for privacy and for authentication) without any
pseudo-random function by simply splitting this bit-string. As a consequence,
it avoids the requirement of randomness extractors, and even pseudo-random
functions, since we directly get a uniformly distributed bit-string, large enough.

4.1 Quadratic Twist of an Elliptic Curve

Let p > 3 be a prime number. An elliptic curve is a set of points E = Ea,b =
{(x, y) : y2 = x3 +ax+ b}∪{∞E}, where a and b are elements of Fp and ∞E is a
symbol for the point at infinity. It is well known that an elliptic curve E can be
equipped with a group law —the so-called chord and tangent group law— such
that the computational and decisional Diffie-Hellman problems are believed to
be hard problems in general.

Let c be a quadratic non-residue in Fp, and define the quadratic twist of
Ea,b to be the curve given by the following equation: Ẽa,b = {(x, y) : cy2 =
x3 + ax + b} ∪ {∞

Ẽ
}.

The change of variables x′ = cx and y′ = c2y transforms the equation of
Ẽa,b into y′2 = x′3 + ac2x′ + bc3. This demonstrates that Ẽa,b is isomorphic to
an elliptic curve and can therefore be equipped with a group law. The main
interest of the introduction of the quadratic twist here follows directly from the
definition: if x is not the abscissa of a point of Ea,b, then x3 + ax + b is not
a square in Fp and therefore (x3 + ax + b)/c is a square in Fp. Then it is the
abscissa of a point of Ẽa,b. The converse is also true.

Note 9. In the cryptographic application we have in mind, this is crucial to keep
the equation of Ẽ in the non-Weierstrass form. For the internal computations,
of course, we apply the above-mentioned transformation so that we can use the

The Twist-AUgmented Technique for Key Exchange 419

classical algorithms, but the result of any computation should be transformed
back to the previous representation before usage in cryptographic primitives.

Cardinalities. Hasse-Weil’s theorem gives a good bound on the group order of
an elliptic curve [33]. Let us write q = #E = p + 1 − t, then we have |t| < 2

√
p.

We could apply the same result to Ẽ, but in fact the number of points of a curve
and its twist are far from being independent. Starting with the fact that a scalar
is either a point on E or a point on Ẽ, it is easy to derive that q̃ = #Ẽ = p+1+t.
For maximal security, it is desirable that the group orders are prime numbers.
Hence, since p is odd, this implies that t is odd. Then both q and q̃ are odd.

Choice of the Prime Field. We have restricted ourselves to curves defined
over prime fields. The notion of a quadratic twist of an elliptic curve also exists for
more general finite fields and in particular for fields of characteristic 2. However,
they are of less interest in our context where we want to use the property that
the abscissae of the points of the groups we are dealing with cover the whole
finite field. In characteristic 2, all the non-super-singular curves have a group
order that is divisible by (at least) 2. Hence keeping the covering property would
imply to work with non-prime order groups. Even if it looks feasible to patch the
protocol for that situation, it is certainly less elegant than using a prime-order
group with curves over prime fields.

To achieve our goal, we need that the abscissa of a point taken randomly in
E or in Ẽ behaves like a random bit-string of length �. Since all the elements of
Fp are obtainable as abscissae of points of E and Ẽ, we will be able to show that
the random abscissa in E or Ẽ gives a random element in Fp (see Lemma 10, the
proof appears in the full version [11].) To convert this element to a bit-string of
length � without any further device and keeping the randomness unbiased, it is
necessary to have p very close to 2�. Hence we propose to use a prime p which
can be written p = 2� − ε, where ε is an integer less than 2�/2 (see previous
Lemma 8, which proof appears in the full version [11].)

This extra-condition on p is not a practical inconvenience. In fact, the primes
that are used in practice are almost always of this form, because they allow a
faster arithmetic than more general primes. For instance, the curves proposed
by the NIST are defined over a finite field with primes which are often suitable
to our case (the prime field, not the curves!).

Finding a Suitable Elliptic Curve and Twist. The basic approach for con-
structing a curve E over Fp such that both q and q̃ are primes is to pick random
curves, count their cardinalities with the SEA algorithm, and keep only the good
ones. With this strategy, if numbers of points were completely independent and
behaved like random numbers in the Hasse-Weil interval, we would expect to
have to have to build O(log2 p) curves before finding a good one. If log p ≈ 200,
it means that we have to run the SEA algorithm about 20000 times to construct
a good curve, which is prohibitive.

Fortunately, the SEA algorithm [27] is suited for this kind of search, since it
computes the order of E modulo small primes and recombines the group order by

420 O. Chevassut et al.

Chinese Remaindering. Hence as soon as we know the order of E modulo a small
prime �, we abort the computation if this is zero. Furthermore, the group order
of Ẽ modulo � is readily deduced from #E mod �, and similar abortion can be
played also with the twist. As a consequence, most of the curves are very quickly
detected as bad curves, because either the curve or its twist has a non-prime
group order.

In fact, the situation is more tricky, since the order of the curve and of its twist
are not independent. For instance, imagine that p ≡ 2 mod 3, then the condition
#E ≡ 0 mod 3 is equivalent to t ≡ 0 mod 3, which in turn is equivalent to
#Ẽ ≡ 0 mod 3. A rigorous estimation of the running time of the SEA algorithm
equipped with the early-abort strategy is out of the scope of this work. We just
propose some numerical experiments to justify the claim that the construction
of secure pairs of curve and twist is easily feasible on a reasonable computer.

We picked randomly about 30000 200-bit primes, and for each of them we
picked a random curve and computed its cardinality and the cardinality of its
twist. In the following table, we summarize the percentage of the curves for which
both number of points are not divisible by all primes up to Pmax.

Pmax 1 2 3 5 7 11 13 17 19
remaining curves 100% 33% 12% 7.2% 4.9% 3.9% 3.3% 3.0% 2.7%

From this data, we see that for 97.3 % of the curves, the SEA algorithm will be
stopped at a very early stage, thus spending only a tiny fraction of the running
time of the whole computation. With usual reasonable heuristics, it is expected
that about 500 full computations are required on average before finding a good
pair of curve and twist. A single full SEA computation takes about 20 seconds for
this size on a personal computer, hence in about 3 hours, we expect to build good
parameters for a key-size of 200 bits. An example curve is given in Appendix A.

If there is a need to construct the curves in a constraint environment, then it
is probably a better idea to use the theory of Complex Multiplication. We will
not give the details here, since the construction is well described both in the
literature and in the standards. For our purpose, it suffices to choose a group
order and a twisted group order which are both primes.

4.2 TAU Distribution

Now, we show that the distribution of the master secret key K, if we take it at
random either on the curve E or Ẽ, is uniformly distributed on {0, 1}�, in a sta-
tistical way. On the one hand, we prove that it is statistically indistinguishable
from the uniform distribution on {0, . . . , p − 1} and then that the latter distri-
bution is statistically indistinguishable from the uniform distribution on {0, 1}�

by using lemma 8 by replacing q by p. The proofs of the following lemmas are
done in the full version [11]. Let us denote by D the distribution of K:

D = {K = [Rb]abs b
R← {0, 1},R0

R← E,R1
R← Ẽ}

= {K = xb b
R← {0, 1}, x0

R← [E]abs, x1
R← [Ẽ]abs}.

The Twist-AUgmented Technique for Key Exchange 421

Lemma 10. The distribution D is statistically close to the uniform distribution
Up in Fp ∼ Zp:

δ =
1
2
×
∑
x∈Fp

∣∣∣∣∣ Pr
K

R←Up

[K = x] − Pr
K

R←D
[K = x]

∣∣∣∣∣ ≤ 1√
2�−1

.

Corollary 11. The statistical distance between the uniform distribution on U�

and the TAU technique if |p − 2�| ≤ 2�/2, is upper bounded by (1 +
√

2)/
√

2�

according to Lemmas 10 and 8.

Note 12. However, in an actual scheme, the bit b many not be perfectly uni-
formly distributed, but biased in a negligible way. Anyway, it will be important
to show that such a bias will not impact much the distribution of the key (see
the proof of Theorem 13.)

4.3 Working Using Abscissae Only

In the basic description, even if only the abscissa of a point is used at the end
to derive the key, we worked all along with points on the elliptic curves. In fact,
this is not necessary. Let P be a point on an elliptic curve, then to compute the
abscissa of a multiple of P, only the abscissa of P is required. This is a very
classical result, that is used for instance in fast versions of the ECM factoring
algorithm [25].

As a consequence, it is possible to improve the TAU protocol as follows (see
figure 1): each time there is a point on a curve, we replace it by just its abscissa.
In particular, now X0, X1, Y0 and Y1 are just elements of Fp which are abscissae
of points on the curve or on the twist. We then denote by x ◦ X the abscissa of
the point Y which is x times a point X whose abscissa is X . The space saving is
tiny (namely just the one bit that was used to code the ordinate), but this has
the advantage to put in light the fact that ordinate’s role is irrelevant in the TAU
protocol. Furthermore, this improves the time complexity by more than 30%, at
least from Bob’s view point. Indeed, while in the basic Diffie-Hellman protocol
both Alice and Bob have to compute 2 exponentiations, in the TAU version, Alice
has to compute 3.5 on average (an additional cost of 75%), and Bob still 2 only
(just a negligible additional cost due to the computation with abscissae only.)
The use of the 2 coordinates of the points would require an additional square
root computation, and thus an exponentiation in the field. Such an operation
is much less expensive than the computation of the multiple of a point in the
curve, but its cost is not negligible.

Note that not all EC-based protocols can be transformed to work only with
abscissae. For instance, El-Gamal signatures involve additions in the elliptic
curve, and this cannot be done only with the input of abscissae of the points;
only an exponentiation is feasible. TAU can use this improved technique.

4.4 Efficient and Unconditionally Secure Pseudo-random Functions

Roughly, our TAU technique runs twice the basic scheme (but with an actual cost
of only 37% more), and provides a long bit-string which is uniformly distributed,

422 O. Chevassut et al.

under the Elliptic Curve Decisional Diffie-Hellman assumption. Such a long bit-
string K allows an efficient and secure key re-generation, to get both a key
confirmation km and a session/master key sk, without any additional assumption
about pseudo-random functions: K can be simply split into km and sk, with
convenient sizes.

For the same security level, the LHL would require a group of order around
q2, and thus with a complexity exactly twice as much as the basic scheme.
With the above improved technique using abscissae, our technique does not
double the whole basic scheme, but the complexity is just increased by a fac-
tor 1.38. We thus get an average improvement of 30% if we compare to the
LHL.

5 The “Twist-AUgmented” Authenticated Diffie-Hellman
Protocol

5.1 Description

Using the properties of “Twist-AUgmented” deterministic randomness extrac-
tor, we then convert any Diffie-Hellman-like protocol, which provides a random
element in a cyclic group, into a protocol which provides a random bit-string,
without any additional assumptions. See figure 1 for the description, which im-
plements the above improvement using abscissae only.

5.2 Semantic Security

On Figure 1, we present the TAU-enhancement of a classical authenticated Diffie-
Hellman key exchange: basically, some flows are doubled, on each curve. However,
Bob randomly chooses the curve which will be used for the Diffie-Hellman com-
putation, and compute correct values on this curve only. For the other part, he
plays randomly. This protocol achieves the property of semantic security under
the elliptic-curve decisional Diffie-Hellman assumption and does not use ideal-
hash functions. In order to prove this claim (the full proof is postponed to the
the full version [11]) we consider games that have distances that can be measured
easily. We use Shoup’s lemma to bound the probability of events in successive
games [30, 32]. The first game G1 goes back to the less efficient, but equivalent,
protocol using abscissae and ordinates, and the second game G2 allows us to
avoid active attacks, granted signatures, so that in the following games we only
have to worry about replay attacks. Proving the claim boils down to coming
up with the appropriate games G3 through G8, in which we obtain a random
master key K uniformly distributed in {0, . . . , 2� − 1}. The game G9, providing
random session keys, is then easy to come up with and therefore the proof of the
claim easily follows. In the last game G9, the adversary has indeed clearly no
means to get any information about the random bit involved in the Test-query
except to flip a coin.

The Twist-AUgmented Technique for Key Exchange 423

Alice Bob

Common twisted curves E0, E1 over the finite field Fp

of respective prime orders q0, q1

Xi = [Ei = 〈Pi〉]abs = 〈Pi〉abs, where Pi = [Pi]abs, for i = 0, 1

Signing Key : skA Signing Key : skB

Verification Key : vkA Verification Key : vkB

accept ← false accept ← false
terminate ← false terminate ← false

s
R← {0, 1}�, x0

R← Zq0 , X0 = x0 ◦ P0

x1
R← Zq1 , X1 = x1 ◦ P1

σA = AUTH.Sign(skA; (s,X0, X1))
Alice, s−−−−−−−−−−→

X0, X1, σA

Check σA

β
R← {0, 1}

yβ
R← Zqβ , Yβ = yβ ◦ Pβ

Y1−β
R← X1−β

Kβ = yβ ◦ Xβ ,
km = MacKey(Kβ)
σB = AUTH.Sign(skB ; (s, X0, X1, Y0, Y1))

Check σB
Bob, s←−−−−−−−−−−

Y0, Y1, σB , μB

μB = MAC.Sign(km; (“1”, s, Bob))
d

R← {0, 1}, K = xd ◦ Yd

km = MacKey(K)
Try to check μB : in case of failure

d = 1 − d, K = xd ◦ Yd

km = MacKey(K)
Check μB

μA = MAC.Sign(km, (“0”, s, Alice))
accept ← true

s−−−−−−−−−−→
σA, μA

Check μA
accept ← true

terminate ← true terminate ← true

sk = SessionKey(K)
sid = s, Alice, Bob, X0, X1, Y0, Y1, σA, σB , μA, μB

where SessionKey(K) = PRFK(0), MacKey(K) = PRFK(1)
[R]abs is the abscissa of the point R in Fp

x ◦ P is the abscissa of x times a point P whose abscissa is P
and when a check fails whithout being caught, one stops the
execution: terminate ← true

Fig. 1. An honest execution of the “Twist-AUgmented” Authenticated Diffie-Hellman
protocol

Theorem 13. For any adversary A running within time bound t, with less than
qs different sessions

Advake
TAU(A) ≤ 4 · Succeuf−cma

AUTH (2t, qs, qs) + 10 · Succeuf−cma
MAC (2t, 1, 0)

+2 · Advecddh
P,〈P〉(t

′) + 2 · Advecddh
Q,〈Q〉(t

′)

+2qsAdvprf
F (t′, 2) + 20Advprf

F (2t, 1) +
20 + 5qs√

2�
,

424 O. Chevassut et al.

where t′ ≤ t + 8 × qsTm, and Tm is an upper-bound on the time to compute the
multiplication of a point by a scalar.

6 Conclusion

This paper presents a new technique in order to get an appropriate session key
with Diffie-Hellman key exchanges. It provides the best efficiency, since it is more
than 30% more efficient than using the Leftover Hash Lemma, while it does not
require any authenticated randomness.

Acknowledgement

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The first author is supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, Mathematical Information and
Computing Sciences Division, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098. This document is report LBNL-54709. Disclaimer
available at http://www-library.lbl.gov/disclaimer.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In CT – RSA ’01, LNCS 2020, pages 143–158. Springer-
Verlag, 2001.

2. B. Barak and S. Halevi. An architecture for robust pseudo-random generation and
applications to /dev/random. In Proc. of ACM CCS, ACM, 2005.

3. B. Barak, R. Shaltiel and E. Tromer. True Random Number Generators Secure in
a Changing Environment. In CHES ’03, pages 166–180. LNCS 2779, 2003.

4. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72–84. IEEE, 1992.

5. M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message
Authentication. In Crypto ’96, LNCS 1109, pages 1–15. Springer-Verlag, 1996.

6. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS, pages 62–73. ACM Press, 1993.

7. B. Möller. A Public-Key Encryption Scheme with Pseudo-Random Ciphertexts.
In ESORICS ’04, LNCS 3193, pages 335–351. Springer-Verlag, Berlin, 2004.

8. C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authen-
ticated Key Exchange Protocols. In ACISP ’01, LNCS 2119, pages 487–501.
Springer-Verlag, 2001.

9. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz and A. Sahai. Exposure-Resilient
Functions and All-Or-Nothing Transforms. In Eurocrypt ’00, LNCS 1807, pages
453–469. Springer-Verlag, 2000.

10. O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. Key Derivation
and Randomness Extraction. ePrint Report 2005/061. Available at http://

eprint.iacr.org/.

The Twist-AUgmented Technique for Key Exchange 425

11. O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. The Twist-
Augmented Technique for Key Exchange. Full version available at http://

www.di.ens.fr/users/pointche/pub.php .

12. Q. Dang and T. Polk. Hash-Based Key Derivation. draft-dang-nistkdf-00.txt.
Available at http://www.ietf.org/internet-drafts/ .

13. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6):644–654, November 1976.

14. Y. Dodis. Exposure-Resilient Cryptography. PhD Thesis, MIT, August 2000.

15. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In Crypto
’04, LNCS, pages 494–510. Springer-Verlag, 2004.

16. Y. Dodis, A. Sahai, A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In Eurocrypt ’01, LNCS 2405, pages 301–324. Springer-Verlag, 2001.

17. R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over Non-
DDH Groups. In Eurocrypt ’04, LNCS 3027, pages 361–381. Springer-Verlag, 2004.

18. D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409, 1998.

19. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
from any One-Way Function. SIAM Journal of Computing, 28(4):1364–1396, 1999.

20. I. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation from One-Way
Functions. In Proc. of the 21st STOC, pages 12–24. ACM Press, New York, 1989.

21. I. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In Proc. of the
30th Annual IEEE FOCS, pages 248–253, 1989.

22. B. Kaliski. One-Way Permutations on Elliptic Curves. Journal of Cryptology,
3(3):187–199, 1991.

23. J. Kamp and D. Zuckerman. Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. In Proc. of the 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003.

24. C. Kaufman. The Internet Key Exchange (IKEv2) Protocol. INTERNET-
DRAFT draft-ietf-ipsec-ikev2-17.txt, September 23, 2004. Available at http://

www.ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-17.txt

25. P. L. Montgomery. An FFT Extension of the Elliptic Curve Method of Factoriza-
tion. PhD thesis, University of California – Los Angeles, 1992.

26. M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-
random sources. In J. of Computer and System Sciences, 63:612–626, 1986.

27. R. Schoof. Counting Points on Elliptic Curves over Finite Fields. In J. Théor.
Nombres Bordeaux, 7:219–254, 1995.

28. R. Shaltiel. Recent developments in Extractors. In Bulletin of the European Associ-
ation for Theoretical Computer Science, Volume 77, June 2002, pages 67–95. Avail-
able at http://www.wisdom.weizmann.ac.il/∼ronens/papers/survey.ps, 2002.

29. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, december
2001. ISO/IEC JTC 1/SC27.

30. V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239–259.
Springer-Verlag, Berlin, 2001.

31. V. Shoup. A Computational Introduction to Number Theory Algebra. In Cam-
bridge University Press, 2005. Freely available at http://www.shoup.net/ntb/.

32. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Available at http://www.shoup.net/papers/, 2004.

33. J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, 1986.

426 O. Chevassut et al.

34. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January 1999.
OpenSSL. version 0.9.7e

35. L. Trevisan and S. Vadhan. Extracting Randomness from Samplable Distributions.
In Proc. of the 41st Annual IEEE FOCS, 2000.

A An Example 200-Bit Pair of Curve and Twist

We give a pair of curve and twist suitable for implementing the TAU protocol.
This curve was produced using the method sketched in Section 4.1. We choose
a curve with a = −3, to allow the use of the fast projective group law.

Let � = 200, and let p = 2� − 978579. Let b in Fp be given by

b = 386119362724722930774569388602676779780560253666503462427823.

The trace of the curve E of equation y2 = x3 − 3x + b, is

tE = −1864972684066157296039917581949.

Hence, the group orders of E and of its twist Ẽ are p + 1 ± tE, which are both
prime numbers.

Password-Based Group Key Exchange

in a Constant Number of Rounds

Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, and David Pointcheval

1 Departement d’Informatique, École normale supérieure,
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{Michel.Abdalla, David.Pointcheval}@ens.fr
http://www.di.ens.fr/~{mabdalla, pointche}

2 Cryptology Department, CELAR, 35174 Bruz, France
Emmanuel.Bresson@polytechnique.org

http://www.di.ens.fr/~bresson
3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

OChevassut@lbl.gov

http://www.dsd.lbl.gov/~chevassu

Abstract. With the development of grids, distributed applications are
spread across multiple computing resources and require efficient secu-
rity mechanisms among the processes. Although protocols for authen-
ticated group Diffie-Hellman key exchange protocols seem to be the
natural mechanisms for supporting these applications, current solutions
are either limited by the use of public key infrastructures or by their
scalability, requiring a number of rounds linear in the number of group
members. To overcome these shortcomings, we propose in this paper the
first provably-secure password-based constant-round group key exchange
protocol. It is based on the protocol of Burmester and Desmedt and is
provably-secure in the random-oracle and ideal-cipher models, under the
Decisional Diffie-Hellman assumption. The new protocol is very efficient
and fully scalable since it only requires four rounds of communication
and four multi-exponentiations per user. Moreover, the new protocol
avoids intricate authentication infrastructures by relying on passwords
for authentication.

Keywords: Password-based Authentication, Group Key Exchange.

1 Introduction

Motivation. Modern distributed applications often need to maintain consis-
tency of replicated information and coordinate the activities of many processes.
Collaborative applications and distributed computations are both examples of
these types of applications. With the development of grids [12], distributed
computations are spread across multiple computing resources requiring efficient
security mechanisms between the processes. Although protocols for group Diffie-
Hellman key exchange [5, 7, 6, 8] provide a natural mechanism for supporting
these applications, these protocols are limited in their scalability due to a number

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 427–442, 2006.
c© International Association for Cryptologic Research 2006

428 M. Abdalla et al.

of rounds linear in the number of group members. An alternative is to use a proto-
col for group key exchange that runs in a constant number or rounds [11, 15, 16].
The two measures of a protocol’s efficiency are the computational cost per mem-
ber and the communication complexity (number of protocol rounds) of the given
protocol. Since the Moore’s laws has told us that computing power grows faster
than communication power, it is therefore natural to trade communication power
for computing power in a group key exchange protocol.

A password is the ideal authentication means to exchange a session key in
the absence of public-key infrastructures or pre-distributed symmetric keys. In a
group, the sharing of a password among the members greatly simplifies the setup
of distributed applications [7, 11]. An example of distributed applications could
simply be the networking of all the devices attached to a human. Low-entropy
passwords are easy for humans to remember, but cannot of course guarantee the
same level of security as high-entropy secrets such as symmetric or asymmetric
keys. The most serious attack against a password-based protocol is the so-called
dictionary attack: the attacker recovers the password and uses it to imperson-
ate the legitimate user. The low-entropy feature makes the job of the attacker
easier since the attacker (off-line) runs through all the possible passwords in or-
der to obtain partial information and to maximize his success probability. The
minimum required from a protocol is security against this attack.

Contributions. In the present paper, we study the problem of scalable pro-
tocols for authenticated group Diffie-Hellman key exchange. Many researchers
have studied and found solutions to this problem in the context of a Public-Key
Infrastructure (PKI), yet a (secure) solution had to be found in the context of
a (short) password shared among the members of the group. Two attempts in
this direction are due to Dutta and Barua [11] and to Lee, Hwang, and Lee [17].
Unfortunately, adding authentication services to a group key exchange protocol
is a not trivial since redundancy in the flows of the protocol can open the door
to different forms of attacks. In fact, in Section 3, we briefly describe attacks
against the schemes of Dutta and Barua [11] and of Lee, Hwang, and Lee [17].
Then, in Section 4, we show how to add password-authentication services to the
Burmester and Desmedt scheme [9, 10]. Our protocol is provably secure in the
random-oracle [4] and ideal-cipher models [3] under the Decisional Diffie-Hellman
assumption.

Related Work. Following the work of Bresson et al. on the group Diffie-
Hellman key exchange problem [5, 7, 6, 8], several researchers have developed sim-
ilar protocols but that run in a constant number of rounds. Katz and Yung [15]
added authentication services to the original Burmester and Desmedt’s proto-
col [9, 10]. Later, Kim, Lee and Lee extended the work of Katz and Yung to take
into account the notion of dynamicity in the membership [16]. The problem of
adding password-authentication services followed shortly after. In [7], Bresson et
al. proposed the first solution to the group Diffie-Hellman key exchange problem
in the password-based scenario. Their protocol, however, has a total number of
rounds which is linear in the total number of players in the group. In [11, 17], two

Password-Based Group Key Exchange in a Constant Number of Rounds 429

different password-based versions of Burmester-Desmedt protocol were proposed
along with proofs in the random-oracle and ideal-cipher models. Unfortunately,
the latter two schemes are not secure.

Outline of the paper. The paper is organized as follows. In Section 2, we
recall the security model usually used for password-based group Diffie-Hellman
key exchange. This model was previously defined in [7], but also takes advantage
of [1]. In Section 3 we recall Burmester-Desmedt scheme and describe attacks
against the schemes of Dutta and Barua [11] and of Lee, Hwang, and Lee [17].
In Section 4, we describe the mechanics behind our protocol. In Section 5, we
show that our protocol is provably-secure in the random-oracle and ideal-cipher
models under the Decisional Diffie-Hellman assumption.

2 Security Model

2.1 Password-Based Authentication

In the password-based authentication setting, we assume each player holds a
password pw drawn uniformly at random from the dictionary Password of size
N . This secret of low-entropy (N is often assumed to be small, i.e. typically less
than a million) will be used to authenticate the parties to each other

Unfortunately, one cannot prevent an adversary to choose randomly a pass-
word in the dictionary and to try to impersonate a player. However such on-line
exhaustive search (even if N is not so large) can easily be limited by requiring a
minimal time interval between successive failed attempts or locking an account
after a threshold of failures. Security against such active attacks is measured in
the number of passwords the adversary can “erase” from the candidate list after
a failure.

On the other hand, off-line exhaustive search cannot be limited by such prac-
tical behaviors or computational resources considerations. Hopefully, they can
be prevented if the protocol is carefully designed and ensures that no information
about the password can leak from passively eavesdropped transcripts, but also
from active attacks.

2.2 Formal Definitions

We denote by U1, . . . ,Un the parties that can participate in the key exchange
protocol P . Each of them may have several instances called oracles involved in
distinct, possibly concurrent, executions of P . We denote Ui instances by U j

i .
The parties share a low-entropy secret pw which is uniformly drawn from a small
dictionary Password of size N .

The key exchange algorithm P is an interactive protocol between the Ui’s
that provides the instances with a session key sk. During the execution of this
protocol, the adversary has the entire control of the network, and tries to break
the privacy of the key.

430 M. Abdalla et al.

Remark 1. In the “constant-round” protocols that we will study, simultane-
ous broadcasts are intensively used. However we do not make any assumption
about the correctness of the latter primitive: it is actually a multi-cast, in which
the adversary may delay, modify, or cancel the message sent to each recipient
independently.

In the usual security model [7], several queries are available to the adversary to
model his capability. We however enhance it with the Real-or-Random notion for
the semantic security [1] instead of the Find-then-Guess. This notion is strictly
stronger in the password-based setting. And actually, since we focus on the
semantic security only, we can assume that each time a player accepts a key,
the latter is revealed to the adversary, either in a real way, or in a random one
(according to a bit b). Let us briefly review each query:

– Send(U j
i , m): This query enables to consider active attacks by having A send-

ing a message to any instance U j
i . The adversaryA gets back the response U j

i

generates in processing the message m according to the protocol P . A query
Send(Start) initializes the key exchange algorithm, and thus the adversary
receives the initial flows sent out by the instance.

– Testb(U j
i): This query models the misuse of the session key by instance Ui

(known-key attacks). The query is only available to A if the attacked instance
actually “holds” a session key. It either releases the actual key to A, if b = 1
or a random one, if b = 0. The random keys must however be consistant
between users in the same session. Therefore, a random key is simulated by
the evaluation of a random function on the view a user has of the session:
all the partners have the same view, they thus have the same random key
(but independent of the actual view.)

Remark 2. Note that it has been shown [1] that this query is indeed enough
to model known-key attacks —where Reveal queries, which always answer with
the real keys, are available—, and makes the model even stronger. Even though
their result has only been proven in the two-party and three-party scenarios, one
should note that their proof can be easily extended to the group scenario.

As already noticed, the aim of the adversary is to break the privacy of the session
key (a.k.a., semantic security). This security notion takes place in the context
of executing P in the presence of the adversary A. One first draws a password
pw from Password, flips a coin b, provides coin tosses to A, as well as access to
the Testb and Send oracles.

The goal of the adversary is to guess the bit b involved in the Test queries,
by outputting this guess b′. We denote the AKE advantage as the probability
that A correctly guesses the value of b. More precisely we define Advake

P (A) =
2 Pr[b = b′]−1. The protocol P is said to be (t, ε)-AKE-secure if A’s advantage
is smaller than ε for any adversary A running with time t.

2.3 On the Simplification of the Model

In previous models, Execute queries were introduced to model passive eaves-
dropping. However, they can easily be simulated using the Send queries. In our

Password-Based Group Key Exchange in a Constant Number of Rounds 431

analysis, we refine the way to deal with the adversary possible behaviors. We will
denote by qactive the number of messages the adversary produced by himself (thus
without including those he has just forwarded). This number upper-bounds the
number of on-line “tests” the adversary performs to guess the password. And
we denote by qsession the total number of sessions the adversary has initiated:
nqsession, where n is the size of the group, upper-bounds the total number of
messages the adversary has sent in the protocol (including those he has built
and those he has just forwarded). We emphasize that this is stronger than con-
sidering only Execute and Send queries: while being polynomially equivalent,
the two models are not tightly equivalent, since the adversary does not need
to know in advance if he will forward all the flows, or be active when a new
session starts. Moreover, suppressing the Execute queries makes the model even
simpler.

The best we can expect with such a scheme is that the adversary erases no
more than 1 password for each session in which he plays actively (since there
exists attacks which achieve that in any password-based scheme.) However, in
our quite efficient scheme, we can just prevent the adversary from erasing more
than 1 password for each player he tries to impersonate (we will even show our
proof is almost optimal.)

3 Preliminaries

The best starting point for an efficient password-based group key exchange,
and namely if one wants a constant-round protocol, is the scheme proposed by
Burmester and Desmedt [9, 10] at Eurocrypt 94 and later formally analyzed by
Katz and Yung in 2003 [15].

3.1 The Burmester and Desmedt Protocol

In the Burmester-Desmedt scheme, one considers a cyclic group G generated by
g, in which the Decisional Diffie-Hellman (DDH) assumption holds. The protocol
works as follows, where all the indices are taken modulo n (between 1 and n),
and n is the size of the group:

– Each player Ui chooses a random exponent xi and broadcasts zi = gxi;
– Each player computes the Zi = zxi

i−1 and Zi+1 = z
xi+1
i = zxi

i+1, and broad-
casts Xi = Zi+1/Zi;

– Each player computes his session key as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2.

It is easy to see that for any i, we have Ki =
∏j=n

j=1 Zj = gx1x2+x2x3+···+xnx1 .

3.2 A Naive Password-Based Approach

We immediately note that encrypting values in the second round would lead to
a trivial dictionary attack, since the product of all values is equal to 1. One may
want to enhance the Burmester and Desmedt’s protocol by using a password pw

432 M. Abdalla et al.

to “mask” the first round only. One then comes up to the simple protocole, using
a mask of the form hpw , where h is another generator of the group G, whose
discrete logarithm in the base g is unknown [2]:

– Each player Ui chooses a random exponent xi, computes zi = gxi and broad-
casts z�

i = zih
pw ;

– Each player extracts zi−1 and zi+1, and computes the Zi = zxi

i−1 and Zi+1 =
z

xi+1
i = zxi

i+1. He then broadcasts Xi = Zi+1/Zi;
– Each player computes his secret as Ki = Zn

i Xn−1
i Xn−2

i+1 · · ·Xi+n−2.

Thereafter, one can add any key confirmation and/or any intricate key ex-
traction (even in the random oracle model, such as ski = H(View,Ki)), but it
does not help. Indeed, the homomorphic property of this “masking” technique
allows active attacks from the adversary: Assume that the adversary imperson-
ates players U1 and U3 and sends for the first round z�

1 = gu1 and z�
3 = gu3 , for

known values u1 and u3. On the second round, the adversary waits for receiving
X2 from player U2:

X2 =
(

z3

z1

)x2

= gx2(u3−u1) =
(z2

hpw

)u3−u1

.

Then one knows that hpw = z2/X
(u1−u3)−1

2 , which can be easily checked off-line:
a dictionary attack.

Furthermore, one can be easily convinced that any mechanism such as proof of
knowledge, commitments, etc. to “enforce” the adversary to properly construct
his values are useless against this attack, since in the above attack, the adversary
plays “honestly”.

3.3 The Dutta and Barua Protocol

Dutta and Barua [11] proposed a variant of the Kim-Lee-Lee protocol [16] pre-
sented at Asiacrypt ’04. It makes use of the ideal-cipher model, instead of a
simple mask as above, and is claimed to be secure against dictionary attacks:

– Each player Ui chooses a random exponent xi, as well as a random key ki,
computes zi = gxi , and broadcasts z�

i = Epw (zi);
– Each player extracts zi−1 and zi+1, and computes the KL

i = H(zxi

i−1) =
H(gxi−1xi) andKR

i = H(zxi+1
i) = H(zxi

i+1) = H(gxixi+1). For i = 1, . . . , n−1,
Ui computes Xi = KL

i ⊕ KR
i , while Un computes Xn = kn ⊕ KR

n ; For
i = 1, . . . , n − 1, Ui broadcasts E ′

pw (ki‖Xi), while Un broadcasts E ′′(Xn);
– After decryption, they can all recover all the ki, and then the common session

key is set as sk = H(k1‖ . . . ‖kn).

Unfortunately, their protocol contains another source of redundancy that can
be exploited by an attacker: the encryption algorithm of all users use the pass-
word as their encryption key. Therefore, a simple attack against their scheme
runs as follows: the adversary plays the role of user U3, with honest users U1

Password-Based Group Key Exchange in a Constant Number of Rounds 433

and U2. When the adversary receives z�
1 = Epw (z1) and z�

2 = Epw (z2), he sets
z�
3 = Z�

1 , sends it to users U1 and U2, and waits for their responses. Note that
setting z�

3 = Z�
1 implicitly sets x3 = x1. At this point, the adversary knows that

KL
2 = H(gx1x2) and KR

2 = H(gx2x3) = H(gx1x2), and thus X2 = 0k (where k is
the output length of the function H). Upon receiving E ′

pw (k2‖X2) from U2, he
can perform an off-line dictionary attack that immediately leads to the correct
password, since this will be the only one decrypting this value to k2‖0k.

This confirms the fact that converting a provably-secure scheme into a pass-
word-based protocol is not a simple task. The main problem we observe with
the above scheme is the unique way in which the initial messages of all users are
encrypted, allowing attacks where one player can easily replay messages from
another player. Thus, to avoid problems such as these, one should at least make
sure that the encryption key used by each user is unique to that user. In fact,
this is one of the features of the protocol that we present in the next section.

3.4 The Lee-Hwang-Lee Protocol

In [17], Lee, Hwang, and Lee proposed another password-based version of the
Burmester-Desmedt protocol, which makes use of the random-oracle and ideal-
cipher models. Let E be an ideal cipher and let H and H′ be random oracles.
Their protocol works as follows:

– Each player Ui chooses a random exponent xi, computes zi = gxi , and
broadcasts (Ui, z

�
i = Epw (zi));

– Each player Ui extracts zi−1 and zi+1, computesKi = H(zxi

i+1) = H(gxixi+1),
Ki−1 = H(zxi

i−1) = H(gxi−1xi), wi = Ki−1 ⊕Ki, and broadcasts (Ui, wi).
– Each player Ui first computes the values Kj = H(gxj−1xj) for j = 1, . . . , n,

using the values wj that were broadcasted in the second round. Next, each
player Ui sets sk = H′(H(gx1x2)‖ . . . ‖H(gxn−1xn)‖H(gxnx1)) as the common
session key.

To show that the protocol above is not secure, we present the following simple
attack against the semantic security of the session key. First, we start two sessions
with player U1 using {U1, . . . ,U4} as the group. Let x1 and x′

1 be the correspond-
ing values chosen by the two instances of player U1 in each of these sessions and
let (U1, z

�
1 = Epw (gx1)) and (U1, z

′�
1 = Epw (gx′

1)) be the corresponding values out-
putted by these instances. For the instance that outputted (U1, z

�
1), we provide

to it the values (U2, z
′�
1), (U3, z

�
1), and (U4, z

′�
1), as the first-round messages of

players U2, U3, and U4. This implicitly makes K1 = K2 = K3 = K4 = H(gx′
1x1).

Likewise, for the instance that outputted (U1, z
′�
1), we provide to it the values

(U2, z
�
1), (U3, z

′�
1), and (U4, z

�
1), as the first-round messages of players U2, U3,

and U4. This implicitly makes K ′
1 = K ′

2 = K ′
3 = K ′

4 = H(gx′
1x1). As a result,

w1 = w2 = w3 = w4 = 0 and w′
1 = w′

2 = w′
3 = w′

4 = 0 and, thus, we can easily
compute the appropriate second-round messages for players U2, U3, and U4 in
both sessions. Moreover, the session keys of these two sessions are the same.
Thus, we can ask test queries to both instances of player U1 and check whether
we get back the same value. This should be the case whenever the output of test
oracle is the actual session key.

434 M. Abdalla et al.

4 Our Protocol

As above, we use the ideal-cipher model. The latter considers a family of random
permutations Ek : G → G indexed by a �H-bit key k which are accessible (as well
as their inverses) through oracle queries (E and D). Here we use the password,
together with nonces, and the index of the user, to encrypt the values in the
first round. Other values are sent in the clear. Also a preliminary round is used
during which each player chooses random nonces to be used. This will be crucial
to define sessions, and then link the encrypted values all together.

Key generations (for the symmetric encryption E , and for the session key) will
make use of hash functions H : {0, 1}� → {0, 1}�H and G : {0, 1}� → {0, 1}�G .
Key confirmations will apply the function Auth : {0, 1}� → {0, 1}�Auth .

4.1 Description

The protocol runs as follows:

1. Each player Ui chooses a random nonce Ni and broadcasts (Ui, Ni);
2. The session S = U1‖N1‖ . . . ‖Ui‖Ni . . . ‖Un‖Nn is then defined, in which each

player has a specific index i, and a specific symmetric key ki = H(S, i, pw).
Each player Ui chooses a random exponent xi and broadcasts z�

i = Eki(zi),
where zi = gxi;

3. Each player extracts zi−1 = Dki−1(z
�
i−1) and zi+1 = Dki+1(z

�
i+1), and com-

putes the Zi = zxi

i−1 and Zi+1 = z
xi+1
i = zxi

i+1. He then broadcasts Xi =
Zi+1/Zi;

4. Each player computes his secret as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2, and

broadcasts his key confirmation Authi = Auth(S, {z�
j , Xj}j,Ki, i).

5. After having received and checked all the key confirmations, each player de-
fined is session key as ski = G(S, {z�

j , Xj ,Authj}j,Ki).

4.2 Security Theorem

Here we present the main security result of this paper, whose proof appears in
Section 5.

Theorem 3. Let P the above protocol in which the password is chosen in a
dictionary of size N . Then for any adversary A running in time t, that makes at
most qactive attempts within at most qSession sessions, his advantage in breaking
the semantic security of the session key, in the ideal-cipher model, is upper-
bounded by:

Advake
P (t) ≤ 2qactive

N
+ 4qsessionnAdvddh

G (t) +
2q2

G
2�G

+
2q2

Auth

2�Auth

+
8qG + 2qAuth + 2qD + 2nqEqsession + (qE + qD)2

|G| +
2qH(qH + qD)

2�H

where qG , qH, qAuth, qE , qD denote the number of oracle queries the adversary is
allowed to make to the random oracles G, H and Auth, and to the ideal-cipher
oracles E and D, respectively.

Password-Based Group Key Exchange in a Constant Number of Rounds 435

This theorem states that the security of the session key is protected against dic-
tionary attacks: the advantage of the adversary essentially grows linearly with
the number of active attempts that the adversary makes (i.e., the number of
messages that the adversary builds by himself). While the number of sessions
includes both active attacks and passive ones (i.e., the session transcripts A
passively eavesdropped), the theorem shows that these passive attacks are es-
sentially negligible: a honest transcript does not help a computationally bounded
adversary in guessing the password.

4.3 On the Tightness of Theorem 3

Clearly, Theorem 3 ensures that when building a message by himself, the adver-
sary cannot “test” more than one password per message. Actually, in the proof,
we use qactive to upper-bound the number of players the adversary tries to im-
personate and thus the number of different passwords he can inject. Hence, we
achieve a stronger security result than the one claimed in Theorem 3. However, it
leaves open the possibility of whether an adversary can test several passwords in
the same session. Since one may wonder whether a security proof with a tighter
reduction could be found, here we present an online dictionary attack against
our scheme that shows that this is not the case. More precisely, we exhibit an
online dictionary attack in which the adversary can test several passwords in
the same session (but still no more than one password for each message!). The
idea behind the attack is to create a session in which the number of dishon-
est players (whose roles are played by the adversary) is twice the number of
honest players and to surround each of the honest players with two dishonest
players.

Let k be the number of honest players. The attack works as follows. First,
the adversary starts a session in which all the honest players have indices of
the form 3(i − 1) + 2 for i = 1, . . . , k. Then, let {pw1, . . . , pwk} be a list of
candidate passwords that an adversary wants to try and let i′ = 3(i − 1). To
test whether pw i for i = 1, . . . , k is the correct password, the adversary plays
the role of players Ui′+1 and Ui′+3 and follows the protocol using pw i as the
password. That is, he chooses random exponents xi′+1 and xi′+3, computes the
values zi′+1 = gxi′+1 and zi′+3 = gxi′+3 , and then computes z�

i′+1 and z�
i′+3 from

zi′+1 and zi′+3 using pw i as the password. Let Xi′+2 be the value that the honest
user Ui′+2 outputs in the third round of our protocol. To verify if his guess pw i

for the password is the correct one, the adversary computes zi′+2 from z�
i′+2

using pw i as the password and checks whether z
xi′+3−xi′+1
i′+2 = Xi′+2. This should

be the case whenever pw i is equal to the actual password.

4.4 Computational Assumptions

Decisional Diffie-Hellman assumption (DDH). The DDH assumption
states (roughly) that the distributions (gu, gv, guv) and (gu, gv, gw) are computa-
tionally indistinguishable when u, v, w are indices chosen uniformly at random.
This can be made more precise by defining two experiments, DDH� and DDH$.

436 M. Abdalla et al.

In experiment DDH�, the inputs given to the adversary are U = gu, V = gv,
and W = guv, where u and v are two random indices. In experiment DDH$, the
inputs given to the adversary are U = gu, V = gv, and W = gw, where u, v,
and w are random indices. The goal of the adversary is to guess a bit indicating
the experiment he thinks he is in. A (t, ε)-distinguisher against DDH for G is a
probabilistic Turing machine Δ with time-complexity t, which is able to distin-
guish these two distributions with an advantage Advddh

G (Δ) greater than ε. The
advantage function Advddh

G (t) for the group G is then defined as the maximum
value of Advddh

G (Δ) over all Δ with time-complexity at most t.

Parallel Decisional Diffie-Hellman assumption (PDDH). We define a
variant of the DDH problem, we name it the Parallel Decisional Diffie-Hellman
problem, which is equivalent to the usual DDH problem. To this aim, we define
the two following distributions:

PDH�
n = {gx1, . . . , gxn , gx1x2 , . . . , gxn−1xn , gxnx1 |x1, . . . , xn ∈R Zq} ,

PDH$
n = {gx1, . . . , gxn , gy1 , . . . , gyn |x1, . . . , xn, y1, . . . , yn ∈R Zq} .

A (t, ε)-distinguisher against PDDHn for G is a probabilistic Turing machineΔ
with time-complexity t, which is able to distinguish these two distributions with
an advantage Advpddhn

G (Δ) greater than ε. The advantage function Advpddhn

G (t)
for the group G, is then defined as the maximum value of Advpddhn

G (Δ) over all
Δ with time-complexity at most t.

Lemma 4 (Equivalence between PDDHn and DDH). For any group G and
any integer n, the PDDHn and the DDH problems are equivalent: for any time
bound T ,

Advddh
G (T) ≤ Advpddhn

G (T) ≤ n Advddh
G (T).

Proof. We omit the proof of this lemma in this version of the paper as it follows
from a standard hybrid argument [13, 14] with n+1 hybrid experiments, in which
the first i DDH values are replaced by random ones in the i-th hybrid experiment
for i ∈ {0, . . . , n}. In fact, a proof of this lemma was implicitly made in the
proceedings version of the paper by Katz and Yung in Crypto 2003 [15] when
showing an upper bound for the probability distance between the experiments
Faken and Real. Moreover, in the full version of their paper, they provide an even
tighter security reduction between these two problems.

In our security analysis, we will need a challenger that outputs a new tuple
either from PDH�

n or PDH$
n, according to an input bit. That is, we have a fixed

bit β, and for any new query S, Challβ(S) outputs a new tuple from PDH�
n if

β = 0, or from PDH$
n if β = 1. If the same S is queried again, then the same

output tuple is returned. It is a well-known result that after q queries to the
challenger, any adversary in time t cannot guess the bit β with advantage larger
than q × Advpddhn

G (t) ≤ qn× Advddh
G (t).

Password-Based Group Key Exchange in a Constant Number of Rounds 437

5 Proof of Theorem 3

We proceed by defining several experiments (or games), the first one being
the real-world experiment (in which the success of the adversary in outputting
b′ = b — denoted by event S — is larger than (1 + Advake(A))/2 by defini-
tion), the last one being a trivially secure experiment in which the success of the
adversary is straightforwardly 1/2.

Game G0: This is the real attack game, in the random-oracle and ideal-cipher
models.
Game G1: We simulate the random oracles G, H and Auth in a classical way
using the lists ΛG , ΛH and ΛAuth, with a random value for any new query, and we
cancel executions (by halting the simulation and declaring the adversary success-
ful) in which a collision occurs in the output of hash functions. The probability
of such bad event is upper-bounded by the birthday paradox.

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ q2

G
2�G

+
q2
H

2�H
+

q2
Auth

2�Auth
.

Game G2: In this game, we start to control the simulation of the ideal cipher
by maintaining a list Λ that keeps track of the previous queries-answers and
that links each query to a specific user. Members of the list Λ are of the form
(type,S, i, α, k, z, z�), where type ∈ {enc, dec}. Such record means that Ek(z) =
z�, and type indicates which kind of queries generated the record. The index i
indicates which player is associated with the key k, while S indicates the session
with which we are dealing. These values are both set to ⊥ if k does not come
from a H query of the form (S, i, ∗) with i ∈ {1, . . . , n}, and S of any form. The
element α will be explained later.

– On encryption query Ek(z), we look for a record (·, ·, ·, ·, k, z, ∗) in Λ. If such a
record exists, we return its last component. Otherwise, we choose uniformly
at random z� ∈ G, add (enc,⊥,⊥,⊥, k, z, z�) to Λ, and return z�.

– On decryption query Dk(z�), we look for a record (·, ·, ·, ·, k, ∗, z�) in Λ. If
such a record exists, we return its sixth component. Otherwise, we distinguish
two sub-cases, by looking up in ΛH if k has been returned to a hash query
of the form (S, i, ∗): if it the case, we choose z at random in G� = G\{0}
and update the list Λ with (dec,S, i,⊥, k, z, z�); otherwise, we choose z at
random in G� and update the list Λ with (dec,⊥,⊥,⊥, k, z, z�). In both
cases, the decryption query on z� is answered with z.

Such a simulation is perfect, except for the following three points. First, colli-
sions may appear that contradict the permutation property of the ideal-cipher:
the probability can be upper-bounded by (qE + qD)2/2|G|. Second, we avoided
z being equal to 1 in the decryption queries. Finally, in the case of the decryp-
tion query simulation, one will cancel executions (by halting the simulation and
declaring the the adversary successful) if the value k (involved in a decryption
query) is output later by H. Fortunately, this happens with probability at most
qH/2�H for each decryption query. Intuitively, as it will become clear in the next

438 M. Abdalla et al.

games, we indeed want to make sure that, for any k involved in a decryption
query, if k comes from a H query, we know the corresponding pair (S, i). All
being considered, such bad events are unlikely:∣∣Pr[S2] − Pr[S1]

∣∣ ≤ (qE + qD)2

2|G| +
qD
|G| +

qHqD
2�H

.

Game G3: In this game, we change the simulation of the decryption queries,
and make use of our challenger to embed an instance of the PDH problem in the
protocol simulation. In this game, we set β = 0, so that our challenger Challβ(·)
output tuples (ζ1, . . . , ζn, γ1, . . . , γn) according to the PDH�

n distribution. We use
these (2n)-tuples to properly simulate the decryption queries.

More precisely, we issue a new tuple each time a new session S appears
in a decryption query. But if several queries are asked with the same S, the
challenger outputs the same tuple, so we will derive many related instances,
granted the random self-reducibility. The latter tells us that, given one tuple
outputted by the challenger, then for any randomly chosen (α1, . . . , αn), the tu-
ple (ζα1

1 , . . . , ζαn
n , γα1α2

1 , . . . , γαnα1
n) has the same distribution as the original one.

We make use of this property as follows, by modifying the first sub-case
previously considered for new decryption queries.

– On a new decryption query Dk(z�), such that k = H(S, i, ∗) was previously
obtained from H for some valid index i, we query Challβ(S) in order to
get a tuple (ζ1, . . . , ζn, γ1, . . . , γn). We then randomly choose α ∈ Z�

q , add
(dec,S, i, α, k, z = ζα

i , z�) to Λ, and return z.

Above, we have defined the list Λ whose elements are of the form (type,S, i,
α, k, z, z�). The component ’α’ now comes into play. This element is an exponent
indicating how we applied the random self-reducibility of the PDDH problem,
to the instance generated by the challenger upon the request S: X = ζα

i . Here,
the element α can only be defined if S and i are known (in order to know which
tuple, and which ζi, we are working with.) If α is unknown to the simulator, we
set α = ⊥.

This change does not modify the view of the adversary, so: Pr[S3] = Pr[S2].
Game G4: We are now ready to simulate the Send queries in a different way,
but only in the second and third rounds: when the session S is defined, user i
computes the symmetric keys as before kj = H(S, j, pw), for all j. We thus know
we are working with the tuple (ζ1, . . . , ζn, γ1, . . . , γn).

In the second round, Ui randomly chooses a value z�
i ∈ G to be broadcasted,

and asks zi = Dki(z
�
i), using the above simulation (which leads to add αi to the

list Λ, unless z�
i already appeared as an encryption result. But the latter event

cannot happen with probability greater than qE/|G|.)
In the third round, Ui recovers zi−1 = Dki−1(z�

i−1) and zi+1 = Dki+1(z�
i+1).

But then, two situations may appear:

– z�
i−1 and z�

i+1 have been simulated according to the above simulation of
the second round, and then one gets αi−1 and αi+1 in the list Λ such that
zi−1 = ζ

αi−1
i−1 and zi+1 = ζ

αi+1
i+1 ;

Password-Based Group Key Exchange in a Constant Number of Rounds 439

– one of the z�
j has been previously answered by the encryption oracle in

response to an attacker query Ek(z�), where k = H(S, j, pw) is the correct
key for player Uj in session S. We denote such an event by Encrypt. In such
a case, we stop the simulation, letting the adversary win.

If everything runs smoothly, one gets

zi = ζαi

i zi−1 = ζ
αi−1
i−1 zi+1 = ζ

αi+1
i+1 .

One can then correctly compute

Zi = CDH(zi−1, zi) = γ
αi−1αi

i−1 Zi+1 = CDH(zi, zi+1) = γ
αiαi+1
i .

One then broadcasts Xi = Zi+1/Zi. After this final round, everybody can com-
pute the session key as before. The simulation is still perfect, unless the above
bad events happen:∣∣Pr[S4] − Pr[S3]

∣∣ ≤ qEqpassive

|G| + Pr[Encrypt4] ≤
nqEqsession

|G| + Pr[Encrypt4].

Game G5: Since it is clear that the security of the above scheme still relies
on the DDH assumption, we now flip the bit β to 1, in order to receive tuples
(ζ1, . . . , ζn, γ1, . . . , γn) according to the PDH$

n distribution (in which the yi’s
denote the values logg γi). ∣∣Pr[S5] − Pr[S4]

∣∣ ≤ qsessionAdvpddhn

G (t)∣∣Pr[Encrypt5]− Pr[Encrypt4]
∣∣ ≤ qsessionAdvpddhn

G (t).

Game G6: In order to stop active attacks, where the adversary forges flows, we
modify the computation of the key confirmations: we replace the function Auth
by a private one Auth′: Authi = Auth′(S, {z�

j , Xj}j ,Ki, i), where

Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2 = γ

nαi−1αi

i−1 Xn−1
i Xn−2

i+1 · · ·Xi+n−2

= gn(αi−1αiyi−1)Xn−1
i Xn−2

i+1 · · ·Xi+n−2.

Let us list all the information a (powerful) adversary may have, from all the Xj

sent by Uj in the S-th session:

log Xj = yj(αjαj+1) − yj−1(αj−1αj) = Ajyj −Aj−1yj−1.

As explained in [15], this does not leak any information about yi−1, since the
above system contains only n− 1 independent equations with n unknowns. Any
value for yn−1 is thus possible and would determine all the other values.

Therefore, after this modification, the probability for the adversary to see
the difference between the current and the previous experiments is to query
Auth(S, {z�

j , Xj}j ,Ki, i), which is upper-bounded by qAuth/|G|.

∣∣Pr[S6] − Pr[S5]
∣∣ ≤ qAuth

|G|
∣∣Pr[Encrypt6] − Pr[Encrypt5]

∣∣ ≤ qAuth

|G| .

440 M. Abdalla et al.

Game G7: Finally, we now derive the session keys using a private random oracle
G′: ski = G′(S, {z�

j , Xj ,Authj}j). As above, after the modification of the deriva-
tion of the session key, the probability for the adversary to see the difference be-
tween the current and the previous experiments is to query G(S, {z�

j , Xj ,Authj}j ,
Ki). Since the previous game, we know that inside each session, all the honest
users have the same view, and thus theses queries are identical: the probability
of such an event can also be upper-bounded by qG/|G|, since no information has
been leaked about Ki (except it does not correspond to the Auth queries asked
above.) ∣∣Pr[S7] − Pr[S6]

∣∣ ≤ qG
|G| − qAuth

≤ 2qG
|G|∣∣Pr[Encrypt7]− Pr[Encrypt6]

∣∣ ≤ qG
|G| − qAuth

≤ 2qG
|G| .

Furthermore, because the private oracle G′ is private to the simulator, it is
clear that

Pr[S7] =
1
2
.

Game G8: In order to conclude the proof, we need to upper-bound the event
Encrypt7. One can note that the password pw is only used in the simulation of
the second and third rounds, to compute zi, zi−1 and zi+1 (using the elements
ζi, ζi−1 and ζi+1), but eventually, we output Xi only, which are computed from
the γi−1 and γi. The latter is totally independent of the former.

We can thus simplify the simulation of the second and third rounds: In the
second round, Ui randomly chooses z�

i ∈ G, and sends it (this is exactly as
before.) However no decryption is needed. In the third round, Ui simply computes
and sends Xi = γi/γi−1 (this is just to make sure that the product of the Xi is
equal to 1, but we just need random elements satisfying this relation, since they
do not appear anywhere else.) This is a perfect simulation, since one does not
need anymore to compute Ki.

At this point, the password is never used, and can thus be chosen at the very
end only, which makes clear that probability of the Encrypt event is less than the
number of first flows manufactured by the adversary, divided by N . The latter
part is upper-bounded by qactive:

Pr[Encrypt7] = Pr[Encrypt8] ≤ qactive/N.

In the above, we used the fact that collisions in the output of H have been
eliminated in previous games.

Putting all equations together, one easily gets the announced bound.

6 Conclusion

We described a constant-round password-based key exchange protocol for group,
derived from the Burmester-Desmedt scheme. The protocol is proven secure

Password-Based Group Key Exchange in a Constant Number of Rounds 441

against dictionary attacks under the DDH assumption, in the ideal-cipher and
random oracle models. It remains an open problem to find a scheme whose
security depends on the number of active sessions rather than on the number of
manufactured flows.

Acknowledgements

The first and fourth authors were supported in part by France Telecom R&D as
part of the contract CIDRE, between France Telecom R&D and École normale
supérieure. The third author was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, Mathematical Information
and Computing Sciences Division, of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. This document is report LBNL-59542. See
http://www-library.lbl.gov/disclaimer.

References

1. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based au-
thenticated key exchange in the three-party setting. In Serge Vaudenay, editor,
PKC 2005: 8th International Workshop on Theory and Practice in Public Key
Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 65–84,
Les Diablerets, Switzerland, January 23–26, 2005. Springer-Verlag, Berlin, Ger-
many.

2. Michel Abdalla and David Pointcheval. Simple password-based encrypted key ex-
change protocols. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005,
volume 3376 of Lecture Notes in Computer Science, pages 191–208, San Francisco,
CA, USA, February 14–18, 2005. Springer-Verlag, Berlin, Germany.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer-Verlag, Berlin,
Germany.

4. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption: How
to encrypt with RSA. In Alfredo De Santis, editor, Advances in Cryptol-
ogy – EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science,
pages 92–111, Perugia, Italy, May 9–12, 1994. Springer-Verlag, Berlin, Germany.
http://www-cse.ucsd.edu/users/mihir .

5. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably authen-
ticated group Diffie-Hellman key exchange – the dynamic case. In Colin Boyd,
editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 290–309, Gold Coast, Australia, December 9–13, 2001.
Springer-Verlag, Berlin, Germany.

6. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group
Diffie-Hellman key exchange under standard assumptions. In Lars R. Knudsen,
editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 321–336, Amsterdam, The Netherlands, April 28 –
May 2, 2002. Springer-Verlag, Berlin, Germany.

442 M. Abdalla et al.

7. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Group Diffie-
Hellman key exchange secure against dictionary attacks. In Yuliang Zheng, ed-
itor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 497–514, Queenstown, New Zealand, December 1–5,
2002. Springer-Verlag, Berlin, Germany.

8. Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. Provably authenticated group Diffie-Hellman key exchange. In ACM
CCS 01: 8th Conference on Computer and Communications Security, pages 255–
264, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

9. Mike Burmester and Yvo Desmedt. A secure and efficient conference key dis-
tribution system (extended abstract). In Alfredo De Santis, editor, Advances in
Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science,
pages 275–286, Perugia, Italy, May 9–12, 1994. Springer-Verlag, Berlin, Germany.

10. Mike Burmester and Yvo Desmedt. A secure and scalable group key exchange
system. Information Processing Letters, 94(3):137–143, May 2005.

11. Ratna Dutta and Rana Barua. Password-based encrypted group key agree-
ment. International Journal of Network Security, 3(1):30–41, July 2006. http://

isrc.nchu.edu.tw/ijns.
12. Ian T. Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 2004.
13. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-

bridge University Press, Cambridge, UK, 2004.
14. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270–299, 1984.
15. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key

exchange. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 110–125, Santa Barbara, CA,
USA, August 17–21, 2003. Springer-Verlag, Berlin, Germany.

16. Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-round authenticated
group key exchange for dynamic groups. In Pil Joong Lee, editor, Advances in
Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 245–259, Jeju Island, Korea, December 5–9, 2004. Springer-Verlag,
Berlin, Germany.

17. Su-Mi Lee, Jung Yeon Hwang, and Dong Hoon Lee. Efficient password-based
group key exchange. In Sokratis K. Katsikas, Javier Lopez, and Günther Pernul,
editors, TrustBus 2004: Trust and Privacy in Digital Business, 1st International
Conference, volume 3184 of Lecture Notes in Computer Science, pages 191–199,
Zaragoza, Spain, August 30 – September 1, 2004. Springer-Verlag, Berlin, Germany.

Conditional Oblivious Cast	

Cheng-Kang Chu and Wen-Guey Tzeng

Department of Computer Science,
National Chiao Tung University,

Hsinchu, Taiwan 30050
{ckchu, tzeng}@cis.nctu.edu.tw

Abstract. We introduce a new notion of conditional oblivious cast
(COC), which involves three parties: a sender S and two receivers A
and B. Receivers A and B own their secrets x and y, respectively, and
the sender S holds the message m. In a COC scheme for the predicate
Q (Q-COC), A and B send x and y in a masked form to S, and then S
sends m to A and B such that they get m if and only if Q(x, y) = 1. Be-
sides, the secrets x and y can not be revealed to another receiver nor the
sender. We also extend COC to 1-out-of-2 COC (COC1

2) in which S holds
two messages m0 and m1, and A and B get m1 if Q(x, y) = 1 and m0

otherwise. We give the definitions for COC and COC1
2, and propose sev-

eral COC and COC1
2 schemes for “equality”, “inequality”, and “greater

than” predicates. These are fundamental schemes that are useful in con-
structing more complex secure interactive protocols. Our schemes are
efficiently constructed via homomorphic encryption schemes and proved
secure under the security of these encryption schemes.

Keywords: oblivious cast, conditional oblivious transfer, secure
computation.

1 Introduction

Oblivious transfer (OT) is an important cryptographic primitive proposed by
Rabin [18]. It involves two parties: the sender S and the receiver R, where S
sends a bit of which R gets it with probability 1

2 . After Rabin’s work, OT was
developed in several types, such as 1-out-of-2 OT [11], 1-out-of-n OT [5, 16, 21],
k-out-of-n OT [8, 14, 15], conditional OT (COT) [3, 10], etc. In Q-COT, S owns
a secret x and a message m, and R owns a secret y such that R gets m from S
if and only if the condition Q(x, y) is evaluated as true.

Oblivious cast (OC) [12] is a generalization of OT to the three-party case:
one sender S and two receivers A and B. The bit is received by exactly one of A
and B, each with probability 1

2 . We generalize OC and introduce a new notion
of conditional oblivious cast (COC), where A and B own their secrets x and
y, respectively, and the sender S holds the message m. In a COC scheme for
the predicate Q (Q-COC), A and B send x and y in a masked form to S, and
� Research supported in part by National Science Council grants NSC-94-2213-E-009-

116, Taiwan, ROC.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 443–457, 2006.
c© International Association for Cryptologic Research 2006

444 C.-K. Chu and W.-G. Tzeng

then S sends m to A and B such that they get m if and only if Q(x, y) = 1.
Furthermore, the secrets x and y can not be revealed to another receiver nor the
sender. We also extend COC to 1-out-of-2 COC (COC1

2) in which S holds two
messages m0 and m1, and A and B get m1 if Q(x, y) = 1 and m0 otherwise.

There are two cases for the message receiving: A and B both get m, or only
one of them gets m. The schemes we propose in this paper are all designed for
the first case. However, in some applications only one receiver, determined by
the condition, is allowed to get the message, and S can not know who gets the
message. We have a general transformation of our COC1

2 schemes to suit this
kind of model (Section 4.3).

In this paper, we give the definitions for COC and COC1
2, and propose sev-

eral COC and COC1
2 schemes for “equality”, “inequality”, and “greater than”

predicates. These are fundamental schemes that are useful in constructing more
complex secure interactive protocols. Our schemes are efficiently constructed via
homomorphic encryption schemes and proved secure.

COC not only covers all functionalities of COT, but also broadens the range
of its applications. We provide three examples:

– Priced oblivious transfer: Aiello et al. [1] introduced the notion of “priced
oblivious transfer”, which protects the privacy of a customer’s purchase from
a vendor. In their setting, the buyer needs to deposit an amount in each ven-
dor. This is not very practical if a buyer wants to purchase various goods
from many vendors. By using our COC schemes, we can construct a gener-
alized priced OT such that the buyer can deposit the money in one bank
only. When the buyer wants to buy an item from a vendor, he sends the
corresponding price and the bank sends the buyer’s current balance in the
encryption form to the vendor. The vendor then sends the item such that
the buyer can get it if the price does not exceed his balance.

– Oblivious two-bidder system: A party S has a secret for selling, and A and
B are two bidders. The winner can obtain the secret from S directly. At the
end, S has no idea who the winner is. This system can be constructed from
COC for the “greater than” predicate (in the second message-receiving case)
immediately.

– Oblivious authenticated information retrieval: A can get some information
from S if he passes the authentication procedure provided by B. For instance,
consider a mobile news subscription service provided by an independent
agent. We assume that a mobile phone has no extra memory to store the
subscription information but only an IMSI (International Mobile Subscriber
Identity) in the SIM card. Users can pay the subscription fee to their mobile
phone company, and the company provides an encrypted subscription list of
IMSIs to the news provider. When a user wants to read news on the bus,
his mobile phone sends the encrypted IMSI to the news provider. The news
provider then sends news to the user if the IMSI is in the subscription list.
In this case, the user’s identity (IMSI) is anonymous to the news provider.
The scheme can be constructed by COC for the “membership” predicate
discussed in Section 5.2.

Conditional Oblivious Cast 445

Related works. COT was first proposed by Di Crescenzo et al. [10]. In their
definition of COT, the focus is to provide “all-or-nothing” transfer of the message
from S to R by the condition. Blake et al. [3] strengthened COT to strong
COT (SCOT), which provides “1-out-of-2” message transfer from S to R by the
condition and adds more security requirements for S.

The notion of our COC is to separate the role of the secret holder from S.
The main difference in design techniques is that, in COT and SCOT, the secure
computation is done by S with a masked input and a plain input, whereas
the secure computation in our COC and COC1

2 is done by S with two masked
inputs. A COC scheme that meets the requirements of our definitions can be
easily transferred to a COT or SCOT scheme.

2 Definitions and Preliminaries

In this section we give formal definitions for COC and COC1
2 and introduce

useful tools and notations.

2.1 Conditional Oblivious Cast

Informally speaking, a COC scheme for predicate Q (Q-COC) has the following
three properties:

– Correctness: both of A and B get m from S if Q(x, y) = 1.
– Sender’s security: A andB cannot get any information aboutm if Q(x, y) = 0.
– Receiver’s security: after running the protocol, x is kept secret from B and

S, and y is kept secret from A and S.

The definition for Q-COC is as follows:

Definition 1 (Q-COC). Let k be the security parameter, and A, B and S be all
polynomial-time probabilistic Turing machines (PPTMs). Let 〈A, B,S〉(·) denote
the communication transcript. We say that a three-party interactive system Π =
(A, B,S) is a secure Q-COC scheme if it satisfies the following requirements for
some constant c:

1. Correctness: For any x, y,m ∈ {0, 1}kc

with Q(x, y) = 1,
Pr[μ ← {0, 1}kc

; tr← 〈A(x), B(y),S(m)〉(μ) :
“A(x,μ, tr) = m” ∧ “B(y,μ, tr) = m”] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y,m,m′ ∈ {0, 1}kc

with
Q(x, y) = 0, A′ and B′ cannot distinguish the following probability ensembles
with non-negligible advantage, respectively:

– V Π
A′B′ = (x,μ ← {0, 1}kc

, tr ← 〈A′(x), B′(y),S(m)〉(μ)),
– RΠ

A′B′ = (x,μ ← {0, 1}kc

, tr← 〈A′(x), B′(y),S(m′)〉(μ)),
and

– V Π
B′A′ = (y,μ ← {0, 1}kc

, tr ← 〈A′(x), B′(y),S(m)〉(μ)),
– RΠ

B′A′ = (y,μ ← {0, 1}kc

, tr← 〈A′(x), B′(y),S(m′)〉(μ)).

446 C.-K. Chu and W.-G. Tzeng

3. Receiver’s security:
(a) For any PPTM A′, B′,S′ and any x, x′, y, y′,m ∈ {0, 1}kc

with Q(x, y) =
Q(x, y′) = Q(x′, y), S′ cannot distinguish the following probability en-
sembles with non-negligible advantage:
– V Π

S′A′ = (m,μ ← {0, 1}kc

, tr ← 〈A′(x), B(y),S′(m)〉(μ)),
– SΠ

S′A′ = (m,μ ← {0, 1}kc

, tr ← 〈A′(x), B(y′),S′(m)〉(μ)),
and
– V Π

S′B′ = (m,μ ← {0, 1}kc

, tr← 〈A(x), B′(y),S′(m)〉(μ)),
– SΠ

S′B′ = (m,μ ← {0, 1}kc

, tr ← 〈A(x′), B′(y),S′(m)〉(μ)).
(b) For any PPTM A′, B′,S′ and any x, x′, y, y′,m ∈ {0, 1}kc

with Q(x, y) =
Q(x, y′) = Q(x′, y), A′ and B′ cannot distinguish the following probabil-
ity ensembles with non-negligible advantage, respectively:
– V Π

A′S′ = (x,μ ← {0, 1}kc

, tr ← 〈A′(x), B(y),S′(m)〉(μ)),
– SΠ

A′S′ = (x,μ ← {0, 1}kc

, tr← 〈A′(x), B(y′),S′(m)〉(μ)),
and
– V Π

B′S′ = (y,μ ← {0, 1}kc

, tr ← 〈A(x), B′(y),S′(m)〉(μ)),
– SΠ

B′S′ = (y,μ ← {0, 1}kc

, tr ← 〈A(x′), B′(y),S′(m)〉(μ)).

2.2 1-Out-of-2 Conditional Oblivious Cast

In COC1
2, the message sender S holds two messages m0 and m1. A Q-COC1

2

scheme must satisfy the following three properties:

– Correctness: both of A and B get m1 from S if Q(x, y) = 1, and m0 if
Q(x, y) = 0.

– Sender’s security: A and B get exactly one message from S.
– Receiver’s security: after running the protocol, x is kept secret from B and

S, and y is kept secret from A and S.

The definition for Q-COC1
2 is as follows.

Definition 2 (Q-COC1
2). Let k be the security parameter, and A, B and S be

all PPTMs. Let 〈A, B,S〉(·) denote the communication transcript. We say that
a three-party interactive system Π = (A, B,S) is a secure Q-COC1

2 scheme if it
satisfies the following requirements for some constant c:

1. Correctness:
(a) For any x, y,m0,m1 ∈ {0, 1}kc

with Q(x, y) = 0,
Pr[μ ← {0, 1}kc

; tr ← 〈A(x), B(y),S(m0,m1)〉(μ) :
“A(x,μ, tr) = m0” ∧ “B(y,μ, tr) = m0”] = 1.

(b) For any x, y,m0,m1 ∈ {0, 1}kc

with Q(x, y) = 1,
Pr[μ ← {0, 1}kc

; tr ← 〈A(x), B(y),S(m0,m1)〉(μ) :
“A(x,μ, tr) = m1” ∧ “B(y,μ, tr) = m1”] = 1.

2. Sender’s security: For any PPTM A′, B′ and any x, y,m0,m1,m
′
1 ∈ {0, 1}kc

with Q(x, y) = 0, A′ and B′ cannot distinguish the following probability en-
sembles with non-negligible advantage, respectively:

– V Π
A′B′ = (x,μ ← {0, 1}kc

, tr ← 〈A′(x), B′(y),S(m0,m1)〉(μ)),
– RΠ

A′B′ = (x,μ ← {0, 1}kc

, tr← 〈A′(x), B′(y),S(m0,m
′
1)〉(μ)),

Conditional Oblivious Cast 447

and
– V Π

B′A′ = (y,μ ← {0, 1}kc

, tr ← 〈A′(x), B′(y),S(m0,m1)〉(μ)),
– RΠ

B′A′ = (y,μ ← {0, 1}kc

, tr← 〈A′(x), B′(y),S(m0,m
′
1)〉(μ)).

The similar requirements is met Q(x, y) = 1.
3. Receiver’s security:

(a) For any PPTM A′, B′,S′ and any x, x′, y, y′,m0,m1 ∈ {0, 1}kc

with
Q(x, y) = Q(x, y′) = Q(x′, y), S′ cannot distinguish the following proba-
bility ensembles with non-negligible advantage:
– V Π

S′A′ = (m0,m1,μ ← {0, 1}kc

, tr← 〈A′(x), B(y),S′(m0,m1)〉(μ)),
– SΠ

S′A′ = (m0,m1,μ ← {0, 1}kc

, tr ← 〈A′(x), B(y′),S′(m0,m1)〉(μ)),
and
– V Π

S′B′ = (m0,m1,μ ← {0, 1}kc

, tr ← 〈A(x), B′(y),S′(m0,m1)〉(μ)),
– SΠ

S′B′ = (m0,m1,μ ← {0, 1}kc

, tr ← 〈A(x′), B′(y),S′(m0,m1)〉(μ)).
(b) For any PPTM A′, B′,S′ and any x, x′, y, y′,m0,m1 ∈ {0, 1}kc

with
Q(x, y) = Q(x, y′) = Q(x′, y), A′ and B′ cannot distinguish the following
probability ensembles with non-negligible advantage, respectively:
– V Π

A′S′ = (x,μ ← {0, 1}kc

, tr ← 〈A′(x), B(y),S′(m0,m1)〉(μ)),
– SΠ

A′S′ = (x,μ ← {0, 1}kc

, tr← 〈A′(x), B(y′),S′(m0,m1)〉(μ)),
and
– V Π

B′S′ = (y,μ ← {0, 1}kc

, tr ← 〈A(x), B′(y),S′(m0,m1)〉(μ)),
– SΠ

B′S′ = (y,μ ← {0, 1}kc

, tr ← 〈A(x′), B′(y),S′(m0,m1)〉(μ)).

Remark. For clarity and simplicity, we will first assume that all parties in our
COC and COC1

2 schemes are semi-honest (honest-but-curious), that is, they
follow the procedure step by step, but try to get extra information about the
secrets or messages by extra computation. We also assume that A, B and S
operates independently. No two parties will collude against the third one. Then
we provide some techniques to transform the schemes into ones that are secure
against malicious parties and their collusion in Section 5.1.

2.3 Homomorphic Encryption Schemes

Multiplicatively homomorphic encryption scheme. An encryption scheme (G,E,
D) is multiplicatively homomorphic if for any m0 and m1, D(E(m0)⊗E(m1)) =
D(E(m0 ·m1)), where ⊗ is an operation defined on the image of E.

The ElGamal encryption scheme as follows is multiplicatively homomorphic.
– G(1k) = (p, q, g, α, β), where p is a k-bit prime, and q = p−1

2 is also a
prime, Gq is the subgroup of Z∗

p with order q, g is a generator of Gq, and
β = gα mod p for α ∈ Gq. Let PK = (p, q, g, β),SK = (p, q, g, α). All
relevant computations are under group Gq.

– E(m) = (gr,mβr), where m ∈ Gq, r ∈R Zq.
– D(c) = c2/c

α
1 , where c = (c1, c2).

For E(m0) = (gr0 ,m0β
r0) and E(m1) = (gr1 ,m1β

r1), the operation E(m0) ×
E(m1) = (gr0 · gr1 ,m0β

r0 ·m1β
r1) is multiplicatively homomorphic since

D(E(m0)× E(m1)) = D(gr0 · gr1 ,m0β
r0 ·m1β

r1)
= D(gr0+r1 ,m0m1β

r0+r1)
= D(E(m0 ·m1)).

We can compute E(mc) from E(m) via repeated multiplication for a constant c.

448 C.-K. Chu and W.-G. Tzeng

Additively homomorphic encryption scheme. An encryption scheme (G,E,D)
is additively homomorphic if for any m0 and m1, D(E(m0) ⊕ E(m1)) = D(E
(m0 +m1)), where ⊕ is an operation defined on the image of E.

The Paillier encryption scheme [17] as follows is additively homomorphic.

– G(1k) = (p, q,N, α, g), where N = pq is a k-bit number, p and q are two
large primes, g is an integer of order αN mod N2 for some integer α. Let
PK = (g,N),SK = λ(N) = lcm(p− 1, q − 1).

– E(m) = gmrN mod N2, where m ∈ ZN , r ∈R ZN .
– D(c) = L(cλ(N) mod N2,N)

L(gλ(N) mod N2,N)
mod N , where L(u, N) = u−1

N .

For E(m0) = gm0rN
0 mod N2,E(m1) = gm1rN

1 mod N2, the operation E(m0) ·
E(m1) = (gm0rN

0) · (gm1rN
1) is additively homomorphic since

D(E(m0) · E(m1)) = D((gm0rN
0) · (gm1rN

1))
= D((gm0+m1(r0r1)N))
= D(E(m0 +m1)).

We can compute E(cm) from E(m) via repeated addition for a constant c.
Note that ElGamal and Paillier encryption schemes are proved semantically

secure if and only if the Decisional Diffie-Hellman and the Computational Com-
posite Residuosity assumptions hold, respectively [20, 17].

2.4 0-Encoding and 1-Encoding

In our COC scheme for “greater than” predicate, we use two types of encoding
to reduce the “greater than” problem to the set intersection problem [13]. Let
s = snsn−1 . . . s1 ∈ {0, 1}n be a binary string of length n. The 0-encoding of s is

Ŝ0
s = {snsn−1 . . . si+11|si = 0, 1 ≤ i ≤ n}.

and 1-coding of s is

Ŝ1
s = {snsn−1 . . . si|si = 1, 1 ≤ i ≤ n}.

For two binary strings x, y of the same length, we have that x > y if and only if
there is exact one common element in Ŝ1

x and Ŝ0
y .

If we compare strings in Ŝ1
x and Ŝ0

y one against one, it would be quite inefficient
since we need O(n2) comparisons. Because each element in Ŝ0

s (or Ŝ1
s) has a

different length, we compare the elements of the same length in the two sets
only. We define the ordered sets for b ∈ {0, 1}, 1 ≤ i ≤ n:

Sb
s[i] =

{
zi if ∃zi ∈ Ŝb

s and |zi| = i;
rb
i otherwise,

where Sb
s[i] denotes the i-th element in Sb

s , and rb
i is an arbitrary binary string

with length i+1+b. Therefore, because of different lengths, rb
i must not be equal

to the string S1−b
s [i]. Thus we just need to test if S1

x[i] = S0
y [i] for each i ∈

{1, 2, . . . , n}.

Conditional Oblivious Cast 449

2.5 Setup and Notations

In the setup phase of our schemes for semi-honest adversary, A and B need
to agree on a public/secret key pair (PK,SK) of the homomorphic encryption
scheme privately. There are several ways to accomplish this work. For example, if
A and B have their own public/secret key pairs, one party generates (PK,SK)
first, and securely sends it to the other party. This common key pair allows S to
compute the predicate on their secrets by the homomorphic encryption scheme.
Also, S need choose a key pair (PKS,SKS) (for any semantically secure public
key encryption scheme) such that A and B can send their secrets to S privately
(against the other party).

Let Gq be the group of the multiplicatively homomorphic encryption scheme
and ZN be the group of the additively homomorphic encryption scheme. For
key pair (PK,SK), EPK and DSK represent encryption and decryption for the
underlying encryption scheme.

We use xi to denote the i-th bit of the value x = xnxn−1 · · ·x1. LetX [i] denote
the i-th element of the ordered set X . Let x ∈R X mean that x is chosen from
X uniformly and independently. Let |x| be the length (in bits) of x. To encrypt
a vector v = 〈v1, v2, . . . , vn〉, we write E(v) = 〈E(v1),E(v2), . . . ,E(vn)〉.

In some schemes, A and B need to “identify” the correct message from a set
of decrypted ciphertexts. This can be achieved by some padding technique (e.g.
OAEP [2]) such that receivers can check the integrity of a message. If a decryp-
tion contains the valid padding, it is the correct message with overwhelming
probability.

3 Conditional Oblivious Cast

We provide COC schemes for three basic predicates: “equality”, “inequality”,
and “greater than”.

3.1 COC for “Equality” Predicate

To determine if x = y, we compute x/y via the multiplicatively homomorphic
encryption scheme. If x/y = 1, A and B get the message m; otherwise, they get
nothing. The scheme EQ-COC is described in Figure 1.

Theorem 1. The EQ-COC scheme has the correctness property, unconditional
sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. For correctness, if x = y, A and B compute m by

DSK(e) = DSK(EPK(m)⊗ (EPK(x) ⊗ EPK(y)−1)r)
= DSK(EPK(m)⊗ (EPK(1)r))
= DSK(EPK(m))
= m.

450 C.-K. Chu and W.-G. Tzeng

– System parameters: (p, q, g).
– Message sender S has a message m and a key pair (PKS, SKS).
– Receiver A has a secret x, and receiver B has a secret y, where x, y ∈ Gq .
– Receiver A and B have a common key pair (PK, SK)

1. A and B send EPKS (EPK(x)) and EPKS (EPK(y)) to S respectively.
2. S decrypts the received messages to get EPK(x) and EPK(y). S computes

e = EPK(m) ⊗ (EPK(x) ⊗ EPK(y)−1)r

and sends it to A and B, where r ∈R Zq .
3. A and B compute m̂ = DSK(e) and identify whether m̂ is valid.

Fig. 1. COC scheme for “Equality” predicate: EQ-COC

For sender’s security, we show that if x �= y, m is unconditionally secure to A
and B. Since e = EPK(m)⊗ (EPK(x) ⊗ EPK(y)−1)r) = EPK(m · (x/y)r), r ∈R

Zq, for any possible m′, there is another r′ ∈ Zq such that e = EPK(m′ ·(x/y)r′
).

As long as x �= y, e can be decrypted to any possible message in Gq. This ensures
unconditional security of S’s message m.

For receiver’s security, it is easy to see that S gets no information about x
and y due to semantic security of the encryption scheme. Since A and B are
symmetric, we only prove the security of B against A. We construct a simulator
SA for A’s real view

VA(PK,SK,PKS, x) = (PK,SK,PKS, x,EPKS (EPK(x)),EPKS (EPK(y)), e).

The simulator SA on input (PK,SK,PKS, x, m̂) is as follows, where m̂ (may
be a valid message or a random value) is the output of a real execution:

1. Choose a random value y∗ ∈ Gq.
2. Compute e∗ = EPK(m̂).
3. Output (PK,SK,PKS, x,EPKS (EPK(x)),EPKS (EPK(y∗)), e∗).

By semantic security of the encryption scheme, A cannot distinguish the cipher-
texts EPKS (EPK(y∗)) and EPKS (EPK(y)). Furthermore, since e∗ is identically
distributed as e, the output of SA is indistinguishable from VA. Therefore, A
gets no information about y except those computed from x and m̂. �

In the scheme, we assume x, y ∈ Gq. If the length of x (or y) is longer than |p|,
A and B compare h(x) and h(y), where h is a collision-resistant hash function.
This technique is applied to later schemes whenever necessary.

3.2 COC for “Inequality” Predicate

COC for the “inequality” predicate is more complicated than that for the “equal-
ity” predicate. A and B need to send the ciphertexts of their secrets bit by bit.
We use additively homomorphic encryption schemes in this scheme, which is
depicted in Figure 2.

Conditional Oblivious Cast 451

– System parameters: n.
– Message sender S has a message m and a key pair (PKS, SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d′

i = xi + yi − 1.
(b) ei = 2ei+1 + di, where en+1 = 0.
(c) ci = m + ri(ei − di + d′

i), where ri ∈R ZN

3. S sends EPK(c) in a random order to A and B, where c = 〈c1, c2, . . . , cn〉.
4. A and B decrypt the received messages and identify the correct message if exis-

tent.

Fig. 2. COC scheme for “Inequality” predicate: INE-COC

In the scheme, di = xi − yi and d′i = xi − ȳi are 0, 1 or -1. If xi = yi, di = 0;
otherwise, d′i = 0. Let l be the leftmost different bit between x and y, i.e. the
largest i such that di �= 0. We have ei = 0 if i > l, ei �= 0 if i < l, and ei = di if
i = l.

If x �= y, the message m is embedded into the index i at which xi and yi

are distinct. However, we have to avoid leaking information of the number of
distinct bits. So S masks m with random values on all indices except the index l.
It leaves only one copy of m in ci’s:

– For i = l, since el = dl and d′l = xl − ȳl = 0, (el − dl + d′l) = 0. Therefore,
cl = m.

– For 1 ≤ i < l, ci would be a random value because ei−di+d′i = 2ei+1+d′i �= 0
and ri ∈R ZN .

– For l < i ≤ n, ci is also a random value because ei = di = 0, d′i �= 0 and
ri ∈R ZN .

Theorem 2. The INE-COC scheme has the correctness property, unconditional
sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. (sketch) Let l be the index of the first different bit of x and y (from the
most significant bit). We see that dl = el = xl−yl = 1 or −1, and d′l = xj − ȳj =
0. Therefore, cl = m+ rl(el − dl + d′l) = m+ rl · 0 = m. Thus, A and B get m
from the permutation of the encryptions.

For sender’s security, we see that if x = y, all di’s and ei’s are 0, and all d′i’s are
not 0 (in fact, +1 or −1). Thus, for each index i, ci = m+ri(0±1) = m±ri. Since
for any possible m̃, there exists an r̃i such that ci = m̃+ r̃i, m is unconditionally
secure to A and B.

For receiver’s security, S gets no information about x and y by the semantic
security of the encryption scheme. As in the proof of EQ-COC, for each of A
and B, we can construct a simulator such that the adversary cannot distinguish
the real view and the simulated view. Therefore the receiver’s security holds. �

452 C.-K. Chu and W.-G. Tzeng

– System parameters: (p, q, g).
– Message sender S has a message m and a key pair (PKS, SKS).
– Receiver A has a secret x, and receiver B has a secret y, where x, y ∈ Gq, |x| =

|y| = n.
– Receiver A and B have a common key pair (PK, SK)

1. A encodes x as S1
x, and sends EPKS (EPK(S1

x[i])) to S, 1 ≤ i ≤ n.
2. B encodes y as S0

y , and sends EPKS (EPK(S0
y [i])) to S, 1 ≤ i ≤ n.

3. S decrypts the received messages and computes

ei = EPK(m) ⊗ (EPK(S1
x[i]) ⊗ EPK(S0

y [i])−1)ri ,

where ri ∈R Gq, 1 ≤ i ≤ n. S sends ei’s to A and B in a random order.
4. A and B search m̂i = DSK(ei), 1 ≤ i ≤ n, to identify the correct m if existent.

Fig. 3. COC scheme for “Greater Than” predicate: GT-COC

3.3 COC for “Greater Than” Predicate

For the “greater than” predicate, we use the encoding methods mentioned in
Section 2.4. A encodes x via 1-encoding and B encodes y via 0-encoding. The
problem is then reduced to the “equality” problem immediately. When S receives
encrypted S1

x and S0
y , he checks equality for corresponding strings. The scheme

is presented in Figure 3. The security argument is the same as the proof of the
EQ-COC scheme. This method is more efficient than the GT-COC1

2 scheme (in
the next section, by setting m0 as a random number).

4 1-Out-of-2 Conditional Oblivious Cast

In this section, we present COC1
2 schemes for the “equality” (“inequality”) and

“greater than” predicates.

4.1 COC1
2 for “Equality” Predicate

Our COC1
2 scheme for the equality predicate is naturally extended from the EQ-

COC and INE-COC schemes. Intuitively, if x = y, A and B get m1 by the EQ-
COC scheme and, otherwise, they get m0 by the INE-COC scheme. For better
integration, we modify the EQ-COC scheme to use additively homomorphic
encryption schemes. The scheme is shown in Figure 4. It is almost the same as
the INE-COC scheme except that S sends an extra ciphertext ceq to A and B.

Theorem 3. The EQ-COC1
2 scheme has the correctness property, unconditional

sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. (sketch) We see that if x = y, all di’s are equal to 0, and ceq is equal to
m1. The opposite case holds by the same arguments in the proof of Theorem 2.
This ensures the correctness property.

Conditional Oblivious Cast 453

– System parameters: n.
– Message sender S has messages: (m0, m1) and a key pair (PKS, SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d

′
i = xi + yi − 1.

(b) ei = 2ei+1 + di, where en+1 = 0.
(c) ceq = m1 + n

i=1 ridi, c′
i = m0 + r′

i(ei − di + d′
i), where ri, r

′
i ∈R ZN

3. S sends EPK(ceq), EPK(c′) to A and B in a random order, where c′ =
〈c′

1, c
′
2, . . . , c

′
n〉.

4. A and B decrypt the received messages and identify the correct message

Fig. 4. 1-out-of-2 COC scheme for “Equality” predicate: EQ-COC1
2

For sender’s security, let r =
∑n

i=1 ridi. Since ri ∈R ZN , if x �= y, there is
a di �= 0 such that r is uniformly distributed, and thus m1 is unconditionally
secure to A and B. If x = y, by the proof of Theorem 2, m0 is unconditionally
secure to A and B.

For receiver’s security, S gets no information about x and y by the seman-
tic security of the encryption scheme. For each of A and B, we can construct
a simulator such that the adversary cannot distinguish the real view and the
simulated view. The receiver’s security holds. �

4.2 COC1
2 for “Greater Than” Predicate

It is obvious that we can apply the GT-COC scheme twice to achieve a GT-COC1
2

scheme. One invocation is for testing x > y and the other one is for testing x ≤ y.
But, this approach costs twice as much as the GT-COC scheme. Our scheme for
GT-COC1

2 in Figure 5 is more efficient. It costs an extra ciphertext (for the case
x = y) from S to A and B only.

Let l be the leftmost different bit between x and y. For i < l and i > l, ei and
e′i would be random values in ZN , respectively. When i = l, we have ei = di and
e′i = 0. Therefore, fi is a random value when i �= l and fl = dl. If x > y, fl = 1
and thus cl = m1; if x < y, fl = −1 and thus cl = m0. For the case x = y, we
use an extra value ceq to embed m0 like scheme EQ-COC1

2.

Theorem 4. The GT-COC1
2 scheme has the correctness property, unconditional

sender’s security, and computational receiver’s security if the underlying homo-
morphic encryption scheme has semantic security.

Proof. (sketch) For correctness, consider the following three cases:

– x > y: let l be the index of the first different bit of x and y (from the most
significant bit), we have el = dl = 1, e′l = d′l = 0, and thus fl = el + e′l = 1.
Therefore cl = m1−m0

2 · 1 + m1+m0
2 = m1.

454 C.-K. Chu and W.-G. Tzeng

– System parameters: n.
– Message sender S has messages: (m0, m1) and a key pair (PKS, SKS).
– Receiver A has a secret x, and receiver B has a secret y, where |x| = |y| = n.
– Receiver A and B have a common key pair (PK, SK), where PK = (g, N).

1. A and B send EPKS (EPK(xi)) and EPKS (EPK(yi)) to S respectively, 1 ≤ i ≤ n.
2. For each i ∈ {1, 2, . . . , n}, S decrypts the received messages to get EPK(xi) and

EPK(yi), and computes the following values via homomorphic encryption:
(a) di = xi − yi, d′

i = xi + yi − 1
(b) ei = riei+1 + di, e′

i = r′
id

′
i, where en+1 = 0, ri, r

′
i ∈R ZN

(c) fi = ei + e′
i

(d) ci = m1−m0
2

fi + m1+m0
2

, ceq = m0 + n
i=1 r′′

i di, where r′′
i ∈R ZN .

3. S sends EPK(c), EPK(ceq) in a random order to A and B, where c =
〈c1, c2, . . . , cn〉.

4. A and B decrypt the received messages and identify the correct message.

Fig. 5. 1-out-of-2 COC scheme for “Greater Than” predicate: GT-COC1
2

– x < y: similarly, since fl = el = dl = −1 in this case, we have cl = m1−m0
2 ·

(−1) + m1+m0
2 = m0.

– x = y: by the same argument in the proof of Theorem 3, A and B get m0

from ceq.

For sender’s security, we see that if x �= y, then for all i �= l, fi is uniformly
distributed in ZN . That is, all ci’s except cl are uniformly distributed in ZN .
For index l, according to the above argument, cl = m0 if x < y and cl = m1

if x > y. Moreover, by the proof of Theorem 3, ceq = m0 if x = y, and ceq is
uniformly distributed if x �= y. Therefore, m0 is unconditionally secure to A and
B if x > y, and m1 is unconditionally secure to A and B if x ≤ y.

For receiver’s security, S gets no information about x and y by the seman-
tic security of the encryption scheme. As in the previous proofs, for each of
A and B, we can construct a simulator such that the adversary cannot distin-
guish the real view and the simulated view. Therefore, the receiver’s security
holds. �

4.3 A General Transformation

We provide a general transformation from COC1
2 to the second case mentioned in

Section 1 for COC. We use the GT-COC1
2 scheme as an example. The alternative

model for COC is that when x > y, only A gets the message m and when
x ≤ y, only B gets the message. We modify our GT-COC1

2 scheme to meet
this requirement. In the beginning, A and B choose their own public/secret key
pairs, namely, (PKA,SKA) and (PKB,SKB). Then S lets m1 = EPKA(m) and
m0 = EPKB (m), and performs the scheme as usual. We see that if x > y, both
A and B get m1 = EPKA(m). But, only A can decrypt it to get the message m.
Similarly, if x ≤ y, only B gets the message.

Conditional Oblivious Cast 455

5 Extensions

In this section we introduce how to modify our COC schemes against malicious
parties and collusion. We also discuss the construction of other predicates. The
details of these modifications and extensions are left to the full version of this
paper.

5.1 Schemes Secure Against Malicious Parties and Collusion

We can make our COC schemes secure against malicious parties and their col-
lusion by using the threshold version of homomorphic cryptosystems. At the
initial stage, each party gets a secret key share (from a dealer or a distributed
key generation protocol). If the number of collusive parties does not exceed the
threshold, they get nothing about the message. Since all parties (including the
sender) exchange messages in encrypted form, all computation can be publicly
verified. After the final result in encrypted form is obtained, all parties perform
the threshold decryption for the result.

We need some non-interactive zero-knowledge proof systems for verification
in the corresponding schemes (assuming PK is the common public key):

– Proof of plaintext knowledge. The prover proves that he knows the plaintext
x for the encryption EPK(x) he created.

– Proof of one-bit plaintext. The prover proves that x is 0 or 1 for the encryption
EPK(x) he created.

– Proof of correct exponentiation. Given (multiplicatively homomorphic)
EPK(x), the prover outputs EPK(a) and EPK(xa), and proves that EPK(xa)
is indeed the encryption of xa.

– Proof of correct multiplication. Given (additively homomorphic) EPK(x), the
prover outputs EPK(a) and EPK(ax), and proves that EPK(ax) is indeed
the encryption of ax.

We can find such proof systems for the ElGamal and Paillier homomorphic
encryption schemes [7, 19, 6, 9]. For the schemes INE-COC, EQ-COC1

2 and GT-
COC1

2, the receivers need to prove that the encrypted messages they send are
indeed the encryptions of 0 or 1. Boneh et al. [4] provide a verification gadget
for this type of checking. Thus we can avoid using the proof system of one-bit
plaintext.

5.2 Other Predicates

In addition to the basic predicates, we can design COC (COC1
2) schemes for

many other interesting predicates. For these predicates, the sender may need per-
form multiplication on two messages encrypted by an additively homomorphic
encryption scheme. However, there is no known encryption scheme with both
additive and multiplicative homomorphism properties. Fortunately, Boneh et
al. [4] introduced an additively homomorphic encryption scheme which can per-
form multiplication on two ciphertexts one time. In the setting of using threshold

456 C.-K. Chu and W.-G. Tzeng

cryptosystem, the sender can even perform multiplication on two ciphertexts ar-
bitrary times via some interactions [9].

In fact, our COC can be designed for any predicate based on the evaluation
of bivariable polynomial f(x, y). For example, to compute a public polynomial
f(x, y) = a2x

2y2 + a1x
2y + a0y, the receivers send the encryptions of x, x2 and

y, y2 to the sender respectively. The sender then computes the polynomial by
the following steps.

1. Perform the multiplication on the encrypted messages [4] such that z2 = x2y2

and z1 = x2y.
2. Perform the constant multiplication: a2z2, a1z1 and a0y.
3. Perform f(x, y) = a2z2 + a1z1 + a0y.

After computing f(x, y), the sender can embed messages into the result.
Alternatively, we can assume that one receiver holds the polynomial f and

the other holds the secret x, and the sender embeds messages into the result of
f(x). For example, for the “membership” predicate, one receiver first encodes
his set of secrets as a k-degree polynomial such that f(x) = 0 iff x belongs to the
set, and the other receiver computes x, x2, . . . , xk for his secret x. The sender
then sends the message to the receivers such that they get it iff f(x) = 0. This
“membership” predicate can be used in our oblivious authenticated information
retrieval application described in Section 1.

6 Conclusion

We introduce a new notion of conditional oblivious cast, which extends condi-
tional oblivious transfer to the three-party case. The definitions of this notion
are given. We also provide some implementations for some basic predicates such
as “equality”, “inequality”, and “greater than” predicates. We believe this new
notion will be an useful primitive of cryptographic protocols.

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Proceedings of Advances in Cryptology - EUROCRYPT ’01,
volume 2045 of LNCS, pages 119–135. Springer-Verlag, 2001.

2. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Proceedings
of Advances in Cryptology - EUROCRYPT ’94, volume 950 of LNCS, pages 92–111.
Springer-Verlag, 1994.

3. IanF.Blake andVladimirKolesnikov. Strong conditional oblivious transfer and com-
puting on intervals. In Proceedings of Advances in Cryptology - ASIACRYPT ’04,
volume 3329 of LNCS, pages 515–529. Springer-Verlag, 2004.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In Proceedings of the 2nd Theory of Cryptography Conference (TCC 2005),
volume 3378 of LNCS, pages 325–341. Springer-Verlag, 2005.

5. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In Proceedings of Advances in Cryptology - CRYPTO ’86, volume 263
of LNCS, pages 234–238. Springer-Verlag, 1986.

Conditional Oblivious Cast 457

6. Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical Report 260, Institute for Theoretical Computer
Science, ETH Zurich, Mar 1997.

7. David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and Rene Peralta.
Demonstrating possession of a discrete logarithm without revealing it. In Pro-
ceedings of Advances in Cryptology - CRYPTO ’86, volume 263 of LNCS, pages
200–212. Springer-Verlag, 1986.

8. Cheng-Kang Chu and Wen-Guey Tzeng. Efficient k-out-of-n oblivious transfer
schemes with adaptive and non-adaptive queries. In Proceedings of the Public Key
Cryptography (PKC ’05), volume 3386 of LNCS, pages 172–183. Springer-Verlag,
2005.

9. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In Proceedings of Advances in Cryptology
- EUROCRYPT ’01, volume 2045 of LNCS, pages 280–299. Springer-Verlag, 2001.

10. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.
Conditional oblivious transfer and timed-release encryption. In Proceedings of
Advances in Cryptology - EUROCRYPT ’99, volume 1592 of LNCS, pages 74–89.
Springer-Verlag, 1999.

11. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

12. Matthias Fitzi, Juan A. Garay, Ueli Maurer, and Rafail Ostrovsky. Minimal com-
plete primitives for secure multi-party computation. In Proceedings of Advances in
Cryptology - CRYPTO ’01, volume 2139 of LNCS, pages 80–100. Springer-Verlag,
2001.

13. Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’
problem based on homomorphic encryption. In Proceedings of Applied Cryptogra-
phy and Network Security 2005 (ACNS ’05), volume 3531 of LNCS, pages 456–466.
Springer-Verlag, 2005.

14. Yi Mu, Junqi Zhang, and Vijay Varadharajan. m out of n oblivious transfer.
In Proceedings of the 7th Australasian Conference on Information Security and
Privacy (ACISP ’02), volume 2384 of LNCS, pages 395–405. Springer-Verlag, 2002.

15. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proceedings of the 31st Annual ACM Symposium on the Theory of Computing
(STOC ’99), pages 245–254. ACM, 1999.

16. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings
of the 12th Annual Symposium on Discrete Algorithms (SODA ’01), pages 448–457.
ACM/SIAM, 2001.

17. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of Advances in Cryptology - EUROCRYPT ’99, volume
1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

18. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

19. Claus Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

20. Yiannis Tsiounis and Moti Yung. On the security of ElGamal based encryption.
In Proceedings of the Public-Key Cryptography (PKC ’98), volume 1431 of LNCS,
pages 117–134. Springer-Verlag, 1998.

21. Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Proceedings of
the Public-Key Cryptography (PKC ’02), pages 159–171. Springer-Verlag, 2002.

Efficiency Tradeoffs for Malicious Two-Party

Computation

Payman Mohassel and Matthew Franklin

Department of Computer Science, University of California, Davis CA 95616
mohassel@cs.ucdavis.edu, franklin@cs.ucdavis.edu

Abstract. We study efficiency tradeoffs for secure two-party compu-
tation in presence of malicious behavior. We investigate two main ap-
proaches for defending against malicious behavior in Yao’s garbled circuit
method: (1) Committed-input scheme, (2) Equality-checker scheme. We
provide asymptotic and concrete analysis of communication and compu-
tation costs of the designed protocols. We also develop a weaker defi-
nition of security (k-leaked model) for malicious two-party computation
that allows for disclosure of some information to a malicious party. We
design more efficient variations of Yao’s protocol that are secure in the
proposed model.

Keywords: secure two-party computation, secure function evaluation,
Yao’s garbled circuit, malicious adversary.

1 Introduction

General two-party secure computation was an early success of modern cryptog-
raphy. Yao’s garbled circuit protocol [Yao86] is a classic and elegant solution
to this problem. Thanks to Lindell and Pinkas [LP04] (building on Goldreich
[Gol04] and others), we now have a careful proof of Yao’s protocol in a suitable
formal framework.

It is well-known that Yao’s protocol is vulnerable to malicious behavior by
its participants. The classic solution to this issue is the zero-knowledge compi-
lation of Goldreich et al. [GMW86, GMW87, Gol04]. This paradigm is of great
theoretical interest, but is not efficient in practice. For this reason, various al-
ternative methods for protecting Yao’s protocol against malicious behavior have
been suggested [Pin03, MNPS04].

The general approach is based on cut-and-choose techniques that tend to
gain efficiency at the cost of increased risk of undetected cheating. We cite in
particular, the impressive Fairplay system of Malkhi et al. [MNPS04], which has
made a major step forward in bringing Yao’s protocol to practice, and which
was the starting point for our work.

Although these cut-and-choose ideas are intuitive and natural, they have some
hidden subtleties and complexities. Indeed, we show that one of the protocols
in the Fairplay paper has a subtle bug that allows one of the parties to cheat
undetectably. This suggests that cut-and-choose designs for protecting Yao’s
protocol from malicious behavior deserve a closer look.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 458–473, 2006.
c© International Association for Cryptologic Research 2006

Efficiency Tradeoffs for Malicious Two-Party Computation 459

Another reason to take a closer look at this design space is that the tradeoffs of
efficiency vs. undetected cheating are not immediately apparent (especially when
combined with other cryptographic techniques). We find some nice constructions
with attractive balances of the relevant parameters. We are not claiming that the
best possible tradeoffs have been found. In fact, the design space is so rich that
we suspect that more work remains to be done in this area. This is especially true
when the parameter tradeoffs includes the number of bits of secret information
leaked to a malicious party (a setting we explore in Section 4).

1.1 Related Work

We mention some of the work in the literature that deals (in rather different
ways from ours) with information leakage in two-party protocols. The original
paper on zero-knowledge allowed for some information leakage to the verifier
[GMR89]. This notion was further explored by Goldreich and Petrank [GP99].

Two-party protocols for fair exchange have a problem of early termination by
a malicious party. One goal is to design protocols that minimize the advantage of
the early terminator over the honest party, measured as the difference between
the number of bits of recovered messages by each party. Of course, the progress of
two-party fair exchange research has primarily focused on increased inefficiency
to achieve less leakage to the early terminator. This is backwards from our
motivation. For examples, refer to [lMR83, Cle89].

Some two-party protocols for computing specific functions allowed some leak-
age of information [FNW96]. Bar-Yehuda et al. [BYCKO93] consider tradeoffs
of information leakage and round complexity for two-party secure computation
where the parties are computationally unbounded but non-malicious. Abadi et
al. [AFK87] give a model for information leakage to allow a computationally
bounded party to compute a function privately, with the help of a computation-
ally unbounded party.

1.2 Outline of the Paper

We study Yao’s garbled circuit protocol in the presence of malicious behavior.
We show that the Fairplay scheme of [MNPS04] is still vulnerable to a type of
malicious behavior, and suggest a simple way of fixing it. Then, we introduce two
different schemes for preventing malicious behavior (1) Committed-input scheme,
(2) Equality-checker scheme. Both constructions have exponentially small error
probabilities. We provide and compare communication and computation cost
for the designed protocols, both asymptotically and with more concrete mea-
surements. Then, we develop a weaker definition of security for two-party com-
putation that allows for leakage of some information. We then design efficient
variations of Yao’s protocol that are secure in the weaker model. We hope that
this weaker definition of security suggests a reasonable tradeoff between effi-
ciency and security, and allows for more efficient and practical implementations
of secure two-party protocols.

In Section 2, we review some preliminary concepts. We also give a descrip-
tion of Fairplay scheme of [MNPS04]. In Section 3, we mention a vulnerability

460 P. Mohassel and M. Franklin

(against malicious behavior) in Fairplay, and describe our Committed-input and
Equality-checker schemes. In Section 4, we introduce our k-leaked model of se-
curity, and suggest several efficient constructions that are secure in that model.

2 Preliminaries

Two-Party Computation

A two-party computation is cast by specifying a random process that maps pairs
of inputs (one input per each party) to pairs of outputs (one for each party). We
refer to such a process as the desired functionality, denoted f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ where f = (f1, f2). For every pair of input x, y ∈ {0, 1}n, the
output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings.
The first party wishes to obtain f1(x, y) and the second party wishes to obtain
f2(x, y).

The security definition for two-party computation varies depending on
whether the adversary is malicious, or semi-honest. A semi-honest (honest-but-
curious) adversary follows the steps of the protocol, but does not hesitate to
learn more information using the transcripts of messages it receives. On the
other hand, a malicious party can behave in an arbitrary way. In this paper, we
are concerned with computationally bounded malicious adversaries. The defini-
tions we use are according to [Gol04]. These definitions compare the adversaries
in the real-model with those in an ideal-model in which the parties have a trusted
party at their disposal. Loosely speaking, a two-party protocol is secure if for any
admissible pair of parties (A, B) in the real-model, there is an admissible pair
of parties (A

′
, B

′
) in the ideal model where the outputs of the two executions

are indistinguishable. A pair is admissible if at least one of the parties in the
pair is honest. Intuitively, a secure protocol is required to work correctly, and to
provide privacy for the honest participant.

In Section 4, we will present a tweaked version of these definitions that allows
a malicious party to learn k bits of extra information.

Oblivious transfer is a special two-party protocol introduced by Rabin
[Rab81]. We need the 1-out-of-2 oblivious transfer where x = (z0, z1), y = σ,
f1(x, y) = empty, and f2(x, y) = zσ. Several oblivious transfer protocols that
are secure in presence of malicious or semi-honest adversaries exist.

Yao’s Garbled Circuit Protocol

Yao’s garbled circuit [Yao86] is the first general purpose protocol designed for
secure two-party computation. In this protocol, the function being computed is a
polynomial size circuit. The first party computes the garbled form of the circuit
in the following way:

He assigns two random strings Kj,0 and Kj,1 to every wire j in the circuit.
These random strings correspond to values 0 and 1, respectively. He then com-
putes a garbled truth table for every gate in the circuit. For this purpose, he uses
the random strings as keys to a symmetric encryption scheme, to encrypt the

Efficiency Tradeoffs for Malicious Two-Party Computation 461

corresponding key for the output wire. He also creates a table that translates the
garbled form of the output wires to their actual values (0, or 1). He sends the
garbled circuit, and the garbled strings corresponding to his input, to the sec-
ond party. The second party learns the garbled form of his input bits through
a series of oblivious transfers. The second party computes the garbled circuit,
gate by gate, and obtains the output in the garbled form. He can then use the
translation table to find the actual value of his output. We refer the reader to
[LP04] for a complete description of Yao’s protocol and the proof of its security
in the semi-honest case.

Yao’s protocol, in this form, is not secure when the parties are malicious. Clas-
sical ways of making two-party protocols secure against malicious adversaries
exist [Gol04] (based on the zero-knowledge compilation technique of [GMW87],
and [GMW86]). In particular, the circuit garbler would need to accompany the
garbled circuit with a zero-knowledge proof that the circuit is built correctly,
and that it computes the desired functionality. Furthermore, the circuit eval-
uator would need to accompany his final message with a zero-knowledge proof
that the output is the result of performing the desired functionality on the inputs
exchanged in previous steps of protocol. The general zero-knowledge proofs are
quite inefficient and no efficient alternative zero-knowledge proofs are designed
for this purpose.

Fairplay Scheme

One of the main sources of malicious behavior in Yao’s garbled circuit protocol
is the ability of the circuit garbler to garble and send a wrong circuit. Malkhi
et al. [MNPS04] use a simple cut-and-choose construction which reduces the
probability of making the wrong garbled circuit to 1

m , where m is number of
circuits sent by circuit garbler (Bob) to circuit evaluator (Alice).

The following is the Fairplay scheme described in [MNPS04]. We only consider
the steps after both parties know the description of the circuit they want to
compute.

1. Bob constructs m garbled/encrypted circuits and sends them to Alice. Alice
randomly chooses one of the circuits that will be evaluated.

2. Bob exposes the secrets of the other m − 1 garbled/encrypted circuits, and
Alice verifies them against her reference circuit.

3. Bob specifies his inputs and sends them to Alice in garbled form. Alice inserts
Bob’s inputs in the garbled/encrypted circuits she chose to evaluate.

4. Alice specifies her inputs, and then Alice and Bob engage in oblivious trans-
fers (OTs) in order for Alice to receive her inputs (in garbled form) from Bob.
Bob learns nothing about Alice’s inputs.

5. Alice evaluates the chosen garbled/encrypted circuit, finds the garbled out-
puts of both her and Bob, and sends the relevant outputs to Bob.

6. Each party interprets his or her garbled outputs and prints the result.

In this scheme, the probability that Bob sends the wrong circuit and does not
get caught is 1

m . However, Alice is still vulnerable to a different type of malicious
behavior from Bob. We will describe this vulnerability in the following section.

462 P. Mohassel and M. Franklin

3 Preventing Malicious Behavior in Yao’s Protocol

A Vulnerability in Fairplay, and How to Correct It

In step 4 of the Fairplay protocol, parties engage in oblivious transfers in order
for Alice to get the garbled form of her inputs. In any of the oblivious transfers,
Bob can change the order of two random strings corresponding to 0 and 1. Note
that changing the order of strings is not a malicious behavior in an oblivious
transfer, but becomes a malicious behavior in the above protocol.

To state the vulnerability more formally, note that Bob can flip any of Alice’s
input bits without Alice’s detection. Let x1, x2, . . . , xn be the bit values associ-
ated with input wires. Let WA be the input wires owned by Alice, and let WB

be the input wires owned by Bob: WA ∪ WB = [1..n] while WA ∩ WB = φ. For
any S ⊆ [1..n], let f lipS(x1, . . . , xn) = (y1, y2, . . . , yn), where yi = 1 − xi for
all i ∈ S, and yi = xi for all i /∈ S. Then Bob can fool Alice into computing
f(f lipS(x1, . . . , xn)) for any S ⊆ WA. It is important to note that this behavior
is not allowed in the ideal model.

There is a simple solution to this problem. We will require Bob to include
a commitment zj,i,b of the tuple (j, i, b,K(j)

i,b) for every circuit copy j ∈ [1..m],

and every input wire i ∈ WA, and every input value b ∈ {0, 1}, where K
(j)
i,b

denotes the random string corresponding to bit value b of wire i in circuit j
(let wj,i,b be the corresponding witnesses for decomittal). The purpose of these
commitments is to bind the random key strings with their corresponding bit
values (0 or 1). Bob reveals the witnesses for all of the commitments except for
those corresponding to the one circuit copy chosen by Alice. Alice can verify that
the exposed commitments are correctly computed. For the remaining circuit s,
Bob will obliviously transfer (K(s)

i,0 , ws,i,0) or (K(s)
i,1 , ws,i,1) for all i ∈ WA. Alice

can use the witnesses to verify that she has received the correct key string. Bob
can only cheat with probability 1

m .
Now, we want to make the cheating probability exponentially small inm. The

idea mentioned in [Pin03] is that Alice chooses a fraction of circuits randomly.
Bob exposes the secrets of those circuits. Alice evaluates the rest of the circuits
and accepts the majority output as the correct output of the protocol. For the
cut-and-choose protocols to work properly, Bob must be forced to give the same
input to most of the circuits evaluated by Alice. Pinkas [Pin03] suggests the use
of proofs of partial knowledge to achieve this goal, but defers the detail of the
actual construction.

Next, we design two schemes for making the cheating probability exponen-
tially small in m. In the following two protocols, we assume that only Alice needs
to see the output of the protocol. Based on this assumption, both schemes are
secure in presence of malicious adversaries.

3.1 Committed-Input Scheme

In this scheme, we will use proof of equality of discrete-log commitments [Ped91].
To commit to a value x, one generates a random value r and calculates gxhr,

Efficiency Tradeoffs for Malicious Two-Party Computation 463

where g is a generator of group G and h is a random element of G. The commiter
should not know the discrete-log of h base g. To prove that gxhr1 and gyhr2 are
commitments to the same value, the commiter sends r2 − r1 to the verifier. The
verifier can calculate gyhr2

gxhr1 and verify that the result of division is in fact hr2−r1 .
Please refer to [Ped91] for more detail. Note that any commitment scheme with
an efficient proof-of-equality can be used in our construction. We focus on the
Pedersen commitments for simplicity, and to help with our concrete complexity
analysis in Section 3.3.

In the Committed-input scheme, Bob computes K
(j)
i,b = gbhr

(j)
i,b for random

r
(j)
i,b , for every j ∈ [1..m], for every input wire i ∈ WB owned by Bob, and for

every input value b ∈ {0, 1}.1 Bob chooses random keys for all of the other wires,
including Alice’s input wires. He also includes the commitment zj,i,b of the tuple
(j, i, b,K(j)

i,b) for all of Alice’s input wire keys (let wj,i,b be the corresponding
witness for decommittal). The protocol follows:

1. Bob and Alice agree on a group G, and a generator g. Alice sends a random
element h ∈ G to Bob.

2. Bob sends the garbled circuits C(j) for every j ∈ [1..m] (including the transla-
tion tables of output wires.) He also sends (j, i, zj,i,0, zj,i,1) for every j ∈ [1..m]
and every input wire i ∈ WA (commitments in random order).

3. Alice randomly chooses a subset S ⊂ [1..m], where |S| = m
2 .

4. Bob exposes all the secrets of circuit C(j) for all j ∈ S. Then, he sends
witnesses r(j)i,0 , r

(j)
i,1 for every j ∈ S, and i ∈ WB. He also sends witnesses

wj,i,0, wj,i,1 for every j ∈ S and every i ∈ WA.
5. Alice verifies that all the exposed garbled circuits and commitments were

computed correctly. In addition, she verifies that the commitments to 0’s
were used in the circuit as garbled forms of 0 and commitments to 1 were
used as garbled forms of 1.

6. Renumber the remaining garbled circuits as C(1), . . . ,C(m
2). Bob sends to

Alice K
(j)
i,bi

for every j ∈ [1..(m/2)] and every i ∈ WB. He also sends δ(j+1)
i =

r
(j+1)
i,bi

− r(j)i,bi
for every j ∈ [1..(m/2)− 1] and every i ∈ WB, where bi is Bob’s

input for wire i.
7. Alice verifies that K

(1)
i,bi
, . . . ,K

(m/2)
i,bi

are all commitments to the same value:

K
(j+1)
i,bi

/K
(j)
i,bi

= hδj+1
i for all j ∈ [1..(m/2)− 1]. She does so for all i ∈ WB .

8. Alice specifies her input. Alice and Bob engage in oblivious transfers in order
for Alice to receive her input bits in garbled form. Bob uses a single oblivious
transfer to give Alice one of the two tuples
(K(1)

i,0 , w1,i,0,K
(2)
i,0 , w2,i,0, . . . ,K

(m/2)
i,0 , wm/2,i,0) or

(K(1)
i,1 , w1,i,1,K

(2)
i,1 , w2,i,1, . . . ,K

(m/2)
i,1 , wm/2,i,1)

depending on whether her value for input wire i is 0 or 1. This Oblivious
Transfer is done for every i ∈ WA.

1 If the length of these commitments does not match the length chosen for the random
strings, we can use a hash function to map the commitments to strings of the required
length.

464 P. Mohassel and M. Franklin

9. Alice verifies that these received input wire values and witnesses are consis-
tent. Then, Alice executes all m/2 garbled circuits and outputs the majority
value of the outputs.

Proof of Security

We assume the basic building blocks for Yao’s garbled circuit protocol: secure
1-out-of-2 oblivious transfer and secure symmetric encryption. In addition, we
assume the security of Pedersen commitments (discrete log assumption).

Lemma 1. With probability more than 1− (1
2)

m
4 , the majority of evaluated cir-

cuits are correct and have the same input, or Bob will get caught.

Proof of lemma: The probability that more than half of the remaining m
2 circuits

were wrong, and were not detected by Alice, is less than
(3m/4

m/2

)
/
(

m
m/2

)
< (1

2)
m
4 .

Therefore, the majority of circuits are correct with high probability, which means
that the disc-log commitments corresponding to those circuits are also correct.
Hence, Bob has to give the same input for those circuits or he will get caught
during the verification (step 7).

The following two claims complete the security argument. Due to lack of space,
proofs of the following two claims are not included in this extended abstract.

Claim 1. The Committed-input scheme is secure when Bob (circuit garbler) is
malicious (inverse exponential probability of undetected cheating).

Claim 2. The Committed-input scheme is secure when Alice (circuit evaluator)
is malicious.

3.2 Equality-Checker Scheme

In this scheme, we will avoid any exponentiation other than the ones computed
for OTs. Before describing the scheme, lets define the equality-checkers used in
the scheme. Let zj,j′,i,b be Bob’s commitment to the tuple (j, j′,K(j)

i,b ,K
(j′)
i,b) and

let wj,j′,i,b be the corresponding witness for decommittal. Bob computes these
commitments for every j, j′ such that 1 ≤ j < j′ ≤ m, for every i ∈ WB , and for
every b ∈ {0, 1}. The idea is that a correctly built commitment binds the two
random key strings that correspond to the same bit value for the same input wire,
but in two different circuits. Alice can verify that Bob’s input to two circuits C(j)

and C(j
′
) are equal if she is given the witnesses to the commitments zj,j′,i,bi for

every i ∈ WB , where bi is Bob’s input bit for wire i. An equality-checker between
circuits C(j) and C(j′) is the collection of zj,j′,i,b for all i ∈ WB and b ∈ {0, 1}.
Working with equality-checkers instead of individual commitments makes the
proofs simpler.

1. Bob constructsm garbled/encrypted circuits and sends them to Alice. He also
sends the zj,i,b commitments and the m(m−1)/2 equality-checkers described
above.

Efficiency Tradeoffs for Malicious Two-Party Computation 465

2. Alice randomly chooses a subset S ⊂ [1..m], where |S| = m
2 and sends S to

Bob.
3. Bob exposes the secrets of circuits C(j) for all j ∈ S. Then, he sends wit-

nesses wj,i,b for all j ∈ S, all i ∈ WA, and all b ∈ {0, 1}. He also sends
witnesses wj,j′,i,b for all j, j′ ∈ S, all i ∈ WB, and all b ∈ {0, 1} (these are the
(m

2)(m
2 − 1)/2 equality-checkers corresponding to pairs of revealed circuits).

Alice verifies that the garbled circuits and commitments were computed cor-
rectly.

4. Renumber the remaining garbled circuits as C(1), . . . ,C(m/2). Bob sends the
keys K

(j)
i,bi

for every j ∈ [1..m2] and i ∈ WB. He also sends witnesses wj,j′,i,bi

for every 1 ≤ j < j′ ≤ m
2 , and every i ∈ WB, where bi is his input for wire i.

5. Alice uses the witnesses wj,j′,i,bi to verify that Bob’s input to all the circuits
are the same.

6. Alice and Bob engage in oblivious transfers in order for Alice to receive her
input bits in garbled form. Bob uses a single oblivious transfer to give Alice
one of the two tuples (K(1)

i,0 ,K
(2)
i,0 , . . . ,K

(m/2)
i,0) or (K(1)

i,1 ,K
(2)
i,1 , . . . ,K

(m/2)
i,1)

(depending on whether her value for input wire i is 0 or 1). This Oblivious
Transfer is done for every i ∈ WA.

7. Alice will evaluate the m
2 garbled circuits and print the majority output as

the correct output.

Proof of Security

We assume the basic building blocks for Yao’s garbled circuit protocol: secure 1-
out-of-2 oblivious transfer and secure symmetric encryption. We also assume the
security of the commitment scheme (which can be built from one way functions).
Lemma 2. With probability more than 1−(1/2)

m
6 , more than 2

3 of the m
2 circuits

are correct, or Bob will get caught.

Proof of Lemma: (by contradiction) Let’s assume that at most 2
3 of the m

2 circuits
are correct. This means that at least m

6 of the circuits are wrong. The probability
that Alice doesn’t detect those m

6 is less than
(5m/6

m/2

)
/
(

m
m/2

)
< (1

2)
m
6 .

Lemma 3. With probability more than 1−(1/2)
m
6 , at least 5

6 of Bob’s m
2 inputs

are the same, or Bob will get caught.

Proof: See Appendix for the proof.

Claim 3. The Equality-checker scheme is secure when Bob (circuit garbler) is
malicious (inverse exponential probability of undetected cheating).

Proof sketch: Now we know that Lemmas 2 and 3 are correct. In other words,
at least 5

6 of inputs are the same, and more than 2
3 of circuits are correct with

high probability. This implies that more than 2
3 − 1

6 = 1
2 of the circuits are

correct and have the same inputs, and hence, the majority output is the correct
output. according to the union-bound this will happen with probability greater
than 1− (1/2)

m
6 + 1 − (1/2)

m
6 − 1 = 1 − 2(1/2)

m
6 .

466 P. Mohassel and M. Franklin

Consider a strategy B for Bob in the real model. If Alice aborts the protocol,
we are done (Bob is caught and he doesn’t learn anything). But if Alice doesn’t
abort, she will respond with the majority output O which is equal to f(xa, xmaj)
with high probability. Here, xa is Alice’s input to the circuit, and xmaj is Bob’s
input to majority of the circuits. Bob’s view of the protocol includes the OTs,
and output O. Since he doesn’t learn anything about Alice’s input during the
OTs, he can simulate them on his own using a simulator S1.

The adversary B
′
in the ideal model will send the input xmaj to the trusted-

party and get back f(xa, xmaj) as the output. He can use the simulator S1 to
simulate the OTs, and emulate B’s strategy step by step, and the view of the
protocol will be indistinguishable.

The following claim completes the security argument (Proof is omitted due
to lack of space).

Claim 4. The Equality-checker scheme is secure when Alice (circuit evaluator)
is malicious.

3.3 Communication and Computation Analysis

To measure the communication and computation complexity of the schemes, we
introduce the parameters m, I, O and g. m is number of garbled/encrypted cir-
cuits sent to Alice. I and O are the number of input and output bits respectively
(Bob and Alice combined). g denotes the number of gates in the circuit. When-
ever we want to consider one party’s input or output, we will use the proper
subscript.

Asymptotic Analysis

We will measure the communication and computation cost where the goal is to
achieve an error probability as small as ε. To measure the computation cost, we
split the computation into two types of operations: (1) exponentiations, and (2)
everything else. In our protocols, OTs and disc-log commitments are from the
first category, while the symmetric encryptions and other commitments used in
the protocol are in the second category.

In the Fairplay scheme (with the vulnerability fixed as suggested), to achieve
the required error probability, we need m = 1

ε circuits. But for the Committed-
input scheme and Equality-checker scheme, m = O(ln(1

ε)). We summarize the
communication and computation complexities in table 1. Note that t = O(ln(1

ε))
is the security parameter (for a successful cheating probability of ε).

Table 1. Computation and Communication complexities

Scheme Symmetric Enc. Exponentiations Communication Complexity

Fairplay O(1
ε
g) O(I) O(2tg)

Committed-input O(ln(1
ε
)g) O(ln(1

ε
)I) O(tg)

Equality-checker O(ln(1
ε
)g + ln(1

ε
)2I) O(I) O(tg + t2I)

Efficiency Tradeoffs for Malicious Two-Party Computation 467

More Concrete Analysis

We will try to measure the computational cost of all three constructions more
precisely. We take into account all the encryptions, commitments and exponenti-
ations, and include even the constant factors. We will measure the computational
cost for 4 different circuits (AND2, Billionaires3, PIR4, Median5). We borrow the
circuits and their sizes from [MNPS04].

Fairplay: In the Fairplay scheme, to achieve an error probability ε, the total
number of cryptographic operations are: 1

ε (4g+2O+2IA) symmetric encryptions
and 2IA exponentiations.

Committed-input : To achieve an error probability of ε, the total number of
cryptographic operations are: 4

ln(2) ln(1
ε)(4g + 2O + 2IA) symmetric encryptions

and 2IA + 8
ln(2) ln(1

ε)IB exponentiations.
Equality-checker : We have 6

ln(2) ln(1
ε)(4g+2O+2IA)+ 72

ln(2)2 (ln(1
ε))2IB sym-

metric encryptions, and 2IA exponentiations.

Tables 2, 3 and 4 give the computational costs for the four mentioned circuits,
for four different error probabilities. Each entry includes two integers, represent-
ing the number of symmetric encryptions and exponentiations, respectively.

Table 2. Computational cost for Fariplay scheme

Error probability And Billionaires PIR Median
1

100
(176 ∗ 102, 16) (1092 ∗ 102, 64) (4976 ∗ 102, 12) (17916 ∗ 102, 320)

1
1000

(176 ∗ 103, 16) (1092 ∗ 103, 64) (4976 ∗ 103, 12) (17916 ∗ 103, 320)
1

10000
(176 ∗ 104, 16) (1092 ∗ 104, 64) (4976 ∗ 104, 12) (17916 ∗ 104, 320)

1
1000000

(176 ∗ 106, 16) (1092 ∗ 106, 64) (4976 ∗ 106, 12) (17916 ∗ 106, 320)

Table 3. Computational cost for Committed-input scheme

Error probability And Billionaires PIR Median
1

100
(4677, 441) (29020, 1764) (132239, 25524) (476125, 8824)

1
1000

(7015, 653) (43530, 2615) (198358, 38280) (714187, 13076)
1

10000
(9354, 866) (58040, 3465) (264478, 51036) (952250, 17328)

1
1000000

(14031, 1291) (87061, 5166) (396717, 76549) (1428375, 25832)

Since Equality-checker and Fairplay have the same number of exponentia-
tions, it is easy to compare their computational cost. You can see that for all
four circuits, if we require an error probability of 1

1000 or smaller, the computa-
tional cost of Equality-checker scheme is lower. However, if an error probability
2 Performs bit-wise AND on two inputs of size 8. The circuit has 32 gates.
3 Compares two 32-bit integers. The circuit has 256 gates.
4 Bob’s input size is 480 bits and Alice’s input size is 6 bit. The circuit has 1229 gates.
5 finds the median of two sorted arrays. The input for both Alice and Bob are ten

16-bit numbers. The circuit size is 4383 gates.

468 P. Mohassel and M. Franklin

Table 4. Computational cost for Equality-checker scheme

Error probability And Billionaires PIR Median
1

100
(19700, 16) (94380, 64) (961112, 12) (968439, 320)

1
1000

(39100, 16) (179708, 64) (2013733, 12) (1643347, 320)
1

10000
(64882, 16) (290462, 64) (3447731, 12) (2445380, 320)

1
1000000

(135460, 16) (588243, 64) (7459858, 12) (4430824, 320)

of 1
100 or larger is enough, Fairplay is a better choice. Therefore, the choice of

efficient construction seems to depend on the likelihood of malicious behavior
and the magnitude of damage it can have in the environment the protocol is
being employed.

David Woodruff [Woo06] has proposed a modification to the Equality-checker
scheme using expander graphs. Bob associates his m circuits with the vertices
of an expander graph, and then commits only to those pairs of circuits that
correspond to edges of this graph. There are explicit constructions of expander
graphs for which this saves a factor of Θ(m) in the communication complexity,
while preserving the security properties of the protocol. This is a nice asymptotic
improvement, although it is unclear what the savings would be for the small
values of m that might be used in practice.

4 How to Leak Information

The idea explored in this section is to weaken the notion of security by allowing
a malicious party to learn k bits of information about the other party’s input, in
addition to the output of protocol. A semi-honest party should still only learn
the output of the protocol.

Loosely speaking, a two-party protocol π between two parties A and B for
computing f(xa, xb), leaks only k bits of information if all the malicious party A
(symmetrically, B) can learn from protocol π, it can also learn given the output
f(xa, xb) and an additional value g(xb) for a g of her choice in G, where G is a
family of functions and G ⊆ {g|g : {0, 1}∗ → {0, 1}k}.

The definition of security of a two-party protocol (refer to [Gol04]), compares
the execution of admissible adversaries in the real-model and ideal-model. In
order to formally incorporate the leakage of information in our definition of
security, we need to change the definition of ideal-model. We call this new model
the k-leaked model.

k-Leaked Model

In this model of computation, parties have a semi-trusted party at their disposal.
Execution in the k-leaked model proceeds as follows:

– Inputs: Each party obtains an input denoted u.
– Sending inputs to the semi-trusted party: An honest party always sends

u to the semi-trusted party. A malicious party may, depending on u (as well

Efficiency Tradeoffs for Malicious Two-Party Computation 469

as an auxiliary input and its coin tosses), either abort or send some other
u

′ ∈ {0, 1}|u| to the semi-trusted party.
– Malicious party asks for k bits of information: In case either party

has aborted, the semi-trusted party replies to both parties with a special
symbol, denoted ⊥. Otherwise, the semi-trusted party has an input pair
(x, y). A malicious party can choose a function g ∈ G, where G ⊆ {g|g :
{0, 1}∗ → {0, 1}k}, and ask the semi-trusted party for the value of g at the
other party’s input. The semi-trusted party answers accordingly.

– The semi-trusted party answers the first party: The semi-trusted
party answers the first party with f1(x, y).

– The semi-trusted party answers the second party: In case the first
party is malicious, it may, depending on its input and the answer it received,
decide to stop the semi-trusted party. In this case the semi-trusted party
sends ⊥ to the second party. Otherwise (i.e. if not stopped), the semi-trusted
party sends f2(x, y) to the second party.

– Outputs: An honest party always outputs the message it has obtained from
the semi-trusted party. A malicious party may output an arbitrary function of
its initial input and the message it has obtained from the semi-trusted party.

Note that we borrowed the definition of ideal-model from [Gol04] and made
the necessary adjustments to obtain a definition for k-leaked model. Now, we can
easily obtain a definition for our weakened notion of security by replacing the
ideal-model by the k-leaked model in the security definition of [Gol04].

Loosely speaking, for any admissible pair of parties (A, B) in the real-model,
there is an admissible pair of parties (A

′
, B

′
) in the k-leaked model where the

outputs of the two executions are indistinguishable. A pair is admissible if at
least one of the parties in the pair is honest. We will take advantage of this fact
when designing our protocols.

4.1 How to Use the New Definition

In this section, we will describe a method for making Yao’s garbled-circuit pro-
tocol secure against malicious behavior in the 1-leaked model, where G = {g|g :
{0, 1}∗ → {0, 1}}. Note that we have already designed two protocols for making
Yao’s protocol secure against malicious behavior. Our new construction is inter-
esting because it is simple, generic, and more efficient. Particularly, it has the
same communication and computation complexity as Yao’s garbled-circuit pro-
tocol for semi-honest parties (Proof of security in the 1-leaked model is omitted
from this extended abstract).

The Protocol

The protocol takes place between Alice and Bob who want to compute f(xa, xb)
where xa is Alice’s input and xb is Bob’s.6

6 Please note that the following protocol only considers the case where both parties
share the same output. This doesn’t effect the generality of the protocol since any
two-party computation in which parties have different outputs can be solved using
protocols in which both parties share the same output (please refer to [LP04]).

470 P. Mohassel and M. Franklin

1. Alice creates a garbled circuit for computing f . She sends the garbled circuit,
her garbled input, and a translation table for output wires to Bob.

2. Alice and Bob engage in a series of oblivious transfer protocols so that Bob
learns the garbled form of his inputs.

3. Bob computes the circuit and translates the output strings to their actual
value using the translation table. Lets call this output O1.

4. Bob creates a garbled circuit for computing f . He sends the garbled circuit,
his garbled input, and a translation table for output wires to Alice.

5. Alice and Bob engage in a series of oblivious transfer protocols so that Alice
learns the garbled form of her inputs.

6. Alice computes the circuit and translates the output strings to their actual
value, using the translation table. Lets call this value O2.

7. Alice and Bob engage in a secure protocol (against malicious behavior) that
returns 1 if O1 = O2 and 0 otherwise (This is where a malicious party can
learn one extra bit). Bob and Alice need to prove to each other that they
actually use O1 and O2 as their input to this sub-protocol.

8. If the answer is 0, parties output ⊥, and abort.
9. Bob and Alice output O1 and O2 respectively.

Instantiating Step 7 of the Protocol

The sub-protocol in step 7 needs to return 0 if the inputs are not the same. In
addition, any party using an input different from O1 or O2 should get caught.
It is in fact easy to achieve the latter by requiring the parties to incorporate
in the sub-protocol, the garbled form of the output they received. Note that if
the translation tables are carefully constructed, a party computing a garbled
circuit can only learn the garbled strings corresponding to its own output bits
and not the complements. Hence, it is easy for the other party, who created the
garbled circuit in first place, to verify the correctness of it. We need a conditional
disclosure protocol as described in [AIR01].

In the following protocol, O1 is the output received by Bob (in binary) and
Wb = w1||w2 . . . ||wn is the garbled form of O1. Furthermore, the output received
by Alice is O2 with the garbled form Wa = w1||w2 . . . ||wn. Then, the protocol,
at a high level, is as follows:

1. Alice discloses Wa to Bob if O1 = O2, and a random value ra ∈ {0, 1}|Wa|

otherwise.
2. Bob calculates his own version of Wa using O1 and the garbled strings cor-

responding to the output wires (Bob created the garbled circuit). He verifies
that his calculated version is equal to the value he received from Alice. If not,
he aborts.

3. Bob discloses Wb to Alice if O1 = O2, and a random value rb ∈ {0, 1}|Wb|

otherwise.
4. Alice verifies the equality in a way similar to (step 2).

Efficiency Tradeoffs for Malicious Two-Party Computation 471

Table 5. Computational-cost of the scheme

symmetric Enc. exponentiations And Billionaires PIR Median

O(g) O(I) (352, 34) (2184, 130) (9952, 26) (35832, 642)

Computational-Cost. Note that by leaking one extra bit, we made the pro-
tocol much more efficient. We decreased the communication cost to only twice
that of Yao’s garbled circuit for semi-honest parties. The same is true regarding
the cost of computation. Below is a measure of how the protocol performs, both
asymptotically and in more concrete terms. As before, for the concrete mea-
surements, the first component shows number of symmetric encryptions while
the second component counts number of exponentiations performed. Compar-
ing this table with Tables 2, 3,and 4 shows the dramatic improvement in the
computation cost.

Non-interactive Computations

The protocol we used above to make Yao’s garbled-circuit protocol secure against
malicious behavior is generic enough that it can be used in different contexts as
well. Particularly, any non-interactive7 two-party protocol which is secure against
semi-honest adversaries can use our scheme to make the protocol secure against
malicious behavior in the 1-leaked model. More generally, any non-interactive two-
party protocol that is secure in the semi-honest version of the k-leaked model, can
be made secure in the malicious version of (k+1)-leaked model. It is important to
note that step 7 of the protocol should be instantiated appropriately.

Acknowledgements

We would like to thank David Woodruff and the anonymous reviewers for their
helpful suggestions.

References

[AFK87] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from
an oracle. In STOC ’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing, pages 195–203. ACM Press, 1987.

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to
sell digital goods. Eurocrypt, 2001.

[BYCKO93] R. Bar-Yehuda, B. Chor, E. Kushilevitz, and A. Orlitsky. Privacy, ad-
ditional information, and communication. IEEE Transactions on Infor-
mation Theory, 1993.

[Cle89] R. Cleve. Controlled gradual disclosure schemes for random bits and
their applications. In CRYPTO ’89: Proceedings on Advances in cryp-
tology, pages 573–588. Springer-Verlag, 1989.

7 We call a protocol non-interactive if one party sends his input (in some form) to the
second party. Then, the second party computes the functionality on his own (no in-
teraction here).

472 P. Mohassel and M. Franklin

[FNW96] R. Fagin, M. Naor, and P. Winkler. Comparing information without
leaking it. Commun. ACM, 39(5):77–85, 1996.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing
but their validity or all languages in np have zero-knowledge proofs.
Proceedings of of the 27th FOCS, pages 174-187, 1986.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
proceedings of 19th Annual ACM Symposium on Theory of Computing,
pages 218-229, 1987.

[Gol04] O. Goldreich. Foundations of cryptography - volume 2, ch. 7. 2004.
[GP99] O. Goldreich and E. Petrank. Quantifying knowledge complexity. Com-

putational Complexity, 8:50–98, 1999.
[lMR83] M. luby, S. Micali, and C. Rackoff. How to simultaneously exchange a

secret bit by flipping a symmetrically-biased coin. FOCS, 1983.
[LP04] Y. Lindell and B. Pinkas. A proof of yao’s protocol for secure two-party

computation. eprint archive, 2004.
[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay– a secure two-

party computation system. Proceedings of Usenix security, 2004.
[Ped91] T. P. Pederson. Non-interactive and information-theoritic secure verifi-

able secret-sharing. 1991.
[Pin03] Benny Pinkas. Fair secure two-party computation. Eurocrypt, LNCS

2656, Springer-Verlag, pp. 87-105, 2003.
[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical

Report Tech., Memo. TR-81, Aiken Computation Labratory, Harvard
University, 1981.

[Woo06] D. Woodruff. unpublished manuscript, 2006.
[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of

the 27th IEEE symposioum on Foundations of Computer science,pages
162-167, 1986.

A Proof of Lemma 3

Bob sends m
2 garbled inputs for the m

2 circuits that Alice will evaluate. Lets
denote the set of these inputs IB , where |IB | = m

2 . Let L be the largest subset
of IB with equal inputs, where |L| = k. In other words, all other subsets of
equal inputs have sizes smaller or equal to k. We want to prove that, with high
probability, k is greater than 5

6 .
m
2 = 5m

12 .
Note that Alice has (m

2)(m
2 −1)/2 equality-checkers that compare the m

2 inputs
with each other. Some of these equality-checkers might be wrong (malicious Bob),
and therefore verify the equality of two inputs that are not equal. We call two
equality-checkers distinct if they compare the inputs to four different circuits.
The next two Claims imply Lemma 3:

Claim A: If k ≤ 5m
12 , at least m

12 of the distinct equality-checkers used by Alice
for verification were wrong.

Claim B: If Bob sends m
12 wrong distinct equality-checkers to Alice, the prob-

ability that they are not detected by Alice, and are used by her to verify that
Bob’s inputs are the same, is less than (1/2)

m
6 .

Efficiency Tradeoffs for Malicious Two-Party Computation 473

Fig. 1. Nodes represent inputs and edges represent equality-checkers

Proof of Claim A: We know that |L| = k ≤ 5m
12 . We consider the following two

case:

Case 1: (m
6 ≤ k ≤ 5m

12) This implies thatmin(|L|, |IB−L|) = min(k, m
2 −k) ≥

m
2 − 5m

12 = m
12 . Therefore, there are at least m

12 distinct equality-checkers among
those that compare the inputs in (IB − L) with those in L. These m

12 equality-
checkers must have been wrong not to detect that the compared inputs are not
the same.

Case 2: (k ≤ m
6) Consider the partition (S1,S2, ...,Sl, L) of the set IB where

each subset Si and L only contain equal inputs (Fig 1.).Note that S1 ∪ S2 . . . ∪
Sl ∪ L = IB , and all the subsets are pairwise disjoint. Lets denote |Si| = ki for
all 1 ≤ i ≤ l. The fact that k1 + ... + kl + k = m

2 , and (k ≤ m
6) implies that

k1 + k2 + ...+ kl ≥ k. Hence, there are k distinct equality-checkers that compare
the k inputs in L with inputs in S1,S2, ...,Sj for some 1 ≤ j < l (Fig 1.). This
might only cover portions of set Sj . These k equality-checkers must have been
wrong not to detect that their two inputs weren’t equal. But there is more.

We insert the remaining portion of Sj and all of Sj+1, ...,Sl in a list (in the
same order). We cut the list in half, and pair up each input on the right side
of the cut with its counterpart on the left (Fig. 1). In worst case, the cut is in
the middle of a subset St (j + 1 ≤ t ≤ l). This means that at most kt

2 < k
2

of these pairs might include equal inputs (in the same subset). The equality-
checkers corresponding to the rest of the pairs compare unequal inputs and must
have been wrong not to detect the inequalities. Therefore, there is an additional
(m

2 − k− k − kt)/2 > (m
2 − 3k)/2 wrong equality-checkers. This makes the total

number of wrong distinct equality-checkers at least k+(m
2 −3k)/2 = m

4 −
k
2 >

m
12 .

Based on Case 1 and Case 2, if less than 5
6 of the inputs are the same, and all

the equality-checkers confirm the equality of inputs, there are at least m
12 wrong

distinct equality-checkers among them.

Proof of Claim B: Lets assume that m
12 distinct equality-checkers are wrong and

are used by Alice for verification. The probability that no two endpoints of any of
the m/12 equality-checkers was exposed in the previous step is less than (1

2)
m
6 .

On Constructing Certificateless Cryptosystems

from Identity Based Encryption

Benôıt Libert� and Jean-Jacques Quisquater

UCL, Microelectronics Laboratory, Crypto Group,
Place du Levant, 3, B-1348, Louvain-La-Neuve, Belgium

{benoit.libert, jean-jacques.quisquater}@uclouvain.be

Abstract. Certificateless cryptography (CL-PKC) is a concept that
aims at enjoying the advantages of identity based cryptography without
suffering from its inherent key escrow. Several methods were recently sug-
gested to generically construct a certificateless encryption (CLE) scheme
by combining identity based schemes with ordinary public key cryptosys-
tems. Whilst the security of one of these generic compositions was proved
in a relaxed security model, we show that all them are insecure against
chosen-ciphertext attacks in the strongest model of Al-Riyami and Pa-
terson. We show how to easily fix these problems and give a method
to achieve generic CLE constructions which are provably CCA-secure
in the random oracle model. We finally propose a new efficient pairing-
based scheme that performs better than previous proposals without pre-
computation. We also prove its security in the random oracle model.

Keywords: Certificateless encryption, provable security, bilinear maps.

1 Introduction

In 2003, Al-Riyami and Paterson [2] invented a paradigm called certificateless
public key cryptography (CL-PKC) which is intermediate between identity-
based [27, 12] and traditional PKI-supported cryptography. The concept was
introduced to suppress the inherent key-escrow property of identity-based cryp-
tosystems (ID-PKC) without losing their most attractive advantage which is the
absence of digital certificates and their important management overhead.

Independently of [2] and a bit earlier, Gentry [22] introduced a different but
related concept named certificate based encryption (CBE) for which a signature
analogue was studied in [24]. This approach is closer to the context of a tra-
ditional PKI model as it involves a certification authority (CA) providing an
efficient implicit certification service for clients’ public keys.

Although very different at first glance, the CBE and CLE concepts were first
argued [2] to be closely related and both constructions of [2, 22] use the prop-
erties of pairings. A subsequent work of Yum and Lee considered the relations
between identity-based (IBE), certificate based (CBE) and certificateless encryp-
tion schemes (CLE) and established a result of essential equivalence [31] between
� This author thanks the DGTRE’s First Europe Program in Belgium.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 474–490, 2006.
c© International Association for Cryptologic Research 2006

On Constructing Certificateless Cryptosystems 475

the three primitives but this result does not hold for the strongest security model
developed in [2] for CLE schemes. The same authors also proposed generic con-
structions of certificateless signatures [30] and encryption schemes [29] but only
established the security of their designs in security models that are seemingly
undermined w.r.t. the original model considered in [2] for the public key encryp-
tion case.

A more recent work [3] thoroughly investigated the connections between the
CLE and CBE paradigms by proposing a simplified definition and a revised
security model for certificate based encryption before proving that any secure
certificateless encryption (CLE) scheme can be turned into a secure CBE in the
amended model.

Among other related results, we mention a paper [16] describing a somewhat
similar scheme to [3], another work [9] that investigates identity-based and cer-
tificateless extensions of key encapsulation mechanisms. Both works [9, 16] con-
sidered a model of security which is noticeably weaker (albeit realistic in practice)
than the original one [2]. A very recent paper by Baek et al. [4] also showed how
to devise a certificateless encryption scheme without pairings. The latter con-
struction enjoys a better efficiency than pairing-based proposals [2, 3, 16] but is
supported by a weaker security model and prevents users from generating their
public key independently from the system’s authority. Finally, Dent and Kudla
[17] investigated the feasibility of provably secure CLE schemes in the standard
model and ruled out the use of some particular proof techniques for achieving
this purpose in accordance with intuitive arguments given in [16].

The contribution of the present paper to the area of certificateless cryptog-
raphy is two-fold. It first identifies some weaknesses in generic constructions
independently considered in [1] and [29]. It shows that one of these flaws is also
present in the second provably secure CLE scheme of Al-Riyami and Paterson
[3] where it can be very easily fixed. The paper then explains how to obtain
generic constructions which are provably secure in the random oracle model. It
does so by first giving a generic random oracle-using conversion to turn any CLE
scheme which is only secure against chosen-plaintext attacks into an IND-CCA
scheme in the full model of Al-Riyami and Paterson [2].

The second contribution of the paper is to describe a new efficient pairing-
based scheme yielding some advantages over previous constructions [2, 3, 16, 9]:
its encryption operation does not require to compute a pairing (only the de-
cryption algorithm does) and is thus generally faster than in previous proposals
[2, 3, 16, 9]. The security proof of the new scheme is nevertheless obtained under
a stronger computational assumption than for previous schemes in the literature.

In the forthcoming sections of this paper, we first review the formal defini-
tion and adversarial model of CLE schemes in section 2. Section 3 illustrates
the power of their security model by showing how several generic constructions
studied so far are insecure in it. We explain in section 4 how to repair them
and we prove the security of the fixed constructions in the random oracle model.
Our new certificateless cryptosystem is then depicted in section 5 where security
proofs in the random oracle model are detailed.

476 B. Libert and J.-J. Quisquater

2 Preliminaries

We now recall the components of a certificateless encryption scheme before de-
tailing the relevant formal security model [2].

2.1 Definition of Certificateless Encryption (CLE)

Definition 1. A certificateless encryption scheme (CLE) is a 7-tuple of algo-
rithms which are the following:

Setup: is a probabilistic algorithm run by a Key Generation Center (KGC),
that, given a security parameter k, returns a randomly chosen master key
mk and a list of public parameters params.

Partial-Private-Key-Extract: is a possibly probabilistic algorithm, run by the
KGC, that takes as input a user’s identifier IDA and the master key mk to
return his/her partial private key dA.

Set-Secret-Value: is a probabilistic algorithm that, given a list of public param-
eters params, returns a randomly chosen secret value xA for that user. This
algorithm and the next two are performed by the user himself.

Set-Private-Key: is a deterministic private key generation algorithm that, given
public parameters params, a user’s partial private key dA and secret value
xA, outputs a private key SA.

Set-Public-Key: is a deterministic public key generation algorithm that, given
public parameters params and a user’s secret value xA, computes his/her
public key pkA. The latter’s well-formedness (i.e. its belonging to a specific
group or set) must be publicly verifiable given params.

Encrypt: is a probabilistic algorithm taking as input a plaintext m, parameters
params, a receiver’s identity IDA and his public key pkA to produce a cipher-
text C = Encrypt(m, params, IDA, pkA).

Decrypt: is a deterministic algorithm that, given a ciphertext C, a list of public
paramaters params and user IDA’s private key, outputs a plaintext m or a
distinguished symbol ⊥.

For completeness, it is obviously required that Decrypt(C, params,SA) = m when-
ever C = Encrypt(m, params, IDA, pkA) for all messages m ∈ M and public
keys pkA = Set-Public-Key(params, xA) for which the matching private key is
SA = Set-Private-Key(params, Partial-Private-Key-Extract(IDA), xA) and the se-
cret value is xA = Set-Secret-Value(params).

Unlike Setup and Partial-Private-Key-Extract that are run by a Key Generation
Center (KGC), algorithms Set-Secret-Value, Set-Private-Key and Set-Public-Key
are executed by the user whose private key remains hidden from the KGC.

The recent pairing-free scheme of Baek et al. [4] fits a slightly different model
where users have to obtain their partial private key and a partial public key be-
fore generating their full public key. This approach is closer to the “self-certified”
paradigm [23] which is another approach suggested by Girault in 1991 to use
public key cryptography without traditional digital certificates and without in-
volving an escrow authority.

On Constructing Certificateless Cryptosystems 477

2.2 Security Model

In [2], two kinds of adversaries are distinguished against CLE schemes. A Type I
adversary ignores the KGC’s master key but can replace public keys of arbitrary
identities with other public keys of her choosing. Such an adversarial behavior
seems natural as, in the absence of digital certificates, anyone can alter public
directories by replacing public keys without being caught or detected. As attack-
ers against IBE schemes (recalled in appendix A), Type I adversaries can also
obtain partial and full private keys of arbitrary identities.

In contrast, a Type II adversary knows the KGC’s master key (and does not
need a partial key exposure oracle) and may still obtain full private keys for
arbitrary identities but is disallowed to replace public keys during the game.

For both types of adversaries, depending on the strength of the attack, we
may or may not provide them with an oracle decrypting arbitrary ciphertexts
using the private key associated with arbitrary identities.

In the chosen-ciphertext scenario, the authors of [2] consider decryption or-
acles that should be able (thanks to suitable knowledge extractors) to output
consistent answers even for identities whose public key has been replaced and
for which they do not know the new private key. The latter requirement might
look too strong but it may be argued that decryption queries involving identities
of replaced public key are far more useful to a Type I attacker (especially when
the latter does not know the private key associated with the new public key).

In the security analysis of generic constructions in section 3.1, we will illus-
trate the importance of considering adversaries who replace public keys instead
of merely corrupting their owner and learning his/her secret value.

Definition 2. A CLE scheme is IND-CCA secure if no probabilistic polynomial
time (PPT) adversary A of Type I or II has a non-negligible advantage in the
following game:

1. Given a security parameter k, the challenger runs Setup(k) and then delivers
the resulting parameters params to A who also receives the master key mk if
she is of Type II. Otherwise, mk is kept secret.

2. A is given access to
– a public key broadcast oracle Public-Key-Broadcast taking as input iden-

tities and returning the matching public keys.
– a partial key exposure oracle Partial-Private-Key-Extract (if she is of Type

I as such an oracle is useless otherwise) returning partial private keys
associated with users’ identities.

– a private key exposure oracle Private-Key-Extract revealing private keys
of entities whose public key was not replaced.

– a decryption oracle Decrypt which, given a ciphertext and an identity
(C, ID), returns the decryption of C using the private key corresponding
to the current value of entity ID’s public key.

If A is of Type I, she has also access to a public key replacement oracle
Public-Key-Replace which, given an identifier ID and a valid public key pk′,
replaces user ID’s public key with pk′.

478 B. Libert and J.-J. Quisquater

3. A outputs messages m0, m1 together with an identity ID∗ of uncorrupted pri-
vate key. If A is of Type I, ID∗ may not have been submitted to both ora-
cles Public-Key-Replace and Partial-Private-Key-Extract. She gets a ciphertext
C∗ = Encrypt(mb, params, ID∗, pk∗) where b R← {0, 1} and pk∗ is the public
key currently associated with ID∗.

4. She then issues a new sequence of queries but is not permitted to ask for
the decryption of C∗ for the combination (ID∗, pk∗) under which mb was en-
crypted at step 3. Moreover no private key exposure query can be made on
ID∗ at any time and, in a Type I attack, ID∗ may not be submitted to both
oracles Public-Key-Replace and Partial-Private-Key-Extract.

5. A eventually outputs a bit b′ and wins if b′ = b. As usual, her advantage is
Advind−cca

CLE (A) := 2 × Pr[b′ = b]− 1.

The above definition captures a chosen-ciphertext scenario. The weaker chosen-
plaintext security (or IND-CPA security) notion is formalized by a similar game
where attackers have no decryption oracles.

The security models considered in [4, 16, 29] are weaker in that they disallow
Type I attackers to ever extract the partial private key of the target entity. In
contrast, the above model allows them to do so as long as they do not additionally
replace the associated public key. Besides, the models of [16, 29] only require
challengers to correctly handle decryption queries for entities whose public key
was not replaced. From here on, we will stick to the model of definition 2.

3 On the Power of Public Key Replacement Oracles

This section underlines the strength of the security model captured by definition 2.
We first explain simple attacks that compromise the security of some generic
constructions of certificateless encryption. We then exemplify that allowing de-
cryption queries even for entities whose public keys have been replaced also harms
the security of the scheme proposed by Al-Riyami and Paterson published in [3].
We also show how to very easily fix the problem.

3.1 The Case of Generic Constructions

In [1] and [29], generic constructions of certificateless encryption were indepen-
dently proposed. Their idea is basically to combine strongly secure identity-based
and traditional public key encryption schemes in a sequential or parallel fash-
ion. More precisely, let ΠIBE = (SetupIBE , ExtractIBE , EIBE ,DIBE) be an IBE
scheme (see appendix A for details on the formal syntax of such a primitive)
and ΠPKE = (KPKE , EPKE

pk ,DPKE
sk) denote a traditional public key encryption

scheme (the latter being made of a key generation algorithm KPKE , a proba-
bilistic encryption algorithm EPKE

pk and the deterministic decryption algorithm
DPKE

sk), a CLE scheme ΠCLE can be obtained with the present sequential com-
position. Its security was proved by Yum and Lee [29] in a model where ad-
versaries are restricted not to issue a partial key exposure query on the target
identity ID∗ (recall that such a query is allowed in the strong model if entity ID∗’s

On Constructing Certificateless Cryptosystems 479

public key is never replaced) nor to require the correct decryption of ciphertexts
encrypted under identities of replaced public keys.

Setup: is an algorithm running the setup algorithm ofΠIBE . The message space
of ΠCLE is the message space of ΠPKE while its ciphertext space is the one
of ΠIBE . Both schemes have to be compatible in that the plaintext space of
ΠIBE must contain the ciphertext space of ΠPKE .

Partial-Private-Key-Extract: is the private key generation algorithm of ΠIBE .
Set-Secret-Value and Set-Public-Key: run the key generation procedure of

ΠPKE to obtain a private key sk and a public key pk. The former is the
secret value and the latter becomes the public key.

Set-Private-Key: returns SA := (dA, skA) where dA is obtained by running the
key generation algorithm of ΠIBE for the identity IDA and skA is entity A’s
secret value obtained from ΠPKE ’s key generation algorithm.

Encrypt: to encrypt m ∈ MPKE using the identifier IDA ∈ {0, 1}∗ and the
public key pkA,

1. Check that pkA has the right shape for ΠPKE .
2. Compute and output the ciphertext C = EIBE

IDA
(EPKE

pkA
(m)) where EIBE

IDA

and EPKE
pkA

respectively denote the encryption algorithms of ΠIBE and
ΠPKE for the identity IDA and the public key pkA.

Decrypt: to decrypt C using SA = (dA, skA),

1. Compute DIBE
dA

(C) using the decryption algorithm of ΠIBE. If the result
is ⊥, return ⊥ and reject the ciphertext.

2. Otherwise, compute DPKE
skA

(DIBE
dA

(C)) using the decryption algorithm of
ΠPKE and return the result.

This construction is insecure against Type I attacks in the full model of defi-
nition 2 even if its building blocks ΠIBE and ΠPKE are each IND-CCA secure
in their model. We show it using simple arguments such as those given in [18, 32]
against the security of naive multiple-encryptions. Let C∗ = EIBE

ID∗ (EPKE
pk∗ (m∗

b))
be the challenge ciphertext in the game of definition 2 where m∗

b (for a random
bit b ∈ {0, 1}) denotes one of the messages produced by the adversary AI in
her challenge request. Assume that AI never replaces the public key of ID∗ but
rather extracts the partial private key dID∗ after the challenge phase. She then
obtains E1 = DIBE

dID∗ (C∗) = EPKE
pk∗ (mb) and she may compute another encryption

C′ = EIBE
ID∗ (E1) �= C∗ of the same plaintext and obtain m∗

b .
This does not contradict the result of [29] that considers a weaker model

where attackers may not extract the partial private key for the target identity.
In [1], a reverse-ordered composition (that we call Generic-CLE-2) where ci-

phertexts have the form C = EPKE
pkA

(EIBE
ID (m)) is suggested. This composition is

vulnerable against an attacker replacing the target entity’s public key before the
challenge phase. Knowing the secret value sk∗ in the challenge phase, the adver-
sary obtains EIBE

ID∗ (mb) that is re-encrypted into C′ = EPKE
pk∗ (EIBE

ID∗ (mb)) �= C∗

which may be submitted to the decryption oracle even though entity ID∗’s public
key was replaced in the model of [2].

480 B. Libert and J.-J. Quisquater

In [1], a ‘parallel’ construction (that we will call Generic-CLE-3) was also con-
sidered. It encrypts a plaintext m into

C = 〈EPKE
pkA

(m1), EIBE
ID (m2)〉

where m1 and m2 are subject to the constraint m = m1 ⊕m2. This parallel ap-
proach is vulnerable to a similar attack to those outlined by Dodis and Katz [18]
or Zhang et al. [32] against multiple-encryption schemes: if C∗ = 〈E∗

1 , E∗
2 〉 is the

challenge ciphertext in the IND-CCA game, both kinds of adversaries AI or AII

may first request the decryption of C′
1 = 〈E∗

1 , EIBE
ID (0IBE)〉 and then the decryp-

tion of C′
2 = 〈EPKE

pk (0PKE), E∗
2 〉, where 0PKE and 0IBE are plaintexts made of

zeros in ΠIBE and ΠPKE . By combining the results m′
1 and m′

2 of both decryp-
tion requests into m′

1 ⊕m′
2, the adversary AI gets back the plaintext encrypted

in C∗. This attack works even if ΠIBE and ΠPKE are both IND-CCA secure
and it does not even require AI to replace any public key. Unlike the previous
two attacks, it also works in the weaker models of [16, 29].

In [18], Dodis and Katz gave generic techniques to counteract such attacks
and build IND-CCA secure (possibly parallel) multiple-encryption schemes from
public key encryption schemes which are individually IND-CCA. They showed
that their methods apply to the design of certificate-based encryption schemes
[22] without resorting to the random oracle model. Because of the strong con-
straint imposed on decryption oracles in definition 2, those techniques do not
seem to directly apply in the present context (although they do so in the relaxed
models considered in [16, 29]). In security proofs, the difficulty is that the simu-
lator does not know the secret value of entities whose public key was replaced.

3.2 The Second Al-Riyami-Paterson Scheme

In [3], the inventors of the certificateless paradigm proposed a variant (named
FullCLE∗) of their original scheme that is significantly more efficient. It again
uses bilinear map groups which are groups (G1, G2) of prime order q for which
there exists a bilinear map ê : G1×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ P,Q ∈ G1, ∀ a, b ∈ Z∗
p, we have ê(P a,Qb) = ê(P,Q)ab.

2. Non-degeneracy: if P generates G1, then ê(P,P) generates G2.
3. Computability: ∀ P,Q ∈ G1, ê(P,Q) can be efficiently computed.

In FullCLE∗, public keys are made of a single group element YA = xAP ∈ G1,
for a secret value xA ∈ Z∗

q , and checking their validity only requires an elliptic
curve scalar multiplication. The plaintext is actually scrambled twice using two
distinct superposed one-time masks. In some sense, this scheme may be regarded
as an optimized composition of the Boneh-Franklin IBE [12] with an ElGamal-
like cryptosystem [21]. In order to achieve the security in the sense of definition
2, the authors of [3] again applied the Fujisaki-Okamoto conversion [20].

In more details, the KGC has a master key s ∈ Z∗
q and a master public key

Ppub = sP . It computes partial private keys as dA = sh1(IDA), where h1 :
{0, 1}∗ → G∗

1 maps public identifiers onto the group G1, while end-users’ private

On Constructing Certificateless Cryptosystems 481

keys consist of a secret value xA and a partial private key dA. In accordance
with the Fujisaki-Okamoto construction, messages m are encrypted into

C = 〈U,V,W 〉 = 〈rP, σ ⊕ h2(ê(Ppub, h1(IDA))r) ⊕ h′
2(rYA), m ⊕ h4(σ)〉

where r = h3(σ, m) for a random string σ R← {0, 1}k1 (for some k1 ∈ N) and
hash functions h2 : G2 → {0, 1}k1, h′

2 : G1 → {0, 1}k1, h3 : {0, 1}n+k1 → Z∗
q ,

h4 : {0, 1}k1 → {0, 1}n.
It turns out that the original Fujisaki-Okamoto padding [20] does not suf-

fice to achieve the security level modelled in definition 2. We find that a Type
I adversary AI can break the non-malleability of FullCLE∗ in the scenario of
definition 2 by replacing twice the target identity’s public key. If the challenge
ciphertext is C∗ = 〈U∗,V ∗,W ∗〉 and x∗ denotes the secret value of the target
identity ID∗ (which is known to a Type I adversary A replacing entity ID∗’s
public key before the challenge phase), the attacker can replace entity ID∗’s
public key with x′P after the challenge phase and then ask for the decryption of
C′ = 〈U∗,V ∗ ⊕ h′

2(x∗U∗) ⊕ h′
2(x′U∗),W ∗〉 (which is an encryption of the same

plaintext as C∗ for the combination (ID∗, x′P)). Since decryption queries remain
allowed even for entities of a replaced public key, AI can issue a decryption query
on C′ �= C for the identity ID′ and recover the plaintext.

Fortunately, such an attack is easily defeated by hashing the recipient’s pub-
lic key along with his identity and the pair (σ, m) when computing r in the
encryption algorithm. A variant of FullCLE∗ independently proposed by Cheng
and Comley [16] is immune to the latter attack because it scrambles σ with a
hash value of both rYA and ê(Ppub,QIDA

)r instead of using separate masks.
These observations shed new lights on the power of attackers replacing en-

tities’ public keys instead of merely obtaining their secret value. Indeed, the
FullCLE∗ scheme remains secure in a model where attackers cannot replace pub-
lic keys but are rather provided with an oracle returning secret values of arbitrary
identities. The latter model is thus strictly weaker than the one of [2].

4 Secure Combinations in the Random Oracle Model

We now explain how to obtain generic constructions that withstand the attacks
outlined in section 3.1 and that are provably secure in the random oracle model.

We first show a generic random oracle-based transformation that turns any
IND-CPA certificateless encryption scheme into a secure CLE system in the
chosen-ciphertext scenario of definition 2. We then show that all the generic
compositions recalled in section 3.1 are IND-CPA if they start from chosen-
plaintext secure IBE and public key encryption schemes.

4.1 From Chosen-Plaintext to Chosen-Ciphertext Security

This transformation is a modification of the first Fujisaki-Okamoto conversion
[19] which provides IND-CCA secure public key encryption schemes from IND-
CPA ones. Our modification is to include the recipient’s identity and public key

482 B. Libert and J.-J. Quisquater

among the inputs of the hash function deriving random coins from the message
and a random string in the encryption algorithm.

To handle decryption queries of the chosen-ciphertext attacker, the strategy
of the plaintext extractor is essentially the following: for every new random
oracle query on a string (m||σ||pk||ID), it returns a random value r and runs
the encryption algorithm of the weakly secure CLE scheme with the identity ID
and the public key pk (that may have been replaced or not) to encrypt (m||σ)
using the randomness r. The resulting ciphertext C is stored in a list. By doing
so, the simulator anticipates subsequent decryption queries, knowing that any
valid ciphertext submitted in a decryption query was previously computed and
stored in the list with all but negligible probability. The latter strategy allows
us to handle decryption queries even when the relevant public key was replaced.
It is a generic knowledge extractor (in the random oracle model) while previous
works [2, 3, 4] that considered the treatment of this kind of decryption requests
only used knowledge extractors that were specific to their schemes.

Theorem 1. Let ΠCLE be an IND-CPA certificateless encryption scheme and
suppose that

Eparams
ID,pk (M,R) and Dparams

SID

are its encryption and decryption algorithms where ID and pk respectively denote
the recipient’s identity and his public key, M is a message of n + k0 bits, R is
a random string of � bits while SID is the recipient’s private decryption key.
Then, an IND-CCA certificateless scheme Π

CLE
can be obtained using modified

encryption and decryption algorithms

Eparams
ID,pk (m, σ) = Eparams

ID,pk (m||σ,H(m||σ||pk||ID))

where H : {0, 1}∗ → {0, 1}� is a random oracle, m ∈ {0, 1}n is the plaintext and
σ ∈ {0, 1}k0 is a random string. The modified decryption algorithm is

Dparams
SID

(C) = m if C = Eparams
ID,pk (m||σ,H(m||σ||pk||ID))

and ⊥ otherwise

where (m||σ) = Dparams
SID

(C).
More precisely, assume that a Type I (resp. Type II) IND-CCA attacker A has

advantage ε over Π
CLE

when running in time τ , making qD decryption queries
and qH random oracle queries. It implies a Type I (resp. Type II) IND-CPA
attacker B with advantage

ε′ > (ε − qH/2k0−1)(1 − 2−�0)qD

over ΠCLE when running in time τ ′ < τ +O(qHτE), where τE is the the cost the
original encryption algorithm and

�0 = log2

(
min

m∈{0,1}n+k0
ID,pk

[#{Eparams
ID,pk (m, r)|r ∈ {0, 1}�}]

)
is the logarithm of the cardinality of the smallest set of encrypted values that can
be obtained for fixed plaintext, identity and public key.

On Constructing Certificateless Cryptosystems 483

Proof. The proof is quite similar to the one of theorem 3 in [19] but we have to
show that the adapted conversion generically works in our context. We outline
how B uses A to succeed in a chosen-plaintext attack against her challenger CH.
B starts by forwarding to A the public parameters (together with the KGC’s
master key in the scenario of a Type II attack) she obtains from CH. Recall that
ΠCLE can be itself a random oracle-using scheme. All random oracles pertaining
to ΠCLE are thus controlled by CH. The chosen-ciphertext attacker A also
has access to a decryption oracle and an additional random oracle H that are
simulated by B as follows:

– random oracle queries related to ΠCLE as well as public key broadcast,
public key replacement (in the case of Type I attacks) and partial/full private
key exposure queries are passed to CH whose answers are relayed to A.

– Whenever A submits a string (m||σ||pk||ID) to the H oracle, B first checks
if H was previously queried on the same input and returns the previously
answered value if it was. Otherwise, B returns a randomly chosen r R← Z∗

q .
She then runs the encryption algorithm of ΠCLE to compute

C = Eparams
ID,pk (m||σ, r)

which is a Π
CLE

encryption of m under the public key pk and the identity ID
using the randomness σ ∈ {0, 1}k0 (as well as a ΠCLE encryption of (m||σ)
for the randomness r). In order to anticipate subsequent decryption queries,
a record containing the input (m||σ||pk||ID), the output r and the ciphertext
C is stored in a list LH . Note that B might need CH to answer queries for
random oracles related to ΠCLE to be able to compute C.

– Decryption queries for a ciphertext C and an identity ID: B first recovers the
public key pk currently associated with ID (by issuing a public key query to
CH). She then searches in list LH for a tuple of the form ((m||x||pk||ID), r,C)
in order to return the corresponding m if such a tuple exists and ⊥ otherwise.

When A decides that phase 1 is over, she outputs messages (m0, m1) and an iden-
tity ID∗ (whose private key was not exposed and that was not submitted to both
the Public-Key-Replace and Partial-Private-Key-Extract oracles). At that point, B
obtains the current value pk∗ of entity ID∗’s public key (by issuing a Public-Key-
Broadcast query to CH) before randomly choosing two strings σ0, σ1

R← {0, 1}k0

and in turn sending her challenge request (M0 = (m0||σ0),M1 = (m1||σ1), ID∗)
to CH. The latter then returns a ΠCLE encryption C∗ of Mb = (mb||σb) for the
identity ID∗ and the current public key pk∗ using some randomness r∗ R← Z∗

q .
As in the proof of theorem 2 in [19], if A ever queries H on the input

(md||σd||pk∗||ID∗) for d ∈ {0, 1}, B halts and outputs the corresponding bit
d as a result which is very likely to be correct in this case: since A has absolutely
no information on σb (b being the complement bit of b), one can show as in [19]
that A only asks for the hash value H(mb||σb||pk∗||ID∗) with probability qH/2k0

throughout the game). On the other hand, if such an H-query never occurs, B
outputs exactly the same result b′ as A and obviously succeeds against CH if A
yields a correct guess b′ = b.

484 B. Libert and J.-J. Quisquater

The probability for B to wrongly reject a ciphertext during the game is smaller
than 1 − (1 − 2−�0)qD . Indeed, for a given decryption query on a ciphertext C
and an identity ID, assume that (m||σ) = Dparams

SID
(C) and does not figure (to-

gether with ID and pk) in list LH . The probability that H(m||σ||pk||ID) takes a
value encrypting (m||σ) into C is at most 2−�0 (as at most 2�−�0 distinct random
values r ∈ R may encrypt a given ciphertext into the same ciphertext by the
definition of �0) .

It comes that B’s advantage against CH is at least

ε′ > (ε − qH/2k0−1)(1 − 2−�0)qD

and that her running time is bounded by τ ′ < τ +O(qHτE) where τE is the time
complexity of the encryption algorithm of the basic scheme ΠCLE. She also has
to issue qD + 1 public key broadcast oracle queries to CH and qH queries to
random oracles pertaining to ΠCLE. �	

4.2 Generic IND-CPA Secure Compositions

From now, we only have to consider constructions that are only secure against
chosen-plaintext attacks. By applying to them the random oracle-using conver-
sion, we end up with provably secure constructions in the random oracle model.

Let ΠIBE = (SetupIBE , ExtractIBE , EIBE ,DIBE) be an IBE scheme and
ΠPKE = (KPKE , EPKE

pk ,DPKE
sk) be a traditional public key encryption scheme.

Theorem 2. If ΠIBE is IND-ID-CPA and ΠPKE is IND-CPA, then the
Generic-CLE-1 is IND-CPA.

The proof of the above theorem (detailed in the full paper) separately consider
Type I and Type II adversaries.

Lemma 1. A Type I IND-CPA adversary AI having an advantage ε over
Generic-CLE-1 implies either an IND-ID-CPA adversary with advantage ε/(2qID)
over ΠIBE or an IND-CPA adversary with advantage ε/(2qID) over ΠPKE,
where qID is the total number of distinct identities involved in AI ’s requests.

Lemma 2. A Type II IND-CPA adversary AII with advantage ε over Generic-
CLE-1 implies an IND-CPA adversary B with advantage ε/qID over ΠPKE, where
qID is the total number of distinct identities involved in AII ’s requests.

The proofs of chosen-plaintext security of Generic-CLE-2 and Generic-CLE-3 are
very similar. In lemmas 1 and 2, qID can be the number of random oracle queries
for hash functions mapping identifiers onto cyclic subgroups or finite fields if we
assume that any query involving a given identity comes after a hash query on it.

This shows how to obtain a secure generic construction in the random oracle
model. In the case of Generic-CLE-1, if the encryption schemes of ΠPKE and
ΠIBE use distinct sets of randomness R1 and R2, the enhanced CLE scheme
may use a random oracle H : {0, 1}∗ → R1 × R2 so that an encryption of a
plaintext m using the random string σ is given by

On Constructing Certificateless Cryptosystems 485

ECLE

ID,pk (m||σ) = EIBE
ID (EPKE

pk (m||σ, r1), r2)

where (r1||r2) = H(m||σ||pk||ID). In the case of Generic-CLE-3, we have

ECLE

ID,pk(m||σ) = 〈EPKE
pk (m1, r1), EIBE

ID (m2, r2)〉

with m1 ⊕m2 = m||σ.

5 A New Efficient Construction

We present here our new efficient certificateless encryption scheme that we call
NewFullCLE. Its security relies on the intractability of the following problem that
was introduced in [10] by Boneh and Boyen.

Definition 3 ([10]). The p-Bilinear Diffie-Hellman Inversion problem
(p-BDHI) is, given 〈P, αP, α2P, . . . , αpP 〉 ∈ Gp+1

1 , to compute ê(P,P)1/α ∈ G2.

5.1 The Scheme

Similarly to FullCLE∗, NewFullCLE may be viewed as an optimized combination
of an IBE with a traditional ElGamal-like [21] cryptosystem.

Setup: given security parameters k,k0 so that k0 is polynomial in k, this al-
gorithm chooses a k-bit prime number q, bilinear map groups (G1, G2)
of order q, a generator P ∈ G1 and hash functions h1 : {0, 1}∗ → Z∗

q ,
h2 : G 2

2 → {0, 1}n+k0, h3 : {0, 1}∗ → Z∗
q . A master key mk := s R←

Z∗
q and a public key Ppub = sP ∈ G1 are also chosen. The group ele-

ment g = ê(P,P) ∈ G2 is also included among the public parameters
which are

params := {q, k, k0, G1, G2,P,Ppub, g, ê, h1, h2, h3, n,M, C}

where M := {0, 1}n, C := G1 × {0, 1}n+k0 respectively denote cleartext and
ciphertext spaces.

Partial-Private-Key-Extract: takes as input entity A’s identifier IDA ∈ {0, 1}∗
and extracts A’s partial private key dA = 1

s+h1(IDA)P ∈ G1.

Set-Secret-Value: given params and A as inputs, this algorithm picks xA
R← Z∗

q

which is returned as user A’s secret value.
Set-Private-Key: given params, user A’s partial private key dA ∈ G1 and his

secret value xA ∈ Z∗
q , this algorithm returns the pair SA = (xA, dA) ∈

Z∗
q × G1 as a private key.

Set-Public-Key: takes as input params and entity A’s secret value xA ∈ Z∗
q and

produces A’s public key pkA := yA = gxA ∈ G2.
Encrypt: to encrypt m ∈ {0, 1}n using the identifier IDA ∈ {0, 1}∗ and the pub-

lic key pkA = yA = gxA , the sender

486 B. Libert and J.-J. Quisquater

1. Checks that yq
A = 1G2 .

2. Picks σ R← {0, 1}k0, computes r = h3(m||σ||pkA||IDA) ∈ Z∗
q and the

ciphertext is

C = 〈c1, c2〉 = 〈rh1(IDA)P + rPpub, (m||σ) ⊕ h2(gr||yr
A)〉.

Decrypt: given C = 〈c1, c2〉, the receiver computes ω = ê(c1, dA) and then
(m||σ) = c2 ⊕ h2(ω||ωxA) ∈ {0, 1}n+k0. The message is accepted iff c1 =
r(h1(IDA)P + Ppub) with r = h3(m||σ||pkA||IDA) ∈ Z∗

q .

In this construction, partial private keys are signatures computed using a signa-
ture scheme independently considered in [11] and [33]. The NewFullCLE scheme is
constructed on the Sakai-Kasahara IBE [26, 14, 15] which bears itself similarities
with the second IBE scheme that was proved to be selective-ID secure [13, 10]
without random oracles by Boneh and Boyen [10]. As for the Cheng-Chen [14]
variant of the Sakai-Kasahara IBE, its security proof holds in the random oracle
model [8]. The consistency of the construction is easy to check as we have

ê
(
rh1(IDA)P + rPpub,

1
s + h1(IDA)

P
)

= ê(P,P)r.

Including gr among the inputs of h2 in step 2 of the encryption algorithm is
necessary to achieve a security reduction under the p-BDHI assumption. The
string (m||σ) could be hidden by a hash value of only yr

A but the security would
have to rely on a newly defined fancy assumption.

Interestingly, hashing gr along with yr
A is no longer necessary if the scheme

is transformed into a certificate-based encryption scheme [22]. This is due to
particularities of the certificate-based security model which is not detailed here.

5.2 Efficiency Issues

As for the FullCLE∗ scheme proposed by Al-Riyami and Paterson [3], the validity
of the public key can be checked very efficiently. As in [3], assuming that the
bilinear map groups (G1, G2) are chosen by a higher level authority and com-
monly used by several distinct KGCs, end-users may generate their public key
independently of any authority in the system.

The encryption algorithm only entails two exponentiations in G2 and a multi-
exponentiation in G1. It has a comparable efficiency to the pairing-free scheme
of [4]. The receiver has to compute a pairing, an exponentiation in G2 beside a
multi-exponentiation in G1. The decryption operation may be optimized by the
receiver who can pre-compute and store h1(IDA)P + Ppub in such a way that a
simple scalar multiplication in G1 suffices to verify the validity of the ciphertext.
Such a pre-computation also enables a speed up the encryption operation for
senders who encrypt several messages under the same public key.

From a computational point of view, NewFullCLE has the same efficiency as
FullCLE∗ [3] if pre-computations are used in both schemes (although NewFullCLE
might be more efficient on curves of embedding degree 2 as an exponentiation

On Constructing Certificateless Cryptosystems 487

in GT is cheaper than a scalar multiplication in G1 in this case) as the pairing
can be computed in advance for each identity in FullCLE∗. However, our con-
struction performs better in the absence of pre-computations as its encryption
procedure does not compute any pairing. The encryption algorithm is also faster
than its counterpart in schemes of [16, 9] for similar parameters and without
pre-computations. Moreover, NewFullCLE does not need a special (and much less
efficient) hash function mapping strings onto a cyclic group (and it thus benefits
from a faster partial private key generation algorithm) while all schemes have
comparable decryption complexities.

Regarding key sizes, users’ public keys lie in G2 and thus have longer rep-
resentations (typically 1024 bits without optimizations) than elements in G1.
However, pairing compression techniques due to Barreto and Scott [7] allow
them to be compressed to a third (say 342 bits) of their original length on su-
persingular curves in characteristic 3 or even to 1/6 of their length using ordinary
curves such as those of Barreto and Naehrig [6]. Those compression techniques
additionally increase the speed of exponentiations in G2.

The version of the scheme depicted in section 5.1 uses symmetric pairings
(and thus supersingular curves). However, it can be implemented with asym-
metric pairings as well. In environments where bandwidth is of primary concern,
the size of ciphertexts can be minimized at the expense of a longer system-wide
public key (which is less likely to transit across the network). In such a setting,
asymmetric pairings e : G1×G2 → GT and ordinary curves such as MNT curves
or BN curves [25, 6] should be used as long as a publicly computable but non-
necessarily invertible isomorphism ψ : G2 → G1 is available.

Regarding the latter criterion, NewFullCLE seems to be more suitable than
previous proposals [2, 3, 16, 9] for an implementation with asymmetric pairings.
Indeed, Smart and Vercauteren [28] recently underlined the hardness of finding
ordinary pairing-friendly groups1 (G1, G2) equipped with a publicly computable
isomorphism ψ : G2 → G1 as well as an efficient algorithm to hash onto G2.
Our scheme avoids these problems as it does not require to hash onto G2 or
G1. Concretely, users’ public keys have lie in GT while the system-wide public
key and entities’ partial private keys should respectively be Ppub = sP2 and
dA = 1/(h1(IDA) + s)P2 for generators P2 ∈ G2 and P1 = ψ(P2) ∈ G1. In that
bandwidth-optimized version of the scheme, users’public keys can be about 512-
bit long on MNT curves [25] or even shorter on BN curves [6]. Ciphertexts are
331 bits longer than plaintexts if k0 = 160.

5.3 Security Results

We give a security statement (formally proven in the full version of the paper)
under the p-Bilinear Diffie-Hellman Inversion assumption.

Theorem 3. In the random oracle model, the NewFullCLE scheme is secure in
the sense of definition 2 under the p-BDHI assumption.

1 More precisely, we mean groups allowing the use of the most efficient implementation
techniques for ordinary curves [5].

488 B. Libert and J.-J. Quisquater

6 Conclusion

This paper investigated the problem of generically constructing a certificateless
cryptosystem which is secure in the strongest model by combining secure IBE
schemes with a traditional public key cryptosystem.

It pinpointed security problems in three simple generic constructions and fixed
them using a generic random oracle-using conversion (which extends the Fujisaki-
Okamoto transformation) ensuring the security in the strongest sense given
any scheme only withstanding chosen-plaintext attacks. We finally described
a new scheme offering computational advantages over previous pairing-based
constructions.

The feasibility of a CLE scheme provably fitting the model of [2] without
random oracles still remains a challenging open problem.

References

1. S. S. Al-Riyami. Cryptographic schemes based on elliptic curve pairings. PhD
thesis, University of London, 2004.

2. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In
Asiacrypt’03, volume 2894 of LNCS, pages 452–473. Springer, 2003.

3. S. S. Al-Riyami and K. Paterson. CBE from CL-PKE: A generic construction
and efficient schemes. In PKC’05, volume 3386 of LNCS, pages 398–415. Springer,
2005.

4. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption
without pairing. In ISC’05, volume 3650 of LNCS, pages 134–148. Springer, 2005.

5. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In SAC’03, volume 3006 of LNCS, pages 17–25. Springer, 2003.

6. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In SAC’05. To Appear.

7. P. S. L. M. Barreto and M. Scott. Compressed pairings. In Crypto’04, volume 3152
of LNCS, pages 140–156. Springer, 2004.

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, ACM Press, 1993.

9. K. Bentahar, P. Farshim, J. Malone-Lee, and N. P. Smart. Generic construction
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report
2005/058, 2005. http://eprint.iacr.org/2005/058 .

10. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In Eurocrypt’04, volume 3027 of LNCS, pages 223–238.
Springer, 2004.

11. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt’04,
volume 3027 of LNCS, pages 56–73. Springer, 2004.

12. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Crypto’01, volume 2139 of LNCS, pages 213–229. Springer, 2001.

13. R. Canetti, S. Halevi, and J. Katz. A forward secure public key encryption scheme.
In Eurocrypt’03, volume 2656 of LNCS, pages 254–271. Springer, 2003.

14. L. Chen and Z. Cheng. Security proof of Sakai-Kasahara’s identity-based encryp-
tion scheme. In IMA Int. Conf. 2005, volume 3796 of LNCS, pages 442–459.
Springer, 2005. Also available from http://eprint.iacr.org/2005/226.

On Constructing Certificateless Cryptosystems 489

15. L. Chen, Z. Cheng, J. Malone-Lee, and N. P. Smart. An efficient ID-KEM based
on the Sakai–Kasahara key construction. Cryptology ePrint Archive, Report
2005/224, 2005. http://eprint.iacr.org/2005/224 .

16. Z. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/012, 2005. http://eprint.iacr.org/2005/012.

17. A. Dent and C. Kudla. On Proofs of Security for Certificateless Cryptosystems.
Cryptology ePrint Archive, Report 2005/348, 2005. http://eprint.iacr.org/

2005/348.
18. Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In

TCC’05, volume 3378 of LNCS, pages 188–209. Springer, 2005.
19. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption

at minimum cost. In PKC’99, volume 1560 of LNCS, pages 53–68. Springer, 1999.
20. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric

encryption schemes. In Crypto’99, volume 1666 of LNCS, pages 537–554. Springer,
1999.

21. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Crypto’84, volume 196 of LNCS, pages 10–18. Springer, 1985.

22. C. Gentry. Certificate-based encryption and the certificate revocation problem. In
Eurorypt’03, volume 2656 of LNCS, pages 272–293. Springer, 2003.

23. M. Girault. Self-certified public keys. In Eurocrypt’91, volume 547 of LNCS, pages
490–497. Springer, 1991.

24. G. Kang and S. H. H. J. H. Park. A certificate-based signature scheme. In CT-
RSA’04, volume 2964 of LNCS, pages 99–111. Springer, 2004.

25. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234–
1243, 2001.

26. R. Sakai and M. Kasahara. ID-based cryptosystems with pairing on elliptic curve.
In SCIS’03, Hamamatsu, Japan, 2003. http://eprint.iacr.org/2003/054.

27. A. Shamir. Identity based cryptosystems and signature schemes. In Crypto’84,
volume 196 of LNCS, pages 47–53. Springer, 1984.

28. N. P. Smart and F. Vercauteren. On computable isomorphisms in efficient
pairing based systems. Cryptology ePrint Archive, Report 2005/116, 2005.
http://eprint.iacr.org/2005/116.

29. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In
ICCSA’04, volume 3043 of LNCS, pages 802–811. Springer, 2004.

30. D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In
ACISP’04, volume 3108 of LNCS, pages 200–211. Springer, 2004.

31. D. H. Yum and P. J. Lee. Identity-based cryptography in public key management.
In EuroPKI’04, volume 3093 of LNCS, pages 71–84. Springer, 2004.

32. R. Zhang, G. Hanaoka, J. Shikata and H. Imai. On the Security of Multiple
Encryption or CCA-security+CCA-security=CCA-security? In PKC’04, volume
2947 of LNCS, pages 360–374. Springer, 2004.

33. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In PKC’04, volume 2947 of LNCS, pages
277–290. Springer, 2004.

Appendix: Formal Model of Identity Based Encryption

We recall here the formalism introduced in [12] for identity based encryption.
Such a primitive is described by the following definition.

490 B. Libert and J.-J. Quisquater

Definition 4. An identity based encryption (IBE) scheme consists of a 4-uple of
algorithms (SetupIBE , ExtractIBE , EIBE ,DIBE) with the following specifications.

SetupIBE: is a probabilistic algorithm run by a private key generator (PKG)
that takes as input a security parameter to output a set of public parameters
params including the master public key Ppub of the PKG. The algorithm also
outputs the PKG’s master key mk that is kept secret.

ExtractIBE: is a key generation algorithm run by the PKG on input of a master
key mk and a user’s identity ID to return the user’s private key dID.

EIBE: this probabilistic algorithm takes as input a plaintext M , a recipient’s
identity ID and the set of public parameters params to output a ciphertext C.

DIBE: is a deterministic decryption algorithm taking as input a ciphertext C, the
system-wide parameters params and the private decryption key dID to return
a plaintext M or a distinguished symbol ⊥ if C is not a valid ciphertext.

For consistency purposes, it is required that M = DIBE(C, dID, params) if C =
EIBE(M, ID, params) for all messages M whenever dID = ExtractIBE(mk, ID).

The models of chosen-plaintext and chosen-ciphertext security were extended
to the IBE setting by Boneh and Franklin themselves [12]. Their model consid-
ers a “find-then-guess” game between a challenger and an adversary who may
adaptively choose the identity on which she will be challenged after having seen
private keys for several arbitrary identities.

Definition 5. An IBE scheme is IND-ID-CCA secure if no PPT adversary
has a non-negligible advantage in the following game.

1. The challenger runs the Setup algorithm on input of a security parameter k
and sends the domain-wide parameters params to the adversary A.

2. In a find stage, A starts probing the following oracles:
- Key extraction oracle: given an identity ID, it returns the extracted pri-

vate key associated with it.
- Decryption oracle: given an identity ID ∈ {0, 1}∗ and a ciphertext C, it

generates the private key dID for ID and returns either a plaintext M or
a distinguished symbol ⊥ indicating that the ciphertext was ill-formed.

A can present her queries adaptively. At some point, she produces two plain-
texts M0,M1 ∈ M and an identity ID∗ for which she has not requested the
private key in stage 2. The challenger computes C = EIBE(Mb, ID

∗, params),
for a random hidden bit b R← {0, 1}, which is sent to A.

3. In the guess stage, A asks new queries but is restricted not to issue a key
extraction request on the identity ID∗ nor to submit C to the decryption
oracle for the identity ID∗. Eventually, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Adv(A) := 2 × P r[b′ = b]− 1.

Building Better Signcryption Schemes

with Tag-KEMs

Tor E. Bjørstad1 and Alexander W. Dent2

1 The Selmer Center, Department of Informatics,
University of Bergen, Norway

2 Royal Holloway, University of London,
Egham, Surrey, UK

tor.bjorstad@ii.uib.no, a.dent@rhul.ac.uk

Abstract. Signcryption schemes aim to provide all of the advantages of
simultaneously signing and encrypting a message. Recently, Dent [8, 9]
and Bjørstad [4] investigated the possibility of constructing provably
secure signcryption schemes using hybrid KEM-DEM techniques [7]. We
build on this work by showing that more efficient insider secure hybrid
signcryption schemes can be built using tag-KEMs [1]. To prove the
effectiveness of this construction, we will provide several examples of
secure signcryption tag-KEMs, including a brand new construction based
on the Chevallier-Mames signature scheme [5] which has the tightest
known security reductions for both confidentiality and unforgeability.

1 Introduction

The signcryption primitive was introduced by Zheng in 1997 [13] to study asym-
metric schemes that offer most or all the benefits provided by public-key en-
cryption and signature schemes. Signcryption schemes must provide message
authenticity, confidentiality and integrity, and may also offer a way to provide
non-repudiation. As such, a signcryption scheme provides a secure, authenticated
channel for message transmission. Although Zheng only considered schemes that
are more computationally efficient than a direct composition of encryption and
signature schemes, the definition of signcryption is normally expanded to include
any asymmetric scheme that provides this functionality, regardless of efficiency.
Direct composition of public-key encryption and signatures has been studied by
An et. al. [2].

In order to obtain efficient encryption schemes in practice, hybrid techniques
are commonly used. The practice of combining symmetric and asymmetric
schemes to encrypt and transmit long messages efficiently has been common
knowledge for many years. However, formal analysis was first performed by
Cramer and Shoup in the late 1990s [7]. The usual construction paradigm,
known as the KEM-DEM construction, consists of two parts: a key encapsu-
lation mechanism (KEM) and a data encapsulation mechanism (DEM). The
KEM uses asymmetric techniques to encrypt a symmetric key, while the DEM
uses a symmetric cipher to encrypt the message payload using the key from the

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 491–507, 2006.
c© International Association for Cryptologic Research 2006

492 T.E. Bjørstad and A.W. Dent

KEM. The main benefit of the KEM-DEM construction paradigm is that the
security of KEM and DEM may be analyzed separately.

The use of hybrid techniques to build signcryption schemes has been stud-
ied by Dent [8, 9, 10] and Bjørstad [4]. This has provided a useful perspective
for analysis of those classes of signcryption schemes that use hybrid techniques.
However, previous efforts have yielded complex verification-decryption (unsign-
cryption) algorithms, stemming from the need to verify a link between message,
key and encapsulation. This article will examine a way to simplify the hybrid
construction through use of tag-KEMs [1]. We show that adapting the tag-KEM
+ DEM construction to signcryption yields simpler scheme descriptions and
better generic security reductions than previous efforts.

To demonstrate the usefulness of this new paradigm, we construct several
signcryption schemes based on signcryption tag-KEMs. The first is a simple mod-
ification of Zheng’s original signcryption scheme [13]. This scheme has become
baseline standard for judging the efficiency and security of any new signcryption
scheme or construction method. The second is a new signcryption scheme based
on the Chevallier-Mames signature scheme [5]. As far as the authors are aware,
this new signcryption scheme has the tightest known security bounds.

2 Preliminaries

2.1 Signcryption

The signcryption primitive was introduced in 1997 by Zheng [13].

Definition 1 (Signcryption). A signcryption scheme SC = (Com , KeyS ,
KeyR, SC , USC) is defined as tuple of five algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic signcryption algorithm SC. It takes as input the private key
of the sender skS , the public key of the receiver pkR, and a message m. It
outputs a signcryptext σ.

– A deterministic unsigncryption algorithm USC. It takes as input the public
key of the sender pkS , the private key of the receiver skR, and a signcryptext
σ. It outputs either a message m or the unique error symbol ⊥.

For a signcryption scheme to be sound, it is required that m = USC
(
pkS , skR,

SC (skS , pkR, m)
)

for (almost) all fixed keypairs (skS , pkS) and (skR, pkR).

Building Better Signcryption Schemes with Tag-KEMs 493

For a signcryption scheme to be useful, it is necessary that it also satisfies well-
defined notions of security corresponding to the design goals of confidentiality
and authenticity/integrity. Formally, the probability of an adversary breaking
the security of signcryption should be negligible as a function of the security
parameter 1k.

Definition 2 (Negligible Function). A function f : N → R is negligible if,
for every polynomial p, there exists a n0 ∈ N such that |f(n)| ≤ 1/|p(n)| for all
n ≥ n0.

Security models are commonly phrased in terms of games played between a
hypothetical challenger and an adversary, who are both modelled as probabilistic
Turing machines. The canonical notion of confidentiality for signcryption is that
of indistinguishability of signcryptions (IND-CCA2). This is adapted directly
from the corresponding security notion for encryption schemes: an adversary
should not, even when given adaptive access to signcryption and unsigncryption
oracles, be able to distinguish between the signcryption of two messages of his
own choice. This security notion may be expressed by a game played between
the challenger and a two-stage adversary A = (A1,A2). For a given security
parameter 1k, the game proceeds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). During its execution, A1

is given access to signcryption and unsigncryption oracles. The signcryption
oracle takes a message m as input, and returns SC (skS , pkR, m). The unsign-
cryption oracle takes a signcryptext σ as input, and returns USC (pkS , skR, σ).
A1 terminates by outputting two messages (m0, m1) of equal length, and some
state information state.

3. The challenger computes a challenge signcryption by generating a random bit
b ∈ {0, 1} and computing σ = SC (skS , pkR, mb).

4. The adversary runs A2 on the input (state, σ). During its execution, A2 has
access to signcryption and unsigncryption oracles as above, with the restric-
tion that the challenge signcryptext σ may not be asked to the unsigncryption
oracle. A2 terminates by outputting a guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣P r[b = b′] − 1/2
∣∣.

With regards to the authenticity and integrity of signcryption, the notion of
existential forgery (UF-CMA) is adapted from analysis of signature schemes. It
is however necessary to distinguish between different types of such forgery. In an
outsider-secure signcryption scheme, the adversary is given access to signcryp-
tion and unsigncryption oracles, and the public keys of the sender and receiver.
For the stronger notion of insider security, the unsigncryption oracle is replaced
by giving the adversary direct access to the receiver’s private key. This article
will focus on insider-secure signcryption only. Efficient and secure hybrid sign-
cryption scheme against outsider adversaries have been constructed by Dent [10].

494 T.E. Bjørstad and A.W. Dent

It is also necessary to specify what it means for the adversary to win the se-
curity game. We use the notion of strong existential unforgeability (sUF-CMA).
Here an adversary wins if it outputs a valid message/signcryption pair (m, σ) and
the signcryption σ was not returned by the signcryption oracle when queried on
the message m. Given a security parameter 1k, a game for the sUF-CMA insider
security of a signcryption scheme proceeds as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A is given access to a signcryption oracle, which takes a message m as input
and returns SC (skS , pkR, m). A terminates by outputting a message m and
a signcryptext σ.

The adversary wins the game if m = USC (pkS , skR, σ) and the signcryption
oracle never returned σ when queried on the message m. The advantage of A is
defined as P r[A wins].

2.2 Tag-KEMs

In the traditional KEM-DEM framework for hybrid encryption, the KEM uses
public key methods to encrypt and transmit the symmetric key used by the
DEM. Formally, a KEM consists of an asymmetric key generation algorithm
that outputs a private/public keypair, an encapsulation algorithm that encrypts
a random symmetric key using public-key techniques, and a decapsulation al-
gorithm that uses the corresponding private key to decrypt said symmetric key
from its encapsulation. This paradigm for building hybrid encryption schemes
was extended in early 2005, when Abe et. al. [1] showed that one might build
more efficient hybrid schemes by replacing the KEM with what they call a tag-
KEM.

Definition 3 (Tag-KEM). A tag-KEM TKEM = (Gen , Sym, Encap, Decap)
is defined as a tuple of four algorithms:

– A probabilistic key generation algorithm, Gen. It takes as input a security
parameter 1k, and outputs a private key sk and a public key pk . The public
key contains all specific choices used by the scheme, such as choice of groups.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
a public key pk , and outputs a symmetric key K and some internal state
information ω.

– A probabilistic encapsulation algorithm, Encap. It takes as input the state
information ω together with an arbitrary string τ , which is called a tag, and
outputs an encapsulation E.

– A deterministic decapsulation algorithm, Decap. It takes a private key sk,
an encapsulation E and a tag τ as input, and outputs a symmetric key K.

For a tag-KEM to be sound, the decapsulation algorithm Decap must output the
correct key K when run with a correctly formed encapsulation E of K, and the
corresponding private key and tag.

Building Better Signcryption Schemes with Tag-KEMs 495

Tag-KEMs as such may be viewed as a generalisation of regular KEMs: if the
tag τ is a fixed string, the Sym and Encap algorithms together make up the
encapsulation algorithm of the traditional model.

Definition 4 (DEM). A data encapsulation mechanism DEM = (Enc, Dec)
is defined as a pair of algorithms:

– A symmetric encryption algorithm Enc, that takes a symmetric key K ∈ K
and a message m as input, and returns a ciphertext C = EncK(m). The set
K is called the keyspace of the DEM.

– A symmetric decryption algorithm Dec, that takes a symmetric key K ∈ K
and a ciphertext c as input, and returns a message m = DecK(C).

For soundness, the encryption and decryption algorithms should be each other’s
inverses under a fixed key K. Notationally, m = DecK

(
EncK(m)

)
.

For the purposes of this paper, it is only required that DEMs are secure with
respect to indistinguishability against passive attackers (IND-PA). Formally, this
security notion is captured by the following game, played between a challenger
and a two-stage adversary A = (A1,A2):

1. The challenger generates a random symmetric K ∈ K.
2. The adversary runs A1 with the security parameter 1k as input. A1 terminates

by outputting two equal length messages m0 and m1, as well as some state
information state.

3. The challenger generates a random bit b ∈ {0, 1} and computes the challenge
ciphertext C = EncK(mb).

4. The adversary runs A2 on the input (state,C). A2 terminates by returning a
guess b′ for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined as∣∣P r[b = b′] − 1/2
∣∣.

A tag-KEM may be combined with a DEM to form a hybrid encryption
scheme in a similar way as a regular KEM. However, in [1] this is done in a novel
manner, by using the ciphertext output by the DEM as the tag. The explicit
construction is shown in Figure 1.

Encr(pk , m):

(K, ω)
R← Sym(pk).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

Decr(sk , σ):
(E, C) ← σ.
K ← Decap(sk , E, C).
m ← DecK(C).
Return m.

Key(1k):

(sk , pk)
R← Key(1k).

Return (sk , pk).

Fig. 1. Construction of asymmetric encryption scheme from a tag-KEM and DEM

496 T.E. Bjørstad and A.W. Dent

The main result of Abe et. al. [1] is that the construction of Figure 1 is
IND-CCA2 secure, provided that the DEM is secure against passive attackers
(IND-PA), and it is not possible for an adversary, given a pair (E,K), to deter-
mine whether K is the key encapsulated by E, or a random key of the correct
length. This contrasts with the traditional KEM-DEM construction, in which the
DEM is required to be secure against an active attack for the resulting hybrid
encryption scheme to be IND-CCA2.

3 Signcryption Tag-KEMs

3.1 Basic Definition

We define Signcryption Tag-KEMs (SCTK) by direct analogy to the previous
definition of tag-KEMs for encryption.

Definition 5 (Signcryption Tag-KEM). A signcryption tag-KEM SCTK =
(Com , KeyS , KeyR, Sym, Encap, Decap) is defined as a tuple of six algorithms.

– A probabilistic common parameter generation algorithm, Com. It takes as
input a security parameter 1k, and returns all the global information I needed
by users of the scheme, such as choice of groups or hash functions.

– A probabilistic sender key generation algorithm, KeyS . It takes as input the
global information I, and outputs a private/public keypair (skS , pkS) that is
used to send signcrypted messages.

– A probabilistic receiver key generation algorithm, KeyR. It takes as input the
global information I, and outputs a private/public keypair (skR, pkR) that is
used to receive signcrypted messages.

– A probabilistic symmetric key generation algorithm, Sym. It takes as input
the private key of the sender skS and the public key of the receiver pkR, and
outputs a symmetric key K together with internal state information ω.

– A probabilistic key encapsulation algorithm, Encap. It takes as input the state
information ω and an arbitrary tag τ , and returns an encapsulation E.

– A deterministic decapsulation/verification algorithm, Decap. It takes as in-
put the sender’s public key pkS , the receiver’s private key skR, an encapsu-
lation E and a tag τ . The algorithm returns either a symmetric key K or
the unique error symbol ⊥.

For the SCTK to be sound, the decapsulation/verification algorithm must return
the correct key K whenever the encapsulation E is correctly formed and the
corresponding keys and tag are supplied.

The basic idea behind a signcryption tag-KEM is that the key encapsulation
algorithm provides what amounts to a signature on the tag τ . Signcryption tag-
KEMs may thus be combined with regular DEMs to form a hybrid signcryption
scheme as shown in Figure 2, using the SCTK to provide a signature on the
symmetric ciphertext c and encapsulate the symmetric key K.

Previous discussion of hybrid signcryption schemes have discussed efficient
hybrid signcryption as a variant of the “Encrypt-and-Sign” [2] paradigm. A

Building Better Signcryption Schemes with Tag-KEMs 497

Com(1k):

I
R← Com(1k).

Return I.

KeyS (I):

(skS , pkS)
R← KeyS (I).

Return (skS , pkS).

KeyR(I):

(skR, pkR)
R← KeyR(I).

Return (skR, pkR).

SC (skS , pkR, m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

USC (pkS , skR, σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 2. Construction of hybrid signcryption scheme from SCTK and DEM

straightforward approach is to encrypt the message to be sent with a symmetric
cipher, while combining the features of key encapsulation and digital signatures
into one efficient operation [8, 9, 4]. Using signcryption tag-KEMs in the con-
struction yields something more akin to a “Encrypt-then-Sign” based scheme,
since the signature is made on the ciphertext “tag”.

Another feature of the signcryption tag-KEM construction is that it auto-
matically supports the sending of associated data with a message. In particular,
one may submit a tag τ = (C, l) to the encapsulation algorithm, consisting of
the ciphertext C as well as a label l containing any associated data that is to be
bound to C by the encapsulation. As the encapsulation acts as a signature on
the input tag, the authenticity and integrity of both ciphertext and associated
data is provided. The only requirement for doing this is that the tag τ must
be formatted in such a way that (C, l) ← τ may be parsed in a deterministic
and unambiguous manner. A standard application of this feature is the common
practice of “binding” the sender’s and receiver’s public key to any signcryption
sent between them. Many signcryption schemes explicitly do this, in order to
provide some degree of multi-user security. Of course, a similar effect can be
achieved by computing the signcryption of a combination of the message and
a hash of the associated data. This provides similar results but requires either
slightly greater bandwidth or a slightly reduced message space.

3.2 Security Models

For a signcryption tag-KEM to be considered secure, it must fulfill well-defined
security notions with respect to confidentiality and authenticity/integrity. The
tag-KEM confidentiality model used in [1] may easily adapted to the signcryption
setting, and the notion of strong existential unforgeability is adapted to provide
authenticity/integrity.

498 T.E. Bjørstad and A.W. Dent

In the IND-CCA2 game for a signcryption tag-KEM, the adversary attempts
to distinguish whether a given symmetric key is the one embedded in an en-
capsulation. The adversary A = (A1,A2,A3) runs in three stages, with each
stage having access to oracles that fascilitate both adaptive encapsulation and
decapsulation queries. For a given security parameter 1k, this may be expressed
by the following game:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runs A1 on the input (I, pkS , pkR). Durings its execution, A1

is given access to three oracles, corresponding to each of the algorithms Sym ,
Encap and Decap:

– The symmetric key generation oracle does not take any input, and com-
putes (K,ω) = Sym(skS , pkR). It then stores the value ω (hidden from
the view of the adversary, and overwriting any previously stored values),
and returns the symmetric key K.

– The key encapsulation oracle takes an arbitrary tag τ as input, and
checks whether there exists a stored value ω. If there is not, it returns ⊥
and terminates. Otherwise it erases the value from storage, and returns
Encap(ω, τ).

– The decapsulation/verification oracle takes an encapsulation E and a
tag τ as input, and returns Decap(pkS , skR,E, τ).

A1 terminates by returning state information state1 .
3. The challenger computes (K0,ω) = Sym(skS , pkR), and generates a random

symmetric key K1 ∈ K as well as a random bit b ∈ {0, 1}.
4. The adversary runs A2 on the input (state1 ,Kb). During its execution, A2

may access the same oracles as previously. A2 terminates by returning state
information state2 and a tag τ .

5. The challenger computes a challenge encapsulation E = Encap(ω, τ).
6. The adversary runs A3 on the input (state2 ,E). During its execution, A3 may

access the same oracles as previously, with the restriction that (E, τ) may not
be asked to the decapsulation oracle. A3 terminates by returning a guess b′

for the value of b.

The adversary wins the game whenever b = b′. The advantage of A is defined
as
∣∣P r[b = b′] − 1/2

∣∣. A signcryption tag-KEM is said to be IND-CCA2 secure
if, for any adversary A, the advantage of A in the IND-CCA2 game is negligible
with respect to the security parameter 1k.

It is important to notice the interaction between the symmetric key genera-
tion and encapsulation oracles. This is done to allow the adversary to perform
completely adaptive encapsulations, without having access to the internal infor-
mation stored in ω. The IND-CCA2 game ensures that a SCTK fulfills several
necessary properties with regards to malleability and information hiding, and re-
places the notions of IND-CCA2 and INP-CCA2 used by Dent [8, 9] for regular
signcryption KEMs.

With respect to authenticity and integrity, an adversary should not be able to
find encapsulation/tag-pairs (E, τ) such that Decap(pkS , skR,E, τ) �= ⊥, except

Building Better Signcryption Schemes with Tag-KEMs 499

by the way of oracles. Since the encapsulation algorithm should provide a signa-
ture on the tag τ , this is closely tied to forging the underlying signature scheme.
An attack game corresponding to the sUF-CMA security of a SCTK may thus
be specified as follows:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary A is run on the input (I, pkS , skR, pkR). During its execution,
A may access the symmetric key generation and encapsulation oracles as
were defined in the previous game. A terminates by returning an encapsula-
tion E and a tag τ .

The adversary wins the game if ⊥ �= Decap(pkS , skR,E, τ) and the encapsulation
oracle never returned E when queried on the tag τ . The advantage of A is defined
as P r[A wins]. A signcryption tag-KEM is said to be sUF-CMA secure if, for
any adversary A, the advantage of A in the sUF-CMA game is negligible with
respect to the security parameter 1k.

Definition 6 (Secure Signcryption Tag-KEM). A signcryption tag-KEM
SCTK is said to be secure if it is IND-CCA2 and sUF-CMA secure.

3.3 Generic Security of Hybrid Signcryption

If the SCTK+DEM construction is to be of any use, the resulting signcryption
scheme must be provably secure.

Theorem 1. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is IND-CCA2 se-
cure and the DEM is IND-PA secure, then SC is IND-CCA2 secure.

Proof. Let Game 0 be the regular IND-CCA2 game for signcryption, as specified
in Section 2.1. In the following game, the hybrid signcryption procedure is altered
to use a random key when generating the challenge signcryptext, rather than
the real key output by Sym. We refer to the resulting game as Game 1:

1. The challenger generates a set of global parameters I = Com(1k), a sender
keypair (skS , pkS) = KeyS (I) and a receiver keypair (skR, pkR) = KeyR(I).

2. The adversary runsA1 on the input (I, pkS , pkR). During its execution,A1 has
access to signcryption andunsigncryptionoracles. The signcryption oracle takes
a message m as input, and returns SC (skS , pkR, m). The unsigncryption oracle
takes a signcryptext σ as input, and returns USC (pkS , skR, σ). A1 terminates
by outputting two messages (m0, m1) and some state information state.

3. The challenger computes (K,ω) = Sym(skS , pkR), and generates a random
key K ′ ∈ K, as well as a random bit b ∈ {0, 1}. He then computes C =
EncK′(mb) and E = Encap(ω,C), and sets σ = (E,C).

4. The adversary runs A2 on the input (state, σ). During its execution, A2 may
access signcryption and unsigncryption oracles as above, with the restriction
that σ may not be asked to the unsigncryption oracle. A2 terminates by
outputting a guess b′ for the bit b.

500 T.E. Bjørstad and A.W. Dent

D1(I, pkS , pkR;OS ,OE ,OD):

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state1 ← (m0, m1, s).
Return state1 .

D2(state1 , K;OS ,OE ,OD):

b
R← {0, 1}.

C ← EncK(mb).
state2 ← (state1 , b, C).
Return (state2 , C).

D3(state2 , E;OS ,OE ,OD):
(m0, m1, s, b, C) ← state2 .
σ ← (E, C).

b′ R← A2(s, σ;OSC ,OUSC).
If b = b′: Return 1.
Else: Return 0.

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← OD(E, C):
Return ⊥ and terminate.
Else K ← OD(E, C).
m ← DecK(C).
Return m.

Fig. 3. Distinguisher algorithm D

Let X0 and X1 be the events that b = b′ in Game 0 and Game 1, respectively. It
is well known that any substantial difference in the advantage of the adversary
A in Game 0 and Game 1 can be used to produce a distinguishing algorithm for
the signcryption tag-KEM.

Figure 3 gives a complete specification of such a distinguishing algorithm D.
It plays the IND-CCA2 game against SCTK, using A as a subroutine. Oracle
queries made by A are simulated by D. It uses the subroutines OSC to simulate
signcryption oracle queries, and OUSC to simulate unsigncryption queries. The
symmetric key generation, encapsulation and decapsulation/verification oracles
accessible by D are referred to as OS , OE and OD, respectively. We denote
the execution of an algorithm A that takes input values α, . . . and has access
to oracles O, . . . as A(α, . . . ;O, . . .). A well-known derivation gives |P r[X0] −
P r[X1]| ≤ 2εSCTK , where εSCTK is the advantage that D has in attacking the
IND-CCA2 security of the SCTK.

We proceed to show that the advantage of A in Game 1 is bounded by that
of a passive attacker against the DEM. Figure 4 specifies an adversary B against
the IND-PA security of the DEM, that uses A as a subroutine. In the game
described in Figure 4, B simulates the environment of A in Game 1 perfectly.
Furthermore, B wins every time A would have won Game 1. Hence, they have
the same advantage. It follows that

εSC ≤ 2εSCTK + εDEM , (1)

where εSC , εSCTK and εDEM are the advantages of adversaries against IND-
CCA2 security of the hybrid signcryption scheme, the IND-CCA2 security of
the signcryption tag-KEM and the IND-PA security of the DEM, respectively.

�	

Building Better Signcryption Schemes with Tag-KEMs 501

B1:

I
R← Com(1k).

(skS , pkS)
R← KeyS (I).

(skR, pkR)
R← KeyR(I).

(m0, m1, s)
R← A1(I, pkS , pkR;OSC ,OUSC).

state ← (I, skS , pkS , skR, pkR, m0, m1, s).
Return (m0, m1, state ′).

B2(state, C):
(I, skS , pkS , skR, pkR, m0, m1, s) ← state.

(K, ω)
R← Sym(skS , pkR).

E
R← Encap(ω, C).

σ ← (C, E).

b
R← A2(s, σ;OSC ,OUSC).

Return b.

OSC(m):

(K, ω)
R← Sym(skS , pkR).

C ← EncK(m).

E
R← Encap(ω, C).

σ ← (E, C).
Return σ.

OUSC(σ):
(E, C) ← σ.
If ⊥ ← Decap(pkS , skR, E, C):
Return ⊥ and terminate.
Else K ← Decap(pkS , skR, E, C).
m ← DecK(C).
Return m.

Fig. 4. IND-PA adversary against the DEM

Remark 1. This reduction is significantly tighter than those found for regular
hybrid signcryption in [8, 4]. In the original approach to hybrid signcryption, the
confidentiality proof relies on four terms: the indistinguishability of the sym-
metric keys the KEM produces, the unforgeability of the KEM, the ability of
the KEM to disguise the messages and the passive security of the DEM. This
is particularly inefficient as many proofs of unforgeability contain weak security
reductions. We see this improved security result, and the comparative simplicity
of proving the security of a signcryption tag-KEM, as the main advantages of
the SCTK paradigm.

Theorem 2. Let SC be a hybrid signcryption scheme constructed from a sign-
cryption tag-KEM and a DEM. If the signcryption tag-KEM is sUF-CMA secure,
then SC is also sUF-CMA secure.

Proof. Since every valid forgery of SC implies a valid encapsulation, it is reason-
ably straightforward to show that forgery of SC implies forgery of the underlying
SCTK. Figure 5 specifies an adversary B, which uses a black-box adversary A
against the UF-CMA security of SC to win the corresponding sUF-CMA game
against SCTK. In the above scenario, A wins the forgery game against SC when-
ever the returned σ unsigncrypts to m and m has not been queried to the sign-
cryption oracle OSC . If this is the case, then B wins the sUF-CMA game against
SCTK.

To see this, note that B wins whenever it returns a pair (E,C) that does not
decapsulate to ⊥ and such that E was never a response from OE to a query C.
Since σ is a valid ciphertext, the former condition is always fulfilled. Furthermore,
one may note that the ciphertext σ is associated deterministically to m through
the decapsulation algorithm. Hence, σ has been returned by OSC if and only if

502 T.E. Bjørstad and A.W. Dent

B(I, pkS , skR, pkR;OS ,OE):

(m, σ)
R← A(I, pkS , skR, pkR;OSC).

(E, C) ← σ.
Return (E, C).

OSC(m):

K
R← OS .

C ← EncK(m).

E
R← OE(C).

σ ← (E, C).
Return σ.

Fig. 5. Construction of a sUF-CMA adversary against SCTK

m was ever queried. This implies that (E,C) was a query/response pair from
OSC if and only if (m, σ) was a query/response pair from OE . Hence, B wins
every time A does.

It follows that
εSC ≤ εSCTK , (2)

where εSC is the advantage of the UF-CMA adversary against SC, and εSCTK

is the advantage of the resulting sUF-CMA adversary against SCTK. �	

4 Sample Schemes

4.1 Zheng Signcryption Revisited

Zheng’s original signcryption scheme [13] has become somewhat of a canoni-
cal reference when hybrid signcryption is discussed [8, 4]. It is therefore natural
to see whether it can be adapted to fit the generic tag-KEM framework as
well. Since Zheng’s original scheme essentially uses a KEM to sign the plaintext
message, this requires only minor alterations. Figure 6 gives a complete spec-
ification of a signcryption tag-KEM that, when combined with a DEM as per
Figure 2, yields something very similar to Zheng’s original scheme. The only
difference between the schemes is that the tag τ used by Encap is the cipher-
text C ← EncK (m), rather than m itself. It is well established that both Zheng’s
signcryption scheme and its associated signcryption KEM are secure [3, 8, 4], and
it is therefore no surprise that the signcryption tag-KEM specified in Figure 6
is secure as well.

Theorem 3. Zheng-SCTK, as specified in Figure 6, is a secure signcryption
tag-KEM.

A full version of the proof is given in the full version of the paper. The se-
curity bounds for Zheng’s signcryption scheme in this framework are compa-
rable to those of the original scheme-specific reduction [3]. This was not the
case in generic models for hybrid signcryption [8, 4] based on regular KEMs. In
the full version of the paper, we show that an attacker who attempts to break
the confidentiality of the full signcryption scheme using at most qE queries to
the signcryption oracle, qD queries to the unsigncryption oracle, qG queries to

Building Better Signcryption Schemes with Tag-KEMs 503

Com(1k):
Pick a k-bit prime p.
Pick a large prime q that divides p − 1.
Pick g ∈ Z∗

q of order q.
Pick cryptographic hash functions:
G : {0, 1}∗ → K.
H : {0, 1}∗ → Z/qZ.
I ← (p, q, g,G,H).
Return I.

KeyS (I):

skS
R← Z/qZ.

pkS ← gskS mod p.
Return (skS , pkS).

KeyR(I):

skR
R← Z/qZ.

pkR ← gskR mod p.
Return (skR, pkR).

Sym(skS , pkR):

n
R← Z/qZ.

κ ← pkR
n mod p.

bind ← pkS ||pkR.
K ← G(κ).
ω ← (skS , n, κ, bind).
Return (K, ω).

Encap(ω, τ):
(skS , n, κ, bind) ← ω.
r ← H(τ ||bind ||κ).
s ← n/(skS + r) mod q.
E ← (r, s).
Return E.

Decap(pkS , skR, E, τ):
(r, s) ← E.
κ ← (pkS · gr)s·skR mod p.
r′ ← H(τ ||bind ||κ).
If r �= r′:
Return ⊥ and terminate.
Else K ← G(κ).
Return K.

Fig. 6. The Zheng signcryption tag-KEM

the random oracle representing the hash function G and qH queries to the random
oracle representing the hash function H has an advantage bounded1 by

2AdvGDH + AdvDEM

where AdvGDH is a related attacker’s probability of solving a Gap Diffie-Hellman
problem and AdvDEM is the advantage that a related attacker has in breaking
the passive security of the DEM. If we compare this to the results of Bjørstad
[4], then we find that an attacker who attempts to break the confidentiality of
Zheng’s scheme in Dent’s hybrid model [9] has an advantage which is bounded
above by

4AdvGDH + AdvDEM + 2qH

√
AdvDL

where AdvDL is a related attacker’s probability of solving a discrete logarithm
problem. This demonstrates the usefulness of the new construction, as it gives
significantly tighter security bounds.

Other existing signcryption schemes may also be representable as signcryption
tag-KEMs. For example, it appears likely that the hybrid signcryption scheme of
Malone-Lee [11] could also be adapted to the signcryption tag-KEM paradigm,
along with its corresponding proof of security.
1 For simplicity, we disregard the constant terms in the following expressions.

504 T.E. Bjørstad and A.W. Dent

4.2 The CM Signcryption Tag-KEM

As discussed in [13, 4], the Zheng signcryption scheme is constructed by modify-
ing an existing signature scheme. By making the randomiser κ computed during
signature verification dependent on the receiver’s key skS , an efficient signcryp-
tion scheme can be constructed at a very low additional cost. This trick may
be applied to other signature schemes as well. In this section, we propose a new
signcryption tag-KEM, built from a recent signature scheme due to Chevallier-
Mames [5]. The resulting construction has tight security reductions with respect
to the Computational Diffie-Hellman and Gap Diffie-Hellman problems. This is
of practical interest, since previous hybrid signcryption schemes have had rela-
tively loose security reductions with respect to unforgeability. Figure 7 gives a
complete specification of the CM signcryption tag-KEM.

Com(1k):
Pick a large prime q.
Let G be a cyclic group of order q, such
that the representation of the elements of
G is included in {0, 1}k.
Pick a generator g of G.
Pick cryptographic hash functions:
G : {0, 1}∗ × G6 → Zq.
H : G → G.
KDF : G → K.
I ← (q, G, g,G,H, KDF).
Return I.

KeyS (I):

skS
R← Zq.

pkS ← gskS .
Return (skS , pkS).

KeyR(I):

skR
R← Zq.

pkR ← gskR . Return (skR, pkR).

Sym(skS , pkR):

n
R← Zq.

u ← pkR
n.

K ← KDF (u).
ω ← (skS , pkR, n, u).
Return (K, ω).

Encap(ω, τ):
(skS , pkR, n, u) ← ω.
h ← H(u).
z ← hskS .
v ← hn.
c ← G(τ ||pkR, pkS , g, z, h, u, v).
s ← n + c · skS , mod q.
E ← (z, c, s).

Decap(pkS , skR, E, τ):
u ← (gs · pkS

−c)skR .
h ← H(u).
v ← hs · z−c.
If c �= G(τ ||pkR, pkS , g, z, h, u, v) :
Return ⊥.
Else K ← KDF (u).
Return K.

Fig. 7. The CM signcryption tag-KEM

Theorem 4. The CM signcryption tag-KEM specified in Figure 7 is a secure
signcryption tag-KEM.

A full proof is given in full version of the paper. The proof uses techniques that
are directly analogous to those used in the security proofs for Zheng’s scheme
[3, 4]. However, this scheme has a better security reduction for authenticity/

Building Better Signcryption Schemes with Tag-KEMs 505

integrity, since the security of the underlying signature scheme does not rely
on a “forking lemma” argument [12]. To the authors’ knowledge, this gives this
scheme the best known security reductions.

As a side note, we remark that, in order to prove the integrity/authenticity
of the CM signcryption tag-KEM, it was necessary to prove that the Chevallier-
Mames signature scheme was strongly unforgeable. A proof of this fact was
developed independently by Chevallier-Mames [6].

5 Building Better Key Agreement Mechanisms with
Signcryption Tag-KEMs

The idea that signcryption KEMs can be used as key agreement mechanisms
was first investigated by Dent [10]. Dent notes that whilst an encryption KEM
provides a basic mechanism for agreeing a symmetric key between two parties,
it does not provide any form of authentication or freshness guarantee. Moreover,
he notes that signcryption KEMs (with outsider security) can be used to agree
a symmetric key with authentication. A simple protocol key agreement protocol
is then proposed, wherein freshness is guaranteed by the computing the MAC of
a timestamp or nonce using the newly agreed symmetric key. However, as the
paper remarks, this protocol is susceptible to a known key attack and should
not be used in practice.

In this section we propose that signcryption tag-KEMs can be used as prac-
tical key agreement mechanisms, with the SCTK providing both the authenti-
cation and freshness components of the protocol in a simple way. Consider the
following protocol which allows Alice and Bob to agree a key for a session with
an ID SID between them:

1. Alice generates a random nonce rA of an agreed length, and sends rA to Bob.
2. Bob computes (K,ω) = Sym(skBob , pkAlice) and E = Encap(ω, τ) using the

(unique) tag τ = rA||SID . Bob accepts K as the shared secret key, and sends
C to Alice.

3. Alice computes K = Decap(pkBob , skAlice ,E, τ) using the tag τ = rA||SID ,
and accepts K as the shared key providing K �= ⊥.

We argue that this protocol has the following attributes:

– Implicit key authentication to both parties. If both parties obtain
the other’s correct public key, then no attacker can distinguish between a
session’s correct public key and a randomly generated key without breaking
the confidentiality criterion for the SCTK.

– Resistance to known key attacks. It is easy to see that an attacker
that gains a key from any earlier protocol execution (or, indeed, in a later
protocol execution) between Alice and Bob gains no advantage in breaking
the scheme. This is because this “session corruption” is equivalent to making
a signcryption oracle query with a random tag. Since the SCTK remains
secure in this situation, so does the key agreement protocol.

506 T.E. Bjørstad and A.W. Dent

– Key confirmation from Bob to Alice. Since no party (including Alice)
can forge a signcryptext that purports to come from Bob, if Alice recovers
a key K from C, then that key K must have been produced by Bob in the
correct way. Therefore, Alice can have confidence that Bob knows the correct
key. However, an extra round of interaction will be required if Alice wishes
to give Bob key confirmation.

We argue that this derivation is useful because it finally gives a secure way to use
KEMs for key establishment. Of course, a secure signcryption scheme can always
be used as a key transport mechanism; however, it was not previously known
if signcryption-style techniques could be used for key agreement. The afore-
mentioned protocol settles this question. Whether an individual signcryption
tag-KEM should be regarded as a key transport or key agreement mechanism
depends upon its individual characteristics.

6 Conclusions

We have shown that there is a natural extension of the concept of a tag-KEM to
the signcryption setting and proven that secure signcryption tag-KEMs can be
combined with passively secure DEMs to provide signcryption schemes with full
insider security. This vastly simplifies and improves upon the KEM-DEM model
insider secure signcryption schemes proposed by Dent [9]. To show that this
construction is viable, we have given several examples of signcryption tag-KEMs,
including a brand new construction based on the Chevallier-Mames signature
scheme with very tight security bounds.

Acknowledgements

Tor Bjørstad wishes to thank the ECRYPT project and the Norwegian Research
Council for their generous financial support. Alexander Dent wishes to think the
ECRYPT project and the EPSRC’s Junior Research Fellowship programme for
their generous financial support. Both authors wish to thank the PKC 2006
anonymous reviewers for their comments.

References

1. A. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 128–146. Springer–Verlag, 2005.

2. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 83–107. Springer–Verlag, 2002.

3. J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption.
In Proceedings of PKC 2002, volume 2274 of Lecture Notes in Computer Science,
pages 80–98. Springer–Verlag, 2002.

Building Better Signcryption Schemes with Tag-KEMs 507

4. T. E. Bjørstad. Provable security of signcryption. Master’s thesis, Norwe-
gian University of Technology and Science, 2005. http://www.ii.uib.no/˜tor/pdf/
msc thesis.pdf.

5. B. Chevallier-Mames. An efficient CDH-based signature scheme with a tight se-
curity reduction. In Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 511–526. Springer–Verlag, 2005.

6. B. Chevallier-Mames. Personal correspondence, 2005.
7. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-

tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

8. A. W. Dent. Hybrid cryptography. Cryptology ePrint Archive, Report 2004/210,
2004. http://eprint.iacr.org/2004/210/.

9. A. W. Dent. Hybrid signcryption schemes with insider security. In Proceedings of
ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 253–266.
Springer–Verlag, 2005.

10. A. W. Dent. Hybrid signcryption schemes with outsider security. In Proceedings
of ISC 2005, volume 3650 of Lecture Notes in Computer Science, pages 203–217.
Springer–Verlag, 2005.

11. J. Malone-Lee. Signcryption with non-interactive non-repudiation. Technical Re-
port CSTR-02-004, Department of Computer Science, University of Bristol, 2004.
http://www.cs.bris.ac.uk/Publications/Papers/1000628.pdf.

12. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances
in Cryptology - EUROCRYPT ’96, volume 1070, pages 387–398. Springer–Verlag,
1996.

13. Y. Zheng. Digital signcryption or how to achieve cost (signature & encryption) <<
cost (signature) + cost (encryption). In Advances in Cryptology – CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 165–179. Springer–
Verlag, 1997. Unpublished full version (47 pages), dated 1999, available through
the author’s home page http://www.sis.uncc.edu/˜yzheng/papers/signcrypt.pdf.

Security-Mediated Certificateless Cryptography

Sherman S.M. Chow1,�, Colin Boyd2, and Juan Manuel González Nieto2

1 Department of Computer Science,
Courant Institute of Mathematical Sciences,

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane, QLD 4001, Australia
{c.boyd, j.gonzaleznieto}@qut.edu.au

Abstract. We introduce the notion of security-mediated certificateless
(SMC) cryptography. This allows more lightweight versions of mediated
cryptography while maintaining the ability for instantaneous revocation
of keys. Moreover, our solutions avoid key escrow, which has been used
in all previous mediated cryptography algorithms. We provide a model of
security against a fully-adaptive chosen ciphertext attacker, who may be
a rogue key generation centre or any coalition of rogue users. We present
a generic construction and also a concrete algorithm based on bilinear
pairings. Our concrete scheme is more efficient than the identity-based
mediated encryption scheme of Baek and Zheng in PKC 2004 which is
provably secure in a comparable security model. In addition, our propos-
als can be easily extended to support distributed security mediators.

Keywords: security-mediated cryptography, certificateless crypto-
graphy.

1 Introduction

During the 1980s and 1990s elaborate schemes for certification of public keys,
including many standardised solutions, seemed to be moving towards a world-
wide public key infrastructure (PKI). However, in recent years it has been widely
recognised that this infrastructure has more problems than was at first realised.
Business confidence in public key infrastructure has faltered. Apart from the
many commercial, legal and political issues, a recurring dilemma has been how
best to manage the processing, storage and revocation of public key certificates.

Public key revocation. The need to be able to revoke public keys was recog-
nised early in the development of public key infrastructure. It seems inevitable
that on occasions some private keys will become compromised and in such a case
� Major part of the research is done while the author was a visiting scholar of the

Information Security Institute (ISI), Queensland University of Technology (QUT).
His visit is sponsored by Endeavour Australia Cheung Kong Award 2005.

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 508–524, 2006.
c© International Association for Cryptologic Research 2006

Security-Mediated Certificateless Cryptography 509

it is no longer safe to use the corresponding public key. Initial solutions relied
on certificate revocation lists (CRLs) similar to the idea of black lists for credit
cards. The difficulty of managing CRLs has led to alternative revocation solu-
tions [7, 12], many of which rely on some on-line checking. As modern networks
become more widely available and reliable, use of on-line servers becomes much
more realistic than it was several years ago.

Mediated cryptography was designed by Boneh, Ding and Tsudik [7] as a
method to allow immediate revocation of public keys. They suggest that such a
scheme is particularly useful in government, corporate or military environments,
where there may be an unexpected and immediate requirement to revoke a key
when a user suspects key compromise, or when a user is removed from a position
of authority. Previous revocation techniques cannot satisfy this requirement.
The basic idea of mediated cryptography is to use an on-line mediator for every
transaction. This on-line mediator is referred to as a SEM (SEcurity Mediator)
since it provides a control of security capabilities. If the SEM does not cooperate
then no transactions with the public key are possible any longer. Once the SEM
is notified that a user’s key is to be revoked its use can be immediately stopped.

Identity-based cryptography. Many recent research proposals have fo-
cussed on developing public key systems that avoid the use of certificates al-
together. The impetus for this trend has largely come from the realisation that
the use of pairings on elliptic curves opens up many new options that were not
available before. The primary step in this direction was taken by Boneh and
Franklin [8] who showed that identity-based cryptography could be practically
achieved through use of pairings. Instead of using public keys and certificates,
any identity string can take the place of both. Anyone can encrypt a message
intended for the entity described by the identity string.

Identity-based cryptography does not solve the revocation problem. Indeed,
in some sense it can be argued to make the situation worse since how can a
person revoke his own identity? A pragmatic way to deal with this problem is to
notice that the identity string can include any additional information, including
a validity period. To manage revocation in identity-based cryptosystems, short
validity periods may be encoded into the identity string. However, this does
not fit an environment where immediate revocation may be required. Ding and
Tsudik [10] therefore proposed a combined scheme providing both identity-based
key and security-mediated feature.

Escrow problem. A major drawback of all identity-based and security-
mediated cryptosystems so far proposed is that they require a trusted third
party to generate keys for all entities. This is widely known as the escrow prob-
lem. Absolute trust is placed in the third party, who could decrypt any message
or sign on behalf of any entity. Partial solutions have been proposed to the escrow
problem, particularly by distributing the power of the third party over several
entities. The problem is present in a particularly acute way in Ding and Tsudik’s
identity-based mediated cryptosystem; compromise of the SEM gives away all
messages ever encrypted for every party.

510 S.S.M. Chow, C. Boyd, and J.M. González Nieto

Recently there have been schemes proposed to overcome the escrow problem
in a more complete way. Certificateless cryptography proposed by Al-Riyami and
Paterson [2] is a hybrid between identity-based schemes and traditional schemes
using public key certificates. Entities have public keys but they do not have
certificates. Instead the identity string is used to ensure that only the correct
entity can be in possession of the private key corresponding to the public key.
The scheme is attractive, but does not address how to provide instant revocation
when desired. This is the problem that we solve in this paper.

Contributions. We introduce the notion of Security-Mediated Certificateless
(SMC) cryptography. The major properties that the proposed notion achieve are:

– no certificates are used (in contrast with PKI-based schemes).
– user private keys are not escrowed (in contrast with identity-based schemes).
– instant revocation is provided (in contrast with certificateless schemes).

No previously proposed cryptosystem can provide all these properties together.
We first provide a generic construction for security-mediated certificateless en-
cryption. Then we provide a concrete scheme for security-mediated certificateless
encryption with better efficiency based on pairings. Security can be proven in the
random oracle model is given. Our concrete scheme has the following properties:

– it is secure in a powerful security model against a fully adaptive rogue key
generation centre, or any coalition of fully adaptive rogue users, which can
replace the public key of any user and ask for decryption oracle queries even
when the public key is replaced.

– it is more efficient1 than the known identity-based mediated scheme in a
similar security model.

– it can be extended to support distributed SEMs, essential for availability.

Paper structure. In the following section we compare related proposals’
properties with our proposal. Section 3 discusses the building blocks used by
our proposals. The security model for our proposed notion of security-mediated
certificateless encryption is discussed in Section 4. Section 5 details our generic
construction. In Section 6 a concrete scheme from pairings achieving a higher
efficiency than the generic construction is proposed. Finally we conclude our
work and discuss some future work of SMC cryptography.

2 Related Work

Our new cryptographic model has strong similarities to a number of previous
proposals. It is important to understand our contribution in the context of this
previous work. Before discussing each of these in turn we consider a number of
prominent features which can be used to differentiate the various models.
1 Our concrete scheme is not a trivial extension from existing identity-based mediated

scheme and existing certificateless public key encryption scheme.

Security-Mediated Certificateless Cryptography 511

SEM free. We use this term to indicate that a scheme does not use a security
mediator. Generally we may regard this feature as an advantage.

Predefined keys. In traditional public key systems, public and private keys
generally need to be generated together. An attractive feature of identity-
based and related schemes is that encryption can be done before the cor-
responding private key has been generated. As discussed in [2], this allows
“cryptographic work-flow”, such that one must satisfy some condition in or-
der to perform a certain cryptographic function (e.g. encryption). We say
a system has predefined keys if part of the key can be predefined, which is
sufficient for the interesting applications based on control of work-flow.

Instant revoke. As already discussed, in some applications it is important to
have the feature to instantly revoke public keys.

Escrow free. Escrow freeness means the user’s secret is not (completely) com-
putable by a certain party other than the user. As discussed previously,
identity-based cryptography and some related schemes do not achieve this
property since they require some (possibly distributed) third party to com-
pute all entities’ secrets. The scheme in [7] is also not escrow free since the
private key is not generated by the user (a single party generates the RSA
modulus for all users).

Implicit certificates. Explicit certificates are required for conventional public
key systems. We say that a scheme has implicit certificates if there is no need
for users of public keys (e.g. the sender of the message being encrypted) to
use an explicit certified string. An implication is that there is no need for
on-line verification of certificates. Another advantage of implicit certificates
is a saving in storage and bandwidth.

We will consider the relevant previous work next in the context of these im-
portant features. Table 1 summarises which schemes provide which features.
Notice that no scheme can satisfy all features at once, and therefore our security-
mediated certificateless cryptography can be considered as a new compromise
between the various desirable features.

Table 1. Properties of related paradigms

SEM Predefined Instant Escrow Implicit
Free Keys Revoke Free Certificates

Identity-based (ID-based) [8] ✓ ✓ ✘ ✘ ✓

Certificateless [2] ✓ ✓ ✘ ✓ ✓

Certificate-based [12] ✓ ✓ ✘ ✓ ✓

Security-mediated [7] ✘ ✘ ✓ ✘ ✘

ID-based security-mediated [10,16] ✘ ✓ ✓ ✘ ✓

Security-mediated Certificateless ✘ ✓ ✓ ✓ ✓

Certificateless cryptography. Al-Riyami and Paterson [2] proved that
their encryption scheme provides a strong form of chosen ciphertext security.
They also provide a key agreement protocol, and a hierarchical encryption

512 S.S.M. Chow, C. Boyd, and J.M. González Nieto

scheme in the same model, although none of these extras comes with a for-
mal security analysis. The signature scheme they proposed is later found to be
insecure by [14]. More efficient constructions of certificateless public key encryp-
tion were proposed subsequently [1,3,9,18]. The improved encryption scheme by
Al-Riyami and Paterson [3] is broken and fixed by Zhang and Feng [21].

It is possible to extend certificateless public key encryption (CL-PKE) to
a security-mediated one which entails keeping the public key constant while
requiring the encryption algorithm to append a changing information such as
the current time period to the identifier of the recipient. The corresponding
partial private key can then be issued to SEMs for the partial decryption in
our scheme. This has similar interaction to our scheme. However, an important
limitation of this solution is that the key generation centre needs to remain
virtually permanently on-line. The point is that the master secret is needed
for the creation of a huge number of partial private keys associated with the
fine-grained time intervals. Moreover, this requires every sender to know what
“changing information” should be used for each recipient every time, which is
not a trivial assumption. In contrast, the mediators in our scheme do not use the
master secret and so compromise of one mediator does not affect other mediators
or the master secret. Besides, the identifier in our scheme remains unchanged.

The PhD thesis of Al-Riyami [1, Section 4.6.1] suggested a way to provide
revocation in certificateless cryptography which entails changing the private key
(and hence the public key) of the system at regular time intervals. The encryption
algorithm must then retrieve the latest system parameters. Again, an important
limitation of this solution is that the key generation centre needs to go on-line
at the start of each time period. We also remark that Al-Riyami provides no
formal model or proof for such a scenario.

Distributed SEM. In any security-mediated schemes, every decryption must
involve the help of an on-line SEM, distributing SEM-key across multiple SEMs
is essential to ensure availability. Distributing duplicated copies of SEM-key may
not be desirable since it introduces more sites for attacker to compromise. One of
the standard solutions is to apply threshold cryptography to distribute the SEM-
key. In [20], apart from assigning one of the SEMs to hold the original SEM-key,
the SEM-key is replicated in the form of a number of shares across multiple
SEMs. However, their solution have not considered obtaining partial token from
the SEMs holding a share of the SEM-key. Instead, once the initial SEM (holding
the original SEM-key) is temporary unavailable, SEM-key migration occurs. The
SEM-key is reconstructed from the shares, resulting in an extra copy of a SEM-
key. We will show how distributing of SEM-keys is possible for all our proposal.

3 Preliminaries

We review some general notions about public key encryption, one-time signature
and identity-based encryption, which will be used in our generic construction.
The cryptographic primitive used by our concrete scheme will also be discussed.

Security-Mediated Certificateless Cryptography 513

3.1 Public Key Encryption

Let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a (standard) public key encryp-
tion scheme consists of the key generation algorithm PKE.Gen, the encryption
algorithm PKE.Enc and the decryption algorithm PKE.Dec. PKE.Gen takes as an
input security parameter 1k and outputs an encryption/decryption key pair (EK,
DK). PKE.Enc is a randomized algorithm taking EK, a label � and a message m
as input, outputs a ciphertext C. PKE.Dec is a deterministic algorithm taking
DK, a ciphertext C and a label �, outputs a message m or ⊥ if C is invalid. We
require E to be correct, i.e. PKE.Dec�

DK(PKE.Enc�
EK(m)) = m for all message m

and for all (EK, DK) generated by PKE.Gen. We also require PKE to be secure
against adaptive chosen ciphertext attack, adapted to deal with labels [19].

3.2 One-Time Signature

Let S = (SGen, Sig, Vfy) be a public key signature scheme consists of the key
generation algorithm SGen, the signing algorithm Sig and the verification algo-
rithm Vfy. SGen takes as an input security parameter 1k and outputs a sign-
ing/verification key pair (SK, VK). Sig takes SK and a message m as input,
outputs a signature σ. Vfy is a deterministic algorithm taking VK, a message m
and a signature σ, outputs ' or ⊥ depending whether the signature is valid. S
should be correct such that VfyVK(SigSK(m)) = ' for all message m and for all
(SK, VK) generated by SGen. For security, we assume S is strongly unforgeable
(cannot create a new valid signature even for previously-signed messages) under
adaptive chosen-message attacks. We refer one-time signature schemes as a class
of signature schemes with a slightly modified security model that an adversary
can only request a signature on a single message.

3.3 Identity-Based Encryption

In 1984, Shamir [17] introduced the idea of identity-based cryptosystem. An
identity-based encryption IBE consists of four algorithms: IBE.Set, IBE.Gen,
IBE.Enc and IBE.Dec. In essence, IBE.Set takes as an input security parame-
ter 1k, outputs common public parameters params and master secret master-
key. For simplicity we omit the inclusion of params in the description of the
remaining algorithm. IBE.Gen takes user’s identity ID, and master-key as in-
put and generates the private key DID for each user; IBE.Enc produces the ci-
phertext C by taking the recipient’s identity ID, and the message m as input.
Finally, IBE.Dec recovers the original message by taking the recipient’s private
key DID, and the ciphertext C as input. We require the scheme to be cor-
rect, i.e. IBE.DecDID(IBE.EncID(m)) = m for all messages m and all ID such
that DID = IBE.Genmaster−key(ID). We assume IBE is secure against chosen-
ciphertext-and-identity attack. By chosen-identity attack we mean the adver-
sary can ask for the private key of any chosen identities except the one in the
challenge.

514 S.S.M. Chow, C. Boyd, and J.M. González Nieto

3.4 Bilinear Pairings and Related Problems

We provide a brief overview of the main definitions and notation for bilinear
maps based on elliptic curve pairings. More details and implementation options
can be found in many recent papers [6, 8]. We also provide definitions for the
BDH problem used by Al-Riyami and Paterson [2]. Using the notation of Boneh
and Franklin [8], we let G1 be an additive group of prime order q and G2 be a
multiplicative group also of order q. We assume the existence of an efficiently
computable bilinear map e : G1 ×G1 → G2. Typically, G1 will be a subgroup of
the group of points on an elliptic curve over a finite field, G2 will be a subgroup
of the multiplicative group of a related finite field, and ê will be derived from
the Weil or Tate pairing on the elliptic curve. We assume that an element P ∈
G1 satisfying ê(P,P) �= 1G2 is known. By ê being bilinear, we mean that for
Q,W, Z ∈ G1, both ê(Q,W+Z) = ê(Q,W) · ê(Q, Z) and ê(Q+W, Z) = ê(Q, Z) ·
ê(W, Z). When a ∈ Zq and Q ∈ G1, we write aQ for Q added to itself a − 1
times, also called scalar multiplication of Q by a. As a consequence of bilinearity,
for any Q,W ∈ G1 and a, b ∈ Zq: ê(aQ, bW) = ê(Q,W)ab = ê(abQ,W).

Throughout this paper we assume that suitable groups G1 and G2, a map ê
and an element P ∈ G1 have been chosen, and that elements of G1 and G2 can
be represented by bit strings of the appropriate lengths.

Bilinear Diffie-Hellman(BDH) Problem: Let G1, G2, P and ê be as above.
The BDH problem in 〈G1, G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with a, b, c ∈
Z∗

q , compute ê(P,P)abc ∈ G2. An algorithm A has advantage ε in solving the
BDH problem if Pr

[
A(〈P, aP, bP, cP 〉) = ê(P,P)abc

]
= ε. Here the probability

is measured over random choices of a, b, c in Z∗
q and the random bits of A.

4 Security-Mediated Certificateless Cryptography

Security-mediated certificateless encryption is a seven-tuple (Setup, Set-Private-
Key, Set-Public-Key, Register-Public-Key, Encrypt, SEM-Decrypt, User-Decrypt).
The players are the key generation centre (KGC), security mediators (SEMs)
and a set of users. The KGC runs the setup phase. It takes a security parameter
k as input and generates system parameters (we omit the inclusion of system
parameters as the input of the rest of the algorithms). A master-key s that is
used to generate a SEM-key is randomly selected.

Following this users can generate their private and public key pairs, using Set-
Private-Key and Set-Public-Key. Users need to register their identities and the
public keys with the KGC by Register-Public-Key, which is a protocol initiated
by the user. This requires the KGC to identify the user and receive an authentic
version of the public key. At the same time the user must prove knowledge of the
private key corresponding to its public key, although the value of the private key
remains secret to the user. The KGC then uses the master secret s to generate
the SEM-key required during decryption time by the SEM. This key needs to be
authentically and confidentially transferred to the SEM. It is quite possible for

Security-Mediated Certificateless Cryptography 515

one user to register different public keys (or even the same one) with multiple
SEMs. Notice that SEMs are not given access to the master secret s at any time.

Encrypt takes a message, an identity and a registered public key to produce
the corresponding ciphertext. SEM-Decrypt is executed by the SEM using the
SEM-key to do the partial decryption for the user. Finally User-Decrypt takes
the partial decryption results and the user’s private key to get back the message.

4.1 Security Model

Existing security-mediated schemes are of different security levels. The identity-
based scheme of Ding and Tsudik [10] uses a common RSA modulus for all users,
and hence a collusion between a user and the SEM would result in a total break
of the scheme. So the security of the scheme requires a strong assumption that
the SEM is totally trusted or remains secure throughout the life of the system.

The security model used by Libert and Quisquater [16] has the restriction
that the adversary cannot ask for the private key (i.e. the adversary can still ask
for the SEM-key) of the target user in the challenge phase of the game. Although
their scheme do not have the drawback of Ding and Tsudik’s [10], trust is moved
to the user as the scheme is insecure against chosen-ciphertext attack by the
attacker who possesses the user part of the private key. Since it is assumed that
the adversary do not equipped with the user part of the private key, the notion
is termed as weak semantic security against insider attacks. Generally speaking,
it is easier for an attacker to compromise the key for users’ side than the SEM’s
one. The assumption is still a strong one.

We use a similar security model to that used by the identity-based scheme of
Baek and Zheng [5], which is secure against chosen-ciphertext attack by insiders.
However, a more powerful adversary should be considered in our scenario. The
differences are firstly that we allow the adversary access to the master secret s,
and secondly that we provide extra queries which allow the adversary to extract
and replace public keys. No such queries are relevant to schemes in [5, 16] since
identities are used in place of public keys.

The security model also reflects the similarity with Al-Riyami and Paterson’s
certificateless encryption [2]. An adversary against our scheme should be allowed
to make a number of queries. Some of these are the same as those used in
the CL-PKE model but we also need to allow queries for partial and complete
decryption. The following are the queries available to the adversary. There are
some restrictions on when these can be used which will be detailed below.

1. Extract SEM-key: On input an identity IDA the adversary is returned with
DA, which is the key held by SEM for doing the partial decryption on behalf
of the user A.

2. Request public key: On input an identity IDA the adversary obtains user
A’s public key PA

3. Replace public key: On input an identity IDA and a valid public key PA,
the public key of A is replaced by this new one (and the SEM-key is also
updated if the system bundles the public key with the identifier for SEM-key

516 S.S.M. Chow, C. Boyd, and J.M. González Nieto

creation). The replaced version will be used in the rest of the game (unless
replaced again), e.g. the User decrypt query to be described below.

4. Extract private key: On input an identity IDA, the adversary gets user A’s
private key xA. This query is reasonably disallowed if the public key of A has
already been replaced by the adversary.

5. SEM decrypt: On input a ciphertext C and identity IDA, the adversary is
returned with the partial decryption result C′ by using the SEM-key DA.

6. User decrypt: On input a ciphertext C′ and an identity IDA, the adversary
is returned with the decryption of C′ (which could, of course, be simply
⊥). Similar to the proof of security for CL-PKE in [2], we have the luxury
of allowing this query even in the case that the public key of A has been
replaced by the adversary.

7. Complete decrypt: It can be done by executing the above two queries in
sequence, subject to the restriction (if any) imposed to either one of them.

As in the CL-PKE model, the adversary is forbidden from both making an
Extract SEM-key query and making a Replace public key query for the
same identity. We consider two types of adversary, modelling a rogue key gener-
ation centre or any coalition of rogue users.

Type-I adversaries do not have access to the master secret s, but are allowed
to choose any public key to be used for the challenge ciphertext.

Type-II adversaries have access to the master secret s, but only a registered
public key can be used for the challenge ciphertext. (We do not consider a
rogue SEM explicitly since it is weaker than the Type-II adversary.)

4.2 Definition of Security

The definition of security follows a well-known pattern in which the adversary
plays a game in two phases against a challenger. In each phase the adversary is
allowed to make queries to the challenger subject to any restrictions. At the end
of the first stage the adversary outputs a pair of plaintexts and an Identifier, and
the challenger returns the encryption of one of these. At the end of the second
phase the adversary has to output a bit predicting which plaintext was chosen.
It wins the game if it gets the bit correctly. The scheme is secure if no efficient
adversary exists which can win the game with probability significantly bigger
than 1/2. More formally the game proceeds as follows.

Setup: System parameters are generated according to the setup procedure of
the cryptosystem. The parameters are given to A.

Phase 1: The adversary A is allowed to make any of the queries detailed above.
These queries may be made adaptively.

Challenge phase: The adversary outputs an identity IDch and a pair of plain-
texts m0, m1. If A is a Type-I adversary, it also chooses a public key Pch (by
the last Replace public key query); otherwise, the public key of identity
IDch cannot be replaced. Important restrictions on key extractions include
disallowing Extract private key query for IDch if A is a Type-II adversary,

Security-Mediated Certificateless Cryptography 517

and disallowing making both of the Extract SEM-key query and Extract
private key query (which is assumed to be issued implicitly if A has issued
a Replace public key query) for IDch if A is a Type-I adversary. A cipher-
text Cch, which is the encryption of mb (where b is a random bit) under the
public key Pch for IDch, is generated and passed to A.

Phase 2: A can continue to make queries but cannot make both Extract
SEM-key query and Extract private key query for IDch. If A has re-
quested the private key corresponding to the public key Pch, which is regis-
tered as the public key of IDch at the challenge phase, then SEM decrypt
of the challenge ciphertext by the SEM-key corresponding to IDch is not
allowed. On the other hand, A cannot ask a User decrypt query for C′

ch

where C′
ch is the result of SEM decrypt of Cch, if A has requested the SEM-

key corresponding to IDch (which is assumed to be requested implicitly if A
is a Type-II adversary).

Guess: When it has finished with Phase 2, A must output a guess bit b′. A
wins the game if b′ = b and A’s advantage is defined as 2×|Pr[b′ = b]−1/2|.

Definition 1. A security-mediated certificateless encryption scheme is IND-
CCA secure if there is no efficient adversary in the above game with non-
negligible advantage in the security parameter k.

5 Generic Construction from Multiple Encryption

Multiple encryption refers to the encryption of the same piece of data using
multiple and independent encryption schemes. Dodis and Katz [11] proposed a
strong chosen-ciphertext secure multiple encryption (refer to [11] for the secu-
rity definition). We follow their construction and explain our generic security-
mediated certificateless encryption scheme. In essence, the multiple encryption
includes one instance of identity-based encryption (for SEM side) and one in-
stance of public key encryption (for user side). We illustrate our construction
by a bitwise-OR operator instead of the (t, n) threshold secret sharing2 in their
settings. Here the (t, n) notation means at least t + 1 decryption keys out of the
set of n decryptions keys can recover the ciphertext from the n-times-encryption.
In the rest of the paper, we will abuse this notation to refer to a similar meaning
that t is the confidentiality threshold of different threshold schemes.

5.1 Encryption Algorithm

Setup:

1. On input a security parameter k, execute IBE.Set to generate system param-
eters params and the master-key.

2. Sample H from a family of collision-resistant hash functions.

2 Dodis and Katz’s scheme actually offers four parameters: (tp, tf , tr, tf), referring to
the threshold for privacy (confidentiality), fault-tolerance, robustness and soundness.

518 S.S.M. Chow, C. Boyd, and J.M. González Nieto

Set-Private-Key and Set-Public-Key: In this generic construction, this two algo-
rithm may be necessary to combined into one if we treat PKE.Gen as a black-box.
On input a security parameter k, execute PKE.Gen to generate the user’s pub-
lic/private key pair (EK, DK).

Register-Public-Key: Inputs are the public key EK and an identity IDA and the
master secret master-key. The SEM− key for A is set as DA = IBE.Genparams

(IDA). As part of the registration process we assume that A proves the knowledge
of the private key DK corresponding to the registered public key EK.

Encrypt: Inputs are a message M ∈ {0, 1}n, an identity IDA and public key EK.

1. Generate one-time signature keys (SK, VK) using SGen.
2. Choose a random label �.
3. Choose random s1 ∈ {0, 1}n and set s2 = M ⊕ s1.
4. Compute C1 = IBE.Encparams(IDA, s1).
5. Compute C2 = PKE.Enc�

EK(s2).
6. Compute α = H(C1,C2, �).
7. Compute the one-time signature σ = SigSK(α).
8. Output the ciphertext C = 〈C1,C2, VK, σ, �〉.

SEM-Decrypt: Inputs are a ciphertext 〈C1,C2, VK, σ, �〉, an identity IDA, a public
key DK and SEM-key DA.

1. Check that IDA is a legitimate user whose key is not revoked.
2. Compute α = H(C1,C2, �).
3. Check that σ is a valid one-time signature on α by VfyVK(α, σ).
4. Output ⊥ if verification fails.
5. Otherwise, compute V ′

1 = IBE.DecDA(C1) and output V ′
1 .

User-Decrypt: Inputs are a ciphertext 〈C1,C2, VK, σ, �〉, the token V ′
1 from the

SEM, and a secret DK.

1. Compute α and check σ similar to SEM-Decrypt.
2. Output ⊥ if verification fails.
3. Otherwise, compute V ′

2 = PKE.Dec�
DK(C2)

4. Output M ′ = V ′
1 ⊕ V ′

2 .

5.2 Efficiency and Security Analysis

Encryption takes the time for an invocation of identity-based encryption and a
public key encryption, together with one signature generation. Decryption by
SEM and the user, apart from signature verification, takes one identity-based
decryption and one public key decryption respectively. The resulting cipher-
text’s length is the total length of the ciphertext produced by identity-based
encryption and public key encryption, together with the verification key of the

Security-Mediated Certificateless Cryptography 519

signature algorithm, a hash value and a label employed by the public key en-
cryption. Note that the use of one-time signature offers fast signature genera-
tion/verification.

Due to the page limit we only outline how simulations in the security proof
can be done. From the strong-multiple chosen-ciphertext (SM-CCA) security of
the multiple-encryption scheme [11], it is easy to see that partial decryption by
the SEM and the complete decryption can be supported in the simulation by
querying the decryption oracle of IBE and PKE respectively. Type-I adversary’s
Extract SEM-key and Extract private key queries can be simulated by
the corresponding corruption oracle of IBE and PKE . The success of a Type-
I adversary means breaking the security of either IBE or PKE . For Type-II
adversary, the simulator is only given with PKE and executes IBE.Set itself
instead of relying on any IBE’s oracles. Simulating in this way makes it possible
to answer the queries revealing the master-key. Since our generic construction is a
(1, 2) instantiation of Dodis and Katz’s scheme, winning the game in the security
proof means the adversary made a successful IBE decryption and a successful
PKE decryption, implying the security of the underlying PKE is broken.

5.3 Distributing the SEMs

Our proposed generic construction can be extended to support distributed SEMs
in two ways. Suppose t out of n shares of SEM-key is needed for a successful
SEM decryption for a particular user. Instead of the above (1, 2) instantiation,
the first method is to instantiate (t, n + 1) Dodis-Katz multiple encryption,
which includes n instances of IBE and one instance of PKE, i.e. the cipher-
text contains n ciphertext from IBE and one ciphertext from PKE. Let {IDA}
be {(IDA||i), i ∈ {0 · · ·0, 0 · · · 1, 0 · · ·10, · · · , 1 · · · 1}}, i.e. the identity string IDA

concatenated by the binary representations of the integers {1, n}. For the n in-
stances of IBE, we encrypt n shares produced by a (t, n + 1) secret sharing3,
(instead of a (1, 2) secret-sharing used above) of the message m by the n identi-
ties {IDA} and the remaining share by EK. There are n SEM-keys corresponding
to each user, generated by the KGC according to the identity set {IDA}. Each of
n SEMs holds one of them. For SEM decryption, t SEMs perform decryption of
the corresponding part of the ciphertext, without interacting with other SEMs.
After obtaining these partial decryption results, the user executes PKE.Dec
and gets the final message by the recover algorithm of the (t, n + 1) secret
sharing.

However, this method inherits the linear ciphertext size and the linear number
of encryption from Dodis-Katz’s construction. Hereafter we describe our second
extension to avoid these linear dependencies. Instead of using n identity-based
encryption, we employ a (t, n) identity-based threshold decryption [5], so es-
sentially we are using something similar to the (1, 2) instantiation of the above
generic method again. Notice that the threshold decryption scheme employed

3 Again, four threshold parameters instead of one can be set in the original construc-
tion [11], we only include the confidentiality threshold for the sake of brevity.

520 S.S.M. Chow, C. Boyd, and J.M. González Nieto

should spilt the user’s key instead of KGC’s key, in order to support different
threshold settings for different users.

By this approach, we achieve a constant size ciphertext, but the efficiency of
the resulting scheme is still linearly with (and hence highly dependent on) the
decryption efficiency of the underlying identity-based threshold decryption. This
shortcoming motivates our concrete construction in the next section.

6 Our Concrete Scheme from Bilinear Pairings

This section explains our concrete security-mediated certificateless encryption
scheme, followed by discussion on its efficiency and threshold extension.

6.1 Encryption Algorithm

Setup:

1. On input a security parameter k, generate system parameters (G1, G2, ê)
where G1 and G2 are groups of prime order q and ê : G1 × G1 → G2 is a
pairing. Also choose five hash functionsH1 : {0, 1}∗ → G1,H2 : {0, 1}n → Z∗

q ,
H3 : G1 → {0, 1}n, H4 : G2 → {0, 1}n, and H5 : G1 × G1 × {0, 1}n → G1,
where n is the length of plaintexts. These hash functions will be modelled as
random oracles in order to provide the security proof.

2. Choose an arbitrary generator P ∈ G1.
3. Select a master-key s uniformly at random from Z∗

q and set Ppub = sP .
4. Return the master-key and the public system parameters given by

params = 〈G1, G2, ê, n,P,Ppub,H1,H2,H3,H4,H5〉.

Set-Private-Key: Choose a secret value xA ∈R Z∗
q as the private key of entity A.

Set-Public-Key: Given the private key xA of entity A, set the public key of A to
PA = xAP .

Register-Public-Key: Inputs are the public key PA and an identity IDA and the
master secret s. The SEM-key for A is set as DA = s ·H1(IDA). As part of the
registration process we assume that A proves the knowledge of the value xA such
that PA = xAP .

Encrypt: Inputs are a message M ∈ {0, 1}n−k0, an identity IDA and public key
PA.

1. Compute QA = H1(IDA).
2. Choose random σ ∈ {0, 1}k0 and set r = H2(M ‖ σ).
3. Compute k = ê(QA,Ppub)r, U = rP and U ′ = rPA.
4. Compute V = (M ‖ σ) ⊕H3(U ′) ⊕H4(k) 4.
5. Compute S = rH5(PA,U,V).
6. Compute the ciphertext C = 〈S,U,V 〉 ∈ G1 × G1 × {0, 1}n.
4 CL-PKE in [3] employs a similar “exclusive-or structure” in the ciphertext, which

is exploited by the attack in [21]. However, the non-malleability provided by the S
component protects our scheme from their attack.

Security-Mediated Certificateless Cryptography 521

SEM-Decrypt: Inputs are a ciphertext 〈S,U,V 〉, an identity IDA, a public key
PA and SEM-key DA.

1. Check that IDA is a legitimate user whose key is not revoked.
2. Check that ê(P,S) = ê(U,H5(PA,U,V)).
3. Compute V ′ = V ⊕H4(ê(DA,U)) and output V ′.

User-Decrypt: Inputs are a partial ciphertext U , the token V ′ from the SEM,
and a secret xA.

1. Parse M ′ and σ′ from M ′ ‖ σ′ = H3(xAU)⊕ V ′.
2. Verify whether H2(M ′ ‖ σ′) · P = U .
3. If the verification succeeds then output M ′. Else output ⊥.

It is easy to see that the proposed scheme is correct. Consider a valid cipher-
text produced by our scheme; from the bilinearity of pairings, the checking done
in SEM-Decrypt must pass. Consider the decryption step in SEM-Decrypt, we
have ê(DA,U)) = ê(sQA, rP) = ê(QA, sP)r = ê(QA,Ppub)r. For the decryption
step in User-Decrypt, xAU = xArP = rPA. Again, the checking in User-Decrypt
must pass for a valid ciphertext since U = rP . The correctness thus follows.

6.2 Efficiency and Security Analysis

We make the focus of our comparison on the efficiency of identity-based thresh-
old decryption by Baek and Zheng [5] for the following reasons. First, the second
threshold extension of the generic scheme described in previous section requires
the use of identity-based threshold decryption. To the best of authors’ knowl-
edge, Baek and Zheng [5]’s scheme is the only scheme that separating the private
key of each user into shares instead of the private key of the KGC. Second, a
(1, 2) threshold decryption can be used as an identity-based mediated encryption
(IDME) by delegating one share to the SEM and another to the user. Since their
threshold decryption scheme is chosen-ciphertext secure, the resulting IDME of-
fering a similar level of security as ours, in the sense that partial SEM decryption
queries are allowed.

From the Table 2, we can see that our scheme offers a more efficient solution.
In IDME, the checking on the SEM’s decryption is not included as part of the
protocol. As a consequence, the user will not notice if there is something wrong
in the SEM’s decryption. Yet, a zero knowledge proof for the equality of two
discrete logarithms based on bilinear pairings [5, 16] can be used to ensure the
consistency of SEM’s decryption result. The notation (+y) in Table 2 represents
the number of additional operations required if such a proof is employed. In our
proposed scheme, such a zero knowledge proof is not necessary since a mechanism
of consistency checking is already incorporated.

The following theorem summarises the security of our proposed scheme. The
proof can be found in the full version of this paper.

Theorem 1. Our proposed scheme is IND-CCA secure against Type I and Type
II adversary in the random oracle model, under the assumption that the BDH
problem is intractable.

522 S.S.M. Chow, C. Boyd, and J.M. González Nieto

Table 2. Efficiency Analysis of Security-Mediated Encryption Schemes

Encryption Decryption (SEM) Decryption (User)

ê(·, ·) Exp Hash ê(·, ·) Exp Hash ê(·, ·) Exp Hash

IDME 1 3 1 3 (+2) 0 (+1) 1 3 (+2) 0 (+2) 1

Proposed Scheme 1 3 1 3 0 1 0 2 0

6.3 Distributing SEMs

Since our proposed scheme is built on top of a variant of the identity-based
threshold decryption scheme which is proven to be IND-CCA secure, the exten-
sion of our scheme to support distributed SEMs can be proven to be IND-CCA
secure too. The idea of the extension is as follows. Instead of delegating a single
SEM-key, the SEMs got a (t, n) shareD(i)

A of the SEM-keyDA (by employing the
sharing a point on G sub-routine in [5], which is a simple twist of the Shamir’s
polynomial secret sharing). The partial decryption result to be returned by the
SEMs is no longer the hash value H4(ê(D

(i)
A ,U)) but ê(D(i)

A ,U).5 And the user
reconstructs all these partial decryption results and performs the final decryp-
tion. As a result, the extended scheme offers higher availability without explicit
replication of SEM-key. Indeed, the major portion of the pairing operations in
our proposed scheme comes from the checking of the validity of ciphertext before
SEM decryption, which is an essential step for the chosen-ciphertext security of
distributed SEMs. Similar to our second extension of our generic construction,
constant size ciphertext is achieved. Moreover, our concrete scheme has a higher
efficiency as shown in Table 2.

7 Conclusion and Future Work

We introduce the notion of security-mediated certificateless (SMC) cryptogra-
phy, which has instantiated one more of the set of compromises within the various
desirable properties for solving the certification problem in public key cryptog-
raphy. We have provided a generic construction and also a concrete encryption
scheme. An attractive feature of our proposal is that it can use the same pa-
rameters used for most other identity-based and share the same key generation
centre (KGC). Our scheme also supports distributed security mediators (SEMs).

A limitation of certificateless encryption (both ours and the original) is that
in its basic form it fails to reach Girault’s level 3 [13]. This means that although
there is less trust placed in the authority than for identity-based schemes (users
do not reveal their private keys to the KGC), there is more trust placed in the
KGC than in traditional public key schemes. This is because if a malicious KGC
distributes a bogus public key for a user, the KGC can obtain secrets intended
for that user even though there is no evidence that can be used to prove that
5 Note that there is no special handling for the simulation of H4 in the security proof.

Security-Mediated Certificateless Cryptography 523

the KGC misbehaved. There are ways to achieve level 3 as discussed by Al-
Riyami [1]. One way is to provide a proof of possession of the private key, which
in turn provides the evidence of malicious behaviour if more than one is found.
This can be achieved by providing a signature using the same key.

We discuss some of our future work in SMC cryptography. Naturally it would
be nice to provide a complementary signature scheme with similar properties. We
have a set of candidate signature schemes, including a variant of blind signature
scheme that SEM can blindly issue a partial signature to users. Another challenge
is to design a scheme with all the properties of ours but can achieve the level 3 of
trust refined by Al-Riyami [1]. His work [1] also refined the CBE model [12], and
generic construction of CBE in this new model from CL-PKE is proposed [1,3].
However, their security evidence is questioned recently [15]. It is interesting
to identify the relation between SMC encryption and CBE. Another related
problem is to design SMC encryption without pairing [4].

Acknowledgement

This paper is an outgrowth of a short-term research project sponsored by En-
deavour Australia Cheung Kong Award 2005. Sherman Chow would like to thank
Australian Government Department of Education, Science and Training for the
assistantship. He is grateful to his coauthors for offering this on-going project,
and anonymous reviewers for helpful comments and the suggestion about generic
construction in particular. He is also indebted to all the staff and students of ISI,
QUT for their continuing support and kind hospitality during his visit there.

References

1. Sattam S. Al-Riyami. Cryptographic Schemes Based on Elliptic Curve Pairings.
PhD thesis, Royal Holloway, University of London, 2004.

2. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless Public Key Cryp-
tography. In Advances in Cryptology - ASIACRYPT 2003, 9th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, November 30 - December 4, 2003, volume 2894 of LNCS, pages
452–473. Springer, 2003. Full version at http://eprint.iacr.org/2003/126.

3. Sattam S. Al-Riyami and Kenneth G. Paterson. CBE from CL-PKE: A Generic
Construction and Efficient Schemes. In Public Key Cryptography - PKC 2005,
8th International Workshop on Theory and Practice in Public Key Cryptography,
Les Diablerets, Switzerland, January 23-26, 2005, volume 3386 of LNCS, pages
398–415. Springer, 2005.

4. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless Public
Key Encryption Without Pairing. In Information Security, 8th International Con-
ference, ISC 2005, Singapore, September 20-23, 2005, volume 3650 of LNCS, pages
134–148. Springer, 2005.

5. Joonsang Baek and Yuliang Zheng. Identity-based Threshold Decryption. In Public
Key Cryptography - PKC 2004, 7th International Workshop on Theory and Practice
in Public Key Cryptography, Singapore, March 1-4, 2004, volume 2947 of LNCS,
pages 262–276. Springer, 2004.

524 S.S.M. Chow, C. Boyd, and J.M. González Nieto

6. Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient Al-
gorithms for Pairing-based Cryptosystems. In Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 2002, volume 2442 of LNCS, pages 354–368. Springer.

7. Dan Boneh, Xuhua Ding, and Gene Tsudik. Fine-grained control of security capa-
bilities. ACM Transactions on Internet Technology, 4(1):60–82, February 2004.

8. Dan Boneh and Matt Franklin. Identity-Based Encryption from the Weil Pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

9. Zhaohui Cheng and Richard Comley. Efficient Certificateless Public Key Encryp-
tion. Cryptology ePrint Archive, Report 2005/012, 2005.

10. Xuhua Ding and Gene Tsudik. Simple Identity-Based Cryptography with Mediated
RSA. In Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the
RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, volume 2612
of LNCS, pages 193–210. Springer, 2003.

11. Yevgeniy Dodis and Jonathan Katz. Chosen-Ciphertext Security of Multiple En-
cryption. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378
of LNCS, pages 188–209. Springer, 2005.

12. Craig Gentry. Certificate-Based Encryption and the Certificate Revocation Prob-
lem. In Advances in Cryptology - EUROCRYPT 2003, International Conference on
the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May
4-8, 2003, volume 2656 of LNCS, pages 272–293. Springer, 2003.

13. Marc Girault. Self-certified Public Keys. In Advances in Cryptology - EURO-
CRYPT ’91, Workshop on the Theory and Application of Cryptographic Tech-
niques, Brighton, UK, April 8-11, 1991, volume 547 of LNCS, pages 490–497.

14. Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. On the Security of Certificate-
less Signature Schemes from Asiacrypt 2003. In Cryptology and Network Security,
4th International Conference, CANS 2005, Fujian, China, December 14-16, 2005,
volume 3810 of LNCS, pages 13-25. Springer, 2005.

15. Bo Gyeong Kang and Je Hong Park. Is it possible to have CBE from CL-PKE?.
Cryptology ePrint Archive, Report 2005/431, 2005.

16. Benôıt Libert and Jean-Jacques Quisquater. Efficient Revocation and Threshold
Pairing based Cryptosystems. In PODC 2003 of the Twenty-Second ACM Sym-
posium on Principles of Distributed Computing (PODC 2003), July 13-16, 2003,
Boston, Massachusetts, USA. ACM, pages 163–171. ACM Press, 2003.

17. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances
in Cryptology of CRYPTO 1984, Santa Barbara, California, USA, August 19-22,
1984, volume 196 of LNCS, pages 47–53. Springer-Verlag, 1985.

18. Yijuan Shi and Jianhua Li. Provable Efficient Certificateless Public Key Encryp-
tion. Cryptology ePrint Archive, Report 2005/287, 2005.

19. Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption (Version
2.1). Cryptology ePrint Archive, Report 2001/112, 2001.

20. Gabriel Vanrenen and Sean Smith. Distributing Security-Mediated PKI. In Public
Key Infrastructure, First European PKI Workshop: Research and Applications,
EuroPKI 2004, Samos Island, Greece, June 25-26, 2004, Proceedings, volume 3093
of LNCS, pages 218–231. Springer, 2004.

21. Zhenfeng Zhang and Dengguo Feng. On the Security of a Certificateless Public-Key
Encryption. Cryptology ePrint Archive, Report 2005/426, 2005.

k-Times Anonymous Authentication with a

Constant Proving Cost

Isamu Teranishi and Kazue Sako

NEC Corporation

Abstract. A k-Times Anonymous Authentication (k-TAA) scheme al-
lows users to be authenticated anonymously so long as the number of
times that they are authenticated is within an allowable number. Some
promising applications are e-voting, e-cash, e-coupons, and trial brows-
ing of contents. However, the previous schemes are not efficient in the
case where the allowable number k is large, since they require both users
and verifiers to compute O(k) exponentiation in each authentication. We
propose a k-TAA scheme where the numbers of exponentiations required
for the entities in an authentication are independent of k. Moreover, we
propose a notion of public detectability in a k-TAA scheme and present
an efficient publicly verifiable k-TAA scheme, where the number of mod-
ular exponentiations required for the entities is O(log(k)).

Keywords: k-times anonymous authentication, efficiency, public verifi-
ability.

1 Introduction

1.1 Background

A k-Times Anonymous Authentication (k-TAA) scheme [TFS04, NN05] allows
users to be authenticated anonymously so long as the number of times that they
are authenticated is within an allowable number. The scheme not only offers
a time restriction mechanism to well-known group signature schemes [CH91,
ACJT00, BBS04, BSZ05, CG04, KY05], but provides stronger properties of
anonymity and traceability. Regarding anonymity, users who are authenticated
within the allowable number times can enjoy anonymity even from an author-
ity, whereas in a group signature scheme users are always identifiable by the
authority. Regarding traceability, any verifier can trace a malicious “over-time”
user (that is, a user who exceeds the time restriction) from an authentication
log in a k-TAA scheme, whereas in a group signature scheme it is only the
authority who has this capability. There are many applications of the k-TAA
scheme, such as e-voting [SK94,OMAFO99,DJ01,FS01, Neff01], e-cash [CP92,
B93, AF96, CFT98, PBF99], e-coupon [OO98, NHS99], and trial browsing of
contents [TFS04]. Moreover, these various application services can be offered
based on a single secret key issued to users at the joining phase. For example,
a user who paid an annual membership fee can download up to 1000 titles of

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 525–542, 2006.
c© International Association for Cryptologic Research 2006

526 I. Teranishi and K. Sako

digital music and 100 movie titles anonymously every year and can participate
in anonymous questionnaires held every month.

We use the term “application providers” (APs) to refer to verifiers who wish
to authenticate members and who want to restrict the number of times the
members can use their service anonymously. In the previous example, the music
downloading site is set to 1000, and the movie downloading site is set to 100,
and monthly questionnaires site is set to 1.

A problem with the previous k-TAA schemes [TFS04, NN05] is that they
require large computation when the number k becomes large, since O(k) expo-
nentiation is necessary for both users and AP.

1.2 Our Contributions

We propose, for the first time, a k-TAA scheme where the number of exponen-
tiations required for users and AP for authentication is independent of k. The
proposed scheme is constructed using a bilinear pairing [MSK02, BB04], and is
secure under the SDH assumption [BB04], the DDHI assumption [BB04], and
the random oracle assumption.

Moreover, we propose and formalize a stronger variant of the detectability
requirement [TFS04] called the public detectability. It requires that anyone can
verify that the AP indeed provided a fair limit to all users regarding the number
of accesses to their service. For most applications such as e-coupon schemes and
trial browsing, it is the APs that wish to restrict the number of times they offer
service to a user, or else they will be paying for over-time users. So the property
of the public detectability may not be necessary. However, in applications such
as e-voting, one may want to publicly verify that the verifier has not accepted
votes from the same user for more than a given number.

We also present an efficient and public detectable k-TAA scheme, where the
number of exponentiations required for the user andverifier isO(logk).The scheme
is secure under the same assumptions as those of the constant-cost scheme.

1.3 Key Ideas

We present here the ideas of the proposed schemes. First, we present the previous
mechanism of detecting over-timed users [TFS04] at the cost of O(k) exponen-
tiations. We then show how this could be decreased to O(log k) and to O(1). If
an AP wishes to restrict the access time to be k, he publishes k public informa-
tion items, namely, r1, . . . , rk. In the authentication, a user picks one of the AP
information items, say rw, and sends a tag data rw

x using his secret key x. If a
malicious user tries to be authenticated more than k times, the same tag rw′x

should appear in the authentication log and thus such a user will be detected.
This is the mechanism to detect over-time users.

In the course of authentication a user needs to prove in zero knowledge that
the tag is well-formed, that is, it is one of the public information items provided
to his secret key. In the schemes of [TFS04, NN05], a user prove this using the
‘OR proof’, that is, a user proves that one of τ = r1

x, τ = r2
x, . . ., or τ = rk

x

is satisfied. This resulted in the cost of O(k) exponentiation.

k-Times Anonymous Authentication with a Constant Proving Cost 527

In order to avoid the ‘OR proof’, we employ a deterministic function fx to
construct our tag. In the authentication, the user computes τ = fx(IDAP||k, w)
using his secret key x, sends it to the verifier and proves the inequality 1 ≤ w ≤ k.
The user can prove the inequality more efficiently by committing each bit of w.
This is our first scheme with the public detectability property at the cost of only
O(log k) exponentiation.

In our second scheme, the AP publishes signatures Sig(1), . . ., Sig(k) in ad-
vance. In the authentication, the user computes τ = fx(IDAP||k, w) but proves
the knowledge of a signature Sig(w), instead of proving the inequality regarding w.
Since only k signatures Sig(1), . . ., Sig(k) are published, it indirectly ensures that
1 ≤ w ≤ k. This resulted in the cost of onlyO(1) exponentiation. However, this is
not publicly detectable since a malicious AP may secretly reveal Sig(w) for w > k.

Based on the ideas above, we sought the best choice for the function f . We
observed that a weakened pseudorandom function f is sufficient for our purpose
and were able to choose efficiently computable f .

1.4 Related Works

E-cash schemes are similar to k-TAA schemes in the sense that they issue e-coins,
or identification tokens, that can be used k times. A major difference between e-
cash schemes and k-TAA schemes lies in the meaning of k, and who determines it.

In an e-cash scheme, the number k refers to the upper bound of the number
of times the token issued by the Bank can be used. The Bank specifies k at
the withdrawal phase, and the token can be spent in any shops. In contrast,
in k-TAA schemes, Group Manager issues identification token at joining phase,
but the use of this token is not limited. Instead, in k-TAA schemes, we want to
limit the number of times this token is used in each shop, or in our term, each
Application Provider. So it will be each AP that determines the number k, which
is the upper bound of the number of times a user can use the token to received
services from AP. There can be multiple APs and each of them can determine
the upper bound independently. So a same token can be used at most say 100
times to Provider-1, 20 times to Provider-2 , and maybe once to Provider-3.

Having said the difference in the model, the techniques used in e-cash schemes
and in our schemes is very similar. Independent to our work, Camenisch et. al.
presented an e-cash scheme [CHL05] using similar ideas in our first scheme. The
difference is in techniques in showing the inequality of 1 ≤ w ≤ k. Although the
smart use of Boudot scheme [B00] makes their scheme more efficient than our
first scheme, it still requires number of exponentiations to be dependent of k,
namely O(log k).

2 Definition of k-TAA Scheme

2.1 Modified Points

Our definition is based on that of Teranishi et.al. [TFS04] with generalizations
of allowing an AP to publish its own public information besides its ID and its
allowable number k.

528 I. Teranishi and K. Sako

The generalization requires us to modify the previous definition in two other
points, which are concerned with the “public tracing” algorithm. This is an
algorithm which enables anyone to identify a user authenticated more times
than the allowable number. In the case where the identification of the user fails,
it also enables anyone to know why it does so.

We next describe our modifications. Since we allow an AP to publish its public
information, we add a new type of output “AP”, which means “the identification
fails since the AP publishes a maliciously generated public information items
(or behaves maliciously in an authentication)”, to a public tracing procedure.
We also add new security requirements, called the exculpability for APs. This
requires that the public tracing algorithm outputs AP only if the AP is dishonest.

We note that Nguyen and Naini [NN05] also adopt the definition which allows
an AP to publish its own public information, but they do not adopt the other
two modifications.

2.2 Model

Three types of entities take part in the model, namely, the group manager
(GM), users, and APs. The k-TAA scheme comprises the three algorithms GM
setup (GM-Setup), AP setup (AP-Setup), and public tracing (trace) and two pairs
of interactive protocols joining (Join = (Join-U, Join-GM)), and authentication
(Auth = (Proof, Verify)). In the definitions below, κ is a security parameter.

GM-Setup : The GM executes GM-Setup on inputting 1κ and obtains a GM public
key/GM secret key pair (gpk, gsk). Then it publishes gpk.
AP-Setup : Each AP v determines the allowable number k = kv, which indicates
how many times the AP v allows each user to access. The AP v executes the
AP-Setup on inputting its ID v and k, and obtains an AP public information api.
Join = (Join-U, Join-GM) : A user who wants to be a group member executes a
Join protocol with the GM. The user and the GM execute Join-U and Join-GM
respectively. The user’s ID and gpk are input to both the Join-U and Join-GM,
and gsk is input only to the Join-GM. The aims of the protocol are to add new
members to the group and to generate new member public key/secret key pair
(mpk, msk). If the Join protocol is successful, the user obtains both mpk and msk,
and the GM obtains only mpk.

The member public key mpk comprises two parts. One part mck is called the
member certificate key and the other part mik is called the member identification
key. The key mck is a certificate which proves that the user is a member of the
group. The key mik is added to the public list List along with the user’s ID and
will be used in order to identify the user.
Auth = (Proof, Verify) : An AP executes an Auth protocol with a user who wants
to access the AP. The user and the AP execute Proof and Verify respectively.
The public information (gpk, v, k, api) are input to both Proof and Verify, and
msk is input only to Proof. If the protocol is successful, the AP records the data
sent by the user in its authentication log Log, and outputs accept or reject. Here

k-Times Anonymous Authentication with a Constant Proving Cost 529

accept means that “the user is a group member and has not accessed the AP
more times than the allowable number k”.
trace : Anyone can execute trace algorithm using only public information (gpk,
List, v, k, api) and the authentication log Log of an AP. The output of trace algo-
rithm is either some user’s ID u, “GM”, “AP”, or “NoOne”. These four types of
output respectively mean “the algorithm finds a malicious user u who is authen-
ticated by the AP more times than the allowable number”, “the algorithm finds
that the GM published maliciously generated public information (gpk, List)”,
“the algorithm finds that the AP published maliciously generated (api, k, Log)
or behaves maliciously in an authentication”, and “the algorithm could not find
any malicious entity”.

We note that an AP can always mask a malicious user and generate Log,
such that trace algorithm with input Log outputs “NoOne”. That is, the AP can
delete entries of the over times users.

2.3 Informal Definition of Requirements

A secure k-TAA scheme has to satisfy the following requirements:

Correctness: An honest group member is always accepted in an authentication
by an honest AP.
Total Anonymity: No one is able to identify any authenticated member, or
decide whether two accepted authentication protocols are performed by the same
group member or not, if the authenticated user(s) has followed the authentication
protocol within the allowed number of times per AP. These are satisfied even if
all other users, the GM, and all APs collude with one another.
Exculpability for Users: trace algorithm does not output the ID of an honest
user who is authenticated within the allowed number of times. This is satisfied
even if all other users, the GM, and all APs collude with one another.
Exculpability for the GM: trace algorithm does not output “GM” if the GM
is honest. This is satisfied even if all users and all APs collude with one another.
Exculpability for APs: trace algorithm using an honest AP’s authentication
log does not output “AP”. This is satisfied even if the GM, all users and all other
APs collude with one another.
Detectability: trace algorithm using an honest AP’s authentication log does not
output “NoOne”, if a colluding subset of group members has been authenticated
more than kn times. Here k is the allowable number set by the AP and n is the
number of colluders.

We stress that the detectability property is satisfied only if the AP is honest.
For most applications such as e-coupon schemes and trial browsing, the AP does
not have to be honest, since it is the AP itself who wishes to limit the number
of times to serve a user. However in applications such as e-voting, one wants to
publicly verify that the AP has not accepted votes from the same user for more
than a given number. In order to meet such applications, we newly introduce
the stronger detectability notion, public detectability:

530 I. Teranishi and K. Sako

Public Detectability: trace algorithm using an honest or dishonest AP’s au-
thentication log does not output NoOne, if the log contains more than kn mali-
cious entries. Here k is the allowable number set by the AP and n is the number
of the group members. This is satisfied even if every user and every AP collude
with one another.

2.4 Formal Definition of Requirements

We modify the experiments for defining the requirements of the previous paper
[TFS04] in order to suit the modification described in 2.1, but our experiments
are essentially the same as those of [TFS04]. The major modification is that we
introduce the oracles OAP-Setup and OVList. Here the former is the oracle which
executes AP-Setup honestly, and latter is the oracle which manages the public
list VList of a pair of AP’s IDs v, the allowable number k set by the AP, and its
public information api. We will describe the details of OVList later.

The experiments of our version of the total anonymity and the exculpability
for users and for the GM are the same as those of [TFS04], except that an
adversary is allowed to access the oracle OVList. Moreover, the definition of the
experiment for defining the detectability is also the same as that of [TFS04],
except an adversary is allowed to access oracle OVList and the oracle OAP-Setup.

Before we describe the experiments, we first describe what A can do when it
colludes with GM, users, and AP respectively.

– If A colludes with the GM, it can maliciously execute GM-Setup and Join-GM.
– If A colludes with a user, it can execute Join-U and Proof maliciously on

behalf of the user.
– If A colludes with an AP, it can execute AP-Setup and Verify maliciously on

behalf of the AP.

We next describe the oracles. Let OJoin-GM be the oracle which executes
Join-GM procedures honestly. Let OJoin-U and OProof be oracles which execute
Join-U and Proof procedures on behalf of honest users. Similarly, let OAP-Setup

and OVerify be the oracles which execute AP-Setup and Verify on behalf of honest
verifiers.

We also introduce the list oracle OList(X, ·) [TFS04], which manages the public
list List of a pair of user’s IDs and his member identification key mik, and allows
A to read List. Moreover, the oracle also manages the set X of IDs of entities who
collude with an adversary A, and it allows A to write an (honestly or dishonestly
generated) pair (u, mik) if A colluded with the user u. The list oracle also allows
A to delete entries of List if it colludes with the GM.

We also introduce the new list oracle OList, which manages the public list
VList of pairs of AP’s IDs and their public information. The definition of OVList

is quite similar to that of the original OList. However, OVList does not allow the
GM to delete the data of List. This is because, even in the actual scenario, VList
is managed not by the GM, but by some trusted party (such as a Certified
Authority of a PKI). Therefore the GM cannot delete entries of VList. See the
full paper for the formal definition of OList and OVList.

k-Times Anonymous Authentication with a Constant Proving Cost 531

—Exp
anon-(u1,u2,β)
A (κ)—

(gpk, v, k, api, St) ← A(1κ)

β′←AOanon(·)(St)
If (N1, N2 ≤ k and β = β′) Return Win.
Return Lose.

—Expexcul-u1
A (κ)—

(gpk, St) ← A(1κ).

(v, k, api, Log) ← AOexcul-u1
(·)(St).

Return traceOList(∅,·)(gpk, v, k, api, Log).

—Expdetect
A (κ)—

(gpk, gsk) ← GM-Setup(1κ)

AOdetect(·)(1κ, gpk).
If (∃(v, k) ∈ VList s.t. #Logv,k > k · #List)

Return traceOList(∅,·)(1κ, gpk, v, k, api, Logv,k).
Return ⊥.

—Expexcul-GM
A (κ)—

(gpk, gsk) ← GM-Setup(1κ)

(v, k, api, Log) ← AOexcul-GM(·)(κ).

Return traceOList(∅,·)(gpk, v, k, api, Log).

—Exp
excul-AP-(v, k)
A (κ)—

api ← AP-SetupOVList({v},·)(1κ, v, k).

(gpk, St) ← AOVList({v}c,·)(1κ, v, k).

AOexcul-AP-(v,k)(·)(St).
Return traceOList(∅,·)(gpk, v, k, api, Log).

—Exp
pub-detect
A (κ)—

(gpk, gsk) ← GM-Setup(1κ)

(v, k, api, Log) ← AOpub-detect(·)(1κ, gpk).
If (#Log > k · #List)

Return traceOList(∅,·)(1κ, gpk, v, k, api, Log).
Return ⊥.

Oracles:
Oanon(·) =(OList({u1, u2}

c, ·),OVList(∅
c, ·),OJOIN-U(gpk, ·),OProof(gpk, ·),
OQuery(β, gpk, (u1, u2), (v, k, api), (·, ·)))

Oexcul-u1(·) =(OList({u1}
c, ·),OVList(∅

c, ·)OJOIN-U(gpk, ·),OProof(gpk, ·))
Oexcul-GM(·) =(OList({GM}c, ·),OVList(∅

c, ·),OJOIN-GM(gpk, gsk, ·))
Oexcul-AP-(v,k)(·)=(OList(∅

c, ·),OVList({v}c, ·),OVerify(gpk, (v, k, api), ·))
Odetect(·) =(OList({GM}c, ·),OVList(∅

c, ·),OJoin-GM(gpk, gsk, ·),OAP-Setup(1
κ, ·, ·),OVerify(gpk, ·, ·)

Opub-detect(·) =(OList({GM}c, ·),OVList(∅
c, ·),OJoin-GM(gpk, gsk, ·))

Comments:
1. To simplify, we abbreviate the hash oracle OHash.

2. In the experiment Exp
anon-(u1,u2,β)
A (κ), Ni is the total number of times OJOIN-U and

OQuery executes Proof using using a public key/secret key pair of user uβ⊕d+1 and
an APs public information (v, k, api).

3. In the definition of Expdetect
A (κ), Logv,k is the log of OVerify on the behalf of the AP v

with the allowable number k.

4. In the definition of Expexcul-AP-(v, k), Log is the log of OVerify.

Fig. 1. The experiments

A is allowed to access oracles only sequentially. We describe when A is allowed
to access the oracles.

– A is allowed to access the list oracles OList and OVList.
– If A does not collude with the GM, it is allowed to access OJoin-GM.
– If A does not collude with a user u, it is allowed to access OJoin-U and OProof .

Here these oracles take roles of the user u.
– If A does not collude with an AP v, it is allowed to access OAP-Setup and
OVerify. Here these oracles take roles of the AP v.

We now describe the experiments for defining the requirements. Figure 1
describes the security experiments formally. Here κ is a security parameter,
(gpk, gsk) is a GM public key/secret key pair, mik is a member identification
key, and api is AP public information.

Total Anonymity: In advance, two target users u1 and u2 are determined,
and a secret number β ∈ {0, 1} is selected randomly. An adversary A is allowed

532 I. Teranishi and K. Sako

to collude with the GM, all APs, and all users except target users u1 and u2.
First, A determines and publishes the group public key gpk, an AP’s ID v, the
allowable number k of the AP, and the AP’s public information api. Next, A
maliciously executes the Join and Auth protocols with OJoin-U and OProof . These
oracles execute protocols on the behalf of the target users.

Moreover, A is allowed to access the query oracle OQuery(β, gpk, (u1,u2),
(v, k, api), (·, ·)). We give the definition of the query oracle. The oracle executes
Proof algorithm on the behalf of a target user, but does not disclose which tar-
get user the oracle takes the role of. More precisely, if A sends (d,M) to oracle
OQuery(β, gpk, (u1,u2), (v, k, api), (·, ·)), the oracle regards M as data sent by a
user and executes Proof using a public key/secret key pair of user uβ⊕d+1 and
an APs public information (v, k, api). A is allowed to execute the Auth protocol
with the query oracle once only for each d ∈ {0, 1}. If A requires for the oracle
to execute the Auth protocol for the same d twice, OQuery returns ⊥.

In the experiment, A is not allowed to authenticate the target user ui more
than k times. This is because a k-TAA scheme provides anonymity to users only
if a user has been authenticated less than the allowed number of times. More
precisely, let Ni be the total number of times OJoin-U and OQuery execute Proof
using a public key/secret key pair of user ui. Then A must preserve N1, N2 ≤ k.

The aim of A is to determine whether β = 1 or not. A wins if N1, N2 ≤ k is
satisfied and A succeeds in outputting β.
Exculpability for Users: In the experiment for defining the exculpability for
users, a target user u is fixed in advance. A is allowed to collude with all entities
except the target user u. If A succeeds in computing the log with which the
public tracing procedure outputs the ID u of the target user, it wins.
Exculpability for GM: A is allowed to collude with all entities except the
GM. If A succeeds in computing the log with which the public tracing procedure
outputs “GM”, it wins.
Exculpability for APs: A target AP v is fixed in advance. A is allowed to
collude with all entities except the target AP v. Let Log be the authentication
log of OVerify. If a public tracing procedure using Log outputs “AP”, A win. We
stress that not A but OVerify outputs Log in this experiment, although adversaries
of the other two exculpability properties are allowed to output Log themselves.
Detectability: A is allowed to collude with all users. If A succeeds in being
accepted by some AP in more than kn authentications, A wins. Here, k is the
number of times the AP allows access for each user, and n is the number of users
who collude with A.
Public Detectability: A is allowed to collude with all users and all APs. A wins
if A succeeds in outputting a tuple (v, k, api, Log) satisfying both of the following
conditions: (1) the authentication Log contains more than k ·#List elements and
(2) a public tracing procedure using (v, k, api, Log) outputs NoOne.

Definition 1. We say a k-TAA scheme satisfies the total anonymity, exculpabil-
ity for users, exculpability for GM, exculpability for APs, detectability and public
detectability properties if no adversary can win with a non negligible advantage

k-Times Anonymous Authentication with a Constant Proving Cost 533

in the experiments for defining these requirements. More precisely, we say a
k-TAA scheme satisfies these requirements if |Pr(Expanon-(u1,u2,0)

A (κ) = Win)

−Pr(Expanon-(u1,u2,1)
A (κ)=Win)|, Pr(Expexcul−u1

A (κ)=u1), Pr(Expexcul-GM

A(κ) = GM), Pr(Expexcul-AP-(v, k)
A (κ) = AP), Pr(Expdetect

A (κ) = NoOne)

and Pr(Exppub-detect
A (κ) = NoOne) are negligible for security parameter κ, for

all (A,u1,u2), (A,u1), A, (v, k,A), A and A respectively.
We say a k-TAA scheme is secure if it satisfies the first five requirements.

3 Proposed Schemes

We propose two schemes. Authentications of the first and the second schemes
require computing O(log k) or O(1) exponentiations respectively. Although the
first scheme is less efficient than the second scheme, only the first scheme satisfies
the public detectability property. As in the previous schemes [TFS04, NN05],
our proposed schemes are based on a group signature scheme. We adopt the
Furukawa-Imai scheme [FI05], since it is one of the most efficient group signature
schemes. The GM setup and the joining procedures of our two schemes are similar
to those of [FI05].

3.1 Notations

Let κ be a security parameter. Let (G,H, T , q, 〈·, ·〉, φ) be a bilinear pairing tuple,
that is, a tuple satisfying the following properties: (1) q is a prime number whose
bit length is κ, (2) G,H, and T are cyclic groups of order q, (3) φ is a polynomial
time computable homomorphism from H to G, (φ is called distorsion map), (4)
〈·, ·〉 is a polynomial time computable mapping from G × H to T , (5) for all
(a, b) ∈ G ×H, if 〈a, b〉 = 1 is satisfied, then a = b = 1 is satisfied, and (6) for all
a ∈ G, b ∈ H, and x, y ∈ Zq, 〈ax, by〉 = 〈a, b〉xy is satisfied.

Let U be a group on which the DDH problem is hard and whose order is the
same as that of T . Although we can set U to T itself, the Furukawa-Imai scheme
and our schemes become more efficient if we set U to an elliptic curve on which
a pairing is not defined.

3.2 First Scheme

Let Hash denote a full domain hash function onto set U2. For a bit string X , let
(gX , hX) denote Hash(X). For x ∈ Zq, we set fκ

x : {0, 1}∗ × Zq → U to

fκ
x : (X, w) �→ gX

whX
1/(x+w).

GM-Setup: The GM-Setup generates and outputs a GM public key gpk = (a0, a1,
a2, b, b

′) and a GM secret key gsk = y following [FI05]. That is, the algorithm
selects a0, a1, a2 ∈ G, b ∈ H, and y ∈ Zq randomly, and computes b′ = by.
Join: The Join protocol generates a member certificate key mck = (A, e), a mem-
ber identification key mik = fκ

x (0, 0), and the member secret key msk = (x, r),

534 I. Teranishi and K. Sako

following [FI05]. These keys satisfy the equation 〈a0a1
xa2

r, b〉 = 〈A, beb′〉. The
algorithm outputs (mck, mik, msk) for users and outputs only mck for the GM.

More precisely, the GM and a user perform as described in Figure 2, where u
is the ID of the user, mik is the member identification key of the user, and List is
the list of the user’s ID and his member identification key. Then the user checks
that 〈a0a1

xa2
r, b〉 = 〈A, beb′〉 is satisfied.

User GM

x, r′ ← Zq, A
′ ← a1

xa2
r′

mik ← h ← fκ
x (0, 0)

Add (u, mik) to List.
A′,mik

−−−−−−−−−−−−→ Check that (u, mik) is in List.
Proof the validity of (A′, mik)) ←−−−−−−−−−−→ Verify the proof.

r′′, e ← Zq

r ← r′ + r′′ mod q
((A,e),r′′)

←−−−−−−−−−−−− A ← (a0
1/(y+e)A′ar′′/(y+e)

2)

Fig. 2. Joining of the First Scheme

Auth: In w-th authentication, a user and an AP first perform as in Figure 3.
Here pf is a proof of knowledge of ((A∗, e∗), (x∗, r∗), w∗) satisfying the follow-
ing conditions: (T1): 〈a0a1

x∗
a2

r∗
, b〉 = 〈A, be∗

b′〉, (T2): (τ, τ̂) = (fκ
x∗(v||k, w∗),

fκ
x∗(0, 0)�fκ

x∗(v||k,−w∗)), and (T3): 1 ≤ w∗ ≤ k.

User AP
�

←−−−−−−−−−−−− � ← Zq

(τ, τ̂) ← (fκ
x (v||k, w), mik� · fκ

x (v||k,−w))

pf ← (Validity proof of (τ, τ̂))
((τ,τ̂),pf)

−−−−−−−−−−−−→ Verify pf.

Fig. 3. Authentication

The AP next executes the following procedures. Let Log be the AP’s authen-
tication log. If Ver(pf) = accept and τ /∈ Log are satisfied, add (τ, τ̂ , �, pf) to Log
and output accept. If Ver(pf) = accept but τ ∈ Log are satisfied, add (τ, τ̂ , �, pf)
to Log but output reject. Otherwise, add no data to Log and output reject.

trace: From Log, the trace algorithm searches entries (τ, τ̂ , �, pf) and (τ ′, τ̂ ′, �′, pf′)
satisfying τ = τ ′. We first consider the case where such entries exist. Then the
algorithm verifies pf and pf′. If � = �′ is satisfied, output AP and stop. Otherwise,
the algorithm computes mik = (τ̂ /τ̂ ′)1/(�−�′) and searches the ID corresponding
with mik from List. If there is such an ID, the algorithm outputs the ID and
stop, otherwise outputs GM and stops.

We next consider the case where there exists no pair of entries (τ, τ̂ , �, pf)
and (τ ′, τ̂ ′, �′, pf′) satisfying τ = τ ′ in Log. Then in order to check that the AP
added invalid entries to the Log, the algorithm verifies all proofs in Log. If some

k-Times Anonymous Authentication with a Constant Proving Cost 535

proof is invalid, output AP and stops. If all proofs in Log are valid, the algorithm
outputs NoOne and stops.

We note that one must verify all proofs in trace in order to ensure the public
detectability. One is not required to verify this if only normal detectability is
required.

3.3 Second Scheme

By modifying the first scheme, we construct the second k-TAA scheme such that
the numbers of exponentiations in an authentication is O(1). In order to reduce
the computational cost of an authentication, we use a signature scheme. In our
second scheme, AP publishes signatures Sig(1), . . ., Sig(k) in its setup. In the
authentication, the user computes (τ, τ̂) as in the first scheme, but proves the
knowledge of a signature Sig(w), instead of proving the inequality 1 ≤ w ≤ k.
Since only k signatures Sig(1), . . ., Sig(k) are published, it indirectly ensures
that 1 ≤ w ≤ k. This resulted in the cost of only O(1) exponentiation. However,
this is not publicly detectable since a malicious AP may secretly reveal Sig(w)
for w > k.

We use the following Boneh-Boyen signature scheme (SGen, Sig,SVer) [BB04]
in order to construct our second scheme. Here SGen, Sig, and SVer are respec-
tively the key generation, the signing, and the verification algorithms:

SGen: The algorithm selects s ∈ G, t ∈ H and z ∈ Zq randomly and computes
t′ = tz. Then it outputs the public key (s, t, t′) and the corresponding secret
key z.
Sig: If a message w ∈ Zq is input, the algorithm output a signature S = s1/(z+w)

on w.
SVer: The algorithm accepts (w,S) if and only if 〈S, twt′〉 = 〈s, t〉 is satisfied.

We now describe our second scheme. Let fκ
x be the deterministic function

described in 3.2.

GM-Setup and Join : These are the same as those of the first scheme.
AP-Setup : Let v be an AP’s ID. The AP v determines the allowable number
k. Generate a public key/private key pair (spk, ssk) = SGen(1κ) of the signature
scheme [BB04]. Then compute signatures Sw = Sigspk,ssk(w) on w for all w =
1, . . . , k. The AP public information is api = (spk, {Sw}). Add (v, k, api) to the
AP public information list VList.
Auth: The only difference from the first scheme is what the user proves. In the
second scheme, pf is the proof of knowledge of (mck∗, (x∗, r∗), w∗,S∗) which
satisfies (T1) and (T2) of 3.2 and (T3’): SVerspk(w∗,S∗) = accept.
trace: Search (τ, τ̂ , �, pf) and (τ ′, τ̂ ′, �′, pf′), satisfying τ = τ ′ from Log. If there ex-
ist such entries, subsequent procedures are the same as those of the first scheme.
If there exist no such entries, output NoOne and stop.

We next show that the second scheme does not satisfy the public detectabil-
ity property. Indeed, an AP is able to generate any number of signatures, and

536 I. Teranishi and K. Sako

therefore a colluding subset of the AP and a user is able to generate any number
of entries of the AP’s authentication log.

However, if we allow APs to access the GM (or some third party) in their
setup, we can improve the second scheme so that it satisfies the public de-
tectability property. In an AP’s setup of the improved scheme, not each AP but
the GM (or the third party) generates the signatures {Sw}. Then no colluding
subset of an AP and a user is able to execute the above attack, and therefore
the improved scheme satisfies the public detectability property.

3.4 Selection of fκ
x

The deterministic function fκ
x plays central role in our protocol, and the choice

of this functions influence the efficiency of our protocol. In this subsection, we
discuss why we chose it to be fκ

x (X, w) = gX
whX

1/(x+w), where gX and hX are
deterministically computed from the value Hash(X).

The function takes two inputs, which is the identifier of AP, X , and the value
w specifying that this is w-th authentication for the user. We represent the family
of the set of the two inputs as {Xκ} and {Yκ}.

If we chose fκ
x to be pseudorandom, namely its output is indistinguishable

from random function then it would be sufficient to make our scheme secure.
However, in our protocol we further need to prove knowledge of input to some
output of function fκ

x . We could not build an efficient proof if we choose fκ
x to

be one of the pseudorandom functions that we know of [BCK03, DN02, GGM86,
NR97].

Instead, we introduce a non-pseudorandom function but one which we can
construct an efficient proof, and one which we can prove the scheme to be se-
cure. This property of this function can be generalized as to be called partial
pseudorandom function family. That is, the function may not be pseudorandom,
but if we restrict the domain of one of the input to be polynomial in regard
to security parameter κ, the resulting function is pseudorandom. Since we only
consider polynomial adversary, we can show that considering partial psuedoran-
dom function is sufficient for the security of the schehe. The details of the proof
is provided in the full paper.

Definition 2. Let {Xκ}, {Yκ}, and {Zκ} be families of sets, and {fκ
x }κ be a

function family of fκ
x : Xκ × Yκ → Zκ. We call the function family {fκ

x }κ a
(secure) partial pseudorandom function family if the following property is satis-
fied: for any polynomial p(κ), and for any family {Cκ} of sets satisfying Cκ ⊂ Yκ

and #Cκ ≤ p(κ), the family of restricted mappings {fκ
x |Xκ×Cκ}κ is a secure

pseudorandom function family.

The property of partial pseudorandomness is helpful in proving the property of
the total anonymity. That is, if fκ

x satisfies the partial pseudorandomness, the
tag (τ, τ̂) = (fκ

x (X, w), mik�fκ
x (X,−w)) is equivalent to some random pair. This

means that (τ, τ̂) do not reveal who is authenticated.

k-Times Anonymous Authentication with a Constant Proving Cost 537

We next discuss why we set (gX , hX) to a hash value of some data in our
construction. If we arbitrary chose gX and hX , an adversary A can choose
((gX , hX), (gX′ , hX′)) satisfying some polynomial time checkable relation, such
as (gX , hX) = (gX′2, hX′2). Then the polynomial time checkable relation, such
as fκ

x (X, w) = fκ
x (X ′, w′)2, is maintained. This means that fκ

x does not sat-
isfy the partial pseudorandomness. Restricting (gX , hX) to be generated from
hash function prevents this kind of attack. Proofs regarding that the proposed
function satisfies partial pseudorandomness is provided in the full paper.

We note another important property of the function is collision resistance,
which is defined below.

Definition 3. We say that {fκ
x (X, w)}κ satisfies collision resistance, if it satis-

fies the following: for all X , a mapping (x, w) �→ fκ
x (X, w) is collision resistant.

The collision resistant property is helpful to prove the exculpability for users or
the GM. If we use not fκ

x but another function Fκ
x which does not satisfy the

collision resistant property, then an adversary A can find two pairs (x1, w1) and
(x2, w2) satisfying Fx1(X, w1) = Fx2(X, w2). Let miki be the member identifica-
tion key corresponding to xi, and (τi, τ̂i) be a tag (fκ

xi
(X, wi), miki

�ifκ
xi

(X,−wi)).
Then two tags (τ1, τ̂1) and (τ2, τ̂2) satisfy τ1 = Fx1(X, w1) = Fx2(X, w2) = τ2.
However, (τ1/τ2)1/(�1−�2) corresponds to neither mik1 nor mik2. Therefore, the
tracing algorithm using (τ1, τ

′
1) and (τ2, τ

′
2) outputs some other user’s ID or GM.

This means that the k-TAA scheme does not satisfy exculpability for users or
the GM.

We provide in the full paper that with this choice of the function the proposed
scheme is secure.

3.5 Computational Costs of an Authentication

We show that the computational cost of an authentication of the first and the
second schemes are O(log k) and O(1) respectively. All we must show are that the
condition (T1), (T2), and (T3’) can be proved only with O(1) exponentiations
and that (T3) can be proved only with O(log k) exponentiations. See the full
paper for the details of the validity proof.

The condition (T1) and (T3’) can be proved only with O(1) exponentiations,
since this condition does not contain k. The condition (T2) is equal to the
condition (τ, τ̂) = (gv||k

whv||k
1/(x+w), gv||k

whv||k
1/(x−w)). Since (gv||k, hv||k) =

Hash(v||k) is public information, one can prove the condition (T2) with O(1)
exponentiations too.

The condition (T3) is able to be proved using commitments K(w), {K(wi)},
and K(ui). Here K(w), K(wi), and K(ui) are Pedersen commitments [P91] of
w, i-th bit wi of w, and i-th bit ui of k − w. More precisely, one can prove the
condition (T3) by proving the knowledge of ({wi}, {ui}) satisfying the following
conditions: K(w) = ΠjK(wj)2

j

, K(w)ΠjK(ui)2
j

= K(k), wi,ui ∈ {0, 1} for
i = 0, . . . , log2 k. Here K(k) is a commitment of k. From the above discussion,
(T3) can be proved only with O(log k) exponentiations.

538 I. Teranishi and K. Sako

4 Security

We can show that our schemes are secure based on the following assumptions:

Definition 4. (Strong Diffie-Hellman (SDH) assumption [BB04] on (G,H, T))
Let φ be the distorsion map from H to G. Let n = n(κ) be a polynomial and
A be an adversary. Then ProbA(κ, n(κ)) = Pr(v ←R H,u ← φ(v), x ←R

Zq,A(u, v, vx . . . , vxn

) = (u1/(x+β), β)) is negligible for all n(κ) and A.

Definition 5. (Decision Diffie-Hellman Inversion (DDHI) assumption [BB04]
on U) Let n = n(κ) be a polynomial and A be an adversary. For b = 0, 1, we set
Probb

A(κ, n(κ)) = Pr(g ←R U , x ←R Zq,A(hb, g, gx1
, . . . , gxn

) = 1). Here h0 is
a randomly selected element of U and h1 is the element g1/x. Then for all n(κ)
and A, AdvA(κ, n(κ)) = |Prob1

A(κ, n(κ)) − Prob0
A(κ, n(κ))| is negligible for κ.

Our scheme satisfies the following:

Theorem 6. Suppose that {fκ
x (X, w)}κ is a secure collision resistant partial

pseudorandom function family. Suppose also the SDH assumption [BB04] on
(G,H, T) and the random oracle assumption. Then the first scheme is secure and
satisfies the public detectability. Suppose also that a signature scheme (SGen, Sig,
SVer) is existentially unforgeable even if an adversary knows signatures S1, . . . ,
Sk(κ) on known messages 1, . . . , k(κ) for all polynomial k(κ). Then the second
scheme is secure.

From [BB04], the signature scheme (SGen, Sig, SVer) satisfies the above condition
under the SDH assumption. We next consider the security of {fκ

x (X, w)}κ.

Proposition 7. Under the random oracle assumption and the DDHI assump-
tion [BB04] on U , the function family {fκ

x (X, w)}κ is a secure collision resistant
partial pseudorandom function family.

From the above discussion, we can conclude the following theorem:

Theorem 8. Under the SDH assumption on (G,H, T) and the DDHI assump-
tions on U , our two proposed schemes are secure in the random oracle. Moreover,
under the same assumptions and in the same model, the first scheme satisfies
the public detectability property.

4.1 Sketch of the Security Proof

We sketch the proof of Theorem 6. See the full paper for the detailed proof. We
first examine the security of the first scheme.

Total Anonymity: Let (xu, ru) be the member secret key of the target user
u. Subinformation about xu which an adversary can obtain are the following:
(1) A′

u = a1
xua2

r′
u and miku = fκ

xu
(0, 0), generated in the user u’s joining

protocol, and (2) (τ, τ̂) = (fκ
xu

(v||k, w), miku
� · fκ

xu
(v||k,−w)) generated in each

authentication. Since r′u is randomly selected, A′
u gives no information about xu.

k-Times Anonymous Authentication with a Constant Proving Cost 539

From Proposition 7, fκ
xu

satisfies the partial pseudorandomness. Since the
adversary is polynomial time algorithm, the oracles computes fκ

xu
only a poly-

nomial number of times. Therefore, A cannot distinguish miku and (τ, τ̂) from
random elements. Hence A cannot distinguish which user is authenticated.
Exculpability for Users: In order to be authenticated on the behalf of the
target user, A has to obtain the target user’s secret key xu. Subinformation
about xu which an adversary can obtain is the (1) and (2) described in the
security discussion of the total anonymity. As in the case of the total anonymity,
no adversary is able to obtain the target user’s secret key xu. Therefore, no
adversary is able to be authenticated on the behalf of the target user.
Exculpability for the GM: This followed from the coalition resistance prop-
erty [ACJT00, NN04] of the Furukawa-Imai scheme. Here the coalition resistance
is the following property: an adversary, not colluding with the GM, cannot ob-
tain a member public key/private key pair not generated in the joining protocols
with the GM. It is well known that a secure group signature scheme satisfies
the coalition resistance property [BMW03, BSZ05]. Hence, the Furukawa-Imai
scheme (and therefore our first scheme) satisfies this property.

Suppose that an adversary of the exculpability property for the GM wins.
In other words, suppose that there exist (τ, τ̂ , �, pf) and (τ ′, τ̂ ′, �′, pf′) in the
authentication log of an AP such that τ = τ ′ is satisfied and (τ̂ /τ̂ ′)1/(�−�′)

is not in the List. Since τ = τ ′ is satisfied, and since fκ is collision resis-
tance, member public key/private key pairs used to compute τ and τ ′ are the
same. Let ((mck, mik), msk) be this key pair. From the definition of τ̂ and τ̂ ′,
mik = (τ̂ /τ̂ ′)1/(�−�′) is satisfied. From the coalition resistance property, this key
was generated in a joining protocol with the GM. Therefore, mik is in List. It
contradicts to the fact that mik = (τ̂ /τ̂ ′)1/(�−�′) is not in the List.
Exculpability for APs: This is clearly satisfied.
Public Detectability: Let N be the number of times an adversary A executes
the joining with the GM. From the definition of the joining protocol of our
first scheme, N is not more than the number of elements of List. Let k be the
allowable number of an AP v colluding with A. Suppose that A succeeds to
output Log which contains more than kN elements. In each entry (τ, τ̂ , �, pf) of
Log, (τ, τ̂) = (fκ

x (v||k, w), mik� · fκ
x (v||k,−w)) has to be satisfied for some x and

w, since A has generated the validity proof pf of (τ, τ̂).
Since the coalition resistance property is satisfied, x is a part of a secret key

generated in a joining with the GM. Hence, there are only N choices of x. Since
A has proved the condition (T3) of 3.2, 1 ≤ w ≤ k is satisfied. Hence, there are
only k choices of w. (We note that 1 ≤ w ≤ k has to be clearly satisfied even
if A colludes with the AP). Therefore, the number of choices of x and w are
respectively less than N and k. Therefore, an adversary generates at most kN
elements (τ, τ̂). This means that Log cannot have more than kN elements.

We now intuitively show the security of the second scheme. We only show
that our second scheme satisfies the detectability property, since the proofs of
the other requirements are similar to those of the first scheme.

540 I. Teranishi and K. Sako

Detectability: Let N be the number of times an adversary A executes the join-
ing with the GM. In each authentication, A computes (τ, τ̂) = (fκ

x (v||k, w), mik� ·
fκ

x (v||k,−w)). Since A proves the condition (T3’) of 3.3, A knows a signature
S on w by the AP. Since the AP has published the signatures only on 1, . . . , k,
and since A is not allowed to collude with the AP, 1 ≤ w ≤ k has to be satisfied.
Hence, there are only k choices of w. Moreover, as in the case of the security
discussion of the public detectability property of the first scheme, there are only
N choices of x. Therefore, an adversary generates at most kN elements (τ, τ̂).
It means that Log cannot have more than kN elements.

5 Conclusion

We proposed two k-TAA schemes, one where the numbers of exponentiations in
an authentication are O(log k) and the other O(1). The proposed schemes are
secure under the SDH assumption [BB04], the DDHI assumption [BB04], and
the random oracle assumption.

We also proposed and formalized the public detectability requirement, and
showed that the first scheme satisfies this requirement. The public detectability
requires that anyone can verify that the AP indeed provided a fair limit to all
users regarding the number of accesses to their service.

Acknowledgement

The authors would like to thank anonymous referees for their valuable comments
and their help in improving the presentation of our paper.

References

[ACJT00] Ateniese, Camenisch, Joye, Tsudik. A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. CRYPTO 2000, pp. 255-
270.

[AF96] Abe, Fujisaki, How to Date Blind Signatures, In ASIACRYPT’96, pp.
244-251.

[AM03] Ateniese Medeiros. Efficient Group Signatures without Trapdoors. ASI-
ACRYPT’03, pp. 246-268.

[BCK03] Bellare, Canetti, Krawczyk. Pseudorandom functions revisited: The cas-
cade construction and its concrete security. FOCS’96, 514-523.

[BMW03] Bellare, Micciancio, Warinschi. Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on
General Assumptions In EUROCRYPT’03, pp. 614-629.

[BSZ05] Bellare, Shi Zhang. Foundations of Group Signatures: The Case of Dy-
namic Groups. CT-RSA’05, pp. 136-153.

[BB04] Boneh, Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT’04, pp. 56-73.

[BBS04] Boneh, Boyen, Shacham. Short Group Signatures. CRYPTO’04, pp.
41-55.

k-Times Anonymous Authentication with a Constant Proving Cost 541

[B00] Boudot. Efficient Proofs that a Committed Number Lies in an Interval.
EUROCRYPT’00, pp 431-444.

[B93] Brands. An Efficient Off-line Electronic Cash System Based On The
Representation Problem. TR. CS-R9323, Centrum voor Wiskunde en
Informatica.

[BCC04] Brickell, Camenisch, Chen. Direct Anonymous Attestation. ACM-
CCS’04, pp. 132-145.

[CDS94] Cramer, Damg̊ard, Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. CRYPTO’94, pp. 174-187.

[CFT98] Chan, Frankel, Tsiounis. Easy Come - Easy Go Divisible Cash. EURO-
CRYPT ’98, pp. 614-629.

[CG04] Camenisch, Groth. Group Signatures: Better Efficiency and New Theo-
retical Aspects. SCN’04, pp. 120-133.

[CHL05] J. Camenisch, S. Hohenberger and A. Lysyanskaya. Compact E-Cash.
EUROCRYPT’05, pp. 302-321.

[CL02] Camenisch, Lysyanskaya. A Signature Scheme with Efficient Protocols.
SCN’02, pp. 268-289.

[CL04] Camenisch, Lysyanskaya. Signature Schemes and Anonymous Creden-
tials from Bilinear Maps. CRYPTO’04, pp. 56-72.

[CH91] D. Chaum, E. van Heijst. Group signatures. EUROCRYPT’91, pp.
257-265.

[CP92] Chaum,Pedersen.Transferred Cash Grows in Size, EUROCRYPT’92,
pp.390-407

[CT03] Canard, Traoré. List Signature Schemes and Application to Electronic
Voting. International Workshop on Coding and Cryptography 2003,
pp.24-28.

[CT04] Canard, Schoenmakers, Stam, Traoré. List Signature Schemes. Special
Issue of the Journal Discrete Applied mathematics, 2005.

[DJ01] Damg̊ard Jurik. A Generalization, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-key system. PKC’01. pp. 119-136.

[DN02] Damg̊ard, Nielsen. Expanding Pseudorandom Functions; or: From
Known-Plaintext Security to Chosen-Plaintext Security. CRYPTO’02,
pp.449-464.

[DY05] Dodis, Yampolskiy. A Verifiable Random Function with Short Proofs
and Keys. PKC’05, pp.416-431

[FI05] Furukawa, Imai. An Efficient Group Signature Scheme from Bilinear
Maps. ACISP’05, pp.455-467.

[FS01] Furukawa, Sako. An Efficient Scheme for Proving a Shuffle.
CRYPTO’01,pp. 368-387.

[GGM86] Goldreich, Goldwasser, Micali. How to construct random function.
J.ACM. 33(4): pp.797-807, 1986.

[KY04] Kiayias, Yung. Group Signatures: Provable Secure, Efficient Construc-
tions and Anonymity from Trapdoor Holders. http://eprint.iacr.org/
2004/076.ps

[KY05] A. Kiayias, M. Yung. Group Signatures with Efficient Concurrent
Join. EUROCRYPT’05 pp. 198-214. Full version: http://eprint.iacr.org/
2005/345.

[MSK02] Mitsunari, Sakai, Kasahara. A new traitor tracing. IEICE Trans. Vol.
E85-A, No.2, pp.481-484, 2002.

[NHS99] Nakanishi, Haruna, Sugiyama. Unlinkable Electronic Coupon Protocol
with Anonymity Control, ISW’99, pp. 37-46.

542 I. Teranishi and K. Sako

[NR97] Naor Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. FOCS’97. pp.458-467.

[NN04] Nguyen, Safavi-Naini. Efficient and Provably Secure Trapdoor-free
Group Signature Schemes from Bilinear Pairings. ASIACRYPT’04, pp.
316-337.

[NN05] Nguyen, Safavi-Naini. Dynamic k-Times Anonymous Authentication.
ACNS’05, pp. 318-333.

[Neff01] Neff. A Verifiable Secret Shuffle and its Application to E-Voting, ACM-
CCS’01 pp. 116-125.

[OO98] Okamoto, Ohta. One-Time Zero-Knowledge Authentications and Their
Applications to Untraceable Electronic Cash. IEICE Trans. on Funda-
mentals of Electronics, Communications and Computer Sciences, vol
E81-A, No. 1, pp. 2-10, 1998.

[OMAFO99] Ookubo, Miura, Abe, Fujioka, Okamoto. An improvement of a practical
secret voting scheme. ISW’99, pp. 37-46.

[PBF99] Pavlovski, Boyd, Foo. Detachable Electronic Coins. ICICS’99, pp. 54-70.
[P91] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted

Party. EUROCRYPT’91, pp.522-526.
[S00] Sako. Restricted Anonymous Participation. SCIS’00, B12. (Japanese).
[SK94] Sako, Kilian. Secure Voting using Partially Compatible Homomor-

phisms. CRYPTO ’94, pp. 411–424.
[TF03] Teranishi, Furukawa. Tag Signature. SCIS’03, 6C-2. (Japanese. Prelim-

inary version of [TFS04]).
[TFS04] Teranishi, Furukawa, Sako. k-Times Anonymous Authentication. ASI-

ACRYPT’04, pp. 308-322.

Author Index

Abdalla, Michel 427

Bernstein, Daniel J. 207
Bjørstad, Tor E. 491
Bleichenbacher, Daniel 1
Boneh, Dan 229
Boyd, Colin 508
Bresson, Emmanuel 427

Chatterjee, Sanjit 241
Chevallier-Mames, Benôıt 91
Chevassut, Olivier 410, 427
Chow, Sherman S.M. 508
Chu, Cheng-Kang 443
Commeine, An 174
Crutchfield, Chris 58

Damg̊ard, Ivan 75
Deng, Xiaotie 347
Dent, Alexander W. 491
Ding, Jintai 290
Doche, Christophe 191

Fouque, Pierre-Alain 410
Franklin, Matthew 44, 458

Gaudry, Pierrick 410
Gentry, Craig 257
González Nieto, Juan Manuel 508
Gower, Jason E. 290

Hanaoka, Goichiro 105
Hanaoka, Yumiko 105
Heng, Swee-Huay 364

Icart, Thomas 191
Imai, Hideki 105

Kiltz, Eike 274
Kohel, David R. 191
Kunz-Jacques, Sébastien 27
Kurosawa, Kaoru 330, 364

Lauter, Kristin 378
Libert, Benôıt 474
Lysyanskaya, Anna 123

Martinet, Gwenaëlle 27
May, Alexander 1
Meyerovich, Mira 123
Mironov, Ilya 140
Mityagin, Anton 378
Mohassel, Payman 44, 458
Molnar, David 58
Muller, Frédéric 315
Myasnikov, Alexei 302

Paillier, Pascal 91
Pasini, Sylvain 395
Pieprzyk, Josef 157
Pointcheval, David 91, 410, 427
Poupard, Guillaume 27

Quisquater, Jean-Jacques 474

Ramzan, Zulfikar 257

Sako, Kazue 525
Sarkar, Palash 241
Schmidt-Samoa, Katja 330
Semaev, Igor 174
Shen, Emily 229
Shpilrain, Vladimir 302
Steinfeld, Ron 157
Stern, Jacques 27

Teranishi, Isamu 525
Thorbek, Rune 75
Turner, David 58
Tzeng, Wen-Guey 443

Ushakov, Alexander 302

Valette, Frédéric 315
Vaudenay, Serge 395

Wagner, David 58
Wang, Huaxiong 157, 347
Waters, Brent 229
Wieschebrink, Christian 14
Wong, Duncan S. 347

Yang, Guomin 347

	Frontmatter
	Cryptanalysis and Protocol Weaknesses
	New Attacks on RSA with Small Secret CRT-Exponents
	An Attack on a Modified Niederreiter Encryption Scheme
	Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm

	Distributed Crypto-computing
	Efficient Polynomial Operations in the Shared-Coefficients Setting
	Generic On-Line/Off-Line Threshold Signatures
	Linear Integer Secret Sharing and Distributed Exponentiation

	Encryption Methods
	Encoding-Free ElGamal Encryption Without Random Oracles
	Parallel Key-Insulated Public Key Encryption
	Provably Secure Steganography with Imperfect Sampling

	Cryptographic Hash and Applications
	Collision-Resistant No More: Hash-and-Sign Paradigm Revisited
	Higher Order Universal One-Way Hash Functions from the Subset Sum Assumption

	Number Theory Algorithms
	An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve
	Efficient Scalar Multiplication by Isogeny Decompositions
	Curve25519: New Diffie-Hellman Speed Records

	Pairing-Based Cryptography
	Strongly Unforgeable Signatures Based on Computational Diffie-Hellman
	Generalization of the Selective-ID Security Model for HIBE Protocols
	Identity-Based Aggregate Signatures
	On the Limitations of the Spread of an IBE-to-PKE Transformation

	Cryptosystems Design and Analysis
	Inoculating Multivariate Schemes Against Differential Attacks
	Random Subgroups of Braid Groups: An Approach to Cryptanalysis of a Braid Group Based Cryptographic Protocol
	High-Order Attacks Against the Exponent Splitting Protection

	Signature and Identification
	New Online/Offline Signature Schemes Without Random Oracles
	Anonymous Signature Schemes
	The Power of Identification Schemes

	Authentication and Key Establishment
	Security Analysis of KEA Authenticated Key Exchange Protocol
	SAS-Based Authenticated Key Agreement
	The Twist-AUgmented Technique for Key Exchange
	Password-Based Group Key Exchange in a Constant Number of Rounds

	Multi-party Computation
	Conditional Oblivious Cast
	Efficiency Tradeoffs for Malicious Two-Party Computation

	PKI Techniques
	On Constructing Certificateless Cryptosystems from Identity Based Encryption
	Building Better Signcryption Schemes with Tag-KEMs
	Security-Mediated Certificateless Cryptography
	{\itshape k}-Times Anonymous Authentication with a Constant Proving Cost

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

