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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs responsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlaváč, Jiŕı Matas and Tomáš
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Aleš Leonardis,
Horst Bischof,

Axel Pinz
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Charles Kervrann, Jérôme Boulanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

A Fast Approximation of the Bilateral Filter Using a Signal Processing
Approach

Sylvain Paris, Frédo Durand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568



Table of Contents – Part IV XVII

Learning to Combine Bottom-Up and Top-Down Segmentation
Anat Levin, Yair Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Multi-way Clustering Using Super-Symmetric Non-negative Tensor
Factorization

Amnon Shashua, Ron Zass, Tamir Hazan . . . . . . . . . . . . . . . . . . . . . . . . . 595

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609



 

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 1 – 12, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Robust Multi-view Face Detection Using Error 
Correcting Output Codes 

Hongming Zhang1, Wen Gao P

1,2
P, Xilin Chen2, Shiguang Shan2, and Debin Zhao1 

1 Department of Computer Science and Engineering, Harbin Institute of Technology,  
Harbin, 150001, China 

2 Institute of Computing Technology, Chinese Academy of Sciences,  
Beijing, 100080, China 

{hmzhang, wgao, xlchen, sgshan, dbzhao}@jdl.ac.cn 

Abstract. This paper presents a novel method to solve multi-view face detec-
tion problem by Error Correcting Output Codes (ECOC). The motivation is that 
face patterns can be divided into separated classes across views, and ECOC 
multi-class method can improve the robustness of multi-view face detection 
compared with the view-based methods because of its inherent error-tolerant 
ability. One key issue with ECOC-based multi-class classifier is how to con-
struct effective binary classifiers. Besides applying ECOC to multi-view face 
detection, this paper emphasizes on designing efficient binary classifiers by 
learning informative features through minimizing the error rate of the ensemble 
ECOC multi-class classifier. Aiming at designing efficient binary classifiers, we 
employ spatial histograms as the representation, which provide an over-
complete set of optional features that can be efficiently computed from the 
original images. In addition, the binary classifier is constructed as a coarse to 
fine procedure using fast histogram matching followed by accurate Support 
Vector Machine (SVM). The experimental results show that the proposed 
method is robust to multi-view faces, and achieves performance comparable to 
that of state-of-the-art approaches to multi-view face detection. 

1   Introduction 

Automatic detection of human faces is significant in applications, such as human-
computer interaction, face recognition, expression recognition and content-based 
image retrieval. Face detection is a challenge due to variability in orientations, partial 
occlusions, and lighting conditions. A comprehensive survey on face detection can be 
found in [1].  

Many approaches have been proposed for face detection, these approaches can be 
classified as two categories: global appearance-based technique and component-based 
technique. The first one assumes that a face can be represented as a whole unit. Sev-
eral statistical learning mechanisms are explored to characterize face patterns, such as 
neural network [2,3], probabilistic distribution [4], support vector machines [5,6], 
naive Bayes classifier [7], and boosting algorithms [8,9]. The second method treats a 
face as a collection of components. Important facial features (eyes, nose and mouth) 
are first extracted, and by using their locations and relationships, the faces are  
detected [10].  
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So far there are three ways for multi-view face detection. The first scheme is a 
view-based approach. In the training stage, separate face detectors are built for differ-
ent views. In the testing stage, all these detectors are applied to the image and their 
results are merged into final detection results [4,7,9]. [11] uses a pose estimator to 
select a detector to find faces of the chosen view. The second scheme is described in 
[12] for rotated-face detection, which calculates the in-plane rotation angle of input 
image, and rotates the input image for a frontal face detector. The third way is to 
approximate smooth functions of face patterns across various views [13] or face 
manifold parameterized by facial pose [14]. 

Motivated by the idea that face patterns can be naturally divided into distinct 
classes according to separated facial poses, this paper proposes a novel method that 
detects multi-view faces using a multiclass classifier based on error correcting output 
codes (ECOC). With its inherent error-tolerant property, ECOC can improve the ro-
bustness to pose variation for face detection.  

Dietterich and Bakiri [15,16] presented the idea of reducing multiclass problems to 
multiple binary problems based on ECOC. ECOC classifier design concept has been 
used in many applications, such as text classification [17] and face verification [18]. 
In ECOC related applications, one key issue is the problem how to construct optimal 
binary classifiers for an effective ECOC multi-class classifier. In [19], an approach is 
presented to learn good discriminator in linear feature space for object recognition. 

In the proposed method, we emphasize on designing efficient binary classifiers by 
learning informative features through minimizing the error rate of the ensemble 
ECOC multi-class classifier. Aiming at designing efficient binary classifiers, we  
propose to use spatial histogram features as representation and use hierarchical classi-
fiers that combine histogram matching and support vector machine (SVM) as binary 
classifiers.  

Section 2 briefly describes the background of ECOC-based multi-class classifica-
tion method. The overview of the proposed ECOC-based multi-view face detection 
approach is given in Section 3. Face representation used in the proposed method is 
described in Section 4. In Section 5, the method of learning an ECOC-based multi-
view face detector through minimizing error rate is presented. Experimental results 
are provided in Section 6. Conclusions are given in Section 7. 

2   Background of ECOC-Based Multi-class Classification 

Let )},(),...,,{( 11 mm yxyxS =  be a set of m  training samples where each instance ix  

belongs to a domain X , and each label iy  takes values from a discrete set of classes 

},...,1{ kY = . The task of learning a multiclass classifier is to find a function 

YXH →:  that maps an instance x  into a class label y , Yy ∈ . 

To understand the method for solving multiclass learning problems via ECOC, 
consider a {0,1}-valued matrix Z  of size nk ×  where k  is the number of classes and 
n  is the length of the unique binary string assigned to each class as its code word. 
The k  rows are well separated with large Hamming distance between any pair. For 
each column, the instances are relabeled as two super classes according to the binary 
vales (1s and 0s).  
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The multiclass learning method consists of two stages. (1) In the training stage, a 
set of n  binary classifiers is constructed, where each classifier is to distinguish be-
tween the two super classes for each column. These binary classifiers are called base 
classifiers. (2) In the testing stage, each instance is tested by the base classifiers, and 
is represented by an output vector of length n . The distance between the output vec-
tor and the code word of each class is used to determine the class label of the instance. 

3   Overview of the Proposed ECOC-Based Face Detection Method 

We divide face patterns into three categories: frontal faces, left profile faces, right 
profile faces, according to facial pose variation out of plane. Adding non-face patterns 
together, we have four classes to be recognized in total. Therefore, we format multi-
view face detection as a multi-class problem with four classes, and explore the prob-
lem of learning ECOC-based classifier for multi-view face detection.  

Since 4=k , we construct a complete code of length 7=n , as shown in Table 1. 
No columns or no rows are identical or complementary in the code. For each column, 
one base classifier is needed to identify the super classes (refer to Section 2). In total, 
seven base classifiers },...,,{ 610 bbb are to be constructed to form an ensemble classi-

fier. According to information theory, this code has error correcting ability for any 
base classifier. 

Table 1. ECOC codes for face detection 

 0b  1b  2b  3b  4b  5b  6b  

Non face pattern (CB0B) 0 0 0 0 0 0 0 
Front face pattern (CB1B) 1 1 1 1 0 0 0 
Left profile face pattern (CB2B) 1 1 0 0 1 1 0 
Right profile face pattern (CB3B) 1 0 1 0 1 0 1 

 
We utilize an exhaustive search strategy to detect multiple faces of different sizes at 

different locations in an input image. The process of object detection in images is 
summarized in Fig. 1. It contains three steps: image sub sampling, object classification 
and detection results fusion.  

In the Step 1, the original image is repeatedly reduced in size by a factor 1.2, re-
sulting in a pyramid of images. A small window (image window) with a certain size 
32x32 is used to scan the pyramid of images. After a sub image window is extracted 
from a particular location and scale of the input image pyramid, it is fed to the follow-
ing procedures in the Step 2. Firstly, spatial histogram features are generated from this 
image window. Secondly, an ECOC-based multi-view face pattern classifier is used to 
identify whether the sub window contains a multi-view face. The Step 3 is a stage for 
detection results fusion. Overlapped face instances of different scales are merged into 
final detection results. 

In the step 2, the input to the multi-view face detector is a vector x , which is con-
stituted by spatial histogram features (refer to Section 4 for details) obtained on the 
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Fig. 1. The process of multi-view face detection in images 

image window. For each base classifier, specific spatial histogram features are used as 
input. Histogram matching and SVM classification are performed hierarchically to 
identify which super class the vector belongs to (refer to Section 5 for details). The 
binary outputs by the base classifiers is transformed into an {0,1}-output vector of 
length 7=n , given as  

],...,,[ 610 vvvV = , (1) 

where jv  is the output of j th classifier, 6,...,1,0=j . The distance between the out-

put vector and the code word of each class is determined by Hamming distance: 

)3,...,0(,||
6

0

=−=
=

ivZL
j

jijci
. (2) 

The test instance is assigned to the class label whose code word has minimum dis-
tance, by the ECOC decode rule given by 

}3,...,1,0|{minarg)( == iLxH
i

i
c

c
. (3) 

4   Spatial Histogram Features for Face Representation 

For each column, we refer the super class labeled by 1s as object, and labeled by 0s as 
non-object. Similar to our previous work [21], spatial histogram features in are used 
for object representation, as illustrated in Fig. 2. Spatial templates are used to encode 
spatial distribution of patterns. Each template is a binary rectangle mask and is  
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denoted as ),,,( hwyxrt , where ),( yx  is the location and ),( hw is the size of the mask 

respectively. We model the sub image within the masked window by histogram. This 
kind of histograms is called as spatial histograms. For a sample P , its spatial histo-

gram associated with template ),,,( hwyxrt  is denoted as )(),,,( PSH hwyxrt . 

 

Fig. 2. Object spatial distribution is encoded by spatial histograms 

Suppose a database with n  object samples and a spatial template, we represent ob-
ject histogram model over the spatial template by the average spatial histogram of the 
object training samples, defined as: 

=

=
n

j
j

hwyxrthwyxrt PSH
n

SH
1

),,,(),,,( )(
1

, (4) 

where jP  is an object training sample, and ),,,( hwyxrt  is the spatial template. For 

any sample P , we define its spatial histogram feature as its distance to the average 
object histogram, given by 

)),(()( ),,,(),,,(),,,( hwyxrthwyxrthwyxrt SHPSHDPf = , (5) 

where ),( 21 HHD  is the similarity of two histograms measured by intersection [20]. 

An object pattern is encoded by m spatial templates. Therefore, an object sample is 
represented by a spatial histogram feature vector in the feature space: 

],...,[ )()1( mrtrt ffF = . (6) 

Feature discriminating ability: For any spatial histogram feature jf ( mj ≤≤1 ), its 

discriminative ability is measured by Fisher criterion 

w

b
j S

S
fJ =)( , (7) 

where bS  is the between-class scatter, and wS  is the total within-class scatter. 

Features correlation measurement: Given two spatial histogram features 1f  and 

2f , we calculate the correlation between two features 1f  and 2f  as 
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)(

)|(
),(

1

21
21 fH

ffI
ffCorr = , (8) 

where )( 1fH  is entropy of 1f , )|( 21 ffI  is the mutual information of 1f  and  

2f . Let sF be a feature set, the correlation between sF  and a feature st Ff ∉  is given 

by 

}|),(max{),( skktst FfffCorrFfCorr ∈∀= . (9) 

5   Learning ECOC-Based Classifier for Multi-view Face Detection 

We apply a hierarchical classification using cascade histogram matching and SVM as 
base classifier to object detection. In this section, we present the method of designing 
efficient binary classifiers by learning informative features through minimizing the 
error rate of the ensemble ECOC multi-class classifier. 

5.1   Cascade Histogram Matching 

Histogram matching is a direct method for object recognition. Suppose P  is a sample 

and its spatial histogram feature with one template ),,,( hwyxrt is )(),,,( Pf hwyxrt , P  

is classified as object pattern if θ≥)(),,,( Pf hwyxrt , otherwise P  is classified as non-

object pattern.θ  is the threshold for classification. We select most informative spatial 
histogram features and combine them in a cascade form to perform histogram match-
ing. We call this classification method as cascade histogram matching. If n spatial 
histogram features nff ,...,1  with associated classification thresholds nθθ ,...,1  are 

selected, the decision rule of cascade histogram matching is as follows: 

≥∧∧≥
=

 otherwise object    -non   0

)(... )(   if         object        1
)( 11 nn PfPf

PCH
θθ

 (10) 

For each column, suppose that we have (1) spatial histogram features 
space },...,{ 1 mffF = , (2) positive and negative training sets: SP and SN , (3) a posi-

tive validation set )},(),...,,{( 11 nn yxyxVP = , and a negative validation set 

)},(),...,,{( '''
1

'
1 kk yxyxVN = , where ix  and '

ix  are samples with m  dimensional spatial 

histogram feature vectors, 1=iy  and 0' =iy , (4) acceptable detection rate: D . The 

method for training cascade histogram matching is given in the following procedure: 

1. Initialization: ∅=selectF , ∅=ThreSet , 0=t , 0)( =preAcc , 0)( =curAcc ; 

2. Compute Fisher criterion )( fJ  using SP and SN , for each feature Ff ∈ ; 

3. Find the spatial histogram feature tf  which has the maximal Fisher criterion 

value, }|)({maxarg FffJf jj
f

t
j

∈= ; 
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4. Perform histogram matching with tf  on the validation set VNVPV ∪= , find a 

threshold tθ such that the detection rate d  on the positive validation set VP  is 

greater than D , i.e., Dd ≥ ; 
5. Compute the classification accuracy on the negative validation set VN , 

=

−−=
k

i
ii yxCH

k
curAcc

1

'' |)(|
1

1)( . )(xCH  is the output by histogram matching 

with tf  and tθ , }1,0{)( ∈xCH ; 

6. If the classification accuracy satisfies condition: ε≤− )()( preAcccurAcc  ( ε  is a 

small positive constant), the procedure exits and returns selectF  and ThreSet , oth-

erwise process following steps: 
    (a) )()( curAccpreAcc = , ∅=SN , }{ tselectselect fFF ∪= , }{\ tfFF = , 

          }{ tThreSetThreSet θ∪= , 1+= tt , 

    (b) Perform cascade histogram matching with selectF  and ThreSet  on an image 

set containing no target objects, put false detections into SN , 
    (c) Go to step 2 and continue next iteration step. 

5.2   Construction of the ECOC-Based Multi-view Face Detector 

Cascade histogram matching is the coarse object detection stage. To improve detec-
tion performance, we employ SVM classification [22] as fine detection stage. By 
minimizing error rate, we construct an ECOC-based multi-view face detector. 

Suppose that we have (1) a spatial histogram features space },...,{ 1 mffF = , (2) a 

training set )},(),...,,{( 11 nn yxyxs = and a testing set )},(),...,,{( '''
1

'
1 kk yxyxv = , 

where ix  and '
ix  are samples with m  dimensional spatial histogram feature vectors, 

}3,2,1,0{∈iy and }3,2,1,0{' ∈iy , (3) ECOC code matrix Z of size nk × , 

( 4=k , 7=n ) as listed in Table 1. The construction of the ECOC-based multi-view 
face detector is performed as the following procedure: 

1. Using the method for training cascade histogram matching (see section 5.1), 
construct a cascade histogram matching classifier as base classifier for each  
column. These base classifiers },...,{ 60 bb constitute the ECOC multi-class  

classifier; 

2. Set classification accuracy 0)( =preAcc ; for each column, find i
mf with maxi-

mum Fisher criterion, }{ i
m

i
select fF =  and }{\ i

m
i

ori fFF = , 6,...,1,0=i ; 

3. Compute each base classifier's error rate; find the base classifier tb ( 60 ≤≤ t ), 

which has maximum error rate, and update the base classifier as follows: 

(a) Compute Fisher criterion )( fJ  and feature correlation ),( t
selectFfCorr on 

the training sample set, for each feature t
oriFf ∈ ; 
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(b) Compute Thre as follows: 

α+α−=
∈=

∈=

*)1(*

}|),(max{

}|),(min{

MaxCorrMinCorrThre

FfFfCorrMaxCorr

FfFfCorrMinCorr
t

ori
t
select

t
ori

t
select

, 

here α  is a balance weight ( 10 <α< ), we choose 2.0=α  in experiments; 

(c) Find t
oriFf ∈'  with large Fisher criterion as below: 

)),(|)((maxarg' ThreFfCorrfJf t
selectjj

f j

≤= ; 

(d) Train a SVM classifier C on the training set s , using 'f  and t
selectF ;  

update tb  with cascade histogram matching and the SVM classifier C ; update 

the ECOC multi-class classifier with tb ; 

4. Evaluate the ECOC multi-class classifier on the testing samples set v , and com-
pute the classification accuracy: 

=

−=
k

i
ii yxCS

k
curAcc

1

'' )),((
1

1)( ,
=
≠

=
yx

yx
yxS

  0

     1
),( . 

Here, )(xC  is the classification output by the classifier C , }3,2,1,0{)( ∈xC ; 

5. If the classification accuracy satisfies condition: ε≥− )()( preAcccurAcc ( ε is a 

small positive constant), process following steps: 

(a) )()( curAccpreAcc = , }'{ fFF t
select

t
select ∪= , }'{\ fFF t

ori
t

ori = , 

(b) Go to step 3 and continue next iteration step. 
6. The procedure exits and returns the ECOC multi-class classifier, which is consti-

tuted by ib and i
selectF  ( 6,...,1,0=i ). 

6   Experimental Results 

We implement the proposed approach and conduct experiments to evaluate its effec-
tiveness. Our training sample set consists of 11,400 frontal face images, 4,260 left 
profile face images, 4,080 right profile face images, and 17,285 non-face images, each 
of standard size 32x32. 

The exhaustive spatial template set within 32x32 image window is 832,351, a very 
large amount. After reducing redundancy, 180 spatial templates are evaluated to  
extract spatial histogram features. For each base classifier, about 9~15 spatial  
templates are learned for cascade histogram matching and 20~25 are learned for  
SVM classification with RBF kernel function in our experiment. The multi-view face 
detector is composed of these base classifiers. 

Experiment 1: Error-Tolerant Performance Evaluation 
In order to evaluate the error-tolerant performance of the ECOC-based multi-view 
face detector, we collect another sample set for testing. This set contains 5,400 frontal 
face images, 3,011 left profile face images, 3,546 right profile face images, and 6,527 
non-face images, each of standard size 32x32.  
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In Table 2, classification error rates of binary classifiers in the ECOC-based multi-
view face detector are presented. Table 3 shows classification error rates of the 
ECOC-based multi-view face pattern classifier. The error rates are decreased after 
using ECOC to combine all the base classifiers. These results demonstrate that the 
system has error-tolerant ability and it is be able to recover from the errors of single 
base classifier. 

Table 2. Classification error rates of the base classifiers 

 0b  1b  2b  3b  4b  5b  6b  

Error rate 18.4% 18.4% 18.3% 17.9% 4.7% 25.0% 22.9% 

Table 3. Classification error rates of the ECOC-based multi-view face pattern classifier 

Class Number of testing samples Error rate 
Non face pattern (CB0B) 6257 4.8% 
Front face pattern (CB1B) 5400 1.6% 
Left profile face pattern (CB2B) 3011 5.5% 
Right profile face pattern (CB3B) 3546 4.7% 
Total 18214 4.0% 

Experiment 2: Testing Results on Standard Data Sets  
We test our system on two standard data sets. One is MIT+CMU set [2,4], which 
contains 130 images with 507 frontal faces. The other is CMU-PROFILE [7], which 
consists of 208 images with 441 faces from full frontal view to side view. About 347 
faces are in profile pose. 

The ROC curves are shown in Fig. 3. In Fig. 4, some face detection examples are 
given. The examples demonstrate that our approach can handle multiple faces with 
complex backgrounds. Comparison results are shown in Table 4 and Table 5. Our 
system exhibits superior performance than [2,9,11,14] with higher detection rate, and 
achieves comparable performance compared with the system of [7,8]. 
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Fig. 3. ROC curves of face detection on (a) CMU+MIT test set, (b) CMU-PROFILE test set 
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Fig. 4. Some examples of multi-view face detection 

Table 4. Face detection rates on MIT+CMU set 

False alarms 31 65 167 
Jones and Viola [8](frontal) 85.2% 92.0% 93.9% 
Rowley et.al [2]  85.0% N/A 90.1% 
Schneiderman and Kanade [7]  N/A 94.4% N/A 
Li and Zhang [9]  89.2% N/A N/A 
Our approach 90.7%  92.3% 94.2% 

Table 5. Face detection rates on CMU-PROFILE set 

False alarms 91 700 
Jones and Viola [11](profile) 70% 83% 
Schneiderman and Kanade [7] 86% 93% 
Osadchy, Miller, LeCun [14] 67% 83% 
Our approach 82% 90% 

Experiment 3: Performance Comparison with One-Against-Others Codes  
We also conduct experiments to compare performance of ECOC codes with that of 
one-against-others codes. Table 6 gives the one-against-others code matrix for multi-
view face detection. In each column, a binary classifier is constructed for each face  
 

Table 6. One-against-others code for face detection 

 b B0B b B1B b B2 B 

Non face pattern (CB0B) 0 0 0 
Front face pattern (CB1B) 1 0 0 
Left profile face pattern (CB2B) 0 1 0 
Right profile face pattern (CB3B) 0 0 1 
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Fig. 5. Face detection performance comparison between ECOC with one-against-other: ROC 
on CMU-PROFILE test set 

class against other face classes and non-face class. This code has no error correcting 
ability for base classifiers.   

Fig. 5 shows the ROC comparison between the system using ECOC codes and the 
system using one-against-others codes. The comparison result shows that ECOC-
based system achieves superior performance with higher detection rates. 

7   Conclusions 

In this paper, we solve multi-view face detection problem by using ECOC. The key 
issue is how to train effective binary classifiers for an efficient ECOC-based multi-
view face detector. Our method constructs binary classifiers by learning informative 
features through minimizing the error rate. For purpose to obtain efficient binary 
classifiers, our method employs spatial histogram features as representation and hier-
archical classifiers as binary classifiers. Extensive experiments show that ECOC im-
proves the robustness to pose variation for face detection, and the proposed approach 
is efficient in detecting multi-view faces simultaneously. Tests on standard data sets 
show that the proposed method achieves performance comparable to that of state-of-
the-art approaches to multi-view face detection. 

The proposed approach of constructing ECOC-based multi-classifier by learning 
base classifiers can be viewed as a general framework of multi-classes problem based 
on a given code matrix. In the future work, we plan to apply this approach in multi-
class objects detection with more kinds of objects. 
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Abstract. Recently, the wide deployment of practical face recognition
systems gives rise to the emergence of the inter-modality face recognition
problem. In this problem, the face images in the database and the query
images captured on spot are acquired under quite different conditions
or even using different equipments. Conventional approaches either treat
the samples in a uniform model or introduce an intermediate conversion
stage, both of which would lead to severe performance degradation due
to the great discrepancies between different modalities. In this paper, we
propose a novel algorithm called Common Discriminant Feature Extrac-
tion specially tailored to the inter-modality problem. In the algorithm,
two transforms are simultaneously learned to transform the samples in
both modalities respectively to the common feature space. We formulate
the learning objective by incorporating both the empirical discrimina-
tive power and the local smoothness of the feature transformation. By
explicitly controlling the model complexity through the smoothness con-
straint, we can effectively reduce the risk of overfitting and enhance the
generalization capability. Furthermore, to cope with the nongaussian dis-
tribution and diverse variations in the sample space, we develop two non-
linear extensions of the algorithm: one is based on kernelization, while the
other is a multi-mode framework. These extensions substantially improve
the recognition performance in complex situation. Extensive experiments
are conducted to test our algorithms in two application scenarios: opti-
cal image-infrared image recognition and photo-sketch recognition. Our
algorithms show excellent performance in the experiments.

1 Introduction

The past decade has witnessed a rapid progress of face recognition techniques
and development of automatic face recognition (AFR) systems. In many of the
face recognition systems, we are in confront of a new situation: due to the lim-
itations of practical conditions, the query face images captured on spot and
the reference images stored in the database are acquired through quite different
processes under different conditions. Here we give two cases arising from practi-
cal demands. The first case is a surveillance system operating from morning to
night in an adverse outdoor environment. To combat the weak illumination in
the nights or cloudy days, the system employ infrared cameras for imaging and
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compare the infrared images with the optical images registered in the database,
as shown in fig.1. In another case, the police call for a photo-sketch recognition
system to recognize the identity of a suspect from a sketch when his photos are
unavailable, as shown in fig.2. The images acquired by different processes, which
we say are in different modalities, often present great discrepancies, thus it is in-
feasible to use a single model to carry out the comparison between these images.
These new applications bring forward a great challenge to the face recognition
systems and require new techniques specially designed for the Inter-Modality
Face Recognition.

Before introducing our approach to the problem, we give a brief review on the
statistical pattern recognition methods. An important difficulty for face recog-
nition lies in the high dimension of the sample space. To alleviate the curse of
the dimensionality, it is crucial to reduce the dimension while preserving the
important information for classification. LDA (Fisherface)[1] is the most pop-
ular dimension reduction method for face recognition, which pursues a feature
subspace to maximize the trace-ratio of the between-class scattering matrix and
the within-class scattering matrix. To solve the singularity of within-class scatter
matrix incurred by small sample size problem, a variety of improved LDA-based
algorithms are proposed[2][3][4][5][6][7]. However, these algorithms fail to address
the overfitting fundamentally. We argue that the poor generalization of LDA in
the small sample size case originates from the formulation of the objective, which
merely emphasize the separability of the training samples without considering
the factors affecting the generalization risk.

In this paper, we propose a general algorithm for various inter-modality face
recognition problems, where two issues arise: 1) How to enable the comparison
between samples in different modalities without the intermediate conversion? 2)
How to enhance the generalization capability of the model? To tackle the for-
mer issue, we propose a novel algorithm called Common Discriminant Feature
Extraction as illustrated in fig.3, where two different transforms are simulta-
neously learned to transform the samples in both the query modality and the
reference modality to a common feature space, where the discriminant features
for the two modalities are well aligned so that the comparison between them is
feasible. Motivated by the statistical learning theory[10] which states that the

Fig. 1. The optical images vs. the in-
frared images

Fig. 2. The photos vs. the sketches
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Fig. 3. Illustration of common feature
space

Fig. 4. The query procedure

model complexity has important impact on the generalization risk, we formu-
late the learning objective by incorporating both the empirical discriminative
power and the local consistency. The empirical discriminative power comprises
the intra-class compactness and inter-class dispersion, which together reflect
the separability of the training samples; while the local consistency[11] is in-
spired by the local preservation principle emerging from the machine learning
literatures[12][13], which measures the local smoothness of the feature transfor-
mation. It is believed that by explicitly imposing the smoothness constraint and
thus preserving the local structure of the embedded manifold, we can effectively
reduce the risk of overfitting. Based on the formulation, we derive a new algo-
rithm which can efficiently solve the global optima of the objective function by
eigen-decomposition.

Considering that linear transforms lack of capability to separate the samples
well in the complicated situations where the sample distribution is nongaussian,
we further derive two nonlinear extensions of the algorithm to exploit the nonlin-
earity of the sample space. The first extension is by kernelization, which offers an
elegant and efficient way to extract nonlinear features. The second extension is a
multi-mode framework. The framework learns multiple models adapting to the
query samples captured in distinct conditions and makes the final decision by a
belief-based weighted fusion scheme. Comprehensive experiments are conducted
to validate the effectiveness of our algorithms.

2 Common Discriminant Feature Extraction

2.1 Formulation of the Learning Problem

In the problem, there are two types of samples: the query samples captured on
spot and the reference samples stored in the database, which are in different
modalities. The vector space of the query samples and the reference samples are
denoted by Xq and Xr respectively, whose dimensions are denoted by dq and
dr. Suppose we have a training set of Nq samples in the query space and Nr

samples in the reference space from C classes, denoted by {(x(q)
i , c

(q)
i )}Nq

i=1 and
{(x(r)

j , c
(r)
j )}Nr

j=1. Here c
(q)
i and c

(r)
j respectively indicates the class label of the

corresponding sample. To enable the comparison of the query samples and the
reference samples, we transform them to a dc-dimensional Common Discriminant
Feature Space, denoted by Y, which preserves the important discriminant infor-
mation and aligns the samples in two different modality so that the comparison
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is feasible. We denote the transform for the query modality by fq : Xq → Y and
the transform for the reference modality by fr : Xr → Y. For succinctness of dis-
cussion, we denote y(q)

i = fq(x
(q)
i ; θq) and y(r)

j = fr(x
(r)
j ; θr), where θq and θr are

the transform parameters. After the common feature space is learnt, the dissimi-
larity can be evaluated by transforming both the query sample and the reference
sample to the common space and computing the distance between the feature
vectors, as in fig.4.

To obtain the feature transforms with good generalization capability, we for-
mulate the learning objective integrating both the empirical separability and the
local consistency of the transform operators.

The empirical separability. The empirical separability describes the sepa-
rability of the training samples. It involves two related goals: the intra-class
compactness and the inter-class dispersion, which are measured by average intra-
class scattering and average inter-class scattering respectively as follows:

J1(θq, θr) =
1

N1

Nq∑
i=1

∑
j:c(r)

j =c
(q)
i

||y(q)
i − y(r)

j ||2, (1)

J2(θq, θr) =
1

N2

Nq∑
i=1

∑
j:c(r)

j �=c
(q)
i

||y(q)
i − y(r)

j ||2, (2)

where N1 is the number of pairs of samples from the same class, N2 is the number
of pairs of samples from different classes. To better distinguish the samples from
different classes, we should drive the query samples towards the reference samples
from the same class and far from those of distinct classes. Based on the rationale,
we derive the formulation of empirical separability by unifying the intra-class
compactness and the inter-class dispersion:

Je(θq, θr) = J1(fq, fr) − αJ2(fq, fr) =
Nq∑
i=1

Nr∑
j=1

uij ||y(q)
i − y(r)

j ||2, (3)

where uij =

{
1

N1
(c(q)

i = c
(r)
j )

− α
N2

(c(q)
i �= c

(r)
j )

, and the α reflects the trade-off between the two

goals. Minimization of Je(θq, θr) will lead to the feature space best separating
the training samples.

The local consistency. To reduce the risk of overfitting, we introduce the
notion local consistency into the formulation to regularize the empirical objec-
tive, which is a notion emerging from spectral learning[11] and manifold learning
[14][12]. The local consistency for fq and fr are respectively defined by
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J
(q)
l (θq) =

1
Nq

Nq∑
i=1

Nq∑
j=1

w
(q)
ij ||y(q)

i − y(q)
j ||2; (4)

J
(r)
l (θr) =

1
Nr

Nr∑
i=1

Nr∑
j=1

w
(r)
ij ||y(r)

i − y(r)
j ||2, (5)

where N (i) is the set of indices of the neighboring samples of i, w
(q)
ij =

exp(− ||x(q)
i −x(q)

j ||
σ2

q
) and w

(r)
ij = exp(− ||x(r)

i −x(r)
j ||

σ2
r

) reflect the affinity of two sam-
ples. It has been shown that[14] such a definition corresponds to the approxima-
tion of

∫
M ||∇f(x)||2 over the manifold M on which the samples reside. This

clearly indicates that minimization of Jl will encourage consistent output for the
neighboring samples in the input space, and thus result in the transform with
high local smoothness and best locality preservation. Hence, a smooth transform
that is expected to be less vulnerable to overfitting can be learnt by imposing
the local consistency constraint.

Integrating the empirical objective and the local consistency objective, we
formulate the learning objective to minimize the following objective function:

J(θq, θr) = Je(θq, θr) + β
(
J

(q)
l (θq) + J

(r)
l (θr)

)
=

Nq∑
i=1

Nr∑
j=1

uij ||y(q)
i − y(r)

j ||2

+
Nq∑
i=1

Nq∑
j=1

v
(q)
ij ||y(q)

i − y(q)
j ||2 +

Nr∑
i=1

Nr∑
j=1

v
(r)
ij ||y(r)

i − y(r)
j ||2, (6)

where we introduce v
(q)
ij =

βw
(q)
ij

Nq
and v

(r)
ij =

βw
(r)
ij

Nr
. For convenience. β is a

regularization coefficient controlling the trade-off between the two objectives.

2.2 Matrix-Form of the Objective

To simplify the further analysis, we introduce the following matrix notations:

dc × Nq matrix Yq =
h
y(q)

1 ,y(q)
2 , . . . ,y(q)

Nq

i
, dc × Nr matrix Yr =

h
y(r)

1 ,y(r)
2 , . . . , y(r)

Nr

i

Nq × Nr matrix U : U(i, j) = uij ,
Nq × Nq diagonal matrix Sq : Sq(i, i) =

PNr
j=1 uij , Nr × Nr diagonal matrix Sr : Sr(j, j) =

PNq

i=1 uij ,
Nq × Nq matrix Vq : Vq(i, j) = v

(q)
ij , Nr × Nr matrix Vr : Vr(i, j) = v

(r)
ij ,

Nq × Nq diagonal matrix Dq : Dq(i, i) =
PNq

j=1 v
(q)
ij , Nr × Nr diagonal matrix Dr : Dr(i, i) =

PNr
j=1 v

(r)
ij .

Then we can rewrite the objectives in matrix form as:

Je(θq, θr)=
Nq∑
i=1

Nr∑
j=1

uij ||y(q)
i −y(r)

j ||2 = tr
(
YqSqYT

q +YrSrYT
r −2YqUYT

r

)
.(7)

J
(q)
l (θq) = 2tr

(
Yq(Dq − Vq)YT

q

)
; (8)

J
(q)
l (θr) = 2tr

(
Yr(Dr − Vr)YT

r

)
. (9)
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Combine the three formulas above, we can derive that

J(θq, θr) = tr
(
YqRqYT

q + YrRrYT
r − 2YqUYT

r

)
. (10)

where Rq = Sq + 2(Dq − Vq) and Rr = Sr + 2(Dr − Vr).
It is conspicuous that the transform f(x) and its double-scaled version 2f(x)

are essentially the same with respect to classification, however the latter trans-
form will result in the objective value four times the former one. Hence, we
should impose constraint on the scale of features in order to prevent trivial solu-
tions. Since Euclidean distance will be used in the target feature space where all
dimensions are uniformly treated, it is reasonable to require the feature vectors
satisfy isotropic distribution. It can be expressed in terms of unit covariance as
follows

1
Nq

YqYT
q +

1
Nr

YrYT
r = I. (11)

2.3 Solving the Linear Transforms

Linear features are widely used in the literatures due to its simplicity and good
generalization. Accordingly we first investigate the case where fq and fr are
linear transforms, parameterized by the transform matrix Aq and Ar. Denote the

sample matrices1 by Xq =
[
x(q)

1 ,x(q)
2 , . . . ,x(q)

Nq

]
and Xr =

[
x(r)

1 ,x(r)
2 , . . . ,x(r)

Nr

]
,

then we have
Yq = AT

q Xq Yr = AT
r Xr (12)

Combining Eq.(10), Eq.(11) and Eq.(12), the optimization problem of the trans-
form matrices Aq and Ar is given by

minimize J(Aq,Ar) = tr
(
AT

q MqqAq + AT
r MqrAr − 2AT

q MqrAr

)
, (13)

s.t AT
q CqAq + AT

r CrAr = I. (14)

For Eq.(13) Mqq = XqRqXT
q , Mrr = XrRrXT

r , and Mqr = XqRqXT
r . While

for Eq.(14), Cq = 1
Nq

XqXT
q and Cr = 1

Nr
XrXT

r are the covariance matrices.
To solve the optimization problem, we introduce the matrices

M =
(

XqRqXT
q −XqUXT

r

−XrUT XT
q XrRrXT

r

)
A =

(
Aq

Ar

)
C =

(
Cq 0
0 Cr

)
(15)

According to Eq.(13), Eq.(14), and Eq.(15), the optimization problem can be
written as

A = argmin
AT CA=I

AT MA, (16)

where both M and C are (dq + dr) × (dq + dr) symmetric matrices.

1 Here we assume that the samples Xq and Xr have zero mean vectors, otherwise, we
can first shift them by subtracting the mean vectors.
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To solve the constraint optimization problem, we have the following lemma

Lemma 1. The matrix A satisfies ACAT = I where C is symmetric, if and
only if A can be written as A = VΛ− 1

2 U where columns of V are eigenvectors
and Λ are diagonal matrix of eigenvalues satisfying CV = VΛ, and U are
orthogonal matrix satisfying UT U = I.

The lemma suggests a two-stage diagonalization scheme to obtain the optimal
solution. In the first stage, we solve the V and Λ by eigenvalue decomposition
on C and compute the whitening transform W = VΛ− 1

2 . It can be easily shown
that TT CT = I. Considering that C is a block-diagonal matrix, it be accom-
plished by eigen-decomposition on Cq and Cr respectively as Cq = VqΛqVT

q

and Cr = VrΛrVT
r . When the dimensions of Xq and Xr are high, the covari-

ance matrices may become nearly singular and incur instability. To stabilize the
solution, we approximate the covariance by discarding the eigenvalues near zero
and the corresponding eigenvectors as follows:

C̃q = ṼqΛ̃qṼT
q C̃r = ṼrΛ̃rṼT

r (17)

Subsequently, T can be obtained by T =

(
ṼqΛ̃

− 1
2

q 0

0 ṼrΛ̃
− 1

2
r

)
.

Then the learning objective is transformed to be

U = argmin
U

UT
(
TT MT

)
U, s.t UT U = I, (18)

In the second stage we solve U by eigen-decomposition on the matrix MW =
TT MT and taking the eigenvectors associated with the smallest eigenvalues of
MW , then A = TU. Exploiting the fact that T is block-diagonal, we further
simplify the computation by partitioned matrix multiplication. The whole pro-
cedure is summarized in Table 1.

Table 1. The Procedure of Solving the Linear Transform

1. Compute Rq , Rr and U as in section 2.2.
2. Compute Mqq = XqRqXT

q , Mqr = XqUXT
r and Mrr = XrRrXT

r .
3. Compute Cq = 1

Nq
XqXT

q and Cr = 1
Nr

XrXT
r .

4. Solve Ṽq, Λ̃q , Ṽr and Λ̃r by performing eigenvalue-eigenvector analysis on Cq and
Cr and removing the trailing eigenvalues and corresponding eigenvectors.
5. Compute Tq = ṼqΛ̃− 1

2 and Tr = ṼrΛ̃− 1
2 . Denote their numbers of columns by d̃q

and d̃r.

6. Compute MW =
(

TT
q MqqTq −TT

q MqrTr

−TT
r MT

qrTq TT
r MrrTr

)
.

7. Solve U by taking the eigenvectors corresponding to the d least eigenvalues of MW .
8. Denote the first d̃q rows of U by Uq and the rest d̃r rows by Ur. Then we have
Aq = TqUq and Ar = TrUr.
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3 Kernelized Common Discriminant Feature Extraction

Kernel-based learning is often used to exploit the nonlinearity of the sample
space. The core principle is to map the samples to a Hilbert space with much
higher dimension or even infinite dimension so that the inner product structure
of that space reflects the desirable similarity. Suppose the original sample space
is denoted by X and a positive definite kernel is defined on it by k : X ×X → R.
For a set of observed samples: {xi}n

i=1, the n × n Gram matrix is given by K
with K(i, j) = k(xi,xj).

According to the kernel theory, each positive definite kernel k induces a Hilbert
space H and a feature map φ : X → H satisfying that for every x1,x2 ∈ X ,
〈φ(x1), φ(x2)〉 = k(x1,x2). With this kernel trick, we can compute the inner
product in the original space without explicitly evaluating the feature map.

Given the Hilbert space, we can extract the features by projecting the high-
dimensional mapping to a lower-dimensional feature space. Assume the basis of
the projection is a linear combinations of the Hilbert mappings of the training
samples. Denote Φ = [φ(x1), . . . , φ(xn)], then we have P = ΦA, where A is an
n×d matrix storing the expansion coefficients and d is the dimension of the final
feature space. Then for any sample x ∈ X , it is transformed to

y = PT φ(x) = AT ΦT φ(x) = AT k(x), (19)

where k(x) = [φ(x1,x), φ(x1, . . . , φ(xn,x)]T . Specially, for the training set
X = [x1, . . . ,xn], the matrix of the transformed vectors can be expressed as

Y = [y1,y2, . . . ,yn] = [Pφ(x1),Pφ(y2), . . . ,Pφ(yn)] = AT K. (20)

Actually, the learning of Common Discriminant Feature Extraction relies on
inner products, thus it can be extended to the nonlinear case by kernel theory.
Denote the Gram matrices for the query samples and the reference samples by
Kq and Kr, and the coefficient expansion matrices for transform operators by
Aq and Ar. According to Eq.(20), we have the feature vectors for the training
set expressed as follows:

Yq = AT
q Kq Yr = AT

r Kr. (21)

Then from Eq.(10), the joint objective function can be written by

J(Aq,Ar) = tr(AT
q KqRqKT

q Aq + AT
r KrRrKT

r Ar − 2AT
q KqUKT

r Ar) (22)

s.t Aq

(
1

Nq
KqKT

q

)
AT

q + AT
r

(
1

Nr
Kr,KT

r

)
Ar = I. (23)

Comparing Eq.(13) and Eq.(23), we see that the mathematical form of the op-
timization problem is essentially the same, except that the matrices Xq and Xr

are replaced by the Kernel Gram matrices Kq and Kr. Thus the optimization
procedure derived above is also applicable here.
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4 Multi-mode Framework

In practical systems, the reference images are often captured in a controlled
condition, while the query images on spot are subject to significant variation
of illumination and pose. To address this problem, we develop a Multi-Mode
Framework. For each query mode, we learn a common feature space for compar-
ing the query samples in that mode and the reference samples. Here, we denote
the transform matrices for the k-th mode by Aqk and Ark.

Considering that uncertainty may arise when we judge which mode a query
sample belongs to, we adopt a soft fusion scheme. In the scheme, the fused
distance is introduced to measure the dissimilarity between the query samples
and the reference samples, which is a belief-based weighted combination of the
distance values evaluated in the common spaces for different modes. We denote
the belief that the i-th query sample belongs to the k-th mode by bik, and
denote the features of the i-th query sample and the j-th reference sample in
the common space for the k-th mode by y(q)

ik = AT
qkx

(q)
i and y(r)

jk = AT
rkx

(r)
i

respectively, then the fused distance is given by

d(x(q)
i ,x(r)

j ) =
M∑

k=1

bik||y(q)
ik − y(r)

jk ||2 s.t
M∑

k=1

bik = 1. (24)

When the belief values for training samples are known, for a new query sample
x, its belief values w.r.t to the modes can be computed by smooth interpolation
from the training samples adjacent to it. We re-formulate the learning objective
with the following extensions:
1) Evaluate the empirical separability based on fused distance: Je =∑Nq

i=1
∑Nr

j=1 uijd(x(q)
i ,x(r)

j );
2) The local consistency comprises the local consistency of transforms for all
modes;
3) Each query samples in the training set corresponds to M belief values. To
ensure each mode covers a continuous and smooth region in the sample space so
that the computation of beliefs for new samples is stable, we further enforce the
local consistency on the belief values: J

(b)
l =

∑Nq

i=1
∑Nq

j=1 v
(q)
ij

∑M
k=1(bik − bjk)2.

Consequently, the multimode formulation of the learning objective is derived as
follows:

J = Je + β
M∑
i=1

(J (q)
l + J

(r)
l ) + γJ

(b)
l , (25)

where γ controls the contribution of the local consistency of beliefs. Eq.(25) can
be expanded as follows:

J =
Nq∑
i=1

Nr∑
j=1

uij

M∑
k=1

bik||y(q)
ik − y(r)

jk ||2 +
M∑

k=1

Nq∑
i=1

Nq∑
j=1

v
(q)
ij ||y(q)

ik − y(q)
jk ||2

+
M∑

k=1

Nr∑
i=1

Nr∑
j=1

v
(r)
ij ||y(r)

ik − y(r)
jk ||2 +

Nq∑
i=1

Nq∑
j=1

v
(q)
ij

M∑
i=1

(bik − bjk)2. (26)
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Based on the generalized formulation, we derive the optimization scheme by
alternate optimizing the transform matrices and the belief values.

1) Optimizing Transform Matrices. Denote JA = Je + β
∑M

i=1(J
(q)
l + J

(r)
l ),

since J
(b)
l does not relate to the features, with the belief values given, we can

obtain the optimal transform matrices by minimizing JA. Rearranging the order
of sums, we can write it by

JA =
M∑

k=1

⎧⎨⎩
Nq∑
i=1

Nr∑
j=1

bikuij ||y(q)
ik − y(r)

jk ||2 +
Nq∑
i=1

Nq∑
j=1

v
(q)
ij ||y(q)

ik − y(q)
jk ||2 +

Nr∑
i=1

Nr∑
j=1

v
(r)
ij ||y(r)

ik − y(r)
jk ||2

⎫⎬⎭ .

(27)
Thus JA can be decomposed into

JA =
M∑

k=1

Jk(A(q)
k ,A(r)

k ) (28)

Jk(A(q)
k ,A(r)

k ) =
Nq∑
i=1

Nr∑
j=1

bikuij ||y(q)
ik −y(r)

jk ||2+
Nq∑
i=1

Nq∑
j=1

v
(q)
ij ||y(q)

ik −y(q)
jk ||2+

Nr∑
i=1

Nr∑
j=1

v
(r)
ij ||y(r)

ik −y(r)
jk ||2.

(29)
Compare Eq.(6) and Eq.(29), we see that they share the same mathematical
form except that uij is replaced by bikuij . Because Jk is solely determined by
the features of the k-th mode, we can optimize A(q)

k and A(r)
k for each mode

individually by the aforementioned procedure with the belief values fixed.

2) Optimizing Belief Values. Denote JB = Je + γJ
(b)
l , which is the part of

objective depending on the belief values. With the transform matrices given, we
can optimize the beliefs by minimizing JB:

JB =
Nq∑
i=1

Nr∑
j=1

M∑
k=1

uij

M∑
k=1

bik||y(q)
ik −y(r)

jk ||2 +
Nq∑
i=1

Nq∑
j=1

M∑
k=1

v
(q)
ij

M∑
i=1

(bik− bjk)2. (30)

For succinctness, we denote eik =
∑Nr

j=1 uij ||y(q)
ik −y(r)

jk ||2, then it can be simpli-
fied to

JB =
Nq∑
i=1

M∑
k=1

eikbik +
Nq∑
i=1

Nq∑
j=1

M∑
k=1

v
(q)
ij

M∑
i=1

(bik − bjk)2. (31)

We introduce the following notations: E is an M ×Nq matrix with E(i, k) = eik,
B is an M × Nq matrix with B(i, k) = bik, then the optimization problem can
be written in a matrix form as

B = argmin
B

JB = argmin
B

tr(ET B+2B(Dq−Vq)BT ), s.t BT 1M = 1Nq . (32)

Here Dq − Vq is positive-semidefinite. This is a convex quadratic optimiza-
tion program with linear constraint and can be efficiently solved by quadratic
programming.
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3) The whole procedure of optimization. We adopt the alternate opti-
mization strategy in our framework. First we cluster all the query samples in
the training set by Gaussian Mixture Model and set the initial belief values to
be the posteriori evaluated by GMM. After that, we optimize the transform ma-
trices for each mode based on Eq.(29) and the belief values based on Eq.(32)
alternately until convergence.

5 Experiments

Experiment Settings
We conduct experiments in two inter-modality recognition applications.

1) Infrared-optical recognition. The reference images are captured by
optical cameras with controlled illumination condition, while the query images
are acquired in an uncontrolled environment. To cope with the adverse illumi-
nation condition, we use infrared cameras to capture the query images. In our
experiment, two configurations are constructed to test our algorithms. Both con-
figurations share the same set of reference samples. The reference set consists of
64 samples from 16 persons with each person having 4 samples. In the first con-
figuration, we select 800 images with mild expression variation to form the query
set. The second configuration is a much more challenging one, which consists of
1600 images subject to significant pose and illumination variation. Some exam-
ples of the images are displayed in fig.1. It can be seen that the infrared images
are seriously blurred and distorted due to the limitation of infrared imaging.

2) Sketch-photo recognition. The reference set is composed of 350 images
from FERET face database[16]. The 350 images represent 350 different persons.
The query set comprises 700 sketches composed by artists. Each person has 2
samples in the query set. Fig.2 shows some examples of the photos and the
corresponding sketches. We can see that the sketches present greatly different
characteristics from the photos. In addition, some texture information is lost in
the sketches.

All the photos are normalized to reduce the influence of interference factors.
For each image, we first perform affine transformation on it to fix the eye centers
and mouth center of the face to standard positions. Then we crop it to the size
of 64×72. After that we apply histogram equalization and mask the background
region using a face-shape mask. After preprocessing, we obtain the original vector
representation for each image by scanning the 4114 remaining pixels to a vector.
To accelerate the process of training and testing and suppress the noise, we
employ PCA to reduce the space dimension and preserve 0.98% of the energy in
the principal space.

Experiment Results
1) We first investigate how the selection of parameters α and β affects the gen-
eralization performance. In the experiments, we find that the performance is not
sensitive to the α when α ranges from 0.2 to 2. However, the parameter β signifi-
cantly influence the results. Fig.5, fig.7 and fig.9 show the change of performance
w.r.t the number of features when β takes different values. We can see that when
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β = 0, that is, the local consistency does not contribute to the formulation, the
performance degrades drastically as the number of features increases. When β
becomes larger, the change of performance becomes stable. However, if β is too
large, the performance may degenerate. This is mainly due to over-smoothing.
From the results, we can see that for infrared-optical recognition, the algorithm
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Reg. + Reg. + RReg. + RReg. + EigT. + EigT. + CDFE
KPCA KLDA KPCA KLDA KPCA KLDA

infrared-optical. conf-1 24.3% 15.6% 20.4% 8.34% 22.7% 9.56% 1.98%
infrared-optical. conf-2 50.6% 21.8% 47.9% 15.0% 45.7% 15.3% 4.42%

sketch-optical. 32.2% 20.8% 24.3% 11.7% 25.8% 12.8% 5.43%

Fig. 11. Comparison of the algorithms with kernelized features

achieves best performance when β = 0.5, while for sketch-photo recognition, the
algorithm achieves best performance when β = 1.0. The analysis above indicates
the important role of local consistency for the generalization ability.

2) We compare the common discriminant feature extraction (CDFE) with
other approaches for inter-modality recognition. In previous works, it is typi-
cal to first convert the query images to the reference modality and then apply
conventional algorithms to classify the converted sample. In the experiments,
we test the combination of three conversion methods (linear regression (Reg),
ridge regression (RReg), and Eigentransformation (EigT)[9] ) and three feature
extraction methods (PCA[17], LDA[1], and Enhanced LDA[4]). The results are
illustrated in fig.6, fig.8, and fig.10 for the infrared-optical recognition and the
sketch-photo recognition respectively. It can be seen from the results that the
CDFE consistently outperforms the other methods by a large margin. In all
the configurations, CDFE at least reduces the error rate by half compared with
the most competitive methods in conventional approaches.

3) We test the kernelized extension of the CDFE and compare it with the
conversion-classification paradigm. For fair comparison, in the traditional ap-
proach, we also use kernelized method to extract features. Here, we test Kernel
PCA and Kernel LDA. Gaussian kernel is used in the testing. The results are
listed in fig.11. All the results given in the table are the best performances
obtained through cross-validation. We can see our algorithm outperforms the
conventional ones by a surprisingly large margin. In our view, such a remark-
able improvement is owing to incorporation of local consistency, which on one
hand fully exploits the potency of kernel method, on the other hand effectively
controls the complexity of the operator.

4) We finally test the multi-mode framework in the conf-2 of infrared-optical
recognition. In this configuration, due to diverse poses and illumination condi-
tions, there are multiple modes in the sample distribution. In our experiments,
the error rate decreases when we increase the number of modes. The lowest error
rate 3.25% is attained when M = 5. Compared to the single mode case, in which
error rate is 7.56%, it is an encouraging improvement.

6 Conclusion

In this paper, we studied the inter-modality face recognition problem. We pro-
posed a new notion of common discriminant feature space and formulated the
learning objective with local consistency. In the extensive experiments, our al-
gorithms have achieved significant improvement over conventional methods.
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Face Recognition from Video Using the Generic
Shape-Illumination Manifold

Ognjen Arandjelović and Roberto Cipolla

Department of Engineering, University of Cambridge, CB2 1PZ, UK

Abstract. In spite of over two decades of intense research, illumina-
tion and pose invariance remain prohibitively challenging aspects of face
recognition for most practical applications. The objective of this work
is to recognize faces using video sequences both for training and recog-
nition input, in a realistic, unconstrained setup in which lighting, pose
and user motion pattern have a wide variability and face images are of
low resolution. In particular there are three areas of novelty: (i) we show
how a photometric model of image formation can be combined with a
statistical model of generic face appearance variation, learnt offline, to
generalize in the presence of extreme illumination changes; (ii) we use
the smoothness of geodesically local appearance manifold structure and
a robust same-identity likelihood to achieve invariance to unseen head
poses; and (iii) we introduce an accurate video sequence “reillumina-
tion” algorithm to achieve robustness to face motion patterns in video.
We describe a fully automatic recognition system based on the proposed
method and an extensive evaluation on 171 individuals and over 1300
video sequences with extreme illumination, pose and head motion varia-
tion. On this challenging data set our system consistently demonstrated a
nearly perfect recognition rate (over 99.7%), significantly outperforming
state-of-the-art commercial software and methods from the literature.

1 Introduction

Automatic face recognition (AFR) has long been established as one of the most
active research areas in computer vision. In spite of the large number of de-
veloped algorithms, real-world performance of AFR has been, to say the least,
disappointing. Even in very controlled imaging conditions, such as those used
for passport photographs, the error rate has been reported to be as high as 10%
[6], while in less controlled environments the performance degrades even further.
We believe that the main reason for the apparent discrepancy between results
reported in the literature and observed in the real world is that the assumptions
that most AFR methods rest upon are hard to satisfy in practice.

In this paper, we are interested in recognition using video sequences. This
problem is of enormous interest as video is readily available in many applications,
while the abundance of information contained within it can help resolve some of
the inherent ambiguities of single-shot based recognition. In practice, video data
can be extracted from surveillance videos by tracking a face or by instructing a
cooperative to move the head in front of a mounted camera.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 27–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We assume that both the training and novel data available to an AFR sys-
tem is organized in a database where a sequence of images for each individual
contains some variability in pose, but is not obtained in scripted conditions or
in controlled illumination. The recognition problem can then be formulated as
taking a sequence of face images from an unknown individual and finding the
best matching sequence in the database of sequences labelled by the identity.

Our approach consists of using a weak photometric model of image forma-
tion with offline machine learning for modelling manifolds of faces. Specifically,
we show that the combined effects of face shape and illumination can be ef-
fectively learnt using Probabilistic PCA (PPCA) [40] from a small, unlabelled
set of video sequences of faces in randomly varying lighting conditions, while a
novel manifold-based “reillumination” algorithm is used to provide robustness
to pose and motion pattern. Given a novel sequence, the learnt model is used
to decompose the face appearance manifold into albedo and shape-illumination
manifolds, producing the classification decision by robust likelihood estimation.

2 Previous Work

Good general reviews of recent AFR literature can be found in [5, 46]. In this
section, we focus on AFR literature that deals specifically with recognition from
image sequences, and with invariance to pose and illumination.

Compared to single-shot recognition, face recognition from image sequences is
a relatively new area of research. Some of the existing algorithms that deal with
multi-image input use temporal coherence within the sequence to enforce prior
knowledge on likely head movements [26, 27, 47]. In contrast to these, a number
of methods that do not use temporal information have been proposed. Recent
ones include statistical [3, 35] and principal angle-based methods with underly-
ing simple linear [16], kernel-based [45] or Gaussian mixture-based [24] models.
By their very nature, these are inherently invariant to changes in head motion
pattern. Other algorithms implement the “still-to-video” scenario [28, 31], not
taking full advantage of sequences available for training.

Illumination invariance, while perhaps the most significant challenge for AFR
[1] remains a virtually unexplored problem for recognition using video. Most
methods focus on other difficulties of video-based recognition, employing simple
preprocessing techniques to deal with changing lighting [4, 13]. Others rely on
availability of ample training data but achieve limited generalization [3, 37].

Two influential generative model-based approaches for illumination-invariant
single-shot recognition are the illumination cones [7, 18] and the 3D morphable
model [10]. Both of these have significant shortcomings in practice. The former
is not readily extended to deal with video, assuming accurately registered face
images, illuminated from several well-posed directions for each pose which is
difficult to achieve in practice (see §5 for data quality). Similar limitations apply
to the related method of Riklin-Raviv and Shashua [34]. On the other hand, the
3D morphable model is easily extended to video-based recognition, but it requires
a (in our case prohibitively) high resolution [13], struggles with non-Lambertian
effects (such as specularities) and multiple light sources, and has convergence
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problems in the presence of background clutter and partial occlusion (glasses,
facial hair).

Broadly speaking, there are three classes of algorithms aimed at achieving
pose invariance. The first, a model-based approach, uses an explicit 2D or 3D
model of the face, and attempts to estimate the parameters of the model from
the input [10, 23]. This is a view-independent representation. A second class of
algorithms consists of global, parametric models, such as the eigenspace method
[30] that estimates a single parametric (typically linear) subspace from all the
views for all the objects (also see [29]). In AFR tests, such methods are usually
outperformed by methods from the third class: view-based techniques e.g. the
view-based eigenspaces [32] (also [26, 27]), in which a separate subspace is con-
structed for each pose. These algorithms usually require an intermediate step in
which the pose of the face is determined, and then recognition is carried out us-
ing the estimated view-dependent model. A common limitation of these methods
is that they require a fairly restrictive and labour-intensive training data acqui-
sition protocol, in which a number of fixed views are collected for each subject
and appropriately labelled. This is not the case with the proposed method.

3 Face Motion (and Other) Manifolds

Concepts in this paper heavily rely on the notion of face manifolds. Briefly,
under the standard rasterized representation of an image, images of a given size
can be viewed as points in a Euclidean image space, its dimensionality being
equal to the number of pixels D. However, the surface and texture of a face is
mostly smooth making its appearance quite constrained and confining it to an
embedded face manifold of dimension d � D [3, 9]. Formally, the distribution of
observed face images of the subject i can be written as the integral:

p(i)(X) =
∫

p
(i)
F (x)pn(fi(x) − X)dx. (1)

where pn is the noise distribution, f (i) : Rd → RD the embedding function and x
an intrinsic face descriptor. Fig. 1 (a) illustrates the validity of the notion on an
example of a face motion image sequence. For the proposed method, the crucial
properties are their (i) continuity and (ii) smoothness.

3.1 Synthetic Reillumination of Face Motion Manifolds

One of the key ideas of this paper is the reillumination of video sequences. Our
goal is to take two input sequences of faces and produce a third, synthetic one,
that contains the same poses as the first in the illumination of the second.

The proposed method consists of two stages. First, each face from the first
sequence is matched with the face from the second that corresponds to it best
in terms of pose. Then, a number of faces close to the matched one are used to
finely reconstruct the reilluminated version of the original face. Our algorithm
is therefore global, unlike most of the previous methods which use a sparse set
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Fig. 1. Manifolds of (a) face appearance and (b) albedo-free appearance i.e. the effects
of illumination and pose changes, in a single motion sequence. Shown are projections to
the first 3 linear principal components, with a typical manifold sample on the top-right.

of detected salient points for registration, e.g. [4, 8, 16]. We found that facial
feature localization using trained Support Vector Machines (similar to [4, 8]),
as well as algorithms employed in commercial systems FacePass� [15, 41] and
FaceIt� [22] failed on data sets used for evaluation in this paper (see §5) due to
the severity of illumination conditions. We next describe the two stages of the
proposed algorithm in detail.

Stage 1: Pose Matching. Let {Xi}(1) and {Xi}(2) be two motion sequences
of a person’s face in two different illuminations. Then, for each X(1)

i we are
interested in finding X(2)

c(i) that corresponds to it best in pose. Finding the un-
known mapping c on a frame-by-frame basis is difficult. Instead, we formulate
the problem as a minimization task with the fitness function taking the form:

f(c) =
∑

j

dE

(
X(1)

j ,X(2)
c(j)

)2
+ ω

∑
j

∑
k

d
(2)
G

(
X(2)

c(j),X
(2)
c(n(j,k)); {Xj}(2)

)
d
(1)
G

(
X(1)

j ,X(1)
n(j,k); {Xj}(1)

) (2)

where n(i, j) is the j-th of K nearest neighbours of face i, dE a pose dissimilarity
function and d

(k)
G a geodesic distance estimate along the FMM of sequence k.

The first term is easily understood as a penalty for dissimilarity of matched pose-
signatures. The latter enforces a globally good matching by favouring mappings
that map geodesically close points from the domain manifold to geodesically
close points on the codomain manifold.

Pose-matching function: The performance of function dE in (2) at estimating
the goodness of a frame match is crucial for making the overall optimization
scheme work well. Our approach consists of filtering the original face image to
produce a quasi illumination-invariant pose-signature, which is then compared
with other pose-signatures using the Euclidean distance. Note that these signa-
tures are only used for frame matching and thus need not retain any power of dis-
crimination between individuals – all that is needed is sufficient pose information.
We use a distance-transformed edge map of the face image as a pose-signature,



Face Recognition from Video Using the Generic SIM 31

(a) Original (b) Reilluminated

Fig. 2. (a) Original images from a novel video sequence and (b) the result of reillumina-
tion using the proposed genetic algorithm with nearest neighbour-based reconstruction

motivated by the success of this representation in object-configuration matching
across other computer vision applications, e.g. [17, 38].

Minimizing the fitness function: Exact minimization of the fitness function
(2) over all functions c is an NP-complete problem. However, since the final
synthesis of novel faces (Stage 2) involves an entire geodesic neighbouring of the
paired faces, it is inherently robust to some non-optimality of this matching.
Therefore, in practice, it is sufficient to find a good match, not necessarily the
optimal one.

We propose to use a genetic algorithm (GA) [12] as a particularly suitable
approach to minimization for our problem. GAs rely on the property of many
optimization problems that sub-solutions of good solutions are good themselves.
Specifically, this means that if we have a globally good manifold match, then local
matching can be expected to be good too. Hence, combining two good matches is
a reasonable attempt at improving the solution. This motivates the chromosome
structure we use, depicted in Fig. 3 (a), with the i-th gene in a chromosome
being the value of c(i). GA parameters were determined experimentally from a
small training set and are summarized in Fig. 3 (b,c).

Property Value
Population size 20
Elite survival no. 2
Mutation (%) 5
Migration (%) 20
Crossover (%) 80
Max. generations 200
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Fig. 3. (a) The chromosome structure used in the proposed GA optimization, (b) its pa-
rameters and (c) population fitness (see (2)) in a typical evolution. Maximal generation
count of 200 was chosen as a trade-off between accuracy and matching speed.

Estimating geodesic distances: The definition of the fitness function in (2) in-
volves estimates of geodesic distances along manifolds. Due to the nonlinearity
of FMMs [3, 27] it is not well approximated by the Euclidean distance. We esti-
mate the geodesic distance between every two faces from a manifold using the
Floyd’s algorithm on a constructed undirected graph whose nodes correspond to
face images (also see [39]). Then, if Xi is one of the K nearest neighbours of Xj :

dG(Xi,Xj) = ‖Xi − Xj‖2 . (3)
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Otherwise:

dG(Xi,Xj) = min
k

[dG(Xi,Xk) + dG(Xk,Xj)] . (4)

Stage 2: Fine Reillumination. Having computed a pose-matching function
c∗, we exploit the smoothness of FMMs by computing Y(1)

i , the reilluminated
frame X(1)

i , as a linear combination of K nearest-neighbour frames of X(2)
c∗(i).

Linear combining coefficients α1, . . . αK are found from the corresponding pose-
signatures by solving the following constrained minimization problem:

{αj} = arg min
{αj}

∥∥∥∥∥x(1)
i −

K∑
k=1

αkx
(2)
n(c∗(i),k)

∥∥∥∥∥
2

(5)

subject to
∑K

k=1 αk = 1.0, where x(j)
i is the pose-signature corresponding to

X(j)
i . In other words, the pose-signature of a novel face is first reconstructed

using the pose-signatures of K training faces (in target illumination), which are
then combined in the same fashion to synthesize a reilluminated face, see Fig. 2
and 4. Optimization of (5) is readily performed by differentiation.

Fig. 4. Face reillumination: the coefficients for linearly combining face appearance
images (bottom row) are computed using the corresponding pose-signatures (top row)

4 The Shape-Illumination Manifold

In most practical applications, specularities, multiple or non-point light sources
significantly affect the appearance of faces. We believe that the difficulty of
dealing with these effects is one of the main reasons for poor performance of
most AFR systems when put to use in a realistic environment. In this work
we make a very weak assumption on the process of image formation: the only
assumption made is that the intensity of each pixel is a linear function of the
albedo a(j) of the corresponding 3D point:

X(j) = a(j) · s(j) (6)

where s is a function of illumination, shape and other parameters not modelled
explicitly. This is similar to the reflectance-lighting model used in Retinex-based
algorithms [25], the main difference being that we make no further assumptions
on the functional form of s. Note that the commonly-used (e.g. see [10, 18, 34])
Lambertian reflectance model is a special case of (6) [7]:
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s(j) = max(nj · L, 0) (7)

where ni is the surface normal and L the intensity-scaled illumination direction.
The image formation model introduced in (6) leaves the image pixel intensity

as an unspecified function of face shape or illumination parameters. Instead
of formulating a complex model of the geometry and photometry behind this
function (and then needing to recover a large number of model parameters),
we propose to learn it implicitly. Consider two images, X1 and X2 of the same
person, in the same pose, but different illuminations. Then from (6):

Δ log X(j) = log s2(j) − log s1(j) ≡ ds(j) (8)

In other words, the difference between these logarithm-transformed images is not
a function of face albedo. As before, due to the smoothness of faces, as the pose
of the subject varies the difference-of-logs vector ds describes a manifold in the
corresponding embedding vector space. These is the Shape-Illumination manifold
(SIM) corresponding to a particular pair of video sequences, see Fig. 1 (b).

The Generic SIM: A crucial assumption of our work is that the Shape-
Illumination Manifold of all possible illuminations and head poses is generic
for human faces (gSIM). This is motivated by a number of independent results
reported in the literature that have shown face shape to be less discriminating
than albedo across different models [11, 20] or have reported good results in syn-
thetic reillumination of faces using the constant-shape assumption [34]. In the
context of face manifolds this means that the effects of illumination and shape
can be learnt offline from a training corpus containing typical modes of pose and
illumination variation.

It is worth emphasizing the key difference in the proposed offline learning from
previous approaches in the literature which try to learn the albedo of human
faces. Since offline training is performed on persons not in the online gallery, in
the case when albedo is learnt it is necessary to have means of generalization i.e.
learning what possible albedos human faces can have from a small subset. In [34],
for example, the authors demonstrate generalization to albedos in the rational
span of those in the offline training set. This approach is not only unintuitive, but
also without a meaningful theoretical justification. On the other hand, previous
research indicates that illumination effects can be learnt directly without the
need for generalization [3].

Training data organization: The proposed AFR method consists of two train-
ing stages – a one-time offline learning performed using offline training data and
a stage when gallery data of known individuals with associated identities is col-
lected. The former (explained next) is used for learning the generic face shape
contribution to face appearance under varying illumination, while the latter is
used for subject-specific learning.

4.1 Offline Stage: Learning the Generic SIM (gSIM)

Let X(j,k)
i be the i-th face of the j-th person in the k-th illumination, same in-

dexes corresponding in pose, as ensured by the proposed reillumination algorithm
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Fig. 5. Learning complex illumination effects: Shown is the variation along the 1st
mode of a single PPCA space in our SIM mixture model. Cast shadows (e.g. from the
nose) and the locations of specularities (on the nose and above the eyes) are learnt as
the illumination source moves from directly overhead to side-overhead.

in §3.1. Then from (8), samples from the generic Shape-Illumination manifold
can be computed by logarithm-transforming all images and subtracting those
corresponding in identity and pose:

d = log X(j,p)
i − log X(j,q)

i (9)

Provided that training data contains typical variations in pose and illumination
(i.e. that the p.d.f. confined to the generic SIM is well sampled), this becomes a
standard statistical problem of high-dimensional density estimation. We employ
the Gaussian Mixture Model (GMM). In the proposed framework, this represen-
tation is motivated by: (i) the assumed low-dimensional manifold model (1), (ii)
its compactness and (iii) the existence of incremental model parameter estima-
tion algorithms (e.g. [21]).

Briefly, we estimate multivariate Gaussian components using the Expectation
Maximization (EM) algorithm [12], initialized by k-means clustering. Automatic
model order selection is performed using the well-known Minimum Description
Length criterion [12] while the principal subspace dimensionality of PPCA com-
ponents was estimated from eigenspectra of covariance matrices of a diagonal
GMM fit, performed first. Fitting was then repeated using a PPCA mixture. We
obtained 12 components, each with a 6D principal subspace. Fig. 5 shows an
example of subtle illumination effects learnt with this model.

4.2 Robust Likelihood for Novel Sequence Classification

Let gallery data consist of sequences {Xi}1, . . . , {Xi}N , corresponding to N in-
dividuals, {Xi}0 be a novel sequence of one of these individuals and G (x;Θ)
a Mixture of Probabilistic PCA corresponding to the generic SIM. Using the
reillumination algorithm of §3.1, the novel sequence can be reilluminated with
each from the gallery, producing samples {di}, assumed identically and inde-
pendently distributed, from a postulated subject-specific SIM. We compute the
probability of these observations under G (x;Θ):

pi = G (di;Θ) (10)

Instead of classifying {Xi}0 using the likelihood given the entire set of obser-
vations {di}, we propose a more robust measure. To appreciate the need for
robustness, consider the histograms in Fig. 6 (a). It can be observed that the
probability of the most similar faces in an inter-personal comparison, in terms
of (10), approaches that of the most dissimilar faces in an intra-personal com-
parison (sometimes even exceeding it). This occurs when the correct gallery
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Fig. 6. (a) Histograms of intra-personal likelihoods across frames of a sequence when
two sequences compared correspond to the same (red) and different (blue) people. (b)
Recognition rate as a function of the number of frames deemed ‘reliable’.

Algorithm 1: Offline training Algorithm 2: Recognition (online)

Input: database of sequences {Xi}j Input: sequences {Xi}G, {Xi}N

Output: model of gSIM G (d;Θ) Output: same-identity likelihood ρ

1: gSIM iteration 1: Reilluminate using {Xi}G

for all j, k {Yi}N = reilluminate
({Xi}N

)
2: Reilluminate using {Xi}k 2: Postulated SIM samples

{Yi}j = reilluminate
({Xi}j

)
di = log XN

i − log YN
i

3: Add gSIM samples 3: Compute likelihoods of {di}
D = D

⋃
({Yi}j − {Xi}j) pi = G (di;Θ)

4: Computed gSIM samples 4: Order {di} by likelihood
end for ps(1) ≥ · · · ≥ ps(N) ≥ . . .

5: GMM G from gSIM samples 5: Inter-manifold similarity ρ

G (d;Θ) =EM GMM(D) ρ =
∑N

i=1 log ps(i)/N

Fig. 7. A summary of the proposed offline learning and recognition algorithms

sequence contains poses that are very dissimilar to even the most similar ones
in the novel sequence, or vice versa (note that small dissimilarities are extrapo-
lated well from local manifold structure in (5)). In our method, the robustness
to these, unseen modes of pose variation is achieved by considering the mean
log-likelihood given only the most probable faces. In our experiments we used the
top 15% of faces, but we found the algorithm to exhibit little sensitivity to the
exact choice of this number, see Fig. 6 (b). A summary of proposed algorithms
is shown in Fig. 7.
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5 Empirical Evaluation

Methods in this paper were evaluated on three databases:

– FaceDB100, with 100 individuals of varying age and ethnicity, and equally
represented genders. For each person in the database we collected 7 video
sequences of the person in arbitrary motion (significant translation, yaw
and pitch, negligible roll), each in a different illumination setting, see [2, 3]
and Fig. 8, at 10fps and 320× 240 pixel resolution (face size ≈ 60 pixels).

– FaceDB60, kindly provided to us by Toshiba Corp. This database contains
60 individuals of varying age, mostly male Japanese, and 10 sequences per
person. Each sequence corresponds to a different illumination setting, at
10fps and 320× 240 pixel resolution (face size ≈ 60 pixels), see [2].

– FaceVideoDB, freely available and described in [19]. Briefly, it contains 11
individuals and 2 sequences per person, little variation in illumination, but
extreme and uncontrolled variations in pose and motion, acquired at 25fps
and 160× 120 pixel resolution (face size ≈ 45 pixels).

Data acquisition: The discussion so far focused on recognition using fixed-
scale face images. Our system uses a cascaded detector [42] for localization of
faces in cluttered images, which are then rescaled to the unform resolution of
50× 50 pixels (approximately the average size of detected faces).

Methods and representations: We compared the performance of our recogni-
tion algorithm with and without the robust likelihood of §4.2 (i.e. using only the
most reliable vs. all detected faces) to that of:

– State-of-the-art commercial system FaceIt� by Identix [22] (the best per-
forming software in the most recent Face Recognition Vendor Test [33]),

– Constrained MSM (CMSM) [16] used in a state-of-the-art commercial system
FacePass� [41],

– Mutual Subspace Method (MSM) [16], and
– KL divergence-based algorithm of Shakhnarovich et al. (KLD) [35].

In all tests, both training data for each person in the gallery, as well as test data,
consisted of only a single sequence. Offline training of the proposed algorithm
was performed using 20 individuals in 5 illuminations from the FaceDB100 – we

(a) FaceDB100

(b) FaceDB60

Fig. 8. Different illumination conditions in databases FaceDB100 and FaceDB60



Face Recognition from Video Using the Generic SIM 37

emphasize that these were not used as test input for the evaluations reported in
this section. The methods were evaluated using 3 face representations:

– raw appearance images X,
– Gaussian high-pass filtered images – already used for AFR in [4, 14]:

XH = X − (X ∗ Gσ=1.5), (11)

– local intensity-normalized high-pass filtered images – similar to the Self Quo-
tient Image [43]:

XQ = XH/(X − XH), (12)

the division being element-wise.

5.1 Results

A summary of experimental results is shown in Table 1. The proposed algo-
rithm greatly outperformed other methods, achieving a nearly perfect recogni-
tion (99.7+%) on all 3 databases. This is an extremely high recognition rate
for such unconstrained conditions, small amount of training data per gallery
individual and the degree of illumination, pose and motion pattern variation be-
tween different sequences. This is witnessed by the performance of Simple KLD
method which can be considered a proxy for gauging the difficulty of the task,
seeing that it is expected to perform well if imaging conditions are not greatly
different between training and test [35]. Additionally, it is important to note the
excellent performance of our algorithm on the Japanese database, even though
offline training was performed using Caucasian individuals only.

As expected, when plain likelihood was used instead of the robust version
proposed in §4.2, the recognition rate was lower, but still significantly higher than
that of other methods. The high performance of non-robust gSIM is important as
an estimate of the expected recognition rate in the “still-to-video” scenario of the
proposed method. We conclude that the proposed algorithm’s performance seems
very promising in this setup as well. Finally, note that the standard deviation
of our algorithm’s performance across different training and test illuminations is
much lower than that of other methods, showing less dependency on the exact
imaging conditions used for data acquisition.

Table 1. Average recognition rates (%) and their standard deviations (if applicable)

gSIM, rob. gSIM FaceIt CMSM MSM KLD

F
ac

e
D

B
10

0 X 99.7/0.8 97.7/2.3 64.1/9.2 73.6/22.5 58.3/24.3 17.0/8.8
XH – – – 85.0/12.0 82.8/14.3 35.4/14.2
XQ – – – 87.0/11.4 83.4/8.4 42.8/16.8

F
ac

e
D

B
60

X 99.9/0.5 96.7/5.5 81.8/9.6 79.3/18.6 46.6/28.3 23.0/15.7
XH – – – 83.2/17.1 56.5/20.2 30.5/13.3
XQ – – – 91.1/8.3 83.3/10.8 39.7/15.7

F
ac

e
V

id
eo

D
B X 100.0 91.9 91.9 91.9 81.8 59.1

XH – – – 100.0 81.8 63.6
XQ – – – 91.9 81.8 63.6
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Representations: Both the high-pass and even further Self Quotient Image
representations produced an improvement for all methods over raw grayscale.
This is consistent with previous findings in the literature [1, 4, 14, 43].

Unlike in previous reports of performance evaluation of these filters, we also
ask the question of when they help and how much in each case. To quantify
this, consider “performance vectors” sR and sF , corresponding to respectively
raw and filtered input, whose each component is equal to the recognition rate
of a method on a particular training/test data combination. Then the vector
ΔsR ≡ sR − sR contains relative recognition rates to its average on raw input,
and Δs ≡ sF − sR the improvement with the filtered representation. We then
considered the angle φ between vectors ΔsR and Δs, using both the high-pass
and Self Quotient Image representations. In both cases, we found the angle
to be φ ≈ 136◦. This is an interesting result: it means that while on average
both representations increase the recognition rate, they actually worsen it in
“easy” recognition conditions. The observed phenomenon is well understood in
the context of energy of intrinsic and extrinsic image differences and noise (see
[44] for a thorough discussion). Higher than average recognition rates for raw
input correspond to small changes in imaging conditions between training and
test, and hence lower energy of extrinsic variation. In this case, the two filters
decrease the SNR, worsening the performance. On the other hand, when the
imaging conditions between training and test are very different, normalization
of extrinsic variation is the dominant factor and performance is improved.

This is an important observation: it suggests that the performance of a method
that uses either of the representations can be increased further in a straightfor-
ward manner by detecting the difficulty of recognition conditions, see [2].

Imaging conditions: Finally, we were interested if the evaluation results on
our database support the observation in the literature that some illumination
conditions are intrinsically more difficult for recognition than others [36]. An
inspection of the performance of the evaluated methods has shown a remarkable
correlation in relative performance across illuminations, despite the very different
models used for recognition. We found that relative recognition rates across
illuminations correlate on average with ρ = 0.96.

6 Summary and Conclusions

The proposed method for AFR from video has been demonstrated to achieve
a nearly perfect recognition on 3 databases containing extreme illumination,
pose and motion pattern variation, significantly outperforming state-of-the-art
commercial software and methods in the literature.

The main direction for future work is to make a further use of offline train-
ing data, by taking into account probabilities of both intra- and inter-personal
differences confined to the gSIM. This is the focus of our current work. Addi-
tionally, we would like to improve the computational efficiency of the method by
representing each FMM by a strategically chosen set of sparse samples.
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Abstract. We develop new mathematical results based on the spherical har-
monic convolution framework for reflection from a curved surface. We derive
novel identities, which are the angular frequency domain analogs to common
spatial domain invariants such as reflectance ratios. They apply in a number of
canonical cases, including single and multiple images of objects under the same
and different lighting conditions. One important case we consider is two differ-
ent glossy objects in two different lighting environments. Denote the spherical
harmonic coefficients by Blight,material

lm , where the subscripts refer to the spher-
ical harmonic indices, and the superscripts to the lighting (1 or 2) and object
or material (again 1 or 2). We derive a basic identity, B1,1

lm B2,2
lm = B1,2

lm B2,1
lm ,

independent of the specific lighting configurations or BRDFs. While this paper
is primarily theoretical, it has the potential to lay the mathematical foundations
for two important practical applications. First, we can develop more general al-
gorithms for inverse rendering problems, which can directly relight and change
material properties by transferring the BRDF or lighting from another object or
illumination. Second, we can check the consistency of an image, to detect tam-
pering or image splicing.

1 Introduction

Recent work by Basri and Jacobs [2], and Ramamoorthi and Hanrahan [15] has shown
that the appearance of a curved surface can be described as a spherical convolution
of the (distant) illumination and BRDF. This result often enables computer vision al-
gorithms, previously restricted to point sources without attached shadows, to work in
general complex lighting. Many recent articles have explored theoretical and practical
applications for Lambertian surfaces (e.g., [1, 16]). However, there has been relatively
little work in vision on using the convolution formulae for general glossy objects.

The main goal of this paper is to derive new formulae and identities for direct fre-
quency domain spherical (de)convolution. As with most previous work in the area, we
assume curved homogeneous objects (single BRDF) of known shape lit by complex
distant illumination, and neglect cast shadows and interreflections. As explained in
section 2, we also assume the BRDF is radially symmetric, which is a good approx-
imation for most specular reflectance. A first example of our framework (section 3.1) is
illumination estimation from a single image of a glossy material with known BRDF. By
the convolution theorem, a glossy material will reflect a blurred version of the lighting.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 41–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. One application of our framework. We are given real photographs of two objects of known
geometry (shown in inset; note that both objects can be arbitrary, and one of them is a sphere
here only for convenience). The two objects have different (and unknown) diffuse and specular
material properties. Both objects are present in the first image under complex lighting, but the
cat is not available in the second image, under new lighting. Unlike previous methods, none of
the lighting conditions or BRDFs are known (lightings on left shown only for reference). Our
method enables us to render or relight the cat, to obtain its image in lighting 2 (compare to actual
shown on the right). This could be used for example to synthetically insert the cat in the second
image.

It is appealing to sharpen or deconvolve this by dividing in the frequency domain by
the spherical harmonic coefficients of the BRDF. The basic formula is known [15], but
cannot be robustly applied, since BRDF coefficients become small at high frequencies.
Our first contribution is the adaptation of Wiener filtering [4, 11] from image processing
to develop robust deconvolution filters (figures 2 and 5).

Deconvolution can be considered a particular case, involving a single image of an
object with known reflectance in unknown lighting. In this paper, we study single
(section 3) and multiple (section 4) images under single and multiple lighting condi-
tions. Our main contribution is the derivation of a number of novel frequency domain
identities. For example, one important case we consider (section 4.3) is that of two dif-
ferent glossy1 materials in two different lighting environments. Denote the spherical
harmonic coefficients by Blight,material

lm , where the subscripts refer to the harmonic
indices, and the superscripts to the lighting (1 or 2) and object or material (again
1 or 2). We derive an identity for the specular component, B1,1

lm B2,2
lm = B1,2

lm B2,1
lm ,

directly from the properties of convolution, independent of the specific lightings
or BRDFs.

We show (section 4.4) that this and a related class of identities can be considered the
frequency domain analog of fundamental spatial domain invariants, such as reflectance
ratios (Nayar and Bolle [13]) or photometric invariants (Narasimhan et al. [12]).

1 Parts of the theory (in sections 3.2 and 4) address only purely specular (or purely Lambertian)
objects. However, as discussed in the paper and shown in our results, the theory and algorithms
can be adapted in practice to glossy objects having both diffuse and specular components.
Hence, we use the term “glossy” somewhat loosely throughout the paper.
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This paper is motivated by two important practical applications. The first is inverse
rendering [10, 15]. Besides estimation of lighting and BRDFs, we also develop more
general algorithms, which directly relight and change material properties by transfer-
ring the BRDF or lighting from another object or illumination. For example, our iden-
tity above enables us to render the fourth light/BRDF image (say B2,2

lm ), given the other
three, without explicitly estimating any lighting conditions or BRDFs. A common ex-
ample (figure 1) is when we observe two objects in one lighting, and want to insert the
second object in an image of the first object alone under new lighting.

The second, newer application, is to verify image consistency and detect tampering
(Johnson and Farid [7], Lin et al. [8]). The widespread availability of image processing
tools enables creation of “forgeries” such as splicing images together (one example is
shown in figure 6). Most previous work has focused on checking consistency at a signal
or pixel level, such as the camera response [8], or wavelet coefficients (Ng et al. [14]).
However, (in)consistencies of lighting and shading also provide valuable clues. This
paper takes an important first step in laying theoretical foundations for this new area.

2 Background

We now briefly introduce the spherical convolution and signal-processing frame-
work [2, 15] needed for our later derivations. We start with the Lambertian case,

B(n) =
∫

S2
L(ω)max(n · ω, 0) dω, (1)

where B(n) denotes the reflected light as a function of the surface normal. B is pro-
portional to the irradiance (we omit the albedo for simplicity), and L(ω) is the incident
illumination. The integral is over the sphere S2, and the second term in the integrand
is the half-cosine function. The equations in this paper do not explicitly consider color;
the (R,G,B) channels are simply computed independently.

A similar mathematical form holds for other radially symmetric BRDFs, such as the
Phong model for specular materials. In this case, we reparameterize by the reflected
direction R (the reflection of the viewing ray about the surface normal), which takes
the place of the surface normal:

B(R) =
s + 1
2π

∫
S2

L(ω)max(R · ω, 0)s dω, (2)

where s is the Phong exponent, and the BRDF is normalized (by (s + 1)/2π).
If we expand in spherical harmonics Ylm(θ, φ), using spherical coordinates ω =

(θ, φ), n or R = (α, β), and ρ(θ) for the (radially symmetric) BRDF kernel, we obtain

L(θ, φ) =
∞∑

l=0

l∑
m=−l

LlmYlm(θ, φ) B(α, β) =
∞∑

l=0

l∑
m=−l

BlmYlm(α, β) ρ(θ) =
∞∑

l=0

ρlYl0(θ).

(3)
It is also possible to derive analytic forms for common BRDF filters ρ. For the
Lambertian case, almost all of the energy is captured by l ≤ 2. For Phong and
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Torrance-Sparrow, good approximations [15] are Gaussians: exp[−l2/2s] for Phong,
and exp[−(σl)2] for Torrance-Sparrow, where σ is the surface roughness parameter.

In the frequency domain, the reflected light B is given by a simple product formula
or spherical convolution (see [2, 15] for the derivation and an analysis of convolution),

Blm = ΛlρlLlm = AlLlm (4)

where for convenience, we define Al and the normalization constant Λl as

Λl =

√
4π

2l + 1
Al = Λlρl. (5)

The remainder of this paper derives new identities and formulae from equation 4,
Blm = AlLlm. Practical spherical harmonic computations are possible from only a sin-
gle image, since a single view of a sufficiently curved object (assuming a distant viewer)
sees all reflected directions. Most glossy BRDFs (such as Torrance-Sparrow) are ap-
proximately radially symmetric, especially for non-grazing angles of reflection [15].
Most of the theory in this paper also carries over to general isotropic materials, if we
consider the entire light field, corresponding to multiple views [9].

3 Theoretical Analysis: Single Image of One Object

We develop the theory for the simplest case of a single image of one object in this
section, with multiple objects and lighting conditions discussed later in section 4.

3.1 Known BRDF: Deconvolution to Estimate Lighting

We start by considering a known BRDF, where we want to determine the lighting. Given
a single image of a curved surface, we can map local viewing directions to the reflected
direction, determining B(R), and then Blm by taking a spherical harmonic transform.
If the material includes a diffuse component, we use the dual lighting estimation algo-
rithm [15], which finds the specular Blm consistent with the diffuse component. As per
equation 4, Blm will be a blurred version of the lighting, filtered by the glossy BRDF.

From equation 4 in the spherical harmonic domain, we derive

Llm =
Blm

Al
= Al

−1Blm, (6)

where the last identity makes explicit that we are convolving with a new radially sym-
metric kernel A−1

l , which can be called the inverse, sharpening or deconvolution filter.
Unfortunately, it is difficult to apply equation 6 directly, since Al in the denominator

will become small for high frequencies, or alternatively the inverse filter A−1
l will be-

come very large. This will lead to substantial amplification of noise at high frequencies.
These types of problems have been well studied in image processing, where a number

of methods for deconvolution have been proposed. We adapt Wiener filtering [4, 11]
for this purpose. Specifically, we define a new inverse filter,

A∗
l =

1
Al

( |Al|2
|Al|2 +K

)
=

Al

|Al|2 +K
Llm = Al

∗Blm, (7)
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Fig. 2. Deconvolution filter in the angular (a), and frequency (b) domains. The combined effect
(multiplication in the frequency domain) of Phong and deconvolution filters is in (c).

where K is a small user-controlled constant. When |Al|2� K , the expression in paren-
theses on the left is close to 1, and A∗

l ≈ A−1
l . When |Al|2� K , A∗

l ≈ Al/K .
Figure 2 shows a deconvolution filter A∗

l in the angular (a) and frequency (b) do-
mains. The convolution of this filter with the original Phong filter (blue graph in c) lets
through most frequencies without attenuation, while filtering out the very high frequen-
cies. Figure 5 shows an application of deconvolution with real images and objects.

3.2 Known Lighting: Identity Obtained by Eliminating the BRDF

We now consider the converse case, where the lighting is known, but the BRDF is not.
We will eliminate the BRDF to derive an identity that must hold and can be checked
independent of the BRDF. This is the first of a number of frequency domain identities
we will derive in a similar fashion. First, from equation 4, we can write

Al =
Blm

Llm
. (8)

This expression could be used to solve for BRDF coefficients.2 However, we will use
it in a different way. Our key insight is that the above expression is independent of m,
and must hold for all m. Hence, we can eliminate the (unknown) BRDF Al, writing

Bli

Lli
=

Blj

Llj
(9)

for all i and j. Moving terms, we obtain our first identity,

BliLlj −BljLli = 0. (10)

In effect, we have found a redundancy in the structure of the image, that can be used
to detect image tampering or splicing. The lighting L and image B are functions on a
2D (spherical) domain. However, they are related by a 1D radially symmetric BRDF,
leading to a 1D redundancy, that can be used for consistency checking in equation 10.

To normalize identities in a [0...1] range, we always use an error of the form

Error =
| BliLlj −BljLli |
| BliLlj | + | BljLli | .

2 Since natural lighting usually includes higher frequencies than the BRDF, we can apply equa-
tion 8 directly without regularization, and do not need to explicitly discuss deconvolution.
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Fig. 3. Left: The synthetic images used. These correspond to closeups of specular spheres ren-
dered with “ECCV” and “ICCV” lighting. To the naked eye, the two images look very simi-
lar. Middle and Right: The graphs show that our identity can clearly distinguish consistent
image/lighting pairs (lower line) from those where lighting and image are inconsistent (upper
line).

There are many ways one could turn this error metric into a binary consistency checker
or tamper detector. Instead of arbitrarily defining one particular approach, we will show
graphs of the average normalized error for each spherical harmonic order.

Figure 3 applies our theory to synthetic data of an ideal Phong BRDF, with noise
added. We show closeups of (a rectangular region in) spheres generated with “ECCV”
and “ICCV” lighting. To the naked eye, these look very similar, and it is not easy to de-
termine if a given image is consistent with the lighting. However, our identity in equa-
tion 10 clearly distinguishes between consistent (i.e., the image is consistent with the
lighting [ECCV or ICCV] it is supposed to be rendered with) and inconsistent illumi-
nation/image pairs. As compared to Johnson and Farid [7], we handle general complex
illumination. Moreover, many of the identities in later sections work directly with im-
age attributes, not even requiring explicit estimation or knowledge of the illumination
(though we still require known geometry, and assume homogeneous materials.)

Our framework could be used to blindly (without watermarking) detect tampering of
images, making sure a given photograph (containing a homogeneous object of known
shape) is consistent with the illumination it is captured in.3 To the best of our knowl-
edge, ours is the first theoretical framework to enable these kinds of consistency checks.
Example applications of tamper detection on real objects are shown in figures 4 and 6.

3.3 Combining Diffuse and Specular

We now consider the more general case of an unknown glossy BRDF with both specular
and Lambertian (diffuse) reflectance. To our knowledge, this is the first such combined
diffuse plus specular theory of the single image case.

3 Our identities are “necessary” conditions for image consistency, under our assumptions and
in the absence of noise. They are not theoretically “sufficient.” For example, if an unusual
material were to zero out a certain frequency, tampering at that frequency may go unde-
tected. Also note that noise tends to add high frequencies, while materials tend to filter out
high frequencies, causing the consistency errors to rise (become less reliable) with harmonic
order.
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Common Parameterization: While both diffuse and specular components are radially
symmetric, they are so in different parameterizations (normal vs reflected direction).
Hence, we first express the diffuse irradiance in the reflected parameterization,

Blm = KdDlm + Aspec
l Llm, (11)

where Dlm are the spherical harmonic coefficients of the irradiance written in the re-
flected parameterization4. They depend only on the lighting, which is assumed known,
and are small [9] for | m |> 2. The parameters of reflectance are the diffuse coefficient
Kd and the specular BRDF filter coefficients Al (we drop the superscript from now on).

Determining Al and Image Consistency: For example, we can now eliminate Kd,

Bli −AlLli

Dli
=

Blj −AlLlj

Dlj
=⇒ Al =

BliDlj −BljDli

LliDlj − LljDli
. (12)

This can be used to directly estimate the specular BRDF coefficients, irrespective of
the diffuse coefficient Kd. As a sanity check, consider the case when Kd = 0. In this
case, Bli = AlLli, so the expression above clearly reduces to Al. Hence, equation 12
can be considered a new robust form of reflectance estimation that works for both purely
specular and general glossy materials. Further note that we estimate an accurate non-
parametric BRDF representation specified by general filter coefficients Al.

Since the formula above is true for all i, j, we get an identity for image consistency.
An application to detect splicing for a real object is shown in the left graph of figure 6.

BliDlj −BljDli

LliDlj − LljDli
=

BlmDln −BlnDlm

LlmDln − LlnDlm
. (13)

4 Theoretical Analysis: Two Materials and/or Lighting Conditions

Section 3 analyzed the single object, single image case. In this section5, we first consider
two different objects (with different materials) in the same lighting. Next, we consider
one object imaged in two different lighting conditions. Then, we consider the two light-
ing/two BRDF case corresponding to two images (in different lighting conditions), each
of two objects with distinct BRDFs. Finally, we discuss some broader implications.

4.1 Two Objects/BRDFs: Same Lighting

We consider a single image (hence in the same lighting environment) of two objects,
with different BRDFs. Let us denote by superscripts 1 or 2 the two objects,

4 Dlm depend linearly on lighting coefficients Llm as Dlm ≈ ∑2
n=0 ALamb

n LnmTlmn, with
Tlmn =

∫
S2 Ynm(α

2 , β)Y ∗
lm(α, β) dΩ. The α/2 in the first term converts from normal to

reflected parameterization. The coefficients Tlmn can be determined analytically or numeri-
cally [9].

5 This section will primarily discuss the purely specular case. For consistency checking, we have
seen that in the reflective reparameterization, the diffuse component mainly affects frequencies
Dlm with | m |≤ 2. Therefore, it is simple to check the identities for | m |> 2. Diffuse
relighting is actually done in the spatial domain, as discussed in section 4.4. Section 5 provides
experimental validation with objects containing both diffuse and specular components.
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B1
lm = A1

l Llm B2
lm = A2

l Llm. (14)

From these, it is possible to eliminate the lighting by dividing,

B2
lm

B1
lm

=
A2

l

A1
l

= γl. (15)

We refer to γl as the BRDF transfer function. Given the appearance of one object
in complex lighting, multiplication of spherical harmonic coefficients by this function
gives the appearance of an object with a different material. γl is independent of the
lighting, and can be used in any (unknown) natural illumination. Also note that γl is
independent of m, so we can average over all m, which makes it robust to noise—
in our experiments, we have not needed explicit regularization for the frequencies of
interest. Moreover, we do not need to know or estimate the individual BRDFs.

It is also possible to use these results to derive a frequency space identity that depends
only on the final images, and does not require explicit knowledge of either the lighting
condition or the BRDFs. We know that equation 15 should hold for all m, so

B2
li

B1
li

=
B2

lj

B1
lj

=⇒ B2
liB

1
lj −B1

liB
2
lj = 0. (16)

This identity can be used for consistency checking, making sure that two objects in an
image are shaded in consistent lighting. This enables detection of inconsistencies, where
one object is spliced into an image from another image with inconsistent lighting. As
with equation 10, the images B are 2D functions, but related by a 1D radially symmetric
BRDF, leading to redundancies in the spherical harmonic coefficients.

Finally, note that the single image identity (equation 10) is a special case of equa-
tion 16, where one of the objects is simply a mirror sphere (so, for instance, B1 = L).

4.2 Two Lighting Environments: Same Object/BRDF

We now consider imaging the same object in two different lighting environments. Let
us again denote by superscripts 1 or 2 the two images, so that,

B1
lm = AlL

1
lm B2

lm = AlL
2
lm. (17)

Again, it is possible to eliminate the BRDF by dividing,

B2
lm

B1
lm

=
L2

lm

L1
lm

= L
′
lm. (18)

We refer to L
′
lm as the lighting transfer function. Given the appearance of an object in

lighting condition 1, multiplication of spherical harmonic coefficients by this function
gives the appearance in lighting condition 2. L

′
lm is independent of the reflectance or

BRDF of the object. Hence, the lighting transfer function obtained from one object
can be applied to a different object. Moreover, we never need to explicitly compute the
material properties of any of the objects, nor recover the individual lighting conditions.
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The relighting application does not require explicit knowledge of either lighting con-
dition. However, if we assume the lighting conditions are known (unlike the previous
subsection, we need the lighting known here since we cannot exploit radial symmetry
to eliminate it), equation 18 can be expanded in the form of an identity,

B2
lmL1

lm −B1
lmL2

lm = 0. (19)

This identity can be used for consistency checking, making sure that two photographs of
an object in different lighting conditions are consistent, and neither has been tampered.

4.3 Two Materials And Two Lighting Conditions

Finally, we consider the most conceptually complex case, where both the lighting
and materials vary. This effectively corresponds to two images (in different lighting
conditions), each containing two objects of different materials. We will now use two
superscripts, the first for the lighting and the second for the material.

Lighting 1 Lighting 2
BRDF 1 B1,1

lm = A1
l L

1
lm B2,1

lm = A1
l L

2
lm

BRDF 2 B1,2
lm = A2

l L
1
lm B2,2

lm = A2
l L

2
lm

Simply by multiplying out and substituting the relations above, we can verify the basic
identity discussed in the introduction to this paper,

B1,1
lm B2,2

lm = B1,2
lm B2,1

lm = A1
l A

2
l L

1
lmL2

lm, (20)

or for the purposes of consistency checking,

B1,1
lm B2,2

lm −B1,2
lm B2,1

lm = 0. (21)

An interesting feature of this identity is that we have completely eliminated all lighting
and BRDF information. Consistency can be checked based simply on the final images,
without estimating any illuminations or reflectances. Note that if the second object is a
mirror sphere, this case reduces to the two lightings, same BRDF case in equation 19.

Equation 20 also leads to a simple framework for estimation. The conceptual setup
is that we can estimate the appearance of the fourth lighting/BRDF image (without loss
of generality, say this is B2,2

lm ), given the other three, without explicitly computing any
illumination or reflectances. Clearly, this is useful to insert the second object into a pho-
tograph where it wasn’t present originally, assuming we’ve seen both objects together
under another lighting condition. From equation 20, we have

B2,2
lm =

B1,2
lm B2,1

lm

B1,1
lm

(22)

= B1,2
lm (

B2,1
lm

B1,1
lm

) = B1,2
lm L

′
lm (23)

= B2,1
lm (

B1,2
lm

B1,1
lm

) = B2,1
lm γl. (24)
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This makes it clear that we can visualize the process of creating B2,2
lm in two differ-

ent ways. One approach is to start with the same object in another lighting condition
B1,2

lm and apply the lighting transfer function L
′
lm obtained from another object. Al-

ternatively, we start with another object in the same lighting condition, i.e. B2,1
lm and

apply the BRDF transfer function γl. The BRDF transfer function is found from the
image of both objects in lighting condition 1. In practice, we prefer using the BRDF
transfer function (equation 24), since γl is more robust to noise. However, the equa-
tions above make clear that both interpretations are equivalent, following naturally from
equation 20. Since none of the lightings or BRDFs are known, it would be very difficult
to render B2,2

lm with alternative physics-based inverse rendering methods.

4.4 Implications and Discussion

We now briefly discuss some of the broader implications of our theory, and previous
spatial domain identities and invariants analogous to our frequency domain results.

Multiple lighting conditions and BRDFs: Let us consider r lighting conditions and s
BRDFs, instead of assuming r = s = 2, with superscripts i ≤ r and j ≤ s, so that

Bi,j
lm = Aj

l L
i
lm =⇒ Blm = LlmAT

l , (25)

where in the last part, for a given spherical harmonic index (l, m), we regard Blm as an
r× s matrix obtained by multiplying column vectors Llm (r× 1), corresponding to the
lighting conditions, and the transpose of Al (s× 1), corresponding to the BRDFs.

Equation 25 makes it clear that there is a rank 1 constraint on the r × s matrix
Blm. Section 4.3 has considered the special case r = s = 2, corresponding to a 2 × 2
matrix, where the rank 1 constraint leads to a single basic identity (equation 21). In fact,
equation 21 simply states that the determinant of the singular 2× 2 matrix Blm is zero.

Spatial Domain Analog: Equation 25 expresses the image of a homogeneous glossy
material in the frequency domain as a product of lighting and BRDF. Analogously,
a difficult to analyze frequency domain convolution corresponds to a simple spatial
domain product. For example, the image of a textured Lambertian surface in the spatial
domain is a product of albedo ρk and irradiance Ek, where k denotes the pixel.

Bi,j
k = ρj

kEi
k =⇒ Bk = EkρT

k . (26)

These identities enable spatial domain techniques for re-rendering the diffuse com-
ponent (which in our case has constant albedo since the material is homogeneous),
while still using the frequency domain for the specular component.6 We use the spa-
tial domain analogs of equations 20 and 24 to compute the diffuse component of B2,2.

6 We first separate diffuse and specular components by observing that in a parameterization by
surface normals, Blm will have essentially all of its diffuse energy for l ≤ 2, while the specular
energy falls away much more slowly, and therefore mostly resides in l > 2. Since we have
only the front facing normals in a single image, we use fitting to remove the low-frequency
terms with l ≤ 2, and thereby separate diffuse and specular. As expected, this works less well
for the extremes when the specular intensity is very small relative to the diffuse component (in
the limit, a purely Lambertian surface) or vice versa (a purely specular object).
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In this case, the spatial analog of the BRDF transfer function γ in equation 24 simply
corresponds to the ratio of the (in our case uniform) diffuse albedos of the two objects.

Analogies with Previous Spatial Domain Results: While the exact form of, and rank
1 constraint on, equation 26 is not common in previous work, many earlier spatial do-
main invariants and algorithms can be seen as using special cases and extensions.

Reflectance ratios [13] are widely used for recognition. The main observation is
that at adjacent pixels, the irradiance is essentially the same, so that the ratio of im-
age intensities corresponds to the ratio of albedos. Using superscripts for the different
pixels as usual (we do not need multiple super- or any subscripts in this case), we have
B2/B1 = ρ2/ρ1. The analogous frequency domain result is equation 15, corresponding
to the two BRDFs, same lighting case. In both cases, by dividing the image intensities
(spherical harmonic coefficients), we obtain a result independent of the illumination.

Similarly, a simple version of the recent BRDF-invariant stereo work of Davis et
al. [3] can be seen as the two lighting, same BRDF case. For fixed view and point
source lighting, a variant of equation 26 still holds, where we interpret ρj

k as the (spa-
tially varying) BRDF for pixel k and fixed view, and Ei

k as the (spatially varying)
light intensity at pixel k. If the light intensity changes (for the same pixel/BRDF),
we have B2/B1 = E2/E1. The frequency domain analog is equation 18. In both
cases, we have eliminated the BRDF by dividing image intensities or spherical har-
monic coefficients.

Narasimhan et al. [12] also assume point source lighting to derive spatial domain
photometric invariants. By contrast, our frequency domain framework handles general
complex lighting (but is limited to homogeneous objects with known shape, and a global
spherical harmonic analysis as opposed to local pixel operations.) Narasimhan et al. [12]
consider a variant of equation 26 with a summation of multiple terms (such as diffuse
plus specular). For each term, ρ encodes a material property such as the diffuse albedo,
while E encodes illumination and geometric attributes. Their work can be seen as ef-
fectively deriving a rank constraint on B, corresponding to the number of terms. For
diffuse objects, this is a rank 1 constraint, analogous to that in the frequency domain for
equation 25. For diffuse plus specular, this is a rank 2 constraint. They then effectively
use the rank constraint to form determinants that eliminate either material or geome-
try/lighting attributes, as in our frequency domain work. Jin et al. [6] use a similar rank
2 constraint for multi-view stereo with both Lambertian and specular reflectance.

Finally, we note that some of our frequency domain results have no simple spatial
domain analog. For example, the concept of angular radial symmetry does not transfer
to the spatial domain, and there is no known spatial analog of equations 10, 13, and 16.

5 Experimental Validation and Results

We now present some experiments to validate the theory, and show potential applica-
tions. We start with diffuse plus specular spheres in figure 4, since they correspond
most closely with our theory. We then describe results with a complex cat geometry
(figures 1, 5 and 6). All of these results show that the theory can be applied in practice
with real data, where objects are not perfectly homogeneous, there is noise in measure-
ment and calibration, and specular reflectance is not perfectly radially symmetric.
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Fig. 4. Top Left: Experimental setup. Top Middle: Two lightings (shown only for reference)
and images of two glossy (diffuse plus specular) spheres in that lighting. Top Right: We can
accurately render (b1), given (a1,a2,b2), and render (b2), given (a1,a2,b1). Bottom: We tamper
(b2) to generate (c) by squashing the specular highlights slightly in photoshop. While plausible
to the naked eye, all three identities in section 4 clearly indicate the tampering (red graphs).

Experimental Setup: We ordered spheres from http://www.mcmaster.com. The cat
model was obtained at a local craft sale. All objects were painted to have various spec-
ular finishes and diffuse undercoats. While homogeneous overall, small geometric and
photometric imperfections on the objects were visible at pixel scale and contributed
“reflection noise” to the input images. To control lighting, we projected patterns onto
two walls in the corner of a room. We placed a Canon EOS 10D camera in the cor-
ner and photographed the objects at a distance of 2-3m from the corner (see top left of
figure 4). This setup has the advantage of more detailed frontal reflections, which are less
compressed than those at grazing angles. However, frontal lighting also gives us little
information at grazing angles, where the BRDF might violate the assumption of radial
symmetry due to Fresnel effects; we hope to address this limitation in future experi-
ments. To measure the lighting, we photographed a mirror sphere. To measure BRDFs
(only for deconvolution), we imaged a sphere under a point source close to the camera,
determining Al by simply reading off the profile of the highlight, and Kd by fitting to
the diffuse intensity. For all experiments, we assembled high-dynamic range images.

Glossy Spheres: Figure 4 shows the two lighting, two materials case. The top right
shows a relighting application. We assume (b1) is unknown, and we want to synthesize
it from the other 3 lighting/BRDF images (a1,a2,b2). We also do the same for rendering
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Fig. 5. Deconvolution on a real cat image. Left: Geometry estimation, using example-based
photometric stereo (we take a number of images with the cat and example sphere; the sphere is
also used to find the BRDF). Middle: Input image under unknown lighting, and mapping to a
sphere using the surface normals. Right: Closeups, showing the original sphere map, and our
deconvolved lighting estimate on top. This considerably sharpens the original, while removing
noise, and resembles the BRDF*Wiener filter applied to the actual lighting (bottom row).

Fig. 6. Image consistency checking for cat (labels are consistent with figure 1). The tampered
image (c) is obtained by splicing the top half (b1) under lighting 1 and the bottom half (b2) under
lighting 2. Image (c) looks quite plausible, but the splicing is clearly detected by our identities.

(b2) assuming we know (a1,a2,b1). The results are visually quite accurate, and in fact
reduce much of the noise in the input. Quantitatively, the L1 norm of the errors for (b1)
and (b2) are 9.5% and 6.5% respectively. In the bottom row, we tamper (b2) by using
image processing to squash the highlight slightly. With the naked eye, it is difficult to
detect that image (c) is not consistent with lighting 2 or the other spheres. However, all
three identities discussed in the previous section correctly detect the tampering.

Complex Geometry: For complex (mostly convex) known geometry, we can map ob-
ject points to points on the sphere with the same surface normal, and then operate on the
resulting spherical image. Deconvolution is shown in figure 5. We used a sphere painted
with the same material as the cat to aquire both the cat geometry, using example-based
photometric stereo [5] for the normals, and the BRDF (needed only for deconvolution).
Errors (unrelated to our algorithm) in the estimated geometry lead to some noise in the
mapping to the sphere. Our deconvolution method for lighting estimation substantially
sharpens the reflections, while removing much of the input noise.

The cat can also be used directly as an object for relighting/rendering and con-
sistency checking. An example of rendering is shown in figure 1. Note that this is
a very challenging example, since we are using the BRDF transfer function from a
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much lower-frequency material to a higher-frequency one—the blue sphere has a much
broader specular lobe than the green cat. Nevertheless, we see that the results are vi-
sually plausible. Figure 6 illustrates photomontage image tampering, in which the top
half under lighting 1 (b1 in figure 1) is spliced with the bottom half under lighting 2
(b2 in figure 1). While the image (c) looks plausible, the identities for both single and
multiple images clearly detect tampering.

6 Conclusions and Future Work

In this paper, we have derived a set of novel frequency space identities. These identities
often eliminate the lighting and/or BRDF, enabling a new class of inverse rendering al-
gorithms that can relight or change materials by using BRDF/lighting transfer functions.
In the future, similar ideas may be applied to other problems, such as BRDF-invariant
stereo or lighting-insensitive recognition. We would also like to extend our identities
and algorithms to work with textured objects, local patches, and unknown or approxi-
mate geometry. Beyond inverse rendering, our theoretical framework also makes a con-
tribution to the relatively new area of image consistency checking, describing a suite
of frequency domain identities to detect tampering. Finally, we have presented a new
unified view of spatial and frequency domain identities and rank constraints.
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Abstract. We describe a new theoretical approach to Image Process-
ing and Vision. Expressed in mathemetical terminology, in our formalism
image space is a fibre bundle, and the image itself is the graph of a sec-
tion on it. This mathematical model has advantages to the conventional
view of the image as a function on the plane: Based on the new method
we are able to do image processing of the image as viewed by the human
visual system, which includes adaptation and perceptual correctness of
the results. Our formalism is invariant to relighting and handles seam-
lessly illumination change. It also explains simultaneous contrast visual
illusions, which are intrinsically related to the new covariant approach.

Examples include Poisson image editing, Inpainting, gradient domain
HDR compression, and others.

1 Introduction

It is a known fact that the human visual system does change the physical con-
tents (the pixels) of the perceived image. We do not see luminance or color as
they are, measured by pixel values. Higher pixel values do not always appear
brighter, but perceived brightness depends on surrounding pixels. A popular
example is the simultaneous contrast illusion [14, 15], where two identical gray
patches appear different because of different surroundings. As a result of adap-
tation, difference in lightness (perceived brightness) does not equal difference in
pixel value. Some of those effects were already well understood in the general
framework of Land’s Retinex theory [8]. Researchers like Horn [6], Koenderink
[7], and others, have later contributed to the theory. Petitot [18] has proposed
rigorous “neurogeometry” description of visual contours in images based on Rie-
mannian connections.

Following the above authors, we introduce the geometric idea of Image Space
as fibred manifold and provide an understanding on how image processing in
Image Space differs from image processing in the conventional approach, where
images are simply functions on the plane. Compared to [18], we model lightness
perception instead of contours, and we are using general linear connections that
are not Riemannian.

Viewing Image Space as Fibred Manifold allows us to do image processing
on “the image as we see it”, and not on the physical image as function of x, y.
Based on this construction, image processing is invariant with respect to certain
specific changes in pixel values, for example due to change of lighting. A shadow
on the image should not change the result of image processing operations, even

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 56–69, 2006.
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if it changes pixel values. A good edge detection (or face detection) system is
not influenced by change of lighting.

We discuss in detail one example of how this new approach works: Writing
the Laplace equation in terms of connections automatically improves the results
of Poisson image editing [10]. Other examples include Inpainting [2], Gradient
domain high dynamic range compression [5], and the Bilateral filter [13], [4].

2 Image Space as Fibred Manifold

2.1 Motivation

Intuitively, our approach can be described as follows. A grayscale image is not
a collection of pixels, but a collection of “fibres”. Instead of each pixel having
brightness, we have “a mark” on each fibre. The bundle of fibres is “dynamic” in
the sense that we can freely “slide” fibres relative to one-another. This happens
as part of the Retinex-type adaptation of our visual system. Even though the
mark on the fibre (pixel value) remains the same, its relation to the other fibres
is different. This creates the preception of lightness as different from luminance.

On a more rigorous level, we propose to use the mathematical concept of
Fibre Bundle [12], [9]. It assumes no a priori relation among fibres, other than
topological. The relation (comparison between fibres) is added later, when we
introduce a connection. It gives meaning to pixels by making comparison of
lightness possible.

The relation among pixels is to some extent ’added’ by the observer and is
due to both pixel value and adaptation of the visual system. If captured in
appropriate mathematical formalism, this will influence image processing.

The ultimate goal is to be able to do image processing on the internal image
that we see, while actually touching only the physical pixels.

2.2 Image Space

In the traditional approach grayscale images are represented as surfaces in R3:
Pixels are defined by their coordinates x, y in the image plane, and their cor-
responding values z in R+. Thus, the conventional model of image space is
Cartesian product of the image plane and the positive real line of pixel values,
R2×R+. This structure contains two natural projections: For any point in image
space we can immediately say which pixel it is, and what the pixel value is –
according to the two components of the Cartesian product. In this model the
image is a function z = f(x, y), and there is a natural comparison between any
two pixel values: simply z2 − z1. It is customary to assume that brightness of
different pixels can be compared in this way.

However, as noticed in section 2.1, there are examples of same pixel values
appearing different or difference in lightness not equal to difference in pixel value.
Retinex and other adaptation theories are fundamentally based on considering
this difference between pixel values and lightness.
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The fact that the human visual system does not compare pixels by their lumi-
nance alone, suggests that we need a model of image space in which pixel values,
even if well defined, are not comparable a priori. It should be possible to add
comparison or “difference in observed lightness” later, after a given adaptation.

We propose a model that replaces the Cartesian product structure of Image
Space with a Fibred Space structure (see also [7]). The new structure is “weaker”
because it “forgets” (in the mathematical sense) one of the projections (on z).
In this paper we will show on several examples how this fibred space structure
can be useful. Intuitively, the new structure is essentially a Cartesian product
with one of the projections relaxed. By having the freedom of introducing this
projection later (based on the concept of connection) we gain control on effects
of adaptation.

This situation is similar to the model of space-time in classical mechanics [9].
There is a natural projection on time, in the sense that all observers have one
absolute time. For example, they can synchronize their watches.

However, there is no natural projection onto space. One observer thinks that
a given object does not move: It is always “here”, in the sense that projection
onto space is giving the same location at any time. However, another observer
who passes by in a car would see that this same object moving. It projects onto
different locations in space throughout time. Projection onto space is different
for different observers!

In this way, space-time in classical mechanics is not simply a Cartesian product
of space and time. Space in mechanics is relative, it depends on how we define
the second projection. Time is absolute. Space acts like our “fibres” in images
- it depends on the frame of reference or, which is the same, on the observer.
Current pixel values are simply one possible set of coordinates for the image, like
the coordinates of objects relative to one particular observer (in a given moving
car). Other pixel values may describe the same mental image.

To continue the analogy, velocity in mechanics is like perceived gradients in
images. It is different from the point of view of different observers, just like
perceived image gradient depends on the state of adaptation of the observer.

2.3 Fibred Space

By definition [12], a Fibred Space (E, π, B) consists of two spaces: total space
E and base space B, and a mapping π, called projection, of the total space onto
the base. Space B has lower dimension than E, so many E points map to the
same B point, as shown in Figure 1.

In our model of grayscale images the total space is R3, the base is the image
plane, and π gives us the location of each pixel in the image plane. There is no
mapping that would give us the grayscale value of lightness for a pixel.

For each point p ∈ B there is the so-called fibre (Fp in Figure 2) in E, consist-
ing of all points that are sent to p by π (definition of fibre). We cannot compare
the lightness of two points from different fibres because in the mathematical
structure there is no mapping that would produce that lightness. Each fibre has
its luminance coordinate, but luminances in different fibres are not related.
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Fig. 1. Fibred space (E, π, B)

By definition, a section in a Fibred Space is a mapping f that sends points
in B to E, and has the property π(f(p)) = p for any p ∈ B. See Figure 2.

Fig. 2. Section in fibred space (E, π, B)

A section selects just one of the many points in each fibre. It defines one
manifold (connected set of points) in total space E, with one point in E for each
point in B. Intuitively it is “the closest we can get to the concept of function
without defining a function”.

A grayscale image is a section in a fibred image space (R3, π, R2). Since there
is no projection onto z, there is no comparison between different pixels. As a
result, change in image lightness and directional derivative at a point in image
space is not defined. Pixels are simply records and come without interpretation.
Luminance or pixel value is a perceptually meaningless coordinate.

2.4 Connections

In fibred spaces changes in the section (slopes of the section) are measured by
the so called connection, or covariant derivative (instead of derivative). As the
name suggests, connections show how fibres are “connected” or “glued together”.
Connections are used like derivatives to compare pixel values from different fi-
bres. In Physics [3] the simplest example of such a field is the vector potential
in Electrodynamics.

In order to introduce the definition of connection in a natural way, let us first
consider the gradient when the image is defined traditionally as a function f(x, y)
on the image plane. The gradient is a vector (∂f

∂x , ∂f
∂y ) with two components that

are functions of x, y.
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If the image is defined as a section in a fibred space, the above definition of
gradient does not work because in fibred spaces there is no concept of derivative
or “comparison between different fibres”. Perceptually the situation is similar.
We do not have a sense of comparison between the lightness of different pixels in
the image before assuming some adaptation of the visual system. Pixels are just
“records” without interpretation. In order to compare pixels we need an addi-
tional structure. In our mathematical model this structure is called connection.

A connection on a bundle (E, π, B), where B denotes the image plane, is a
mapping, or a rule, that for any section σ on E produces what is called the x and
y components of the covariant gradient of that section. These components are
also sections. This mapping has certain properties similar to the properties of
the gradient. In order to come up with a natural definition, let’s look again at the
case of functions. If f = f(x, y) and s = s(x, y) are functions on B, the derivative
of the product fs in direction x would be ∂

∂x (fs) = ( ∂
∂xf)s + f ∂

∂xs, which is
known as the Leibniz rule for derivative of a product. A similar expression is
valid for the y derivative.

The concept of connection is a generalization of the above Leibniz rule to the
case of sections. By definition, if D is a connection, Dx(fσ) = ( ∂

∂xf)σ + fDxσ.
Note that the derivative ∂

∂x acts on a function, while the “derivative” acting on
the section is Dx. Similar expression is valid for y.

In our image processing applications, a color picture is a section in a vector
bundle, where each three dimensional fibre is a copy of the vector space of
colors. A connection is “adapted (covariant) gradient of color”, as perceived by
the observer. In other words, it shows how the human visual system in a given
state of adaptation perceives directional change of color.

Any section can be represented as a linear combination of a set of basis sections
σi. In other words, σ = Σf iσi. Summation is assumed over i = 1, 2, 3, and the
coefficients f i are functions. These functions are referred to as color channels
(Photoshop terminology).

By the above definition of connection, Dx and Dy would act on a section
σ = Σf iσi in the following way:

Dxσ = DxΣ(f iσi) = Σ((
∂

∂x
f i)σi + f iDxσi) (1)

Dyσ = DyΣ(f iσi) = Σ((
∂

∂y
f i)σi + f iDyσi) (2)

These expressions simply extend the Leibniz rule for the action of derivatives
on functions to a Leibniz rule for sections. We don’t know what the action on
the basis section σi is, but we know that the result must be again a section,
representable by the basis. So, it is Dxσi = ΣAj

ixσj where Aj
ix is some matrix-

valued function of x and y. Similar for Dy and Aj
iy.

DxΣ(f iσi) = Σ((
∂

∂x
f i)σi + Σf iAj

ixσj) (3)

DyΣ(f iσi) = Σ((
∂

∂y
f i)σi + Σf iAj

iyσj) (4)
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As a matter of notation, often the basis σi is dropped, and we talk of the
section as represented in terms of f i. Then the action of the connection on fi is:

Dxf i =
∂

∂x
f i + ΣAi

jxf j. (5)

Dyf i =
∂

∂y
f i + ΣAi

jyf j . (6)

This expression for the connection, as a replacement of the derivative, will
be our main tool throughout this paper. The rule of thumb is that a connec-
tion Dx, Dy replaces the gradient ∂

∂x , ∂
∂y according to the so called “minimal

substitution”:
∂

∂x
→ Dx =

∂

∂x
+ Ax. (7)

∂

∂y
→ Dy =

∂

∂y
+ Ay . (8)

The expression ∂
∂x + Ax and similar for y is called the covariant derivative, or

perceptual gradient.
In color images Ax and Ay are matrix valued functions of x, y. In grayscale

images Ax and Ay are functions.

Summary of the result to this point: In fibred spaces changes in the section are
measured by a connection, instead of derivative. As the name indicates, connec-
tions show how we compare, or transfer pixel values from one fibre to another, in
other words - how fibres are “connected”. In Physics [3], connections are called
covariant derivatives. A classical example of connection is the Electromagnetic
field, represented by the vector potential A.

We would like to end this section with a perceptual example of how connec-
tions work in images. The image is a section in a fibre bundle, where we have no
a priori comparison between pixel values in different fibres. As such, the image
is a record without any interpretation. Adaptation, expressed as a connection, is
what gives meaning to pixels, making comparisons possible in terms of lightness.

To make this all more intuitive, let’s look at the example. The simultaneous
contrast illusion, Figure 3 shows that humans do not perceive pixel values di-
rectly. (See [14, 15] for a general survey on lightness perception and examples of
illusions.) In the figure there is a constant gray band surrounded by a variable
background. Due to our visual system’s adaptation, the band appears to vary in
lightness in opposition to its surroundings. Pixel gradient is zero, but perceived
or covariant gradient is not zero. The reason why we see change of lightness
in the constant band is the nonzero covariant derivative by which we compare
pixels.

Next we will be working with grayscale images, assuming the generalization
to three color channels is straight forward.

2.5 Covariantly Constant Sections

Following formulas (7) and (8), we will be representing any section by the cor-
responding function, replacing gradients with covariant gradients. Since now we
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Fig. 3. The central rectangle has constant pixel values

have a way to compare pixels and calculate derivatives, we can ask the question:
When is a given section constant?

Any section g(x, y) can be considered constant relative to appropriately chosen
adaptation Ax, Ay, such that ( ∂

∂x + Ax)g = 0, and similar for y. The solution is:

Ax = −1
g

∂g

∂x
(9)

Ay = −1
g

∂g

∂y
(10)

We are considering Retinex-type adaptation of the visual system, in which the
perceived gradient is the covariant derivative. In grayscale images it is described
by a vector field Ax, Ay). When the visual system is exactly adapted to the
image in a given area, so that (9) and (10) are satisfied, we see constant gray
image (or image matching the surrounding color). We call this state complete
adaptation to the image. In practice, due to the unconscious motion of the eyes, a
state of complete adaptation is very difficult to reach. Still, the idea of complete
adaptation will be very useful in the following sections.

3 Test Case 1: Poisson Image Editing

3.1 Equations

It is well known that the Laplace equation 
f = 0 with Dirichlet boundary
conditions is the simplest way to reconstruct (or inpaint) a defective area in an
image. It can be used to remove scratches, wrinkles, or bigger unwanted objects.
Let’s write the derivatives in the Laplacian 
 explicitly:

∂

∂x

∂

∂x
f +

∂

∂y

∂

∂y
f = 0, (11)

After performing the minimal substitution (7), (8), the Laplace equation (11) is
converted into the covariant Laplace equation:

(
∂

∂x
+ Ax)(

∂

∂x
+ Ax)f + (

∂

∂y
+ Ay)(

∂

∂y
+ Ay)f = 0, (12)
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which after performing the differentiation can be written as


f + fdivA + 2A · gradf + A ·Af = 0. (13)

Here the vector function A(x, y) = (Ax(x, y), Ay(x, y)) describes adaptation of
the visual system, and f(x, y) is the function that represents the grayscale image
as a section. The minimal substitution above is equivalent to the transition from
the conventional image model as a function to the new model of the image as a
section on a fibre bundle. The Laplace equation is converted into the covariant
Laplace equation, which is in fact closer to Poisson equation.

Next we assume A represents complete adaptation to a selected area where
the image is a section defined by g(x, y), translated. The solution of (13) would
be smooth if observed with eyes adapted to g(x, y), but the solution will look
like having g(x, y) “imprinted on it” if observed in some other more typical state
of adaptation. Since state of complete adaptation is practically never achieved,
solving (13) is a way of reconstructing some area with texture similar to g. At
the same time this reconstruction is exact as a model of how the adapted visual
system would “solve” the Laplace equation to fill in the selected region.

Notice that now A(x, y) = − gradg
g can be interpreted as playing the role of

the “guidance field” in Poisson image editing [10]. Substituting in equation (13),
we obtain the final form of the covariant Laplace equation:


f

f
− 2

gradf

f
· gradg

g
− 
g

g
+ 2

(gradg) · (gradg)
g2 = 0. (14)

Let’s compare it with the Poisson equation used in [10]:


f = 
g (15)

We see that the covariant Laplace equation is more complicated than (15). It
can be viewed as a Poisson equation with a modified
g term on the “right hand
side”. The structure of the equation prescribed by our model is very specific. It
prescribes the expression 2gradf · gradg

g + f �g
g − 2f (gradg)·(gradg)

g2 as the correct
one to choose as a source term in the modified Poisson equation for seamless
cloning. Equation (15) can be viewed as a simplified approximation.

3.2 Results

One of the practical results of this paper is that the new covariant equation
(14) produces seamless cloning of better quality compared to Poisson editing.
By simple differentiation we can see that (14) is equivalent to:


f

g
= 0 (16)

Equation (16) is easy to solve in 3 steps:
(1) Divide the image f by the texture image g, in which pixel value zero

is replaced with a small number. This produces the first intermediate image
I1(x, y).
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I1(x, y) =
f(x, y)
g(x, y)

(17)

(2) Solve the Laplace equation for the second intermediate image


I2(x, y) = 0, (18)

with Dirichlet boundary conditions defined by I1(x, y) at the boundary of the
reconstruction area.

(3) Multiply the result by the texture image g(x, y)

h(x, y) = I2(x, y)g(x, y), (19)

and substitute the original defective image f(x, y) with the new image h(x, y)
in the area of reconstruction.

A multigrid approach to solving (18) with good performance is described in
[11]. In practical terms, the tool works sufficiently fast for using it in interactive
mode. For example, on a laptop running Windows XP with a 2 GHz Pentium 4
processor, applying a brush of radius 100 pixels takes less than 0.25 seconds to
converge.

We apply the algorithm to fix a scratch in Figure 4. Figure 5 shows a zoom
in, where the areas to clone from and to clone into are indicated.

Figure 6 (left) shows the result of Poisson Cloning by solving (15), and compar-
ison with Covariant cloning based on the proposed method (right). The example
was not selected in any special way. We see that the result is slightly better in
terms of matching the contrast. This behavior is repeated consistently in other
experiments, especially in areas of changing shadows/illumination. Sometimes
the difference between the two methods is big, sometimes - small, but the co-
variant approach is always better.

Another example is taken from [16]. The authors use a version of Poisson
cloning to fuse night and day images so that in a day image we can see clear

Fig. 4. Basilica San Marco, Venice
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Fig. 5. Areas and direction of cloning

Fig. 6. Poisson cloning (left) and Covariant cloning (right)

Fig. 7. Two methods of cloning from the night scene

representation of the night version of the same scene. In Figure 7 the right side
of each image has been modified by cloning from the night image. We see that
Poisson cloning looks blurry, while Covariant cloning looks better.
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4 Test Case 2: Image Inpainting

The method of Inpainting [2] works similar to solving the Laplace equation
to reconstruct the selected area based on the boundaries. However, based on a
higher order PDE related to fluid dynamics the method is able to partially recon-
struct “structure” inside the inpainted area by continuation of the surrounding
grayscale values into the inside. The behavior often resembles fluid flow and
sometimes is not exactly what we want. Later research attempts to also recon-
struct the texture which is extracted from the surroundings using mathematical
results from functional analysis [17].

Figure 8 compares Inpainting (left) with “Structure and texture” Inpainting
[17] (middle) and our new method of Covariant Inpainting. We would like to
thank G. Sapiro and K. Patwardhan for producing the first two pictures. Our
method is equivalent to replacing the derivatives in conventional Inpainting with
covariant derivatives. As in the previous test case, the result is achieved in three
steps. (1) Divide the original image by the texture image. (2) Solve the PDE, in
this case the Inpainting PDE in the selected region. (3) Multiply by the texture
image. We see that our result is better than both previous methods.

Fig. 8. From left to right: Inpainting, Structure and texture inpainting, Covariant
inpainting

5 Test Case 3: Gradient Domain High Dynamic Range
Compression

This section will be a theoretical derivation of previous results. As in previous
sections, the value is in the new theoretical understanding and in showing that
our approach has a wide area of applicability. We will be looking at the invariance
properties of our fibre bundle approach in the case of relighting and adaptation
to the new illumination of the scene.

A central problem in dealing with high dynamic range images (HDR) is how
to display them on a low dynamic range device, like a monitor. Just like scratch
removal, the problem of HDR compression can be expressed in terms of relight-
ing. As an example of how our method works, we will reproduce the results of
one of the best approaches [5] starting from first principles.
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Here is a short review of the algorithm of [5]: Treat only the luminance, f .
Calculate logarithm F = ln f ; find the gradient of it; attenuate big gradients to
reduce dynamic range; then integrate back to get a real image in log space; and
finally take the exponent to produce the output luminance.

The logarithm of luminance is used simply because human visual system is
approximately logarithmic, and not based on theoretical reasons. Our approach
will provide theoretical justification of the use of logarithm.

The authors minimize the following energy written in log-space∫
(

∂

∂x
F −Ax)2 + (

∂

∂y
F −Ay)2dxdy (20)

to produce the Poisson equation


F = divA (21)

for the logarthm of luminance, where A is the attenuated gradient of the log of
the input. “Integrate back” in the above algorithm means “solve (21)”. Without
attenuation, (21) would produce seamless cloning from any image g if A = gradg

g .
We can also write G = ln g and then


F = 
G. (22)

Now, let’s do the same with our approach. The energy expression is written
based on requirements for adaptation invariance. In other words, a multiplicative
shadow/relighting g on the source image produces an additive to Aμ term in such
a way that the new output image is multiplied by the same shadow/relighting.
This simple requirement for energy invariance produces the result (21), (22),
automatically placed in log-space. The transforms are:

f → gf (23)

A→ A− gradg

g
. (24)

The simplest energy expression that has the above invariance can easily be writ-
ten using covariant derivatives:∫ (( ∂

∂x + Ax)f)2 + (( ∂
∂y + Ay)f)2

f2 dxdy. (25)

If we substitute A with − gradg
g , the Euler-Lagrange equation for this energy

would be:

 ln f = 
 ln g, (26)

which is exactly (22). In this way, we have found an invariant under (23), (24)
energy expression that reproduces the results of [5].

Because of the logarithm in our result, we reproduce exactly (22), the same as
[5]. What is the difference in our approach? We did not depend on intuition to



68 T. Georgiev

motivate this use of log space; instead, it comes directly from our mathematical
model based on first principles. This can be seen as theoretical motivation for
using log space in any visual system.

Note that A is adaptation vector field, and it can be more general than gra-
dient of a function. We adapt to what we see, and not to the pixel values of
energy illuminating the retina. Due to these adaptation effects, what we see is
not always representable in pixels or as a picture. In other words, the human
visual system can produce internally things that can not possibly be represented
as a picture (on a monitor or other device).

6 Other Test Cases and Future Research

As future research we are looking into more rigorous application of our approach
to color images, which are naturally represented as sections in vector bundles.
For example, the above Gradient Domain High Dynamic Range Compression [5]
has been applied only on a grayscale image (or the luminance channel), and it
would be useful to see what modifications could we bring with the fibre bundle
approach.

Another test case would be the Bilateral [13] and Trilateral [4] filters, which are
treating Image Space in the spirit of Bundles, filtering both in ’Domain’ (image
plane) direction and in ’Range’ (pixel value) direction. This type of filtering can
be captured in the mathematical formalism of Jet Bundles [12].

But the main idea of our current paper was that we need to use expressions
for the energy based on connections (covariant derivatives) acting on images
as sections, not functions. This could be done in relation to any PDE or other
image processing algorithm, not just the Laplace equation and Inpainting, and
this defines a wide area of research.
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Abstract. We present a method for retexturing non-rigid objects from
a single viewpoint. Without reconstructing 3D geometry, we create real-
istic video with shape cues at two scales. At a coarse scale, a track of the
deforming surface in 2D allows us to erase the old texture and overwrite
it with a new texture. At a fine scale, estimates of the local irradiance
provide strong cues of fine scale structure in the actual lighting environ-
ment. Computing irradiance from explicit correspondence is difficult and
unreliable, so we limit our reconstructions to screen printing — a com-
mon printing techniques with a finite number of colors. Our irradiance
estimates are computed in a local manner: pixels are classified according
to color, then irradiance is computed given the color. We demonstrate
results in two situations: on a special shirt designed for easy retexturing
and on natural clothing with screen prints. Because of the quality of the
results, we believe that this technique has wide applications in special
effects and advertising.

1 Overview

We describe a novel image-based rendering technique to retexture fast-moving,
deforming objects in video while preserving original lighting. Our method uses
simple correspondence reasoning to recover texture coordinates, and color rea-
soning to recover a detailed, dense irradiance estimate. Our retextured images
have textures that appear to be stable on the surface, at spatial scales that can-
not, in fact, be recovered. We believe that our high quality irradiance estimate
is a significant component of the sense of shape that is produced.

Retexturing starts with [3], who demonstrate a method based on shape from
texture. The method is not notably successful, and does not use irradiance es-
timates. Fang and Hart show that, in static images, a local shape from shading
estimate of normals is sufficient to retexture an image patch satisfactorily [2]:
they do not need to estimate irradiance for synthesis because they combine im-
ages multiplicatively. The shape estimate is very weak (shape from shading is
notoriously inaccurate [4, 12]), but sufficient for good results. Several methods
have been proposed to track nonrigid motion [10, 9]. Pilet et al [9] describe a
method to detect the surface deformation using wide-baseline matches between

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 70–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Retexturing Single Views Using Texture and Shading 71

a frontal view and the image to estimate a transformation smoothed using sur-
face energy. This method cannot stabilize texture for three reasons. First, there
are few reliable keypoints in the texture we consider, especially in oblique views.
Second, by using keypoints, the method does not track boundaries — and os-
cillations in the boundary conditions are noticeable in their videos. Third, the
rigid smoothing using surface energy makes their method stiff, and limited in
scope. In addition, they cannot obtain an irradiance estimate — small errors in
their correspondence would make it impossible.

Irradiance estimation is now common in the image-based rendering commu-
nity [1, 7, 11], usually relying on objects of known geometry and albedo. More
recently, Lobay and Forsyth showed that a good irradiance estimate is available
from a repeating texture [7].

Applications: Retexturing is a useful and pleasing image level utility. Retex-
turing clothing has a variety of applications if it can be done cleanly. First, one
could sell the advertising space on the back of a sports-player’s shirt multiple
times — different adverts could be retextured for different television markets.
Second, one could change the clothing of figures in legacy images or footage to
meet modern tastes.

Conceptual advances: A growing theme of modern computer vision is the
number of useful applications that are possible with little or no shape infor-
mation. We show that high quality images can be rendered in realistic lighting
conditions without 3D geometry (Figures 2, 5, 9 and 10). This can be achieved
without high accuracy in localization. Furthermore, we adduce evidence sug-
gesting that good irradiance estimates may be very useful indeed in sustaining
a perception of 3D shape.

Procedure: Our method builds a non-parametric regression estimate of irradi-
ance (Section 2). We then use quite simple correspondence reasoning to obtain
texture coordinates (Section 3) from either a frontal view of the texture or a
known, engineered pattern. This information is then composited using a new
texture map to produce output frames. There is no elastic model of the material
and no dynamical model of correspondence — the video is handled frame by
frame.

2 Lighting Replacement: Modeling Irradiance

Careful estimates of irradiance are very useful, and appear to create a powerful
impression of shape. Their significance for renderings of clothing is probably
due to vignetting, an effect which occurs when a surface sees less light than it
could because other surfaces obstruct the view. The most significant form for
our purposes occurs locally, at the bottom of gutters where most incoming light
is blocked by the sides of the gutters. This effect appears commonly on clothing
and is quite distinctive [5, 6]. It is due to small folds in the cloth forming gutters
and shadows and could not be represented with a parametric irradiance model
unless one had a highly detailed normal map.
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Fig. 1. Many common textured articles are made using screen printing — where each
color is printed in a separate pass. Often, this method is cheaper than using a full color
gamut. Screen printing is widespread: many T-shirts, advertisements, and corporate lo-
gos are composed of a small number of solid colors. Recovering irradiance is easier in this
setting: correspondence to a frontal view of the pattern is not required. Instead, each
color can be detected independently in order to recover irradiance. Because screen print
items are composed of large regions of uniform color, they are robust to motion blur.

However, we do not have and cannot get a detailed normal map or depth map.
Furthermore, as we shall see in Section 3, the estimates of material coordinates
are of limited accuracy. As a result, irradiance estimates that use the mate-
rial coordinates are inaccurate, especially in regions where the albedo changes
quickly. A single pixel error in position on the texture map can, for example,
mean that an image location produced by a dark patch on the shirt is ascribed

Fig. 2. Lighting cues provide a strong sense of shape — with or without a new texture.
Left, an image from a video sequence taken directly from our video camera. Middle,
we remove the texture items by estimating the irradiance and smoothing. Right, a
retextured image. Notice that irradiance estimates capture shape at two scales: the
large folds in the cloth that go through the middle (starting at the arrow, follow the
fold up and to the right) and the finer creases.
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to a light patch on the shirt resulting in a catastrophically inaccurate irradiance
estimate. These errors probably explain why correspondence tracking methods
([9]) do not estimate irradiance or use it to retexture — the correspondence is
not pixel accurate, meaning that irradiance estimation would probably fail.

What we do have is an assumption that the clothing pattern is screen-printed,
using a small set of highly colored dyes in regions of constant color. In this case,
we do not need a formal estimate of irradiance. Instead, at any point in the
image, we need an estimate of what the reference (background) color would
look like, if it appeared at this point. By taking this view, we avoid difficulties
with scaling between pixel values and radiance, for example. We can obtain this
estimate in three steps. First, we build a table that indicates, for each of the
dyes in the screen print, what the reference color looks like in illumination that
produces a given set of image R, G and B values from the dye. Second, at each
image pixel, we determine what (if any) dye is present and use the look-up table
to estimate the appearance of the reference color at that point. Third, we smooth
the resulting field.

2.1 Regressing the Effects of Irradiance

We do not require irradiance: It is sufficient to know what a white patch would
look like when a given dye patch has an observed appearance. This information
can be obtained by regressing from observations. We build one table for each
dye, using the following approach. We use our color classifier (below) to identify
pixels from that dye that lie next to pixels produced by white patches. It is
reasonable to assume that, if the pixels are sufficiently close, they undergo the
same irradiance. We now have a series of examples, linking image RGB of the
dye to image RGB of white. The number of examples is enormous; one might
have 105 or even 106 pixel pairs in a given video. However, some examples may
be inconsistent, and some image RGB values may have no entry.

We obtain a consistent entry for each image RGB value that occurs by identi-
fying the mode of the examples. We now have a table with some missing entries
(where there were no examples). We use a version of Parzen windows to smooth
this table by interpolation.

2.2 What Dye Is Present?

We determine which dye is present with a classifier that quantizes the color of
each pixel to a pre-determined finite set (determined by the user) based on the
pixel’s component colors. The classifier is a set of one-vs-all logistic regressions
on first and second order powers of RGB and HSV. To classify pixels, the max-
imal response from the array of classifiers is selected, except when all classifiers
respond weakly, in which case the pixel is labeled as ambiguous. We do not
attempt to classify pixels close to color boundaries, because blur effects in the
camera can lead to classifier errors. At present, we require the user to click on
each color to train the classifier, but believe that clustering could remove this
step of user intervention.
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2.3 Interpolating, Smoothing, and Blending

We now take the pool of relevant pixels, determine what dye is present and do
a dye specific table lookup using the RGB values as indices. The result is a
representation of what the image would look like at that pixel if the dye had
been white. However, this is not available at every pixel — the classifier might
refuse to classify or the pixel might be close to a color boundary and dangerous
to classify. Missing pixels are interpolated using a Gaussian weight to sum up
nearby pixels, with the variance corresponding to the distance to the nearest
pixel. Our irradiance estimates often have slight errors in color. Observing that
color variations in lighting tend to be low frequency, we heavily smooth the hue
and saturation of the recovered irradiance. (Figure 3). Finally, using the domain
of the texture map (derived below), we combine our lighting estimate with the
original pixels to get a ‘blank’ surface. We replace pixels in the textured region,
blend nearby pixels, then use the original image pixels for the rest of the image
(Figure 2).

Fig. 3. We estimate lighting for each dye independently, throwing away confusing pixels
and boundary regions. Upper left, an un-altered image of a triangle in our pattern
contains strong lighting cues. However, the boundary regions yield conflicting cues:
boundary colors change in somewhat unpredictable ways, hiding the strong lighting
cues. Upper right, the output of our color classifier, run on a per pixel basis. As
noted, colors at edges can be confusing (indicated in gray) or misclassified (notice the
blue pixels at the right tip). Lower left, after eroding each colored region, we extract
lighting cues for each pixel independently. At this stage, there are two problems in
our lighting model: gaps in the irradiance estimates and slight chromatic aberrations.
In the lower right, we interpolate regions using a Gaussian of varying width. To
smooth out chromatic aberrations, we convert to HSV and heavily smooth both hue
and saturation.
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3 Texture Replacement: Computing a Deformation

We need to compute a set of texture coordinates (or, equivalently, material
coordinates) from our observed image. There are two possible strategies. First,
we could engineer a pattern that worked like a map; it would be easy to determine
where a particular color lies in the map, and so we could use the color classifier
outputs to determine which point on the map corresponds to a particular pixel
in the image. Second, we could — at the expense of less precise estimates of
texture coordinates — compare the image to a frontal view of the texture. Both
methods are successful.

3.1 Using a Map

We use a custom printed pattern composed of colored triangles to create high
quality texture mappings. The pattern is designed to ensure that neighborhoods
are unique and easily discriminable. As a result, our method for computing the
planar transformation is essentially local: for each region of image, we compute
a map to the source image, then stitch together these neighborhoods to compute
a complete mapping using nearby transformations to fill in gaps.

Fig. 4. A custom color-printed pattern provides more accurate deformation models.
Our custom pattern is not screen printed, but follows the same model: a discrete
number of colors composed in uniform colored blobs. This pattern creates a grid like
structure over the image and allows us to track many more points than the deform-
ing models we use on natural textures. Our transformations are computed locally —
triangles are individually detected, colors classified, and correspondences computed.
Missing correspondences can cause artifacts in video. On the left a single triangle is
not detected. We interpolate the location of the triangle using a linear estimate based
on the locations of the other triangles (shown as white Xs). In the next frame (right),
the corresponding triangle is detected with a substantially different position — causing
a pop in the video sequence.
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Fig. 5. In some cases, our estimate of the transformation is poor. On the left, vertex
locations for missed triangles were approximated inaccurately. Because our method
does not rely on explicit correspondence to compute an irradiance estimate, the re-
constructed image on the right does not contain obvious artifacts. While the image
appears plausible, the re-textured surface is not physically plausible — the texture and
lighting cues disagree. Again, we point out that irradiance captures shape at multiple
scales: fine creases (follow the black arrow) and larger folds.

Our neighborhood maps are encoded using uniquely colored triangles: we de-
tect triangles independently, use the color to determine the triangle’s identity,
then use a deformable model to localize the vertices — creating an accurate
transformation between domains. When triangles are detected and correspon-
dences computed properly, this process is very accurate: experiments indicate
that typical errors are less than a third of a pixel. Figures 4 and 6 show two
sample frames with point locations. We now obtain detailed texture coordinates
by a bilinear interpolate within each triangle.

3.2 Using Frontal Appearance

While the pattern detection approach in Section 3.1 is compelling, it is some-
what specific to the custom printed pattern. For arbitrary screen print textures,
localization becomes a problem. Instead, we adopt a top-down method to fit
the texture: first, search for the rough shape (Figure 7) then refine the mapping
(Figure 8). We use a triangle mesh to represent the mapping, splitting triangles
as the mapping is refined.

This method has several advantages. First, no region of the pattern needs to
be particularly discriminative; only the pattern as a whole has to be unique.
Second, highly oblique views still exhibit the overall shape and can be detected.
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Fig. 6. Specialized patterns make it possible to track very large numbers of points.
However, such large numbers are not necessary and can even be slightly detrimental:
irradiance estimation becomes difficult because more pixels are classified as edge pixels.
In comparison to Figure 2, the irradiance estimates here are visually less accurate.

Fig. 7. Our method requires a frontal view of the texture (top row) and a target
image (bottom row). We quantize the colors using a color classifier, then compute
a 4×4 color histogram, with separate bins for each color channel. In this case, with
three colors (black, orange and yellow), our descriptor is 4×4×3. We visualize this
descriptor by reconstructing the colors and normalizing appropriately (right). A search
for the descriptor in a subsampled version of the target image reveals the closest match
(bottom right).
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Fig. 8. Our method refines estimates of texture location over scale. Starting with the
output of initialization step (figure 7), we have an axis aligned box that corresponds
roughly to the location. We use gradient descent on blurred versions of the color quan-
tized image to improve the transformation. Iteratively, we refine the number of vertices
(and correspondingly the number of triangles) while reducing the blur to get a better
match. Our final model contains only 16 triangles.

Third, edges are powerful cues in this model: they provide a constraint that is
not easily recorded using point feature correspondences. Fourth, in contrast to
surface energy methods, this method does not have many of the common stiffness
properties. However, the disadvantages of a top-down approach are not insignif-
icant: it is not robust to occlusions and subject to local minima. Practically, this
means that partial views of the surface may not be retextured properly.

Estimating an Initial Correspondence: Our method of fitting proceeds in
two steps: first, estimate the rough location and scale of the logo, then refine
the estimate. Because the quantized image has fewer lighting effects, both stages
are performed on the output of our color classifier, not the original image. To
detect the rough location of the object we use a color histogram with 16 spatial
bins (arranged in a 4 × 4 grid) and the same number of color bins as colors in
the texture, resulting in a histogram of size 4 × 4 × C. Following other work
with histograms [8], we normalize the values, suppress values above 0.2, then
re-normalize. Using the descriptor from the frontal image as a query, we perform
a combinatorial search over scale, location and aspect ratio in a downsampled
version of the target image.

Refining the Transformation: Once the rough transformation has been com-
puted, we refine over scales (Figure 8). At each stage in the refinement, we imple-
ment the same algorithm: blur the color quantized image (giving each quantized
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color its own channel), then run gradient descent over the locations of the ver-
tices using the sum of squared distances between the transformed frontal texture
and the blurred target image. Our model of the transformation is coarse: we start
with a 4 vertex 2 triangle model, then refine to 9 vertices and 8 triangles, and
finally 13 vertices and 16 triangles.

4 Results and Discussion

We have demonstrated the power of retexturing using irradiance on several
videos of deforming non-rigid surfaces, including t-shirts and plastic bags. In
general, results using a map are better: large numbers of correspondences provide
a better replacement texture (Figures 2 and 9). However, our irradiance estima-
tion is robust — meaning that irradiance estimates are correct even when the
texture map is coarse (Figure 10). This is important because irradiance estimates
are a powerful cue to surface shape. As a result, denser maps do not provide bet-
ter estimates of irradiance (Figure 6). Different background colors do not present
a problem: we show results on a shirt with a dark albedo as well (Figure 11).

Our results suggest several areas for future work. First, the local method does
not interpolate missing triangles well, implying that a hybrid approach may be
more effective. Second, our method of interpolating irradiance can be improved:
we believe that using texture synthesis could provide more realistic results.

We interpret our results to indicate that surface energy terms may be unneces-
sary for retexturing. Furthermore, a model that reflects the underlying mechanics
poorly can result in significant correspondence errors. A 2D elastic model has
difficulty managing the very large apparent strains created by folds and occlu-
sions. However, a model that uses the image data itself (without surface energy),
such as the model presented in this paper, is enough to retexture.

Fig. 9. Retexturing is not limited to static images — here we retexture with a ticking
clock. (there are 4 frames between each image) On the left, the white arrow points
to a strong folds that pierces the middle of the clock — giving a strong cure about
surface shape.
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Fig. 10. Retexturing is not limited to clothing. This plastic bag exhibits a significantly
different type of motion from textiles. Since our model does not include a surface de-
formation term, our detection method continues to work well. In addition, our lighting
model can even account for the highlights due to specular reflection.

Fig. 11. Dark albedos present a challenge for our irradiance estimation. The range
of intensities is smaller and there is more noise. Our irradiance estimates are smooth
and have a distinctly different appearance (look closely at the lower left of the logo).
However, the rendered surface is also dark, making errors harder to spot.
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Abstract. Since the precise modeling of reflection is a difficult task,
most feature points trackers assume that objects are lambertian and
that no lighting change occurs. To some extent, a few approaches answer
these issues by computing an affine photometric model or by achieving a
photometric normalization. Through a study based on specular reflection
models, we explain explicitly the assumptions on which these techniques
are based. Then we propose a tracker that compensates for specular
highlights and lighting variations more efficiently when small windows of
interest are considered. Experimental results on image sequences prove
the robustness and the accuracy of this technique in comparison with
the existing trackers. Moreover, the computation time of the tracking is
not significantly increased.

1 Introduction

Since many algorithms rely on the accurate computation of correspondences be-
tween two frames through an image sequence, feature tracking has proved to
be an essential component of vision systems. Indeed, many high level tasks can
depend highly on it, such as 3D reconstruction, active vision or visual servo-
ing for example. Nevertheless, robust feature tracking is still a problem to be
addressed. It becomes far more complicated when no mark (edges or lines for
example), can be extracted from the observed object, such as in natural envi-
ronment [1]. In such a context, only points, among other possible features, are
likely to be easily detectable. However, tracking a point into an image sequence
is not a trivial task since the only available information is the luminance of the
point and of its neighboring pixels. The seminal works in this domain are due
to Lucas and Kanade [5,9] who assume the conservation of the point luminance
during the image sequence [3]. The measure of a correlation function between
two successive frames determines the translation motion undergone by the point.
Thereafter, some more robust tracking approaches have been proposed [8, 10].
However, such methods still assume that the luminance remains constant be-
tween two successive frames, which is often wrong. Indeed, most surfaces are
not Lambertian and lighting conditions are mostly variable during an image se-
quence. To solve this problem, Hager and Belhumeur [2] acquire an image data
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base of the scene under several illuminations and use these data to improve the
tracking. This method is efficient but requires a prior learning step, which can
be seen as too restrictive. An easier way to cope with illumination changes is to
achieve a photometric normalization as in [10] for example. In [4], the tracking
task compensates for affine illumination changes by computing the contrast and
illumination variations during the whole image sequence. These two methods
will be detailed in Section 3.

In this paper, we propose a new feature point tracking algorithm, based on
the study of reflection models, which is robust to specular highlights occurrence
and lighting changes. In addition, we show clearly on which assumptions the
approaches mentioned above are based. Besides, we will see that the proposed
algorithm provides a more appropriate model of the illumination changes, par-
ticularly for specular surfaces.

This article is structured as follows. Section 2 focuses on the modeling of lumi-
nance changes, especially in cases of specular reflections and lighting variations.
Section 3 details some of the existing tracking approaches: the Shi-Tomasi-
Kanade tracker [5, 9, 8], the normalized one [10] and the tracker with an affine
illumination compensation [4]. Thereafter, section 4 describes the proposed track-
ing method. To finish, section 5 shows experimental results, in order to compare
the different tracking techniques according to their robustness and accuracy. In
addition, this section will prove the efficiency of our approach.

2 Modeling of Luminance Changes

Suppose f and f ′ to be respectively the images of an object acquired at two
different times. A point P of this object projects in image f to p of coordinates
(xp, yp) and to p′ of coordinates (x′

p, y
′
p) in the image f ′ after a relative motion

between the camera and the scene. The luminance at p depends on the scene
geometry. Fig.1 describes the vectors and the angles used in this paper. V and
L are respectively the viewing and the lighting directions, which form the angles
θr and θi with the normal n in P . B is the bisecting line between V and L, it
forms an angle ρ with the normal n. According to the most widely used reflection
models, such as the Torrance-Sparrow [11] and the Phong [7] ones, the luminance
at p can be described as follows

f(p) = Kd(p)a(p) cos θi(P ) + hf (p) + Ka (1)

where Ka is the intensity of ambient lighting and Kd a diffuse coefficient corre-
sponding to the direct lighting intensity. These values depend also on the gain
of the camera. The term a(p) is related to the albedo1 in P . The function hf

expresses the contribution of the specular reflection, which vanishes in case of a
pure diffuse reflection, that is for Lambertian objects. Consequently, with such
objects and for a given lighting direction L, the luminance at p remains constant

1 The albedo is the ratio of the amount of light reflected by a small surface in P to
the amount of incident light. It depends only on the material and its texture.
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Fig. 1. Vectors and angles involved in the reflection description

whatever the viewing direction V is. Phong describes in [7] the specular reflection
as a cosine function of ρ

hf (p) = Ks(p) cosn(ρ(P )) (2)

where n is inversely proportional to the roughness of the surface and Ks is the
specular coefficient of the direct lighting. Torrance-Sparrow [11] describes hf by
an exponential function depending on ρ and on the surface roughness ς. For each
model, hf reaches a maximum value for ρ(P ) = 0, that is when B coincides with
n. Let us also notice that the specular reflection depends on the roughness, the
lighting and the viewing directions.

After a relative motion between the camera and the scene, when no lighting
change occurs, θi, Kd and Ka are constant at P during the time. In the same
way, the albedo is constant at P leading to a(p′) = a(p). However, the specular
component hf , which depends on the viewing direction, may vary strongly during
the motion of the camera. In those conditions, the luminance f ′ is given by

f ′(p′) = Kd(p)a(p) cos θi(P ) + hf ′(p′) + Ka (3)

where hf ′ is the specular function.
Now, let us consider that some lighting shifts ΔKa, ΔKd and Δθi are respec-

tively provoked on Ka, Kd and θi. Thus, the luminance can be expressed as

f ′(p′) = K
′
d(p)a(p) cos θ

′
i(P ) + K

′
a + hf ′(p′) (4)

with K
′
d(p) = Kd(p) + ΔKd(p), θ

′
i(P ) = θi(P ) + Δθi(P ) and K

′
a = Ka + ΔKa.

The specular term hf ′(p′) includes the intensity change of the specular coefficient
Ks if necessary. From (4), the next section will clearly show the assumptions on
which the most widely used tracking methods are based.

3 Analysis of Existing Tracking Methods According to
Their Robustness to Illumination Changes

Let be m a point located in a window of interest W of size N × N centered
around p. Point m is the projection of a physical point M in f and m′ is its
projection in f ′. The tracking process consists in computing a motion model
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δ parameterized by a vector A between f and f ′. According to the tracking
method, the assumptions about the photometric model are different. By elimi-
nating a(m) between (1) and (4), it yields to the following relationship between
two images of the same sequence f ′(m′) = λ(m)f(m) + η(m). This relationship
is found in [6] in an optical flow context, but λ and η are supposed to be constant
locally. According to our analysis based on the reflection models, λ(m) and η(m)
are expressed by:

λ(m) =
(Kd(m) + ΔKd(m)) cos(θi(M) + Δθi(M))

Kd(m) cos θi(M)
(5)

η(m) = −(hf (m) + Ka)λ(m) + hf ′(m′) + Ka + ΔKa (6)

From these relations we deduce the assumptions on which the classical trackers
are based.

The classical approach. The classical point feature tracker [5, 9, 8] assumes
a perfect conservation of luminance at point M during the sequence: f ′(m′) =
f(m), ∀m ∈ W and ∀W. Owing to (5) and (6), that implies λ(m) = 1 and
η(m) = 0 ∀m ∈ W, which is correct when no lighting change occurs (Δθi(M) =
0, ΔKd(m) = 0 ∀m ∈ W) and when objects are strictly lambertian (hf (m) =
hf ′(m′) = ΔKa = 0, ∀m ∈ W and ∀W). Because of noise and because of the
strong assumptions considered on the motion and photometric models, it is more
suitable to minimize the following criterion

ε1(A) =
∑

m∈W
(f(m)− f ′(δ(m,A))2 (7)

This approach leads to good results in most cases but can suffer from lighting
changes and specular highlights occurrence. In order to cope with this problem,
a photometric normalization can be performed.

Use of an affine photometric model. In [4] the authors propose a tracking
method in order to compensate for contrast and intensity changes by computing
the parameters of the following criterion

ε2(A, λ, η) =
∑

m∈W
(λf(m)− f ′(δ(m,A))− η)2 . (8)

According to (5), λ(m) is supposed to be constant at each point of W. That is
correct for any surface curvature (and then ∀Δθi and ∀θi) and for any lighting
(∀Kd and ∀ΔKd) only if each function Δθi, θi, ΔKd, Kd is constant in W.
Then, it assumes that η(m) is constant at each point of W, which is correct for
any surface curvature and for any roughness when both hf ′(m) and hf (m) are
constant at each point of W.

As a conclusion, this technique assumes that the illumination changes are the
same at each point of W. Practically, that can be a coarse assumption when the
surface projected onto W is non planar.
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The photometric normalization approach. This approach is based on the
minimization of the criterion ε2(A) except that λ and η are measured at each
step of the minimization process instead of being computed simultaneously with
the motion parameter A. Their values are λ = σf′

σf
and η = μf ′ − σf′μf

σf
, where

μf and μf ′ are the average values respectively of f and f ′ in W and σf , σf ′ are
the standard deviations. λ and η are supposed to be constant at each point m
of W, so that the same assumptions as the previous technique hold. Indeed, in
those conditions, the values μf and σf are given by{

μf = Kd cos(θi)μa + Ka + hf

σf = Kd cos(θi)σa
(9)

where μa is the average value of a and σa its standard deviation. Consequently,
f(m) − μf , a(m) − μa and f ′(m′) − μf ′ are invariant to highlights occurrence.
Finally we show easily that the following ratios are also invariant to ambient
and direct lighting changes, and to gain variation

(f(m)− μf )/σf = (a(m)− μa)/σa = (f ′(m′)− μf ′)/σf ′ , ∀m ∈ W. (10)

Nevertheless, these properties are true only if the specular reflection and the
lighting changes are the same at each point of W, as it as been mentioned
above. In some cases, these assumptions are not realistic, particularly when W
is the projection of a non planar surface of the scene. In addition, these values
can be ill-defined when σa ≈ 0, that is when the intensities almost saturate or
more generally when they are almost homogeneous in W.

Our method is described in the next section. It states the assumption that
the illumination changes can be approximated by a continuous function on W.

4 The Proposed Approach

It has been shown in section 2 how each kind of illumination changes can be
expressed. By considering (1) and (4), we immediately obtain the relationship
between f ′ and f

f ′(δ(m,A)) = f(m) + ψ(m) (11)

In the general case the photometric change is written

ψ(m) = a(m)(K′
d(m) cos(θi(M) + Δθi(M)) − Kd(m) cos θi(M)) +

hf ′(δ(m,A)) − hf (m) + ΔKa (12)

When the lighting (or the gain of the camera) does not vary, the total temporal
change ψ in the specular component at a fixed scene point m is equal to

ψ(m) = hf ′(δ(m,A))− hf (m) (13)

According to the most widely used reflection models (see (2) for example), the
function ψ is variable on W since it depends on the viewing and lighting angles
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and therefore on the normal n at each point of W. When lighting changes are
caused, it depends also on the albedo. We suppose that this function can be
approximated by a continuous and derivable function φ on W. In that case, a
Taylor series expansion can be performed at m in a neighborhood of p leading
to the following expression for φ(m) by neglecting the higher order terms

φ(m) = φ(p) +
∂φ

∂x

∣∣∣∣
p

(x− xp) +
∂φ

∂y

∣∣∣∣
p

(y − yp). (14)

Finally, by using (14) in (11) with m = (x, y)T and noting α = ∂φ
∂x

∣∣∣
p
, β = ∂φ

∂y

∣∣∣
p

et γ = φ(p), the proposed tracker consists in computing the motion parameter
A and the reflection parameters B = (α, β, γ)T by minimizing the following
criterion:

ε3(A,B) =
∑

m∈W

(
f(m)− f ′(δ(m,A))−UT B

)2
(15)

where U = (x−xp, y−yp, 1)T . Contrary to the previous approaches, this method
does not make assumptions about the scene. In particular, the incident angle
θi, the viewing angle θr, the parameter Ks and the roughness n (or ς) can vary.
Therefore, specular highlights and lighting changes can be different at each point
ofW. However, when lighting changes occur, the method assumes that the values
of the albedo can be approximated by a polynomial of first degree in W. Only in
that case, the proposed approach is more adapted for small windows of interest
W. In the next section, the different tracking methods are compared through
experiments.

5 Experimental Results

In the following experiments, the tracking methods are based on the computation
of an affine motion model between the first frame and the current one. The
tracking algorithm integrates an outlier rejection module, based on the analysis
of the residues convergence εi, i = 1 . . . 3. A point is rejected of the tracking
process as soon as its residues become greater than a threshold Sconv = N 2E2

ave,
where Eave is the tolerated intensity variation for each point in W between f
and f ′. In these experiments, Eave = 15. We consider some sizes from N = 9 to
N = 13. In each case, the sequence is played from the first image to the last one
and then from the last image to the first one, in order to evaluate the symmetry
of the residuals and photometric curves. To compare the trackers we compute
several criteria: 1) the robustness of the tracking, that is to say the number of
points that have been tracked during the whole sequence; 2) the accuracy of the
tracking: we compute the average of the residuals for all the points that have
been tracked during the whole sequence by the considered method. This criterion
provides information about the relevance of the photometric model. The lower
the residues are, the better the illumination variations are compensated for; 3)
the reflection parameters α, β and γ, computed by the parametric method. We
will also compare the computation time and the conditioning of the matrices
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used in the minimization algorithm. Moreover, simulations results compare the
accuracy of the tracking in terms of position estimation. In order to simplify
the explanations of results, we introduce the following notations: C (classical
approach), J (affine model compensation), T (photometric normalization) and
P (proposed approach).

First, the tracking algorithms are tested on scenes showing specular highlights.
For each image sequence, the scene (objects and lighting) is motionless, only the
camera moves. The scenes are lighted by a direct and an ambient lighting.

• Experiment Book. The first sequence (see Fig. 2a) shows a book. The
motion of the camera leads to specular highlights which appear and disappear
during the sequence. A number of 97 points has been selected in the first frame
but 11 points are lost because they are occluded by the book or because they
get out of the camera field of view. The number of points correctly tracked is

(a)
1st frame 100thframe 200thframe

(b) (c)

(d)
α β γ

Fig. 2. Experiment Book (a) Three images of the sequence. (b) and (c): Residuals
for N=9, (b) is the average of the residual computed on all the points tracked and
(c) the average of the residuals for the points that are correctly tracked by T et P
simultaneously. (d) Illumination parameters computed with the proposed approach.
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counted in table 1a. These results prove that the proposed approach (P ) is far
more robust than the existing ones (C, J and T ) since the number of tracked
points is always much larger. Fig. 2b compares the average residuals obtained
by the trackers during the sequence for N = 9. Until the 100th frame, P obtains
the lowest convergence residuals: the proposed photometric model fits best to
the specular occurrence. After the 100th frame, the residuals of T become lower
than the P ones. However, these values are computed by averaging the residuals
of 33 points for T and 68 points for P . In order to compare correctly these two
approaches, let us consider Fig. 2c, which shows the average residuals computed
only on the few points that are correctly tracked by T and P simultaneously.
Here, the residuals are lower for the proposed approach. That shows the good
adequacy of the local model proposed to compensate for specular highlights. Let
us notice that J is less convincing than T even though these two methods are
based on the same photometric assumptions. As it will be shown later on, this is
due to the ill-conditioning of J . Fig. 2d depicts the behavior of the photometric
parameters that have been computed by P . Let us notice that these curves
are perfectly symmetric, in agreement with the symmetry of the sequence and
therefore with the symmetry of the illumination changes.

• Experiment Marylin. The image sequence Marylin (see Fig. 3a) shows
different specular objects, planar or not, lighted by the daylight and the spot-
lights of the room. Different types of material are considered (ceramic, glass,
glossy paper, metal). This sequence is particularly noisy since the camera used
has an interlaced scan mode. Besides, we can see some specular reflections es-
pecially on the glass of the photograph. A total number of 56 points has been
selected in the first frame, but a large number of points (20 points) is lost be-
cause of occlusions and noise. Table 1b collects the number of points that have
been tracked until the end of the sequence by each technique. Contrary to the
previous sequence, T is less powerful than J , which could mean that T is less
robust to noise than J . P tracks a larger number of points in each case. As it
can be seen from the residuals obtained on the points that have been tracked by
the whole of the approaches (see Fig. 3b), this technique is also more accurate.

(a) 1st frame (b) 400th frame (c) Residuals

Fig. 3. Experiment Marilyn (a) and (b) Two images of the sequence. (c) Average of
the residuals for N=9 obtained by J and P .
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Now, let us compare the techniques on a sequence showing lighting changes.

• Experiment Lighting changes. The scene consists of a specular planar
object lighted by the daylight and by one direct spotlight (see Fig. 4a). Strong
variations are produced on the direct lighting intensity since it varies periodically,
from a minimum value to a maximum one each 10 frames. Table 1c collects
the number of points that have been tracked, on 58 points selected initially.
Obviously, the proposed method provides a better robustness of the tracking
since the whole of the points are tracked. Fig. 4b shows the average residuals
obtained. For this kind of illumination changes, P and T are the most accurate
techniques and obtain quite similar residuals. However, Fig. 4c, compares the
average residuals computed for the points that have been tracked by the two
techniques simultaneously. P gets the lowest residuals. The temporal evolution

(a)
1st frame 75 th frame 150 th frame

(b) (c)

(d)
α β γ

Fig. 4. Experiment Lighting changes. (a) Three images of the sequence. (b) and (c)
Residuals for N=9, (b) is the average of the residuals computed on all the points
tracked and (c) the average of the residuals for the points that are correctly tracked by
T et P at the same time. (d) Illumination parameters of point A computed with the
proposed method.
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of the illumination parameters is depicted on Fig. 4d. Their periodical variations
correspond to the lighting changes that have been provoked.

Accuracy of the tracking. In order to evaluate the accuracy of the points
positioning, we use a software that simulates the appearence of an object lighted
by an ambient light and a direct spotlight, by using a Phong model (see (2)). In
the simulated sequence from Fig.5a and 5b, a motionless cylinder is viewed by
a moving camera. The direct light is moved, inducing some specular highlights
changes. A point is rejected as soon as its error (the euclidian distance between
the real position of the point, computed by the software, and its estimated
position by the tracker) is greater than 0.5 pixel. 13 points are initially selected,
the method C loses 13 points, T 7 points, J 6 points and P loses no point.
The figure 5c shows the evolution of the average of positioning errors obtained
by each technique. P obtains the lowest errors all along the sequence and the
number of points that are correctly tracked is higher.

Discussions. As expected, the classical tracker is not robust neither to specular
highlights occurrence nor to lighting variations. A large number of points are
lost, sometimes the whole of the points. Obviously, the tracking with photometric
normalization and the approach with an affine compensation roughly improve the
results. Besides, their efficiency increases for large windows of interest. Indeed, for
small windows, the computation of σf , σg and λ are sensitive to noise. Because
these values are multiplied or divided by the luminance values f , an error caused
on these parameters have a huge influence, and can yield to the computation of
an incorrect motion parameter A. On the other hand, it could seem surprising
that J and T behave differently although they are based on the same photometric
assumptions. Actually, J suffers from a bad convergence for small windows. As
an example, table 2 contains the ratios CN given by the ratio of the Condition
Number of the tracker to the Condition Number of the classical tracker (or the T
approach since it has the same condition number), computed on 10 points of the
sequence Book and for different sizes of window. It collects the maximum (Max),
the minimum (Min) and the average values (Ave) obtained. These values show
clearly that J is less well-conditioned than the other approaches included ours. To
finish, the method P tracks a larger number of points than the other methods. It

(a) (b) (c)

Fig. 5. Simulation. (a) and (b) Images of the sequence. (c) Average of the positioning
errors (in pixels).
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Table 1. Number of points tracked during the whole sequence versus N

(a) Book (86 points to track) (b) Marylin (36 points) (c) Lighting changes (58 points)

Tracker N=9 N=11 N=13
C 27 20 16
T 33 49 53
J 15 25 48
P 68 68 69

Tracker N=9 N=11 N=13
C 0 0 0
T 1 3 7
J 4 8 15
P 23 21 21

Tracker N=9 N=11 N=13
C 37 29 23
T 45 51 53
J 39 48 51
P 58 58 58

Table 2. Conditioning number on 10 points selected on sequence Book. Maximum
(Max), minimum (Min) and average value (Ave).

Tracker Max Min Ave
J 9 1 3.5
P 2 0.5 1.4

really compensates for the variability of specular reflection and lighting variations
on W, which proves the relevance of the modeling of ψ by (14). However, let
us notice that the difference of performance between the three methods (P ,
J and T ) is less significant when lighting changes are caused than when only
specular highlights occur, in particular for large windows of interest. J and
T are well adapted to contrast changes, and not to specular highlights, which
are generally not constant in W. However, let us note once again that J is
less efficient because of its ill-conditioning. The proposed method is perfectly
adapted to specular highlights since their variations in W is well modeled. In
case of lighting variations, the albedo must be approximated by a polynomial
of first degree. However this approximation is satisfying for small windows of
interest.

Up to now, we did not compare the computation time of the methods. For
example, in sequence Book, the average tracking time of one point is 1.3ms for
classical method, 1.7ms for the J technique, 4.6ms for the T one (let us note
that the computation of the means and standard deviations are costly) and 1.4ms
for our approach 2. As a conclusion, the computation time is not significantly
increased in comparison to the classical approach.

6 Conclusion

The existing tracking methods are based on several assumptions that had never
been, or partially, specified explicitly before. In this paper, the analysis of these
methods is led according to specular reflection models. Contrary to the classical
approach, the tracking methods based on an affine photometric compensation
are, to some extent, robust to illumination changes. However, the illumination
parameters are assumed to be constant around the point to be tracked. This
2 With a processor Pentium III, 1.8GHz, 512Mo RAM.
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can be incorrect when the surfaces are non planar or when specular highlights
occur. Our approach overcomes these issues. We assume that an illumination
change can be approximated by a continuous and derivable function around the
points to be tracked. This model is well adapted for small windows of interest,
since it improves the robustness of the tracking against highlights occurrence and
lighting changes. The computation duration of this method is not significantly
increased in comparison with the classical technique and the accuracy of tracking
is improved. In addition, its convergence properties are more satisfying than
the technique involving an affine model since better conditioning numbers have
been obtained. Our future work will focus on a more appropriate modeling of
illumination changes for larger windows of interest.
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Abstract. We cast the problem of motion segmentation of feature tra-
jectories as linear manifold finding problems and propose a general frame-
work for motion segmentation under affine projections which utilizes two
properties of trajectory data: geometric constraint and locality. The geo-
metric constraint states that the trajectories of the same motion lie in a
low dimensional linear manifold and different motions result in different
linear manifolds; locality, by which we mean in a transformed space a
data and its neighbors tend to lie in the same linear manifold, provides
a cue for efficient estimation of these manifolds. Our algorithm estimates
a number of linear manifolds, whose dimensions are unknown before-
hand, and segment the trajectories accordingly. It first transforms and
normalizes the trajectories; secondly, for each trajectory it estimates a
local linear manifold through local sampling; then it derives the affinity
matrix based on principal subspace angles between these estimated linear
manifolds; at last, spectral clustering is applied to the matrix and gives
the segmentation result. Our algorithm is general without restriction
on the number of linear manifolds and without prior knowledge of the
dimensions of the linear manifolds. We demonstrate in our experiments
that it can segment a wide range of motions including independent, artic-
ulated, rigid, non-rigid, degenerate, non-degenerate or any combination
of them. In some highly challenging cases where other state-of-the-art
motion segmentation algorithms may fail, our algorithm gives expected
results.

1 Introduction

Motion segmentation of trajectory data has been an essential issue in under-
standing and reconstructing dynamic scenes. Dynamic scene consists of multiple
moving objects with a static or moving camera. The objective is to segment the
feature trajectories according to the motions in the scene.

Ever since Tomasi and Kanade[17] introduced the factorization method based
on the idea that trajectories of a general rigid motion under affine projection
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span a 4-dimensional linear manifold, this geometric constraint has been used
extensively in motion segmentation, especially for independently moving objects
whose trajectories have a nice property that they are from independent sub-
spaces. Most notably, Costeria and Kanade[2] constructs a shape interaction
matrix from this fact and uses the zero product between independent trajecto-
ries as a segmentation criteria. More recently, Yan and Pollefeys[21], Tresadern
and Reid[22] studied articulated motions, another paradigm of dynamic scenes,
and drew a conclusion that the motions of linked parts are dependent and their
subspaces are intersecting on 1 or 2 dimensions depending on whether the link
is a joint or an axis. Besides rigid motions, Bregler et al.[3] and Brand[4] showed
that non-rigid motions like human facial motion etc. can be approximated using
a higher dimensional linear subspace.

To sum up, motion segmentation of a dynamic scene that consists of mul-
tiple motions, either independent, articulated, rigid, non-rigid, degenerate or
non-degenerate, can be casted as a linear manifold finding problem. The chal-
lenges are from the unknowns like dimensionality and dependency of these linear
manifolds.

We propose a general framework for motion segmentation under affine
projections. Our algorithm estimates a number of linear manifolds of different
dimensions and segment the trajectories accordingly. It first estimates a local
linear manifold for each trajectory by local sampling; then it derives an affinity
matrix based on principal angles between each pair of estimated linear mani-
folds; spectral clustering is then applied to the matrix and segments the data.
Our algorithm is general without restriction on the number of linear manifolds
or their dimensionalities. So it can segment a wide range of motions includ-
ing independent, articulated, rigid, non-rigid, degenerate, non-degenerate or any
combination of them.

Due to the large volume of works of motion segmentation, we need to draw
the distinction between our work and the previous ones. Most of the previous
works assume independency between motion subspaces (Boult and Brown [8],
Gear[9], Costeria and Kanade[2], Kanatani[11], Ichimura[10]) while our goal is
to deal with a mixture of dependent and independent motions in a unified way.

Zelnik-Manor and Irani[12] addresses the dependency problem between mo-
tion subspaces and deals with it using a method with the same nature as [2]
but an elevated perspective from Weiss[14] to derive an affinity matrix, followed
by the technique of [11] to separate the dependent motions. In their case, the
angle between every pair of vectors, expressed by a dot product, are used as the
affinity measurement. However, unlike the independent motion subspace cases,
angles, or any other distance measurement between the data, do not reflect the
true geometric constraints, the subspace constraints, that we use to segment
the data. Instead, our method uses the distance between two locally estimated
subspaces of each data, expressed by subspace principal angles, as the affinity
measurement. This new affinity measurement reflects the true nature of the con-
straint for segmentation and leads to more accurate results, which is confirmed
by our experiments.
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Vidal et al.[18][19][20] propose an algebraic framework called GPCA that can
deal with dependent and independent subspaces with unknown dimensionality
uniformly. It models a subspace as a set of linear polynomials and a mixture of n
subspaces as a set of polynomials of degree n. Given enough sample points in the
mixture of subspaces, the coefficients of these high degree polynomials can be
estimated. By differentiating at each data point, the normals of each data can be
estimated. Then it also uses standard methods like principal angles and spectral
clustering to segment the data. However, because GPCA first brings the problem
to a high degree nonlinear space and then solves it linearly, the number of sample
points required by GPCA to estimate the polynomial coefficients becomes its
Achilles’ heel, which grows exponentially with the number of subspaces and the
dimensions (©((d + 1)n), d is the dimension of the largest underlying subspace
and n is the number of subspaces). In practice, the number of trajectories can
hardly satisfy GPCA’s requirement for it to handle more than 3 subspaces. And
for non-rigid motion subspaces whose dimensions are more than 4, the situation
gets even worse. Our method requires ©(d × n) trajectories which makes it
practical to handle not only multiple motions but also non-rigid motions that
have a higher dimension.

Our approach has not been attempted in motion segmentation. Under a dif-
ferent context [13] uses local sampling and clustering to identify discrete-time
hybrid systems in piecewise affine form. We need to point out the differences:
first, motion data is not in piecewise form; second, the first step of our approach
that projects motion data onto a sphere is important in order to “localize” data
of the same underlying subspace while [13] assumes that the data is piecewise
beforehand. Our approach is motivated and derived independently, specifically
aiming at motion segmentation.

The following sections are organized as followed: Section 2, detailed discus-
sion of motion subspaces of all kinds; Section 3, the algorithm and its analysis;
Section 4, experimental results; Section 5, conclusions and future work.

2 The Motion Subspaces

We are going to show that the trajectories of different kinds of motions lie in some
low-dimensional linear manifolds under affine projection which models weak and
paraperspective projection.

– For rigid motions, the trajectories of a rigid object forms a linear subspace
of dimensions no more than 4 ([17]).

M2f×p = [R2f×3|T2f×1]
[

S3×p

11×p

]
(1)

f is the number of frames and p, the number of feature trajectories.
– For independent motions, [Ri|Ti] is independent for each motion i, so each

motion Mi = [Ri|Ti]
[

Si

1

]
lies in an independent linear subspace of dimen-

sion no more than 4 ([2]).
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– For articulated motions ([21][22]),
• If the link is a joint, [R1|T1] and [R2|T2] must have T1 = T2 under the

same coordinate system. So M1 and M2 lie in different linear subspaces
but have 1-dimensional intersection.

• If the link is an axis, [R1|T1] and [R2|T2] must have T1 = T2 and ex-
actly one column of R1 and R2 being the same under a proper coordi-
nate system. So M1 and M2 lie in different linear subspaces but have
2-dimensional intersection.

– The trajectories of a non-rigid object can be approximated by different
weighings of a number of key shapes ([3][4][5]) and, as shown below, lie
in a linear subspace of dimension no more than 3k + 1.

M =

⎡⎣ c1
1R

1
2×3|...|c1

kR1
2×3|T 1

2×1
...

cf
1Rf

2×3|...|cf
kRf

2×3|T f
2×1

⎤⎦
⎡⎢⎢⎣

S1
3×1
...

Sk
3×p

11×p

⎤⎥⎥⎦ (2)

ci
j (1 ≤ i ≤ f, 1 ≤ j ≤ k).

To sum up, the trajectories of a mixture of motions lie in a mixture of linear
manifolds of different dimensions. If we can estimate these underlying linear
manifolds accurately enough, we can segment the trajectories accordingly.

3 The Algorithm

In this section, we first outline our algorithm and discuss the details of each step.
In the end, we will discuss the issue of outliers.

Our algorithm first transforms the trajectory data; then it estimates a local
linear manifold for each trajectory by local sampling; it derives an affinity matrix
based on principal subspace angles between each pair of local linear manifolds;
spectral clustering is applied to the matrix and gives the segmentation result.

3.1 Motion Data Transformation

Given a motion matrix W2f×p, decompose W into U2f×K ,DK×K and V T
K×p

by SVD, assuming rank(W ) is K (A practical algorithm for rank detection is
described in (Section 3.5)). Normalize each column of V (:, 1 : K)T . Each column
unit vector vi(i = 1...p) becomes the new representation of the corresponding
trajectory.

This transformation is an operator that projects a R2f vector wi(the ith
column of W ) onto the RK unit sphere which preserves the subspace property,
which is that any subset of wi(i = 1...p) spans a subspace of the same rank of
the corresponding subset of vi(i = 1...p).

The purposes of transforming the trajectories into a unit sphere are:

– Dimension reduction. Notice each trajectory is a 2f × 1 vector. Most of
the dimensions are redundant and can be effectively reduced by linear
transformations.
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– Normalization of the data.
– Preparation for the local sampling in the next step. Locality of trajectory

data in our algorithm is not defined in the image coordinate space, i.e.
proximity in images, but defined on the sphere which has simple geomet-
ric meanings.

We are going to perform the segmentation on these unit vectors. It is equiv-
alent to state that we are trying to find a set of Rt spheres (1 ≤ t < K) whose
union is the RK sphere. And each vector is grouped according to this set of
spheres unless it lies at the intersection of some spheres, in which case it can be
grouped to either of these intersecting spheres (Fig. 1).

Fig. 1. There are two underlying subspaces of dimension 2 for the data which are
transformed onto the R3 unit sphere. The empty dots represent a group of transformed
data belonging to one subspace and the black dots represent another. Due to noise,
the dots may not lie exactly on the R2 spheres. And the intersection area is where
“overestimation” may happen, by which we mean that local sampling results in a local
subspace estimation that crosses different underlying subspaces.

3.2 Subspace Estimation by Local Sampling

In the transformed space (e.g. see Fig. 1), most points and their closest neighbors
lie on the same underlying subspace, which allows us to estimate the underlying
subspace of a point α by local samples from itself and its n closest neighbors,
i.e. computing the subspace of [α, α1, ..., αn]K×(n+1). This can be easily achieved
using SVD (See Section 3.5 for rank detection). Because all the points lie in a
RK unit sphere, we can use either the Euclidean distance ‖α − β‖2 ∈ [0, 2] or
the angle arccos(αT β ∈ [0, π] to find the n closest neighbors. Our algorithm is
not very sensitive to the choice of n as long as n + 1 must not be less than the
dimension of its underlying subspace.

Two naturally raised questions: what happens to a point near an intersection
of subspaces, whose neighbors are from different subspaces (Fig. 1). Secondly,
what if a point and its n neighbors do not span the whole underlying subspace?
We will discuss these two important situations in the following section after
introducing the concept of distance between subspaces.
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The subspace constraint of the points is a reliable geometric property for seg-
mentation while the “distance” between the points is not. Most previous works,
e.g. [2][10][11][12], use the dot product of the trajectories or some normalized
form as the affinity measurement for clustering. The dot product actually mea-
sures the angle between the trajectories and is a “distance” in essence. They
assume that points of the same subspace are closer in “distance”. This assump-
tion mostly stems from works for independent motions [2], in which the dot
product is always 0. But for dependent motions whose subspaces intersect like
in Fig. 1, this assumption is invalid. Our affinity definition, which is the distance
between two local estimated subspaces described by principal angles in the next
section, reliably base the segmentation on the criteria of subspace constraint
that the points conform to.

3.3 Principal Angles Between Local Subspaces

The distance between two subspaces can be measured by principal angles. The
principal angles between two subspaces P and Q are defined recursively as a
series of angles 0 ≤ θ1 ≤,...,≤ θM ≤ π/2 (M is the minimum of the dimensions
of P and Q):

cos(θm) = maxu∈S1,v∈S2uT v = uT
mvm

where

‖u‖ = ‖v‖ = 1
uT ui = 0 i = 1, ...,m− 1
vT vi = 0 i = 1, ...,m− 1

We define the affinity of two points, α and β, as the distance between their
estimated local subspaces denoted S(α) and S(β).

a(α, β) = e−
∑

i=1,...,M sin2(θi)

where θ1,...,θM are the principal angles. Thus, we can build an affinity matrix
for spectral clustering described in the following section.

Before we proceed to the next section, let us take a closer look at the two
scenarios pointed out at the end of Section 3.2.

– When an estimated local subspace crosses different underlying subspaces,
which happens to points near an intersection as shown in Fig. 1 (this usually
happens to the trajectories of features very close to or at an articulated axis
or joint), we call this estimation “overestimated”. An overestimated sub-
space is usually distanced from the underlying subspaces that it crosses be-
cause it has dimensions from other underlying subspace(s). However, points
near an intersection are usually small in amount compared to the total. So
overestimated subspaces do not have a dominant effect for clustering. Be-
sides, which cluster a point near an intersection may be classified to relies
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on which underlying subspaces have a larger portion of its overestimated
subspace. So in the end it tends to cluster the point to its real underlying
subspace. If not, it results in a misclassification. Our experiments show that
if there are misclassifications, mostly it happens to points that are close to
an intersection.

– When the estimated local subspace is a subspace of the underlying subspace,
we call this estimation “underestimated” since it only estimates a part of it.
This occurs when the local neighbors may not span the whole underlying
subspace. However, this will not affect the effectiveness of the segmentation
introduced in the following section. To explain why, we use an example in
rigid motions and allow other cases. Suppose two underlying subspaces of
dimension 4 having a 2-dimension intersection. This happens when two ar-
ticulated parts are linked by an axis [21][22]. The total dimension is 6. The
two underlying subspaces, S1 and S2, and their underestimated subspaces,
A, B, C and D, E, F , of dimension 3 (2 is rare because the features corre-
sponding to the point and its neighbors need to be exactly on a line for that
to happen) are as follows.

Subspace \Dimensions 1 2 3 4 5 6
S1 X X X X
A X X X
B X X X
C X X X
S2 X X X X
D X X X
E X X X
F X X X

(3)

The number of non-zero principal angles between these subspaces and their
underestimated subspaces are shown as follows.

Subspaces S1 A B C S2 D E F
S1 0 0 0 0 2 1 2 2
A 0 0 1 1 2 2 3 2
B 0 1 0 1 1 1 2 2
C 0 1 1 0 1 1 2 2
S2 2 2 1 1 0 0 0 0
D 1 2 1 1 0 0 1 1
E 2 3 2 2 0 1 0 1
F 2 2 2 2 0 1 1 0

(4)

Generally, intra-subspaces have smaller number of non-zero principal angles
compared to inter-subspaces. So expectedly, an underestimated subspace
tends to be closer to all possible estimated subspaces of its underlying sub-
space than to those of another underlying subspace.
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3.4 Spectral Clustering

We can apply spectral clustering, e.g.[16][15], to the affinity matrix and retrieve
N clusters. We advocate recursive 2-way clustering detailed in [16]. Thus we
can re-estimate the local subspaces within the current clusters so that points
belonging to different clusters will not affect each other any more. Secondly,
recursive 2-way clustering gives a more stable result because k-way clustering like
[15] depends on k-means which in turn depends on some random initialization.
The recursive 2-way clustering is as follows, given N is the total number of
underlying subspaces:

– Compute the affinity matrix using the approach in Section 3.2 and 3.3 above
and segment the data into two clusters {C1, C2} by spectral clustering.

– While NumOfClusters{C1, ..., Cn} < N , compute the affinity matrix for
each cluster Ci (i = 1, ..., n) from the points within the cluster; divide Ci

into two clusters, C1
i and C2

i ; evaluate the Cheeger constant[15] of each pair
of C1

i and C2
i and decide the best subdivision, C1

J and C2
J ( 1 ≤ J ≤ n);

replace CJ with them.

3.5 Effective Rank Detection

In practice, a data matrix may be corrupted by noise or outliers and thus has a
higher rank. We may use a model selection algorithm inspired by a similar one
in [20] to detect an effective rank.

rn = arg minr

λ2
r+1∑r

k=1 λ2
k

+ κ r

with λi, the ith singular value of the matrix, and κ, a parameter. If the sum of
all λ2

i is below a certain threshold, the effective rank is 0. The higher the noise
level is, the larger κ we should set.

For rank detection of local estimated subspaces, due to small number of sam-
ples, noise level is higher, so we prefer a larger κ.

3.6 Outliers

In practice, the trajectories may have some outliers. We are going to discuss
their effects under the context of our algorithm.

First of all, an outlier will be classified to one of the segments, which depends
on its locally estimated subspace. We suggest that outliers can be better dealt
with after the segmentation because the segmented subspace offers less freedom
for outliers and makes it easier to detect and reject them.

Second, an outlier will corrupt the estimation of local subspaces of a nearby
point. However, this bad effect will not propagate under our algorithm and only
remains on those points whose neighbors include the outlier. Misclassification
may happen to these points. But as long as the outliers are not dominant in
number, our algorithm is robust.
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4 Experiments

We test our approach in various real dynamical scenes with 2 to 6 motions
and a combination of independent, articulated, rigid, non-rigid, degenerate and
non-degenerate motions.

For the experiments, we choose κ = 10−6 to 10−5 for trajectory rank esti-
mation depending on the noise level of the trajectories, and κ = 10−3 for local
subspace rank estimation (See Section 3.5 for more detail). We let n = d where
n is the number of neighbors for local sampling and d is the highest possible
dimension of the underlying subspaces. That is 4 for rigid motions and 7 for
non-rigid motions in our experiments.

Miscalssification errors vs. total number of trajectories and the number of
outliers vs. total number of trajectories for the experiments is summaried in
Table 1. Outliers may be clustered to any segments and are not counted as
misclassification errors.

Table 1. A comparison between our method, GPCA and trajectory angle based
method

Experiment Our Method GPCA Angle based Outliers

Truck 0/83 5/83 16/83 0/83
Head and Body 1/99 10/99 9/99 6/83
Booklet 0/38 2/38 2/38 1/38
Two bulldozers 1/94 4/94 24/94 8/94
One bulldozers 4/85 6/85 11/85 9/85
Dancing 21/268 not enough samples1 78/268 7/268

The first experiment is from a scene with non-degenerate data of an articulated
object with a rotating axis. The detected rank of the trajectories is 6. The
segmentation result is shown in Fig. 2. The ranks of the segmented trajectories
are both 4.

The second experiment is from a scene of 2 non-degenerate motions of an
articulated body with a joint. The detected rank of the trajectories is 7. There
are one misclassification, the red dot on the left shoulder. The other red dot on
the left arm is an outlier. The segmentation result is shown in Fig. 3. The ranks
of the segmented trajectories are both 4.

The third experiment is from a scene of 2 degenerate shapes of an articulated
object. Two pages of a booklet is being opened and closed. The detected rank
of the trajectories is 4. The segmentation result is shown in Fig. 4. The ranks of
the segmented trajectories are both 3.

1 For the last experiment of 6 motions, GPCA requires a huge number of trajectories
for it to work. Roughly, it needs ©((d + 1)6). d is the dimension of the largest
subspace. For non-degenerate rigid motions, d = 5 [18]; for non-rigid motions, d is
even larger. That many number of trajectories are normally not available in practice.
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Fig. 2. (left and middle) A sequence of a truck moving with the shovel rotating around
an axis. The color of a dot, red or green, shows the segmentation result. (right) The
affinity matrix of local estimated subspaces is shown. The row and columns are rear-
ranged based on the segmentation.

Fig. 3. (left and middle) A sequence of a person moving with his head rotating around
the neck. The color of a dot, red or green, shows the segmentation result. There is one
misclassification, the red dot on the left shoulder. The other red dot on the left arm
is an outlier. (right) The affinity matrix of locally estimated subspaces is shown. The
row and columns are rearranged based on the segmentation.

Fig. 4. (left and middle) A sequence of a booklet whose two pages are being opened and
closed around an axis. The color of a dot, red or green, shows the segmentation result.
There is no misclassification error. The green dot on the rotating axis can be grouped
to either page. (right) The affinity matrix of local estimated subspaces is shown. The
row and columns are rearranged based on the segmentation.

The fourth experiment has 3 motions. It comes from a scene of 2 independently
moving bulldozers, one of which has an articulated arm rotating around an axis.
Only the side of the articulated arm can be seen so it is a degenerate shape.
The detected rank of the trajectories is 8 before the first segmentation. Both of
the segments have rank 4. The next subdivision is automatically detected (See
Section 3.4) for points from the right bulldozer and the segmented trajectories
are of rank 3. The segmentation result is shown in Fig. 5.

The fifth experiment has 3 motions. It comes from a scene with an articulated
object of 3 parts. The bulldozer has its forearm and upper-arm moving articu-
lately rotating around two axes. The detected rank of the trajectories is 6 before
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Fig. 5. (left 2 )A sequence of two bulldozers moving independently, one of which moves
articulately with its arm rotating around an axis. The color of a dot, red, blue or
yellow, shows the segmentation result. There is one misclassification error which is the
red dot on the forearm near the axis. Besides that, there are several outliers. (right 2 )
The affinity matrices for 2-stage segmentations are shown. The row and columns are
rearranged based on the segmentation.

Fig. 6. A sequence of a bulldozer with its upper-arm and forearm moving articulately
around some axis. The color of a dot, red, blue or yellow, shows the segmentation
result. There are 4 misclassification errors. Two are the yellow dots on the forearm and
two are the red dots on the upper-arm. All of them are near the axis connecting both
arms. Besides these, there are several outliers in the trajectories and they are clustered
to one of the segments.

Fig. 7. (top) A sequence of a person dancing with his upper body, his head and both of
his upper arms and forearms moving. His mouth motion is non-rigid. The color of a dot
shows the segmentation result. Besides outliers, there are about 8% misclassifications.

the first segmentation. The segmented trajectories have a rank 3 and 4. The
rank-4 cluster gets subdivided into 2 rank-3 clusters. There are outliers in this
experiment. They have been clustered to one of the segments. Besides outliers,
there are 4 misclassifications, two of which are the yellow dots on the forearm
and two of which are the red dots on the upper-arm and all of which are near
the axis. The segmentation result is shown in Fig. 6.

The final experiment has 6 motions. It comes from a scene with a person danc-
ing with his upper body, his head and both of his upper arms and forearms mov-
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ing. Besides, his mouth movement generates a non-rigid motion. This is a highly
challenging case not only because of the total number of motions but also because
of the dependency between these articulated motions and the non-rigid kind of
motion on the person’s face. The detected rank of the trajectories is 12 before the
first segmentation. Both of the segmented rank-7 and rank-6 clusters get subdi-
vided into rank-6 and -3 clusters, and rank-4 and -3 clusters repectively. In the
end, the rank-4 cluster gets subdivided into two rank-3 subspaces. There are out-
liers and there are about 8% misclassifications, most of which are near the articu-
lated axes or joints. Interestingly, the green dots on the head are those features not
turning as the head turns. Instead, they move like the features on the upper body.
And indeed, our algorithm classifies them to those features on the upper body. A
second interesting observation is the misclassification of the dark blue dots near
the joint between the body and the person’s right arm. Though they are far away
from the left upper arm of the person, they are actually very close to the inter-
section between the motion subspaces of the left and right upper arms because
they both are linked to the body. The segmentation result is shown in Fig. 7.

4.1 Comparisons

We compare our method with GPCA[18] and trajectory angle based approach,
e.g. [12] except for that we use spectral clustering to segment the affinity matrix
(Table 1). The numbers in the table are misclassification errors vs. the total
number of trajectories and outliers vs. trajectories. Outliers are not counted as
misclassification.

5 Conclusions and Future Work

We propose a general framework for motion segmentation of a wide range of
motions including independent, articulated, rigid, non-rigid, degenerate and non-
degenerate. It is based on local estimation of the subspace to which a trajectory
belongs through local sampling and spectral clustering of the affinity matrix
of the these subspaces. We demonstrate our approach in various situations. In
some highly challenging cases where other state-of-the-art motion segmentation
algorithms may fail, our algorithm gives expected results.

We plan to reconstruct complex dynamical scenes with a variety of objects
and motions. An especially interesting case is human motion. Our algorithm
can provide a good initialization for a follow-up EM algorithm to improve the
segmentation and reject outliers.
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Abstract. We address the problem of robust multi-target tracking
within the application of hockey player tracking. The particle filter tech-
nique is adopted and modified to fit into the multi-target tracking frame-
work. A rectification technique is employed to find the correspondence
between the video frame coordinates and the standard hockey rink co-
ordinates so that the system can compensate for camera motion and
improve the dynamics of the players. A global nearest neighbor data
association algorithm is introduced to assign boosting detections to the
existing tracks for the proposal distribution in particle filters. The mean-
shift algorithm is embedded into the particle filter framework to stabilize
the trajectories of the targets for robust tracking during mutual occlu-
sion. Experimental results show that our system is able to automatically
and robustly track a variable number of targets and correctly main-
tain their identities regardless of background clutter, camera motion and
frequent mutual occlusion between targets.

1 Introduction

Tracking multiple targets, although has its root in control theory, has been of
broad interest in many computer vision applications for decades as well. A visual-
based multi-target tracking system should be able to track a variable number
of objects in a dynamic scene and maintain the correct identities of the tar-
gets regardless of occlusions and any other visual perturbations. As it is a very
complicated and challenging problem, extensive research work has been done.
In this work, we address the problem of robust multi-target tracking within the
application of hockey player tracking.

Particle filtering was first introduced to visual tracking by Isard and Blake
in [1]. Pérez et al. [2, 3] extended the particle filter framework to track multiple
targets. Okuma et al. [4] further extended it [3] by incorporating a boosting de-
tector [5] into the particle filter for automatic initialization of a variable number
of targets. However, as their system did not have explicit mechanisms to model
mutual occlusions between targets, it loses the identities of the targets after oc-
clusions. On the other hand , various approaches have been taken to solve the
occlusion problem in tracking. Kang et al. [6] tried to resolve the ambiguity of
the locations of the targets by registering video frames from multiple cameras.
Zhao et al. [7] also rectified video frames to the predefined ground plane and
model the targets in the 3D space with a body shape model. A static camera
was used and background subtraction was applied as well in their work. Explicit
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target shape modelling can help resolving the likelihood modelling and data as-
sociation problems during occlusions. The approach is often used within static
scenes [8, 9, 10]. However, in our application, camera motion makes it difficult to
separate target motion or perform background subtraction. Players with drastic
pose changes are difficult to be captured by any explicit shape models.

In order to build a tracking system that can correctly track multiple targets
regardless of camera motion and mutual occlusion, we propose four improve-
ments on the previous systems. Firstly, a rectification technique is employed to
compensate for camera motions. Secondly, a second order autoregression model
is adopted as the dynamics model. Thirdly, a global nearest neighbor data as-
sociation technique is used to correctly associate boosting detections with the
existing tracks. Finally, the mean-shift algorithm is embedded into the particle
filter framework to stabilize the trajectories of the targets for reliable motion
prediction. Although similar work [11] has been done on combining mean-shift
with particle filtering, our work is the first one that describes in detail the the-
oretical formulation of embedding mean-shift seamlessly into the particle filter
framework for multi-target tracking. Consequently, although our system per-
forms comparably to the system in [4], it significantly improves upon that system
when occlusions happen, which is the main focus of this work.

2 Filtering

Particle filtering has been a successful numerical approximation technique for
Bayesian sequential estimation with non-linear, non-Gaussian models. In our
application, the fast motion of hockey players and the color model we adopt
[12, 13] is highly non-linear and non-Gaussian. Therefore, particle filtering is the
ideal model to be the basic skeleton of our tracking system.

The basic Bayesian filtering is a recursive process in which each iteration
consists of a prediction step and a filtering step.

prediction step: p(xt|y0:t−1) =
∫

p(xt|xt−1)p(xt−1|y0:t−1)dxt−1

filtering step: p(xt|y0:t) = p(yt|xt)p(xt|y0:t−1)∫
p(yt|xt)p(xt|y0:t−1)dxt

(1)

where the process is initialized by the prior distribution p(x0|y0) = p(x0),
p(xt|xt−1) is the target dynamics model, and p(yt|xt) is the likelihood model.
Particle filtering uses a set of weighted samples {x(i)

t , w
(i)
t }Ns

i=1 to approximate the
posterior distribution in the filtering. The sample set is propagated by sampling
from a designed proposal distribution q(xt|xt−1, y0:t), which is called importance
sampling. The importance weights of the particles are updated in each iteration
as follows

w
(i)
t ∝

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1, y0:t)
w

(i)
t−1,

Ns∑
i=1

w
(i)
t = 1. (2)

Resampling of the particles is necessary from time to time in each iteration to
avoid degeneracy of the importance weights.
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One of the critical issues in keeping particle filtering effective is the design of
the proposal distribution. The proposal distribution should be able to shift the
particles to the regions with high likelihood if there is a big gap between the mode
of the prior distribution and the mode of likelihood distribution. The boosted
particle filter (BPF) [4] used a mixture of Gaussians model that combines both
the dynamics prior and the Adaboost detections [5]

q∗B(xt|xt−1, y0:t) = αqada(xt|yt) + (1− α)p(xt|xt−1), (3)

where α is the parameter that is dynamically updated according to the overlap
between the Gaussian distribution of boosting detection and the dynamics prior.
The issue of data association arises here. Details about how to correctly assign
boosting detections to the existing tracks will be discussed later. In addition, the
original BPF work by Okuma et al. [4] is based on the mixture of particle filter
structure (MPF) [3], which has a fixed number of particles for all the targets.
As a result, new targets have to steal particles from existing tracks and reduce
the accuracy of the approximation. The merge and split of particle clouds in the
MPF structure also cause the loss of the correct identities of the targets during
occlusions. Therefore, we adopt the boosted particle filter as the basic filtering
framework in our application. However, instead of using the MPF structure,
we use an independent particle set for each target to avoid the two inherent
disadvantages of MPF.

3 Target Dynamics Modelling

In visual tracking systems, accurate modelling of the target dynamics can im-
prove the prediction of the locations of the targets while visual support is insuffi-
cient due to occlusion. However, because of the camera motion in our application,
the image coordinate system changes over time with respect to the hockey rink
coordinates. Therefore, target motion modelling and prediction in the image
coordinates are difficult. We adopt the approach by Okuma et al. [14] to map
the locations of the targets from the image coordinates to the standard hockey
rink coordinate system which is consistent over time. Therefore, according to
the physical law of inertia, the motions of the players in hockey games are better
predicted with a constant velocity autoregressive model.

3.1 Rectification

Homography is defined by Hartley and Zisserman in [15] as an invertible mapping
h between two planes. Images recorded by cameras are 2D projections of the real
world. For any plane in the world, its images from a camera, which can pan, tilt,
zoom or even move, are exactly modelled by a homography as long as there is no
noticeable lens distortion. As the hockey players are always moving in the plane
formed by the hockey rink, their locations on the rink are in the same plane both
in the real world and the image space. Therefore, it is possible to project their
locations between the two planes.
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Fig. 1. This shows a projected video frame blended with the standard hockey rink

The work by Okuma et al. [14] is able to automatically compute the homog-
raphy between video frames and the hockey rink. Figure 1 shows how the video
frames are mapped to the standard rink with the homography. With this homog-
raphy, the hidden states of the targets are represented in the rink coordinates
and particle filtering is performed in the rink coordinates as well. Hidden states
will be mapped to the image coordinates when evaluating the likelihood of the
observation.

3.2 Autoregressive Dynamics Model

An autoregressive process is a time series modelling strategy which takes into
account the historical data to predict the current state value. In this model,
the current state xt only depends on the previous states with a deterministic
mapping function and a stochastic disturbance.

As the particle filtering process is performed in the standard rink coordinates,
the motions of the players on the rink are separated from the camera motion.
Thus, the modelling is much easier. In hockey games, because of the effect of
inertia, a constant velocity model is suitable to model the motion of the players.
It is best described by the following second order autoregressive model

xt = Axt−1 + Bxt−2 + CN (0, Σ) (4)

where {A,B,C} are the autoregression coefficients, N (0, Σ) is a Gaussian noise
with zero mean and standard deviation of 1.

4 Data Association

In a standard Bayesian filtering framework, data association is performed to
pair the observations and tracks for the evaluation of the likelihood function
p(ym

t |xn
t ). With proper estimation of segmentation and shape of the targets [10],

the observation can be assigned to tracks in a globally optimal way. However,
as we do not have an explicit shape model for the targets, the particle filter
framework in our application handles this level of data association locally in
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an implicit way. Because the boosting detections are used to improve the pro-
posal distribution in particle filters as in shown in Equation 3, we perform data
association at this level to assign boosting detections to the existing tracks.

4.1 Linear Optimization

The assignment problem can be best represented by an assignment matrix shown
in Table 1. Each entry in the table is the cost or gain of pairing the corresponding
track and observation. In our application, the values of all the entries in the
assignment matrix are defined to be the distance between the observations and
the tracks in the rink coordinates. Assignments that are forbidden by gating are
denoted by × in the corresponding entries. Observations that are forbidden by
the gating to be associated to any track are considered as a new track in our
application.

Table 1. Example of the assignment matrix for the assignment problem

Observations
Tracks O1 O2 O3 O4

T1 a11 a12 × ×
T2 a21 × × a24

T3 a31 × × a34

Such assignment problems stem from economic theory and auction theory as
well. The objective is to minimize the cost or maximize the gain subject to a set
of constraints. Given the assignment matrix shown in Table 1, the objective is to
find a set X = {xij}, which are binary indicators, that maximizes or minimizes
the objective function C =

∑n
i=1

∑m
j=1 aijxij subject to some linear constrains.

Linear programming was initially used to solve this problem. Later on, it was
found that the auction algorithm [16] is the most efficient method so far to reach
the optimal solution or sub-optimal one without any practical difference.

The extended auction algorithm [17] is able to solve the rectangular matrix
problems with the constraint that one observation can only be assigned to one
target while a target can have at least one observations. However, in our ap-
plication, it is very likely that some tracks do not have any observation due to
the mis-detection of the boosting detector. Therefore, even if there are some
observations within the gate of that track, it is still possible that none of the
observations belongs to the track. Hence, the constraints are formalized as∑n

i=1 xij = 1,∀j∑m
j=1 xij ≥ 0,∀i (5)

and the solution is

xi′j =
{

1 if i′ = argi min aij

0 otherwise ∀j (6)
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5 Mean-Shift Embedded Particle Filter

The motivation of embedding the mean-shift algorithm into the particle filter
framework of our tracking system is to stabilize the tracking result. It is im-
portant for the dynamics model because stabilizing trajectories improves the
accuracy of the computed velocity of targets, which is critical for improving the
prediction of the location of the targets. It is also important for the likelihood
model because accurate prediction leads sampling to more promising areas so
that the influence from background clutter and mutual occlusion will be reduced.

5.1 Color Model

We adopted the color model in [13, 4] in our application because it is success-
ful in tracking non-rigid objects with partial occlusion. The model is originally
introduced by Comaniciu et al. [18] for the mean-shift based object tracking.
The observation of the target is represented by an N -bin color histogram ex-
tracted from the region R(xt) centered at the location xt. It is denoted as
Q(xt) = {q(n;xt)}n=1,...,N , where

q(n;xt) = C
∑

k∈R(xt) δ[b(k)− n] (7)

where δ is the Kronecker delta function, C is a normalization constant, k is
any pixel within the region R(xt). By normalizing the color histogram, Q(xt)
becomes a discrete probabilistic distribution.

The similarity between the current observation Q(xt) and the reference model
Q∗, which is constructed at the initialization step, is evaluated based on the
Bhattacharyya coefficient

d(xt,x0) =
√

1− ρ[Q(xt), Q∗], ρ[Q(xt), Q∗] =
N∑

n=1

√
q(n;xt)q∗(n;x0) (8)

In order to encode the spatial information of the observation, a multi-part
color model [13, 4] is employed, which splits the targets vertically into two parts.
The color histogram of the two parts are constructed separately and concate-
nated in parallel as a new histogram. The likelihood is then evaluated as

p(yt|xt) ∝ e−λd2(xt,x0). (9)

5.2 Mean-Shift

Mean-shift is a nonparametric statistical method that seeks the mode of a density
distribution in an iterative procedure. It was first generalized and analyzed by
Cheng in [19] and later developed by Comaniciu et al. in [20]. The objective of
the mean-shift algorithm is to iteratively shift the current location x to a new
location x′ according to the following relation

x′ =

∑M
i=1 aiw(ai)k

(∥∥ai−x
h

∥∥2
)

∑M
i=1 w(ai)k

(∥∥ai−x
h

∥∥2
) (10)
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where {ai}M
i=1 are normalized points within the region R(x) around the current

location x, w(ai) is the weight associated to each pixel ai, and k(x) is a kernel
profile of kernel K that can be written in terms of a profile function k : [0,∞) →
R such that K(x) = k(‖x‖2). According to [19], the kernel profile k(x) should
be nonnegative, nonincreasing, piecewise continuous, and

∫∞
0 k(r)dr < ∞.

The theory guarantees that the mean-shift offset at location x is in the oppo-
site direction of the gradient direction of the convolution surface

C(x) =
M∑
i=1

G(ai − x)w(ai) (11)

where kernel G is called the shadow of kernel K and profile k(x) is proportional
to the derivative of profile g(x).

In order to utilize mean-shift to analyze a discrete density distribution, i.e.,
the color histogram, an isotropic kernel G with a convex and monotonically
decreasing kernel profile g(x) is superimposed onto the candidate region R(xt)
to construct such a convolution surface. Therefore, the new color model can be
rewritten as

q(n;xt) = Ch

Mh∑
i=1

g

(∥∥∥∥ai − xt

h

∥∥∥∥2
)

δ[b(ai)− n] (12)

where Ch is also a normalization constant that depends on h, and h is the
bandwidth that determines the scale of the target candidate. It should be noted
that in our application, scale of the targets is separated from the state space
of the targets and smoothly updated, on per particle basis, using the adaptive
scaling strategy in [12]. The weight in the mean-shift update for the color feature
is shown below.

w(ai) =
N∑

n=1

√
q∗(n;x0)
q(n;x)

δ[b(ai)− n]. (13)

The Epanechnikov profile [12] is chosen to be the kernel profile of kernel G in
our application. Because it is linear, the kernel K becomes a constant and the
kernel term in Equation 13 can be omitted.

5.3 Mean-Shift Embedded Particle Filter

Applying the mean-shift algorithm directly to the tracking output only gives one
deterministic offset at each step. It might not be able to capture the true location
of the targets due to background clutter or mutual occlusion between targets in
the image. Embedding it into the particle filter framework brings uncertainty
to the deterministic method so that the statistical property can improve the
robustness of the algorithm. In our application, the mean-shift operation biases
all the particles right after the sampling from the mixture of Gaussians proposal
distribution and before the resampling step in the particle filter framework.
Although similar work [11] has been done for tracking, it was only for single
target and the proper way of updating the particle weights after the mean-shift
bias was not addressed clearly.
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However, embedding the mean-shift algorithm seamlessly into the particle fil-
ter framework without introducing bias is non-trivial. Directly biasing sampled
particles from the old proposal distribution will change the overall posterior
distribution. This makes updating the weight of the particles without bias ex-
tremely difficult. Although the mean-shift bias is a deterministic mapping so
that it can be seen as a change of variable, it is not applicable in practice. On
one hand, because the mean-shift bias is a multiple to one mapping, it is not
invertible. On the other hand, because it is difficult to write the mean-shift bias
in an analytical expression for differentiation even in a piecewise manner, it is
difficult to compute the Jacobian matrix in the variable change.

We take an alternative approach in our application. Mean-shift biases the
samples {x̂(i)

t }i=1,...,N that are propagated by the old proposal distribution to
a new particle set {x̃(i)

t }i=1,...,N . We denote mean-shift searching with function
ϕ(·) such that x̃t = ϕ(x̂t). Finally, a Gaussian distribution is superimposed on
the biased particles to sample new particles. Therefore, the mean-shift bias with a
superimposed Gaussian distribution combined with the old proposal distribution
can be considered as a new proposal distribution q̆(xt|xt−1,yt). For the new
proposal distribution, the weight is updated as follows:

w̆
(i)
t ∝

p(yt|x̆(i)
t )p(x̆(i)

t |x(i)
t−1)

q̆(x̆(i)
t |x(i)

t−1,yt)
w

(i)
t−1 (14)

where q̆(x̆(i)
t |x(i)

t−1,yt) = N (x̆(i)
t |x̃(i)

t , Σ). Here, Σ is a diagonal 2×2 matrix and
the value of the two entries are chosen to be the same, which is 0.3, in our
application. Note that we use a sample x̆(i)

t instead of the biased particle x̃(i)
t .

This ensures that the sequential importance sampler remains unbiased and valid.
The following pseudo-code depicts the overall structure of our tracking system,

which includes all the contributions in our work.

– Initialization: t = 0
• Map boosting detections to the rink coordinates to get {xk,0}k=1,...,M0 .
• Create particle set {x(i)

k,0,
1
N }N

i=1 by sampling from p(xk,0).
– For t = 1, ..., T ,

1. Targets addition and removal
• Remove targets with large particle set variance.
• Map boosting detections from the video frame to the rink.
• Data association

∗ Create a particle set for each new target.
∗ Associate boosting detections to the existing tracks to construct

Gaussian mixture proposal distribution q(xk,t|xk,t−1, zk,t), where
zk,t is boosting detection.

2. For all particles in each track
• Importance sampling

∗ For all particles in each track, sample x̂(i)
k,t∼q(xk,t|x(i)

k,t−1, zk,t).
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• Mean-shift biasing
∗ Bias the particles as x̃(i)

k,t = ϕ(x̂(i)
k,t).

∗ Sample x̆(i)
k,t∼q̆(xk,t|x̃(i)

k,t)
• Weight update

∗ Update weights w̆
(i)
k,t according to Equation 14 and normalize.

3. Deterministic resampling

• For each track, resample particles to get new sample set {x(i)
k,t,

1
N }N

i=1.
4. Output

• For each track, E(xk,t) =
∑N

i=1 w
(i)
k,tx

(i)
k,t.

6 Experimental Results

Figure 2 shows the comparison between the tracking results of the system in [4]
and our system. Subfigure (a) is the key frame in the same tracking sequence
that shows the overall view of the tracking results. Subfigures (b-e) and (f-i) are
the close-up views of the rectangular region labelled in (a). Each player has a
unique color box assigned to it. The color of the same player may not necessarily
the same across results of the two systems. According to the results, we can see
from Subfigures (b-e) that the trackers merge together when they get close and
a new track is created when they split. Meanwhile, our system can maintain
correct identities during occlusion.

Subfigures (j-u) in Figure 2 shows the particle representation of the track-
ing results of our system. In the pseudo-code in Section 5.3, the evolution of
particle sets in each iteration of propagation can be divided into three steps: be-
fore the mean-shift bias, after the bias, and after the deterministic resampling.
The last three rows in the figure compare the difference between the particle
sets after each step. Generally, the mean-shift algorithm moves particles from
different locations around the target to locations in the neighborhood that are
most similar to the reference model in the color space. Therefore, particle sets
appear more condensed after the mean-shift bias. The difference between Sub-
figure (p) and (q) in Figure 2 indicates that mean-shift might move particles
to some other targets because of the similarity between the two targets in the
color space. However, such particles will be assigned low weights because of the
regularization of the dynamics model. As a result, those particles will have much
fewer or no children after the resampling stage. For the same reason, particles
that are biased to regions without any target, as are shown in Subfigure (n)
and (o), will be penalized as well. In summary, both the mean-shift algorithm
and the dynamics model penalize erroneous particle hypotheses and improve the
robustness of the overall tracking system.

Figure 3 shows more tracking results from three different sequences. All of
them are able to correctly maintain the identities of the players regardless of
partial of complete occlusions.
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(a) Frame 1

(b) Frame 30 (c) Frame 39 (d) Frame 50 (e) Frame 58

(f) Frame 30 (g) Frame 39 (h) Frame 50 (i) Frame 58

(j) Frame 30 (k) Frame 39 (l) Frame 50 (m) Frame 58

(n) Frame 30 (o) Frame 39 (p) Frame 50 (q) Frame 58

(r) Frame 30 (s) Frame 39 (t) Frame 50 (u) Frame 58

Fig. 2. Each row is a close-up view of the rectangular region in (a). Subfigures (b-e)
show the tracking results of the system in [4]. Subfigures (f-i) show the tracking results
of our system. Subfigures (j-u) show the particle representation of each target during
the tracking process. Different targets are labelled with rectangles of different colors.



Robust Visual Tracking for Multiple Targets 117

(a) Frame 79 (b) Frame 83 (c) Frame 88 (d) Frame 98

(e) Frame 28 (f) Frame 34 (g) Frame 42 (h) Frame 59

(i) Frame 8 (j) Frame 12 (k) Frame 14 (l) Frame 20

Fig. 3. Each row in the figure shows the tracking results of three different sequences
where the top one is the same sequence as the one shown in Figure 2

7 Conclusions

In this paper, we devote our endeavors to building a tracking system that is
able to robustly track multiple targets and correctly maintain their identities
regardless of background clutter, camera motions and mutual occlusion between
targets.

The new particle filter framework is more suitable for tracking a variable num-
ber of targets. The rectification technique compensates for the camera motion
and make the motion of targets easier to predict by the second order autore-
gression model. The linear optimization algorithm achieves the global optimal
solution to correctly assign boosting detections to the existing tracks. Finally,
the mean-shift embedded particle filter is able to stabilize the trajectory of the
targets and improve the dynamics model prediction. It biases particles to new
locations with high likelihood so that the variance of particle sets decreases
significantly.
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Abstract. Recognition of complex activities from surveillance video re-
quires detection and temporal ordering of its constituent “atomic” events.
It also requires the capacity to robustly track individuals and maintain
their identities across single as well as multiple camera views. Identity
maintenance is a primary source of uncertainty for activity recognition
and has been traditionally addressed via different appearance matching
approaches. However these approaches, by themselves, are inadequate. In
this paper, we propose a prioritized, multivalued, default logic based
framework that allows reasoning about the identities of individuals. This is
achieved by augmenting traditional appearance matching with contextual
information about the environment and self identifying traits of certain
actions. This framework also encodes qualitative confidence measures for
the identity decisions it takes and finally, uses this information to reason
about the occurrence of certain predefined activities in video.

1 Introduction

The primary goal of a visual surveillance system is to help ensure safety and se-
curity by detecting the occurrence of activities of interest within an environment.
This typically requires the capacity to robustly track individuals not only when
they are within the field of regard of the cameras, but also when they disappear
from view and later reappear. Figure 1 shows an individual marked X appearing
in the scene with a bag, dropping it off in the corridor, and disappearing from
view through a door. Subsequently it shows individual Y appearing in the scene
through the same door and picking up the bag.

If individual(X) = individual(Y ), the activity by itself, is probably not of
interest from a security viewpoint. However, if individual(X) �= individual(Y ),
the activity observed could possibly be a theft. This example captures the general
problem of automatically inferring whether two individuals observed in the video
are equal or not. This problem is significant not only for camera setups where
individuals routinely disappear into and reappear from pockets of the world not
observed by the cameras, but also within a single field of view when tracking is
lost due to a variety of reasons.

Traditionally in surveillance, the problem of identity maintenance has been
addressed by appearance matching. Matching of appearances can be based on
a person’s color distribution and shape [1], gait [2], face [3] and other physical
� We thank the U.S.Government for supporting the research described in this paper.
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Fig. 1. Sequence of images showing individual X appearing in the scene with a bag,
depositing it on the ground and disappearing from view. Subsequently, individual Y
appears in the scene, picks up the bag and leaves.

characteristics. However, all of these approaches are considered weak biometrics
and, by themselves, are inadequate for maintaining identities for recognizing
complex activities.

The objectives of this paper are to provide a framework

1. that supports reasoning about identities of individuals observed
in video. We do this by augmenting traditional appearance matching with
(a) contextual information about the world and (b) self identifying traits
associated with actions. In addition to stating whether or not two individuals
are equal, we also qualitatively encode our confidence in it.

2. that facilitates using this information on identities to recognize
activities. We also propagate our confidence in the identity statements to
activities to which they contribute.

In the example above, if the door through which individual X disappeared
leads into a closed world (a world with no other exit), we could, under some
circumstances, infer that individual Y coming out of that door at a later time
had to be equal to individual X (with a high degree of confidence), regardless of
whether or not he appeared similar to X.

In this work, we encode contextual information about the world and our com-
mon sense knowledge about self-identifying actions as rules in a logic program-
ming language. Furthermore, we observe that since these rules reflect actions
taking place in a real world, they can never be definite and completely correct.
We therefore employ default logic as the language to specify these rules, which
provides our framework the important property of nonmonotonicity (the prop-
erty of retracting or disbelieving old beliefs upon acquisition of new information).
We also employ a bilattice based multivalued representation that encodes our
confidence in various rules and propagates these confidence values to the identity
statements and subsequently to the activities themselves. We then use prioritiza-
tion over these default rules to capture the fact that different cues could provide
us with different amounts of information. Finally, we use this information about
identities of individuals to reason about the occurrence of activities in the video.

2 Motivation

Our primary motivation is to build a visual surveillance system that draws heavily
upon human reasoning. While humans are very skillful in matching appearances,
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even we commit mistakes in this process. However, we possess the capacity to em-
ploy context and non-visual cues to aid us in recovering from these errors.

Example 1. Upon observing an individual, from the back and walking away
from us, based on his gait and possibly body type, we tentatively conclude that
the individual is Tom, a colleague at work. However, if we suddenly remember
that Tom called in sick earlier in the day, we may decide that it cannot be Tom.
Later still, if we observe that individual enter a Black BMW, a type of car we
know Tom owns, we might conclude more strongly this time that it has to be
Tom. However, before entering the car, if the individual turns around to face us
and we realize that it is a person we have never seen before, we may definitely
conclude that it is not Tom.

The example demonstrates how humans employ common sense to reason about
identities. Human reasoning is characterized, among other things, by [4]

1. Its ability to err and recover – This is important because when dealing
with uncertain input, decisions or analysis made might have to be retracted
upon acquisition of new information. In Example 1, we retracted our belief of
the person being Tom or not several times,

2. Its qualitative description of uncertainty – A qualitative gradation
of belief permits us to encode our confidence in decisions we make. In Example 1,
our degree of belief in whether or not the person was Tom moved from slightly
sure to definitely sure.

3. Prioritization – It is important to have a sense of how reliable our thread
of reasoning is. In Example 1, based on appearance we were only slightly sure,
based on vehicle information we were more sure, based on face recognition we
were definitely sure etc.

3 Related Work

Identity maintenance in surveillance has typically only employed some form of
appearance matching. [1] uses a SVM based approach to recognize individuals
in indoor images based on color and shape based features. [2] employs gait as
a characteristic to identify individuals while [3] performs face recognition from
video. Microsoft’s EasyLiving project [5] employs two stereo cameras to track
up to 3 people in a small room while [6] describes a multi-camera indoor people
localization in a cluttered environment. Activity recognition has traditionally
been performed using statistical approaches. Hidden Markov Models have been
used to recognize primitive actions in [7] and also complex behaviors in [8].
Bayesian networks are also widely used [9] [10]. Non statistics based approaches
have also been used to recognize activities. [11], proposes an approach based
on declarative models of activities and defines scenarios for Vandalism, Access
forbidden and Holdup and uses a hierarchy of facts ranging from abstract to
concrete to recognize these situations. [12] investigates the use of qualitative
spatio-temporal representations and abduction in an architecture for Cognitive
Vision. [13] employs a context representation scheme for surveillance systems.
[14] uses scenarios to declare spatio-temporal knowledge in vision applications.
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4 Reasoning Framework

Logic programming systems employ formulae that are either facts or rules to
arrive at inferences. In visual surveillance, rules can be used to define various
activities of interest [15] as well as intermediate inferences such as that of equality
of individuals. Rules are of the form “A ← A0, A1, · · · , Am” where each Ai is
called an atom and ‘,’ represents logical conjunction. Each atom is of the form
p(t1, t2, · · · , tn), where ti is a term, and p is a predicate symbol of arity n. Terms
could either be variables (denoted by upper case alphabets) or constant symbols
(denoted by lower case alphabets). The left hand side of the rule is referred to
as the head and the right hand side is the body. Rules are interpreted as “if
body then head”. Facts are logical rules of the form “A←” (henceforth denoted
by just “A”) and correspond to the input to the inference process. These facts
are the output of the computer vision algorithms, and include “atomic” events
detected in video (entering/exiting a door, picking up a bag) and data from
background subtraction and tracking. Finally, ‘¬’ represents negation such that
A = ¬¬A.

4.1 Default Logic

Automatic visual surveillance systems need to function effectively under condi-
tions of high uncertainty. As humans, we possess the ability to reason effectively
under such circumstances using what is termed “common sense reasoning”. De-
fault logic [16] is an attempt to formalize common sense reasoning using default
rules. Default logic expresses rules that are “true by default” or “generally true”
but could be proven false upon acquisition of new information in the future. This
property of default logic, where the truth value of a proposition can change if
new information is added to the system, is called nonmonotonicity.

Definition 1 (Default Theory). A default theory Δ is of the form 〈W, D〉,
where W is a set of traditional first order logical formulae (rules and facts) also
known as the definite rules and D is a set of default rules of the form α:β

γ , where
α is known as the precondition, β is known as the justification and γ is known
as the inference or conclusion.

A default rule of this form expresses that if the precondition α is known to be
true, and the justification β is consistent with what is currently in the knowledge
base, then it is possible to conclude γ. Such a rule can be also written as γ ←
α, not(¬β). ‘not’ represents the negation by “failure to prove” operator and the
consistency check for β is done by failure to prove its negation.

Example 2. Assume the following set of rules and facts:

¬equal(P1, P2)← distinct(P1, P2). ∈ W

equal(P1, P2)← appear similar(P1, P2), not(¬equal(P1, P2)) ∈ D

{appear similar(a, b)}t

{appear similar(a, b), distinct(a, b)}t+1
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where {· · · }t indicates the set of facts at time t and distinct(a, b) indicates that
a and b appear as two separate and distinct individuals at some point of time.

In this example, at time t, given the rules and the set of facts, the system
concludes that since it cannot prove ¬equal(a, b) and appear similar(a, b) is
true, therefore equal(a, b) is true. However, at time t+1, it is now possible to
prove ¬equal(a, b) because distinct(a, b) is true and therefore the system now
can no longer conclude equal(a, b) (the default rule is blocked by the definite
rule) and concludes ¬equal(a, b) instead.

While the property of a conclusion blocking another default rule is desirable
since it bestows nonmonotonicity upon the system, it can also create a problem.

Example 3. Assume the following set of rules and facts:

¬equal(P1, P2)← distinct(P1, P2), not(equal(P1, P2)). ∈ D

equal(P1, P2)← appear similar(P1, P2), not(¬equal(P1, P2)) ∈ D

{appear similar(a, b), distinct(a, b)}t

In Example 3, the rule for inferring that two individuals are not equal if they
appear distinct is now made a default rule1. In this case, given the set of facts,
at time t, depending on the order in which the default rules are applied, different
sets of conclusions can be produced. If the first default is applied first, it blocks
the second default and we conclude ¬equal(a, b); but if the second default is
applied first, it blocks the first and we conclude equal(a, b). The different sets
of conclusions that can be derived by applying defaults in different orders are
called extensions.

Evidence from different extensions can be combined in an information the-
oretic manner to give us a single solution using Multivalued Default Logic. In
this approach, various rules in the system are regarded as different sources of
information concerning the truth value2 of a given proposition. These sources
contribute different amounts of information to the decision making process and
consequently our degree of belief in these propositions mirrors their information
content. E.g. default rules are not always correct and could be proven wrong by
definite rules. Therefore, in this approach, definite rules provide more informa-
tion than default rules. We now seek a representation that combines the truth
value of a proposition with the information content of its sources.

4.2 Bilattice Theory

Bilattices [17] provide an elegant and convenient formal framework in which the
information content from different sources can be viewed in a truth functional
manner. Truth values assigned to a given proposition are taken from a set struc-
tured as a bilattice. A lattice is a set L equipped with a partial ordering ≤ over
1 This default rule captures the fact that if there exists a mirror in the world, it could

be possible for a single person to appear as two distinct individuals.
2 Truth value here means our degree of belief in the veracity or falsity of a given

proposition and not the actual truth value of the proposition in the real world.
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the elements of L, a greatest lower bound (glb) and a lowest upper bound (lub)
and is denoted by the triple (L,glb,lub). Informally a bilattice is a set, B, of

Fig. 2. Bilattice for default logic

truth values composed of two lattices
(B,∧,∨) and (B, ·, +) each of which is as-
sociated with a partial order ≤t and ≤k

respectively. The ≤t partial order indi-
cates how true or false a particular value
is, with f being the minimal and t being
the maximal. The ≤k partial order indi-
cates how much is known about a particu-
lar sentence. The minimal element here is
u (completely unknown) while the maxi-
mal element is ⊥ (representing a contra-
dictory state of knowledge where a sen-
tence is both true and false). The glb and
the lub operators on the ≤t partial or-
der are ∧ and ∨ and correspond to the
usual logical notions of conjunction and
distinction, respectively. The glb and the
lub operators on the ≤k partial order are · and +, respectively, where + corre-
sponds to the combination of evidence from different sources or lines of reasoning
while · corresponds to the consensus operator. A bilattice is also equipped with
a negation operator ¬ that inverts the sense of the ≤t partial order while leaving
the ≤k partial order intact.

Properties of Bilattices: Figure 2 shows a bilattice corresponding to classi-
cal default logic. The set B of truth values contains, in addition to the usual
definite truth values of t and f, dt and df corresponding to true-by-default (also
called “decided-true”) and false-by-default (also called “decided-false”), u cor-
responding to “unknown”, * corresponding to “undecided” (indicating contra-
diction between dt and df) and ⊥ corresponding to “contradiction” (between
t and f). The t-axis reflects the partial ordering on the truth values while the
k-axis reflects that over the information content. This bilattice provides us with
a correlation between the amount of information and our degree of belief in a
source’s output. Procuring more information about a proposition, indicated by
rising up along the k-axis, causes us to move away from the center of the t-axis
towards more definitive truth values. The only exception to this being in case of
a contradiction, we move back to the center of the t-axis. Negation corresponds
to reflection of the bilattice about the ⊥ −u axis. It is also important to note
the this bilattice is distributive with respect to each of the four operators. Based
on this framework, we can define the truth tables for each of the four operators.

4.3 Inference

Given a declarative language L, a truth assignment is a function φ : L → B,
where B is a bilattice on truth values. The semantics of a bilattice system is
given by a definition of closure. If K is the knowledge base and φ is a truth
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assignment labelling each sentence k ∈ K with a truth value then the closure
of φ, denoted cl(φ), is the truth assignment that labels information entailed by
K. For example, if φ labels sentences {p, q ← p} ∈ K as true; i.e. φ(p) = T and
φ(q ← p) = T , then cl(φ) should also label q as true as it is information entailed
by K. Entailment is denoted by the symbol ‘|=’ (K |= q).

If S ⊂ L is a set of sentences entailing q, then the truth value to be assigned
to the conjunction of elements of S is

∧
p∈S cl(φ)(p). This term represents the

conjunction of the closure of the elements of S. It is important to note that this
term is merely a contribution to the truth value of q and not the actual truth
value itself. The reason it is merely a contribution is because there could be other
sets of sentences S that entail q representing different lines of reasoning (or, in
our case, different rules). The contributions of these sets of sentences need to be
combined using the + operator. Also, if the term above evaluates to false, then
its contribution to the value of q should be “unknown” and not “false”. These
arguments suggest that the closure over φ of q is

cl(φ)(q) =
∑
S|=q

u ∨ [
∧
p∈S

cl(φ)(p)] (1)

We also need to take into account the set of sentences entailing ¬q. Since
φ(¬q) = ¬φ(q), aggregating this information yields the following expression

cl(φ)(q) =
∑
S|=q

u ∨ [
∧
p∈S

cl(φ)(p)] + ¬
∑

S|=¬q

u ∨ [
∧
p∈S

cl(φ)(p)] (2)

For more information on the properties and logical inference based on bilattice
theory see [17].

Example 4 (Inference example).

φ[¬equal(P1, P2)← distinct(P1, P2)] = DT

φ[equal(P1, P2)← appear similar(P1, P2)] = DT

φ[appear similar(a, b)] = T φ[distinct(a, b)] = T

cl(φ)(equal(a, b)) = [U ∨ (T ∧DT )] + ¬[U ∨ (T ∧DT )]
= [U ∨DT ] + ¬[U ∨DT ] = DT + DF = ∗

In Example 4, we encode our belief that the two rules are only true in general
and do not always hold by assigning a truth value of DT to them. We record
our belief in the facts as T and apply equation 2 to compute the truth value
of equal(a, b). Note in Example 3, we obtained two extensions with equal(a, b)
being true in one and ¬equal(a, b) being true in another. Using the multivalued
approach we collapse these extensions and combine the two conclusions to obtain
DT + DF = ∗ or “undecided”.

4.4 Belief Revision and Prioritized Defaults

In classical AI, belief revision is the process of revising a proposition’s belief state
upon acquisition of new data. In the bilattice framework presented above, these
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revisions should only occur if the new data source promises more information
than that which triggered the current truth value assignment. Note that the
belief combination operator, + is a lub operator on the k-axis, meaning it will
only choose a sentence with maximum information.

However, this poses a problem for our current theory. Since default rules could
be contradicted by other default rules, it is possible that many propositions will
suffer from a DT, DF contradiction and will settle in the * or undecided state.
According to our current theory, only a rule with more information, the definite
rules, can release it from this state. Unfortunately in visual surveillance, most
rules are default rules and therefore it might be the case that there may be no
definite rules to rescue a proposition once it gets labelled “undecided”.

This problem arises because thus far we are assuming that all the default rules
provide us the same amount of information, causing them to contradict each
other and force a proposition into the * state. However, suppose, instead we as-
sume that different defaults could provide different amounts of information and
consequently could alter our belief state by different degrees. It turns out that
the bilattice structure very elegantly generalizes to accommodate this assump-
tion. Figure 3 shows a bilattice for a prioritized default theory with 3 priorities.
Formally a prioritized default theory Δ< is of the form 〈W, D, <〉 [18] where W
and D are as defined in Definition 1 and < is a strict partial ordering on D. The
semantics of the bilattice on the new set of truth values stays the same as before.

5 Reasoning About Identities

Our system primarily employs four identifying cues or traits for reasoning about
identities. These cues are based on the individuals possessions, closed world
activity, knowledge and appearance. In addition to these cues, we also employ
equality axioms of reflexivity, transitivity, and symmetry.

Identity can be verified on basis of a person possessing something that only
he can possess. For example, if we know that a vehicle belongs to an individual
and later we observe another individual entering that vehicle using a key, we can
conclude that they must be equal. An individual can be identified on the basis of
certain closed world activities, examples of which we will see below. One can also
verify identity on the basis of the knowledge we think an individual possesses.
For example, if there is a combination lock on a door controlling access to a office
and we observe an individual successfully entering the code and opening the door
to enter the room, we can conclude that he must be the owner of that office.
Finally appearance based cues help identify individuals based on appearance.
We employ a color histogram based appearance matching algorithm. Without
loss of generality, we assume three levels or priorities of defaults. Figure 3 shows
the resultant bilattice employed in our system. In the remainder of this section
we will give English descriptions of various rules employed in our system, and
note their priority levels.

Priority Level 1: Appearance based identification states that if two indi-
viduals appear similar to each other then they are equal to each other. On
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Fig. 3. Prioritized bilattice em-
ployed in our system

the other hand, if two individuals do not appear
similar to each other, then they are not equal.
These set of rules are required in situations
where we are forced to compare individuals in
the absence of any contextual information. As-
sume an individual disappears from view into
an open world (a world with no constraints
on the movements of that individual or others)
and another person reappears. Since the person
reappearing could potentially be anyone in the
world, there is significant uncertainty associated
with making an identity decision. Therefore,
these rules provide us with least information compared to any approach that
augments appearance matching with context. We therefore assign to it priority
level 1.

Priority Level 2: If a number of individuals are observed entering a closed world
and later reappearing, the uncertainty associated with performing appearance
matching as before on that limited group of people is significantly lesser than
in the previous case. Therefore, this rule, which reduces the space of possible
matches via a closed world assumption, provides more information than pure
appearance matching and we assign to it priority level 2.

Priority Level 3: Most of the rules based on possession and knowledge fall in
this category as they cause us to depart from comparing groups of individuals
to comparing just two individuals. For example, if we observe an individual
arrive in the scene in a vehicle, disappear from view and subsequently another
individual appears in the scene and uses a key to enter the vehicle, we can
conclude, provided they appear similar, that they must be equal. Here we are
comparing just two individuals the one who arrived in the vehicle and the one
departing in it. Similar reasoning can be applied to offices which require a key or a
combination number to enter3. Since the comparisons here involve an even more
reduced set than the previous case, we assign to this set of rules priority level 3.

Another set of rules that fall in this prioritization are purely closed world based
rules such as an individual entering a closed world that we believe to be empty
and subsequently exiting it such that no other individual is observed entering or
exiting the closed world in between. Here, since there exists the possibility of the
individual changing their attire inside the closed world (taking off a jacket), ap-
pearance matching is not a strong cue. Other rules in this category are rules that
state that if we observe an individual enter a closed world and if, while we believe
he is still inside, we observe another individual elsewhere in the scene, then they
cannot be equal to each other. Closed world rules such as these clearly have more
information than rules with priority levels 1 and 2; however it isn’t clear that
they have more or less information than the knowledge and possession based
rules mentioned above. Therefore we assign to these set of rules priority level 3.

3 Provided we have reason to believe that the office usually has only one occupant.
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Definite rules: It is very hard to state that two individuals are definitely equal
based on visual observation alone. Irrespective of how much information one
packs in such rules, it is always possible to find ways to defeat them. Therefore, in
our system we do not have a single rule that definitely infers equality. However,
it is possible to state that two individuals are not equal. We do that when
we observe them as two distinct individuals at the same instant of time. We
also consider the equality axioms of reflexivity, transitivity and symmetry to be
definite in nature.

6 Activity Recognition

We can now use inferences made regarding equality of individuals to reason
about the occurrence of various activities in the input video. Moreover we can
propagate our degree of belief in the identity statement to the activities that it
contributes to. We define three such activities and list some sample rules4.

Theft: We define theft as the activity of an individual possessing a package
that does not belong to him. A package does not belong to an individual P1 at
time T1 if it belonged to another individual P2 at some time T2 < T1 such that
¬equal(P1, P2). Formally,

theft(P1, B, T1)←human(P1), bag(B), possess(P1, B, T1),¬belongs(B, P1, T1).
¬theft(P1, B, T1)←human(P1), bag(B), possess(P1, B, T1), belongs(B, P1, T1).

A package does not belong to an individual P1 at time T1 if it was originally
possessed by individual P2 at some time T2 < T1 such that ¬equal(P1, P2).

¬belongs(B, P1, T1)← original possessor(P2, B, T2), T2 < T1,¬equal(P1, P2).
belongs(B, P1, T1)← original possessor(P2, B, T2), T2 < T1, equal(P1, P2).

Entry Violation: Assuming an identity card reader controls access to a building
entrance, we define entry violation as the activity of an individual entering the
building without scanning his card. Formally,

¬entry violation(P1) ← enter(P1, T1), scancard(P2, T2), T2 < T1, equal(P1, P2).
entry violation(P1)←enter(P1, T1), scancard(P2, T2), T2 < T1,¬equal(P1, P2).

Unattended Package: We define a package to be unattended if we observe an
individual drop off a package and then cease to be in its vicinity. This is captured
by the following rules

¬unattended(B, T1)← in vicinity(P1, B, T1), dropoff(P2, B, T2), equal(P1, P2).
unattended(B, T1)← not(¬unattended(B, T1)).

4 Note, due to space constraints, rules listed in this paper are only those pertinent
to the scenarios described in the next section and represent a small (modified for
ease of understanding) subset of the rules encoded in the system. Typically for any
predicate p, there exist multiple rules deriving p and/or ¬p depending on how we
want the system to behave under various scenarios.



Multivalued Default Logic for Identity Maintenance in Visual Surveillance 129

Propagation of belief states from equality statements to these activities is
done using equation 2.

7 Experiments

Our system has been implemented as a multi-threaded, C++ application capable
of handling multiple cameras. A Prolog reasoning engine has been embedded
within this C++ application. Multivalued default reasoning is implemented using
meta-predicates provided by Prolog. As currently implemented, this application
runs at frame rate while taking input from up to three cameras.

The application consists of two kinds of threads: the (possibly multiple) cam-
era thread(s) which take input from the camera(s) and detect “atomic” events
(like entering a door or picking up a bag) and a single reasoning thread responsi-
ble for the high level multivalued default reasoning. For each camera connected
to the system, we create a camera thread that first performs background sub-
traction and tracking on the video. It then detects “atomic” events and syntacti-
cally structures them as Prolog facts. The reasoning thread, when first created,
starts the Prolog engine and initializes it by inserting into its knowledge base
all the predefined rules from the default theory. The reasoning thread is sub-
sequently evoked every few seconds. Every time it runs, it assimilates Prolog
facts generated by the camera threads and inserts them into the Prolog en-
gine’s knowledge base. Also, for every human observed in the video, it reasons
about their identity by applying all applicable equality rules. Finally, equality
statements, along with their qualitative confidence values, are used to reason
about the occurrence of predefined activities using the rules listed in section 6.
If any of the activities can be proven with belief states of DT1, DT2, DT3 or T
then the reasoning thread generates an alert. The tool we have built also allows
the user to manually click on the image, while setting up the system, to mark
and label regions (as ‘closed world’, ‘hand-off region’, ‘card reader’ etc.), in the
scene. These regions, as seen in Fig 4 and 5 provide the system with information
about the scene structure and properties and also helps the system to recognize
a richer set of “atomic” events that log the interactions of individuals with the
environment.

We demonstrate our system in action on a multi-camera surveillance setup.
We employ cameras that have disjoint fields of view and label certain regions
within the scene as hand-off regions. Hand-off regions are areas within an image
where individuals disappear and reappear between cameras. We encode simple
rules that state that if an individual disappears from the hand-off region in
one camera and within a certain time interval appears within a specific hand-off
region of another camera and the two individuals appear similar, then they must
be equal. These rules as well as the belief states assigned to them are clearly
setup specific. We now describe a few scenarios that were used to test the system.

Scenario 1 (Theft-See Figure 4). Vehicle 1 0 enters the scene and individual
1 1 appears from it and disappears from the view of camera 1 from the right
hand-off region. He appears in view of camera 2 from its hand-off region as 2 0,
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Frame 0397 Frame 0817 Frame 1131 Frame 1411 Frame 1682

Fig. 4. Figure depicting scenario 1. Top row Camera 1 and bottom row Camera 2.

drops a bag, 2 1, in the corridor and enters a room (closed world). He is followed
by another individual 2 2 (who appears from around the corner) into the room.
Subsequently an individual 2 3 exits the room, picks up the bag and exits the view
of camera 2 through the hand-off region. He appears in the hand-off region of
camera 1 as 1 2 and enters the vehicle using a key and drives away.

In this scenario, the system correctly identifies human 2 0 as being equal to
1 1 due to the hand-off rules encoded for this camera setup. When human 2 3
exits the room, the system attempts to apply the closed world and appearance
matching (default priority 2) set of rules mentioned in section 5. However, it
turns out 2 3 appears similar to both 2 0 and 2 2, and therefore the system
derives both φ[equal(2 3, 2 0)] = DT2 and φ[equal(2 3, 2 2)] = DT2. Note the
system can also prove φ[equal(2 0, 2 2)] = DF3 which is inconsistent if we at-
tempt to establish the transitivity relation. The system therefore is forced to
assign φ[equal(2 3, 2 0)] = ∗2 and φ[equal(2 3, 2 2)] = ∗2 which represents the
undecided state. When 2 3 picks up the bag left behind by 2 0, the system tries
to prove whether or not a theft has taken place, however, it can only prove
φ[theft(2 3, 2 1, 1415)] = ∗2 due to the uncertainty involved in the equality
statement that contributes to it. The system continues on to correctly conclude
that human 2 3 is equal to human 1 2. However, when 1 2 uses a key and en-
ters the vehicle, it can now prove φ[equal(1 1, 1 2)] = DT3. By transitivity, the
system is then able to revise its belief of φ[equal(2 3, 2 0)] from ∗2 to DT3 and
consequently revise its belief of φ[theft(2 3, 2 1, 1415)] from ∗2 to DF3, i.e. no
theft has occurred with high confidence.

In the next scenario, we assume there exists a card reader controlling access
to a building.

Scenario 2 (Entry Violation). Individual 2 approaches the card reader and
swipes her card while 1 is at the phone. Individuals 1 and 2 momentarily occlude
each other causing the tracker to lose track of the individuals. Subsequently when
the two individuals separate out again, tracking is resumed and human 3 enters
the building.

In this scenario, after tracking is lost and resumed, the system needs to as-
certain whether the person who entered the building is the one who swiped the
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Frame 1197 Frame 1404 Frame 1408

Fig. 5. Figure depicting scenario 2

card. However due to a lack of any context based cues, it is forced to resort to
appearance matching (priority level 1) rules. Based on those rules, the system
concludes φ[equal(2, 3)] = DT1 and φ[entry violation(3)] = DF1, i.e. no entry
violation has taken place with low confidence.

Scenario 3 (Unattended Package). Human 2 16 drops a bag 2 17 in the
corridor and enters an empty room (closed world). Subsequently 2 18 exits the
room.

In this scenario, the event of 2 16 entering the room, triggers the unattended
package alert as the bag’s owner is no longer in its vicinity. However, when
2 18 appears, based on the closed world (priority level 3) rules, the system is
able to conclude φ[equal(2 16, 2 18)] = DT3 and therefore it also concludes
φ[unattended(2 17, 1783)] = DF3, i.e. the bag is not unattended with high
confidence.

8 Summary

The problem of identity maintenance is a very important problem in visual
surveillance. Many activities that we wish to recognize in surveillance video
depend, in some ways, upon the identities of the individuals involved, and there-
fore have to account for the uncertainty in reasoning about them. Traditionally,
identity maintenance has relied solely on appearance matching, however it is
extremely important to take into account context and cues provided by certain
self-identifying actions to augment reasoning. This work is an attempt to pro-
vide a framework to do just that. The development of this framework has been
heavily influenced by human reasoning. We believe human reasoning is char-
acterized, among other things, by nonmonotonicity, qualitative belief gradation
and prioritization. We have attempted to capture these traits in the proposed
theory.
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A Multiview Approach to Tracking People
in Crowded Scenes Using a Planar

Homography Constraint
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Abstract. Occlusion and lack of visibility in dense crowded scenes make
it very difficult to track individual people correctly and consistently.
This problem is particularly hard to tackle in single camera systems.
We present a multi-view approach to tracking people in crowded scenes
where people may be partially or completely occluding each other. Our
approach is to use multiple views in synergy so that information from
all views is combined to detect objects. To achieve this we present a
novel planar homography constraint to resolve occlusions and robustly
determine locations on the ground plane corresponding to the feet of the
people. To find tracks we obtain feet regions over a window of frames and
stack them creating a space time volume. Feet regions belonging to the
same person form contiguous spatio-temporal regions that are clustered
using a graph cuts segmentation approach. Each cluster is the track of
a person and a slice in time of this cluster gives the tracked location.
Experimental results are shown in scenes of dense crowds where severe
occlusions are quite common. The algorithm is able to accurately track
people in all views maintaining correct correspondences across views.
Our algorithm is ideally suited for conditions when occlusions between
people would seriously hamper tracking performance or if there simply
are not enough features to distinguish between different people.

1 Introduction

Tracking multiple people accurately in dense crowded scenes is a challenging
task primarily due to occlusion between people. If a person is visually isolated
(i.e. neither occluded nor occluding another person in the scene) it is much sim-
pler to perform the tasks of detection and tracking. This is because the physical
attributes of the person’s foreground blob like color distribution, shape and ori-
entation remain largely unchanged as he/she moves. With increasing density of
objects in the scene inter object occlusions increase. A foreground blob is no
longer guaranteed to belong to a single person and may in fact belong to sev-
eral people in the scene. Even worse, a person might be completely occluded
by other people. Under such conditions of limited visibility and clutter it might
be impossible to detect and track multiple people using only a single view. The
logical step is to try and use multiple views of the same scene in an effort to
recover information that might be missing in a particular view. In this paper
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Fig. 1. Four views of a scene containing a crowd of nine people. The ground plane is
clear and visible from each view. Notice the occlusions. The scene is so crowded that
no person is visually isolated in every view. In fact most people are either occluded or
occluding other people in every view. There are also cases of near total occlusion in
views on the top row.

we propose a multi-view approach to detecting and tracking multiple people in
crowded scenes. We are interested in situations where the crowds are sufficiently
dense that partial or total occlusions are very common and it can not be guar-
anteed that any of the people will be visually isolated. Figure 1 shows four views
of a crowded scene from one of our experiments that will be used to illustrate
our method. Notice that no single person is viewed in isolation in all four images
and there are cases of near total occlusion.

In our approach we do not use color models or shape cues of individual people.
Our method of detection and occlusion resolution is based on geometrical con-
structs and only requires the distinction of foreground from background. At the
core of our method is a novel planar homography constraint that combines fore-
ground likelihood information (probability of a pixel in the image belonging to
the foreground) from different views to resolve occlusions and determine ground
plane locations of people. The homography constraint implies that only pixels
corresponding to the ground plane locations of people (i.e, the feet) will con-
sistently warp (under homographies of the ground plane), to foreground regions
in every view. The reason we use foreground likelihood maps instead of binary
foreground images is to delay the thresholding step to the last possible stage.
Warping foreground likelihood maps from all views onto a reference view and
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multiplying them out, the pixels pertaining to feet of the people are segmented
out. To track these regions we obtain feet blobs over a window of frames and
stack them together creating a space time volume. Feet regions belonging to the
same person form contiguous spatio-temporal regions that are clustered using a
graph cuts segmentation approach. Each cluster is the track of a person and a
slice in time of this cluster gives the tracked location.

It should be noted that we neither detect nor track objects from any sin-
gle camera, or camera pair; rather evidence is gathered from all the cameras
into a synergistic framework and detection and tracking results are propagated
back to each view. We assume the ground plane homography between cameras
is available which requires that the ground plane is visible in each view. This
is a reasonable assumption in typical surveillance installations monitoring peo-
ple in busy crowded places. Usually the ground plane occupies a large enough
image region to be automatically detected and aligned using robust methods of
locking onto the dominant planar motion (e.g via one of the 2D parametric esti-
mation techniques such as [1, 2]). We do not assume that the camera calibration
information is known.

The rest of the paper is structured as follows. In Section 2 we discuss re-
lated work. Section 3 details the observation and theory behind the homography
constraint. In section 4 we present our algorithm that uses the homography con-
straint to segment out pixels representing ground locations of people in the scene.
Section 5 describes our tracking methodology. Section 6 details our experiments
and results providing insight into the utility and efficiency of our method. We
conclude this paper in section 7.

2 Related Work

There is extensive literature on single-camera detection and tracking algorithms,
almost all of which suffer from the difficulties of tracking multiple objects under
occlusions. Zhao and Nevatia [3] presented a method for tracking multiple people
in a single camera. They used 3D shape models of people that were projected
back in image space to aid in segmentation and resolving occlusions. Each hu-
man hypothesis was then tracked in 3D with a Kalman filter using the objects
appearance constrained by its shape. Okuma et al. [4] propose an interesting
combination of Adaboost for object detection and particle filters for multiple-
object tracking. The combination of the two approaches leads to fewer failures
than either one on its own, as well as addressing both detection and consistent
track formation in the same framework. Leibe et al. [5] present a pedestrian
detection algorithm for crowded scenes. Their method operates in a top-down
fashion, iteratively aggregating local and global patterns for better segmenta-
tion. These and other similar algorithms [6, 7, 8] are challenged by occluding
and partially occluding objects, as well as appearance changes. Connected fore-
ground regions may not necessarily correspond to one object, but might have
parts from several of them.

Some researchers have developed multi-camera detection and tracking algo-
rithms in order to overcome these limitations. Orwell et al. [9] present a tracking
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algorithm to track multiple objects in multiple views using ‘color’ tracking. They
model the connected blobs obtained from background subtraction using color his-
togram techniques and use them to match and track objects. Cai and Aggarwal
[10] extend a single-camera tracking system by starting with tracking in a single
camera view and switching to another camera when the system predicts that
the current camera will no longer have a good view of the subject. Krumm et al.
[11] use stereo cameras and combine information from multiple stereo cameras in
3D space. They perform background subtraction and then detect human-shaped
blobs in 3D space. Color histograms are created for each person and are used
to identify and track people. Mittal et al. [12] use a similar method to combine
information in pairs of stereo cameras. Regions in different views are compared
with each other and back-projection in 3D space is done in a manner that yields
3D points guaranteed to lie inside the objects.

Even though these methods attempt to resolve occlusions, the underlying
problem of using features that might be corrupted due to occlusions remains.
The scene shown in figure 1 would be difficult to resolve for any of these methods.
Not only are there cases of near total occlusion, the people are dressed in very
similar colors. Using blob shapes or color distributions for region matching across
cameras would lead to incorrect segmentations and detections.

The homography constraint we present in this paper and its application to
localize people on a ground plane can also be interpreted as a visual hull inter-
section process. The difference is that unlike traditional visual hull intersection
algorithms [13, 14, 15], our method uses only 2D constructs and dose not re-
quire camera calibration. This is because the homography constraint effectively
performs visual hull intersection on a plane.

3 Homography Constraint

We begin with the basic notions of planar homographies. Let p = (x, y, 1) denote
the image location (in homogeneous coordinates) of a 3D scene point in one
view and let p′ = (x′, y′, 1) be its coordinates in another view. Let H denote
the homography of the plane Π between the two views and H3 be the third
row of H. When the first image is warped toward the second image using the
homography H, then the point p will move to pw in the warped image:1

pw = (xw, yw, 1) =
Hp

H3p
.

For 3D points on the plane Π, pw = p′. For 3D points off Π, pw �= p′. The
misalignment pw−p′ is called the plane parallax. Geometrically speaking warping
pixel p from the first image to the second using the homography H amounts to
projecting a ray from the camera center through pixel p and extending it till it
intersects the plane Π at the point often referred to as the ‘piercing point’ of pixel
p with respect to plane Π. The ray is then projected from the piercing point

1 For the remainder of this paper we will use only Hp to denote this operation.
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Piercing points

Fig. 2. The figure shows a cylinderical object standing on top a planar surface. The
scene is being viewed by two cameras. H is the homography of the planar surface from
view 1 to view 2. Warping a pixel from view 1 with H amounts to projecting a ray on
to the plane at the piercing point and extending it to the second camera. Pixels that
are image locations of scene points off the plane have plane parallax when warped.
This can be observed for the red ray in the figure.

onto the second camera. The point in the image plane of the second camera
that the ray intersects is pw. In effect pw is where the image of the piercing
point is formed in the second camera. As can be seen in figure 2, 3D points on
the plane Π have no plane-parallax while those off the plane have considerable
plane-parallax.

Suppose a scene containing a ground plane is being viewed by a set of wide-
baseline stationary cameras. The background models in each view are available
and when an object appears in the scene it can be detected as foreground in
each view using background difference. Any 3D point lying inside the foreground
object in the scene will be projected to a foreground pixel in every view. The
same is the case for 3D points inside the object that lie on the ground plane,
except however that the projected image locations in each view will be related by
homographies of the ground plane. Now we can state the following proposition:

Proposition 1. If ∃P ∈ R3 such that it lies on plane Π and is inside the volume
of a foreground object then, the image projections of the scene point P given by
p1, p2, . . . , pn in any n views satisfy both of the following:

– ∀i, if Ψi is the foreground region in view i then, pi ∈ Ψi,
– ∀i,jpi = Hi,jpj , where Hi,j is the homography of plane Π from view j to

view i.

As discussed earlier warping a pixel from one image to another using a homog-
raphy of the ground plane amounts to projecting a ray through the pixel onto
the piercing point and then projecting it to the second camera center. If the ray
projected through a pixel in a view intersects the ground plane inside a fore-
ground object in the scene, it follows from proposition 1 that the pixel will warp
to foreground regions in all views. This can be formally stated as follows:
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Proposition 2. Let Φ be the set of all pixels in a reference view and let Hi be
the homography of plane Π in the scene from the reference view to view i. If
∃p ∈ Φ such that the piercing point of p with respect to Π lies inside the volume
of a foreground object in the scene then ∀ip

′
i ∈ Ψi, where p′i = Hip and Ψi is the

foreground region in view i.

We call proposition 2 the homography constraint. The homography constraint
has the dual action of segmenting out pixels that correspond to ground plane
positions of people in the scene as well as resolving occlusion. To see this consider
figure 3. Figure 3a shows a scene containing a person viewed by a set of cameras.
The foreground regions in each view are shown as white on black background. A
pixel that is the image of the feet of the person will have a piercing point on the
ground plane that is inside the volume of the person. According to the homog-
raphy constraint such a pixel will be warped to foreground regions in all views.
This can be seen for the pixel in view 1 of figure 3a that has a blue ray projected
through it. Foreground pixels that do not satisfy the homography constraint are
images of points off the ground plane. Due to plane parallax they are warped
to background regions in other views. This can be seen for the pixel with the
red ray projected through it. Figure 3b shows how the homography constraint
would resolve occlusions. The blue person is occluding the green person in view
1. This is apparent by the merging of their foreground blobs. In such a case
there will be two sets of pixels in view 1 that satisfy the homoraphy constraint.
The first set will contain pixels that are image locations of blue person’s feet
(same as in figure 3a). The other set of pixels are those that correspond to the
blue person’s torso region but are occluding the feet of the green person. Even
though these pixels are image locations of points off the ground plane, they have

View 1

View i

View n

Ground Plane

View 1

View i

View n

Ground Plane

(a) (b)

Fig. 3. The figure shows people viewed by a set of cameras. The views show the fore-
ground detected in each view. For figure (a) the blue ray shows how the pixels that
satisfy the homography constraint warp correctly to foreground in each view, while
others have plane parallax and warp to background. Figure (b) demonstrates how oc-
clusion is resolved in view 1. Foreground pixels that belong to the blue person but are
occluding the feet region of the green person satisfy the homography constraint (the
green ray). This creates seemingly a see through effect where the feet of the occluded
person can be detected.
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piercing points inside a foreground object which in this case happens to be the
green person. This process creates a seemingly see thorough effect detecting feet
regions even if they are completely occluded by other people. It is obvious that
having more people between the blue and the green person will not affect the
detection of the green person.

It should be noted that the homography constraint is not limited to the ground
plane and depending on the application any plane in the scene could be used.
In the context of localizing people the ground plane is used and finding pixels
in all views that satisfy the homography constraint will give us the locations of
people’s feet (location on ground). In the next section we develop an operator
that does exactly this.

4 Using the Homography Constraint to Locate People

Let Φ1, Φ2, . . . , Φn be the images of the scene obtained from n uncalibrated
cameras. Let Φ1 be a reference image. Hi is homography of the ground plane
between the reference view Φ1 and any other view i. Using homography Hi, a
pixel p in the reference image is warped to pixel p′i in image Φi. Let x1, x2 . . . , xn

be the observations in images Φ1, Φ2, . . . Φn at locations p′1, p
′
2 . . . , p′n respectively

i.e xi = Φi(p′i). Let X be the event that pixel p has a piercing point inside a
foreground object (i.e. p represents the ground location of a foreground object
in the scene). Given x1, x2 . . . , xn, we are interested in finding the probability of
event X happening, i.e P (X | x1, x2 . . . , xn).

Using Bayes law:

P (X | x1, x2 . . . , xn) ∝ P (x1, x2 . . . , xn | X)P (X). (1)

The first term on the right hand side of equation 1 is the likelihood of making
observation x1, x2 . . . , xn given event X happens. By conditional independence
we can write this term as:

P (x1, x2 . . . , xn | X) = P (x1 | X)× P (x2 | X)× . . .× P (xn | X). (2)

Now the homography constraint states that if a pixel has a piercing point inside a
foreground object then it will warp to foreground regions in every view. Therefore
it follows that:

P (xi | X) ∝ L(xi), (3)

where L(xi) is the likelihood of observation xi belonging to the foreground.
Plugging (3) into (2) and back into (1) we get:

P (X | x1, x2 . . . , xn) ∝
n∏

i=1

L(xi). (4)

Pixel p is classified as image of ground location of an object to be tracked if
P (X | x1, x2 . . . , xn) given by equation 4 is above a threshold. In the case fore-
ground objects are people, pixel p will correspond to the feet of a person in the
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scene. Since pixel p and its warped locations in other views p′1, p
′
2 . . . , p′n all have

the same piercing point, they all correspond to the same location on the ground
plane. Therefore by finding pixel p in the reference view that satisfies the homog-
raphy constraint, we have in fact, determined the image locations in all views of
a particular person’s feet i.e p′1, p

′
2 . . . , p′n. This strategy also implicitly resolves

the issue of correspondences across views. Note that it is irrelevant which view
is chosen as the reference view. The results will be equivalent if some view other
than Φ1 was chosen as the reference. In the following subsection we outline our
algorithm for finding the feet locations of people in the scene.

4.1 Algorithm

Our algorithm for locating people is quite straight forward. First we obtain
the foreground likelihood maps in each view. This is done by modelling the
background using a mixture of gaussians [16] and finding the probability for
each pixel belonging to the foreground. In the second step instead of warping
every pixel in the reference image to every other view we perform the equivalent
step of warping the foreground likelihood maps from all the other views on to
the reference view. These warped foreground likelihood maps are then multiplied
according to equation 4 to produce what we call a ‘synergy map’. A threshold
is then applied to the synergy map to obtain pixels in the reference view that
represent ground plane locations of people in the scene. This image is warped
back from the reference view to every other view to obtain ground locations of
people in each view. Following are the steps in our algorithm:

1. Obtain the foreground likelihood maps Ψ1, Ψ2 . . . , Ψn.
2. Warp likelihood maps to a reference view using homographies of the ground

plane. Warped likelihood maps are Ψ ′
1, Ψ

′
2 . . . , Ψ ′

n.
3. Multiply the warped likelihood maps to obtain the synergy map: θsynergy =∏

i Ψ ′
i

4. Threshold the synergy map. For all pixels p in θsynergy

– if θsynergy(p) > T then return 1
– else return 0

5. Warp thresholded image to every other view.

Figure 4 shows the algorithm applied to the scene shown in figure 1. The fore-
ground likelihood maps are warped into view 4 (bottom right image of figure 1)
which was chosen as the reference view. Multiplying the warped views together
we obtain the synergy map which clearly highlights the feet regions of all the
people in the scene. The threshold T does not need to be precise as the values
at the correct locations in the synergy map are typically several magnitudes
higher than the rest. This is a natural consequence of the multiplication in step
3 and can be seen in figure 5. Notice how occlusions are resolved and the ground
locations of people are detected. For the purpose of tracking the binary image
obtained after thresholding is rectified with the ground plane. The rectified im-
age is an accurate picture of the relative ground locations of the people in the
scene.
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Fig. 4. The four smaller images are foreground likelihood maps obtained from the
background model (mixture of gaussians) on the images shown in figure 1. In all im-
ages in the figure the colormap used assigns a hotter palette to higher values. View 4
was chosen as the reference view. The image on the bottom is the synergy map ob-
tained by warping views 1, 2, and 3 onto view 4 and multiplying them together. The
pixels representing the ground locations of the people are segmented out by apply-
ing an appropriate threshold. The binary image shown is the result of applying the
threshold and rectifying with the ground plane (the white regions corresponding to the
feet).

Fig. 5. A surface plot of the synergy map shown in figure 4. The peaks are the ground
plane locations of the people in the scene.
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5 Tracking

Instead of tracking in each view separately we track feet blobs only in the refer-
ence view and propagate the results to other views. This is simply because feet
blobs in other views are obtained by warping feet blobs in the reference view
and consequently the tracks can be obtained by warping as well. The only infor-
mation available about the blobs is their relative ground plane positions (after
rectifying with the ground). No other distinguishing feature is available. In fact
a features like color could be misleading in the case of occlusions as already dis-
cussed in previous sections. Obtaining accurate tracks from these blobs is not a
trivial task. The blobs represent feet of the people on the ground and the feet of a
single person come close and move away every walk cycle. The result is one per-
son’s feet blob splitting and merging with itself. In fact one person’s blob might
temporarily merge with another person’s if they come too close to each other.

Our tracking methodology is based on the observation that the feet of the
same person are spatially coherent in time. That is to say that even though a
person’s feet might move away from each other, (as the person makes a forward
step) over time they remain closer to each other than feet of other people. We
therefore propose a look-ahead technique to solve the tracking problem using
a sliding window over multiple frames. This information gathering over time
for systems simulating the cognitive processes is supported by many researchers
in both vision and psychology (e.g., [17], [18], [19]). Neisser [19] proposed a
model according to which the perceptual processes continually interact with
the incoming information to verify hypotheses formed on the basis of available
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Fig. 6. Figure (a) shows a sequence of frames with feet blobs obtained using our algo-
rithm. Stacking them in time the feet blobs form spatially coherent ’worms’ that can
be seen in figure (b). Different worms clustered out are colored differently to help in
visualization. The spiralling pattern of the worms is only a coincidence. This resulted
because the people were walking in circles in this particular sequence.
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information up to a given time instant. Marrs principle of least commitment [18]
states that any inference in a cognitive process must be delayed as much as pos-
sible. Many existing algorithms use similar look-ahead strategies or information
gathering over longer intervals of time (for example, by backtracking) [20, 21].

For a window of size w using the algorithm described in the previous section we
obtain the blobs for all frames in the window. Stacking them together in a space
time volume, blobs belonging to the same person will form spatially coherent
clusters that appear like ‘worms’. Figure 6b shows an example of worms formed
from the sequence shown in figure 1. Each worm is in fact the track of a person’s
feet as he moves in time. To segment out worms belonging to different people
from this space time volume we use graph cuts to obtain the tightest clusters in
this space time volume. Each blob pixel in the space time volume forms a node
of a completely connected graph. Edge weights are assigned using the image
distance (euclidean) between pixels connected by the edge. Using normalized
cuts [22] on this graph we obtain the optimum clustering of blob pixels in the
volume into worms. A slice in time of the worms give the ground plane locations
of each person in the scene at that particular time. These are warped back to
each view to obtain the image locations of each person’s feet in different views.

6 Results and Discussions

To evaluate our approach we conducted several experiments with increasing
number of people and varying the number of active cameras. The attempt was
to increase the density of people till the algorithm broke down and to study the
breakdown thresholds and other characteristics. Each sequence was roughly 750
frames long. The people were constrained to move in an area of approximately
5 meters by 5 meters to maintain the density of the crowd.
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Fig. 7. A plot of false positives reported in our experiments. Each sequence was 500
frames long and contained between 5 and 9 people that were constrained to move in
an area of 5x5 meters to simulate different densities of crowds. We varied the number
of active cameras in different runs of the experiments to assess the effect of increasing
and decreasing view points.
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To negate a spot on the ground plane as a candidate location for a person, it
must be visible as part of the background in atleast one view. If the spot is not
occupied by a person but is occluded in each view (by the people in the scene),
our algorithm will trigger a false positive at that spot. Note that this is not a
limitation of the homography constraint, which states that the region should
project to foreground in all (every possible) view. Therefore by increasing the
number of views of the scene we can effectively lower false positives. This trend
can be observed in figure 7, that summarizes the performance of our algorithm
for crowds of various densities with increasing number of cameras.

In figure 8 we show track results from the densest sequence we tested our
algorithm on. Note that the tracking windows do not imply that all pixels of the
people were segmented (only the pixels representing feet blobs are known). The
purpose of the track windows is to aid in visualization. The width of each track
window is set as the horizontal spread of the feet blobs. The height is calculated
by starting from the feet pixels and moving up the connected foreground region
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Fig. 8. Tracking results for a sequence containing 9 people captured from 4 view points.
Top to bottom the rows correspond to views 1, 2, 3 and 4. Left to right the columns
correspond to frames 100, 300 and 500 in the respective views. Track windows are
color coded and numbered to show the correspondences that our algorithm accurately
maintains across views.
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before background is encountered. The sequence contained nine people and was
captured from four different view points encircling the scene. Due to the density
of the crowd occlusions were quite severe and abundant. An interesting thing
to notice is the color similarity of the people in the scene. Naturally a method
that uses color matching across views would perform poorly in such a situation
whereas our method performs quite well.

One of the limitations of our method is its susceptibility to shadows. Currently
the scheme incorporated in our method to handle shadows is to use HSV rather
than RGB color space in background subtraction. This is sufficient for scenes
like the one in figure 8 where the shadows are small and diffused. But with
hard shadows our current implementation has increased false detections. We are
working on several strategies to tackle this problem. One of the directions is
to use an imaginary plane parallel to but higher than the ground plane in the
homography constraint. This will cause foreground due to shadows to have plane
parallax thus filtering them out.

7 Conclusions

In this paper we have presented a novel approach to tracking people in crowded
scenes using multiple cameras. The major contribution of our work is the detec-
tion of ground plane locations of people and the resolution of occlusion using a
planar homography constraint. Combining foreground likelihoods from all views
into a reference view and using the homography constraint we segment out the
blobs that represent the feet of the people in the scene. The feet are tracked by
clustering them over time into spatially coherent worms. In the future we plan
to investigate the use of multiple planes to handle shadows as well as complete
segmentation of the people.
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Abstract. In order to reconstruct 3-D Euclidean shape by the Tomasi-
Kanade factorization, one needs to specify an affine camera model such as
orthographic, weak perspective, and paraperspective. We present a new
method that does not require any such specific models. We show that a
minimal requirement for an affine camera to mimic perspective projection
leads to a unique camera model, called symmetric affine camera, which
has two free functions. We determine their values from input images by
linear computation and demonstrate by experiments that an appropriate
camera model is automatically selected.

1 Introduction

One of the best known techniques for 3-D reconstruction from feature point
tracking through a video stream is the Tomasi-Kanade factorization [10], which
computes the 3-D shape of the scene by approximating the camera imaging by an
affine transformation. The computation consists of linear calculus alone without
involving iterations [5]. The solution is sufficiently accurate for many practi-
cal purposes and is used as an initial solution for more sophisticated iterative
reconstruction based on perspective projection [2].

If the camera model is not specified, other than being affine, the 3-D shape
is computed only up to an affine transformation, known as affine reconstruction
[9]. For computing the correct shape (Euclid reconstruction), we need to specify
the camera model. For this, orthographic, weak perspective, and paraperspective
projections have been used [7]. However, the reconstruction accuracy does not
necessarily follow in that order [1]. To find the best camera models in a particular
circumstance, one needs to choose the best one a posteriori . Is there any method
for automatically selecting an appropriate camera model?

Quan [8] showed that a generic affine camera has three intrinsic parameters
and that they can be determined by self-calibration if they are fixed. The intrinsic
parameters cannot be determined if they vary freely. The situation is similar to
the dual absolute quadric constraint [2] for upgrading projective reconstruction
to Euclidean, which cannot be imposed unless something is known about the
camera (e.g., zero skew).

In this paper, we show that minimal requirements for the general affine camera
to mimic perspective projection leads to a unique camera model, which we call a

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 147–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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symmetric affine camera, having two free functions of motion parameters; spe-
cific choices of their function forms result in the orthographic, weak perspective,
and paraperspective models.

However, we need not specify such function forms. We can determine their
values directly from input images. All the computation is linear just as in the
case of the traditional factorization method, and an appropriate model is auto-
matically selected.

Sec. 2 summarizes fundamentals of affine cameras, and Sec. 3 summarizes
the metric constraint. In Sec. 4, we derive our symmetric affine camera model.
Sec. 5 describes the procedure for 3-D reconstruction using our model. Sec. 6
shows experiments, and Sec. 7 concludes this paper.

2 Affine Cameras

Consider a camera-based XY Z coordinate system with the origin O at the pro-
jection center and the Z axis along the optical axis. Perspective projection maps
a point (X,Y, Z) in the scene onto a point with image coordinates (x, y) such
that

x = f
X

Z
, y = f

Y

Z
, (1)

where f is a constant called the focal length (Fig. 1(a)).

Z

(X, Y, Z)

(x, y)

O
f

οο− Z

(X, Y, Z)
(x, y)

(a) Perspective projection (b) Orthographic projection

Z

(X, Y, Z)

(x, y)

O t zf
Z

(X, Y, Z)

(x, y)

O

t

f

(c) Weak perspective projection (d) Paraperspective projection

Fig. 1. Camera models

Consider a world coordinate system fixed to the scene, and let t and {i, j,
k} be its origin and the orthonormal basis vectors described with respect to the
camera coordinate system. We call t the translation, the matrix R =

(
i j k

)
having {i, j, k} as columns the rotation, and {t, R} the motion parameters.

If (i) the object of our interest is localized around the world coordinate origin
t, and (ii) the size of the object is small as compared with ‖t‖, the imaging can
be approximated by an affine camera [9] in the form
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(
x
y

)
=
(

Π11 Π12 Π13
Π21 Π22 Π23

)⎛⎝X
Y
Z

⎞⎠+
(

π1
π2

)
. (2)

We call the 2× 3 matrix Π = (Πij) and the 2-D vector π = (πi) the projection
matrix and the projection vector , respectively; their elements are “functions” of
the motion parameters {t, R}. The intrinsic parameters are implicitly defined
via the functional forms of {Π, π} on {t, R}, e.g., as coefficients. Typical affine
cameras are

Orthographic projection. (Fig. 1(b))

Π =
(

1 0 0
0 1 0

)
, π =

(
0
0

)
. (3)

Weak perspective projection. (Fig. 1(c))

Π =
(

f/tz 0 0
0 f/tz 0

)
, π =

(
0
0

)
. (4)

Paraperspective projection. (Fig. 1(d))

Π =
(

f/tz 0 −ftx/t2z
0 f/tz −ftx/t2z

)
, π =

(
ftx/tz
fty/tz

)
. (5)

Suppose we track N feature points over M frames. Identifying the frame
number κ with “time”, let tκ and {iκ, jκ, kκ} be the origin and the basis
vectors of the world coordinate system at time κ (Fig. 2(a)). The 3-D position
of the αth point at time κ has the form

rκα = tκ + aαiκ + bαjκ + cαkκ. (6)

Under the affine camera of eq. (2), its image coordinates (xκα, yκα) are given by(
xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (7)

x

y

(x      , y    )
t

i

j

k

r

r     = t    +a i   + b j   + c k

O

κ

κ
κ

κ

κκκκκα

κα κα κα

α α α

O

m1

m2

m3

m0

(a) (b)

Fig. 2. (a) Camera-based description of the world coordinate system. (b) Affine space
constraint.
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where t̃κ, ĩκ, j̃κ, and k̃κ are 2-D vectors defined by

t̃κ = Πκtκ + πκ, ĩκ = Πκiκ, j̃κ = Πκjκ, k̃κ = Πκkκ. (8)

Here, Πκ and πκ are the projection matrix and the projective vector, respec-
tively, at time κ. The motion history of the αth point is represented by a vector

pα =
(
x1α y1α x2α y2α . . . xMα yMα

)

, (9)

which we simply call the trajectory of that point. Using eq. (7), we can write

pα = m0 + aαm1 + bαm2 + cαm3, (10)

where m0, m1, m2, and m3 are the following 2M -dimensional vectors:

m0 =

⎛⎜⎜⎜⎝
t̃1
t̃2
...

t̃M

⎞⎟⎟⎟⎠ , m1 =

⎛⎜⎜⎜⎝
ĩ1
ĩ2
...

ĩM

⎞⎟⎟⎟⎠ , m2 =

⎛⎜⎜⎜⎝
j̃1
j̃2
...

j̃M

⎞⎟⎟⎟⎠ , m3 =

⎛⎜⎜⎜⎝
k̃1

k̃2
...

k̃M

⎞⎟⎟⎟⎠ . (11)

Thus, all the trajectories {pα} are constrained to be in the 3-D affine space A
in R2M passing through m0 and spanned by m1, m2, and m3 (Fig. 2(b)). This
fact is known as the affine space constraint .

3 Metric Constraint

Since the world coordinate system can be placed arbitrarily, we let its origin
coincide with the centroid of the N feature points. This implies

∑N
α=1 aα =∑N

α=1 bα =
∑N

α=1 cα = 0, so we have from eq. (10)

1
N

N∑
α=1

pα = m0, (12)

i.e., m0 is the centroid of the trajectories {pα} in R2M . It follows that the
deviation p′

α of pα from the centroid m0 is written as1

p′
α = pα −m0 = aαm1 + bαm2 + cαm3, (13)

which means that {p′
α} are constrained to be in the 3-D subspace L in R2M .

Hence, the matrix

C =
N∑

α=1

p′
αp′

α

 (14)

1 In the traditional formulation [7, 10], vectors {p′
α} are combined into the measure-

ment matrix , W =
(
p′

1 . . . p′
N

)
, and the object coordinates {(aα, bα, cα)} are com-

bined into the shape matrix , S =

(
a1 . . . aN
b1 . . . bN
c1 . . . cN

)
. Then, eq. (13) is written as W =

MS, where M , the motion matrix , is defined by the first of eqs. (16).
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has rank 3, having three nonzero eigenvalues. The corresponding unit eigenvec-
tors {u1, u2, u3} constitute an orthonormal basis of the subspace L, and m1,
m2, and m3 are expressed as a linear combination of them in the form

mi =
3∑

j=1

Ajiuj . (15)

Let M and U be the 2M × 3 matrices consisting of {m1, m2, m3} and {u1,
u2, u3} as columns:

M =
(
m1 m2 m3

)
, U =

(
u1 u2 u3

)
. (16)

From eq. (15), M and U are related by the matrix A = (Aij) in the form2:

M = UA. (17)

The rectifying matrix A = (Aij) is determined so that m1, m2 and m3 in
eq. (11) are projections of the orthonormal basis vectors {iκ, jκ, kκ} in the form
of eqs. (8). From eq. (8), we obtain(

ĩκ j̃κ k̃κ

)
= Πκ

(
iκ jκ kκ

)
= ΠκRκ, (18)

where Rκ is the rotation at time κ. If we let m†
κ(a) be the (2(κ−1)+a)th column

of the transpose M
 of the matrix M in eqs. (16), κ = 1, ..., M , a = 1, 2. The
transpose of both sides of eq. (18) is

R

κ Π


κ =
(

m†
κ(1) m†

κ(2)

)
. (19)

Eq. (17) implies M
 = A
U
, so if we let u†
κ(a) be the (2(κ−1)+a)th column

of the transpose U
 of the matrix U in eqs. (16), we obtain

m†
κ(a) = A
u†

κ(a). (20)

Substituting this, we can rewrite eq. (19) as

R

κ Π


κ = A

(

u†
κ(1) u†

κ(2)

)
. (21)

Let U †
κ the 3× 2 matrix having u†

κ(1) and u†
κ(2) as columns:

U †
κ =

(
u†

κ(1) u†
κ(2)

)
. (22)

2 In the traditional formulation [7, 10], the measurement matrix W is decomposed
by the singular value decomposition into W = UΛV �, and the motion and the
shape matrices M and S are set to M = UA an S = A−1ΛV � via a nonsingular
matrix A.
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From eq. (21), we have U †

κ AA
U †

κ = ΠκRκR

κ Π


κ . Since Rκ is a rotation
matrix, we have the generic metric constraint

U †

κ TU †

κ = ΠκΠ

κ , (23)

where we define the metric matrix T as follows:

T = AA
. (24)

Eq. (23) is the generic metric constraint given by Quan [8]. If we take out the
elements on both sides, we have the following three expressions:

(u†
κ(1),Tu†

κ(1)) =
3∑

i=1

Π2
1iκ, (u†

κ(2),Tu†
κ(2)) =

3∑
i=1

Π2
2iκ,

(u†
κ(1),Tu†

κ(2)) =
3∑

i=1

Π1iκΠ2iκ. (25)

These correspond to the dual absolute quadric constraint [2] on the homography
that rectifies the basis of projective reconstruction to Euclidean.

We focus on the fact that at most two time varying unknowns of the camera
model can be eliminated from eqs. (25). We show that (i) we can restrict the
camera model without much impairing its descriptive capability so that it has
two free functions and (ii) we can redefine them in such a way that the resulting
2M unknowns are linearly estimated.

4 Symmetric Affine Cameras

We now seek a concrete form of the affine camera by imposing minimal require-
ments that eq. (2) mimic perspective projection.

Requirement 1. The frontal parallel plane passing through the world coordi-
nate origin is projected as if by perspective projection.

This corresponds to our assumption that the object of our interest is small and
localized around the world coordinate origin (tx, ty, tz). A point on the plane Z
= tz is written as (X,Y, tz), so Requirement 1 implies(

fX/tz
fY/tz

)
=
(

Π11 Π12
Π21 Π22

)(
X
Y

)
+ tz

(
Π13
Π23

)
+
(

π1
π2

)
. (26)

Since this should hold for arbitrary X and Y , we obtain

Π11 = Π22 =
f

tz
, Π12 = Π21 = 0, tzΠ13 + π1 = 0, tzΠ23 + π2 = 0, (27)

which reduces eq. (2) to(
x
y

)
=

f

tz

(
X
Y

)
− (tz − Z)

(
Π13
Π23

)
, (28)

where f , Π13 and Π23 are arbitrary functions of {t, R}. In order to obtain a
more specific form, we impose the following requirements:
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Requirement 2. The camera imaging is symmetric around the Z-axis.

Requirement 3. The camera imaging does not depend on R.

Requirement 2 states that if the scene is rotated around the optical axis by an
angle θ, the resulting image should also rotate around the image origin by the
same angle θ, a very natural requirement. Requirement 3 is also natural, since
the orientation of the world coordinate system can be defined arbitrarily, and
such indeterminate parameterization should not affect the actual observation.

Let R(θ) be the 2-D rotation matrix by angle θ:

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (29)

Requirement 2 is written as

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
− (tz − Z)

(
Π ′

13
Π ′

23

)
, (30)

where Π ′
13 and Π ′

23 are the values of the functions Π13 and Π23, respectively,
obtained by replacing tx and ty in their arguments by tx cos θ − ty sin θ and
tx sin θ + ty cos θ, respectively; by Requirement 3, the arguments of Π13 and Π23
do not contain R. Multiplying both sides of eq. (28) by R(θ), we obtain

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
− (tz − Z)R(θ)

(
Π13
Π23

)
. (31)

Comparing eqs. (30) and (31), we conclude that the equality(
Π ′

13
Π ′

23

)
= R(θ)

(
Π13
Π23

)
(32)

should hold identically for an arbitrary θ. According to the theory of invariants
[3], this implies (

Π13
Π23

)
= c

(
tx
ty

)
, (33)

where c is an arbitrary function of t2x + t2y and tz. Thus, if we define

ζ =
tz
f

, β = −ctz
f

, (34)

eq. (28) is written as(
x
y

)
=

1
ζ

((X
Y

)
+ β(tz − Z)

(
tx
ty

))
. (35)

The corresponding projection matrix Π and the projection vector π are

Π =
(

1/ζ 0 −βtx/ζ
0 1/ζ −βty/ζ

)
, π =

(
βtxtz/ζ
βtytz/ζ

)
, (36)

where ζ and β are arbitrary functions of t2x + t2y and tz. We observe:
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– Eq. (35) reduces to the paraperspective projection (eq. (5)) if we choose

ζ =
tz
f

, β =
1
tz

. (37)

– Eq. (35) reduces to the weak perspective projection (eq. (4)) if we choose

ζ =
tz
f

, β = 0. (38)

– Eq. (35) reduces to the orthographic projection (eq. (3)) if we choose

ζ = 1, β = 0. (39)

Thus, eq. (35) includes the traditional affine camera models as special instances
and is the only possible form that satisfies Requirements 1, 2, and 3.

However, we need not define the functions ζ and β in any particular form;
we can regard them as time varying unknowns and determine their values by
self-calibration. This is made possible by the fact that at most two time varying
unknowns can be eliminated from the metric constraint of eqs. (25).

5 Procedure for 3-D Reconstruction

3-D Euclidean reconstruction using eq. (35) goes just as for the traditional cam-
era models (see [6] for the details):

1. We fit a 3-D affine space A to the trajectories {pα} by least squares. Namely,
we compute the centroid m0 by eq. (12) and compute the unit eigenvectors
{u1, u2, u3} of the matrix C in eq. (14) for the largest three eigenvalues3.

2. We eliminate time varying unknowns from the the metric constraint of
eqs. (25) and solve for the metric matrix T by least squares. To be spe-
cific, substituting eqs. (36) into eqs. (25), we have

(u†
κ(1),Tu†

κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ, (u†

κ(2),Tu†
κ(2)) =

1
ζ2
κ

+ β2
κt̃2yκ

(u†
κ(1),Tu†

κ(2)) = β2
κt̃xκt̃yκ, (40)

where t̃xκ and t̃yκ are, respectively, the (2(κ−1)+1)th and the (2(κ−1)+2)th
components of the centroid m0. Eliminating ζκ and βκ, we obtain

Aκ(u†
κ(1),Tu†

κ(1))− Cκ(u†
κ(1),Tu†

κ(2))−Aκ(u†
κ(2),Tu†

κ(2)) = 0, (41)

where Aκ = t̃xκt̃yκ and Cκ = t̃2xκ − t̃2yκ. This is a linear constraint on T , so
we can determine T by solving the M equations for κ = 1, ..., M by least
squares. Once we have determined T , we can determine ζκ and βκ from
eqs. (40) by least squares.

3 This corresponds to the singular value decomposition W = UΛV � of the measure-
ment matrix W in the traditional formulation [7, 10].
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3. We decompose the metric matrix T into the rectifying matrix A in the form
of eq. (24), and compute the vectors m1, m2, and m3 from eq. (15).

4. We compute the translation tκ and the rotation Rκ at each time. The trans-
lation components txκ and tyκ are given by the first of eqs. (8) in the form
of txκ = ζκt̃xκ and tyκ = ζκt̃yκ. The three rows rκ(1), rκ(2), and rκ(3) of the
rotation Rκ are given by solving the linear equations

rκ(1) −βκtxκrκ(3) = ζκm†
κ(1),

rκ(2) −βκtyκrκ(3) = ζκm†
κ(2),

βκtxκrκ(1) +βκtyκrκ(2) +rκ(3) = ζ2
κm†

κ(1) ×m†
κ(2).

(42)

The resulting matrix
(
rκ(1) rκ(2) rκ(3)

)
may not be strictly orthogonal, so

we compute its singular value decomposition V κΛκU

κ and let Rκ = UκV 


κ

[4].
5. We recompute the vectors m1, m2, and m3 in the form of eqs. (11) using

the computed rotations Rκ =
(
iκ jκ kκ

)
.

6. We compute the object coordinates (aα, bβ , cβ) of each point by least-squares
expansion of p′

α in the form of eq. (13). The solution is given by M−pα,
using the pseudoinverse M− of M .

However, the following indeterminacy remains:

1. Another solution is obtained by multiplying all {tκ} and {(aα, bα, cα)} by a
common constant.

2. Another solution is obtained by multiplying the all {Rκ} by a common
rotation. The object coordinates {(aα, bα, cα)} are rotated accordingly.

3. Each solution has its mirror image solution. The mirror image rotation
R′

κ is obtained by the rotation Rκ followed by a rotation around axis
(βκtxκ, βκtyκ, 1) by angle 2π. At the same time, the object coordinates
{(aα, bα, cα)} change their signs.

4. The absolute depth tz of the world coordinate origin is indeterminate.

Item 1 is the fundamental ambiguity of 3-D reconstruction from images, mean-
ing that a large motion of a large object in the distance is indistinguishable from
a small motion of a small object nearby. Item 2 reflects the fact that the orien-
tation of the world coordinate system can be arbitrarily chosen. Item 3 is due to
eq. (24), which can be written as T = (±AQ)(±AQ)
 for an arbitrary rotation
Q. This ambiguity is inherent of all affine cameras [8, 9].

Item 4 is due to the fact that eq. (35) involves only the relative depth of
individual point from the world coordinate origin tκ. The absolute depth tz
is determined only if ζ and β are given as specific functions of tz, as in the
case of the traditional camera models. Here, however, we do not specify their
functional forms, directly determining their values by self-calibration and leaving
tz unspecified.
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6 Experiments

Fig. 3 shows four simulated image sequences of 600 × 600 pixels perspectively
projected with focal length f = 600 pixels. Each consists of 11 frames; six deci-
mated frames are shown here. We added Gaussian random noise of mean 0 and
standard deviation 1 pixel independently to the x and y coordinates of the fea-
ture points and reconstructed their 3-D shape (the frames in Fig. 3(a), (b) are
merely for visual ease).

From the resulting two mirror image shapes, we choose the correct one by com-
paring the depths of two points that are known be close to and away from the cam-
era. Since the absolute depth and scale are indeterminate, we translate the true
and the reconstructed shapes so that their centroids are at the coordinate origin
and scaled their sizes so that the root-mean-square distance of the feature points
from the origin is 1. Then, we rotate the reconstructed shape so that root-mean-
square distances between the corresponding points of the two shapes is minimized.
We adopt the resulting residual as the measure of reconstruction accuracy.

We compare three camera models: the weak perspective, the paraperspective,
and our symmetric affine camera models. The orthographic model is omitted,
since evidently good results cannot be obtained when the object moves in the
depth direction. For the weak perspective and paraperspective models, we need
to specify the focal length f (see eqs. (4) and (5)). If the size of the reconstructed
shape is normalized as described earlier, the choice of f is irrelevant for the weak
perspective model, because it only affects the object size as a whole. However,
the paraperspective model depends on the value of f we use.

(a)

(b)

(c)

(d)

Fig. 3. Simulated image sequences (six decimated frames for each)
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Fig. 4. 3-D reconstruction accuracy for the image sequences of Fig. 3(a)∼(d). The
horizontal axis is scaled in proportion to 1/f . Three models are compared: The dashed
line: weak perspective (dashed lines), paraperspective (thin solid lines), and our generic
model (thick solid lines).

Fig. 4 plots the reconstruction accuracy vs. the input focal length f ; the hori-
zontal axis is scaled in proportion to 1/f . The dashed line is for weak perspective,
the thin solid line is for paraperspective, and the thick solid line is for our model.
We observe that the paraperspective model does not necessarily give the highest
accuracy when f coincides with the focal length (600 pixels) of the perspective
images. The error is indeed minimum around f = 600 for Fig. 4(a), (d), but the
error decreases as f increases for Fig. 4(b) and as f decreases for Fig. 4(c).

We conclude that our model achieves the accuracy comparable to paraperspec-
tive projection given an appropriate value of f , which is unknown in advance.
This means that our model automatically chooses appropriate parameter values
without any knowledge about f .

We conducted many other experiments (not shown here) and observed similar
results. We have found that degeneracy can occur in special circumstances; the
matrix A becomes rank deficient so that the resulting vectors {mi} are linearly
dependent (see eq. (15)). As a result, the reconstructed shape is “flat” (see
eq. (13)). This occurs when the smallest eigenvalue of T computed by least
squares is negative, while eq. (24) requires T to be positive semidefinite. In the
computation, we replace the negative eigenvalue by zero, resulting in degeneracy.

This type of degeneracy occurs for the traditional camera models, too. In
principle, we could avoid it by parameterizing T so that it is guaranteed to be
positive definite [8]. However, this would require nonlinear optimization, and the
merit of the factorization approach (i.e., linear computation only) would be lost.
Moreover, if we look at the images that cause degeneracy, they really look as if
a planar object is moving. Since the information is insufficient in the first place,
any methods may not be able to solve such degeneracy.

7 Conclusions

We showed that minimal requirements for an affine camera to mimic perspective
projection leads to a unique camera model, which we call “symmetric affine
camera”, having two free functions, whose specific choices would result in the
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traditional camera models. We regarded them as time varying parameters and
determined their values by self-calibration, using linear computation alone, so
that an appropriate model is automatically selected. We have demonstrated by
simulation that the reconstruction accuracy is comparable to the paraperspective
model given an appropriate focal length estimate.
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Dense Photometric Stereo by Expectation
Maximization�
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Abstract. We formulate a robust method using Expectation Maximiza-
tion (EM) to address the problem of dense photometric stereo. Previous
approaches using Markov Random Fields (MRF) utilized a dense set of
noisy photometric images for estimating an initial normal to encode the
matching cost at each pixel, followed by normal refinement by consid-
ering the neighborhood of the pixel. In this paper, we argue that they
had not fully utilized the inherent data redundancy in the dense set and
that its full exploitation leads to considerable improvement. Using the
same noisy and dense input, this paper contributes in learning relevant
observations, recovering accurate normals and very good surface albedos,
and inferring optimal parameters in an unifying EM framework that con-
verges to an optimal solution and has no free user-supplied parameter
to set. Experiments show that our EM approach for dense photometric
stereo outperforms the previous approaches using the same input.

1 Introduction

Woodham [1] first introduced photometric stereo for Lambertian surfaces, in
which three images are used to solve the reflectance equation for recovering sur-
face gradients and albedos of a Lambertian surface. Since [1], extensive research
on more robust techniques for photometric stereo have been reported:

More than three images. Four images were used in [2] and [3] so that incon-
sistent observation due to shadows or highlight can be discarded by majority
vote. A larger number of images (about 20) were used in [4] where two algo-
rithms were investigated. More recently, [5] used structure from motion and
photometric stereo in an iterative framework.

Model-based approaches. In [6], an m-lobed reflective map was derived by
considering diffuse and non-Lambertian surfaces. This was extended in [7] in
which nonlinear regression was applied to a larger number of input images.
The Torrance-Sparrow model was used in [3]. In [8], a hybrid reflectance
model was used to recover surface gradients and the parameters of the
reflectance model.
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Reference objects. The use of a reference object was first introduced in [9].
In [10], surface orientations and reflectance properties are computed by using
a reference object.

Despite that significant advancement has been made in photometric stereo by
previous approaches, they still suffer from one or more of the following limita-
tions:

– light directions must be very accurate. The use of uncalibrated lights require
additional constraints [11].

– accurate normals and albedos cannot be recovered in the presence of high-
light and cast shadows, and severe violations to the Lambertian assumption.

– in certain model-based approaches, the problem formulation is very complex,
making them susceptible to numerical instability.

Recently, two Markov Random Field (MRF) inference algorithms [12, 13] were
developed independently to recover normals by dense photometric stereo using a
dense set of noisy photometric images conveniently captured by a simple setup.
These two methods were based on similar MRF formulation but different distri-
bution models, and made use of the neighborhood information to improve the
results. For high precision normal reconstruction, the graph-cut algorithm [13]
converges in a few iterations. The tensorial message passing was proposed in [12]
for efficient belief propagation. In both cases, estimated normal maps are very
good (certain subtle geometry can be reasonably reconstructed) despite the pres-
ence of highlight, shadows and complex geometry. Albeit this, several issues
remain unaddressed:

– Albedo is not recovered in [12, 13].
– The data redundancy inherent in the dense set has not been fully utilized.

Specifically, linear plane fitting was used to estimate an initial normal at
each pixel based on the assumption that sufficient linear Lambertian obser-
vations are present. However, each observation, regardless of Lambertian or
otherwise, is equally weighted during the plane fitting process.

– The MRF is introduced in [12, 13] to improve the results. However, the in-
troduction implies the surface smoothness assumption. Despite the use of a
discontinuity-preserving metric, [12, 13] apply the MRF refinement globally
as in other MRF methods. Very fine details such as subtle texture bumps
and surface imperfections will inevitably be lost after the process.

– As with other MRF processes, a user-supplied parameter is required to con-
trol the influence of neighborhood. The optimal parameter is different for
different scenes and has to be determined empirically but not automatically.

In this paper, we propose a unifying framework based on the Expectation
Maximization (EM) algorithm to address all the above seven issues. We shall
show that considerable improvement are made by our EM approach, using the
same noisy dense set as input. The organization of the paper is as follows. Sec-
tion 2 reviews dense photometric stereo and describes the above issues in detail
in order to motivate our work. Section 3 describes our unified EM framework.
Finally, results are presented in Section 4 and we conclude our paper in Section 5.
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2 Review of Dense Photometric Stereo

Given a dense set of images captured at a fixed viewpoint with their correspond-
ing light directions, the goal of dense photometric stereo is to find the optimal
normal Ns and albedo ρs at each pixel s. In [13], a simple capture device was
proposed for obtaining a dense but noisy set of photometric images. By utilizing
the redundancy inherent in the captured data, a dense matching cost was derived
and used as the local evidence at each observation node in the MRF network. The
capture process is simple [13] compared with other previous approaches whereas
the methods in [12, 13] produced some of most accurate normal reconstruction to
date despite the presence of severe shadows, highlight, transparencies, complex
geometry, and inaccurate estimation in light directions.

2.1 Data Acquisition

Shown in Fig. 1(a) is the simple capture system consisting of a digital video
camera (DV), a handheld spotlight and a mirror sphere which is used to give
the light direction. The location of the brightest spot on the mirror sphere indi-
cates the light direction which can be calculated easily [13]. Note however that
the set of estimated light directions is scattered and very noisy, as shown in
Fig. 1(c). Uniform resampling on a light direction sphere, based on icosahedron
subdivision, was performed in [13], which is also adopted in this work. The in-
accurate light directions and the contaminated photometric images both make
the reconstruction problem very challenging.

(a) (b) (c) −1
0

1 −1
0

1

0

0.5

1

Fig. 1. (a) Data capture. (b) Typical captured image. (c) A typical trajectory of the
estimated light directions shows that they are scattered and very noisy.

2.2 The MRF Formulation

Given a set of photometric images with the corresponding estimated light direc-
tions, the surface normals are estimated by maximizing the following posterior
probability [12, 13]:

P (X|Y ) ∝
∏
s

ϕs(xs, ys)
∏
s

∏
t∈N (s)

ϕst(xs, xt) (1)

where X = {xs}, Y = {ys}, xs is the hidden variable (i.e. the normal to be
estimated) at pixel location s, ys is the observed normal at s, N (s) is a set of
first order neighbors of s, and ϕs(xs, ys) is the local evidence at the observation
node and ϕst(xs, xt) is the compatibility function. To maximize (1), tensorial
belief propagation was used in [12] while graph-cut was used in [13].
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2.3 Issues in Deriving Local Evidences

In [12, 13] the local evidence and initial normals are derived by least-square plane
fitting, assuming that sufficient Lambertian observations are present and that non-
Lambertian observations are noises. The reflectance at each pixel can then be de-
scribed by ρ(Ns ·L), where ρ is the surface albedo, Ns is the initial normal and L
is the light direction at the pixel s. Let T be the total number of sampled images.
To eliminate ρ, we divide T − 1 sampled images by a chosen image called denomi-
nator image to obtain T − 1 ratio images. Let Id be the denominator image. Each
pixel in a ratio image is therefore expressed by It

Id
= Ns·Lt

Ns·Ld
. By using no less than

three ratio images, we produce a local estimation of the normal at each pixel:

Atx + Bty + Ctz = 0 (2)

where At = Itld,x − Idlt,x, Bt = Itld,y − Idlt,y, Ct = Itld,z − Idlt,z, Lt =
(lt,x, lt,y, lt,z)T is the light direction at time t = 1 · · ·T , Ns = (x, y, z)T is the
normal to be estimated. Note that an ideal denominator image is one that sat-
isfies the Lambertian model and is minimally affected by shadows and specular
highlight, which is difficult if not impossible to obtain. On the other hand, the
use of least-square plane fitting to estimate Ns has several problems:

– The albedo is canceled out to produce ratio images.
– Least-square plane fitting is incapable of rejecting non-Lambertian observa-

tions. Outliers significantly affect the result of the fitting.
– If the denominator contains a non-Lambertian observation, the whole set of

ratio images becomes garbage thus leading to unpredictable results.

Different alternatives of selecting the denominator image from the dense set
have been proposed. Fig. 2(a) shows the normal map produced by [13]. Problems
can be observed on the “ground” in the bottom part of the teapot image be-
cause only a single image is used which is chosen using simple criteria. Fig. 2(b)
shows another initial normal map produced by [12]. The result is very noisy
because in [12] different images were used as denominators for different pixels.
Severe orientation jittering is resulted in the estimated normal map due to the
non-Lambertian properties and the quantization errors of the intensities of the
denominator image.

So the first question we ask is: can we identify or learn the relevant Lambertian
observations automatically?

(a) (b)

Fig. 2. Local evidence (initial normals) produced by (a) [13] and (b) [12]
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2.4 Issues in Defining Compatibility Functions

In [12, 13] the noises due to non-Lambertian observations and inaccurate estima-
tion in light directions that cannot be handled by plane fitting are addressed by
the MRF refinement process which assumes that the underlying surface is locally
smooth. Although discontinuity-preserving functions are used, the smoothing ef-
fect is applied globally because we have no prior knowledge which regions should
be smoothed. If the variation in global and local surface orientation do not match,
over-smoothing will occur. Therefore, fine details such as surface imperfections
and texture bumps are inevitably lost. Thus, in [12, 13] and other MRF algo-
rithms, a free parameter should be supplied by the user to control the degree of
smoothness. The parameters are empirically obtained and varies with different
scenes.

So, the second question we ask is: how can we obtain the set of optimal pa-
rameters automatically?

3 Normal and Albedo Estimation by Expectation
Maximization

In this paper, a unified EM algorithm is proposed which identifies relevant Lam-
bertian observations automatically by fully exploiting the data redundancy in-
herent in the dense and noisy data. Our results show significant improvement
without any MRF smoothing refinement and thus the setting of MRF parame-
ters is no longer an issue. In fact, by using our EM algorithm, all parameters can
be optimized alternately within the same framework, making the robust method
free of any user-supplied parameters.

In this section, we formulate our EM algorithm to estimate the surface albedos
and normals from a set of dense and noisy measurement captured as described in
the previous section. In [12, 13], the simple least-square plane fitting is used for
initial normal estimation. No special handling is performed for unreliable data
or outliers generated by non-Lambertian phenomena such as specular highlight
and shadows. In real cases, however, these observations occupy a significant
proportion in the captured data due to the restrictive Lambertian model and
the diversity of surface geometry and material.

Suppose that the measurement error for each observation is known. We could
perform weighted least-square plane fitting to weaken the contribution of defec-
tive data. However, given the simple data capture system, it is very difficult to
estimate such measurement errors. In this paper we propose a data-driven ap-
proach to estimate the weight of each observation by utilizing useful information
inherent in the dense set although it consists of scattered and noisy data.

3.1 Overview

While the albedo is problematic and canceled out in [12, 13], in this paper we
use the albedo as one of the contributing factors in estimating the weight of
each observed intensity. The idea is as follows. Consider a pixel location i.
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Suppose the albedo ρi is known, given the observed intensity Iit at time t and
the corresponding light direction Lit, we model the probability of the intensity
Iit generated by the Lambertian model without shadow and specular highlight
to be inversely proportional to:

||Iit − ρiNi · Lit|| (3)

where Ni is the normal at pixel i. Thus, if the albedo is known, more information
concerning the observations can be extracted.

However, albedo derivation alone is a difficult problem. In this paper, we
demonstrate how the albedo and surface normal can be estimated simultaneously
using an EM framework to obtain accurate results.

While we argue that plane fitting without a proper contribution weight for
each observation is not a good solution, some useful lesson can still be learnt
from [12, 13]. Suppose that each image is a candidate of the denominator image.
If we have T different observations for a pixel location, in total, we can produce
T different planes by using all images successively as the denominator. For the
denominators consisting of non-Lambertian observations, the orientations of the
fitted planes are arbitrary because the denominator intensity interacts with all
other intensity samples when ratio images are derived during plane fitting and
thus the whole data set is contaminated. For the other denominators whose
observations are explained by the Lambertian model, however, the orientations
of the produced planes should cluster themselves together. Despite that such
estimated planes are not error-free because of the presence of outliers, the cluster
limits the solution space for the optimal surface orientation at the pixel.

3.2 The Objective Function

The main reason of using the EM approach is that the above-mentioned cues
are not given but are inherent within the data itself. Alternating optimization
approaches such as EM allow for the simultaneous estimation of the cues and
the solution. In this section, we define our objective function which forms the
basis of our EM algorithm.

Without confusion, in the rest of this section, the index of pixel location i will
be dropped to simplify the notation, since the algorithm is applied individually
at each pixel location.

We define O = {ot} to be the set of observations, where t = 1..T and T is
the total number of captured images, ot = {It,nt}, It (a 3-vector in RGB space)
is the observed intensity at time t, and nt is the normal obtained after plane
fitting with image t as the denominator image.1

To encode the clustering of {nt}, a 3 × 3 covariance matrix K that stores the
second-order moment collection is used since it represents the orientation distri-
bution. The optimal normal is the direction that gives the largest variance in K.
1 Note that we only use the highest 50% intensities as numerators to perform plane

fitting because dark pixels tend to be affected by shadows and the presence of a large
number of outliers will affect the accuracy of the estimated normal. The aforemen-
tioned number of samples provides sufficient redundancy for robust estimation.
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Our goal is to find the optimal albedo ρ (a 3-vector in RGB space) and the
covariance matrix K given the pixel observations. In other words, we want to
estimate the following:

Θ∗ = arg max
Θ

P (O,S|Θ) (4)

where P (O,S|Θ) is the complete-data likelihood we want to maximize, Θ =
{K, ρ, α, σ} is a set of parameters to be estimated and S = {st} is a set of hidden
states indicating which observation is generated by the Lambertian model. st = 1
if ot is generated by Lambertian model, st = 0 otherwise. α and σ are respectively
the proportion of Lambertian observations and the standard deviation of Eqn. 3,
which are the parameters that help us to find the solution and will be described.

Our EM algorithm estimates Eqn. 4 by finding the expected value of the
complete-data log-likelihood log P (O,S|Θ) w.r.t. S given the observation O and
the current estimated parameters:

Q(Θ,Θ′) =
∑
S∈ϕ

log P (O,S|Θ)P (S|O, Θ′)dS (5)

where Θ′ are current parameters and ϕ is a space containing all S of size T .

3.3 Expectation Estimation

In this section, we address how to estimate the marginal distribution p(st|ot, Θ
′)

so that we can maximize the expectation Q defined by Eqn. 5 by proceeding to
the next iteration given the current parameters.

If st is known, the observation ot that is generated by the Lambertian model
minimizes Eqn. 3 and nT

t K−1nt. Suppose that the noise distribution of Eqn. 3
and the jittering distribution of nt are Gaussian distributions, and that the
existence of non-Lambertian observations follow a uniform distribution. The
observation probability of ot is:

p(ot|st, Θ
′) ∝

{
exp(− ||It−ρnt·Lt||2

2σ2 ) exp(− 1
2n

T
t K−1nt), if st = 1;

1
C , if st = 0.

(6)

Base on the uniform distribution assumption, the choice of C should be max{It−
ρnt·Lt}. However, in real case, the assumption can be violated seriously. To lower
the chance of wrong classification, we choose C = Cm = mean{It − ρnt · Lt}
because smaller C trends to classify more observations to st = 0. This lowers
the probability of the non-Lambertian samples in obtaining wrong labels while
we still have sufficient redundancy for estimation robustness. To calculate C, we
choose ρ to be the color has median gray-level intensity. Indeed, C needs not to
be precise. In all of our experiments, varying C, Cm ≤ C ≤ 2Cm produces very
similar results and thus this constant is not critical.

Let α be the proportion of the observation generated by the Lambertian
model. Then we have a mixture probability of the observations:

p(st = 1) = α (7)
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So, given Θ′ only, we have

p(ot|Θ′) ∝ α exp(−||It − ρnt · Lt||2
2σ2 ) exp(−1

2
nT

t K−1nt) +
1− α

C
(8)

Let wt be the probability of ot being generated by the Lambertian model. Then:

wt = p(st = 1|ot, Θ
′) =

p(ot, st = 1|Θ′)
p(ot|Θ′)

=
α exp(− ||It−ρnt·Lt||2

2σ2 ) exp(− 1
2n

T
t K−1nt)

α exp(− ||It−ρnt·Lt||2
2σ2 ) exp(− 1

2n
T
t K−1nt) + 1−α

C

(9)

Hence, in the E-step of our EM algorithm, we compute wt for all t = 1 · · ·T .

3.4 Maximization

In this section, we maximize the likelihood (Eqn. 4) given the marginal distri-
bution wt computed in the E-Step.

Since we only have two states {0, 1} for each st, the Q function (Eqn. 5) is:

Q(Θ,Θ′) =
∑

t

log p(ot, st = 1|Θ)wt +
∑

t

log p(ot, st = 0|Θ)(1− wt)

=
∑

t

log(α
1

σ
√

2π
exp(−||It − ρnt · Lt||2

2σ2 ))wt

+
∑

t

log(
1

|K| 12 (2π)
3
2

exp(−1
2
nT

t K−1nt))wt

+
∑

t

log(
1− α

C
)(1− wt) (10)

To maximize (10), we set the first derivative of Q w.r.t. α, σ, ρ and K respec-
tively equals to zero and obtain the following:

α =
1
T

∑
t

wt

σ =
∑

t ||It − ρnt · Lt||2wt∑
t wt

ρ =
1∑

t(nt · Lt)2wt

∑
t

It(nt · Lt)wt

K =
1∑
t wt

∑
t

ntnT
t wt (11)

which constitutes the parameter updating rule for Θ and thus the M-Step of
our EM algorithm. The E-Step and M-Step are executed alternately until the
process converges. The convergence of EM was well established [14].
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Upon convergence, we apply eigen-decomposition on K to obtain the optimal
normal direction. The eigenvector corresponding to the largest eigenvalue gives
the normal direction.

In addition, using our method, we produce not only surface normals but also
surface albedo ρ and the weights wt indicating the degree an observation ot is
consistent with the Lambertian model. Such inferred information is very useful
in parameter estimation for fitting analytic reflectance models to real and noisy
observations.

4 Experimental Results

In this section, we first demonstrate the considerable improvement by comparing
our method with [13] using the same input data. The synthetic case we use
is Three Spheres and the real examples are Teapot, Rope and Toy Car. After
the comparison, we apply our method to reconstruct albedos and normals on
selected complex objects to examine the robustness and efficacy of our method.
The running time of all the examples are tabulated in Table 1.

Three Spheres. Fig. 3(a)–(b) show two input synthetic images of Three
Spheres. The depicted object is generated by the Phong illumination model.
Fig 3(e) and (f) shows respectively the normal map produced by [13] and by our
EM method. Note that they are rendered using the Lambertian model (N ·L) for
clarity of display. The ground truth is shown in Fig. 3(c). Our estimated albedo
is shown in Fig. 3(d). Qualitatively, the appearance of (c), (e) and (f) are very
similar. On the other hand, the image difference show the clear improvement
of our method in terms of accuracy. Fig. 3(g) is the image difference between
(c) and (e), while Fig. 3(h) is the image difference between (c) and (f). Notice
the presence of three halos in Fig. 3(g) which are brighter than those observed
in Fig. 3(h), which is nearly totally black. We measure the mean angular error
of the recovered normals to evaluate both methods quantitatively. Using Three
Spheres, the mean error of the result produced by [13] is 4.041 degree while the
error of our EM result is only 1.5065 degree.

Teapot. Our method shows very significant improvement in the presence of
a large amount of noises in the representative case of Teapot, which is one of
the most difficult examples in [13] where the geometry and texture are very
complex.

Table 1. Summary of running times. The experiments were run on a shared CPU
server with 4 Opteron(TM) 844 CPU at 1.8GHz with 16GB Memory.

Data set Three Spheres Teapot Toy Car Rope Face Hair
Number of images 305 282 287 265 195 189
Image Size 256x256 188x202 181x184 171x144 216x225 224x298
Running Time 3m04s 4m24s 4m37s 4m09s 4m45s 3m25s
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Three Spheres: (a)–(b) Two typical noisy input images. (c) The ground truth
normal map. (d) The albedo ρ produced by our EM method. (e) The normal map
produced by [13]. (f) The normal map produced by our EM method. (g) The image
difference between (c) and (e). (h) the image difference between (c) and (f). Note that
(c), (e) and (f) are rendered using the pure Lambertian model (N·L) with L = (0, 0, 1)T .

(a) (b) (c) (d) (e)

Fig. 4. Detail of the Teapot: (a)–(b) The specular reflection depicts the concentric
ripple-shaped structures on the lid. (c) The specular reflection depicts a smooth but
shallow dent near the hole of the lid. (d) A small bump at the center of a deep-colored
flower pattern. (e) A black cardboard with a lot of surface imperfections, which is the
plane where the teapot is placed for image capturing.

To better illustrate how our result has been improved, let us study in detail
the geometry of the Teapot using Fig. 4. The selected close-up views of the teapot
reveal fine surface details and subtle geometry.

The complete set of the result shown in Fig. 5. Fig. 5(a) and (b) show two
sample input images which are contaminated by highlight and shadows. To show
the overall smoothness, Fig. 5(c) depicts the color coded normal map produced
by our EM method where (R,G,B) = (x+1

2 , y+1
2 , z) and N = (x, y, z)T . Fig. 5(d)

is the albedo ρ image produced by our EM method. Fig. 5(e) shows the local
evidence of [13] which consists of the initial normals produced by the plane
fitting method reviewed in Section 2 or described in [13]. Fig. 5(g) is the final
result produced by [13] where all surface details are smoothed out. For clarity
of display, Fig. 5(f) and (h) show the same normal map produced by our EM
method, which are rendered using the Lambertian model (N ·L) illuminated at
two different light directions.

It is evident that, although Fig. 5(g) demonstrates a visually smoother appear-
ance, all the fine details described in Fig. 4 are lost due to the MRF refinement
process. However, Fig. 5(e) show that if MRF process is not applied in [13], due
to the complexity of the texture and the geometry, the surface normals produced
are unsatisfactory and severe artifacts can be observed. On the other hand, our
method preserves all important fine details of the Teapot illustrated and revealed
in the close-up views of Fig. 4.
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(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 5. Teapot: (a)–(b) Two captured images. (c) The color coded normal map pro-
duced by our EM method. (d) The albedo ρ estimated by our EM method. (e) The
local evidence of [13]. (g) The final normal map in [13]. (f) and (h) are the same normal
map produced by our EM method. Note that the normal maps in (e)– (h) are rendered
using the pure Lambertian model (N · L) where the light directions in (e), (g) and (h)
are respectively L = ( 1√

3
, 1√

3
, 1√

3
)T and in (f) is L = (0, 0, 1)T . Please see the electronic

version for higher resolution display.

(a) (b) (c) (d)

Fig. 6. Toy Car (first row) / Rope (second row) : (a) One of the input images. (b) The
color coded normal map produced by our EM method. (c) The albedo ρ estimated by
our EM method. (e) The normal map produced by our EM method rendered by the
pure Lambertian model (N · L) where the light direction L = ( 1√

3
, 1√

3
, 1√

3
)T .
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(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 7. Face: (a)–(b) Two captured images. (c) The color coded normal map produced
by our EM method. (d) The albedo ρ estimated by our EM method. (e)–(g) The normal
map produced by our EM method rendered using the Lambertian model (N ·L) where
the light direction in (e), (f) and (g) are L = ( 1√

3
, 1√

3
, 1√

3
)T , L = (− 1√

3
, − 1√

3
, 1√

3
)T

and L = (0, 0, 1)T respectively. (h) The reconstructed surface.

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 8. Hair: Please see the caption in Fig. 7
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Toy Car and Rope. We applied our method to two existing data sets and
the results are shown in Fig. 6. Our method works very well in estimating the
surface albedos and surface normals. Hardly any shading is left in the albedo
image of Toy Car. For Rope, only some small spots of shadow artifact are left
in the albedo image because these regions were always under shadow due to
the complex mesostructure. Besides, the surface normal maps obtained are more
accurate than the maps obtained in [13].

Face and Hair. Human face and hair reconstruction are receiving more atten-
tion in the area of computer vision and computer graphics. Both human features
consist of complex geometry and fine details and are non-Lambertian.

Fig. 7 shows our result on Face. The normal map (Fig. 7(e)–(g)) shows that
our method retains the subtle geometry such as the pimple and other facial
imperfections. Fig. 7(d) shows the estimated albedo image. Fig. 7(h) depicts the
reconstructed surface by [15] using our normal map as input.

Fig. 8 shows our result on Hair. The normal map (Fig. 8(e)–(g)) shows that our
method preserves the curvilinearity and the meso-structural details of the hair.
Observe that some structure information are left in the albedo image (Fig. 8(d)).
There are two reasons. First, although the sampled light directions are very
dense, some pixels are always occluded and thus under shadows due to the
complexity of the hair geometry. Besides, the Lambertian model is not suffi-
cient to describe human hairs and so Lambertian samples are rare even dense
measurement is available. These two problems make the estimation process ex-
tremely challenging; yet our method still produces very good result in normal
estimation.

5 Conclusion

In this paper we propose a robust method for dense photometric stereo recon-
struction using the Expectation Maximization (EM). By exploiting useful infor-
mation inherent in the dense and noisy set of photometric images, this paper
contributes in identifying relevant observations, recovering very good normals
and albedos, and estimating optimal parameters in an automatic EM frame-
work that has no free user-supplied parameter to set. The convergence of the
EM method has been well established. Very good results have been obtained,
showing that our EM approach is robust in the presence of severe shadows, high-
light, complex and subtle geometry, and inaccurate light directions. Our future
work focuses on the use of adaptive MRF refinement to further improve the
accuracy and applicability of our EM technique for photometric stereo.
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Abstract. The paper presents a method for multi-dimensional registra-
tion of two video streams. The sequences are captured by two hand-held
cameras moving independently with respect to each other, both observ-
ing one object rigidly moving apart from the background. The method is
based on uncalibrated Structure-from-Motion (SfM) to extract 3D mod-
els for the foreground object and the background, as well as for their
relative motion. It fixes the relative scales between the scene parts within
and between the videos. It also provides the registration between all par-
tial 3D models, and the temporal synchronization between the videos.
The crux is that not a single point on the foreground or background
needs to be in common between both video streams. Extensions to more
than two cameras and multiple foreground objects are possible.

1 Introduction

Structure-from-Motion (SfM) techniques have made impressive progress in the
last two decades [11]. They can compute 3D models and camera motion out of
image sequences coming from a single moving camera. However, most of these
methods can only cope with static scenes and this limitation is one of the biggest
challenges for applying SfM in real life, with its many dynamic elements. Nev-
ertheless, some SfM techniques for dynamic scenes are around [2, 3, 6, 9] and the
subject is getting more and more attention.

A subtle issue with uncalibrated SfM is that scenes can only be reconstructed
up to an unknown scale between the independently moving objects. This does
not only have an impact on the relative sizes of the objects, but actually also
on the shape of their trajectories with respect to the background. Typical ap-
proaches to solve this problem, explicitly or implicitly, make assumptions about
the object motion, e.g. [13, 15, 1]. Here we propose an alternative solution. It
requires multiple cameras but it works with generic object motions and without
any corresponding features between the video streams. Not only does it allow to
determine the relative scales, the videos are also synchronized and the resulting
3D extracted from each stream is spatially registered.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 173–185, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Obviously, this is far from the first work using multiple cameras in a SfM
context. Here we only mention the most related work. In [7], the relative dis-
placement between the cameras of a stereo rig is computed using several motions
of the rig. In [24], a self-calibration method for a moving rig is presented where
the rig itself does not need to be rigid, however some constraints on the camera
orientations are still required. In [25], a non-rigid scene is reconstructed with
static orthographic stereo cameras. All of the above work has the common ad-
vantage of being correspondence-free, i.e. there are no stereo correspondences
between the cameras.

Here, we use two (hand-held) cameras moving completely independently with
respect to each other, still not assuming knowledge of any correspondences. The
price to pay for this freedom is that at least one moving and rigid object ought
to be observed by both cameras as the information from the background itself
is not enough to solve the problem. The fact that the object should move the
same way with respect to the background in both sequences is the trivial but key
observation exploited by the algorithm. It can thereby fix the scales of the object
and the background, bring their partial 3D reconstructions into registration, and
even synchronize - i.e. temporally align - the two videos.

Video synchronization in combination with (partial) camera calibration has
also been studied by several researchers, and the exploitation of moving objects
in particular as well. For example, Caspi et al. [4] use point trajectories to find
a suitable transformation to spatio-temporally align image sequences. Sinha and
Pollefeys [18] also combine camera calibration with synchronization, but they
use fixed cameras. These papers still require the visibility of the same points
at the same time. Caspi et al. [5] could lift this restriction by using moving
cameras with the same optical center. The views were aligned in space (through
a homography) and in time.

2 Problem

In this paper we consider two hand-held cameras which move independently
with respect to each other. Furthermore, we consider a single object moving
independently against a static background. The cameras may view the moving
object from totally different directions, so it is well possible that there are no
common feature points between the video sequences both for the background
and the foreground. However it is required that the cameras see the same rigidly
moving object, though possibly different parts thereof.

In order to reconstruct such a scene the first step is to segment the fore-
ground object from the background for which several solutions are available
(e.g. [6, 12, 16, 20, 21]), though currently we are doing it manually. This then al-
lows a typical uncalibrated SfM algorithm [11] to be applied to the object and
background segments in each of the videos. This results in four 3D point clouds
and four sets of camera matrices (trajectories relative to the capturing cam-
era). These cannot be readily integrated however, not even for the object and
background data derived from the same camera. Several parameters need to be
determined first.
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Three of those parameters come from the fact that uncalibrated SfM is defined
only up to a scale factor, i.e. the scene reconstructed from a single moving
camera has a scale ambiguity for every independently moving object. This scale
ambiguity is not a serious problem in the case of an entirely rigid scene, since
then everything has correct relative scales and only the absolute scale is missing.
However, for independently moving objects the correct relative scale with respect
to the background is also unknown and may result in unrealistic reconstructions.
This is a problem that cannot be resolved through hard geometric constraints
among the frames of a single video. As a matter of fact, there is an entire one-
dimensional family of relative scales + corresponding trajectories for the object
with respect to the background, which are all fully compatible with all image
data within the sequence [13, 15]. Many special effects in movies are based on this
fact. When seeing a car driving on a road it could actually also be a miniature
car close to the camera with a motion quite different from that of an actual car.

In the case of monocular input this ambiguity can be lifted by assuming that
the object is following a plausible motion constraint [13, 15]. Here it is shown
that the use of two cameras allows the objects to move arbitrarily. We will
have to determine the 3D similarity transformation between the reconstructed
backgrounds in the two videos, as well as the relative scales of the foreground in
each video with respect to its background. This will require the synchronization
of the two videos.

Suppose we fix the scale for the background in one video. We will have to
determine the correct relative scale of the foreground in the same video, as
well as the scales which then have to be applied to the foreground and the
background in the other video. Therefore, two unknown relative scales and one
inter-camera scale ambiguity count for the three scale parameters we have to
solve for. Obviously, there is also an Euclidean transformation (defined by six
parameters) between the reconstructions coming from the different cameras.
So in total we have to solve for nine parameters. The wrong choice for these
parameters will result in a different object motion for each different video stream
which actually must be identical. Our goal is to search for those parameters
which will make the object motions for both sequences identical or if stated
in a different way, which will make the overall object motion the most rigid
since if the objects motions as seen from both cameras are identical, the related
foreground point clouds must move rigidly.

3 Notation and Basic Formulation

The two cameras are arbitrarily labeled as the first and the second camera.
Applying SfM to the first sequence yields the following object transformation
matrices:

Mi = TiM =
[
Ri

o ti
o

0 1

]
M (1)

which describe the motion of a 3D homogeneous point M, which is a fixed point
in the object coordinate system. Mi is the position of point M at frame index
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i in the world coordinate system. Typically the camera pose of the first frame
is chosen as the world coordinate system, which is also the case here. Ri

o is a
3× 3 rotation matrix and ti

o is a 3× 1 translation vector. It is very important to
note that Ti is computed by multiplying the inverse of the related background
motion matrix with the relative motion matrix of the foreground, both of which
are direct outputs of the SfM algorithm (see [13, 15]).

However, due to unknown relative scales, there exists a one-parameter family
of solutions [13, 15] for these object transformation matrices because:

ti
o = m

(
ti
of − ti

c

)
+ ti

c (2)

where ti
of is a particular solution for the object translation and ti

c is the position
of the optical center in the world coordinate system, which are both returned
by SfM. The one-parameter family is described by scale factor m. To give an
intuitive explanation we can interpret Eq (2) as a set of 3D lines which pass
through the optical center at each frame index i. Consequently, every point on
these lines project to the same location in the same image given any value m.

The world coordinate system will be different for both image sequences since
the camera poses for the first frame will differ. However, a similarity transfor-
mation exists which aligns the world coordinate systems of both sequences:

Mi = XM
′i with X =

[
kR t
0 1

]
(3)

Fig. 1. A depiction of the transformations. Due to the relative scale ambiguity, different
cameras see arbitrarily scaled objects and ambiguous object translations.
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where M
′i is a point in the second image sequence which corresponds to point

Mi in the first sequence. Here, it is important to stress that X is a transformation
between the 3D reconstruction reference frames, and not between the moving
cameras. Therefore, X is constant throughout the sequence but the transforma-
tion between the camera local coordinate systems is allowed to change freely.

The aforementioned transformations are all illustrated in Fig. 1 in which the
superscript ′ accompanies the symbols related to the second sequence.

4 Solution

Combining Eq. (1) and Eq. (3) for both sequences, we arrive at:[
Ri

o ti
o

0 1

]
= X

[
R

′i
o t

′i
o

0 1

]
X−1 (4)

which is a different form of the famous hand-eye calibration problem. A common
technique in hand-eye calibration is to solve for the rotation part first:

Ro = RR
′
oR

T (5)

and subsequently solve for the translation part:

to = −Rot + kRt
′
o + t (6)

where the frame indices have been dropped for ease of notation. We will follow
the same approach. As to the solution of Eq. (5) it is known that every rotation
matrix has an axis which remains unaffected under that particular rotation.
Let n be that axis for Ro and n

′
be that axis for R

′
o. It can be derived and

intuitively understood that after alignment of the world coordinate systems of
both sequences the axes of the related rotations must be identical:

n = Rn
′

(7)

Many solutions have been proposed to solve the above equation, e.g. [8, 17, 19].
We chose the unit quaternion approach by Faugeras and Hebert [8] which is also
detailed in Horaud and Dornaika [10]. Unit quaternions are 4-parameter imag-
inary representations of rotations in 3D. Since their length is one, their degree
of freedom is three as expected from a rotation representation. The operation
of a rotation matrix on other rotation matrices and 3D vectors can be easily
represented as quaternion multiplications. The rotation of a 3D vector n with
the rotation matrix R can be written as:

q ∗ n
′
q ∗ q = Rn

′
(8)

where q is the quaternion representation of R, q is the conjugate of q, n
′
q is the

quaternion representation of the vector n
′
and ∗ is quaternion multiplication.
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As we have many frames and noisy data, it is practically impossible to find
a perfect solution to Eq. (7) so we should minimize an error criterion. The one
used here is the total 3D squared distance between the corresponding rotation
axes after the application of rotation R which can be written as:

E1 =
#frames∑

i=1

∣∣∣ni
q − q ∗ n

′i
q ∗ q

∣∣∣2 (9)

Since quaternions are of unit length, the statement inside the summation can be
written as : ∣∣∣ni

q − q ∗ n
′i
q ∗ q

∣∣∣2 =
∣∣∣ni

q − q ∗ n
′i
q ∗ q

∣∣∣2 |q|2 (10)

=
∣∣∣ni

q ∗ q− q ∗ n
′i
q

∣∣∣2 (11)

= qT Aiq (12)

where Ai is a 4×4 matrix whose elements are computed from ni and n
′i [8, 10].

In the end we have a minimization of the form :

E1 = qT Aq (13)

where A =
∑#frames

i=1 Ai. When we try to minimize Eq. (13) with the constraint
that quaternions are of unit length, the quaternion turns out to be the eigen-
vector of A corresponding to the minimum eigen-value.

Now that the rotation parameters are computed, we can proceed to solve
Eq. (6) for the translation and the scale parameters. Inserting Eq.(2) for both
sequences into Eq.(6) results in:

tc = (tc − tof )m + (I−Ro) t +
(
Rt

′
c

)
k +

(
Rt

′
of −Rt

′
c

)
km

′
(14)

which is a linear equation in terms of t, k,m and km
′

. In a typical scenario,
we would have redundant equations so a simple linear least squares scheme is
applicable here.

Since the rotation is estimated separately from other parameters, it is desir-
able to minimize an error criterion which handles all parameters simultaneously.
We must also note that our final aim is to come up with a solution where the fore-
ground objects as reconstructed from both sequences move as rigidly as possible
with respect to each other. However, a minimization in transformation space
does not necessarily result in the best rigid motion for the foreground objects
since it minimizes an algebraic error rather than a geometric one. A good way
to express rigidity is by stating that distances between points remain the same.
Therefore, the current solution is used as an initialization of a non-linear iter-
ative refinement technique like Levenberg-Marquardt with the following error
criterion:

E2 =
6∑

k=1

F (pk) (15)
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F (p) =
#frames∑

i=1

∣∣∣Tip−XT
′iX−1p

∣∣∣2 (16)

where Ti and T
′i are euclidean transformation matrices describing the object

motion in the ith frame for the first and the second camera. F is an error measure
between the paths of a 3D point when the motion matrices computed for the
first and the second image sequence are applied separately and pk is a specific
point in the object coordinate system of the first camera. As to the choice for
pk, we followed some guidelines. First of all, a 3D Euclidean transformation is
defined by the motion of at least 3 non-linear points, so the number of points
must be more or equal to three and they must be non-linear. Secondly as the
SfM measurements are valid only around the reconstructed object, the points
may not be far away from the 3D point cloud of the object but also may not be
very close to each other in order not to degenerate to a single point. So in order
to satisfy all these criteria, we decided to take the PCA transform of the point
cloud and choose the end points of the computed axes which result in six points
in total.

So far we implicitly assumed that both video streams are synchronized in
time. However, with hand-held cameras this is usually not the case. To overcome
this difficulty, researchers proposed different techniques, e.g. [4, 18, 25], and the
problem of time synchronization becomes more and more popular.

In our case, Eq.(5) and Eq.(6) give a geometric relationship between two
frames and we would expect that these equations do not hold when two frames
do not correspond to each other in time, just like any other geometric rela-
tionship like the fundamental matrix etc. So the technique we propose for time
synchronization is to shift the video sequences with respect to each other within
a reasonable range and compute the residual of the solution to Eq. (15). We
expect that the correct time shift corresponds to the lowest residual. After a
rough discrete shift value is found, the residual graph can be interpolated to
search for the solution at sub-frame accuracy. To achieve this, a sub-frame time
shift parameter λ is incorporated into Eq. (16) which results in:

Fsub (p) =
#frames∑

i=1

∣∣∣λTi+shiftp + (1− λ)Ti+1+shiftp−XT
′iX−1p

∣∣∣2 (17)

where λ is restricted to be between 0 and 1 and shift is the rough discrete time-
shift value. This equation basically introduces linear interpolation to the paths
defined by the principal points.

5 Experiments

We conducted two different experiments to demonstrate the effectiveness of the
proposed technique. In the first experiment, a person is pushing a dolly on which
a pile of boxes are placed. The person and the background are recorded by two
freely moving hand-held cameras whose viewing angles are quite different so it
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Fig. 2. Samples from the original image sequence. Each row belongs to a separate
camera, each column is related to a different time instant.

is hard to find common photometric features between the two image sequences.
Some example frames from the first and the second camera can be seen in Fig. 2.
The careful reader might notice that although the set-up is very wide-baseline,
there are still some common feature points. However those points will only be
used for verification of the computed registration parameters. Although our al-
gorithm does not require their existence, it helps us to demonstrate that the
algorithm works well.

The sequence is 180 frames long (image size is 720×576) and the dolly passes
through different poses. Both sequences are segmented beforehand as foreground
and background sequences, are reconstructed separately using SfM and subse-
quently fed to our algorithm. The time-shift between the sequences is approxi-
mately known to be 5 frames which is quite close to 5.13, the value computed
by the algorithm.

Fig. 3 shows the background reconstructions from two different cameras which
are registered together. It can be clearly seen that the corresponding ground
planes and walls are aligned quite well. To give a different view of the result we
manually chose three common features from the first sequence, computed their
3D positions and projected them in the second sequence using the registration
parameters we computed. In Fig. 4, the black circles denote the actual position
of the feature points and the white squares nearby depict the the reprojection of
the corresponding 3D points of the second sequence after transfer to the second
sequence. The average pixel error is 6 pixels. but we must note that this error
value highly depends on the image we use to reproject into. If we have a good
registration, we also expect the foreground motions to be the same. So in order
to test the latter, we chose a 3D point from the foreground object of the first
sequence and computed its 3D path according to the motion parameters from the
first sequence and also according to the registered motion parameters computed
from the second sequence. Fig. 5 demonstrates such a registration for an arbitrary
3D point. The circles and the triangles correspond to point paths computed with
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Fig. 3. A top and a side view of the reconstruction. Notice how well the walls and the
ground planes are registered.

Fig. 4. Manually tracked features from one image sequence are projected into the other
image sequence. In the region of interest, the original features are depicted by black
circles, whereas their reprojections are depicted by white squares.

object motions from the two different video streams. The error measure, which
is the average distance between the corresponding point positions divided by the
path length, is 0.8% which is quite low as expected.

As for the second experiment, we recorded a 330 frames-long (image size is
720 × 576) sequence where a person himself is carrying boxes on a staircase
and is moving arbitrarily but rigidly. Fig. 6 show some example frames. The
cameras are also moving freely and view the scene from quite different angles.
We computed the reconstructions and registration parameters in the same way as
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Fig. 5. Different views on the resulting path of an arbitrary 3D point on the foreground
in the first image sequence when displaced by object transformations coming from the
first sequence (circles) and the second sequence (triangles) after registration

Fig. 6. Samples from another image sequence. Each row belongs to a separate camera,
each column is related to a different time instant.

Fig. 7. A top, side and front view of the registered reconstructions. Notice the good
registration of the stairs, the ground plane, the right wall and the pillars.

the previous experiment. Fig. 7 shows the registered background reconstructions.
As can be seen, the ground plane, the stairs, the walls and the pillars are very
well registered. Fig. 8 demonstrates the reprojection of some common feature
points having an average pixel error of 15, but as mentioned earlier this error
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Fig. 8. Just like the previous experiment, manually selected features from one image
sequence are projected into the other image sequence

Fig. 9. Different views on the resulting path of an arbitrary 3D point on the foreground
in the first image sequence when displaced by object transformations coming from the
first sequence (circles) and the second sequence (triangles) after registration

value highly depends on the image chosen for reprojection. Fig. 9 demonstrates
the 3D point paths computed from the object motions from two different video-
sets. The error measure, which is the average distance between the corresponding
point positions divided by the path length, is 0.4% which is quite low as expected.

6 Conclusion and Discussion

In this paper, we presented a novel technique which finds the space-time-scale
parameters between two reconstructions of a scene coming from two indepen-
dently moving hand-held cameras. Rather than matching photometric features
like points, lines etc., it tries to find a consistent transformation which results
in the most similar motion for the independently moving foreground object. As
a consequence, the cameras are free to observe the scene from totally different
angles with the restriction that at least one rigidly moving foreground object is
required. Although we presented our initial results here, there are still open ques-
tions and possible improvements. As an initial improvement, the basic approach
can easily be extended to scenarios which contain more than two cameras and
multiple rigidly moving foreground objects. Although we have not used common
feature points we can find such features much more easily after an initial reg-
istration and use them as well in a global optimization. As an interesting fact,
such features need not be simultaneously visible in both cameras which is a ne-
cessity in many multicamera systems. Another interesting remark would be how
to determine which part of the segmented scene correspond to the background
and which to the foreground. Upto now, we assumed this to be known apriori.
This, however, can be achieved automatically in several ways, e.g. with a typical
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assumption that the biggest object is the background, or with a more elabo-
rate technique [14] if the foreground motion complies to a certain constraint.
However, our framework itself is also capable of identifying the corresponding
segmentation parts between the two sequences, since a wrong choice would result
in a higher error value after the final minimization.

Unfortunately, the proposed technique can not handle certain foreground ob-
ject motions which are degenerate cases. As to the solution of the Eq. (5), it is
known that the existence of at least two rotation axes is necessary and as the
number of axes increase the solution becomes more stable. We also noticed a
certain degeneracy when the foreground object motion is a pure rotation around
a single point. However, we expect that the existence of multiple moving objects
would significantly decrease such problems.
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Abstract. We present a new approach for self-calibrating the distor-
tion function and the distortion center of cameras with general radially
symmetric distortion. In contrast to most current models, we propose a
model encompassing fisheye lenses as well as catadioptric cameras with
a view angle larger than 180o.

Rather than representing distortion as an image displacement, we
model it as a varying focal length, which is a function of the distance
to the distortion center. This function can be discretized, acting as a
general model, or represented with e.g. a polynomial expression.

We present two flexible approaches for calibrating the distortion func-
tion. The first one is a plumbline-type method; images of line patterns
are used to formulate linear constraints on the distortion function param-
eters. This linear system can be solved up to an unknown scale factor
(a global focal length), which is sufficient for image rectification. The
second approach is based on the first one and performs self-calibration
from images of a textured planar object of unknown structure. We also
show that by restricting the camera motion, self-calibration is possible
from images of a completely unknown, non-planar scene.

The analysis of rectified images, obtained using the computed distor-
tion functions, shows very good results compared to other approaches
and models, even those relying on non-linear optimization.

1 Introduction

Most theoretical advances in geometric computer vision make use of the pin-hole
camera model. One benefit of such a model is the linearity of the projection which
simplifies multi-view constraints and other structure-from-motion computations.
Unfortunately in many cases, this model is a poor representation of how the
camera samples the world, especially when dealing with wide angle cameras
where radial distortion usually occurs. In addition to these cameras, catadioptric
devices (i.e. cameras pointed at a mirror) also admit a very large field of view.
Their image distortion can also be seen as a type of radial distortion, although,
in general, it cannot be modeled with traditional models. This is because the
view angle of these cameras can be larger than 180o, which is not compatible
with the usual image-displacement approach. The effect of radial distortion is

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 186–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that straight lines in the scene are not in general projected onto straight lines in
the image, contrary to pin-hole cameras. Many calibration algorithms can deal
with distortion, but they are usually tailor-made for specific distortion models
and involve non-linear optimization.

In this paper, we introduce a general distortion model, whose main feature is
to consider radially symmetric distortion. More precisely, we make the following
assumptions on the camera projection function:

• the aspect ratio is 1,
• the distortion center is aligned with the principal point1,
• the projection function is radially symmetric (around the distortion center),
• the projection is central, i.e. projection rays pass through a single (effective)

optical center.

Given the quality of camera hardware manufacturing, it is common practice
to assume an aspect ratio of 1. As for the second and third assumptions, they
are made to ensure our model is consistent with both catadioptric devices and
regular fisheye cameras. Finally, a central projection is assumed for simplicity
even for very large field of view cameras [1, 23] in which a non-single viewpoint
might be induced by the lens [3], or by a misaligned mirror [18].

Our full camera model consists therefore of the position of the distortion center
and the actual distortion function that maps distance from the distortion center
to focal length. This model, together with the above assumptions, fully represents
a camera projection function. It is a good compromise between traditional low-
parametric camera models and fully general ones, modeling one projection ray
per pixel [10, 17], in terms of modeling power and ease and stability of calibration.
The model is indeed general enough to represent cameras of different types and
with very different view angles.

Problem statement. In this paper, we intend to solve the proposed model re-
lying on images of collinear points in space. Our algorithm makes no assumption
on the distortion function and on the distortion center position. Only a rough
initial value of the latter is needed.

Organization. A short review of the most popular distortion models is pre-
sented in the first section. The model we adopt is presented in §3. In §4 we
propose a plumbline method for calibrating our model using images of collinear
points. Based on this, we propose a plane-based self-calibration approach, in §5.
Finally, the performance of our methods is analyzed and compared to another
similar approach [6].

2 Related Work

As the field of view of a camera lens increases, the distortion occurring in the
captured images becomes more and more important. Traditionally, researchers
have sought new models with more degrees of freedom and complexity. These
1 We will see that this constraint may be dropped in some cases.
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models include the traditional polynomial model [11] (which can be combined
with a field of view model (FOV) [6]), division [7] and rational [5]. Most of
the time the models are calibrated using non-linear optimization of either a full
projection model from points located on a calibration object [24] or a homogra-
phy mapping from a planar grid [5]. Recent papers have also shown that radial
distortion models can be calibrated linearly from a calibration grid [12] of by
feature point matching between images [7, 5, 20, 21].

Other approaches focus only on calibrating the distortion function by impos-
ing either that a straight line in space should appear straight in the image [4, 6]
or that spherical objects should appear circular [16].

The aforementioned models all apply to cameras with a field of view smaller
than 180o since the distortion is image-based. They fail to handle data captured
by a camera with a view angle larger than 180o, typical for catadioptric devices.
Different models and algorithms have been specifically designed to address these
cases [9, 14] and their parameters have an explicit geometric interpretation rather
than expressing distortion directly.

Finally, only few attempts were made to find models able to deal with both
dioptric systems (including radial distortion) and catadioptric ones [23, 2, 19].
The model we propose fits in this category with the benefit that its distortion
function can be general.

3 Camera Model

We describe the camera model that corresponds to the assumptions explained in
the introduction. Consider a camera with canonical orientation, i.e. the optical
axis is aligned with the Z-axis and image x and y-axes are parallel to world
X and Y -axes respectively. Our camera model is then fully described by the
position of a distortion center (cx, cy)
 and a distortion “function” f : R → R,
such that an image point (x, y)
 is back-projected to a 3D line spanned by the
optical center and the point at infinity with coordinates:[

x− cx, y − cy, f(r), 0
]


, r =
√

(x− cx)2 + (y − cy)2

The distortion function (it should actually be called “undistortion function”, but
we did not find this very elegant) can for example be chosen as a polynomial with
even powers of r, in which case we have the division model, as used in [7, 20]. The
model also subsumes fisheye models [8, 15] and cameras of the ’unified central
catadioptric model’ [9].

In this paper, we use two representations for the distortion function. The first
one is a polynomial of a degree d to be fixed, like in the division model, however
including odd powers:

f(r) =
d∑

i=0

λir
i. (1)

The second one is a discrete representation, consisting of a lookup table of the
distortion function values at a set of discrete values for r (in practice, we use
one sample per step of one pixel). We denote these values as:
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f(r) = fr. (2)

Note that a constant function f allows the representation of a pinhole camera
with f ’s value as focal length. From the above back-projection equation, it is
easy to deduce equations for distortion correction, also called rectification in the
sequel. This can for example be done by re-projecting the points at infinity of
projection rays into a pinhole camera with the same optical center and orien-
tation as the original camera. As for the intrinsic parameters of the (virtual)
pinhole camera, we usually also adopt an aspect ratio of 1 and zero skew; if
the distortion center is to have the same coordinates in the rectified image as
in the original one, and if g denotes the rectified image’s focal length, then the
homogeneous coordinates of the rectified point are:⎡⎣g 0 cx

0 g cy

0 0 1

⎤⎦⎡⎣x− cx

y − cy

f(r)

⎤⎦ .

In the following, we introduce a few geometric notions that will be used in this
paper. A distortion circle is a circle in the image, centered in the distortion
center. Projection rays of points lying on a distortion circle span an associated
circular viewing cone in space. In our model, all cones have the same axis (the
optical axis) and vertex (the optical center).

Each cone can actually be understood as an individual pinhole camera, with
f(r) as focal length (r being the distortion circle’s radius). Geometrically, this is
equivalent to virtually moving the image plane along the optical axis, according
to the distortion function. This situation is depicted in fig. 1. In the case of a
camera with a view angle larger than 180o, the focal length becomes equal or
smaller than zero. In the zero case, the cone is actually the principal plane,

Fig. 1. Distortion circles are associated with cones in space. Theoretically, any point of
the image can be projected into a single plane. a) Pixel from a cone looking forward,
b) one from a cone looking backward.
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Fig. 2. Situations where three points are rectified into collinear positions. a) Three
points corresponding to forward cones. b) One point located on principal distortion
circle, i.e. scene point on principal plane. c) Two points on forward cones and one on
a backward cone.

i.e. the plane containing the optical center and that is perpendicular to the
optical axis. Let us call the associated distortion circle principal distortion
circle. A negative f(r) is equivalent to a camera with positive focal length,
looking backward and whose image is mirrored in x and y. Typical situations
for rectification are depicted in fig. 2.

Rectification for cameras with a view angle larger than 180o cannot be done
as usual: the above rectification operation is no longer a bijection (two points in
the original image may be mapped to the same location in the rectified one) and
points on the principal distortion circle are mapped to points at infinity (fig. 2b).
It is still possible to rectify individual parts of the image correctly, by giving the
virtual pinhole camera a limited field of view and allowing it to rotate relative
to the true camera.

4 Plumbline Calibration

In this section, we show that the distortion function f and the distortion center
can be recovered linearly from the images of lines (straight edges) or points that
are collinear in space. This is thus akin to the classical plumbline calibration
technique [4, 6].

4.1 Calibration of Distortion Function

We obtain linear constraints on the distortion function as follows. Consider the
images of three collinear points, pi = (xi, yi)
. For now, let us assume that the
distortion center is known and that the image coordinate system is centered in this
point. Hence, ri = ||(xi, yi)|| is the distance of a point from the distortion center.
Provided that these points should be collinear once rectified, we know that:∣∣∣∣∣∣

x0 x1 x2
y0 y1 y2

f( r0 ) f( r1 ) f( r2 )

∣∣∣∣∣∣ = 0 (3)
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which can be written explicitly as a linear constraint on the f(ri)’s:

f( r0 )
∣∣∣∣x1 x2
y1 y2

∣∣∣∣+ f( r1 )
∣∣∣∣x2 x0
y2 y0

∣∣∣∣+ f( r2 )
∣∣∣∣x0 x1
y0 y1

∣∣∣∣ = 0. (4)

If f is of the form (1) or (2), then this equation gives a linear constraint on its
parameters λi respectively fr.

Constraints can be accumulated from all possible triplets of points that are
projections of collinear points in space. We thus obtain a linear equation system
of the form Ax = 0, where x contains the parameters of f (the λi’s or the fr’s).
Note that constraints from triplets where two or all three image points lie close
to one another are not very useful and hence can be neglected in order to reduce
the number of equations. Solving this system to least squares yields parameters
that maximize the collinearity of the rectified points2. Note that the equation
system is homogeneous, i.e. the distortion parameters are only estimated up to
scale. This is natural, as explained below; a unique solution can be guaranteed
by setting λ0 = 1 as is usually done for the division model, or by setting one fr

to a fixed value.

4.2 Calibration of Distortion Center

So far, we have assumed a known distortion center. In this section, we show
how it can be estimated as well, in addition to the actual distortion function.
A first idea is to sample likely positions of the distortion center, e.g. consider
a regular grid of points in a circular region in the image center, and compute
the distortion function for each of them using the above method. We then keep
the point yielding the smallest residual of the linear equation system as the
estimated distortion center. This approach is simple and not very elegant, but is
fully justified and works well in practice. Its downside is that the computation
time is proportional to the number of sampled points.

Therefore, we investigate a local optimization procedure, as opposed to the
above brute force one. Let (cx, cy) be the unknown distortion center. Equation
(3) now becomes:∣∣∣∣∣∣∣∣

x0 − cx x1 − cx x2 − cx

y0 − cy y1 − cy y2 − cy

f(
∥∥∥∥ [x0 − cx

y0 − cy

] ∥∥∥∥ ) f(
∥∥∥∥[x1 − cx

y1 − cy

] ∥∥∥∥ ) f(
∥∥∥∥ [x2 − cx

y2 − cy

] ∥∥∥∥ )

∣∣∣∣∣∣∣∣ = 0. (5)

First, this constraint cannot be used directly for the discretized version of the
distortion function. Second, if we use the polynomial model, the constraint is
highly non-linear in the coordinates of the distortion center.

We thus consider an approximation of (5): we assume that a current estimate
of the distortion center is not too far away from the true position (||(cx, cy)|| is
small), so that f can be approximated with (cx, cy) = 0 and

2 However, it is not optimal in terms of geometric distance.
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f(
∥∥∥∥ [xy

] ∥∥∥∥ ) ≈ f(
∥∥∥∥ [x− cx

y − cy

] ∥∥∥∥ ).

Equation (5) thus simplifies to:∣∣∣∣∣∣∣∣
x0 − cx x1 − cx x2 − cx

y0 − cy y1 − cy y2 − cy

f(
∥∥∥∥ [x0

y0

]∥∥∥∥ ) f(
∥∥∥∥[x1

y1

]∥∥∥∥ ) f(
∥∥∥∥ [x2

y2

] ∥∥∥∥ )

∣∣∣∣∣∣∣∣ = 0 (6)

which is linear in cx and cy. Once again, combining many constraints leads to an
over-determined linear equation system. The recovered distortion center may not
be optimal because the points are expressed relative to the approximate center
and because of the simplification of (5). Hoping that the previous assumptions
are applicable, this new center should nevertheless improve our rectification.
This estimation is used in a local optimization scheme of alternation type:

0. Initialize the distortion center with e.g. the center of the image.
1. Fix the distortion center and compute the distortion function (§4.1).
2. Fix the distortion function and update the distortion center (§4.2).
3. Go to step 1, unless convergence is observed.

Instead of using the least-squares cost function based on the algebraic distance
(3), we also consider a more geometric cost function to judge convergence in step
3. Consider a set of image points belonging to a line image. From the current
values of distortion center and function, we compute their projection rays and
fit a plane as follows: determine the plane that contains the optical center and
that minimizes the sum of (squared) angles with projection rays. The residual
squared angles, summed over all line images, give the alternative cost function.

4.3 Discussion

The estimation of distortion center and function is based on an algebraic distance
expressing collinearity of rectified image points. Better would be of course to use
a geometric distance in the original images; this is possible but rather involved
and is left for future work.

We briefly describe what the calibration of the distortion function amounts
to, in terms of full metric calibration. First, recall that the distortion function
can be computed up to scale only from our input (see §4.1). This is natural:
if we have a distortion function that satisfies all collinearity constraints, then
multiplying it by a scale factor results in a distortion function that satisfies them
as well. This ambiguity means that once the distortion function is computed (up
to scale) and the image rectified, the camera can be considered as equivalent to
a pinhole camera with unknown focal length, with the difference that the field
of view is potentially larger than 180o. Any existing focal length calibration or
self-calibration algorithm designed for pinhole cameras can be applied to obtain
a full metric calibration. A direct application of such algorithms can probably
use only features that lie inside the principal distortion circle, but it should be
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possible to adapt them so as to use even fields of view larger than 180o. At this
step, the second assumption of §1 can also be relaxed if desired: a full pinhole
model, i.e. not only focal length, can in principle be estimated from rectified
images.

5 Self-calibration

We now develop a plane-based self-calibration approach that is based on the
plumbline technique of the previous section. Consider that the camera acquires
two images of a textured plane with otherwise unknown structure. We suppose
that we can match the two images densely; the matching does not actually need
to be perfectly dense, but assuming it simplifies the following explanations. This
is discussed below in more details.

We now describe how dense matches between two images of a planar scene
allow the generation of line images and hence to apply the plumbline technique.
Consider any radial line (line going through the distortion center) in the first
image; the projection rays associated with the points on that line are necessarily
coplanar according to our camera model. Therefore, the scene points that are
observed along that radial line must be collinear: they lie on the intersection of
the plane of projection rays, with the scene plane. Due to the dense matching,
we know the projections of these collinear scene points in the second image. By
considering dense matches of points along n radial lines in one image, we thus
obtain n line images in the other image, and vice versa. In addition, these line
images usually extend across a large part of the image, bringing about strong
constraints.

We now simply stack all plumbline constraints (4) for all pairs of images,
and solve for the distortion parameters as in §4. Here, we have assumed the
knowledge of the distortion center (in order to define radial lines); the distortion
center can of course also be estimated, using e.g. the exhaustive approach of
§4.2. Moreover, the input, once rectified, can be given to a classical plane-based
self-calibration algorithm to obtain a full metric calibration, using e.g. [22].

Dense Matching. Dense matching can be achieved rather straightforwardly.
If the camera acquires a continuous image sequence, most existing optical flow
algorithms can be applied for successive frames and their results propagated in
order to obtain a dense matching between two images with a substantial motion
between them. In addition, the fact that a planar scene is observed eliminates
the occlusion problem. If the scene is not sufficiently textured, but only allows to
extract and track sparse interest points, then we proceed as follows. We extract
dominant lines in each image using a Hough transform of the extracted interest
points, and only keep the lines passing near the current distortion center esti-
mate. These are almost radial lines. An example is shown in fig. 3a,b. The rest
of the self-calibration is as above.

Constrained Camera Motions. Another way to obtain line images without
the need for linear features in the scene is to acquire images under constrained
camera motions. A first possibility is to carry out pure rotations about the
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(a) (b) (c) (d)

Fig. 3. (a)+(b) Two images of a planar scene. a) shows interest points lying on a radial
line in the first image and b) corresponding points in the second image. (c)+(d) Two
images of a general scene, taken with pure translation. c) shows two interest points in
the first image and d) their paths, accumulated in the last image.

optical center, as suggested also by [20]. The scene can then be assimilated to a
plane, and the above self-calibration method can be directly applied. A second
possibility is to perform pure translations (with e.g. a tripod) and to track image
points across several images. In this case, any point track constitutes a line image
(an example is shown in fig. 3c,d).

6 Results and Analysis

We tested our algorithm with data acquired from real and simulated cameras.
An 8.0mm lens, a 3.5mm fisheye lens and a para-catadioptric camera were used.
We also simulated ten cameras featuring distortions from small to very large.

6.1 Convergence Analysis of the Distortion Center Detection

Two aspects of convergence of the plumbline method were evaluated. First, eval-
uating if the minimization of the constraints given by (6) instead of (5) leads to
similar results. This is not critical though, as the path of the optimizer needs
not be the same to ensure convergence. On the other hand, if the paths are
similar, it suggests that the convergence pace is not penalized too much with
the simplified cost function. We proceeded as follows. For samples of distor-
tion center positions in a box around the initial position, we computed the two
cost functions and found their minima (fig. 4a,b). We see that the functions’
general shapes are almost identical, as well as the positions of their respective
minima. Another evaluation consists in initializing the distortion center ran-
domly around the optimal one and finding the minima of the two cost functions.
Figure 4c shows the average distance between these minima, as a function of
the distance of the given distortion center from the optimal one. It is gener-
ally small, suggesting that both cost functions may lead to similar optimization
paths.

Secondly, the overall convergence was tested with simulated and real data. In
the first case, three criteria were considered: the number of lines images given
as input, the amount of noise added to the data and the distance of the given
initial distortion center from the true one. For each simulated camera, up to 11
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Fig. 4. Plots of cost functions and optimization paths associated with (a) eq. (5) and
(b) eq. (6). (c) Distance between minima of these two cost functions, with respect
to distance of current estimate of distortion center from optimal one. Data from the
3.5mm fisheye lens.
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Fig. 5. Precision of the recovered distortion center on simulated data w.r.t. a) noise
and number of lines, b) number of lines and initialization distance.

line segments were generated randomly, Gaussian noise of standard deviation 0
to 6 pixels was added to image point coordinates and these were then quantized
to pixel precision. For every camera, 50 initial values for the distortion center
were randomly chosen in a circle of 60 pixels radius around the true position (for
images of size 1000× 1000) and given as input to the algorithm. This a realistic
test considering that for our real cameras, we found that the estimated distortion
center converged to around 30 pixels from the initial value (image center) in the
worst case. The results in fig. 5 show that the number of lines has a much larger
impact on the quality of the recovered distortion center than the noise and the
initialization distance. This is especially true when the number of line is larger
than 7.

6.2 Plumbline Calibration

We acquired images of lines with our real cameras, calibrated the distortion and
then performed rectification. Once again, we tested the convergence and also the
quality of the rectification by checking the collinearity of rectified line images.
Convergence was really good, especially for the two dioptric lenses (fig. 6). Even
with a really bad initialization of the distortion center, resulting in a poor initial
estimate of the distortion function, the algorithm converged surprisingly fast
(fig. 8). The distortion functions for our real cameras are shown in fig. 7 as well
as rectified images in fig. 9 (images not used for the calibration). We compared
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(a) (b) (c)

Fig. 6. Convergence examples of the algorithm for a) the 8.0 mm, b) the 3.5 mm
fisheye, c) the para-catadioptric. The density plots show the value of the cost function
explained at the end of §4.2, with f computed using distortion center positions (cx, cy)
in a box of 60 × 60 pixels around the final distortion centers. In dark-green, different
initializations of the algorithm; in black, the centers at each step of the algorithm; in
purple, the final centers.
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Fig. 7. Calibrated distortion functions for our real cameras. poly refers to (1) and gen
to (2). For the 8.0 and 3.5mm, both representations lead to virtually identical results
(details at table 1).
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Fig. 8. The distortion function of the fisheye lens, at different iterations of the calibra-
tion algorithm for an initial center very far from the true position (200,400). The final
estimate of (512,523) was found in only 5 iterations (image of size 1000 × 1000 pixels).
Subsequent steps were only minor improvements.

our approach with the one presented in [6], run on the same data. Since that
approach performs non-linear optimization, it can easily incorporate different
distortion models. Results for different models are shown in table 1; we initialized
the distortion centers with the one that was estimated with our approach and
the distortion function as a constant.

Details are given in fig. 10 for the catadioptric cameras. We observe that a
polynomial function did not give satisfying results. Using higher degrees (up to
10) and changing the distortion function did not give much better results. On
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(a) (b) (c) (d)

Fig. 9. Rectification examples. a,b) A 3.5mm fisheye original and rectified images.
c,d) a catadioptric image. The radius of the principal distortion circle was estimated
as 329 pixels, so circles of radius 0 to 320 pixels were rectified.

Fig. 10. Line images used as input of the algorithms and rectification results for the
catadioptric camera (with principal distortion circle found at 329 pixels). a) Input
(only shown for radius smaller than 315 pixels), b) Rectification with a traditional
model of degree 6 (model as in third row of table 1), c) with the polynomial distortion
function (1) and d = 6 (the discrete model of (2) gave almost identical results).

the other hand, we see that a division function is very well suited to model the
distortion in the image.

6.3 Self-calibration from Real Sequences

Two sequences were tested. In the first one, points were tracked from a flat
surface (our laboratory floor) with a hand-held camera. In the second case, a
tripod was used and the camera was translated in constant direction. Overall, the
results were satisfying although not as precise as with the direct plumbline tech-
nique using images of actual linear features. Results are summarized in table 2;
values shown were computed like explained in table 1 and using images of ac-
tual lines. The distortion center detection was also not as precise. The algorithm
converged as usual, but not exactly to the best distortion center. In fact, it
was much closer to the image center. This is explained by the fact that to-
wards the image border, features are much more difficult to track: they are
smaller and blurry. In this case, they are usually dropped by the tracking algo-
rithm resulting in less data for large radiuses, where the distortion is the worst.
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Table 1. Results using our models and algorithm (first two rows) and other models
and the non-linear algorithm of [6]. Shown values refer to residual distances for fitting
lines to rectified points (average and worst case). The rectified images were scaled to
have the same size as the original. For the catadioptric camera, our approach used all
the points, whereas the others used only the points corresponding to forward viewing
cones (they failed otherwise). “—” means the algorithm did not converge without
careful initialization or gave very bad results.

Models and rectifying equations 8mm 3.5mm catadioptric
Discrete model of (2) 0.16 1.03 0.35 3.7 0.51 7.6
Model of (1) with d = 6 0.16 1.12 0.35 5.5 0.47 6.3

6th order polynomial
p(1 + λ1||p|| + ... + λ6||p||6) 0.16 1.08 0.42 7.0 1.5 14.4

6th order division (non-linear) 0.16 1.08 0.36 5.6 — —
FOV-model [6]: p tan(ω||p||)

2 tan( ω
2 )||p|| 0.23 4.86 0.54 7.9 — —

FOV-model + 2nd order polynomial 0.16 1.06 0.37 6.1 — —

Table 2. Results for the 3.5mm fisheye with data from real sequences (fig. 3)

Models plane translation
Discrete model of (2) 0.68 8.05 0.55 7.0

Model of (1) with d = 6 0.58 9.7 0.85 14.6

Consequently, the distortion is a little bit under-evaluated and the distortion
center less well constrained.

7 Conclusion

We presented flexible calibration methods for a general model for radial distor-
tion, one plumbline type method and one for plane-based self-calibration. The
methods were applied for simulated and real images of different cameras (fish-
eye and catadioptric). Results are satisfying, in terms of convergence basin and
speed, precision as well as accuracy.

The most closely related works are [20, 21]. There, elegant though rather more
involved procedures are proposed. These start with an even more general camera
model than here, that does not enforce radial symmetry; only after computing
and exploiting multi-view relations for that model, radial symmetry is enforced
in order to compute distortion parameters. Our methods are much simpler to
implement, use radial symmetry directly and can work with fewer images (two
for plane-based self-calibration). Future work will mainly concern improving the
tracking for the self-calibration method and investigating the optimization of
reprojection based cost functions.
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A Simple Solution to the Six-Point Two-View
Focal-Length Problem

Hongdong Li

RSISE, The Australian National University, National ICT Australia

Abstract. This paper presents a simple and practical solution to the 6-point 2-
view focal-length estimation problem. Based on the hidden-variable technique
we have derived a 15th degree polynomial in the unknown focal-length. During
this course, a simple and constructive algorithm is established. To make use of
multiple redundant measurements and then select the best solution, we suggest a
kernel-voting scheme. The algorithm has been tested on both synthetic data and
real images. Satisfactory results are obtained for both cases. For reference pur-
pose we include our Matlab implementation in the paper, which is quite concise,
consisting of 20 lines of code only. The result of this paper will make a small but
useful module in many computer vision systems.

1 Introduction

This paper considers the problem of estimating a constant unknown focal-length from
six corresponding points of two semi-calibrated views. By semi-calibration we mean
that all camera intrinsic parameters but a fixed focal-length are known. This scenario
is quite common (not restrictive) in daily camera use. For example, except for the case
where the camera lens is allowed to zoom continuously, it is often practical to assume
that its focal-length is constant across multiple views. In fact, all other camera intrinsic
parameters (such as principal point and aspect ratio) can be considered fixed and known
for a certain camera. In other words, the only user-adjustable (therefore variable) camera
intrinsic parameter is the focal-length. Yet still, the focal-length is often kept constant
over two successive image shoots [7][8].

It is well known that five points of two fully-calibrated views are possible to recover
the essential matrix E between the two views. Since an essential matrix is a faithful
representation of the camera motion (up to an unknown scale), namely, E = [t]×R, it
therefore has five degrees of freedom. So, from five points it is possible to estimate the
camera motion—this is exactly what the five-point algorithm does [11].

Now consider a semi-calibrated case where only a fixed focal-length f is unknown.
For this case, it is shown that six points (in general position) are enough to estimate
the camera motion as well as the unknown focal-length. This can be easily seen by
the following reasoning. Compared to the fully-calibrated five-point case, the one extra
point correspondence will provide one more constraint on the camera intrinsic matrix.
Consequently, a single unknown focal-length, as well as the relative camera motion,
can be computed from it.

The above conclusion can also be approached from the other direction. If the two
camera views are uncalibrated, then seven points are the minimal requirement to com-
pute a fundamental matrix F. Since a fundamental matrix has seven degrees of freedom,

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 200–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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it provides two more constraints on the camera intrinsics, besides the camera motion en-
coded by an essential matrix. These two extra constraints are essentially the two Kruppa
equations. Therefore, if the two views are only partially calibrated in that all camera in-
trinsics but two possibly different focal-lengths f and f ′ are known, then seven points
are enough to estimate the relative camera motion and the two unknown focal-lengths
[2]. Now, if we have only seven less one points, and the two focal-lengths are assumed
identical, then it is possible to recover the single unknown focal-length as well as the
camera motion from six corresponding points.

For the first time, Stewénius et al have proposed a concrete algorithm to solve the
6-point focal-length problem [1]. They have utilized a special mathematical tool—the
Gröbner basis technique. The idea behind the Gröbner basis is to construct a complete
and algebraically-closed polynomial system (an ideal) by adding in some newly gen-
erated compatible equations. By this tool they show that there are at most 15 solutions
to the six-point algorithm. The Gröbner basis is a mathematically elegant technique for
handling polynomial system. However, since it originates from a special mathematical
field (i.e. computational commutative algebra and algebraic geometry), some readers
may find it not fully-comfortable to follow, let alone to actually implement it and use it.

Why Six Points? Traditionally, the focal-length problem is solved through the funda-
mental matrix which itself can be computed from seven points. Moving from seven
points to six points provides some benefits. The first benefit lies in its theoretic value.
Compared with its non-minimal counterpart, the minimal algorithm offers a deeper the-
oretical understanding to the problem itself. For example, both the five-point algorithms
[11] and the six point algorithm all better exploit the constraints provided by the epipo-
lar equations and the Kruppa equations (cf. [14][15]); Secondly, effective techniques
developed during the course of deriving the six-point algorithm are very useful for other
similar vision problems too (e.g. [11]); Thirdly, for the task of focal-length estimation
itself, it is demonstrated by experiments that the six-point algorithm sometimes offers
even better performance than the seven-point algorithm; In addition, as shown in [11],
six-point algorithm has less degenerate configurations than the seven-point algorithm;
Moreover, when combine a minimal solver with the RANSAC scheme using six points
(rather than seven) allows significant reduction in computation [5].

1.1 Main Contributions

This paper provides an alternative yet much simpler and practical solution to the 6-point
focal-length problem, compared to the one originally proposed in [1].

We will show that to solve the 6-point problem there is no need to generate new
equations. The original equations system, which includes the six epipolar conditions,
one singularity condition and two Kruppa equations, already provides sufficient and
algebraically-closed constraints to the problem. As a result, in the real domain R it is
already enough to solve the six-point problem using 10 rigidity equations—equivalent
to the above equations—without resorting to the Gröbner basis technique. For reference
purposes we provide our implementation in the appendix of the paper, which is very
concise and consists of 20 lines of general Matlab code only.

Paper [1] tested its algorithm mainly on noise-free simulation data. In this paper, we
go beyond such an idealized scenario. We have tested the performance of our algorithm
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on both synthetic and real images (with different levels of noise). We demonstrate our
results by the accuracy of focal-length estimation per se, rather than by the errors in the
reprojected fundamental matrix.

In the root-selection stage (whose purpose is to single-out the best root from multiple
solutions), we propose a kernel-voting scheme, as an alternative to the conventionally
adopted RANSAC. We show by experiments that our scheme is suitable for the par-
ticular problem context, and there is no need to wait until the reprojected fundamental
matrix error is obtained.

2 Theoretic Backgrounds

Consider a camera, with constant intrinsic parameters denoted by a matrix K ∈ R
3×3,

observing a static scene. Two corresponding image points m and m′ are related by a
fundamental matrix F ∈ R3×3:

m′TFm = 0. (1)

A valid fundamental matrix must satisfy the following singularity condition:

det(F) = 0. (2)

This is a cubic equation. Remember that the 3 × 3 fundamental matrix is only defined
up to a scale, it therefore has 7 degrees of freedom in total. Consequently, seven corre-
sponding points are sufficient to estimate the F.

If the camera is fully-calibrated, then the fundamental matrix is reduced to an essen-
tial matrix, denoted by E, and the relationship between them reads as:

K−TEK−1 = F. (3)

Since an essential matrix E is a faithful representation of the relative camera motion
(translation and rotation, up to a scale), it has only five degrees of freedom. Conse-
quently, to be a valid essential matrix E, it must further satisfy two more constraints,
which are characterized by the following theorem.

Theorem-1: A real 3 × 3 matrix E is an essential matrix if and only if it satisfies the
following condition

2EETE− tr(EET)E = 0. (4)

This gives 9 equations in the elements of E, but only two of them are algebraically
independent. The above theorem, owing to many researchers (e.g, Kruppa, Demazure,
Maybank, Huang, Trivedi, Faugeras, etc, just name a few, cf. [6][5][15]), is an important
result in geometric vision.

For the semi-calibrated case considered here, since only one focal-length is un-
known, without loss of generality we can assume the intrinsic camera matrix is: K =[

f 0 0

0 f 0

0 0 1

]
, where f is the focal-length. Define a matrix Q =w−1

⎡⎣ 1 0 0

0 1 0

0 0 w

⎤⎦ , where w = f−2.

Write down the epipolar relations Eq. (1) for six points mi and m′
i,

m′T
i Fmi = 0, (5)
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for i = 1, · · · , 6. Using the six points we get a linear representation of the fundamental
matrix:

F = xF0 + yF1 + zF2, (6)

where x, y, z are three unknown scalars to be estimated, and F0, F1, F2 are the bases of
the null-space of the epipolar design matrix, which can be readily computed from the
six points (cf. [5]).

Substituting this F into Eq.(3) and Eq.(4), we get the following equations in the
unknown set {w, x, y, z}.

2FQFTQF− tr(FQFTQ)F = 0. (7)

This is a group of nine equations, and they provide sufficient conditions to find the un-
known {w, x, y, z} (up to an unknown scalar). If we somehow solve these equations,
then the task of estimating the focal-length is accomplished. The above reasoning basi-
cally follows [1].

3 Review the Previous Algorithm

Stewénius et al proposed a clever algorithm based on the Gröbner basis technique [1].
More precisely, it is a variant of the classical Gröbner technique [4]. The key steps of
their algorithm are briefly reviewed below.

Given six corresponding image points in general position, write down Eq.(7) and
Eq.(2). Rearrange them in such a way that a 10 × 33 matrix equation AX = 0 is
obtained, where A is a 10 × 33 coefficient matrix, and X a vector containing 33 terms
of monomials of the unknowns. Now we have a polynomial system of 10 equations.
This system is then ported into a finite field Zp (p is a large prime number), and is
solved using the Gröbner basis elimination procedure. This procedure is stopped when
the whole system becomes an algebraically-closed ideal generator set of the original
system. So far, a minimal solver (for Zp) has been built up.

The next step is to apply the same solver (i.e, the same sequence of elimination) to the
original problem. One then obtains an enlarged polynomial system containing n × 33
(n > 10) monomial terms. Finally, a generalized eigen-decomposition is employed
to solve the polynomial system, for which there are 15 solutions. In order to improve
numerical stability, a pivoted Gauss-Jordan elimination is used.

An important detail of the algorithm is that the arbitrary scale factor of the funda-
mental matrix is parameterized by setting one unknown to an arbitrary scalar. Thereby
the number of unknowns is reduced by one, which simplifies the later derivation. By
contrast, in this paper we avoid such scale parametrization in order to keep the homo-
geneity of some unknowns of the equation system. The reason will be explained later.

Limitations. The main mathematical device adopted by [1] is the Gröbner basis tech-
nique. The Gröbner basis is an elegant and powerful technique[3] [4]. Many commercial
or free mathematical software packages include it as a standard module (for instance,
in Maple and Mathematica etc). In many cases, to use it the user is not assumed to have
specialized knowledge of it, and thus can simply apply it in a black-box manner, as also
claimed by [1]. However, using a tool in a black-box manner is not always a safe way.
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Whenever a program runs into trouble, it would be nicer if the user could understand
its internal mechanism. Moreover, due to its special origin (computational commutative
algebra and algebraic geometry), not every reader finds it easy to follow. Furthermore,
paper [1] did not test its algorithm extensively on more realistic case. It experimented
on perfect simulated data only. No result on real images was given there.

Finally, the root-selection procedure (i.e., single-out the best root from the possibly
multiple solutions) is not addressed by paper [1], because it deals with simulated cases
only, and thereby assumes the ground-truth data is available. However, in a real-world
problem an efficient root-selection mechanism is necessary. It is in fact a common re-
quirement for various minimal solvers (see for example [11] and [8]), where one often
obtains multiple and maybe complex roots. The RANSAC is a good scheme to find the
best solution from multiple candidates. In this paper, we propose an alternative kernel-
voting scheme which is suitable for the particular context.

4 Our New Six-Point Algorithm

In this paper, we propose a new method for solving the six-point focal-length problem,
using the hidden variable technique which is probably the best known technique for
algebra elimination.

We claim that the recommended hidden variable technique is not yet-another spe-
cialized mathematical technique (which otherwise would be equally unfamiliar and un-
comfortable to readers), but it follows very straightforward principle and procedures.
It is so transparent and simple to the end-user that is almost self-explained. As will be
described later, to better apply this technique to the problem, we introduce a small trick
that is to keep the homogeneity of some unknowns of the equation system.

Hidden Variable Technique. The Hidden-Variable technique (also known as the Dia-
lytic Elimination) is possibly one of the best known resultant techniques in algebraic
geometry [4]. It is used to eliminate variables from a multivariate polynomial equation
system. The basic idea is as follows.

Consider a system of M homogeneous polynomial equations in N variables, say,
pi(x1, x2, ..., xN ) = 0, for i = 1, 2, ..., M . If we treat one of the unknowns (for ex-
ample, x1) as a parameter (in the conventional terms, we hide the variable x1), then by
some simple algebra we can re-write the equation system as a matrix equation

C(x1)X = 0,

where the coefficient matrix C will depend on the hidden variable x1, and the X is a
vector space consisting of the homogeneous monomial terms of all other N -1 variables
(say, x2, x3, · · · , xN ).

If the number of equations equals the number of monomial terms in the vector X
(i.e. the matrix C is square), then one will have a resultant equation defined on x1, say,
det(C(x1)) = 0 if and only if the equation system has non-trivial solutions. By such
procedure, one thus successfully eliminates N -1 variables from the equation system all
at once. Solving the resulting resultant equation for x1 and back-substituting it, one thus
eventually solves the whole system.



A Simple Solution to the Six-Point Two-View Focal-Length Problem 205

4.1 Algorithm Derivation

Remember that Eq.(2) and Eq.(7) are the main equations we are to use. Notice that they
are ten cubic equations in the four unknowns {w, x, y, z}. A careful analysis will show
that within the real domain R, Eq.(7) already implies Eq.(2). However, we would keep
all these ten equations together in our derivation, and the reason will become clear soon.

Now we treat the unknown w as the hidden variable, and collect a coefficient matrix
(denoted by C(w)) with respect to the other three variables {x, y, z}. Here we do not
replace one variable with an arbitrary scalar. Rather, we keep the homogeneous forms
in the monomials formed by [x, y, z]. These are all cubic monomials which actually
span a vector space:

X = [xyz,x2z, xy2, xz2, y2z, yz2, x3, y3, x2y, z3]T (8)

To give a more close examination of the coefficient matrix C, we list it element-wise:

0 1 2 3 4 5 6 7 8 9
xyz x2z xy2 xz2 y2z yz2 x3 y3 x2y z3

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

1 [w]10 [w]11 [w]12 [w]13 [w]14 [w]15 [w]16 [w]17 [w]18 [w]19
2 [w]20 [w]21 [w]22 [w]23 [w]24 [w]25 [w]26 [w]27 [w]28 [w]29
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · [w]i−1,j · · · · · · · · · · · · · · · · · · · · ·
· · · · · · [w]i,j−1 [w]i,j [w]i,j+1 · · · · · · · · · · · · · · · · · ·
· · · · · · · · · [w]i+1,j · · · · · · · · · · · · · · · · · · · · ·
8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
9 [w]90 [w]91 [w]92 [w]93 [w]94 [w]95 [w]96 [w]97 [w]98 [w]99

Here, elements in the first row are some scalars, C(i, j) = sj , for i = 0, computed
from the singularity constraint Eq.(2). Elements of all other rows are quadratic in w,
computed from the nine rigidity constraints Eq.(4). More precisely, it is in the form of
C(i, j) = [w]ij

.= aijw
2 + bijw + cij , for 1 � i � 9.

As the monomial vector has been kept homogenous, the equation C(w)X = 0 will
have non-trivial solutions of {x, y, z} if and only if the determinant of the coefficient
matrix vanishes. That is:

det(C(w)) = 0. (9)

This determinant is better known as a hidden-variable-resultant, which is an univariate
polynomial of the hidden variable, w.

By observing the elements of C, one would expect that its determinant is an 18th
degree polynomial. However, a more close inspection reveals that: it is actually a 15th
degree polynomial, because terms of degree greater than 15 precisely cancel out. As
a result, from a group of six points we will eventually obtain a 15th degree polyno-
mial in the single unknown w. More importantly, since the vector X is homogenous in
{x, y, z}, and during the above construction we did not generate any extra equations be-
sides the original ten, we are therefore safe to conclude that there are indeed at most 15
solutions to the six-point two-view focal-length problem. This result accords precisely
with [1], but we achieve this via a different and more transparent approach.



206 H. Li

Another benefit of keeping the homogeneity of X is that: estimating the fundamental
matrix corresponding to the computed w is also made much easier than by [1]. Notice
that the null-space X = null(C(w)) is homogenous in {x, y, z}. Therefore, computing
x, y, z is also made simple, thanks to the symmetric structure of the vector X. As a
result, the fundamental matrix F can be directly found using Eq. (6). By contrast, the
back-substitution sequences used in [1] is more ad hoc and heuristic.

5 Implementation

5.1 Minimal Solver

Using the above construction, one can compute a hidden-variable resultant (i.e. a uni-
variate polynomial equation) from every six points. Solving the hidden-variable resul-
tant for the unknown w, one then finds the focal-length f . In general there are multiple
candidate solutions. By candidate we mean that they have real positive values. To give
a flavor we show below an example of such a 15th degree resultant polynomial and the
corresponding real positive roots of f :

poly = −9.3992319e−14w15 − 4.7922208e−17w14 + 8.7010404e−22w13

+7.4700030e−25w12 + 4.5342426e−29w11 + 1.1095702e−33w10

+9.3596284e−39w9 − 9.8528519e−44w8 − 1.3185972e−48w7

+1.3420899e−53w6 − 2.6216189e−59w5 − 1.0514824e−64w4

+5.5394855e−70w3 − 9.1789042e−76w2 + 6.0294511e−82w − 1.2914421e−88

fcand = 1/
√

w = [1536.38, 1104.52, 600.01, 593.99, 521.99, 83.74].

For this example we knew the ground-truth solution is ftrue = 600 pixels.
There exist many (global) approaches to solving a univariate polynomial equation.

Popular options include the companion matrix technique, or Sturm sequence bi-section
technique [4]. The former can find all roots of a univariate polynomial, and the later can
find all real roots. After solving the resultant equation, we only keep the real positive
ones as the candidate roots, and then feed them into a second stage—root-selection.

5.2 Root Selection

From six point correspondences, one may get multiple candidate focal-lengths. There-
fore a root-selection stage is required to single out a unique best root. In general, this
stage is possible if only we have more than six points. In other words, it is the redundant
measurements that provides extra information to resolve the multi-root ambiguity.

Paper [1] did not address the issue of root-selection, because it only deals with syn-
thetic data with known ground-truth. RANSAC scheme is a good choice to fulfil such
root-selection task. In the following we propose a kernel-voting scheme, which can be
used as an alternative to the RANSAC, and which we think is suitable for the underlying
problem.

6 Kernel Voting: Combining Multiple Measurements

To resolve the multiple roots ambiguity, the classical way is to use multiple measure-
ments to eliminate those inconsistent solutions.
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Given N (N � 1) groups of data, we will have a system of N simultaneous polyno-
mial equations in one unknown. Any attempt to solve such an over-determined equation
system strictly (exactly) is doomed to fail, because the inevitable noise in input will
almost always make the equation system inconsistent (i.e, co-prime).

Alternatively, one could exploit the least square idea. For example, one might think
of using a global cost function by summing up the square of each individual resultant
equations Eq.(9) and then apply the bundle adjustment. However, experiments show
that this simple idea does not work, because the summation has cancelled many of the
convexities of the individual polynomials, leading to a cost function which is less likely
to converge to global minima [13] [9].

RANSAC has been proposed as a successful approach to disambiguate the mul-
tiple roots problem, e.g, in five-point relative-orientation problem [11]. It is a good
option here to resolve the ambiguity. However, in this paper, we suggest an alternative
scheme based on the kernel-voting idea [10], which we believe is quite useful for certain
situations.

The basic strategy is to keep the form of minimal solver for each individual data
group (of six points), and use a voting scheme to choose the best root afterward. By the
best root we mean that it is agreed by the majority of the the input measurements. This
technique is therefore also immune to outliers.

6.1 Kernel Voting

The purpose of kernel-voting ([10]) is to single out the best real root from multiple
candidate solutions. We fulfil this by a ”soft” voting scheme, where the votes are the
candidate roots that each polynomial Eq.(9) produces.

Because Eq.(9) is a high-degree polynomial, it is very sensitive to noise. A small
perturbation in the input point coordinates may cause large changes in the polynomial
coefficients. And this may significantly distort the resultant equation, as well as its
roots. However, By experimentations we found: although noise affects the high-order
basic equations individually, the obtained roots mostly surround the genuine root (this
is also because a polynomial is a continuous function). The statistical distribution of
all roots computed from the multiple measurements displays a peak shape. So long
as a sufficiently large number of measurements, an asymptotically correct root will be
eventually found. That is, the position that receives the maximal numbers of votes will
eventually win.

In spirit, our voting scheme is similar to the Hough transform. However, their op-
erations are differences. In the Hough transform the voting space is tessellated into
discrete cells, while the voting space of ours is the continuous real axis. In addition,
since we only receive votes at rather sparse and isolated positions (of the real roots),
our search can be performed more efficiently. In order to smooth the voting space,
we introduce a kernel density estimator (KDE) to estimate the distribution of the can-
didate roots. Then the peak position, corresponding to the (globally) maximal (peak)
probability, is identified as the output of the best root. In this sense, it works like a
Maximal-Likelihood Decision-Maker. Compared with the RANSAC, our kernel-voting
scheme turns to make a collective decision, rather than depending on one individual
decision.
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Given multiple independent observations of a random variable, the KDE at point x
is defined as

f̂h(x) =
n∑

i=1

K(xi − x)
h

(10)

where K() denotes the kernel function, and h the bandwidth. Here we choose a Gaussian
Kernel with fixed bandwidth, and simply set the bandwidth as the estimation precision
that we expect (e.g, 0.5%–1% of the focal-length).

7 Experiments

Thanks to the simplicity of the hidden variable technique, we implemented our six-point
algorithm economically. The program language used is Matlab (with Symbolic-Math
toolbox, which is essentially a subset of Maple). For reference purposes we include
our Matlab program in the appendix of the paper. The central part of the program con-
sists of 20 lines of code only, most being general (Matlab and Maple) functions. No
hidden code is used. Only for demonstration purpose, a Maple function solve is ap-
plied in one step, which itself is indeed a long implementation. However, since that
step is only used to solve a univariate equation, the reader can change it to any suitable
solver.

We test our algorithm on both synthetic data (with various levels of noise and out-
liers) and real images. Some results are reported below.

7.1 Test on Synthetic Data

To resemble the real case, the size of synthetic image is 512× 512. We tested different
values for f , but found that they do not affect the final accuracy. So, in what follows we
always use a ground-truth focal-length of 600 pixels. The camera motions between two
views are drawn randomly. No special attention has been paid to avoid the degenerate
motions (for focal-length estimation [7]). Gaussian noise was introduced to the raw
image coordinates. It is noteworthy that the Hartley’s normalization ([5]) is not essential
for our six-point algorithm.

Our first experiment aimed at testing the focal-length estimation accuracy versus dif-
ferent image noises. From six points our algorithm is already able to output real focal
length. However, in order to obtain a statistically robust estimation, fifty feature points
were used to extract three 9-dimensional null-space vectors. After applying the proce-
dures, we choose the best root as the nearest one to the ground-truth, and repeat this pro-
cedure 100 times. The following curves (fig-1) show the distribution of relative errors
(percentage) in focal-length under different levels of noise. Our second experiment was
used to test the performance of the root-selection based on the proposed kernel-voting
scheme. From 50 point correspondences, we randomly drew 50 six-point data-groups,
and apply our six-point algorithm to them. After performing a kernel-voting on all the
obtained candidate focal-lengths, we plot the curves of root distribution and pick up the
peak position. Some example curves are shown in figure-2. These curves show that the
estimated focal-lengths are quite accurate.

We also test the cases where there are outliers in inputs and where there are errors
in some of the camera intrinsics. From the voting curves shown in fig-3 we see that
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Fig. 1. Distribution of relative errors in focal-length estimation, for noise levels at (a) 0.0001
pixels, (b) 0.1 pixels and(c) 0.5 pixels (d) 1.0 pixels in a 512 size synthetic image. Note that even
when the noise level is at 1.0 pixels, the relative errors are mainly less than 5%.

00 200 300 400 500 600 700 800 900 100

6−pt focal length estimation from KDE voting

Real axis

Gaussian Kernel width = 5

00 200 300 400 500 600 700 800 900 100

Real roots distribution within range [0, +2000.0] using KDE estimation

Real axis

Gaussian Kernel Width = 2.5

00 200 300 400 500 600 700 800 900 100

Real roots distribution within range [0, +2000.0] using KDE estimation

Real axis

Gaussian Kernel Width = 2.5

Fig. 2. Kernel-voting results, for noise level at (a)0.0001 pixels, (b)0.1 pixels and (c)1.0 pixels in
a 512 size image. From the peak position we get the focal-length estimation f ≈600.

the proposed method is robust to outliers, and not sensitive to the errors in some intrin-
sics. To quantitatively evaluate the estimation accuracy, we repeat the experiment 100
times, and plot the error-bar curve (mean value and standard deviation versus noise)
in fig-4. Remember that the camera motions are drawn randomly (i.e. we did not in-
tentionally avoid the degenerate motion). We also conducted experiments for compar-
ing the numerical performances between our algorithm and ([1]), but no significant
difference was found. This makes sense as both algorithms use essentially the same
formulation.
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7.2 Test on Real Images

We have tested our new six-point algorithm on some real images. For example, we
test the Valbonne sequences shown in fig-5(a). The two input images are partially cal-
ibrated using the calibration information provided by other authors[9]: [α, u0, v0] =
[1.0, 258.8, 383.2]. Then apply our algorithm, we get the following root distribution

(a) Two Valbonne images
and some corresponding
points.
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Fig. 5. Test on real images: Valbonne sequences
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curve shown in figure-5(b), from which we can read the focal-length is about 670 pix-
els, which is close to the estimation of 699 pixels given by [9]. We also test some other
standard image sequences. We find that as long as the two cameras are not in degen-
erate configurations ([8]) the estimated focal-length is close to the ground-truth data
(obtained from other calibration procedure).

8 Discussion

Even when there are more than six points available in image, there are still advantages
of using the six-point algorithm. Indeed, it is a good strategy of keep using such a
minimal-solver even when extra data are available. The reason is explained in [11] and
[1], showing that minimal-solver often offers better performance than the non-minimal
ones. At first sight this is a bit surprise. However, a careful analysis will reveal the
reason. That is, the minimal solver has better exploited all available inherent constraints
of the problem (both linear and nonlinear), while many other conventional algorithms
(e.g, 8pt algorithm) only use the extra measurements to get a better linear null-space
estimation [5].

Our algorithm will fail when the degenerate cases(for focal-length estimation, cf.
[8]) is met, for example, when the two optical axes intersect at equal distances, or
when the camera underwent a pure translation. As this is a general difficulty for any
focal-length algorithm, we do not intend to overcome it here. However, it is our
conjecture that because the six-point algorithm has better exploited the nonlinear con-
straints it might have better conditioning near some degenerate configurations (includ-
ing the critical surfaces and singular motions). To justify this, more critical experiments
and theoretical analysis are yet to be done. The author believes that how to mitigate
the degenerate surfaces problem in motion-and-structure computation is a topic worth
researching.

9 Conclusions

We have provided a practical algorithm to solve the six-point focal-length problem.
The most appealing feature is its simplicity and transparency. Besides its theoretical
contribution, we hope the six-point algorithm will make a small and useful module in
many vision systems.

We believe that the proposed algorithm is not an individual success of the power-
ful hidden-variable technique. It can have wider applications in similar problems, for
example, five-point relative-orientation and three-point absolute-orientation etc. These
can be future work.
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Appendix

Program 1 . The six-point focal-length algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is a simple 6-pt focal-length algorithm. %%%
%% Use Matlab-7.0(6.5)with SymbolicMath Toolbox. %%%
%% The "Matches" is a 6x4 matrix containing six points. %%%
%% For example, %%%
Matches = [ 93.3053, 59.9312, -420.3770, -773.9141;

-141.9589, -50.1980, -386.7602, -471.0662;
-174.0883, -157.0080, -489.9528, -259.9091;
-57.6271 , -12.2055 , -394.5345, -466.4747;
-115.7769, 154.4320, -172.2640, -461.6882;
134.6858, -4.0822, -575.1835, -855.5145]

%% For this example the ground truth is foc = 600. %%%%%%%%%
%% Output: all computed focal-lengths in foc. %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function foc = SixPtFocal(Matches)

syms F f x y z w equ Res Q C
Q = [1, 0 ,0 ; 0 ,1 ,0; 0, 0, w];
q = [ Matches(:,1), Matches(:,2)] ;
qp = [ Matches(:,3), Matches(:,4)] ;
M = [qp(:,1).*q(:,1), qp(:,1).*q(:,2), qp(:,1), ...

qp(:,2).*q(:,1), qp(:,2).*q(:,2), qp(:,2), ...
q(:,1), q(:,2), ones(6,1)] ;

N = null(M) %%% compute the null-space
f = x*N(:,1) + y*N(:,2) + z*N(:,3); %% form the FM
F = transpose(reshape(f,3,3));
FT =transpose(F);
equ(1) = det(F);
equ(2:10) = expand(2*F*Q*FT*Q*F-trace(F*Q*FT*Q)*F);

for i =1:10
%Note:Be careful with MATLAB delimiter for string, ’or‘?
equ(i) = maple(‘collect‘,equ(i),‘[x,y,z]‘,‘distributed‘);
for j =1:10

oper = maple(‘op‘, j, equ(i)) ;
C(i,j) = maple(‘op‘,1,oper);

end
end
disp(‘Compute Det(C),need a while,please wait,,,‘);
Res = maple(‘evalf‘, det(C))%%Hidden-variable resultant
foc = 1.0./sqrt(double([solve( Res)]))
disp(‘Ground-truth focal-length = 600.0000‘);



Iterative Extensions of the Sturm/Triggs
Algorithm: Convergence and Nonconvergence

John Oliensis1 and Richard Hartley2,�

1 Department of Computer Science, Stevens Institute of Technology,
Castle Point on Hudson, Hoboken, NJ 07030

2 Australian National University and National ICT Australia

Abstract. We show that SIESTA, the simplest iterative extension of
the Sturm/Triggs algorithm, descends an error function. However, we
prove that SIESTA does not converge to usable results. The iterative
extension of Mahamud et al. has similar problems, and experiments with
“balanced” iterations show that they can fail to converge. We present
CIESTA, an algorithm which avoids these problems. It is identical to
SIESTA except for one extra, simple stage of computation. We prove
that CIESTA descends an error and approaches fixed points. Under weak
assumptions, it converges. The CIESTA error can be minimized using a
standard descent method such as Gauss–Newton, combining quadratic
convergence with the advantage of minimizing in the projective depths.

1 Introduction

The Sturm/Triggs (ST) algorithm [9] is a popular example of the factorization
strategy [10] for estimating 3D structure and camera matrices from a collection of
matched images. The factorization part of the algorithm needs starting estimates
of the projective depths λi

n, which [9] obtained originally from image pairs. After
[9], researchers noted that the λi

n can be taken equal or close to 1 for important
classes of camera motions [11][1][5]. For these motions, the algorithm becomes
almost a direct method, since it computes the structure/cameras directly from
the λi

n whose values are approximately known.
To improve the results of ST, several researchers proposed iterative exten-

sions of the method which: initialize the λi
n (typically) at 1, estimate the struc-

ture/cameras, use these estimates to recompute the λi
n, use the new λi

n to
recompute the structure/cameras, etc. [11][1][5][8][4]. One common use is for
initializing bundle adjustment [4]; for example, a few iterations can extend an
affine estimate computed via Tomasi/Kanade [10] to a projective initialization.
The iteration often gives much faster initial convergence than bundle adjustment
does [2]. Variant iterative extensions include [1][5][8][4]. Notably, [4] recommends
adding a “balancing” step [9] following the computation of the λi

n to readjust
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their values toward 1. This keeps the λi
n near the correct values (for many classes

of motions) and also reduces the bias of the estimates [4].
This paper discusses the convergence of these iterations. Our theorems and

experiments show that the versions without balancing do not converge sensibly
and that the balanced iteration [4] can fail to converge. We propose CIESTA, a
simple algorithm which avoids these problems. We prove that CIESTA descends
an error function, that it iterates toward a ”best achievable” estimate, and that
these “best” estimates are stationary points of the error. CIESTA extends ST
to a sound iteration, replacing balancing with regularization. Since CIESTA
descends a known error function, it can be replaced by a standard descent method
such as Gauss–Newton, combining quadratic convergence with the advantage of
minimizing in the projective depths.

Notation. Given N quantities ζa indexed by a, we use {ζ} ∈ �N to denote the
column vector whose ath element is ζa. if A ∈ �M×N is a matrix, we define
{A} ∈ �MN as the column vector obtained by concatenating the columns of A.

For multiview geometry, we use the notation of [4]. Let Xn ≡
(
Xn; Yn; Zn; 1

)
∈ �4 represent the homogenous coordinates of the nth 3D point (we use ‘;‘ to
indicate a column vector), with n = 1, 2, . . . , Np, and let xi

n ≡
(
xi

n; yi
n; 1

) ∈ �3

be its homogenous image in the ith image, for i = 1, . . .NI . Let M i ∈ �3×4

be the ith camera matrix, and let M ∈ �3NI×4 consist of the M i concatenated
one on top of the other. Define the structure matrix X ∈ �4×Np so that its
nth column Xn is proportional to Xn. Neglecting noise, we have λi

nxi
n = M iXn,

where the constants λi
n are the projective depths. We use λ ∈ �NINp to denote

the vector of all the projective depths ordered in the natural way. Let W =
W (λ) ∈ �3NI×Np be the scaled data matrix consisting of the xi

n multiplied by
the projective depths, with W(3i−2):3i

n = λi
nxi

n. ST exploits the fact that, for
known λi

j and zero noise, the matrix W has rank ≤ 4 and factors into a camera
matrix times a structure matrix.

2 Simplest Iterative Extension of the ST Algorithm

Let Ŵ (λ) be a matrix with rank ≤ 4 that gives the best approximation to
W (λ) under the Frobenius norm: Ŵ (λ) ≡ arg minrank(Y )≤4 ‖W (λ) − Y ‖. Given
the SVD W (λ) = UDV T , we have the standard result Ŵ (λ) = UD̂V T , where
D̂ is obtained from D by zeroing all but the first four diagonal entries.

SIESTA repeatedly adjusts the λi
n to make the scaled data matrix W closer

to rank 4. Let λ(k) and W(k) ≡ W (
λ(k)

)
give the estimates of the λi

n and W in
the the kth iteration. The algorithm is:

– Initialize the λi
n. By default we set all the λ

i(0)
n to 1.

– Iteration k, stage 1: Given the scaled data matrix W(k−1) ≡ W (
λ(k−1)

)
,

compute its best rank ≤ 4 approximation Ŵ . Set Ŵ(k−1) = Ŵ .
– Iteration k, stage 2: Given Ŵ(k−1), choose λ(k) to give the closest matrix

of the form W(λ(k)), that is, λ(k) = arg minλ ‖W(λ)− Ŵ(k−1)‖.
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Remark 1. The SIESTA algorithm has a simple interpretation if one thinks of
the W(k) and ˆW(k) as points in �3NINp . For fixed image points xi

n, the set of
all {W (λ)} is a linear subspace of �3NINp which has dimension NINp since its
points are indexed by the NINp projective depths. We denote it by LNINp . Let Ω̂

denote the set of all points {Ŵ} in �3NINp coming from matrices Ŵ ∈ �3NI×Np

of rank ≤ 4. The SIESTA iteration can be rewritten as:

– Stage 1: Given
{W(k−1)

}
, find the closest point

{
Ŵ(k−1)

}
from the set Ω̂.

– Stage 2: Given
{
Ŵ(k−1)

}
, find the closest point

{W(k)
}

from LNINp .

Next we show that each SIESTA iteration “improves” the reconstruction.

Definition 1. Define E(W , Y ) ≡ ‖W − Y ‖/‖W‖ and

Ê (λ) ≡ min
rank(Y )≤4

E(W (λ) , Y ) = E(W , Ŵ) (SIESTA error).

The SIESTA error Ê measures the fractional size of the non-rank 4 part of W .

Proposition 1. The SIESTA error Ê
(
λ(k)

)
is nonincreasing with k.

Proof (sketch). Let θ(k) ≡ θ(W(k), Ŵ(k)) give the angle between the matrices
W(k) and Ŵ(k) considered as vectors in R3NINp . Its sine relates to the error Ê:

sin2(θ(k)) =
∣∣∣{W(k)} − {Ŵ(k)}

∣∣∣2/∣∣∣{W(k)}
∣∣∣2 = Ê

(
λ(k)

)
. (1)

SIESTA starts with a point in LNINp , finds the closest point from Ω̂, finds the
closest point to this from LNINp , etc. Since it computes the best approximation
each time, the angle between the two latest estimates from Ω̂ and LNINp is
nonincreasing, so θ(k) and Ê are nonincreasing.

Discussion. Our result justifies the practice of applying a few iterations of
SIESTA to extend an affine estimate based on λi

n = 1 to a projective one,
which can be used to start bundle adjustment. Although we show below that
SIESTA does not converge correctly, this is not be a fatal flaw, since the drift
away from good estimates is extraordinarily slow and hence correctable.

3 Convergence Problems for Iterative Factorization

3.1 SIESTA Fails to Converge

Trivial minima. We begin by describing trivial minima. If we choose the λi
n zero

except in four columns, the matrixW(λ) will have all columns but four composed
of zeros. ThenW(λ) will have rank ≤ 4, and the error Ê(λ) = E(W(λ), Ŵ(λ)) =
0 because W(λ) and its closest rank ≤ 4 matrix Ŵ(λ) are equal.

This set of λi
n gives a trivial minimum of the SIESTA error. Choosing all the

λi
n zero except in one row also gives a trivial minimum. Trivial minima are of
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no interest, since they don’t give reasonable interpretations of the data. Unfor-
tunately, the proposition below shows that unless a non-trivial solution exists
with exactly zero error (meaning that the data admits a noise-free solution),
then the SIESTA algorithm must approach a trivial minimum, or possibly, in
rare circumstances, a saddle point of the error. Experiments on small problems
show that the algorithm approaches trivial minima, though extremely slowly.

Proposition 2. Every local minimum of the SIESTA error Ê is a global mini-
mum with zero error.

Proof. We can assume without loss of generality that every 3D point has nonzero
λi

n in some images, since otherwise we can eliminate these points and apply the
argument below to the remaining set of points.

We suppose that the SIESTA error Ê has a local minimum at λ. Let W =
W(λ) be the corresponding scaled data matrix. By the assumption just above,
W has no columns consisting entirely of zeros. Under these two conditions, we
will show that the error equals zero or, equivalently, that W has rank ≤ 4.

Consider a transformation that perturbs a matrix by multiplying its n-th
column by a value s. We denote this transformation by τnκ where κ = s2 − 1.
The reason for introducing the variable κ is that the subsequent computations
simplify when expressed in terms of κ. For κ = 0, the transformation τnκ is the
identity transformation and leaves the original matrix unchanged. It is evident
that applying τnκ to the matrix W = W(λ) is equivalent to multiplying the nth
column of the projective depths λi

n by s, so we can write τnk(W) = W(λτnk),
where λτnk equals λ except for the appropriate scaling of the nth column.

For the remainder of the proof, we write simply W , omitting the dependence
on λ. We denote τnκ(W) byWτ , and the nearest1 rank≤ 4 matrix toWτ by Ŵτ .
Recall that, similarly, Ŵ is the closest matrix to W having rank ≤ 4. We may
also apply the transformation τnκ to Ŵ , resulting in a matrix (Ŵ)τ = τnκ(Ŵ).
This matrix has the same rank as Ŵ for s �= 0 and hence has rank ≤ 4, but, as
we shall see, it is in general distinct from Ŵτ . It is important to understand the
difference between (Ŵ)τ and Ŵτ .

As a first step, we show (under our assumptions above) that any κ �= 0 gives

Ê(Wτ ) ≡ E(Wτ , Ŵτ ) ≤ E(Wτ , (Ŵ)τ ) = E(W , Ŵ) ≡ Ê(W) . (2)

The inequality in (2) follows simply from the definition of the error E and
the fact that Ŵτ is the closest matrix to Wτ having rank ≤ 4. Consider the
equality E(Wτ , (Ŵ)τ ) = E(W , Ŵ). Noting that W and Wτ differ only in the
overall scale of their nth columns, we may compute

E(Wτ , (Ŵ)τ ) = (κ|Rn|2 + ‖R‖2)/(κ|Wn|2 + ‖W‖2), (3)

where R = W − Ŵ , and Rn and Wn are the nth columns of R and W . Under
our assumption that W gives a local minimum, the derivative of this expression

1 The nearest matrix need not be unique.
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with respect to κ must be zero. Computing the derivative at κ = 0, and setting
the numerator to zero leads to ‖W‖2 |Rn|2 − ‖R‖2 |Wn|2 = 0, which gives

|Rn|2/|Wn|2 = ‖R‖2/‖W‖2, (4)

i.e., the left–hand ratio has the same value for any n. After substituting in (3),

E(Wτ , (Ŵ)τ ) = ‖R‖2/‖W‖2 = E(W , Ŵ) (5)

for all values of κ, as required. This proves (2).
Suppose we could make the inequality in (2) strict for arbitrarily small val-

ues of κ. In fact, we cannot do this, since if we could the error Ê would be
strictly decreasing at λ and W(λ) rather than having a local minimum as as-
sumed. Therefore, for all κ less than some small value, we have the equality
E(Wτ , Ŵτ ) = E(Wτ , (Ŵ)τ ). This means that (Ŵ)τ is a closest rank ≤ 4 ma-
trix to Wτ for all sufficiently small κ, regardless of which column n is scaled by
the transform. We will prove the proposition by showing that this can hold only
if W already has rank ≤ 4. First, we need a lemma.

Lemma 1. If a matrix Ŵ is a closest matrix having rank ≤ r to a matrix W,
then R
Ŵ = RŴ
 = 0, where R =W − Ŵ.

Proof (sketch). Write Ŵ = AB, where A has r columns, take derivatives of
‖W −AB
‖2 with respect to the entries of A or B, and set them to zero.

We return to the proof of the proposition. Since Ŵ is a closest rank ≤ 4 matrix
to W , the lemma gives RŴ
 = 0. As argued above, we can choose κ �= 0
small enough so that (Ŵ)τ is a closest rank ≤ 4 matrix to Wτ , regardless of
what n we choose for τnk. For such κ, the lemma gives Rτ (Ŵ)τ
 = 0 , where
Rτ =Wτ − (Ŵ)τ , and it follows that RŴ
−Rτ (Ŵ)τ
 = 0. Since W and Wτ ,
and similarly R and Rτ , differ only in the scaling of their n-th columns, we may
easily compute the matrix RŴ
−Rτ (Ŵ)τ
: Its (p, q)-th entry equals κRp

nWq
n.

Since κ �= 0 and our arguments hold regardless of the n we choose for τnk, we
have Rp

nWq
n = 0 for all values of n, p, and q.

We assumed that W has no columns consisting entirely of zeros. Thus, each
column n ofW contains a non-zero entryWq

n, so for each n we must haveRp
n = 0

for all p, which means that column n of R is zero. Hence R = 0 and W gives
zero error, which is what we set out to prove.

Remark 2. Intuitively, Proposition 2 holds because the trivial minima are so
destabilizing that one can always reduce the error by moving toward one.

SIESTA can be useful despite our result. (5) suggests that the error can be
very flat and SIESTA’s descent to a trivial minimum extremely slow. In trials on
realistic data, the SIESTA error drops quickly from its start at λi

n = 1 but never
approaches a trivial minimum; in fact, it descends so slowly after a few hundred
iterations (with ΔÊ ≤ O(10−11)) that one can easily conclude wrongly that it
has converged. What seems to happen is that SIESTA approaches an almost
minimum—a saddle point that would be a minimum if it weren’t destabilized
by the trivial minima—and then slows, usually still with λi

n ≈ 1.
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All this suggests that the destabilization from the trivial minima is weak, only
becoming important at small error values. If we can compensate for it, e.g., by
‘balancing’, this might turn the saddles into minima giving correct estimates. In
trials, SIESTA does give good estimates once it slows. Although its error has no
usable minima, the saddle points may serve as useful ‘effective minima.’

3.2 Other Iterative Extensions of ST

Mahamud et al. [7][8] proposed an iteration similar to SIESTA that differs by
maintaining a normalization constraint on the columns of W .2 The first stage of
the iteration is the same as in SIESTA, and the second stage is:

– Iteration k, stage 2: Given Ŵ(k−1), choose new projective depths λ(k) so
that W(λ(k)) optimally approximates Ŵ(k−1) subject to the Np columns
constraints |Wn| = 1, n ∈ {1 . . .Np}.

With the constraints, the SIESTA error Ê reduces in effect to ‖W − Ŵ‖2. It
is easy to show that the iteration descends this error [8]. The constrained error
possibly does have nontrivial minima, but we argue below that it does not have
usable minima corresponding to good structure/camera estimates.

[1][5] proposed a SIESTA variant roughly dual to [8] but did not give an error
for it. A similar iteration that descends an error is SIESTA with a new stage 2:

– Iteration k, stage 2: Given Ŵ(k−1), choose new projective depths λ(k)

so that W(λ(k)) optimally approximates Ŵ(k−1) subject to the NI image
constraints ‖W(3i−2):3i‖ = 1, where each matrix W(3i−2):3i ∈ �3×Np gives
the three rows of W for image i.

This iteration also descends the error ‖W − Ŵ‖2. We have not analyzed its
convergence, but we expect that it has the same problems as the previous one.
Convergence analysis for the iteration of [7][8].2

Our results are weaker than for SIESTA, so we just summarize them.
As for SIESTA, we start by considering a transformation that scales the λi

n

toward a trivial minimum (see Remark 2). We define the transform so that it
first scales all the projective depths for the kth image by s, and then scales the
column of projective depths for each 3D point to maintain the norm constraints
on the columns of W . As before, we apply the same transform to Ŵ as for W .
Assuming that λ gives a stationary point of the error, our transform must also
give a stationary point at λ, and this leads to constraints onW and Ŵ analogous
to (4). Exploiting these constraints, we try to modify the transform so that it
strictly decreases the error at λ.

This is much harder than for SIESTA. The initial transform τnk for SIESTA
gave an error that was constant at a stationary point, so we could make the error

2 Mahamud et al. [7] also proposed a different iteration that minimizes alternately with
respect to the camera and structure matrices. This approach loses the advantage of
minimizing in the λi

n—it cannot exploit prior knowledge that the λi
n are near one.
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decrease, establishing the stationary point as a saddle, by an arbitrarily small
change in τnk. For the algorithm of [8], the error at a stationary point usually has
a minimum under our initial transform. We need a large change in the transform
to make the error decrease, so this may not always be possible. However, we argue
that we can make the error decrease at “desirable” stationary points, where the
estimates of the structure/cameras are roughly correct and λi

n ≈ 1.
We now describe how to modify the inital transform described above. Let

Ŵ = M̂X̂T be the rank 4 factoring that comes from the SVD of W . We modify
the initial transform of Ŵ by transforming X̂ linearly before scaling it, where
we choose this linear transform to minimize the error’s second derivative with
respect to the transform at the stationary point. We have derived upper bounds
on the resulting second derivatives. We will argue that these are negative at a
“desirable” stationary point, so such stationary points are saddles.

Define wi
n ≡ [W ](3i−2):3i

n and ŵi
n ≡

[
Ŵ
](3i−2):3i

n
and the residual ri

n ≡ wi
n −

ŵi
n; all are vectors in �3. Without loss of generality, take the columns of M̂

orthogonal and define m̂i ≡ M̂ (3i−2):3i ∈ �3×4. Let μ̂i
a be the ath singular value

of m̂i and let m̂i
a ∈ �3 be the ath column of m̂i. Choose image k so〈|m̂k|2〉 ≥ 〈|wk|2〉 , (6)

where we use 〈·〉 to denote the average, taken over the omitted index. Such an
image always exists, since our normalizations give

1 =
NI∑
i=1

4∑
a=1

|m̂i
a|2/4 =

NI∑
i=1

〈|m̂i|2〉 =
NI∑
i=1

〈|wi|2〉 =
NI∑
i=1

Np∑
n=1

|wi
n|2/NP .

Our upper bound on the second derivative for the modified transform is

2

⎛⎝ Np∑
n=1

|rk
n|2
⎞⎠⎛⎝2 max

n=1...Np

∣∣ |wk
n|2 −

〈|wk|2〉 ∣∣− 4
3
|μ̂k

3 |2〈
|μ̂k|2

〉 〈|wk|2〉
⎞⎠ (7)

for the chosen image k. In practice, [4][9] recommend normalizing the homoge-
nous image points to a unit box before applying ST. Then, assuming a “de-
sirable” stationary point with all λi

n near 1, the |wk
n|2 will be approximately

constant in k and n. If the singular values μ̂k
a all have roughly the same size,

then |μ̂k
3 |2/

〈
|μ̂k|2

〉
≈ 1, and our bound is likely to be negative.

In our experiments on real sequences, the apparent convergence points of

the Mahamud et al. iteration [7][8] always have
(
μ̂k

3

)2
/
〈
|μ̂k|2

〉
≈ 1, and they

almost always give a negative value of the bound (7), which rules out these
“convergence points” as local minima. Note that the bound is conservative; in
practice, we expect cancellations to reduce the second derivative below (7).

Why is the ratio
(
μ̂k

3

)2
/
〈
|μ̂k|2

〉
typically near 1? One contributing factor

is that, after the standard scaling to a unit box, the image submatrix wi ≡
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wi

1,w
i
2, . . . ,w

i
NP

] ∈ �3×Np typically has three singular values of the same order.
Another cause is the following. Write the SVD of the scaled data matrix as
W = UDV T . Writing the singular values μ̂k

a in terms of the image data gives

(
μ̂k

a

)2
= N−1

I

Np∑
n=1

∣∣skT
a wkVn

∣∣2/〈|wVn|2
〉
,

where sk
a ∈ �3 represent the ath left singular vector of m̂k and Vn denotes the nth

column of V . The average in the denominator is over all images i. Thus,
(
μ̂k

a

)2
is

proportional to a sum of projections of the (homogeneous) image data normalized
by their average values. If the camera positions are spaced roughly uniformly,
as they are in many sequences, the kth image is often close to “average,” so the
singular values μ̂k

a all have similar sizes. One can get μ̂k
3 � μ̂k

1 if, for example,
most of the camera positions cluster together but one is very far from the others.

We have also derived a second bound whose size is easier to estimate. Choose
image k such that

∥∥wk − ŵk
∥∥2 ≤ Ê

∥∥wk
∥∥2, which is always possible since one

can show that
∑

i

∥∥wi − ŵi
∥∥2 = Ê

∑
i

∥∥wi
∥∥2. Denote the ath singular value of

wk by dk
a and the ath singular value of W by Da. Our new bound is

2

⎛⎝ Np∑
n=1

|rk
n|2
⎞⎠(

2 max
n=1...Np

∣∣∣ |wk
n|2 −

〈
|wk|2

〉 ∣∣∣ − (
dk
3/
∥∥∥wk

∥∥∥ − Ê1/2
)2 Np

D2
1

〈
|wk|2

〉 )
.

(8)

After the standard scaling of the image data to a unit box, we expect dk
3/
∥∥wk

∥∥ ≈
3−1/2 ≈ 0.58. Even if the scene is planar, the first three singular values ofW are
usually substantial, causing Np/D2

1 > 1. Experimentally, we find dk
3/
∥∥wk

∥∥ ≈ 0.3
and Np/D2

1 ≈ 1.3. Substituting the experimental values, and assumingW is close
to a rank ≤ 4 matrix so Ê � 1/3, we can approximate the bound as

2

⎛⎝ Np∑
n=1

|rk
n|2
⎞⎠(

2 max
n=1...Np

∣∣ |wk
n|2 −

〈|wk|2〉 ∣∣− 0.13
〈|wk|2〉 ) . (9)

Table 1 shows results for the Mahamud et al. algorithm on real image sequences,
see Figure 1. We obtained these by running the algorithm for 1000 iterations,
after which the error was changing so slowly that the algorithm seemed to have
converged. In all but one case, we found negative values for the bounds (8) and
(9), proving the algorithm had not converged to a minimum. In the exceptional
case, the trivial minima had produced small λi

n for a few points. Repeating the
experiment without these points gave a negative bound. We have verified our
upper bounds experimentally on several thousand synthetic sequences. We also
used a standard nonlinear minimization routine (LSQNONLIN from MATLAB)
to minimize the error for the Mahamud et al. algorithm. The routine converged
to a trivial minimum in all cases. These results indicate that the convergence of
the Mahamud et al. algorithm is problematic at best. 2
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Table 1. The bounds (7), (8) for five real sequences (Fig. 1). ‘Ox0–10’ is for 11 images;
other ‘Ox’ rows are for image pairs. ‘Ox0&8*’ is for images 0 and 8, with 3 points
subtracted. The ‘μ ratio’ column gives the least |μ̂k

3 |2/ 〈|μ̂k|2〉 over k satisfying (6).

Est. Range First Least μ Ê1/2 Range for maxn maxk Second

λ Bound ratio (×10−3)
∣∣∣∣ |wn|2
〈|w|2〉 − 1

∣∣∣∣ Np

D2
1

d2
3

‖w‖2 Bound

Ox0-10 0.79–1.15 −0.06 0.40 1.6 0.01–0.37 1.3 0.08 −0.09
Ox0&10 0.83–1.14 −0.24 0.78 1.8 0.29–0.31 1.3 0.10 0.44
Ox0&8 0.14–1.40 0.52 0.73 8.2 0.98–1.08 1.3 0.09 1.9
Ox0&8∗ 0.85–1.13 −0.28 0.78 1.6 0.24–0.25 1.3 0.09 0.37
Ox0&1 0.97–1.03 −0.46 0.75 0.5 0.04–0.04 1.3 0.12 −0.07
Rock 0.90–1.09 −0.07 0.46 6.0 0.03–0.20 1.4 0.08 0.01
Puma 0.99–1.01 −0.05 0.50 1.7 0.01–0.06 1.5 0.14 −0.21
MSTea 0.97–1.03 −0.43 0.75 0.7 0.05–0.05 1.5 0.16 −0.14

MSPlane 0.91–1.10 −0.13 0.44 0.6 0.05–0.13 1.5 0.18 −0.17

Fig. 1. Images from the five real sequences. (a) Oxford corridor; (b) Rocket–Field [3];
(c) PUMA [6]; (d) Microsoft tea [12]; (e) Microsoft Plane calibration [12].

3.3 Balancing

[4] modifies SIESTA by adding a third “balancing” stage [11] following stage 2
that rescales the λi

n to make them close to 1. This lessens the algorithm’s bias
and helps to steer it away from trivial minima. The balancing can be done in two
passes, by first scaling λi

n −→ αiλi
n for each image i so that

∑Np

n=1 |λi
n|2 = NI ,

and then scaling λi
n −→ βnλi

n for each point so
∑NI

i=1 |λi
n|2 = Np. Optionally,

this can be repeated several times or iterated to convergence. Unfortunately, it
seems likely that the rescaling conflicts with the error minimization in stages 1
and 2, and that the balanced iteration need not converge. To exaggerate this
potential conflict and make it more observable, we implemented SIESTA with a
balancing stage that iterates to near convergence, with up to 10 rounds of first
balancing the rows and then the columns of λi

n. In one of our experiments, this
algorithm apparently converged to a limit cycle which repeatedly passed through
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three different values for λ with three different values of the error Ê (λ). For this
strong version of balancing, it seems that an iteration of SIESTA–plus–balancing
does not guarantee improvement in the projective–depth estimates.

Nevertheless, occasional balancing may serve as a useful “mid–course correc-
tion” that compensates for SIESTA’s drift toward trivial minima.

4 CIESTA

An alternative to balancing is regularization. We define a new iteration CIESTA
that descends the error Êreg(λ), where

Êreg(λ) ≡ min
rank(Y )≤4

Ereg, Ereg(λ, Y ) ≡ E(W(λ), Y )+μ

NI∑
i=1

Np∑
n=1

|xi
n|2(1−λi

n)2,

(10)
and μ > 0 is the regularization constant. The algorithm is the same as SIESTA
except for a new third stage in the iteration.

Let λ(k) ∈ �NiNp and W(k) ≡ W(λ(k) now denote the output of the kth
CIESTA iteration, and let λ(0) and W(0) give the initialization. As before, let
Ŵ(k) be the best approximation of rank ≤ 4 to W(k). Define the constants

C0 = μ

NI∑
i=1

Np∑
n=1

|xi
n|2, C

(k)
1 ≡ μ

NI∑
i=1

Np∑
n=1

xi
n · ŵi(k)

n , (11)

C
(k)
2 ≡ μ

NI∑
i=1

Np∑
n=1

(
xi

n · ŵi(k)
n

)2

|xi
n|2

, C
(k)
3 = μ

NI∑
i=1

Np∑
n=1

|ŵi(k)
n |2,

and z(k) ≡ C
(k)
3 C0/C

(k)
2 . Define the function

b
(k)
+ (a) ≡ a1/2/

(
a2C0 + 2aC

(k)
1 + C

(k)
2

)1/2
, (12)

which is obtained as an intermediate result while minimizing Ereg(λ, Ŵ(k)) in λ.

Remark 3. One can show that CIESTA gives the following constraints:

1. C0 > 0, C
(k)
3 ≥ C

(k)
2 , C

(k)
2 > 0.

2. Q(k) ≡ a2C0 + 2aC
(k)
1 + C

(k)
2 > 0, z(k) > 0

From the second line we see that b+ is finite. CIESTA’s new third stage is:

– CIESTA (iteration k, stage 3): With κ ≡ k−1, compute the roots of P (κ)(a)

≡ C0a
6 −

(
C2

0 − 2C
(κ)
1

)
a5 −

(
2C0C

(κ)
3 − C

(κ)
2

)
a4 −

(
4C

(κ)
1 C

(κ)
3 − 2C

(κ)
2 C0

)
a3

+
(
C0C

(κ)2
3 − 2C

(κ)
2 C

(κ)
3

)
a2 +

(
2C

(κ)
1 C

(κ)2
3 − C

(κ)2
2

)
a + C

(κ)
2 C

(κ)2
3 . (13)
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Choose a root a > 0 such that: For z(κ) �= 1, the quantity ā ≡ a(C0/C
(κ)
2 )1/2

and z(κ) lie on the same side of 1; For z(κ) = 1, when there is a choice, take
either of the choices with ā �= 1. Redefine λ(k) −→ λ(k) =

(
a + λ(k)

)
b
(κ)
+ (a) .

The four propositions below address the convergence of CIESTA (proofs omit-
ted). Let Ê∞ be the greatest lower bound of the errors Êreg(λ(k)), and let A be
the set of accumulation points of the sequence λ(k).

Assumption 1 (μ condition). CIESTA starts with all λi
n = 1, and

μ‖W(0)‖2 > ‖W(0) − Ŵ(0)‖2/‖W(0)‖2, (14)

which is equivalent to C2
0 >

(
C0 + C

(0)
3 − 2C

(0)
1

)
.

Remark 4. Our results below don’t require that CIESTA start at λi
n = 1; we

assume this just to simplify the theorems and proofs. The Assumption specifies
how much regularization is needed to guarantee CIESTA’s performance. Taking
μ large enough rules out the trivial minima.

Proposition 3. Suppose Assumption 1 holds. The errors Êreg
(
λ(k)

)
are non-

increasing with k and converge monotonically in the limit k →∞.

Proposition 4. Suppose Assumption 1 holds. Then: 1) Every λA ∈ A has
Êreg (λA) = Ê∞; 2) For any ε > 0, there exists a K such that k > K implies∣∣λ(k) − λA

∣∣ ≤ ε for some λA ∈ A.

Proposition 5. Suppose Assumption 1 holds. Let λA ∈ A. Let the fourth sin-
gular value of W (λA) be strictly greater than the fifth, and zA �= 1, where zA

is the constant from (11) evaluated at λA. Then λA is a fixed point of CIESTA
and a stationary point of the error Êreg (not necessarily a minimum).

Proposition 6. Suppose the assumptions of Proposition 5 hold for some λA ∈
A. Proposition 5 states that Êreg has a stationary point at λA. If in fact Êreg
has a strict local minimum at λA, then CIESTA converges uniquely to λA.

Propositions 3 and 4 show that CIESTA “converges” in a certain sense (discussed
below). Proposition 5 states that its end results are sensible, that is, they are
stationary points of the error. Proposition 6 shows that under weak assumptions
CIESTA converges in a strict sense to a unique result.

The proof of Prop. 4 is easy and the proof of Prop. 3 is a calculation. The proof
of Proposition 5 is more technical: We need to show that Ereg has a unique global
minimum and that the output of stage 3 depends continuously on its input.

Discussion. Like balancing, CIESTA favors λi
n ≈ 1, but it guarantees improved

estimates with lower error. The error Êreg shows explicitly how CIESTA weights
its preference for λi

n ≈ 1 versus the data error Ê. The extra computation of
stage 3 is small: it just requires finding the eigenvalues of a 6× 6 matrix.

We have not shown that CIESTA converges to a single λ (except under the
assumptions of Prop. 6), and it is not clear whether this always happens. But
our results have the same practical implications as a convergence proof.
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A convergence proof would amount to the following guarantee: by iterating
enough times, one can bring the algorithm as close as desired to a “best achiev-
able result,” i.e., to a λ with the lowest error reachable from its starting point.
This does not forbid other equally good estimates with the same error as the
“best result,” though the algorithm happens not to converge to them.

Proposition 4 provides essentially the same guarantee: by iterating enough
times, we can bring CIESTA arbitrarily close to a “best achievable result.” The
difference is that the nearest “best result” may change from iteration to iteration.
This doesn’t matter since all are good and we may choose any one as CIESTA’s
final output. Under the conditions of Prop. 6, we do have strict convergence.

One can minimize Êreg using a traditional quadratically convergent technique
such as Gauss–Newton instead of CIESTA.

4.1 CIESTA Experiments

Table 2 shows results obtained using a standard quadratically convergent nonlin-
ear minimization routine (from MATLAB) to minimize Êreg for the real image
sequences of Figure 1. The algorithm always converged to a nontrivial minimum
with λi

n ≈ 1, though we used a value for μ that permitted some of the λi
n to go

to zero. The value of μ was twice that needed to avoid λ = 0.
The iterative extensions of ST, including SIESTA, CIESTA, and the balanced

iterations, all give similar results in practice, and iterating them to convergence
(or apparent convergence) gives better results than a single iteration does. To
illustrate this, we compared their results against ground truth on one synthetic
and two real sequences, see Table 3. (We generated the synthetic OxCorr se-
quence in Table 3 using the Oxford Corridor ground truth structure and random
translations and rotations. For OxDino, we extracted 50 points tracked over 6
images from the Oxford Dinosaur sequence and computed the ground truth by
bundle adjustment.)

In all three cases: SIESTA gave the best agreement with the ground truth;
the result at “convergence” improved on that obtained after a single iteration;
the results of the “balanced” iteration did not depend on the number of rounds

Table 2. Results of using MATLAB’s LSQNONLIN to minimize the CIESTA error
Êreg. Results show the values at convergence. The f values do not equal 1 exactly.

Sequence μ/Bound λ range f C0 C2 C3

Rock 2 0.90–1.08 1 1.9786 1.9785 1.9785
PUMA 2 0.98–1.01 1 1.9954 1.9954 1.9954
Ox0&1 2 0.98–1.02 1 1.9993 1.9993 1.9993
Ox0&8 2 0.71–1.09 1 1.9358 1.9355 1.9357
Ox0&10 2 0.82–1.13 1 1.9770 1.9770 1.9770
Ox0-10 2 0.79– 1.13 1 1.9844 1.9844 1.9844
MSTea 2 0.98–1.02 1 1.9993 1.9993 1.9993
MSPlane 2 0.90–1.09 1 1.9958 1.9958 1.9958
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Table 3. Fractional errors
∑

n |P calc
n −PGT

n |2/∑n |PGT
n |2 (×104) for the structure after

“convergence.” We compute P calc
n ∈ �3 from the calculated homogeneous structure by

applying a projective transform to minimize the error. SIESTA1 gives results after one
iteration; other results are after 1000 iterations or convergence (CIESTA). Bal1 and
10 results are obtained using a single round or 10 rounds of column/row balancing in
each iteration.

Sequence SIESTA1 SIESTA Bal1 Bal10 CIESTA
OxCorr 4.8 2.8 3.0 3.0 2.9
PUMA 0.97 0.47 0.47 0.47 0.48
OxDino 1.48 0.39 0.49 0.49 0.54

of balancing; and CIESTA (using μ computed as in Table 2) performed as well
as the balanced iterations.

5 Conclusion

We showed that SIESTA, the simplest iterative extension of ST, descends an
error function: Each iteration “improves” the estimates. However, we proved
that the SIESTA doesn’t converges to useful results. We showed that another
proposed extension of ST [7] shares this problem.2 [4] advocate “balancing” to
improve convergence. Our experiments show that balancing need not yield a
convergent algorithm.

We proposed CIESTA, a new iterative extension of ST, which avoids these
problems. CIESTA replaces balancing by regularization. The algorithm is iden-
tical to SIESTA except for one additional and still simple stage of computation.
We proved that CIESTA descends an error function and approaches nontrivial
fixed points, and that it converges under weak assumptions.

CIESTA, like other iterative extensions of ST, has the advantage of mini-
mizing in the λi

n, whose values are often known to be near one a priori. Thus,
it often shows fast initial convergence toward estimates that are approximately
correct. Like other iterative extensions, CIESTA has the disadvantage that it
converges linearly. A quadratically convergent method such as Gauss–Newton
will be faster near a fixed point or in narrow valleys of the error function. Using
such a method instead of CIESTA can combine quadratic convergence with the
advantage of minimizing in the λi

n. A hybrid strategy that uses CIESTA ini-
tially and then switches to a second–order method, or full bundle adjustment,
can combine the speed advantages of both [2].

Unlike bundle adjustment, CIESTA needs regularization. This allows the user
to incorporate a realistic preference for projective depth values near 1 but can
bias the final estimate. However, our experiments indicate that just a small
amount of regularization suffices to stabilize the error minima. CIESTA’s reg-
ularization and SIESTA’s trivial convergence generally do not have a big effect
on the estimates obtained once the algorithms slow their progress.
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Abstract. In many image analysis applications there is a need to extract curves
in noisy images. To achieve a more robust extraction, one can exploit correlations
of oriented features over a spatial context in the image. Tensor voting is an ex-
isting technique to extract features in this way. In this paper, we present a new
computational scheme for tensor voting on a dense field of rank-2 tensors. Using
steerable filter theory, it is possible to rewrite the tensor voting operation as a
linear combination of complex-valued convolutions. This approach has computa-
tional advantages since convolutions can be implemented efficiently. We provide
speed measurements to indicate the gain in speed, and illustrate the use of steer-
able tensor voting on medical applications.

1 Introduction

Tensor voting (TV) was originally proposed by Guy and Medioni [1], and later pre-
sented in a book by Medioni et al. [2]. It is a technique for robust grouping and extrac-
tion of lines and curves from images. In noisy images, local feature measurements, i.e.
measurements of local edges or ridges, are often unreliable, e.g. the curves are noisy
and interrupted. TV aims at making these local feature measurements more robust by
making them consistent with the measurements in the neighborhood. To achieve this,
local image features strengthen each other if they are consistent according to a model
for smooth curves.

TV is a an interesting and powerful method because of its simplicity and its wide
applicability. However, the method exhibits some ad hoc concepts, namely the way the
input data are encoded into a sparse tensor field representation, and the voting field
model that is used. In this paper we focus on another problem: the current implemen-
tation is rather cumbersome in mathematical terms. A better mathematical formulation
will help to better understand the method, and we will show that it also leads to a more
efficient implementation.
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This paper starts with a description of the “traditional” tensor voting method. We
will redefine the operational definition of tensor voting in a neater way. Subsequently
we will show that using steerable filter theory [3], we can create an implementation
of tensor voting that consists of ordinary complex-valued convolutions. This is more
efficient, since no algebraic calculations or interpolations are necessary anymore. We
will evaluate the advantages of the new approach, show some examples, and finally we
will draw conclusions.

2 Tensor Voting

2.1 Data Representation

In 2D tensor voting, local image features are encoded into a tensor field H : Ω →
T2(R2), where Ω ⊂ R2 is the image domain, and T2(R2) denotes the set of symmetric,
positive semidefinite tensors of tensor rank 2 (i.e., rank-2 tensors) on R2.

In the following, we shall denote the cartesian basis vectors in the image space by ex

and ey , respectively. Unless stated otherwise, all vectors and tensors will be expressed
in this basis. In this basis, each tensor A ∈ T2(R2) can be written as a positive semidef-
inite symmetric 2 × 2 matrix. We call this the matrix representation of the tensor. We
can decompose such matrix into its eigenvectors and eigenvalues

A =
(

axx axy

axy ayy

)
= λ1 e1 eT

1 + λ2 e2 eT
2 , (1)

where λ1 and λ2 are nonnegative eigenvalues (λ1 ≥ λ2 ≥ 0), and e1 and e2 are the
orthonormal eigenvectors. A graphical illustration of such a tensor is an ellipse, see
Figure 1a. In this representation, the following three properties become apparent

Orientation β[A] = arccos
(
e1 · ex

)
=

1
2

arg(axx − ayy + 2i axy), (2)

Stickness s[A] = λ1 − λ2 =
√

tr(A)2 − 4 detA, (3)

Ballness b[A] = λ2 =
1
2

(
tr(A)−

√
tr(A)2 − 4 detA

)
. (4)

Each tensor A is uniquely determined by these three scalars β (mod π, since the tensor
has a 180◦ symmetry), s ∈ R

+ ∪ {0}, and b ∈ R
+ ∪ {0}. The stickness s is interpreted

as a measure for the orientation certainty or a measure of anisotropy of the ellipse in
orientation β. The ballness b is interpreted as a measure for the orientation uncertainty
or isotropy.

There are two special cases for the positive semidefinite tensors: a stick tensor is a
tensor with b = 0 and s > 0, and a ball tensor is an isotropic tensor, i.e. s = 0.

There are many ways to generate an input tensor field H from an input image.
Medioni et al. assume that the input tensor field H is sparse, i.e. that most of the tensors
in H are zero and therefore do not play any role. The way to generate a sparse tensor
field (or in other words, a sparse set of tokens) out of an image is currently application-
specific, but it is considered important to come to a more generic approach for generat-
ing tokens [4]. In this work, we assume that the obtained input field H is dense, to make
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e1

e2

β
λ1λ2

s

b

(a) (b)

Fig. 1. (a) Graphical representation of a rank-2 symmetric positive semidefinite tensor. (b) Exam-
ple of a stick voting field. Gray scale indicates stickness value (darker mean higher value) and
line segments indicate orientation.

the algorithms we develop generically applicable for both sparse and dense data, which
is desirable as long as we do not have a well-justified method to sparsify our data.

As an example, a dense input tensor field could be obtained by creating feature im-
ages β(x) and s(x) by applying any type of orientation-selective filter with a 180◦

symmetry on the image data and taking the orientation with maximum filter response.
The ballness b(x) could be obtained by any isotropic filter on the image data. A ten-
sor is uniquely determined by these three features, so we can now construct a tensor
field H(x).

2.2 Voting Fields

TV uses a stick tensor voting field to incorporate the continuation of line structures.
This voting field is a tensor field V : Ω → T2(R2), consisting entirely of stick tensors,
in which the stickness of the tensors describes the likelihood that a feature at position
x belongs to the same line structure as the feature positioned in the center (0, 0) of the
voting field with reference orientation 0◦. The orientation of the tensor at x describes
the most probable orientation of a feature at that position. Rotated versions of V will
be denoted by Vα, where α denotes the rotation angle

Vα(x) = RαV(R−1
α x)R−1

α , (5)

where
Rα =

(
cos α − sin α
sin α cos α

)
. (6)

Medioni et al. [2] claim in their work that TV is model-free and that there is only
one involved parameter, viz. scale. We, however, consider the voting field as the model
used in tensor voting. Medioni’s fundamental stick voting field is a model based on
some assumptions on curves in images, but it is definitely not the only possible choice.
One alternative voting field is discussed in Section 4. Figure 1b shows an example of a
typical stick voting field.

2.3 Tensor Voting Operation

The idea of the TV operation is to let tensors communicate with each other by adding
up contributions of neighboring tensors, resulting in a context-enhanced tensor field U.
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x’

x

x’

x

x’

x

Fig. 2. Illustration of context communication within TV: the tensors communicate with each other
using the stick voting field, which is indicated by the “8-shaped” contour. In this way the tensors
strengthen each other.

Figure 2 illustrates the way the voting field is used on input data consisting of stick
tensors. For each (nonzero) tensor H(x′), the voting field Vα is centered at position
x′, aligned with the local orientation β(H(x′)): Vβ(H(x′))(x−x′). Then, to all tensors
in a certain neighborhood (determined by the scale of the voting field), a weighted
contribution (called a vote) s(H(x′))Vβ(H(x′))(x−x′) is added, where x is the position
of the tensor that receives the vote. In other words, each tensor broadcasts contributions
to the neighbors by appropriate alignment and rotation of the voting field. This results
in the following operational definition for TV

U(x) =
∫

Ω

s(H(x′))Vβ(H(x′))(x− x′) d2x′, (7)

where the output is a tensor field U(x) with context-enhanced measures for orienta-
tion, stickness, and ballness. Note that in practice, the integral symbol in the previous
equation amounts to a summation on a discrete grid.

Note that ballness b is not used in (7). The original TV formulation also incorporates
ball voting [2], used to generate orientation estimates for β. Since we obtain estimates
for β using local orientation-selective filters, we will not consider ball voting, hence the
ballness b of all tensors in input tensor field H will be assumed to be zero.

2.4 Related Work

When using a dense input tensor field, the representation shows similarity with the well
known structure tensor, and especially with the hour-glass smoothing filter extension
described in [5], which shows resemblance with the tensor voting field. The difference
is that the structure tensor is always constructed from the gradient of the image, while
in tensor voting the input tensor field is considered a free choice. Also, the smoothing
kernel used to smooth the structure tensor field is scalar-valued, while our voting field
is tensorial. Tensor voting also shows resemblance with non-linear structure tensors [6],
where anisotropic non-linear diffusion is applied on tensor images.

3 Steerable Tensor Voting

A technical difficulty in tensor voting is the alignment of the voting field with the ori-
entation of a tensor, which needs to be done at every position. Since TV is a linear
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operation (equation (7)), it is possible to handle these rotations in an efficient way. We
will derive a method that we call steerable tensor voting. It is based on steerable filter
theory as described by Freeman et al. [3]. We will first summarize this theory, and then
explain steerable tensor voting.

3.1 Steerable Scalar Filters

One can rotate a scalar filter kernel h(x) by α by counter rotating the filter domain:
hα(x) = h(R−1

α x). If we write the function in polar coordinates, denoted by h̃(r, φ),
such that h̃(r, φ) = h(x) with x = (r cosφ, r sinφ), rotation becomes h̃α(r, φ) =
h̃(r, φ− α).

Here we introduce the spatial-angular Fourier decomposition of a function h : R2 →
C, which is given by

h̃ms(r) =
1
2π

∫ 2π

0
h̃(r, φ) e−imsφdφ, (8)

and its inverse, the spatial composition, is

h̃(r, φ) =
∑

ms∈Z

h̃ms(r) eimsφ. (9)

A filter h is steerable if its spatial-angular Fourier composition (9) is a finite sum,
i.e., there must be a finite number of nonzero Fourier coefficients h̃ms(r). If a desired
filter can be accurately approximated with a finite sum, we also call the filter steerable.

We write a steerable filter as h̃(r, φ) =
∑M

ms=−M fms(r)eimsφ, where M < ∞ is
the highest angular frequency of the filter kernel. Rotation of the steerable filter becomes

hα(x) =
M∑

ms=−M

e−imsα︸ ︷︷ ︸
kms (α)

h̃ms(r)e
imsφ︸ ︷︷ ︸

hms(x)

, (10)

where kms(α) are the linear coefficients as function of rotation angle α.
The filter response uα of a filter hα in orientation α is obtained by uα(x) = (f ∗

hα)(x) where f is an image and “*” indicates convolution. If we substitute hα by (10)
in this equation and interchange sum and convolution, we get

uα(x) =
M∑

ms=−M

kms(α) (f ∗ hms)(x). (11)

Hence, we can first convolve an image f with the 2M + 1 component functions hms

and then calculate the filter response for any orientation α, by simply taking the linear
combination with coefficients kms(α). This leads to an efficient method for oriented
filtering if M is sufficiently small.

3.2 Rotation of 2-Tensors

A rank-2 symmetric tensor A can be rotated over an angle α as follows.

Aα = RαAR−1
α with Rα =

(
cos α − sin α
sin α cos α

)
. (12)
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It is more convenient to rewrite tensor A as a 3-tuple and to perform the tensor

rotation with a single 3×3 matrix. That is, if we write
−→
A =

( axx
axy
ayy

)
then one can verify

that
−→
Aα =

( 1
2 (1+cos(2 α)) − sin(2 α) 1

2 (1−cos(2 α))
1
2 sin(2 α) cos(2 α) − 1

2 sin(2 α)
1
2 (1−cos(2 α)) sin(2 α) 1

2 (1+cos(2 α))

)
−→
A. (13)

It is a special property of the 2D rotation group that one can diagonalize the rotation
matrix for all α by applying a similarity transformation S

−→
Aα =

1
4

( 2 1 1
0 i −i
2 −1 −1

)
︸ ︷︷ ︸

S−1

(
1 0 0
0 e−2i α 0
0 0 e2i α

)
︸ ︷︷ ︸

R′
α

( 1 0 1
1 −2i −1
1 2i −1

)
︸ ︷︷ ︸

S

−→
A. (14)

So if we transform a tensor
−→
A as

−→
A ′ =

⎛⎝ A0
A2
A−2

⎞⎠ = S
−→
A =

⎛⎝1 0 1
1 −2i −1
1 2i −1

⎞⎠⎛⎝axx

axy

ayy

⎞⎠ , (15)

we obtain components A0, A2, and A−2, which are the tensor components in rotation-
invariant subspaces. These components are rotated by a simple complex phase factor:
Aα

ma
= e−imaαAma (ma = 0,−2, 2), which directly follows from (14). Henceforth

we will call these components the ma-components of the tensor, and the transformation
of (15) is called the orientation-angular Fourier decomposition of the tensor.

Note that the properties β, s, b defined in equations (2) to (4) can be easily described
in terms of A0, A−2 and A2 using (15)

β =
1
2

arg A−2 s =
√

A−2A2 = |A2| = |A−2| b =
1
2
(A0 − |A2|). (16)

Note also that A2 = A−2 where A−2 is the complex conjugate of A−2.

3.3 Steerable Tensor Filters

The concept of steerable filters can also be applied to tensor fields and to the vot-
ing field in particular, which rotates according to Vα(x) = RαV(R−1

α x)R−1
α . In

the previous subsection we showed how to decompose tensors in orientation-angular
Fourier components and how to rotate them. For the voting field we get V α

ma
(x) =

e−imaαVma(R−1
α x) for ma = −2, 0, 2. These three Vma functions are of the form

R2 → C and can be made steerable in the same way as scalar filters. So, a voting field
is steerable if for all ma-components (ma = 0,−2, 2) of the tensor field we can write
Vma(x) =

∑M
ms=−M Ṽmams(r)eimsφ. Rotation becomes

V α
ma

(x) =
M∑

ms=−M

e−i(ma+ms)α Ṽmams(r) eimsφ︸ ︷︷ ︸
Vmams (x)

, (17)

where Vmams(x) are the basis filters and e−i(ma+ms)α are the linear coefficient func-
tions of rotation angle α. Filling the previous equation into (7), and writing U in its
ma-components according to (15) results in
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Uma (x) =
∫

Ω

s(H(x′)) V β(H(x′))
ma

(x − x′)dx′

=
∫

Ω

s(H(x′))

(
M∑

ms=−M

e−i(ma+ms)β(H(x′)) Vmams(x − x′)

)
dx′

=
M∑

ms=−M

∫
Ω

(
s(H(x′)) e−i(ma+ms)β(H(x′))) Vmams(x − x′)dx′

=
M∑

ms=−M

((
s(H) e−i(ma+ms)β(H)

)
∗ Vmams

)
(x). (18)

This important result states that, as opposed to non-steerable TV, we can apply TV
simply by calculating 2 · (M + 1) convolutions, viz. for each ma component we need
M + 1 ms-terms, since all odd ms components are zero for 180◦-symmetric voting
fields. Furthermore, taking into account that U2(x) = U−2(x) we see that we only have
to calculate and U0(x) and U2(x). Notice also that the convolutions involve relatively
large kernels, meaning that they can possibly be done more efficiently via the Fourier
domain, i.e. A∗B = F−1[F [A] ·F [B]], whereF denotes the spatial Fourier transform.

4 Voting Fields

The stick voting field can be freely chosen in tensor voting. In this section we will treat
two different voting fields and state some qualitative differences between them.

4.1 Medioni’s Voting Field

Medioni et al. [2] assume that the best connection between two points with one orien-
tation imposed is a circular arc. If one point is horizontally oriented and the angle of
the vector connecting the two points is φ, then the angle at the other point is 2φ. This
cocircularity model is encoded in a tensor field consisting of stick tensors with λ1 = 1
(and λ2 = 0) as ccT with c =

(
cos 2φ
sin 2φ

)
(cf. (1)).

To obtain a locally confined voting field the cocircularity pattern is modulated with
a function that decays with radius curve length and curvature. This yields the following
voting field

Ṽ(r, φ) = e−( φr
σctx sin φ )2−p ( 2σctx sin φ

r )2 ( 1+cos (4φ) sin (4φ)
sin (4φ) 1−cos (4φ)

)
(19)

where σctx is the scale of the voting field, p is a dimensionless constant describing the
relative weight of the curvature. In practice, points above an below the diagonals φ =
±π/4 mod π in the field are considered too unlikely to belong to the same structure
as the point in the center of the field, so the field is truncated for these values of φ.

There are two drawbacks of this voting field concerning steerable tensor voting. First,
there is no simple analytic expression for the components Vmams(x), so one should
calculate the steerable components of this kernel numerically. Second, the field has an
infinite number of ms-components, so we have to cut the sum over ms such that we get
a reasonable approximation. Therefore, in the next subsection we propose a different
voting field, which is more suitable for steerable tensor voting.
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4.2 Bandlimited Voting Field

Here we propose a bandlimited voting field, which is especially useful for steerable
tensor voting, since it has a limited number of spatial-angular Fourier components. The
decay function is similar to the one for instance used in [7].

Similar to Medioni’s voting field, we assume that the best connection between two
points with one orientation imposed is a circular arc. Now we modulate the cocircular-
ity pattern with a function that decays with radius r. We choose a Gaussian decay as
function of r. To penalize high-curvature arcs, we must also account for some periodic
modulation that reaches its maximum at φ = 0 mod π and minimum for φ = π/2
mod π. This is achieved with the term cos2n φ, where n ∈ N is a parameter speci-
fying the speed of decay of the field as function of φ. The voting field now becomes,
expressed in spatial polar coordinates

Ṽ(r, φ) =
1
G

e
−r2

2σ2
ctx cos2n(φ)

(
1+cos (4φ) sin (4φ)

sin (4φ) 1−cos (4φ)

)
, (20)

where σctx ∈ R
+ is the scale of the voting field. The factor G is a normalization factor.

This voting field is depicted in Figure 1b. In the following, to get simpler equations, we
will use G = 1/16 and n = 2.

We apply orientation-angular (15) and spatial-angular (8) Fourier decomposition to
this voting field. The spatial-angular Fourier decomposition is trivial if we first replace
all trigonometric functions by exponentials and expand these exponentials.(

Ṽ0(r,φ)
Ṽ2(r,φ)

Ṽ−2(r,φ)

)
= e

− r2

2σ2
ctx

(
e−i4φ+4e−i2φ+6+4ei2φ+ei4φ

e−i8φ+4e−i6φ+6e−i4φ+4e−i2φ+1
1+4ei2φ+6ei4φ+4ei6φ+ei8φ

)
(21)

For every ma-component we have effectively 5 ms-components. We can now write this
filter in the steerable form cf. (17)⎛⎝V α

0 (x)
V α

2 (x)
V α
−2(x)

⎞⎠ =
(

0 0 e4iα 4e2iα 6 4e−2iα e−4iα 0 0
e6iα 4e4iα 6e2iα 4 e−2iα 0 0 0 0

0 0 0 0 e2iα 4 6e−2iα 4e−4iα e−6iα

)⎛⎜⎜⎝
w−8(x)
w−6(x)

...
w6(x)
w8(x)

⎞⎟⎟⎠
(22)

where the matrix contains the linear coefficients as function of rotation, and the vector
at the right side contains the basis filters. The basis filters are defined by w̃ms(r, φ) =

e
− r2

2σ2
ctx eimsφ. In cartesian coordinates they are given by

wms(x) = e
− x2+y2

2σ2
ctx

(
x + iy√
x2 + y2

)ms

, for x �= (0, 0). (23)

Using (18) we can implement steerable tensor voting for this voting field, as follows.
The filter kernels wms(x) are tabulated for ms = 0, 2, 4, 6, 8 (note that w−ms = wms).
Given the stickness s and orientation β of tensors in H, we need to calculate a number of
complex-valued feature images cms(x) = s(H(x)) e−ims β(H(x)) for ms = 0, 2, 4, 6.
Now, we can calculate the resulting ma = −2 part by

U−2(x) =(w0 ∗ c2) + 4(w2 ∗ c0) + 6(w4 ∗ c2) + 4(w6 ∗ c4) + (w8 ∗ c6), (24)
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where c2 denotes complex conjugate and c2 = c−2. The ma = 2 part does not need
to be calculated explicitly, because it is simply the complex conjugate of the ma = −2
part. The ma = 0 part can be calculated by

U0(x) = (w4 ∗ c4) + 4(w2 ∗ c2) + 6(w0 ∗ c0) + 4(w2 ∗ c2) + (w4 ∗ c4)

= Re
(
6(w0 ∗ c0) + 8(w2 ∗ c2) + 2(w4 ∗ c4)

)
.

(25)

So TV with this voting field requires 8 convolutions. In the resulting context-enhanced
tensor field U, we are interested in the orientation, stickness, and ballness. These mea-
sures are calculated using (16).

5 Computational Efficiency

In this section we compare three different versions of tensor voting:

– Normal TV: “Normal” tensor voting where the stick voting field is calculated alge-
braically at every position;

– Steerable TV spatial: Steerable tensor voting using spatial convolutions;
– Steerable TV FFT: Steerable tensor voting using FFT.

5.1 Computational Complexity

A typical TV implementation scans through the entire image, and collects or broadcasts
information from or to the neighborhood of every tensor. If our image is square with a
size of s× s pixels and the voting field kernel has a size k × k, then s2k2 tensor addi-
tions need to take place. The order of this algorithm is thus O(s2k2). Steerable tensor
voting consists of a sum of complex-valued 2D convolutions. If they are implemented
in the spatial domain, the order is O(s2k2) as well. However, if the convolutions are
implemented through the Fourier domain using a 2D FFT implementation, the order is
reduced to O(s2 log s).

5.2 Speed Comparison

To give an impression of the differences in speed we did some speed measurements.
All algorithms were implemented in C++, and compiled using Microsoft Visual C++.
To make the comparison fair, all 3 variants use the bandlimited voting field of Subsec-
tion 4.2, implying that they all give the same results. We use the FFTW library for the
FFT (see http://www.fftw.org/). All numbers are stored using data type “double”. For
normal TV and steerable TV spatial the kernel has a pixel size of 1

4 times the size of the
image, i.e. the scale of the kernel scales proportionally to the image size. The steerable
TV implementation uses a voting field with 9 steerable components. We use random
dense stickness and orientation maps as input, since the speed of the algorithms is not
dependent on the contents of the input data if the input data is dense.

Figure 3 shows computation times as function of image size, measured on an AMD
Athlon 64 X2 4400+ running on Windows XP at 2.3 GHz. It is clear that steerable TV
FFT performs fastest, followed by steerable TV spatial. The normal TV version is much
slower. As example to show the large differences, on a 512× 512 image, steerable TV
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Fig. 3. Speed measurements of three different TV algorithms as function of image size. STV =
Steerable tensor voting. See Subsection 5.2 for details.

FFT takes 1.05 seconds, while steerable TV spatial takes 1980 seconds, and normal TV
takes 8803 seconds. Since the graph is a log-log plot, the slope of the curves indicates
the computational complexity of the algorithm. As expected, steerable TV with FFT has
a smaller slope. The latter curve shows an irregular trajectory, due to some technicalities
of the FFT algorithm. The FFT implementation is more efficient if the data size is a
power of 2 a product of small prime factors. The normal TV implementation is slower
because of the analytic calculations that are required for every vote1.

Convolutions and FFT’s only involve multiplications, additions, and memory accesses
in a very regular fashion. These operations are therefore very suitable for efficient im-
plementations exploiting cache memory and parallelism. A graphical processing unit
(GPU) might be suitable to host an extremely fast implementation of steerable tensor
voting [8].

As final remark, note that if the tensor field is very sparse, steerable TV may perform
worse since it does not benefit from the possibility to skip zero-valued tensors during
the voting process.

6 Examples of 2D Steerable Tensor Voting

Steerable tensor voting is a new computational method for tensor voting, which yields
the same result as normal tensor voting if exactly the same voting field is used. There-
fore, in this section we do not perform comparison of results of the two methods, but
only show two applications that require computationally efficient algorithms.

In the examples, our approach for the curve extraction process is as follows. The
input stickness s and the orientation β are constructed using first order (for edges) or
second order (for ridges) Gaussian derivatives. To enhance these data, a steerable tensor
voting step is performed according to (18). Spurious responses caused by noise in the
image cause that the resulting stickness image is not sufficiently enhanced: for instance,

1 Alternatively, one could also precalculate the voting field in one or a limited number of ori-
entations and then interpolate. However, this will lead to discretization errors and irregular
memory accesses, and therefore possible caching problems on typical computer systems.
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the resulting curves might still have gaps. To get more consistent curves, non-maximum
suppression (thinning) is applied on the resulting stickness image to keep the centerlines
of the curves, followed by a second tensor voting step on the thinned image. So, the first
TV step is on dense data (prior to any hard decision step), the second step is on sparse
data.

6.1 Electrophysiology Catheters

An interesting example application is the detection of Electrophysiology (EP) catheters
in X-ray fluoroscopy images. These images are generated during heart catheterization
procedures. Figure 4 shows an example of such an image, the result obtained with steer-
able tensor voting and the final result after an EP-catheter specific extraction algorithm
is applied on the resulting stickness image. We did an extensive evaluation on this med-
ical application, and clearly our extraction performance increased using tensor voting
compared to not using tensor voting. More details can be found in [9].

6.2 Ultrasound Kidney

Figure 5 shows the results on the ultrasound image of a kidney. The line segment extrac-
tion in subimages (c) en (f) is achieved by applying thinning, and extraction of strings of

(a) (b) (c)

(d) (e)

Fig. 4. Electrophysiology catheter extraction example. (b) Original noisy image, used as input for
this example. Size 512 × 512 pixels. (b) Local ridgeness image (i.e. the largest eigenvalue of
Hessian constructed using 2nd order Gaussian derivatives with scale σ = 3.4 pixels). (c) Result
of first tensor voting step with σctx = 15. (d) Result of a second tensor voting step with σctx = 7.5.
(e) Final extraction result using EP-catheter specific extraction algorithm.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of tensor voting on an ultrasound image of a kidney. (a) Original image, size
345 × 260 pixels. (b) Gradient magnitude with σ = 3 pixels. (c) Extracted line segments using
(b). (d) Result after first tensor voting step with σctx = 15. (e) Result after second tensor voting
step with same settings. (f) Extracted line segments using image (e). In both (c) and (f), 1250
pixels were extracted for the sake of comparison.

connected pixels starting from the pixel with highest value that is not yet extracted, until
a predefined number of pixels is extracted. The contours are more enhanced after tensor
voting, which can be seen if we compare the extracted contours with and without the use
of tensor voting. Clearly, tensor voting helps to extract longer and smoother contours.

7 Conclusion

The main conclusion of this paper is that tensor voting can be made steerable. We are
able to write tensor voting as a summation of a number of complex-valued convolu-
tions. We showed that two-dimensional steerable tensor voting is computationally more
efficient on dense tensor fields. The highest speed gain is achieved if we implement
steerable tensor voting using FFT. A GPU implementation might lead to an even faster
implementation.

Another point we made is that the voting field of Medioni is not the only possible
voting field. We proposed the bandlimited voting field as alternative. The voting field
could also be made more application-specific by gathering statistics on curves in a spe-
cific application. Or it can be made as generic as possible by only using the random
walker prior, leading to the stochastic completion field [10, 11].

Our examples show that the method is especially feasible for applications where thin
noisy line-structures must be detected. These kind of problems often arise in the field
of medical image analysis.

Tensor voting and related methods are promising methods for robust extraction of
line-like structures in images. There are still a lot of challenges to be faced, such as 3D
steerable tensor voting and multi-scale tensor voting.
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Abstract. We develop an axiomatic approach of vector field interpola-
tion, which is useful as a feature extraction preprocessing step. Two op-
erators will be singled out: the curvature operator, appearing in the total
variation minimisation for image restoration and inpainting/disocclusion,
and the Absolutely Minimizing Lipschitz Extension (AMLE), already
known as a robust and coherent scalar image interpolation technique if
we relax slightly the axioms. Numerical results, using a multiresolution
scheme, show that they produce fields in accordance with the human
perception of edges.

1 Introduction

Given a set of edgels (i.e. a set of points with an assigned direction), what are
the most invariant and stable ways to reconstruct an orientation field in the
whole plan? Because orientation live on the unit circle, an everywhere smooth
interpolation is not always possible, due to global topological arguments. How-
ever, if we now use local arguments, a analysis similar to [1, 2] is possible and
leads also to similar necessary conditions, showing that only very few differential
operators have good properties. Since the functions that will be considered in
this paper are vector valued or have values in the unit circle, only little is known
about existence, uniqueness or classification of the singularities of the solutions
to equations we single out. This contribution is an insight of what could be those
results and their interest from a low-level vision point of view.

Detecting what we intuitively call “edges” is a first step towards low level
feature extraction and integration and has been the focus of a lot of work since
the beginning of computer vision. But as noted by psycho-visual experiment and
models [3], that concept has appeared to be more difficult to define than simply
“contrasted image part”. Psychovision experiments by the Gestaltists [3, 4] has
given us an acute and unified framework to analyse those effects, and many
grouping laws are often involved in the recognition of what we call an edge. The
so-called subjective contour effect in particular let us see edges which are strictly
speaking not even actually present. It uses amodal completion (reconstruction of
occluded edges due to the 2D projection of a 3D world) and modal completion
(leading to illusory contour, where the object and the background have the same
color). In both cases it rely on a curve interpolation process of unknown data
according to the input.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 241–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The main origin for those subjective contours is the good continuation prin-
ciple, which states that if two edgels (edge elements, i.e. a collection of points
together with the orientation of the curve which should pass through it) are not
too far apart and have compatible directions, we tend to see the curve to which
they are both tangent as an edge. Many studies have aimed at computationally
implementing this phenomenon. To this end, it is generally assumed that a fil-
ter has given us an image of edgels from which we want to extract the curves.
Two classical approaches are the curve detector of Parent and Zucker [5], which
uses a discrete co-circularity measure to extract potentially interesting point,
and Sha’ashua and Ullman saliency network [6], where dynamic programming is
used to exhaustively search for the “best” curves under curvature minimisation
and length maximisation constraints. More recently, interesting approaches are
Medioni’s tensor voting [7, 8], where curves emerge from votes of sparse edgels,
and Zweck and al. stochastic completion fields [9], an Euclidean group invariant
implementation of the advection-diffusion model of Mumford [10].

Related problems include image inpainting and restoration, and the operators
described here are also applied in those cases. In particular, recent developpe-
ment extended them to the case of non-scalar image (vector or tensor valued
images) [11, 12, 13]. The aim however is not exactly the same, as this work does
not seek to recover the image itself, but an orientation field that would capture
its geometrical features.

The good continuation principle states conditions on tangent vectors, and
most of the approaches mentioned earlier rely, explicitly or not, on vector or
orientation fields. The present work aims at finding out the most invariant in-
terpolation methods based on partial differential equations (PDE). Experiments
will be shown using artificial and natural images.

Section 2 states some generalities about interpolating angle, and in particular
that singularities are often unavoidable. Section 3 is devoted to the actual ax-
iomatic approach. The last two sections present in more details the two singled
out operators, along with experiments. All the proofs are omitted and are given
in [14].

2 Interpolating Angles

Let Ω ⊂ R2 and ∂Ω its boundary. Let S1 be the unit circle of R2. We consider
the extension problem: knowing I = (I1, I2) : ∂Ω → S1 ⊂ R

2, how to extend I to
the whole domain Ω? The circle represents angular data modulo 2π. In addition,
we may also consider the directions of unoriented lines (i.e. angles modulo π).
All the argumentation below will also apply to this case.

2.1 Topological Restriction

The first problem we encounter when extending vectors as opposed to scalars, is
that singularities in the field may be unavoidable. Given a data to be interpolated
when can we hope for a singularity free extension? A necessary and sufficient
condition is the following.
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Proposition 1. Let f be a continuous vector field over ∂Ω. There exists a con-
tinuous extension of f to Ω if and only if f satisfies condition C.

∃α ∈ S1, α /∈ f(∂Ω), (C)

that is to say only if f is not surjective.

These topological results mean that a singularity free extension is impossible
for orientation field when the bounding data cover the whole unit circle. This
classical result is equivalent to the Brouwer fixed point theorem [15].

2.2 A Fundamental Ambiguity

Another problem arising in orientation interpolation (compared to scalar inter-
polation) is that, due to the periodicity of the data (hence the absence of a total
ordering) there are always two manners to interpolate between two fixed values.
For instance, on Fig. 1, one goes through zero, while the other goes through π

2 .

v

u

Fig. 1. Ambiguity of interpolation between two directions (modulo π in the present
figure). Left: there are two ways of going from u to v. Right: example when u−v = π/2.

For a singularity free (non-surjective) field, at least one value is excluded hence
only one of the two possibilities is available. The operators we study are numer-
ically solved by iterative methods, hence, in absence of uniqueness result on the
solution of the stationary problem, the final result may depend on the initialisa-
tion. Moreover, the topological condition (C) might not be fulfilled in practice
for the whole domain but only in sub-domains. This could lead to instabilities
that do not exist in the scalar case. A possible workaround is a multiresolution
scheme, which will be detailed in a forthcoming work [14].

3 Axiomatic Approach

This section details the axiomatic approach exploited to defined operators for
the interpolation of orientation field.
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Let Γ be a continuous Jordan curve bounding a simply connected domain
Ω. We look for an extension operator E, which associates with each directional
data θ0 : Γ → S1 a unique extension E(Γ, θ0). Throughout all the discussion
to follow, it is assumed that θ0 satisfies the global condition (C). The set of all
those functions will be denoted by F(Γ ). It is necessary to parameterise S1, to
be able to deal with numerical functions. A slight difficulty will arise, since it is
not possible to describe the whole circle by a unique chart. Let φ be such a local
parameterisation, that is to say, a bijective function U → V , where U is an open
subset strictly included in S1 and V an open subset of R. Let us now consider
the extension operator Eφ interpolating real valued boundary data u, defined by
Eφ(Γ, u) = φ◦E(Γ, φ−1◦u). Since Eφ(Γ, u) is a numerical function, it is easier to
formulate conditions on the operator Eφ. However, since the parameterization
φ is arbitrary, the result should be independent on the parametrisation and
condition on Eφ should stand for any φ.

Following [2], we ask that Eφ satisfies the following axioms:

Axiom (A1): Comparison principle. Let θ1, θ2 ∈ F(Γ ) such that they can
be described by a common chart φ. Then φ(θ1) ≥ φ(θ2) implies

Eφ(Γ, φ(θ1)) ≥ Eφ(Γ, φ(θ2)). (1)

Axiom (A2): Stability principle. Let Γ ∈ C, θ0 ∈ F(Γ ), and Γ ′ ∈ C such
that D(Γ ′) ⊆ D(Γ ). Then,

E(Γ ′, E(Γ, θ0)|Γ ′) = E(Γ, θ0)|D(Γ ′) (2)

Axiom (A3): Regularity principle. Let us denote by D(x, r) the disc with
center x and radius r. Let Q : R

2 → S1 such that there exists a parameterisation
φ such that

φ(Q)(y) =
1
2
Aφ(y − x, y − x) + (pφ, y − x) + cφ

where Aφ ∈ SM(2) the set of two dimensional symmetric matrices, pφ ∈ R
2\{0},

x ∈ R2 and cφ ∈ R. Then there exists a continuous function F : SM(2) ×
R2\{0} × R× R2, independent of φ such that

lim
r→0+

φ(E(∂D(x, r), Q|∂D(x,r)))(x) − φ(Q)(x)
r2/2

→ F (Aφ, pφ, cφ, x). (3)

Axiom (A4): Translation invariance. Let τhθ0(x) = θ0(x−h), θ0 : R
2 → S1,

h ∈ R2. Then for all h,

E(Γ − h, τhθ0) = τhE(Γ, θ0). (4)

Axiom (A5): Domain rotation invariance. For any plane rotation R,

E(RΓ, θ0 ◦R−1) = E(Γ, θ0) ◦R−1. (5)

Axiom (A6): Zoom invariance. Let Hλθ0(x) = θ0(λx), for λ > 0. Then,

E(λ−1Γ, Hλθ0) = HλE(Γ, θ0). (6)



Interpolating Orientation Fields: An Axiomatic Approach 245

Once the parametrisation is taken care of, all result obtained in the scalar case are
extended to orientation fields. This extension is nearly straightforward, complete
proof can be found in [2].

Theorem 1. Assume that the interpolation operator E satisfies (A1)-(A3).
Then F (A, p, x, c) does not depend on c. Moreover, if θ0∈F(Γ ), then φ(E(Γ, θ0))
is a viscosity solution of{

F (D2u, Du, x) = 0 in D(Γ )
u = φ(θ0) on Γ.

(7)

Remark 1. In the scalar case [2], grey scale shift invariance is assumed to prove
this result. Of course, it does not make sense since angles do not add. However,
since the result must be invariant with respect to the parameterisation, we get
an equivalent property for free.

Theorem 2. Assume that E satisfies axioms (1)-(6) and that F is differentiable
at 0. Then, for all parameterisation φ, φ(E(Γ, θ0)) is solution of{

D2u(Du⊥, Du⊥) = 0 in D(Γ ).
u = φ(θ0) on Γ.

(8)

Remark that this operator is the curvature of the level lines of u, up to a |Du|3
factor. These level lines are independent of the parameterisation, which makes
the result possible. Indeed, the independence with respect to parameterisation
implies that, for all admissible φ and ψ,

E(Γ, θ0) = φ−1 ◦ Eφ(Γ, φ ◦ θ0) = ψ−1 ◦ Eψ(Γ, ψ ◦ θ0).

By noting u = φ ◦ θ0 and g = ψ ◦ φ−1, this equation becomes

g ◦ Eφ(Γ, u) = Eψ(Γ, g ◦ u).

This condition is closely related to invariance with respect to contrast change
for scalar data, and the arguments developed in [1] indeed apply.

As noted in disocclusion experiments [16], this operator interpolates the level
lines of the data with straight lines. A well known problem is that the solution
of this equation may be not unique, and we will see in the next section that if
it manages to keep the discontinuities structuring the image, it fails to give a
field smooth enough to recover subjective contour. Thus we may drop the full
independence over parameterisation and slightly relax Axioms (1) and (3).

Proposition 2. Assume that Axioms (1) and (3) only holds for parameteri-
sation that are Euclidean, up to a multiplicative factor. Then φ(E(Γ, θ0)) is
solution of

aD2u(Du, Du) + bD2u(Du, Du⊥) + cD2u(Du⊥, Du⊥) = 0, (9)

where ac− b2 ≥ 0.
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The condition ac − b2 ≥ 0 ensures that the equation is elliptic, and that the
maximum principle can hold. As expected, a solution of (9) is invariant with
respect to an affine reparameterisation of the circle, but not to any general
parameterisation.

Among all those operators, the case b = c = 0 is the Absolutely Minimizing
Lipschitz Extension (AMLE){

D2u(Du, Du) = 0 in D(Γ ),
u|Γ = φ(θ0) on Γ,

(10)

for which existence and uniqueness of viscosity solution is known. It gives con-
tinuous oscillation free solution. It will be studied in more detail in Sect. 5.

4 Angle Interpolation with the Curvature Operator

As a result of the previous section, the only operator satisfying the given axioms
is the curvature operator. It is well known in the computer vision community as
a scalar restoration operator via total variation minimisation and has been used
for scalar interpolation to solve the disocclusion problem [16, 17, 18].

The argumentation above gives the equation which is locally satisfied by the
orientation of the vector field. An alternate formulation [19] is to consider the
variational problem

min
W 1,p(Ω)

∫
‖DI‖p,

under the constraint |I| = 1. In this case I = (I1, I2) and |I| is the Euclidean
norm |I| = √

I2
1 + I2

2 and ‖DI‖ =
√|DI1|2 + |DI2|2. Inspired by the scalar case,

we can compute the Euler-Lagrange equations for the energy above by setting
I = u

|u| so that the constraint is automatically satisfied. Careful calculations lead
to a system of the two coupled PDEs

div
(‖DI‖p−2DIi

)
+ Ii‖DI‖p = 0, 1 ≤ i ≤ 2. (11)

It is worth noticing that ‖DI‖p may be interpreted as the Lagrange multiplier
of the constraint |I| = 1. The case p = 1, corresponding to the total variation,
leads to

div
(

DIi

‖DI‖
)

+ Ii‖DI‖ = 0, 1 ≤ i ≤ 2. (12)

As a sanity check, elementary calculations lead to the following result, which
holds thanks to the particular choice of norm ‖DI‖.
Proposition 3. Let I = (I1, I2) ∈ C2(Ω, R2) with |I| = 1 everywhere. Let θ
such that I = (cos(θ), sin(θ)). Then

div
(

DIi

‖DI‖
)

+ Ii‖DI‖ = 0, 1 ≤ i ≤ 2. ⇐⇒ 1
|Dθ|D

2θ

(
Dθ⊥

|Dθ| ,
Dθ⊥

|Dθ|
)

= 0.

(13)



Interpolating Orientation Fields: An Axiomatic Approach 247

Fig. 2. Interpolation with the curvature operator on Lena. The initialization is orthog-
onal to the gradient orientation field decimated using a Canny-Deriche filter. A general
observation is that T-junctions are preserved.
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4.1 Numerical Resolution

Experiments (not detailed here) show that the numerical solutions of the two
outlined methods are indeed the same. Hence in the following we use the
parametrized to S1 equation. To compute a numerical solution, we will use the
associated evolution problem

∂θ

∂t
= D2θ

(
Dθ⊥

|Dθ| ,
Dθ⊥

|Dθ|
)

, (14)

and let t→∞.
To solve this equation, we used a non-linear over relaxation scheme (NLOR)

similar to the one found in [2] implemented in Megawave2 [20]. As noted in [21]
and [22], we took some special numerical attention to work with angles modulo
2π and circumvent the problem caused by the discontinuities at 2kπ, k ∈ N.
Moreover, as noted above, a multiresolution scheme was used to take care of the
initialisation, see [14].

4.2 Experiments on the Curvature Operator

Geometrically, the curvature extension operator tries to extend the level lines of
the boundary data by straight lines. Obviously, there are cases for which that
approach does not apply [16]. In particular it fails to compute any solution for
the simple artificial cases we will see in the next section (see figure 3).

However, experiments carried out for larger images with a larger set of bound-
ary points yields interesting results. Figure 2, displays an example with the
Lena image. We visualise the field via its field line, using Line Integral Convo-
lution (LIC) [23]. The initial field is given by the orientation of the tangents to
the level lines (the orthogonal to the gradient) decimated with a thresholded
Canny-Deriche edge filter [24]. As expected, the curvature operator keeps dis-
continuities, as at the top of Lena’s hat. Interestingly enough, it also manages
to keep singularities adequately. In particular, T-junctions are preserved, which
is particularly relevant in a perceptual point of view. Not only singularities that
are present on the boundary data are preserved, but they can also be created in
the interpolated area in a suitable way (see for instance at the interface of the
cheek and the hair).

To sum up, the curvature operator is (as in the scalar case) able to pre-
serve singularities when necessary. It may be considered as a drawback when
the smoothest solution is sought. Moreover, there is no existence and uniqueness
result in the general case.

5 AMLE on Angle

In this section, we will provide more insight to the AMLE extension. A more
detailed presentation can be found in [2, 25, 26] We know that a non surjective
data can be smoothly interpolated inside a single parameterisation, and that
AMLE is independent of affine change of parametrisation.
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AMLE was introduced in [27]. It was proved (see [25, 26] and references
therein) that it can be equivalently defined, in the scalar case, as

– the extension in Ω of a data defined on ∂Ω whose Lipschitz constant is
minimal in any Ω′ ⊂ Ω.

– the viscosity solution of the PDE D2u(Du, Du) = 0.
– the limit for p→∞ of p-harmonic maps, defined as the minimization of the

p-harmonic energy

min
W 1,p(Ω)

∫
|Du|p.

Those results heavily rely on a maximum principle (eventually proved by Jensen
[26]), which guarantees in particular that the solution has no oscillation inside
the domain. More importantly, it yields the existence and uniqueness of the
solution.

5.1 Equivalence of AMLE on Angle and AMLE on Vector
Restricted to S1

Again, we can link the intrinsic formulation on angle used until now and the R
2

restricted to S1 one. Let us consider (11) again and let p go to +∞. We formally
obtain the two coupled equations

2∑
i=1

D2Ii(DIi, DIj) = 0 j = 1, 2. (15)

The definition of a solution of this system is, to the best of our knowledge, an
open problem. However, we point out the two following interesting facts.

Proposition 4. Let I = (I1, I2) ∈ C2(Ω, R2) with |I| = 1 everywhere. Let θ
such that I = (cos(θ), sin(θ)). Then

2∑
i=1

D2Ii(DIi, DIj) = 0 j = 1, 2 ⇐⇒ D2θ(Dθ, Dθ) = 0. (16)

This means that I is a vector AMLE on the circle if its argument is a scalar
AMLE.

The second point is that the term corresponding to the constraint |I| = 1 has
vanished from (11) to (15). Now, a method to solve the stationary problem (15)
is to solve the corresponding evolution system

∂Ij

∂t
=

2∑
i=1

D2Ii(DIi, DIj) j = 1, 2. (17)

If I is a continuous solution of (17) such that |I| = 1 everywhere at time t = 0,
does it remain true for t > 0? At this step, we cannot tell, but we have the
following hint.

Lemma 1. Let I be a a C2 vector field with |I| = 1 everywhere. Then the vector
with coordinates

∑2
i=1 D2Ii(DIi, DIj) is everywhere normal to I.
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5.2 Numerical Resolution

Again we can numerically check for the equivalence of the two formulation, and
we used the simpler parametrized to S1 one. It is proved, in the scalar case, that
when t→∞ the solution of the evolution problem

∂θ

∂t
= D2θ(Dθ, Dθ), (18)

tends to the solution of the stationary problem, because this solution is unique.
In the vector case, we do not have such a result, but we display experiments
showing that this is still reasonable. We used a multiresolution NLOR scheme
similar to the one used for the curvature operator (see Sect. 4.1).

5.3 Experiments

Figure 3 shows numerical results on artificial data. The first one simply consists
of two vectors. The interpolated vector field is as expected tangent to the curve
with which we would like to connect the two vectors, something close to Euler
elastica [10]. The next two figures show the same mechanism with more complex
curves: a circle and a tube. The interpolated field is perceptually sound.

As asserted by Prop. 1, we do find singularities in the center of the circle and
the extension is there somewhat chaotic, as we are looking for a Lipschitz func-
tion where it cannot even be continuous. The situation below the tube (Fig. 3,
last experiment) is interesting as it is an example of the ambiguity of Sect. 2.2:
a smooth extension do exist, but due to the lack of information the algorithm
extended the orientation field the other way round and put a singularity.

We see Fig. 4 an experiment on Lena. The initial field is again the orientation
of the tangents to the level lines (the orthogonal to the gradient) decimated with
a thresholded Canny-Deriche edge filter [24]. The interpolation field is again
tangent to the edges as requested. On the other hand, there is no control on the
position of the unavoidable singularities. Moreover, singularities are smoothed
out, which can be expected, regarding the properties of the AMLE in the scalar
case.

Nonetheless, the AMLE is a good candidate for an interpolation operator as
we have a complete theory in the scalar case stating existence and uniqueness
of solution. Moreover, it gives smooth solution from which extracting subjective
contour as curves is possible. Compared to the curvature however, it tend to lack
the ability to keep discontinuities in the fields it produce.

5.4 Conclusion

An axiomatic approach of orientation field interpolation has been presented to
define extension operators. There is a unique operator satisfying a small set of
axioms including geometrical invariance and stability: the curvature operator.
This operator is able to preserve singularities. On the other hand, one may
require a smoother solution. Moreover, an existence and uniqueness of a solution
are not well established. If the independence of the interpolation with respect



Interpolating Orientation Fields: An Axiomatic Approach 251

Fig. 3. Three artificial geometric tests, initial orientation field on the left, AMLE ex-
tension visualised with LIC on the right. As expected, where we would put a curve it
do find the tangent to that curve. It’s behaviour is less predictable where there is no
information.
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Fig. 4. Test with the Lena image, initialised with the orthogonal to the gradient orien-
tation field decimated using a Canny-Deriche filter. Notice that the recovered field is
tangent to the edges, in particular at the top of the hat, on the strands of hair around
the face and on Lena’s jaw and chin.
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to reparameterisation of the unit circle is relaxed, another operator becomes
interesting: the AMLE. Existence and uniqueness holds in the scalar case. The
AMLE is, to some extent, dual to the curvature operator (it minimizes the L∞

norm of the gradient, while the curvature minimizes the norm L1), and somehow
smoothes out the singularities.

The proposed extension operators provides the required basis for the extrac-
tion of meaningful curves in images as curves tangent to the orientation field:
for instance using Fast Marching approaches [28]. Other obvious applications
include LIC-based interpolation or restoration [23, 29]. The operators above are
the more natural popping out from the required axioms. However, if some of
them are relaxed or more prior knowledge from the image is introduced, some
variations of these operators may lead to new types of interpolation model.
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Abstract. In this paper we study the possibility of removing aliasing
in a scene from a single observation by designing an alias-free upsam-
pling scheme. We generate the unknown high frequency components of
the given partially aliased (low resolution) image by minimizing the total
variation of the interpolant subject to the constraint that part of una-
liased spectral components in the low resolution observation are known
precisely and under the assumption of sparsity in the data. This pro-
vides a mathematical basis for exact reproduction of high frequency
components with probability approaching one, from their aliased ob-
servation. The primary application of the given approach would be in
super-resolution imaging.

1 Introduction

Images with high spatial resolution are always a necessity in computer vision
applications. Resolution enhancement using interpolation techniques is of lim-
ited application because of the aliasing present in the low resolution (LR) image.
Hence researchers have been working in the field of super-resolution (SR) where a
high-resolution (HR) image is reconstructed using one or more LR observations.
In general, super-resolution involves deblurring, denoising and alias-removal.
There are, in general, two classes of super-resolution techniques: reconstruction-
based and learning-based [1]. In reconstruction-based SR techniques several LR
images are used to reconstruct the super-resolved image. In learning-based meth-
ods proposed in the literature, one or more LR observations are used, but they
make use of a database of several HR images to estimate the HR image corre-
sponding to the given LR image.

All existing papers claim that they have been able to generate additional high
frequency components through the use of multiple exposures or learning from
the database. But there has been no mathematical proof or studies to show
that the generated high frequency components are, indeed, the correct ones! For
example, even a bilinear interpolation will generate (spurious) high frequency
components. Unlike all previous work, we provide a mathematical basis based
on which the correctness of the generated high frequency components can be
established. In this paper we study only one specific aspect of SR, the alias
removal part, at an exact theoretical level. We deal with a very specific case-
only a single LR observation, no multiple view collation and no learning from a
database. In effect, we show how much additional information can be extracted
from a single observation through alias removal alone.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 255–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The super-resolution idea was first proposed by Tsai and Huang[2]. Their fre-
quency domain approach reconstructs an HR image from a sequence of several
LR undersampled images by exploiting the relationship between the continu-
ous and the discrete Fourier transforms of the undersampled frames. A different
approach to the super-resolution restoration problem was suggested by Irani et
al. [3] based on the iterative back projection method. A maximum aposteriori
(MAP) estimator with Huber-Markov random field prior is described by Schultz
and Stevenson in [4]. Elad and Feuer [5] proposed a unified methodology for
super-resolution restoration from several geometrically warped, blurred, noisy
and down-sampled images by combining maximum likelihood, MAP and projec-
tion onto convex sets approaches. Nguyen et al. proposed circulant block pre-
conditioners to accelerate the conjugate gradient descent method while solving
the Tikhonov-regularized super-resolution problem [6].

In all the above methods, the quality of the super-resolved image is measured
either by means of visual inspection or using a PSNR check. It can be easily
shown that the PSNR measure is heavily biased towards the lower part of the
spectrum due to the fact that most of the energy is contained in this region.
Hence the PSNR may not be a good measure to evaluate the performance of
an SR scheme. The issue that the reconstructed components are really the high
frequency components has not really been investigated so far. Our work in this
paper is a study in this direction. In [7], Lin and Shum determine the quantitative
limits of reconstruction-based super-resolution algorithms and obtain the up-
sampling limits from the conditioning analysis of the coefficient matrix. But it is
restricted to a perturbation analysis and not on spectral resolvability. Shahram
and Milanfar in [8] study how far beyond the classical Rayleigh limit of resolution
one can reach at a given signal to noise ratio using statistical analysis. Here the
authors do not study the system performance in the presence of aliasing.

Rajan et al. have analyzed the possibility of alias-free upsampling of images
in [9] through the use of a generalized interpolation. They have shown the condi-
tions under which such an interpolation is possible. However, it requires several
observations and the knowledge of a non-linear transform to achieve this. We
study the issue of alias-free interpolation at a more fundamental level and re-
strict ourselves to using a single observation. Our work is motivated by the work
of Candes et al. [10] where the authors address the problem of exact signal
reconstruction from incomplete frequency information. We build on the theo-
rem developed by them to derive a method for exact removal of aliasing while
interpolating an image.

The reminder of the paper is organized as follows. We discuss the LR image
formation process in section 2. We also define the problem here. A relevant
theorem which we make use of in solving the problem is stated in 3. Some
useful corollaries are also given. Section 4 explains our alias-free interpolation
technique. In section 5 we discuss the computational scheme to solve the problem.
We present experimental results on different types of images in section 6, and
the paper concludes in section 7.
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2 Aliasing in LR Image

It is assumed that the observed low resolution image is produced from a single
high resolution image under the following generative model. Let z̄ represent
the lexicographically ordered high resolution image of K2 × 1 pixels. If ḡ is the
N2×1 lexicographically ordered vector containing pixels from the low resolution
observation, then it can be modeled as

ḡ = DAz̄ (1)

where D is the decimation matrix, size of which depends on the decimation
factor and A is the blur matrix, assumed to be an identity matrix in this paper
for the specific task of studying the alias-removal property.

The LR image formed through the above process will, in general, be aliased.
The aliasing mechanism is illustrated in Figure 1. The spectrum of a continuous-
time 1-D signal xc(t) band limited to B is shown in Figure 1(a). The spectrum
of the sampled signal x(n) sampled at a rate F < 2B is shown in Figure 1(b).
Of course the spectrum will be aliased since the signal is sampled at a rate less
than the Nyquist rate. The resultant aliased spectrum of the sampled signal
is shown in Figure 1(c). As can be noted from Figure 1(c) the portion of the
spectrum F − B ≤ ω ≤ B will be aliased and the rest will be alias-free. A
similar form of aliasing takes place in low resolution images unless the blur
matrix A in equation (1) is quite severe. The knowledge about the portion of
the spectrum 0 ≤ ω ≤ F − B will be used as a constraint, as these components
are free from aliasing, in the proposed method to recover the high frequency
components.

(a)

0

Xc(ω)

ω
Β

X(ω)

F−B F
ω

(b)

X(ω)

ω

(c)

F−B F00 B B

Fig. 1. Illustration of the aliasing process: (a) Spectrum of a continuous-time signal
xc(t), (b) components of the spectrum of the sampled signal x(n), and (c) resultant
spectrum of x(n)

Having explained the aliasing process, we now define our problem in terms of
alias-free interpolation: Given an LR image g(x, y) of size N×N whose spectrum
is partially aliased, generate an interpolated image z(x, y) of size 2N×2N which
is completely alias-free under the assumption that the image consists of piece-wise
constant intensity regions. The significance of the assumption will be explained
in the next section.
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3 A Relevant Theorem by Candes et al.

Theorem 1: Consider a discrete-time 1-D signal f ∈ CN and a randomly chosen
set of frequencies Ω of mean size τN, 0 < τ < 1. Then for each ζ > 0, suppose
that f obeys

#{n, f(n) �= 0} ≤ α(ζ) · (log N)−1 ·#Ω, (2)

then with probability at least 1 − O(N−ζ), f can be reconstructed exactly as
the solution to the l1 minimization problem

min
h

N−1∑
n=0

|h(n)| s.t. H(ω) = F (ω) ∀ω ∈ Ω (3)

where H(ω) and F (ω) are the discrete Fourier transforms of h(n) and f(n)
respectively and # refers to the count.

Here ζ is an accuracy parameter in the term O(N−ζ) and α(ζ) has been shown
to be equal to (1+o(1))/(29.6(ζ+1)) under certain conditions in [10]. In a simple
language it means that as one selects more spectral components compared to the
number of non-zero elements in f(n), one is likely to recover the true function
f(n) with a higher accuracy. Proof of the theorem can be found in [10]. This
is typically known as data sparsity problem [11], one such common example of
which is inpainting [12] where one is required to reconstruct the missing data.
An interesting reference to this work is by Chan et al. [13] where the authors
investigate the reverse problem, i.e., how much loss in data can be tolerated for
a faithful reconstruction of a signal as opposed to what Candes et al. [10] has
studied.

According to the theorem the discrete-time signal f can be reconstructed from
its partial frequency samples as the solution to the constrained l1 optimization
problem as stated above. It may be noted that the reconstruction is possible if the
signal consists of a limited number of spikes (Kronecker delta) only. However,
most of the input signals or images do not satisfy the above condition. If we
consider this function to be a derivative (forward difference in the discrete case)
of the function f(n), then the corresponding l1 minimization should be performed
on the derivative of h(n), or in other words, one has to minimize the total
variation (TV). This leads to the following corollary.

Corollary 1: A piecewise constant object can be reconstructed from incom-
plete frequency samples provided the number of discontinuities satisfy the above
condition 2, as the solution to the minimization problem

min
h

N−1∑
n=0

|h(n)− h(n− 1)| s.t. H(ω) = F (ω) ∀ω ∈ Ω (4)

Corollary 2: If f(x, y) is a two-dimensional object, it can be reconstructed from
its incomplete frequency samples as the solution to the minimization problem

min
h

∑∑
(|hx|+ |hy|) s.t. H(ω) = F (ω) ∀ω ∈ Ω (5)



Alias-Free Interpolation 259

where hx(x, y) = h(x, y) − h(x − 1, y) and hy(x, y) = h(x, y) − h(x, y − 1).
This is similar to minimizing the total variation norm of h(x, y). But this is not
rotationally symmetric.

It may be noted that the same solution was proposed in 1981 by Levy and
Fullagar [14] in connection with the reconstruction of geophysical data. Also see
the reference [15] for a similar work. Candes et al. have provided a theoretical
footing of the existing solution. It may be noted that total variation-based image
interpolation methods are also proposed in [16] and [17]. But the authors do not
specifically address the issue of alias removal. For a detailed review of TV, readers
are referred to [18].

4 Alias-Free Interpolation

The problem addressed in [10] is a restoration problem where the discrete-time
signal is reconstructed from its incomplete Fourier samples such as in computed
tomography. However, they do not consider the effect of aliasing on the sampled
data. But our problem is a signal interpolation one, where only one LR obser-
vation g is available, which is the decimated version of the unknown HR image
z as explained in section 2. Of course, g will be aliased. We wish to remove
this aliasing completely while interpolating the image assuming the aliasing to
be only partial. It may be noted that without the interpolation (use of a denser
grid to represent the data), one cannot recover the aliased components. To apply
the above theorem to our problem, a partial knowledge about Z(ω) should be
available. We now explain how a partial knowledge of Z(ω) can be obtained from
the given observation G(ω). Our alias-free interpolation procedure is illustrated
in Figure 2 with respect to a given 1-D LR sequence g(n) of length N . Note that
unlike in theorem 1, we are dealing with real valued function g(n) and hence the
spectrum is always conjugate symmetric and one has to consider only one half of
the spectral components. Figure 2(a) shows the partially aliased spectrum of the
LR sequence g(n) of length N . We assume that G(ω) in 0 ≤ ω ≤ M is free from
aliasing and the remaining portion is aliased. This corresponds to the assump-
tion that the continuous signal gc(t) is band limited to the normalized frequency
(1−M/N), where 0 ≤ M ≤ N/2. The smaller the value of M , the larger is the
amount of aliasing. Figure 2(b) shows the spectrum of the HR sequence z(n) of

aliased

ω

G(ω )

free
alias−

M0

(a)

N/2

Z(ω )

0 M

alias−free
reconstruction

NN−MN/2
ω

(b)

Fig. 2. Illustration of (a) partially aliased spectrum of the LR sequence g(n), and (b)
spectrum of the HR sequence z(n) to be estimated. Note that only half of the spectrum
is shown due to conjugate symmetry.



260 C.V. Jiji, P. Neethu, and S. Chaudhuri

length 2N to be estimated. The alias-free interpolation method should recover
the frequency components in the region M ≤ ω ≤ N −M in Z(ω) as shown in
Figure 2 (b). From the figure, note that we have

Z(i) = qG(i) for 0 ≤ i < M (6)

Z(i) = 0 for N −M < i ≤ N (7)

and using the property of aliasing (wrapping around of frequencies)

Z(i) + Z(N − i) = qG(i) for M ≤ i ≤ N/2 (8)

Hence the alias-free reconstruction of the high resolution signal involves recov-
ering the spectrum Z(ω) given equations (6-8). Clearly, this cannot be done
without additional constraints. Note that one needs the scale factor q (equal to
2 in this study) to satisfy the energy relationship (Parseval’s theorem). In order
to recover z(n), we need state the following theorem.

Theorem 2: Given a discrete-time partially aliased 1- D signal g ∈ RN , and
two distinct spectral intervals Ωf = {0 ≤ ω < M} and Ωa = {M ≤ ω ≤ N/2}
and another discrete-time signal z ∈ R2N satisfying Nyquist criterion with three
distinct spectral intervals Ωf

′ = Ωf , Ωa
′ = {M ≤ ω ≤ N − M} and Ω0

′ =
{N −M < ω ≤ N}, under conditions very similar to those defined in theorem 1,
z can be recovered exactly from g as a solution to the l1 minimization problem

min
z

2N−1∑
n=0

|z(n)| (9)

subject to the constraints

Z(ω) = 2G(ω) ∀ω ∈ Ωf
′ (10)

Z(ω) + Z(N − ω) = 2G(ω) ∀ω ∈ Ωa (11)

Z(ω) = 0 ∀ω ∈ Ω0
′ (12)

One can follow arguments similar to those in [10] except that the partitions
are deterministic and hence it will lead to different values of the parameters α
and ζ. It may be noted that the partitions Ωf and Ωa correspond to the alias-free
and the aliased components of the low resolution signal g, respectively. Since the
partition is known, it implicitly means that we know the extent of aliasing in the
observation. Furthermore, the above theorem assumes that the signal consists
of a limited number of Kronecker deltas. Extending the theorem to deal with
piece-wise constant signal, and also on the 2 − D lattice, we realize that we
should minimize the expression

min
z

∑∑
(|zx|+ |zy|) (13)

instead of equation (9) to recover the high resolution image z. (The multiplication
factor q in equations (10) and (11) should be replaced by q2 = 4 due to the
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extension to 2 − D.) It may be noted that if z is, indeed, piecewise constant
then it cannot ideally be band limited, and hence the partition Ωf will not be
completely free from aliasing.

Now we look at the issue of the choice of the value of M for alias removal.
It is assumed in theorem 2, that M is known. This is tantamount to assuming
the highest frequency component present in z is known apriori. However, one
would not know M in practical super-resolution applications. We suggest that
one solves the problem for different values of M and then compare the results.
However, as the value of M is lowered from N/2 toward 0, the cardinality of the
set Ωf reduces and the reconstruction would be progressively more unreliable.
It also leads to the following observation that one cannot use an interpolation
factor q greater than 2 as this would mean M = 0, implying a several fold
aliasing when Ωf = {∅} and hence reconstruction would be very unreliable.

5 Computational Method

Theorem 2 provides a theoretical basis for obtaining the alias-free interpolated
image z. We now provide the computational tool to solve this. We obtain the
solution to the above optimization problem using linear programming (LP).
The objective function for the LP problem is the total variation cost as given in
equation (13). The equality constraints are obtained using equations (10), (11)
and (12). The equality constraints corresponding to equation (10) can be written
in the form

Tf z̄ = Ḡf (14)

where T is the 2N × 2N DFT matrix with elements T (m, n) = [e−jπ/N ]mn and
Tf represents the top M rows of T . Thus Tf is an M × 2N matrix. Similarly Ḡ
is the DFT of the observation qg(n) and Ḡf corresponds to the top M elements
of Ḡ. The equality constraints corresponding to equation (11) can be written as

Taz̄ = Ḡa (15)

where Ta is an (N/2 − M + 1) × 2N matrix whose each row is obtained by
summing the corresponding two rows of the DFT matrix Tf as per the indices
shown in equation (8). Ḡa corresponds to the spectral components (M + 1) to
(N/2−M) in Ḡ. Similarly equation (12) can be written as a linear equality

T0z̄ = 0̄ (16)

where T0 consists of the (N − M + 1) to N rows of the DFT matrix T and
0̄ is a null vector. All the above three linear equations can now be compactly
written as ⎡⎣Tf

Ta

T0

⎤⎦ z̄ =
[
Ḡ
0̄

]
(17)

which is of the form Cz̄ = d̄. We also know that z(n) ≥ 0 ∀n as z(n) corresponds
to an image. Also note that the above equation is meant for the first half of the
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spectrum. One would get an equivalent constraint for the other half based on
the conjugate symmetry. Hence equations (9) and (17) constitute a standard
LP problem. We have explained the problem with respect a 1−D signal and it
should be suitably changed to handle 2−D images.

To solve the l1 minimization using LP equation (13) should be written as

min
z

∑∑
((z+

x + z−x ) + (z+
y + z−y )) (18)

where z+
x = max(zx, 0) and z−x = −min(zx, 0), etc. Unfortunately, this increases

the dimensionality of the unknown variables by five fold, increasing the compu-
tation significantly. Further the constraint equations involve complex numbers
when the relationships have to be split into real and imaginary parts separately,
increasing the computation further. We generate the appropriate constraint ma-
trix and solve using the linprog routine in Matlab. But, even for a 128×128 image,
the computational resources required are very large. Unfortunately, Matlab fails
to allocate the necessary memory even for a small sized image. A typical option
in LP is to utilize the possible sparseness properties of C matrix in equation
(17). Unfortunately again, C does not have any sparseness as the DFT matrix
T is not a sparse one. So we solve it as a sequential 1-D problem taking first
the rows and then the columns. Hence the results obtained by this method for
images in this paper are all sub-optimal.

6 Experimental Results

In this section we present the results of alias-free interpolation obtained using
the proposed approach. All the LR images are of size 64 × 64. All the results
shown in this section are for interpolation factor of 2 for the reason described
in section 4. Since the amount of aliasing M is not known, we show results for
various choices of M .

First we show the applicability of the proposed method on a simulated 1−D
data. Figure 3 (a) shows a low resolution rectangular pulse train and the corre-
sponding spectrum is shown in Figure 3 (b). The signal shown in Figure 3 (a)
is superimposed with three high frequency components corresponding to the
normalized frequencies 35/64, 36/64 and 37/64 to obtain the signal shown in
Figure 3 (c). Clearly, these three spectral components are aliased ones.
Figure 3 (d) shows the spectrum of the aliased signal. One cannot find that
the signal is aliased either from Figures 3 (c) or 3 (d). Figure 3 (e) shows the
interpolated signal using the proposed method and its spectrum is shown in
Figure 3 (f). One can see that there are spectral components at locations beyond
the normalized frequency 32/128. These components match quite well with the
introduced high frequency components. We have used M = 26 in this exam-
ple. To further see the gain arising out of the proposed method, one can note
that the spectrum of the rectangular pulse train (without the additional high
frequency components) shown in Figure 3 (b) compares very favorably with the
spectrum of the interpolated signal till the normalized frequency of 32/128. On
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Fig. 3. Demonstration of the proposed approach for a 1 − D signal: (a) alias-free LR
signal, (b) spectrum of (a), (c) aliased LR signal, (d) spectrum of (c), (e) interpolated
signal using the proposed approach and (f) spectrum of (e)

comparing the interpolated signal in Figure 3 (e) with the low resolution signal
in Figure 3 (c), one can clearly see that Figure 3 (e) cannot be obtained by the
linear or cubic interpolation of the original signal. (see the highlighted spectral
components in Figure 3 (f)). This confirms the utility of the proposed method.
Further, to illustrate the capability of our method we compare the results of our
alias free interpolation with spline interpolation in Figure 4. Figure 4 (a) shows a
low resolution rectangular pulse train and the corresponding spectrum is shown
in Figure 4 (b). The spline interpolated result and the corresponding spectrum
are shown in Figures 4 (c) and (d) respectively. The alias free interpolated sig-
nal and its spectrum are shown in Figures 4 (e) and (f), respectively. As can
be observed, the alias free interpolated signal is almost free from overshoot and
ripples as compared to the spline interpolated one.

Figure 5 (a) shows a partially aliased low resolution Lena image of size 64×64.
Figure 5 (b) shows the bicubic interpolated image for comparison to the pro-
posed method. Figures 5 (c-e) show the alias-free interpolation results obtained
using the sub-optimal linear programming method. Figure 5 (c) corresponds to
the result where 10% ( M = 29), additional high frequency components are
generated. Here we assume that the aliasing in the LR image is small, only
10% of the entire spectrum. If we assume that the aliasing in the LR observa-
tion is about 20%, the corresponding alias-free interpolated image is shown in
Figure 5 (d). This corresponds to the choice of M = 26. Figure 5 (e) shows the
alias-free interpolated image where we attempt to generate 30% additional high
frequency components assuming that 30% of the spectrum of the LR image is
aliased. As can be observed from Figures 5 (c-e), there is a gradual reduction
in the quality of the reconstructed image as the aliasing in the LR image is
assumed to have increased from 10% to 30%. This is due to the fact that only
a smaller subset of spectral components are known exactly. In comparison to
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Fig. 4. Demonstration of the proposed approach for another 1−D signal: (a) LR signal,
(b) spectrum of (a), (c) spline interpolated signal, (d) spectrum of (c), (e) interpolated
signal using the proposed approach and (f) spectrum of (e)

(a) (b)

(c) (d) (e)

Fig. 5. (a) A low resolution Lena image, (b) bicubic interpolated image. Interpolated
images using the proposed approach generating additional (c) 10%, (d) 20% and (e)
30% high frequency components.

the bicubic interpolated image, the result using the proposed approach is much
sharper. Observe the eyes, hair strands, etc. in Figure 5 (d). Some of the regions
are highlighted in the figure. We have observed that the reconstruction becomes
poor when the aliasing present in the LR image is assumed to be more than 20 to
30%. Now we perform the experiments on a severely aliased randomly textured
image. The purpose of this experiment is to demonstrate that one does not get
any improvement during interpolation if the signal is highly aliased. The LR
observation is shown Figure 6 (a). The interpolated images using the proposed
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(d) (e) (f)

Fig. 6. (a) A severely aliased low resolution texture image, (b) bicubic interpolated
image. Interpolated images using the proposed approach generating (c) 10%, (d) 20%
and (e) 30% high frequency components, (f) Interpolated image when the LR image is
fully aliased.

approach are shown in Figures 6 (c-e) assuming 10%, 20% and 30% aliasing,
respectively, in the given LR image. As the aliasing present in the LR image
is very high, the proposed method does not give a significant edge over bicu-
bic interpolation as can be observed from Figures 6 (c-e). Now we assume that
the entire spectrum is aliased, ie,Ωf = {∅} in theorem 2 (M=1). Figure 6 (f)
shows the corresponding interpolated result. We observe that the reconstruction
is quite inferior as we do not have any of the spectral components known exactly.

7 Conclusion

In this paper we have presented a method for alias-free interpolation from a
partially aliased low resolution image. We have provided a theoretical basis on
how an alias-free upsampling can be achieved. In order to interpolate the given
LR image we generate the exact additional high frequency components assuming
a knowledge of the nature of aliasing in the spectrum of the LR observation and
assuming a piecewise constant intensity image. The alias-free interpolation is
achieved by solving the l1 optimization. A sub-optimal computational procedure
using linear programming is also presented.
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Abstract. In low-light conditions, it is known that Poisson noise and
quantization noise become dominant sources of noise. While intensity dif-
ference is usually measured by Euclidean distance, it often breaks down
due to an unnegligible amount of uncertainty in observations caused by
noise. In this paper, we develop a new noise model based upon Poisson
noise and quantization noise. We then propose a new intensity similarity
function built upon the proposed noise model. The similarity measure
is derived by maximum likelihood estimation based on the nature of
Poisson noise and quantization process in digital imaging systems, and
it deals with the uncertainty embedded in observations. The proposed
intensity similarity measure is useful in many computer vision applica-
tions which involve intensity differencing, e.g., block matching, optical
flow, and image alignment. We verified the correctness of the proposed
noise model by comparisons with real-world noise data and confirmed
superior robustness of the proposed similarity measure compared with
the standard Euclidean norm.

1 Introduction

Noise is inevitable in any imaging device. A digital imaging system consists of
an optical system followed by a photodetector and associated electrical filters.
The photodetector converts the incident optical intensity to a detector current,
or photons to electrons. During the process, the true signals are contaminated by
many different sources of noise. In fact, the true signal itself has fluctuations in
time due to the discrete nature of photons; the arrival of photons is not a steady
stream and obeys the Poisson law [1]. It implies that no matter how accurately
a computer vision experiment is performed, temporal fluctuation in intensity ex-
ists. The fluctuation becomes significant especially in low-light conditions where
the number of incoming photons is limited, i.e., photon-limited conditions. In
photon-limited conditions, quantization noise also becomes dominant due to the
lack of intensity resolution in the limited dynamic range. Besides these noise
sources, reset noise, dark current noise and read-out noise also become signifi-
cant, and it is known that they can also be approximated by the Poisson noise
model. Read-out noise is sometimes modelled by Gaussian noise; however, Gaus-
sian noise with variance σ2 and mean σ2 is nearly identical to Poisson noise with
� This work is done while the first author was visiting Microsoft Research Asia.
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Real-world scene Optical System Photodetector Observation

Photon noise
Quantization

noise

Fig. 1. Sources of noise in imaging process in low-light conditions. In low-light condi-
tions, photon noise and quantization noise become dominant. In addition to them, there
exist reset noise, dark current noise and readout noise that also cannot be ignored. It
is known that they can be approximated by a Poisson distribution.

mean σ2 if σ is sufficiently large. Read-out noise satisfies this condition when
operating a camera at room temperature and with a high read-out frequency.

Important low-light vision applications include night vision, medical imag-
ing, underwater imaging, microscopic imaging and astronomical imaging. Even
in daily situations, Poisson noise often becomes significant in high-speed imag-
ing. In these situations, uncertainty in observations increases significantly due
to Poisson noise and quantization noise. Particular operations under these con-
ditions, such as template matching [8, 6, 12] and edge detection [5, 4, 2, 10], have
been widely studied for many applications in fields such as object recognition
and motion estimation. Image restoration is also one of the central problems
since photon-limited images are usually severely degraded. Statistical meth-
ods [15, 14, 11, 13, 7], such as maximum likelihood (ML) estimation, are found
to be effective since they can account for the special properties of the Poisson
distribution. All of these techniques are found useful in low-light conditions; how-
ever, one fundamental question still remains open; what is the similarity between
two intensity observations with uncertainty?

Intensity distance is often measured in many computer vision algorithms, and
it is usually computed by Euclidean distance. Let k, l be two intensity measure-
ments. The Euclidean distance dE(k, l) is given by d2

E(k, l) = (k−l)2. It is correct
for measuring the intensity distance between two signals when intensity noise
is negligible, or a non-biased distribution of noise is assumed. However, they do
not hold in photon-limited conditions where a significant amount of biased noise
is added to the signal. Therefore, it is important to establish a new intensity
similarity function which deals with the uncertainty embedded in observations.

In this paper, we describe a new noise model for low-light conditions and
propose a new intensity similarity measure based upon the noise model. This
paper has two primary contributions.

– Poisson-quantization noise model: A realistic noise model in low-light
conditions is derived. The new noise model is built upon two inevitable noise
sources: Poisson noise and quantization noise. We call the combined model of
these two noise sources the Poisson-quantization noise, or PQ-noise in short.
The proposed noise model is able to account for the uncertainty caused by
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the nature of photon arrival and digitizing process. The correctness of the
proposed noise model is confirmed by experiments with real-world data.

– A new intensity similarity measure: A new intensity similarity measure
is proposed based on our noise model, which deals with the uncertainty
caused by PQ-noise. The proposed similarity measure is useful in many
computer vision applications which involve intensity differencing, e.g., block
matching, stereo, optical flow and image alignment. The key advantage of
the similarity function is that it can easily take place of existing intensity dis-
tance functions based on Euclidean distance. We compare the performance
of the new intensity similarity function with the Euclidean distance function
in order to verify the robustness of the proposed method against noise.

The outline of the paper is as follows: In Section 2, we briefly review the
Poisson noise model and quantization noise model, and derive the PQ-noise
model. Section 3 formalizes the intensity similarity function which measures
the likelihood of two observations. The correctness and effectiveness of the PQ-
noise model and the intensity similarity measure are verified with experiments
described in Section 4.

2 Poisson-Quantization Noise Model

In this section, we first briefly review Poisson noise and quantization noise in
Sections 2.1 and 2.2. We then formalize the Poisson-quantization noise model in
Section 2.3.

2.1 Poisson Noise Model

Poisson noise is modelled by a Poisson distribution defined as follows.

Definition 2.1: A Poisson distribution [9] with parameter λ is defined for all
k ∈ IN by the probability

p(k, λ) =
λk

k!
e−λ, (1)

with the mean E and variance V defined as follows.

E(λ) =
∞∑

k=0

kp(k, λ) = λ, V (λ) =
∞∑

k=0

k2p(k, λ)− E2 = λ. (2)

2.2 Quantization Noise Model

Quantization noise is the uncertainty caused by rounding observation amplitudes
to discrete levels which occurs due to the finite amplitude resolution of any digital
system. In analog-to-digital conversion, the signal is assumed to lie within a
predefined range. Suppose the minimum number of electrons which is necessary
to raise one level of observed intensity is q, and eq is the quantization noise. The
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count of electrons is proportional to the number of photons by the factor of the
photon-electron conversion efficiency (the quantum efficiency of the sensor). A
simple model of quantization noise can be described as

eq =
N

q
−
⌊N

q

⌋
, (3)

where N is the number of electrons which are generated by the measurement.
For a more detailed quantization error analysis in computer vision, readers are
referred to [3].

2.3 Poisson-Quantization Noise Model

Now we formalize the PQ-noise model, which is the combination of Poisson noise
and quantization noise.

Definition 2.2: A Poisson distribution with parameter λ and quantization Q =
{q0 = 0, . . . , qk, . . . , qn+1 = ∞} is defined for all k ∈ {0, . . . , n} by the probability
p(k, λ, Q) as

p(k, λ, Q) =
qk+1−1∑

i=qk

λi

i!
e−λ. (4)

The quantization parameter qk represents the minimum number of electrons
which produces intensity level k.

Suppose the simple case where the quantization interval is constant, i.e., qk =
kq, and the observations are far from saturation. The quantization interval is
defined as the range of input values assigned to the same output level. With this
simple model, we first observe the different behavior of PQ-noise from that of
the Poisson noise model. We later relax the assumption to fit to a more realistic
model. In this condition, the mean E(λ, q) and variance V (λ, q) of the PQ-noise
model are given by1:

E(λ, q) =
λ

q
− 1

2
+

1
2q

+
1
q

q−1∑
k=1

eλ(e
2πik

q −1)

1− e−
2πik

q

, (5)

V (λ, q) =
λ

q
+

1
12
− 1

12q2 −
2λ

q2

q−1∑
k=1

e
2πik

q eλ(e
2πik

q −1)

1− e−
2πik

q

+
2
q2

q−1∑
k=1

e−
2πik

q eλ(e
2πik

q −1)

(1− e−
2πik

q )2

+
1
q

q−1∑
k=1

eλ(e
2πik

q −1)

1− e−
2πik

q

− 1
q2

⎛⎝q−1∑
k=1

eλ(e
2πik

q −1)

1− e−
2πik

q

⎞⎠2

. (6)

As seen in the above equations and in Fig. 2, oscillation with an exponen-
tial decay e−λ(1−cos( 2π

q )) is observed in both mean and variance. The minimum
intensity level of the linear range corresponds to λ ∝ 1

1−cos( 2π
q ) ≈ q2

2π2 .

1 The derivation of the mean and variance is detailed in Appendix A.
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Fig. 2. The mean and variance properties of PQ-noise. Due to quantization noise,
strong oscillations are observed. Left: Evolution of the mean with respect to λ with
q = 100. Right: Evolution of the variance with respect to the mean with q = 100.

Fig. 2 illustrates the difference between the ordinary Poisson noise model and
the PQ-noise model. As shown in the figures, PQ-noise has oscillations due to
the quantization noise component.

In practice, q1 does not equal to q due to the shift of the function caused by
the offset voltage. Here we consider the more realistic model of the PQ-noise
model with the following conditions: q0 = 0 and qk = q1 +(k− 1)q. It is possible
to derive E(λ, q) and V (λ, q) for this condition by the same derivation used
for Eqs. (5) and (6). When E(λ, q) is reasonably high, i.e., E(λ, q) � q

2π2 , the
following relationship2 between E(λ, q) and V (λ, q) holds in the linear range.

V (E, q, q1) =
E

q
+

q2 + 12q1 − 6q − 7
12q2 . (7)

This model has two unknown parameters q and q1. These unknown parameters
can be calibrated by fitting the observed noise data to Eq. (7).

3 Derivation of Intensity Similarity Measure

Given two intensity observations k and l, what can we tell about the similarity
between them? Usually, the similarity is measured by Euclidean distance with
an assumption that k and l are true signals, or the noise model is non-biased.
However, they do not hold in low-light conditions. We develop a new intensity
similarity measure which is based upon the probability that two intensity ob-
servations come from the same source intensity. In this section, we first derive
the intensity similarity measure for the Poisson noise case in order to make the
derivation clear. We then develop the intensity similarity measure for the PQ-
noise model. In fact, the Poisson noise model can be considered as the special
case of the general PQ-model with the quantization parameter q = q1 = 1.

3.1 Poisson Noise Case

In the Poisson noise model, the case where two observed intensities arise from
the same intensity distribution is equivalent to their sharing the same parameter
2 The derivation of Eq. (7) is detailed in Appendix B.
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Fig. 3. The intensity similarity function defined in Eq. (10)

λ. If we assume that two intensity observations have the same parameter λ, the
probability of obtaining two observations k and l is

P (k, l, λ) = p(k, λ)p(l, λ) =
λk+l

k!l!
e−2λ. (8)

This is obviously not sufficient to produce the actual probability because of the
unknown parameter λ. However, the best case where λ maximizes the probability
gives the measure which maximizes the similarity between k and l. Indeed, this
approach corresponds to the ML estimation of the observation of the pair (k, l).
Therefore, the optimal λ̂ can be obtained by putting the first derivative ∂P

∂λ = 0,
and we obtain

λ̂ =
k + l

2
, (9)

which maximizes the probability defined in Eq. (8). In this way, the intensity
similarity function can be defined as

d(k, l) = − ln
(
P (k, l, λ̂)

)
= (k + l)

(
1− ln

(k + l

2
))

+ ln(k!) + ln(l!). (10)

Note that this similarity measure does not agree with the exact definition of
distance because d(k, k) > 0 if k > 0, but it produces the similarity between two
observations.

Fig. 3 shows the intensity similarity function defined in Eq. (10). The func-
tion has a similarity to the l2 norm when two observed intensity levels are
high. In fact, when k and l are sufficiently big, d(k, l) has a connection to the
squared l2 norm. This can be shown by rewriting Eq. (10) with the approxima-
tion ln(k!) ≈ k ln(k)− k:

d(k, l) ≈ k ln(k) + l ln(l)− (k + l) ln
(

k + l

2

)
(11)

= f(k) + f(l)− 2f

(
k + l

2

)
≈ f ′′(k+l

2

)
(k − l)2

4
≈ (k − l)2

2(k + l)
.
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3.2 Poisson-Quantization Noise Case

Using the derivation in the previous section, we formalize the intensity similarity
function for the PQ-noise model. We first define the joint probability P ; the
probability of observing k and l having parameters λk and λl respectively with
the quantization Q by

P (k, l, λk, λl, Q) = p(k, λk, Q)p(l, λl, Q). (12)

We are seeking λ̂ (= λk = λl) which maximizes the probability P . This is
equivalent to maximizing the probability that two intensity observations share
the same intensity source λ̂. We denote P (k, l, λ, Q) = P (k, l, λk, λl, Q) when
λk = λl. The optimal λ̂ always exists since the logged probability − lnP is
convex.3

1. If k = l, the maximum of P (k, k, λ, Q) is given by4

λ̂ = (qk...(qk+1 − 1))
1

qk+1−qk−1 . (13)

2. If k �= l, we can obtain the optimal λ̂ by minimizing the convex function
− ln(P ). Here we describe a simple algorithm for finding the optimal λ̂ with
a dichotomic search over the first derivative of P .

Algorithm. for finding the optimal λ̂
Input are k, l, qk, qk+1, ql, ql+1 and niter.
Set λmin = 0 and λmax sufficiently big, and n = 0,
While n < niter and P ′ �= 0
do

Set λ ← λmin+λmax

2 and n ← n + 1.
Compute P ′ = −∂ ln(P (k,l,λ,Q))

∂λ
If P ′ < 0 set λmin ← λ.
If P ′ > 0 set λmax ← λ.

done
Set λ̂ ← λ.

The sign of P ′ can be determined by computing the sign of

(
λqk+1−1

(qk+1 − 1)!
− λqk−1

(qk − 1)!

) ql+1−1∑
i=ql

λi

i!
+
(

λql+1−1

(ql+1 − 1)!
− λql−1

(ql − 1)!

) qk+1−1∑
i=qk

λi

i!
.

To find the optimal λ̂, other descent methods such as gradient descent,
Newton-Raphson, etc. can also be used alternatively.

3 The convexity is proved in Appendix C.
4 It can be derived from the first derivation of the function described in Appendix C.
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In the above way, the optimal λ̂ is determined. The intensity similarity func-
tion is finally determined by plugging in the optimal λ̂ into the following function
using Eqs. (4) and (12):

d(k, l, Q) = min
λ
{− ln(P (k, l, λ, Q))} = − ln(P (k, l, λ̂, Q)) (14)

= − ln

{
e−2λ̂

(qk+1−1∑
i=qk

λ̂i

i!

)(ql+1−1∑
j=ql

λ̂j

j!

)}
.

4 Experiments

In order to confirm our theoretical results, we performed experiments with real-
world noise datasets. Our interests are 1) verifying the correctness of the pro-
posed PQ-noise model and 2) confirming the superiority of the proposed intensity
similarity measure over the standard l2 norm.

In order to obtain datasets, we mounted a video camera at a fixed position and
captured an image sequence of a static scene in a low-light condition. Therefore,
the only fluctuation in an image sequence is caused by noise. The images captured
under the severe low-light conditions are almost totally black to human eyes, but
they still contain intensity information. Fig. 4 shows one of such scenes used for
the experiment. We captured raw image sequences by a Point Grey DragonflyTM

camera, and the intensities observed in the green channel are used for the entire
experiment. For the illumination source, a DC light source is used to avoid
intensity oscillations. We also used a small aperture and a short shutter speed
to produce a low-light environment.

PQ-noise model. To verify the correctness of the PQ-noise model, we compared
the mean-variance distribution of the real-world data with our analytic model
described in Sec. 3.2. For the experiment, we have captured 1000 images of a
static scene in a low-light condition. The unknowns q and q1 are both estimated
by least squares fitting to the linear range of the PQ-noise model described
in Eq. (7). Fig. 5 shows the plot of observations and the analytic model with
estimated q and q1. As shown in the figure, our analytic model well fits the
actual observations, especially in the low intensity levels where the oscillation is
observed clearly. The root mean-square error of observations from the theoretic
curve is 0.0090 in Fig. 5.

Intensity similarity measure. To evaluate the robustness of the proposed sim-
ilarity measure against noise, block matching is applied to the image sequences;
if the block stays at the original position, the measure is not affected by noise.
The same test is performed using the l1 and l2 norms over the same datasets,
and we compared the outcomes of these norms with that of the proposed inten-
sity similarity measure. We denote the l1 and l2 norm measure and our intensity
similarity measure described in Eq. (14) as dl1 , dl2 and dPQ respectively. The
parameters for dPQ, i.e., q and q1, are calibrated beforehand by curve fitting
as done in the previous experiment. The parameters q and q1 are estimated as
q = 67 and q1 = 168 in our experiment.
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Fig. 4. One of the scenes used for the experiment. Left: The original input image in a
low-light condition. Right: The left image is linearly scaled by 60.
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Fig. 5. Evolution of the variance with the mean. The dotted line is the theoretical
result with the calibrated parameters, q = 67 and q1 = 168. The dots are the measured
noise which is obtained from 1000 images of a static scene under a low-light condition.

In the left image of Fig. 6, the performance growth obtained by our similarity
measure in comparison with the l1 and l2 norm is shown. Our major interest
is the comparison with the l2 norm; however, a comparison with the l1 norm is
also given since the l1 norm is often used in practice because of its simplicity. In
the left graph, 0% indicates the same performance as the l1 or l2 norm. The per-
formance growth from the l2 norm, for example, is computed by Nc(dPQ)−Nc(dl2)

Nc(dl2)

where Nc(dPQ) and Nc(dl2) are the number of correct matches with dPQ and dl2

respectively. The same computation is applied for the l1 norm case to obtain the
performance improvement analysis as well. We can observe that our similarity
measure significantly exceeds the l1 and l2 measures, especially when the block
size is small. In fact, when the number of pixels in a block is large, the averaging
of error reduces the biased property of the Poisson-quantization distribution.
Therefore, the l2 norm which is adapted to Gaussian noise becomes effective as
well.

In order to analyze the performance variation in different low-light conditions,
we performed the same experiment over image sequences with different exposure
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Fig. 6. Performance evaluation the proposed intensity similarity measure. Left: Perfor-
mance growth of block matching using our intensity similarity measure in comparison
with the l1 and l2 norms. Right: Variation of the performance growth in compari-
son with l2 norm under different low-light conditions. The logarithm is taken for a
visualization purpose on the right graph.

settings. The dataset is obtained by capturing the same scene with changing
exposure time, i.e., t, 2t, 3t, 4t and 40t where t = 15ms. For these datasets, the
observed intensity values have a range of [0, 7], [0, 12], [0, 18], [0, 24] and [0, 235]
respectively. The last setting 40t is not considered a low-light condition, but we
tested with this setting as well in order to see the behavior of our similarity
measure in such a condition. The right graph of Fig. 6 shows the performance
growth in comparison with the l2 norm using the different exposure settings.
As shown in the graph, the proposed similarity measure is effective especially
in severe low-light conditions. It can be seen that it also works for the ordinary
condition (the 40t setting), although the performance improvement from the l2

norm is almost zero.

5 Conclusion

In this work, we have proposed a new intensity similarity measure which is
useful for low-light conditions where Poisson noise and quantization noise be-
come significant. The intensity similarity measure is derived from the Poisson-
quantization noise model which we develop as the combination of the Poisson
noise model and the quantization noise model.

The correctness of the proposed PQ-noise model is verified by comparison
with real-world noise data. The proposed intensity similarity measure is robust
against Poisson-quantization noise, and is therefore effective in low-light con-
ditions. The robustness is compared with the l2 norm using block matching,
and we confirmed that the proposed method largely exceeds the performance
of the l2 norm especially when the block size is small. Our intensity similarity
measure is capable of achieving more accurate matching, especially in situations
where large blocks cannot be used. The proposed noise model and intensity sim-
ilarity measure are useful for many computer vision applications which involve
intensity/image matching in photon-limited conditions.
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Appendix A

We derive the mean and variance for a PQ-distribution described in Eqs. (5)
and (6). We begin with the following theorem about quantization.

Theorem 1. Let X ∈ Z be a discrete random variable which has a characteristic
function φ(t) = E(eitX). Its quantized version Xq can be defined by Xq = #X

q $.
The characteristic function φq of Xq is given by

φq(t) =
1− e−it

q

q−1∑
k=0

φ( t+2πk
q )

1− e−i t+2πk
q

.
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Proof. Let pn be pn = P (X = n). The characteristic function φq of Xq is

φq(t) =
∞∑

n=−∞
pnei�n

q �t =
∞∑

n=−∞
pnei n

q tei(�n
q �t− n

q t).

The function f :

{
Z %→ C

n → ei(�n
q �t−n

q t) is q-periodic, therefore it can be written

by a trigonometric polynomial
q−1∑
k=0

ake
2πikn

q . Using a discrete Fourier transfor-

mation, we obtain:

ak =
1
q

q−1∑
j=0

f(j)e−
2πijk

q =
1
q

q−1∑
j=0

e−i j
q te−

2πijk
q =

1
q

q−1∑
j=0

e−j
i(t+2πk)

q

=
1− e−i(t+2πk)

q(1 − e−i t+2πk
q )

=
1− e−it

q(1− e−i t+2πk
q )

.

Therefore,

φq(t) =
∞∑

n=−∞
pnei n

q t
q−1∑
k=0

ake
2πikn

q =
q−1∑
k=0

∞∑
n=−∞

pnein t+2πk
q

1− e−it

q(1 − e−i t+2πk
q )

=
q−1∑
k=0

φ

(
t + 2πk

q

)
1− e−it

q(1− e−i t+2πk
q )

.

QED

Corollary 1. The mean Eq of Xq and variance Vq of Xq can be written by the
mean E, the variance V , and the characteristic function φ of X:

Eq =
E

q
− 1

2
+

1
2q

+
1
q

q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

Vq =
V

q
+

1
12
− 1

12q2 −
2E

q2

q−1∑
k=1

e
2πik

q φ(2πk
q )

1− e−
2πik

q

+
2
q2

q−1∑
k=1

e−
2πik

q φ(2πk
q )

(1− e−
2πik

q )2

+
1
q

q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

− 1
q2

(
q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

)2

.

These formulas are given by the computation of the derivatives of φq, using the
fact that Eq = −iφ′

q(0) and Vq = −φ′′
q (0)− E2

q .

Eqs. (5) and (6) are the result of the previous formulas with a Poisson distribu-
tion which has the characteristic function φ(t) = eλ(eit−1).
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Remark 1. We can extend the previous result to the continuous random variable
case. Let X be a random variable in R, and φX(t) its characteristic function.
Let #X$ be the quantized version of X . Using the Fourier series of the 1-periodic

function defined over R, i.e., f(x) = eit(�x�−x) =
∞∑

n=−∞
i
e−i(t+2πn) − 1

t + 2πn
e2πinx, we

can show that the characteristic function φ�X� of #X$ is

φ�X�(t) =
∞∑

n=−∞
i
e−i(t+2πn) − 1

t + 2πn
φX(t + 2πn),

where the summation has to be done by grouping terms of n and −n together
if it is not convergent. The mean E�X� can be simply derived by

E�X� = EX − 1
2

+
∑
n�=0

φX(2πn)
2πn

.

This applies to any kind of distribution, for example, the mean of a Gaussian
distribution can be derived as follows. Let X be a random variable following the
Gaussian law N (μ, σ2). The characteristic function becomes φX(t) = eiμt−σ2t2

2 .
Therefore,

E�X� = μ− 1
2

+
∑
n�=0

eiμ2πn−σ22π2n2

2πn
= μ− 1

2
+

∞∑
n=1

cos(2πnμ)e−σ22π2n2

πn

As the series on the right is decreasing exponentially with n, this gives a practical
way to compute E�X�.

Appendix B

We derive the PQ-noise model in the linear range described in Eq. (7). With
an assumption that observed intensities are far enough from saturation, the
approximation n = ∞ can be used. We use the previous theorem described in
Appendix A and divide the problem into two cases.

1. If q1 ≤ q, let X(λ) be a discrete random variable on the shifted Poisson
distribution defined by

∀k ≥ q1 − q, P (X(λ) = k) =
λk+q1−q

(k + q1 − q)!
e−λ.

In this case, #X(λ)
q $ has the wanted PQ-distribution. It is straightforward to

see that EX(λ) = λ + q1 − q, and VX(λ) = λ.
2. If q1 > q, let X(λ) be a discrete random variable which satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

P (X(λ) = 0) =
q1−q∑
j=0

λj

j!
e−λ,

P (X(λ) = k) =
λk+q1−q

(k + q1 − q)!
e−λ. ∀k ≥ 1
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Then again, #X(λ)
q $ has the wanted PQ-distribution. When λ is big, the

approximation P (X = 0) ≈ 0 holds. Therefore, EX(λ) ≈ λ + q1 − q, and
VX(λ) ≈ λ are deduced.

Using Corollary 1 and the remark, which shows lim
λ→∞

φX(λ)(2kπ) =

lim
λ→∞

φ′
X(λ)(2kπ) = 0, we are able to deduce that E(λ, q, q1) = λ+q1

q − 1
2 + 1

2q and

V (λ, q, q1) = λ
q2 + 1

12 − 1
12q2 in the linear range. Therefore,

V (λ, q, q1)=
qE(λ, q, q1)−q1+ q

2 − 1
2

q2 +
1
12

− 1
12q2 =

E(λ, q, q1)
q

+
q2 + 12q1 − 6q − 7

12q2 .

Appendix C

We show that the probability function − lnP in Eq. (12) is convex.

Proposition: f : λ %→ −ln

( n∑
i=m

λi

i!
e−λ

)
is convex.

Proof.

f ′(λ) =

−
n∑

i=m

(
λi−1

(i− 1)!
− λi

i!

)
e−λ

∑ λi

i! e−λ
=

λn

n!
− λm−1

(m− 1)!∑ λi

i!

f ′′(λ) =

n∑
i=m

(
λn−1

(n− 1)!
− λm−2

(m− 2)!

)
λi

i!
−
(

λn

n!
− λm−1

(m− 1)!

)
λi−1

(i− 1)!

(
∑

λi

i! )2

=

n∑
i=m

λn+i−1

n!i!
(n− i) +

λm+i−2

(m− 1)!i!
(i−m + 1)

(
∑

λi

i! )2
> 0.

Therefore f is convex.

QED
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Abstract. We address the problem of single image super-resolution by
exploring the manifold properties. Given a set of low resolution image
patches and their corresponding high resolution patches, we assume they
respectively reside on two non-linear manifolds that have similar locally-
linear structure. This manifold correlation can be realized by a three-
layer Markov network that connects performing super-resolution with
energy minimization. The main advantage of our approach is that by
working directly with the network model, there is no need to actually
construct the mappings for the underlying manifolds. To achieve such
efficiency, we establish an energy minimization model for the network
that directly accounts for the expected property entailed by the mani-
fold assumption. The resulting energy function has two nice properties
for super-resolution. First, the function is convex so that the optimization
can be efficiently done. Second, it can be shown to be an upper bound
of the reconstruction error by our algorithm. Thus, minimizing the en-
ergy function automatically guarantees a lower reconstruction error— an
important characteristic for promising stable super-resolution results.

1 Introduction

In this work super-resolution specifically means the technique to estimate a high-
resolution (HR) image from one or more low-resolution (LR) instances taken of
the same scene by some imaging processes. One reason for looking into such
an issue is due to the quality constraints on many existing imaging devices,
especially on nowadays digital imaging systems. Although a large portion of
them are suitable for most imaging applications, the current resolution levels by
the affordable price still can not satisfy certain common needs. Take, for example,
the ubiquitous security surveillance systems. To completely monitor the whole
area of interest, lots of cameras are often needed. However, the quality of these
cameras is generally not good enough for providing useful information. While
it is always possible to physically increase the quality of sensors by investing
more budgets, image processing techniques such as super-resolution provide a
reasonable solution, and have been studied for years.

Super-resolution has lately become an active topic in vision research. Its appli-
cation ranges from medical imaging to image compression. An extensive number
of useful approaches have thus been proposed to address the problem with dif-
ferent aspects of consideration [1], [3], [5], [6], [7], [10], [12], [13], [15], [17], [18],
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c© Springer-Verlag Berlin Heidelberg 2006
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[19], [20], [21]. By the underlying models, these methods can be roughly divided
into two categories [1], [19]: reconstruction-based and recognition-based. Typi-
cally a reconstruction-based technique tries to accomplish super-resolution with
an ML or a MAP formulation [5], [10], [17], [18], [20]. To avoid causing an un-
derdetermined system, some kind of prior information needs to be imposed for
regularizing the results of super-resolution and for adding more high frequencies.
On the other hand, the recognition-based methods, e.g., [1], [7], [19], often first
resize an LR image into the desirable size of a target HR one, and then add the
appropriate high frequencies from the training set to improve the quality of the
resized image. While the reconstruction-based methods assume a more realis-
tic model, which simulates the process that we produce an LR image and can
be solved by standard optimization algorithms, the recognition-based methods
indeed provide more feasible results, especially for the case that the number of
given LR images is rather small.

Different from previous approaches for super-resolution, we are motivated
by investigating the manifold property of LR and HR image patches, with an
emphasis on the assumption that for each pair of corresponding LR and HR
image patches their local neighborhoods on some proper nonlinear manifolds
would be similar. Specifically, our method deals with the single (LR) image
super-resolution problem, and uses a three-layer Markov network to realize the
manifold assumption. The key contribution of the proposed approach is to ex-
plore the connection between the LR and HR manifolds without the need to
explicitly construct the respective manifolds. We achieve such efficiency by es-
tablishing an energy minimization model that directly accounts for the expected
property entailed by the implicit manifold structure. It therefore results in an
optimization-based algorithm for super-resolution, and requires only a training
set consisting of a small number of pairwise LR and HR image patches.

2 Previous Work

For convenience we always denote an LR image by L, and an HR image by
H . The task of single image super-resolution is therefore to find a best H of
a specified higher resolution, from which the given L can be reasonably repro-
duced. Indeed over the years there are many attempts to address the problem,
including, e.g., direct interpolation, or frequency-domain reconstruction [12]. Our
discussion here focuses only on more recent super-resolution techniques, sorted
according to the following two classes.

Reconstruction-Based. Methods of this kind typically assume an observation
model that describes how one can get L from H . If L and H are represented in
the form of column vectors, the observation model can often be written out in a
linear form:

L = TH + Z, (1)

where T can be thought of as some underlying imaging system transforming H to
L, and Z is the additive zero-mean Gaussian noise. As an example to illustrate,
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suppose H is of size XH pixels and L is of size XL pixels. Then the observation
model in the work of Elad et al. [5] can be stated as

L = DBH + Z, (2)

where B is a blur matrix of size XH -by-XH , and D is a downsampling operator
of size XL-by-XH . Notice that we have omitted the geometric motion matrix and
the indices of image frames in [5] owing to that in our case there is only one LR
image, namely L, as the input. With equation (1), the derivation of H can be
readily casted as solving an ML (maximum likelihood) or a MAP (maximum a
posteriori) problem, e.g., [5], [10], [17], [18], [20].

Still the huge dimensional characteristic of the super-resolution problem like
(1) or (2) can be a challenging factor. A simple and effective technique has
been proposed by Irani and Peleg [13] that approximates a solution of (2) based
on iterative back projection (IBP). Their method starts with an initial guess
H0 for the HR image, projects the temporary result Hk by the same process
for producing an LR image, and then updates Hk into Hk+1 according to the
projection error. These steps can be summarized by

Hk+1 = Hk + B′U(L−DBHk), (3)

where U is now an upsampling matrix and B′ is another blur matrix distributing
the projection error. The IBP scheme given by (3) is intuitive and fast. How-
ever, it has no unique solution due to the ill-posed nature of equation (2), and
cannot be effectively extended to include prior information on H for regular-
izing the solution. The concern of adding the prior information is necessary in
that for the single image super-resolution problem the matrix T in (1) is in-
herently singular. Consequently, without using appropriate prior information on
H , a reconstruction-based method for (1) could yield super-resolution results
containing appreciable artifacts. Alternatively, the projection onto convex sets
(POCS) approach [5], [20] applies set theories to the super-resolution problem,
and allows constraints on additional prior information. The main disadvantages
of POCS-based methods include non-uniqueness of solution, slow convergence,
and high computational cost.

The ill-posedness of super-resolution noticeably hinders the performance of
reconstruction-based methods, and could yield jaggy or ringing artifacts, e.g., as
in the results of [19]. While adding some prior may alleviate the problem, it is
generally too simple for simulating the real world texture. In fact regularizing
super-resolution with prior information mostly smooths out small derivatives.
When carefully done, it could produce good edges. However, the scheme may
also suppress useful details, and is insufficient for representing complex textures.

Recognition-Based. To more naturally retain good image characteristics for
super-resolution, the recognition-based techniques [1], [3], [7], [11], [19] resort to
a training set of LR and HR image patches. The main idea is to use the actual
HR patches to construct the results of super-resolution. Such methods usually
carry out super-resolution by the following steps: divide the given LR image into
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small (overlapping) patches, compare them with LR image patches in the train-
ing set, and replace them with the corresponding HR patches. In [1], Baker and
Kanade discuss the limits of reconstruction-based approaches, and also estab-
lish a recognition-based super-resolution technique. Freeman et al. [7] propose
a Markov model, in which overlapping patches are used to enhance the spatial
continuity. However, in most of the recognition-based algorithms, the recognition
of each LR patch gives a hard assignment to a specific HR counterpart in the
training set. The mechanism could cause blocky effect, or oversmoothness—if
image processing is performed to eliminate the blocky effect [3].

With the exception of [19], the above-mentioned recognition-based methods
are restricted by the class of their collected training sets. Indeed Sun et al. [19]
only replace the patches of detected primal sketches, and then apply IBP [13] to
ensure the reconstruction constraint. Though the primal-sketch scheme is useful
for processing a wide range of LR images, its super-resolution results may contain
artifacts induced by the back projection scheme. More recently, Chang et. al [3]
consider neighbor components in generating the HR image patches so that the
size of the training set can be dramatically reduced.

There are some attempts to integrate the two concepts, reconstruction-based
and recognition-based, for establishing a super-resolution technique that has low
reconstruction error, and meanwhile enriches a resulting HR image with complex
priors learned from training patches. For example, Pickup et al. [15] include the
learned image prior into a MAP model for super-resolution. The way they define
the image prior on an image pixel is to assume a Gaussian distribution with
the mean obtained by searching the set of training patches, finding the patch
most similar to the neighborhood region around this image pixel, and identifying
the value from the central pixel of the resulting patch. To feasibly optimize the
formulation, Pickup et al. assume that small perturbations of the neighborhood
region will not affect the searching result, an assumption that is not necessary
the case. In some ways the method of Sun et al. [19] also has the advantages of
the two types of approaches, but it is in essence an IBP algorithm with a better
initial guess (learned from the training set).

3 Manifold Ways for Super-Resolution

Given a single LR image L, which can be thought of being derived by blurring and
then downsampling some HR image of a real scene, the task of super-resolution is
then to approximate a high-resolution H that is similar to the original scene. In
our formulation we shall split L into n overlapping patches {�i}n

i=1. Intuitively,
for each LR patch �i, the corresponding site i on H should have an HR patch hi

that is closely related to the appearance of �i (see Figure 1a).
Note that the site correlation between �i and (a desired) hi does not imply it

needs a training set, denoted as Ω, comprising numerous pairs of LR and HR
patches to construct a reasonable H . The supporting evidence could come from
investigating the properties of natural image statistics. One key conclusion re-
lated to our application is that although images are typically represented as high
dimensional data, the natural images are actually distributed over a relatively
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Fig. 1. (a) The corresponding low- and high-resolution patches �i and hi (highlighted
in red). (b) The 1-D illustration for the 3-layer Markov model. Note that in the output
layer for describing the resulting HR image H each node represents an image pixel.

low dimensional manifold. For example, Lee et al. [14] find that the state space
of natural image patches of size 3-by-3 pixels is indeed very sparse.

We assume that, among our training data, the set of HR patches and the
set of corresponding LR patches respectively reside on two different nonlinear
manifolds, but with similar locally-linear structure. In other words, the linear
neighborhood relation of �i on the LR manifold can be used as a hint to correlate
hi and its neighbors on the HR manifold. The same assumption has been made
in Chang et al. [3], and shown to produce stable super-resolution performance.
Nonetheless, we emphasize a crucial difference that in [3] the locally-linear struc-
ture of the LR manifold is approximated exclusively with information from the
LR patches in Ω. And each patch of the resulting HR image is independently
determined via a hard assignment by imposing a similar locally-linear structure
on the HR manifold. For each pixel covered by different overlapping HR patches,
the average of these different values is assigned to resolve inconsistency. Such a
tactic sometimes introduces oversmoothness in the results [3].

Even though our discussion so far has indicated that the proposed super-
resolution algorithm involves learning two different manifolds from the training
data Ω, it turns out to be more a conceptual idea. In practice there is no need
to explicitly construct the LR and HR manifolds as we are only interested in
exploring their underlying locally-linear property. Later in the next section we
will explain how to use a Markov network to conform the two manifolds without
knowing their structure. For now we shall give more discussions on the assump-
tion that the two manifolds have similar locally-linear structure.

3.1 Locally Linear Assumption

Locally linear embedding (LLE) [16] is a way to map high dimensional data into a
low dimensional space with the useful property of maintaining the neighborhood
relationship. LLE assumes that each data point Xi and its neighbors lie on
(or close to) a locally-linear patch of the manifold. This local geometry can be
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characterized by linear coefficients Wij that reconstruct each data point Xi from
its neighbors Xj ’s. The coefficient matrix W is decided by minimizing∑

i

‖Xi −
∑

j

WijXj‖2, (4)

where Wij is required to be 0 if Xj is not a neighbor of Xi. The objective of LLE
is therefore to construct a lower dimensional data set whose local geometry can
also be characterized by W . For the LR and HR manifolds to have similar locally-
linear structure, the coefficient matrix W ∗ minimizing the LLE formulation (4)
on the HR patches should also yield a small value of (4) when the data are
replaced with the LR patches, and vice versa. While it is non-trivial to verify
the property analytically, the linear model (1) relating an HR image H with its
corresponding LR image L suggests the assumption is indeed a reasonable one.

4 The Energy Minimization Model

We now describe how super-resolution on nonlinear manifolds can be done with
the convenience of skipping constructing the manifolds. Suppose we have a pair
of LR and HR image patches, respectively denoted as � and h. (Each image
patch will hereafter be represented as a column vector.) Let P and Q be two
matrices with the same number of columns. In particular, the columns of P are
�’s neighbors in the training set Ω, and those of Q are h’s neighbors in Ω. By
the similar locally-linear structure of the LR and HR manifolds, we can find a
reconstruction coefficient vector w satisfying[

�
h

]
=
[

P
Q

]
w +

[
ε
δ

]
, (5)

where ε and δ are Gaussian noise terms. Clearly equation (5) is the mathematical
interpretation for the adopted manifold assumption, and it also nicely connects
pivotal elements in solving the single image super-resolution problem.

To realize the manifold concept embodied in (5), we consider a three-layer
Markov network, shown in Figure 1b. In the input layer of the network, each
node represents an LR patch, say, �i from the ith site of the given LR image L.
Each node of the second (hidden) layer is a coefficient vector wi, stating how �i

and the corresponding patch hi from the ith site of the approximated HR image
H can be reconstructed from their neighbors in the training set Ω. Note that
each node of the output layer consists of only one pixel of H . In the network
each node �i is connected to the reconstruction coefficient vector wi, and wi is
further connected to those nodes (image pixels) in the ith site of H . The output
layer itself is a fully-connected graph, i.e., a big clique.

With (5) and the Markov network described above, we are in a position to
define the energy function F for the network by

F (W, H ; L) =
∑

i

φ(�i, wi) + λ2
1

∑
i

∑
j∈ site i

ψ(wi, H
j) + λ2

2 ζ(H), (6)
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where there are in turn three kinds of potential functions, namely φ, ψ, and ζ to
be specified, W = [w1 · · ·wn] is the coefficient matrix, λ1 and λ2 are parameters
to weigh the contributions of the three terms, and Hj denotes the jth pixel of H .
We next give the definitions for each of the three potential functions. To begin
with, for each LR patch �i and the connected node wi, the network is designed
to maximize the joint probability of �i and wi. Thus, from (5), we arrive at the
following definition:

φ(�i, wi) = ‖�i − Piwi‖2. (7)

Suppose Hj is the kth pixel on site i of H (i.e. hi). Then the potential function
ψ for wi and Hj can be defined by

ψ(wi, H
j) = ‖eT

k hi − eT
k Qiwi‖2, (8)

where ek is the kth coordinate vector. Notice that, from (5), minimizing the
summation

∑
j∈site i ψ(wi, H

j) is equivalent to maximizing the joint probability
of hi and wi. Finally, the potential function ζ in (6) is to add appropriate image
prior for super-resolution, and is defined on the big clique of the whole H :

ζ(H) = ‖SH‖2, (9)

where we shall discuss the matrix S later, and here we simply treat S as the zero
matrix. With (7), (8), and (9) so defined, the energy function F in (6) is convex
to wi and H . Hence the super-resolution output H∗ by the Markov network can
be achieved by minimizing F with respect to wi and H , respectively and itera-
tively. The proposed super-resolution algorithm is summarized in Algorithm 1.
(Notice that the computation of H described in line 5 of Algorithm 1 is for the
convenience of presentation. Owing to the structure of the Markov network, we
can indeed compute H pixelwise for a more efficient implementation.)

Algorithm 1. Direct Energy Minimization for Super-Resolution
Input : An inpute LR image L, and a training set Ω.
Output: An HR image H∗.

Split L into n overlapping LR image patches, {�i}n
i=1.1

For each �i, find its K nearest LR neighbors in Ω, and form Pi as in (5).2

For each Pi, take the corresponding K HR patches in Ω to form Qi as in (5).3

For each i, compute the initial wi based on Pi and �i.4

Repeat
For each i, compute hi from (5), given wi and Qi.5

For each i, compute wi from (5), given �i, hi, Pi, and Qi.6

Until Convergence

4.1 Bound the Reconstruction Error

Besides being convex for the ease of optimization, the energy function F de-
fined in (6) can be shown to be an upper bound of the reconstruction er-
ror yielded by our algorithm. That is, since our approach is to minimize F ,
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a resulting super-resolution result H∗ by Algorithm 1 would have a small re-
construction error (bounded by the minimal energy F ∗). Thus the proposed
direct energy minimization method not only possesses the convenience for not
constructing the manifolds explicitly but also produces stable super-resolution
results.

With (2) and a given LR image L, the reconstruction error of H∗ derived by
Algorithm 1 can be expressed in the following matrix form

‖DBH∗ − L‖2, (10)

where B is a symmetric blur matrix and D is the downsampling matrix. We
now explain why the reconstruction error in (10) will be lower than F in (6).
Let B′ and D′ be the corresponding blur and downsampling matrices on the
HR patches. It can be shown that there exists a (mask) matrix M to extract a
central region within an LR patch such that M�j = MD′B′hj for any pair of
patches �j and hj in Ω. We split the input L into overlapping {�i}n

i=1. For each
�i we define Mi to select pixels from the central region defined by M such that L
is a disjoint union of {�̃i = Mi�i}n

i=1. The above procedure can be accomplished
by splitting L into denser overlapping patches, or by adjusting Mi for each site
i. The reconstruction error in (10) can then be rewritten as∑

i

‖MiD
′B′h∗

i −Mi�i‖2 =
∑

i

‖MiD
′B′(Qiwi + δi)−Mi(Piwi + εi)‖2

=
∑

i

‖MiD
′B′δi −Miεi‖2 ≤

∑
i

(‖D′B′δi‖2 + ‖εi‖2)

≤
∑

i

(λ2
1‖δi‖2 + ‖εi‖2) ≤ F (11)

The only restriction for (11) to be valid is that λ1 should be larger than the
downsampling ratio. One can see that F is not a tight bound for the reconstruc-
tion error. So in some cases the resulting reconstruction errors by our method
are higher than those induced by the IBP. However, in our experiments the pro-
posed algorithm often gives satisfactory results and lower reconstruction errors
in fewer iteration steps than those required by IBP. (See Figure 2b.)

4.2 The Partial Gestalt Prior

We now discuss the use of prior information for super-resolution. Indeed those
HR patches in the training set Ω can be considered as some kind of prior.
However, due to the computation complexity, most super-resolution methods,
including ours, can manage only small patches. Otherwise, the variances of image
patches would cause Ω to grow into an infeasible size. Due to such limitation,
there are some features of large scale as well as high frequencies cannot be
recovered by techniques that work on small patches. One example can be seen in
Figure 2c. To account for such artifacts, we adopt the concept of Gestalt [2], [4].
The Gestalt theory contains many rules to describe human visual perceptions,
including symmetry, closeness, and good continuation, to name a few. In this
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Fig. 2. Dragonfly. (a) The original low-resolution image. (b) Reconstruction errors of
IBP and ours. (c) Our approach with S = 0. (d) Our approach with Gestalt prior.

work we adopt only the good continuation as the large-scale prior information
for super-resolution in that properties such as symmetry are often well preserved
in LR images, and can be recovered even by simple magnifying schemes.

One way to keep good continuation is to make H smoother along edges and
ridges. Thus we choose to define the matrix S in (9) to be the directional deriva-
tive operator pixelwise according to the main (edge) direction multiplied by the
confidence. More precisely, at pixel j, large confidence cj means a high probabil-
ity of having an edge around j in the main direction dj . We model this claim as
an attributed graph that is similar to a Gestalt field [9]. (A Gestalt field is actu-
ally a specific mixed Markov model [8] where each address node is connected to
only one regular node.) In the generated attributed graph G = (V, E), each node
v represents a site on the desired H and has attributes (d, c, {a1, ..., a4}). The
attributes d and c mean the main edge direction and the confidence of the patch,
respectively. The attributes {a1, ..., a4} are address variables whose values are
neighbors of v (if an edge goes through them) or nil. Intuitively, d and c should
be compatible with the neighbors of v in Ω as well as the neighbors indicated
by {a1, ..., a4} in the graph. We can therefore define two compatible functions.
Like Guo et al. [9], we propose a greedy method to decide (d, c, {a1, ..., a4}). (See
Algorithm 2.) However, we discrete the direction into 16 values, and specify the
marching order to be the same as the decreasing order of confidence values. In
Algorithm 2, the main directions and confidences of sampled HR patches are
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Algorithm 2. Constructing Partial Gestalt Prior
Input : Qi for each site of H .
Output: (d, c, {a1, ..., a4}) for each site of H .

For each site i, initialize three directions and a confidence c by referencing Qi.
Repeat

Find the site that has the largest confidence value c among unvisited sites.
Decide d and {a1, ..., a4} such that the local compatibility can be achieved.
Update the main direction d and the confidence value c of this site.
Mark this site as visited.

Until All sites are visited

detected by a set of the first and second Gaussian directional-derivative filters
[19]. The improvement owing to adding this prior term can be seen in Figure 2d.

5 Implementation and Discussions

As described before, we optimize F in (6) with respect to wi and to H , re-
spectively and iteratively. Given H , the derivative of F with respect to wi is

∂F

∂wi
= 2

[
PT

i , λ1Q
T
i

] [ Pi

λ1Qi

]
wi − 2

[
PT

i , λ1Q
T
i

] [ li
λ1hi

]
. (12)

Hence the optimization with respect to wi can be achieved directly. Given wi,
the derivative of F with respect to H is

∂F

∂H
= λ2

1 [V1, ..., VXH ]T + 2λ2
2S

T SH, (13)

where
Vj =

∑
i∈Cj

(−2eT
g(j,i)Qiwi + 2Hj), for j = 1, . . . ,XH, (14)

Cj means the set of sites that cover jth pixel of H , and g(j, i) indicates the order
of the jth pixel of H in site i. If S is the zero matrix or λ2 = 0, optimizing F
according to H can also be done in one step. Otherwise, ST S is a very large
matrix and may be singular. In this case we implement a conjugate gradient
algorithm as suggested in [21].

5.1 Experimental Results

Due to the fact that humans are more sensitive to changes in luminance channel,
we only test our method on the luminance channel, and magnify the color channel
to the desired size through bicubic interpolation. Thus, after being preserved only
the luminance channel, the training images are blurred with a 5-by-5 Gaussian
kernel, and then downsampled into one third of the original sizes. In all our
experiments the LR patches are of size 4-by-4 and the HR patches are of size
8-by-8. The parameter λ1 is set to be

√
(4× 4)/(8× 8) to balance errors induced
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Fig. 3. The two training sets used for the results reported in this work

by (7) and (8). The other parameter λ2 is set as a relatively smaller number,
0.2λ1, because we believe that the information from the training set is more
important. We have run our algorithm over two classes of images. To enrich the
training set we shift the training images by 0 to 2 pixels in each direction before
the training set generating process, and produce nine times more patch pairs.
The experimental results can be seen in Figures 2 and 4. In each case we set K
(the number of neighbors) to be 20, and carry out the algorithm for 30 iterations.
For comparison, we also include the results by IBP and by Chang et al. [3] in
Figure 4. Overall, the super-resolution results by our method are of satisfactory
quality.

5.2 Discussions

We have proposed a new model for the single image super-resolution problem.
Our approach is motivated by the manifold property of LR and HR image
patches, and is fortified by the use of a three-layer Markov network. Through the
proposed framework, we can directly use the information from the training data,
and suppress the reconstruction error in the same time. The method thus has
the advantages of both recognition-based and reconstruction-based approaches.
Unlike [19], our direct energy minimization formulation guarantees reasonable
reconstruction errors so there is no need to worry about that the learned informa-
tion may be destroyed by depressing the reconstruction error. When compared
with [15], the convex energy function, defined in (6), for the Markov network
ensures better convergency property. The related work by Chang et al. [3] also
starts at the manifold assumption. Suppose we use the same features to measure
the distances between image patches. Then the super-resolution algorithm of
[3] in fact does similar effects as those produced by our algorithm at the first
iteration without using additional image prior.

A direct generalization of our method could be dealing with only primal sketch
patches [19]. Furthermore, since we update the high-resolution image pixelwise,
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Fig. 4. From top to bottom of both columns: the low-resolution images, the results by
IBP, the results by Chang et al. [3], and the results by our method
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the proposed approach can be more easily extended to handle multiple image
super-resolution than other recognition-based methods.
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Abstract. We present a theoretical analysis and a new algorithm for the
problem of super-resolution imaging: the reconstruction of HR
(high-resolution) images from a sequence of LR (low-resolution) images.
Super-resolution imaging entails solutions to two problems. One is the
alignment of image frames. The other is the reconstruction of a HR im-
age from multiple aligned LR images. Our analysis of the latter problem
reveals insights into the theoretical limits of super-resolution reconstruc-
tion. We find that at best we can reconstruct a HR image blurred by a
specific low-pass filter. Based on the analysis we present a new wavelet-
based iterative reconstruction algorithm which is very robust to noise.
Furthermore, it has a computationally efficient built-in denoising scheme
with a nearly optimal risk bound. Roughly speaking, our method could be
described as a better-conditioned iterative back-projection scheme with
a fast and optimal regularization criteria in each iteration step. Experi-
ments with both simulated and real data demonstrate that our approach
has significantly better performance than existing super-resolution meth-
ods. It has the ability to remove even large amounts of mixed noise
without creating smoothing artifacts.

1 Introduction

The problem of obtaining a super-resolution image from a sequence of low-
resolution images has been studied by many researchers in recent years. Most
super-resolution algorithms formulate the problem as a signal reconstruction
problem. Essentially these algorithms differ in two aspects: one is in how the
images of the sequence are aligned; the other is in how the high-resolution image
is reconstructed from the aligned image frames. Both issues are critical for the
success of the super-resolution reconstruction. In this paper we take a flow-based
approach to image alignment ([1, 2, 3, 4]). The focus of the paper is on the later
problem (Reconstructing HR from aligned LR images).

Iterative back-projection methods ([1, 5]) have been shown to be effective for
high-resolution image reconstruction. It is known, however, that the deblurring
process, which is part of this approach, makes it very sensitive to the noise.
Thus, the requirement of very accurate image alignment estimates limits its
practical use. Various regularization methods have been proposed to deal with
the noise issue. However, these methods either are very sensitive to the assumed
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noise model (Tikhonov regularization) or are computationally expensive (Total-
Variation regularization). See [6] for more details.

Our contributions in this paper are two-fold. First, we model the image forma-
tion procedure from the point of view of filter bank theory. Then based on this
new formulation, we provide an analysis of the limits of the high-resolution recon-
struction. The conclusion is that in general full recovery is not possible without
enforcing some constraints on the recovered images. At best we could reconstruct
the image convolved with a specific low-pass filter (namely 1

4 (1, 1) ⊗ (1, 1) for
the case of the Box-type PSF).

Second, based on our new formulation, we present a robust wavelet-based
algorithm to reconstruct the image. The iteration scheme in our algorithm is
inherently more robust to noise than that of classic back-projection methods
([1, 5]), since the projection matrix of our new back-projection scheme has a
better condition number. We will show that, both in theory and experiments, it
has better performance in suppressing the error propagation than other back-
projection iteration schemes.

Furthermore, our algorithm allows us to include a wavelet-based denoising
scheme in each iteration of the reconstruction which effectively removes the noise
without creating smoothing artifacts. The advantage of our denoising scheme
over regularization methods is that it is nearly optimal with respect to the risk
bound. That is, it has the theoretical minimal error in removing noises of un-
known models. Its effectiveness in removing mixed noises and relatively large
amounts of noise is demonstrated in experiments. It is worth mentioning that
our denoising scheme adds very little computational burden compared to other
complicated regularization methods. Briefly, our method could be described as
a generalized iterative back-projection method with a fast and optimal regular-
ization criteria in each iteration step.

Wavelet theory has previously been used for image denoising and deblurring
from static images ([7, 9]). However, it has not been studied much with respect
to the super-resolution problem. In recent work wavelet theory has been applied
to this problem in this sector i [10], but only for the purpose of speeding up the
computation. Our contribution lies in an analysis that reveals the relationship
between the inherent structure of super-resolution reconstruction and the the-
ory of wavelet filter banks. This relationship is fully exploited by using various
techniques from wavelet theory in the iterations of the reconstruction.

2 Analysis of Super-Resolution Reconstruction

2.1 Formulation of High-to-Low Image Formation

We first formulate the high-to-low image formation process. To simplify the ex-
position, in the following we only discuss 1D signals with resolution enhancement
by a factor 2. Later, without much difficulty, the analysis will be extended to
the 2D case with arbitrary resolution increase. Using Farsiu’s notation ([6]), the
image formation process in the pixel domain can be modeled as

y = σ[H ∗X(F (t))] + N, (1)
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where t is the spatial variable, X(t) is the continuous signal and y is the discrete
signal. H is the blurring operator (either optical blurring or motion blurring or
both), F is the geometric transform, N is the noise in the low-resolution image, σ
is the decimation operator, and “∗” is the convolution operator. Not considering
the noise, the high-resolution (HR) signal x and low-resolution (LR) signal y can
be defined as:

x = σ[X ], y = [σ[H ∗X(F (·))]] ↓2 . (2)

where ↓2 is the downsampling operator with rate 2.
Next we derive the relation between the LR signal y and the HR signal x.

Define the difference E(t) = X(F (t))−X(t), which is also called the optical flow.
For the simplicity of notation, here we assume a constant flow model E(t) = ε
with 0 ≤ ε < 2 on the denser grid of the HR image x. Thus, in the LR image
the flow is a sub-pixel shift (Recall a 1-unit shift on the coarse grid of y equals
a 2-unit shift on the fine grid of x). For the case of 0 ≤ ε < 1, the first-order
Taylor approximation of Equation (2) can be written as

y = [σ[H ∗ (X(t + ε)]] ↓2= [σ[H ∗X + H ∗ (εX ′)]] ↓2
= [σ[H ∗X + ε(H ∗X ′)]] ↓2= [σ[H ∗X + ε(H ′ ∗X)]] ↓2
= [σ[H ∗X ]] ↓2 +ε[σ[H ′ ∗X ]] ↓2,

The expression above in the pixel domain is then

y = [a ∗ x] ↓2 +ε[b ∗ x] ↓2, (3)

where a, b are discrete versions of the convolution kernels H and H ′ respectively.
For the case of 1 ≤ ε < 2, a similar argument yields

y = [a ∗ x(·+ 1)] ↓2 +(ε− 1)[b ∗ x(·+ 1)] ↓2 . (4)

Thus for any LR signal yk with general optical flow Ek(t), we have the approx-
imation of yk as either in the form of:

yk = [a ∗ x] ↓2 +εk ·∗[b ∗ x] ↓2
or in the form of:

yk = [a ∗ x(·+ 1)] ↓2 +(εk − 1) ·∗[b ∗ x(· + 1)] ↓2,
where ·∗ denotes the component-wise multiplication operator (to denote general
optic flow), and εk denotes the discrete sample of the optical flow Ek(t). Having
available the optical flow values εk for multiple low-resolution images yk, we can
extract the four components:

[a ∗ x] ↓2, [a ∗ x(· + 1)] ↓2
[b ∗ x] ↓2, [b ∗ x(·+ 1)] ↓2 .

(5)

As will be shown in the next subsection, the two filters a and b (which are
determined by the blurring kernel H and its derivative H ′) characterize the
super-resolution reconstruction.
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Let us next look at some examples of filters a and b for different blurring
kernels.

Example 1. Consider the box-type blurring kernel H = 1
2nχ[−n,n]. Let E(t) =

ε ≤ 1. Then we have

y(j) =
∫ ∞

−∞
χ(2j− t)X(F (t))dt =

1
2n

∫ 2j+n

2j−n

X(F (t))dt =
1
2n

∫ 2j+n

2j−n

X(t+ ε)dt.

Approximating the integration by quadrature rules, we obtain

y(j) =
1
2n

(
1
2
(1− ε)x(2j − n) +

n−1∑
i=−n+1

x(2j − i) +
1
2
(1 + ε)x(2j + n)).

Or equivalently,
y = [a ∗ x + ε(b ∗ x)] ↓2, (6)

where a and b are the following low-pass and high-pass filters respectively:

a =
1
4n

(1, 2, · · · , 2, 1), b =
1
4n

(−1, 0, · · · , 0, 1).

Example 2. Consider a Gaussian-type blurring kernel H . Using the Cubic Car-
dinal B-spline B(t) as approximation to the Gaussian function we have

y(j) =
∫ ∞

−∞
B(2j − t)X(F (t))dt.

Again, by the quadrature rule, we have the approximation

y =
∑

i

x(2j − i)(a(i)− εb(i)),

where a = 1
96 (1, 8, 23, 32, 23, 8, 1), b = 1

48 (3, 12, 15, 0,−15,−12,−3).

2.2 Analysis of the HR Reconstruction

Given multiple LR signals yk with different motions εk, theoretically we can
obtain two complete sequences a ∗ x and b ∗ x. An interesting question arises.
Without any assumption on the finite signal x, can we theoretically reconstruct
the signal sequence x from these two sequences a ∗ x and b ∗ x?

To answer this question, let us express the sequences in another form. Let us
write the Z-transform of a signal sequence x = {x(i)} as

x(z) =
∑

i

x(i)z−i.

Then with a(z) and b(z) being the Z-transforms of the filters a and b, the Z-
transforms of a ∗ x and b ∗ x are a(z)x(z) and b(z)x(z) respectively. Now the
question can be answered by investigating whether the polynomial equation

(a(z)x(z))u(z) + (b(z)x(z))v(z) = x(z), (7)
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is solvable for the two unknowns u(z) and v(z). Eliminating x(z) from both sides
of the equation (7) yields

a(z)u(z) + b(z)v(z) = 1. (8)

From the theory of Diophantine equation we know that

Lemma 1. Given two polynomials a(z) and b(z), Equation (8) is solvable if and
only if the greatest common divisor of a(z) and b(z) is a scalar, that is, a(z) and
b(z) are co-prime.

It is observed that a(z) and b(z) in our two examples (Example 1 and 2): both
have a common divisor

c(z) = (1 + z),

which can be seen from the fact that a(−1) = b(−1) = 0 and thus z = −1 is the
root of both a(z)and b(z). Thus for these blurring kernels we cannot perfectly
reconstruct x(z) from a(z)x(z) and b(z)x(z). This conclusion holds true not only
for our examples, but also for general blurring kernels, as we will show next.

We follow Baker’s modeling of the blurring kernel H ([11]). The blurring kernel
(Point spread function) is decomposed into two components:

H = Ω ∗ C,

where Ω(X) models the blurring caused by the optics and C(X) models the
spatial integration performed by the CCD sensor. Typically Ω is modeled by a
Gaussian-type function and C is modeled by a Box-type function. Notice that

H ′ = Ω′ ∗ C.

Thus we can express the corresponding discrete filters as:

a = � ∗ c; b = τ ∗ c,

where c is the discrete version of the spatial integration kernel C, and � and τ are
the discrete versions of H and H ′. Since a(z) and b(z) have a common divisor
c(z), we cannot reconstruct x(z) for general x(z), unless C is a Dirac function,
which generally is not true. Based on Lemma 1, we then have the following claim.

Claim 1. Given multiple LR finite signals yk, we can not perfectly reconstruct
the HR finite signal x without any assumptions on x. At most we can reconstruct
c ∗ x for some low-pass filter c. The corresponding Z-transform c(z) of c is the
greatest common divisor of a(z) and b(z), which includes the spatial integration
filter.

Notice that c is a low-pass FIR (finite impulse response) filter. To recover x from
c ∗ x, we have to apply a high-pass filter on c ∗ x and impose some boundary
condition on the signal x. Such a deblurring process generally is sensitive to the
noise. A reasonable strategy then is to modify our reconstruction goal during the
intermediate iterative reconstruction process. Instead of trying to reconstruct x,



300 H. Ji and C. Fermüller

we reconstruct c ∗ x in the iterative process, and we leave the recovery of x from
c ∗ x to the last step after finishing the iterative reconstruction.

Thus the modified HR signal to be reconstructed becomes x̃ = c ∗ x. The
corresponding equation for yk and x̃ is then:

yk = [� ∗ x̃] ↓2 +εk · [τ ∗ x̃] ↓2 (9)

or
yk = [� ∗ x̃(·+ 1)] ↓2 +(εk − 1) · [τ ∗ x̃(·+ 1)] ↓2,

where the Z-transform of � and τ are a(z) and b(z) divided by their greatest
common divisor c(z).

It is worth mentioning that we model the blurring procedure from HR to
LR by a first-order Taylor approximation. But our reasoning could easily be
extended to the modeling by higher-order Taylor approximations, leading to the
same conclusions.

3 Reconstruction Method

3.1 Reconstruction Based on PR Filter Banks

Introduction to PR filter banks. Before presenting our algorithm, we first
give a brief introduction to 2-channel PR (perfect reconstruction) filter banks
(see [12] for more details). A two-channel filter bank consists of two parts: an
analysis filter bank and a synthesis filter bank. In our case, the signal x̃ is first
convolved with a low-pass filter � and a high-pass filter h and then subsampled
by 2. In other words, we analyze the signal by an analysis filter bank. Then a
reconstructed signal x̂ is obtained by upsampling the signal by zero interpolation
and then filtering it with a dual low-pass filter g and a dual high-pass filter q.
In other words, we reconstruct the signal by synthesizing the output from the
analysis bank with a synthesis filter bank. See Fig. 1 for an illustration.

Fig. 1. Two-channel filter bank

Such a filter bank is called a PR filter bank if x̂ = x̃ for any input x̃. It is
known that (see [12]) the synthesis filters {�, h} of a perfect reconstruction filter
bank have to satisfy the following condition:

�(z)h(−z)− �(−z)h(z) = zmfor some integer m (10)

and the corresponding synthesis filters amount to

g(z) = h(−z); q(z) = −(�(−z)).
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Thus, given any low-pass filter �(z), we can find the corresponding high-pass
filter h(z) such that we have a PR filter by solving the linear system (10).

Iterative reconstruction scheme. We have available a number of signals
yk and the corresponding estimates of the optic flow values εk. We also have
estimates of the convolution kernels � and τ . Let then � be the low pass filter
of our PR filter bank, and we compute the corresponding h (Note h may be
different from τ).

Recall that for each LR signal yk, we have

yk = [� ∗ x̃] ↓2 +εk ·∗[τ ∗ x̃] ↓2 .

Thus [� ∗ x̃] ↓2 amounts to

[� ∗ x̃] ↓2= yk − εk ·∗[τ ∗ x̃] ↓2 . (11)

Notice that the process of a signal x̃ passing through a PR filter bank as shown
in Fig. 1 can be expressed as:

x̃ = g ∗ [(� ∗ x̃) ↓2] ↑2 +q ∗ [(h ∗ x̃) ↓2] ↑2 . (12)

Combining Equation (11) and (12), we obtain the iterative reconstruction of x̃
from K LR signals yk as follows: At step n + 1

x̃n+1 = q ∗ [(h ∗ x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2
)
. (13)

Relation to other back-projection methods. Applying Equation (12), we
can rewrite Equation (13) in the form

x̃n+1 = (x̃n − g ∗ [� ∗ (x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2
)

= x̃n + g ∗
( 1

K

K∑
k=1

[yk − (� ∗ x̃n + εk · ∗(τ ∗ x̃n)) ↓2] ↑2
)
.

It can be seen that the iteration scheme presented here falls in the class of
back-projection methods. But it has advantages over the usual back-projection
iterations. Consider the well-known method by Irani and Peleg [1]. Its iteration
can be described as:

xn+1 = xn +
1
K

K∑
k=1

T−1
k

(
((yk − [� ∗ Tk(xn)] ↓2) ↑2) ∗ p

)
, (14)

where Tk is the geometric transform between yk and x̃, and the high-pass filter
p is the deblurring kernel. Notice that the two methods differ in the deblurring
kernel: one is g with g(z) = h(−z) defined in Equation (10); the other is p in
Equation (14), the approximate inverse filter of �.
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The requirement on p in (14) is

||δ − � ∗ p|| < 1, (15)

where δ is the ideal unit impulse response filter. In other words, p should be a
good approximation for the inverse of �. In comparison, g in our iteration only
needs to satisfy:

�(z)g(−z)− �(−z)g(z) = zm, (16)

that is, �(z)g(−z) either has to have no odd-order components or no even-order
components. Briefly, Iteration (14) requires a deblurring kernel p such that � ∗ p
has small coefficients everywhere but the origin. In comparison, Iteration (13)
only requires a kernel g with half the coefficients of � ∗ g being zero.

It is easy to see that the noise will be propagated exponentially as O(‖p‖n) in
(14) and as O(‖g‖n) in (13). Generally the flexibility of g(z) makes it possible
to design a g that has much smaller norm than p. This leads to much better
resistance to noise propagation. Here is an example: Consider � = 1

4 (1, 2, 1).
Then

g = (−1/8,−1/4, 3/4,−1/4,−1/8)

is a dual PR filter for � with

�(z)g(−z) = −1 + 9z−2 + 16z−3 + 9z−4 − z−6.

It is easy to check that ‖g‖2 is around 0.85. The minimum for the norm of all
filters with the same length as g is around 1.1. The corresponding p is

p = (
1
2
,−2

3
,
4
3
,−2

3
,
1
2
).

This clearly indicates that our iteration scheme is more robust to noise than the
usual back-projection scheme.

3.2 Algorithm on 2D Images with Denoising

Next we generalize the algorithm to 2D images. Furthermore we introduce a
denoising process during the iterative reconstruction to suppress the noise in the
optical flow estimation.

Extension to 2D image. All the previous analysis can be generalized using
the tensor product. By an argument similar as for the 1D case, we approximate
the LR image ILR with the HR image IHR as follows:

ILR = [(a⊗ a) ∗ IHR + u ·∗((a⊗ b) ∗ IHR) + v · ∗((b ⊗ a) ∗ IHR)] ↓2,

where “⊗” is the Kronecker tensor product and (u, v) is the 2D optical flow
vector. Then the 2D analysis bank is

Low-pass filter: L = �⊗ �,
High-pass filters: H1 = �⊗ h, H2 = h⊗ �, H3 = h⊗ h
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and the 2D synthesis filter bank is

Low-pass filter: G = g ⊗ g,
High-pass filters: G1 = g ⊗ q, G2 = q ⊗ g, G3 = q ⊗ q.

It is easy to verify that the 2D filter bank defined above is a perfect reconstruction
filter bank with the analysis filter bank {L, Hi} and the reconstruction filter bank
{G, Qi}. Then generalizing (13), the iterative equation for the reconstruction of
the HR image Ĩ from LR images ILR

k amounts to:

Ĩn+1 =
∑3

i=1 Qi ∗ [(Hi ∗ Ĩ(n)) ↓2] ↑2
+ G ∗ 1

K

(∑K
k [ĨLR

k − u ·∗((�⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ �) ∗ Ĩ(n)) ↓2] ↑2 )

Recall that here Ĩ is the blurred version of the true I with Ĩ = (c⊗ c) ∗ I.

Modified algorithm with denoising process. There always is noise in the
estimated flow u, v. However, the deconvolution operator could make the HR
image reconstruction very sensitive to such noise. It is known that the noise
variance of the solution will have hyperbolic growth when the blurring low-pass
filter has zeros in the high frequencies. Thus, denoising is necessary in order to
suppress the error propagation during the iterative reconstruction.

To suppress the noise, we introduce a wavelet denoising scheme which sub-
tracts some high-frequency components from Ĩn. Briefly, we first do a wavelet
decomposition of the high-pass response, then apply a shrinkage of wavelet co-
efficients to the decomposition, and then reassemble the signal.

Our iteration scheme with built-in denoising operator amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [Ψ(Hi ∗ Ĩ(n)) ↓2] ↑2
+ G ∗ 1

K

(∑K
k [ĨLR

k − u ·∗((�⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ �) ∗ I(n)) ↓2] ↑2
)
.

The denoising operator Ψ defined in the equation above is

Ψ(Hi ∗ Ĩn) = G ∗ [
(
L ∗ (Hi ∗ Ĩn)

) ↓2] ↑2 +
3∑

i=1

[Qi ∗
(
Γ [Hi ∗ (Hi ∗ Ĩn)]

)
↓2] ↑2,

where Γ is the thresholding operator. Here we use the following soft-denoising
scheme ([12]):

Γ (ν) =
{

Sign(ν)(ν − μ) if |ν| > μ
0 Otherwise.

Briefly the process of super-resolution is:

1. Compute the affine flow between every frame and the key frame.
2. Transform the affine flow to sub-pixel shifts on the finer grid of the HR

image.
3. Apply the iteration process described above to the key frame to obtain the

HR image.
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The algorithm above could easily be adapted to different blur filters by modifying
the corresponding dual filters G, Qi. Also, here we only consider a resolution
increase by a factor 2. Any other resolution increase could easily be achieved by
changing the two-channel PR filter bank to an M-channel PR filter bank.

Relation to regularization methods. One popular denoising technique used
for robust reconstruction is regularization ([13]). Recall that back-projection
methods basically find x̃ by minimizing

∑K
k ‖yk − ỹk(x̃)‖22, where ỹk(x̃) is the

LR signals derived from our estimated x̃. Such a least square problem usually is
ill-conditioned. One way to increase the stability is to enforce a regularization
term and solve:

min
x̃

K∑
k

‖yk − ỹk(x̃)‖22 + α‖Φ(x̃)‖,

where Φ is some regularization function and α is some pre-defined smoothing
factor. If the regularization is a least squares problem, we call it a Tikhonov-type
regularization. The advantage is its simplicity and efficiency, the disadvantage is
its relatively poor performance. A nonlinear diffusion regularization, like Total
Variation regularization usually performs better, but is computational expensive.

Wavelet denoising is closely related to nonlinear diffusion regularization. [14]
shows that a simple soft-denoising with Haar wavelets (� = 1

2 (1, 1), h = 1
2 (1,−1))

is equivalent to Total Variation based nonlinear diffusion (Φ(x̃) = ‖x̃‖1) for a
two-pixel signal. Roughly speaking, the wavelet denoising process in our recon-
struction is comparable to some nonlinear diffusion regularization schemes in its
ability to suppress the error propagation. However it doesn’t have the computa-
tional burden of most nonlinear diffusion regularizations, since it only needs a
linear wavelet decomposition over one level. In comparison nonlinear regulariza-
tions need to solve a nonlinear optimization.

4 Experiments and Conclusion

We compare our algorithm’s high-resolution reconstruction to standard methods
using both simulated and real data.

Simulated data. We simulated 4 low-resolution images (16 × 16) from a high
resolution image by shifting, blurring and downsampling. The blurring filter is

� =
1
16

⎛⎝1 2 1
2 4 2
1 2 1

⎞⎠ .

Noise of three types of sources was simulated:

1. Error in motion estimation. It is modeled by local Gaussian white noise with
parameter σ. The local covariance matrix is made up by the magnitudes of
the image gradients.

2. Noise in pixel formation. We added a Gaussian white noise with parameter
γ to the pixel values.



Wavelet-Based Super-Resolution Reconstruction: Theory and Algorithm 305

3. Error in PSF modeling. We also checked how error in the PSF modeling influ-
ences the performance. The approximated PSF �̂ used in the reconstruction
was

�̂ =
1
16

⎛⎝1 1 1
1 8 1
1 1 1

⎞⎠ .

We compared our wavelet-based method to the popular “POCS” back-
projection method ([8]) enforced by Tikhonov regularization (See Fig. 2). It
is possible that enforcing Total Variation regularization would give a bit better
results. However, it requires solving a nonlinear minimization over each iterative
step during the reconstruction, which is very computational expensive. In our
implementation, the regularization term is the 2-norm of the Laplacian smooth-
ness constraint with parameter α = 1.

Fig. 3 demonstrates how well the wavelet-based method performs for various
noise settings. Performance is measured by the SNR (Signal-to-Noise
ratio) of the reconstructed image to the true image, which is defined as: SNR =
20 log10

‖x‖2
‖x−x̂‖2

, where x̂ is the estimation for the true image x. Fig. 3 clearly
indicates the advantage of our wavelet-based method in suppressing the noise.
Especially when noise is large, the boost in performance is significant.

Real data. We used an indoor sequence with a paper box (Fig. 4) of 13 im-
age frames. An interesting planar region was chosen manually. Fig. 5 and Fig. 6

(a) Original image (b) Noisy LR image (c) Wavelet (d) Tikhonov

Fig. 2. The HR images (c) and (d) are reconstructed from four LR images by five
iterations. (c) is reconstructed by our method. (d) is reconstructed by POCS method
with Tikhonov regularization. The motion noise is local Gaussian noise with σ = 0.2.
The image formation noise is Gaussian noise with γ = 0.01. The approximation �̂ is
used in the reconstruction instead of the true PSF �.

(a) Comp. for flow noise (b) Comp. for formation noise (c) Comp. for PSF error

Fig. 3. (a) and (b) Compare two methods for various amounts of motion noise and
image formation noise. The reconstructed image is obtained by 5 iterations. The x-axis
denotes the variance of the noise, the y-axis denotes the SNR of the reconstruction. (c)
compares the performance of two methods over the iterations for PSF model error.The
x-axis denotes the iteration number, the y-axis denotes the SNR of the reconstruction.
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(a) Reference frame (b) LR planar image region

Fig. 4. The reference image frame from the video and its selected region

(a)Interpolation (b) POCS (c) Wavelet

Fig. 5. Comparison of one reconstructed HR region for various methods

(a)Interpolation (b) POCS (c)Wavelet

Fig. 6. Comparison of another reconstructed HR region for various methods

show the comparisons of four different methods for different regions. Here the
reconstructed HR images double the resolution of the LR images. The HR im-
age in Fig. 5-6(a) were obtained by cubic interpolation from a single LR image.
In Fig. 5-6(b) we used the POCS method, where the flow field is estimated
by an affine motion model. Fig. 5-6(c) show the results from our reconstruction
scheme. The difference can be visually evaluated. Clearly, there is large improve-
ment from (b) to (c) in Fig. 5 and Fig. 6. The letters in Fig. 5(c) and Fig. 6(c)
are the clearest, and there are minimal artifacts around the edges.

Summary. We have presented a theoretical analysis and a new algorithm for
super-resolution problem based on wavelet theory. It has been demonstrated
both in theory and experiments that the proposed method in this paper is very
robust to noise without sacrificing efficiency. The reconstruction scheme allows
for super-resolution reconstruction from general video sequences, even when the
estimated optical flow is very noisy.
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Abstract. Many linear discriminant analysis (LDA) and kernel Fisher
discriminant analysis (KFD) methods are based on the restrictive as-
sumption that the data are homoscedastic. In this paper, we propose
a new KFD method called heteroscedastic kernel weighted discriminant
analysis (HKWDA) which has several appealing characteristics. First,
like all kernel methods, it can handle nonlinearity efficiently in a disci-
plined manner. Second, by incorporating a weighting function that can
capture heteroscedastic data distributions into the discriminant criterion,
it can work under more realistic situations and hence can further enhance
the classification accuracy in many real-world applications. Moreover, it
can effectively deal with the small sample size problem. We have per-
formed some face recognition experiments to compare HKWDA with
several linear and nonlinear dimensionality reduction methods, showing
that HKWDA consistently gives the best results.

1 Introduction

In many classification applications in machine learning and pattern recognition,
dimensionality reduction of the input space often plays an important role in re-
ducing the complexity of the classification model and possibly leading to higher
classification accuracy in the lower-dimensional feature space. This process is
typically referred to as feature extraction or feature selection1. Linear discrim-
inant analysis (LDA) is a classical linear dimensionality reduction method for
feature extraction that has been used successfully for many classification appli-
cations. However, traditional LDA suffers from at least two limitations. First,
the solution of LDA is optimal only when the data distributions for different
classes are homoscedastic. In particular, the probability density functions of all
classes are assumed to be Gaussian with identical covariance matrix. Second, for
multi-class problems involving more than two classes, the linear transformation
of traditional LDA tends to preserve the inter-class distances of well-separated
classes in the input space at the expense of classes that are close to each other
leading to significant overlap between them, so the overall discrimination ability
is further degraded. To overcome the first limitation, the maximum likelihood
1 Feature selection may be regarded as a special case of feature extraction in which

each feature is either selected or not selected as a binary decision.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 308–320, 2006.
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approach [1] and mixture discriminant analysis [2] have been proposed. More
recently, Loog et al. [3] proposed a heteroscedastic extension to LDA based on
the Chernoff criterion. Some methods have also been proposed to overcome the
second limitation. For example, [4, 5, 6] proposed using a monotonically decreas-
ing weighting function based on Euclidean distance to balance the contribution
of different class pairs to the total optimization criterion. Loog et al. [7] pro-
posed an approximate pairwise accuracy criterion which defines the weighting
function based on Bayesian error information of the class pairs. More recently,
Qin et al. [8] proposed the weighted pairwise Chernoff criterion which combines
the strengths of the earlier works of Loog et al. [3, 7] while it overcomes the
two limitations above simultaneously. In fact, the methods in [4, 5, 6, 7] may be
regarded as special cases of [8].

On the other hand, those LDA-based algorithms generally suffer from the so-
called small sample size problem which arises in many real-world applications
when the number of examples is smaller than the input dimensionality, i.e., the
data are undersampled. A traditional solution to this problem is to apply PCA
in conjunction with LDA, as was done for example in Fisherfaces [9]. Recently,
more effective solutions, sometimes referred to as direct LDA (DLDA) methods,
have been proposed [10, 11, 12, 13, 14]. All DLDA methods focus on exploiting the
discriminatory information in the null space of the within-class scatter matrix
where most discriminatory information that is crucial for classification exists.

While LDA-based methods perform well for many classification applications,
their performance is unsatisfactory for many other classification problems in
which nonlinear decision boundaries are necessary. Motivated by kernel machines
such as support vector machine (SVM) and kernel principal component analysis
(KPCA) [15], nonlinear extension of LDA called kernel Fisher discriminant anal-
ysis (KFD) by applying the “kernel trick” has been shown to improve over LDA
for many applications [16, 17, 18, 19, 20, 21, 22, 23, 24]. The basic idea of KFD is
to map each input data point x via a nonlinear mapping φ implicitly to a feature
space F and then perform LDA there. Mika et al. [16] first proposed a two-class
KFD algorithm which was later generalized by Baudat and Anouar [17] to give
the generalized discriminant analysis (GDA) algorithm for multi-class problems.
Subsequently, a number of KFD algorithms [18, 19, 20, 21, 22, 23, 24] have been
developed. However, these KFD-based algorithms suffer from the small sample
size problem a lot more than the LDA-based ones since the kernel-induced fea-
ture space is typically of very high or even infinite dimensionality. Many methods
have been proposed to address this problem. Mike et al. [16] proposed adding a
small multiple of the identity matrix to make the inner product matrix invert-
ible. Baudat and Anouar [17] and Xiong et al. [18] used QR decomposition to
avoid the singularity of the inner product matrix. Park et al. [19] proposed the
KFD/GSVD algorithm by employing generalized singular value decomposition
(GSVD). Yang [20] adopted the technique introduced in Fisherfaces [9], i.e., ker-
nel Fisherfaces. Lu et al. [21] proposed the kernel direct discriminant analysis
(KDDA) algorithm based on generalization of the LDA algorithm in [11]. Re-
cently, [22, 23] presented a further enhanced method called the kernel generalized
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nonlinear discriminant analysis (KGNDA) algorithm which is based on the theo-
retical foundation established in [24]. More specifically, it attempts to exploit the
crucial discriminatory information in the null space of the within-class scatter
matrix in the feature space F .

Similar to traditional LDA, however, most existing KFD-based algorithms,
including KGNDA, are not optimal under the multi-class case as they tend to
overemphasize the classes that are more separable and at the same time they
are incapable of dealing with heteroscedastic data that are commonly found in
real-world applications. In this paper, based on the idea of weighted pairwise
Chernoff criterion proposed in [8], we further improve the overall discrimination
ability of KGNDA by proposing a novel KFD algorithm called heteroscedastic
kernel weighted discriminant analysis (HKWDA). We study the combination of
the weighted pairwise Chernoff criterion and nonlinear techniques based on KFD
directly, as the linear case can simply be seen as a special case when the mapping
is linear, i.e., φ(x) = x. Our method mainly focuses on improvement of the
discriminatory information in the null space of the within-class scatter matrix, for
two main reasons. First, this discriminatory information is crucial for improving
the classification accuracy. Second, improving this discriminatory information is
also the focus of other related works [10, 11, 12, 13, 14, 21, 22, 23, 24]. As a result,
our proposed method has several appealing characteristics. First, like all kernel
methods, it can handle nonlinearity efficiently in a disciplined manner. Second,
by incorporating a weighting function that can capture heteroscedastic data
distributions into the discriminant criterion, it can work under more realistic
situations and hence can further enhance the classification accuracy in many
real-world applications. Moreover, it can effectively deal with the small sample
size problem. To demonstrate the efficacy of HKWDA, we compare it with several
existing dimensionality reduction methods on face recognition where both the
nonlinearity problem and the small sample size problem generally exist.

2 Existing Kernel Fisher Discriminant Analysis
Algorithms

As discussed above, KFD algorithms essentially perform LDA in the feature
space F . Computation of the inner product of two vectors in F does not require
applying the nonlinear mapping φ explicitly when the kernel trick is applied
through using a kernel function k(x,y) = φ(x)T φ(y). We regard a matrix as
an operator in the feature space F which is a Hilbert space. Moreover, for any
operator A in a Hilbert space H (which may be the feature space F), we let
A(0) denote the null space of A, i.e., A(0) = {x|Ax = 0}, and A⊥(0) denote
the orthogonal complement space of A(0), i.e., A(0)

⊕
A⊥(0) = H.

Let xi (i = 1, . . . , N) denote N points in the training set X . We partition
X into c disjoint subsets Xi, i.e., X =

⋃c
i=1 Xi, where Xi consists of Ni points

that belong to class i with N =
∑c

i=1 Ni. The between-class scatter opera-
tor Sb, within-class scatter operator Sw, and population scatter operator St

can be expressed as follows [24]: Sb = 1
N

∑c
i=1 Ni(mi −m)(mi −m)T , Sw =
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1
N

∑c
i=1

∑
xj∈Xi

(φ(xj)−mi)(φ(xj)−mi)T , and St = Sb+Sw = 1
N

∑N
i=1(φ(xi)−

m)(φ(xi)−m)T , where mi = 1
Ni

∑
xj∈Xi

φ(xj) denotes the sample mean of class

i in F and m = 1
N

∑N
i=1 φ(xi) denotes the sample mean of all N points in F .

We maximize the following criterion function to find the optimal coefficients w
for the discriminants:

J(w) =
wT Sbw
wT Sww

. (1)

However, many algorithms [16, 17, 18, 19, 20, 21] presented for KFD have not ef-
fectively solved the small sample size problem with respect to (5) and they gen-
erally discard the intersection space Sw(0)

⋂
S⊥

b (0) which potentially contains
useful discriminatory information that can help to improve the classification ac-
curacy. Recently, KGNDA was proposed to solve this problem [22, 23, 24]. To
prevent the loss of crucial discriminatory information, the procedure of comput-
ing optimal discriminant coefficients in F , which essentially can be considered as
a nonlinear extension of DLDA [10, 12, 13, 14], is applied in KGNDA. KGNDA
is based on the assumption that discriminatory information in F can be ob-
tained from the intersection space Sw(0)

⋂
S⊥

t (0), since the intersection space
Sw(0)

⋂
S⊥

t (0) is equivalent to the intersection space Sw(0)
⋂

S⊥
b (0) in practice.

To obtain Sw(0)
⋂

S⊥
t (0), KGNDA first computes S⊥

t (0) by the eigenanalysis of
St in F (which essentially performs KPCA), and then obtains this intersection
space by the eigenanalysis of the projection of Sw in S⊥

t (0). Since Sw(0)
⋂

S⊥
t (0)

can be obtained, KGNDA computes the discriminant coefficients in this inter-
section space without discarding the useful discriminatory information there.
Besides this crucial discriminatory information in Sw(0)

⋂
S⊥

t (0), KGNDA also
obtains some other discriminatory information in S⊥

w(0)
⋂

S⊥
t (0) at the same

time. More details can be found in [22, 23, 24]. Since it is generally believed that
the subspace Sw(0)

⋂
S⊥

b (0) or Sw(0)
⋂

S⊥
t (0) contains most discriminatory in-

formation for classification, many recently developed discriminant analysis algo-
rithms [10, 11, 12, 13, 14, 21, 22, 23, 24, 25] actually mainly focus on this subspace.

3 Our Heteroscedastic Kernel Weighted Discriminant
Analysis Algorithm

Since KFD is essentially LDA in the feature space F , the two limitations of
traditional LDA, i.e., data homoscedasticity assumption and overemphasis on
well-separated classes, as discussed in Section 1 are still applicable here. In this
section, we present our HKWDA algorithm based on the weighted pairwise Cher-
noff criterion, by incorporating into the discriminant criterion in F a weighting
function that does not rely on the restrictive homoscedasticity assumption. The
theoretical results outlined in this section can be proved by applying tools from
functional analysis in the Hilbert space, but their proofs are omitted here due
to space limitation.

Based on the multi-class Chernoff criterion presented in [3], we replace the con-
ventional between-class scatter operator Sb by a positive semi-definite between-
class operator So as defined below:
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So =
1

N2

c∑
i=1

c∑
j=i+1

NiNjS1/2
w {(S−1/2

w Si,jS−1/2
w )−1/2S−1/2

w (mi −mj)×

(mi −mj)T S−1/2
w (S−1/2

w Si,jS−1/2
w )−1/2 +

1
πiπj

[log(S−1/2
w Si,jS−1/2

w )−

πi log(S−1/2
w SiS−1/2

w )− πj log(S−1/2
w SjS−1/2

w )]}S1/2
w , (2)

where πi = Ni/(Ni + Nj) and πj = Nj/(Ni + Nj) are the prior probabilities of
classes i and j, respectively, Si,j = πiSi + πjSj , and Si and Sj the covariance
operators of classes i and j, respectively. The detailed derivation is omitted here
but can be found in [3].

Although the multi-class Chernoff criterion can effectively handle heterosceda-
stic data, it still cannot overcome the second limitation mentioned above. More-
over, direct computation of So in F is inconvenient or even computationally
infeasible. To overcome the second limitation, we introduce a weighting func-
tion to the discriminant criterion as in [4, 5, 7], where a weighted between-class
scatter operator is defined to replace the conventional between-class scatter op-
erator. To overcome both limitations and make the computation in F tractable
simultaneously, we define a weighted between-class scatter operator SB on the
Chernoff distance measure in F based on the previous work in [3, 4, 5, 7, 8]:

SB =
1

N2

c−1∑
i=1

c∑
j=i+1

NiNjw(di,j)(mi −mj)(mi −mj)T , (3)

with the weighting function defined as w(di,j) = 1
2d2

i,j
erf( di,j

2
√

2
), where erf(z) =

2√
π

∫ z

0 e−t2dt is the pairwise approximated Bayesian accuracy and di,j =
πiπj

2 (mi − mj)S−1
i,j (mi − mj) + 1

2 (log |Si,j | − πi log |Si| − πj log |Sj |) is the
pairwise Chernoff distance measure between the means of classes i and j in
F . From the definition of the weighting function w(di,j), it can be seen that
classes that are closer together in the feature space and thus can potentially
impair the classification performance should be more heavily weighted in the
input space. In addition, by considering the pairwise Chernoff distance, the het-
eroscedastic characteristic can be explicitly taken into account. One method for
computing the Chernoff distance between two classes in the feature space has
been presented in [26], which is based on the kernel extension of the probabilistic
principal component analysis [27].

Based on the weighted between-class scatter operator SB defined in (3), we
define a new population scatter operator ST = SB +Sw. Same as the traditional
scatter operators, the new scatter operators satisfy the following properties.

Lemma 1. Both the operators SB and ST are

1. bounded,
2. compact,
3. self-adjoint (symmetric), and
4. positive on the Hilbert space F .
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From Lemma 1 and [24], we define our new kernel discriminant criterion as
follows.

Definition 1. The weighted pairwise Chernoff criterion in F is defined as

J1(w) =
wT SBw
wT Sww

or J2(w) =
wT SBw
wT ST w

. (4)

From [21], both criteria are equivalent in that they should lead to the same
solution. According to Lemma 1, Definition 1 and the recent work in [22, 23, 24],
we assume the crucial discriminatory information with respect to J1(w) or J2(w)
only exists in the intersection space Sw(0)

⋂
S⊥

B(0).

Lemma 2. The space Sw(0)
⋂

S⊥
B(0) is equivalent to the space Sw(0)

⋂
S⊥

T (0).

From Lemma 2, the crucial discriminatory information can also be obtained from
the intersection space Sw(0)

⋂
S⊥

T (0).2 However, it is intractable to compute this
intersection space for two reasons. First, it is intractable to compute Sw(0) since
the dimensionality of F may be arbitrarily large or even infinite. Second, it is
intractable to compute S⊥

T (0) by the eigenanalysis of ST , since ST = SB + Sw.
Fortunately, we note the following two lemmas.

Lemma 3. The discriminant vectors with respect to J1(w) and J2(w) can be
computed in the space S⊥

T (0) without any loss of the discriminatory information.

Lemma 4. The space S⊥
T (0) is equivalent to the space S⊥

t (0).

According to Lemma 3, it is more reasonable to first compute S⊥
T (0). Moreover,

from Lemma 4, we can use Sw(0)
⋂

S⊥
t (0) in place of Sw(0)

⋂
S⊥

T (0).
From KGNDA [22, 23, 24], we can compute the intersection space Sw(0)

⋂
S⊥

t (0)
by the eigenanalysis of St and Sw in F , as follows:

– Eigenanalysis of St in F :
To obtain S⊥

t (0), we need to compute the orthonormal basis of S⊥
t (0) which

can be obtained by applying KPCA. Then, St in (4) can be rewritten as:

St =
N∑

i=1

φ̄(xi)φ̄(xi)T = ΦtΦ
T
t , (5)

where φ̄(xi) =
√

1/N(φ(xi)−m) and Φt = [φ̄(x1), . . . , φ̄(xN )]. It is generally
believed that direct computation of the orthonormal basis is intractable,
since the order of the operator St is arbitrarily large or even infinite in F .
One solution is to compute the eigenvectors and eigenvalues of N×N matrix
ΦT

t Φt [22, 23, 24, 26].
For all training examples {φ(xi)}N

i=1 in F , we can define an N ×N kernel
matrix K as K = [kij ]N×N , where kij = φ(xi)T φ(xj). Hence, by the kernel
trick, ΦT

t Φt can be expressed as
2 In fact, direct computation of S⊥

B(0) will lead to some loss of the crucial discrimina-
tory information. See [23, 25] for analysis of KDDA [21].
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ΦT
t Φt =

1
N

[
K− 1

N
(K1N×N + 1N×NK) +

1
N2 1N×NK1N×N

]
, (6)

where 1N×N is an N×N matrix with all terms being one. Let λi and
ei (i = 1, . . . , m) be the ith positive eigenvalue and the corresponding eigen-
vector of ΦT

t Φt, respectively. According to [22, 23, 24, 26], it is clear that
vi = Φteiλ

−1/2
i (i = 1, . . . , m) constitute the orthonormal basis of S⊥

t (0).

– Eigenanalysis of Sw in F :
Projecting Sw onto the subspace spanned by vi = Φteiλ

−1/2
i (i = 1, . . . , m),

it is clear that the projection S̄w of Sw in this subspace can be expanded as

S̄w = VT SwV = ET ΞT ΞE. (7)

Here, V = [v1, . . . ,vm], E = [e1λ
−1/2
1 , . . . , emλ

−1/2
m ], and Ξ = K/N −

1N×NK/N2 −AN×NK/N + 1N×NKAN×N/N2, where AN×N = diag(A1,
. . . ,Am) is a block-diagonal matrix with Ai being an Ni ×Ni matrix with
all its terms equal to 1/Ni.

Let P = [γ1, . . . ,γl] be the corresponding eigenvectors of the zero eigen-
values of S̄w. So it is clear that Sw(0)

⋂
S⊥

T (0) can be spanned by VP.
Then, the optimal discriminant vectors with respect to J1(w) or J2(w) can
be computed in Sw(0)

⋂
S⊥

T (0) without the loss of crucial discriminatory in-
formation. From [22, 23, 24], since the between-class distance is equal to zero
in Sw(0)

⋂
S⊥

T (0), the weighted pairwise Chernoff criterion in (9) can be re-
placed by Ĵ(w) = PT VT SBPV. By the kernel trick, it can be expanded as:

Ĵ(w) = PT VT SBVP = PT ET

⎡⎣c−1∑
i=1

c∑
j=i+1

(√
NiNj

N3/2 w(di,j)ZT
i,jZi,j

)⎤⎦EP,

(8)
where P = [γ1, . . . ,γl], V = [v1, . . . ,vm], E = [e1λ

−1/2
1 , . . . , emλ

−1/2
m ],

Zi,j = KLi + HKLj − KLj − HKLi, H is an N × N matrix with all
terms being 1/N , Li is an N × 1 matrix where the terms corresponding to
class i are 1/Ni and the remaining terms are zero. It is clear that the matrix
PT VT SBVP is a tractable l× l matrix. Let zi (i = 1, . . . , l) be the eigenvec-
tors of PT VT SBVP, sorted in descending order of the corresponding eigen-
values λi. According to [22, 23, 24], it is clear that Yi = VPzi (i = 1, . . . , l)
constitute the optimal discriminant vectors with respect to the weighted
pairwise Chernoff criterion (4) in F .

This gives the new HKWDA algorithm. For an input pattern x, its projec-
tion onto the subspace spanned by Θ = [Y1, . . . ,Yl] can be computed as
z = ΘT φ(x). This expression can be rewritten via the kernel trick as follows:

z =
√

1
N (z1, . . . , zl)T PT ET kx, where kx = (K(x,x1) − 1

N

∑N
i=1 K(x,xi), . . . ,

K(x,xN )− 1
N

∑N
i=1 K(x,xi))T .
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Thus, HKWDA can give a low-dimensional representation with enhanced dis-
criminating power on the whole. Moreover, this method also effectively addresses
the nonlinearity problem and the small sample size problem.

4 Experimental Results

To assess the performance of the HKWDA algorithm proposed in this paper,
we conduct some face recognition experiments to compare HKWDA with other
dimensionality reduction methods. Note that typical face recognition applica-
tions suffer from the small sample size problem and require nonlinear methods,
which are particularly suitable for demonstrating the strengths of HKWDA.
In addition, real-world face image databases seldom satisfy the restrictive ho-
moscedasticity assumption.

Our experiments are performed on two different data sets:

1. Mixed data set of 1545 images from 117 subjects which are obtained from
four different image sources:
– 47 subjects from the FERET database, with each subject contributing

10 gray-scale images.
– 40 subjects from the ORL database, with each subject contributing 10

gray-scale images.
– 20 subjects from the UMIST database, with a total of 575 gray-scale

images.
– 10 subjects from the YaleB database, with each subject contributing 10

gray-scale images.
2. A subset of the FERET database: 200 subjects each with four different

images.

The gray-level and spatial resolution of all images in both data sets are 256
and 92×112, respectively. Since there exist large variations in illumination, facial
expression and pose in both data sets, the distribution of the face image patterns
is highly nonlinear, complex, and heteroscedastic.

Both data sets are randomly partitioned into two disjoint sets for training
and testing, respectively. For the mixed data set, five images per subject are
randomly chosen for training while the rest for testing; for the subset of the
FERET database, three images per subject are randomly chosen from the four
images available for each subject for training while the rest for testing. For each
feature representation obtained by a dimensionality reduction method, we use
a simple minimum distance classifier [24] with Euclidean distance measure to
assess the classification accuracy. Each experiment is repeated 10 times and the
average classification rates are reported. For the kernel methods, we use the RBF
kernel function k(z1, z2) = exp(‖z1 − z2‖2/σ) and polynomial kernel function
k(z1, z2) = (zT

1 z2/σ + 1)2 where σ = 109.
To reveal the fact that HKWDA can better utilize the crucial discrimina-

tory information in the null space of the within-class scatter operator, our
first experiment compares HKWDA with the corresponding part of KGNDA
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[22, 23, 24] and a special case of HKWDA, referred to as Euclidean KWDA
(EKWDA), which can be seen as HKWDA where the weighting function is
defined based on the Euclidean distance instead of the Chernoff distance in
the feature space. It is obvious that EKWDA is based on the homoscedasticity
assumption. In addition, to show the effectiveness of the nonlinear extension,
we also compare the corresponding part of the DLDA method [10, 12, 13, 14]
which may be seen as the linear special case of KGNDA. The experimental re-
sults shown in Fig. 1 reveal that, as expected, HKWDA outperforms KGNDA,
EKWDA and DLDA for both kernel functions on the two different data sets.
From the results of paired t-test with significance level 0.05, we can conclude
that the results of HKWDA are significantly better than those of the other
three methods. Since DLDA is a linear method, it cannot effectively extract
nonlinear features and hence the classification rate is very low. Comparing HK-
WDA and EKWDA, we can see that relaxing the homoscedasticity assumption
of the face image data can result in significant improvement in classification
performance.
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Fig. 1. Comparative performance of HKWDA, EKWDA, KGNDA and DLDA.
(a) Polynomial kernel on the mixed data set; (b) RBF kernel on the mixed data
set; (c) Polynomial kernel on the subset of FERET; (d) RBF kernel on the subset
of FERET.
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The second experiment compares HKWDA with several other kernel-based
nonlinear dimensionality reduction methods, including KPCA [15], GDA [17],
kernel Fisherfaces [20], KFD/QR [18], KFD/GSVD [19], and KDDA [21]. Pre-
vious works [22, 23, 24] also compare KGNDA with most of these methods in
detail. Fig. 2 shows the classification rates for different methods based on the
RBF kernel on both data sets. It can be seen that HKWDA is better than KPCA,
GDA, kernel Fisherfaces, KFD/QR, KFD/GSVD and KDDA. In addition, we
also compare different methods based on the average error percentage, which was
originally proposed in [21] and can successfully evaluate the overall effectiveness
of the proposed method compared with other methods. Specifically, in our exper-
imental setting, the average percentage of the error rate of HKWDA over that of
another method can be computed as the average of (1−αi)/(1−βi) (i = 6, . . . , J),
where αi and βi are the recognition rates of HKWDA and another method,
respectively, when i features are used. Using less than six features is not in-
cluded in computing the average error percentages because the recognition rates
are very low for all algorithms. Moreover, the value of J is set to 116 and 199,
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Fig. 2. Comparative performance of HKWDA and several other kernel methods based
on the RBF kernel. (a) Mixed data set; (b) Subset of FERET.

Table 1. Average error percentages for different methods when compared with
HKWDA

Mixed data set Subset of FERET
Algorithm Poly. RBF Poly. RBF
DLDA [10, 12, 13, 14] 76.05% 67.85% 86.47% 82.31%
KPCA [15] 50.33% 45.19% 27.58% 26.38%
GDA [17] 71.17% 86.05% 33.13% 34.76%
Kernel Fisherfaces [20] 51.97% 53.01% 49.93% 27.80%
KFD/QR [18] 45.23% 39.98% 32.87% 58.79%
KFD/GSVD [19] 51.99% 51.87% 52.84% 58.79%
KDDA [21] 85.48% 81.63% 64.48% 63.35%
KGNDA [22, 23, 24] 90.57% 90.81% 91.11% 90.83%
EKWDA 93.39% 93.26% 91.42% 91.95%
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respectively, for the mixed data set and the subset of FERET. The average er-
ror percentages for different methods are summarized in Table 1, showing that
HKWDA is more effective than all other methods. We have performed more
experiments but their results are not included in this paper due to space limita-
tion. For example, we have performed similar experiments on another data set
of 120 subjects selected from the AR database with each subject contributing 7
gray-scale images. All results consistently show that HKWDA outperforms other
competing methods.

5 Conclusion

We have presented a new kernel Fisher discriminant analysis algorithm, called
HKWDA, that performs nonlinear feature extraction for classification appli-
cations. By incorporating an appropriately chosen weighting function into the
discriminant criterion, it can not only handle heteroscedastic data that are com-
monly found in real-world applications, but it can also put emphasis on classes
that are close together for multi-class problems. Experimental results on face
recognition are very encouraging, showing that HKWDA can consistently out-
perform other linear and nonlinear dimensionality reduction methods. Besides
face recognition, we plan to apply HKWDA to other classification applications,
including content-based image indexing and retrieval as well as video and audio
classification.
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Abstract. In this paper, we propose a novel generative approach for
face authentication, based on a Local Binary Pattern (LBP) descrip-
tion of the face. A generic face model is considered as a collection of
LBP-histograms. Then, a client-specific model is obtained by an adapta-
tion technique from this generic model under a probabilistic framework.
We compare the proposed approach to standard state-of-the-art face au-
thentication methods on two benchmark databases, namely XM2VTS
and BANCA, associated to their experimental protocol. We also com-
pare our approach to two state-of-the-art LBP-based face recognition
techniques, that we have adapted to the verification task.

1 Introduction

A face authentication (or verification) system involves confirming or denying the
identity claimed by a person (one-to-one matching). In contrast, a face iden-
tification (or recognition) system attempts to establish the identity of a given
person out of a closed pool of N people (one-to-N matching). Both modes are
generally grouped under the generic face recognition term.

Authentication and identification share the same preprocessing and feature
extraction steps and a large part of the classifier design. However, both modes
target distinct applications. In authentication mode, people are supposed to
cooperate with the system (the claimant wants to be accepted). The main ap-
plications are access control systems, such as computer or mobile devices log-in,
building gate control, digital multimedia access. On the other hand, in identifica-
tion mode, people are generally not concerned by the system and often even do
not want to be identified. Potential applications include video surveillance (pub-
lic places, restricted areas) and information retrieval (police databases, video or
photo album annotation/identification).

Face recognition has been widely studied and is performing well in con-
trolled lighting environment and on frontal faces. In real-world applications
(unconstrained environment and non-frontal faces), face recognition does not
yet achieve efficient results. Beside the pose of the subject, a major difficulty
comes from the appearance variability of a given identity due to facial expres-
sions, lighting, facial features (mustaches, glasses, make-up or other artefacts)
or even the hair cut and skin color. The challenge of face recognition is then to
extract relevant facial features which best discriminate individuals, in spite of
the possible variations cited above.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 321–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The problem of face authentication has been addressed by different researchers
using various approaches. Thus, the performance of face authentication systems
has steadily improved over the last few years. For a comparison of different
approaches see [1]. These approaches can be divided mainly into discriminative
approaches and generative approaches.

A discriminative approach takes a binary decision (whether or not the input
face is a client) and considers the whole input for this purpose. Such holistic
approaches are using the original gray-scale face image or its projection onto a
Principal Component subspace (referred to as PCA or Eigenfaces [2]) or Linear
Discriminant subspace (referred to as LDA or Fisherfaces [3]), or illumination-
invariant features [4, 5] as input of a discriminative classifier such as Multi-Layer
Perceptrons (MLPs) [6], Support Vector Machines (SVMs) [7] or simply a met-
ric [8, 9]. Recently, it has been shown that generative approaches such as Gaussian
Mixture Models (GMMs) [10] and Hidden Markov Models (HMMs) [11, 12] were
more robust to automatic face localization than the above discriminative meth-
ods. A generative approach computes the likelihood of an observation (a holistic
representation of the face image) or a set of observations (local observations of
particular facial features) given a client model and compares it to the corre-
sponding likelihood given an impostor model. Finally, the decision to accept or
reject a claim depends on a score (distance measure, MLP output or Likelihood
ratio) which could be either above (accept) or under (reject) a given threshold.

In this paper, we propose a novel generative approach for face authentication,
based on a Local Binary Pattern (LBP) description of the face. A generic face
model is considered as a collection of LBP-histograms. Then, a client-specific
model is obtained by an adaptation technique from this generic model under a
probabilistic framework.

In the next section, we introduce the reader to the Local Binary Pattern
(LBP) operator and its use to represent a face. Then, we describe the proposed
approach. Finally, we provide experimental results comparing the proposed ap-
proach to state-of-the-art face verification techniques as well as to state-of-the-art
LBP-based face identification techniques, on two databases, namely XM2VTS
and BANCA, associated to their experimental protocol.

2 Local Binary Patterns

2.1 The Local Binary Pattern Operator

The local binary pattern (LBP) operator is a non-parametric 3x3 kernel which
summarizes the local spacial structure of an image. It was first introduced by
Ojala et al. [13] who showed the high discriminative power of this operator for
texture classification. At a given pixel position (xc, yc), LBP is defined as an
ordered set of binary comparisons of pixel intensities between the center pixel
and its eight surrounding pixels. The decimal form of the resulting 8-bit word
(LBP code) can be expressed as follows (Figure 1):

LBP (xc, yc) =
7∑

n=0

s(in − ic)2n (1)
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Fig. 1. The LBP operator

where ic corresponds to the grey value of the center pixel (xc, yc), in to the grey
values of the 8 surrounding pixels, and function s(x) is defined as:

s(x) =
{

1 if x ≥ 0
0 if x < 0 .

(2)

Note that each bit of the LBP code has the same significance level and that
two successive bit values may have a totally different meaning. Actually, The
LBP code may be interpreted as a kernel structure index. By definition, the
LBP operator is unaffected by any monotonic gray-scale transformation which
preserves the pixel intensity order in a local neighbourhood.

Later, Ojala et al. [14] extended their original LBP operator to a circular
neighbourhood of different radius size. Their LBPP,R notation refers to P equally
spaced pixels on a circle of radius R. In [14], they also noticed that most of the
texture information was contained in a small subset of LBP patterns. These
patterns, called uniform patterns, contain at most two bitwise 0 to 1 or 1 to
0 transitions (circular binary code). 11111111, 00000110 or 10000111 are for
instance uniform patterns. They mainly represent primitive micro-features such
as lines, edges, corners. LBPu2

P,R denotes the extended LBP operator (u2 for only
uniform patterns, labelling all remaining patterns with a single label).

Recently, new variants of LBP have appeared. For instance, Jin et al. [15]
remarked that LBP features miss the local structure under certain circumstance,
and thus they introduced the Improved Local Binary Pattern (ILBP). Huang et
al. [16] pointed out that LBP can only reflect the first derivative information
of images, but could not present the velocity of local variation. To solve this
problem, they propose an Extended version of Local Binary Patterns (ELBP).

Due to its texture discriminative property and its very low computational
cost, LBP is becoming very popular in pattern recognition. Recently, LBP has
been applied for instance to face detection [15], face recognition [5, 4], image
retrieval [17] or motion detection [18]1. We finally point out that, approximately
in the same time the original LBP operator was introduced by Ojala [13], Zabih
and Woodfill [19] proposed a very similar local structure feature. This feature,
called Census Transform, also maps the local neighbourhood surrounding a pixel.
With respect to LBP, the Census Transform only differs by the order of the bit
string. Later, the Census Transform has been extended to become the Modified
Census Transform (MCT) [20]. Again, one can point out the same similarity
between ILBP and MCT (also published at the same time).
1 A more exhaustive list of applications can be found on Oulu University web site at:

http://www.ee.oulu.fi/research/imag/texture/lbp/lbp.php
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2.2 Face Representation with Local Binary Patterns

In [4], Ahonen proposed a face recognition system based on a LBP represen-
tation of the face. The individual sample image is divided into R small non-
overlapping blocks (or regions) of same size. Histograms of LBP codes Hr, with
r ∈ {1, 2, . . . , R} are calculated over each block and then concatened into a single
histogram representing the face image. A block histogram can be defined as:

Hr(i) =
∑

x,y∈blockr

I(f(x, y) = i), i = 1, ..., N, (3)

where N is the number of bins (number of different labels produced by the LBP
operator), f(x, y) the LBP label 2 at pixel (x, y) and I the indicator function.

This model contains information on three different levels (Figure 2): LBP
code labels for the local histograms (pixel level), local histograms (region level)
and a concatened histogram which builds a global description of the face image
(image level). Because some regions are supposed to contain more information
(such as eyes), Ahonen propose an empirical method to assign weights to each
region. For classification, a nearest-neighbour classifier is used with Chi square
(χ2) dissimilarity measure (see [4]).

...

concatened histogram

local histogram

local histogram

LBP code

...

Fig. 2. LBP face description with three levels of information: pixel level (LBP code),
region level (local histogram), image level (concatened histogram)

Following the work of Ahonen, Zhang et al. [5] underlined some limitations.
First, the size and position of each region are fixed which limits the size of the
available feature space. Second, the weighting region method is not optimal. To
overcome these limitations, they propose to shift and scale a scanning window
over pairs of images, extract the local LBP histograms and compute a dissimilar-
ity measure between the corresponding local histograms. If both images are from
the same identity, the dissimilarity measure are labelled as positive features, oth-
erwise as negative features. Classification is performed with AdaBoost learning,
which solves the feature selection and classifier design problem. Optimal posi-
tion/size, weight and selection of the regions are then chosen by the boosting
procedure. Comparative study with Ahonen’s method showed similar results.
Zhang et al.’s system uses however much less features (local LBP histograms).

2 Note that LBP (x, y), the LBP operator value, may not be equal to f(x, y) which
is the label assigned to the LBP operator value. With the LBP u2

P,R operator, for
instance, all non-uniform patterns are labelled with a single label.
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3 Proposed Approach

3.1 Model Description

In this paper, we propose a new generative model for face authentication, based
on a LBP description of the face. Sample images are divided in R non-overlapping
block regions of same size. This block by block basis is mainly motivated by the
success of some recent works [21, 22, 12]. Similar to [4], a histogram of LBP
codes is computed for each block. However, this histogram is not seen as a static
observation. We instead consider it as a probability distribution. Each block
histogram is thus normalized:

∑
i Hr(i) = 1, where r ∈ {1, 2, . . . , R}.

Given a claim for client C, let us denote a set of independent features X =
{xr}R

r=1, extracted from the given face image. If θC is the set of parameters to
be estimated from sample X , we can define the likelihood of the claim coming
from the true claimant C as:

P (X |θC) =
R∏

r=1

p(xr |θC) (4)

=
R∏

r=1

p(xr |θC1 , . . . , θCR) (5)

=
R∏

r=1

p(xr |θCr), (6)

assuming that each block is independent and that θC can be decomposed as a
set of independent parameters per block (θC1 , . . . , θCR).

The next important step consists in choosing the function to estimate the
likelihood functions p(xr|θCr ). We chose a very simple and computationally in-
expensive non parametric model: histogram of LBP codes. xr = {lk}K

k=1 is thus
defined as a set of K labelled LBP code observations, where K is the maximum
number of kernels which can be computed in the block by the LBP operator.
This value is constant because all blocks have the same size. Assuming that each
LBP code observation is independent, we can thus develop further:

P (X |θC) =
R∏

r=1

p(xr |θCr) (7)

=
R∏

r=1

p(l1, . . . , lK |θCr) (8)

=
R∏

r=1

K∏
k=1

p(lk|θCr) (9)

where p(lk|θCr) = Hr
C(lk), then:

P (X |θC) =
R∏

r=1

K∏
k=1

Hr
C(lk) (10)
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3.2 Client Model Adaptation

In face verification, the available image gallery set of a given client is usually very
limited (one to five images). To overcome this lack of training data, adaptation
methods have been proposed, first for speaker verification [23] and then adapted
for face verification [22, 12]. They consist in starting from a generic model and
then adapting it to a specific client. This generic model, referred to as world model
or universal background model, is trained with a large amount of data, generally
independent of the client set, but as representative as possible of the client pop-
ulation to model. The most used technique of incorporating prior knowledge in
the learning process is know as Maximum A Posteriori (MAP) adaptation [24].
MAP assumes that the parameters θC of the distribution P (X |θC) is a random
variable which has a prior distribution P (θC). The MAP principle states that one
should select θ̂C such that it maximizes its posterior probability density, that is:

θ̂C = arg max
θC

P (θC |X)

= arg max
θC

P (X |θC) · P (θC). (11)

Moreover, one can simplify further without loss of performance by using a global
parameter to tune the relative importance of the prior. The parameter updating
can be described from the general MAP estimation equations using constraints
on the prior distribution presented in [24]:

Ĥr
C(lk) = αHr

W (lk) + (1− α)Hr
C(lk) (12)

where Hr
W (lk) is the feature value (bin lk of the histogram of block r) of the

world model (prior), Hr
C(lk) is the current estimation (client training data) and

Ĥr
C(lk) is the updated feature value. The weighting factor α is chosen by cross-

validation. The client model is thus a combination of parameters estimated from
an independent world model and from training samples. After adaptation, each
block histogram Ĥr

C is normalized to remain a probability distribution.

3.3 Face Verification Task

Let us denote θC the parameter set for client model C, θW the parameter set for
the world model and a set of feature X . The binary process of face verification
can be expressed as follows:

Λ(X) = log P (X |θC)− log P (X |θW ) (13)

where P (X |θC) is the likelihood of the claim coming from the true claimant
and P (X |θW ) is the likelihood of the claim coming from an impostor. Given a
decision threshold τ , the claim is accepted when Λ(X) ≥ τ and rejected when
Λ(X) < τ . P (X |θ.) is computed using Eq.10.

4 Experiments

There are two main face authentication benchmark databases, namely XM2VTS
and BANCA, which we briefly describe in this section. We will also provide com-
parative experiments with Ahonen and Zhang systems introduced in Section 2.



Face Authentication Using Adapted Local Binary Pattern Histograms 327

4.1 Databases and Protocol

The XM2VTS database [25] contains synchronized video and speech data from
295 subjects, recorded during four sessions taken at one month intervals. The
subjects were divided into a set of 200 training clients, 25 evaluation impostors
and 70 test impostors. We performed the experiments following the Lausanne
Protocol Configuration I.

The BANCA database [26] was designed to test multi-modal identity verifi-
cation with various acquisition devices under several scenarios (controlled, de-
graded and adverse). In the experiments described here we used the face images
from the English corpora, containing 52 subjects. Each subject participated in
12 recording sessions in different conditions and with different cameras. Each of
these sessions contains two video recordings: one true client access and one im-
postor attack. Five frontal face images were extracted from each video recording.

Whereas XM2VTS database contains face images in well controlled conditions
(uniform blue background), BANCA is a much more challenging database with
face images recorded in uncontrolled environment (complex background, difficult
lightning conditions). See Figure 3 for example images of each database. To assess
verification performance, the Half Total Error Rate (HTER) is generally used:

HTER(θ) =
FAR(θ) + FRR(θ)

2
. (14)

where FAR if the false acceptance rate, FRR the false rejection rate and θ the
decision threshold. To correspond to a realistic situation, θ is chosen a priori on
the validation set at Equal Error Rate (EER).

(a) XM2VTS (controlled conditions): uniform
background and lighting

(b) BANCA English (uncontrolled conditions): complex background and
lighting variability

Fig. 3. Comparison of XM2VTS (1) and BANCA (2) face image conditions
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4.2 Experimental Setup

For both XM2VTS and BANCA databases, face images are extracted to a size of
84× 68 (rows × columns), according to the provided groundtruth eye positions.
The cropped faces are then processed with the LBPu2

8,2 operator (N = 59 labels).
The resulting 80× 64 LBP face images do not need any further lighting normal-
ization, due to the gray-scale invariant property of LBP operators. In a block
by block basis, the face images are decomposed in 8× 8 blocks (R = 80 blocks).
Histograms of LBP codes are then computed over each block r and normalized
(
∑

i Hr(i) = 1, where i ∈ {1, 2, . . . , N}).
For experiments on XM2VTS database, we use all available training client

images to build the generic model. For BANCA experiments, the generic model
was trained with the additional set of images, referred to as world data (inde-
pendent of the subjects in the client database). For both set of experiments,
the adaptation factor α of Eq. 12 (client model adaptation) is selected on the
respective validation sets.

For comparison purpose, we implemented the systems of Ahonen [4] and
Zhang [5], briefly described in Section 2.2. Similarly, we used a 8 × 8 block
decomposition and computed LBP histograms for each block with the LBPu2

8,2
operator.

4.3 Results on XM2VTS Database

Table 1 reports comparative results for Ahonen and Zhang systems, our proposed
LBP/MAP histogram adaptation approach, as well as for two standard state-of-
the-art methods. LDA/NC [27] combines Linear Discriminant Analysis with Nor-
malized Correlation (holistic representation of the face), while DCT/GMM [12]
is a generative approach based on a modified version of the Discrete Cosine
Transform and Gaussian Mixture Models (local description of the face).

We first remark that our method obtains state-of-the-art results. The main ad-
vantage of LBP/MAP is its very simple training procedure (only one parameter,
the map factor). Training PCA and LDA matrices takes time (several hours)
and is not trivial (initial dataset, data normalization, % of variance). Train-
ing GMM’s is neither straightforward (choice of number of gaussians, iteration,
floor factor, etc). We also note that compared to LDA/NC or DCTmod2/GMM,
LBP/MAP does not need any lighting normalization preprocessing.

Table 1. HTER performance comparison (in %) for two state-of-the-art methods
(LDA/NC and DCT/GMM), Ahonen and Zhang systems and our proposed LBP/MAP
histogram adaptation approach, on Configuration I of the XM2VTS database

Models Test set
LDA/NC [27] 0.74

DCTmod2/GMM [12] 1.67
LBP Ahonen 3.40
LBP Zhang 3.94
LBP/MAP 1.42
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Compared to the two other LBP methods, LBP/MAP performs clearly bet-
ter. However, it must be noted that these methods have been originally designed
for face identification task. We finally point out that as reported in [5] for iden-
tification, Ahonen and Zhang methods give similar results.

4.4 Results on BANCA Database

Table 2 reports results from the same systems than those in Table 1, but the LBP
Zhang system. This is because Huang et al. [28] recently proposed an improved
version of Zhang et al. system [5], based on a modified version of the boosting
procedure called JSBoost, and provided results on BANCA. We then denote this
method LBP/JSBoost. Unfortunately they only gave results with Protocol G.

Table 2. HTER performance comparison (in %) for two state-of-the-art methods
(LDA/NC and DCT/GMM), Ahonen and LBP/JSBoost systems and our proposed
LBP/MAP histogram adaptation approach, for Protocol Mc, Ud, Ua, P and G of the
BANCA database. Boldface indicates the best result for a protocol.

Models Protocols
Mc Ud Ua P G

LDA/NC [27] 4.9 16.0 20.2 14.8 5.2
DCTmod2/GMM [12] 6.2 23.7 17.6 18.6 -

LBP Ahonen 8.3 14.3 23.1 20.8 10.4
LBP/JSBoost [28] - - - - 10.7

LBP/MAP 7.3 10.7 22.6 19.2 5.0

Looking at the last three rows of Table 2, we notice again that our generative
method performs better that the two other LBP-based methods for all condi-
tions. On protocol G, where more client training data is available, LBP/MAP
clearly outperforms the improved version of Zhang system (LBP/JSBoost).

The LDA/NC model obtains the best result in matched condition (Mc). For
uncontrolled environment, LBP/MAP shows the best results in degraded condi-
tion (Ud). This is certainly due to the illumination invariant property of LBP
features. Indeed, in controlled (Mc) and adverse (Ua) conditions, the lighting
is almost uniform on the faces, whereas in degraded condition, the left part of
most of the faces are illuminated.

In adverse condition, the recording camera was below the horizontal plan of
the head. Moreover, people were not really looking at the camera, leading to a
distorsion effect. The local representation of the face in the DCTmod2/GMM
model can probably explain why this approach outperforms the other holistic
models3 Finally, it is interesting to notice that no single model appears to be
the best one in all conditions.

3 Although based on local histograms, all three LBP methods are holistic because of
the concatened histogram representing the face.
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5 Conclusion

In this paper, we proposed a novel generative approach for face authentication,
based on a Local Binary Pattern (LBP) description of the face. A generic face
model was considered as a collection of LBP-histograms. Then, a client-specific
model was obtained by an adaptation technique from this generic model under a
probabilistic framework. Experiments were performed on two databases, namely
XM2VTS and BANCA, associated to their experimental protocol.
Results have shown that the proposed approach performs better than state-
of-the-art LBP-based face recognition techniques and is much faster than other
state-of-the-art face verification techniques that perform similarly than the pro-
posed approach.

Experimental results on BANCA database show that our method was per-
forming well in uncontrolled lighting condition (Ud), due to the illumination
invariance property of the LBP operator. However, our system was limited in
the adverse condition (Ua), whereas the local approach (DCTmod2/GMM) was
performing best. An interesting future work would be to investigate the use of
LBP features with more appropriate Graphical Models, similar to the above
GMM framework. This also motivated by the fact that local approaches have
shown more robustness to non-perfect face localization than holistic approaches,
which is particularly important for real-life automatic systems.
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Abstract. In this paper, we propose a two-level integrated model for
accurate face shape alignment. At the low level, the shape is split into
a set of line segments which serve as the nodes in the hidden layer of
a Markov Network. At the high level, all the line segments are con-
strained by a global Gaussian point distribution model. Furthermore,
those already accurately aligned points from the low level are detected
and constrained using a constrained regularization algorithm. By analyz-
ing the regularization result, a mask image of local minima is generated
to guide the distribution of Markov Network states, which makes our al-
gorithm more robust. Extensive experiments demonstrate the accuracy
and effectiveness of our proposed approach.

1 Introduction

Shape alignment is a fundamental problem in computer vision with applications
in many areas, such as medical image processing [1], object tracking [2], face
recognition and modeling [3], and face cartoon animation [4]. Accurate align-
ment of deformable shapes or contours depends on estimation of optimal de-
formable shape parameters such that the deformed shape model matches the
image evidence collected from images or video.

A number of different shape models have been proposed for shape alignment.
One approach is to postulate the deformation parameters by reducing the shape
deformation correlations. The shape prior is then modeled by the distribution
of the deformation parameters. The leading work of this approach is the active
shape model (ASM) [5]. In light of this work, several improved methods have
been developed. A Bayesian tangent shape model and an EM based searching
algorithm are proposed in [6] to make the parameter estimation more accurate
and robust. To alleviate the local minima problem, Liu et.al. [7] designed a
hierarchical shape model and DDMCMC inference algorithm. To handle the
nonlinear shape variance, a mixture of Gaussians [8] and kernel PCA [9] are
used to model the distribution of deformation parameters. For optimization,
these methods usually generate an observed shape by sampling each feature
point independently from a local likelihood and then regularize it using the
shape prior model. The main advantage of these methods is that the global
regularization step based on a shape prior may help to assure an overall shape
reasonably in line with the object. However, since each feature point is sampled
without considering its relationship with neighbor points, the observed location
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of each individual point is very sensitive to noise. To avoid the influence of the
faraway outliers, some works such as [10] imposed a simple smoothness constraint
between the neighbor points and used Dynamic Programming (DP) to find an
observed optimal shape. Unfortunately, the observed shape optimized by DP
was still directly regularized by the PCA shape model. The problem is that the
regularized shape is usually placed at a mean position with the minimal sum of
points distance to the observed optimal shape. Thus it cannot guide each “bad”
point of observed shape to the accurate location. Moreover, it may even drag
away the already accurately aligned points. Therefore, alignment accuracies of
these methods are in general insufficient for many applications.

Recently, a different type of shape alignment method based on the Markov
Random Field model has been proposed [11]. In this method, each feature point
is considered as a node in a graph, and a link is set between each pair of fea-
ture points with the interaction energy designed to impose the local structure
constraints between them. The benefit of such a model is that the shape prior
is distributed in a Markov network of components and the image observation
is still distributed by modeling the image likelihood of each individual compo-
nent. The close interaction between the local image observation and structure
constraints leads to far more accurate local shape estimation. The shortcoming
of such an approach is that it models the shape only in a local neighborhood.
Such a low level model cannot capture high level semantics in the shape. The
lack of a global shape prior often leads the methods to nonstable results.

In this paper, by combining the advantages of the above two approaches, we
propose an integrated model for accurate shape alignment. At the low level,
the shape is modeled as a Markov Network with simple structure to effectively
capture the local geometry constraints. At the high level, a global points distri-
bution model based on PCA is adopted to regularize the inferred shape from the
Markov Network. In order to avoid a decrease in accuracy during regularization,
a constrained regularization algorithm is developed to keep the “good” point
positions. The information from the global model is also fed back to the next
Markov Network inference step by a mask image to guide the distribution of
Markov Network states. This scheme effectively prevents the Markov Network
from sticking to the local minima. The accuracy of the proposed approach has
been demonstrated by extensive experiments.

2 A Two-Level Shape Model

In this section, we present a two-level model for shape alignment. The shape is
split into a set of line segments and modeled as a Markov Network with simple
structure to make the searching stage more effective and robust. At the same
time, all the line segments are correlated through a global point distribution
model to guarantee a globally reasonable shape.

2.1 Low Level Shape Model Based on Markov Network

Assuming that a shape S is described by N feature points (xi, yi) in the image,
we can represent it by a 2N -dimensional vector S = {(xi, yi), i = 1, ..., N}.
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We break the shape S into a set of line segments by the feature points. The
parameters of each line segment qi are the coordinates of its two endpoints
qi = [ws

i ,w
e
i ]. As shown in Figure 1 (a), these line segments are the nodes in the

hidden layer of the graph. If two nodes are correlated, there will be an undirected
link between them. For a deformable shape, we put a link between the connected
line segments.

Assuming the Markovian property among the nodes, the shape prior can be
modeled as p(Q),Q = {q0,q1, ...,qK}, which is a Gibbs distribution and can
be factorized as a product of all the potential functions over the cliques in the
graph:

p(Q) =
1
Z

∏
c∈C

ψc(Qc) (1)

where C is a collection of cliques in the graph and Qc is the set of variables
corresponding to the nodes in clique c, and Z is the normalization constant or
the partition function.

In the context of deformable shapes, we adopt a pairwise potential function
ψij(qi,qj) to present the constraint between two connected line segments. Thus
we write the shape prior p(Q) as:

p(Q) =
1
Z

∏
(i,j)∈C2

ψij(qi,qj) (2)

The pairwise potential function is defined by the constraints of the distance
of two endpoints (we

i and ws
j) and the angle γij between the two line segments,

as illustrated in Figure 2:

ψij(qi,qj) = G(dij ; 0, σd
ij)·G(Aij ; μA

ij , σ
A
ij) (3)

where dij = |we
i −ws

j | is the distance between we
i and ws

j , Aij = sin(γij), and
σd

ij and σA
ij are variance parameters that control the tightness of the connectivity

constraint.
Given the image observation I, as shown in Figure 1 (a), each segment qi is

also associated with its image observation, denoted as Γi. Assuming the local
observation is independent of other nodes given qi, the likelihood is factorized as:

p(I|Q) =
∏

i

pi(Γi|qi) (4)

Then the posterior can be factorized as:

p(Q|I) ∝ 1
Z

∏
i

pi(Γi|qi)
∏

(i,j)∈C2

ψij(qi,qj) (5)

For a complex shape, such as the face that contains multiple parts (brows,
eyes, etc.), only the connected line segments belonging to the same part are
linked, as shown in Figure 1 (b). We do not add links between different parts.
This will guarantee that the good parts (with strong local image observation)
move to its accurate position while not being affected by other bad parts. Such
a simple structure is also easy for inference. The global relationship between



336 L. Liang et al.

0q 1q 2q
3q

4q
5q6qkq

),( 00 kk qqψ

)|( kkp qΓ

eye’s  line segments

(a) (b)

0
1 2

3

456
k

Fig. 1. The Markov Network for face. (a) The graph for the eye shape. (b) For the
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Fig. 2. The constraint of two connected line segments

different parts is constrained by a global shape model as explained in the follow-
ing sections.

2.2 Global Shape Model Based on PCA

We adopt principal components analysis (PCA) to model the points distribution
of a shape S as in [5]. To remove the shape variation caused by the global
transformation, the shape is first aligned to the tangent space:

S = cRθx + t (6)

where x is the tangent shape vector, c is the scaling parameter, Rθ is the rotation
matrix and t is the translation parameter.

PCA is then adopted to find a set of main deformable modes. The deformable
shape can be generated by a linear combination of these modes. Suppose r modes
are retained in PCA, then:

x = μ + φrb + ε (7)

where μ is the mean shape, and φr consists the first r columns of the projection
matrix. Each column of φr corresponds to a deformable mode. ε is an isotropic
noise in the tangent space. b is a hidden variables vector to generate the shape.
Each item of b is independent and b is distributed as a multivariate Gaussian:

p(b) = G(b; 0, Λ) (8)

where Λ = diag(λ1, ..., λr). λi is the ith eigenvalue.
Under such model, the global shape prior is modeled as p(S) ∼ p(b).
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2.3 An Integrated Model

In our integrated model, a deformable shape is parameterized by the hidden vari-
able b, the pose parameters Θ = (c, θ, t) and the positions of the line segments
Q = {qi}. Given an observation image I, we want to maximize the following
posterior p(b, Θ,Q|I) to get the optimal shape. Notice that given Q, b and Θ
can be considered as independent of I, thus

p(b, Θ,Q|I) ∝ p(b, Θ|Q)p(Q|I) (9)

p(Q|I) is defined in Equation (5), and the likelihood and low level’s shape prior
are factorized in this part. The final shape S can be easily got from Q by setting
the position of one point si as the average position of the connected segments’
endpoints, which can be written as S = TQ, so p(b, Θ|Q) can be evaluated as
p(b, Θ|TQ), which is:

p(b, Θ|Q) ∝ p(TQ|b, Θ)p(b) (10)

Maximizing the posterior equation (9) is equal to minimizing the following
energy:

E = λEp + Emn (11)

where
Ep = − log p(b, Θ|Q) (12)

Emn = − log p(Q|I) (13)

λ is a weighting parameter to balance the strength of the global shape prior and
the Markov Network.

Based on this integrated model, the local and global shape constraints are
imposed by Markov Network and the global PCA model respectively. The local
structure constraints make the feature points more consistent with the image
observation and robust to the local noise, thus a more accurate result can be
achieved. And the global shape constraint regularizes the globally unreasonable
shape to obtain a more stable result.

Besides, in order to make the inference more efficient, we adopt a hierarchical
shape model similar to [7]: the shape resolution changes from coarse to fine
corresponding to a Gaussian pyramid of the image. The located coarse shape is
used to initialize the search for a finer shape in the higher resolution image.

Hierarchical Shape Model. Suppose Sl is the shape at the resolution level l
and Sl+1 is the shape at the coarser resolution level l+1, we model the conditional
distribution p(Sl|Sl+1) as a Gaussian, as in [7]. Given the located coarse shape
Sl+1, we initialize the finer shape Sl as:

S0
l = max

Sl

p(Sl|Sl+1). (14)
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3 Shape Alignment by the Two-Level Shape Model

To find the optimal shape which minimizes the energy Equation (11), we update
the shape to minimize Emn and Ep iteratively. To minimize Ep, the previous
methods such as [5] usually place the regularized shape at a mean position
with the minimal sum of points distance to the shape obtained in the Emn

minimization step. Thus some points that have already converged to the good
positions will be dragged away by those “bad” points. Also, although some “bad”
points are regularized in the Ep minimization step, they may fall into the same
false positions again in the next Emn minimization step.

In order to solve these problems, we propose a new iterative optimization
strategy. To avoid a decrease of the accuracy during the Ep minimization step, a
constrained regularization algorithm is proposed to detect and keep the “good”
points. Also to prevent the search from falling into the same mistake twice, the
information from the global shape model is fed back to the next Emn mini-
mization step by recording the “bad” areas. Such optimization strategy helps to
achieve more accurate and robust alignment result.

3.1 Alignment Algorithm Overview

We design a multi-resolution iterative search strategy to find the optimal shape.
For searching at resolution level l, the algorithm is summarized as follows:

1. Given a located coarse shape Sl+1, initialize the finer shape S0
l by Equation

(14);
2. In the neighboring region of current shape St

l , find the optimal line segments
set Qt

l to minimize the Emn in Equation (13), see subsection 3.2;
3. Update the global shape and pose parameters {b, Θ} to fit Qt

l using con-
strained regularization algorithm, and try to find a better shape S̃t

l with
lower posterior energy in Equation (11), see subsection 3.3;

4. If a better shape S̃t
l is found: St

l = S̃t
l , and also create the mask image for

guiding the distribution of Markov Network states. Else, St
l = TQt

l , and
repeat until convergence, see subsection 3.4.

The algorithm is converged if the posterior energy of current step is larger
than the previous step, i.e. E(St

l) > E(St−1
l ), or the changing is small enough,

i.e. E(St
l)− E(St−1

l ) < δ.

3.2 Local Search by Markov Network

Given the current shape St
l , we first discretize the state space of the Markov

Network in the neighbor of St
l . Then for an open curve, such as the facial contour,

we adopt DP to find the optimal solution which is very efficient. For a closed
curve, such as the eye part, we use loopy belief propagation (BP) [12] which
produces excellent empirical results for a graph containing loops [13].

To make the inference more efficient, we generate an efficient state set by
pruning states according to the strength of the local likelihood, then generating
new possible states based on the Markovian property.
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In more details, as shown in Figure 3, inspired by ASM [5], we distribute the
possible states along the profiles of St

l . Then we select the states from coarse to
fine: the line segments connecting the profile points sampled at a larger step are
tested first and those with strong local likelihood are selected. Then we select
stronger ones in the neighborhood of the kept line segments.

States pruning based on local likelihood does not consider the relationship
between one node and its neighbors, thus some key states may be missed. As
shown in Figure 3, if the two green states are selected for qi−1 and qi+1, but the
red one of qi connecting them is not selected, we cannot find a good solution. So
we add new possible states based on the Markovian property: for a node qi, given
the states of its neighbors, we add the connections with a large enough potential
as the new states of qi. Based on the above states discretization mechanism, 15
states kept for each node are enough for inference, which makes the algorithm
more efficient.

Local search by the Markov Network will make the algorithm more robust to
local noise. As shown in Figure 4, in the previous approaches [5][6], each feature
point is moved independently. The problem is that although some points have
moved to good positions, the final shape will still be dragged to a bad position
after the regularization because of those bad points, as shown in Figure 4 (b)

iq

1−iq 1+iq

Fig. 3. Generate Markov Network states. The black line (most thick black line in
printed version) is the current shape St

l . qi,qi−1,qi+1 are linked Markov Network
nodes. The pink line segments (3 line segments starting from the same point) are some
candidate states of qi. If the two green line segments (line segments up the qi−1 and
qi+1) are selected by qi−1 and qi+1, the red line segment (line segment up the qi)
should be added to qi for inference.

(a) (b) (c) (d) (e)

Fig. 4. Comparing the result of one step local search by Markov Network with ASM’s
approach. The search is executed at the low resolution (64x64) level with a ±4 pixels
search range along the shape profile for both methods. (a) The initial shape. (b) The
result of ASM’s approach. (c) The result of regularizing the shape of (b) with the shape
model. (d) The result of local search by Markov Network. (e) The result of regularizing
the shape of (d) in our constrained way.
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and (c). As a result, a precise alignment result cannot be achieved. In our in-
tegrated model, by distributing the shape prior into the nodes of the Markov
Network, the movement of one point is affected by the local image observation
and the messages from its neighbors together, thus if the strength of the good
points are strong enough, other points can be dragged away from the bad areas,
as shown in Figure 4 (d) and (e). From our experiments, in many cases our algo-
rithm can drag the shape out of local minima and generate a more precise result.

3.3 Constrained Regularization

Only minimizing Emn can not guarantee a globally reasonable shape, especially
when a strong edge appears nearby the ground truth, as shown in Figure 6 (a).
Given the shape S∗ obtained by Markov network inference, we expect the reg-
ularization of S∗ will drag the “bad” points toward the better positions and
maintain the positions of those “good” points. However, directly minimizing Ep

as in ASM [5] does not meet this expectation. Some “good” points are dragged
away as shown in Figure 6 (b). As a result, Ep is minimized but Emn becomes
much larger. To solve this problem we propose a constrained regularization al-
gorithm . The key idea is to select some points of S∗ that need to be fixed, then
add these constraints during Ep minimization step.

We formulate Equation (12) more clearly:

Ep = ΔT Σ−1
l Δ + bT Σ−1

b b (15)

where Δ = S∗ − (cRθx + t),x = μ + φrb. We add constrains by the likelihood
variance matrix Σl = diag(σ2

1 , σ
2
2 , ..., σ2

N ). σi is set as a smaller value, if the
corresponding point needs to be constrained. To find the optimal {b, c, θ, t}, we
adopt EM algorithm as [6].

To explain how we add constraints, we define the local energy of a feature
point si first. Denoting {qi

k}n
k=1 as the line segments connecting to point si, the

local energy is defined as the mean of these line segments’ likelihoods and their
potentials:

e(si) = − 1
n

∑
k

log p(Γk|qi
k)− 1

m

∑
k,j

log ψkj(qi
k,qi

j) (16)

Potential ψkj(qi
k,qi

j) is defined as in Equation (3). m is the number of added
potentials.

To add the constraints, we first minimize Equation (15) without any constraint
(set σi as the same value) and denote the regularized shape as S0. Then we
calculate the changing ratio of the local energy of each point: Δei = (e(s0

i ) −
e(s∗i ))/e(s∗i ). It’s obvious that when Δei <= 0, the points are moved to a better
location and need not to be constrained, while when Δei > 0, the points may be
moved to a worse location, and the larger Δei is, the priority to constrain this
point is higher. So we query those points with Δei > 0 in the order of Δei from
large to small, then test which point to be constrained following this order.
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To guarantee that the added constraint will drag the whole shape to a better
location, we accept the constraint only when the shape’s energy E(St) becomes
lower, where E(·) is defined as Equation (11). If one constraint point is accepted,
we re-order the points based on the local energy changes between current St and
the Markov Network result S∗. The algorithm is summarized in Figure 5.

Given the shape S∗ from Markov Network, the minimal energy Emin = E(S∗), the
optimal shape S̃ = S∗, the constraint marks of all points: {bi = false}, the likelihood
variance Σl = diag(1, 1, ..., 1), vk is the point index, {vk} is the points order.

1. Set Σl: σi = 0.01 if bi = true, minimize Equation (15) to find an optimal shape St

2. Evaluate the shape energy E(St).
If E(St) < Emin: set S̃ = St, Emin = E(St)
else: set bvk = false, bvk+1 = true, goto 1.

3. Calculate the local energy changes: {Δei}, update the points order {vk},
Set bv0 = true, goto 1.

4. Repeat the above process, until the allowed maximum tested points number has
achieved

Fig. 5. Constrained Regularization Algorithm

Figure 6 (b) and (c) shows the procedure of constrained regularization. Our
algorithm can generate reasonable shape while keeping the positions of those
good points.

3.4 Guiding the Distribution of Markov Network States

After the regularization, if a better shape S̃t is found, this suggests that some
parts of the Markov Network result Qt is really bad to make the shape deviates
the global shape prior. To prevent the Markov Network from getting stuck into
the same mistake in the next local search step, we generate a mask image that

(a) (b) (c) (d) (e)

Fig. 6. The procedure of constrained regularization and guiding Markov Network states
distribution. The yellow shape (white shape in printed version) is the result of Markov
Network. The dark blue shape (black shape in printed version) is the result after regu-
larization. (a) The result after one step Markov Network local search. (b) Regularization
without constraints. (c) Regularization with constraints. (d) The states are forbidden
to distribute in the red area (thick gray line in printed version). (e) After pruning the
states in the blue area in (d), the result of Markov Network is much better.
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points out the danger regions. Then we prune those states that mostly drop into
the marked regions.

To mask the danger regions, we first calculate the distance of each line segment
qt

i to the better shape S̃t. Then if one line segment’s distance is much larger than
the mean distance, which shows that its location is really bad, we will draw it as
a line with a certain width on the mask image, as shown in Figure 6 (d). Since
after the constrained regularization, the shape S̃t fits the good points quite well,
detecting the bad line segments by this simple method is robust. By preventing
the states from dropping into the detected wrong regions, the Markov Network
will converge to the right position, see in Figure 6 (e).

4 Experiments

In this section, we apply the integrated shape model for face alignment and com-
pare it with BTSM [6] and demonstrate that our algorithm improves accuracy
greatly. The reason for comparing with BTSM is that it is an improvement of the
classic ASM algorithm and extensive experiments have demonstrated its good
performance in the context of face alignment.

To compare the accuracy of the two algorithms we use a set of child face images
with size of 512×512 and divide the data set into 428 images for training and 350
images for testing. Each image contains a face with a size ranging from 270×270
to 330 × 330. A total of 87 feature points are manually labeled on each image
for both the training and testing data sets. This data set contains the photos of
children from 2 to 15 years old with different expressions. Thus the face shape
variance is large. Consequently, although the images have good quality, the data
set is still difficult for precise alignment.

In our hierarchical search scheme, a four-level Gaussian pyramid is built by
repeated sub-sampling. For each image layer from coarse to fine, the correspond-
ing face shape contains 28, 37, 57, 87 feature points respectively. For each test
image, an initial shape is generated by randomly rotating (from −20◦ to 20◦)
and scaling (from 0.9 to 1.1) the mean shape of the training set, and it is fed
into the two algorithms.

To quantitatively evaluate the accuracy of the algorithm, we calculate the
estimation error by a curve difference measurement. Defining Dk as the distance
of one point Pk of the searched shape to its corresponding ground true curve as
explained in Figure 7(a), the estimation error is calculated as:

dist(A)j =
N∑

k=1

DA
k (17)

where dist(A)j denotes the estimation error of algorithm A on the image j, and
N is the number of feature points. For those closed sub-parts such as the eyes,
brows and mouth, we break one closed contour into two open curves as shown
in Figure 7(b). Comparing with the error measurement by summarizing the
distance between searched point and annotated point, such a curve measurement
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Searched shape

Closed contour Two open curves

(b)

P1 P2

P10
P20

Ground truth

(a)

Fig. 7. Illustration for shape distance definition. (a) For the point P1 of an open curve,
D1 is defined as the minimum distance |P1P10|. For the endpoint P2, D2 is defined as
the distance between two endpoints |P2P20|. (b) The closed contour is broken into two
open curves to calculate the error.

0 50 100 150 200 250 300 350

−30

0  

30 

60 

90 

120

150

(a) All Feature Points (87 points)

di
st

(B
T

S
M

) 
−

 d
is

t(
ou

r 
al

go
rit

hm
) 

(p
ix

el
s)

0 50 100 150 200 250 300 350

−30

0

30

60

90

120

di
st

(B
T

S
M

) 
−

 d
is

t(
ou

r 
al

go
rit

hm
) 

(p
ix

el
s)

(b) Facial Contour (19 points)

0 50 100 150 200 250 300 350

−10

0

10

20

30

(b) Eye (16 points)

di
st

(B
T

S
M

) 
−

 d
is

t(
ou

r 
al

go
rit

hm
) 

(p
ix

el
s)

0 50 100 150 200 250 300 350
−60

−30

0

30

60

90

(c) Mouth (20 points)

di
st

(B
T

S
M

) 
−

 d
is

t(
ou

r 
al

go
rit

hm
) 

(p
ix

el
s)

Fig. 8. Comparison of the accuracy of our algorithm and BTSM for the whole facial
shape (a), facial contour (b), the eyes (c) and the mouth (d), respectively. The x-axis
denotes the index j of test images and the y-axis denotes the difference of the estimation
errors dist(BTSM)j − dist(our algorithm)j . Points above y = 0 (blue stars) denote
images with better accuracy by our algorithm and points below y = 0 (red circles) are
opposite.

is more reasonable for the comparison of alignment accuracy, because in many
cases the fitted curves are almost the same although the positions of two sets of
control points are different.

We have plotted j ∼ dist(BTSM)j − dist(our algorithm)j in Figure 8(a) for
the whole face alignment. It is shown that on 320 of 350 (91.4%) images, the
search results of our algorithm are better than that of BTSM. Since a human
is more sensitive to the alignment accuracy for facial contour, eyes and mouth,
we also compare the accuracy of these three parts respectively. For the facial
contour, the eyes and the mouth, 308(88.0%), 309(88.3%), 289(82.6%) of 350
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Fig. 9. Comparison of our algorithm and BTSM results. The first and third rows are
our results, the second and fourth rows are BTSM results.

Fig. 10. Comparison of our algorithm and BTSM searching results for the mouth part.
The first row is the mouth part cut from the test image, the second row is our results,
and the third row is BTSM’s results.

results of our algorithm are better than that of BTSM. As shown in Figure 8(b),
8(c) and 8(d), the improvement is distinct.

Figure 9 shows a set of searching results of our algorithm and BTSM. In the
case that the facial contour or other facial sub-parts is largely variant from the
average shape or there are wrinkles and shadings on the face, our algorithm can
give more accurate results than BTSM. In many cases, BTSM can localize the
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Fig. 11. Comparison of our algorithm and BTSM searching results for the eye part.
First row is the eye part cut from the test image, the second row is our results, and
the third row is BTSM’s result.

whole face well, but when you look at each part closely, the results are often not
accurate enough, as shown in Figure 10 and Figure 11, while our algorithm can
get more accurate results.

5 Conclusion

In this paper, we present an integrated model for accurate shape alignment. The
low level shape model based on a Markov Network serves to align the feature
points to the image clues more accurately, while the global shape model based on
PCA guarantees the shape to be globally reasonable. Constrained regularization
and the mask image for guiding the distribution of Markov Network states make
the algorithm more effective and robust. We have compared our algorithm with
BTSM and demonstrated its greatly improved accuracy.
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Abstract. The determination of the player’s gestures and actions in
sports video is a key task in automating the analysis of the video material
at a high level. In many sports views, the camera covers a large part of the
sports arena, so that the resolution of player’s region is low. This makes
the determination of the player’s gestures and actions a challenging task,
especially if there is large camera motion. To overcome these problems,
we propose a method based on curvature scale space templates of the
player’s silhouette. The use of curvature scale space makes the method
robust to noise and our method is robust to significant shape corruption
of a part of player’s silhouette. We also propose a new recognition method
which is robust to noisy sequences of data and needs only a small amount
of training data.

1 Introduction

The development of high-speed digital cameras and video processing technology
has attracted people’s attention to automated video analysis such as surveillance
video analysis, video retrieval, sports video analysis. Specifically, applying this
technology to sports video has many potential applications: automatic summary
of play, highlight extraction, winning pattern analysis, adding virtual adver-
tizement, etc. There are interesting works on ball tracking, player tracking and
stroke detection for tennis, baseball, soccer, American football, etc[2, 13, 14].

Although there has been much discussion in the literature on automatic sports
video annotation and gesture recognition in restricted environment, there is
little on player’s gesture detection/recognition in standard off-air video, due
to low resolution of the player’s region, fast motion of the player and camera
motion[11, 14].

In sports video, the player’s region often has low resolution because the audi-
ence wants to watch a wide view of the scene in order to understand the persons’
situation and relative position in the field. The same is often true in surveillance
video where fixed cameras are used. Camera motion can also make tracking play-
ers and extracting players’ silhouettes hard, and low resolution makes matching
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player’s posture to trained models unstable. Then, because of unstable matched
postures, recognition and detection of gestures can also be hard.

J. Sullivan et al. proposed a method for detecting tennis players’ strokes,
based on qualitative similarity that computes point to point correspondence
between shapes by combinatorial geometric hashing. They demonstrated that
specific human actions can be detected from single frame postures in a video
sequence with higher resolution than that typically found in broadcast tennis
video[11]. Although they presented interesting results from their video sequence,
the method has some shortcomings. The outline of player will not be extracted
accurately when the resolution is low. Often we can see only the player’s back
while playing, so that we cannot use information of the player’s arm because of
self occlusion. S. Kopf et al. proposed shape-based posture and gesture recog-
nition using a new curvature scale space (CSS) method in a video sequence
which was recorded by pan/tilt/zoom camera[5]. Their new CSS representation
can describes convex segment of shape as well as concave. However, their test
sequence is of good quality, with good resolution of the player. Also they rec-
ognized postures, rather than gesture which is a set of postures. To date, there
is much literature in human gesture recognition using 3D, but these methods
are difficult to apply to low-resolution video which shows mainly player’s back
posture; also they are not computationally efficient[9].

There are many sequence recognition and matching methods considering time
information, and they have given interesting result in particular environments
[3, 6]. But, in special cases such as broadcast sports video, we may not have
enough data to train a recognizer such as an HMM. Some methods such as Dy-
namic Time Warping (DTW) which computes the distance between two time
series of given sample rates, gives a similarity measure[10]. But it needs high
computational cost and does not give probability measurement. An extension
of DTW, Continuous Dynamic Programming (CDP) was proposed by Oka[8],
which is our baseline algorithm for comparing with our proposed gesture match-
ing/spotting algorithm.

J. Alon et al. proposed a gesture spotting CDP algorithm via pruning and sub-
gesture reasoning . Their method shows an 18% increase in recognition accuracy
over the CDP algorithm for video clips of two users gesturing the ten digits 0-9
in an office environment[1].

In this paper, we suggest a new type of feature to represent the player silhou-
ette, together with a novel gesture spotting method. We found the combination
to be efficient and robust to the problems of noise and low resolution we encoun-
tered using standard off-air video.

2 Sports Player Posture Matching and Gesture Spotting

Our system consists of four parts: foreground separation, silhouette feature ex-
traction, player posture matching and gesture detection. Fig. 1 shows a diagram
of our gesture spotting system. Foreground separation is to separate foreground
objects from original frames using mosaicing. As a result of foreground sepa-
ration, we get players’ silhouette, ball silhouette and noise blobs roughly, and
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Fig. 1. Player’s gesture annotation system

can track player’s position using particle filter. Silhouette matching is to match
player’s silhouette which also includes wrong separated area, to trained silhou-
ettes in database. Gesture detection is done using history of matched silhouettes
and database, which is a function of time domain.

2.1 Foreground Separation

Background Generation. We assume a pan/tilt/zoom camera in this method,
which is the situation in many sports events. It also makes feasible the use of a
mosaicking technique: each frame is projected into a single coordinate system,
and a mosaic is created by median filtering of the pixels, creating a background
image.

Foreground Separation. By warping the mosaic to match the current frame,
the foreground image is extracted simply by taking the difference between the
frame and mosaic. Fig. 2 shows input frames, mosaic image and foreground
images.

2.2 Silhouette Feature Extraction

We extract the silhouettes from the foreground image of the previous stage by
identifying the two largest blobs. The silhouettes are used for matching a posture
to posture models in a database, using the following steps.

Curvature Scale Space(CSS). [7] CSS is a well-established technique for
shape representation used in image retrieval, and is one of the descriptors used
in the MPEG-7 standard. We outline the method here, paraphrasing the de-
scription in [7]. The CSS image of a planar curve is computed by convolving a
path-based parametric representation of the curve with a Gaussian function of
increasing variance σ2, extracting the zeros of curvature of the convolved curves,
and combining them in a scale space representation for the curve. These zero
curvature points are calculated continuously while the planar curve is evolving
by the expanding Gaussian smoothing function. Let the closed planar curve r
be represented by the normalized arc length parameter u:

r(u) = {(x(u), y(u)|u ∈ [0, 1]} (1)

Then the evolved curve is represented by Γσ :

Γσ(u) = {χ(u, σ), ψ(u, σ)} (2)
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a) Input video frames

b) Mosaic image

c) Foreground image

Fig. 2. Mosaic image and foreground images separated from input frames

where
χ(u, σ) = x(u)⊗ g(u, σ)

ψ(u, σ) = y(u)⊗ g(u, σ)

g denotes a Gaussian function of width σ, and ⊗ is the convolution operator.

g(u, σ) =
1

σ
√

2π
e−u2/2σ2

Then curvature of Γ is defined as :

κ(u, σ) =
χu(u, σ)− ψuu(u, σ)− χuu(u, σ)− ψu(u, σ)

(χu(u, σ)2 + ψu(u, σ)2)3/2 (3)

where
χu(u, σ) =

∂

∂u
(x(u)⊗ g(u, σ)) = x(u)⊗ gu(u, σ)

χuu(u, σ) =
∂2

∂2u
(x(u) ⊗ g(u, σ)) = x(u)⊗ guu(u, σ)

ψu(u, σ) = y(u)⊗ gu(u, σ)

ψuu(u, σ) = y(u)⊗ guu(u, σ)

Then, CSS image Ic provides a multi-scale representation of zero crossing points
by:

Ic = {(u, σ)|κ(u, σ) = 0, u ∈ [0, 1], σ ≥ 0} (4)
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a) A Silhouette image b) A silhouette image c) CSS image of a) d) CSS image of b)

Fig. 3. Examples of foreground silhouette and CSS represented images

The CSS image representation is robust to a similarity transformation and (to
a lesser extent) an affine transformation, so significant peaks in the CSS shape
representation are considered as suitable features for similarity-based retrieval.
But the drawback is the zero crossing points of CSS are not reliable features,
if part of the shape is corrupted significantly. Fig. 3 (a) and (b) show examples
of foreground silhouettes which are corrupted by noise blobs due to low-quality
video sequence and a posture model to be matched, respectively. Fig. 3 (c) and
(d) shows CSS images of foreground silhouette(a) and posture model(b). These
two CSS images are not likely to be considered the same.

Proposed Feature Extraction. We propose a new feature which is based on
CSS. Given threshold t, new feature set F of a curve is defined by:

F = {(r(u), σ)|(u, σ) ∈ It
c} (5)

where

It
c = {(u, σ)|κ(u, σ) = 0, u ∈ [0, 1], σ = t}

Fig. 4 represents the processing of extracting features. Fig. 5 shows an exam-
ple of the new feature set from silhouette images. In contrast to the CSS and
the sampling method which is sampling some points on the contour with fixed
number[12], the proposed feature is more robust to local noise and significant
shape corruption of a part of silhouette and has low computational cost to match
two shape images.

Fig. 4. Proposed feature extracting
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Fig. 5. The proposed features based on CSS. The squares indicate feature locations.

2.3 Posture Matching

A posture model database using the proposed feature is constructed from a set
of silhouette images of which are extracted manually from representative image
sequences. We call silhouette images extracted from test frames input images and
the silhouettes in the database models from now on. To match input image with
models in the database and measure the difference, the transformation between
them must be estimated. RANSAC algorithm is used for finding transformation
of two sets of feature points because of its powerfulness and simplicity[4]. We
considered affine transformations in this paper, but extensions to other geometric
transformations can be made easily. Apart from the translation parameters,
parameter values in the affine transform matrix are assumed to be small on the
grounds that there are a sufficient number of images in the database to match
shape and size variations. We assume that a large proportion of the shape of the
input image is preserved well enough to be matched to one of the models.

The affine transform between model and input image is computed in two steps:
firstly the translation is calculated, and secondly the remaining parameters of
the affine transform are estimated. The algorithm for finding transformation is
defined as follows:

1. Pick one feature point from the feature set of the input image and other
feature point from the feature set of the model.

2. Calculate the translation t.
3. Count the number of inliers between the input image and the model with

the t.
4. Repeat above steps k times and find t which has the biggest number of

inliers.
5. Initialize the other parameters of the affine transformation : if we denote the

affine matrix as (A|t), then initialise A as a unit matrix.
6. Find the precise affine transform matrix of the inliers using the Levenberg-

Marquardt algorithm.

After finding the transformation A, corresponding feature points in the input
image can be found by selecting feature points of the model, transformed by the
transform matrix. Let Fmi be a function mapping feature points from the model
to their corresponding points from the input image, and let Fim be the converse.
Then, we define Dmi as the mean distance between feature points from the model
and their corresponding points from the input image, and similarly for Dim.
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M = Dim + Dmi is used as a measurement, and a matched model which has
lowest M is selected. Fig. 7 shows some examples of input images and models
matched to input images.

2.4 Gesture Spotting

We will introduce our Sequence Matching/spotting algorithm and the continuous
dynamic programming(CDP) algorithm which is the baseline algorithm to which
we compare our proposed algorithm.

Continuous Dynamic Programming. [8] CDP is an extension of the Dy-
namic Time Warping (DTW) algorithm. Let f(t) and Z(τ) be variables to rep-
resent inputs which are functions of time t in the input image sequence space
and time τ in the reference sequence space, respectively. Thus t is unbounded
and τ ∈ {1 . . . T}, where T is the length of the reference pattern. The local dis-
tance is defined by d(t, τ) = |f(t)−Z(τ)| and a minimum accumulated value of
local distances P (t, τ) is initialized by P (−1, τ) = P (0, τ) = ∞. Then iteration
(t = 1, 2, . . .) is :

for τ = 1

P (t, 1) = 3 · d(t, 1) (6)

for τ = 2

P (t, 2) = min

⎧⎨⎩P (t− 2, 1) + 2 · d(t− 1, 2) + d(t, 2)
P (t− 1, 1) + 3 · d(t, 2)
P (t, 1) + 3 · d(t, 2)

(7)

for τ ≤ 2

P (t, 2) = min

⎧⎨⎩
P (t− 2, τ − 1) + 2 · d(t− 1, τ) + d(t, τ)
P (t− 1, τ − 1) + 3 · d(t, τ)
P (t− 1, τ − 2) + 3 · d(t, τ − 1) + 3 · d(t, τ)

(8)

A section of an input sequence is “spotted” if the value of A(t) gives a local
minimum below a threshold value, where A(t) is given by:

A(t) =
1

3 · T P (t, T ) (9)

How different a spotted sequence is from a reference sequence is dependent on
the threshold value.

Proposed Sequence Matching Algorithm. We propose a new method of
sequence matching which is simple and works with a small amount of training
data. The need for a small amount of training data is clearly important, as the
large training sets typically needed for the commonly used Neural Networks and
Hidden Markov Models can be hard to come by. In this paper, we represent a
gesture (which is a sequence of postures) as a curve in a 2D Cartesian space of
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reference time τ versus input image time sequence t. Let D = {g1, g2, . . . , gN}
represent a gesture ordered by time index. Thus the kth element gk represents a
member of a cluster of models which have same posture. Let the object n ≤ N
is the model index of interest (the gesture models to be trained). Given a curve
C, a re-aligned index D′ can be represented by:

D′ = {h1, h2, . . . , hn, (hn + gn+1), . . . , (hn + gN )} (10)

where
hi = C(gi), i ≤ n

If line equation, C(gk) = agk+b, is used , then D′ will be aligned linearly and only
two parameters(a, b) need to be trained. Variances (aσ, bσ) and means (aμ, bμ) of
a and b are trained on some training data and these are used for estimating the
likelihood of the input sequence. Thus we can say the dimensionality of gesture
is reduced to 2. Given the size l of interval, let vs be an interval vs = [s, s + l] in
the input sequence and s be a starting frame of a sliding window. For spotting,
we estimate a′ and b′ such that C′(gj) = a′gj + b′ for each interval vs where
gj ∈ vs and calculate the likelihoods La, Lb as follows:

La(a′) = − 1
2πaσ

e
(a′−aμ)2

2a2
σ (11)

Lb(b′) = − 1
2πbσ

e
(b′−bμ)2

2b2σ (12)

Then, we define likelihood L of the interval for the trained curve as follows:

L(vs) = La(a′)× Lb(b′) (13)

Although the size of interval is fixed in implementation, various speed of ges-
tures can be absorbed by the variance of b, which is determined from the
training sequences. Finding maximum value of L(vs) for the interval where
L(vs) > Lthreshold, we can spot gestures. The threshold value Lthreshold can
be determined roughly because it does not affect the performance seriously. In
our experiments on serve detection in tennis video, the difference of peaks of
serve and non-serve gesture sequence was larger than 10−11 at least. For a ro-
bust estimation of C′, we need to choose inliers of the estimated line parameters
because there are mismatched postures in posture matching, although most of
them are matched correctly. Simply, we use posture indexes which are of inter-
est for estimating C′ and ignore the indexes which are out of interest.Of course
we can use other robust methods to reject outliers. If the number of interesting
postures in the interval vs is smaller than a given threshold, it means that the
sequence in the interval has few information to be matched a gesture, in which
case we can discard the interval. Fig. 6 shows examples of lines which are fitted
from 2 sets of training data by a least square fitting method.
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a) Training data 1 b) Training data 2

Model IndexModel Index

Time Time

Fig. 6. Examples of line fitting to training data set

3 Experimental Results

3.1 Environment

To evaluate the performance of the proposed posture matching and gesture spot-
ting, we used an off-air interlaced sequence from the 2003 Australian open tennis
tournament video. We separated out the fields from the frames, due to player’s
fast motion; some examples are shown in Fig. 2. Our target player is the near
(or bottom) player. Initialization of the player’s location was achieved by using
a simple background subtraction method. The average width and height of the
player are 53 and 97 pixels, respectively. To create the posture model database,
we chose one play shot from the whole collection of play shots, and extracted
player’s posture manually. A model in database is represented by the curve co-
ordinates of silhouette, zero-crossing points’ locations in the image space, and
additionally, zero-crossing points’ height in the curvature scale space. For train-
ing gestures, i.e. estimating line parameters, we used only three sequences of a
gesture data.

3.2 Posture Matching

Posture matching is achieved by using our new CSS-based features. We extracted
the feature set and compared the distance to the posture models in the database.
Fig. 7 shows some examples of foreground extracted from the input frames and
matched models. In Fig. 7(a-c), the contours (yellow) of the foregrounds are
not extracted accurately because of shadows and white lines of the court. Nev-
ertheless, we can see good matched results with our new features even though
the contours are not good enough to match with the standard CSS matching
method. Sometimes, matching are failed such as in Fig. 7(d), but in the 5 best
matched models we could find proper model.

3.3 Serve Gesture Spotting

We tested using 50 sequences, of which some include a serve gesture, some do
not. The sequences are also partitioned by the players’ identity (‘A’ and ‘B’)
and position of player on the court(‘Left’ and ‘Right’). Fig. 6 shows a sequence
projected onto the time-model space for a serve gesture. For training, we use a
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a) b) c) d)

Fig. 7. Foreground and matched model

a)

b)

Fig. 8. Likelihood and some snapshots of spotted gesture for representative shots

single shot, of which one of the players is serving on the right-hand side of the
court.

Fig. 8 shows postures plotted onto the time-model space (first rows), likeli-
hood graph versus time (second rows) and some snap-shots of sequences which
are detected as a serve gesture(third rows). The gray area in the first rows indi-
cates the which model indices are outliers (do not contribute to calculating line
parameters for matching serve gesture). The yellow contours in the third rows
shows a matched posture model. We can see that gesture spotting is achieved
successfully, even though posture matching sometime fails. In Fig. 8(a), the
player is bouncing the ball for a while, so the serve gestures is spotted at the
16th frame. In Fig. 8(b), there are two serve sequences (starting from 1st and
548th frame) in a shot. The player served twice because the first serve was a
fault. Table 1 shows results of serve gesture spotting. In the table, true posi-
tive(TP), true negative(TN), false positive(FP) and false negative(FN) indicate
serve gesture detected in correct location, no serve gesture detected where there
is no serve, serve gesture detected where there is no serve and serve gesture
not detected where there is a serve, respectively. Our method generates 90%
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Table 1. Gesture spotting result using CDP and the proposed method

Player A Player B
TotalLeft Right Left Right

CDP

TP 5/11 8/11 4/8 7/8 62% correct
TN 7/12
FP 4/11 3/11 4/8 3/8

36.8% incorrect
FN 6/11 3/11 4/8 1/8

Proposed
method

TP 8/11 11/11 7/8 7/8
90% correct

TN 12/12
FP 0/11 0/11 0/8 0/8

5.2% incorrectFN 2/11 0/11 1/8 1/8

correct result(TP+TN)and 5.2% incorrect result(FP+FN), while the results for
the baseline algorithm, CDP, are 62% and 36.8%. The spotting results show that
our method is substantially better than CDP.

4 Conclusions

In this paper, we presented a robust posture matching method and a gesture
spotting method. For matching posture from low-resolution video frames, we
proposed a feature based on CSS, which is robust to noise and significant shape
corruption of the player’s silhouette. For gesture spotting under a sequence of
matched postures which may include mismatches, we calculate parameters for
a curve of gestures plotted on the time-model space, and then estimate the
likelihood using these trained parameters for spotting. According to our exper-
iments, our spotting method generates 90% correct results and 5.2% incorrect
results while the figures for the continuous dynamic programming algorithm are
62% and 36.8%, respectively. The proposed spotting method is robust to noise
in the sequence data, with computational costs small enough to be calculated in
real time.

Acknowledgements. This work was supported by the Korea Science and En-
gineering Foundation (KOSEF).
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Abstract. Our goal is to automatically segment and recognize basic
human actions, such as stand, walk and wave hands, from a sequence of
joint positions or pose angles. Such recognition is difficult due to high
dimensionality of the data and large spatial and temporal variations in
the same action. We decompose the high dimensional 3-D joint space
into a set of feature spaces where each feature corresponds to the mo-
tion of a single joint or combination of related multiple joints. For each
feature, the dynamics of each action class is learned with one HMM.
Given a sequence, the observation probability is computed in each HMM
and a weak classifier for that feature is formed based on those proba-
bilities. The weak classifiers with strong discriminative power are then
combined by the Multi-Class AdaBoost (AdaBoost.M2) algorithm. A
dynamic programming algorithm is applied to segment and recognize
actions simultaneously. Results of recognizing 22 actions on a large num-
ber of motion capture sequences as well as several annotated and au-
tomatically tracked sequences show the effectiveness of the proposed
algorithms.

1 Introduction and Related Work

Human action recognition and analysis has been of interest to researchers in
domains of computer vision [1] [2] [9] [3] [10] [12] for many years. The problem
can be defined as: given an input motion sequence, the computer should identify
the sequence of actions performed by the humans present in the video. While
some approaches process the video images directly as spatio-temporal volumes
[10] , it is common to first detect and track humans to infer their actions [3]
[12]. For finer action distinction, such as picking up an object, it may also be
necessary to track the joint positions. The methods may be further distinguished
by use of 2-D or 3-D joint positions.

In this paper, we describe a method for action recognition, given 3-D joint
positions. Of course, estimating such joint positions from an image sequence
is a difficult task in itself; we do not address this issue in this paper. We use
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data from a Motion Capture (MoCap) system1or from a video pose tracking
system. It may seem that the task of action recognition given 3-D joint positions
is trivial, but this is not the case, largely due to the high dimensionality (e.g.
67-D) of the pose space. The high dimensionality not only creates a computa-
tional complexity challenge but, more importantly, key features of the actions
are not apparent, the observed measurements may have significant spatial and
temporal variations for the same action when performed by different humans
or even by the same person. Furthermore, to achieve continuous action recogni-
tion, the sequence needs to be segmented into contiguous action segments; such
segmentation is as important as recognition itself and is often neglected in ac-
tion recognition research. Our method attempts to solve both the problem of
action segmentation and of recognition in presence of variations inherent in per-
formance of such actions. Even though we assume that 3-D positions are given,
we present results illustrating the effects of noise in the given data (for positions
derived from videos).

Previously reported action recognition methods can be divided into two cat-
egories with respect to the data types that they use: those based on 2-D image
sequences, e.g. [2] [9] [3] [10] [12] and those based on 3-D motion streams, e.g. [1]
[7]. The above 2-D approaches can be further divided by the image features they
use: those based on object contours [2] [12], those base on motion descriptor such
as optical flow [3] or gradient matrix [10] and those base on object trajectories
[9]. A 3-D approach has many advantages over a 2-D approach as the dependence
on viewpoint and illumination has been removed. Nonetheless, many algorithms
use a 2-D approach because of the easy availability of video inputs and difficulty
of recovering 3-D information.

In the above 3-D approaches, [1] decomposes the original 3-D joint trajectories
into a collection of 2-D projected curves. Action recognition is based on the
distances to each of these curves. However, the predictors they use are static
constructs as the correlation between 2-D curves are lost after projection. In [7],
actions are represented by spatio-temporal motion templates, which correspond
to the evolution of 3-D joint coordinates. As matching results can be affected by
temporal scale change, each template is resampled and multiple-scale template
matching is performed.

The approaches cited above (except for [7]) assume that the given sequence
contains only one action performed throughout the length of the sequence; it
is not clear how and whether they could be extended to segment a video con-
taining sequence of actions and recognize the constituent actions. In [7] action
segmentation is obtained to some extent by classifying action at each frame
by considering a fixed length sequence preceding it; such segmentation is in-
accurate at the boundaries and over-segmentation may occur. Explicit action
segmentation is considered in the context of complex actions consisting of a se-
quence of simpler actions but only when a model of the sequence is available,
such as in [5]. We consider a sequence of actions where such models are not

1 Part of data comes from mocap.cs.cmu.edu, which was created with funding from
NSF EIA-0196217.
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known and actions may occur in any sequence (though some sequences may be
eliminated due to kinematic constraints; we do not consider such constraints in
this work).

Our approach is based on 3-D joint position trajectories. The actions we
consider are primitive components that may be composed to form more complex
actions. The actions are grouped according to the set of body parts that are
related to the action. In our approach, the high dimensional space of 3-D joint
positions is decomposed into a set of lower dimensional feature spaces where each
feature corresponds to the motion of a single joint or combination of related
multiple joints. For each feature, the dynamics of one action class is learned
with one continuous Hidden Markov Model (HMM) with outputs modeled by a
mixture of Gaussian. A weak classifier for that feature is formed based on the
corresponding HMM observation probabilities. Weak classifiers of the features
with strong discriminative power are then selected and combined by the Multi-
Class AdaBoost (AdaBoost.M2) algorithm to improve the overall accuracy.
A dynamic programming-based algorithm is applied to segment and recognize
actions simultaneously in a continuous sequence.

To our knowledge, there has been little work done in computer vision that
integrates HMM with AdaBoost. In [13], an integration called “boosted HMM”
is proposed for lip reading. Their approach is different from ours in that they use
AdaBoost first to select frame level features and then use HMM to exploit long
term dynamics. This does not suit the action recognition problem well because
the full body motion is much more complex than the lip motion. Without the
dynamic information, the static features tend to cluster in the feature space
and thus can not discriminate different actions well; their combination (using
AdaBoost) is unlikely to alleviate the problem much. Another difference is that
[13] works with pre-segmented sequences only.

We show the results of our system on a large collection of motion capture
sequences with a large variety of actions and on some hand annotated as well
as automatically tracked video sequences. The recognition results are very good
and the method demonstrates tolerance to considerable amount of noise. We
also compare performance with our earlier work [7] which was based on a sim-
pler algorithm. Most importantly, the new approach can take a data stream
containing a sequence of actions and then segment and recognize the component
actions which is not possible with the earlier approach.

2 The Dataset and Feature Space Decomposition

We collected 1979 MoCap sequences consisting of 22 Actions from Internet.
We also generated some sequences of 3-D joint position from a 3-D annotation
software [6] and from an automatic 3-D tracking software [6]. The generated
data are much less accurate compared with MoCap. They are used in testing
only to show that our algorithm can work on real data and that training on
MoCap data transfers to video sequences; we do not claim to have solved the
tracking problem as well.
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Fig. 1. Categorization of actions that need to be recognized

Actions in these videos can be grouped into 3 categories according to the
involved primary body parts: {leg+torso, arm, head}. The categorization is
illustrated in Fig.1. Actions in the same group are mutually exclusive to each
other, but actions from different groups can be recognized simultaneously. This
allows us to execute logical queries such as find the sequence in which the subject
is walking while his head is nodding.

Actions can also be classified based on whether the primary body parts move
or not. We view a stationary pose, e.g. stand or sit (white blocks in Fig.1) as a
special type of action, with the constraint that duration of the action should be
long enough (longer than some threshold). The transitional actions (gray blocks)
transit from one stationary pose to another. The remainder (black blocks) consist
of periodic actions (e.g. walk, run) and other actions.

Different joint configurations (i.e. number of joints/bones, joint names and
joint hierarchy) are unified to one that consists of 23 joints. The joint positions
are normalized so that the motion is invariant to the absolute body position, the
initial body orientation and the body size.

Since there are 23 joints and each has 3 coordinates (only y coordinate is used
for hip, the root joint), the whole body pose at each frame can be represented
by a 67-D vector (called a pose vector). We performed some experiments to
evaluate the effectiveness of using the 67-D pose vector on a simpler subset of
action classes Walk, Run, Stand, Fall, Jump, Sit down. We first used a Bayesian
network to classify static pose and found the classification accuracy to be less
than 50%. Then, we trained and tested a 3-state continuous HMM (the same as
one described in section 3.1) and found the accuracy to be still low (below 60%).
These experiments do not conclusively prove that using the full pose vector is
undesirable but it is reasonable to think that relevant information can get lost
in the large pose vector.



Recognition and Segmentation of 3-D Human Action 363

Rather than enumerate all combinations of different components in the pose
vector (as in [1]), we design feature vectors, called just features from now on,
such that each feature corresponds to the pose of a single joint or combination
of multiple joints. Following is the list of different types of features that are
included.

Type 1: one coordinate of a joint, e.g. the vertical position of the hip
Type 2: coordinates of each non-root joint
Type 3: coordinates of 2 connected joints, e.g. neck and head
Type 4: coordinates of 3 connected joints, e.g. chest, neck and head
Type 5: coordinates of one pair of symmetric nodes, e.g. left hip and right hip
Type 6: coordinates of all leg and torso related joints
Type 7: coordinates of all arm related joints

Features are designed in this way based on our analysis of the actions and
the features that can distinguish them. Different types characterize different
levels of dynamics of an action. For example, Type 2,3 and 4 corresponds to
joint position, bone position and joint angle, respectively. Type 5 features are
useful for detecting periodic motions and type 6 and 7 features provide an overall
guidance for recognition. In total we have 141 features.

3 Integrated Multi-class AdaBoost HMM Classifiers

We now describe our action recognition methodology. It consists of a combina-
tion of HMM classifiers, which are treated as weak classifiers in the AdaBoost
terminology, and whose outputs are combined by a multi-class AdaBoost algo-
rithm (AdaBoost.M2). We first describe the HMM classifiers and then their
combination. The issue of segmenting the pose sequence into separate actions is
addressed separately in section 4 later.

3.1 Learning Weak Classifiers Using HMMs

We choose a hidden Markov model (HMM) to capture the dynamic information
in the feature vectors as experience shows them to be more powerful than models
such as Dynamic Time Warping or Motion Templates. An HMM is defined by
states, transition probabilities between them and probabilities of outputs given a
state. Well known algorithms [8] are available to answer the following questions:

1. How to compute P (O|λ), the probability of occurrence of the observation
sequence O=O1O2...OT given model parameters λ? This problem can be
solved by the Forward-Backward procedure.

2. How to select the best state sequence I=i1i2...iT such that P (O, I|λ) is
maximized? This problem can be solved by the Viterbi algorithm.

3. How to learn model parameters λ given O such that P (O|λ) is maximized?
This problem can be solved by the Baum-Welch algorithm.
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Fig. 2. The matrix of HMMs. Each HMM has 3 hidden states. Each state contains
a 3-component mixture of Gaussian. Once λi,j , the parameters of HMMi,j is learned,
the probability of the observation sequence O1O2...OT is computed using the For-
ward procedure. The action with the maximum probability in the same column is
selected.

For the action classification problem, suppose there are M action classes and
N features (feature classes). For the j-th feature (j = 1,...,N), we learn one
HMM for each action class and the corresponding parameters λi, i = 1,...,M.
Given one observation sequence O, we compute P (O|λ) for each HMM using
the Forward-Backward procedure. Action classification based on feature j can
be solved by finding action class i that has the maximum value of P (O|λi), as
shown in Eq.1.

action(O) = arg max
i:i=1,...,M

(P (O|λi)) (1)

We call the set of these HMMs and the decision rule in Eq.1 as the weak
classifier for feature j (a term used in boosting algorithm literature). These M
action classes and N features form an M × N matrix of HMMs, as shown in
Fig.2. We denote by HMMi,j the HMM of action i (i-th row) and feature j (j-th
column) and its corresponding parameters is λi,j . The set of HMMs in column
j correspond to the weak classifier for feature j.

Recall that there are three action groups based on involved body parts. There-
fore, to recognize actions in a specific group, only related features need to be
considered. In other words, a feature can only classify related actions. For exam-
ple, feature neckxyz+headxyz can only classify action “nod” and “shake head”.
Therefore, there are three matrices of HMMs, corresponding to three action
groups. As HMMs in three groups are used in the same way; unless otherwise
stated, we do not specify which group that they belong to.

In our system, each HMM has 3 hidden states and each state is modeled by a
3-component mixture of Gaussian. The following parameters of each HMM are
learned by the Baum-Welch algorithm: (1) Prior probabilities of each state,
(2) Transition probabilities between states and (3) Parameters of each state s
(s=1,2,3): Mean vector μs,m, covariance matrix Σs,m and weight ws,m of each
mixture component (Gaussian) (m=1,2,3).
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The training and classification algorithm of weak classifiers are listed as
follows:

Algorithm 1. Training of weak classifiers

1. Given Q training samples 〈(x1, y1), ..., (xQ, yQ)〉 where xn is a sequence with
action label yn, yn ∈ {1, ..., M}, n=1,...,Q, M is the number of action classes

2. Divide the Q samples into M groups such that each group contains samples
with the same label.

3. for j=1 to N (N is the number of features)
for i=1 to M

3.1 Crop the training samples in group i, such that they contain only
coordinates that belong to feature j

3.2 Train HMMi,j using Baum-Welch algorithm

Algorithm 2. Classification algorithm based on weak classifier j

1. Given an observation sequence O=O1O2...OT

2. for i=1 to M, Compute P (O|λi,j)
3. Return arg max

i:i=1,...,M
(P (O|λi,j))

Both Forward and Baum-Welch algorithm need to compute P (Ot|st = s),
the probability of observing Ot given that state s at time t. Unlike a discrete
HMM, a continuous HMM uses a Probability Density Function (PDF) to es-
timate P (Ot|st = s). This is because no point has a probability in a continu-
ous distribution, only regions do. For the Gaussian mixture model used here,
P (Ot|st = s) is computed as follows:

3∑
m=1

(
ws,m

1

(2π)
d
2 |Σs,m|

1
2
e−

1
2 (Ot−μs,m)Σ−1

s,m(Ot−μs,m)T

)
(2)

In practice, Log-likelihood log(P (Ot|st = s)) is used to avoid numerical un-
derflow. Another consideration is that the probability of occurrence of the obser-
vation sequence O1O2...OT tends to decrease exponentially as T increases. But
this causes no problem here because for feature j, the probability computed in
each of HMMi,j (i = 1, ..., M) decreases comparably.

The complexity of Algorithm 2 is O(MNst
2T ), where Nst is the number of

states in HMM. Deciding automatically the appropriate value of Nst is difficult
and therefore in practice, it is usually specified in advance. Our experiments show
that an HMM of 3 states with a 3-component mixture Gaussian can capture rich
dynamic information in the actions and can achieve desired high classification
rate. So the complexity of Algorithm 2 is approximately O(MT ).

The complexity of Algorithm 1 is O(NNitNst
2Lall), where Nit is the number

of iterations in Baum-Welch algorithm and Lall is the total length of training
samples of all action classes. In our experiment, Baum-Welch algorithm usu-
ally converges in less than 5 iterations. So the complexity of Algorithm 1 is
approximately O(NLall).
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3.2 Boosting Classifiers Using AdaBoost.M2

Experiments show that individual learned HMM classifiers have reasonably good
performance; for example, feature (all leg and torso related joints) alone can
correctly classify 62.1% of 16 leg and torso related action classes. However, we
expect much better performance from the final classifier. This can be done by
combining HMM classifiers, considered to be weak classifiers. This is made pos-
sible due to the fact that each weak classifier has different discriminative power
for different actions.

Inspired by success of boosting methods for many problems, particularly face
detection of Viola and Jones [11], we use the AdaBoost [4] algorithm to combine
results of weak classifiers and to discard less effective classifiers to reduce the
computation cost. This algorithm works in an iterative way such that in each
iterationthe newly selected classifiers focus more and more on the difficult train-
ing samples. In this paper, we use AdaBoost.M2 [4], the multi-class version of
AdaBoost. Some limitations of AdaBoost.M2 for feature selection were stated
in [13]; we believe that those limitations hold only when the weak classifiers have
very limited discriminative power.

We rephrase the AdaBoost.M2 algorithm here to accommodate our specific
problem.

Algorithm 3. AdaBoost.M2 for action classification

1. Given Q training samples 〈(x1, y1), ..., (xQ, yQ)〉 where xn is a sequence with
action label yn, yn ∈ {1, ..., M}, n=1,...,Q

2. Train weak classifiers using Algorithm 1 in section 3.1
3. Test these Q samples on each HMMi,j , record the value P (xn|λi,j), i=1,...,M,

j=1,...,N, n=1,...,Q
4. Let B = {(n, y) : n ∈ {1, ..., Q}, y �= yn} be the set of all mislabels; Let

D(1)(n, y) = 1/|B| for (n, y) ∈ B be the initial distribution of mislabels
5. for k=1 to K (K is the number of iterations)

5.1 Select a weak classifier hk that has minimum
pseudo-loss εk = 1

2

∑
(n,y)∈B

D(k)(n, y)(1− P (xn|λyn,hk
) + P (xn|λy,hk

))

5.2 Set βk = εk/(1− εk)

5.3 Update D(k): D(k+1)(n, y) =D(k)(n,y)
Zk

β
1
2 (1+P (xn|λyn,hk

)−P (xn|λy,hk
))

k

where Zk is normalization constant so that D(k+1) will be a distribution

6. Let f =
K∑

k=1
(log 1

βk
)P (x|λy,hk

). Return the final classifier h(x)= arg max
y∈{1,...,M}

(f)

and likelihood H(x) = max
y∈{1,...,M}

(f)

The idea of this algorithm can be interpreted intuitively as follows:(1) log 1
βk

is the weight of the selected classifier hk. Intuitively, as P (xn|λyn,hk
) increases

(which means hk labels xn more accurately), the pseudo-loss εk decreases and
consequently log 1

βk
increases. So in each iteration the new selected classifier has

the strongest discriminative power given current D(k). (2)D(k), the distribution
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of mislabels, represents the importance of distinguishing incorrect label y on
sample xn. As P (xn|λy,hk

) increases and P (xn|λyn,hk
) decreases (which means

that hk labels xn less accurately), D(k) increases because εk ≤ 1
2 and thus βk ≤ 1.

By maintaining this distribution, the algorithm can focus not only on the hard-
to-classify samples but also on the hard-to-discriminate labels. This is the major
improvement over AdaBoost.M1, the first version of multi-class AdaBoost [4].

Care needs to be taken when applying AdaBoost.M2 on continuous HMMs
because it is critical in AdaBoost.M2 that the value of hypotheses generated by
weak classifiers not exceed 1 so that the pseudo-loss εk is in the range of [0,0.5].
However, for a continuous HMM, the observation probability P (xn|λi,j) com-
puted by the Forward procedure is based on a Gaussian function, as shown in
Eq.2. Keep in mind this is the probability density function. Therefore, P (xn|λi,j)
can be greater than 1 in practice. If this occurs, all P (xn|λi,j) computed in step
3 of Algorithm 3 will be normalized by a scale factor such that the maximum
of all P (xn|λi,j) does not exceed 1. (Theoretically, P (xn|λi,j) can be an infinite
number, which indicates the sample should be definitely labeled as action i, but
this does not occur in our experiments.)

Results show that after combining 15 weak classifiers by the boosting pro-
cedure, the final classifier achieves a classification rate of 92.3% on the leg and
torso related actions, showing the effectiveness of the algorithm.

4 The Segmentation Algorithm

Action classification method described in section 3 assumes that each input se-
quence belongs to one of the action classes. To achieve continuous action recog-
nition, a (long) sequence needs to be segmented into contiguous (shorter) action
segments. Such segmentation is as important as recognition itself.

Here is the definition of segmentation: Given an observation sequence
O = O1O2...OT , a segmentation of O can be represented by a 3-tuple S(1, T )=
(NS , sp, ap).

• NS : the number of segments, NS ∈ {1, ..., T}
• sp: the set of start time of each segment, sp ∈ {1, ..., T}, p = 1, ..., NS , s1 is

always 1 and we add an additional point sNS+1=T+1 to avoid exceeding the
array boundary

• ap: the corresponding action labels of each segment, ap ∈ {1, ..., M}
For a sub-sequence Ot1Ot1+1...Ot2, we compute the following functions:

h(t1, t2) = argmax
y∈{1,...,M}

K∑
k=1

(log
1
βk

)P (Ot1...Ot2|λy,hk
) (3)

H(t1, t2) = max
y∈{1,...,M}

K∑
k=1

(log
1
βk

)P (Ot1...Ot2|λy,hk
) (4)

h(t1, t2) and H(t1, t2) is the action label and likelihood computed by
Algorithm 3.
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Given a segmentation S of O1O2...OT , a likelihood function L is defined as:

L(1, T, S(1, T )) =
NS∏
p=1

H(sp, sp+1 − 1) (5)

A maximal likelihood function L∗ is defined as:

L∗(1, T ) = max
S(1,T )

L(1, T, S(1, T )) (6)

The goal of the segmentation problem is to find the maximal likelihood
function L∗(1, T ) and the corresponding segmentation S∗(1, T ). Enumeration
of all possible values of (NS , s

p
, a

p
) is infeasible because of the combinatorial

complexity. However, the problem can be solved in O(T 3) time by a dynamic
programming-based approach: Suppose a sub-sequence Ot1...Ot2 is initially la-
beled as h(t1, t2) and t is the optimal segmentation point in between (if Ot1...Ot2
should be segmented). If L∗(t1, t − 1)L∗(t, t2) is larger than H(t1, t2), then
Ot1...Ot2 should be segmented at t. The idea is shown in Eq.7.

L∗(t1, t2) = max
t

(H(t1, t2), L∗(t1, t− 1)L∗(t, t2)) (7)

This recursive definition of L∗ is the basis of the following dynamic
programming-based algorithm.

Algorithm 4. Segmentation algorithm
/*L∗(t1, t2) abbr. as L∗

t1,t2, same for other variables*/

1. Given an observation sequence O=O1O2...OT . lmin is the limit of minimum
length of a segment

2. Compute ht1,t2 and Ht1,t2, t1, t2 ∈ {1, ..., T} and t2 ≥ t1 + lmin − 1
3. /*too short to be segmented*/

for l=lmin to 2lmin − 1
for t1=1 to T − l + 1

L∗
t1,t1+l−1=Ht1,t1+l−1

Record the corresponding action labels
4. /*dynamic programming starts here*/

for l=2lmin to T
for t1=1 to T − l + 1

L∗
t1,t1+l−1=max(Ht1,t1+l−1, max

t
(L∗

t1,t−1L
∗
t,t1+l−1))

where t1 + lmin ≤ t ≤ t1 + l− lmin
Record the corresponding segmentation point and action labels

5. return L∗
1,T and the corresponding S∗

1,T

We use lmin here to avoid over segmentation as well as impose a constraint
on the stationary actions (or precisely, poses, e.g. stand) such that duration of
a stationary action should be long enough.
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The complexity of the above algorithm is T 3/6 in terms of computation of
L∗

t1,t−1L
∗
t,t1+l−1. The cost is still high if T is very large. Significant speedup can

be achieved if there are pauses or stationary actions (which usually occur in a
long sequence), which can be easily detected beforehand by sliding a temporal
window and analyzing the mean and variance of motion within the sliding win-
dow. These pauses or stationary actions are then used to pre-segment the long
sequence into several shorter sequences.

The above step 2 requires computation of P (Ot1...Ot2|λ), the probability of
observing each valid sub-sequence Ot1...Ot2 by an HMM. To avoid repeated
computation of such P (Ot1...Ot2|λ) in the Forward procedure, we augment the
Forward procedure so that instead of returning the probability of observing
Ot1...Ot2 only, we return the probabilities of observing each sub-sequence of
Ot1...Ot2 starting from Ot1.

5 Experimental Results

To validate the proposed action classification and segmentation algorithm, we
tested it on a large MoCap database as well as several annotated and automat-
ically tracked sequences to investigate the potential of its use with video data.
The results on these two types of data are shown in section 5.1 and 5.2. In section
5.3, we show a comparison with our earlier template matching based approach
algorithm [7] on the same dataset.

5.1 Results on MoCap Data

The 1979 MoCap sequences in our dataset contain 243,407 frames in total. We
manually segmented these sequences such that each segment contains a whole
course of one action. In total we have 3745 action segments. The distribution
of these segments in each action class is not uniform. Walk has 311 segments
while lie2stand has only 45 segments. The average number is 170. The length of
these segments are also different, ranging from 43 to 95 frames. The average is
65 frames.

In Experiment 1, we randomly selected half of segments of each action class
for training and the remainder for classification. In Experiment 2, we reduced
the amount of training data to 1/3. We repeated these experiments five times
and the average classification rate of each class is shown in Table 1.

The overall classification rate of each action group {leg+torso, arm, head} are
{92.3%, 94.7%, 97.2%}Exp.1 and {88.1%, 91.9%, 94.9%}Exp.2, respectively.

As expected, the performance of Experiment 2 is lower, but not by much, in-
dicating that the algorithm is robust in terms of the amount of available training
data. Compared with Experiment 1, most of the first 3 best features (not shown
here due to limited space) for each action did not change (although the order
may be different). This shows consistency of AdaBoost.M2 in selecting good
classifiers.

Results show that individual learned HMM classifiers have reasonably good
performance; for example, in Experiment 1, one feature (all leg and torso re-
lated joints) alone can correctly classify 62.1% of leg and torso related action
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Table 1. Classification rate of each action class

action walk run j upward j forward stand sit bow lie
Exp.1 94.1% 95.5% 92.2% 91.2% 91.8% 92.4% 89.8% 88.7%
Exp.2 89.0% 91.3% 87.3% 86.6% 87.9% 90.5% 86.0% 84.8%
action stand2sit sit2stand stand2bow bow2stand stand2lie lie2stand sit2lie lie2sit
Exp.1 89.7% 89.8% 89.0% 88.3% 92.4% 88.2% 91.2% 91.8%
Exp.2 84.7% 86.6% 84.8% 86.5% 88.7% 84.5% 86.6% 86.1%
action wave hand point lower arm lift arm nod shake head
Exp.1 95.8% 94.2% 92.7% 92.3% 97.9% 96.7%
Exp.2 91.3% 92.8% 89.2% 89.4% 95.1% 94.8%

classes. The effectiveness of AdaBoost.M2 in combining good features can be
clearly seen by a gain of about 30% (from 62.1% to 92.3%) in the classification
rate.

In Experiment 3, we tested our segmentation/recognition algorithm on 122
unsegmented long sequences (from testing set) with average length of 949 frames
(please see the supplementary material for some result videos). We use the clas-
sifier learned in Experiment 1 and we set lmin=20 frames to avoid over segmen-
tation. The algorithm achieves a recognition rate of 89.7% (in terms of frames).

In terms of speed, on a P4 2.4GHz PC, Experiment 1 took 153 minutes for
training and 42 minutes for classification (∼47 fps). Experiment 2 took 76 min-
utes and 66 minutes (∼41 fps). Experiment 3 took 68 minutes to segment 122
sequences (∼28 fps). The results show that the classification as well as the seg-
mentation/recognition algorithm works in real time.

5.2 Results on Annotated and Tracked Data

In Experiment 4, we used a 3-D annotation software and a 3-D tracking soft-
ware developed in our group [6] to generate two annotated (994 frames in total)
and one automatically tracked (159 frames) sequence.

Fig.3 shows some key frames of one annotated sequence. The rendered anno-
tation results using a human character animation software called POSER (by
Curious Labs) are displayed on the right. The ground truth action and the rec-
ognized action are shown at the top and the bottom, respectively.

Results show that most of actions have been correctly recognized although
the segmentation is not perfect. Errors occur when the subject turns around
because we don’t model such actions in our action set. Carry was not recognized
for the same reason. Reach and crouch, however, were recognized as point and
sit, which are reasonable substitutions for reach and crouch.

The recognition rate on the annotated and tracked data is 88.5% and 84.3%,
respectively. This is satisfactory considering a substantial amount of jittery noise
contained in the data (root mean square position error rates of about 10 pix-
els (∼10 cm) and joint angle errors of about 20◦). The proposed algorithm, in
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Fig. 3. Key frames of one annotated video. Ground truth and recognition result is
shown in top-right and bottom-right, respectively.

general, is robust to these types of errors with short duration because of the
longer-term dynamics captured by the HMMs.

5.3 Comparison with Template Matching Based Algorithm

We tested our earlier template matching based algorithm in [7] using exactly the
same experimental setup. In [7], each action is represented by a template consist-
ing of a set of channels with weights. Each channel corresponds to the evolution
of one 3D joint coordinate and its weight is learned according to the Neyman-
Pearson criterion. χ2 function is used as the distance measurement between
the template and the testing sequences. The results of [7] are listed as follows:
Exp.1:{leg+torso:83.1%, arm:84.8%, head:88.4%}, Exp.2:{leg+torso:79.4%,
arm: 80.5%, head: 82.3%}, Exp.3:80.1%, Exp.4:{annotated: 82.3%,
tracked:80.6%}.

The new algorithm has significantly better results. We note that the de-
tection results for the template matching based methods are inferior to those
originally reported in [7] because the sequences in this test are much more de-
manding and include walking styles with large variations such as staggering,
dribbling and catwalk. The method described in this paper outperforms tem-
plate matching not only because Boosted HMMs provide a more powerful way
to model such variations but also because it is less sensitive to temporal scale
changes.

Also note that the recognition algorithm in [7] does not segment long se-
quences in Experiment 3. It simply searches for the best matched template within
the preceding window. As action label at next frame may change, that leaves
many small misclassified fragments. In contrast, the segmentation based method
provide some global guidance for the process to make sure that the long sequence
is not over segmented.
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6 Summary and Future Work

We have presented a learning-based algorithm for automatic recognition and
segmentation of 3d human actions. We first decompose 3D joint space into fea-
ture spaces. For each feature, we learn the dynamics of each action class using
one HMM. Given a sequence, the observation probability is computed in each
HMM and a weak classifier for that feature is formed and then combined by
the AdaBoost.M2 algorithm. A dynamic programming algorithm is applied to
segment and recognize actions simultaneously in a continuous sequence.

Our major contributions are a framework that boosts HMM-based classifiers
using multi-class AdaBoost and a dynamic programming-based action recogni-
tion and segmentation algorithm. Our future work plan includes adding more
complex actions.
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Abstract. We address the problem of segmenting highly articulated
video objects in a wide variety of poses. The main idea of our approach
is to model the prior information of object appearance via random forests.
To automatically extract an object from a video sequence, we first build
a random forest based on image patches sampled from the initial tem-
plate. Owing to the nature of using a randomized technique and simple
features, the modeled prior information is considered weak, but on the
other hand appropriate for our application. Furthermore, the random
forest can be dynamically updated to generate prior probabilities about
the configurations of the object in subsequent image frames. The algo-
rithm then combines the prior probabilities with low-level region infor-
mation to produce a sequence of figure-ground segmentations. Overall,
the proposed segmentation technique is useful and flexible in that one
can easily integrate different cues and efficiently select discriminating
features to model object appearance and handle various articulations.

1 Introduction

Object segmentation has been one of the fundamental and important problems
in computer vision. A lot of efforts have been made to resolve the problem,
but, partly due to the lack of a precise and objective definition itself, fully-
automatic unconstrained segmentation is still an “unsolved” vision task. The
predicament is further manifested by the success of those characterized with
clear aims, e.g., edge or interest-point detection. Nevertheless, the bottom-up
segmentation approaches based on analyzing low-level image properties have
been shown to achieve stable and satisfactory performances [13], [20], [28], [36],
even though the segmentation outcomes (e.g., see [17]) often contextually differ
from those produced by humans [16], [21]. Humans have abundant experience on
the contexts of images; with our prior knowledge we can infer an object’s shape
and depth, and thus produce meaningful segmentations that are unlikely to be
derived by a general-purpose segmentation algorithm.

While fully automatic image segmentation seems to be an ill-posed problem,
figure-ground segmentation, on the other hand, has more specific goals and is
easier to evaluate the quality of segmenting results. Since the emphasis is on
separating the target object(s) (of which some properties are known a priori)

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 373–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



374 H.-T. Chen, T.-L. Liu, and C.-S. Fuh

Fig. 1. Examples of unusual and highly articulated poses

from the background, it opens up many possibilities regarding how to impose
prior knowledge and constraints on the segmentation algorithms. For instance, an
algorithm may choose from some predefined object models, such as deformable
templates [35] or pictorial structures [11], or learn from the training data [4]
to construct the object representation. Once the representation is decided, the
algorithm can yield segmentation hypotheses in a top-down fashion [4], and
then examines the feasibility of hypothesized segmentations. Indeed top-down
and bottom-up segmentation approaches are not mutually exclusive and, when
properly integrated, they could result in a more efficient framework [30], [34].

In this paper we address figure-ground segmentation for objects in video.
Particularly, we are interested in establishing a framework for extracting non-
rigid, highly articulated objects, e.g., athletes doing gymnastics as shown in
Fig. 1. The video sequences are assumed to be captured by moving cameras,
and therefore background subtraction techniques are not suitable. Furthermore,
since we are mostly dealing with unusual poses and large deformations, top-down
approaches that incorporate class-specific object models such as active contours
[2], exemplars [14], [29], pictorial structures [11], constellations of parts [12],
deformable models [22], and deformable templates [35] are less useful here—
the degree of freedom is simply too high, and it would require either a huge
number of examples or many parameters to appropriately model all possible
configurations of the specified object category. Hence, instead of considering
class-specific segmentation [4], we characterize our approach as object-specific
[34]: Given the segmented object and background in the initial image frame,
the algorithm has to segment the same object in each frame of the whole image
sequence, and the high-level prior knowledge about the object to be applied in
the top-down segmentation process should be learned from the sole example.

1.1 Previous Work

In class-specific figure-ground segmentation, the top-down mechanism is usually
realized by constructing an object representation for a specified object category
and then running the segmentation algorithm under the guidance of the represen-
tation. Borenstein and Ullman [4] introduce the fragment-based representation
that covers an object with class-related fragments to model the shape of the
object. Their algorithm evaluates the quality of “covering with candidate frag-
ments” to find an optimal cover as the segmenting result. Three criteria are used
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to determine the goodness of a cover: similarity between a fragment and an im-
age region, consistency between overlapping fragments, and reliability (saliency)
of fragments. Tu et al. [30] propose the image parsing framework that combine
the bottom-up cues with the top-down generative models to simultaneously deal
with segmentation, detection, and recognition. The experimental results in [30]
illustrate the impressive performances of parsing images into background regions
and rigid objects such as faces and text.

Despite the computational issues, Markov random fields (MRFs) have been
widely used in image analysis through these years [15]. Recently several very ef-
ficient approximation schemes for solving MRFs [5], [33] and their successful use
in producing excellent results for interactive figure-ground segmentation, e.g.,
[3], [6], [27], have made this group of approaches even more popular. Aiming
for the class-specific segmentation, Kumar et al. [18] formulate the object cate-
gory specific MRFs by incorporating top-down pictorial structures as the prior
over the shape of the segmentation, and present the OBJ CUT algorithm to ob-
tain segmentations under the proposed MRF model. Typically, graph-cut-based
segmentation approaches use predefined parameters and image features in the
energy functions [6]. Although the GMMRF model [3] allows adjustments to
the color and contrast features through learning the corresponding parameters
from image data, only low-level cues are considered. Ren et al. [26] propose to
learn the integration of low-level cues (brightness and texture), middle-level cues
(junctions and edge continuity), and high-level cues (shape and texture prior)
in a probabilistic framework.

The segmentation task of our interest is related more closely to that of Yu
and Shi [34], where they address the object-specific figure-ground segmentation.
Given a sample of an object, their method can locate and segregate the same
object under some view change in a test image. The algorithm takes account
of both pixel-based and patch-based groupings through solving a constrained
optimization regarding pixel-patch interactions. Still in Yu and Shi [34] the goal
of segmentation is to identify rigid objects in images. We instead consider a
figure-ground technique for video, and more importantly, for segmenting artic-
ulated objects with large deformations. We are also motivated by the work of
Mori et al. [23] that considers detecting a human figure using segmentation.
They use Normalized Cuts [28] to decompose an image into candidate segments.
To generate the body configuration and the associated segmentation, their algo-
rithm locates and then links those segments representing the limbs and torso of
the target human. The experimental results reported in [23] show that the pro-
posed technique can extract from images the baseball players in a wide variety
of poses. Concerning the implementation details, their approach requires logistic
regression to learn the weights of different cues from a set of hand-segmented
image templates. In addition, several global constraints are enforced to reduce
the complexity of searching a large number of candidate configurations. These
constraints are indeed very strong prior knowledge defining what physically pos-
sible configurations of a human body can be, and consequently are not easy to
be generalized to other object categories.
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A different philosophy from those of the aforementioned approaches is using
variational models [24] or level-set PDE-based methods [25] for image segmenta-
tion. Approaches of this kind are more flexible to handle deformations. However,
integrating different cues or imposing top-down prior models in such frameworks
is much more sophisticated, which involves adding intriguing terms account-
ing for the desired properties into the PDEs, and thus further complicates the
numerical formulations, e.g., [8], [9]. It is also hard to include learning-based
mechanisms such as parameter estimation and feature selection, to give suitable
weights among low-level information and different aspects of prior knowledge.

1.2 Our Approach

Analogous to regularization for optimization problems, there is a trade-off
between imposing strong prior knowledge and allowing flexibility of object
configurations when we incorporate a top-down scheme into figure-ground seg-
mentation. For the images shown in Fig. 1, class-specific shape (or structure)
models, in general, are more restrictive for covering such a wide range of pose
variations, otherwise the search space of possible configurations might be too
large to be tractable.

We propose a new framework for object-specific segmentation that models
the prior information by random forests [7], constructed from randomly sampled
image patches. Owing to the nature of random forests, the modeled prior knowl-
edge is weak but still sufficient for providing top-down probabilistic guidance on
the bottom-up grouping. And this aspect of characteristic is crucial for our task.
Moreover, the randomized technique also enables cue integration and feature
selection to be easily achieved. We shall show that the proposed algorithm is
useful and rather simple for video-based figure-ground segmentation, especially
when the objects are non-rigid and highly articulated.

2 Learning Prior Models with Random Forests

In this section we first describe the image cues for constructing the prior mod-
els, and then explain the technique of embedding a prior model into a random
forest. Given the template and the mask of an object, using Figs. 2a and 2b
as an example, we seek to build a useful prior model with a random forest for
subsequent video object segmentations. For the experiments presented in this
paper, we use color, brightness, and gradient cues, though other cues such as
texture and optical flow can be easily included in the same manner. Specifically,
we first apply Gaussian blur to each color channel of the template as well as the
gray-level intensity, and thus get the smoothed cues as illustrated in Figs. 2c
and 2d. From the smoothed intensity we compute the gradient, and then further
blur it to get the x and y derivatives as shown in Figs. 2e and 2f. Note that the
values of all cues are normalized between 0 and 1. For convenience, these cues
are combined to get a pseudo-image of six channels. We will treat the pseudo-
image template as a pool of patches that constitute our prior knowledge about
the object.



Segmenting Highly Articulated Video Objects 377

(a) (b) (c) (d) (e) (f)

Fig. 2. Information used for constructing the prior models. (a) Template. (b) Mask.
(c) RGB color cues. (d) Brightness cue. (e) x derivatives. (f) y derivatives.

2.1 Random Forests

Random forests by Breiman [7] are proposed for classification and regression, and
are shown to be comparable with boosting and support vector machines (SVMs)
through empirical studies and theoretical analysis. Despite their simplicity and
the effectiveness in selecting features, random forest classifiers are far less popular
than AdaBoost and SVMs in computer vision, though random forests are indeed
closely related to and partly motivated by the shape-recognition approach of
randomized trees [1]. Random forests have been used for multimedia retrieval
by Wu and Zhang [32]. More recently, Lepetit et al. [19] consider randomized
trees for keypoint recognition, and obtain very promising results.

To model the prior information of an object’s appearance, we generate a forest
of T random binary trees. Each tree is grown by randomly sampling N patches
from the pseudo-image template; we run this process T times to obtain T trees.
The typical window size of a patch we use in the experiments is 5 × 5. Since a
pseudo-image contains six channels, we actually store each patch as a vector of
5× 5× 6 elements (see the illustration at the right hand side of Fig. 3). Let xk

denote a patch, and {xk|xk ∈ Rd}N
k=1 be the sample set (hence d = 150). For each

patch xk we then obtain the label information yk from the corresponding position
(patch center) in the mask. Therefore, we have the labels {yk|yk ∈ {F, G}}N

k=1
that record a patch belonging to figure (F) or ground (G). To grow a tree with
{(xk, yk)}N

k=1 involves random feature selection and node impurity evaluation.
The tree-growing procedure is described as follows.

1. At each tree-node, we randomly select M features. In this work we consider
a feature as the difference between some ith and jth elements of a patch.
That is, we repeat M times choosing at random a pair of element indices i
and j. With a random pair of indices i and j defining a feature, each patch
xk would give a feature value f = xk

i − xk
j .

2. For each feature, we need to determine a threshold that best splits the patches
reaching the current node by their feature values. The threshold of feature
values for optimal splitting is obtained by maximizing the decrease in variance
impurity of the distribution of the patches. The idea is to purify each child
node such that the patches in a child node would almost carry the same label.
(For brevity’s sake, we skip the definition of impurity and the description of
maximizing the impurity drop. The details can be found in [10], p. 400.)
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Fig. 3. Growing a random tree. The typical window size of a patch is 5 × 5. Since a
pseudo-image contains six channels, we actually store a patch as a vector of 5 × 5 × 6
elements. A feature is defined as the difference between two randomly selected elements
of a patch. We use the random feature (with an optimized threshold) to split the set
of patches reaching the current node into two parts forming two child nodes, according
to the feature values f of patches being greater or less than the threshold.

3. Among the M randomly selected features we pick the one that produces the
maximum drop in impurity, and use this feature and its threshold to split
the current patches into two child nodes according to the feature values of
patches being greater or less than the threshold, as illustrated in Fig. 3.

4. We stop splitting a node (thus a leaf node) if the number of arriving patches
is less than a chosen constant, or if the predefined limit of tree-height is met.

5. If there is no more node to be split, the growing process is done. Each
internal node stores a feature and a splitting threshold, and each leaf node
yields a probability P (y = F|x reaches this leaf node), which is computed as
the proportion of “the patches in this leaf node belonging to the figure F”
to “all the patches that reach this leaf node.”

The features used in the random trees cover a large number of combinations of
differences between two channels with some spatial perturbations. For instance,
they may represent the difference between the R and B channels of a patch,
or represent two pixels being residing on or separated by an edge. Because the
cues have been smoothed, the features are less sensitive to the exact positions
they are selected. Moreover, these types of features can be efficiently computed;
each computation costs only two memory accesses and one subtraction. Our
experimental results show that they are also quite discriminating in most cases.

2.2 Prior Probabilities About the Object’s Configuration

After constructing a forest of T trees
by repeating the preceding procedure, we
have a random forest that models the ap-
pearance prior of a target object. Then
for each new image frame, we scan the
whole image pixel by pixel to run every
corresponding patch x through the ran-
dom forest, and average the probabilities

new input one tree 25 trees

Fig. 4. Prior probabilities
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{Pt(y = F|x)}T
t=1 advised by the trees. The scheme thus provides top-down

probabilistic guidance on the object’s configuration. Fig. 4 illustrates the prior
probabilities estimated by a single tree and by 25 random trees for a new input
image. Suffice it to say, with a random forest of 25 trees, the object’s appearance
prior can be suitably modeled using the template and mask in Fig. 2. In the next
section, we will show how to combine the top-down hints of prior probabilities
with the bottom-up segmentations.

3 Applying Prior Models to Segmentation

In Figs. 5b and 5c we depict two segmenting results produced by Normalized
Cuts [28]: one contains 4 segments and the other 70 segments. The results show
that, even though directly using Normalized Cuts with a “few-segment” setting
to obtain figure-ground segmentation might not be appropriate, the Normalized
Cuts segmentation that produces many regions (over-segmentation) does provide
useful low-level information about the segments of the object.

3.1 Solving Figure-Ground Segmentation

The key idea is to combine the low-level information of over-segmentation with
the prior probabilities derived from the random-forest prior model to complete
the figure-ground segmentation. Our algorithm can produce segmenting results
like the one shown in Fig. 5d. In passing, based on the segmenting results, it is
straightforward to highlight the object in the video or extract its contour, e.g.,
see Figs. 5e and 5f. We summarize our algorithm as follows.

Voting by prior probabilities. Inside each region of the over-segmentation
derived from Normalized Cuts, compute the number of pixels whose prior
probabilities are above, say, one standard deviation of the mean prior prob-
abilities. That is, a pixel having a high enough prior probability casts one
vote for the region to support it as a part of the figure.

Choosing candidates. A region will be considered as a candidate if it gets
more than half of the total votes by its enclosing pixels.

(a) (b) (c) (d) (e) (f)

Fig. 5. (a) New input. (b) & (c) Two Normalized Cuts segmentations with 4 and 70
segments. (d) Figure-ground segmentation produced by our algorithm. Based on the
segmentation result, it is straightforward to (e) highlight the object in the video, or (f)
extract the contour for other uses such as action analysis.
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Filling gaps. Apply, consecutively, morphological dilation and erosion (with a
small radius) to all candidate regions. This will close some gaps caused by
artifacts in low-level segmentation.

Merging the candidates. Compute the connected components of the out-
come in the previous step to combine neighboring candidate regions. Set
the largest component as the figure and the rest of the image as the back-
ground.

3.2 Locating the Video Object

So far we discuss merely the single-frame case, and assume that a loose bounding-
box surrounding the object is given to point out the whereabouts of the object in
each frame. Thus we take only the cropped image as input for the aforementioned
algorithm. For video, we bring in a simple tracker to find the loose bounding-box
of the object. This is also achieved by working on the prior probabilities. We just
need to search nearby area of the object’s previous location in the previous image
frame to find a tight bounding-box that encloses mostly high prior probabilities.
We then enlarge the tight bounding-box to get a loose one to include more
backgrounds. The optimal tight bounding-box can be very efficiently located
by applying the technique of integral images, as is used in [31]. Our need is to
calculate the sum of prior probabilities inside each bounding-box and find the
one yielding the largest sum. For that, we compute the integral image of the
prior probabilities. Then calculating each sum would require only four accesses
to the values at the bounding-box’s corners in the integral image.

3.3 Updating the Random Forest

Since we are dealing with video, it is natural and convenient to update the ran-
dom forest based on previous observations and segmenting results. The updated
random forest would be consolidated with new discriminating features to dis-
tinguish the object from the changing backgrounds. We propose to update the
random forest by cutting and growing trees. The following two issues are of con-
cern to the updating: 1) which trees should be cut, and 2) which patches could
be used to grow new trees.

Cutting old trees. Because the foreground mask and the object appearance
given at the beginning are assumed to be accurate and representative, we use
them to assess the goodness of the trees in the current random forest. For
an assessment, we sample K patches from the original template to construct
{x̃k}K

k=1 that all correspond to the object (with labels ỹk = F). We run them
through the random forest of T trees and get the probabilities Pt(ỹk = F|x̃k),
where t = 1, . . . , T and k = 1, . . . , K. In addition, we compute the average
probability P̄ (·) =

∑
t Pt(·) of each patch over T trees. The infirmity of a

tree is evaluated by

Lt = −
∑

k

P̄ (ỹk = F|x̃k) log Pt(ỹk = F|x̃k) . (1)
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The negative logarithm of a probability measures the error made by a tree
for a given patch. And the average probability P̄ (ỹk = F|x̃k) gives a larger
weight to the patch that is well predicted by most of the trees. Hence a tree
will be penalized more by P̄ (ỹk = F|x̃k) if it performs relatively poor than
others on x̃k. We cut the top T ′ trees that give the largest values on Lt.

Growing new trees. We need to grow T ′ new trees to replace those being
cut. The patches required for constructing new trees are sampled from three
sources: 1) From the inside of the figure segmentation we sample the patches
that are of very high prior probabilities and label them as the figure patches;
2) From the area outside the figure segmentation but inside the bounding-
box, we sample the patches that are of very low prior probabilities and mark
them as background patches; 3) From the area outside the loose bounding-
box, we sample the patches that are of high prior probabilities, and also label
them as background patches—these patches are prone to cause misclassifi-
cations.

After the updating, we have a mixture of old and new trees. The updated random
forest still provides an effective prior model of the object, and becomes more
robust against the varying background.

Note that our presentation in Section 3 is to first detail what needs to be done
for each single frame, and then describe how to handle an image sequence. In
practice, the algorithm of applying a prior model to segmenting a video object
is carried out in the following order: 1) locating the bounding box, 2) solving
figure-ground segmentation, and 3) updating the random forest.

4 Experiments

We test our approach with some dancing and gymnastics video clips downloaded
from the Web1. Some of the image frames are shown in Fig. 6, as well as the prior
probabilities and the figure-ground segmentations produced by our approach.
The objects in these video sequences demonstrate a wide variety of poses. Many
of the poses are unusual, though possible, and therefore provide ideal tests to
emphasize the merits of our algorithm. Note that even though we only test on
human figures, our approach is not restricted to a specific object category, and
hence should be equally useful in segmenting other types of rigid or non-rigid
objects.

The following are a summary of the implementation details and the parame-
ters used. In our experiments the size of a random forest is T = 25. The height
limit of a tree is set to 6. To grow each tree, we sample N = 1800 patches,
each of size 5 × 5 as mentioned earlier, from the template image. (Specifically,
the template image is enlarged and shrunk by 5% to add some scale variations.
Therefore, we have three scales of the template for drawing samples; we sample
600 patches under each scale.) A typical template size is 150×100, which is also

1 http://www.londondance.com, http://www.shanfan.com/videos/videos.html,
http://www.rsgvideos.com



382 H.-T. Chen, T.-L. Liu, and C.-S. Fuh

(a) Beam

(b) Ball

(c) Floor

(d) Rope

(e) Ballet

Fig. 6. The first two images shown in each of the five experiments are the template and
the mask used for constructing the random forest. For each experiment we show three
examples of the input frame, the prior probabilities, and the figure-ground segmentation
produced by our approach.
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the size of the loose bounding box used in the subsequent processes to locate
the target object. Recall that, at each tree node, we need to randomly select M
features as a trial, we have M = 20 for all the experiments. Regarding updating
the random forest, for each updating we cut T ′ = 10 trees and grow new ones
to keep the size of forest (T = 25). Overall, we find the above setting of random
forests can model the objects quite well.

Our current implementation of the proposed algorithm is in MATLAB and
running on a Pentium 4, 3.4 GHz PC. About the running time, building the
initial random forest of 25 trees takes 5 seconds. And it takes 25 seconds to
produce the figure-ground segmentation for a 240× 160 input image (including
15 seconds for Normalized Cuts, 5 seconds for computing the prior probabilities,
and 3 seconds for updating the random forest).

5 Conclusion

We present a new randomized framework to solve figure-ground segmentation
for highly articulated objects in video. Although previous works have shown that
using top-down class-specific representations can improve figure-ground segmen-
tations, such representations, which are usually built upon strong constraints and
specific prior knowledge, might lack flexibility to model a wide variety of con-
figurations of highly articulated objects. Our approach to the problem is based
on modeling weak-prior object appearance with a random forest. Instead of con-
structing a representation for a specific object category, we analyze a video object
by randomly drawing image patches from the given template and mask, and use
the patches to construct the random forest as the prior model of the object.
For an input image frame, we can derive the prior probabilities of the object’s
configuration from the random forest, and use the prior to guide the bottom-
up grouping of over-segmented regions. Our experimental results on segmenting
different video objects in various poses demonstrate the advantages of using
random forests to model an object’s appearance—a learning-based mechanism
to select discriminating features and integrate different cues. For future work,
we are interested in testing other filter-based cues to make our algorithm more
versatile, as well as handling occlusion and multi-object segmentation.
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Abstract. SpatialBoost extends AdaBoost to incorporate spatial rea-
soning. We demonstrate the effectiveness of SpatialBoost on the problem
of interactive image segmentation. Our application takes as input a tri-
map of the original image, trains SpatialBoost on the pixels of the object
and the background and use the trained classifier to classify the unlabeled
pixels. The spatial reasoning is introduced in the form of weak classifiers
that attempt to infer pixel label from the pixel labels of surrounding
pixels, after each boosting iteration. We call this variant of AdaBoost —
SpatialBoost. We then extend the application to work with “GrabCut”.
In GrabCut the user casually marks a rectangle around the object, in-
stead of tediously marking a tri-map, and we pose the segmentation as
the problem of learning with outliers, where we know that only positive
pixels (i.e. pixels that are assumed to belong to the object) might be
outliers and in fact should belong to the background.

1 Introduction

Image segmentation is an ill-posed problem and automatic image segmentation is
still an illusive target. This led to the development of interactive image segmen-
tation algorithms that allow the user to intervene in the segmentation process
with minimal effort.

Image segmentation can be categorized into “soft” and “hard” segmentation.
In “soft” segmentation one is interested in recovering both the color and the
transparency of the pixels, so that mixed pixels such as hair or fur could be
handled, while in “hard” segmentation one is only interested in segmentation the
pixels of the object from the background, without recovering their transparency.
Here we focus on the latter and note that it can be used in its own right or as
an initial guess for soft segmentation.

We treat image segmentation as a binary classification problem, where a clas-
sifier is trained on pixels of the object and pixels of the background and then
used to classify the unlabeled pixels. We introduce SpatialBoost as our classifier.
SpatialBoost extends the standard AdaBoost classifier to handle spatial reason-
ing. This is done by defining two types of weak classifiers. One type is the usual
weak classifier that works on each pixel independently. The other type works on

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 386–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the predicted labels of a neighborhood of pixels, after each round of boosting.
This allows SpatialBoost to learn spatial arrangements of pixels that can improve
the overall quality of the classification. Both types of weak classifiers optimize
the same target function and the implementation of SpatialBoost involves just
a slight modification of the AdaBoost algorithm.

The three types of pixels (object, background and unlabeled) are defined in a
tri-map that the user draw manually. This is often a laborious work and an easier
user interface was recently suggested where the user casually marks a rectangle
around the object and let the application take care of the rest. We show that
our approach can be extended to handle this type of input as well by considering
it as learning with outliers. That is, we assume that part of the pixels that are
marked as positive (i.e. belong to the object) are actually outliers and should
belong to the background.

2 Background

Our work brings together two lines of research. One focused on image segmenta-
tion and the other focused on extending AdaBoost to handle spatial information.

Interactive image segmentation has been studied extensively in the past. The
Magic Wand [1] allows the user to pick pixels and then automatically cluster
together pixels with similar color statistics. Other algorithms take as input a tri-
map image. Their goal is to learn from the labeled object and background pixels
enough information to correctly label the unlabeled pixels. Ruzon & Tomasi [12]
and Chuang et al. [4] learn the local statistics of color distribution to predict
the label of the unknown pixels. Because color does not carry spatial informa-
tion they break the region of unlabeled pixels into many sub-regions, in ad-hoc
fashion, and process each sub-region independently. In contrast, Boykov & Jolly
[3] and later Blake et al. [2] use graph-cut algorithms that rely on color and
contrast information, together with strong spatial prior to efficiently segment
the image. This approach works on the entire image at once and there is no need
to process multiple sub-regions separately. Finally, Rother et al. [11] eliminated
the need for the creation of a tri-map by introducing GrabCut, where the user
casually draw a rectangle around the object and the algorithm takes it from
there. These methods are generative methods that seek to learn the likelihoods
of the colors of the object and background and then, given the unlabeled pixels,
determine to which color distribution they belong. We, on the other hand, take
a discriminative approach where a classifier is trained on the labeled pixels and
then applied to the unlabeled ones.

Efforts to extend AdaBoost to handle spatial reasoning were reported by Fink
and Perona [8] who termed their method “Mutual Boost”. They consider the
problem of mutual detection of multiple objects in images and use the spatial
relationship of AdaBoost classifiers during the detection iterations to improve
overall performance. However, they use it for object detection and not for image
segmentation. Torralba et al. [13] suggested “Boosted random fields” to combine
AdaBoost and Belief propagation to handle interaction between neighboring
pixels, for the purpose of using context to improve object detection.
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3 SpatialBoost: AdaBoost with Spatial Reasoning

We pose image segmentation as a binary classification problem where a classi-
fier is trained on the labeled pixels of the object and the background and then
applied to the unlabeled pixels of the border region. In particular, the user con-
structs a tri-map image that defines pixels that are part of the object, part of
the background or are unlabeled. We will term pixels that belong to the object as
positive examples and pixels that belong to the background as negative exam-
ples. We can train a classifier on the labeled pixels and then apply the classifier
to the unlabeled pixels. Recall that AdaBoost training, and testing, is done on
each pixel independently, without any spatial interaction between neighboring
pixels. Extending the feature vector of every pixel to capture some local image
statistics can give a partial solution to the problem but can also pose several
new problems. First, the dimensionality of the data grows, which in turn might
require additional training data. Second, the interaction between neighboring
pixels is limited to the particular image statistics selected. Finally, the informa-
tion can not be propagated beyond the extent of the local image patch that was
used to compute the local image statistics.

3.1 SpatialBoost

Within the context of AdaBoost, we give a simple extension that can incor-
porate spatial reasoning automatically. Given a collection of N data points
and their labels, denoted {xi, yi}N

i=1, AdaBoost minimizes the exponential loss
function

J(H) = E(e−yH(x)) (1)

as a way to minimize the zero-one loss function, where H(x), termed the “strong”
classifier, is a linear combination of T “weak” classifiers hi(x).

H(x) =
T∑

i=1

hi(x) (2)

We will denote the weak classifiers hi(x) as data classifiers because they op-
erate solely on the data point and do not model spatial interaction between the
data points. However, the goal of AdaBoost is to minimize J(H) and every weak
classifier that helps the minimization can, and should, be used. In particular, we
can use the current labels of the neighbors of the pixel to predict its label, in the
next iteration of AdaBoost. That is, after each iteration of AdaBoost training
we have, in addition to the feature vector of every pixel, the predicted labels of
its neighbors. This is the additional information we want to capture and we do
that by introducing a new “weak” classifier, that we term spatial classifier. In
each iteration of AdaBoost training we now train two classifiers. A “data” clas-
sifier that was trained on each pixel independently and a “spatial” classifier that
was trained on the predicted label of neighborhoods of pixels. AdaBoost now
gets to choose the “weak” classifier that minimizes the classification error, be it
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Algorithm 1. SpatialBoost - Training
Input: Training set {xi, yi}N

i=1

Number of iterations T
Output: A strong classifier H(x)

1. Initialize weights {wi}N
i=1 to 1

N

2. Initialize estimated margins {ŷi}N
i=1 to zero

3. For t = 1...T

(a) Make {wi}N
i=1 a distribution

(b) Set x′
i = {ŷj |xj ∈ Nbr(xi)}

(c) Train weak data classifier ht on the data {xi, yi}N
i=1 and the weights {wi}N

i=1

(d) Train weak spatial classifier h′
t on the data {x′

i, yi}N
i=1 and the weights {wi}N

i=1

(e) Set ε =
∑N

i=1 wi|ht(xi) − yi|
(f) Set ε′ =

∑N
i=1 wi|h′

t(x′
i) − yi|

(g) Set λt =
{

1 if ε < ε′

0 otherwise
(h) Set err = λtε + (1 − λt)ε′

(i) Set weak classifier weight αt = 1
2 log 1−err

err

(j) Update examples weights

wi = wie
(αt(λt|ht(xi)−yi|+(1−λt)|h′

t(xi)−yi|)

(k) Update margins ŷi to be

ŷi = ŷi + αt(λtht(xi) + (1 − λt)h′
t(x

′
i))

4. The strong classifier is given by sign(H(x)) where H(x) =
∑T

t=1 αt(λtht(x) +
(1 − λt)h′

t(x))

the “data” classifier or the “spatial” classifier. As a result, the strong AdaBoost
classifier might be a weighted sum of weak data and spatial classifiers where both
types of classifiers work in concert to improve the same objective function. For
the weak spatial classifiers we actually use the estimated margin of each data
point, after each boosting round, instead of the label (which is the sign of the
margin).

The SpatialBoost training algorithm is given in Algorithm 1. It takes as input
a collection of labeled data points {xi, yi}N

i=1 and a function Nbr(xi) that returns
the list of neighbors of the point xi. Once the strong classifier has been trained
we can apply it to the unlabeled pixels of the image using Algorithm 2.

3.2 GrabCut – Learning with Outliers

Creating a tri-map image is time consuming and hence, Rother et al. [11] sug-
gested GrabCut. In GrabCut the user merely draws a rectangle around the object
and the system automatically takes care of the rest. Within the context of Spa-
tialBoost this means nothing more than outlier rejection. Given the rectangle
we know that all the pixels outside the rectangle are negative examples, while
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Algorithm 2. SpatialBoost - Testing
Input: Unlabeled pixels {xi}N

i=1

The strong classifier H(x)
Output: Labels {yi}N

i=1

1. Initialize estimated margins {ŷi}N
i=1 to zero

2. For t = 1...T

(a) Set x′
i = {ŷj |xj ∈ Nbr(xi)}

(b) Update margins ŷi to be

ŷi = ŷi + αt(λtht(xi) + (1 − λt)h′
t(x

′
i))

3. Output sign(ŷi)

part of the positive pixels (i.e. pixels inside the rectangle) might be negative
examples. Hence, we modify SpatialBoost to handle outliers. A simple approach
to outlier rejection is to run SpatialBoost for several iterations and then mark the
positive pixels with large weights (i.e. weights larger than a predefined thresh-
old) as outliers, change their label to negative and repeat. In our case, we run
SpatialBoost for several iterations (typically, 10 iterations), then take all the
positive pixels that are still wrongly classified and have weight greater than 3

N
(where N is the number of labeled pixels), flip their sign to be negative and
restart SpatialBoost. We repeat this procedure for several times (typically, 5
times). Alternatively, one can adopt the BrownBoost algorithm [9].

3.3 The Feature Space

We are also interested in finding what is a good feature space to represent every
pixel. Clearly, one can use the (R,G,B) color of every pixel as its feature vector
but color carries no spatial information. This can be fixed in one of two ways.
One way is to add spatial smoothness assumption, for instance by introducing
a penalty term if two neighboring pixels disagree on their label. The second
way is to consider more complicated feature spaces that capture both color and
spatial information. In our experiments, we use feature vectors that capture the
local HoG of every pixel, in addition to the color. This combined feature vector
help disambiguate pixels. Working in a high-dimensional space makes it hard to
model the distribution of the data points, as is done in generative methods. On
the other hand, discriminative methods, such as AdaBoost or SpatialBoost, can
give better results.

Also, since our feature space encodes both color and spatial information we
do not have to break the image into multiple sub-regions and process each sub-
region independently. Breaking the image into sub-region could improve our
results, but we prefer to show the advantages of SpatialBoost without ad-hoc
improvements.
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4 Experiments

We show experiments on synthetic and real images.

4.1 Synthetic Images

To gain some intuition as to how SpatialBoost work we first present experiments
on synthetic images where we compare SpatialBoost and AdaBoost on a toy
problem of noise removal from binary images. Given a noisy binary image we
wish to infer the original “clean” image. To do so, we take a pair of clean/noisy
training images, that have the same local image statistics as our test image, and
train our classifier on them. We then apply the classifier to the noisy test image.
In our case we take the feature vector to be the 3 × 3 window around every
pixel, in the noisy image, and the label of each such data point is taken to be
the label of the center pixel of the window, in the corresponding clean image.
The neighborhood used by the function Nbr() in the SpatialBoost algorithm is
taken to be a 5 × 5 window around every pixel. Figure 1 compare AdaBoost
and SpatialBoost. The size of the images is 100 × 100 pixels and the amount

(a) (b) (c)

(d) (e) (f)

Fig. 1. Noise removal with 35% random noise. Given image (a) we want to infer image
(d). We show the results of two methods: AdaBoost (b) and SpatialBoost (e). For
training we used images (c) and (f). The “data” classifier takes every 3 × 3 window in
image (c) as a data point whose label is the value of its central pixel in image (f). The
“spatial” classifier takes every 5 × 5 window of the predicted labels in image (c) as a
data point.
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of noise is 35%, that is we randomly flipped the sign of 35% of all the pixels in
the image. One can see that SpatialBoost does a much better job in removing
the noise then AdaBoost. This is because SpatialBoost allows information to
propagate over time (i.e. iterations), whereas in AdaBoost the classification is
much more localized.

4.2 Real Images

We now turn our attention to the problem of image segmentation and use the
database published by [2].

Pre-processing. We compared two feature spaces. The first one is simply the
(R,G,B) values of every pixel. The second feature space consists of color and local
Histogram of Oriented Gradients (HoG). HoG is reminiscent of the SIFT detector
[7] and has been used in several object detection and recognition applications
[5, 6]. In particular, we compute it as follows.

We convert the color image into a gray scale image and compute its x and y
derivatives, we then clip pixels whose x and y derivative are below a threshold
(5 intensity values, in our case) and create an 8 bin Histogram of Oriented
Gradients (HoG) in the neighborhood of each pixel. The feature vector contains
both the (R,G,B) values of the pixel, as well as two 8-bin HoGs, on 3×3 and 5×5
windows, centered at the pixel. To improve the weak classifiers, we store several
powers of the feature vector elements. Let f = [f1, ..., fn] denote the original
feature vector, then we store the feature vector [f , f2, f3], that is, we raise every
element to all the powers in the range one through three. In total, our feature
vector consists of 57 = 3 ∗ (3 + 8 + 8) elements. This is a cheap way of gaining
kernel power, a-la kernel-SVM, for the weak classifier without implementing an
SVM as our weak classifier.

For the spatial weak classifier we set the Nbr() function to return a neighbor-
hood of 5× 5 pixels around every pixel.

Image Segmentation Results. In figure 2 we compare the different fea-
ture spaces (Color Vs. Color+HoG) and the different classifiers (AdaBoost Vs.

Fig. 2. Comparing feature space as well as AdaBoost Vs. SpatialBoost. First column:
AdaBoost + RGB, Second column: SpatialBoost + RGB, Third column: AdaBoost +
RGB + HoG, Fourth column: SpatialBoost + RGB + HoG.



SpatialBoost: Adding Spatial Reasoning to AdaBoost 393

Fig. 3. Roles of data and spatial classifiers. The x-axis show the iteration number, the
y-axis show the error rate of the data and spatial weak classifiers. In each iteration
SpatialBoost chooses the weak classifier with the lowest error rate. As can be seen, In
the first iteration the weak data classifier gives the lowest error rate, after that, the
two types of weak classifier play interleaving roles.

(a) (b) (c)

Fig. 4. Experiments on real data. Each row correspond to one example. Column (a) show
the input image, column (b) show the results on the tri-map data and column (c) show
the results on the GrabCut input. The tri-map and GrabCut inputs are overlaid on the
original image. In the tri-map case, the inner most region is marked as positive, the outer
most region is marked as negative and the region between the two is the test pixels to
be classified. In the GrabCut method all the pixels outside the rectangle are marked as
negative and all the pixels inside are marked as positive. The algorithm must determine
which of the “positive” pixels is an outlier and should in fact belong to the background.
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SpatialBoost). As expected, the combined Color+HoG conveys additional infor-
mation that improves the results of both AdaBoost and SpatialBoost. Of the two,
SpatialBoost produces better looking, and more accurate, segmentation results.
In both cases we used weighted least squares as our weak learner.

Next, we measured the role data and spatial classifiers play in SpatialBoost.
Figure 3 shows a plot of the error rate of each of these classifiers when trained
on the llama image (shown in figure 2). In each round SpatialBoost picks the
classifiers with the lowest error rate and as can be seen from the graph, the two
types of classifiers play interleaving roles. At the first iteration, SpatialBoost
picks a data classifier, but in the second iteration it picks a spatial classifiers
because it has a lower error rate, and so on.

Figure 4 show some results of running SpatialBoost on some real images. We
show results of running SpatialBoost with tri-map and GrabCut, as they appear
in the database. No morphological post-processing operations are performed to
enhance the results. We ran SpatialBoost on all 50 images in the database and
found the average error rate to be 8.00% for the set of 30 training images and
8.23% for the set of 20 test images. The best results, for the tri-map input

(a) (b)

(c) (d)

Fig. 5. Experiments on real data. Adding morphological post-processing can further
improve results. Image (a) show the input image (with the tri-map and GrabCut bound-
aries overlaid), image (b) show the results with the tri-map input, image (c) show the
results with the GrabCut input and image (d) show only the largest connected com-
ponent of image (c).
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reported by [2] are 7.9% on a test set of 20 out of the 50 images. They do not
report results for the GrabCut input. We obtain an error rate of 8.84% for the 30
training images and 11.96% for the 20 test images, in the GrabCut case. In their
follow-up work [11], where GrabCut was introduced, the authors show examples
with multiple user inputs and so direct comparison is no longer possible.

A couple of comments are in order. First, we found that choosing small neigh-
borhood windows gave better results, this is because larger neighborhood win-
dows lead to blur that degrades segmentation performance. Second, we found
that a large number of iterations actually help the segmentation as it allows the
propagation phase to spread the information. Finally, the method takes a couple
of seconds to run on a non-optimized MATLAB implementation.

In figure 5 we show results of combining SpatialBoost with basic morpholog-
ical operations. In this case we cleaned the result of SpatialBoost in the case
of GrabCut by detecting and keeping the largest connected component. The
results on the tri-map input usually do not require the use of morphological
post-processing operations.

SpatialBoost will automatically default to the standard AdaBoost algorithm
in case there is no spatial information to be used for classification. Indeed, we
tested spatialBoost on some of the UCI ML repostiroy [10] datasets (Ionosphere
and Glass) and found that no “spatial” classifier was chosen. Specifically, the
“spatial” classifier was trained on the predicted label of the 3 nearest examples,
but apparently this information was not useful.

5 Conclusions

We give a simple extension to AdaBoost to handle spatial information. In ad-
dition to the usual weak data classifiers, we introduce weak spatial classifiers
that work on the labels of the data points, after each iteration of the boosting
algorithm. In each SpatialBoost iteration the algorithm chooses the best weak
classifier (either data or spatial classifier) to be added. Results on synthetic and
real images show the superiority of SpatialBoost over AdaBoost in cases that
involve spatial reasoning.

References

1. Adobe System, 2002. Adobe Photoshop User Guide.
2. Blake, A. and Rother, C. and Brown, M. and Perez, P. and Torr, P. Interactive

Image Segmentation using an adaptive GMMRF model. In Proc. European Conf.
Computer Vision, 2004.

3. Boykov, Y. and Jolly, M.-P. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In Proc. IEEE International Conference
on Computer Vision, 2001.

4. Chuang, y.-y., Curless, B., Salesin, D. and Szeliski, R. A Bayesian approach to
digital matting. In Proc IEEE Conf. on Computer Vision and Pattern Recognition,
2001.



396 S. Avidan

5. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

6. W. T. Freeman and M. Roth. Orientation histograms for hand gesture recognition.
In Intl. Workshop on Automatic Face and Gesture Recognition, 1995.

7. D. G. Lowe. Distinctive image features from scale-invariant keypoints. In Interna-
tional Journal of Computer Vision (IJCV, 60(2):91-110, 2004.

8. Fink, M. and Perona, P. Mutual Boosting for Contextual Inference. In Adv. in
Neural Information Processing Systems (NIPS), 2003.

9. Freund, Y. An adaptive version of the boost by majority algorithm. In Machine
Learning, 43(3):293-318, June 2001.

10. D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz, UCI Repository of machine
learning databases, url = ”http://www.ics.uci.edu/∼mlearn/MLRepository.html”,
University of California, Irvine, Dept. of Information and Computer Sciences, 1998.

11. Rother, C. and Kolmogorov, V. and Blake, A. GrabCut - Interactive Foreground
Extraction using Iterated Graph Cuts, In Proc. ACM Siggraph, 2004.

12. Ruzon, M. and Tomasi, C. Alpha estimation in natural images. In Proc IEEE Conf.
on Computer Vision and Pattern Recognition, 2000.

13. A. Torralba, K. P. Murphy and W. T. Freeman. contextual Models for Object
Detection using Boosted Random Fields. In Adv. in Neural Information Processing
Systems (NIPS), 2004.



Database-Guided Simultaneous Multi-slice 3D
Segmentation for Volumetric Data

Wei Hong2, Bogdan Georgescu1, Xiang Sean Zhou3,
Sriram Krishnan3, Yi Ma2, and Dorin Comaniciu1

1 Integrated Data Systems Department, Siemens Corporate Research,
Princeton NJ 08540, USA

2 Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana IL 61801, USA

3 Siemens Medical Solutions, Malvern PA 19355, USA

Abstract. Automatic delineation of anatomical structures in 3-D vol-
umetric data is a challenging task due to the complexity of the object
appearance as well as the quantity of information to be processed. This
makes it increasingly difficult to encode prior knowledge about the ob-
ject segmentation in a traditional formulation as a perceptual grouping
task. We introduce a fast shape segmentation method for 3-D volumet-
ric data by extending the 2-D database-guided segmentation paradigm
which directly exploits expert annotations of the interest object in large
medical databases. Rather than dealing with 3-D data directly, we take
advantage of the observation that the information about position and
appearance of a 3-D shape can be characterized by a set of 2-D slices.
Cutting these multiple slices simultaneously from the 3-D shape allows
us to represent and process 3-D data as efficiently as 2-D images while
keeping most of the information about the 3-D shape. To cut slices consis-
tently for all shapes, an iterative 3-D non-rigid shape alignment method
is also proposed for building local coordinates for each shape. Features
from all the slices are jointly used to learn to discriminate between the
object appearance and background and to learn the association between
appearance and shape. The resulting procedure is able to perform shape
segmentation in only a few seconds. Extensive experiments on cardiac
ultrasound images demonstrate the algorithm’s accuracy and robustness
in the presence of large amounts of noise.

1 Introduction

Three dimensional imaging technologies such as ultrasound, MRI and X-ray are
developing rapidly. While 3-D volumetric data contain much richer information
than 2-D images, 3-D volumetric data is still not widely used in clinical diagnosis
mainly because quantitative analysis by human is much more time-consuming
than analyzing 2-D images. Thus, automatic segmentation of anatomical struc-
tures in 3-D volumetric data is extremely important to have a fast quantitative
analysis and to increase the use of volumetric data in clinical practice.

Segmentation of structures in 2-D images or 2-D video sequences has been
extensive studied [1, 2, 3, 4]. However, automatically processing 3-D volumetric
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data is much more challenging, due to the enormous amount of data and the re-
sulting computational complexity. In the traditional formulation, segmentation
is defined as a perceptual grouping task and solved through clustering or varia-
tional methods. However, as the difficulty of the desired segmentation increases,
it becomes harder to incorporate prior knowledge into the grouping task. The
3-D active appearance model (3-D AMM) [5, 6] extends the 2-D AAM into 3-D.
However, matching 3-D AAM to volumetric data is a non-linear optimization
problem which requires heavy computation and good initialization to avoid lo-
cal minima. Recently, segmentation methods based on prior knowledge learnt
from large annotated databases through boosting [7, 8, 9] show promising per-
formance on segmentation tasks with complex object appearance and noisy data.
The advantage of boosting is that it can implicitly encode the large amount of
prior knowledge relevant to the segmentation task and yield algorithms capable
of running in real-time for 2-D images. However, there is no trivial way to im-
plement it for 3-D volumetric data because the increase in dimension from two
to three will dramatically increase the complexity of the algorithm.

Contributions. The main contribution of this paper is to propose a fast 3-D
database-guided segmentation method that directly exploits expert annotation
of the interest object in large databases. The key is to transform the 3-D learn-
ing problem into several 2-D learning problems solved simultaneously. By cut-
ting multiple 2-D slices to represent a 3-D shape, the segmentation in 3-D is
extremely accelerated. Haar-like rectangle features are used for appearance rep-
resentation because they can be evaluated rapidly in 2-D by using the “integral
images”[8]. It is difficult to directly use 3-D features and an “integral volume”
due to the increased computational complexity. Also, the number of all possi-
ble 3-D features is much higher than the number of 2-D features, making the
feature selection through boosting very difficult. Our method converts the 3-D
problem into a 2-D problem while keeping most of the 3-D information. The
computational complexity for evaluating features in our method is similar to the
complexity for 2-D images. The 2-D features simultaneously obtained from all
2-D slices are used to solve two 3-D learning problems: 1. Shape detection, where
a classifier is trained to distinguish between object appearance and non-object
appearances (Section 3) and 2. Shape inference, where the association between an
object appearance and its 3-D shape is solved by selecting the relevant features
(Section 4).

The multiple slices of all 3-D shapes must be cut consistently according to
their local coordinate systems. The local coordinates of each shape will be put in
correspondence through shape alignment. Alignment of two 3-D shapes is in gen-
eral a very hard problem because the meshes annotated by experts do not have
pairwise correspondence. The task in our application is easier because some land-
marks such as the principal axis and a representative plane (denoted by the A4C
plane) are already known about the object of interest. The focus of this paper
is segmentation of the left ventricle in 3-D ultrasound heart images however the
method is general and can be applied to a wide range of anatomical object seg-
mentation in volumetric data. In Section 2 we introduce an iterative algorithm
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to efficiently solve the alignment problem. Section 3 presents the method for
shape detection followed by shape inference in Section 4 and experimental re-
sults in Section 5.

2 Non-rigid Linear 3-D Shape Alignment for Training
Data

For all the shapes in the training database, the location, orientation, size, aspect
ratio and non-linear deformation vary a lot (See Figure 1). The variation among
these shapes must be eliminated to acquire their essential common characteristics
and build their local coordinates.

Suppose that we have a mean shape which is the average of all the train-
ing shapes after alignment, all the training shapes must be aligned to this
mean shape by transformations which will minimize the shapes variations. Ide-
ally, a non-linear transformation can reduce the variation to zero. However,
this transformation has to be searched at detection time. Thus, using an ideal
non-linear transformation will considerably increase the search space. In our
method, we only consider linear transformations, which provide a computa-
tionally feasible way to reduce the variation. The shape after the linear trans-
formation will be very close to the mean shape and we denote it by the
prototype of the original shape. The mean shape will be the average of all the
prototypes.

Each training shape is represented by a 3-D triangle mesh annotated by ex-
perts. The mesh can be represented by a set of points (vertices), denoted as
P 0 .= {Xi = [Xi, Yi, Zi]T ∈ �3}N

i=1 in world coordinates. N is the number of
vertices of each mesh. For each point X on a shape, the corresponding point
on the prototype shape is x ∈ �3 in its local coordinates. The prototype shape
is denoted as P

.= {xi = [xi, yi, zi]T ∈ �3}N
i=1. The mean shape is denoted as

P̄
.= {x̄i = [x̄i, ȳi, z̄i]T ∈ �3}N

i=1 = 1
M

∑
Pj . Among all the linear transforma-

tions, we assume that each shape is transformed to a prototype shape by rotat-
ing, translating, scaling and changing of aspect ratio. The linear transformation

=⇒
Fig. 1. Left: The location, orientation, size, aspect ratio and non-linear deformation
of the shapes in the training set vary a lot. Right: The shapes aligned by proposed
method.
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⇐⇒

Fig. 2. Left: A shape used for training in world coordinates. Right: The prototype
shape (black) and the mean shape (red) in their local coordinates.

between the original shape and its prototype (also between world coordinates
and local coordinates) can be expressed as,

X = RSx + T, (1)
x = R−1S−1(X− T ), (2)

where R ∈ SO(3) is a rotation matrix, S = diag[w, d, h] ∈ �3×3 is a scaling ma-
trix and T = [tx, ty, tz]T ∈ �3 is a translation vector. Figure 2 shows an example
of a shape, its prototype shape and the mean shape. For each of the samples in
the training set, the parameters of the transformation have to be estimated. A
total of 9 parameters are needed to represent such a linear transformation, i.e., 3
parameters for R, 3 parameters for S and 3 parameters for T . In our data set of
left ventricles, w and d are roughly equal. So we can simply set w = d to reduce
the total number of parameters to 8. h/w is defined to be the aspect ratio of the
shape.

If the vertices of two shapes have pairwise correspondence, the distance of two
shapes is defined as

dist(P1, P2)
.=

N∑
i=1

‖x1
i − x2

i ‖ (3)

The problem of aligning all the shapes can be written as the following opti-
mization problem:

{P̄ , Rj , Sj , Tj}M
j=1

.= argmin
M∑

j=1

dist(Pj , P̄ ) =
M∑

j=1

N∑
i=1

‖xj
i − x̄i‖ (4)

Most existing methods for aligning two sets of 3-D data such as the popular It-
erative Closest Point (ICP) [10] do not use any landmarks on the data. They also
usually only consider rigid motion and ignore the changing of aspect ratio. The
non-linear optimization in those methods is prone to local minima. For our prob-
lem domain, we know the extrema of the principal axis which pass through the



Database-Guided Simultaneous Multi-slice 3D Segmentation 401

center of the left ventricle and a plane named apical-four-chamber plane (A4C
plane) which passes through all 4 chambers of the heart. However, our 3-D data
do not have pairwise correspondences. So the optimized mean shape and trans-
formation parameters {P̄ , Rj , Sj , Tj}M

j=1 still cannot have a closed-form solution.
We introduce an iterative linear method to solve the optimization problem.

– Step 1: In the first step, the principal axis which links the two apexes of the
shape is aligned to the z-axis. For each shape, the rotation matrix Ra needed
for this transformation is,

Ra
.= R2R

T
1 , R1 = [v,w,v×w], R2 = [u,w,u×w], w = v×u, (5)

where u is the normalized principal axis vector and v = [0, 0, 1]T .
– Step 2: After the first step, all the shapes still have different angles of ro-

tation along the z-axis. For each shape of a left ventricle, the A4C plane
can determine the rotation along the z-axis. So in the second step, we rotate
each mesh along its principal axis by certain degree so that the A4C plane
of the left ventricle matches the x-z plane. The rotation is denoted as Rz,

Rz
.=

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦ , (6)

where θ is the angle between the A4C plane and the x-z plane. The estimated
rotation matrix of each shape should be R = Ra ∗Rz.

– Step 3: For all the meshes annotated by the experts, the vertices do not
have one-to-one correspondence between two meshes except the two apexes.
The points of the shape should correspond to the same physical points of
the left ventricle. However it is impossible to determine automatically which
points correspond the same physical points. So after we align the orientation
of each mesh, we just move the centroid of each mesh to the origin of the
coordinates and roughly evenly re-sample each mesh using polar coordinates.
The re-sampled points will approximately have pairwise correspondences.

– Step 4: The mean shape P̄ is calculated by P̄
.= 1

M

∑
Pj .

– Step 5: Finally, we need to align the position, scale and aspect ratio of all
the shapes. For each shape, the parameters of S and T can be determined
by solving the following equation,⎡⎢⎢⎢⎢⎣
∑N

i=1(x
2
i + y2

i ) 0
∑N

i=1(xi + yi) 0 0
0

∑N

i=1 z2
i 0 0

∑N

i=1 zi∑N

i=1 xi 0 N 0 0∑N

i=1 yi 0 0 N 0
0

∑N

i=1 zi 0 0 N

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w

h

tx

ty

tz

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∑N

i=1(xix̄i + yiȳi)∑N

i=1 ziz̄i∑N

i=1 x̄i∑N

i=1 ȳi∑N

i=1 z̄i

⎤⎥⎥⎥⎥⎦ ,

(7)
where x = [x, y, z]T , x̄ = [x̄, ȳ, z̄]T and the estimated S = diag[w, w, h],
T = [tx, ty, tz ].
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Steps 2 and 3 only need to be performed only once. Steps 1, 4 and 5 will be
iterated until the change of the parameters is below a threshold determined by
the working resolution.

After the convergence of the algorithm, the prototypes {P̄}M
j=1 of all shapes

and their local coordinate transformations {Rj, Sj , Tj}M
j=1 will be used to cut

the multiple slices.

3 3-D Object Detection

The detection method we are using is based on boosted cascade of simple fea-
tures, which has been widely used for real-time object detection[11, 8, 9]. How-
ever, most of such detection methods are only applied on 2-D images. Extending
those methods to 3-D is not trivial and several problems must be addressed.

3.1 Multi-slice Representation of 3-D Data

One of the most popular sets of features for object detection is the Haar-like
rectangular features, which can be computed very efficiently through the “inte-
gral images” [8]. However, in our problem domain, the enormous amount of 3-D
data makes computing these features difficult. For example, for an 24× 24-pixel
2-D image, there are already more than 180 thousand possible rectangle features.
If we extend the rectangular features to cubical features, the number of possible
features will be several million. Also, computing an “integral volume” is much
slower than computing an integral image.

To avoid the difficulty in dealing with 3-D data directly, we first represent the
3-D data by 2-D slices simultaneously cut from the volume. These slices should
be perpendicular to the surface of the shape in order to make the slices sensitive
to the changing of the shape. So in the local coordinates we built in section 2 for
each shape, we cut its prototype into vertical slices through the z-axis at different
angles from the x− z plane and cut horizontal slices at different z. For example,
in Figure 3, there are two vertical slices at angle 0 and 90 degree from x − z
plane and one horizontal slice at z = 0. These three slices are already sufficient
for detection purposes because any changes in the location, orientation or aspect
ratio will cause large changes in at least one slice, since the slices coincide with
the three coordinate axes. However, for the shape inference in Section 4, more
slices are preferred to achieve better accuracy.

Rectangle features are computed simultaneously for each of the slice as shown
in Figure 4. Features from all the 2-D slices consist the feature vector for the
3-D volume. The “integral image” is adopted to accelerate the computation of
the features. The “integral mask” proposed in [9] is also needed to ensure correct
computation for invalid image regions.

Training a detection classifier requires positive and negative samples. For the
positive samples, the slices are obtained in local coordinates from the correct
transformation we obtained in section 2. Several positive examples are shown in
Figure 5 to demonstrate that the multiple slices capture the variations of the
3-D shapes. Some perturbation will be added to the correct transformation to
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Fig. 3. An example of the slices that represent the 3-D volume. Two vertical slices are
cut at 0 and 90 degree from the x − z plane. One horizontal slice is cut at z = 0.

Fig. 4. Rectangle features are computed independently for each of the slice. Features
from all the 2-D slices define the feature vector for the 3-D volume.

generate negative samples. Figure 6 shows positive samples and negative samples
generated from one volume.

3.2 3-D Shape Detection

The detection of a 3-D shape is equivalent to finding the correct transformation
between world coordinates and local coordinates of this object. From Equation 1,
the transformation is determined by R, S and T , which contain 8 transforma-
tion parameters [ωx, ωy, ωz, w, h, tx, ty, tz ], where ωx, ωy and ωz are three
Euler angles. Exhaustive searching in an 8 dimensional space would be very
time-consuming. In the left ventricle detection problem, the A4C plane (i.e., the
x − z plane of local coordinates) is usually easy annotated by human or other
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Fig. 5. Several positive training samples. The multiple slices capture the variations of
the 3-D shapes. There are two columns of slices for each sample. The left columns show
the slices and the right columns show the slices with the meshes annotated by experts.

Fig. 6. Positive samples and negative samples generated from one volume. Only the
leftmost one is a positive sample generated by correct local coordinates. All others are
negative samples generated by incorrect local coordinates.

automatic detection. So we will assume the A4C is known so that we only need
to search inside the A4C plane. Suppose that we know the normal vector n and
a point b on the A4C plane. The A4C plane will be,

nT (x− b) = 0. (8)

Suppose the initial transform R, S, T are R0, S0 and T0. The initial rotation R0
must satisfy that the y-axis of local coordinates is the normal of the A4C plane.
It can be determined as,

R0 = [u1,u2,u3], u2 = n, v = [0, 0, 1]T , u1 = u2 × v, u3 = u1 × u2. (9)

The initial scale matrix S0 can be set to be the mean scale Sm for the training
set. But the initial translation vector T0 cannot be the mean translation vector
Tm because it may not be on the A4C plane. So we will use the projection of
Tm on the A4C plane as T0, i.e.,

T0 = Tm + nnT (b− Tm). (10)

During the search, we will change the initial transformation R0, S0, T0 by an-
other relative transformation Rr, Sr, Tr. Since we need to fix our transformation
inside the A4C plane, the only possible relative rotation is along y-axis.

Rr =

⎡⎣ cosωry 0 sin ωry

0 1 0
− sinωry 0 cosωry

⎤⎦ . (11)
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The relative translation Tr = [trx, 0, try]T is a translation on the A4C plane.

The relative scale matrix is Sr =

⎡⎣wr 0 0
0 wr 0
0 0 hr

⎤⎦, where wr is the changing of the

width and hr is the changing of the height.
So the overall transform from the prototype to the shape is,

x = RSx0 + T = R0Rr((S0 + Sr)x0 + Tr) + T0

= R0Rr(S0 + Sr)x0 + R0RrTr + T0. (12)
R = R0Rr, S = S0 + Sr, T = R0RrTr + T0 = RTr + T0. (13)

The searching for [ωry, wr, hr, trx, trz] will be in a 5-dimensional space and
will be performed on a coarse to fine fashion. In the coarse stage, the search
range is determined by the statistics of the training data. After finding the
maximum response of the detection classifier, a new iteration of searching will
be performed. The initial point will be located at the maximum response found
in the coarse stage and the search range will be reduced by half.

4 3-D Non-rigid Shape Inference

The problem is now to determine the shape associated with the detected object.
This task is solved by finding the relevant features which best describe the non-
rigid variations of the shapes around the mean. All the prototype shapes {Pj}M

j=1

are clustered into K classes {Ci}K
i=1 as shown in Figure 7 by the K-means algo-

rithm. The rectangle feature vectors of each shape are acquired by the multi-slice
presentation in Section 3.1. The best features vectors for each class {fi}K

i=1 that
discriminate these classes of shapes are selected by the forward sequential feature
selection [9]. For each input volume, we first find the linear non-rigid transfor-
mation of the shape by the detection method in Section 3.2. In local coordinates

Fig. 7. All the prototype shapes {Pj}M
j=1 are clustered into K classes {Ci}K

i=1 by the
K-means method
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of the shape, the multiple slices are cut from its prototype to generate a query
feature vector fq for the shape in this volume. The distance of the query and a
reference is,

d(fq, fr) = (fq − fr)T Σ(fq − fr), (14)

where fq and fr are the feature vectors of the query and the reference respectively.
Σ is the Fisher linear discriminating matrix [12] learnt from the training samples.

The inferred shape P̂ is computed by Nadaraya-Watson kernel-weighted av-
erage [13, 14] of the K prototype classes,

P̂ =
ΣK

i=1Kh(f , fi)Ci

ΣK
i=1Kh(f , fi)

, (15)

where Kh is the Epanechnikov kernel [15] defined as,

Kh(f , fi) =

{
3
4 (1− d(f ,fi)

d(f ,f[h])
), for d(f ,fi)

d(f ,f[h])
≤ 1;

0, otherwise,
(16)

where f[h] is the feature vector which has hth smallest distance to f .

5 Experiments

The proposed segmentation method was tested on two sets of 3-D ultrasound car-
diac volumes of size 160×144×208 = 4, 792, 320 voxels. The End-Diastolic(ED)
set consists of 44 volumes and the End-Systolic(ES) set consists of 40 volumes.
For each volume in the training sets, the A4C plane and a mesh of left ventricle
with 1,139 vertices are annotated by experts.

We first demonstrate results of the 3-D shape alignment method introduced
in Section 2. Figure 8 shows the distances between each aligned shape and the
mean shape. The distance between two shapes is defined in Equation 3. The
variation among the shapes is very small after the shape alignment.

Figure 9 illustrates the effectiveness of the 3-D multi-slice detection method
described in Section 3.2 by leave one out method. The four curves indicate

Fig. 8. The distances between each aligned shape and the mean shape. The shapes
are sorted by their distances to the mean shape. Left: Results for ED volumes. Right
Results for ES volumes.
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Fig. 9. The error of the translation, rotation, width and height for the left ventricle
detection. Left: Results for ED volumes. Right Results for ES volumes.

Fig. 10. The error of the entire segmentation procedure. Left: Results for ED volumes.
Right Results for ES volumes.

errors of the translation ‖(Δtx, Δtz)‖, rotation |Δωy|, width |Δw| and height
|Δh| respectively. The ground truth of these parameters are obtained by the
shape alignment in Section 2.

The error of the entire segmentation procedure is shown in Figure 10. The
automatic segmentation result of each volume is compared with the mesh anno-
tated by experts. The error of the segmentation is the distance of the inferred
shape and the ground truth in world coordinates. This error contains error both
from the detection and shape inference.

The results in Figure 8 can be thought of as the error of another segmentation
method which uses the ground truth of detection but does not use any shape
inference. All the shapes are assumed to be the same as the mean shape. Com-
paring Figure 10 and Figure 8, we can conclude that the shape inference largely
reduces the shape error even when the detection is not perfect.

Figure 11 shows additional segmentation results from volumes which do not
have the meshes drawn by experts. The meshes found by our segmentation
method visually fit the borders of the left ventricles very well.

The whole segmentation procedure takes about 3 seconds for each volume
with 4, 792, 320 voxels on a Xeon 2.8GHz machine. Our algorithm is faster than
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Fig. 11. Results from volumes which do not have the meshes drawn by experts. The
meshes found by our segmentation method visually fit the boarders of the left ventricles
very well.

3-D AAM models proposed in [5, 6]. Mitchell’s work [5] requires 2-3 minutes for
each frame on MRI data. Stegmann’s 3-D AAM [6] takes 3.4 seconds on MRI
data with 22,000 voxels.

6 Limitations and Future Work

We have proposed a fast method for segmenting anatomical objects from 3-D
volumetric data. It overcomes the difficulty of working directly with 3-D data
by simultaneously solving several 2-D problems. The method is learning-based
and directly exploits expert annotations in medical databases.

Due to the difficulty of annotating 3-D shapes by hand, our training and
testing sets are not very large or all-inclusive. In the future, more data will be
collected and used to validate our method. In fact our method should only bene-
fit from more training data. For the shape detection, it is also possible to utilize
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other local features or detection methods to generate a better initialization and
reduce the searching range. For the non-rigid shape alignment, so far only lin-
ear transformations are considered. Integrating non-linear transformations might
capture more complex variation of shapes.
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Abstract. In this paper we present a new density estimation algorithm
using mixtures of mixtures of Gaussians. The new algorithm overcomes the
limitations of the popular Expectation Maximization algorithm. The pa-
per first introduces a new model selection criterion called the Penalty-less
Information Criterion, which is based on the Jensen-Shannon divergence.
Mean-shift is used to automatically initialize the means and covariances
of the Expectation Maximization in order to obtain better structure in-
ference. Finally, a locally linear search is performed using the Penalty-less
Information Criterion in order to infer the underlying density of the data.
The validity of the algorithm is verified using real color images.

1 Introduction

The Expectation Maximization algorithm (EM) [1] perhaps is the most fre-
quently used parametric technique for estimating probability density functions
(PDF) in both univariate and multivariate cases. It has been widely applied in
computer vision [2], and pattern recognition [3] applications. In all of these areas,
EM is used to model the PDF of a set of feature vectors using a given parametric
model. Usually a mixture of Gaussians with a finite number of components is
used to approximate the density function. The main advantage of EM is that
it provides a closed-form analytical representation of the PDF. However, EM
suffers a few limitations that will be discussed later.

This paper introduces a new nonparametric approach based on the mean-
shift algorithm for overcoming the limitations of the EM algorithm. The paper
is organized as follows. Section 2 briefly discusses the limitations of both the
EM and the mean-shift algorithms. In Section 3 we introduce a new model
selection criterion called the Penalty-less Information Criterion (PIC) that will
be used in the subsequent sections. Section 4 presents a mean-shift- and PIC-
based method for nonparametrizing the EM algorithm. The results of using the
proposed algorithm are introduced in Section 5. Finally, Section 6 summarizes
the paper and highlights directions for future research. Throughout the paper,
we kindly encourage the reader to refer to the electronic copy for the clearer
color version of the figures.
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2 Expectation Maximization and Mean-Shift

2.1 Expectation Maximization

The Expectation Maximization is popular parametric approach for estimating
the underlying density function of a set of data vectors in both the univariate and
multivariate cases. Usually, the EM is used to approximate the underlying PDF
using a mixture of Gaussian components. EM, however, sufferers from two major
limitations. The first is that the number of components in the mixture must be
a priori specified in order to obtain a reasonable estimate of the true PDF. This
number must be accurately specified in order to balance the computational cost
in both training and testing phases on one hand and the estimation accuracy on
the other. The second limitation is that EM is highly sensitive to the initialization
of the mean vectors and covariance matrices of the mixture.

Usually, the k-means algorithm (or similar algorithms) is used to initialize
the mean vectors and covariance matrices of EM. Unfortunately, this approach
sometimes drives EM towards the wrong mixture values. It sometimes also leads
to numerical problems when estimating the covariance matrices.

Fig. 1.a shows the scatter plot of a bivariate data set drawn from a six-
component Gaussian mixture. In Fig. 1.b the k-means algorithms correctly ini-
tialized the EM which helps convergence to the correct mixture parameters. In
Fig. 1.c the k-means drives EM to converge to the wrong mixture parameters
even though the data set has not changed. This example illustrates the sig-
nificance of the initialization problem even when we know the true number of
mixture components. The advantage of using EM here is its superior ability to
infer the hidden structure of the data (assuming we can initialize it correctly).

Several attempts have been made to overcome the drawbacks of the EM
algorithm. Figuerideo and Jain [4] broadly classify these methods into two cate-
gories: deterministic approaches and stochastic approaches. Deterministic meth-
ods, such as [5] and [6], are based on selecting the number of components
according to some model selection criterion, which usually contains an increasing
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the EM to converge to the
wrong parameters

Fig. 1. Mixture parameter estimation using EM initialized by K-means
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function that penalizes higher number of components. In [7] and [8] stochastic
approaches based on Markov Chain Monte Carlo methods are used.

2.2 The Mean-Shift

The mode-finding algorithm introduced in [9] which is based on the mean-shift
algorithm [10], compared to the k-means, consistently converges to the modes
of the underlying density function. Therefore, for example, when applied to the
data set in Fig. 1, the mean-shift successfully finds the two local maximum at
[0, −10]T and [0, 10]T respectively.

The limitation of the mean-shift-based mode-finding algorithm is its inability
to infer the hidden structure of the data. For example, Fig. 2.a shows a noisy
image with a hidden structure (the reader is encouraged to refer to the electronic
copy for a clearer image.) The 3D scatter plot of the RGB values of the image is
shown in Fig. 2.b. When mean-shift is used to segment the image in Fig. 2, the
result is a gray image with all pixels set to [128, 128, 128]T since mean-shift is
technically “blind” to the structure of the data.

(a) A noisy image with a hidden
structure

(b) The RGB scatter plot of the im-
age in Fig. 2.a

Fig. 2. Noisy image with hidden structure

3 The Penalty-Less Information Criterion

Let X = {xi}N
i=1 be a set of N vectors to be modeled. We use EM to model the

data by a mixture of k Gaussian components as shown in Equation 1,

p(x|Θ) =
k∑

i=1

πi N (x, μi, Σi) (1)

where μi, Σi and πi are the mean, covariance and weight of component i, re-
spectively and Θ = {μis, Σis, πis} is the set of parameters of the k-component
mixture model (such that

∑k
i=1 πi = 1). The parameters set Θ can be estimated

by applying the EM algorithm on X. The set X can now be clusterized into k
subsets (i.e. clusters) using the Mahalanobis distance based on Θk, such that
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X =
k⋃

i=1

Xi (2)

where Xi is the subset of vectors that belong to cluster i.
For each cluster, i, we compute two estimates of the probability density func-

tion (PDF) underlying the data. First, we compute a parametric estimate of the
PDF as shown in Equation 3

pi
EM (x) = πi N (x, μi, Σi) (3)

where pi
EM indicates the EM-based estimate of the PDF of subset Xi. The second

PDF is a kernel density estimate (KDE) of the PDF of the cluster data given by

pi
KDE(x) =

1
N i

Ni∑
j=1

1
|Hj |K

(
x− xi

j

Hj

)
(4)

where N i is the number of vectors in cluster i, Hj is the adaptive bandwidth
matrix of vector j, xi

j is vector number j of cluster i and K(.) is the kernel func-
tion. Since computing the kernel-based estimate of the PDF is computationally
prohibitive in higher dimensions, we use the Improved Fast Guass Transform
[11], which significantly reduces the complexity of the problem. The adaptive
bandwidth is computed using the sample-point estimator of [12]. In this paper,
we use the standard multivariate Gaussian as the kernel function.

We define the Penalty-less Information Criterion (PIC ) of a model with k
components as the sum of weighted Jensen-Shannon divergence [13] between
pi

EM and pi
KDE for all clusters as follows

PICk =
k∑

i=1

πi JSD(pi
EM , pi

KDE) (5)

where

JSD(pi
EM , pi

KDE) =
1
2
(KLD(pi

EM , pi
Avg) +KLD(pi

KDE , pi
Avg)

)
, (6)

pi
Avg =

1
2
(
pi

EM + pi
KDE

)
(7)

and

KLD(p1, p2) =
∫
∀x

p1(x) log
(

p1(x)
p2(x)

)
dx (8)

Jensen-Shannon divergence is used here because it is a symmetric version of
Kullback-Leibler KLD divergence. Symmetry is important to equally emphasize
both estimates of the PDF; i.e. pi

KDE and pi
EM . To determine the model k̂

that best represents the data set X, PIC is computed for a range of possible
mixture components and the mixture with a minimum PIC is selected as shown
in Equation 9.

k̂ = argk minPICk and k = kmin, . . . , kmax (9)
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(a) p1
EM and p2

EM (b) p1
KDE and p2

KDE

(c) p1
EM , p2

EM and p3
EM (d) p1

KDE, p2
KDE and p3

KDE

Fig. 3. Data generated from three bivariate normal distributions. a and b:) fitting with
a 2-component mixture, c and d:) fitting with 3-component mixture.

Fig. 4. The PIC for fitting the bivariate data of Fig. 3 using kmin = 2 and kmin = 5.
The PIC is minimum at the correct number of components.

The search procedure is typical for many model selection criteria such as
Bayesian Information Criterion (BIC). In that sense, PIC can be used alone
as a model selection criterion. However, we will show in the next sections that
within the proposed algorithm kmin and kmax are indeed constants.
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Fig. 3 shows a simple example where bivariate data is generated using three
normal distributions. The result of fitting the data using a two-component Gaus-
sian mixture is shown in Fig. 3.a. The corresponding kernel density estimates
of the two clusters is shown in Fig. 3.b. Because of the clear mis-modeling, the
PIC value becomes relatively large. Fig. 3.c shows the result of fitting the data
using a three-component mixture, which is similar to the kernel density esti-
mates of the three clusters. As a result, the PIC value produced is relatively
small. Repeating the same procedure for the range k = {2, 3, 4, 5} results in
the PIC values of Fig. 4, which has a clear minimum at the correct number of
components.

4 Nonparametric EM Using Mixtures of Mixtures

Let Y = {xi}M
i=1 be a set of M vectors to be modeled. Here we use Y instead

of X to denote the entire data set for reasons that will become clear later on.
If we apply the mean-shift mode finding algorithm, proposed in [9], and only
retain the modes with positive definite Hessian, we will obtain a set of m modes
Yc = {xcj}m

j=1 which represent the local maxima points of the density function,
where m � M . For details on computing the Hessian, the reader is referred to
Han et al.’s method [14].

To infer the structure of the data, we start by partitioning Y into m partitions
each of which corresponds to one of the detected modes. For all vectors of Y we
compute a Mahalanobis-like distance δ defined by:

δ(xi|j) = (xi − xcj )
T Pj (xi − xcj )

T ,

i = 1, 2, . . . , M and
j = 1, 2, . . . , m

(10)

where Pj is the Hessian of mode j. The rationale here, as explained in [14] is to
replace the covariance matrix, which may not be accurate at this point, by the
Hessian which represents the local curvature around the mode xcj . Each vector
is then assigned to a specific mode according to Equation 11.

C(i) = argj min δ(xi|j) and j = 1, 2, . . . , m (11)

The data set can now be partitioned as

Y =
m⋃

j=1

Yj (12)

where
Yj = {∀xi ∈ Y; C(i) ≡ j} (13)

It is important to note here that the partitioning of Equation 12 is different than
that of Equation 2.

Each of the detected modes corresponds to either a single Gaussian, such as
those of Fig. 3.a, or a mixture of more than one Gaussian such as that in Fig. 1.a.
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To determine the complexity of density around a given mode xcj , we model the
partition data Yj using a mixture of Gaussians specific to partition j. In other
words,

p(x|Θj) =
k∑

i=1

πi N (x, μi, Σi) (14)

where Θj is the parameter set of the mixture associated with mode xcj . The
initial values for the mean vectors are all set to xcj . The initial values for the
covariance matrices are all set to Pj .

Since the structure of the data around xcj is unknown, we repeat the process
for a search range of mixture complexities [kmin, kmax] and compute PIC for
each complexity. The mixture that minimizes the PIC is chosen to represent the
given partition.

Applying the Penalty-less Information Criterion to all partitions results in
m mixtures of Gaussians with different complexities. The underlying density of
the entire data set Y is now modeled as a mixture of mixtures of Gaussians as
follows

p(x|Θ) =
m∑

j=1

ωj p(x|Θj) (15)

where Θ = {Θj , ωj ; j = 1, 2, . . . , , m} is the set of all parameters. (Note that
we extend the notation Θ here.) Finally, the weights of the mixtures ωjs are
computed according to Equation 16.

ωj =
∑M

i=1 p(xi|Θj)∑m
j=1

∑M
i=1 p(xi|Θj)

(16)

Algorithm 1 summarizes the proposed algorithm.

Algorithm 1. Nonparametric EM
Data: Y = {x1, x2, . . . , xi, . . . , xM}
Result: Θjs and ωjs
begin

modes, m ←− MeanShift(Y)
Yis ←− PartitionFeatureSpace(Y, modes)
for j ← 1 to m do

X ←− Yj

N ←− M j

for k ←− kmin to kmax do
InitializeAllMeansAtTheModeLocation()
InitializeAllCovariancesAtTheModeLocation()
PIC k, Θk ←− ComputePIC(X,k)

k̂j ←− argk min PIC k

Θj ←− Θk̂j

ωis ←− EstimateMixtureWeights(Y)
end
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5 Experimental Results

5.1 Synthetic Data Example

Fig. 5 shows a set of bivariate vectors generated from a four-component Gaus-
sian mixture. Three of the Gaussian components are co-centered at [.5, .75]T

but with different covariance matrices. The fourth component is a simple compo-
nent centered at [.5, .2]T . The modes detected using mean-shift [9] are overlaid
and marked by crosses. The result of the partitioning procedure of Equation 11
is also shown where the green points indicate Y1 and the blue points indicate
Y2. The mode-based partitioning results in two partitions with different hid-
den structures. For each partition separately, the PIC is computed in the range
[kmin = 1, kmax = 4]. In our experiments we use kmax = 2d, where d is the
dimensionality of the data. Fig. 6.a shows that the correct number of mixture
components, k̂ for the first partition Y1 is k̂ = 1. On the other hand, the correct
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Fig. 5. Bivariate data generated from a 4-Gaussian mixture. The modes detected by
the mean-shift are overlaied on the scatter plot.
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(a) The PIC values for differnet mix-
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Fig. 6. The PIC values for different partitions Yj
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number of components of the second partition Y2 is k̂ = 3, due to the apparent
complex structure of the data, as shown in Fig. 6.b.

5.2 Real Data Examples

To verify the performance of the proposed algorithm, it has been applied in an
image segmentation setting. The results are compared to the those of standard
model selection methods. The Luv color space was used throughout the following
experiments.

Fig. 7.b shows the result of segmenting Fig. 7.a using the standard EM algo-
rithm. The number of mixture components are selected using BIC as given by
Equation 17.

k̂ = argk min−2 log p(Y |θk) + vk lnM (17)

where θk and vk are mixture model with k components and number of free
parameters in θk, respectively. The initial values of the means and covariance
matrices are selected using K-means. It is clear that the model over-segments the

(a) Original Image (b) Segmented image using EM initialized
using K-Means. BIC was used to select
the best model

(c) Segmented Image using EM, with
manually set number of mixture compo-
nents

(d) Segmented Image using the proposed
algorithm

Fig. 7. Image segmentations comparing the proposed algorithm against other tradi-
tional model selection methods
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(b) Hidden structures discovered by the
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function

Fig. 8. BIC values and hidden structure of Fig. 7

(a) Original Image (b) Segmented image using EM initialized
using K-Means. BIC was used to select
the best model

(c) Segmented Image using EM, with
manually set number of mixture compo-
nents

(d) Segmented Image using the proposed
algorithm

Fig. 9. Image segmentations comparing the proposed algorithm against other tradi-
tional model selection methods



420 W. Abd-Almageed and L.S. Davis

(a) Original Image (b) Segmented Image using
EM, with manually set number
of mixture components. Good
convergence of K-means

(c) Segmented Image using
EM, with manually set number
of mixture components. Bad
convergence of K-means

(d) Segmented Image using the
proposed algorithm

Fig. 10. Instability of the classical methods. Two different runs of the EM give different
segmentation results.

image. The reason is that BIC only depends on the log likelihood of the feature
vectors penalized by an increasing function of the number of free parameters.

The segmentation result in Fig. 7.c is obtained by visually inspecting the
image and manually setting the number of mixture components to the correct
value and using K-means to set the initial values of model parameters. The
segmentation result are better than Fig. 7.c but not as accurate as desirable.
Also, when the same experiment is repeated, the segmentation result will be
different because of the random nature of the K-means.

Finally, Fig. 7.d shows the segmentation result using the proposed algorithm.
The result is more accurate than the previous ones. Also, we are guaranteed to
obtain the same result when repeating the experiment because the mean-shift
must converge to the same stationary points every time it is applied.

Fig. 5.1.a shows the BIC values for Fig. 7.a. The curve does not have a local
minima that suggests an appropriate model complexity. The ellipses in Fig. 5.1.b
illustrate the hidden structures discovered by the proposed algorithm. Different
modes of the density function require mixtures of variable complexities.

The same experiments was repeated for Fig. 9.a. Fig. 9.b shows the seg-
mentation result of the EM with the BIC used to find the best model and
the K-means used to initialize the model. The result of a manually selecting
the number of mixture components is shown in Fig. 9.c. Finally, the result of the
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Table 1. Number of data points and normalized run-time for model selection using
both BIC search and proposed algorithm

No. of points BIC search run-time Our run-time

Synthetic 2000 0.1583 0.0031
Woman 7598 0.0132 0.0041
House 12288 0.0525 0.0038
Hand 18544 0.2089 0.0040

proposed algorithm is shown in Fig. 9.d. The proposed algorithm yields better
segmentation.

Fig. 10 illustrates the instability of using EM for density estimation and mod-
eling. In both Fig. 10.b and Fig. 10.c the image is segmented using the EM with
manually set number of mixture components and the K-means for initializing
the mixture parameters. In Fig. 10.b the K-means helps the EM to converge
to a good mixture, which yields a good segmentation. However, with the same
number of components, K-means biases the EM to converge to a bad mixture,
which results in a very poor segmentation result.

Table 1 compares the run-times of finding the best mixture model using BIC
search (kmin = 1 and kmax = 10 and using our mixture of mixtures algorithm.
The run-times are normalized by the number of data points. The large difference
is due to two main reasons. The first is that BIC search is performed on the entire
data set while our algorithm is based on partitioning the data set before applying
the PIC search. The second reason is that the BIC search is applied on a wide
range of potential complexities (because it uses the entire data set) while the
PIC search is applied on a smaller range because of its local nature.

6 Conclusions and Future Research

This paper introduces a new method addressing the limitations of the popular
Expectation Maximization algorithm; namely the a priori knowledge regarding
the complexity of the mixture and difficulty of accurate initialization of mixture
parameters.

The paper uses the mean-shift-based mode finding algorithm developed by
Comaniciu and Meer in [9] to estimate the number of Gaussian mixtures that
must be used to model the data. Then, a partitioning algorithm is performed
to cluster the data into subsets. For each subset the regular EM is used to infer
the hidden structure of the underlying density function. The mean vectors of the
mixture is initialized at the mode location found by the mean-shift.

The paper also introduces a model selection criterion, PIC , that is used to
find the mixture that best fits the density of the mixture. The PIC compares
the parametric representation of the density against a nonparametric estimate
of PDF using the Jensen-Shannon divergence, without a penalty term.

Applying the proposed algorithm on 2D and 3D data sets shows the advan-
tages of using the algorithm to obtaining a parametric representation of the
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underlying density without manually initializing the model. In the future, we
plan to apply the proposed algorithm to other computer vision problems and
compare its performance against other popular image segmentation algorithms.
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Abstract. Since it is hard to handcraft the prior knowledge in a shape detection
framework, machine learning methods are preferred to exploit the expert annota-
tion of the target shape in a database. In the previous approaches [1, 2], an optimal
similarity transformation is exhaustively searched for to maximize the response
of a trained classification model. At best, these approaches only give a rough
estimate of the position of a non-rigid shape. In this paper, we propose a novel
machine learning based approach to achieve a refined shape detection result. We
train a model that has the largest response on a reference shape and a smaller
response on other shapes. During shape detection, we search for an optimal non-
rigid deformation to maximize the response of the trained model on the deformed
image block. Since exhaustive searching is inapplicable for a non-rigid defor-
mation space with a high dimension, currently, example based searching is used
instead. Experiments on two applications, left ventricle endocardial border detec-
tion and facial feature detection, demonstrate the robustness of our approach. It
outperforms the well-known ASM and AAM approaches on challenging samples.

1 Introduction

It is widely accepted that prior knowledge about the target shape is important and should
be used in shape detection. How to effectively use the prior knowledge is an active
research topic in non-rigid shape detection for a long time. Starting from the semi-
nal paper by Kass et al. [3] on the active contour model (ACM), energy minimization
based approaches become a standard tool for non-rigid shape detection, where the prior
knowledge is encoded into an energy function. An active contour is driven by the ex-
ternal and internal forces. The external force is derived from input images, while the
internal force incorporates the prior knowledge of the target shape. In a standard setting
[3], active contour models use two parameters to adjust the elasticity and stiffness of
the shape. With such a limited flexibility, very little prior knowledge can be exploited
by ACMs and the contour often converges to an unrealistic shape. To mitigate this prob-
lem, the active shape model (ASM) [4] constraints the deformation of a shape. Given a
set of shapes, the principal component analysis (PCA) is applied to the shape space. The
deformation of the shape is constrained to a subspace spanned by a few eigenvectors
associated with the largest eigenvalues. The searching space can be further restricted
to a hyper-cube [4]. By adjusting the number of principal components preserved, ASM
can achieve a trade-off between the representation capability of the model and the con-
straints on the shape. If all principal components are used, ASM can represent any
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shape, but no prior knowledge of the shape is used. On the other hand, if too few princi-
pal components are retained, an input shape cannot be well represented by the subspace.
Therefore, there is an upper-bound of the detection accuracy given a specified choice of
parameters. Both ACM and ASM only use the image contents around the shape bound-
aries, so they are more suitable for shapes with strong edges. The active appearance
model (AAM) is a natural extension of ASM, where the variation of the appearance is
constrained to a subspace too.

Along another research line, shape detection can be formulated as a classification
problem: whether the given image block contains the target shape. Exhaustive searching
in the similarity transformation space is often used to estimate the translation, rotation,
and scale of the shape in an input image. Viola and Jones [1] proposed an efficient im-
plementation of the AdaBoost algorithm [5, 6] for face detection. Given a large pool of
simple features, AdaBoost can select a small feature set and the corresponding optimal
weights for classification. The convolutional neural network (CNN) [2] is another clas-
sification based approach combing feature extraction, selection, and classifier training
into the same framework. As a specially designed neural network, CNN is especially
effective for two-dimensional images. One drawback of these classification based ap-
proaches is that only the similarity deformation of the shape can be estimated.

Since it is hard to handcraft the prior knowledge in a shape detection framework, we
prefer a method directly exploiting the expert annotation of the target shape in a large
database. Zhou et al. [7] proposed an approach to directly learn a regression function
for the positions of control points. Though simple and elegant, the regression output is
a multi-dimensional vector (often in the order of 100 for shape detection, depending on
the application). Since regression for multi-dimensional output is hard, PCA is often ex-
ploited to restrict the shape deformation space. So, it suffers from the same limitations
as ASM and AAM. Georgescu et al. [8] proposed the shape inference method to search
for the most similar shape in the database. Particularly, the training set is clustered in
the shape space into several clusters. A set of image features are selected to maximize
the Fisher separation criterion. During shape detection, the input and training images
are compared in the feature space to select a similar example shape for the input. As a
heuristic metric, the Fisher separation criterion is optimal for very limited cases, such
as the Gaussian distributions with the same covariance matrix. Both of the above ap-
proaches need a preprocessing step to estimate the rough position of a shape, which is
often realized using a classification based approach [1, 8].

In this paper, we propose a novel learning based approach for non-rigid shape de-
tection. Unlike the classification based approaches, we can output a refined detection
result without the restriction to the similarity deformation. We train a model that has
the largest response on the reference shape (in our case, we use the mean shape as the
reference shape) and a smaller response on other shapes. The response of the model
can be seen as a measure of the distance between a shape and the reference shape. Dur-
ing shape detection, we search for an optimal deformation (which corresponds to the
optimal shape detection result) to maximize the response of the trained model. So, in-
stead of distinguishing object and non-object as in the classification based approaches,
our trained model distinguishes the reference shape from all the other shapes. One
challenge, compared to the classification based approach, is that exhaustive searching
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is inapplicable for a non-rigid deformation space, which usually has a high dimen-
sion. Instead, example based searching is used. In this paper, we make the following
contributions.

1. We propose a method to directly learn the relative distance in the shape space using
image based features.

2. No assumption about the distribution of the shape or appearance is necessary in our
approach.

3. The shape detection process can be seen as an optimization problem. Unlike the
previous work, our objective function is learned, specified for a shape.

This paper is organized as follows. Our learning based non-rigid shape detection
algorithm is described in detail in Section 2. In Section 3, we empirically compare
our approach with several well-known algorithms, such as AAM and ASM. The paper
concludes with a brief summary and a discussion of the limitations in Section 4.

2 Machine Learning Based Non-rigid Shape Detection

In this section we describe our problem formulation and learning method in detail. Our
key problem is to train a model that has the largest response on the reference shape and
a smaller response on other shapes. We can take the model response as a measure of
the distance between a shape and the reference shape. Learning a regression function
of the shape distance is a possible solution [7]. However, since the absolute magnitude
of the distance measure is irrelevant, we formulate the learning as a ranking problem.
Suppose we have a set of training images I1, I2, . . . , IM and the corresponding an-
notated shapes S1, S2, . . . , SM . Suppose each shape Si is represented with N control
points Pn

i , n = 1, 2, . . . , N . In our approach, the reference shape can be arbitrary. To
reduce the distortion introduced in warping, the mean shape is used as the reference
shape. Suppose the mean shape of the training set is S̄, which can be calculated using
the generalized Procrustes analysis [4]. For each shape Si there is a warping template
Wi which warps Si toward the mean shape S̄. Given a training image Ii, we can syn-
thesize M warped images I1

i , I
2
i , . . . , I

M
i using warping templates W1,W2, . . . ,WM .

Here, Ij
i is the warped image using image Ii and warping template Wj . These M syn-

thesized images Ij
i , j = 1, 2, . . . ,M can be sorted in the ascending order according

to the shape distance Di,j , which is defined as the average Euclidean distance between
corresponding control points1

Di,j =
1
N

N∑
n=1

‖Pn
i − Pn

j ‖. (1)

The warped image using the perfect warping template, Ii
i , should be ranked on the top.

By repeating the image synthesis for all training images, we obtain M ranked image

1 Synthesized images can also be sorted in the deformed shape space. Suppose the shape of a
warped image Ij

i is Sj
i . Images Ij

i for j = 1, 2, . . . , M can be sorted using the distance be-
tween Sj

i and the mean shape. Since the warping used in our approach is smooth, the difference
between these two methods is small for warped images ranked on top.
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lists, which have the following two characteristics. First, all synthesized images using
the same image have the same appearance but a different shape. Second, all synthesized
images that are ranked on the top in their own lists have the same shape (the mean
shape S̄) but different appearance. Refer to Fig. 1 for a graphical illustration. These
characteristics help us to use a machine learning technique to learn a model whose
ranking output is the most similar to the ground-truth.

2.1 Image Warping

Given a shape, we want to calculate the warping from it to the mean shape. Linear in-
terpolation is used for image warping in AAM [9, 10]. The warping, however, is only
piece-wise smooth. The thin plate spline (TPS) model [11] is often used for represent-
ing flexible coordinate transformations. The advantages of TPS are 1) the interpolation
is smooth with derivatives of any order; 2) the model has no free parameters that need
manual tuning; 3) it has closed-form solutions for both warping and parameter estima-
tion; and 4) there is a physical explanation for its energy function. Two TPS models are
used for a 2-D coordinate transformation. Suppose control point (xi, yi) corresponds to
(ui, vi) for i = 1, 2, · · · , N , let zi = f(xi, yi) be the target function value at location
(xi, yi). We set zi equal to ui and vi in turn to obtain one continuous transformation for
each coordinate. The TPS interpolant f(x, y) minimizes the following bending energy

If =
∫ ∫

R2

(
∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2

dxdy, (2)

and has the solution of the form

f(x, y) = a1 + axx+ ayy +
N∑

i=1

wiU(‖(xi, yi)− (x, y)‖), (3)

where U(r) is the kernel function, taking the form of U(r) = r2logr2. The parameters
of the TPS models w and a are the solution of the following linear equation[

K P
PT 0

] [
w
a

]
=
[
z
0

]
, (4)

where Kij = U(‖(xi, yi) − (xj , yj)‖); the ith row of P is (1, xi, yi); w and z are
column vectors formed from wi and zi, respectively; and a is the column vector with
elements a1, ax, and ay.

To avoid holes in the warped image, we actually calculate the warping from the mean
shape to the input shape. For each pixel in the warped image, we calculate its position in
the input image. To reduce the computation, the simple closest pixel approximation is
used to round the warped position to the integer grid. This warping information can be
saved as a looking-up table. The expensive calculation of Equation (3) is only performed
once and it is done off-line.

Fig. 1 (a) shows the mean shape of the left ventricle endocardial border in an ultra-
sound heart data set labeled using 17 control points. In the figure, we connect neighbor-
ing control points to visualize the border clearly. Fig. 1 (b) and (d) show two images,
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(a) (b) (c) (d) (e)

Fig. 1. Image warping for an ultrasound heart data set. (a) The mean shape of the left ventricle
endocardial border, represented with 17 control points. In the figure, we connect neighboring
control points to visualize the border clearly. (b) and (d) show two images with corresponding
annotated shapes in (c) and (e), respectively. The second and third rows show synthesized images
using (b) and (d), respectively. The ranks of these images from left to right are 1, 5, 10, 50,
and 100.

and the corresponding shapes are shown in (c) and (e). Some synthesized images using
(b) and (d) are shown in the second and third rows, respectively. They are sorted in the
ascending order from left to right using the distance between the input shape and the
warping shapes.

2.2 Learning the Shape Difference

In this section, we present the RankBoost [12] learning algorithm, which is used to learn
the ranking of synthesized images. The goal of RankBoost learning is minimizing the
(weighted) number of pairs of instances that are mis-ordered by the final ranking relative
to the given ground-truth. Suppose the learner is provided with ground-truth about the
relative ranking of an individual pair of instances x0 and x1. Suppose x1 should be
ranked above x0, otherwise a penalty D(x0, x1) is imposed (equal weighted penalty
D(x0, x1) = 1 is used in our experiments). D(x0, x1) = 0 indicates no preference
between x0 and x1. The penalty weights D(x0, x1) can be normalized to a probability
distribution ∑

x0,x1

D(x0, x1) = 1. (5)
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Given: Initial distribution D over X × X .
Initialize: D1 = D.
For t = 1, 2, . . . , T

– Train weak learner using distribution Dt to get weak ranking ht : X → R.
– Choose αt ∈ R.
– Update:

Dt+1(x0, x1) =
Dt(x0, x1) exp[αt(ht(x0) − ht(x1))]

Zt
where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final ranking: H(x) =
∑T

t=1 αtht(x).

Fig. 2. The RankBoost algorithm

The learning goal is searching for a final ranking functionH that minimizes the ranking
loss

rlossD(H) =
∑

x0,x1

D(x0, x1)[[H(x1) ≤ H(x0)]]. (6)

Here, [[π]] is defined to be 1 if predicate π holds and 0 otherwise. Note that the instances
are sorted in the descending order with respective to H . The RankBoost algorithm is
shown in Fig. 2.

The above implementation is expensive in terms of space and computation. There is
a more efficient implementation of RankBoost for a special form of ground-truth [12].
We say that the ranking ground-truth is bipartite if there exists disjoint subsets X0 and
X1 of X such that the ground-truth ranks all instances in X1 above all instances in X0
and says nothing about any other pairs. In our approach, for a ranked image list, we
want the top l images to be ranked above all the remaining images. We do not care
about the relative ranking of synthesized images in different lists, so our ground-truth
is not bipartite itself but a union of bipartite subsets. The efficient implementation of
RankBoost is still applicable for this case, see [12] for details. Naturally, l = 1 should
be used. Currently, example based searching is used for our shape detection method
(discussed in Section 2.4). We select the top several closest prototypes in the database.
Weighted average of the selected shapes are taken as the detection result. Therefore,
the learning of ranking should not restrict to the top one in each list. A slightly larger l
should be used (l = 5 in our following experiments).

There is an upper-bound for the ranking loss rlossD(H) on the training set [12].

Theorem 1: At time t, let

Zt =
∑

x0,x1

Dt(x0, x1) exp [αt(ht(x0)− ht(x1))] . (7)

The ranking loss of H on the training set is upper-bounded as

rlossD(H) ≤ ΠT
t=1Zt. (8)

For any given weak ranking function ht, it can be shown that Zt is a convex function
of αt and has a unique minimum [6]. The optimalαt can be found numerically using the
Newton-Raphson method. In our approach, each weaker learner uses only one feature.
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(a) (b)

Fig. 3. Ground-truthed ranking vs. the average ranking by the trained RankBoost model for the
left ventricle border detection. (a) On the training set. (b) On the test set.

For each feature, we search for an optimal αt to minimize Zt. The feature with the
smallest Zt value is selected as the weaker learner. So, the weaker learner training and
optimal αt searching are finished in one step.

Fig. 3 (a) and (b) show the ground-truthed ranking vs. the average ranking by the
trained RankBoost model for the left ventricle endocardial border detection (presented
in Section 3.1) on the training and test sets, respectively. As we can see, the ranking of
the RankBoost model matches the ground-truth quite well.

2.3 Ranking vs. Classification

With bipartite ground-truth, the ranking problem is very similar to the classification
problem. Formulated as a classification problem, instances in X1 and X0 form the pos-
itive and negative training samples, respectively. It is easy to verify that the objective
function rlossD(H) of RankBoost, Equation (6), is equivalent to the error rate in Ad-
aBoost [5], a corresponding learning algorithm for a classification problem. However,
in our case, the ground-truth is not bipartite itself, but a union of bipartite subsets. We
only care the relative ranking of synthesized images that are generated using the same
image but different warping templates, e.g., Im

i and In
i when m �= n. We do not care

the relative ranking of two synthesized images warped from different images, e.g., Im
i

and In
j if i �= j. In our previous experiments, we tried to use AdaBoost to replace Rank-

Boost in learning, but got worse results. Formulated as a ranking problem, the learning
algorithm concentrates on learning the shape difference since the instances to be ranked
have the same appearance but different shapes.

2.4 Shape Detection

We use the feature pool proposed in [1] for the learning task. A feature template is
composed with several rectangular regions. The response of a feature is defined as the
sum of intensities in some rectangles subtracted by the sum of intensities in the other
rectangles. By moving and scaling the feature templates, a big feature pool (often in the
magnitude of one million features) can be achieved. This feature pool is by no means
optimal. For example, it cannot describe an edge with an orientation other than horizon-
tal and vertical. The argument for using them is that there is an efficient implementation
of feature extraction based on integral images. Please refer to [1] for details.
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Given an input image with an unknown shape, the shape detection process is as
follows.

1. Warp the input image using warping template Wi, for i = 1, 2, . . . ,M .
2. For each warped image, calculate the integral image.
3. Extract the selected features based on the integral image and calculate the combined

response of the trained RankBoost model.
4. Select the top k candidates with the largest responses. The kernel-weighted average

is taken as the shape detection result.

Since the nearest-neighbor estimator has a high variance, we use the Nadaraya-
Watson kernel-weighted average [13] as the the final shape detection result

Ŝ =
∑M

i=1Kk(di)Si∑M
i=1 Kk(di)

, (9)

where,

di = 1− Hi −min{Hj}
max{Hj} −min{Hj} . (10)

Since the response Hi of the RankBoost model is not a distance measure, we normal-
ize it to the range of [0, 1] using the above equation. For the kernel Kk, we use the
Epanechnikov quadratic kernel

Kk(di) =

⎧⎨⎩3/4
[
1−

(
di

d[k]

)2
]

if di ≤ d[k]

0 otherwise
, (11)

where k is the size of the neighborhood, and d[k] means the distance of the top kth

prototype. Using kernel-based smoothing, the detected shape is not restricted to those
represented in the training set. In theory, any shape can be represented as a linear com-
bination of a set of base shapes, which fully span the whole shape space.

The major computations of our approach include image warping, integral images
calculation, and feature extraction. The speed of the whole procedure depends on the
input image size and the number of warping templates. For left ventricle border de-
tection presented in Section 3.1, the input image block size is 80 × 104 pixels. When
202 warping templates are used, we can process about 42 input image blocks per sec-
ond (which means given an input image block, we finish all the above computations
for all warping templates and output the detected shape) on a PC with dual 2.4 GHZ
Xeon CPUs and 2 GB memory. The decomposed computation time for one input is
12.5 ms (52.8%) for image warping, 8.7 ms (36.8%) for integral image calculation, and
2.0 ms (8.4%) for feature extraction. Since the processing for each warping template
is independent, our algorithm is well suited for parallel computing. On the same PC, if
we using multi-thread techniques to make full use of the computation power, we can
achieve the detection speed of about 77 inputs per second.

2.5 A More Efficient Implementation

In our feature pool, each feature is a linear combination of the intensities, and the Rank-
Boost model is a linear combination of the selected features, as shown in Fig. 2. So,
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Fig. 4. Weight images. Top row: weight images for left ventricle endocardial border detection.
Bottom row: weight images for facial feature detection. Left column: weight images aligned with
the mean shapes. Middle and right columns: two back-warped weight images.

overall, the response of the trained RankBoost model is a linear combination of the
intensities. We can organize the combination weights as an image. Fig. 4 shows the
weight images learned by RankBoost for left ventricle endocardial border detection
and facial feature detection (the weights are normalized to the range [0, 255] for visu-
alization purpose). Using weight images, shape detection is equivalent to searching for
a warping template to maximize the dot-product of the warped image and the weight
image.

Ŵ = argmax
Wi

Ii.Iw (12)

Here, Ii is the warped image using warping template Wi, and Iw is the weight image.
Image warping and dot-product calculation can be combined to achieve a more efficient
implementation. Here, we back warp the weight image using each warping template,
and store all back-warped weight images. This operation can be performed off-line. In
shape detection, we calculate the dot-product of the input image and a back-warped
weight image to calculate the response of the corresponding warping template. This
implementation is more efficient than the integral image based approach. On the same
PC, we achieve the speed of 54 inputs per second using one CPU, and 91 inputs per
second using dual CPUs.

Beside increasing the speed, the weight-image based approach also provides more
flexibility in feature design and warping interpolation. Any feature based on the linear
combination of pixel intensities can be used, no need to be restricted to rectangular
feature templates. In image warping, closest pixel approximation is not necessary any
more, more accurate approximation such as bi-linear interpolation can be used as long
as the interpolation is linear. Such extensions are the same efficient. At the current stage,
we have not exploited such new possibilities to increase the shape detection accuracy.
This is one direction of our future work.
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3 Experiments

In this section, we present two experiments to test our approach, and compare it with
other alternative approaches, such as ASM [4] and AAM [9]. Similar to the previous
learning based approaches [7, 8], we need a preprocessing step to detect the rough po-
sition of a shape to compensate the variation in translation, rotation, and scale changes.
This preprocessing step can be realized using a classification based approach [1, 2, 8].
In our experiments, we focus on the capability of an algorithm to detect the non-rigid
shape deformation besides the similarity transformation, so the input images are rigidly
aligned.

3.1 Left Ventricle Endocardial Border Detection

In this experiment, we apply our approach to detect the left ventricle endocardial bor-
ders in ultrasound images. Measuring the ventricular blood volume and the motion of
ventricular border over various stages of the cardiac cycle are components with strong
diagnostic power. The left ventricle is of particular interest because it pumps oxygenated
blood out to distant tissues in the entire body. As shown in Fig. 7, ultrasound images are
often affected by speckle noise, signal dropout, and imaging artifacts. In many cases,
there is no clear border definition. A total of 404 ultrasound images of left ventricles are
collected with the endocardial border manually annotated by experts using 17 points.
The input image block is normalized to 80× 104 pixels. The whole data set is split into
two equal parts, one for training, the other for test.

The Matlab implementation of ASM by Dr. Ghassan Hamarneh at Simon Fraser
University, Canada is used for comparison experiments. The source code is available at
http://www.cs.sfu.ca/∼hamarneh/software/asm/index.html. The
AAM-API [10] developed by Dr. Mikkel B. Stegmann, available at http://
www2.imm.dtu.dk/∼aam/, is used for the AAM experiments. For both ASM and
AAM, the mean shape is used for initialization. Multi-scale searching is often used in
ASM and AAM and may achieve a better result under a relatively large initialization
error [4, 9]. However, in our experiments, the samples have already been rigidly regis-
tered. Multi-scale searching doesn’t improve the accuracy, therefore, it is not used. The
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Fig. 6. Sorted detection errors using ASM, AAM, shape inference, and the proposed approach.
(a) Left ventricle endocardial border detection. (b) Facial feature detection.

Fig. 7. Left ventricle endocardial border detection using our approach. Left column: input images.
Middle column: detected shapes. Right column: expert drawn contours.

shape inference method [8] is also tested for comparison purpose. For all algorithms,
the free parameters are tuned to achieve the best results on the test set.

The average point-to-point Euclidean distance, Equation (1), is used to evaluate the
shape detection accuracy. The average detection error is 4.30 pixels for the mean shape,
3.70 pixels for ASM, and 3.33 pixels for AAM. Since the nearest-neighbor estimator
has a high variance, kernel-weighted smoothing can significantly improve the perfor-
mance of both shape inference and the proposed approach (as shown in Fig. 5). The
detection error decreases from 2.70 pixels when k = 1 to the minimum of 2.14 pixels
when k = 34 for shape inference. The proposed approach achieves the minimum de-
tection error of 1.82 pixels when k = 30. Fig. 6 (a) shows the sorted errors (vertically
these curves do not correspond to the same image). As shown in the figure, the per-
formance variation of AAM is large compared to the other approaches. ASM is more
stable, since the deformation of the shape is further restricted to a hyper-cube. Since in
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many cases there are no strong edges in ultrasound images, ASM has the worst average
performance. The shape inference method is better than ASM and AAM, and our Rank-
Boost based approach achieves the best results. Some shape detection results using our
approach are shown in Fig. 7.

3.2 Facial Feature Detection

In the following experiment, we test different approaches for facial feature detection
on the AR face database [14], which is available at http://rvl1.ecn.purdue.
edu/∼aleix/aleix face DB.html. There are 76 male subjects and 60 female
subjects in the database. A total of 26 images (expressions) were taken for each subject,
which feature frontal view faces with different facial expressions, illumination condi-
tions, and occlusions (sun glasses and scarf). The original images are in color. In this
experiment, they are converted to gray scale images. Manual markup using 22 points is
provided by Dr. Cootes, and available at http://www.isbe.man.ac.uk/∼bim/
data/tarfd markup/tarfd markup.html. Currently, the markup is only
available for expressions 01 (neutral expression), 02 (smile), 03 (anger), and 05 (left
light on). One markup is shown in Fig. 8. Similar to the above experiment, we split
the data set into two equal parts, one for training and the other for test. Samples from
the same subject appear in either the training or test set, but not both. To avoid bias
introduced by gender, the training and test sets have the same gender ratio.

The classical implementation of ASM only works for densely sampled points on
curves. Since the 22 markup points are isolated, as shown in Fig. 8, ASM cannot be
applied directly on this data set. All the other algorithms are tested. The average de-
tection error is 5.93 pixels for the mean shape, 5.94 pixels for AAM, and 5.16 pixels
(when k = 37) for shape inference. The proposed approach achieves the best result
of 4.24 pixels when k = 20. The sorted errors are shown in Fig. 6 (b). One concern
about an example based detection method is that the detected shape may be limited to
those shapes in the training set. In our approach, however, kernel based smoothing is
used, which can generate new shapes. If we use the closest example shape (i.e., k = 1)
to represent the input shape, the lower-bound of the detection error is 4.31 pixels (the
lower-bound is achieved when the closest shape searching is perfect). On this data set,
we achieve a better result due to the use of kernel based smoothing.

Fig. 8. Manual markup with 22 points for a face
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Many samples in this data set are very challenging. For example, some male subjects
have heavy beards, which reduces the detection accuracy of the chin (control points 20,
21, and 22). Expression 05 is captured with a strong left light turned on, so the left
border of the face (control point 22) is often undistinguishable from the background.
Another challenge is that about one third of the subjects wear glasses. AAM does not
perform well on such a dual-mode distribution (wearing glasses or not). If we remove
the subjects wearing glasses from both the training and test sets, the average detection
error of AAM on the test set reduces from 5.94 pixels to 5.36 pixels.

4 Conclusions

In this paper, we proposed a novel non-rigid shape detection method by directly learn-
ing the relative distance in the shape space. No assumption about the distribution of
the shape or appearance is necessary in our approach. Our shape detection process can
be seen as an optimization problem. Unlike the previous work, our objective function
is learned and specified for a shape. Experiments on left ventricle endocardial border
detection and facial feature detection confirmed the robustness of our approach. It out-
performs the well-known AAM and ASM approaches.

As a proof-of-concept, currently example based approach is used to for shape detec-
tion, whose speed is directly related to the size of the training set. When a large training
set is available, the speed of example based approach may be too slow. In this case, the
BoostMap method [15] can be exploited to speed up the searching. It has been shown
that in some applications less than 10% candidates need to be evaluated with a slight
performance deterioration.
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Abstract. In this paper we present two new methods of segmentation
that we developed for nuclei and chromosomic probes – core objects for
cytometry medical imaging. Our nucleic segmentation method is mathe-
matically grounded on a novel parametric model of an image histogram,
which accounts at the same time for the background noise, the nucleic
textures and the nuclei’s alterations to the background. We adapted an
Expectation-Maximisation algorithm to adjust this model to the his-
tograms of each image and subregion, in a coarse-to-fine approach. The
probe segmentation uses a new dome-detection algorithm, insensitive to
background and foreground noise, which detects probes of any intensity.
We detail our two segmentation methods and our EM algorithm, and dis-
cuss the strengths of our techniques compared with state-of-the-art ap-
proaches. Both our segmentation methods are unsupervised, automatic,
and require no training nor tuning: as a result, they are directly applica-
ble to a wide range of medical images. We have used them as part of a
large-scale project for the improvement of prenatal diagnostic of genetic
diseases, and tested them on more than 2,100 images with nearly 14,000
nuclei. We report 99.3% accuracy for each of our segmentation methods,
with a robustness to different laboratory conditions unreported before.

1 Introduction

Over the past twenty years, the age of pregnancy has been rising significantly,
with increased risk of genetic disease for the children. Thanks to the progress
made by research in genetics, many genetic diseases can now be treated at birth,
sometimes even during pregnancy. However, current diagnostic methods require
invasive procedures such as amniocentesis or cordocentesis, increasing the risk of
miscarriage. It is known that a few fetal cells enter the maternal circulation: this
opens the promise of a non-invasive diagnostic alternative. Isolating these cells
non-destructively would give access to the whole genetic material of the foetus.
Yet, such cells are rare: a sample of maternal blood will contain roughly 1 in
106 fetal cells, a ratio that can be reduced to about 1 in 104 with enrichment
methods [1]. Computer vision can make their detection easier.

The cells used in this work are leucocytes. Their nuclei are treated with a
blue fluorescent marker, and their telomeres with green fluorescent probes (see

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 437–450, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Left: Image showing leucocyte nuclei (in blue), containing probes attached to
the telomeres (in green). Right: nuclei and probes segmented with our method.

Fig. 1). Telomeres are the ending parts of chromosomes, and more abundant
in fetal nuclei than in maternal ones. Measuring the green fluorescence in each
nucleus is expected to be sufficient to single out the rare fetal nuclei within
a sample of maternal blood, but it is still open to cytology research to assert
it. The need for automatic image processing in this field of medical research is
critical [2], and our work aims to meet this need.

Two significant issues impact the segmentation of such images. First, the nu-
cleic fluorescence spreads into the background region immediately surrounding.
Fig. 2 shows a typical nucleus, a profile of intensities across the image, and the
histogram of the three segmented regions: it appears that the background is
greatly affected near the nucleus. We use the term illuminated background to
denote the background region where the intensity is increased by a nearby nu-
cleus. Its extent is delimitated with a dotted line in Fig. 2. This region, hardly
noticeable by eye, is critical to the correctness of the segmentation of the nuclei.
The other issue is what we call foreground noise: unattached probes that cannot
be perfectly washed out of the preparation sometimes accumulate as clumps and
appear as bright spots, similar in intensity and shape to actual probes.

Previous work in this field is abundant, but is not usable in our context, where
a large number of images taken in various laboratory conditions has to be anal-
ysed with minimal user interaction, and where, to reduce the time needed for
diagnosis, the nuclei used are not cultured – as a result, they do not appear as
convex and smooth as most image processing methods for nuclei segmentation re-
quire. In the following paragraphs we review the state-of-the-art methods. First,
we review nucleic segmentation, then probe segmentation, and finally complete
systems that are used in laboratories for similar purposes.

Nucleic segmentation methods can be classified in four categories: background
subtraction, thresholding, watershed, and energy-based methods. For background
subtraction, the background is generally either considered as uniformly noisy
(with a histogram consisting of one Gaussian curve) [3], or is modeled with
a reference image containing no objects, taken from an empty slide [2]. How-
ever, none of these models is satisfactory because of the background illumination
near the nuclei. Threshold-based methods commonly used in cytometry, such as
Otsu’s [4] or Kittler and Illingworth’s [5], assume that histograms are bimodal,
or even consist of two Gaussians: this would be a crude and unrealistic estimate
for our images (see histogram of a typical image in Fig. 2). Global thresholding
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Fig. 2. Background illumination. Top left: image of a nucleus. Bottom left: intensity
values along the horizontal line across the image. Right: Histograms of the three seg-
mented regions (The vertical scale is bilinear, as reflected by the values on the side).

is bound to fail, because of cross-image intensity variations. Regarding local
thresholding, the construction of a threshold surface introduces extra size and
smoothness parameters, which have to be tuned, and are sensitive to the size
and number of objects in an image. Watershed-based methods [6] are notori-
ous for oversegmenting images; they require pre-processing with morphological
operations to smooth the image, and post-processing to merge contiguous re-
gions using shape, size and texture criteria. Most morphological operations use
a filter, whose size and profile are to be tuned according to the image’s prop-
erties and the smoothness required, and are thus little robust when automated.
Region-merging is a long process, where the criteria for merging depend on the
watershed results, and have to be tuned as well. Finally, energy-based methods,
such as active contours [7], level sets, or graph cuts, require initialisation, inter-
nal energies modeling the final shape, external energies modeling the borders’
characteristics, and parameters to balance them: these are difficult to tune even
manually. Furthermore, in our context, the various nucleic textures and their im-
pacts on the surrounding background are hard to model as local energy terms.
Besides, the irregular shapes of uncultured nuclei elude typical internal energy
terms. To summarise, these methods model the objects’ characteristics indepen-
dently, and require a complex parametrisation to link these models together.

Regarding probe segmentation, most methods are designed to segment only
large bright probes, and usually less than four per nucleus. Existing probe-
finding methods filter the image and threshold the intensities in order to keep
a given percentage of bright pixels [8]. Two significant problems arise from the
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Fig. 3. The steps of nucleic segmentation. Top row, left to right: original image; its
histogram with our adjusted model superimposed; the components of our model, used
to find a global threshold removing most of the background; the segmented image, with
two segmented regions containing nuclei but also some background. Middle row: one of
these regions; its histogram and our adjusted model; the components of our model, used
to find a local threshold, removing the remaining background; the segmented region,
with no more background, but where the two nuclei are still undistinguised: it will be
used as a mask for the final step of the segmentation. Bottow row: the segmented region;
the components of our model, used to find an inner threshold, removing the darkest
parts of the nuclei; the segmented nuclei, isolated but with parts missing: they are used
as seeds, and grown with a fast distance transform within the mask defined above; the
resulting segmentation of the region, with two separated nuclei and no background.
See Section 3 for more details.

foreground noise. First, it flaws any histogram-based method by significantly
increasing the number of high-intensity pixels. Second, as it is segmented as
probes, existing methods need post-processing with a carefully designed classi-
fier to distinguish it from the actual probes [9]. Also, existing systems measuring
probes intensity require calibration, usually using a set of fluorescent beads [8],
and are sensitive to changes in the fluorescence of the markers over time.

Finally, there are several integrated systems that are used in laboratory con-
ditions for similar purposes; however, none of them is either automatic enough
or general enough for clinical application. Many systems require expert human
intervention at some point during the segmentation of each nucleus [10, 11]. Au-
tomatic systems are not as general-purpose as ours: [12] require an extra specific
marker on the nuclei’s borders, while [13] only segments isolated convex elliptic
nuclei; systems such as Castleman’s [2] or Netten’s [14], are only applicable to
images with few nuclei and few probes.
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Our approach to segmentation is designed to avoid from the beginning the
problems mentioned above. For the nuclei, we use a unified model which encom-
passes seamlessly the background noise, the nucleic textures and the nuclei’s al-
terations to the background. The parameters of our model are intuitive and are
automatically adjusted to every image, using an adaptation of an Expectation-
Maximisation algorithm. This way, our model adapts to images of varying inten-
sities and qualities, with no prior assumptions, training or manual tuning. We
use our model to find successive threshold values, first global then local, and to
isolate touching nuclei – one of the most difficult tasks in cytometry. The three
steps of our nuclei segmentation are illustrated in Fig. 3. For probe segmenta-
tion, we use a new dome-detection algorithm which is insensitive to background
and foreground noise, and detects any number of probes of any intensity, with
no calibration required. After segmentation, the locations and measures of the
nuclei are stored in an XML database for later retrieval.

This article is organised as follows: in Section 2, we detail our novel model
for histograms. In Section 3, we describe our Expectation-Maximisation algo-
rithm adapted for histogram modeling. In Section 4, we present our new dome-
detection method applied to probe segmentation. In Section 5, we compare our
method with a typical watershed-based segmentation, discuss the results, and
present the results obtained with our software to compare individuals’ ages us-
ing telomeres intensities – a critical issue for non-invasive prenatal diagnosis as
mentioned earlier. We conclude in Section 6 with an overview of our future work.

2 Model of the Histogram of an Image

As illustrated in Fig. 2, the histogram of a typical image consists of three over-
lapping parts: a sharp peak in the lowest values, a sharply decreasing curve in
the medium values, and a plateau in the highest values. They correspond respec-
tively to the non-illuminated background (NIB), illuminated background (IB),
and nuclei (N). In this section we present the parametric functions we use to
model each part, and emphasis our new model for the illuminated background.

Let h(I) be an image histogram, consisting of parts NIB, IB and N, which we
model with hmodel(I). We assume NIB contains Ab pixels, has a mean value Ib,
and is affected by Gaussian noise of standard deviation σb. It is modeled with:

NIB(I) =
Ab√
2πσb

exp
(
− (I − Ib)2

2σ2
b

)
. (1)

The part of the histogram corresponding to the highest intensities, N, reflects
the nuclei’s textures. They are very variable, within and across samples: in par-
ticular, variations affect the range of intensity values, the shape of the histogram
and the number of peaks in it. Also, saturation can occur at high intensities, de-
pending on the hardware used for imaging. To overcome these problems we model
the nuclei’s histograms with sums of Gaussians: this is both robust and flexible
enough for our needs. As we do not know in advance how many nuclei an image
contains, nor how many Gaussians are needed for each texture, we introduce a
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new parameter, n, the number of Gaussians modeling the nuclei. Each of these
Gaussians i will model Ai pixels, with mean Ii and deviation σi:

Ni(I) =
Ai√
2πσi

exp
(
− (I − Ii)2

2σ2
i

)
, 1 ≤ i ≤ n . (2)

Next we detail the model we use for the illuminated background. Let I0 be
the intensity at the nucleus’ border, at distance R0 from its center, and let Ib be
the mean intensity of the non-illuminated background (see Eq.( 1)). We model
the intensity in the illuminated background, along a line normal to the nucleus’
border, with a decreasing exponential (see Fig. 4):

I(r) = Ib + (I0 − Ib) · exp
(
−r −R0

ρ

)
, for r ≥ R0 , (3)

where ρ is a constant controlling the slope of the intensity decay. This model
cannot be fitted directly to an image for segmentation purposes, as it requires a
prior segmentation of the nuclei. Nevertheless, it can be used to derive a model
of the illuminated background’s histogram. This latter model can be adjusted
to the image histogram, as detailed in the next section. In the remaining of this
section, we explain how we derive that model.

The expression of I(r) in Eq. (3) can be inverted to define r(I). This can be
used to express the number of points dn(r) = 2π r dr at distance r from the
nucleus, as a function of the intensity, dn(I). By integrating dn(I) between I
and I + 1, we obtain – by definition – the illuminated background’s histogram.
Introducing the new parameters α = ρ

R0
and A = πR2

0, we obtain:

IB(I) = 2Aα
∫ I+1

I

(
1− α ln

I − Ib

I0 − Ib

)
dI

I − Ib
. (4)

Eq. (4) is independent of the nucleus’ actual shape: it only depends on its area
A and the dimensionless parameter α, controlling the extent of the illumination
relative to the nucleus’ size. It can be easily integrated with the change of vari-
ables X = I−Ib

I0−Ib
. Also, this model is to be fitted to the histogram at values above

the mean background value, with I − Ib � 1. Thus, a first-order expansion of
IB(I) with respect to 1

I−Ib
is enough for our purpose. This leads to the definition

of our new model for the histogram of the illuminated background:

IB(I) =
2 A α2

I − Ib
ln
(

I0 − Ib

I − Ib

)
. (5)

The expression of IB(I) in Eq. (5) is illustrated in Fig. 4, to the right. Its two
parameters A and α correspond respectively to the area of the nucleus creating
the illumination, and to the spatial decay of the illumination.

To link this model with that of the nuclei, we assume that each Gaussian
modeling the nuclei’s textures creates part of the background illumination. Let
IB i(I) model the background illuminated by Ni(I). Three of its four param-
eters are constrained by the rest of the model: namely, the area causing the
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Fig. 4. Illustration of our model. Left: model of a circular nucleus. Center: model of the
intensity values in the illuminated background, I (r), defined in Eq. (3). Right: model
of the histogram of the illuminated background, IB(I ), defined in Eq. (5).

illumination A=Ai (see Eq. (2)), the mean intensity Ib of the non-illuminated
background (see Eq. (1)), and the intensity I0 at the nucleus’ border. We set
it to I0 = Ii − 2σi. Using Eq. (2), it corresponds to the darker 5% of the nu-
cleus’ pixels, which we consider to be on the boundary. This way, the functions
modeling the illuminated background are:

IB i(I) =
2 Ai α

2
i

I − Ib
ln
(

Ii − 2σi − Ib

I − Ib

)
, 1 ≤ i ≤ n . (6)

Let Φn be the set of all the functions used, which are defined in Eqs. (1), (2)
and (6). The model of the histogram is:

hmodel(I) =
∑

g∈Φn

g(I) , where Φn = {NIB} ∪
⋃

1≤i≤n

{IB i, Ni} . (7)

It depends on the 4(n+1) parameters n,Ab, Ib, σb, {Ai, Ii, σi, αi}1≤i≤n. They are
adjusted to an image histogram using an Expectation-Maximization algorithm,
as detailed in the next section.

3 Expectation-Maximisation Algorithm for Histogram
Modeling

Let h(I) be an image histogram, consisting of parts NIB, IB and N, which we
model with hmodel(I). Each intensity I in the histogram contains a proportion
of pixels modeled by each function of our model. We define this proportion as:

pf (I) =
f(I)∑

g∈Φn
g(I)

, ∀f ∈ Φn = {NIB} ∪
⋃

1≤i≤n

{IB i, Ni} . (8)

Knowing these proportions is enough to define the successive thresholds needed
for our nucleic segmentation, as detailed at the end of this section. Given all
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Algorithm 1. Expectation-Maximisation algorithm for histogram modeling
1: for n = 1 to 6 do
2: Initial E-step: set the initial proportions as in Table 1
3: for 100 times do
4: M-step: compute the parameters with Eqs. (9) and (10).
5: E-step: update the proportions with Eqs. (1), (2), (6), (8).
6: Evaluation: measure the error between the model and the histogram as

error =
∑

I

(
1 − hmodel(I)

h(I)

)2
. Store the model if the error is the lowest.

7: end for
8: end for
9: return the model with the lowest error.

the parameters of the model, these proportions can be computed using Eqs. (1),
(2), (6) and (8). Reciprocally, given all the proportions pf (I), ∀I, ∀f ∈ Φn, the
parameters of the model can be computed as described below. However, neither
the parameters nor the proportions are available in the first place. This type of
problem is commonly solved by Expectation Maximisation [15]. The EM algo-
rithms commonly used in computer vision are adapted to mixture of Gaussian
models. The algorithm we present as Algorithm 1 is adapted to histograms: the
steps are the same, only the equations are different.

We now explain how to compute our model’s parameters given a histogram
h(I) and all the proportions pf(I). The parameters of the Gaussians NIB and
Ni are computed as the total, mean and deviation of a weighted histogram [16]:

Ai =
∑

I

pNi(I)h(I) ; Ii =
∑

I

pNi(I)h(I) I ; σ2
i =

∑
I

pNi(I)h(I) (I−Ii)2 . (9)

The only unconstrained parameters of the functions IBi are computed as:

αi =
1

| ln ε|

√√√√ 1
Ai

Ii−2σi∑
I=Iε

pIBi h(I) , where ε = 0.1 , Iε = Ib + ε (I0 − Ib) . (10)

(See Appendix for details). The complete segmentation of the nuclei is performed
in three steps, as illustrated on Fig. 3. First, we use the algorithm above to adjust
our parametric model to the image histogram. Let:

θglobal = max{I, ∀i,min(pNIB (I), pIBi (I)) ≥ pNi(I)} .

Below θglobal , all intensities contain more points from NIB or IB i than from the
corresponding Ni, and it is the highest such value. This is the global threshold
we use to discard the non-illuminated and part of the illuminated background.
Then, in each of the segmented regions, we apply the same algorithm to find
a model of the histogram (without the NIB function this time). In the same
way, we find the highest intensity containing more points from IB i than from
Ni, and use it as a local threshold θlocal . The newly segmented components
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Table 1. Initial proportions’ values for the EM algorithm. The histogram range [0, Imax ]
is divided in n+2 parts. Intuitively, most dark pixels are modeled by NIB , most bright
pixels by either one of the Ni, and most of the remaining pixels by the IB i (see Fig. 2).

Intensity 0 . . . 1
n+2 Imax

1
n+2 Imax . . . 2

n+2 Imax
j

n+2Imax . . . j+1
n+2Imax for 2 ≤ j ≤ n + 1

pNIB (I) 0.9 0.1 0
pIBi (I) 0.1/n 0.9/n 0.1/n
pNi(I) 0 0 0.9/n if i = j − 1 , 0 else

do not contain background anymore; however, they might contain more than
one nucleus. This problem is often solved by splitting components into convex
parts [17], but cannot be applied here – uncultured nuclei may be concave.
Instead, we consider the components’ textures, which are already modeled by
the Ni. We assume that there are several distinguishable nuclei in a component
if it contains dark paths separating several bright parts. The threshold we use to
define dark and bright for this test, called inner threshold θinner , is the lowest of
the Ii. The connected components above θinner are considered as seeds: each one
marks a unique nucleus. Then we extend the seeds into the regions above θlocal
using a fast distance transform [18], and obtain the segmented nuclei. Fig. 3
shows the three steps of the segmentation, with the models adjusted to the
histograms. Another example of a segmented image is shown in Fig. 1.

4 Dome-Finding Algorithm for Probe Segmentation

Once the nuclei are segmented, their telomere contents are to be evaluated, by
segmenting the fluorescent probes in the green channel. Probes appear as small
spots, each about a dozen pixels big. Background illumination is observed around
the probes as well; however we cannot apply the same segmentation method as
for the nuclei. This is for practical reasons: on a typical image, nuclei represent
about 8% of the pixels in the image, and the illuminated background about
50%; but the probes only represent 0.3%, and the background around them, 2%.
Adjusting our model using so few pixels would not be reliable enough.

Our novel method to segment probes is based on the following observations.
Both background and foreground noise are characterized by high densities of
local intensity maxima, distant by two or three pixels. Conversely, probes cor-
respond to local maxima surrounded by pixels of decreasing intensity and few,
if any, other local maxima within a distance of two or three pixels. Thus, we
developed a peak-detection method sensitive to the density of local maxima. In
addition, as it only measures pixels intensities relatively to their neighbours, our
method can detect probes of high and low intensities, unlike traditional probe-
finders restricted to few bright probes [2].

We segment probes as domes, starting from local maxima and gradually in-
cluding neighbours if they form a dome around them. If a dome is large enough,
we mark it as a probe; otherwise, we reject it. Around each local maximum,
we consider three sets of neighbouring pixels, at increasing distances, as illus-
trated by different shades on gray in the left of Fig. 5. They form the level
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Fig. 5. Left: the three level sets around a pixel, in three shades of gray, and all the
downhill neighbours, indicated by the arrows. Middle: actual pixels values in the neigh-
bourhood of a probe, and the segmented dome in gray. Right: actual pixels values in a
zone of foreground noise; none of the local maxima is surrounded by a proper dome.

sets1 of the dome, and approximate the shape of the probes. Formally, let
pM be a local maximum. The first level set consists of the 8 closest pixels:
LS1 = {p, d∞(p, pM ) = 1}. In the second level set are the twelve closest pixels
that are not already in LS1 : LS2 = {p, p /∈ LS1 ∧ d1(p,LS1 ) = 1}. Each pixel in
these sets is assigned three neighbours, as indicated by the arrows in Fig. 5: we
refer to them as downhill neighbours. If a pixel has a higher intensity than all its
downhill neighbours, it is marked as being part of the dome.

By design, one complete dome corresponds to one probe. However, it happens
that two probes are very close (two pixels apart), or that a probe is bigger than
a dome (and contains two local maxima). In both cases, the dome construction
above leads to two domes having one side in common that does not meet the
downhill constraint, and which is therefore not included in any of the two domes.
Since these cases are at the borderline but still valid, we accept domes with up
to one of their four sides missing. Formally, a dome is marked as a segmented
probe if it contains at least 75% of the pixels in LS1 and 75% of LS2 . Domes
with more pixels missing are rejected as noise (see middle and right of Fig. 5).

5 Results and Discussion

We start this section by presenting quantitative results obtained with our novel
segmentation methods. Our data set contains 2,166 images, with nearly 14,000
nuclei and 317,000 probes overall. We compare our results with a typical
watershed-based nucleic segmentation method. We also present an application
of our methods, to compare the telomere intensities of two different individuals.

5.1 Accuracy of the Segmentation Methods

Nucleic Segmentation. We implemented our method on an iMac with a 1.8GHz
PowerPC G5 and 1Gb of RAM, and processed our full dataset. For comparison,
1 Here, the term level set refers to its original definition in topology, not to the seg-

mentation method with the same name.
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Table 2. Results of the nuclei segmentation

Method Number Correctly Over Under Missed Non
of nuclei segmented segmented segmented existing

Watershed 2,779 2,232 - 80.3% 211 - 7.6% 212 - 7.6% 60 - 2.2% 64 - 2.3%
Ours 13,917 13,823 - 99.3% 31 - 0.22% 50 - 0.36% 8 - 0.06% 5 - 0.03%

we also implemented the watershed-based segmentation method for cytometry de-
scribed in [19], as follows. The image is thresholded globally with the value found
by the isodata algorithm; a distance transform is applied to the resulting image,
followed by an h-dome extraction; the domes extracted are used as starting-points
for the watershed algorithm, applied to the gradient transform of the original im-
age. We implemented this method under the same conditions as ours, and tested
it on a sample of 800 images, containing over 2,000 nuclei. The results of these
two segmentation methods are listed in Table 2, and discussed below.

In terms of runtime, our method segments one nucleus in about one second
(with no particular programming optimisation), which is about three times faster
than the watershed-based one, and several times faster than manual segmenta-
tion. Our method has linear complexity, and no particular memory requirements
(a histogram and the segmentation results). Once the histogram is built, our EM
algorithm runs in constant time; the thresholding steps require one image scan.
Conversely, the watershed-based method needs to store extra intermediate im-
ages, and the h-dome extraction requires an unknown number of image scans.
Besides, this method takes several minutes to process images with no nuclei, and
systematically segments objects in them. Our method processes empty images
correctly and faster than images with nuclei.

The quantitative results, shown in Table 2, are significantly better with our
method, which is due to its two main features. First, it finds the nucleic borders
using a succession of threshold values that are adapted for each part of the image
containing nuclei, while the other method uses a single global threshold. As a
result, many more nuclei are missed, when darker that the global threshold, and
many non-existing nuclei are segmented, which are in fact bright background
regions. Secondly, our method uses a texture model to separate touching nu-
clei, and gets very low oversegmentation (when a nucleus is segmented in more
than one object) and undersegmentation (when more than one nucleus are seg-
mented as one object). Conversely, to find seeds, the watershed-based method
replaces the nuclei’s textures with a distance transform, which amounts to using
only the nuclei’s borders to separate them. This approach is bound to fail with
uncultured nuclei, having concavities, as illustrated by the higher over- and un-
dersegmentation rates. Similar quantitative results are reported in [20], for the
same watershed-based method and for a contour-based method. Both methods
correctly segment 80% of similar nuclei, and over- and under-segment a total of
15% of the dataset. Using successive watershed-based and contour-based meth-
ods, [13] reports a 99.4% segmentation accuracy, but their method requires the
prior rejection of all the non-isolated, non-elliptic nuclei – corresponding to 30%
of their data, but more than 50% of ours.
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Our results can still be improved by basic post-processing. Missed objects
cannot be recovered, but are very rare in the first place, while non-existing nuclei
are hardly an issue. Oversegmentation happens when θinner is too high, and can
be detected by the small size of the parts oversegmented. Undersegmentation is
due to either θglobal or θlocal being too low, and results in bigger than average
objects, which can be detected as such and processed with higher thresholds.

Probe Segmentation. The aim of segmenting probes is to measure the total fluo-
rescence inside a nucleus, so oversegmentation is not an issue. Undersegmentation
is prevented with our method, as a segmented probe has a minimum dome size.
Overall, 99.3% of the probes were correctly found with our method. About 0.3%
were missed, too wide to be detected as one dome. Most of them were dark, with
little effect on the total fluorescence measured inside the nucleus; very rare wide
and bright probes were ruled out as foreground noise (less than 0.1%). Finally,
about 0.4% of the segmented objects were background, not probes; they were
dark and did not affect the final measures.

5.2 Comparison of Individuals Ages Using Telomeres Intensities

As an application, we used our method to quantify the intensity of probes ap-
pearing in the nuclei for two individuals. This test was conducted to assess the
differences in telomeric intensities between individuals of different ages. In partic-
ular the two populations of nuclei were not mixed. After using our segmentation,
our program rejected the nuclei which were cropped at the edges of images. The
results are shown in Fig. 6. The first histogram shows that the same number of
probes per nucleus were segmented for the two individuals; the second histogram
shows that the probes in the fetal nuclei are brighter. These result show that
our method does not introduce bias in the number of probe segmented, and that
there is a promising distinction between the individuals.

Fig. 6. Quantitative measures performed using our method on two populations of nuclei

Our software has proven reliable and robust enough to produce these results.
Reducing the overlap between the two histograms is a subject for cytology re-
search. Here again computer vision may help, as detailed in the next section.

6 Conclusions and Future Work

In this article we have detailed our new segmentation methods, presented a quan-
titative comparison of our nucleic segmentation with the widely used watershed
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method, and shown an application of our software for medical research. The nu-
cleic segmentation method we developed is based on a new model of the image
histogram, achieves a 99.3% accuracy and, to the best of our knowledge, is more
robust and automatic than previously published work on this field. Also, we have
presented some ideas to improve this rate further. As for the telomere probes,
our method is robust against all sources of noise, and is also 99.3% accurate.

The segmentation techniques we developed can be used for various cytomet-
ric tasks. We have used it along with our telomeric segmentation method for a
project of improved diagnostic methods. The quantitative results we have ob-
tained show a promising distinction between the telomere intensities in individ-
uals of different age. To improve the difference and reach the stage where a fetal
nucleus can be detected within a population of maternal nuclei, we are partici-
pating in further work with cytologists. Not all uncultured nuclei will be usable
in the final stage, where their genetic content is investigated. Some are dam-
aged during the early processing of sample blood, and could be rejected before
measuring the telomere intensities. These unusable nuclei can be detected by an
expert cytometrist by their shapes. We are currently working with such experts
on an automatic shape analysis of the segmented nuclei: our early work includes
measuring the nuclei’s concavities and using low-order Fourier reconstructions to
define usability criteria. Rejecting these unusable nuclei before segmenting the
telomeres would make our final comparison of populations more conclusive. At
that stage, we will be in a stronger position to tell if this approach to non-invasive
diagnostic alternative is reliable enough for a future clinical application.

The author thanks Prof. Clocksin, Dr Bray and Dr McCollum for their help
and Prof. Hulten and Dr Ariosa for providing the images.
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Appendix

We use the notations of Section 2. The sum of histogram values of the illuminated
background between any two values I1 and I2 is:

∑I2
I=I1

IB(I) =
∫ I2+1

I1
dn(I).

However,dn(I) is only defined and positive between Ib and I0, and is not summable
near Ib. Let Iε = Ib + ε (I0 − Ib), where ε ∈ (0, 1):

∑I0−1
I=Iε

IB(I) =
∫ I0

Iε
dn(I).

Developed to first order terms:
∑I0−1

I=Iε
IB(I) =−2Aα2

∫ I0
Iε

ln
(

I−Ib

I0−Ib

)
dI

I0−Ib
. Since

IB(I0) = 0, the sum can be extended to I0, while the integral can be computed
with a change of variable:

∑I0
I=Iε

IB(I) = Aα2 ln2 ε. This gives the expression of

α as a function of the histogram values: α = 1
| ln ε|

√
1
A

∑I0
Iε

IB(I) .
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Abstract. Generalized Belief Propagation (gbp) has proven to be a
promising technique for performing inference on Markov random fields
(mrfs). However, its heavy computational cost and large memory re-
quirements have restricted its application to problems with small state
spaces. We present methods for reducing both run time and storage
needed by gbp for a large class of pairwise potentials of the mrf. Fur-
ther, we show how the problem of subgraph matching can be formulated
using this class of mrfs and thus, solved efficiently using our approach.
Our results significantly outperform the state-of-the-art method. We also
obtain excellent results for the related problem of matching pictorial
structures for object recognition.

1 Introduction

Many tasks in Computer Vision, such as segmentation and object recognition,
can be given a probabilistic formulation using Markov random fields (mrf). A
popular method for performing inference on mrfs is Belief Propagation (bp) [1].
It is well known that on tree-structured mrfs, bp can be used to efficiently per-
form exact inference. For a general mrf, Yedidia et al. [2] proved that bp con-
verges to stationary points of Bethe approximation of the free energy. They also
proposed the Generalized Belief Propagation (gbp) algorithm which converges
to stationary points of (the more accurate) Kikuchi approximation. Despite out-
performing bp in terms of convergence and accuracy, there are few uses of gbp
reported in the literature as it is computationally feasible only when the number
of labels of the mrf is small.

Recent work has focused on tackling the problem of computational cost of mes-
sage passing methods such as bp and gbp. Felzenszwalb and Huttenlocher [3, 4]
put forward a method for speeding up message passing algorithms such as
Viterbi, Forward-Backward and bp for a large class of pairwise potentials (e.g.
Potts and linear model), when the labels are regularly discretized points in the
parameter space. In our previous work [5], we extended these results to general
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mrfs. However, little consideration thus far has been given to speeding up gbp,
with the exception of Shental et al. [6] who describe an efficient gbp algorithm
but only for the special case where the pairwise potentials form an Ising model.

The problem of reducing the large memory requirements has also met with
little success. Felzenszwalb and Huttenlocher [4] observe that, when performing
bp on a bipartite graph, the messages going to only a subset of sites are changed
at each iteration. This allows them to reduce the memory requirements for grid
graphs by half. Vogiatzis et al. [7] suggest a coarse-to-fine strategy for bp by
grouping together similar labels. However this is restricted to labels lying on
a grid. More importantly, it substantially changes the problem such that the
messages and beliefs computed at any stage are not necessarily equivalent to
those corresponding to the original mrf.

In this paper, show how to reduce the computational cost and memory re-
quirements of gbp for a large class of pairwise potentials which we call the robust
truncated model. This model divides all pairs of labels for the neighbouring sites
into compatible and incompatible pairs and truncates the pairwise potentials
of the incompatible pairs to a constant (see section 2 for details). Many vision
applications such as object recognition [5], stereo and optical flow [4] use special
cases of this model. Typically, the number of compatible labels nC for a given
label is much less than the total number of labels nL, i.e. nC � nL.

We exploit the fact that, since the pairwise potentials of incompatible pairs
of labels are constant, it results in many redundant computations in gbp which
can be avoided. Let nR be the number of regions formed by clustering the sites
of the mrf and nM be the size of the largest region. The main contributions of
the paper are the following:

• We reduce the time complexity of gbp to O(nRnMnnM−1
L nC), (i.e. by a

factor of nL/nC). Since nC � nL for mrfs used in vision, this makes gbp
computationally feasible (section 3).

• We observe that the approach described in [4] to reduce the memory require-
ments of bp by half for bipartite graphs can be extended to gbp (section 4).

• We show how the memory requirements of gbp can be reduced drastically
(by a factor (nL/nC)nM−1) for a special case of the robust truncated model
which can be used in various vision applications. Again, since nC � nL, gbp
becomes memory efficient and thus, practically useful (section 4).

• We formulate the problem of subgraph matching using the special case of
the robust truncated model and solve it accurately using the efficient gbp
algorithm. Our results significantly outperform the state-of-the art methods
(section 5).

• We obtain excellent results for the related problem of matching pictorial
structures [8] for object recognition by using the efficient gbp algorithm
(section 5).

It should be noted that our methods are applicable to other related message
passing algorithms such as Viterbi, Forward-Backward, bp and tree-reweighted
message passing [9]. For completeness, we first briefly describe the bp and gbp
algorithms in the next section.
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2 Belief Propagation and Its Generalization

This section briefly describes the standard belief propagation (bp) algorithm
for performing inference on mrfs and formulates it using the canonical frame-
work. This framework is then extended which results in the Generalized Belief
Propagation (gbp) algorithm [2].

An mrf is defined by nS sites along with a symmetric neighbourhood rela-
tionship N(.) on them, i.e. i ∈ N(j) if and only if j ∈ N(i). Each site i can
take a label xi ∈ Xi. We assume that the sets Xi are finite and discrete, i.e.
|Xi| = nL < ∞. Associated with each configuration x of the mrf is its joint
probability given by

Pr(x1, ..., xnS ) =
1
Z

∏
ij

φij(xi, xj)
∏

i

φi(xi). (1)

Here, φi(xi) is the unary potential of site i having label xi, φij(xi, xj) is the
pairwise potential for two neighbouring sites i and j having labels xi and xj

respectively and Z is the partition function. Note that the above equation as-
sumes the mrf to be pairwise. However, this is not restrictive as any mrf can
be converted into a pairwise mrf [2]. Performing inference on the mrf involves
either determining the map configuration or obtaining the marginal posterior
probabilities of each label. In this paper, we describe our approach in the con-
text of max-product bp which provides the map configuration while noting that
it is also equally applicable to sum-product bp which provides the marginal
posteriors.

bp is a message passing algorithm proposed by Pearl [1]. It is an efficient
approximate inference algorithm for mrfs with loops where each site i iteratively
passes a message to its neighbouring site j. The message is a vector of dimension
nL whose elements are calculated as

mt
ij(xj)← αmax

xi

φij(xi, xj)φi(xi)
∏

k∈N(i)\j

mt−1
ki (xi), (2)

where α is a normalization constant and N(i)\j is the set of all neighbouring
sites of i excluding j. Note that xj is used to index the message vector in the
above equation such that mt

ij(xj) corresponds to the xth
j element of the vector

mt
ij . All messages are initialized to 1 and convergence is said to be achieved when

the rate of change of all messages drops below a threshold. At convergence, the
belief of a site i having a label xi is given by

bi(xi)← αφi(xi)
∏

j∈N(i)

mji(xi), (3)

and the map estimate is obtained by choosing the label x∗i with the highest belief
for every site i.

Yedidia et al. [2] proved that bp converges to the stationary points of the
Bethe approximation of the free energy which clusters the sites of the mrf into
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regions of size at most 2. We denote the set of sites belonging to a region r by
S(r). Region s is considered a sub-region of r if and only if S(s) ⊂ S(r). Further,
s is a direct sub-region of r if and only if the set s ∪ i is not a sub-region of r,
for all regions i.

Every region r passes a message mr→s to each of its direct sub-regions s.
In order to compactly express what follows, we adopt the following notation.
The message mr→s(xs) is simply written as mr→s (i.e. the indexing is dropped).
For example, mij→j stands for mij→j(xj) in the following equations. We define
M(r) to be the set of messages going into a sub-region of r or going into r itself
while starting outside r and its sub-regions. Let t be the set of all sites which
belong to r but not to s, i.e. t = r\s. The message update rule is given by

mr→s ← αmax
xt

φt(xt)
∏

mr′→s′∈M(r)\M(s)

mr′→s′ . (4)

The potential φt(xt) is defined as the product of the unary potentials of all sites
in r\s and of all pairwise potentials between sites in r. It is easily verifiable that
the above update equation is the same as equation (2). Upon convergence, the
belief of r is given by

br ← αφr(xr)
∏

mr′→s′∈M(r)

mr′→s′ . (5)

The standard bp algorithm can be considered a special case of Generalized
Belief Propagation (gbp). gbp converges to the stationary points of the Kikuchi
approximation (which is more accurate than Bethe approximation) by allowing
for regions of size more than 2. Fig. 1 shows an example of this for an mrf with 4
sites which results in 10 regions. It also shows the corresponding messages along
with their directions. We define M(r, s) to be the set of all messages starting
from a sub-region of r and going to s or its sub-region. Then the gbp update
equation is given by

mr→s ← αmax
xt

φt(xt)
∏

mr′→s′∈M(r)\M(s) mr′→s′∏
mr′′→s′′∈M(r,s)mr′′→s′′

, (6)

where t = r\s. Note that, like bp, the message mr→s in gbp is also indexed by
xs. For example, mijk→ij stands for mijk→ij (xi, xj) and thus, can be interpreted
as an nL×nL matrix. Table 1 lists all the sets M(r) and M(r, s) for the example
mrf in Fig. 1. Using equation (6), the messages mij→i and mijk→ij are given by

mij→i ← αmax
xj

φj(xj)φij(xi, xj)mijk→ijmjk→j , (7)

mijk→ij ← αmax
xt

φk(xk)
∏

p,q∈{i,j,k} φpq(xp, xq)mjkl→jkmkl→k

mik→imjk→j
. (8)

Robust Truncated Model. In this paper, we consider the case where the
pairwise potentials φij(xi, xj) form a robust truncated model such that

φij(xi, xj) = fij(xi, xj), if xi ∈ Ci(xj),
= τij , otherwise, (9)
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Fig. 1. Left. An example mrf with four sites. The solid lines show the interactions
between the sites and describe a neighbourhood relationship on them. The dotted lines
show the clustering of the sites into regions of size 3. Right. The sites are grouped to
form ten regions for canonical gbp. The resulting messages and their directions are also
shown using the arrows. For example, the top left arrow shows the message mijk→ij

and the bottom left arrow shows the message mij→i.

Table 1. Messages belonging to the sets M(r) and M(r, s) for each region r and its
direct sub-region s shown in Fig. 1

r M(r)
{ijk} mjkl→jk, mkl→k

{jkl} mijk→jk, mij→j , mik→k

{ij} mijk→ij , mik→i, mjk→j

{ik} mijk→ik, mij→i, mjk→k,
mkl→k

{jk} mijk→jk, mjkl→jk, mij→j ,
mik→k, mkl→k

r M(r)
{kl} mjkl→kl, mik→k,

mjk→k

{i} mij→i, mik→i

{j} mij→j , mjk→j

{k} mik→k, mjk→k,
mkl→k

{l} mkl→l

r s M(r, s)
{ijk} {ij} mik→i,

mjk→j

{ijk} {ik} mij→i,
mjk→k

{ijk} {jk} mij→j , mik→k

{jkl} {jk} mkl→k

{jkl} {kl} mjk→k

where Ci(xj) defines the subset of labels of i which are ‘compatible’ with xj .
In other words, the cost for an incompatible pair of labels is truncated to τij .
Included in this class are the commonly used Potts model i.e. fij(xi, xj) = dij ,
∀xi ∈ Ci(xj), the truncated linear model i.e. fij(xi, xj) = exp(−|xi−xj |) and the
truncated quadratic model i.e. fij(xi, xj) = exp(−(xi−xj)2). In most problems,
fij(xi, xj) > τij and the number of labels nC in Ci(xj) are much smaller than
nL, i.e. nC � nL. Such mrfs have been successfully used for applications such as
object recognition [5] and stereo [4]. Next, we describe our fast gbp algorithm.

3 Fast Generalized Belief Propagation

We now present a method for making gbp computationally efficient for mrfs
whose pairwise potentials form a robust truncated model. This is a more general
case than the Ising model addressed in [6]. Note that the choice of regions for gbp
is not of concern in this paper since our method is independent of it. However,
for clarity, we will only describe the method for mrfs that form complete graphs
and where regions are formed by clustering all possible combinations of three
sites. The extension to any other mrf is trivial. In this case, there are two types
of messages: (i) mij→j is the message that region {i, j} passes to site j and,
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(ii) mijk→jk is the message that region {i, j, k} passes to region {j, k}. Using
equation (6), these messages are given by

mij→j ← αmax
xi

φi(xi)φij(xi, xj)
∏

n∈S\{i,j}
mni→imnij→ij , (10)

and

mijk→jk ← α max
xi

φi(xi)
∏

p,q∈R φpq(xp, xq)
∏

n∈S\R mni→imnij→ijmnik→ik

mij→jmik→k
, (11)

where R = {i, j, k} and S is the set of all nS sites of the mrf. Obviously, most of
the computational cost is contributed by messagesmijk→jk which can be reduced
significantly by making use of the special form of the pairwise potentials.

Since for any pair of sites i and j, most of the pairwise potential φij(xi, xj)
are constant (i.e. τij), considerable speed-up is achieved by pre-computing all
the terms which are common in the message update equations (10) and (11). In
order to compute the messages mij→j , we define

ri(xj) = αmax
xi

φi(xi)
∏

n∈S\{i,j}
mni→imnij→ij , (12)

and
r′i(xj) = α max

xi∈Ci(xj)
φi(xi)fij(xi, xj)

∏
n∈S\{i,j}

mni→imnij→ij . (13)

The message mij→j is given by max{r′i(xj), τijri(xj)}. Note that no speed-up is
obtained for the messages mij→j except in the special case of τij = 0 when each
message can be computed as max{r′i(xj)} (i.e. independent of ri(xj)) in O(nC)
time, where nC is the number of labels in Ci(xj). However, as noted above, the
real concern is to reduce the complexity of the messages mijk→jk .

We define

qik(xj) =
√
α max

xi /∈Ci(xj)

√
φi(xi)

∏
n∈S\{i,j,k}mnij→ij

√
mni→i

mij→j
, (14)

and

q′i(xj , xk) = α max
xi∈Ci(xj,xk)

φi(xi)
∏

{p,q}∈R φpq

∏
n∈S\Rmnij→ijmnik→ikmni→i

mij→jmik→k
,

(15)
where R = {i, j, k} and Ci(xj , xk) = Ci(xj) ∪ Ci(xk). The time complexities of
calculating qik(xj) and q′i(xj , xk) for a particular xj and xk areO(nL) and O(nC)
respectively. Once these terms have been computed, the message mijk→jk can
be obtained in O(1) time as max{q′i(xj , xk), φjkτijqik(xj)τikqij(xk)}.

The computational complexity of the overall algorithm is O(n3
Sn

2
LnC) (i.e. the

number of messages). This is significantly better than the O(n3
Sn

3
L) time taken
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by ordinary gbp when nL is very large. Again, for the special case of τij = 0, the
messages can be computed even more efficiently as q′i(xj , xk), without computing
the terms qik(xj). Note that the terms qik(xj) and qij(xk) would be computed
using the same label xi /∈ Ci(xj , xk) in equation (14) as the pairwise potentials
φij(xi, xj) and φik(xi, xk) are constant for all such xi (proof in appendix). Thus,
the messages computed would be exactly equal to the messages in equation (11).

In general, this approach reduces the time complexity of gbp from
O(nRnMnnM

L ) to O(nRnMnnM−1
L nC), where nR is the number of regions and

nM is size of the largest region. For example, in the case of bp over a complete
graph, the only messages are of the form mij→j which can be computed effi-
ciently using the above method in O(n2

SnLnC) time instead of O(n2
Sn

2
L) time

required by ordinary bp. Note that this is the same factor of speed-up obtained
by the method described in [3] which cannot be extended to the gbp algorithm.
Algorithm 1 shows the main steps involved in reducing the computational cost
of gbp. Next, we describe our memory-efficient gbp algorithm.

Algorithm 1. Fast Generalized Belief Propagation

1. Using equations (12) and (13), calculate ri(xj) and r′
i(xj), ∀ sites i, j and labels

xj .
2. Compute mij→j ← max{r′

i(xj), τijri(xj)}.
3. Using equations (14) and (15), calculate qik(xj) and q′

i(xj, xk), ∀ i, j, k, xj and
xk.

4. Compute mijk→jk ← max{q′
i(xj , xk), φjkτijqik(xj)τikqij(xk)}.

5. Obtain the beliefs using equation (5).

4 Memory-Efficient Generalized Belief Propagation

We now present two approaches to reduce the memory requirements of gbp.
The first approach extends the method of Felzenszwalb and Huttenlocher [4] for
reducing the memory requirements of bp by half on bipartite graphs. The basic
idea is that for a bipartite graph with the set of regions A∪B, the message that a
region in A passes to its sub-regions depends only on the messages coming from
the regions in B and vice versa. In other words, if we know the messages coming
from B, we can compute the messages within A. This suggests the strategy
of alternating between computing messages for regions in A and B, thereby
reducing the memory requirements by half.

We now describe the second approach which requires that τij = 0 for all pairs
of site i and j. It is not surprising that further constraints need to be imposed
on the robust truncated model. As mentioned above, the problem of reducing
memory requirements has proven to be more difficult than that of reducing
the time complexity and has met with limited success so far. However, we will
demonstrate in section 5 that this restricted robust truncated model is still useful
in a wide variety of vision applications.

The basic idea is to reduce the state space of the original mrf by dividing it
into smaller mrfs whose labels are a subset of the labels of the original mrf.
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However, these subsets are chosen such that the messages and beliefs computed
on them are equivalent to those that would be obtained for the original prob-
lem. Specifically, we observe that when τij = 0, the messages mij→j and mijk→jk

can be calculated using only r′i(xj) and q′i(xj , xk) for all iterations of the gbp
algorithm. Since r′i(xj) and q′i(xj , xk) (and therefore the messages and the be-
liefs) are computed using Ci(xj) and Ci(xk), it would be sufficient to only include
these in the smaller mrfs. Thus, each of smaller mrfs contains a subset of labels
such that if xj is included in an mrf, then Ci(xj) is also included in that mrf,
for all sites i. These mrfs can then be solved one at a time using Algorithm 1
thereby greatly reducing the memory requirements since nC � nL. Moreover,
this approach does not increase the computational cost of the fast gbp algo-
rithm described in the previous section. Algorithm 2 illustrates the main steps
of memory-efficient gbp.

Algorithm 2. Memory-Efficient Generalized Belief Propagation

1. Choose a subset of labels xi for i. Choose all the labels xj ∈ Cj(xi), ∀ sites j.
2. Solve the resultant small mrf using Algorithm 1. Note that ri(xj) and qik(xj) need

not be calculated.
3. Repeat step 2 with a different subset until all beliefs have been computed.

Note that our second approach achieves a considerable reduction in mem-
ory (of factor (nL/nC)nM−1) by restricting the form of the robust truncated
model. Further, it is applicable to any general topology of the mrf, i.e. it is
not restricted to only bipartite graphs. We now demonstrate our approach for
subgraph matching and object recognition.

5 Experiments

In order to demonstrate the effectiveness of our approach, we generated several
complete mrfs whose pairwise potentials form a robust truncated model with
τij = 0. The regions are formed by clustering all possible combinations of three
sites. Fig. 2 shows the average time and memory requirements for different values
of the nC/nL (averaged over 100 mrfs). Note that when nC = nL our approach
reduces to the standard gbp algorithm. However, when nC � nL, it provides a
significant reduction in time and memory requirements.

We now formulate two important problems, subgraph matching and object
recognition, using the special case of the robust truncated model (i.e. τij = 0). It
is observed that in both cases nC � nL which allows us to solve these problems
accurately using our fast, memory-efficient gbp algorithm.

5.1 Subgraph Matching

We use the fast, memory-efficient gbp algorithm to solve the problem of sub-
graph matching. Given two graphs G1 = {V1, E1} and G2 = {V2, E2}, subgraph
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Fig. 2. Left: Average time taken by the efficient gbp algorithm for 100 random complete
mrfs whose pairwise potentials satify the special case of the robust truncated model.
The time complexity scales almost linearly with the factor nC/nL. Right: Average
memory requirements which scales quadratically with nC/nL.

matching involves finding a mapping f : V1 → V2 which minimizes the following
energy function: ∑

vi,vj∈V1

‖l1ij − l2f(i)f(j)‖, (16)

where lkij is the distance between vertices i and j of the kth graph. Many impor-
tant computer vision problems, such as matching part-based models for object
recognition can be thought of as special cases of this problem.

We define an mrf for determining the mapping f(.) such that each site i
represents a vertex v1

i in V1. Each label xi represents a vertex v2
i in V2. For our

example, we assume that all points v1
i ∈ V1 are equally likely to map to a point

in V2, and hence the likelihood terms φi(xi) are set to 0.5 (however this is not
generally the case). The sites of the mrf form a complete graph as distances
between all pairs of vertices should be preserved by the mapping. We define the
pairwise potentials as

φij(xi,xj) =
{
d if |l1ij − l2xixj

| ≤ ε

0 otherwise,
(17)

where ε is a constant which depends on the (expected) level of noise. In our
experiments, we use d = 1. This favours the preservation of distance between
corresponding pairs of vertices. Figure 3 shows an example of this formulation
when |V1| = 3 and |V2| = 4.

Our problem thus reduces to obtaining the map estimate given the above mrf.
For this purpose, we use the efficient gbp algorithm described in Algorithm 2.
By restricting the region size to two, we obtain a time and memory efficient bp.
Although less accurate, efficient bp is faster than efficient gbp. We compare the
results with ordinary gbp and bp algorithms. For complete graphs, we found
that gbp works well when the regions form a star pattern, i.e. the regions are
of the form {1, i, j} for all pairs i > 1 and j > 1. The common site ‘1’ is
chosen randomly. Note that this observation is consistent with that reported
in [10].

We generated 1000 pairs of random graphs G1 and G2, with |V1| = 0.25|V2|
on an average. The number of vertices |V2| were varied between 30 and 60.
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Fig. 3. Subgraph Matching. (a) Graph G1 with three vertices which is a rigidly trans-
formed subgraph of graph G2 shown in (b). (c) The corresponding mrf formulation for
subgraph matching. The mrf consists of three sites corresponding to the vertices X,Y
and Z of G1. Each site has four possible labels corresponding to vertices 1,2,3 and 4 of
G2. The interactions between the sites is shown using solid lines.

Table 2. Average time and space requirements of various methods for subgraph match-
ing. Columns 4 and 5 show the requirements for smaller graphs with |V2| = 20.

Method Time Memory Time (Small) Memory (Small) Accuracy (%)
bp 2 sec 4 MB 0.009 sec 0.08 MB 78.61
gbp - > 350 MB 6 sec 0.5 MB 95.79

Efficient bp 0.2 sec 0.4 MB 0.006 sec 0.008 MB 78.61
Efficient gbp 1.5 sec 3.5 MB 0.6 sec 0.07 MB 95.79

[11] 4.3 sec 0.1 MB 2.2 sec 0.02 MB 20.00

The vertices |V1| were randomly selected subset of |V2| with 7% noise added
to them. The average number of correct matches for the vertices in V1 found
using gbp were 95.79% (9421 out of 9835) compared to 78.61% (7732 out of
9835) found using bp. Thus, gbp provides much more accurate results than bp
which should encourage its use in practice. We also significantly outperformed
the state-of-the-art method by Chui and Rangarajan [11] (tested using their
publically available code) on our challenging dataset. Table 2 summarizes the
average time and space requirements for the various methods used. Note that
due to large memory requirements of gbp, we ran another set of experiments
on smaller graphs, i.e. |V2| = 20. The time and memory requirements for these
smaller graphs are shown in the fourth and fifth column.

5.2 Object Recognition

We tested our approach for object recognition using a parts-based model called
pictorial structures (ps) introduced by Fischler and Elschlager [8] and extended
in [5]. ps are compositions of 2D patterns, i.e. parts, under a probablistic model
for their shape, appearance and spatial layout (see [5] for details).

The connections between the parts of the ps form a complete graph. The
pairwise potentials are defined as

φij(xi, xj) =
{
d if valid configuration,
0 otherwise. (18)
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Method Time Memory
bp 59 sec 0.7 MB
gbp 240 sec 38 MB

Efficient bp 2 sec 0.09 MB
Efficient gbp 16 sec 0.5 MB

Fig. 4. Results of obtaining the map estimate of the parts of cows using the fast,
memory-efficient gbp. The first row shows the input images. The detected parts are
shown in the second row. The table on the right shows the average time and space
requirements of various methods for object recognition.

Fig. 5. Left: roc curves for cow recognition. Right: Zoomed versions of a part of the
roc curve. Results indicate that better recognition performance is obtained using gbp
compared to bp.

A configuration is valid if xmin
ij ≤ ||xi − xj || ≤ xmax

ij . In all our experiments,
we used d = 1. The parameters of the model are learnt in an unsupervised
manner from videos as described in [5]. During recognition, the putative poses
of the parts are found using a tree cascade of classifiers (see [5] for details).
This allows us to efficiently prune the undesirable poses which result in a low
potential φi(xi). Again, for the above mrf, the regions form a star pattern with
the torso part being the common site [10]. The map estimate of the pose for
each part is obtained by performing inference using the fast, memory-efficient
gbp algorithm.

Fig. 4 shows the results of our approach on some images containing cows.
The cascade efficiently obtains approximately one hundred putative poses per
part in 2 minutes. The map estimate of each of the parts obtained using gbp
is shown in the second row. The table on the right summarizes the time and
space requirements of the various methods for object recognition. Fig. 5 shows
the roc curves obtained using 450 positive and 2400 negative examples. Note
that, as in the case of subgraph matching, gbp performs better than bp.

6 Summary and Conclusions

We have presented methods to overcome the problems of large computational
complexity and space requirements in using gbp for the important case where
the pairwise potentials form a robust truncated model. Specifically,
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• We reduce the time complexity of gbp to O(nRnMnnM−1
L nC) for the case of

robust truncated models.
• We reduce the memory requirements of gbp over bipartite mrfs by half.
• We further reduce the memory requirements of gbp for a general mrf

by a factor of (nL/nC)nM−1 for a special case of the robust truncated
model.

Further, we have demonstrated how the important problems of subgraph match-
ing and object recognition can be formulated using the robust truncated model
and solved efficiently using our approach. Our results significantly outperform
the state-of-the-art method. We plan to investigate whether some restrictions can
be relaxed (e.g. τij = 0). Other applications such as segmentation and optical
flow also need to be explored.
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Appendix. The terms qik(xj) and qij(xk) described in equation (14) are ob-
tained using the same label xi.

Proof. The only terms which differ in qik(xj) and qij(xk) are mnij→ij and
mnik→ik in the right-hand side of equation (14). Since all messages are initialized
to 1 the proposition holds true for the first iteration. For subsequent iterations,
consider the following equations:
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mnij→ij ← α max
xn

φn(xn)
∏

p,q∈R1
φpq(xp, xq)

∏
l∈S\R1

mln→nmlni→nimlnj→nj

mni→imni→j
,

(19)

mnik→ik ← α max
xn

φn(xn)
∏

p,q∈R2
φpq(xp, xq)

∏
l∈S\R2

mln→nmlni→nimlnj→nk

mni→imnk→k
,

(20)
where R1 = {n, i, j} and R2 = {n, i, k}. The pairwise potentials φij(xi, xj) and
φik(xi, xk) are constants for all xi ∈ Ci(xj) and xi ∈ Ci(xk) (over which the
terms qik(xj) and qij(xk) are computed). The term mlni→ni is common to both
equations (19) and (20) and all other terms are constants for a particular pair
of labels xj and xk. Thus, the above two messages are equivalent and it follows
that qik(xj) and qij(xk) will be computed using the same label xi.
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Abstract. Several state-of-the-art Generic Visual Categorization
(GVC) systems are built around a vocabulary of visual terms and char-
acterize images with one histogram of visual word counts. We propose
a novel and practical approach to GVC based on a universal vocabu-
lary, which describes the content of all the considered classes of images,
and class vocabularies obtained through the adaptation of the univer-
sal vocabulary using class-specific data. An image is characterized by
a set of histograms - one per class - where each histogram describes
whether the image content is best modeled by the universal vocabulary or
the corresponding class vocabulary. It is shown experimentally on three
very different databases that this novel representation outperforms those
approaches which characterize an image with a single histogram.

1 Introduction

Generic Visual Categorization (GVC) is the pattern classification problem which
consists in assigning one or multiple labels to an image based on its semantic
content. We emphasize the use of the word “generic” as the goal is to classify a
wide variety of objects and scenes. GVC is a very challenging task as one has to
cope with variations in view, lighting and occlusion and with typical object and
scene variations.

Several state-of-the-art GVC systems [14, 1, 4, 9, 16] were inspired by the bag-
of-words (BOW) approach to text-categorization [13]. In the BOW representa-
tion, a text document is encoded as a histogram of the number of occurrences
of each word. Similarly, one can characterize an image by a histogram of visual
words count. The visual vocabulary provides a “mid-level” representation which
helps to bridge the semantic gap between the low-level features extracted from
an image and the high-level concepts to be categorized [1]. However, the main
difference with text categorization is that there is no given visual vocabulary for
the GVC problem and it has to be learned automatically from a training set.

To obtain the visual vocabulary, Sivic and Zisserman [14] and Csurka et al.
[4] originally proposed to cluster the low-level features with the K-means algo-
rithm, where each centroid corresponds to a visual word. To build a histogram,
each feature vector is assigned to its closest centroid. Hsu and Chang [9] and
Winn et al. [16] made use of the information bottleneck principle to obtain more
discriminative vocabularies. Farquhar et al. also proposed a generative model,
the Gaussian Mixture Model (GMM), to perform clustering [7]. In this case, a
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low-level feature is not assigned to one visual word but to all words probabilisti-
cally, resulting in a continuous histogram representation. They also proposed to
build the vocabulary by training class specific vocabularies and agglomerating
them in a single vocabulary (see also the work of Leung and Malik [10] and
Varma and Zisserman [15] for the related problem of texture classification). Al-
though substantial improvements were obtained, we believe that this approach
is unpractical for a large number of classes C. Indeed, if N is the size of the
class-vocabularies, the size of the agglomerated vocabulary, and therefore of the
histograms to be classified, will be C ×N (c.f. the curse of dimensionality).

Our emphasis in this work is on developing a practical approach which scales
with the number of classes. We define a universal vocabulary, which describes
the visual content of all the considered classes, and class vocabularies, which are
obtained through the adaptation of the universal vocabulary using class-specific
data. While other approaches based on visual vocabularies characterize an image
with a single histogram, in the proposed approach, an image is represented by a
set of histograms of size 2×N , one per class. Each histogram describes whether an
image is more suitably modeled by the universal vocabulary or the corresponding
adapted vocabulary.

The remainder of this paper is organized as follows. In section 2, we motivate
the use of a universal vocabulary and of adapted class-vocabularies and describe
the training of both types of vocabularies. In section 3, we show how to charac-
terize an image by a set of histograms using these vocabularies. In section 4, we
explain how to reduce significantly the computational cost of the proposed ap-
proach with a fast scoring procedure. In section 5, we show experimentally that
the proposed representation outperforms those approaches which characterize
an image with a single histogram. Finally, we draw conclusions.

2 Universal and Adapted Vocabularies

Let us first motivate the use of a universal vocabulary and of adapted class-
vocabularies with a simple two-class problem where cats have to be distinguished
from dogs.

A universal vocabulary is supposed to represent the content of all possible
images and it is therefore trained with data from all classes under consideration.
Since cats and dogs have many similarities, cats’ and dogs’ low-level feature
vectors are likely to cluster into similar visual words such as “eye”, “ear” or
“tail”. Hence, a histogram representation based on such a vocabulary is not
powerful enough to help distinguish between cats and dogs. However, one can
derive class vocabularies by adapting the universal vocabulary with class-specific
data. Therefore, the universal “eye” word is likely to be specialized to “cat’s
eye” and “dog’s eye” as depicted on Figure 1. Note that, although visual words
are not guaranteed to be as meaningful as in the previous example, we believe
that the combination of these universal and specific representations provides the
necessary information to discriminate between classes.

As there exists a large body of work on the adaptation of GMMs, we represent
a vocabulary of visual words by means of a GMM as done in [7]. Let us denote
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Fig. 1. The cats and dogs example: training a universal vocabulary with images from
both classes and adapting this vocabulary to cat and dog vocabularies with class-
specific data

by λ the set of parameters of a GMM. λ = {wi, μi, Σi, i = 1...N} where wi,
μi and Σi denote respectively the weight, mean vector and covariance matrix
of Gaussian i and where N denotes the number of Gaussians. Each Gaussian
represents a word of the visual vocabulary: wi encodes the relative frequency
of word i, μi the mean of the word and Σi the variation around the mean.
In the following, we assume that the covariance matrices are diagonal as (i)
any distribution can be approximated with an arbitrary precision by a weighted
sum of Gaussians with diagonal covariances and (ii) the computational cost of
diagonal covariances is much lower than the cost involved by full covariances.
We use the notation σ2

i = diag(Σi).
If an observation x has been generated by the GMM, we have:

p(x|λ) =
N∑

i=1

wipi(x). (1)

The components pi are given by:

pi(x) =
exp

{− 1
2 (x− μi)′Σ−1

i (x− μi)
}

(2π)D/2|Σi|1/2 (2)

where D is the dimensionality of the feature vectors and |.| denotes the deter-
minant operator.

We now explain how to train the universal and class vocabularies. The univer-
sal vocabulary is trained using maximum likelihood estimation (MLE) and the
class vocabularies are adapted using the maximum a posteriori (MAP) criterion.

2.1 MLE Training of the Universal Vocabulary

Let X = {xt, t = 1...T} be the set of training samples. In the following, the
superscript u denotes that a parameter or distribution relates to the universal
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vocabulary. The estimation of λu may be performed by maximizing the log-
likelihood function log p(X |λu). This is referred to as MLE.

The standard procedure for MLE is the Expectation Maximization (EM) al-
gorithm [5]. EM alternates two steps: (i) an expectation (E) step where the
posterior probabilities of mixture occupancy (also referred to as occupancy prob-
abilities) are computed based on the current estimates of the parameters, and
(ii) a maximization (M) step, where the parameters are updated based on the
expected complete data log-likelihood which depends on the occupancy proba-
bilities computed in the E-step.

For the E-step, one simply applies Bayes formula to obtain:

γt(i) = p(i|xt, λ
u) =

wu
i p

u
i (xt)∑N

j=1 w
u
j p

u
j (xt)

. (3)

The occupancy probability γt(i) is the probability for observation xt to have
been generated by the i-th Gaussian.

The M-step re-estimation equations are [2]:

ŵu
i =

1
T

T∑
t=1

γt(i) (4)

μ̂u
i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

(5)

(σ̂u
i )2 =

∑T
t=1 γt(i)x2

t∑T
t=1 γt(i)

− (μ̂u
i )2 (6)

where x2 is a shorthand for diag(xx′).
Note that the initialization is an issue of paramount importance. Indeed EM is

only guaranteed to converge to a local optimum and the quality of this optimum
is largely dependent on the initial parameters. This initialization issue will be
discussed in 5.

2.2 MAP Adaptation of Class Vocabularies

Let X be the set of adaptation samples. In the following, the superscript a
denotes that a parameter or distribution relates to an adapted vocabulary.

The class vocabularies are estimated by adapting the universal vocabulary
using the class training data and a form of Bayesian adaptation: MAP. The
goal of MAP estimation is to maximize the posterior probability p(λa|X) or
equivalently log p(X |λa) + log p(λa). Hence, the main difference with MLE lies
in the assumption of an appropriate prior distribution of the parameters to be
estimated. Therefore, it remains to (i) choose the prior distribution family and
(ii) specify the parameters of the prior distribution.

The MAP adaptation of the GMM is a well-studied problem in the field of
speech and speaker recognition [8, 12]. For both applications, one is interested in
adapting a generic model, which reasonably describes the speech of any person,
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to more specific conditions using the data of a particular person. It was shown in
[8] that the prior densities for GMM parameters could be adequately represented
as a product of Dirichlet and normal-Wishart densities. When adapting a generic
model with MAP to more specific conditions, it is natural to use the parameters
of the generic model as a priori information on the location of the adapted
parameters in the parameter space.

As shown in [8], one can also apply the EM procedure to MAP estimation.
During the E-step, the occupancy probabilities γ are computed as was the case
for MLE:

γt(i) = p(i|xt, λ
a). (7)

The M-step re-estimation equations are [8]:

ŵa
i =

∑T
t=1 γt(i) + τw

i

T +
∑N

i=1 τ
w
i

, (8)

μ̂a
i =

∑T
t=1 γt(i)xt + τm

i μu
i∑T

t=1 γt(i) + τm
i

, (9)

(σ̂a
i )2 =

∑T
t=1 γt(i)x2

t + τs
i

(
(σu

i )2 + (μu
i )2

)∑T
t=1 γt(i) + τs

i

− (μ̂a
i )2 . (10)

τw
i , τm

i and τs
i are relevance factors for the mixture weight, mean and variance

parameters and keep a balance between the a priori information contained in
the generic model and the new evidence brought by the class specific data.
If a mixture component i was estimated with a small number of observations∑T

t=1 γt(i), then more emphasis is put on the a priori information. On the other
hand, if it was estimated with a large number of observations, more emphasis
will be put on the new evidence. Hence MAP provides a more robust estimate
than MLE when little training data is available. The choice of parameter τ will
be discussed in the section on experimental results.

3 Bipartite Histograms

Once the universal and adapted vocabularies have been properly estimated, we
proceed as follows. For each class c, a novel vocabulary is obtained by merging
the universal vocabulary and the adapted vocabulary of class c. This will be
referred to as the combined vocabulary of class c. Note that the merging involves
adjusting the weight parameters of the Gaussians to reflect the vocabulary size
having doubled. In the case where the a priori probability p(c) of class c is known,
this can be done by multiplying the weights of the adapted vocabulary by p(c)
and the weights of the universal vocabulary by (1− p(c)). The other parameters
remain unchanged.

The rational behind this merging process is to make the Gaussians of the
universal and adapted vocabularies “compete” to account for the feature vectors
of an image. Indeed, if an image belongs to class c, it is more suitably described by
the visual words of class c rather than by the words of the universal vocabulary.
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Fig. 2. Generating one bipartite histogram per category. Each histogram is subse-
quently fed to a different classifier.

On the other hand, if an image belongs to another class, then the visual words
of the universal vocabulary will describe it more appropriately.

An image can therefore be characterized by a set of histograms - one per class -
using these combined vocabularies. These histograms are said to be bipartite
as half of the histogram reflects the contribution of the universal vocabulary in
explaining the image while the other half reflects the contribution of the adapted
vocabulary (c.f. Figure 2).

Interestingly, for a given image, summing the two halves of the bipartite his-
tograms (i.e. summing the count of a word in the universal vocabulary part
with the count of the corresponding word in the adapted vocabulary part)
should lead to the same histogram approximately, whatever the class. Note that
this histogram is the one we would obtain using only the universal vocabulary
representation. Hence, the key of the success of the proposed approach is the
ability to separate for each class the relevant information from the irrelevant
information.

To classify these histograms, we use one Support Vector Machine (SVM)
classifier per class. Each SVM is trained in a one-vs-all manner as done in [1, 4].
However, in [1, 4], as images are characterized by a single histogram, the same
histograms are fed to the classifiers. In the proposed approach, each classifier
is fed with different histograms, both at training and test time. Going back to
our cats and dogs example, a “cat” classifier will be trained with histograms
computed on the combined vocabulary of the class cat. In the same manner, at
test time the histogram obtained with the combined vocabulary of the class cat
will be fed to the cat classifier and the histogram obtained with the combined
vocabulary of the class dog will be fed to the dog classifier.

4 Computational Cost

When estimating a histogram, the most intensive part is the Gaussian compu-
tation, i.e. the computation of the values pi(x) (c.f. equation (2)). If N is the
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number of Gaussians in the universal vocabulary, and C is the number of classes,
a direct implementation would require N × (C + 1) Gaussian computations per
image. This is unacceptable for large values of N or C.

To reduce the computational cost, we make use of a fast scoring proce-
dure devised by Reynolds et al. for the speaker recognition problem [12]. This
technique is based on two observations. The first one is that, when a large
GMM is evaluated, only a few of the mixtures will contribute significantly to
the likelihood value (c.f. equation (1)) and therefore, only a few of the mix-
tures will have a significant occupancy probability γt(i). This property was
observed empirically. The second one is that the Gaussians of an adapted vo-
cabulary retain a correspondence with the mixtures of the universal vocabu-
lary. Therefore, if a feature vector x scores high on the i-th component of the
universal vocabulary, it will score highly on the i-th Gaussians of all adapted
vocabularies.

The fast scoring procedure operates as follows on each feature vector xt:

1. Compute the likelihood pu
i (xt) for all the mixture components i of the univer-

sal vocabulary (N Gaussian computations). Retain the K best components.
2. Compute the likelihood values pa

i (xt) for the K corresponding components
of the C adapted vocabularies (K × C Gaussian computations).

3. For the C combined vocabularies, compute the occupancy probabilities γt(i)
on the 2×K corresponding components. Assume that the occupancy prob-
abilities are zero for the other components.

Hence, the number of Gaussian computations is reduced from N × (C + 1) to
N + K × C. For large values of C this is reduction of the computational cost
by a factor N/K. Typical values for N and K are N = 1, 024 and K = 5.
Note that we did not observe any significant decrease of the performance in our
experiments with as little as K = 2 best components. Hence the value K = 5 is
a rather conservative choice.

Returning to our cats and dogs example, this fast scoring procedure simply
consists in first determining whether the input feature vector corresponds to an
eye, a tail, etc. and then if it is a tail, whether it is more likely to be the tail of
cat or the tail of a dog.

5 Experimental Validation

In this section, we carry out a comparative evaluation of the proposed approach
on three very different databases: an in-house database of scenes, the LAVA7
database and the Wang database. The two approaches which will serve as a
baseline are (i) the one which makes use only of the universal vocabulary (as
in [14, 4]) and (ii) the one which agglomerates class-vocabularies into a single
vocabulary (as in [7]). We consider a classification task, i.e. each image is to
be assigned to one class and the measure of performance is the percentage of
images assigned to their correct classes. In the following section, we describe the
experimental setup. We then provide results.



Adapted Vocabularies for Generic Visual Categorization 471

5.1 Experimental Setup

The low-level local features are based on local histograms of orientations as
described in [11]. These features were extracted on a regular grid at different
scales. As all images were resized before the feature extraction step so that
they contained (approximately) the same number of pixels, the same number of
features was extracted from all images (approximately).

The dimensionality of feature vectors was subsequently reduced from 128 to
50 using Principal Component Analysis (PCA). This decorrelates the dimensions
of the feature vectors and thus makes the diagonal covariance assumption more
reasonable. Discarding the last components also removes noise and thus increases
the performance. It also significantly reduces the cost of Gaussian computations.

To alleviate the difficult initialization problem when training the universal
vocabulary with MLE, we used a strategy inspired by the vector quantization
algorithm. We start with a vocabulary of one unique word and then increase the
number of Gaussians iteratively. Each iteration consists of two steps: (i) all the
Gaussians which were estimated at the previous step with more than a given
number of observations are split into two by introducing a slight perturbation in
the mean and (ii) EM is performed until convergence, i.e. until the log-likelihood
difference between two iterations falls below a predefined threshold. These two
steps can be repeated until the desired number of Gaussians is obtained. An
advantage of increasing progressively the number of Gaussians is that it allows
to monitor the recognition performance to select the optimum vocabulary size.

For MAP adaptation, to reduce the number of parameters to hand-tune, we
enforced τw

i = τm
i = τs

i = τ . We tried different values for τ and found that
values between 5 and 50 were reasonable. In our experiments, we set τ = 10.
We demonstrate below the influence of adapting either all parameters, i.e. the
mixture weights, means and covariances, or a subset of the parameters.

As for classifying the histograms, we used linear SVMs for both the proposed
approach and the approach based on a single vocabulary. The only parameter to
set is the one which controls the trade-off between the margin and the number of
misclassified points, commonly known as C. It was fixed to 300 in all the following
experiments. Note that in the linear case the cost of classifying a histogram is
independent of the number of support vectors and can be neglected compared
to the cost of Gaussian computations.

5.2 Results

In-house database. The first set of experiments was carried out on an in-house
database of 8 scenes relating to amusement parks, boats, New York city, tennis,
sunrise/sunset, surfing, underwater and waterfalls. This is a challenging set as we
collected the training data while the test material was collected independently
by a third party. Approximately 12,000 images were available for training and
1,750 for testing.

We first determine which Gaussian parameters are the most crucial ones to
adapt in the proposed approach. Results are presented on Figure 3(a) as the
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Fig. 3. Results on the in-house 8 scenes database. (a) Influence of the adaptation
of the different Gaussian parameters (weight w, mean μ and covariance σ2) on the
classification accuracy. (b) Comparison of the proposed approach (universal + adapted
vocabularies) with the two baseline systems (universal vocabulary and agglomerated
vocabulary).

classification accuracy versus the number of Gaussian components, i.e. the vo-
cabulary size. Clearly, adapting only the weights leads to a poor performance.
Adapting either the means or the covariances has roughly the same impact and
adapting both parameters leads to an additional small improvement. However,
adapting the three parameters does not give further improvement. This experi-
ment clearly shows that the relative frequency of a word (weight) in an adapted
vocabulary has little influence; what matters is the location of the word (mean)
and its variations (covariance). In the following, we adapt only the means and
covariances.

We now compare the proposed approach with the two baseline approaches.
Results are presented on Figure 3(b) as the classification accuracy versus the
number of Gaussian computations per sample. For the two baselines, the num-
ber of Gaussian computations per sample is exactly the number of components.
For the proposed approach, this is slightly higher (c.f. section 4). The proposed
approach clearly outperforms the baselines. Indeed, it achieves an 88.8% accu-
racy while the approach based solely on a universal vocabulary achieves 81.4%
accuracy and the approach based on an agglomerated vocabulary achieves an
84.9% accuracy for a vocabulary size of 1,024 visual words. This shows that the
adapted vocabularies encode more discriminative information.

LAVA7 Database [4]. This database, also sometimes referred to as Xerox7
database [17], contains 1,776 images of seven objects: bikes, books, buildings,
cars, faces, phones and trees. It served as a testbed for object recognition ex-
periments during the course of the European LAVA project. The standard setup
for running experiments on this database is a ten-fold cross-validation. Results
are presented on Figure 4(a) as the classification accuracy versus the number
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of Gaussian computations per sample. We can see that the proposed approach
outperforms the two baseline systems.

To the best of our knowledge, the best results reported on this database are
those of Zhang et al. [17]. With their approach, which makes use of two feature
extractors, two feature descriptors and an earth mover’s distance (EMD) based
kernel, they achieve a 94.3% accuracy but at a very high computational cost:
the classification of an image takes on the order of 1 min on a modern PC.
Running our non-optimized code on a 2.4 GHz AMD Opteron with 4GB RAM,
our best system categorizes an image into one of the 7 categories with an accuracy
of 95.8% in roughly 150 ms: approximately 125ms for the feature extraction
and 25ms for the histogram building (the cost of the SVM classification can be
neglected).

Wang Database [3]. This database contains 10 categories: Africa, beach,
buildings, buses, dinosaurs, elephants, flowers, horses, mountains and food. Each
category contains 100 images, which makes a total of 1,000 images. We used the
same setup as in [3]: we randomly divided each category set into a training set
and a test set, each with 50 images, and repeated the experiment 5 times. To
prove that our good results are not restricted to SIFT-like features, we experi-
mented with color features based on local mean and standard deviation in the
RGB channels. Results are presented on Figure 4(b) as the classification accu-
racy versus the number of Gaussian computations per sample. We can observe
that the proposed approach performs best, thus proving that our good results
are not SIFT-specific. If we run separately two systems, one based on SIFT fea-
tures and one based on color features, and if we do a late fusion (averaging the
scores of the two systems), we get a 92.8% classification accuracy. To the best
of our knowledge, the highest accuracy which had been previously reported on
this database was 87.3% [6].
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Fig. 4. Comparison of the proposed approach (universal + adapted vocabularies) with
the two baseline systems (universal vocabulary and agglomerated vocabulary) on (a)
the LAVA7 database and (b) the Wang database
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6 Conclusion

We proposed a novel and practical approach to GVC based on a universal vo-
cabulary, which describes the content of all the considered classes of images, and
class vocabularies obtained from the universal vocabulary using class-specific
data and MAP adaptation. An image is characterized by a set of histograms
- one per class - where each histogram describes whether the image content is
best modeled by the universal vocabulary or the corresponding class vocabulary.
It was shown experimentally on three very different databases that this novel
representation outperforms those approaches which characterize an image with
a single histogram.

Note that, although less emphasis has been put on the reduction of the mem-
ory requirements, a simple approach could be used, if necessary, to reduce the
number of Gaussians to store for each adapted vocabulary. As there exists a
correspondence between the Gaussians in the universal and adapted vocabular-
ies, one could save only those Gaussians which have significantly changed in the
adapted vocabularies. This can be measured using various metrics such as the
divergence, the Bhattacharya distance or the Gaussian overlap.

Also, although we have only considered a flat hierarchy of classes in this
work, the proposed framework would be particularly suited to a hierarchical
organization where the vocabularies of classes at a given level of the hierarchy
would be adapted from their parent vocabularies.
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Identification of Highly Similar 3D Objects
Using Model Saliency

Bogdan C. Matei, Harpreet S. Sawhney, and Clay D. Spence
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Abstract. We present a novel approach for identifying 3D objects from a
database of models, highly similar in shape, using range data acquired in uncon-
strained settings from a limited number of viewing directions. We are address-
ing also the challenging case of identifying targets not present in the database.
The method is based on learning offline saliency tests for each object in the
database, by maximizing an objective measure of discriminability with respect
to other similar models. Our notion of model saliency differs from traditionally
used structural saliency that characterizes weakly the uniqueness of a region by
the amount of 3D texture available, by directly linking discriminability with the
Bhattacharyya distance between the distribution of errors between the target and
its corresponding ground truth, respectively other similar models. Our approach
was evaluated on thousands of queries obtained by different sensors and acquired
in various operating conditions and using a database of hundreds of models. The
results presented show a significant improvement in the recognition performance
when using saliency compared to global point-to-point mismatch errors, tradi-
tionally used in matching and verification algorithms.

1 Introduction

In this paper we present a new approach for 3D object identification using 3D range
data acquired by a laser scanner in unconstrained scenarios. We have assumed that the
rough object category of the target is known using a feature-based classifier (indexer)
which returns a list of possible candidate models, which are subsequently matched by
minimizing the misalignment with the target. We illustrate our technique on vehicle
identification, a very difficult task due to the high degree of similarity existing within
classes of models such as sedans, vans or SUVs. In Figure 1 we have illustrated real 3D
data overlapped onto its corresponding model (Toyota Tercel). Note the discrepancies
between the data and the model and also the large degree of similarity between two
models in the database which differ mostly only in the front and back regions.

The discriminability of global error measures, traditionally used in 3D object identi-
fication, is reduced by the high degree of similarity between models in the database, and
operating conditions such as sensor noise, nearby clutter (for example, interior points
and ground plane), incorrectly modeled or estimated articulations of moving parts, re-
sulting in the decrease of the recognition rates. The method proposed in this paper ad-
dresses this problem and relies on learning saliency tests, by maximizing an objective
measure of discriminability between a model and other models which are very similar
in shape at a global scale, given a specific 3D range sensor and operating conditions.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 476–489, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b) (c) (d)

Fig. 1. (a) Overlap between the scene and its corresponding Toyota Tercel model. Note the sig-
nificant difference in terms of nearby clutter (interiors ground plane, blooming effects (see the
right front side of the vehicle), missing data in transparent regions corresponding to windows; (b)
Overlap between the Toyota model (dark gray) and another close model (BMW, shown in light
gray) after alignment; (c) Detail of the back; (d) Detail of the front.

During 3D object identification, the saliency tests associated with a model are verified
and used in deciding whether to accept or reject that model.

The idea of using saliency to verify the identity of an object can be traced back
to research done in cognitive psychology by Neisser [16] in modeling early vision in
humans using visual attention. Neisser argued that recognition is done in pre-attentive
and attentive stages. In the pre-attentive stage the visual system focuses the attention on
salient features followed by a more detailed analysis in the attentive stage.

In general, the saliency of a feature is mostly understood as being related to its
uniqueness [14]: the more frequent a feature is, the less salient it will be. For example,
regions of an object having multiple local orientations are likely to be more distinctive in
recognizing an object compared with planar regions, since all planar regions look alike.
Lee et al. [15] recently proposed the mesh saliency as a measure derived from low-level
human vision cues of regional importance for graphics meshes. Their saliency was de-
fined with respect to structural properties of a surface by using Gaussian-weighted mean
curvatures.

In feature-based object recognition we can employ the same concept to compute
rotationally invariant surface descriptors such as spin-images [13] at those locations in
an object in which the local 3D scatter is full rank. By reducing the impact of descriptors
which are not distinctive and are likely shared amongst many models, the recognition
performance can be improved. A main shortcoming of structural saliency is that it is not
related directly to the discriminability of a particular object with respect to other objects.
It only quantifies only our intuition that planar regions are not useful for recognizing
generic objects.

In [5] the relevance of a feature is defined with respect to the distribution of fea-
tures belonging to different classes within a region of the feature space. By using the
relevance of feature in a k-nearest neighbor (NN) classifier, the authors in [5] showed
improved classification performance. A similar concept was used in the discriminant
adaptive nearest neighbor rule to adapt the metric in nearest neighbor classifiers [10].

We propose an alternative notion of model saliency which relates directly to maxi-
mizing the discriminability of a model with respect to other similar models based on
computing the distance between two distributions: (i) the in-class distribution, corre-
sponding to some specified error measure between targets of a given type and the cor-
responding ground truth model, computed within a certain support region of the model
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and (ii) the out-of-class distribution corresponding to errors in the same corresponding
region of the model, but between the targets and models other than the ground truth.
Obviously, the more separate the two distributions are, the more useful the salient region
will be in separating an object from other possibly confusing candidates.

A similar idea was used by Ferencz et al. [7] for 2D object identification in training
hyper-features, characterizing the appearance and position of local patches. The hyper-
features were selected at salient locations in an image, using off-line training in which
the mutual information between two distributions self and others was maximized. The
self and other distributions were estimated using Gamma distributions using by-patches
of positive and negative examples. However, unlike [7] in our 3D object identification
application we are addressing different challenges: noisy 3D measurements affected by
artifacts, large number of 3D models in the database very similar in shape, or nearby
clutter.

In Section 2 we present a method for learning saliency tests for every model in the
database. The saliency tests are verified using a battery of statistical relevance tests as
discussed in Section 3. In Section 4 the proposed model saliency based 3D object iden-
tification method is evaluated on thousands of queries using a database of one hundred
models. Conclusions are presented in Section 5.

2 Model Saliency

In this Section we describe the process of learning saliency tests by maximizing the
discriminability of a model with respect to a number of similar models available from a
database. We have employed only point cloud objects for the queries and the models in
the database. The range sensors produce 3D point clouds and using surface reconstruc-
tion algorithms [11] to extract a mesh representation can be slow in practice and can
result in additional artifacts due to noise and significant drop-outs in the data occurring
in transparent and reflective regions. Models are also specified as point clouds rendered
from faceted articulated models using a realistic range sensor simulator in order to en-
sure a good correspondence with the data acquired in real operating conditions in terms
of resolution and relative pose between the sensor and the objects viewed.

2.1 Model Similarity Extraction

In computing saliency for a particular object, we are interested in determining what
other models are similar in shape at a global scale and may be confused after the
indexing and matching stages. The first step in extracting saliency for a model mi,
i = 1, . . . ,M , where M is the total number of models in the database, is to determine
which models mj , j �= i are similar to mi.

Similarity measures between models were used by Huber et al. [12] for grouping
objects into classes for 3D part-based classification. However, their measures were rel-
ative, which means that the similarity between two models is dependent on how many
models are present in the database, and were computed using spin-images to elimi-
nate small differences and extract only the commonalities between similar objects at a
gross scale. In our object identification application we seek the opposite goal of finding
distinctive elements between models in the database.
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We define an absolute similarity measure ξ(mi,mj) ∈ [0, 1] where ξ(mi,mj) = 0
means complete dissimilarity and ξ(mi,mj) = 1 denotes indistinguishable models.
One of the most used surface dissimilarity measures is the average square error between
the 3D point clouds, or the point-to-point distance [17].

Let zmi

k ∈ R3, k = 1 . . . , Nmi denote the 3D data from model mi and similarly,
z

mj

l ∈ R
3, l = 1 . . . , Nmj for model mj . Thus the point-to-point (square) distance

between model mi and mj is

D2
0(mi,mj) =

1
Nmi

Nmi∑
k=1

‖zmi

k − z
mj

lk
‖2 (1)

where z
mj

lk
is the closest point from model mj to zmi

k .
Models are aligned pairwise using the Iterated Closest Point algorithm (ICP) [2][9]

by minimizing (1). The pose Πmi,mj ∈ R4×4 which aligns the model mi with mj can
be obtained in close form using Arun’s SVD algorithm [1]. The ICP algorithm requires
an initial pose estimate Πini

mi,mj
which is obtained using spin image matching [13].

An improved discriminant mismatch error measure, compared to the point-to-point
distance, can be obtained by taking into account the local surface orientation. Chen
and Medioni proposed the use of point-to-plane error measures to improve the con-
vergence of the ICP algorithm [3]. We have employed the following plane-to-plane
distance measure

D2
1(mi,mj) =

1
Nmi

Nmi∑
k=1

min
l=1,...,Nmj

(
‖zmi

k − z
mj

l ‖2
α2

z

+
1− nmi,


k n
mj

l

α2
n

)
(2)

where nmi

k , ‖nmi

k ‖ = 1 is the normal associated with the 3D point zmi

k and α2
z , α2

n

are normalizing factors. The measure (2) is related to the Sobolev norms employing
derivatives of a function up to some order K which are modern tools in the theory of
differential equations and the study of chaos. Higher order terms such as curvature can
be added to (2), by adding the distance between surface descriptors for the two sur-
faces such as the splash descriptor [3], or the spin-image which account for curvature
by integration, and not differentiation which is very sensitive for noisy data. The re-
sulting mismatch errors Du,u > 1 can be used similarly to D0, D1 in our saliency
computational framework.

Using the distances (1), (2) we can define a symmetric similarity measure

ξu(mi,mj) = exp
(
−D

2
u(mi,mj) +D2

u(mj ,mi)
α2

u

)
, 0 ≤ ξu(mi,mj) ≤ 1 (3)

where α2
u is a suitable normalizing factor and u = 0, 1. An example of the similarity

scores ξ0 is shown in Figure 2 for a Toyota Tercel model. Note the decrease in similarity
scores which agrees also to our subjective notion of similarity. The normalizing factor
α2

u is chosen depending on how much mismatches between models are penalized.
In computing ξ(mi,mj) using (3) we need to align pairwise all the models from

the database. The total number of required pairwise alignments is M(M − 1), since
Πmi,mj �= Π−1

mj ,mi
.
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Fig. 2. Example of absolute similarity scores obtained using (3) for a Toyota Tercel against: BMW
318, Mazda 626, respectively, Nissan Frontier

2.2 Definition of Model Saliency

For each model mi we determine the class of similar models Γi = {mj1 ,mj2 , . . . , }
such that ξu(mi,mjk

) > τ . In our experiments we have employed τ = 0.7 and u = 0
which provided a good balance between how many models are returned and the com-
putational complexity involved. We have also limited the total number of models in Γi

to νmax = 20 and guaranteed that at least νmin = 2 models are present, even if their
similarity is smaller than τ .

Mathematically, we can express the learning of salient regions by defining a classi-
fication problem with two classes: self and others. The classifier is specified by: (i) a
probability (likelihood) score derived from the surface dissimilarity measure Du used;
(ii) a support region x from the model, specified as a spherical region or oriented bound-
ing box over which the likelihood is computed. According to Bayes rule a query q will
be assigned to model mi, iff p(q ∈ mi |Z,x, Du) ≥ p(q �∈ mi |Z,x, Du), where Z is
the available data from one single query q, x is a given region from model mi and Du

is the surface dissimilarity measure used.
Assuming that the a priori probability of occurrence of a model p(mi) is uniform,

the Bayes rule can be written in terms of the likelihood ratio

E[Λ(Z,x, Du)] = E

[
p(Z | q ∈ mi,x, Du)
p(Z | q �∈ mi,x, Du)

]
=
∫

p(Z | q ∈ mi,x, Du)
p(Z | q �∈ mi,x, Du)

p(Z)dZ (4)

The larger the expected likelihood in (4), the better the region x and Du will be in
discriminating mi from the set of models in Γi. We propose to define the saliency of a
region using the Bhattacharyya coefficient, which has attractive metric properties, offers
values between zero and one [4] and is defined for two probability distributions p1(y)
and p2(y) as

BC(p1(y), p2(y)) =
∫ √

p1(y) p2(y)dy (5)

The Bhattacharyya coefficient is equal to one for two identical probabilities and is zero
for disjoint probabilities. Thus, the saliency of a region x using surface dissimilarity
measure Du can be defined as

β(x, Du) = 1−
∫ √

p(Z | q ∈ mi,x, Du)p(Z | q �∈ mi,x, Du)dZ (6)
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Evaluating (6) requires the estimation of the in-class distribution p(Z | q ∈ mi,x, Du)
and the out-of-class distribution p(Z | q �∈ mi,x, Du). Standard density estimation
based on sampling and kernel smoothing [8] can be employed to estimate a discretized
version of (6)

β̂(x, Du) = 1−
Nh∑
h=1

√
p̂h(Z | q ∈ mi,x, Du)p̂h(Z | q �∈ mi,x, Du) (7)

where Nh is the number of histogram bins used. Estimating p̂h(Z | q ∈ mi,x, Du)
and p̂h(Z | q ∈ mi,x, Du) requires the availability of large amounts of training data Z
for every model in the database. However, it is unrealistic that we can have sufficient
examples belonging to each of the models from the database.

We propose to use bootstrap to generate new queries q∗ by resampling from the
available data. Bootstrap is a modern rigorous statistical tool which was developed by
Efron [6] to numerically derive valid statistical measures about an estimate by resam-
pling data solely from one input.

2.3 Learning Saliency Tests

Let Q denote the set of available training data for which we have available ground
truth information. We align each query q ∈ Q to its corresponding model mi to find
the pose Πq,mi , using the ICP algorithm which is initialized using matching of spin-
images [13]. After the alignment, we compute the residuals εq

k = zq
k − zmi

lk
between

each query point zq
k and its closest point zmi

lk
. The residuals ζq = {εq

k} are stored
together with the viewing direction V q between the center of the model mi and the
3D location of the range sensor under which the query q was acquired. In our 3D data,
the information about the position of the sensor with respect to the target is known
from GPS, while the distance from the sensor to the target is in general much larger
compared to the target dimensions. Therefore, the viewing direction with respect to the
model coordinate system of mi can be found using the alignment Πq,mi .

The vehicle models are assumed to be aligned such that their back to front axis of
symmetry is aligned to X axis and the vertical direction is parallel with the Z axis.
The point cloud models are rendered from typically Nv = 8 views sampled at 45◦

azimuth angles and at an elevation angle which is constant and matches the expected
operating conditions under which the 3D data is acquired. For each query q we store
also the index υq = 1, . . .Nv corresponding to the minimum angle between V υ and
V q . Let the residuals be Ω = {(ζq, υq), q ∈ Q}. The residual set Ω is organized such
that for every view index υ = 1, . . . , Nv we have access to residuals εq

k, from queries q
acquired from view closest to V υ, Ω = {Ωv, v = 1, . . . , Nv}.

The algorithm for computing the saliency is presented in the following:

1. Input is a model mi for which we need to compute saliency together with the cor-
responding class of similar models mj ∈ Γi, a 3D region x belonging to model
mi and an error measure Du. We specify a region x as a cube centered at a point
c ∈ R3 with side 2R, though. We have used R = 0.2 m and R = 0.5 m to capture
local and semi-local variation. Warp all the point cloudsmj ∈ Γi towardsmi using
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the pose determined off-line Π(mj ,mi). Let mj(i), be the warped modelmj in the
coordinate system of mi.

2. Select a random view v∗ = 1, . . . , Nv and let zmi

k,v∗ , k = 1, . . . , Nmi,v∗ , where
Nmi,v∗ , denote the 3D noise-free model points belonging to view v∗. We assume
that the point cloud model mi is obtained by concatenating all the views, hence
Nmi =

∑Nv

v=1 Nmi,v

3. Sample with replacement from Ωvb
residuals ε∗k and generate bootstrapped

measurements
zmi∗

k,v = zmi

k,v + ε∗k (8)

4. Create a new query q∗ by using one, or by concatenating several bootstrapped
views. Optionally, simulate other effects such as occlusions and artifacts in the data
by randomly removing data. Align the query q∗ to all the modelsmi,mj(i) ∈ Γi to
obtain the alignment parameters Πq∗,mi , Πq∗,mj(i) .

5. Compute the in-class error statistics Du(q∗,mi,x) and the out-of-class error statis-
tics Du(q∗,mj(i),x), where Du(q∗,mk,x), as defined in (1), or (2) are restricted
such that the summation is done only within region x from modelmi. Add the value
Du(q∗,mi,x) into the in-class histogram Hin(x) and the values Du(q∗,mj(i))
into the out-of-class histogram Hout(x). It is assumed that both the histograms
have the same number of bins Nh and the same bin size.

6. Go to Step 2 until the number of samples required for computing Hin(x) and
Hout(x) is sufficient.

7. Normalize and smooth each of the two histograms to eliminate the artifacts. Let
p̂in,h, and p̂out,h denote bin h = 1, . . . , Nh of the in-class and out-of-class his-
tograms. The saliency of region x under the error statistic Du (7) can be finally
expressed as

β(x, Du) = 1−
Nh∑
h=1

√
p̂in,hp̂out,h (9)

We compute saliency measures (9) at dense locations ck around the model mi for
the error measures Du, u = 0, 1. Prior information about regions of a model which are
prone to be affected by clutter (ex. cargo region) and artifacts in the data (dispersion
of the data in highly reflective regions of a model such as headlights), are manually
specified as oriented cuboids and used to eliminate candidate locations ck at which
saliency is calculated.

Most of the objects present in the database are symmetric with an axis of symmetry
parallel with X direction and passing through the middle of the vehicles. The saliency
values β(xk, Du) are smoothed with a 3D smoothing kernel and symmetry is enforced
by averaging smoothed saliency values at corresponding reflected locations ck.

For computational efficiency we first sort the locations ck were saliency was com-
puted, in decreasing order of the saliency measure, separately for each distinct
error measure employed. We retain only a certain fraction η of the most salient loca-
tions, while ensuring that enough regions of the model are represented, as illustrated in
Figure 3. For each individual saliency test T (mi,x, Du, β) we specify among others:
model mi for which the test was computed (including part information), 3D spherical
region x = (c, R), surface dissimilarity error measure Du, saliency value β.
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Fig. 3. Example of saliency computed for an Acura Integra model using point-to-point error mea-
sures D0. The saliency is color coded from blue to red. Dark blue regions correspond to saliency
close to zero, while red signifies highly salient regions with saliency close to one. The saliency
was not computed in transparent regions (windows) as seen by the dark blue in the top row. Note
that the saliency is symmetric and varies smoothly. In the bottom row we show the saliency after
thresholding. Note that we retain only those locations from the front and back, which are most
distinctive in identifying this specific model. These locations correspond to structural differences
in the 3D shape which have the most power in separating the Acura Integra model from its own
list of similar models in the database.

3 Verification of Saliency Tests

We employ next the saliency tests learned off-line for each of the models in the database
to verify the identity of a target. We assume that an indexer and matcher modules are
providing for each target a list of possible candidates containing with high probability
the correct model together with articulation parameters such that the target is aligned
to each model. The candidates are sorted according to global surface mismatch point-
to-point surface mismatch errors minimized using a variant of the ICP algorithm which
handles articulations.

The object identification module (verifier) analyzes sequentially each of the models
returned by the matcher and verifies the corresponding saliency tests which were found
to be most discriminating during learning. The first step in verifying each model is to
preprocess the query and the model by:

1. Eliminating outliers in the scene. We mark as outliers all the query measurements
which have a distance larger than ρ = 2.5σz, where σz is the standard deviation of
the noise. For the range sensors employed σz ≈ 8 cm, thus ρ = 20 cm.

2. Enforcing visibility constraints and performing model culling to eliminate 3D model
points from regions which are self occluded and have no query points in vicinity.

3. Applying model annotations to mark query measurements as possible clutter or
artifacts. Interior unmodeled clutter which are acquired due to transparency of win-
dows can be eliminated by computing model interiors using ray-tracing. The model
interior samples are used to mark the query measurements lying in the same cor-
responding voxels. For compact storage we extract only interior locations within
20 cm from the surface.

At the end of this preprocessing stage, query data is labeled as either: outliers, clut-
ter/artifacts, interiors, or inliers. Model points are labeled as occluded or visible.

By verifying a saliency test T (mi,x, Du, β) , we make a decision to either: (i)
discard the test as unreliable, occurring when there is not enough query data in the
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Fig. 4. The coverage of a saliency test is computed as the ratio between the number of models
that are explained by data. For each model point He search for query measurements in regions
aligned with the local surface normal.

corresponding 3D region x of the test; (ii) accept the test; (iii) reject the test. For (i)
we determine whether a test can be evaluated by computing the coverage of the test,
expressed as the ratio of the model points within x that can be explained by query mea-
surements, with respect to the total number of model points in x, assuming relatively
uniform sampling of the surfaces, as shown in Figure 4. We have employed a confi-
dence threshold equal to 0.75 which was experimentally found to balance the fraction
of saliency tests that are discarded, while ensuring an acceptance/rejection of a test to
be taken with sufficient measurements present.

Assuming that a saliency test T (mi,x, Du, β) can be reliably evaluated, we deter-
mine next whether to accept or reject it by applying several statistical relevance tests,
such as likelihood ratio and χ2 tests [18]. We apply the prescribed error measure Du

and compute the dissimilarity score y2
mi

Δ= D2
u(q,mi,x) between query q and model

mi within region x of mi. The likelihood ratio of the test T is rejected when

Λ(T ) =
pin(ymi |q ∈ mi)
pout(ymi |q �∈ mi)

< δ (10)

where pin(ymi |q ∈ mi) is the in-class probability (accept) and pout(ymi |q �∈ mi) is the
out-of-class probability (reject) and δ is a threshold chosen depending on how stringent
we are in rejecting an individual test. The in-class pin(ymi |q ∈ mi) and out-of-class
pout(ymi |q �∈ mi) probabilities were computed during off-line training. We have used
δ = 1.1 to allow a small tolerance to errors in data.

We employ the χ2 test in addition to the likelihood test (10) under which the test T
rejected iff

y2
mi

μ2
ymi

≥ χ2
p,1−γ

p
, (11)

where p is the number of degrees of freedom of y2, μ2
ymi

is the expected value of the

residuals y2
mi

, which is estimated from the distribution of residuals pin, and χ2
p,1−γ is

the 1−γ quantile of a χ2 distribution with p degrees of freedom. The number of degrees
of freedom depends on the error measure used, for instance p = 3 for D0, and p = 5
for D1. Thus, an individual saliency test Ts is accepted when both (10) and (11) are
obeyed, otherwise the test is rejected.

The saliency tests are grouped into semi-local regions B to be more robust to er-
roneous rejections of individual tests due to unaccounted outliers, wrong articulation
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estimates by the matcher. In combining the decision from several saliency tests we
should note that: (i) rejecting a test is an indication that query does not belong to the
corresponding model, no matter how salient a test is; (ii) accepting of a test should be
weighted by how much a priori salient a test is.

We estimate the probability of rejecting a model given the tests in region B p(q �∈
mi|B) as the ratio between the number of failed tests Nfailed(B) with respect to the
number of tests which were measured Nmeasured(B). We reject a region if p(q �∈
mi|B) > 0.2. Similarly to (10) we compute a saliency weighted log-likelihood ratio

log(Λ(B)) =
∑

s βs log(Λ(Ts))∑
s βs

(12)

where 0 ≤ βs ≤ 1 is the saliency of a test Ts. We reject the model hypothesismi if the
Λ(B) < δ1, δ1 < δ. The χ2 (11) over a region B will reject a model iff

∑
s

y2
s,mi

βs

μ2
ys,mi∑

s βs
>
χ2

p′,1−γ

p′
, p′ =

∑
s

ps, Ts ∈ B and Ts accepted (13)

where ps is the number of degrees of freedom of squared residuals y2
s,mi

.
Note that in (12) and (13) we used only tests Ts which were accepted in order to

eliminate the effect of tests failing badly locally due to unaccounted clutter or wrong
pose estimation. Thus, we allow some of the saliency tests to pass with less stringent
conditions, however at region level after weighting by the saliency we require more
stringent conditions in order to accept it.

4 Experimental Results

We have evaluated the saliency based 3D object identification method proposed on a
very challenging database of vehicle objects which are characterized by a high degree
of similarity between their 3D shapes, such as sedans, vans or SUVs. In the experi-
ments reported we have employed a database of 100 point-cloud models, rendered from
faceted models of mostly civilian and military vehicles. Models have articulation infor-
mation about moving parts (doors, trunks, hoods,etc.), information about transparent
regions (ex. windows). For testing, we employed laser scanned data (LIDAR) acquired
using a helicopter flying over an area of interest containing vehicles, clutter.

The registered data is segmented into volumes of interests (VOI) by a target detection
module which also eliminates ground and vegetation clutter. The remaining 3D data
(query) is passed onto the indexer and matcher modules which provide the 3D object
identification with a list of putative candidates, together with articulation parameters
such that the target and each point cloud model are coregistered. Examples of queries
employed in our experiments are given in Figure 5. Note the fact that the target is viewed
only from a limited set of viewpoints, covering typically three sides.

The 3D object identification module processes sequentially each candidate model
returned by the indexer/matcher modules and verifies the salient tests learned offline
and grouped within semi-local regions to increase the robustness to inaccuracies in
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Fig. 5. Examples of queries employed for testing using Collection I, II data collections

alignment, outliers and unaccounted clutter. Each region is classified as accepted or
rejected using a battery of statistical tests as discussed in Section 3. In general, we
employ six to ten regions depending on the size of an object, each region containing
tens of individual saliency tests. Failure of F regions will result in rejecting a candidate
model. The parameterF is selected depending on the amount of false matches tolerated.
In our experiments we have used F = 2. The experiments were run on a 2 GHz Pentium
Mobile laptop. Each model can be verified in one to two seconds, including the overhead
of loading and warping the models.

Our object recognition system was evaluated on thousands of queries using various
range sensors and under different operating conditions (aerial, ground-based sensor).
The queries were divided into training and testing data. The training data was employed
for extracting saliency, as discussed in Section 2.3.

The testing data used for the evaluation results shown next comes from two data
collections denoted as Collection I and Collection II. The distribution of queries among
classes is shown in Table 2. Though we do not have precise calibrated information about
the actual sensor noise, we have estimated that the standard deviation of the noise to be
around 3” (or roughly 8 cm), largely along the viewing direction.

When the ground truth model corresponding to a query is present in the database,
then the saliency based identification module should output only the correct model. We
consider a recognition error the case in which the correct model is not returned, due to
being either missed by the indexer and matcher modules, or because it is rejected after
the verification of the prescribed saliency tests. If the ground truth model is not present
in the database, then ideally no models should be returned.

Table 1. Distribution of queries used for testing

Collection I Collection II 
Class Number Queries Number Queries 

with Model In 
Database 

Class Number Queries Number Queries 
with Model in 

Database 
Sedan 313 276 Sedan 260 232 
Pick up 24 20 Pick up 20 20 
Van 44 40 Van 28 20 
SUV 40 20 SUV 32 12 
Military 92 48 Military 76 32 
Other 35 24 Other 32 20 
Total 548 428 Total 448 336 
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The 3D object identification module will output generally more than one model, de-
pending on the discriminability of a model, sensor noise, or whether distinctive features
of a model were present in the query data. For example, military models tend to be
quite distinct from each other, so wrong models are rarely accepted, while sedans tend
to be similar to many other sedan models. The distribution of queries from the two data
collections used is shown in Table 1.

A query is considered correctly recognized if: (i) the correct model, if any, is present
in the list of identified objects; (ii) there are no models returned as recognized instances,
which a human can judge as dissimilar with the target, or in other words it is hard
for a human to distinguish between these models, given the quality of the data. Using
the previous two criteria, the final recognition performance on the two data collections
mentioned was found to be 96.5%.

In Table 2 we have displayed the average number of recognized models returned by
the matcher and after saliency based verification. Note the significant reduction in the
number of models returned after saliency is employed. The average lengths less than one
in Table 2 can be easily understood since in the case of queries with no corresponding
model in the database, ideally there shouldn’t be any models returned, while for queries
with models in the database, there may be recognition failures in recognizing the ground
truth model.

The relatively large number of models returned, in the case of sedans for example, is
due to the very challenging data available and to the high degree of similarity between
models, as illustrated in Figure 6. For more discriminating models and better coverage,
the list of identified models is much shorter, as shown in Figure 7. Assuming better
data, with smaller noise, the discriminability of the saliency tests can be improved and
thus smaller number of identified models.

Table 2. Average number of candidate models returned after indexer/matcher and after perform-
ing saliency based verification. (a) Using all queries. (b) Using queries that do not have a corre-
sponding model in the database; (c) Using queries that have a corresponding model in database.

(a) (b)
Collection Collection I Collection II 
Class Matcher Saliency 

Ident 
Matcher Saliency 

Ident 
Sedan 24.6 12.5 19.2 10.2 
Pick up 3.7 1.8 2.6 1.8 
Van 8.7 4.1 5.5 3.4 
SUV 4.6 1.8 3.3 2.6 
Military 1.9 0.6 2.8 0.5 
Other 0.9 0.7 0.8 0.5 
Overall 15.6 7.8 12.4 6.5 
 

Collection Collection I Collection II 
Class Matcher Saliency 

Ident 
Matcher Saliency 

Ident 
Sedan 23.3 8.6 18.9 5.4 
Pick up 5.8 1.8 - - 
Van 14 4.2 4.8 2.5 
SUV 7.3 2.4 4.3 3.2 
Military 3 0.2 4.1 0.3 
Other 0.4 0.2 0.8 0.2 
Overall 10.2 3.4 7.5 2.3 
 

(c)
Collection Collection I Collection II 
Class Matcher Saliency 

Ident 
Matcher Saliency 

Ident 
Sedan 24.8 13 19.2 10.8 
Pick up 3.3 1.8 2.6 1.8 
Van 8.1 4 5.8 3.7 
SUV 1.9 1.2 1.7 1.4 
Military 0.9 0.9 1 0.8 
Other 1.2 0.9 0.8 0.8 
Overall 17.2 9 14 8 
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Fig. 6. Lack of distinguishing details, noise and significant similarity between the shapes of ve-
hicles result in 11 identified models, from a total number of 26 models returned by the matcher.
Query is a Pontiac GrandAm 1999. The models returned are: Dodge Avenger 1995 (rank 2), Ford
Probe 1993 (rank 3), Chevy Malibu 1997 (rank 4), Buick Regal 1998 (rank 7) , Plymouth Neon
2000 (rank 11). Bottom row: comparison between the models: ground truth is plotted in dark gray
and the corresponding model in light gray.

Fig. 7. Better coverage and less similarity between models result in only one identified model
using saliency, compared to 15 models returned as possible candidates by the matcher. Query is
Geo Metro 1990 plotted in red. Note the dissimilarity in the front between the Geo Metro 1990
(dark gray) and a Honda Civic 1990 (light gray) which is the rejected model ranked second using
global scores (rightmost figure).

5 Conclusions

We have presented a novel 3D object identification approach based on learning salient
features capable of discriminating between 3D objects highly similar in shape. The ap-
proach proposed shows a significant improvement in the ability of reducing the amount
of identified objects, compared to using global error measures such as point-to-point dis-
tances, traditionally employed for object identification. The performance of the system
was assessed using real LIDAR data on thousands of queries. We have addressed also the
very challenging scenario of identifying objects which are not present in the database.
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Abstract. Bag-of-features representations have recently become popu-
lar for content based image classification owing to their simplicity and
good performance. They evolved from texton methods in texture analy-
sis. The basic idea is to treat images as loose collections of independent
patches, sampling a representative set of patches from the image, evalu-
ating a visual descriptor vector for each patch independently, and using
the resulting distribution of samples in descriptor space as a characteri-
zation of the image. The four main implementation choices are thus how
to sample patches, how to describe them, how to characterize the re-
sulting distributions and how to classify images based on the result. We
concentrate on the first issue, showing experimentally that for a repre-
sentative selection of commonly used test databases and for moderate to
large numbers of samples, random sampling gives equal or better clas-
sifiers than the sophisticated multiscale interest operators that are in
common use. Although interest operators work well for small numbers
of samples, the single most important factor governing performance is
the number of patches sampled from the test image and ultimately in-
terest operators can not provide enough patches to compete. We also
study the influence of other factors including codebook size and creation
method, histogram normalization method and minimum scale for feature
extraction.

1 Introduction

This paper studies the problem of effective representations for automatic image
categorization – classifying unlabeled images based on the presence or absence
of instances of particular visual classes such as cars, people, bicycles, etc. The
problem is challenging because the appearance of object instances varies sub-
stantially owing to changes in pose, imaging and lighting conditions, occlusions
and within-class shape variations (see fig. 2). Ideally, the representation should
be flexible enough to cover a wide range of visually different classes, each with
large within-category variations, while still retaining good discriminative power
between the classes. Large shape variations and occlusions are problematic for

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 490–503, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Examples of multi-scale sampling methods. (1) Harris-Laplace (HL) with a
large detection threshold. (2) HL with threshold zero – note that the sampling is still
quite sparse. (3) Laplacian-of-Gaussian. (4) Random sampling.

rigid template based representations and their variants such as monolithic SVM
detectors, but more local ‘texton’ or ‘bag-of-features’ representations based on
coding local image patches independently using statistical appearance models
have good resistance to occlusions and within-class shape variations. Despite
their simplicity and lack of global geometry, they also turn out to be surpris-
ingly discriminant, so they have proven to be effective tools for classifying many
visual classes (e.g. [1, 2, 3], among others).

Our work is based on the bag-of-features approach. The basic idea of this is
that a set of local image patches is sampled using some method (e.g. densely, ran-
domly, using a keypoint detector) and a vector of visual descriptors is evaluated
on each patch independently (e.g. SIFT descriptor, normalized pixel values).
The resulting distribution of descriptors in descriptor space is then quantified in
some way (e.g. by using vector quantization against a pre-specified codebook to
convert it to a histogram of votes for (i.e. patches assigned to) codebook cen-
tres) and the resulting global descriptor vector is used as a characterization of
the image (e.g. as feature vector on which to learn an image classification rule
based on an SVM classifier). The four main implementation choices are thus
how to sample patches, what visual patch descriptor to use, how to quantify the
resulting descriptor space distribution, and how to classify images based on the
resulting global image descriptor.

One of the main goals of this paper is to study the effects of different patch
sampling strategies on image classification performance. The sampler is a critical
component of any bag-of-features method. Ideally, it should focus attention on
the image regions that are the most informative for classification. Recently, many
authors have begun to use multiscale keypoint detectors (Laplacian of Gaussian,
Förstner, Harris-affine, etc.) as samplers [4, 1, 2, 5, 6, 7, 8, 9, 10, 11], but although
such detectors have proven their value in matching applications, they were not
designed to find the most informative patches for image classification and there
is some evidence that they do not do so [12, 13]. Perhaps surprisingly, we find
that randomly sampled patches are often more discriminant than keypoint based
ones, especially when many patches are sampled to get accurate classification
results (see figure 1). We also analyze the effects of several other factors including
codebook size and the clusterer used to build the codebook. The experiments
are performed on a cross-section of commonly-used evaluation datasets to allow
us to identify the most important factors for local appearance based statistical
image categorization.
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2 Related Work

Image classification and object recognition are well studied areas with approaches
ranging from simple patch based voting to the alignment of detailed geometric
models. Here, in keeping with our approach to recognition, we provide only a
representative random sample of recent work on local feature based methods. We
classify these into two groups, depending on whether or not they use geometric
object models.

The geometric approaches represent objects as sets of parts whose positions
are constrained by the model. Inter-part relationships can be modelled pairwise
[4], in terms of flexible constellations or hierarchies [2, 14], by co-occurrence [15]
or as rigid geometric models [8, 7]. Such global models are potentially very
powerful but they tend to be computationally complex and sensitive to missed
part detections. Recently, “geometry free” bag-of-features models based purely
on characterizing the statistics of local patch appearances have received a lot of
attention owing to their simplicity, robustness, and good practical performance.
They evolved when texton based texture analysis models began to be applied to
object recognition. The name is by analogy with the bag-of-words representations
used in document analysis (e.g. [16]): image patches are the visual equivalents
of individual “words” and the image is treated as an unstructured set (“bag”)
of these.

Leung at al. [3] sample the image densely, on each patch evaluating a bank of
Gabor-like filters and coding the output using a vector quantization codebook.
Local histograms of such ‘texton’ codes are used to recognize textures. Textons
are also used in content based image retrieval, e.g. [17]. Lazebnik et al. [18] take
a sparser bag-of-features approach, using SIFT descriptors over Harris-affine
keypoints [9] and avoiding global quantization by comparing histograms using
Earth Movers Distance [19]. Csurka et al [1] approach object classification using
k-means-quantized SIFT descriptors over Harris-affine keypoints [9]. Winn et al.
[13] optimize k-means codebooks by choosing bins that can be merged. Fergus
et al. [5] show that geometry-free bag-of-features approaches still allow objects
to be localized in images.

The above works use various patch selection, patch description, descriptor
coding and recognition strategies. Patches are selected using keypoints
[4, 1, 2, 5, 6, 7, 8, 9, 10, 11] or densely [3, 13, 15]. SIFT based [1, 6, 8, 10], filter based
[3, 13] and raw patch based [4, 2, 5, 7, 11] representations are common. Both
k-means [1, 3, 11, 13] and agglomerative [4, 7] clustering are used to produce code-
books, and many different histogram normalization techniques are in use. Our
work aims to quantify the influence of some of these different choices on catego-
rization performance.

3 Datasets

We have run experiments on six publicly available and commonly used datasets,
three object categorization datasets and three texture datasets.
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Fig. 2. Example of objects of Graz01 dataset: four images of the categories bike, car,
person

Object datasets. Graz01 contains 667, 640×480 pixel images containing
three visual categories (bicycle, car, person) in approximately balanced propor-
tions (see figure 2). Xerox7 1 contains 1776 images, each belonging to exactly
one of the seven categories: bicycle, book, building, car, face, phone, tree. The
set is unbalanced (from 125 to 792 images per class) and the images sizes vary
(width from 51 to 2048 pixels). Pascal-01 2 includes four categories: cars, bicy-
cles, motorbikes and people. A 684 image training set and a 689 image test set
(‘test set 1’) are defined.

Texture datasets. KTH-TIPS 3 contains 810, 200×200 images, 81 from each
of the following ten categories: aluminum foil, brown bread, corduroy, cotton,
cracker, linen, orange peel, sandpaper, sponge and styrofoam. UIUCTex 4 con-
tains 40 images per classes of 25 textures distorted by significant viewpoint
changes and some non-rigid deformations. Brodatz 5 contains 112 texture im-
ages, one per class. There is no viewpoint change or distortion. The images were
divided into thirds horizontally and vertically to give 9 images per class.

4 Experimental Settings

This section describes the default settings for our experimental studies. The mul-
tiscale Harris and LoG (Laplacian of Gaussian) interest points, and the randomly
sampled patches are computed using our team’s LAVA library6. The default pa-
rameter values are used for detection, except that detection threshold for interest
points is set to 0 (to get as many points as possible) and – for comparability with
other work – the minimum scale is set to 2 to suppress small regions (see §8).
1 ftp://ftp.xrce.xerox.com/pub/ftp-ipc/
2 http://www.pascal-network.org/challenges/VOC/
3 http://www.nada.kth.se/cvap/databases/kth-tips/index.html
4 http://www-cvr.ai.uiuc.edu/ponce grp
5 http://www.cipr.rpi.edu/resource/stills/brodatz.html
6 http://lear.inrialpes.fr/software
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Fig. 3. Classifiers based on SIFT descriptors clearly out-perform ones based on nor-
malized gray level pixel intensities, here for randomly sampled patches on the Graz
dataset

We use SIFT [8] descriptors, again computed with the LAVA library with
default parameters: 8 orientations and 4×4 blocks of cells (so the descriptor
dimension is 128), with the cells being 3×3 pixels at the finest scale (scale 1).
Euclidean distance is used to compare and cluster descriptors.

We also tested codings based on normalized raw pixel intensities, but as
figure 3 shows, SIFT descriptor based codings clearly out-perform these. Possible
reasons include the greater translation invariance of SIFT, and its robust 3-stage
normalization process: it uses rectified (oriented) gradients, which are more lo-
cal and hence more resistant to illumination gradients than complete patches,
followed by blockwise normalization, followed by clipping and renormalization.

Codebooks are initialized at randomly chosen input samples and optimized by
feeding randomly chosen images into online k-means (the memory required for
true k-means would be prohibitive for codebooks and training sets of this size).

Descriptors are coded by hard assignment to the nearest codebook centre,
yielding a histogram of codeword counts for each image. Three methods of con-
verting histogram counts to classification features were tested: raw counts; simple
binarization (the feature is 1 if the count is non-zero); and adaptive thresholding
of the count with a threshold chosen to maximize the Mutual Information be-
tween the feature and the class label on the training set. MI based thresholding
usually works best and is used as the default. Raw counts are not competitive
so results for them are not presented below.

Soft One-versus-one SVM’s are used for classification. In multi-class cases the
class with the most votes wins. The SVM’s are linear except in §9 where Gaussian
kernels are used to make comparisons with previously published results based
on nonlinear classifiers. The main performance metric is the unweighted mean
over the classes of the recognition rate for each class. This is better adapted to
unbalanced datasets than the classical “overall recognition rate”, which is biased
towards over-represented classes. By default we report average values over six
complete runs, including the codebook creation and the category prediction. For
most of the datasets the recognition rates are estimated using two-fold cross
validation, but for Pascal-01 dataset we follow the PASCAL protocol and use
the specified ‘learning set’/’test set 1’ split for evaluation.
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5 Influence of the Sampling Method

The idea of representing images as collections of independent local patches has
proved its worth for object recognition or image classification, but raises the
question of which patches to choose. Objects may occur at any position and
scale in the image so patches need to be extracted at all scales (e.g. [3, 13]).
Dense sampling (processing every pixel at every scale, e.g. [12, 13]) captures the
most information, but it is also memory and computation intensive, with much
of the computation being spent on processing relatively featureless (and hence
possibly uninformative) regions. Several authors argue that computation can be
saved and classification performance can perhaps be improved by using some
kind of salience metric to sample only the most informative regions. Example-
based recognition proceeds essentially by matching new images to examples so
it is natural to investigate the local feature methods developed for robust image
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Fig. 4. Mean multi-class classification accuracy as a function of the number of sampled
patches used for classification. Reading left to right and top to bottom, the datasets
are: Brodatz, Graz01; KTH-TIPS, Pascal-01; UIUCTex and Xerox7.
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matching in this context. In particular, many authors have studied recognition
methods based on generic interest point detectors [4, 1, 2, 6, 7, 8, 9, 10, 11]. Such
methods are attractive because they have good repeatability [8, 9] and transla-
tion, scale, 2D rotation and perhaps even affine transformation invariance [20].
However the available interest or salience metrics are based on generic low level
image properties bearing little direct relationship to discriminative power for
visual recognition, and none of the above authors verify that the patches that
they select are significantly more discriminative than random ones. Also, it is
clear that one of the main parameters governing classification accuracy is simply
the number of patches used, and almost none of the existing studies normalize
for this effect.

We investigate these issues by comparing three patch sampling strategies.
Laplacian of Gaussian (LoG): a multi-scale keypoint detector proposed by [21]
and popularized by [8]. Harris-Laplace (Harris): the (non-affine) multi-scale key-
point detector used in [18]. Random (Rand): patches are selected randomly from
a pyramid with regular grids in position and densely sampled scales. All patches
have equal probability, so samples at finer scales predominate. For all datasets we
build 1000 element codebooks with online k-means and use MI-based histogram
encoding (see §7) with a linear SVM classifier.

Figure 4 plots mean multi-class classification rates for the different detectors
and datasets. (These represent means over six independent training runs – for
typical standard deviations see table 1). Each plot shows the effect of varying
the mean number of samples used per image. For the keypoint detectors this
is done indirectly by varying their ‘cornerness’ thresholds, but in practice they
usually only return a limited number of points even when their thresholds are
set to zero. This is visible in the graphs. It is one of the main factors limiting the
performance of the keypoint based methods: they simply can not sample densely
enough to produce leading-edge classification results. Performance almost always
increases with the number of patches sampled and random sampling ultimately
dominates owing to its ability to produce an unlimited number of patches. For
the keypoint based approaches it is clear that points with small cornerness are
useful for classification (which again encourages us to use random patches), but
there is evidence that saturation occurs earlier than for the random approach.
For smaller numbers of samples the keypoint based approaches do predominate

Table 1. The influence of codebook optimization. The table gives the means and stan-
dard deviations over six runs of the mean classification rates of the different detectors
on each dataset, for codebooks refined using online k-means (KM), and for randomly
sampled codebooks (no KM).

Dataset Rand KM Rand no KM LoG KM LoG no KM H-L KM H-L no KM
Graz01 74.2 ± 0.9 71.3 ± 0.9 76.1 ± 0.5 72.8 ± 0.9 70.0 ± 1.4 68.8 ± 2.0

KTHTIPS 91.3 ± 1.1 92.1 ± 0.4 88.2 ± 1.0 85.0 ± 1.8 83.1 ± 2.1 81.3 ± 1.1

Pascal-01 80.4 ± 1.4 77.4 ± 0.9 81.7 ± 1.0 78.7 ± 2.3 73.6 ± 2.3 67.8 ± 2.8

UIUCTex 81.3 ± 0.8 75.2 ± 1.4 81.0 ± 1.0 76.0 ± 0.8 83.5 ± 0.8 80.4 ± 0.8

Xerox7 88.9 ± 1.3 87.8 ± 0.5 80.5 ± 0.6 79.9 ± 0.9 66.6 ± 1.8 65.6 ± 1.5
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in most cases, but there is no clear winner overall and in Xerox7 the random
method is preferred even for small numbers of samples.

6 Influence of the Codebook

This section studies the influence of the vector quantization codebook size and
construction method on the classification results.

Codebook size. The number of codebook centres is one of the major parame-
ters of the system, as observed, e.g. by [1], who report that performance improves
steadily as the codebook grows. We have run similar experiments, using online
(rather than classical) k-means, testing larger codebooks, and studying the rela-
tionship with the number of patches sampled in the test image. Figure 5 shows
the results. It reports means of multi-class error rates over 6 runs on the Xerox7
dataset for the three detectors. The other settings are as before. For each de-
tector there are initially substantial gains in performance as the codebook size
is increased, but overfitting becomes apparent for the large codebooks shown
here. For the keypoint based methods there is also evidence of overfitting for
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large numbers of samples, whereas the random sampler continues to get better
as more samples are drawn. There does not appear to be a strong interaction
between the influence of the number of test samples and that of the codebook
size. The training set size is also likely to have a significant influence on the
results but this was not studied.

Codebook construction algorithm. §4 presented two methods for construct-
ing codebooks: randomly selecting centres from among the sampled training
patches, and online k-means initialized using this. Table 1 compares these meth-
ods, again using 1000 element codebooks, MI-based normalization and a linear
SVM classifier. 1000 patches per image are sampled (less if the detector can not
return 1000). Except in one case (KTH-TIPS with random patches), the online
k-means codebooks are better than the random ones. The average gain (2.7%) is
statistically significant, but many of the individual differences are not. So we see
that even randomly selected codebooks produce very respectable results. Opti-
mizing the centres using online k-means provides small but worthwhile gains,
however the gains are small compared to those available by simply increasing
the number of test patches sampled or the size of the codebook.

Images used for codebook construction. One can also ask whether it is
necessary to construct a dedicated codebook for a specific task, or whether a
codebook constructed from generic images suffices (c.f. [13]). Figure 5(bottom
right) shows mean error rates for three codebooks on the KTH-Tips texture
dataset and the Graz object dataset. Unsurprisingly, the KTH codebook gives
the best results on the KTH images and the Graz codebook on the Graz images.
Results are also given for a codebook constructed from random SIFT vectors
(random 128-D vectors, not the SIFT vectors of random points). This is clearly
not as good as the codebooks constructed on real images (even very different
ones), but it is much better than random: even completely random codings have
a considerable amount of discriminative power.

7 Influence of Histogram Normalization Method

Coding all of the input images gives a matrix of counts, the analogue of the
document-term matrix in text analysis. The columns are labelled by codebook
elements, and each row is an unnormalized histogram counting the occurences of
the different codebook elements in a given image. As in text analysis, using raw
counts directly for classification is not optimal, at least for linear SVM classifiers
(e.g. [22]), owing to its sensitivity to image size and underlying word frequencies.
A number of different normalization methods have been studied. Here we only
compare two, both of which work by rows (images) and binarize the histogram.
The first sets an output element to 1 if its centre gets any votes in the image, the
second adaptively selects a binarization threshold for each centre by maximizing
the mutual information between the resulting binary feature and the class label
over the training set [22]. As before we use 1000 element codebooks, online k-
means, and a linear SVM. Results for two datasets are shown in figure 6 – other
datasets give similar results.



Sampling Strategies for Bag-of-Features Image Classification 499

 50

 60

 70

 80

 90

 100

100.0 1000.0 10000.0

m
ul

ti-
cl

as
s 

pe
rf

.

points per image

rand bin0
rand binauto

log bin0
log binauto

hl bin0
hl binauto

 50

 60

 70

 80

 90

 100

100.0 1000.0 10000.0

m
ul

ti-
cl

as
s 

pe
rf

.

points per image

rand bin0
rand binauto

log bin0
log binauto

hl bin0
hl binauto

Fig. 6. The influence of histogram normalization on mean classification rate, for the
Pascal-01 (left) and Xerox7 (right) datasets. Histogram entries are binarized either with
a zero/nonzero rule (bin0) or using thresholds chosen to maximize mutual information
with the class labels (binauto). Adaptive thresholding is preferable for dense sampling
when there are many votes per bin on average.

Neither method predominates everywhere, but the MI method is clearly pre-
ferred when the mean number of samples per bin is large (here 10000 sam-
ples/image vs. 1000 centres). For example, on Xerox7, at 1000 samples/image
the input histogram density is 27%, rising to 43% at 10000 samples/image. MI-
based binarization reduces this to 13% in the later case, allowing the SVM to
focus on the most relevant entries.

8 Influence of the Minimum Scale for Patch Sampling

Ideally the classifier should exploit the information available at all scales at which
the object or scene is visible. Achieving this requires good scale invariance in the
patch selection and descriptor computation stages and a classifier that exploits fine
detail when it is available while remaining resistant to its absence when not. The
latter is difficult to achieve but the first steps are choosing a codebook that is rich
enough to code fine details separately from coarse ones and a binwise normaliza-
tion method that is not swamped by fine detail in other bins. The performance of
descriptor extraction at fine scales is critical for the former, as these contain most
of the discriminative detail but also most of the aliasing and ‘noise’. In practice,
a minimum scale threshold is usually applied. This section evaluates the influence
of this threshold on classification performance. As before we use a 1000 element
codebook built with online k-means, MI-based normalization, and a linear SVM.

Figure 7 shows the evolution of mean accuracies over six runs on the Bro-
datz and Xerox7 datasets as the minimum scale varies from 1 to 3 pixels7. The
performance of the LoG and Harris based methods decreases significantly as
the minimum scale increases: the detectors return fewer patches than requested
and useful information is lost. For the random sampler the number of patches is
7 The other experiments in this paper set the minimum scale to 2. SIFT descriptors

from the LAVA library use 4×4 blocks of cells with cells being at least 3×3 pixels,
so SIFT windows are 12×12 pixels at scale 1.
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Fig. 7. The influence of the minimum patch selection scale for SIFT descriptors on the
Brodatz (left) and Xerox7 (right) datasets

constant and there is no clear trend, but it is somewhat better to discard small
scales on the Brodatz dataset, and somewhat worse on the Xerox7 dataset.

9 Results on the Pascal Challenge Dataset

The previous sections showed the usefulness of random sampling and quanti-
fied the influence of various parameters. We now show that simply by sampling
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Fig. 8. ROC curves for the 4 categories of the PASCAL 2005 VOC challenge: top-left,
bikes; top-right, cars; bottom-left, motorbikes; bottom-right, persons. The codebooks
have 1000 elements, except that rand4k has 4000. Equal Error Rates are listed for each
method.
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Table 2. A comparison of our Rand4k method with the best results obtained (by
different methods) during the PASCAL challenge and with the interest point based
method of Zhang et al.

Method motorbikes bikes persons cars average
Ours (rand4k) 97.6 93.8 94.0 96.1 95.4
Best Pascal [23] 97.7 93.0 91.7 96.1 94.6
Zhang et al [24] 96.2 90.3 91.6 93.0 92.8

large enough numbers of random patches, one can create a method that out-
performs the best current approaches. We illustrate this on the Pascal-01 dataset
from the 2005 PASCAL Visual Object Classification challenge because many
teams competed on this and a summary of the results is readily available [23].
We use the following settings: 10 000 patches per image, online k-means, MI-
based normalization, an RBF SVM with kernel width γ set to the median of
the pairwise distances between the training descriptors, and either a 1000 ele-
ment (‘Rand1k’) or 4000 element (‘Rand4k’) codebook. Figure 8 presents ROC
curves for the methods tested in this paper on the 4 binary classification prob-
lems of the Pascal-01 Test Set 1. As expected the method Rand4k predominates.
Table 2 compares Rand4k to the best of the results obtained during the PAS-
CAL challenge [23] and in the study of Zhang et al [24]. In the challenge (‘Best
Pascal’ row), a different method won each object category, whereas our results
use a single method and fixed parameter values inherited from experiments on
other datasets. The method of [24] uses a combination of sophisticated interest
point detectors (Harris-Scale plus Laplacian-Scale) and a specially developed
Earth Movers Distance kernel for the SVM, whereas our method uses (a lot of)
random patches and a standard RBF kernel.

10 Conclusions and Future Work

The main goal of this article was to underline a number of empirical observa-
tions regarding the performance of various competing strategies for image rep-
resentation in bag-of-features approaches to visual categorization, that call into
question the comparability of certain results in the literature. To do this we ran
head to head comparisons between different image sampling, codebook genera-
tion and histogram normalization methods on a cross-section of commonly used
test databases for image classification.

Perhaps the most notable conclusion is that although interest point based
samplers such as Harris-Laplace and Laplacian of Gaussian each work well in
some databases for small numbers of sampled patches, they can not compete
with simple-minded uniform random sampling for the larger numbers of patches
that are needed to get the best classification results. In all cases, the number
of patches sampled from the test image is the single most influential parameter
governing performance. For small fixed numbers of samples, none of HL, LOG
and random dominate on all databases, while for larger numbers of samples
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random sampling dominates because no matter how their thresholds are set, the
interest operators saturate and fail to provide enough patches (or a broad enough
variety of them) for competitive results. The salience cues that they optimize
are useful for sparse feature based matching, but not necessarily optimal for
image classification. Many of the conclusions about methods in the literature are
questionable because they did not control for the different numbers of samples
taken by different methods, and ‘simple’ dense random sampling provides better
results than more sophisticated learning methods (§9).

Similarly, for multi-scale methods, the minimum image scale at which patches
can be sampled (e.g. owing to the needs of descriptor calculation, affine normal-
ization, etc.) has a considerable influence on results because the vast majority
of patches or interest points typically occur at the finest few scales. Depending
on the database, it can be essential to either use or suppress the small-scale
patches. So the practical scale-invariance of current bag-of-feature methods is
questionable and there is probably a good deal of unintentional scale-tuning in
the published literature.

Finally, although codebooks generally need to be large to achieve the best
results, we do see some evidence of saturation at attainable sizes. Although
the codebook learning method does have an influence, even randomly sampled
codebooks give quite respectable results which suggests that there is not much
room for improvement here.

Future work. We are currently extending the experiments to characterize the
influence of different clustering strategies and the interactions between sampling
methods and classification more precisely. We are also working on random sam-
plers that are biased towards finding more discriminant patches.
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Report RR-5737, INRIA Rhône-Alpes, 665 avenue de l’Europe, 38330 Montbonnot,
France (2005)



Maximally Stable Local Description
for Scale Selection
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Abstract. Scale and affine-invariant local features have shown excellent
performance in image matching, object and texture recognition. This pa-
per optimizes keypoint detection to achieve stable local descriptors, and
therefore, an improved image representation. The technique performs
scale selection based on a region descriptor, here SIFT, and chooses re-
gions for which this descriptor is maximally stable. Maximal stability is
obtained, when the difference between descriptors extracted for consec-
utive scales reaches a minimum. This scale selection technique is applied
to multi-scale Harris and Laplacian points. Affine invariance is achieved
by an integrated affine adaptation process based on the second moment
matrix. An experimental evaluation compares our detectors to Harris-
Laplace and the Laplacian in the context of image matching as well as of
category and texture classification. The comparison shows the improved
performance of our detector.

1 Introduction

Local photometric descriptors computed at keypoints have demonstrated excel-
lent results in many vision applications, including object recognition [1, 2], image
matching [3], and sparse texture representation [4]. Recent work has concentrated
on making these descriptors invariant to image transformations. This requires the
construction of invariant image regions which are then used as support regions
to compute invariant descriptors. In most cases a detected region is described by
an independently chosen descriptor. It would, however, be advantageous to use a
description adapted to the region. For example, for blob-like detectors which ex-
tract regions surrounded by edges, a natural choice would be a descriptor based
on edges. However, adapted representations may not provide enough discrim-
inative information, and consequently, a general descriptor, such as SIFT [5],
could be a better choice. Many times this leads to better performance, yet less
stable representations: small changes in scale or location can alter the descrip-
tor significantly. We found that the most unstable component of keypoint-based
scale-invariant detectors is the scale selection. We have, therefore, developed a
detector which uses the descriptor to select the characteristic scales. Our feature
detection approach consists of two steps. We first extract interest points at mul-
tiple scales to determine informative and repeatable locations. We then select
the characteristic scale for each location by identifying maximally stable local
descriptions. The chosen local description can be any measure computed on a

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 504–516, 2006.
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pixel neighborhood, such as color histograms, steerable filters, or wavelets. For
our experiments we use the Scale Invariant Feature Transform (SIFT) [5], which
has shown excellent performance for object representation and image match-
ing [6]. The SIFT descriptor is computed on a 4x4 grid with an 8-bin orientation
histogram for each cell, resulting in a 128-dimensional vector for a given local
region.

Our method for scale-invariant keypoint detection and image representation
has the following properties:

– Our scale selection method guarantees more stable descriptors than state-of-
the-art techniques by explicitly using descriptors during keypoint detection.
The stability criteria is developed to minimize the variation of the descriptor
for small changes in scale.

– Repeatable locations are provided by interest point detectors (e.g. Harris),
and therefore they have rich and salient neighborhoods. This consequently
helps to choose repeatable and characteristic scales. We verify this exper-
imentally, and show that our selection competes favorably with the best
available detectors.

– The detector takes advantage of the properties of the local descriptor. This
can include invariance to illumination or rotation as well as robustness to
noise. Our experiments show that the local invariant image representation
extracted by our algorithm leads to significant improvement for object and
texture recognition.

Related Work. Many different scale- and affine-invariant detectors exist in
the literature. Harris-Laplace [7] detects multi-scale keypoint locations with the
Harris detector [8] and the characteristic scales are determined by the Laplacian
operator. Locations based on Harris points are very accurate. However, scale
estimation is often unstable on corner-like structures, because it depends on the
exact corner location, i.e., shifts by one pixel may modify the selected scale sig-
nificantly. The scale-invariant Laplacian detector [9] selects extremal values in
location-scale space and finds blob-like structures. Blobs are well localized struc-
tures, but due to their homogeneity, the information content is often poor in the
center of the region. The detector of Kadir et al. [10] extracts circular or elliptical
regions in the image as maxima of the entropy scale-space of region intensity his-
tograms. It extracts also blob-like structures, and has shown to be a more robust
representation for some object categories [10]. Mikolajczyk et al. [11] show that
it performs poorly for image matching, which might be due to the sparsity of the
scale quantization. Edge and structure based scale-invariant detectors [12, 13, 14]
also exist in the literature. Some of them have been evaluated in [11] and apart
from MSER [14] have shown to be inferior to Harris-Laplace or Hessian-Laplace.
The MSER (Maximally Stable Extremal Regions) detector [14] defines extremal
regions as image segments where each inner-pixel intensity value is less (greater)
than a certain threshold, and all intensities around the boundary are greater
(less) than the same threshold. An extremal region is maximally stable when the
area (or the boundary length) of the segment changes the least with respect to
the threshold. This detector works particularly well on images with well defined



506 G. Dorkó and C. Schmid

edges, but it is less robust to noise and is not adapted to texture-like structures.
It usually selects fewer regions than the other detectors.

Viewpoint invariance is sometimes required to achieve reliable image match-
ing, object or texture recognition. Affine-invariant detectors [7, 9, 10, 12, 14] es-
timate the affine shape of the regions to allow normalization of the patch prior
to descriptor computation. Lindeberg and G̊arding [9] use an affine adaptation
process based on the second moment matrix for the Laplacian detector. The
affine extension of Harris-Laplace [7] is also based on this affine adaptation. The
adaptation procedure is a post-processing step for the scale-invariant detections.

Overview. Our paper is organized as follows. In Section 2 we present our scale
selection technique Maximally Stable Local SIFT Description (MSLSD) and in-
troduce two detectors, Harris-MSLSD and Laplacian-MSLSD. We then compare
their performance to Harris-Laplace and the Laplacian. In Section 3 we evaluate
the detectors for image matching using a publicly available framework. Section 4
reports results for object category and texture classification. Finally, in Section 5
we conclude and outline future extensions.

2 Maximally Stable Local Description

In this section we present our method for selecting characteristic scales at key-
points and discuss the properties of our approach. We address two key features
of interest point detectors: repeatability and description stability. Repeatability
determines how well the detector selects the same region under various image
transformations, and is important for image matching. In practice, due to noise
and object variations, the corresponding regions are never exactly the same but
their underlying descriptions are expected to be similar. This is what we call
the description stability, and it is important for image matching and appearance
based recognition.

The two properties, repeatability and descriptor stability, are in theory con-
tradictory. A homogeneous region provides the most stable description, whereas
its shape is in general not stable. On the other hand, if the region shape is stable,
for example using edges as region boundaries, small errors in localization will
often cause significant changes of the descriptor. Our solution is to apply the
Maximally Stable Local Description algorithm to interest point locations only.
These points have repeatable locations and informative neighborhoods. Our al-
gorithm adjusts their scale parameters to stabilize the descriptions and rejects
locations where the required stability cannot be achieved. The combination of
repeatable location selection and descriptor stabilized scale selection provides a
balanced solution.

Scale-invariant MSLSD detectors. To select characteristic locations with
high repeatability we first detect interest points at multiple scales. We chose
two widely used complementary methods, Harris [8] and the Laplacian [15, 16].
Harris detects corners, i.e., locations where the intensity varies significantly in
several directions. The Laplacian detects blob-like structures. Its multi-scaled
version detects extrema of the 2D Laplacian operator on multiple scales.
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Fig. 1. Two examples for scale selection. The left and right graphs show the change in
the local description as a function of scale for the left and right points respectively. The
scales for which the functions have local minima are shown in the image. The bright
thick circles correspond to the global minima.

The second step of our approach selects the characteristic scales for each key-
point location. We use description stability as criterion for scale selection: the
scale for each location is chosen such that the corresponding representation (in
our case SIFT [5]) changes the least with respect to scale. Fig. 1 illustrates our
selection method for two Harris points. The two graphs show how the descriptors
change as we increase the scale (the radius of the region) for the two keypoints.
To measure the difference between SIFT descriptions we use the Euclidean dis-
tance as in [5]. The minima of the functions determine the scales where the
descriptions are the most stable; their corresponding regions are depicted by cir-
cles in the image. Our algorithm selects the absolute minimum (shown as bright
thick circles) for each point. Multi-scale points which correspond to the same
image structure often have the same absolute minimum, i.e. result in the same
region. In this case only one of them is kept in our implementation. To limit the
number of selected regions an additional threshold can be used to reject unstable
keypoints, i.e., if the minimum change of description is above a certain value the
keypoint location is rejected. For each point we use a percentage of the maximum
change over scales at the point location, set to 50% in our experiments.

Our algorithm is in the following referred to as Maximally Stable Local SIFT
Description (MSLSD). Depending on the location detector we add the prefix H
for Harris and L for Laplacian, i.e. H-MSLSD and L-MSLSD.

Illumination and rotation invariance. Our detectors are robust to illumi-
nation changes, as our scale selection is based on the SIFT descriptor. SIFT is
normalized to unit length, and therefore offers invariance to scalar changes in im-
age contrast. Since the descriptor is based on gradients, it is also invariant to an
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additive constant change in brightness, i.e., it is invariant to affine illumination
changes.

The rotation invariance for SIFT can be achieved by extracting the dominant
orientation and rotating the patch in this direction. If the keypoints have poorly
defined orientations, the resulting descriptions are unstable and noisy. In our al-
gorithm we orienting the patch in the dominant direction prior to the descriptor
computation for each scale. Maximal description stability is then found for loca-
tions with well defined local gradients. In our experiments a -R suffix indicates
rotation invariance. Experimental results in Section 4 show that our integrated
estimation of the dominant orientation can significantly improve results.

Affine invariance. The affine extension of our detector is based on the affine
adaptation in [9, 17], where the shape of the elliptical region is determined by
the second moment matrix of the intensity gradient. However, unlike other de-
tectors [4, 7], we do not use this estimation as a post-processing step after scale
selection, but estimate the elliptical region prior to the descriptor computation
for each scale. When the affine adaptation is unstable, i.e., sensitive to small
changes of the initial scale, the descriptor changes significantly and the region is
rejected. This improves the robustness of our affine-invariant representation. In
our experiments an -Aff suffix indicates affine invariance. Full affine invariance
requires rotation invariance, as the shape of each elliptical region is transformed
into a circle reducing the affine ambiguity to a rotational one. Rotation normal-
ization of the patch is, therefore, always included when affine invariance is used
in our experiments.

3 Evaluation for Image Matching

This section evaluates the performance of our detectors for image matching based
on the evaluation framework in [11], i.e., for the criteria repeatability rate and
matching score. We compare our results to Harris-Laplace and LoG.

The repeatability rate measures how well the detector selects the same scene
region under various image transformations. Each sequence has one reference
image and five images with known homographies to the reference image. Regions
are detected for the images and their accuracy is measured by the amount of
overlap between the detected region and the corresponding region projected from
the reference image with the known homography. Two regions are matched if
their overlap error is sufficiently small:

1− Rμa ∩R(HT μbH)

Rμa ∪R(HT μbH)
< εO

where Rμ is the elliptic or circular region extracted by the detector and H is
the homography between the two images. The union (Rμa ∪R(HT μbH)) and the
intersection (Rμa∩R(HT μbH)) of the detected and projected regions are computed
numerically. As in [11] the maximum possible overlap error εO is set to 40% in
our experiments. The repeatability score is the ratio between the correct matches
and the smaller number of detected regions in the pair of images.
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The second criterion, the matching score, measures the discriminative power
of the detected regions. Each descriptor is matched to its nearest neighbor in
the second image. This match is marked as correct if it corresponds to a region
match with maximum overlap error 40%. The matching score is the ratio between
the correct matches and the smaller number of detected regions in the pair of
images.

3.1 Viewpoint Changes

The performance of our detectors for viewpoint changes is evaluated on two
different image sequences with viewpoint changes from 20 to 60 degrees. Fig. 2(a)
shows sample images of the graffiti sequence. This sequence has well defined
edges, whereas the wall sequence (Fig. 2(b)) is more texture-like.

Fig. 3 shows the repeatability rate and the matching score as well as the num-
ber of correct matches for different affine-invariant detectors. The ordering of the
detectors is very similar for the criteria repeatability rate and matching score, as
expected. On the graffiti sequence (Fig. 3, first row) the original Harris-Laplace
(H-L-Aff) detector performs better than H-MSLSD-Aff. On the wall sequence
results for H-MSLSD-Aff are slightly better than for H-L-Aff. This shows that
the Laplacian scale selection provides good repeatability mainly in the presence
of well defined edges. In case of the Laplacian our detector (L-MSLSD-Aff) out-
performs the original one (LoG) for both sequences. This can be explained by
the fact that LoG-Aff detects a large number of unstable (poorly repeatable)

(a)

(b)

(c)

reference image images from the sequence

Fig. 2. Image sequences used in the matching experiments. (a), (b) Viewpoint change.
(c) Illumination change. The first column shows the reference image. These sequences
may be downloaded from http://www.robots.ox.ac.uk/∼vgg/research/affine/index.
html.
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Fig. 3. Comparison of detectors for viewpoint changes. The repeatability rate, match-
ing score and the number of correct matches are compared on the graffiti (first row)
and on the wall (second row) sequence.

regions for nearly parallel edges, see Fig. 4. A small shift or scale change of
the initial regions can lead to completely different affine parameters of LoG-Aff.
These regions are rejected by L-MSLSD-Aff, as the varying affine parameters
cause large changes in the local description over consecutive scale parameters.
Note that in case of affine divergence both detectors reject the points. This ex-
ample clearly shows that description stability leads to more repeatable regions.
In case of natural scenes, as for example the wall sequence, this advantage is
even more apparent, i.e., the difference between L-MSLSD-Aff over LoG-Aff is
higher than for the graffiti sequence.

We can observe that we obtain a significantly higher number of correct matches
with our detectors. This is due to a larger number of detected regions. This
could increase the probability of accidental matches. To ensure that this did not
bias our results—and to evaluate the effect of the detected region density—we
compared the performance for different Laplacian thresholds for the L-MSLSD

LoG LoG-Aff L-MSLSD-Aff

Fig. 4. Output of LoG detector on part of a graffiti image: the standard LoG detector
(left), affine-invariant LoG (middle) and L-MSLSD-Aff (right)
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Fig. 5. Comparison of the matching score and the number of correct matches for several
thresholds for the multi-scale Laplacian (20, 25, 30, 35). Results are given for L-MSLSD
on the wall sequence. A higher threshold results in less detections, and consequently a
smaller number of absolute matches (second column).
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Fig. 6. Comparison of detectors with and without affine invariance on the graffiti (first
row) and the wall (second row) sequence. The first column shows results for Harris-
and the second for Laplacian-based detectors.

detector. Note that the Laplacian threshold determines the number of detections
in location space, whereas the scale threshold rejects unstable locations and re-
mains fixed throughout the paper. Fig. 5 shows that as the number of correct
matches gradually decrease, the quality of the descriptors (matching score) stays
the same. Consequently, we can conclude that the quality of the detections does
not depend on the density of the extracted regions.

Fig. 6 shows that in case of small viewpoint changes the scale-invariant ver-
sions of the detectors perform better that the ones with affine invariance. It also
allows to compare the scale-invariant detectors. On the graffiti images the orig-
inal H-L performs better that its affine adapted version until 30◦ of viewpoint
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Fig. 7. Comparison of the detectors on the Leuven sequence (illumination changes)

change. For our detector this transition occurs later around 40◦. In the case of
L-MSLSD and LoG the curves cross around 35◦ and 40◦ respectively. On the wall
sequence it is almost never helpful to use the affine adaptation, scale invariance
is sufficient until 55 − 60◦. We can conclude that the use of affine invariance is
not necessary unless the viewpoint changes are significant, and that it is more
helpful in case of structured scenes. We can also observe that the scale-invariant
versions H-L and H-MSLSD give comparable results for the graffiti sequence,
whereas in the case of affine invariance H-L-Aff outperforms H-MSLSD-Aff. In
the other cases, our scale-invariant detectors outperform their standard versions.
In addition, the improvement of our detectors over the standard versions is more
significant for scale invariance than for affine invariance, in particular for the
Laplacian and the wall sequence.

3.2 Illumination Changes

Experiments are carried out for the Leuven sequence (Fig. 2 (c)), i.e., images
of the same scene under gradually reduced camera aperture. Fig. 7 shows that
the repeatability rate and matching score are significantly higher for our Harris-
and Laplacian-based detectors than for the original H-L and LoG. This confirms
that our scale selection is robust to lighting conditions as it is based on the SIFT
descriptor which is invariant to affine illumination changes.

3.3 Overall Performance

Mikolajczyk et al. [11] reported MSER (Maximally Stable Extremal Regions [14])
as the best affine-invariant detector on the three image sequences used here.
Fig. 8 compares the matching score of our detectors to the performance of MSER
on these sequences. Note that our results are directly comparable to the other
detectors reported in [11], as we use the same dataset and evaluation criteria. We
can observe that L-MSLSD outperforms MSER on the wall sequence and that
H-MSLSD performs better that MSER on the Leuven sequence. MSER gives
better results than other detectors on the graffiti images. Note that due to the
image structure of the graffiti scenes MSER selects significantly fewer keypoints
than the other detectors.



Maximally Stable Local Description for Scale Selection 513

graffiti wall Leuven

 0

 20

 40

 60

 80

 100

 20  25  30  35  40  45  50  55  60

m
at

ch
in

g 
sc

or
e 

%

viewpoint angle

H-MSLSD-Aff
L-MSLSD-Aff

MSER

 0

 20

 40

 60

 80

 100

 20  25  30  35  40  45  50  55  60

m
at

ch
in

g 
sc

or
e 

%

viewpoint angle

H-MSLSD-Aff
L-MSLSD-Aff

MSER

 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3  3.5  4  4.5  5

m
at

ch
in

g 
sc

or
e 

%

decreasing light

H-MSLSD
L-MSLSD

MSER

Fig. 8. Comparison of the matching scores obtained for our detectors, H-MSLSD-Aff
and L-MSLSD-Aff, and MSER

4 Evaluation for Image Categorization

In this section we evaluate our new detectors for object and texture categoriza-
tion. In both cases we perform image classification based on the bag-of-kepoints
approach [18]. Images are represented as histograms of visual word occurrences,
where the visual words are clusters of local descriptors. The histograms of the
training images are used to train a linear SVM classifier. In the case of object
categorization the output of the SVM determines the presence or absence of a
category in a test image. For multi-class texture classification we use the 1-vs-1
strategy. Vocabularies are constructed by the K-Means algorithm. The number
of clusters is fixed for each category, i.e., does not depend on the detector (400
for motorbikes and airplanes, 200 for bicycles, 100 for people, 1120 for Brodatz,
and 1000 for KTH-TIPS). In all experiments we compare H-L to H-MSLSD and
LoG to L-MSLSD and our representation is always SIFT.

Evaluation for category classification. The experiments are performed for
four different datasets. Motorbikes and airplanes of the CalTech dataset [1] con-
tain 800 images of objects and 900 images of background. Half of the sets are
used for training and the other half for testing. The split of the positive sets is
exactly the same as [1]. The TUGRAZ-1 dataset [2] contains people, bicycles,
and a background class. We use the same training and test sets for two-class
classification as [2].

Table 1. Comparison of object category classification results using our detectors (H-
MSLSD and L-MSLSD) and their standard versions (H-L and LoG). Classification
rates for four categories are reported at EER.

Category H-L H-MSLSD LoG L-MSLSD Fergus et al. [1] Opelt et al. [2]
Caltech databases

Motorbikes 98.25 98.5 98.75 98.75 96.0 92.2
Airplanes 97.75 98.25 99.0 99.0 94.0 90.2

TUGraz1 databases
Bicycles 92.0 94.0 90.0 92.0 n.a. 86.5
People 86.0 86.0 78.0 80.0 n.a. 80.8
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Table 2. Multi-class texture classification for two different datasets. The columns give
the results for different detectors, here their rotation invariant versions.

Database H-L-R H-MSLSD-R LoG-R L-MSLSD-R
Brodatz 88.3±0.6 92.0±0.5 90.5±0.5 95.8±0.4

KTH-TIPS 83.9±1.1 88.4±0.9 71.2±1.5 81.1±1.2

Table 3. Classification accuracy with and without rotation invariance. Results for the
Brodatz (a) and KTH-TIPS (b) datasets and different detectors.

Brodatz
Detector no rot.inv. rot.inv. (-R)

H-L 89.2±0.6 � 88.3±0.6

H-MSLSD 91.5±0.6 � 92.0±0.5

LoG 90.1±0.5 � 90.5±0.5

L-MSLSD 94.2±0.5 � 95.8±0.4

KTH-TIPS
Detector no rot.inv. rot.inv. (-R)

H-L 85.8±1.1 � 83.9±1.1

H-MSLSD 88.1±1.2 � 88.4±0.9

LoG 73.1±1.5 � 71.2±1.5

L-MSLSD 80.9±1.3 � 81.1±1.2

(a) (b)

Table 1 reports the classification rate at the EER1 for four databases and four
different detectors. The last two columns give results from the literature. We can
observe that in most cases our detectors give better results when compared to
their standard versions. In the remaining cases the results are exactly the same.
This demonstrates that the local description based on our detectors is more
stable and representative of the data.

Evaluation for texture classification. Experiments are carried out on two
different texture databases: Brodatz [19] and KTH-TIPS [20]. The Brodatz
dataset consists of 112 different texture images, each of which is divided into
9 non-overlapping sub-images. The KTH-TIPS texture dataset contains 10 tex-
ture classes with 81 images per class. Images are captured at 9 scales, viewed
under three different illumination directions and three different poses. Our train-
ing set contains 3 sub-images per class for Brodatz and 40 images per class for
KTH-TIPS. Each experiment is repeated 400 times using different random splits
and results are reported as the average accuracy on the folds with their stan-
dard deviation over the 400 runs. Table 2 compares the results of our detectors
H-MSLSD-R and L-MSLSD-R to H-L-R and LoG-R. Note that we use the rota-
tion invariant version here, as rotation invariance allows to group similar texture
structures. We can observe that our scale selection technique, MSLSD, improves
the results significantly in all cases.

Table 3 analyzes the influence of rotation invariance on the representation. Re-
sults for Harris-Laplace and LoG are in general better without, whereas results for
our detectors are always better with rotation invariance. The poor performance
of the existing detectors is due to an unstable estimation of the orientation lead-
ing to significant errors/noise in the descriptions. Note that the orientation of
the patch is estimated after the region detection. In our MSLSD method rotation

1 Point on the ROC curves for which p(TruePositives) = 1 − p(FalsePositives).
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estimation is integrated into the scale selection criterion which implies that only
regions with stable dominant gradients are selected, and it therefore improves
the quality of the image representation.

5 Conclusion and Future Work

This paper introduced a new approach for selecting characteristic scales based on
the stability of the local description. We experimentally evaluated this technique
for the SIFT descriptor, i.e. Maximally Stable Local SIFT Description (MSLSD).
We also demonstrated how a stable estimate of affine regions and orientation can
be integrated in our method. Results for MSLSD versions of Harris and Laplacian
points outperformed in many cases their corresponding state-of-the-art versions
with respect to repeatability and matching. For object category classification
MSLSD achieved better or similar results for four datasets. In the context of
texture classification our approach always outperformed the standard versions
of the detectors.

Future work includes the evaluation of our maximally stable local description
approach with other keypoint detectors as well as other descriptors. Our scale
selection could also be applied to a dense image representation, which would
require an additional criterion for selecting discriminative regions.
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Abstract. Given a set of images of scenes containing multiple object
categories (e.g. grass, roads, buildings) our objective is to discover these
objects in each image in an unsupervised manner, and to use this object
distribution to perform scene classification. We achieve this discovery us-
ing probabilistic Latent Semantic Analysis (pLSA), a generative model
from the statistical text literature, here applied to a bag of visual words
representation for each image. The scene classification on the object dis-
tribution is carried out by a k-nearest neighbour classifier.

We investigate the classification performance under changes in the vi-
sual vocabulary and number of latent topics learnt, and develop a novel
vocabulary using colour SIFT descriptors. Classification performance is
compared to the supervised approaches of Vogel & Schiele [19] and Oliva
& Torralba [11], and the semi-supervised approach of Fei Fei & Per-
ona [3] using their own datasets and testing protocols. In all cases the
combination of (unsupervised) pLSA followed by (supervised) nearest
neighbour classification achieves superior results. We show applications
of this method to image retrieval with relevance feedback and to scene
classification in videos.

1 Introduction

Classifying scenes (such as mountains, forests, offices) is not an easy task owing
to their variability, ambiguity, and the wide range of illumination and scale con-
ditions that may apply. Two basic strategies can be found in the literature. The
first uses low-level features such as colour, texture, power spectrum, etc. This
approaches consider the scene as an individual object [16, 17] and is normally
used to classify only a small number of scene categories (indoor versus outdoor,
city versus landscape etc...). The second strategy uses an intermediate represen-
tations before classifying scenes [3, 11, 19], and has been applied to cases where
there are a larger number of scene categories (up to 13).

In this paper we introduce a new classification algorithm based on a combina-
tion of unsupervised probabilistic Latent Semantic Analysis (pLSA) [6] followed
by a nearest neighbour classifier. The pLSA model was originally developed for
topic discovery in a text corpus, where each document is represented by its word
frequency. Here it is applied to images represented by the frequency of “visual
words”. The formation and performance of this “visual vocabulary” is investi-
gated in depth. In particular we compare sparse and dense feature descriptors

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 517–530, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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over a number of modalities (colour, texture, orientation). The approach is in-
spired in particular by three previous papers: (i) the use of pLSA on sparse
features for recognizing compact object categories (such as Caltech cars and
faces) in Sivic et al. [15]; (ii) the dense SIFT [9] features developed in Dalal and
Triggs [2] for pedestrian detection; and (iii) the semi-supervised application of
Latent Dirichlet Analysis (LDA) for scene classification in Fei Fei and Perona [3].
We have made extensions over all three of these papers both in developing new
features and in the classification algorithm. Our work is most closely related
to that of Quelhas et al. [12] who also use a combination of pLSA and super-
vised classification. However, their approach differs in using sparse features and
is applied to classify images into only three scene types.

We compare our classification performance to that of three previous meth-
ods [3, 11, 19] using the authors’ own databases. The previous works used varying
levels of supervision in training (compared to the unsupervised object discovery
developed in this paper): Fei Fei and Perona [3] requires the category of each
scene to be specified during learning (in order to discover the themes of each cat-
egory); Oliva and Torralba [11] require a manual ranking of the training images
into 6 different properties; and Vogel and Schiele [19] require manual classifi-
cation of 59582 local patches from the training images into one of 9 semantic
concepts. As will be seen, we achieve superior performance in all cases.

We briefly give an overview of the pLSA model in Section 2. Then in Sec-
tion 3 we describe the classification algorithm based on applying pLSA to images.
Section 4 describes the features used to form the visual vocabulary and the prin-
cipal parameters that are investigated. A description of datasets and a detailed
description of the experimental evaluation is given in Sections 5 and 6.

2 pLSA Model

Probabilistic Latent Semantic Analysis (pLSA) is a generative model from the
statistical text literature [6]. In text analysis this is used to discover topics in a
document using the bag-of-words document representation. Here we have images
as documents and we discover topics as object categories (e.g. grass, houses), so
that an image containing instances of several objects is modelled as a mixture
of topics. The models are applied to images by using a visual analogue of a
word, formed by vector quantizing colour, texture and SIFT feature like region
descriptors (as described in Section 4). pLSA is appropriate here because it
provides the correct statistical model for clustering in the case of multiple object
categories per image. We will explain the model in terms of images, visual words
and topics.

Suppose we have a collection of images D = d1,...,dN with words from a
visual vocabulary W = w1,...,wV . One may summarize the data in a V × N co-
occurrence table of counts Nij = n(wi, dj), where n(wi, dj , ) denotes how often
the word wi occurred in an image dj . In pLSA there is also a latent variable
model for co-occurrence data which associates an unobserved class variable z ε
Z = z1,...,zZ with each observation. A joint probability model P (w, d) over V
× N is defined by the mixture:
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P (w|d) =
∑
zεZ

P (w|z)P (z|d) (1)

P (w|z) are the topic specific distributions and, each image is modelled as a
mixture of topics, P (z|d). For a fuller explanation of the model refer to [5, 6, 15].

3 Classification

In training the topic specific distributions P (w|z) are learnt from the set of train-
ing images. Each training image is then represented by a Z-vector P (z|dtrain),
where Z is the number of topics learnt. Determining both P (w|z) and P (z|dtrain)
simply involves fitting the pLSA model to the entire set of training images. In
particular it is not necessary to supply the identity of the images (i.e. which
category they are in) or any region segmentation.

Classification of an unseen test image proceeds in two stages. First the doc-
ument specific mixing coefficients P (z|dtest) are computed, and then these are
used to classify the test images using a K nearest neighbour scheme. In more
detail document specific mixing coefficients P (z|dtest) are computed using the
fold-in heuristic described in [5]. The unseen image is projected onto the sim-
plex spanned by the P (w|z) learnt during training, i.e. the mixing coefficients
P (zk|dtest) are sought such that the Kullback-Leibler divergence between the
measured empirical distribution and P (w|dtest) =

∑
zεZ P (w|z)P (z|dtest) is min-

imized. This is achieved by running EM in a similar manner to that used in
learning, but now only the coefficients P (zk|dtest) are updated in each M-step
with the learnt P (w|z) kept fixed. The result is that the test image is represented
by a Z-vector. The test image is then classified using a K Nearest Neighbours
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classifier (KNN) on the Z-vectors of the training images. An Euclidean distance
function is used. In more detail, the KNN selects the K nearest neighbours of the
new image within the training database. Then it assigns to the new picture the
label of the category which is most represented within the K nearest neighbours.
Figure 1 shows graphically the learning and classification process.

4 Visual Words and Visual Vocabulary

In the formulation of pLSA, we compute a co-occurrence table, where each image
is represented as a collection of visual words, provided from a visual vocabulary.
This visual vocabulary is obtained by vector quantizing descriptors computed
from the training images using k-means, see the illustration in the first part of
Figure 1. Previously both sparse [1, 7, 14] and dense descriptors, e.g. [2, 8, 18],
have been used. Here we carry out a thorough comparison over dense descriptors
for a number of visual measures (see below) and compare to a sparse descriptor.
We vary the normalization, sizes of the patches, and degree of overlap. The words
produced are evaluated by assessing their classification performance over three
different databases in Section 5.

We investigate four dense descriptors, and compare their performance to a
previously used sparse descriptor. In the dense case the important parameters
are the size of the patches (N) and their spacing (M) which controls the degree
of overlap:

Grey patches (dense). As in [18], and using only the grey level information,
the descriptor is a N × N square neighbourhood around a pixel. The pixels are
row reordered to form a vector in an N2 dimensional feature space. The patch
size tested are N = 5, 7 and 11. The patches are spaced by M pixels on a regular
grid. The patches do not overlap when M = N , and do overlap when M = 3
(for N = 5, 7) and M = 7 (for N = 11).

Colour patches (dense). As above, but the colour information is used for
each pixel. We consider the three colour components HSV and obtain a N2 × 3
dimensional vector.

Grey SIFT (dense). SIFT descriptors [9] are computed at points on a regular
grid with spacing M pixels, here M = 5, 10 and 15. At each grid point SIFT
descriptors are computed over circular support patches with radii r = 4, 8, 12
and/or 16 pixels. Consequently each point is represented by n SIFT descriptors
(where n is the number of circular supports), each is 128-dim. When n > 1,
multiple descriptors are computed to allow for scale variation between images.
The patches with radii 8, 12 and 16 overlap. Note, the descriptors are rotation
invariant.

Colour SIFT (dense). As above, but now SIFT descriptors are computed for
each HSV component. This gives a 128× 3 dim-SIFT descriptor for each point.
Note, this is a novel feature descriptor. Another way of using colour with SIFT
features has been proposed by [4].

Grey SIFT (sparse). Affine co-variant regions are computed for each grey
scale image, constructed by elliptical shape adaptation about an interest point
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[10]. These regions are represented by ellipses. Each ellipse is mapped to a circle
by appropriate scaling along its principal axis and a 128-dim SIFT descriptor
computed. This is the method used by [1, 7, 14, 15].

5 Datasets and Methodology

5.1 Datasets

We evaluated our classification algorithm on three different datasets: (i) Oliva
and Torralba [11], (ii) Vogel and Schiele [19], and (iii) Fei Fei and Perona [3].
We will refer to these datasets as OT, VS and FP respectively. Figure 2 shows
example images from each dataset, and the contents are summarized here:

OT: includes 2688 images classified as 8 categories: 360 coasts, 328 forest, 374
mountain, 410 open country, 260 highway, 308 inside of cities, 356 tall buildings,
292 streets. The average size of each image is 250× 250 pixels.

VS: includes 702 natural scenes consisting of 6 categories: 144 coasts, 103
forests, 179 mountains, 131 open country, 111 river and 34 sky/clouds. The size
of the images is 720 × 480 (landscape format) or 480 × 720 (portrait format).
Every scene category is characterized by a high degree of diversity and potential
ambiguities since it depends strongly on the subjective perception of the viewer.

FP: contains 13 categories and is only available in greyscale. This dataset
consists of the 2688 images (8 categories) of the OT dataset plus: 241 suburb
residence, 174 bedroom, 151 kitchen, 289 living room and 216 office. The average
size of each image is approximately 250× 300 pixels.

Fig. 2. Example images from the three different datasets used. (a) from dataset
OT [11], (b) from dataset VS [19], and (c) from the dataset FP [3]. The remaining
images of this dataset are the same as in OT but in greyscale.
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5.2 Methodology

The classification task is to assign each test image to one of a number of cat-
egories. The performance is measured using a confusion table, and overall per-
formance rates are measured by the average value of the diagonal entries of the
confusion table.

Datasets are split randomly into two separate sets of images, half for training
and half for testing. We take 100 random images from the training set to find
the optimal parameters, and the rest of the training images are used to compute
the vocabulary and pLSA topics. A vocabulary of visual words is learnt from
about 30 random training images of each category.

The new classification scheme is compared to two baseline methods. These
are included in order to gauge the difficulty of the various classification tasks.
The baseline algorithms are:

Global colour model. The algorithm computes global HSV histograms for
each training image. The colour values are represented by a histogram with 36
bins for H, 32 bins for S, and 16 bins for V, giving a 84-dimensional vector for
each image. A test image is classified using KNN (with K = 10).

Global texture model. The algorithm computes the orientation of the gra-
dient at each pixel for each training image (greyscale). These orientations are
collected into a 72 bin histogram for each image. The classification of a test
image is again carried out using KNN.

Moreover the KNN classifier is also applied directly to the bag-of-words
(BOW) representation (i.e. to P (w|d)) in order to assess the gain in using pLSA
(where the KNN classifier is applied to the topic distribution P (z|d)).

6 Classification Results

We investigate the variation of classification performance with change in visual
vocabulary, number of topics etc for the case of the OT dataset. The results
for the datasets FP and VS use the optimum parameters selected for OT and
are given in Section 6.2 below. For the OT dataset three classification situations
are considered: classification into 8 categories, and also classification within the
two subsets of natural (4 categories), and man-made (4 categories) images. The
latter two are the situations considered in [11]. We carry out experiments with
normalized images (zero mean and unit standard deviation) and unnormalized
images.

Excluding the preprocessing time of feature detection and visual vocabulary
formation, it takes about 15 mins to fit the pLSA model to 1600 images (Matlab
implementation on a 1.7GHz Computer).

6.1 Classification of the OT Dataset

We first investigate how classification performance (on the validation set – see
Section 5.2) is affected by the various parameters: the number of visual words
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Fig. 3. Performance under variation in various parameters for the 8 category OT clas-
sification. Top: example visual words and performance for dense colour SIFT M = 10,
r = 4, 8, 12 and 16 (each column shows the HSV components of the same word).
Lower example visual words and performance for grey patches with N = 5 and M = 3.
(a) Varying number of visual words, V , (b) Varying number of topics, Z, (c) Varying
number k (KNN).

(V in the k-means vector quantization), the number of topics (Z in pLSA),
and the number of neighbours (K in kNN). Figure 3 shows this performance
variation for two types of descriptor – dense colour SIFT with M = 10 and four
circular supports, and grey patches with N = 5 and M = 3. Note the mode in
the graphs of V , Z and K in both cases. This is quite typical across all types of
visual words, though the position of the modes vary slightly. For example, using
colour SIFT the mode is at V = 1500 and Z = 25, while for grey patches the
mode is at V = 700 and Z = 23. For K the performance increases progressively
until K is between 10 and 12, and then drops off slightly. In the following results
the optimum choice of parameters is used for each descriptor type.

To investigate the statistical variation we repeat the dense colour SIFT ex-
periment (r = 4, 8, 12, 16 and M = 10) 15 times with varying random selection
of the training and test sets, and building the visual vocabulary afresh each
time. All parameters are fixed with the number of visual words V = 1500, the
number of topics Z = 25 and the number of neighbours K = 10. We obtained
performance values between 79% and 86% with a mean of 84.78% and standard
deviation of 1.93%.

We next investigate the patch descriptors in more detail. Figure 4a shows the
results when classifying the images of natural scenes with colour-patches. The
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Fig. 4. (a) The performance when classifying the four natural categories using nor-
malized and unnormalized images and with overlapping and non-overlapping patches.
Colour patches are used. (b) Performance when classifying all categories, man-made
and natural using different patches and features. (CP = Colour patches - dense; GHA
= Grey Harris Affine - sparse; G4CC = Grey SIFT concentric circles - dense; C4CC =
Colour SIFT 4 concentric circles - dense; C1CC = Colour SIFT 1 Circle - dense; C2CC
= Colour SIFT 2 concentric circles - dense.

performance when using unnormalized images is nearly 1% better than when
using normalized. When using overlapping patches, the performance increases
by almost 6% compared to no overlap. Similar results occur for the man-made
and all scene category sets. Comparing results when classifying the images using
only grey level information or using colour, it can be seen that colour brings an
increment of around 6-8%. This is probably because colour is such an important
factor in outdoor images, and helps to disambiguate and classify the different
objects in the scene. For colour patches the best performance is obtained when
using the 5× 5 patch over unnormalized images, with M = 3, V = 900, Z = 23
and K = 10.

The performance of SIFT features is shown in Figure 4b. The best results
are obtained with dense and not sparse descriptors. This is almost certainly
because we have more information on the images: in the sparse case the only
information is where a Harris detector fires and, especially for natural images,
this is a very impoverished representation. Again colour is a benefit with better
results obtained using colour than grey SIFT. The performance using grey SIFT
when classifying natural images is 88.56% and increase 2% when using colour
SIFT, both with four concentric support regions. The difference when using
these vocabularies with man-made images is not as significant. This reiterates
that colour in natural images is very important for classification. Turning to the
performance variation with the number of support regions for dense SIFT. It can
be seen that best results are obtained using four concentric circles. With only
one support region to represent each patch, results are around 1% worse. This is
probably because of lack of invariance to scale changes (compared to using four
support regions to represent each point).

All the results above are for P (z|d) with the KNN algorithm. Now we inves-
tigate classifying the BOW representation directly. We use V = 1500, Z = 25,
K = 10, M = 10 and four concentric circles. When classifying the 4 natural
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Table 1. Rates obtained different features when using database OT: GP (Grey
Patches), CP (Colour Patches), G4CC (Grey SIFT four Concentric Circles), C4CC
(Colour SIFT four Concentric Circles), PS (Colour Patches and Colour SIFT), BOW
(Bag-of-Words), GlC (Global colour), GlT (Global Texture).

Visual Vocabulary GP CP G4CC C4CC PS BOW GlC GlT
All categ. 71.51 77.05 84.39 86.65 82.6 82.53 55.12 62.21

Natural categ. 75.43 82.47 88.56 90.28 84.05 88.74 59.53 69.61
Man-made categ. 77.44 83.56 91.17 92.52 89.34 89.67 66.11 73.14

images in the OT dataset, the results using the topic distribution is 90.28 and
with the bag-of-words directly the classification performance decreases by only
around 1, 5%, to 88.74%. However for 8 categories, the performance decreases by
nearly 4%, from 86.65 to 82.53%. Using the 13 categories from the FP dataset,
the performance falls 8.4%, from 73.4% to 64.8%. Thus there is a clear gain in
using pLSA (over the BOW) when classifying a large number of categories.

Table 1 summarizes the results for the three OT image sets (all 8 categories,
4 natural and 4 man-made) covering the different vocabularies: grey and colour
patches, grey and colour SIFT, BOW classification and the two baseline algo-
rithms. From these results it can be seen that: (i) The baseline texture algorithm
works better than the baseline colour in all three cases. Despite its simplicity the
performance of the baseline texture algorithm on man-made images (73.14%) is
very high, showing that these images may be easily classified from their edge
directions. (ii) For the various descriptors there are clear performance conclu-
sions: man-made is always better classified than natural (as expected from the
baseline results); SIFT type descriptors are always superior to patches; colour is
always superior to grey level. The best performance (86.65% for all 8 categories)
is obtained using colour SIFT with M = 10 and four concentric circles. (iii)
Somewhat surprizingly, better results are obtained using the SIFT vocabulary
alone, rather than when merging both vocabularies (patches and SIFT). This
may be because the parameters (V , Z and K) have been optimized for a single
vocabulary, not under the conditions of using multiple vocabularies. This issue
will be investigated further.

The best classified scenes are highway and forest with 95.61% and 94.86%
of correct classified images respectively. The most difficult scenes to classify are
open country. There is confusion between the open country and coast scenes.
These are also the most confused categories in [11].

Figure 5 shows examples of segmentation of four topics using the colour SIFT
vocabulary. Circular patches are painted according to the maximum posterior
P (z|w, d):

P (z|w, d) =
P (w|z)P (z|d)∑

zlεZ
P (w|zl)P (zl|d) (2)

For each visual word in the image we choose the topic with maximum posterior
P (z|w, d) and paint the patch with its associated colour, so each colour represents
a different topic (the topic colour is chosen randomly). To simplify the figures
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Fig. 5. Topics segmentation. Four topics (clouds – top left, sky – top right, vegetation –
lower left, and snow/rocks in mountains – lower right) are shown. Only circular regions
with a topic posterior P (z|w, d) greater than 0.8 are shown.

we only paint one topic each time. Note that topics represent consistent regions
across images (enabling a coarse segmentation) and there is a straightforward
correspondence between topic and object.

Decreasing the number of training images. We evaluate now the classifi-
cation performance when less training data is available. The OT dataset is split
into 2000 training images and 688 test images. A varying number of nt labelled
images from the training set are used to learn the pLSA topics and for the KNN.
The classification performance is compared using P (z|d) and BOW vectors. The
vocabulary has V = 1500 words, and Z = 25 and K = 10. Four support regions
are used for each point spaced at M = 10. Table 2 shows the results. The gap
between pLSA and BOW increases as the number of labelled training images
decreases, as was demonstrated in [12].

Table 2. Comparison of P (z|d) and BOW performance as the number of training
images used in KNN is decreased. The classification task is into 8 categories from the
OT dataset.

# img. (nt) 2000 1600 1024 512 256 128 32
Perf. P (z|d) 86.9 86.7 84.6 79.5 75.3 68.2 58.7
Perf. BOW 83.1 82.6 80.4 72.8 60.2 52.0 47.3

Summary. The best results are obtained using dense descriptors – colour SIFT
with four circular support. Overlap increases the performance. When using the
SIFT vocabulary the values for the parameters giving the best results areM = 10
pixels with radius for the concentric circles support regions of r = 4, 8, 12 and
16 pixels and V = 1500, Z = 25 and K = 10. For patches the best results are
for N = 5, M = 3, V = 900, Z = 23 and K = 10. In both, colour information
is used. The result that dense SIFT gives the best performance was also found
by [2] in the case of pedestrian detection. It it interesting that the same feature
applies both to more distributed categories (like grass, mountains) as well as the
compact objects (pedestrians) of their work where essentially only the boundaries
are salient.
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6.2 Comparison to Previous Results

We compare the performance of our classification algorithm to the supervised
approaches of Vogel and Schiele [19] and Oliva and Torralba [11], and the semi-
supervised approach of Fei Fei and Perona [3], using the same datasets that they
tested their approaches on. For each dataset we use the same parameters and
type of visual words (V = 1500, Z = 25 and K = 10 with SIFT and four circular
supports spaced at M = 10). We used colour for OT and VS and grey for FP.
The visual vocabulary is computed independently for each dataset, as described
in section 5.2. We return to the issue of sharing vocabularies across datasets in
section 6.3. The results are given in Table 3.

Table 3. Comparison of our algorithm with other methods using their own databases

Dataset # of categ. our perf. authors’ perf.
OT 8 86.65 –
OT 4 Natural 90.2 89.0 [11]
OT 4 Man-Made 92.5 89.0 [11]
VS 6 85.7 74.1 [19]
FP 13 73.4 65.2 [3]

Note that much better results are obtained with the four natural scenes of
OT, than with the six of VS. This is because the images in VS are much more
ambiguous than those of OT and consequently more difficult to classify. Our
method outperforms all of the previous methods, despite the fact that our train-
ing is unsupervised in the sense that the scene identity of each image is unknown
at the pLSA stage and is not required until the KNN classification step. This is
in contrast to [3], where each image is labelled with the identity of the scene to
which it belongs during the training stage. In [19], the training requires man-
ual annotation of 9 semantic concepts for 60000 patches, while in [11] training
requires manual annotation of 6 properties for thousands of scenes. We are not
using the same split into training and testing images as the original authors:
for OT we use approximately 200 images per category which means less train-
ing images (and more testing images) than [11], who used between 250 and 300
training images per category. For VS we used 350 images for training and 350
also for testing which also means less training images than [19] who used ap-
proximately 600 training images. When working with FP we used 1344 images
for training, which is slightly more than [3], who used 1300 (100 per category)
training images.

Discussion. The superior performance (compared to [3, 19]) could be due to the
use of better features and how they are used. In the case of Vogel and Schiele,
they learn 9 topics (called semantic concepts) that correspond to those that
humans can observe in the images: water, trees, sky etc. for 6 categories. Fei Fei
and Perona learn 40 topics (called themes) for 13 categories. They do not say
if these topics correspond to natural objects. In our case, we discover between
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22 and 30 topics for 8 categories. These topics can vary depending if we are
working with colour features (where topics can distinguish objects with different
colours like light sky, blue sky, orange sky, orange foliage, green foliage etc...) or
only grey SIFT features (objects like trees and foliage, sea, buildings etc...). In
contrast to [19] we discover objects that sometimes would not be distinguished
in a manual annotation, for example water with waves and water without waves.
Our superior performance compared to [11] could be due to their method of scene
interpretation. They use the spatial envelope modeled in a holistic way in order
to obtain the structure (shape) of the scene using coarsely localized information.
On the other hand, in our approach specific information about objects is used
for scene categorization.

6.3 Other Applications

We applied the pLSA based classifier in three other situations. The first one is
also a classification task, but combining the images of two different datasets, the
second is a relevance feedback application, and the third is scene retrieval for the
film Pretty Woman [Marshall, 1990]. In all the following the descriptor is dense
colour SIFT with circular support and V = 700, Z = 22 and K = 10 (these are
the optimal parameter values when working with the four natural scenes).

Vocabulary generalization. In this classification test, we train the system
with the four natural scenes of the OT dataset (coast, forest, mountains and open
country) and test using the same four scene categories from the VS dataset. This
tests whether the vocabulary and categories learnt from one dataset generalizes
to another. We obtain a performance of 88.27% of correctly classified images.
Note, this performance is worse than that obtained when classifying the same
categories using only the OT database. This is because (i) images within the same
database are more similar, and (ii) the images in VS are more ambiguous and
not all represented in OT. To address (i) we will investigate using vocabularies
composed from both databases.

Relevance Feedback (RF). [20] proposed a method for improving the retrieval
performance, given a probablistic model. It is based on moving the query point
in the visual word space toward good example points (relevant images) and

Inside City Inside City Inside City Inside City Inside City Inside City

Open Country Open Country Coast Tall building Tall building Street Inside City

Inside City

Fig. 6. Example frames from the film Pretty Woman with their classification. The
classifier is trained on the OT dataset.
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away from bad example points (irrelevant images). The vector moving strategy
uses the Rocchio’s formula [13]. To test RF we simulate the user’s feedback
using 25 random images of each category. For each query image, we carry out
n iterations. At each iteration the system examines the top 20, 40 or 60 images
that are most similar to the query excluding the positive examples labelled in
previous iterations. Images from the same category as the initial query will be
used as positive examples, and other images as negative examples. We used 200
query images, 25 of each category, in OT dataset. Best results are obtained when
considering the top 60 images, The first 100 images can be retrieved with an
average precision of 0.75. The most difficult category to retrieve is open country
while the better retrieved are forest and highway followed by tall buildings. This
is in accordance with the classification results.

Classifying film frames into scenes. In this test the images in OT are again
used as training images (8 categories), and key frames from the movie Pretty
Woman are used as test images. We used one of every 100 frames from the
movie to form the testing set. In this movie there are only a few images that
could be classified as the same categories used in OT, and there are many images
containing only people. So it is a difficult task for the system to correctly classify
the key frames. However, the results obtained (see Figure 6) are very encouraging
and show again the success of using pLSA in order to classify scenes according
to their topic distribution.

7 Conclusions

We have proposed a scene classifier that learns categories and their distributions
in unlabelled training images using pLSA, and then uses their distribution in test
images as a feature vector in a supervised nearest neighbour scheme. In contrast
to previous approaches [3, 11, 19], our topic learning stage is completely unsuper-
vised and we obtain significantly superior performance. We studied the influence
of various descriptor parameters and have shown that using dense SIFT descrip-
tors with overlapping patches gives the best results for man-made as well as
for natural scene classification. Furthermore, discovered topics correspond fairly
well with different objects in the images, and topic distributions are consistent
between images of the same category. It is probably this freedom in choosing
appropriate topics for a dataset, together with the optimized features and vo-
cabularies, that is responsible for the superior performance of the scene classifier
over previous work (with manual annotation). Moreover, the use of pLSA is
never detrimental to performance, and it gives a significant improvement over
the original BOW model when a large number of scene categories are used.
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Abstract. Linear dimensionality reduction methods, such as LDA, are often
used in object recognition for feature extraction, but do not address the problem of
how to use these features for recognition. In this paper, we propose Probabilistic
LDA, a generative probability model with which we can both extract the features
and combine them for recognition. The latent variables of PLDA represent both
the class of the object and the view of the object within a class. By making ex-
amples of the same class share the class variable, we show how to train PLDA
and use it for recognition on previously unseen classes. The usual LDA features
are derived as a result of training PLDA, but in addition have a probability model
attached to them, which automatically gives more weight to the more discrimi-
native features. With PLDA, we can build a model of a previously unseen class
from a single example, and can combine multiple examples for a better repre-
sentation of the class. We show applications to classification, hypothesis testing,
class inference, and clustering, on classes not observed during training.

1 Introduction

There is a long tradition of using linear dimensionality reduction methods for object
recognition [1, 2]. Most notably, these include Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA). While PCA identifies the linear subspace in
which most of the data’s energy is concentrated, LDA identifies the subspace in which
the data between different classes is most spread out, relative to the spread within each
class. This makes LDA suitable for recognition problems such as classification. One
of the questions that dimensionality reduction methods do not answer is: what do we
do with the lower-dimension representation of the data? A common technique is to
project the data onto a PCA subspace, thus eliminating singularities, and then find an
LDA subspace. However, after the projection, how do we combine the components
of the resulting multivariate representation? Clearly some dimensions (for example,
the dominant projection directions identified by LDA) have to be more important than
others, but how do we incorporate this difference in importance into recognition? How
do we perform tasks such as classification and hypothesis testing on examples of classes
we haven’t seen before, and how do we take advantage of multiple examples of a new
class?

In this paper, we reformulate the problem of dimensionality reduction for recognition
in the probabilistic context. It has long been known that LDA maximizes the likelihood
of a Gaussian mixture model and is mathematically equivalent to linear regression of
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the class assignment labels [3, 4]. Such regression, however, is useful only when LDA is
used to classify examples of the classes represented in the training data. One of the many
problems in which this assumption is false is face recognition. For example, having
trained a system, we need to be able to determine whether two face views belong to
the same person, even though we have not seen this person before. In these cases, we
are not able to build an accurate probability model for the new person (since we have
only one example), nor is a discrete class label defined for an example of a previously
unseen class.

In a Gaussian mixture model with common class-conditional covariances, each class
is described by its center, and the support of the prior distribution of the class centers is
a finite set of points. This is not sufficient for handling new classes, and in this work we
solve this problem by making the prior of the class centers continuous. We can learn this
prior (which models the differences between classes) as well as the common variance
of the class-conditional distributions (which models the differences between examples
of the same class). We will show that by maximizing the model likelihood we arrive at
the features obtained by Linear Discriminant Analysis. However, in Probabilistic LDA,
we also obtain a principled method of combining different features so that the more
discriminative features have more impact on recognition.

Probabilistic LDA is a general method that can accomplish a wide variety of recog-
nition tasks. In “one-shot learning” [5], a single example of a previously unseen class
can be used to build the model of the class. Multiple examples can be combined to
obtain a better representation of the class. In hypothesis testing, we can compare two
examples, or two groups of examples, to determine whether they belong to the same
(previously unseen) class. This can further be used to cluster examples of classes not
observed before, and automatically determine the number of clusters.

The method proposed in this paper is to LDA what Probabilistic PCA [6] is to PCA.
Namely, we will derive the commonly used feature extraction method using a proba-
bilistic approach, and obtain the method not just to compute the features, but also to
combine them. While PPCA is used to model a probability density of data, PLDA can
be used to make probabilistic inferences about the class of data.

2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is commonly used to identify the linear features
that maximize the between-class separation of data, while minimizing the within-class
scatter [7]. Consider a training data set containingN examples {x1 . . .xN}, where each
example xi is a column vector of length d. Each training example belongs to one of the
K classes. Let Ck be the set of all examples of class k, and let nk = |Ck| be the number
of examples in class k = 1 . . .K . In LDA, the within-class and between-class scatter
matrices are computed:

Sw =

∑
k

∑
i∈Ck

(xi −mk)(xi −mk)T

N
, Sb =

∑
k nk(mk −m)(mk −m)T

N
(1)

where mk = 1
nk

∑
i∈Ck

xi is the mean of kth class, and m = 1
N

∑
i x

i is the mean

of the data set. We seek the linear transformation x → WT x that maximizes the
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between-class variance relative to the within-class variance, whereW is a d×d′ matrix,
with d′ being the desired number of dimensions. It can be shown that the columns of
the optimalW are the generalized eigenvectors such that Sbw = λSww, corresponding
to the d′ largest eigenvalues. One consequence of this result is that W simultaneously
diagonalizes the scatter matrices WTSbW and WTSwW . In other words, LDA decor-
relates the data both between and within classes.

The LDA projections can be derived by fitting a Gaussian Mixture Model to the
training data [3]. The mixture model that results can be used to classify examples of the
classes represented in the training data, but not the novel classes. A different probability
model is required for that purpose, and is provided by Probabilistic LDA.

3 Probabilistic LDA

A Gaussian mixture model can be thought of as a latent variable model where the ob-
served node x represents the example, and the latent variable y is the center of a mixture
component and represents the class (Fig. 1a). Members of the same class share the class
variable y. The class-conditional distributions

P (x |y) = N (x |y,Φw)

have a common covariance matrix Φw, and the prior on the class variable assigns a
probability mass to each of the finite number of points: P (y) =

∑K
k=1 πkδ(y − μk).

When the centers μk are constrained to lie in a low-dimensional (but unknown) sub-
space, likelihood maximization with respect to μk, πk and Φw recovers the standard
LDA projections [3]. We want to extend the probabilistic framework to be able to han-
dle classes not represented in the training data. To this end, we propose to modify the
latent variable prior and make it continuous. In particular, to enable efficient inference
and closed-form training, we shall impose a Gaussian prior:

P (y) = N (y |m,Φb)

We will require Φw to be positive definite, and Φb to be positive semi-definite. It is a
well-known result from linear algebra that Φw and Φb can be simultaneously diagonal-
ized: V T ΦbV = Ψ and V T ΦwV = I, where the diagonal matrix Ψ and non-singular
matrix V are found by solving a generalized eigenproblem. By defining A = V −T , we
have Φw = AAT and Φb = AΨAT . Our model is then:

x = m +Au where
u ∼ N (· |v, I) and
v ∼ N (· | 0,Ψ)

(2)

Here v represents the class, and u represents an example of that class in the projected
space — just as y = m + Av and x = m + Au do in the data space. Here, Ψ is
diagonal, Ψ ≥ 0. The corresponding graphical model is shown in Fig. 1b.
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(a) (b) (c)

Fig. 1. (a) Modeling class and view. The latent variable y represents the class center, and the
examples of the class are drawn from a Gaussian distribution centered at y. If the prior on y is
discrete, this is a mixture model. For the model to generalize to previously unseen classes, we
instead impose a Gaussian prior N (y |m, Φb) on the class center, which leads to Probabilistic
LDA. (b) By diagonalizing the covariances Φb and Φw , PLDA models the class center v and ex-
amples u in the latent space where the variables are independent. The example x in the original
space is related to its latent representation u via an invertible transformation A. All the recog-
nition activities take place in the latent space. (c) A set of examples x grouped into K clusters,
where examples within the kth cluster share the class variable vk. The latent variables v and u
are hidden and can be integrated out. In the training data, the grouping of examples into clusters
is given, and we learn the model parameters by maximizing the likelihood. If, instead, the model
parameters are fixed, likelihood maximization with respect to the class assignment labels solves
a clustering problem.

3.1 Inference in the Latent Space

The main advantage of PLDA is that it allows us to make inference about the classes
not present during training. One example of such a situation is face recognition. The
model parameters are learned from training data, but the trained system must deal with
examples of novel individuals. This is different from many other object recognition
tasks where the training data contains examples of all the classes.

In the problem of classification, we are given a gallery (x1 . . .xM ) containing one
example from each of M classes, as well as a probe example xp. We know that the
probe belongs to one of the M classes in the gallery, and need to determine which
one. We will answer this question by maximizing the likelihood. This is more easily
accomplished in the latent space, where we apply the transform u = A−1(x −m) to
all of the data, which decorrelates the data as shown in Eqn. (2). Consider an example
ug from the gallery. Let us compute P (up |ug), the probability of the probe example
coming from the same class as the gallery example. By performing the inference on the
class variable, we have

P (v |u) = N (v | Ψ
Ψ+Iu,

Ψ
Ψ+I ) (3)

Since up and ug are conditionally independent given v (see Fig. 1), we have

P (up |ug) = N (up | Ψ
Ψ+Iu

g, I + Ψ
Ψ+I ) (4)



Probabilistic Linear Discriminant Analysis 535

To classify a probe example, we compute P (up |ug) for g = 1 . . .M , and pick the
maximum. With PLDA, we were able to combine the knowledge about the general
structure of the data, obtained during training, and the examples of new classes, yielding
a principled way to perform classification1.

We can also combine multiple examples of a class into a single model, improving the
recognition performance. If n independent examples ug

1...n of a class are in the gallery
to be used for classification, then we can show that

P (up |ug
1...n) = N (up | nΨ

nΨ+I ū
g, I + Ψ

nΨ+I)

where ūg = 1
n (ug

1 + · · ·+ ug
n).

Another common recognition problem is that of hypothesis testing. Given two ex-
amples of previously unseen classes, we need to determine whether they belong to the
same class. Methods such as LDA do not solve this problem, but with PLDA it is easily
accomplished. For two examples up and ug, we compute the likelihoods P (up)P (ug)
and P(up,ug) =

∫
P (up |v)P (ug |v)P (v)dv corresponding to the two examples be-

longing to different classes and the same class, respectively, and use the ratio of the two
to classify. More generally, if the probe contains multiple examples of an object and the
gallery contains multiple examples of another object, we compute the likelihood ratio

R({up
1...m}, {ug

1...n}) =
likelihood(same)
likelihood(diff)

=
P(up

1...m,u
g
1...n)

P(up
1...m)P(ug

1...n)
(5)

where

P(u1...n) =
∫
P (u1 |v) · · ·P (un |v)P (v)dv

=
∏d

t=1
1

(2π)n/2(ψt+ 1
n )1/2 exp(− (ūt)2

2(ψt+ 1
n ) −

∑n
i=1(u

i
t−ūt)2

2 ) (6)

is the distribution of a set of examples, given that they belong to the same class. Here,
for the tth feature, ūt = 1

n

∑n
i=1 ui

t. Since Ψ is diagonal, the contributions of different
features toP are decoupled. For priors πsame and πdiff, the probability that all the examples
are of the same class is (1 + πdiff/πsame

R )−1. If R > πdiff
πsame

, the two groups of examples
belong to the same class; otherwise, they do not. Being able to compare two groups of
examples makes it also possible to use PLDA for clustering.

The between-class feature variances ψt indicate how discriminative the features are.
In PLDA, the better features automatically contribute more to recognition. As a special
case, consider a completely non-discriminative feature, for which ψ = 0. It can be seen
that this feature does not contribute to R (Eqn. (5)), or to the other equations above, at
all. Therefore, we can perform dimensionality reduction by keeping only the rows of
A−1 corresponding to non-zero ψ. If we want to use at most d′ dimensions, we impose
the constraint that no more than d′ entries of Ψ be non-zero. We will show how to do
this in the next section.

1 The problem of outliers, not belonging to any of the gallery classes, is also solved by PLDA,
where we define P (up | ∅) = N (up | 0, Ψ + I).
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3.2 Learning the Model Parameters

The unknown parameters of PLDA are the mean m, the covariance matrix Ψ, and the
loading matrix A (or, equivalently, the variances Φb and Φw). These parameters can
be learned in the maximum likelihood framework. Given N training patterns separated
into K classes (Fig. 1c), we can compute the likelihood of the data. We will make the
assumption that all examples are independently drawn from their respective classes.
The log-likelihood is

�(x1...N ) =
K∑

k=1

lnP(xi : i ∈ Ck) (7)

where

P(x1 . . .xn) =
∫
N (y | 0,Φb)N (x1 |y,Φw) · · ·N (xn |y,Φw)dy

is the joint probability distribution of a set of n patterns, provided they belong to the
same class. Computing the integral, we get: lnP(x1...n) = C − 1

2 (ln |Φb + Φw

n | +
tr((Φb+Φw

n )−1(x̄−m)(x̄−m)T )+(n−1) ln |Φw|+tr(Φ−1
w (

∑n
i=1(x

i−x̄)(xi−x̄)T )))
where x̄ = 1

n

∑n
i=1 xi and C is a constant term that we can ignore.

Let us consider the case where each of the classes in the training data is represented
by the same number n of examples. Maximizing Eqn. (7) with respect to m, we find
m = 1

N

∑
i x

i. Substituting it back, we finally obtain

�(x1...N ) = − c
2
( ln |Φb +

1
n

Φw|+ tr((Φb +
1
n

Φw)−1Sb)

+ (n− 1) ln |Φw|+ ntr(Φ−1
w Sw)) (8)

where Sb and Sw are defined in Eqn. (1). We need to maximize the value of � with
respect to Φb and Φw, subject to Φw being positive definite, Φb being positive semi-
definite, and, in the case of dimensionality reduction, rank(Φb) ≤ d′. Without these
constraints, simple matrix calculus would yield

Φw = n
n−1Sw, Φb = Sb − 1

n−1Sw

Therefore, if the scatter matrices Sw and Sb are diagonal then so are the covariances
Φw and Φb. In fact, this diagonalization property holds even if the above constraints
are imposed. According to Eqn. (2), Φb = AΨAT , where A is invertible. For fixed Ψ,
unconstrained optimization of Eqn. (8) with respect toA−1 makes bothA−1SbA

−T and
A−1SwA

−T diagonal. Therefore, the columns of A−T contain the generalized vectors
of Sb and Sw, and the projection of data into the latent space (where the recognition
takes place) is the LDA projection discussed in §2. Finally optimizing (8) with respect
to Ψ, subject to Ψ ≥ 0 and rank(Ψ) ≤ d′, we obtain the method for learning the
parameters of our model (2). This method is shown in Fig. 2.

Our method was derived for the case where each class in the training data is repre-
sented by the same number n of examples. This may not be true in practice, in which
case we can resample the data to make the number of examples the same, use EM (as
shown in §5), or use approximations. We took the latter approach, using the closed-form
solution in Fig. 2 where n was taken to be the average number of examples per class.
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Given: Training examples x1...N from K classes, with n = N/K examples per class
Find: Parameters m, A,Ψ maximizing the likelihood of the PLDA model (Eqn. (2),
Fig. 1).

1. Compute the scatter matrices Sb and Sw (Eqn. (1)). Find the matrix W of general-
ized eigenvectors with columns such that Sbw = λSww. Then, x → WT x is the
LDA projection, and Λb = WTSbW and Λw = WTSwW are both diagonal.

2. Set
m = 1

N

∑N
i=1 xi

A = W−T
(

n
n−1Λw

)1/2

Ψ = max
(
0, n−1

n (Λb/Λw)− 1
n

)
3. To reduce the dimensionality to d′, keep the d′ largest elements of Ψ and set the

rest to zero. In the latent space u = A−1(x −m), only the features corresponding
to non-zero entries of Ψ are needed for recognition.

Fig. 2. Fitting the parameters of the PLDA model

4 Results

With Probabilistic LDA, we model the variations in the appearance of any object, as
well as the differences in the appearance of different objects. This makes PLDA a gen-
eral model, useful for a variety of recognition tasks on examples of previously unseen
classes. We will show its applications to class inference, classification, hypothesis test-
ing, and clustering.

4.1 Class Inference

By modeling both within-class and between-class variations, PLDA allows us to isolate
the class component of an example. This emphasizes the features that make different
objects distinct, discarding the information not useful for recognition.

From Eqn. (3), we can show that the MAP estimate (and also the expectation) of
the class center y corresponding to example x is ŷ = m + Av̂ = m + A(Ψ +
I)−1ΨA−1(x −m). In Fig. 3, we demonstrate the class inference on faces from the
PIE database [8]. Each row of Fig. 3a contains one person, but the view variations
within each row are large. In Fig. 3b we show the estimate of the class center. Most of
the variation within rows has been eliminated, while different rows look distinct.

4.2 Classification

One natural task for PLDA is classification, and we apply it to face recognition. We
trained the system on a set faces extracted from videos, each of which was automati-
cally cropped and contrast-normalized. We reduce the dimensionality using PCA and
capturing around 96% of the energy. In the resulting subspace, we train the PLDA model
as described in §3.
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(a): example x = m + Au (b): class estimate ŷ = m + Av̂

Fig. 3. Class inference with PLDA. (a) Faces from the PIE dataset. Rows correspond to different
people. (b) We estimate the class variable y from each example x. This emphasizes the infor-
mation relevant to recognition, and largely takes out the view variations. This makes the images
within the same class look similar, and those of different classes different. The inference was
done on each image independently. The system has never seen images from these classes before.

Each test case consists of a gallery containing one example of each ofM people from
the FERET database [9] (the training data was collected by us and did not include any
FERET images). The probe xp contains a different image of one of thoseM people, and
is classified by maximizing the likelihood P (xp |xg) (Eqn. (4)). In Fig. 4a we compare
the performance of PLDA to that of LDA. In LDA-based classification, we project the
data onto a d′-dimensional space, normalize it so that each feature has the same within-
class variance, and classify the probe by finding the nearest neighbor from the gallery
(equivalent to a maximum-likelihood decision rule). Although the features extracted
by PLDA are the same as LDA, the probability model in PLDA makes it consistently
outperform LDA of any dimensionality d′, for any gallery size. Note that with PLDA
we do not need to choose the best value for d′, since the probability model automatically
gives less importance to the less discriminative features. On the other hand, d′ affects
the performance of LDA (here, d′ = 80 seems to be the best choice).

4.3 Hypothesis Testing

While PLDA lets us perform classification better than LDA, there are many tasks that
LDA does not address at all. In hypothesis testing, we need to determine whether two
examples belong to the same class or not. More generally, given two groups of exam-
ples, where each group belongs to one class, we need to determine whether the two
classes are the same. This is accomplished by PLDA by comparing the likelihood ratio
R (Eqn. (5)) with the prior ratio. We use the COIL database [10], containing 72 images
of each of 100 objects. We randomly select 68 objects to use for training, and test on the
32 remaining objects. An error results when two examples of the same object selected
from the test set are classified as different (false negative), or when two examples of
different objects are classified as the same (false positive). The images were sampled to
32×32 pixels, and PCA (computed on the training set) was used to extract 200 features.
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Fig. 4. (a) Evaluating the classification performance of LDA (with varying dimensions d′) and
PLDA on the FERET face data set. A test gallery contains M classes, with one example per
class. The probe is a different example of one of the M classes, and needs to be labeled. We plot
the misclassification rate as a function of M . PLDA significantly outperforms LDA. The training
and test data came from different sources and have no people in common. (b) Hypothesis testing
using PLDA. We determine whether two examples belong to the same class or not by comparing
the likelihood ratio R with the prior ratio. The top curve shows the false positive and false negative
rates computed for the COIL database, with the marker corresponding to equal priors. We can also
compare two groups of examples, where each contains several examples of one class. Combining
multiple examples yields better models of the new classes, reducing the error rates. Different
classes were used for training and testing.

In Fig. 4b, we show the error rates, where the ratio of priors πdiff
πsame

moves us along
the curve (the marker corresponds to equal priors). With PLDA we can compare groups
of examples too, and we show that by comparing several examples of one class with
several examples of the other we get much better accuracy than with single examples.
We expect that a non-linear dimensionality reduction such as LLE [11] would make the
data better suited for the Gaussian model in PLDA, further reducing the error rates.

4.4 Clustering

While in classification we have the gallery of labeled objects, a different, unsupervised
approach is needed when no class labels are available. In that case, we need to cluster
the examples, so that each cluster roughly corresponds to one class. Methods such as
K-means can be used, but suffer from the arbitrary choice of metric and the need to
specify the number of clusters in advance. With PLDA, we can automatically determine
the optimal number of classes.

We approach clustering as the likelihood maximization problem. Each split of ex-
amples into clusters corresponds to a graphical model (Fig. 1c) in which all examples
within one cluster share the class variable, and the likelihood of the clustering is com-
puted by integrating out the class variables, which can be done in closed form (Eqn. (6)).
Because the set of examples can be split into clusters in an exponential number of ways,
we cannot compute the likelihood of each clustering. Instead, we use agglomerative
clustering as an approximate search mechanism. We start with each example in its own
cluster, and at each iteration merge two clusters. When two clusters are merged, the
log-likelihood � increases by lnR, where R is the likelihood ratio defined in Eqn. (5).
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Fig. 5. PLDA makes it possible to cluster examples and automatically determine the optimal
number of clusters. We approach clustering as likelihood maximization, and use agglomerative
clustering. At each step we merge the clusters with the largest likelihood ratio R; this increases
the log-likelihood by ln R. (a) The log-likelihood � as a function of the number of clusters. The
maximum is reached at 14 clusters. (b) The clusters maximizing the likelihood. If we give each
person a label A through H, the clusters are: (BBBBBDC), (AAAAA), (FFFFF), (DDDD), (IIII),
(HHHH), (GGGG), (EEEE), (EG), (HC), (CC), (I), (C), (C).

Therefore, at each iteration, we merge the two clusters with the maximum R, and up-
date the log-likelihood as � ← � + lnR. The point in this process at which � reaches
its maximum tells us the (approximately) optimal way to cluster the data, including the
number of clusters.

We tested the clustering algorithm on the PIE dataset, by randomly selecting 5 im-
ages of each of the 9 dataset collectors (the training data didn’t include any PIE images).
In Fig. 5a we plot the log-likelihood � against the number of clusters. The graph has a
maximum, which tells us how many clusters are needed (14 in this case). Fig. 5b shows
the corresponding clusters. While the clustering is not perfect, it largely corresponds to
the true classes of the examples.

5 Combining Probabilistic PCA and Probabilistic LDA

Usually, a dimensionality reduction such as PCA must be used before applying LDA
to eliminate singularities in the problem. Using PCA before PLDA works very well for
recognition, but it may be desirable to use PLDA to model the probability distribution
in the original space, and not the PCA-projected subspace. This suggests combining
PLDA with Probabilistic PCA [6] instead.

Probabilistic PCA fits the data with a model x ∼ N (· |m+Au,Σ) where the latent
variable u ∼ N (· | 0, I), and Σ = σ2I. We will combine PPCA with PLDA (Eqn. (2)),
to obtain the following model:

x ∼ N (· |m +Au,Σ), where u ∼ N (· |v, I) and v ∼ N (· | 0,Ψ) (9)

If D is the dimensionality of the data and d is the desired dimensionality of the latent
space, we constrainA to be of size D×d. We find the parameters of the model by using
Expectation Maximization (e.g. [7]). Note that by letting d = D and setting σ → 0 we
obtain an EM method for fitting the PLDA model which doesn’t require that each class
be represented by the same number of training examples.
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We can further extend PPCA+PLDA to model wider, non-linear view variations, by
defining a mixture model in which each mixture component j has its own linear trans-
formation (mj , Aj). We can think of Aj as coarsely representing the view, and u − v
as capturing finer view variations. The class variable v is shared by all examples of the
same class, even those from different mixture components. The recognition tasks and
EM-based training can be performed approximately, using an additional step assigning
each example to one of the mixture components. This allows us to project each example
into the latent space, and perform the recognition activities there. Note that if an exam-
ple comes from a class represented by v, and belongs to the jth mixture component,
then its expected value is mj +Ajv, which is the representation used in asymmetric bi-
linear models [12]. However, unlike the bilinear models, ours is a probability model, and
training it does not require the ground-truth view labels, which may be hard to obtain.
Experiments with the PPCA+PLDA mixture model will be a part of our future research.

6 Discussion

We presented a novel generative model that decomposes a pattern into the class and the
view. Probabilistic Linear Discriminant Analysis (PLDA) is related to LDA and Prob-
abilistic PCA, and can be thought of as LDA with a probability distributions attached
to the features. The probability distribution models the data through the latent vari-
ables corresponding to the class and the view. This allows us to perform inference and
recognition. The model automatically gives more importance to the more discrimina-
tive features, which helps us avoid a search for the optimal number of features. On the
other hand, we can perform dimensionality reduction with PLDA, by imposing an up-
per limit on the rank of the between-class variance. As an extension, we also proposed
a PPCA+PLDA model that doesn’t require PCA pre-processing, and a PPCA+PLDA
Mixture for modeling wider view variations.

One of the most important advantages of PLDA, compared to LDA and its previously
proposed probabilistic motivations, is that the probability distributions are learned not
only for the examples within a class but for the class center as well. This makes PLDA
perfectly suited for a wide variety of recognition problems on classes we have not seen
before. A model of a class can be built from a single example (one-shot learning),
and is further improved by combining multiple examples of a class. We can perform
classification (“what is the class of the example?”), hypothesis testing (“do the two
examples belong to the same class?”), and clustering.

Just like any linear model, PLDA performs best when the data obey the linear as-
sumptions. However, it can be applied to non-linear distributions if the features are
extracted first that linearize the data. One option is to embed the data in a linear man-
ifold (e.g. [11]), and use PLDA there. Alternatively, we can use the kernel trick inside
PLDA, by extracting non-linear features from the data using Kernel LDA [13], and then
computing the probability distribution of each feature independently.

Acknowledgments. Many thanks to David Forsyth, Thomas Leung and Troy Chinen
for discussions and suggestions, and to the paper’s area chair and reviewers for very
helpful comments and literature pointers.
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Abstract. In this paper, we propose a new 3-D model retrieval sys-
tem using the Aspect-Transition Descriptor which is based on the aspect
graph representation [1, 2] approach. The proposed method differs from
the conventional aspect graph representation in that we utilize transi-
tions as well as aspects. The process of generating the Aspect-Transition
Descriptor is as follows: First, uniformly sampled views of a 3-D model
are separated into a stable and an unstable view sets according to the lo-
cal variation of their 2-D shape. Next, adjacent stable views and unstable
views are grouped into clusters and we select the characteristic aspects
and transitions by finding the representative view from each cluster. The
2-D descriptors of the selected characteristic aspects and transitions are
concatenated to form the 3-D descriptor. Matching the Aspect-Transition
Descriptors is done using a modified Hausdorff distance. To evaluate the
proposed 3-D descriptor, we have evaluated the retrieval performance
on the Princeton benchmark database [3] and found that our method
outperforms other retrieval techniques.

1 Introduction

For years, 3-D model retrieval has been of interest for applications mostly in spe-
cialized areas such as mechanical CAD, molecular biology, and computer graph-
ics. With the recent increase in the number and variety of 3-D models, however,
new types of applications intended for the general public, such as personal-
ized 3-D cyber-rooms and avatars, and tools for creating amateur 3-D animated
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motion pictures have been gaining interest. In order to make this a reality, tools
for easy authoring of new 3-D models, the construction of large databases of 3-D
models, and the efficient and accurate retrieval of 3-D models from the database
are problems that must be solved. Especially, for these kinds of applications that
are not related to only a few classes of models, it is necessary to develop a 3-D
model retrieval system that is not task-dependent and can accurately retrieve
free-form objects.

The problem of retrieving the relevant 3-D models from the database is closely
linked to how the model is described, i.e., which characteristic the 3-D descriptor
is based on. Whether it is based on the 3-D geometry or, as shown in Fig. 1,
the projected 2-D views of the model divides 3-D descriptors into geometry-
based [4, 5, 6, 7, 8] and view-based [9, 10] ones. Geometry-based descriptors uti-
lize different geometrical attributes such as shape histograms [4] of vertices and
the distribution of distances of two random points on the model [5]. Descriptors
based on more complex geometrical attributes include extended Gaussian im-
ages [6], spherical extent functions [7], and spherical harmonic descriptors [8].
On the other hand, view-based descriptors are all based on 2-D views, but differ
in how the viewpoints are organized or selected.

As 3-D models become free-form, it becomes almost impossible to extract
high-order geometrical attributes. Since geometry-based descriptors are based
on primitive geometrical attributes, they rely on extensive statistical informa-
tion to characterize 3-D models. But it can be difficult to determine the amount
of statistical information needed for accurate description of models. View-based
descriptors, however, do not suffer from this problem since they intuitively en-
capsule the information needed to discriminate between inter-class differences
and intra-class similarities for any class of 3-D models. Also, view-based descrip-
tors have the advantage that 3-D model retrieval systems based on it is able to
provide a more user friendly interface by enabling the user to utilize a 2-D image
or sketch as a query input. It is worthy to note that the Light Field Descrip-
tor [9], which belongs to view-based descriptors, is producing superior results
compared to other geometry-based descriptors [3].

Unlike the Light Field Descriptor [9] which samples the 3-D model at ver-
tices of a regular dodecahedron, the aspect graph representation [1, 2] focuses on
generating aspects and connecting them into a graph. Specifically, aspects that
have small change in the projected shape of the model with change of viewpoint
are connected by transitions in which the change in projected shape is dramatic.
Note that, in this paper, aspects and transitions correspond to stable views and
unstable views, respectively. Aspect graph representations have been defined for
special classes of models such as polyhedra [11], solids of revolution [12, 13],
piece-wise smooth objects [14], and algebraic surfaces [15]. However, one main
issue arises, i.e., how to reduce the number of aspects for complex shapes or
free-form models. Ikeuchi and Kanade [16] proposed a method to group views
using similar features extracted from the model, and Weinshall and Werman [17]
formally analyzed the notion of view stability and view likelihood which can be
used to determine characteristic views. Recently, Cyr and Kimia [10] proposed a
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Fig. 1. Describing a 3-D model using its projected images at various viewpoints

new aspect graph representation which first groups views using a region-growing
approach based on the similarity between adjacent views and then defines the
aspect as the characteristic view for each group. Their approach has advantages
that it is applicable to free-form objects and it reduces the number of aspects
needed to describe a 3-D model.

The proposed method is similar to that of Cyr and Kimia [10] in that we
also focus in grouping views and defining aspects using characteristic views. The
main difference is that we utilize not only stable views but also unstable views,
i.e., transitions as well as aspects. This is based on the observation that tran-
sitions may contain more additional information compared to similar aspects.
Specifically, we first classify views on the view sphere into stable views and un-
stable views using local variation which is a notion that will be made clearer in
Section 2. Next, we separately group the stable views and unstable views into
clusters based on similarity and define the aspect for stable view clusters and the
transition for unstable view clusters by finding the characteristic views of each
cluster. We call the 3-D descriptor constructed using the aspects and transitions
the Aspect-Transition Descriptor. Consequently, the Aspect-Transition Descrip-
tor utilizes only the most representative aspects, and as a result utilizes a small
number of views. Note that, we avoid the need to align the 3-D models in the
process of constructing descriptors.

The paper is organized as follows: In Section 2, the proposed view classifica-
tion method and the process of generating the Aspect-Transition Descriptor are
explained in detail. Then Section 3 illustrates the matching technique based on
the Hausdorff distance for the proposed retrieval system. Section 4 presents and
analyzes the performance of the proposed retrieval system from experiments con-
ducted using the Princeton benchmark database [3]. Finally, Section 5 concludes
this paper.
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(a) (b) (c) (d)

Fig. 2. Visualization of the view sampling and view classification process. (a) The
wireframe is the twice subdivided icosahedron with 320 faces. The bright dots are the
centers of each face which represents the viewpoints actually used. The top shapes in
(b), (c), and (d) represent the projected images of the model in (a), and the bottom
polyhedra represent the distribution of adjacent local variations for each image. Bright
faces indicate low local variation, while dark faces indicate high local variation.

2 Generation of the Aspect-Transition Descriptor

2.1 View Sampling and Classification

The generation of the Aspect-Transition Descriptor begins with view sampling.
View sampling is the process of sampling the view of the 3-D model from various
viewpoints on the view sphere which is a sphere normalized relative to the size
of the model. Here, the viewpoints in the sampling process must be uniformly
distributed on the view sphere, so the geometry of regular polyhedra is used.
Also, the number of viewpoints must be large enough to sufficiently sample the
shape of the model. Therefore, we somewhat over-sample the model using the
center point of the faces in a twice subdivided icosahedron as viewpoints [18].
Specifically, we create 320 sampled views of the 3-D model.

Next, we classify the sampled views into stable views and unstable views
based on local variation which is the approximation of local shape variation
extensively explored in [17]. Unfortunately, the notion of differentiation of local
shape variation is practically inapplicable, so we approximate that notion with
computing the dissimilarity of each view Vi with its neighboring views Vj on the
assumption that the sampled views are sufficiently dense. This approximation
denoted as L(Vi) is called local variation and is defined by

L(Vi) =
∑

j

d(Vi, Vj)
g(Vi, Vj)

, (1)

where d(Vi, Vj) is the dissimilarity between Vi and Vj , and g(Vi, Vj) is the geo-
metric distance between the viewpoints of the two views. Here, the dissimilarity
is computed using 2-D descriptors as image metrics for each view. We will discuss
2-D descriptors in Section 2.3.
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Now, using local variation as the criteria, the stable view set SV and the
unstable view set UV is defined as follows:

SV =

{
Vsv

∣∣∣∣∣L(Vsv) <
1
n

∑
i

L(Vi)− θsv

}
, (2)

UV =

{
Vuv

∣∣∣∣∣L(Vuv) >
1
n

∑
i

L(Vi)− θuv

}
, (3)

where n is the total number of sampled views, and θsv and θuv are thresholds
based on the standard deviation of the local variation values that control the
number of stable and unstable views. Fig. 3 shows an example of a stable view
and an unstable view with its neighboring views.

2.2 Selecting Characteristic Views

After dividing stable views and unstable views, we separately select characteristic
views from each set. Here, characteristic aspects and transitions are selected in a
similar manner. Specifically, as characteristic aspects and transitions are selected
by first grouping adjacent stable views and then finding the most representative
view in each group.

Characteristic aspects are selected by the following steps: First, we assign
each stable view to be in its own group. Next, we calculate the distance between
every group and merge the two groups with the shortest distance where distance
is the dissimilarity of the two views. After merging two groups, we assign a new

(a) (b)

Fig. 3. Illustration of neighboring views for (a) a stable view and (b) an unstable view
where the center image is the corresponding view. The connected neighboring views
are from viewpoints connected on the twice subdivided icosahedron of Fig. 2(a).
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representative view such that the sum of dissimilarity between other views and
that cluster is the smallest. The above process is iterated until the sum of the
maximum dissimilarity between the representative view and other views for each
group grows larger than a certain threshold. Finally, the representative views for
the remaining groups of stable views are defined as the characteristic aspects.
We select characteristic transitions by the same process using the set of unstable
views instead of stable views.

The characteristic aspects and transitions for several models are presented in
Fig. 4. We can see that viewpoints of the characteristic aspects and transitions
based on the proposed method are unevenly spaced which enables the appropri-
ate information corresponding to aspects and transitions to be extracted.

2.3 Extracting the Aspect-Transition Descriptor

Now that the characteristic aspects and transitions have been selected, the
remaining process is to construct the Aspect-Transition Descriptor. Since the
Aspect-Transition Descriptor is constructed by concatenating 2-D descriptors
of the selected characteristic aspects and views, we focus mainly on which 2-D
descriptor to be utilized.

The method for describing 2-D images can be classified into two main classes,
which are contour-based descriptor and region-based descriptor. Specifically, the
contour-based descriptor utilizes only the information of the boundary of the
shape, while the region-based descriptor utilizes all the pixels that constitute
the shape region. Both the descriptors can be viewed as only partial information

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Characteristic aspects (a, c, e) and characteristic transitions (b, d, f) for an
hourglass (a, b) a biplane (c, d), and a dog (e, f)
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of the image since the contour-based descriptor loses the interior information
of the shape and cannot describe unconnected regions, and the region-based
descriptor loses the detailed boundary information. Therefore, we utilize the
Angular Radial Transform (ART) [19] and the Curvature Scale Space (CSS) [20]
descriptors as the region based and contour based descriptors, respectively. Here,
the actual extraction of the 2-D descriptors is performed at the time of view
sampling for every view in order to use the descriptors as the basis of both
dissimilarity and local variation in the view classification process described in
Section 2.1.

Figs. 5 and 6 show the characteristic aspects and transitions of a cocktail
glass selected using the CSS [20] descriptor and those of an hourglass using
the ART [19] descriptor, respectively. Fig. 5(a) shows that the aspects repre-
sent a circular shape since the circular shape will have the smallest variation to
change of viewpoint, and the median of the frontal and top view since at this
point the shape variation exerts a local minima. On the other hand, Fig. 5(b)
shows that transitions are selected from viewpoints where a viewpoint change
brings a change in the topology of the contour shape, i.e., from two overlapped
circles to two connected circles. For the case of the hourglass, it can be seen
in Fig. 6(a) that viewpoints for the aspects are located straight in front and
at the top of the model, while the left transition in Fig. 6(b) is located at
a region diagonal to the front or top of the model. Here, the right part of
Fig 6(b) is selected as a transition since one of the pillars in occluding the
two cones which could be in non-occlusion by changing the viewpoint a little
bit.

Finally, the Aspect-Transition Descriptor is constructed by concatenating the
2-D descriptors for the characteristic aspects and transitions.

(a) (b)

Fig. 5. (a) Characteristic aspects and (b) characteristic transitions for a cocktail glass
model using the CSS [20] descriptor as the dissimilarity measure

(a) (b)

Fig. 6. (a) Characteristic aspects and (b) characteristic transitions for an hourglass
model using the ART [19] descriptor as the dissimilarity measure
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3 Computing the Distance Between Two
Aspect-Transition Descriptors

Now, the remaining problem is how to compute the distance between Aspect-
Transition Descriptors. Generally, the number of both the characteristic aspects
and transitions varies according to the complexity of a given 3-D model. There-
fore, a specific distance measure is required for computing the distance between
Aspect-Transition Descriptors. Here, we convert with this problem into the prob-
lem of matching two point sets of which the numbers of elements are different.

The Hausdorff distance is widely used as a metric defining the distance be-
tween two point sets. Formally, given two point sets A and B, the Hausdorff
distance is defined as follows:

f(A,B) = max
{−→
f (A,B),−→f (B, A)

}
, (4)

where −→f (A,B) and −→f (B, A) imply the directed Hausdorff distance. Here, the
directed Hausdorff distance −→f (A,B) is represented in the following equation:

−→
f (A,B) = max

a∈A
min
b∈B

d(a, b). (5)

Here, a and b imply a point in A and B, respectively, and d(a, b) is the distance
between a and b. In general, −→f (A,B) is not equal to −→f (B, A) since the directed
Hausdorff distance is not commutative.

Although the Hausdorff distance is suitable for computing the distance be-
tween two point sets of which the numbers of elements are different, some modi-
fications must be done in order to be utilized in our retrieval system. Considering
that the Hausdorff distance ultimately measures only the maximum of minimum
distances between two point sets and discards all other minimum distances, we
need to modify this to take the similarities between all of the characteristic as-
pects and transitions into account. Specifically, the modified Hausdorff distance
uses the average instead of the maximum as follows:

f mod (A,B) = max
{−−−→
f mod (A,B),−−−→f mod (B, A)

}
, (6)

where

−−−→
f mod (A,B) =

1
n

∑
a∈A

min
b∈B

d(a, b). (7)

Here, n is the number of views in A.
Note that we separate the characteristic aspects and transitions of a 3-D

model and consider them as two separate sets instead of considering them as
one view set. Therefore, computing the distance between two Aspect-Transition
Descriptors can be considered as combining the computed similarities of the
aspects and transitions for the two models.
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4 Experimental Results

We evaluated the performance of our retrieval system on the Princeton bench-
mark database [3]. The database contains 1814 models divided into two sets of
907 models for training and testing. Since training is not needed here, we used
only the testing set which is classified into 92 classes. Generally, the performance
of a retrieval system heavily depends on the database and categorization of 3-D
models. The Princeton benchmark [3] is well organized and is recently being
established as the standard benchmark for comparing the performance of 3-D
model retrieval algorithms.

To compare the performance of several descriptors, we use three well-known
measures: The first-tier, second-tier, and precision-recall plot [3]. The first-tier
and second-tier are the percentage of models in the query’s class that is retrieved
in the top |C| − 1 matches and in the top 2 × (|C| − 1) matches, respectively,
where |C| implies the number of models in a class C. The precision-recall plot
describes the relationship between the precision and the recall of the retrieval
system. Specifically, for a query model in a class C with |C| models, the precision
is the ratio of the retrieved members of class C in the top K matches to K, and
the recall is the ratio of the retrieved members of class C in the top K matches to
|C|. Note that the recall and precision are inversely proportional since increasing
K raises the recall but brings a decrease in precision.

As described in Section 2.2, the classification of stable and unstable views
and the number of selected characteristic views in the view selection process
are determined by threshold values. In our implementation, the view classifica-
tion thresholds θsv and θuv are both set to 0.5. Fig. 7 shows the the precision-
recall plots for the following three cases: the first is when the threshold for
the ART descriptor is 0.3 for selecting characteristic aspects and 0.2 for select-
ing characteristic transitions. Next, the second is the precision-recall plots for
the cases using both aspects and transitions with both thresholds 0.8 for the
ART descriptor and both 0.3 for the CSS descriptor. Here, the computed dis-
tances of aspects and transitions are combined by simple averaging. Finally,
the third, which yielded the best performance, is when using the ART and
CSS descriptors combined with thresholds 0.8 and 0.3 for ART and CSS, re-
spectively. The distances computed using ART and CSS were combined by
weighted averaging as dcombined = 0.3× dART + 0.7× dCSS . Also, we note that
the retrieval performance in the case of combined aspects and transitions with
threshold 0.8 (18.7 views per model) is substantially better than the case using
only aspects with a lower threshold 0.3 which has more views (19.5 views per
model).

Next, the results of the first-tier and second-tier for our descriptor and several
others evaluated on the Princeton benchmark database [3] are given in Table 1.
Specifically, the results of D2 Shape Distribution(D2), Extended Gaussian Image
(EGI), Complex EGI (CEGI), Shape Histograms (SHELLS, SECTORS, SEC-
SHEL), Spherical Extent Function (EXT), Radialized EXT (REXT), Gaussian
Euclidian Distance Transform (GEDT), Spherical Harmonic Descriptor (SHD),
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Fig. 7. The precision-recall plots using various parameters tested on the Princeton
benchmark database [3]

and Light Field Descriptor (LFD) are compared to our method. It can be
seen that the results of the Aspect-Transition Descriptor gives the best results.
Specifically, the Aspect-Transition Descriptor outperforms the Light Field De-
scriptor [9] by 1.6% for the first tier and 1.4% for the second tier.

Finally, the precision-recall plots of the proposed descriptor and other de-
scriptors discussed above are given in Fig. 8. It can be seen that the proposed
method provide the best retrieval performance. Also, the proposed descriptor
has the advantage that a smaller number of sampled views can be utilized to
construct the proposed descriptor compared to the Light Field Descriptor.

5 Conclusion

We proposed a new 3-D descriptor called the Aspect-Transition Descriptor and
described a novel retrieval system based on this descriptor. The Aspect-
Transition Descriptor is a view-based descriptor based on the aspect graph
representation, which particularly utilizes transitions as well as aspects to de-
scribe a 3-D model. This is based on the intuitive observation that transitions
encapsule as much information of the model as aspects. From this, the pro-
posed descriptor is able to achieve the information that was overlooked by tradi-
tional aspect graph representations. We also adopted a method to compare the
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Table 1. First and second tier results using various 3-D descriptors on the Princeton
benchmark database [3]

Shape Descriptor First Tier Second Tier
Proposed(ATD) 39.6% 50.1%
LFD 38.0% 48.7%
REXT 32.7% 43.2%
SHD 30.9% 41.1%
GEDT 31.3% 40.7%
EXT 28.6% 37.9%
SECSHEL 26.7% 35.3%
VOXEL 26.7% 35.0%
SECTORS 24.9% 33.4%
CEGI 21.1% 28.7%
EGI 19.7% 27.7%
D2 15.8% 23.5%
SHELLS 11.1% 17.3%
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Fig. 8. The precision-recall plot of our retrieval system tested on the Princeton bench-
mark database [3] compared with other 3-D descriptors tested on the same database

distance of Aspect-Transition Descriptors based on the Hausdorff distance. We
have evaluated our retrieval system on the Princeton benchmark [3] and found
that our system gives the best overall results.
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Abstract. A novel adaptive and patch-based approach is proposed for
image regularization and representation. The method is unsupervised
and based on a pointwise selection of small image patches of fixed size
in the variable neighborhood of each pixel. The main idea is to asso-
ciate with each pixel the weighted sum of data points within an adaptive
neighborhood and to use image patches to take into account complex
spatial interactions in images. In this paper, we consider the problem
of the adaptive neighborhood selection in a manner that it balances
the accuracy of the estimator and the stochastic error, at each spa-
tial position. Moreover, we propose a practical algorithm with no hid-
den parameter for image regularization that uses no library of image
patches and no training algorithm. The method is applied to both ar-
tificially corrupted and real images and the performance is very close,
and in some cases even surpasses, to that of the best published denoising
methods.

1 Introduction

Most of the more efficient regularization methods are based on energy functionals
minimization since they are designed to explicitly account for the image geome-
try, involving the adjustment of global weights that balance the contribution of
prior smoothness terms and a fidelity term [23, 28]. Thus, related partial differ-
ential equations (PDE) and variational methods have shown impressive results
to tackle the problem of edge-preserving smoothing [24, 28, 32] and more recently
the problem of image decomposition [1]. Moreover, other smoothing algorithms
aggregate information over a neighborhood of fixed size, based on two basic cri-
teria: a spatial criterion to select points in the vicinity of the current point and
a brightness criterion in order to choose only points which are similar in some
sense. In view of this generic approach, a typical filter is the sigma filter [19]
and a continuous version of this filter gives the well-known nonlinear Gaussian
filter [14]. Finally, if we substitute a Gaussian window to the hard disk-shaped
window around the current position, we get variants of the bilateral filtering [31],
controlled by setting the standard deviations in both spatial and brightness do-
mains. Nevertheless, as effective as bilateral filtering and variants, they lacked a
theoretical basis and some connections to better understood methods have been
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investigated. In particular, the relationships between bilateral filtering and iter-
ative mean-shift algorithm, local mode filtering, clustering, local M-estimators,
non-linear diffusion, regularization approaches combining nonlocal data and non-
local smoothness terms, and Beltrami flow, can be found in [33, 11, 3, 22, 29].

Nevertheless, we note that all cited methods have a relatively small number
of regularity parameters that control the global amount of smoothing being per-
formed. They are usually chosen to give a good and global visual impression and
are sometimes heuristically chosen [31]. Furthermore, when local characteristics
of the data differ significantly across the image domain, selecting local smooth-
ing parameters seems more satisfying and, for instance, has been addressed in
[4, 13, 5, 8]. But, what makes image regularization very hard, is that natural
images often contain many irrelevant objects. To develop better image enhance-
ment algorithms that can deal with such a structured noise, we need explicit
models for the many regularities and geometries seen in local patterns. This
corresponds to another line of work which consists in modeling non-local pair-
wise interactions from training data [35] or a library of natural image patches
[12, 27]. The idea is to improve the traditional Markov random field (MRF)
models by learning potential functions from examples and extended neighbor-
hoods for computer vision applications [35, 12, 27]. In our framework, we will
also assume that small image patches in the semi-local neighborhood of a point
contains the essential process required for local smoothing. Thus, the proposed
patch-based regularization approach is conceptually very simple being based on
the key idea of iteratively increasing a window at each pixel and adaptively
weighting input data. The data points with a similar patch to the central patch
will have larger weights in the average. We use 7 × 7 or 9 × 9 image patches to
compute these weights since they are able to capture most of local geometric
patterns and texels seen in images. Note also that, it has been experimentally
confirmed that intuitive exemplar-based approaches are fearsome for 2D texture
synthesis [10] and image inpainting [34, 9]. Nevertheless, we propose here a theo-
retical framework for choosing a semi-local neighborhood adapted to each pixel.
This neighborhood which could be large, is chosen to balance the accuracy of
the pointwise estimator and the stochastic error, at each spatial position [20].
This adaptation method is a kind of change-point detection procedure, initiated
by Lepskii [20]. By introducing spatial adaptivity, we extend the work earlier
described in [7] which can be considered as an extension of bilateral filtering [31]
to image patches. The related works to our approach are the unsupervised recent
non-local means algorithm [7], nonlinear Gaussian filters [31, 33, 22] and statis-
tical smoothing schemes [25, 16, 17], but are enhanced via incorporating either a
variable window scheme or patch-based weights. Finally, to our knowledge, the
more related competitive methods for image denoising, are recent wavelet-based
methods [30, 26]. In our experiments, we have then reported the results when
these methods are applied to a commonly-used image dataset [26]. We show that
the performance of our method surpasses most of the already published and very
competitive denoising methods [30, 26, 27, 7].
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2 Patch-Based Approach

Consider the following basic image model: Yi = u(xi) + εi, i = 1, . . . , |G| where
xi ∈ G ⊂ Rd, d ≥ 2, represents the spatial coordinates of the discrete image
domain of |G| pixels, and Yi ∈ R+ is the observed intensity at location xi.
We suppose the errors εi to be independent, distributed Gaussian zero-mean
random variables with unknown variances σ2. In order to recover u : Rd → R

from noisy observations, we suppose there exists repetitive patterns in the semi-
local neighborhood of a point xi. In particular, we assume that the unknown
image u(xi) can be calculated as the weighted average of input data over a
variable neighborhood Δi around that pixel xi. Henceforth, the points xj ∈ Δi

with a similar regularized patch uj to the reference regularized image patch ui

will have larger weights in the average. Now, we just point out that our ambition
is not to learn generic image priors from a database of image patches as already
described in [35, 12, 27], but we just consider image patches as non-local image
features, and adapt kernel regression techniques for image regularization.

For simplicity, an image patch ui is modeled as a fixed size square window
of p × p pixels centered at xi. In what follows, ui will denote indifferently a
patch or a vector of p2 elements where the pixels are concatenated along a fixed
lexicographic ordering. As with all exemplar-based techniques, the size of image
patches must be specified in advance [10, 34, 9, 7]. We shall see that a 7×7 or 9×9
patch is able to take care of the local geometries and texture in the image while
removing undesirable distortions. In addition, the proposed approach requires
no training step and may be then considered as unsupervised. This makes the
method somewhat more attractive for many applications.

Another important question under such an estimation approach is how to
determine the size and shape of the variable neighborhood (or window) Δi at
each pixel, from image data. The selected window must be different at each
pixel to take into account the inhomogeneous smoothness of the image. For the
sake of parsimony, the set NΔ of admissible neighborhoods will be arbitrarily
chosen as a geometric grid of nested square windows NΔ = {Δi,n : |Δi,n| =
(2n+1)×(2n+1), n=1, . . . , NΔ}, where |Δi,n| = #{xj ∈ Δi,n} is the cardinality
of Δi,n and NΔ is the number of elements of NΔ. For technical reasons, we
will require the following conditions: Δi,n is centered at xi and Δi,n ⊂ Δi,n+1.
Finally, we focus on the local L2 risk as an objective criterion to guide the
optimal selection of the smoothing window for constructing the “best” possible
estimator. This optimization will be mainly accomplished by starting, at each
pixel, with a small window Δi,0 as a pilot estimate, and increasing Δi,n with n.
The use of variable and overlapping windows combined with adaptive weights
contributes to the regularization performance with no block effect.

Adaptive estimation procedure. The proposed procedure is iterative [25, 17]
and works as follows. At the initialization, we choose a local window Δi,0 con-
taining only the point of estimation xi (|Δi,0| = 1). A first estimate ûi,0 (and
its variance υ̂2

i,0 = Var(ûi,0)) is then given by: ûi,0 = Yi and υ̂2
i,0 = σ̂2 where

an estimated variance σ̂2 has been plugged in place of σ2 since the variance



558 C. Kervrann and J. Boulanger

of errors are supposed to be unknown. At the next iteration, a larger window
Δi,1 with Δi,0 ⊂ Δi,1 centered at xi is considered. Every point xj from Δi,1
gets a weight πi∼j,1 defined by comparing pairs of p × p regularized patches

ûi,0 =
(
û

(1)
i,0 , · · · , û(p2)

i,0

)T

and ûj,0 =
(
û

(1)
j,0 , · · · , û(p2)

j,0

)T

obtained at the first iter-
ation. Note that p is fixed for all the pixels in the image. As usual, the points xj

with a similar patch to ûi,0 will have weights close to 1 and 0 otherwise. Then we
recalculate an new estimate ûi,1 defined as the weighted average of data points
lying in the neighborhood Δi,1. We continue this way, increasing with n the
considered window Δi,n while n ≤ NΔ where NΔ denotes the maximal number
of iterations of the algorithm. For each n ≥ 1, the studied maximum likelihood
(ML) estimator ûi,n and its variance υ̂2

i,n can be then represented as

ûi,n =
∑

xj∈Δi,n

πi∼j,n Yj , υ̂2
i,n = σ̂2

∑
xj∈Δi,n

[πi∼j,n]2 (1)

where the weights πi∼j,n are continuous variables and satisfy the usual conditions
0 ≤ πi∼j,n ≤ 1 and

∑
xj∈Δi,n

πi∼j,n = 1. In our modeling, these weights are
computed from pairs of regularized p× p patches ûi,n−1 and ûj,n−1 obtained at
iteration n− 1 and p is fixed for all the pixels in the image. In what follows, n
will coincide with the iteration and we will use n̂(xi) to designate the index of

the “best” window Δ̂(xi)
def
= Δ̂i,n̂(xi) and the “best” estimate û(xi)

def
= ûi,n̂(xi).

Among all non-rejected window Δi,n from NΔ, the optimal window is chosen as

Δ̂(xi) = arg max
Δi,n∈NΔ

{|Δi,n| : |ûi,n − ûi,n′ | ≤ � υ̂i,n′ , for all 1 ≤ n′ < n}

where � is a positive constant. Throughout this paper, we shall see the rational
behind this pointwise statistical rule and the proposed strategy that updates the
pointwise estimator when the neighborhood increases at each iteration [25].

Adaptive weights. In order to compute the similarity of between patches ûi,n

and ûj,n, a distance must be first considered. In [10, 34, 9, 7], several authors
showed that the L2 distance ‖ûi,n − ûj,n‖2 is a reliable measure to compare
image patches. To make a decision, we have rather used a normalized distance

dist(ûi,n−1, ûj,n−1) =
1
2

[
(ûi,n−1 − ûj,n−1)

T V̂−1
i,n−1 (ûi,n−1 − ûj,n−1) (2)

+ (ûj,n−1 − ûi,n−1)
T V̂−1

j,n−1 (ûj,n−1 − ûi,n−1)
]

where V̂·,n−1 is p2 × p2 diagonal matrix of the form (the symbol “·” is used to
denote a spatial position)

V̂·,n−1 =

⎛⎜⎜⎜⎝
(
υ̂

(1)
·,n−1

)2
0 · · · 0

...
...

...
...

0 · · · 0
(
υ̂

(p2)
·,n−1

)2

⎞⎟⎟⎟⎠



Unsupervised Patch-Based Image Regularization and Representation 559

and υ̂
(�)
·,n−1, � = 1, · · · , p2, is the local standard deviation of the estimator û

(�)
·,n−1,

and the index � is used to denote a spatial position in an image patch û·,n−1 =(
û

(1)
·,n−1, · · · , û(�)

·,n−1, · · · , û(p2)
·,n−1

)T

. Moreover, we used a symmetrized distance to
test both the hypotheses that xj belongs to the regionΔi,n and xi belongs to the
region Δj,n, at the same time. Accordingly, the hypothesis ûi,n−1 and ûj,n−1 are
similar, is accepted if the distance is small, i.e. dist(ûi,n−1, ûj,n−1) ≤ λα. In our
modeling, the parameter λα ∈ R+ is chosen as a quantile of a χ2

p2,1−α distribution
with p2 degrees of freedom, and controls the probability of type I error for the
hypothesis of two points to belong to the same region: P {dist(ûi,n−1, ûj,n−1) ≤
λα} = 1 − α. All these tests (|Δi,n| tests) have to be performed at a very high
significance level, our experience suggesting to use a 1 − α = 0.99-quantile.
Henceforth, we introduce the following commonly-used weight function

πi∼j,n =
K
(
λ−1

α dist(ûi,n−1, ûj,n−1)
)∑

xj∈Δi,n

K
(
λ−1

α dist(ûi,n−1, ûj,n−1)
) (3)

with K(·) denoting a monotone decreasing function, e.g. a kernel K(x) =
exp(−x/2). Due to the fast decay of the exponential kernel, large distances be-
tween estimated patches lead to nearly zero weights. Note that the use of weights
enables to relax the structural assumption the neighborhood is a variable square
window.

An “ideal” smoothing window. In this section, we address the problem of
the automatic selection of the window Δi,· adapted for each pixel xi. It is well
understood that the local smoothness varies significantly for point to point in
the image and global risk measures cannot wholly reflect the performance of
estimators at a point. Then, a classical way to measure the performance of the
estimator ûi,n to its target value u(xi) is to choose the local L2 risk, which is
explicitly decomposed into the sum of the squared bias b̂2i,n and variance υ̂2

i,n:[
E|ûi,n − u(xi)|2

]1/2
= |̂b2i,n + υ̂2

i,n|1/2. (4)

Our goal is then to minimize this local L2 risk with respect to the size of the
window Δi,n, at each pixel in the image. Actually, the optimal solution explicitly
depends on the smoothness of the “true” function u(xi) which is unknown, and
so, of less practical interest [16]. A natural way to bring some further under-
standing of the situation is then to individually analyze the behavior of the bias
and variance terms when Δi,n increases or decreases with n as follows:

– The bias term b̂i,n = E [ûi,n − u(xi)] is nonrandom and characterizes the
accuracy of approximation of the function u at the point xi. As it ex-
plicitly depends on the unknown function u(xi), its behavior is doubtful.
Nevertheless, if we use the geometric inequality |xj − xi| ≤

√
2

2 |Δi,n|1/2

and assume that there exists a real constant 0 < C1 < ∞ such that
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|u(xj)− u(xi)| ≤ C1|xj−xi|, then |̂bi,n| ≤ C1√
2
|Δi,n|1/2. Accordingly, |̂bi,n|2

is of the order O(|Δi,n|) and typically increases when Δi,n increases (see also
[16]).

– The behavior of the variance term is just opposite. The errors are indepen-
dent and the stochastic term υ̂2

i,n can be exactly computed on the basis of
observations. Since 0 ≤ πi∼j,n ≤ 1 and

∑
xj∈Δi,n

πi∼j,n = 1, it follows that
σ̂2|Δi,n|−1 ≤ υ̂2

i,n ≤ σ̂2. In addition, we can reasonably assume that there
exits a constant 0 ≤ γ2 ≤ 1 such that υ̂2

i,n ≈ σ̂2|Δi,n|−γ2
. Accordingly, as

Δi,n increases, more data is used to construct the estimate ûi,n, and so υ̂2
i,n

decreases.

Therefore, the bias and standard deviation terms are monotonous functions with
opposite behaviors. In order to approximately minimize the local L2 risk with
respect to |Δi,n|, a natural idea would be to minimize an upper bound of the form

E|ûi,n − u(xi)|2 ≤ C2
1

2
|Δi,n|+ σ̂2|Δi,n|−γ2

.

Unfortunately, the size of the optimal window defined as |Δ�(xi)| =
[

2γ2σ̂2

C2
1

] 1
γ2+1

cannot be used in practice since C1 and γ are unknown. However, for this optimal
solution |Δ�(xi)|, it can be easily shown that the ratio between the optimal bias
b�(xi) and the optimal standard deviation υ�(xi) is not image dependent, i.e.
|b�(xi)| ≤ γυ�(xi). Accordingly, the ideal window will be chosen as the largest
window Δi,n such that b̂i,n is still not larger than γυ̂i,n, for some real value
0 ≤ γ2 ≤ 1: Δ�(xi) = supΔi,n∈NΔ

{|Δi,n| : b̂i,n ≤ γυ̂i,n}.
Now, we just point out that the estimator ûi,n is usually decomposed as

ûi,n = u(xi) + b̂i,n + νi where νi ∼ N (0,E[ν2
i ]). Hence, E[ûi,n] = u(xi) + b̂i,n,

E[ν2
i ] = E[|ûi,n − u(xi) − b̂i,n|2] def

= υ̂2
i,n and the following inequality |ûi,n −

u(xi)| ≤ b̂i,n + κ υ̂i,n holds with a high probability for 0 < κ <∞. Accordingly,
we can modify the previous definition of the ideal window as follows

Δ�(xi) = sup
Δi,n∈NΔ

{|Δi,n| : |ûi,n − u(xi)| ≤ (γ + κ) υ̂i,n}, (5)

which depends no longer on b̂i,n. In the next section, we shall see that a practi-
cal data-driven window selector based on this definition of Δ�(xi) which is yet
related to the ideal and unobserved function u(xi), can actually be derived.

A data-driven local window selector. In our approach, the collection of esti-
mators {ûi,1, . . . , û(xi)} is naturally ordered in the direction of increasing |Δi,n|
where û(xi) can be thought as the best possible estimator with the smallest
variance. A selection procedure can be then described based on pairwise com-
parisons of an essentially one-dimensional family of competing estimators ûi,n.
In this modeling, the differences ûi,n− ûi,n′ are Gaussian random variables with
known variances Var(ûi,n − ûi,n′) ≤ υ̂2

i,n′ with 1 ≤ n′ < n , and expectations
equal to the bias differences b̂i,n − b̂i,n′ . From the definition of Δ�(xi) (see (5)),
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we derive |ûi,n′ − ûi,n| ≤ (2γ + κ)υ̂i,n′ , 1 ≤ n′ < n, and, among all good
candidates {ûi,n} satisfying this inequality, one choose the one with the smallest
variance υ̂2

i,n. Following the above discussion, a window selector will be then
based on the following pointwise rule [20, 21]:

Δ̂(xi) = arg max
Δi,n∈NΔ

{|Δi,n| : |ûi,n − ûi,n′ | ≤ � υ̂i,n′ , for all 1 ≤ n′ < n} (6)

where � = (2γ+κ). This rule actually ensures the balance between the stochastic
term and the bias term, and means that we take the largest window such that the
estimators ûi,n and ûi,n′ are not too different, in some sense, for all 1 ≤ n′ < n
(see [18]). Hence, if an estimated point ûi,n′ appears far from the previous ones,
this means that the bias is already too large and the window Δi,n is not a good
one. This idea underlying our construction definitely belongs to Lepskii [20, 21].

Implementation. At the initialization, we naturally choose |Δi,0| = 1, the fixed
size of p × p patches and choose the number of iterations NΔ. In addition, the
noise variance σ̂2 is robustly estimated from input data (see [17]). To complete

Algorithm. Let {p, α, 	, NΔ} be the parameters

Initialization: compute σ̂2 and set ûi,0 = Yi and υ̂2
i,0 = σ̂2 for each xi ∈ G.

Repeat

– for each xi ∈ G
• compute

πi∼j,n =
K
(
λ−1

α dist(ûi,n−1, ûj,n−1)
)∑

xj∈Δi,n

K
(
λ−1

α dist(ûi,n−1, ûj,n−1)
)

ûi,n =
∑

xj∈Δi,n

πi∼j,n Yj , υ̂2
i,n = σ̂2

∑
xj∈Δi,n

[πi∼j,n]2

• choose the window as

Δ̂(xi) = arg max
Δi,n∈NΔ

{|Δi,n| : |ûi,n − ûi,n′ | ≤ 	 υ̂i,n′ , for all 1 ≤ n′ < n
}

.

If this rule is violated at iteration n, we do not accept ûi,n and keep the estimate
ûi,n−1 as the final estimate at xi, i.e. û(xi) = ûi,n−1 and n̂(xi) = n − 1. This
estimate is unchanged at the next iterations and xi is “frozen”.

– increment n

while n ≤ NΔ.

Fig. 1. Patch-based image regularization algorithm
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the procedure, we choose � ∈ [2, 4] in order to get a good accuracy for the
pointwise estimator (see [18] for the proof) and λα as a 1−α = 0.99-quantile of
a χ2

p2,1−α distribution. Finally, the complexity of the algorithm given in Fig. 1,
is of the order p× p× |G| × (|Δ·,1|+ . . .+ |Δ·,NΔ |).

3 Experimental Results

Our results were measured by the peak signal-to-noise ratio (psnr) in decibels
(db) as psnr = 10 log10(2552/MSE) with MSE = |G|−1∑

xi∈G(uo(xi)− û(xi))2

where u0 is the noise-free original image. We have done simulations on a commonly-
used set of images available athttp://decsai.ugr.es/∼javier/denoise/test
images/ and described in [26]. In all our experiments, we have chosen image
patches of 9 × 9 pixels and set the algorithm parameters as follows: λ0.01 =
χ2

81,0.01 = 113.5, � = 3 and NΔ = 4 (see [18]). The processing of a 256 × 256
image required typically about 1 minute (p = 9) on a PC (2.0 Ghz, Pentium IV)
using a C++ implementation. The potential of the estimation method is mainly
illustrated with the 512 × 512 lena image (Fig. 2a) corrupted by an additive
white-Gaussian noise (WGN) (Fig. 2b, psnr = 22.13 db, σ = 20). In Fig. 2c,
the noise is reduced in a natural manner and significant geometric features, fine
textures, and original contrasts are visually well recovered with no undesirable

Fig. 2. Denoising of the artificially corrupted lena image (WGN, σ = 20)
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Fig. 3. Denoising results on the noisy lena image (WGN, σ = 20). a) Our method (psnr
= 32.64), b) NL-means filter [7] (psnr=31.09), c) Fields-of-Experts [27] (psnr=31.92),
d) wavelet-based denoising method (BLS-GSM) [26] (psnr=32.66).

Fig. 4. Detail of the barbara image. From left to right: original image, artificially cor-
rupted image (WGN, σ = 30), result of our patch-based method, difference between
the noisy image and the regularized image (noise component).

artifacts (psnr = 32.64 db). The noise component is shown in Fig. 2e (magnifi-
cation factor of 2) and has been estimated by calculating the difference between
the noisy image (Fig. 2b) and the recovered image (Fig. 2c). The estimated
noise component contains few geometric structures and is similar to a simulated
white Gaussian noise. To better appreciate the accuracy of the denoising pro-
cess, the variance υ̂2(xi) of the pointwise estimator û(xi) is shown in Fig. 2d
where dark values correspond to high-confidence estimates. As expected, pixels
with a low level of confidence are located in the neighborhood of image discon-
tinuities. Figure 2f shows the probability of a patch û(xi) occurring in Δ̂(xi):

P{û(xi) occurring in Δ̂(xi)} def
= #Ω(xi)/|Δ̂(xi)| where Ω(xi) is used to denote

the set {xj ∈ Δ̂(xi) : dist(û(xi), û(xj)) ≤ λα}. In Fig. 2f, dark values correspond
low probabilities of occurrence and, it is confirmed that repetitive patterns in
the neighborhood of image discontinuities are mainly located along image edges.
Our approach is also compared to the non-local means algorithm [7] using 7× 7
image patches and a fixed search window of 21× 21 pixels as recommended by
the authors: the visual impression and the numerical results are improved using
our algorithm (see Fig. 3b). Finally, we have compared the performance of our
method to the Wiener filtering (WF) (Matlab function wiener2) and other com-
petitive methods [28, 31, 24], including recent patch-based approaches [7, 27] and
pointwise adaptive estimation approaches [25, 17]. We point out that, visually
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Fig. 5. Real noisy photographs (top) and restoration results (bottom)

noisy (left) and denoised (middle) y − t noisy (top) and denoised (middle) x − t
images, and variance image (right) images, and variance image (bottom)

Fig. 6. Results on a 2D image depicting trajectories of vesicles of transport in the
spatio-temporal planes y − t (left) and x − t (right) (analysis of Rab proteins involved
in the regulation of transport from the Golgi apparatus to the endoplasmic reticulum).

and quantitatively, our very simple and unsupervised algorithm favorably com-
pares to any of these denoising algorithms, including the more sophisticated and
best known wavelet-based denoising methods [30, 26] (see Fig. 3d) and learned
filters-based denoising methods [27] (see Fig. 3c). In Table 1 (a), we reported
the best available published psnr results for the same image dataset [26] ; we
note that our method nearly outperforms any of the tested methods in terms of
psnr. Also, if the psnr gains are marginal for some images, the visual difference
can be significant as shown in Fig. 3 where less artifacts are visible using our
method (see also Fig. 4). Nevertheless, other competitive unsupervised patch-
based methods exist (e.g. see [15, 2]), but we did not report the results on this
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Table 1. Performances of our method when applied to test noisy (WGN) images

Image Lena Barbara Boats House Peppers
σ/psnr 20/22.13 20/22.18 20/22.17 20/22.11 20/22.19
Our method 32.64 30.37 30.12 32.90 30.59
Buades et al. [7] 31.09 29.38 28.60 31.54 29.05
Kervrann [17] 30.54 26.50 28.01 30.70 28.23
Polzehl et al. [25] 29.74 26.05 27.74 30.31 28.40
Portilla et al. [26] 32.66 30.32 30.38 32.39 30.31
Roth et al. [27] 31.92 28.32 29.85 32.17 30.58
Rudin et al. [28] 30.48 27.07 29.02 31.03 28.51
Starck et al. [30] 31.95 - - - -
Tomasi et al. [31] 30.26 27.02 28.41 30.01 28.88
Wiener filering 28.51 26.99 27.97 28.74 28.10

(a) Performances of denoising algorithms when applied to test noisy (WGN) images.

σ/psnr Lena Barbara Boats House Peppers
5122 5122 5122 2562 2562

5 / 34.15 37.91 37.12 36.14 37.62 37.34
10 / 28.13 35.18 33.79 33.09 35.26 34.07
15 / 24.61 33.70 31.80 31.44 34.08 32.13
20 / 22.11 32.64 30.37 30.12 32.90 30.59
25 / 2017 31.73 29.24 29.20 32.22 29.73
50 / 14.15 28.38 24.09 25.93 28.67 25.29
75 / 10.63 25.51 22.10 23.69 25.49 22.31
100 / 8.13 23.32 20.64 21.78 23.08 20.51

patch Lena Barbara Boats House Peppers
size 5122 5122 5122 2562 2562

3 × 3 32.13 28.97 29.86 32.69 30.86
5 × 5 32.52 29.97 30.15 33.05 30.98

7 × 7 32.63 30.27 30.17 33.03 30.80

9 × 9 32.64 30.37 30.12 32.90 30.59

(b) Performances of our method (c) Performances of our method
(p=9, NΔ=4, α= 0.01) for different (NΔ = 4, α = 0.01) for different
signal-to-noise ratios (WGN). sizes (WGN, σ = 20)patch

image dataset since they are not available. These methods must be considered
for future comparisons. To complete the experiments, Table 1 (b) shows the
psnr values using our patch-based regularization method when applied to this
set of test images for a wide range of noise variance. Moreover, we have also
examined some complementary aspects of our approach. Table 1 (c) shows the
psnr values obtained by varying the patch size. Note the psnr values are close
for every patch size and the optimal patch size depends on the image contents.
Nevertheless, a patch 9× 9 seems appropriate in most cases and a smaller patch
can be considered for processing piecewise smooth images.

In the second part of experiments, the effects of the patch-based regularization
is approach are illustrated on real old photographs. The set of parameters is
unchanged for processing all these test images: p = 9, NΔ = 4, α = 0.01. In most
cases, a good compromise between the amount of smoothing and preservation
of edges and textures is automatically reached. In that case, the noise variance
σ̂2 is automatically estimated from image data. The reconstruction of images is
respectively shown in Fig. 5. Note that geometric structures are well preserved
and the noise component corresponding to homogeneous artifacts is removed.

Finally, we have applied the patch-based restoration method to noisy 2D im-
ages extracted from a temporal 2D+time (xy − t) sequence of 120 microscopy
images in intracellular biology, showing a large number of small fluorescently
labeled moving vesicles in regions close to the Golgi apparatus (courtesy of
Curie Institute). The reading of observed trajectories is easier if the patch-based
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estimation method is applied to both noisy x−t or y−t projection images shown
in Fig. 6 (see also [6]).

4 Conclusion

We have described a novel adaptive regularization algorithm where patch-based
weights and variable window sizes are jointly used. The use of variable and over-
lapping windows contributes to the regularization performance with no block
effect, enhances the flexibility of the resulting local regularizers and make them
possible to cope well with spatial inhomogeneities in natural images. An advan-
tage of the method is that internal parameters can be easily chosen and are
relatively stable. The algorithm is able to regularize both piecewise-smooth and
textured natural images since they contain enough redundancy. Actually, the
performance of our simple algorithm is very close to that of the best already
published denoising methods. In the future, we plan to study the automatic
patch size selection to better adapt to image contents.
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A Fast Approximation of the Bilateral Filter
Using a Signal Processing Approach
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Abstract. The bilateral filter is a nonlinear filter that smoothes a signal
while preserving strong edges. It has demonstrated great effectiveness for
a variety of problems in computer vision and computer graphics, and a
fast version has been proposed. Unfortunately, little is known about the
accuracy of such acceleration. In this paper, we propose a new signal-
processing analysis of the bilateral filter, which complements the recent
studies that analyzed it as a PDE or as a robust statistics estimator.
Importantly, this signal-processing perspective allows us to develop a
novel bilateral filtering acceleration using a downsampling in space and
intensity. This affords a principled expression of the accuracy in terms of
bandwidth and sampling. The key to our analysis is to express the filter
in a higher-dimensional space where the signal intensity is added to the
original domain dimensions. The bilateral filter can then be expressed
as simple linear convolutions in this augmented space followed by two
simple nonlinearities. This allows us to derive simple criteria for down-
sampling the key operations and to achieve important acceleration of the
bilateral filter. We show that, for the same running time, our method is
significantly more accurate than previous acceleration techniques.

1 Introduction

The bilateral filter is a nonlinear filter proposed by Tomasi and Manduchi to
smooth images [1]. It has been adopted for several applications such as texture
removal [2], dynamic range compression [3], and photograph enhancement [4, 5].
It has also be adapted to other domains such as mesh fairing [6, 7], volumetric
denoising [8] and exposure correction of videos [9]. This large success stems from
several origins. First, its formulation and implementation are simple: a pixel is
simply replaced by a weighted mean of its neighbors. And it is easy to adapt to
a given context as long as a distance can be computed between two pixel values
(e.g. distance between hair orientations in [10]). The bilateral filter is also non-
iterative, i.e. it achieves satisfying results with only a single pass. This makes
the filter’s parameters relatively intuitive since their action does not depend on
the cumulated effects of several iterations.

On the other hand, the bilateral filter is nonlinear and its evaluation is compu-
tationally expensive since traditional acceleration, such as performing convolu-
tion after an FFT, are not applicable. Elad [11] proposes an acceleration method
using Gauss-Seidel iterations, but it only applies when multiple iterations of the
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filter are required. Durand and Dorsey [3] describe a linearized version of the
filter that achieves dramatic speed-ups by downsampling the data, achieving
running times under one second. Unfortunately, this technique is not grounded
on firm theoretical foundations, and it is difficult to evaluate the accuracy that
is sacrificed. In this paper, we build on this work but we interpret the bilateral
filter in terms of signal processing in a higher-dimensional space. This allows us
to derive an improved acceleration scheme that yields equivalent running times
but dramatically improves numerical accuracy.

Contributions. This paper introduces the following contributions:

– An interpretation of the bilateral filter in a signal processing framework.
Using a higher dimensional space, we formulate the bilateral filter as a con-
volution followed by simple nonlinearities.

– Using this higher dimensional space, we demonstrate that the convolution
computation can be downsampled without significantly impacting the result
accuracy. This approximation technique enables a speed-up of several orders
of magnitude while controlling the error induced.

2 Related Work

The bilateral filter was first introduced by Smith and Brady under the name
“SUSAN” [12]. It was rediscovered later by Tomasi and Manduchi [1] who called
it the “bilateral filter” which is now the most commonly used name. The filter
replaces each pixel by a weighted average of its neighbors. The weight assigned
to each neighbor decreases with both the distance in the image plane (the spatial
domain S) and the distance on the intensity axis (the range domain R). Using
a Gaussian Gσ as a decreasing function, and considering a grey-level image I,
the result Ibf of the bilateral filter is defined by:

Ibf
p =

1
W bf

p

∑
q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|) Iq (1a)

with W bf
p =

∑
q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|) (1b)

The parameter σs defines the size of the spatial neighborhood used to filter a
pixel, and σr controls how much an adjacent pixel is downweighted because of
the intensity difference. W bf normalizes the sum of the weights.

Barash [13] shows that the two weight functions are actually equivalent to
a single weight function based on a distance defined on S×R. Using this ap-
proach, he relates the bilateral filter to adaptive smoothing. Our work follows a
similar idea and also uses S×R to describe bilateral filtering. Our formulation is
nonetheless significantly different because we not only use the higher-dimensional
space for the definition of a distance, but we also use convolution in this space.
Elad [11] demonstrates that the bilateral filter is similar to the Jacobi algorithm,
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with the specificity that it accounts for a larger neighborhood instead of the clos-
est adjacent pixels usually considered. Buades et al. [14] expose an asymptotic
analysis of the Yaroslavsky filter [15] which is a special case of the bilateral fil-
ter with a step function as spatial weight. They prove that asymptotically, the
Yaroslavsky filter behaves as the Perona-Malik filter, i.e. it alternates between
smoothing and shock formation depending on the gradient intensity. Durand
and Dorsey [3] cast their study into the robust statistics framework [16, 17].
They show that the bilateral filter is a w -estimator [17] (p.116). This explains
the role of the range weight in terms of sensitivity to outliers. They also point
out that the bilateral filter can be seen as an extension of the Perona-Malik filter
using a larger neighborhood. Mrázek et al. [18] relate bilateral filtering to a large
family of nonlinear filters. From a single equation, they express filters such as
anisotropic diffusion and statistical estimators by varying the neighborhood size
and the involved functions. The main difference between our study and existing
work is that the previous approaches link bilateral filtering to another nonlinear
filter based on PDEs or statistics whereas we cast our study into a signal process-
ing framework. We demonstrate that the bilateral filter can be mainly computed
with linear operations, the nonlinearities being grouped in a final step.

Several articles [11, 19, 14] improve the bilateral filter. They share the same
idea: By exploiting the local “slope” of the image intensity, it is possible to better
represent the local shape of the signal. Thus, they define a modified filter that
better preserve the image characteristics e.g. they avoid the formation of shocks.
We have not explored this direction since the formulation becomes significantly
more complex. It is however an interesting avenue for future work.

The work most related to ours are the speed-up techniques proposed by
Elad [11] and Durand and Dorsey [3]. Elad [11] uses Gauss-Seidel iterations
to accelerate the convergence of iterative filtering. Unfortunately, no results are
shown – and this technique is only useful when the filter is iterated to reach the
stable point, which is not its standard use of the bilateral filter (one iteration
or only a few). Durand and Dorsey [3] linearize the bilateral filter and propose
a downsampling scheme to accelerate the computation down to few seconds or
less. However, no theoretical study is proposed, and the accuracy of the approx-
imation is unclear. In comparison, we base our technique on signal processing
grounds which help us to define a new and meaningful numerical scheme. Our
algorithm performs low-pass filtering in a higher-dimensional space than Durand
and Dorsey’s [3]. The cost of a higher-dimensional convolution is offset by the
accuracy gain, which yields better performance for the same accuracy.

3 Signal Processing Approach

We decompose the bilateral filter into a convolution followed by two nonlineari-
ties. To cast the filter as a convolution, we define a homogeneous intensity that
will allow us to obtain the normalization term W bf

p as an homogeneous compo-
nent after convolution. We also need to perform this convolution in the product
space of the domain and the range of the input signal. Observing Equations (1),
the nonlinearity comes from the division by W bf and from the dependency on
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the pixel intensities through Gσr(|Ip − Iq|). We study each point separately and
isolate them in the computation flow.

3.1 Homogeneous Intensity

A direct solution to handle the division is to multiply both sides of Equation (1a)
by W bf

p . The two equations are then almost similar. We underline this point by
rewriting Equations (1) using two-dimensional vectors:⎛⎝W bf

p Ibf
p

W bf
p

⎞⎠ =
∑
q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|)
⎛⎝Iq

1

⎞⎠ (2)

To maintain the property that the bilateral filter is a weighted mean, we intro-
duce a function W whose value is 1 everywhere:⎛⎝W bf

p Ibf
p

W bf
p

⎞⎠ =
∑
q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|)
⎛⎝Wq Iq

Wq

⎞⎠ (3)

By assigning a couple (WqIq,Wq) to each pixel q, we express the filtered pixels
as linear combinations of their adjacent pixels. Of course, we have not “removed”
the division since to access the actual value of the intensity, the first coordinate
(W I) has still to be divided by the second one (W ). This can be compared
with homogeneous coordinates used in projective geometry. Adding an extra
coordinate to our data makes most of the computation pipeline computable
with linear operations; a division is made only at the final stage. Inspired by this
parallel, we call the couple (W I,W ) the homogeneous intensity.

Although Equation (3) is a linear combination, this does not define a linear
filter yet since the weights depend on the actual values of the pixels. The next
section addresses this issue.

3.2 The Bilateral Filter as a Convolution

If we ignore the term Gσr(|Ip − Iq|), Equation (3) is a classical convolution by a
Gaussian kernel: (W bf Ibf,W bf) = Gσs⊗(W I,W ). But the range weight depends
on Ip−Iq and there is no summation on I. To overcome this point, we introduce
an additional dimension ζ and sum over it. With the Kronecker symbol δ(ζ)
(1 if ζ = 0, 0 otherwise) and R the interval on which the intensity is defined, we
rewrite Equation (3) using

[
δ(ζ − Iq) = 1

]⇔ [
ζ = Iq

]
:⎛⎝W bf

p Ibf
p

W bf
p

⎞⎠ =
∑
q∈S

∑
ζ∈R

Gσs(||p− q||) Gσr(|Ip − ζ|) δ(ζ − Iq)

⎛⎝Wq Iq

Wq

⎞⎠ (4)

Equation (4) is a sum over the product space S×R. We now focus on this space.
We use lowercase names for the functions defined on S×R. The product GσsGσr

defines a Gaussian kernel gσs,σr on S×R:

gσs,σr : (x ∈ S, ζ ∈ R) %→ Gσs(||x||) Gσr(|ζ|) (5)
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From the remaining part of Equation (4), we build two functions i and w:

i : (x ∈ S, ζ ∈ R) %→ Ix (6a)
w : (x ∈ S, ζ ∈ R) %→ δ(ζ − Ix) Wx (6b)

The following relations stem directly from the two previous definitions:

Ix = i(x, Ix) and Wx = w(x, Ix) and ∀ζ �= Ix, w(x, ζ) = 0 (7)

Then Equation (4) is rewritten as:⎛⎝W bf
p Ibf

p

W bf
p

⎞⎠ =
∑

(q,ζ)∈S×R
gσs,σr(p− q, Ip − ζ)

⎛⎝w(q, ζ) i(q, ζ)

w(q, ζ)

⎞⎠ (8)

The above formula corresponds to the value at point (p, Ip) of a convolution
between gσs,σr and the two-dimensional function (wi, w):⎛⎝W bf

p Ibf
p

W bf
p

⎞⎠ =

⎡⎣gσs,σr ⊗
⎛⎝wi
w

⎞⎠⎤⎦ (p, Ip) (9)

According to the above equation, we introduce the functions ibf and wbf:

(wbf ibf, wbf) = gσs,σr ⊗ (wi, w) (10)

Thus, we have reached our goal. The bilateral filter is expressed as a convolution
followed by nonlinear operations:

linear: (wbf ibf, wbf) = gσs,σr ⊗ (wi, w) (11a)

nonlinear: Ibf
p =

wbf(p, Ip) ibf(p, Ip)

wbf(p, Ip)
(11b)

The nonlinear section is actually composed of two operations. The functions
wbf ibf and wbf are evaluated at point (p, Ip). We name this operation slicing.
The second nonlinear operation is the division. In our case, slicing and division
commute i.e. the result is independent of their order because gσs,σr is positive
and w values are 0 and 1, which ensures that wbf is positive.

3.3 Intuition

To gain more intuition about our formulation of the bilateral filter, we propose
an informal description of the process before discussing further its consequences.

The spatial domain S is a classical xy image plane and the range domain
R is a simple axis labelled ζ. The w function can be interpreted as the “plot
in the xyζ space of ζ = I(x, y)” i.e. w is null everywhere except on the points
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Fig. 1. Our computation pipeline applied to a 1D signal. The original data (top row)
are represented by a two-dimensional function (wi, w) (second row). This function is
convolved with a Gaussian kernel to form (wbf ibf, wbf) (third row). The first component
is then divided by the second (fourth row, blue area is undefined because of numerical
limitation, wbf ≈ 0). Then the final result (last row) is extracted by sampling the
former result at the location of the original data (shown in red on the fourth row).

(x, y, I(x, y)) where it is equal to 1. The wi product is similar to w. Instead of
using binary values 0 or 1 to “plot I”, we use 0 or I(x, y) i.e. it is a plot with a
pen whose brightness equals the plotted value.

Then using these two functions wi and w, the bilateral filter is computed as
follows. First, we “blur” wi and w i.e. we convolve wi and w with a Gaussian
defined on xyζ. This results in the functions wbf ibf and wbf. For each point
of the xyζ space, we compute ibf(x, y, ζ) by dividing wbf(x, y, ζ) ibf(x, y, ζ) by
wbf(x, y, ζ). The final step is to get the value of the pixel (x, y) of the filtered
image Ibf. This directly corresponds to the value of ibf at (x, y, I(x, y)) which
is the point where the input image I was “plotted”. Figure 1 illustrates this
process on a simple 1D image.

4 Fast Approximation

We have shown that the bilateral filter can be interpreted as a Gaussian filter in
a product space. Our acceleration scheme directly follows from the fact that this
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operation is a low-pass filter. (wbf ibf, wbf) is therefore essentially a band-limited
function which is well approximated by its low frequencies.

Using the sampling theorem [20] (p.35), it is sufficient to sample with a rate
at least twice shorter than the smallest wavelength considered. In practice, we
downsample (wi, w), perform the convolution, and upsample the result:

(w↓i↓, w↓) = downsample(wi, w) (12a)

(wbf
↓ ibf

↓ , w
bf
↓ ) = gσs,σr ⊗ (w↓i↓, w↓) (12b)

(wbf
↓↑ i

bf
↓↑, w

bf
↓↑) = upsample(wbf

↓ ibf
↓ , w

bf
↓ ) (12c)

The rest of the computation remains the same except that we slice and divide
(wbf

↓↑ i
bf
↓↑, w

bf
↓↑) instead of (wbf ibf, wbf), using the same (p, Ip) points. Since slicing

occurs at points where w = 1, it guarantees wbf ≥ gσs,σr(0), which ensures that
we do not divide by small numbers that would degrade our approximation.

We use box-filtering for the prefilter of the downsampling (a.k.a. average
downsampling), and linear upsampling. While these filters do not have perfect
frequency responses, they offer much better performances than schemes such as
tri-cubic filters.

4.1 Evaluation

To evaluate the error induced by our approximation, we compare the result
Ibf
↓↑ from the fast algorithm to Ibf obtained from Equations (1). For this pur-

pose, we compute the peak signal-to-noise ratio (PSNR) considering R = [0; 1]:

PSNR(Ibf
↓↑) = −10 log10

(
1
|S|
∑

p∈S
∣∣∣Ibf

↓↑(p)− Ibf(p)
∣∣∣2).

We have chosen three images as different as possible to cover a broad spectrum
of content. We use (see Figure 4):

– An artificial image with various edges and frequencies, and white noise.
– An architectural picture structured along two main directions.
– And a photograph of a natural scene with a more stochastic structure.

The box downsampling and linear upsampling schemes yield very satisfying
results while being computationally efficient. We experimented several sampling
rates (ss, sr) for S ×R. The meaningful quantities to consider are the ratios(

ss
σs
, sr

σr

)
that indicate how many high frequencies we ignore compared to the

bandwidth of the filter we apply. Small ratios correspond to limited approxima-
tions and high ratios to more aggressive downsamplings. A consistent approxi-
mation is a sampling rate proportional to the Gaussian bandwidth (i.e. ss

σs
≈ sr

σr
)

to achieve similar accuracy on the whole S×R domain. The results plotted in
Figure 2 show that this remark is globally valid in practice. A closer look at
the plots reveals that S can be slightly more aggressively downsampled than R.
This is probably due to the nonlinearities and the anisotropy of the signal.

Figure 3-left shows the running times for the architectural picture with the
same settings. In theory, the gain from space downsampling should be twice the
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one from range downsampling since S is two-dimensional andR one-dimensional.
In practice, the nonlinearities and caching issues induce minor deviations. Com-
bining this plot with the PSNR plot (in gray under the running times) allows
for selecting the best sampling parameters for a given error tolerance or a given
time budget. As a simple guideline, using sampling steps equal to σs and σr pro-
duce results without visual difference with the exact computation (see Fig. 4).
Our scheme achieves a speed-up of two orders of magnitude: Direct computation
of Equations (1) lasts about one hour whereas our approximation requires one
second. This dramatic improvement opens avenues for interactive applications.

4.2 Comparison with the Durand-Dorsey Speed-Up

Durand and Dorsey also describe a linear approximation of the bilateral filter [3].
Using evenly spaced intensity values I1..In that cover R, their scheme can be
summarized as (for convenience, we also name Gσs the 2D Gaussian kernel):
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ι↓ = downsample(I) [image downsampling] (13a)
∀ζ ∈ {1..n} ω↓ζ(p) = Gσr(|ι↓(p)− Iζ |) [range weight evaluation] (13b)
∀ζ ∈ {1..n} ωι↓ζ(p) = ω↓ζ(p) ι↓(p) [intensity multiplication] (13c)

∀ζ ∈ {1..n} (ωιbf
↓ζ , ω

bf
↓ζ) = Gσs ⊗ (ωι↓ζ , ω↓ζ) [convolution on S ] (13d)

∀ζ ∈ {1..n} ιbf
↓ζ = ωιbf

↓ζ / ω
bf
↓ζ [normalization] (13e)

∀ζ ∈ {1..n} ιbf
↓↑ζ = upsample(ιbf

↓ζ) [layer upsampling] (13f)

IDD(p) = interpolation(ιbf
↓↑ζ)(p) [nearest layer interpolation] (13g)

Without downsampling (i.e. {Ii} = R and Steps 13a,f ignored), the Durand-
Dorsey scheme is equivalent to ours because Steps 13b,c,d correspond to a con-
volution on S×R. Indeed, Step (13b) computes the values of a Gaussian kernel
on R. Step (13c) actually evaluates the convolution on R, considering that ι↓(p)
is the only nonzero value on the ζ axis. With Step (13d), the convolution on S,
these three steps perform a 3D convolution using a separation between R and S.

The differences comes from the downsampling approach. Durand and Dorsey
interleave linear and nonlinear operations: The division is done after the convo-
lution 13d but before the upsampling 13f. There is no simple theoretical base to
estimate the error. More importantly, the Durand-Dorsey strategy is such that
the intensity ι and the weight ω are functions defined on S only. A given pixel
has only one intensity and one weight. After downsampling, both sides of the
discontinuity may be represented by the same values of ι and ω. This is a poor
representation of the discontinuities since they inherently involve several values.
In comparison, we define functions on S×R. For a given image point in S, we
can handle several values on the R domain. The advantage of working in S×R
is that this characteristic is not altered by downsampling. It is the major reason
why our scheme is more accurate than the Durand-Dorsey technique, especially
on discontinuities.

Figure 3-right shows the precision achieved by both approaches relatively to
their running time, and Figure 4 illustrates their visual differences. There is no
gain in extreme downsampling since nonlinearities are no more negligible. Both
approaches also have a plateau in their accuracy i.e. beyond a certain point, pre-
cision gains increase slowly with sampling refinement but ours reaches a higher
accuracy (≈ 55dB compared to ≈ 40dB). In addition, for the same running time,
our approach is always more accurate (except for extreme downsampling).

4.3 Implementation

All the experiments have been done an Intel Xeon 2.8GHz using the same code
base in C++. We have implemented the Durand-Dorsey technique with the
same libraries as our technique. 2D and 3D convolutions are made using FFT.
The domains are padded with zeros over 2σ to avoid cross-boundary artefacts.
There are no other significant optimizations to avoid bias in the comparisons.
A production implementation could therefore be improved with techniques such
as separable convolution. Our code is publicly available on our webpage. The
software is open-source, under the MIT license.
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Fig. 4. We have tested our approximated scheme on three images (first row): an ar-
tificial image (512 × 512) with different types of edges and a white noise region, an
architectural picture (1600 × 1200) with strong and oriented features, and a natural
photograph (800×600) with more stochastic textures. For clarity, we present represen-
tative close-ups (second row). Full resolution images are available on our website. Our
approximation produces results (fourth row) visually similar to the exact computation
(third row). A color coded subtraction (fifth row) reveals subtle differences at the edges
(red: negative, black: 0, and blue: positive). In comparison, the Durand-Dorsey approx-
imation introduces large visual discrepancies: the details are washed out (bottom row).
All the filters are computed with σs = 16 and σr = 0.1. Our filter uses a sampling rate
of (16,0.1). The sampling rate of the Durand-Dorsey filter is chosen in order to achieve
the same (or slightly superior) running time. Thus, the comparison is done fairly, using
the same time budget.
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5 Discussion

Dimensionality. Our separation into linear and nonlinear parts comes at the
cost of the additional ζ dimension. One has to be careful before increasing the
dimensionality of a problem since the incurred performance overhead may exceed
the gains, restricting our study to a theoretical discussion. We have however
demonstrated that this formalism allows for a computation scheme that is several
orders of magnitude faster than a straightforward application of Equation (1).
This advocates performing the computation in the S×R space instead of the
image plane. In this respect, our approach can be compared to the level sets [21]
which also describe a better computation scheme using a higher dimension space.

Note that using the two-dimensional homogeneous intensity does not increase
the dimensionality since Equation (1) also computes two functions: W bf and Ibf.

Comparison with Generalized Intensity. Barash also uses points in the
S×R space that he names generalized intensities [13]. Our two approaches have in
common the global meaning of S and R: The former is related to pixel positions
and the latter to pixel intensities. It is nevertheless important to highlight the
differences. Barash handles S×R to compute distances. Thus, he can express
the difference between adaptive smoothing and bilateral filtering as a difference
of distance definitions. But the actual computation remains the same. Our use
of S ×R is more involved. We not only manipulate points in this space but
also define functions and perform convolutions and slicing. Another difference
is our definition of the intensity through a function (i or ibf). Barash associates
directly the intensity of a point to its R component whereas in our framework,
the intensity of a point (x, ζ) is not its ζ coordinate e.g. in general ibf(x, ζ) �= ζ.
In addition, our approach leads to a more efficient implementation.

Complexity. One of the advantage of our separation is that the convolution is
the most complex part of the algorithm. Using | · | for the cardinal of a set, the
convolution can be done in O (|S| |R| log(|S| |R|)) with fast Fourier transform
and multiplication in the frequency domain. Then the slicing and the division
are done pixel by pixel. Thus they are linear in the image size i.e. O (|S|). Hence,
the algorithm complexity is dominated by the convolution. This result is verified
in practice as shown by Table 1. The convolution time rapidly increases as the
sampling becomes finer. This validates our choice of focussing on the convolution.

Table 1. Time used by each step at different sampling rates of the architectural image.
Upsampling is included in the nonlinearity time because our implementation computes
ibf
↓↑ only at the (x, Ix) points rather than upsampling the whole S×R space.

sampling (σs, σr) (4,0.025) (8,0.05) (16,0.1) (32,0.2) (64,0.4)

downsampling 1.3s 0.23s 0.09s 0.07s 0.06s
convolution 63s 2.8s 0.38s 0.02s 0.01s
nonlinearity 0.48s 0.47s 0.46s 0.47s 0.46s
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6 Conclusions

We have presented a fast approximation technique of the bilateral filter based
on a signal processing interpretation. From a theoretical point of view, we have
introduced the notion of homogeneous intensity and demonstrated a new ap-
proach of the space-intensity domain. We believe that these concepts can be
applied beyond bilateral filtering, and we hope that these contributions will in-
spire new studies. From a practical point of view, our approximation technique
yields results visually similar to the exact computation with interactive run-
ning times. This technique paves the way for interactive applications relying on
quality image smoothing.

Future Work. Our study translates almost directly to higher dimensional data
(e.g. color images or videos). Analyzing the performance in these cases will
provide valuable statistics. Exploring deeper the frequency structure of the S×R
domain seems an exciting research direction.
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References

1. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc.
of International Conference on Computer Vision, IEEE (1998) 839–846

2. Oh, B.M., Chen, M., Dorsey, J., Durand, F.: Image-based modeling and photo
editing. In: Proc. of SIGGRAPH conference, ACM (2001)

3. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range
images. ACM Trans. on Graphics 21 (2002) Proc. of SIGGRAPH conference.

4. Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting.
ACM Trans. on Graphics 23 (2004) Proc. of SIGGRAPH conference.

5. Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.:
Digital photography with flash and no-flash image pairs. ACM Trans. on Graphics
23 (2004) Proc. of SIGGRAPH conference.

6. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh
smoothing. ACM Trans. on Graphics 22 (2003) Proc. of SIGGRAPH conference.

7. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. on
Graphics 22 (2003) Proc. of SIGGRAPH conference.

8. Wong, W.C.K., Chung, A.C.S., Yu, S.C.H.: Trilateral filtering for biomedical im-
ages. In: Proc. of International Symposium on Biomedical Imaging, IEEE (2004)

9. Bennett, E.P., McMillan, L.: Video enhancement using per-pixel virtual exposures.
ACM Trans. on Graphics 24 (2005) 845 – 852 Proc. of SIGGRAPH conference.



580 S. Paris and F. Durand

10. Paris, S., Briceño, H., Sillion, F.: Capture of hair geometry from multiple images.
ACM Trans. on Graphics 23 (2004) Proc. of SIGGRAPH conference.

11. Elad, M.: On the bilateral filter and ways to improve it. IEEE Trans. On Image
Processing 11 (2002) 1141–1151

12. Smith, S.M., Brady, J.M.: SUSAN – a new approach to low level image processing.
International Journal of Computer Vision 23 (1997) 45–78

13. Barash, D.: A fundamental relationship between bilateral filtering, adaptive
smoothing and the nonlinear diffusion equation. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence 24 (2002) 844

14. Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and PDE’s. Technical
Report 2005-04, CMLA (2005)

15. Yaroslavsky, L.P.: Digital Picture Processing. Springer Verlag (1985)
16. Huber, P.J.: Robust Statistics. Wiley-Interscience (1981)
17. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.M., Stahel, W.A.: Robust Statistics –

The Approach Based on Influence Functions. Wiley Interscience (1986)
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Abstract. Bottom-up segmentation based only on low-level cues is a notoriously
difficult problem. This difficulty has lead to recent top-down segmentation algo-
rithms that are based on class-specific image information. Despite the success of
top-down algorithms, they often give coarse segmentations that can be signifi-
cantly refined using low-level cues. This raises the question of how to combine
both top-down and bottom-up cues in a principled manner.

In this paper we approach this problem using supervised learning. Given a
training set of ground truth segmentations we train a fragment-based segmenta-
tion algorithm which takes into account both bottom-up and top-down cues si-
multaneously, in contrast to most existing algorithms which train top-down and
bottom-up modules separately. We formulate the problem in the framework of
Conditional Random Fields (CRF) and derive a novel feature induction algorithm
for CRF, which allows us to efficiently search over thousands of candidate frag-
ments. Whereas pure top-down algorithms often require hundreds of fragments,
our simultaneous learning procedure yields algorithms with a handful of frag-
ments that are combined with low-level cues to efficiently compute high quality
segmentations.

1 Introduction

Figure 1 (replotted from [2]) illustrates the importance of combining top-down and
bottom-up segmentation. The leftmost image shows an image of a horse and the mid-
dle column show three possible segmentations based only on low-level cues. Even a
sophisticated bottom-up segmentation algorithm (e.g. [10, 11]) has difficulties correctly
segmenting this image.

The difficulty in pure low-level segmentation has led to the development of
top-down, class-specific segmentation algorithms [3, 9, 16]. These algorithms fit a
deformable model of a known object (e.g. a horse) to the image - the shape of the
deformed model gives an estimate of the desired segmentation. The right-hand column
of figure 1 shows a top-down segmentation of the horse figure obtained by the algorithm
of [3]. In this algorithm, image fragments from horses in a training database are corre-
lated with the novel image. By combining together the segmentations of the fragments,
the novel image is segmented. As can be seen, the top-down segmentation is better than
any of the bottom-up segmentations but still misses important details.

� Research supported by the EU under the DIRAC Project. EC Contract No.027787.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 581–594, 2006.
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Fig. 1. The relative merits of the bottom-up and the top-down approaches, replotted from [2].
(a) Input image. (b) The bottom-up hierarchical segmentation at three different scales. (c) The
top-down approach provides a meaningful approximation for the figureground segmentation of
the image, but may not follow exactly image discontinuities.

In recent years, several authors have therefore suggested combining top-down and
bottom-up segmentation [2, 15, 12, 5]. Borenstein et al. [2] choose among a discrete set
of possible low-level segmentations by minimizing a cost function that includes a bias
towards the top-down segmentation. In the image parsing framework of Tu et al. [12]
object-specific detectors serve as a proposal distribution for a data-driven Monte-Carlo
sampling over possible segmentations. In the OBJ-CUT algorithm [5] a layered pictorial
structure is used to define a bias term for a graph-cuts energy minimization algorithm
(the energy favors segmentation boundaries occurring at image discontinuities).

These recent approaches indeed improve the quality of the achieved segmentations
by combining top-down and bottom-up cues at run-time. However, the training of the
bottom-up and top-down modules is performed independently. In the work of Boren-
stein and colleagues, training the top-down module consists of choosing a set of frag-
ments from a huge set of possible image fragments. This training is performed without
taking into account low-level cues. In the image parsing framework [12], the top-down
module are object detectors trained using AdaBoost to maximize detection performance.
Again, this training is performed without taking into account low-level cues. In the OBJ-
CUT algorithm, the training of the pictorial structures is performed using a combination
of AdaBoost (for the local detectors) and Gaussian modeling (for the relative location
of parts). Once again, this training does not take into account low-level cues.

Figure 2(a) shows a potential disadvantage of training the top-down model while
ignoring low-level cues. Suppose we wish to train a segmentation algorithm for oc-
topi. Since octopi have 8 tentacles and each tentacle has multiple degrees of freedom,

(a) (b)

Fig. 2. (a) Octopi: Combining low-level information can significantly reduce the required com-
plexity of a deformable model. (b) Examples from horses training data. Each training image is
provided with its segmentation mask.
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any top-down algorithm would require a very complex deformable template to achieve
reasonable performance. Consider for example the top-down algorithm of Borenstein
and Ullman [3] which tries to cover the segmentations in the dataset with a subset of
image fragments. It would obviously require a huge number of fragments to achieve
reasonable performance. Similarly, the layered pictorial structure algorithm of Kumar
et al. [5] would require a large number of parts and a complicated model for modeling
the allowed spatial configurations.

While Octopi can appear in a large number of poses, their low-level segmentation
can be easy since their color is relatively uniform and (depending on the scene) may
be distinct from the background. Thus an algorithm that trains the top-down module
while taking into account the low-level cues can choose to devote far less resources
to the deformable templates. The challenge is to provide a principled framework for
simultaneous training of the top-down and bottom-up segmentation algorithms.

In this paper we provide such a framework. The algorithm we propose is similar at
run-time to the OBJ-CUT and Borenstein et al. algorithms. As illustrated in figure 3,
at run-time a novel image is scanned with an object detector which tries all possible
subimages until it finds a subimage that is likely to contain the object (for most of the
databases in this paper the approximate location was known so no scanning was per-
formed). Within that subimage we search for object parts by performing normalized
correlation with a set of fragments (each fragment scans only a portion of the subim-
age where it is likely to occur thus modeling the spatial interaction between fragment
locations). The location of a fragment gives rise to a local bias term for an energy func-
tion. In addition to the local bias, the energy function rewards segmentation boundaries
occurring at image discontinuities. The final segmentation is obtained by finding the
global minimum of the energy function.

While our algorithm is similar at run-time to existing segmentation algorithms, the
training method is unique in that it simultaneously takes into account low-level and
high-level cues. We show that this problem can be formulated in the context of Con-
ditional Random Fields [7, 6] which leads to a convex cost function for simultaneous
training of both the low-level and the high-level segmenter. We derive a novel feature-
induction for CRFs which allows us to efficiently learn models with a small number of
fragments. Whereas pure top-down algorithms often require hundreds of fragments, our
simultaneous learning procedure yields algorithms with a handful of fragments that are
combined with low-level cues to efficiently compute high quality segmentations.

2 Segmentation Using Conditional Random Fields

Given an image I , we define the energy of a binary segmentation map x as:

E(x; I) = ν
∑
i,j

wij |x(i)− x(j)|+
∑

k

λk|x− xFk,I | (1)

This energy is a combination of a pairwise low-level term and a local class-dependent
term.
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(a) (b) (c) (d)

Fig. 3. System overview: (a) Detection algorithm applied to an input image (b) Fragments search
range, dots indicate location of maximal normalized correlation (c) Fragments local evidence,
overlaid with ground truth contour (d) Resulting segmentation contour

The low level term is defined via a set of affinity weights w(i, j). w(i, j) are high
when the pixels (i, j) are similar and decrease to zero when they are different. Similar-
ity can be defined using various cues including intensity, color, texture and motion as
used for bottom up image segmentation [10]. Thus minimizing

∑
i,j wij |x(i) − x(j)|

means that labeling discontinuities are cheaper when they are aligned with the image
discontinuities. In this paper we used 8-neighbors connectivity, and we set:

wij =
1

1 + σd2
ij

where dij is the RGB difference between pixels i and j and σ = 5 · 104.
The second part of eq 1 encodes the local bias, defined as a sum of local energy

terms each weighted by a weight λk. Following the terminology of Conditional Random
Fields, we call each such local energy term a feature. In this work, these local energy
terms are derived from image fragments with thresholds. To calculate the energy of a
segmentation, we shift the fragment over a small window (10 pixels in each direction)
around its location in its original image. We select the location in which the normalized
correlation between the fragment and the new image is maximal (see Fig 3(b)). The
feature is added to the energy, if this normalized correlation is large than a threshold.
Each fragment is associated with a mask fragment xF extracted from the training set
(Fig 8 shows some fragments examples). We denote by xF,I the fragment mask xF

placed over the image I , according to the maximal normalized correlation location. For
each fragment we add a term to the energy function which penalizes for the number of
pixels for which x is different from the fragment mask xF,I , |x−xF,I | =

∑
i∈F |x(i)−

xF,I(i)|. Where i ∈ F means the pixel i is covered by the fragmentF after the fragment
was moved to the maximal normalized correlation location (see Fig 3(c)).

Our goal in this paper is to learn a set of fragments {Fk}, thresholds and weights
{λk}, ν that will favor the true segmentation. In the training stage the algorithm is
provided a set of images {It}t=1:T and their binary segmentation masks {xt}t=1:T , as
in figure 2(b). The algorithm needs to select features and weights such that minimizing
the energy with the learned parameters will provide the desired segmentation.
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2.1 Conditional Random Fields

Using the energy (eq. 1) we define the likelihood of the labels x conditioned on the
image I as

P (x|I) =
1

Z(I)
e−E(x;I) where: Z(I) =

∫
x

e−E(x;I)

That is, x forms a Conditional Random Field (CRF) [7]. The goal of the learning process
is to select a set of fragments {Fk}, thresholds and weights {λk}, ν that will maximize
the sum of the log-likelihood over training examples: �(!λ, ν; !F ) =

∑
t �

t(!λ, ν; !F )

�t(!λ, ν; !F ) = logP (xt|It;!λ, ν, !F ) = −E(xt; It, !λ, ν, !F )− logZ(It;!λ, ν, !F ) (2)

The idea of the CRF log likelihood is to select parameters that will maximize the like-
lihood of the ground truth segmentation for training examples. Such parameters should
minimize the energy of the true segmentations xt, while maximizing the energy of all
other configurations.

Below we list several useful properties of the CRF log likelihood:

1. For a given features set !F = [F1, ..., FK ], if there exists a parameter set !λ∗ =
[λ∗1, .., λ

∗
K ], ν∗ for which the minimum of the energy function is exactly the true

segmentation: xt = arg minx E(x; It, !λ
∗, ν∗, !F ). Then selecting α!λ∗, αν∗ with

α→∞ will maximize the CRF likelihood, since: P (xt|It;α!λ∗, αν∗, !F ) = 1 (see
[8]).

2. The CRF log likelihood is convex with respect to the weighting parameters λk, ν as
discussed in [7].

3. The derivative of the log-likelihood with respect to the coefficient of a given fea-
ture is known to be the difference between the expected feature response, and the
observed one. This can be expressed in a simple closed form way as:

∂�t(!λ, ν; !F )
∂λk

=
∂ logP (xt|It;!λ, ν, !F )

∂λk

=
∑
i∈Fk

∑
r

pi(r)|r − xFk,It(i)| −
∑
i∈Fk

|xt(i)− xFk,It(i)|

= < |xt − xFk,It | >P (xt|It;�λ,ν, �F ) − < |xt − xFk,It | >Obs (3)

∂�t(!λ, ν; !F )
∂ν

=
∂ logP (xt|It;!λ, ν, !F )

∂ν

=
∑
ij

∑
rs

pij(r, s)wij |r − s| −
∑
ij

wij |xt(i)− xt(j)|

= < |xt(i)− xt(j)| >P (xt|It;�λ,ν, �F ) − < |xt(i)− xt(j)| >Obs(4)

Where pi(r), pij(r, s) are the marginal probabilities P (xi = r|It;!λ, ν, !F ), P (xi =
r, xj = s|It;!λ, ν, !F ).
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Suppose we are given a set of features !F = [F1, ...FK ] and the algorithm task is to
select weights !λ = [λ1, .., λK ], ν that will maximize the CRF log likelihood. Given that
the cost is convex with respect to !λ, ν it is possible to randomly initialize the weights
vector and run gradient decent, when the gradients are computed using equations 3,4.
Note that gradient decent can be used for selecting the optimal weights, without com-
puting the explicit CRF log likelihood (eq 2).

Exact computation of the derivatives is intractable, due to the difficulty in comput-
ing the marginal probabilities pi(r), pij(r, s). However, any approximate method for
estimating marginal probabilities can be used. One approach for approximating the
marginal probabilities is using Monte Carlo sampling, like in [4, 1]. An alternative ap-
proach is to approximate the marginal probabilities using the beliefs output of sum
product belief propagation or generalized belief propagation. Similarly, an exact com-
putation of the CRF log likelihood (eq 2) is challenging due to the need to compute the
log-partition function Z(I) =

∫
x e

−E(x;I). Exact computation of Z(I) is in general in-
tractable (except for tree structured graphs). However, approximate inference methods
can be used here as well, such as the Bethe free energy or the Kikuchi approxima-
tions [14]. Monte-Carlo methods can also be used. In this work we have approximated
the marginal probabilities and the partition function using sum product tree-reweighted
belief propagation [13], which provides a rigorous bound on the partition function, and
has better convergence properties than standard belief propagation. Tree reweighted
belief propagation is described in the Appendix.

2.2 Features Selection

The learning algorithm starts with a large pool of candidate local features. In this work
we created a 2, 000 features pool, by extracting image fragments from training images.
Fragments are extracted at random sizes and random locations. The learning goal is
to select from the features pool a small subset of features that will construct the energy
functionE, in a way that will maximize the conditional log likelihood

∑
t logP (xt|It).

Since the goal is to select a small subset of features out of a big pool, the required
learning algorithm for this application is more than a simple gradient decent.

Let Ek denote the energy function at the k’th iteration. The algorithm initializes E0
with the pairwise term and adds local features in an iterative greedy way, such that in
each iteration a single feature is added: Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |. In
each iteration we would like to add the feature Fk that will maximize the conditional
log likelihood. We denote byLk(F, λ) the possible likelihood if the feature F , weighted
by λ, is added at the k’th iteration:

Lk(F, λ) = �(!λk−1, λ, ν; !Fk−1, F ) =
∑

t

logP (xt|It; Ek−1(xt; It) + λ|x− xF,I | )

Straightforward computation of the likelihood improvement is not practical since in
each iteration, it will require inference for each candidate feature and for every possible
weight λ we may assign to this feature. For example, suppose we have 50 training
images, we want to scan 2, 000 features, 2 possible λ values, and we want to perform
10 features selection iterations. This results in 2, 000, 000 inference operations. Given
that each inference operation itself is not a cheap process, the resulting computation can
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not be performed in a reasonable time. However, we suggest a novel efficient way to
approximate the possible contribution from each of the candidate features.

Observation: A first order approximation to the conditional log likelihood can be com-
puted efficiently, without a specific inference process per feature.

Proof:

Lk(F, λ) ≈ �k−1(!λk−1, ν) + λ
∂Lk(F, λ)

∂λ

∣∣∣∣
λ=0

(5)

where

∂Lk(F, λ)
∂λ

∣∣∣∣
λ=0

=< |xt − xF,It | >P (xt|It;�λk−1,ν, �Fk−1) − < |xt − xF,It | >Obs (6)

and �k−1(!λk−1, ν) =
∑

t logP (xt|It;Ek−1). We note that computing the above first
order approximation requires a single inference process on the previous iteration energy
Ek−1, from which the local beliefs (approximated marginal probabilities) {bk−1

t,i } are
computed. Since the gradient is evaluated at the point λ = 0, it can be computed using
the k − 1 iteration beliefs and there is no need for a specific inference process per
feature.

Computing the first order approximation for each of the training images is linear
in the filter size. This enables scanning thousands of candidate features within sev-
eral minutes. As evident from the gradient formula (eq 6) and demonstrated in the
experiments section, the algorithm tends to select fragments that: (1) have low er-
ror in the training set (since it attempts to minimize < |xt − xF,It | >Obs) and (2)
are not already accounted for by the existing model (since it attempts to maximize
< |xt − xF,It | >P (xt|It;�λk−1,ν, �Fk−1)

). First order approximation to the log-likelihood
function were also used by [17] to select features for exponential models fitting.

Once the first order approximations have been calculated we can select a small set
of the features Fk1 ...FkN with the largest approximated likelihood gains. For each of

Algorithm 1. Features Selection
Initialization: E0(xt; It) = ν

∑
ij wij |xt(i) − xt(j)|.

for k=1 to maxItr

1. Run tree-reweighted belief propagation using the k−1 iteration energy Ek−1(xt; It). Com-
pute local beliefs {bk−1

t,i }.
2. For each feature F compute the approximated likelihood using eq 5.

Select the N features Fk1 ...FkN with largest approximated likelihood gains.
3. For each of the features Fk1 ...FkN , and for each scale λ ∈ {λ1, ..., λM}, run tree-

reweighted belief propagation and compute the likelihood Lk(Fkn , λm)
4. Select the feature and scale with maximal likelihood gain:

(Fkn , λm) = arg max
n=1:N, m=1:M

Lk(Fkn , λm)

Set λk = λm, Fk = Fkn , Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |.
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the selected features, and for each of a small discrete set of possible λ values λ ∈
{λ1, ..., λM}, we run an inference process and evaluate the explicit conditional log
likelihood. The optimal feature (and scale) is selected and added to the energy function
E. The features selection steps are summarized in Algorithm 1.

Once a number of features have been selected, we can also optimize the choice
of weights {λk}, ν using several gradient decent steps. Since the cost is convex with
respect to the weights a local optimum is not an issue.

3 Experiments

In our first experiment we tried to segment a synthetic octopus dataset. Few sample
images are shown in Fig 4. It’s clear that our synthetic octopi are highly non rigid
objects. Any effort to fully cover all the octopi tentacles with fragments (like [2, 9, 5]),
will require a huge number of different fragments. On the other hand, there is a lot
of edges information in the images that can guide the segmentation. The first feature
selected by our algorithm is located on the octopi head, which is a rigid part common
to all examples. This single feature, combined with pairwise constraints was enough to
propagate the true segmentation to the entire image. The MAP segmentation given the
selected feature is shown in Fig 4.

We then tested our algorithm on two real datasets, of horses [3, 2] and cows [9]. We
measured the percentage of mislabeled pixels in the segmented images on training and
testing images, as more fragments are learned. Those are shown for horses in Fig 5(a),
and for cows in Fig 5(b). Note that after selecting 3 fragments our algorithm performs at
over 95% correct on test data for the horse dataset. The algorithm of Borenstein et al. [2]
performed at 95% for pixels in which its confidence was over 0.1 and at 66% for the
rest of the pixels. Thus our overall performance seems comparable (if not better) even
though we used far less fragments. The OBJ-CUT algorithm also performs at around
96% for a subset of this dataset using a LPS model of 10 parts whose likelihood function
takes into consideration chamfer distance and texture and is therefore significantly more
complex than normalized correlation.

Fig. 4. Results on synthetic octopus data. Top: Input images. Middle: response of the local feature,
with the ground truth segmentation contour overlaid in red. Bottom: MAP segmentation contour
overlaid on input image.
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Fig. 5. Percents of miss-classified pixels: (a) Horses data (b) Cows data Note that after 4 fragments
our algorithm performs at over 95% correct on test data for the horse dataset. These results are
comparable if not better than [2, 5] while using a simpler model.

Fig. 6. Testing results on horses data. Top row: Input images. Second row: Response of the local
features and the boundary feature, with the ground truth segmentation contour overlaid in red.
Bottom row: MAP segmentation contour overlaid on input image.

Fig. 7. Testing results on cows’ data with 4 features. Top row: Input images. Second row: Re-
sponse of the local features and the boundary feature, with the ground truth segmentation contour
overlaid in red. Bottom row: MAP segmentation contour overlaid on input image.
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Fig. 8. The first 3 horse fragments selected by the learning algorithm

(Input Images)

(One Fragment)

(Two Fragments)

(Three Fragments)

Fig. 9. Training results on horses data. For each group: Top row - response of the local features
and the boundary feature, with the ground truth segmentation contour overlaid in red. Middle
row - MAP segmentation. Bottom row - MAP segmentation contour overlaid on input image.

In the horses and cows experiments we rely on the fact that we are searching for a
shape in the center of the window, and used an additional local feature predicting that
the pixels lying on the boundary of the subimage should be labeled as background.
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In Fig 6 we present several testing images of horses, the ground truth segmentation,
the local features responses and the inferred segmentation. While low level informa-
tion adds a lot of power to the segmentation process, it can also be misleading. For
example, the example on the right of Fig 9 demonstrates the weakness of the low level
information.

In Fig 7 we present segmentation results on cows test images, for an energy function
consisting of 4 features. The segmentation in this case is not as good as in the horses’
case, especially in the legs. We note that in most of these examples the legs are in
a different color than the cow body, hence the low-level information can not easily
propagate labeling from the cow body to its legs. The low level cue we use in the
work is quite simple- based only on the RGB difference between neighboring pixels.
It’s possible that using more sophisticated edges detectors [10] will enable a better
propagation.

The first 3 horse fragments that were selected by the algorithm are shown in Fig 8. In
Fig 9 we illustrate the first 3 training iterations on several training images. Quite a good
segmentation can be obtained even when the response of the selected features does not
cover the entire image. For example the first fragment was located around the horse’s
front legs. As can be seen in the first 3 columns of Fig 9, some images can be segmented
quite well based on this single local feature. We can also see that the algorithm tends to
select new features in image areas that were mislabeled in the previous iterations. For
example, in several horses (mainly the 3 middle columns) there is still a problem in the
upper part, and the algorithm therefore selects a second feature in the upper part of the
horse. Once the second fragment was added there are still several mislabeled head areas
(see the 3 right columns), and as a result the 3rd fragment is located on the horse head.

4 Discussion

Evidence from human vision suggests that humans utilize significant top-down infor-
mation when performing segmentation. Recent works in computer vision also suggest
that segmentation performance in difficult scenes is best approached by combining top-
down and bottom-up cues. In this paper we presented an algorithm that learns how
to combine these two disparate sources of information into a single energy function.
We showed how to formulate the problem as that of estimation in Conditional Ran-
dom Fields which will provably find the correct parameter settings if they exist. We
introduced a novel feature induction algorithm for CRFs that allowed us to efficiently
search over thousands of image fragments for a small number of fragments that will
improve the segmentation performance. Our learned algorithm achieves state-of-the-
art performance with a small number of fragments combined with very rudimentary
low-level cues.

Both the top-down module and the bottom-up module that we used can be signifi-
cantly improved. Our top-down module translates an image fragment and searches for
the best normalized correlation, while other algorithms also allow rescaling and rota-
tion of the parts and use more sophisticated image similarity metrics. Our bottom-up
module uses only local intensity as an affinity function between pixels, whereas other
algorithms have successfully used texture and contour as well. In fact, one advantage
of the CRFs framework is that we can learn the relative weights of different affinity
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functions. We believe that by improving both the low-level and high-level cues we will
obtain even better performance on the challenging task of image segmentation.

5 Appendix: Tree-Reweighted Belief Propagation and
Tree-Reweighted Upper Bound

In this section we summarize the basic formulas from [13] for applying tree-rewighted
belief propagation and for computing the tree-rewighted upper bound.

For a given graphG, we let μe = {μe|e ∈ E(G)} represent a vector of edge appear-
ance probabilities. That is, μe is the probability that the edge e appears in a spanning tree
of the graph G, chosen under a particular distribution on spanning trees. For 2D-grid
graphs with 4-neighbors connectivity a reasonable choice of edges distributions is μe ={
μe = 1

2 |e ∈ E(G)
}

and for 8-neighbors connectivity, μe =
{
μe = 1

4 |e ∈ E(G)
}

.
The edge appearance probabilities are used for defining a tree-rewighted mas-

sages passing scheme. Denote the graph potentials as: Ψi(xi) = e−Ei(xi),
Ψij(xi, xj) = e−Eij(xi,xj), and assume P (x) can be factorized as: P (x) ∝∏

i Ψi(xi)
∏

i,j Ψij(xi, xj). The tree-rewighted massages passing scheme is defined as
follows:

1. Initialize the messages m0 = m0
ij with arbitrary positive real numbers.

2. For iterations n=1,2,3,... update the messages as follows:

mn+1
ji (xi) = κ

∑
x′

j

exp(− 1
μij

Eij(xi, x
′
j)−Ej(x′j))

⎧⎨⎩
∏

k∈Γ (j)\i

[
mn

kj(x
′
j)
]μkj

[
mn

ij(x
′
j)
](1−μji)

⎫⎬⎭
where κ is a normalization factor such that

∑
xi
mn

ji(xi) = 1.

The process converges when mn+1
ji = mn

ji for every ij.
Once the process has converged, the messages can be used for computing the local

and pairwise beliefs:

bi(xi) = κ exp(−Ei(xi))
∏

k∈Γ (i)

[mki(xi)]
μki (7)

bij(xi, xj) = κ exp(− 1
μij

Eij(xi, xj)− Ei(xi)− Ej(xj))∏
k∈Γ (i)\j [mki(xi)]

μki

[mji(xi)]
(1−μij)

∏
k∈Γ (j)\i [mkj(xj)]

μkj

[mij(xj)]
(1−μji)

(8)

We define a pseudo-marginals vector !q = {qi, qij} as a vector satisfying:∑
xi
qi(xi) = 1 and

∑
xj
qij(xi, xj) = qi(xi). In particular, the beliefs vectors in

equations 7,8 are a peseudo-marginals vector. We use the peseudo-marginals vectors
for computing the tree-rewighted upper bound.

Denote by θ the energy vector θ = {Ei, Eij}. We define an “average energy”
term as: !q · θ =

∑
i

∑
xi
−qi(xi)Ei(xi) +

∑
ij

∑
xi,xj

−qij(xi, xj)Eij(xi, xj).
We define the single node entropy: Hi(qi) = −∑xi

qi(xi) log qi(xi). Similarly, we
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define the mutual information between i and j, measured under qij as: Iij(qij) =∑
xi,xj

qij(xi, xj) log qij(xi,xj)(∑
x′

j
qij(xi,x′

j)
)(∑

x′
i

qij(x′
i,xj)

) . This is used to define a free en-

ergy: F(!q; μe; θ) � −∑iHi(qi) +
∑

ij μijIij(qij)− !q · θ.
In [13] Wainwright et al prove that F(!q; μe; θ) provides an upper bound for the log

partition function:

logZ =
∫

x

exp(−
∑

i

Ei(xi)−
∑
ij

Eij(xi, xj)) ≤ F(!q; μe; θ)

They also show that the free energy F(!q; μe; θ) is minimized using the peseudo-
marginals vector !b defined using the tree-rewighted messages passing output. Therefore
the tighter upper bound on logZ is provided by !b.

This result follows the line of approximations to the log partition function using free
energy functions. As stated in [14], when standard belief propagation converges, the
output beliefs vector is a stationary point of the bethe free energy function, and when
generalized belief propagation converges, the output beliefs vector is a stationary point
of the Kikuchi free energy function. However, unlike the bethe free energy and Kikuchi
approximations, the tree-rewighted free energy is convex with respect to the peseudo-
marginals vector, and hence tree-rewighted belief propagation can not end in a local
minima.

A second useful property of using the tree-rewighted upper bound as an approxima-
tion for the log partition function, is that computing the likelihood derivatives (equa-
tions 3-4) using the beliefs output of tree-rewighted massages passing, will result in
exact derivatives for the upper bound approximation.

In this paper we used F(!b; μe; θ) as an approximation for the log partition
function, where !b is the output of tree-rewighted belief propagation. We also used the
tree-rewighted beliefs !b in the derivatives computation (equations 3-4), as our approxi-
mation for the marginal probabilities.
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Abstract. We consider the problem of clustering data into k ≥ 2 clus-
ters given complex relations — going beyond pairwise — between the
data points. The complex n-wise relations are modeled by an n-way array
where each entry corresponds to an affinity measure over an
n-tuple of data points. We show that a probabilistic assignment of data
points to clusters is equivalent, under mild conditional independence as-
sumptions, to a super-symmetric non-negative factorization of the clos-
est hyper-stochastic version of the input n-way affinity array. We derive
an algorithm for finding a local minimum solution to the factorization
problem whose computational complexity is proportional to the num-
ber of n-tuple samples drawn from the data. We apply the algorithm
to a number of visual interpretation problems including 3D multi-body
segmentation and illumination-based clustering of human faces.

1 Introduction

We address the fundamental problem of grouping feature vectors (points) on
the basis of multi-wise similarity or coherency relationships among n-tuples of
points. The case of pairwise (n = 2) relationships has drawn much attention
in statistical, graph theoretical and computer vision literature. For example, a
clustering task of a collection of points x1, ...,xm in Euclidean space Rn may
be induced by a symmetric “affinity” matrix Kij = e−‖xi−xj‖2/σ2

which would
serve as the input to a process aimed at assigning the m points into k ≥ 2 classes.
The greatly popular “spectral” clustering technique, for example, looks for the
k leading eigenvectors of a normalized version of K as a new coordinate system
which in ideal settings would map the original coordinates of the points to k
points in Rk, one per each cluster [10, 11]. Graph theoretical methods perform
normalization on the affinity matrix (producing the Laplacian of K) whereby
the second smallest eigenvector splits the points into two clusters [15, 8], and
more recently it was shown that conditionally independent statements on the
unknown labels given the data points lead to the finding that K = GG
, G ≥ 0,
where G contains the probabilistic assignments of points to clusters [20].

It has been recently pointed out by a number of authors [1, 5, 21] that for
many computer vision and machine learning applications a pairwise affinity re-
lationship among points does not capture the complexity of the problem. For
example, if a parametric model requires d points for a definition, then n ≥ d+1

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 595–608, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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points can be used to provide an affinity value by taking the square residual error
Δ2 of the least-squares fit of the n points to the model and translating it into a
probability value κ(xi1 , ...,xin) = e−Δ2/σ2

, where 1 ≤ i1, ..., in ≤ m. The affini-
ties form an n-way (tensor) super-symmetric array Ki1,...,in = κ(xi1 , ...,xin)
which like as above is the input for a clustering of the m points into k ≥ 2
clusters. Computer vision applications for parametric models include (i) 3D-
from-2D multi-body segmentation where under an affine model one would need
n ≥ 5 points to determine an affinity value [17] and under a perspective model
n ≥ 9 points are required [9]; (ii) segmenting 3D objects taken from the same
pose but under varying illumination conditions — for matte surfaces ignoring
self-shadowing one would need n ≥ 4 pictures for determining an affinity, i.e.,
the likelihood that the four pictures are of the same 3D surface [13], and (iii)
multi-model selection in general.

We address in this paper the problem of clusteringm points into k ≥ 2 clusters
given an n-way super-symmetric affinity array K ∈ [m]× ..× [m] = [m]×n. We
will first describe the state of the art in this domain and then proceed to describe
our contribution.

1.1 Previous Work on n-Way Clustering and Our Approach

Clustering from an n-way affinity array is new to computer vision and machine
learning but has been a topic of extensive research in VLSI and PCB clustering
placement since the early 70s. A convenient representation of the problem is
given by a hypergraph, with m vertices and

(
m
n

)
different hyper-edges, where the

vertices correspond to the points (circuit elements in VLSI) to be clustered into
k ≥ 2 parts and the hyper-edges (nets connecting circuit elements) correspond
to subsets of vertices where the degree n of an edge is the number of vertices
spanned by it.

The techniques employed by the VLSI/PCB community for hypergraph par-
titioning into clusters are largely heuristic in nature — for a review see [2].
The recent work coming out from the vision and machine learning communities
[1, 5, 21] seek an approximate graph that best resembles the original hypergraph.
For example, [1] define a pairwise affinity as a weighted average over all n-tuple
affinities containing the two points in question — this can be viewed as a projec-
tion of the original tensor K onto a two-dimensional matrix by a weighted sum
of its the slices. Similarly, [5] defines a pairwise affinity between points xr,xs as
a sum of products Kr,i2,...,inKs,i2,...,in over all i2, ..., in. Finally, [21] performs a
multiplicative normalization with the vertices degrees (the sum of weights inci-
dent to a vertex) as part of creating a Laplacian of the hypergraph. Both [1, 21]
are consistent with graph theoretical research which define hypergraph Lapla-
cians by summing up all the weights incident to pairs of vertices [12], while the
work of [5] is inspired by “high order SVD” literature (referenced therein).

The idea of projecting the hypergraph onto a graph is not without merit.
However, the projection from a high-order affinity array to a pairwise affinity
would have a high SNR for simple problems. Problems with a small number
of clusters having a high number of points per cluster relative to the affinity
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degree would benefit from the projection approach. Generally, however, a pro-
jection induces information-loss and the pairwise affinities will get increasingly
obscured with increasing affinity degree — and since we have here a “curse of
dimensionality” effect, a rapid decline of pairwise affinity SNR is expected with
increasing problem complexity.

Rather than performing a projection we work with the full affinity tensor.
Our approach enables us to define any affinity degree we desire — including
one obtained by projection of the original tensor to a lower degree one, and in
particular to a pairwise affinity. Starting from a super-symmetric tensor K of
any degree, we show that a general probabilistic argument on conditional in-
dependence introduces a simple connection between K and the desired m × k
probabilistic partition matrix G ≥ 0. The connection is two fold (i) the “bal-
ancing” requirement on the cluster sizes requires K to be hyper-stochastic, and
(ii) G is obtained by a super-symmetric non-negative factorization (SNTF) of
K. The algorithm we derive for performing the SNTF is based on a positive-
preserving gradient descent scheme. The scheme also supports partial sampling
of the affinity tensor which is necessary since it is practically impossible to fill
in, or even store, a full high-degree affinity array. The complexity of the update
step is O(mkp) where p ≤ (

m
n

)
is the number of samples.

The work presented here is an outgrowth of our algebraic treatment of
pairwise affinity clustering showing that K is completely positive [20] and of
a general treatment of tensor ranks and conditional independence with latent
variables [14].

2 Probabilistic Clustering from n-Way Affinity Arrays

Let D = {x1, ...,xm} be points in Rd which we wish to assign to k clusters
C1, ..,Ck and let yi ∈ {1, ..., k} be the associated (unknown) labels. We assume
that we have a way to measure the probability, which for now is simply an affinity
measure in the range (0, 1], that any n-tuple of points xi1 , ...,xin , 1 ≤ ij ≤ m,
belong to the same cluster. For example, if we know that the clusters are defined
as n−1 dimensional subspaces, then k(xi1 , ...,xin) = e−Δ, where Δ is the volume
defined by the n-tuple, would be a reasonable measure of n-tuple affinity.

Given the affinities k(xi1 , ...,xin), which form an n-way array K indexed
by Ki1,...,in, we wish to assign a probability gr,s = P (ys = r | D) of point
xs belonging to cluster Cr. The desired membership probabilities form a non-
negative m× k matrix G = [g1, ...,gk], thus our goal is to find G given K. We
will derive below an algebraic constraint on the n-way array K and relate it, by
means of factorization and linear constraints, to the desired matrix G.

Consider the labels yi as latent variables and assume that y1⊥...⊥ym | D,
i.e., that the labels are independent of each other given the entire set of data
points. Then, the probability P (yi1 = r, ..., yin = r | D) that xi1 , ...,xin belong
to cluster Cr, is factorizable:

P (yi1 = r, ..., yin = r | D) = P (yi1 = r | D) · · · P (yin = r | D).
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The probability that the n-tuple are clustered together is given by marginaliza-
tion:

Ki1,...,in =
k∑

r=1

P (yi1 = r | D) · · · P (yin = r | D) =
k∑

r=1

gr,i1 · · · gr,in ,

which translate to the fact that K should be a rank=k super-symmetric tensor:

K =
k∑

r=1

g⊗n
r , gr ≥ 0,

where g⊗n denotes the rank-1 tensor g⊗ g⊗ ...⊗ g. In other words, the cluster
assignment probabilities are related to a non-negative super-symmetric factor-
ization of the input n-way array K. To complete the algebraic relation between
K and G we need to consider the constraints on K such that the n-way affinity
array will indeed represent a distribution:

Proposition 1. Given uniform priors on the distribution of labels, i.e., P (yi =
j) = 1/k for all i = 1, ...,m, the n-way array K must be hyper-stochastic:∑

i1,..,ij−1,ij+1,...,in

Ki1,...,in =
(m

k

)n−1
1, j = 1, ..., n

where 1 is the m-dimensional vector (1, ..., 1).

Proof: From the definition of G we have that the rows sum to 1:
∑

r P (ys =
r | D) =

∑
r grs = 1. Therefore, the uniform priors means that each column sums

to m/k:
∑

s grs = m/k. The rows and columns sums propagate to a (scaled)
hyper-stochastic constraint on K:

∑
i1,..,ij−1,ij+1,...,in

Ki1,...,in =
k∑

r=1

gr,ij

∑
i1,..,ij−1,ij+1,...,in

gr,i1 · · · gr,ij−1gr,ij+1 · · · gr,in

=
k∑

r=1

gr,ij

(∑
i1

gr,i1

)
· · ·

⎛⎝∑
ij−1

gr,ij−1

⎞⎠⎛⎝∑
ij+1

gr,ij+1

⎞⎠ · · ·(∑
in

gr,in

)

=
(m

k

)n−1 k∑
r=1

gr,ij =
(m

k

)n−1

Note that the hyper-stochasticity constraint is “balanced partitions” in disguise.
The uniform prior assumption in fact constraints the dataset to form k “bal-
anced” clusters. Since we do not wish to enforce strictly a balanced partition we
will seek only a “soft” version of the hyper-stochastic constraint by adopting the
following scheme: (i) find a hyper-stochastic approximation F to the input affin-
ity array K, and (ii) given F , perform a super-symmetric non-negative tensor
factorization (SNTF), i.e., find g1, ...,gk ≥ 0 that minimize the Frobenius norm
‖F −∑r g⊗n

r ‖2.
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Finding a hyper-stochastic approximation to K can be done by repeating a
normalization step which is an extension of the symmetrized Sinkhorn [16, 20]
rows and columns normalization procedure for matrices. The following propo-
sition forms a normalization algorithm which converges to a super-symmetric
hyper-stochastic array:

Proposition 2. For any non-negative super-symmetric n-way array K(0), iter-
ating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
,

where
ai =

∑
i2,...,in

Ki,i2,...,in , i = 1, ...,m

converges to a hyper-stochastic array.

The proof is in Appendix B. In the pairwise affinity (n = 2) case, the results
above state that K = GG
 and that prior to factorizing K we should normalize
it by replacing it with F = D−1/2KD−1/2 where D is a diagonal matrix holding
the row sums of K. If we iterate this normalization procedure we will obtain a
doubly-stochastic approximation to K. This is consistent with [20] which argues
that the conditional independence statements yi⊥yj | D lead to the finding that
K = GG
 which also underlies the k-means, spectral clustering and normalized
cuts approaches. In other words, the conditional independence assumptions we
made at the start are already built-in into the conventional pairwise affinity
treatment — we have simply acknowledged them and extended them beyond
pairwise affinities.

3 The SNTF Algorithm

We are given a n-way affinity array K ∈ [d1] × .... × [dn] with di = m being
the number of data points to be clustered. An entry Ki1,...,in with 1 ≤ ij ≤ m
denotes the (un-normalized) probability of the n-point tuple xi1 , ...,xin to be
clustered together. The tensor K is super-symmetric because the probability
Ki1,...,in does not depend on the order of the n points. Furthermore, we can
ignore entries with repeating indices and focus only on the case i1 �= ... �= in
(this is crucial for the success of the algorithm). For practical reasons, we would
like to store only a single representative of each n-tuple (instead of n! entries),
thus we focus only on the entries i1 < i2 < ... < in. Accordingly, we define the
order-restricted Frobenius (semi) norm:

‖K‖2o =< K,K >o=
∑

1≤i1<i2<...<in≤m

K2
i1,...,in

,

where < A,B >o is the inner-product (restricted to strictly ascending order)
operation. Note that when K is super-symmetric then

‖K‖2o =
1
n!

∑
i1 �=... �=in

K2
i1,...,in
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which is the restriction of the Frobenius norm to non-repeating indices. As men-
tioned in the previous section, we pass K through a normalization process and
obtain a normalized version denoted by F . Our goal is to find a non-negative
matrix Gm×k whose columns are denoted by g1, ...,gk such as to minimize the
following function:

f(G) =
1
2
‖F −

k∑
j=1

g⊗n
j ‖2o,

We derive below a positive-preserving update rule: gr,s ← gr,s− δrs∂f/∂gr,s. We
start with the derivation of the partial derivative ∂f/∂gr,s. The differential df
is derived below:

df = d
1
2

< F −
k

j=1

g⊗n
j , F −

k

j=1

g⊗n
j >o=<

k

j=1

g⊗n
j − F , d(

k

j=1

g⊗n
j ) >o

= <
k

j=1

g⊗n
j − F ,

j

(dgj) ⊗ g⊗(n−1)
j + gj ⊗ (dgj) ⊗ g⊗(n−2)

j + ... + g⊗(n−1)
j ⊗ dgj >o

The partial derivative with respect to gr,s (the s’th entry of gr) is:

∂f

∂grs
=<

k∑
j=1

g⊗n
j − F , es ⊗ g⊗(n−1)

r + .....+ g⊗(n−1)
r ⊗ es >o

where es is the standard vector (0, 0, .., 1, 0, ..0) with 1 in the s’th coordinate.
It will be helpful to introduce the following notation: let 1 ≤ i2 < ... < in ≤ m
and let 1 ≤ s ≤ m be different from i2, ..., in, then s → i2, .., in is an ascending
n-tuple index (i.e., s is inserted into i2, ..., in in the appropriate position). Thus,
for example:

< F,a ⊗ b⊗ b + b⊗ a⊗ b + b⊗ b⊗ a >o=
∑

i1 �=i2<i3

Fi1→i2,i3ai1bi2bi3

Using the above short-hand notation, the partial derivative becomes:

∂f

∂gr,s
=

k∑
j=1

gj,s

∑
s�=i2<...<in

n∏
q=2

gj,iqgr,iq −
∑

s�=i2<...<in

Fs→i2,..,in

n∏
q=2

gr,iq (1)

We will be using a “positive preserving” gradient descent scheme grs ← grs −
δrs∂f/∂grs. Following [7] we set the gradient step size δrs as follows:

δrs =
grs∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iqgr,iq

(2)

After substitution of eqn. 2 into the gradient descent equation we obtain a mul-
tiplicative update rule:

grs ←
grs

∑
s�=i2<...<in

Fs→i2,..,in

∏n
q=2 gr,iq∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iqgr,iq

(3)
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The update rule preserves positivity, i.e., if the initial guess for G is non-negative
and F is super-symmetric and non-negative, then all future updates will maintain
non-negativity. The proof that the update rule reduces f(G) and converges to a
local minima is presented in Appendix A.

There are a couple of noteworthy points to make. First, removing from con-
sideration entries in F that correspond to repeated indices makes the energy
function f(gr,s) be quadratic (when all other entries of G are fixed) which in
turn is the key for the update rule above to reduce the energy at each step. Sec-
ond, each sample of n-tuple corresponds to n! entries of the affinity tensor K.
As the dimension grows, any algorithm for processing K becomes unpractical as
simply recording the measurements is unwieldy. The scheme we presented above
records only the

(
m
n

)
entries 1 ≤ i1 < ... < in ≤ m instead of mn in return

for keeping a lexicographic order during measurement recording and during the
update process of gr,s (access to Fs→i2,...,in).

Next, for large arrays, the need to sample all the possible (ordered) n-tuples
out of m points introduces an excessive computational burden. In fact, it is
sufficient to sample only a relatively small fraction of all n-tuples for most clus-
tering problems. The sampling introduces vanishing entries in K that do not
correspond to low affinity of the corresponding n-tuple but to the fact that the
particular tuple was not sampled — those should be weighted-out in the crite-
ria function f(G). A “weighted” version of the scheme above requires merely a
straightforward modification of the update rule:

grs ←
grs

∑
s�=i2<...<in

Ws→i2,...,inFs→i2,..,in

∏n
q=2 gr,iq∑k

j=1 gj,s

∑
s�=i2<...<in

Ws→i2,...,in

∏n
q=2 gj,iqgr,iq

(4)

where Wi1,...,in ≥ 0, i1 < ... < in, is a weight associated with the entry Ki1,...,in .
In particular we are interested in the binary weighting scenario where the weight
is zero if the n-tuple xi1 , ...,xin was not sampled and ’1’ otherwise. To summarize,
the n-way clustering algorithm is presented below:

1. Construct K: sample n-tuples xi1 , ...,xin , i1 < ... < in, and set Ki1,...,in =
k(xi1 , ...,xin). Set Wi1,...,in = 1.

2. Normalize K: apply the iterative normalization scheme which generates F
(Prop. 2).

3. Factor F : starting with an initial guess for G ≥ 0, iteratively update the
entries gr,s one at a time using eqn. 4 until convergence is reached.

Note that only sampled entries participate in the algorithm, therefore the com-
plexity of each update step (eqn. 4) is a constant factor of the number of samples.
The complexity of the algorithm is O(mkp) where p ≤ (

m
n

)
is the number of sam-

ples (number of non-vanishing entries of W ).

4 Experiments

We begin by studying the performance of the SNTF algorithm on synthetic
data compared to the graph projection methods [1, 5, 21]. A comparative study
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Fig. 1. Synthetic study of clustering m = 200 points arranged in k = 5 3rd-order
curves (i.e., affinity degree is n = 5). See text for details on each display.

of graph projection against outlier rejection algorithms (like RANSAC) and the
multi-level hypergraph partitioning algorithms used in the VLSI community was
presented in [1] showing a significant advantage to graph projection. Therefore
we will focus our comparative study on the performance relationship between
SNTF and graph projection.

The graph projection approximates the original hypergraph with a graph
followed by spectral clustering. In practice, when the affinity degree n is large
one needs to use sampling, i.e., during the projection not all hyper-edges are used
since their number grows exponentially with the affinity degree ([5] addressed the
sampling issue). We expect the graph projection to work well when the problem
is “simple”, i.e., when a projection from

(
m
n

)
hyper-edges to

(
m
2

)
edges can be

done with minimal information loss – in those cases it is worthwhile to reduce
the problem size from a hypergraph to a graph rather than working directly with
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Fig. 2. 3D-from-2D motion segmentation. (a) shows a picture with 76 points over four
separate bodies, (b,c) show the resulting four columns of the partition matrix G using
SNTF with a 9-way affinity array. The bottom row shows the results after projecting
the affinity array onto a matrix. The projection resulted in significant information-loss
which caused performance degradation.

the full affinity tensor. On the other hand, when the number of points is large or
when the affinity degree is high, one would expect a significant information-loss
during projection with a resulting degraded performance.

In our first experiment we generated m = 200 points in the 2D plane laying
on k = 5 3rd-order polynomials with added Gaussian noise. The number of
hyper-edges (entries of the affinity tensor K) is

(200
5

)
and since a 3rd-order 1D

polynomial is determined by four coefficients we have n = 5. We ran SNTF,
graph projection using Normalized-Cuts (NC) and graph projection using SNTF
(i.e., the same algorithm described in this paper but for n = 2). We varied the
runs according to the sampling percentage ranging from 0.02%−2.5% of sampled
hyper-edges. Fig. 1a shows the input data and Fig. 1b shows the clustering error
percentage of the three runs per sampling. The error of the SNTF is indeed
higher than the graph projection when the sampling is very low (0.02%), i.e.,
when the affinity tensor is very sparse and thus the projection onto a graph
(matrix) does not suffer from information-loss. As the sampling rate increases
the performance of the SNTF on n = 5 original affinity tensor significantly
outperforms both graph projection runs and reaches perfect clustering much
earlier (0.2% compared to 1.5% sampling). Fig. 1c compares the error rate of
SNTF and graph projections (NC and SNTF with n = 2) using 0.15% sampling
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Fig. 3. Segmenting faces under varying illumination conditions. See text.

rate while varying σ used in computing the affinity from the residual Δ, i.e.,
e−Δ2/σ2

. One can see that the SNTF on the original affinity degree n = 5
consistently outperforms clustering over graph projections — regardless of the
clustering technique.

It is possible to use the SNTF framework in coarse-to-fine manner by generat-
ing affinity tensors of degree q = 2, 3, ..., n by means of projection. Starting from
q = 2 (graph) we recover the partition matrix G and use it as the initial guess
for the SNTF of level q + 1 and so forth. In other words, the SNTF framework
allows the flexibility to work with projections of the original affinity tensor, but
instead of being limited to a projection onto a graph we could work with any
affinity degree. Fig. 1d shows the percentage of error on the same data but with
0.02% sampling (where we have seen that the graph projection has the upper-
hand) using the coarse-to-fine approach. One can see that the error remains
fixed compared to an increasing error for each projection level when the SNTF
does not use the resulting partition matrix of the previous level as an initial
guess. This also confirms that there is a tradeoff between the complexity of the
energy landscape introduced in high-degree affinities and the information loss
introduced by aggressive projections. Ideally, one should work with a projection
to the smallest affinity degree with minimal information loss. The advantage of
the SNTF framework is that we are free to choose the affinity degree, whereas
with graph projection the affinity degree is set to n = 2.

We move next to a 3D motion segmentation experiment. Fig. 2a shows a
frame from “Matrix Reloaded” where we track 76 points arranged on four dif-
ferent moving bodies: the background (moving due to camera motion) and three
separate people moving independently from the background motion. The points
were tracked across two successive frames and our task is to perform a segmen-
tation (clustering) of the points and assign each point to the proper moving
body. It is well known that under perspective projection each pair of matching
points pi, p

′
i in the image plane represented in homogenous coordinates satisfy a

bilinear constraint: p′
i Fpi = 0 where F is a 3 × 3 matrix iff the corresponding
3D points are part of a single moving object [9]. Therefore, we need n = 9 points
in order to obtain an affinity measurement, i.e., the likelihood that the 9-tuple
arise form the same moving object. The affinity tensor has

(76
9

)
entries and we

sample roughly one million entries from it with a proximity bias, i.e., once a
point is sampled the next point is biased towards close points according to a
Normal distribution. We ran SNTF with k = 4 clusters on the 9-degree (sam-
pled) affinity tensor. Fig. 2b,c shows the four columns of the partition matrix G.
Recall that the entries of each column represent the assignment probability of
the corresponding point to the cluster associated with the column. The values
of G induce a clear-cut segmentation of the points to four separate bodies and
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the assignments are shown in Fig. 2a as varying color and shape. This particular
segmentation problem is sufficiently challenging both for the graph projection
approach and to the geometric-specific methods of [19, 18]. With regard to graph
projection, the projection from a 9-degree affinity to a pairwise affinity is very
aggressive with significant information-loss. Fig. 2e,f shows the four columns of
G recovered from SNTF with n = 2 (followed by a projection) — one can see
that one of the moving bodies got lost.

Finally we ran an experiment on segmenting faces under varying illumination
conditions. It is well known that under certain surface property assumptions
(Lambertian) the space of pictures of a 3D object ignoring cast-shadows lie
in a 3D subspace [13]. We therefore need a 4th-degree affinity measured over
quadruples of pictures. Fig. 3 shows a sequence of pictures of a person under
varying illumination conditions adopted from the AR dataset. We had 21 pictures
spanning three different persons and we ran SNTF using 4-degree affinity tensor
with k = 3 clusters. The three columns of the partition matrix G are shown in
the right display. The pictures are unambiguously assigned to the correct person.
Similar results of comparable quality were also obtained by graph projection.
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A Proof of Convergence: The Update Rule

Let f(grs) be the energy as a function of grs (all other entries of G remain
constant) and let g′rs be the updated value according to eqn. 3. We wish to show
that if we make a gradient descent with a step size δrs given by eqn. 2 (which as
we saw leads to a positive-preserving update), then f(g′rs) ≤ f(grs). They key
is that δrs is smaller than the inverse second derivative:

Proposition 3. The update scheme g′rs = grs − δrs∂f/∂grs, with δrs given by
eqn. 2 and the partial first derivative is given by eqn. 1, reduces the optimization
function, i.e., f(g′rs) ≤ f(grs).

Proof: The second derivative is:

∂2f

∂grs∂grs
=

∑
s�=i2<...<in

n∏
q=2

g2
r,iq

,
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and the step size δrs satisfies:

δrs =
grs∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iqgr,iq

≤ grs

gr,s

∑
s�=i2<...<in

∏n
q=2 g

2
r,iq

=
1

∂2f/∂grs∂grs

The Taylor expansion of f(grs + h) with h = −δrs∂f/∂grs is:

f(g′rs) = f(grs)− δrs(
∂f

∂grs
)2 +

1
2
δ2rs(

∂f

∂grs
)2

∂2f

∂grs∂grs
,

from which follows:

f(grs)− f(g′rs) = δrs(
∂f

∂grs
)2(1 − 1

2
δrs

∂2f

∂grs∂grs
) ≥ 0,

since δrs∂
2f/∂grs∂grs ≤ 1.

We apply the update rule in a Gauss-Seidel fashion according to a row-major
raster scan of the entries of G (a row-major raster scan has the advantage of en-
abling efficient caching). Since the energy is lower-bounded, twice differentiable,
and is monotonically decreasing via the update rule, yet cannot decrease beyond
the lower bound (i.e., positive preserving), then the process will converge onto
a local minimum of the optimization function 1

2‖F −
∑k

j=1 g
⊗n
j ‖2 with entries

with repeated indices ignored.

B Proof of Convergence: Normalization Scheme

We prove the following proposition:

For any non-negative super-symmetric n-way array K(0), without vanishing
slices, iterating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
, (5)

where
ai =

∑
i2,...,in

Ki,i2,...,in , i = 1, ...,m

converges to a hyper-stochastic array.

Proof: we define the hyper-permanent (following the definition of hyper-
determinant [4]):

hperm(K) =
∑

σ2∈Sm

· · ·
∑

σn∈Sm

m∏
i=1

Ki,σ2(i),...,σn(i),
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where Sm is the permutation group of m letters. Let K ′ be the n-way array
following one step of the normalization step described in eqn. 5. We have:

m∏
i=1

(aiaσ2(i) · · · aσn(i))1/n =
m∏

i=1

(an
i )1/n =

m∏
i=1

ai,

from which we can conclude that:

hperm(K ′) =
1∏m

i=1 ai
hperm(K).

To show that the normalization scheme monotonously increases the hyper-
permanent of the n-way array we need to show that

∏m
i=1 ai ≤ 1. From the

arithmetic-geometric means inequality it is sufficient to show that
∑m

i=1 ai ≤ m.
From the definition of ai we have:

m∑
i=1

ai =
∑

i,i2,...,in

Ki,i2,...,in

1
(aiai2 · · · ain)1/n

. (6)

From the arithmetic-geometric means inequality (
∏m

i=1 xi)1/m ≤ (1/m)
∑

i xi,
replace xi with 1/ai (recall that ai > 0) and obtain:

1
(a1a2 · · · am)1/m

≤ 1
m

m∑
i=1

1
ai
,

and in general for any n-tuple 1 ≤ i1 < ... < in ≤ m:

1
(ai1 · · · ain)1/n

≤ 1
n

(
1
ai1

+ ...+
1
ain

). (7)

By substituting the inequality eqn. 7 into eqn. 6 while noting that:

∑
i,i2,..,in

Ki,i2,...,in

1
aij

=
m∑

ij=1

1
aij

∑
i,i2,...,ij−1ij+1,...,in

Ki,i2,...,ij−1ij+1,...,in = m,

we obtain that
∑

i ai ≤ m as required. Therefore, we conclude so far that
each step of the normalization scheme increases the hyper-determinant of the
previous step. The hyper-permanent is bounded from above since:

hperm(K) ≤
m∏

i=1

ai ≤ 1,

therefore the process must converge. The process converges when hperm
(K ′) = hperm(K) which can happen only of a1 = ... = am = 1.
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