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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs responsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlaváč, Jiŕı Matas and Tomáš
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Aleš Leonardis,
Horst Bischof,

Axel Pinz
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Matthias Rüther Local Arrangements Graz Univ. of Technology,

Austria
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Tomáš Pajdla
Chris Pal
Theodore Papadopoulo
Nikos Paragios
Ioannis Pavlidis
Vladimir Pavlovic
Shmuel Peleg
Marcello Pelillo
Francisco Perales
Sylvain Petitjean
Matti Pietikainen
Filiberto Pla
Robert Pless
Jean Ponce
Rich Radke
Ravi Ramamoorthi
Deva Ramanan
Visvanathan Ramesh
Ramesh Raskar
Christopher Rasmussen
Carlo Regazzoni
James Rehg

Paolo Remagnino
Xiaofeng Ren
Tammy Riklin-Raviv
Ehud Rivlin
Antonio Robles-Kelly
Karl Rohr
Sami Romdhani
Bodo Rosenhahn
Arun Ross
Carsten Rother
Nicolas Rougon
Mikael Rousson
Sebastien Roy
Javier Sanchez
Jose Santos-Victor
Guillermo Sapiro
Radim Sara
Jun Sato
Yoichi Sato
Eric Saund
Hanno Scharr
Daniel Scharstein
Yoav Y. Schechner
Otmar Scherzer
Christoph Schnörr
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Ohad Ben-Shahar
Møarten Björkman
Mark Borg
Jake Bouvrie
Bernhard Burgeth
Frédéric Cao
Gustavo Carneiro
Nicholas Carter
Umberto Castellani
Bruno Cernuschi-Frias
Ming-Ching Chang
Roland Chapuis
Thierry Chateau
Hong Chen
Xilin Chen
Sen-ching Cheung
Tat-Jun Chin
Mario Christhoudias

Chi-Wei Chu
Andrea Colombari
Jason Corso
Bruce Culbertson
Goksel Dedeoglu
David Demirdjian
Konstantinos Derpanis
Zvi Devir
Stephan Didas
Miodrag Dimitrijevic
Ryan Eckbo
Christopher Engels
Aykut Erdem
Erkut Erdem
Anders Ericsson
Kenny Erleben
Steven Eschrich
Francisco Estrada
Ricardo Fabbri
Xiaodong Fan
Craig Fancourt
Michela Farenzena
Han Feng
Doug Fidaleo
Robert Fischer
Andrew Fitzhugh
Francois Fleuret
Per-Erik Forssén
Ben Fransen
Clement Fredembach
Mario Fritz
Gareth Funka-Lea
Darren Gawely
Atiyeh Ghoreyshi
Alvina Goh

Leo Grady
Kristen Grauman
Ralph Gross
Nicolas Guilbert
Abdenour Hadid
Onur Hamsici
Scott Helmer
Yacov Hel-Or
Derek Hoiem
Byung-Woo Hong
Steve Hordley
Changbo Hu
Rui Huang
Xinyu Huang
Camille Izard
Vidit Jain
Vishal Jain
Christopher Jaynes
Kideog Jeong
Björn Johansson
Marie-Pierre Jolly
Erik Jonsson
Klas Josephson
Michael Kaess
Rahul Khare
Dae-Woong Kim
Jong-Sung Kim
Kristian Kirk
Dan Kushnir
Ville Kyrki
Pascal Lagger
Prasun Lala
Michael Langer
Catherine Laporte
Jean-Marc Lavest



XII Organization

Albert Law
Jean-Pierre Lecadre
Maxime Lhuillier
Gang Li
Qi Li
Zhiguo Li
Hwasup Lim
Sernam Lim
Zicheng Liu
Wei-Lwun Lu
Roberto Lublinerman
Simon Lucey
Gian Luca Mariottini
Scott McCloskey
Changki Min
Thomas Moeslund
Kooksang Moon
Louis Morency
Davide Moschini
Matthias Mühlich
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Abstract. Alice would like to detect faces in a collection of sensitive
surveillance images she own. Bob has a face detection algorithm that
he is willing to let Alice use, for a fee, as long as she learns nothing
about his detector. Alice is willing to use Bob’s detector provided that
he will learn nothing about her images, not even the result of the face
detection operation. Blind vision is about applying secure multi-party
techniques to vision algorithms so that Bob will learn nothing about the
images he operates on, not even the result of his own operation and Alice
will learn nothing about the detector. The proliferation of surveillance
cameras raises privacy concerns that can be addressed by secure multi-
party techniques and their adaptation to vision algorithms.

1 Introduction

The proliferation of surveillance cameras raises privacy concerns that must be
addressed. One way of protecting privacy is to encrypt the images on their
way from the camera to the remote server that controls it. However, in some
cases this might not be enough. For instance, when the client does not wish
to reveal the content of the image even to the server that runs the particular
vision algorithm. Consider, for example, a service center offering face detection
capabilities over the web. Clients might be interested in the service but reluctant
to reveal the content of their images, even to the service provider, either because
they don’t want the service center to learn the content of the image or they
are concerned that virus attacks on the service center will reveal the content
of the images. With slight modification the proposed algorithm can be used for
blind face recognition. For example, a government agency can have photos of
suspects and compare them to images taken from private surveillance cameras
without learning anything about the content of the images (so as not to invade
privacy), and without revealing the photos of the suspects. The only answer the
government agency will learn is either a given suspect appear in a particular
image or not. Another application might be in camera phones that does not
have the CPU power to run heavy vision algorithms and would like to run the
application securely on a remote server. Yet another application is blind OCR
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in which the client is not willing to reveal the content of the document to the
server. In these cases one can resort to secure multi-party protocols that allow
two parties to execute a given algorithm without learning anything about the
other party.

Here we investigate the use of secure multi-party protocols for image analysis.
This is a challenging task because secure multi-party protocols are known to be
computationally intensive and applying them to large data sets, such as images
and video streams makes the task even harder. Domain-specific constraints allow
us to devise new schemes that are faster to use but might not be applicable to
general secure multi-party problems.

As a concrete setup we focus on a surveillance scenario in which Alice owns a
surveillance camera and Bob owns a server that runs a face detection algorithm.
In our hypothetical scenario Alice and Bob will engage in a protocol that will
allow Alice to learn if, and where, are faces in her images without learning
anything about Bobs’ detector. Bob will learn nothing about the images, not
even if faces were detected in them.

We adopt secure multi-party protocols to derive a secure classification proto-
col. The protocol allows Alice to send Bob a candidate detection window and get
a yes/no answer to the question “Is there a face in this window?”. This results
in a secure protocol that leaks no information to either party, but is slow in
practice because of the use of cryptographic primitives. Then we suggest ways
to drastically reduce the number of detection windows that Alice needs to send
to Bob by using a non-cryptographic protocol that is very fast in practice but is
not as secure as the secure classification protocol.

2 Background

Secure multi-party computation originated from the work of Yao [16] who gave
a solution to the two-party problem where two parties are interested in eval-
uating a given function that takes as input private input from each party. As
a concrete example consider the millionaire problem: Two parties want to find
which one has a larger number, without revealing anything else about the num-
bers themselves. Later, Goldriech et al. [7] extended the case to n > 2 parties.
However, the theoretical construct was still too demanding to be of practical
use. An easy introduction to Cryptography is given in [14] and a more advanced
and theoretical treatment is given in [6].

Since then many secure protocols were reported for various applications. Of
particular interest here are those dealing with oblivious transfer [2], secure dot-
product [1] or oblivious polynomial evaluation in general [11, 3] and learning
decision trees [9]. Oblivious Polynomial Evaluation (OPE) [11, 3] assumes that
Bob has a polynomial P (x) and Alice wants to evaluate the polynomial for a
particular x, unknown to Bob, without learning anything about the polynomial
coefficients. This was later used by [9] to devise an ID3 decision tree learning
algorithm where each party holds part of the training data, yet both parties are
interested in learning a decision tree that uses all the available training data.
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In the end both parties learn the parameters of the decision tree, but nothing
about the training data of the other party.

Secure multi-party protocols are often analyzed for correctness, security and
complexity. Correctness is measured by comparing the proposed protocol to the
ideal protocol where the parties transfer their data to a trusted third party
that performs the computation. If the secure protocol is identical to the ideal
protocol then the protocol is declared correct (note that one might come up with
secure approximation to an ideal algorithm). In security one needs to show what
can and cannot be learned from the data exchange between the parties. One
often assumes that the parties are honest but curious, meaning that they will
follow the agreed-upon protocol but will try to learn as much as possible from
the data-flow between the two parties. Put another way, one party is willing to
trust the other party but is concerned that virus attacks on the other party will
reveal the information. Finally, in complexity, one shows the computational and
communication complexity of the secure algorithm.

3 Notations

All computations must be done over some finite field F that is large enough to
represent all the intermediate results. One can approximate float numbers with
fixed arithmetic and represent it as integer numbers in this field. Denote by X
the image that Alice owns. A particular detection window within the image X
will be denoted by x ∈ FL and x will be treated in vector form. Bob owns a
strong classifier of the form

H(x) = sign(
N∑

n=1

hn(x)), (1)

where hn(x) is a threshold function of the form

hn(x) =
{

αn xT yn > Θn

βn otherwise, (2)

and yn ∈ FL is the hyperplane of the threshold function hn(x). The parameters
αn ∈ F , βn ∈ F and Θn ∈ F of hn(x) are determined during training; N is the
number of weak classifiers used.

4 Secure Classification

In this section we develop a secure classifier that is based on a linear combina-
tion of simple threshold function (’stumps’). However, the ideas presented here
can be used to develop other classifiers as well. For example, one can use the
OPE protocol mentioned earlier to construct a polynomial-kernel SVM. Work
still needs to be done to construct RBF-kernel SVM, or sigmoid-based neural
network.
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There is an inherent tension between secure multi-party methods and ma-
chine learning techniques in that one tries to hide and the other tries to infer.
In the extreme case, Alice can use Bob to label training data for her so that she
can later use the data to train a classifier of her own. The best we can hope for
is to ensure that Bob will not learn anything about Alice’s data and that Alice
will not help her own training algorithm, other than supplying it with labeled
examples, by running the secure classification protocol.

The cryptographic tool we will be using is Oblivious Transfer. Oblivious Trans-
fer allows Alice to choose one element from a database of elements that Bob holds
without revealing to Bob which element was chosen and without learning anything
about the rest of the elements. In the following we will denote OT M

1 to indicate
that Alice needs to chose one out of M elements. We will use OT to develop a
series of secure sub-protocols that result in a secure classification protocol.

4.1 Oblivious Transfer

Oblivious Transfer allows Alice to choose one element from a database of ele-
ments that Bob holds without revealing to Bob which element was chosen and
without learning anything about the rest of the elements. The notion of oblivious
transfer was suggested by Even, Goldreich and Lempel [5] as a generalization of
Rabin’s “oblivious transfer” [13].

Bob privately owns two elements M0, M1 and Alice wants to receive one of
them without letting Bob know which one. Bob is willing to let her do so provided
that she will not learn anything about the other elements. The following protocol,
based on RSA encryptions can be used to solve the problem in a semi-honest
(i.e. honest but curious) setting.

Algorithm 1. Oblivious Transfer
Input: Alice has σ ∈ {0, 1}
Input: Bob has two strings M0, M1

Output: Alice learns Mσ.

1. Bob sends Alice two different public encryption keys K0 and K1.
2. Alice generates a key K and encrypts it with K0 or K1. For the sake of argument,

let’s say she chooses K0. She sends Bob E(K, K0); that is, she encrypts K with
one of Bob’s public keys.

3. Bob does not know which public key Alice used, so he decrypts with both of his
private keys. He thus obtains both the real key K, and a bogus one K′.

4. Bob sends Alice E(M0, K) and E(M1, K
′), in the same order he sent the keys K0

and K1 in step 1. Alice decrypts the first of these messages with the key K and
obtains M0.

Can Alice cheat? She would need to be able to find K’, but she cannot do this
unless she knows how to decrypt messages encrypted with the public key K1.

Can Bob cheat? He would have to be able to determine which one of K and
K’ was the key Alice generated. But K and K’ both look like random strings.
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4.2 Secure Dot Product

Before diving into the technical details, let us give an intuitive introduction. Our
goal is to break the result of the dot product operation xT y into two shares a
and b, where a is known only to Alice, b is known only to Bob and it holds that
xT y = a+b. We do this by breaking the product of every pair of elements xi ∗yi

into two shares ai and bi and then letting Alice and Bob sum the vectors a and
b, respectively to obtain shares of the dot product. Observe that ai and bi must
sum to xi ∗ yi where xi is in the range [0, 255] and yi ∈ {−1, 0, 1} so the size of
the field F should be at least 512 to accommodate all possible cases. The details
are given in protocol 2.

Algorithm 2. Secure dot-product

Input: Alice has vector x ∈ F L

Input: Bob has vector y ∈ F L

Output: Alice and Bob have private shares a and b s.t. a + b = xT y

1. Bob generates a random vector b ∈ F L

2. For each i=1...L, Alice and Bob conduct the following sub-steps
(a) Bob enumerates all possible xi values and constructs a 256D vector a, s.t.

ai = yi ∗ xi − bi xi ∈ [0...255]

(b) Alice uses OT 256
1 with xi as her index, to choose the appropriate element from

the vector a and stores it as ai.
3. Alice and Bob sum their private vectors a and b, respectively, to obtain the shares

a = L
i=1 ai and b = L

i=1 bi of the dot-product xT y.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

– From Alice to Bob
• In step 2(b) Alice uses OT with xi as an index to choose an element from

the vector a. Because OT is secure, Bob can not learn which element she
chose and hence can learn nothing about the vector x.

– From Bob to Alice
• For each element, Bob lets Alice pick one element from the vector a and

since a is the sum of the vector y with some random vector b, Alice can
learn nothing about y from a.

Complexity and Efficiency. The protocol is linear in L - the dimensionality
of the vectors x and y.
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4.3 Secure Millionaire

Alice and Bob would like to compare and find which one has a larger number,
without revealing anything else about their number [16]. We show here a solution
to the problem based on the OT primitive. The idea is to have Alice and Bob
represent their numbers in binary format, scan it one bit at a time from left
(most significant bit) to right (least significant bit) and then get the result. For
each bit Bob should prepare a lookup table that is based on his current bit
value and the two possible bit values of Alice. Alice will use OT 2

1 to obtain some

Algorithm 3. Secure Millionaire
Input: Alice has a number x ∈ F
Input: Bob has a number y ∈ F
Output: Alice and Bob find out if x > y

1. Bob defines three states {A, B, U} that correspond to: Alice has a larger number,
Bob has a larger number and Undecided, respectively. For each bit, Bob encodes
{A, B, U} using a different permutation of the numbers {1, 2, 3}.

2. For the left most bit, Bob constructs a 2-entry lookup table z(n) using the following
table.

yn = 0 yn = 1
xn = 0 U B
xn = 1 A U

where xn, yn are the left most (most significant) bit of the numbers x, y, respec-
tively. If yn = 0 then Bob should construct a table from the left column, otherwise
he should use the right column.

3. Alice uses OT 2
1 with xn as her index to obtain s(n) = z(n)(xn)

4. For each i = n − 1, ..., 1, Alice and Bob conduct the following sub-steps
(a) Bob constructs a 6-entry lookup table z(i) that is indexed by s(i+1) and xi,

s.t.
yi = 0 yi = 1

s(i+1) = A ∧ xi = 0 A A
s(i+1) = B ∧ xi = 0 B B
s(i+1) = U ∧ xi = 0 U B
s(i+1) = A ∧ xi = 1 A A
s(i+1) = B ∧ xi = 1 B B
s(i+1) = U ∧ xi = 1 A U

where s(i+1) is the state variable from the previous bit. If yi = 0 then Bob
should construct a table from the left column, otherwise he should use the
right column.

(b) Alice uses OT 6
1 with s(i+1) and xi as her indices to obtain s(i) = z(i)(s(i+1), xi)

5. Bob sends Alice the meaning of the three states of s(1) of the least significant bit.
Alice now knows which number is larger.

6. If she wants, Alice can send the result to Bob.
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intermediate result and they both will continue to the next bit. The problem
with this approach is that comparing least significant bits is meaningless if the
most significant bits were already used to determine which number is larger.
Note, also, that Alice and Bob should not abort in the middle of the scan as
this might reveal some information about the numbers themselves. To solve this
problem we will use a state variable s that can take one of three states: A Alice
has a larger number, B Bob has a larger number or U Undecided yet. For each
bit Bob constructs a 6-way lookup table that consists of the 3 states of s and
the two possible values of the next bit of Alice, the output is the new state after
evaluating the current bit. For example, if s = A, Bobs’ current bit is 1 and
Alice’s’ current bit is 0 then the output should be s = A and they both move to
the next bit. To prevent Alice from interpreting the state s Bob can use different
numbers to represent A,B,U for each bit so, for example, for the first bit A is
represented as the number 1 but for the second bit 1 might represent the symbol
B. The details are given in protocol 3.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

– From Alice to Bob
• In steps 3 and 4b Alice uses xi as her index in the OT operation. Since

OT is secure, Bob can learn nothing about the number x.
– From Bob to Alice
• For each bit, Bob lets Alice pick one element from the lookup table z

and returns the state s. Since the values of the state s are represented
using random numbers for each bit, Alice cannot determine what does a
change in s mean and can not learn anything about the number y, other
than learning, in the end, if x > y.

Complexity and Efficiency. The protocol is linear in the number of bits of
the numbers x and y.

4.4 Secure Classifier

We are now ready to present the secure classifier protocol. The protocol relies
on the secure dot-product and Millionaire protocols and the details are given in
protocol 4.

Correctness. The protocol is clearly correct.

Security. The protocol protects the security of both parties.

– From Alice to Bob
• In step 2(a) Alice and Bob engage in a secure dot-product protocol so

Bob learns nothing about the vector x.
• In step 2(b) and 3 Alice and Bob engage in secure Millionaire protocol

so Bob can learn nothing about Alice’s data.
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Algorithm 4. Secure Classifier
Input: Alice has input test pattern x ∈ F L

Input: Bob has a strong classifier of the form H(x) = sign( N
n=1 hn(x))

Output: Alice has the result H(x) and nothing else
Output: Bob learns nothing about the test pattern x

1. Bob generates a set of N random numbers: s1, ..., sN , such that s = N
n=1 sn

2. For each n = 1, ..., N , Alice and Bob conduct the following sub-steps:
(a) Alice and Bob obtain private shares a and b, respectively, of the dot product

xT yn using the secure-dot-product protocol.
(b) Alice and Bob use the secure Millionaire protocol to determine which number

is larger: a or Θn−b. Instead of returning A or B the secure Millionaire protocol
should return either αn + sn or βn + sn. Alice stores the result in cn.

3. Alice and Bob use the secure Millionaire protocol to determine which number is
larger: N

n=1 cn or N
n=1 sn. If Alice has a larger number then x is positively

classified, otherwise x is negatively classified.

– From Bob to Alice
• In step 2(a) Alice and Bob engage in a secure dot-product protocol so

Alice learns nothing about Bobs’ data.
• In step 2(b) Alice and Bob engage in a secure Millionaire protocol so

Alice only learns if a > Θn − b but since she does not know b she can
not learn anything about the parameter Θn. Moreover, at the end of the
Millionaire protocol Alice learns either αn +sn or βn +sn. In both cases,
the real parameter (αn or βn) is obfuscated by the random number sn.
• In step 3 Alice learns if her number

∑N
n=1 cn is greater than Bob’s num-

ber
∑N

n=1 sn. Since s is a random vector, she can gain no knowledge
about the actual parameters of Bobs’ strong classifier.
• Alice can learn the number of weak classifier N from the protocol. This

can easily be fixed if Bob will add several fake weak classifiers hn(x)
whose corresponding weights αn, βn are zero. This way Alice will only
learn an upper bound on N and not N itself.

Complexity and Efficiency. The complexity of the protocol is O(NLK),
where N is the number of weak classifiers used, L is the dimensionality of the
test vector x and K it the number of bits in the dot-product xT yn.

Applying the secure classification protocol to face detection is straightfor-
ward. Alice scans her image and sends each detection window to Bob for evalua-
tion. Bob learns nothing about the image and Alice only gets a binary answer for
every detection window. The problem with the protocol is speed. As we discuss
in the experimental section, it might take from a few seconds to a few minutes to
classify a detection window (depending on the number of levels in the rejection
cascade, see details in the experiments section). This means that the protocol is
prohibitively expensive to compute in practice. Therefor we investigate methods
to accelerate it.
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5 Accelerating Blind Vision

There are three methods to accelerate the above protocol. The first relies on
cryptographic methods that leverage a small number of OT operations to per-
form a large number of OT [12, 8]. We will not explore these methods here.

A second approach would be for Bob to reveal a stripped-down version of
his classifier to Alice. This way, Alice can run the stripped-down classifier on
her data. This stripped-down classifier will effectively reject the vast majority of
detection windows and will allow Alice to use the expansive secure protocol on
a relatively small number of detection windows.

Finally, the last method of acceleration is to develop one-way hash functions
that will allow Alice to quickly hash her data but still let Bob correctly classify
the patterns without learning much about the original image itself. This will be
used as a filter to quickly reject the vast majority of detection windows, leaving
the “difficult” examples to be classified using the secure classification protocol.

5.1 Image Hashing Using Histograms of Oriented Gradients

There is a large body of literature on one way hash functions [14]. These functions
take the input message (detection window in our case) and map it to some hashed
vector in such a way that the original message can not be recovered. These one
way hash functions are not suitable for our purpose because they map nearby
patterns to different locations in hash space. So, two images that are nearby in
image space might be mapped to far-apart vectors in the hash space. There is
little hope then that a classifier will be able to learn something in the hash space,
because the basic assumption that nearby patterns should have similar labels is
violated.

We therefor use a domain-specific hash function. Specifically, we use the
Histogram of Oriented Gradients (HoG) as our hash function. HoG was proved
very useful in a variety of object recognition and detection applications [10, 4],
yet it destroys the spatial order of pixels, as well as their absolute values, and
is coarsely binned so we assume that recovering the original image patch from
a given HoG is impossible. Figure 1 show some examples of face and non-face
image patches and their corresponding HoGs.

In our system, Alice computes the HoG for each detection window and store
each bin in a response image. We use 18 bin HoG so there are 18 response images
used to represent the HoG for every detection window. That is, the 18 bins of
the HoG of a particular detection window are stored at the central pixel location
of that detection window, across all 18 response images.

By scrambling the order of pixels in the response images we effectively destroy
the spatial relationship between the HoGs so Bob can not use this information to
reconstruct the original image (the same scrambling permutation must be per-
formed on all 18 response images). Figure 2 show how the response image that
corresponds to one of the bins of the HoG looks like with and without scram-
bling the order of its pixels. Specifically, figure 2b shows a response image that
corresponds to one bin in the HoG. Scrambling the order of the pixels (figure 2c)
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(a)

(b)

Fig. 1. Image to Histogram of Oriented Gradients (HoG) Hashing. (a) some examples
of face images and their corresponding HoG. (b) some example of non-face images and
their corresponding HoG. We assume that it is impossible to reconstruct an image from
its HoG.

(a) (b) (c)

Fig. 2. The importance of scrambling. (a) original image. (b) Image of the first bin of
the Histogram of Oriented Gradients (HoG). (c) Same as (b) after pixel scrambling.

destroys the spatial relationship between HoGs. In addition, Alice can bury the
scrambled image in a larger image that contain random values (not shown here).

The inclusion of fake HoGs, by burying the response images in a larger image,
prevents Bob from recovering the original image, because he does not know if
he is using HoGs that came from the original image. Moreover, it prevents Bob
from knowing the result of his classification, because he does not know if the
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HoGs that he classified as positive (i.e. originated from a detection window that
contains a face) correspond to real or fake image patches.

6 Experiments

We implemented the secure classification protocol in C++ using the NTL1 pack-
age for large numbers and used RSA encryption with 128-bit long encryption
keys. The HoG detector was implemented in MATLAB. We simulated Alice and
Bob on one PC so communication delays are not reported here.

We converted our Viola-Jones type face detector [15] to a secure detector. In
the process we have converted the integral-image representation to regular dot-
product operation, a step that clearly slowed down our implementation as we no
longer take advantage of the integral image representation. Also, we shifted the
values of the filters from the range [−1, 1] to the range [0, 2] to ensure that all
values are non-negative integers. We then converted all the thresholds to non-
negative integers and updated them to reflect the shift in the filter values. The
face detector consists of a cascade of 32 rejectors, where each rejector is of the
form presented in equation 1. The first rejector requires 6 dot-product operations
and the most complicated rejector require 300 dot-products. There is a total of
4303 dot-products to perform. Instead of computing the secure dot-product for
each filter, we use OT to compute the secure dot-product for all the weak clas-
sifiers in a given level and allowed Alice and Bob to make a decision after every
level of the cascade. This clearly reveal some information to Alice, as she knows
at what level of the cascade a pattern was rejected but it greatly accelerates the
performance of the program. We found that a single 24× 24 detection window
can be classified in several minutes using all the levels of the cascade. In most
cases the first two levels of the cascade are enough to reject a pattern and they
can be processed in a few seconds per detection window. As expected, the main
bottleneck of the protocol is the extensive use of the OT operation.

To accelerate performance we used the HoG based image hashing. Each 24×
24 detection window was mapped to HoG as follows. Alice first computes the
gradient of every pixel and ignores every pixel whose x and y gradients were
below 5 intensity values. Then she binned the gradient orientation into 18 bins
and stored the result in a histogram. She then sends the HoGs, in random order
and together with some fake HoGs, to Bob. Bob’s HoG detector consists of a
cascade of 45 levels. Each level of the cascade consists of a feed-forward neural
network with 5 hidden units that was trained to reject as many negative examples
as possible, while maintaining 98% of its positive examples. The unoptimized
HoG detector takes several seconds to process a single 240 × 320 image. We
found that on average the HoG detector rejects about 90% of the detection
windows in an image. The remaining 10 percent are classified using the secure
classifier protocol described earlier. In a typical case, about 15, 000 detection
windows (out of a total of about 150, 000 detection windows) will be passed to
the secure classification protocol. This approach accelerates secure classification
1 Downloaded from http://www.shoup.net/ntl/index.html
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(a-1) (a-2)

(b-2) (b-2)

Fig. 3. Blind Face Detection. (a) result after running the HoG detection. (b) Final
detection result.

by an order of magnitude, at the risk of revealing some information. There is
clearly a trade-off between the quality of the HoG detector and the amount of
information revealed.

Figure 3 show some typical results. The top row shows the result of the HoG
detection, as Alice sees them. The bottom row shows the result, as Alice sees
it, after the secure classification. A couple of comments are in order. First, note
that after the HoG detection the only thing that Bob knows is that he detected
several thousands candidates. He does not know their spatial relationship, how
they actually look or if they came from the original image or are simply chaff
designed to confuse him. Second, the HoG detector is performed in a multi-scale
fashion. In our case Alice uses a 3 level pyramid with a scale factor of 1.2 between
scales. Finally, all the detection windows that were positively classified by the
HoG detector are then scaled to 24× 24 windows and fed to the secure classifier
protocol.

7 Conclusions

Blind Vision applies secure multi-party techniques to image related algorithms.
As an example we have presented a blind face detection protocol that reveals
no information to either party at the expanse of heavy computation load. We
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then suggested image hashing technique, using Histogram of Oriented Gradients
(HoG) to accelerate the detection process, at the risk of revealing some informa-
tion about the original image. There are several extensions to this work. First is
the need to accelerate the detection process. Second is the need to develop secure
versions to other popular classifiers such as RBF or sigmoid function. Third, we
are investigating information theoretic approaches to analyze the amount of in-
formation leaked by the HoG hash function, as well as developing better and
more secure image hashing functions. Finally we are exploring ways to extend
Blind Vision to other vision algorithms such as object tracking or image seg-
mentation.
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Abstract. We propose a method for object detection in cluttered real images,
given a single hand-drawn example as model. The image edges are partitioned
into contour segments and organized in an image representation which encodes
their interconnections: the Contour Segment Network. The object detection prob-
lem is formulated as finding paths through the network resembling the model
outlines, and a computationally efficient detection technique is presented. An ex-
tensive experimental evaluation on detecting five diverse object classes over hun-
dreds of images demonstrates that our method works in very cluttered images,
allows for scale changes and considerable intra-class shape variation, is robust to
interrupted contours, and is computationally efficient.

1 Introduction

We aim at detecting and localizing objects in real, cluttered images, given a single hand-
drawn example as model of their shape. This example depicts the contour outlines of
an instance of the object class to be detected (e.g. bottles, figure 1d; or mugs, composed
by two outlines as in figure 5a).

The task presents several challenges. The image edges are not reliably extracted
from complex images of natural scenes. The contour of the desired object is typically
fragmented over several pieces, and sometimes parts are missing. Moreover, locally,
edges lack specificity, and can be recognized only when put in the wider context of
the whole shape [2]. In addition, the object often appears in cluttered images. Clutter,
combined with the need for a ‘global view’ of the shape, is the principal source of
difficulty. Finally, the object shape in the test image can differ considerably from the
one of the example, because of variations among instances within an object class (class
variability).

In this paper, we present a new approach to shape matching which addresses all
these issues, and is especially suited to detect objects in substantially cluttered im-
ages. We start by linking the image edges at their discontinuities, and partitioning them
into roughly straight contour segments (section 3). These segments are then connected
along the edges and across their links, to form the image representation at the core of
our method: the Contour Segment Network (section 4). By recording the segment inter-
connections, the network captures the underlying image structure, and enables to cast
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object detection as finding paths through the network resembling the model outlines.
We propose a computationally efficient matching algorithm for this purpose (section 5).
The resulting, possibly partial, paths are combined into final detection hypotheses by a
dedicated integration stage (section 6).

Operating on the Contour Segment Network brings two key advantages. First, even
when most of the image is covered by clutter segments, only a limited number is con-
nected to a path corresponding to a model outline. As we detail in section 5, this greatly
limits the choices the matcher has to make, thus allowing to correctly locate objects
even in heavily cluttered images. Besides, it also makes the computational complexity
linear in the number of test image segments, making our system particularly efficient.
Second, since the network connects segments also over edge discontinuities, the system
is robust to interruptions along the object contours, and to short missing parts.

Our method accommodates considerable class variability by a flexible measure of
the similarity between configurations of segments, which focuses on their overall spa-
tial arrangement. This measure first guides the matching process towards network paths
similar to the model outlines, and is then used to evaluate the quality of the produced
paths and to integrate them into final detections. As other important features, our ap-
proach can find multiple object instances in the same image, produces point correspon-
dences, and handles large scale changes.

In section 7 we report results on detecting five diverse object classes over hundreds
of test images. Many of them are severely cluttered, in that the object contours form a
small minority of all image edges, and they comprise only a fraction of the image. Our
results compare favorably against a baseline Chamfer Matcher.

2 Previous Work

The construction of our Contour Segment Network (sections 3 - 4) is rooted in earlier
perceptual organization works [14, 12]. However, unlike these, we do not seek to single
out salient edge groups. Instead, we connect all subsequent segments in a single, global
network which comprises all possible contour paths. This enables our main contribu-
tion: to perform object class detection as path search on the network.

Much previous work on shape matching has focused on class variability. Several
measures of shape similarity have been proposed [2, 1]. They can distinguish objects
of different classes, while allowing for variations and deformations within a class. How-
ever, these works assume the object to be in a clean image, thereby avoiding the problem
of localization, and the difficulties of contour detection. Hence, the rest of this review
focuses on methods handling clutter.

Our algorithm of section 5 is related to “local search” [4] and “interpretation
trees” [11], as it iteratively matches model features to test image features. However,
at each iteration it meets an approximately constant, low number of matching candi-
dates (only those connected to the latest matched segment, section 5). Interpretation
Trees / Local Search approaches instead, need consider a large number of test features
(often all of them [4]). As a consequence, our method is far less likely to be confused
by clutter, and has lower computational complexity (linear in the number of test seg-
ments), thus it can afford processing heavily cluttered images (with typically about 300
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clutter segments, compared to only 30 in [4]). Besides, both [4, 11] expect the model to
transform rigidly to the test image, while our method allows for shape variations.

Deformable template matching techniques deform a template shape so as to min-
imize some energy function, e.g. diffusion-snakes [7], elastic matching [5], and ac-
tive shape models [6]. These approaches require rough initialization near the object to
be found. Additionally, several such methods need multiple examples with registered
landmark points [6], and/or do not support scale changes [7]. Chamfer matching meth-
ods [10] can detect shapes in cluttered images, but, as pointed out by [17, 13], they
need a large number of templates to handle shape variations (a thousand in [10]), and
are prone to produce rather high false-positive rates (1-2 per image in [10]). Recently
Berg et al. [3] proposed a powerful point-matching method based on Integer Quadratic
Programming. However, the nature and computational complexity of the optimization
problem require to explicitly set rather low limits on the maximal portion of clutter
points, and on the total number of points considered from the test image (via a sam-
pling scheme). This is not suitable when the objects’ edge points are only a fraction of
the total in the image. Besides, [3] uses real images as models, so it is unclear how it
would perform when given simpler, less informative hand-drawings. The same holds
for [16], whose approach based on edge patches seems unsuited in our setting. Felzen-
szwalb [8] applies Dynamic Programming to find the optimal locations of the vertices
of a polygonal model on a regular image grid. Since the computational complexity is
quadratic in the number of grid points, it is intractable to have a high resolution grid,
which is necessary when the object covers a small portion of the image (while [8] has a
60× 60 grid, taking 5 minutes, using a 180× 180 grid would be 81 times slower).

In contrast to previous contributions, our method combines the attractive proper-
ties of dealing with highly cluttered images, allowing for shape variations and large
scale changes, working from a single example, being robust to broken edges, and being
computationally efficient.

3 Early Processing

Detecting and linking edgel-chains. Edgels are detected by the excellent Berkeley nat-
ural boundary detector [15], which was recently successfully applied to object recogni-
tion [3]. Next, edgels are chained and a smoothing spline curve is fit to each edgel-chain,
providing estimates of the edgels’ tangent orientations.

Due to the well-known brittleness of edge detection, a contour is often broken into
several edgel-chains. Besides, the ideal contour might have branchings, which are not
captured by simple edgel-chaining. We counter these issues by linking edgel-chains: an
edgel-chain c1 is linked to an edgel-chain c2 if any edgel of c2 lies within a search area
near an endpoint of c1 (figure 1). The search area is an isosceles trapezium. The minor
base rests on the endpoint of c1, and is perpendicular to the curve’s tangent orientation,
while the height points away from c1

1. This criterion links c1 to edgel-chains lying
in front of one of its endpoints, thereby indicating that it could continue over c2. The
trapezium shape expresses that the uncertainty about the continuation of c1’s location
grows with the distance from the breakpoint . Note how c1 can link either to an endpoint

1 The dimensions of the trapezium are fixed, and the same in all experiments.
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Fig. 1. (a-c) Example links between edgel-chains. (a) Endpoint-to-endpoint link. (b) Tangent-
continuous T-junction link. (c) Tangent-discontinuous link. (d) 8 segments on a bottle-shaped
edgel-chain. (e) A segment (marked with an arc) bridging over link b).

of c2, or to an interior edgel. The latter allows to properly deal with T-junctions, as it
records that the curve could continue in two directions (figure 1b). Besides, we point
out that it is not necessary for the end of c1 to be oriented like the bit of c2 it links to (as
in figure 1b). Tangent-discontinuous links are also possible (figure 1c).

The edgel-chain links are the backbone structure on which the Contour Segment
Network will be built (section 4).

Contour segments. The elements composing the network are contour segments. These
are obtained by partitioning each edgel-chain into roughly straight segments. Figure 1d
shows the segmentation for a bottle-shaped edgel-chain. In addition to these regular
segments, we also construct segments bridging over tangent-continuous links between
edgel-chains. The idea is to bridge the breaks in the edges, thus recovering useful seg-
ments missed due to the breaks.

4 Building the Contour Segment Network

Equipped with edgel-chain links and contour segments, we are ready to build the im-
age representation which lies at the heart of this paper: the Contour Segment Network
(or just network, for short). To this end, we connect segments along edgel-chains, and
across links between edgel-chains. Thanks to the explicit modeling of the edgel-chains’
interconnections, the network supports robust matching of shapes in cluttered images.

Definitions. Before explaining how to build the network, we give a few definitions.
First, every segment is directed, in that it has a back and a front. This only serves to
differentiate the two endpoints, they have no semantic difference. As a convention, the
front of a segment is followed by the back of the next segment on the edgel-chain.
Second, every edgel-chain link is directed as well: the edgel-chain c1, on which the
trapezium search-area rests, is at the back, while the other edgel-chain c2 is at the
front. This also defines the front and back endpoints of a segment bridging between
two edgel-chains. For clarity, we use the word links between edgel-chains, and connec-
tions between segments.

Rules. The network is built by applying the following rules, illustrated in figure 2. These
connect the front of each segment to a set of segments, and its back to another set of
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Fig. 2. The six rules to build the Contour Segment Network. They connect (arrows) regular
segments and bridging segments (marked with an arc). Rules 2-6 connect segments over different
edgel-chains ci.

segments. Thus the network structure is unconstrained and its complexity adapts to the
image content.

1. The front of a segment is connected to the back of the next segment on the same
edgel-chain.

2. When two edgel-chains c1, c2 are linked at endpoints, the segment of c1 before the
link is connected to the segment of c2 after the link.

3. Consider a T-junction link (i.e. from an endpoint of c1 to the interior of c2). The
segment of c1 before the link is connected to the two segments of c2 with the closest
endpoints. As can be seen in figure 2.3, this records that the contour continues in
both directions.

4. Let s be a segment bridging over a link from c1 to c2. s is connected to the segment
of c2 coming after its front endpoint, and to the segment of c1 coming before its
back endpoint.

5. Two bridging segments which have consecutive endpoints on the same edgel-chain
are connected. Here ‘consecutive’ means that no other segment lies inbetween.

6. Consider a bridging segment s without front connection, because it covers the front
edgel-chain c2 until its end. If c2 is linked to another edgel-chain c3, then we con-
nect s to the segment of c3 coming after its front endpoint. An analogue rule applies
if s lacks the back connection.

Although they might seem complex at first sight, the above rules are pretty natural. They
connect two segments if the edges provide evidence that they could be connected on an
ideal edge-map, where all edges would be detected and perfectly chained. Notice how
the last three rules, dedicated to bridging segments, create connections analog to those
made by the first three rules for regular segments. Therefore, both types are treated
consistently.

Since each edgel-chain is typically linked to several others, the rules generate a
complex branching structure, a network of connected segments. The systematic con-
nections across different edgel-chains, together with the proper integration of bridging
segments, make the network robust to incomplete or broken edgel-chains, which are
inevitable in real images. Figure 3 shows a segment on a bottle outline, along with all
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Fig. 3. Network connectedness. All black segments are connected to S, up to depth 8. They
include a path around the bottle (thick).

connected segments up to depth 8 (those reachable following up to 8 connections). Al-
though there is no single edgel-chain going all around the bottle, there is a path doing
so, by spanning several edgel-chains. It is the task of the forthcoming matching stage to
discover such desired paths.

5 Basic Matching

By processing the test image as described before, we obtain its Contour Segment Net-
work. We also segment the contour chains of the model, giving a set of contour segment
chains along the outlines of the object.

The detection problem can now be formulated as finding paths through the net-
work which resemble the model chains. Let’s first consider a subproblem, termed basic
matching: find the path most resembling a model chain, starting from a basis match
between a model segment and a test image segment. However we do not know a priori
where to start from, as the test image is usually covered by a large majority of clutter
segments. Therefore, we apply the basic matching algorithm described in this section,
starting from all pairs of model and test segment with roughly similar orientations. The
resulting paths are then inspected and integrated into full detection hypotheses in the
next section.

We consider the object transformation from the model to the test image to be com-
posed of a global pose change, plus shape variations due to class variability. The pose
change is modeled by a translation t and a scale change σ, while class variability is ac-
commodated by a flexible measure of the similarity between configurations of segments.

The basic matching algorithm. The algorithm starts with a basis match between a
model segment bm and a test segment bt, and then iteratively matches the other model
segments, thereby tracing out a path in the network. The matched path P initially only
contains {bm, bt}.
1. Compute the scale change σ of the basis match.
2. Move to the next model segment m. Points 3-6 will match it to a test segment.
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3. Define a set C of candidate test segments. These are all successors2 of the current
test segment in the network, and their successors (figure 4a). Including successors
at depth 2 brings robustness against spurious test segments which might lie along
the desired path.

4. Evaluate the candidates. Each candidate is evaluated according to its orientation
similarity to m, how well it fits in the path P constructed so far, and how strong its
edgels are (more details below).

5. Extend the path. The best candidate cbest is matched to m and {m, cbest} is added
to P .

6. Update σ. Re-estimate the scale change over P (more details below).
7. Iterate. The algorithm iterates to point 2, until the end of the model segment chain,

or until the path comes to a dead end (C = ∅). At this point, the algorithm restarts
from the basis match, proceeding in the backward direction, so as to match the
model segments lying before the basis one.

For simplicity, the algorithm is presented above as greedy. In our actual implementa-
tion, we retain the best two candidates, and then evaluate their possible successors. The
candidate with the best sum of its own score and the score of the best successor wins.
As the algorithm looks one step ahead before making a choice, it can find better paths.

Evaluate the candidates. Each candidate test segment c ∈ C is evaluated by the fol-
lowing cost function3

qc = q(m,c, P) = wlaDla(m,c, P) + wldDld(m,c, P) + wθDθ(m, c) (1)

The last term Dθ(m, c) ∈ [0, 1] measures the difference in orientation between m and
c, normalized by π.

The other terms consider the location of c in the context of test segments matched
so far, and compare it to the location of m within the matched model segments. The
first such spatial relation is

Dla(m,c, P) =
1

|P| {mi,ti}∈P
Dθ(−−→mmi,

−→
cti)

the average difference in direction between vectors −−→mmi going from m’s center to the
centers of matched model segments mi, and corresponding vectors −→cti going from c
to the matched test segments ti (see figure 4d). The second relation is analogous, but
focuses on the distances between segments

Dld(m, c, P) =
1

σdm|P| {mi,ti}∈P
σ‖−−→mmi‖ − ‖−→cti‖

where dm is the diagonal of the model’s bounding-box, and hence σdm is a normal-
ization factor adapted to the current scale change estimate σ. Thus, all three terms of
function (1) are scale invariant.

2 All segments connected at its free endpoint, i.e. opposite the one connecting to P .
3 In all experiments, the weights are wla = 0.7, wld = 0.15, wθ = 1 − wla − wld = 0.15.
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Fig. 4. Basic matching. (a) Iteration 1: basis segment bt, candidates C with qc ≤ 0.3 (black
thin), and best candidate cbest (thick). (b) Matched path P after iteration 4. (c) Model, with basis
segment bm and segments matched at iteration 1-4 labeled. (d) Example vectors used in Dla, Dld.

The proposed cost function grows smoothly as the model transformation departs
from a pure pose change. In particular the Dla term captures the structure of the spatial
arrangements, while still allowing for considerable shape variation. Function (1) is low
when c is located and oriented in a similar way as m, in the context of the rest of the
shape matched so far. Hence, it guides the algorithm towards a path of test segments
with an overall shape similar to the model.

Analyzing the values of qc over many test cases reveals that for most correct can-
didates qc < 0.15. In order to prevent the algorithm from deviating over a grossly
incorrect path when no plausible candidate is available, we discard all candidates with
qc above the loose threshold qth = 0.3. Hence: C ← {c|qc ≤ qth}.

In addition to the geometric quality qc of a retained candidate c, we also consider
its relevance, in terms of the average strength of its edgels �c ∈ [0, 1]. Hence, we set
the overall cost of c to qc · (1 − �c). Experiments show a marked improvement over
treating edgels as binary features, when consistently exploiting edge strength here and
in the path evaluation score (next section).

Update σ. After extending P the scale change σ is re-estimated as follows. Let δm

be the average distance between pairs of edgels along the model segments, and δt be
the corresponding distance for the test segments. Then, set σ = δt

δm
. This estimation

considers the relative locations of the segments, together with their individual transfor-
mations, and is robust to mismatched segments within a correct path (unlike simpler
measures such as deriving σ from the bounding-box areas). Thanks to this step, σ is
continuously adapted to the growing path of segments, which is useful for computing
Dld when matching segments distant from the basis match. Due to shape variability
and detection inaccuracies, the scale change induced by a single segment holds only
locally.

Properties. The basic matching algorithm has several attractive properties, due to op-
erating on the Contour Segment Network. First and foremost, at every iteration it must
chose among only a few candidates (about 4 on average), because only segments con-
nected to the previous one are considered. Since it meets only few distractors, it is likely
to make the right choices and thus find the object even in substantially cluttered images.
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The systematic exploitation of connectedness is the key driving force of our system. It
keeps the average number of candidates D low, and independent of the total number of
test segments T . As another consequence, the computational complexity for processing
all basis matches is O(TMD log2(M)), with M the number of model segments. In
contrast to “local search” [4] and “interpretation trees” [11], this is linear in T , mak-
ing it possible to process images with a very large number of clutter segments (even
thousands). Second, the spatial relations used in Dla, Dld can easily be pre-computed
for all possible segment pairs. During basic matching, evaluating a candidate takes but
a few operations, making the whole algorithm computationally efficient. In our Matlab
implementation, it takes only 10 seconds on average to process the approximately 1000
basis matches occurring when matching a model to a typical test image. Third, thanks
to the careful construction of the network, there is no need for the object contour to be
fully or cleanly detected. Instead, it can be interrupted at several points, short parts can
be missing, and it can be intertwined with clutter contours.

6 Hypothesis Integration

Basic matching produces a large set H = {Pi} of matched paths Pi, termed hypothe-
ses. Since there are several correct basis matches to start from along the object contour,
there are typically several correct hypotheses on an object instance (figure 5b+c+d). In
this section we group hypotheses likely to belong to the same object instance, and fuse
them in a single integrated hypothesis. This brings two important advantages. First,
hypotheses matching different parts of the same model contour chain, are combined
into a single, more complete contour. The same holds for hypotheses covering different
model chains, which would otherwise remain disjoint (figure 5d). Second, the presence
of (partially) repeated hypotheses is a valuable indication of their correctness (i.e. that
they cover an object instance and not clutter). Since the basic matcher prefers the cor-
rect path over others, it produces similar hypotheses when starting from different points
along a correct path (figure 5b+c). Clutter paths instead, grow much more randomly.
Hence, hypothesis integration can accumulate the evidence brought by overlapping hy-
potheses, thereby separating them better from clutter.

Before proceeding with the hypothesis integration stage, we evaluate the quality of
each hypothesis P ∈ H. Each segment match {m, t} ∈ P is evaluated with respect to
the others using function (1): q (m, t,P\{m, t}). Whereas during basic matching only
segments matched before were available as reference, here we evaluate {m, t} in the
context of the entire path. The score of {m, t} is now naturally defined by setting the
maximum value qth of q as roof: qth − q (m, t,P\{m, t}). Finally, the total score of
P is the sum over the component matches’ scores, weighed by their relevance (edgel
strength�)

φ(P) =
1

qth {m,t}∈P
�t · (qth − q (m, t, P\{m, t}))

the normalization by 1
qth

makes φ range in [0, |P|]. In order to reduce noise and speedup
further processing, we discard obvious garbage hypotheses, scoring below a low thresh-
old φth = 1.5:H ← {P|φ(P) ≥ φth}.
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Fig. 5. Hypothesis integration. a) mug model, composed of an outer and an inner chain (hole). b-
d) 3 out of 14 hypotheses in a group. b) and c) are very similar, and arise from two different basis
matches along the outer model chain. Instead, d) covers the mug’s hole. e) All 14 hypothesis are
fused into a complete integrated hypothesis. Thanks to evidence accumulation, its score (28.6) is
much higher than that of individual hypotheses (b scores 2.8). Note the important variations of
the mug’s shape w.r.t the model.

Hypothesis integration consists of the following two phases:

Grouping phase.

1. Let A be a graph with nodes the hypothesesH, and arcs (Pi,Pj) weighed by the
(in-)compatibility csim between the pose transformations ofPi,Pj: csim(Pi,Pj) =
1
2 (c(Pi,Pj) + c(Pj ,Pi)) , with

c(Pi, Pj) =
|ti − tj|
dmσi

· max
σi

σj
,
σj

σi

The first factor measures the translation mismatch, normalized by the scale change
σ, while the second factor accounts for the scale mismatch.

2. PartitionA using the Clique Partitioning algorithm proposed by [9]. Each resulting
group contains hypotheses with similar pose transformations. The crux is that a
group contains either hypotheses likely to belong to the same object instance, or
some clutter hypotheses. Mixed groups are rare.

Integration phase. We now combine the hypotheses within each group G ⊂ A into a
single integrated hypothesis.

1. Let the central hypothesis Pc of G be the one maximizing

φ(Pi) ·
Pj∈{G\Pi}

Pi Pj · φ(Pj)

where |Pi

⋂Pj | is the number of segment matches present in both Pi and Pj . The
central hypothesis best combines the features of having a good score and being
similar to the others. Hence, it is the best representative of the group. Note how
the selection of Pc is stable w.r.t. fluctuations of the scores, and robust to clutter
hypotheses which occasionally slip into a correct group.

2. Initialize the integrated hypothesis as Gint = Pc, and add the hypothesisB resulting
in the highest combined score φ(Gint). This means adding the parts of B that match
model segments unexplained by Gint (figure 5d, with initial Gint in 5b). Iteratively
add hypotheses until φ(Gint) increases no further.
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3. Score the integrated hypothesis by taking into account repetitions within the group,
so as to accumulate the evidence for its correctness. φ(Gint) is updated by multi-
plying the component matches’ scores by the number of times they are repeated.
Evidence accumulation raises the scores of correct integrated hypotheses, thus im-
proving their separation from false-positives.

In addition to assembling partial hypotheses into complete contours and accumulating
evidence, the hypothesis integration stage also enables the detection of multiple object
instances in the same test image (delivered as separate integrated hypotheses). More-
over, the computational cost is low (1-2 seconds on average).

The integrated hypotheses Gint are the final output of the system (called detections).
In case of multiple detections on the same image location, we keep only the one with
the highest score.

7 Results and Conclusions

We present results on detecting five diverse object classes (bottles, swans, mugs, gi-
raffes, apple logos) over 255 test images4 covering several kinds of scenes. In total, the
objects appear 289 times, as some images contain multiple instances. As all images are
collected from Google Images and Flickr, they are taken under varying, uncontrolled
conditions. While most are photographs, some paintings, drawings, and computer ren-
derings are included as well. The target objects appear over a wide range of scales.
Between the smallest and the largest detected swan there is a scale factor of 4, while for
the apple logos class, there is a factor of 6. The system is given only a single hand-drawn
example of each class (figure 7, i2-j3), and its parameters are always kept fixed.

Figures 6 and 7 show example detections. In many test cases the object is success-
fully and accurately localized in spite of extensive clutter, and even when it comprises
only a small portion of the image (e.g. b1, b3, e1, h2). The dominant presence of clutter
edges is illustrated in a2, b2, c2, with the edge-maps for cases a1, b3, c3. The object
contours form only a small minority of all image edges (about 1/30). The capacity of
handling large scale changes is demonstrated in d1 and e1, where the mug sizes dif-
fer by a scale factor of 3. Moreover, the individual shapes of the detected objects vary
considerably, and differ from the models, hence showing the system’s tolerance to class
variations. Compare d3 and e2 to the bottle model, or the variations among different
mugs. In d1 we overlay the model after applying the best possible translation and scale.

Five of the six mugs imaged in figure c1 are found by the system, proving its ability
to detect multiple object instances in the same image. As examples of the accuracy of
our method, figures d2 and g2 display the image contours matched to the object for
cases d1, d3, and g1 (the other cases are reported as the bounding-boxes of the matched
contours).

We quantitatively assess performance as the number of correct detections (bounding-
box on an instance of the target object class) and false positives (other detections). All
five models have been matched to all 255 test images. The thick curves on plots i2-j3

4 The dataset is available on our website: www.vision.ee.ethz.ch/∼ferrari
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Fig. 6. Results (first page). See text for discussion.
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Fig. 7. Results (second page). See text for discussion.
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depict the percentage of correct detections (detection-rate) versus the incidence of false-
positives (number of false-positives per image FPPI). The system performs well on all
five classes, and achieves a remarkable 82% average detection rate at the moderate rate
of 0.4 FPPI. For a baseline comparison, we processed the dataset also with a simple
Chamfer Matching algorithm5. The model is shifted over the image at several scales,
and the local maxima of the Chamfer distance give detection hypotheses. In case of
multiple overlapping hypotheses, only the strongest one is retained. As the plots show
(thin curves) the Chamfer Matcher performs markedly worse than our approach, and
reaches an average detection-rate of only 39% at 0.4 FPPI. As also pointed out by [13],
the reason is that the Chamfer distance is about as low on clutter edgels areas as it is on
the target object, resulting in many false-positives hardly distinguishable from correct
detections. The problem is particularly outspoken in our setting, where only a single
template shape is given [17]. Our approach instead, is much more distinctive and thus
brings satisfactory performance even in these highly cluttered images.

In conclusion, the experiments confirm the power of the presented approach in deal-
ing with extensive clutter, large scale changes, and intra-class shape variability, while
taking only a single hand-drawn example as input. Moreover, it is robust to discontin-
uous edges, and is computationally efficient (the complexity is linear in the number
of image segments). As one limitation, models cannot self-cross or branch, therefore
excluding some objects (e.g. chairs, text). Nevertheless, every object with a distinctive
silhouette can be modeled by a set of disjoint outlines, even if a detailed drawing would
feature crossing/branchings (e.g. most animals, tools, and logos). Future work aims at
addressing this issue, as well as learning the class variability from a few examples, to
apply it for constraining the matching.
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Abstract. In recent years there has been growing interest in recogni-
tion models using local image features for applications ranging from long
range motion matching to object class recognition systems. Currently,
many state-of-the-art approaches have models involving very restrictive
priors in terms of the number of local features and their spatial relations.
The adoption of such priors in those models are necessary for simplifying
both the learning and inference tasks. Also, most of the state-of-the-art
learning approaches are semi-supervised batch processes, which consid-
erably reduce their suitability in dynamic environments, where unanno-
tated new images are continuously presented to the learning system. In
this work we propose: 1) a new model representation that has a less re-
strictive prior on the geometry and number of local features, where the
geometry of each local feature is influenced by its k closest neighbors
and models may contain hundreds of features; and 2) a novel unsuper-
vised on-line learning algorithm that is capable of estimating the model
parameters efficiently and accurately. We implement a visual class recog-
nition system using the new model and learning method proposed here,
and demonstrate that our system produces competitive classification and
localization results compared to state-of-the-art methods. Moreover, we
show that the learning algorithm is able to model not only classes with
consistent texture (e.g., faces), but also classes with shape only (e.g.,
leaves), classes with a common shape but with a great variability in
terms of internal texture (e.g., cups), and classes of flexible objects (e.g.,
snake).1

1 Introduction

The visual recognition problem is currently one of the most difficult challenges
for the computer vision community. Albeit studied for decades, we are still far
from a solution that is truly generalizable to many types of visual classes. New at-
tention has been devoted to this problem after the influential papers [2, 5], where
their main contribution was a combination of principled probabilistic recognition
1 This work was performed while Gustavo Carneiro was at the University of British

Columbia.
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models and (semi-)local image descriptors. The main goal is to represent a visual
class with a generative model comprising both the appearance and spatial distri-
butions of those descriptors. This problem has been aggressively tackled lately,
where the objective is to provide efficient models (in terms of learning and infer-
ence) with good recognition performance [13, 14, 12, 4, 10, 17, 20, 21]. Note that
learning is a method to estimate the model parameters, and inference is an ap-
proach to classify a test image as being generated by one of the learned models.

In order to make the problem tractable, most of the current approaches make
the following assumptions: 1) mutual independence of the appearance of parts
given the model; 2) independence of appearance and geometry of parts given the
model; 3) restrictive priors in terms of the geometry and number of parts. It is
worth noting that we assume a model part to be represented by a local feature,
and the geometry of a part to comprise position, scale, and dominant orientation.
The third assumption above has two extremes. One extreme is that the geometry
of parts is independent given the model [10, 21] (see the bag of features model in
Fig. 1), which reduces the number of parameters to estimate during the learning
stage. However, this approach leads to a poor model representation that fails
to incorporate any information on the relative geometry of parts. The other
extreme is to model the joint distribution of the geometry of parts [13] (see
the constellation model in Fig. 1), which produces a rich representation. The
main challenge with the latter model is that the number of parameters grows
exponentially with the number of parts, and learning quickly becomes intractable
even with a relatively small number of parts (e.g., less than 10 parts). It is
unclear what types of visual classes can be effectively represented with such a
small number of parts.

The middle ground between these two extremes has been intensively studied
recently, where the goal is to assume restrictive priors in terms of the geometric
configuration of parts in order to improve the efficiency of inference (i.e., fewer
hypotheses from a test image to evaluate) and learning (i.e., fewer parameters
to estimate). For example, the assumption of a star-shaped [9, 14] or a hierarchi-
cal prior configuration of local features [12, 4] (see Fig. 1) reduces the number
of parameters to estimate, and inference takes advantage of the fact that all
these models possess a “special” node (e.g., root in the tree, or center node in
the star-shape model), which serves as a starting point for the formation of hy-
potheses, and consequently reduces the inference complexity. However, it is not
clear what the limitations of those models are in terms of which visual classes
can be represented using such restrictive priors in terms of the geometry of parts.
Also, even though those methods are capable of dealing with more parts, there
is still a limit of 20 to 30 parts, which clearly represents an issue if more complex
classes are to be represented. A notable exception is the hierarchical model [4]
that is able to deal with hundreds of parts, but it assumes an embedded hi-
erarchical model with a small number of nodes, which might impose limits in
the visual classes that can be represented with it. Finally, most of these mod-
els’ parameters are learned using a (semi-)supervised off-line learning approach.
This learning approach decreases the flexibility of those methods in dynamic
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environments where new unannotated training images are continuously pre-
sented to the learning system.

In this paper we propose: 1) a new model for the visual classification prob-
lem that contains a less restrictive prior on the geometry and number of local
features, where the geometry of each model part depends on the geometry of
its k closest neighbors; and 2) an unsupervised on-line learning algorithm that
is capable of identifying commonalities among input images, forming clusters
of images with similar appearances, and also estimating the model parameters
efficiently and accurately. As commonly assumed in the state-of-the-art works,
we also assume that the appearance and the geometry of parts are indepen-
dent given the model, and that the appearance of parts is mutually independent
given model. The main novelty of our model is a prior based on a semi-full
dependency of the geometry of parts given model (see Fig. 1-(g)). Note from
the graph representing our model that the geometry of each feature depends on
the geometry of its k neighboring features, where k is a parameter that defines
the degree of connectivity of each part. This prior enables an explicit control on
the connectivity of the parts, and it also allows for the object being modeled to
have (semi-)local rigid deformation within the area covered by the connected fea-
tures, and rigid/non-rigid global deformation. Our objective with this new model
is to extend the types of classes that can be represented with local image fea-
tures since the model can potentially have hundreds of parts, tightly connected
locally, but loosely connected globally.

We implement a new visual class recognition system using this new model
and learning method described above, and demonstrate that our system pro-
duces competitive classification and localization results compared to state-of-
the-art methods using standard databases. Moreover, we show that the learning
algorithm is able to model not only classes with reasonable texture (e.g., faces),
but also classes with shape only (e.g., leaves), classes with a common shape but
with a great variability in terms of internal texture (e.g., cups), and classes of
flexible objects (e.g., snakes).
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2 Local Image Features

A local image feature represents a part in our model, and consists of an image
representation of local spatial support comprising an image region at a selected
scale. In this work we assume that a local feature has appearance and geometry.
The appearance is the image feature extracted from the local region, while the
geometry represents the image position from where it was extracted, the domi-
nant orientation in that image position, and the filter scale used to extract the
image feature. Therefore, a local feature vector f is described as f = [a,g], where
a is the appearance, and g = [x, θ, σ] is the geometry consisting respectively of
the position x, orientation θ, and scale σ.

2.1 Correspondence Set

A correspondence set represents a data association between two sets of local
features. Let us say we have a set F1 = {f1, ..., fM} and another set F2 =
{f̂1, ..., f̂N}. An association is a mapping of the M features from set F1 to the N
feature of set F2. In this work, a correspondence set is denoted as

E = {(f1, f̂c(1)), ..., (fM , f̂c(M))} = {e1, ..., eM},

where fi ∈ F1, f̂c(i) ∈ F2, and c(.) is a mapping function that associates a feature
from F1 to F2. When fi ∈ F1 is not paired with any feature from F2, then the
correspondence is denoted as (fi, ∅).

3 Probabilistic Model

Assume that there are C visual classes in the database of models, where each
class ωi is represented by a set Fi of M features, and also by appearance and
geometry parameters. Also, consider the presence of a class ω0 that models
general background images. A test image I produces the set FI of N features.
Then our goal is to first determine the likelihood of the presence of an instance
of class ωi in the test image, and then determine the location of each instance.
Hereafter, we refer to the former problem as classification, and the latter as
localization. In order to solve the data association problem, assume that HiI is
the set of all possible correspondence sets from the model features to the test
image features. Thus, each correspondence set EiI ∈ HiI has size M (i.e., the
number of model features).

The classification of model ωi given the features FI extracted from image I
involves the computation of the following ratio:

R =
P (ωi|FI)
P (ω0|FI)

=
P (FI |ωi)P (ωi)
P (FI |ω0)P (ω0)

. (1)

The prior ratio P (ωi)
P (ω0)

is assumed to be one, and the likelihood term can be
obtained by marginalizing out the variable EiI ∈ HiI that denotes the corre-
spondence set, as follows:
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P (FI |ωi) =
∑

EiI∈HiI

P (FI , EiI |ωi) =
∑

EiI∈HiI

P (FI |EiI , ωi)P (EiI |ωi). (2)

Hence, there can be O(MN ) different correspondence sets between Fi and FI .
However, recall that we aim at a rich visual class representation with hundreds
of parts, and possibly thousands of features extracted from a test image, which
makes (2) intractable. Therefore, we have to rely on a heuristic that quickly
identifies a subset of H̃iI ⊂ HiI which contains correspondence sets that have
the potential to lead to a correct correspondence set. Finally, the likelihood ratio
in (1) is then approximated with

P (FI |ωi)
P (FI |ω0)

≈ max
EiI∈H̃iI

P (FI |EiI , ωi)P (EiI |ωi)
P (FI |EiI , ω0)P (EiI |ω0)

. (3)

First let us concentrate on the term P (EiI |ω) in the ratio (3) above. Given
the high number of model features, we assume that the prior of having a spe-
cific match in the correspondence set is mutually independent of other matches.
Therefore, we have

P (EiI |ω) =
M∏

j=1

P (ej |ω). (4)

Basically, P (ej|ω) describes the likelihood of detecting model feature fj in a test
image assuming the presence of model ω.

The term P (FI |EiI , ω) is computed as follows:

P (FI |EiI , ω) =

 M∏
j=1

P (âc(j)|ej , ω)

P ({ĝc(j)}j=1..M |EiI , ω), (5)

where P ({ĝc(j)}j=1..M |EiI , ω) = P (ĝc(M)|{ĝc(j)}j=1..(M−1), EiI , ω)...P (ĝc(1)
|EiI , ω), which is the decomposition of the likelihood of feature geometry us-
ing the chain rule of probability. The first term P (âc(j)|ej , ω) represents the
likelihood of having the appearance matching between model feature fj and test
image feature f̂c(j). The second term P ({ĝc(j)}j=1..M |EiI , ω) denotes the likeli-
hood of having a specific joint geometry of model features that were paired to
features in the test image. It is important to mention that the decomposition
can happen in all possible ways, which means that feature f1 does not repre-
sent a “special” feature that needs to be found in the test image in order to
find all the other model features. As a result, another possible decomposition
would be P (ĝc(1)|{ĝc(j)}j=2..M , EiI , ω)...P (ĝc(M)|ω). Notice that even though we
decompose this joint distribution, its computation still has a high time complex-
ity. Moreover, this joint distribution would make the model sensitive to non-
rigid deformations. Therefore, in order to solve these two issues, we approximate
P (ĝc(M)|{ĝc(j)}j=1..(M−1), EiI , ω) to:

P (ĝc(M)|{ĝc(j)}j=arg(KiI(fM ,k,EiI)),KiI(fM , k, EiI), ω), (6)
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where KiI(fM , k, EiI) ⊂ EiI returns the correspondences containing the k closest
model features to feature fM in the geometric space of the model. The parameter
k denotes how sparsely each model feature is connected to its neighbors and is
used to adjust the tradeoff between the richness of representation and the sensi-
tivity of the model to non-rigid deformations. Also the richer the representation
is (i.e., larger k), the higher the complexity of computing (6).

3.1 Probabilistic Correspondence Based on Semi-local Geometric
Coherence

Equation 6 introduces the likelihood of the geometry of the observed test image
feature ĝc(l) given the geometric information present in the respective k closest
model features to gl in the space of model geometry. Following up on the idea
described in [7], the geometric values of the test image feature f̂c(l) are predicted
using the following pairwise relations:

nT
c(l)c(o)(xc(l) − xc(o)) = ‖xl − xo‖+ rD(fl, fo),

(θc(l) − θc(o))2π = (θl − θo)2π + rO(fl, fo),
σc(l)−σc(o)

σc(o)
= σl−σo

σo
+ rS(fl, fo), (7)

where nc(l)c(o) = xc(l)−xc(o)

‖xc(l)−xc(o)‖ , (.)2π ∈ [0, 2π), and ri(fl, fo) is a Gaussian noise
with zero mean and variance σ2

i (fl, fo) for i = D,O,S. The predicted geometry
for f̂c(l), namely [x̂∗

c(l), θ̂
∗
c(l), σ̂

∗
c(l)] (see Fig. 2), is computed by combining the

prediction produced by each one of the k model features assuming that: 1) the
variances σ2

i (fl, fo) are pairwise independent, and 2) the prediction produced by
each correspondence is weighted by 1) the distance between these two features
in the model space.

Therefore, the likelihood in Eq. 6 can be written as:

g([xc(M), θc(M), σc(M)]T − [x∗
c(M), θ

∗
c(M), σ

∗
c(M)]

T ; Σt), (8)

f1

f2 f3f4

wModel i Test Image I

fc(1)

c(2)f

c(3)f
Actual position of f

of fc(4)

c(4)

Uncertainty in the
predicted location

Fig. 2. Example of position prediction. Given the set of model features {fl}l∈{1,2,3,4},
suppose we want to estimate the position of test image feature f̂c(4). The probable
location of the feature (represented by an ellipsoid) is based on a Gaussian distribution
computed using the position of the correspondences in the test and model images and
the pairwise variances σ2

D(fl, fo) estimated in the learning stage.
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where g(.) is the Gaussian function with zero mean, and Σt is the weighted
covariance computed with the k pairwise variances.

There are two important issues to mention in the computation above. The
first issue is the computation of the likelihood of the first match in the corre-
spondence set, which is calculated as P (g1|KiI(f1, k, EiI), ω) = 1

2π
1
A

1
(σMAX−σMIN) ,

where 2π represents the range of orientation, A is the area of the image in the
original image resolution, and (σMAX − σMIN) denotes the range of scales that
the image has been processed. The second issue is the computation of the geom-
etry likelihood assuming the model ω0. Here we assume that, conditioned on
the model ω0, the likelihood of finding a feature with some specific geometry
is independent and uniformly distributed, as follows P ({gj}j=1..M |EiI , ω0) =
M 1

2π
1
A

1
(σMAX−σMIN) .

3.2 Probabilistic Correspondences Based on Feature Appearance

The probability of the appearance match between model feature fj and test fea-
ture f̂c(j) is denoted in (5) by P (âc(j)|ej, ω). According to [8], the distribution
of feature similarities between fj and f̂c(j) can be adequately approximated with
a beta distribution for the cases where this correspondence represents either a
correct or a false matching. The beta distribution, denoted as Pβ(x; a, b), is de-
fined in terms of two parameters a and b. The parameters aon and bon will be
learned for each feature fj belonging to the model ωi to explain the observed
distribution of feature similarity values given a correct correspondence, and the
parameters aoff and boff will be learned for the distribution of similarities given
a false correspondence. Hence, given the features fj and f̂c(j), and their simi-
larity denoted by s(fj , f̂c(j)) ∈ [0, 1), the likelihood of having correct and false
appearance correspondences are respectively computed with:

P (âc(j)|ej , ωi) = Pβ(s(fj , f̂c(j)); aon(fj), bon(fj)),

P (âc(j)|ej , ω0) = Pβ(s(fj , f̂c(j)); aoff(fj), boff(fj)). (9)

Finally, recall from Sec. 2.1 that a model feature can remain unmatched. In
this case, the term P (ej|ω) in (4), which denotes the probability of detecting
model feature fj , works as a penalizing factor. That is, when ej = (fj , ∅), then
P ((fj , ∅)|ω) equals one minus the probability of detecting fj [8].

4 Matching

The basic matching process consists of finding an initial correspondence set, and
iteratively searching for additional correspondences assuming that the previous
matches are correct. This process iterates as long as there are still model features
available to match test image features. This matching process is not restricted
to work with a single type of local feature. As exemplified in [14], this helps
in the representation of different types of visual classes. Here, our model uses
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the following two different types of local image features: SIFT [18], and the
multi-scale phase feature [6].

Assuming that the parameters of the distributions above have been learned
(see Sec. 5), the matching process selects correspondence sets that produce a
ratio R > τR, where τR is an arbitrary constant (note that we can have more
than one correct correspondence set, which means that several classes can be
detected in the same test image and also multiple instances of the same class
can also be detected in one test image). As explained in Sec. 3, the exhaustive
search of correspondence sets is intractable, so we rely on certain heuristics for
the matching process. We start the matching process with a nearest neighbor
search, which builds the following correspondence set: EiI = {(fj, f̂c(j))|fj ∈
Fi, f̂c(j) ∈ FI , s(fj , f̂c(j)) > τs,¬∃fk ∈ Fi s.t. s(fk, f̂c(j)) > s(fj , f̂c(j))}, where
s(.) ∈ [0, 1) represents the similarity between two features, and τs is an arbitrary
threshold (here τs = 0.6 for the phase feature and τs = 0.55 for SIFT, where
the similarity measure for SIFT is normalized to be between 0 and 1). The
next step comprises a feature clustering step, which assumes that the model
suffered a specific type of spatial distortion and groups correspondences that
move coherently according to that distortion type. This clustering process can
assume rigid distortions (e.g., [18]) or non-rigid ones (e.g., [7, 16]). Similarly
to [15, 19, 10], our method does not rely heavily on this initial set of matches
produced by the grouping algorithm. In fact, these initial groups are useful as
initial guesses for the matching algorithm. Moreover, it does not matter whether
this initial grouping is robust to non-rigid deformations since the model, in the
process of expanding its correspondence set, is robust to non-rigid deformation
because it depends more on nearby features than on far away features for the
semi-local coherence presented in Sec. 3.1. Therefore, we adopt a simple Hough
clustering approach with a restrictive rigid model (i.e., the bins in the Hough
transform space are relatively small) that makes it extremely robust to outliers
in the group, but sensitive to non-rigid deformations (see [7]). Specifically, for
Hough clustering we used the following bin sizes: 5o for rotation, factor of 2
for scale, and 0.05 times the maximum model diameter for translation. This
restrictiveness results in a high number of groups, with each one having just a
few correspondences.

4.1 Expanding the Correspondence Set

Given the groups built by the nearest neighbor search and clustering scheme,
the expansion of each group is based on the following algorithm:

Algorithm 1 (Matching). Assuming that G groups have been formed by the
clustering process, where each group is denoted as Eg

iI , the process of expanding
this initial correspondence set is based on the following steps:

1. For each set g ∈ {1, ..., G}, do
(a) Select the closest model feature fj to any of the model features in Eg

iI ,

j = arg min
(fj∈Fi),(ej /∈Eg

iI)
{‖xj − xl‖}el∈Eg

iI
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(b) Select the the next correspondence to include in Eg
iI according to c(j) =

arg maxf̂c(j)∈FI
P (f̂c(j)|Eg

iI , ωi) (see Eq. 5). Note that this computation
does not have to be run over all test image features, since only a very
small percentage of test image features lie sufficiently close to the pre-
dicted position, orientation, and scale of model feature fj;

(c) If P (âc(j)|ej, ωi)P (ĝc(j)|{g}j=1..,(j−1), Eg
iI , ωi)P (ej |ωi) > τP (here, τP is

dynamically determined based on the appearance parameters of the fea-
ture in 9 and the pairwise variances in (7), then include the correspon-
dence (f̂c(j), fj) in Eg

iI , else include (∅, fj) in Eg
iI ;

(d) Return to step 1 above until all model features are included in Eg
iI .

An example of the matching between two images containing faces (of different
people) is shown in Fig. 3. Note that the matching algorithm tends to expand sig-
nificantly the initial set g ∈ {1, ..., G} when it contains correct
correspondences.

Step 1(a) has complexity O(M) if performed with linear search, where M
is the number of model features. However, approximate nearest-neighbor search
algorithms [3] can find the nearest neighbor with high probability (which is
sufficient for our purposes) in O(log(M)) time. Both the number of groups to
try, G, and the number of test features to consider in step 1(b), K, are bounded
by constants. Therefore, the complexity of the Alg. 1 is O(M log(M)). Recall that
the models leading to the most efficient matching procedures in the literature
are the k-fans [9] and the star shape [14]. The former method has complexity

a) Initial E1
12 b) Final E1

12

c) Initial E2
12 d) Final E2

12

Fig. 3. Matching a pair of images using Algorithm 1. The first column shows the initial
group from the heuristic based on nearest neighbor and Hough clustering. The next
column illustrates the final group after the process of expanding this initial group. The
group in the first row is a correct match that can be considerably expanded, while the
second row shows a false initial match. The octagonal shaped features represent the
multi-scale phase feature [6], and the square shaped features represent SIFT [18]. The
white line connecting features from the left to the right image shows the correspon-
dence.
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O(MHK), where H is the total number of places in the image, where H >> M ,
and K >= 1. The latter method has complexity O(NM), where N is the number
of parts detected in an image, so N > M . Hence, both methods would be
intractable for large values of M such as those used in our experiments.

5 Learning

In this section we describe the process of learning the following model parame-
ters:

– For each model feature fj ∈ Fi it is necessary to learn
• the parameters of the feature conditional similarity distribution given ωi

(i.e., aon(fj) and bon(fj)) and ω0 (i.e., aoff(fj) and boff(fj)),
• the probability of feature detection given ωi and ω0: P (ej |ωi), and P (ej

|ω0), respectively.
– For each pair of model features fl and fo, it is necessary to learn
• the variance of the Gaussian noise affecting the distance, main orienta-

tion, and scale between fl and fo (see Eq. 7): σ2
D(fl, fo), σ2

O(fl, fo), and
σ2
S(fl, fo), respectively.

In the literature, the process of learning model parameters similar to the
above consists of, first, clustering features in the feature space (either manually
[12], or automatically [13]), and then, estimating the local feature and spatial
parameters based on maximum likelihood estimation. The main issue involved
in those learning methods is that the parameter estimation relies on gradient
descent algorithms that are fragile in the presence of a high number of parameters
since it can easily get stuck in local minima, which imposes very restrictive limits
in the number of parts present in a model. Also, the time and size of training
data required for this estimation grows quickly (e.g., exponential in [13]) in terms
of the number of parameters. Therefore, weakly connected models (e.g., the star-
shaped, or the hierarchical model) have been proposed in order to allow for faster
and more reliable learning methods with fewer degrees of freedom. Nevertheless,
if the number of parts exceeds say 20 parts, learning is usually intractable.

In this work, we propose the following unsupervised learning algorithm, where
the main idea is to build correspondence sets between pairs of images and to
cluster images that have strong correspondences.

Algorithm 2 (Learning). Consider a database of models Ω that is initially
empty, and for each new training image I that is presented to the system, we
have the following steps:

1. For each ωi ∈ Ω,
(a) Run the matching Algorithm 1 to find an instance of ωi in I, and select

the correspondence set that maximizes the following ratio:

E∗iI = arg max
Eg

iI∈H̃iI

P (FI |Eg
iI , ωi)P (Eg

iI |ωi)
P (FI |Eg

iI , ω0)P (Eg
iI |ω0)
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(b) If the number of matched features in E∗iI exceeds τE (i.e., correspondences
(fj , f̂c(j)) ∈ E∗iI , such that f̂c(j) = ∅; here τE = 30) then update model
ωi using the correspondence set E∗iI as the initial guess for matching the
image I to each image included in model ωi using the matching Algo-
rithm 1.

2. If the image I failed to match any model ωi ∈ Ω, then form a new model
containing all image features and default values for the model parameters.

3. For every model ωi ∈ Ω, build a graph, where each node represents an image
present in ωi, and the edges between nodes have weights proportional to the
number of non-empty correspondences found between these two images, and
then run a connected component analysis so that the initial model can be
split into tightly connected groups of images.

4. Search for common images present in two distinct models, say ωi and ωj ∈ Ω.
If a common image is found between a pair of models, then check for common
features in this image that is present both models, and based on that, join the
two models into one single model.

The output of this learning algorithm is a database of models, where each model
consists of the images clustered together, the correspondence sets formed be-
tween pairs of model images, the features found in those sets, and the appearance
and geometric parameters. In order to learn the parameters of the feature con-
ditional similarity distribution given ωi (i.e., aon(fj) and bon(fj)), we build the

Face Leaf

Mug Can Snake

Fig. 4. Illustration of the correspondence sets between two pairs of images for each
model. Note that each correspondence set between two images of the same model is
shown in a single cell, where the arrangement of the features in the top image must
find a similar structure in the bottom image.
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histogram of feature similarities of each model feature and, assuming a beta dis-
tribution (Sec. 3.2), estimate its parameters [8]. The distribution given ω0 (i.e.,
aoff(fj) and boff(fj)) is then estimated computing the similarities between the
model feature and the closest 20 background features (in the feature space)[8].
Note that the background features are extracted from 100 random images (see
[8] for more details). The probability of feature detection given ωi is computed
with the detection rate of each model feature in ωi, and the detection given ω0 is
the probability of detecting a feature in any image (this is done by computing the
detection rate of any feature in the database of random images). The variance of
the Gaussian noise affecting the distance, main orientation, and scale between
pairs of model feature is computed using the correspondence sets in the model
ωi. Finally, it is important to mention that the user has to specify the upper
bound of the total number of features to be included in the model. Defining this
upper bound on the number of model features is important in order to limit the
computational complexity of the matching as defined in Sec. 4.1. Note that the
model can have any number of features as long as this number is smaller than
this user defined upper-bound. Whenever the learner has to eliminate features, it
resorts to the classification based on the appearance statistics of the feature [8].

Our learning algorithm is used to build the models of the following data-
bases: a) faces [13] (526 images), b) leaves [1] (186 images), c) mugs (74 images),
and d) snake of cans [7] (40 images). For each database, we randomly selected
half of the images for training, and the remaining images are used for testing.
Fig. 4 shows two examples of matchings between pair of images present in each
model.

6 Experimental Results

In this section we show the performance or our recognition system for the clas-
sification and localization problems.

6.1 Classification

Following [11], for each of the four object classes we use our recognition system
to predict the presence/absence of at least one object of that class in a test
image. The output of the classifier is the ratio (1) that represents the confidence
of the object’s presence so that a receiver operating curve (ROC) curve can be
drawn. Note that we use the database of background images from [1] to draw
the ROC curve.

In our first experiment, we show the ROC curves for each of the models in the
database, and some examples of matchings (see Fig. 5). The database of faces
is used in order to compare with the state-of-the-art methods in the literature.
In this database, under similar experimental conditions, we get an equal error
rate (EER) of 98.2% (recall that EER is the point at which the true positive
rate equals one minus the false positive rate). The Face model in this experiment
contains 3000 features and connectivity k = 20. This represents a competitive
result compared to the EER=96.4% in [13] and of 98.2% in [9]. The EER is a
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Fig. 5. Two examples of correspondence sets found in test images and the ROC curve
for each model
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Fig. 6. EER versus number of training features and k for the Face database

function of the following two things (see Fig. 6): a) number of features present
in the model, and b) connectivity k. The number of features in the model can be
reduced by selecting a subset of the model features that are robust and detectable
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Fig. 7. The localization performance is assessed using the precision vs. recall curves
for the Face, Leaf, Mug, and Can snake databases

under model deformations, and distinctive (for details see [8]). Usually, the EER
improves with the number of model features until it reaches a point of saturation,
where more features do not improve the performance, but worsen the efficiency
of the system. Moreover, higher k also improves the richness of the representation
(i.e., better EER), but reduces the system’s efficiency. Finally, EER was 92.1%
for the Leaf database, and 100% for the Mug and Can Snake databases.

6.2 Localization

We also use the experimental conditions described in [11] to illustrate the local-
ization results. For each class, the task of our classifier is to predict the bounding
box of each object in a test image. Each bounding box produced by our system
is associated with a detection ratio (1) so that a precision/recall curve can be
drawn. To be considered a correct localization, the area of overlap between the
predicted bounding box Bp and ground truth bounding box Bgt must exceed
P% by the formula: area(Bb∩Bgt)

area(Bp∪Bgt)
. We show the precision recall curves for each of

the four classes in Fig. 7 for P = 50% and P = 25%. The main conclusion from
these graphs is that our system is able to correctly localize the object in the
image, but the bounding box formed by position of the local features present in
the correspondence set tends to occupy a relatively small portion of the ground
truth.

7 Conclusions

We have shown that it is possible to efficiently derive object class models con-
taining hundreds of features by allowing each feature to depend on only its k
closest neighbors. This has the additional advantage that it can represent flexi-
ble objects in a natural way because their local geometry is often more tightly
constrained than their global geometry. Our novel on-line learning algorithm is
able to cluster images with similar appearance, identify consistent subsets of
features, and efficiently estimate their model parameters. Experimental results
show that this approach can be applied across a variety of object classes, even
if they are defined by only a small subset of shared features.
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Abstract. Traditional stereo algorithms implicitly use the frontal par-
allel plane assumption when exploiting contextual information, since the
smoothness prior biases towards constant disparity (depth) over a neigh-
borhood. For curved surfaces these algorithms introduce systematic er-
rors to the matching process. These errors are non-negligible for detailed
geometric modeling of natural objects (e.g. a human face). We propose
to use contextual information geometrically. In particular, we perform a
differential geometric study of smooth surfaces and argue that geomet-
ric contextual information should be encoded in Cartan’s moving frame
model over local quadratic approximations of the smooth surfaces. The
result enforces geometric consistency for both depth and surface normal.
We develop a simple stereo algorithm to illustrate the importance of us-
ing such geometric contextual information and demonstrate its power on
images of the human face.

1 Introduction

Viewing someone’s face at about 1 meter provides a rich description of its sur-
face characteristics. While two-view dense stereo vision has achieved remarkable
success [22], this success has been limited to objects with restricted geometry.
Assuming a rectified stereo pair [7, 8], many stereo algorithms either explicitly or
implicitly exploit the frontal parallel plane assumption, which assumes position
disparity (or depth) is constant (with respect to the rectified stereo pair) over
a region under consideration. We seek to move beyond this assumption and to
develop richer descriptions of smooth surfaces curving in space (Fig.1).

Traditional area-based stereo algorithms (e.g. SSD) explicitly use the frontal
parallel plane assumption by comparing a window of the same size and shape
in the left and right images for the similarity measure. Results often exhibit
a “staircase” effect for slanted or curved surfaces. To address this problem, [9]
uses a parameterized planar or quadratic patch fit; [10] uses variable window size
(but fixed shape); [5] uses disparity derivatives to deform the matching window;
[2, 16] model each segmented region as a slanted or curved surface while segmen-
tation and correspondence are iteratively performed; [25] seeks correspondence
for image regions instead of individual pixels; [23] uses a PDE-based approach
for wide baseline dense stereo.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 44–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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M

p

Cr

Cl

N(p)
q

Tp(M)

N(q)

Fig. 1. Given a regular surface M ⊂ R
3, the tangent plane Tp(M) (in solid lines) and

surface normal N(p) at a point p are well defined. Traditional stereo algorithms using
contextual information (between p and a neighboring point q) use the frontal parallel
plane (in dotted lines) as the local surface model at p. This implicit use of the frontal
parallel plane assumption will result in a bias towards frontal parallel plane reconstruc-
tion, which is fundamentally flawed for curved surfaces. The correct use of contextual
information should encode the change of both position and surface normal (at p and
q) on the surface. A differential geometric account of such contextual information is
our contribution in this paper.

Since point-wise geometric constraints (e.g. epipolar constraint) and similar-
ity measure (e.g. SSD) cannot always resolve matching ambiguities, it is natural
to explore contextual information, i.e. requiring neighboring matching pairs to be
“consistent”. However such consistency often implicitly uses the frontal parallel
plane assumption: [17] uses a local excitatory neighborhood of the same dispar-
ity level to support the current matching pair, while [27] refines local support
as the sum of all match values within a 3D local support volume. [1] represents
surface depth, orientation, boundaries, and creases as random variables. In the
nonlinear diffusion algorithm [21], local support at different disparity hypotheses
is diffused iteratively, and the amount of diffusion is controlled by the quality
of the disparity estimate. In [3] a smoothness term over neighboring pixels is
introduced in an energy functional minimized by graph cuts. In [24, 26] mes-
sages (similarity measures weighted by gaussian smoothed disparity differences)
are passed between nearby matching pairs in a Markov network by belief prop-
agation. These algorithms implicitly use the frontal parallel plane assumption
because the neighboring matching pairs interact in a way such that the frontal
parallel plane solution is preferred (Fig.1).

1.1 Our Approach

Systematic errors will be introduced by both the explicit and the implicit use
of the frontal parallel plane assumption (see experiment section for details). Al-
though the explicit use of this assumption has been addressed (e.g.[5]), the im-
plicit use in the contextual inference stage has received little attention. To move
beyond this assumption and overcome such errors, locally it implies that the tan-
gent plane Tp(M) deviates from the frontal parallel plane. Our geometric obser-
vation then arises in several forms: (i) varying the shape of matching patches in
the left/right images; (ii) interpolating integer coordinates; (iii) relating disparity
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derivatives to surface differential geometric properties; and (iv) (at least) surface
normal consistency must be enforced over overlapping neighborhoods. Devernay
and Faugeras [5] provide a solution to (i) and (ii). To take full advantage of (iii) and
(iv), which follow directly from differential geometry, we exploit (Cartan) trans-
port to combine geometric information from different surface normals in a neigh-
borhood around a putative matching point. We describe geometric consistency
between nearby matching pairs using both depth (position disparity) and surface
normal, thus showing that contextual information behaves like an extra geometric
constraint for stereo correspondence. To our knowledge this is the first time such
geometric contextual constraints among nearby matching pairs have been used
explicitly in stereo vision.

2 Background

2.1 Initial Local Information from Deformed Matching Window

Assuming a rectified stereo pair [7, 8], traditional area based methods compare a
small window (e.g. 11x11) centered at (u, v) in the left image with a window of
the same size and shape at (u−d, v) in the right image using a similarity measure
such as SSD, and select a disparity estimate d based on such a measure. When
the scene within the window satisfies the frontal parallel plane assumption the
above method is valid. But for slanted or curved 3D surfaces such a formulation
is incorrect. Consider a small image window of a curved surface: If the corre-
spondence of (u, v) in the left image is (u − d, v) in the right image, then to a
first order approximation the correspondence of (u+ δu, v + δv) in the left image
is (u + δu − d − ∂d

∂uδu − ∂d
∂v δv, v + δv) in the right image, with ∂d

∂u and ∂d
∂v the

partial derivatives of disparity d with respect to u and v, respectively; δu and
δv are a small step size in each direction.

With this formulation of the similarity measure, the local initial correspon-
dence problem is then: for every (u, v) in the left image, select {d, ∂d

∂u , ∂d
∂v } that

gives the best similarity measure of the deformed window SSD:

arg min
{d, ∂d

∂u , ∂d
∂v }

∑
(u+δu,v+δv)∈Nuv

(Il(u + δu, v + δv)− (1)

Îr(u + δu− d− ∂d

∂u
δu− ∂d

∂v
δv, v + δv))2

where Nuv denotes the window centered at (u, v), and Îr is the linearly inter-
polated intensity of two nearest integer index positions in the right image. We
use the direction set method [19], a multidimensional minimization method, ini-
tialized with the integer disparity dI (obtained from traditional SSD) and zeros
for the first order disparities. The results are the (interpolated) floating point
disparity d and first order disparities { ∂d

∂u , ∂d
∂v} that achieve the best similarity

measure at (u, v). They could also be obtained by enumerating different com-
binations of these parameters if they are properly quantized, and selecting the
set that minimizes deformed window SSD. In [5] such a deformed window was
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also used. Our contribution is to relate the deformation to surface orientation
and to impose geometric consistency over overlapping neighborhoods by using
surface orientation, which provides extra geometric constraints for stereo corre-
spondence. We now start to develop our contribution.

2.2 Problem Formulation in Euclidean Space

Using the left (reference) camera coordinate system as the world coordinate sys-
tem, the depth z at pixel (u, v) is z(u, v) = αb

d(u,v) , where d(u, v) is the (positional)
disparity at (u, v), α is the focal lengh (in pixels), and b is the stereo baseline. We
assume such a model with known α and b; i.e. the pin-hole cameras are calibrated
and the stereo pair is rectified. To work in R3 (not in disparity space) we need the
partial derivatives of depth z with respective to x and y, respectively:

zx =
∂z

∂x
=

∂z

∂u

∂u

∂x
= −αb

d2

∂d

∂u

α

f
, zy =

∂z

∂y
=

∂z

∂v

∂v

∂y
= −αb

d2

∂d

∂v

α

f
(2)

where ∂u
∂x and ∂v

∂y are constants determined by quantization of the image sensor,
i.e. the focal length in pixels (α) and in physical unit (f) (we assume the same
values in both x and y directions). A typical value is 1200pixels/12mm = 100.

Remark 1. Further taking derivatives shows that disparity derivatives (e.g.
∂nd
∂un ) are (roughly) related to scaled physical derivatives (e.g. ∂nz

∂xn ) by ( f
α )n

(e.g.(1/100)n). ��
For physical objects with meaningful higher-order derivative information (e.g.
∂2z
∂x2 , normal curvature in x direction), numerically it is difficult to manipulate
the related higher-order disparity derivates (e.g. ∂2d

∂u2 ) in disparity space with im-
age coordinates. This was a problem in [5]. We avoid working in such disparity
space and chose to work in Euclidean space R3. First order derivatives {zx, zy}
are computed using the above equations after getting ∂d

∂u and ∂d
∂v from the ini-

tal deformed window SSD . A fitting process over a 3D neighborhood yields
{zxx, zxy, zyy}.

Now, for every candidate match we have estimated its depth z (disparity d),
first order derivatives zx and zy, second order derivatives zxx, zxy, and zyy, based
on a local deformed SSD window (followed by fitting). Next we will show what
it means for a candidate match with these properties to be geometrically consis-
tent with its neighbors. This will enable us to eliminate inappropriate candidate
matches and to refine the geometric estimates.

3 Differential Geometry of Smooth Surfaces

Assume the object under view is bounded by a smooth surface that can be
described (locally) as a Monge patch. We briefly review the relevant differential
geometry following [6, 4, 18] for notation. In particular, M is a regular surface
in R3, p and q denote surface points in R3, v ∈ R3 denotes a tangent vector in
the tangent plane Tp(M), X the position vector field (i.e. X(p) = p), and N the
unit surface normal vector field.
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3.1 Surface Differential Properties

For a regular surface M ⊂ R3 the surface normal (or equivalently the tangent
plane) changes as we move over it. This geometric property has been studied as
the second fundamental form and the shape operator. They both encode such
geometric information. In particular: The shape operator Sp(v) encodes the shape
of a surface M by measuring how the surface normal N changes as one moves in
various directions from point p in the tangent plane Tp(M). It is defined as [18]:

Sp(v) = −∇vN (3)

where ∇vN denotes the covariant derivative of the unit normal vector field N
with respect to the tangent vector v ∈ Tp(M), i.e. the initial rate of change of
N(p) as p moves in the v direction. In other words, it gives an infinitesimal
description of the way surface M is curving in R3.

The second fundamental form IIp is defined in Tp(M) as the quadratic form
IIp = −〈dNp(v),v〉, where dNp is the differential of the Gauss map [6].

For tangent vectors v and w (both in Tp(M)) these two concepts are related
by IIp(v,w) = Sp(v) ·w.

3.2 Second Fundamental Form for Monge Patch

We now switch to a convenient form for computation. In the (reference) camera
coordinate system we can represent the surface as a Monge patch, r(x, y) =
(x, y, z(x, y)). Taking partial derivatives:

rx = (1, 0, zx), ry = (0, 1, zy)
rxx = (0, 0, zxx), rxy = ryx = (0, 0, zxy), ryy = (0, 0, zyy)

Unit surface normal N = rx∧ry

‖rx∧ry‖ = (−zx,−zy,1)√
1+z2

x+z2
y

, where ∧ is vector cross product.

The matrices of the first fundamental form I and the second fundamental
form II are:

I :
[
rx · rx rx · ry

ry · rx ry · ry

]
=
[
1 + z2

x zxzy

zxzy 1 + z2
y

]
II :

[
rxx ·N rxy ·N
ryx ·N ryy ·N

]
=

1√
1 + z2

x + z2
y

[
zxx zxy

zxy zyy

]

respectively. In the basis {rx, ry}, dN is given by the matrix −I−1II, and the
matrix of the shape operator S is I−1II. This matrix is relative to the tangent
vectors rx, ry (as basis vectors) in the tangent plane Tp(M) of M at p. The
matrix of the shape operator S is:

I−1II :
[

a11 a12
a21 a22

]
=

1
(1 + z2

x + z2
y)3/2

[
1 + z2

y −zxzy

−zxzy 1 + z2
x

] [
zxx zxy

zxy zyy

]
(4)

=
1

(1 + z2
x + z2

y)3/2

[
(1 + z2

y)zxx − zxzyzxy (1 + z2
y)zxy − zxzyzyy

(1 + z2
x)zxy − zxzyzxx (1 + z2

x)zyy − zxzyzxy

]
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Note that this matrix is not necessarily symmetric, unless {rx, ry} is an ortho-
normal basis. Typical values are given in Section 5.

Remark 2. When the object is a planar surface (zxx = zxy = zyy = 0), elements
of matrices II and S are all zeros. Observe that S still encodes the geometric
property for such planar surfaces. The special case of a frontal parallel plane
(zx = zy = 0) is also encoded in S. ��
Remark 3. At the occluding boundaries of the surface (when N is orthogonal
to the line of sight), we can not represent the surface as a Monge patch. As a
result matrices of I, II, and S are not well defined in above formulas. This is an
implementation limitation but not a theoretical one. ��

4 Differential Geometric Consistency for Curved Surfaces

The intuition behind geometric consistency is that the measurement (position,
normal) information at each point, when transported along the surface to neigh-
boring points (as described previously), should agree with the measurements at
those points. We now develop this intuition. At a given point p we would like to
study how the position and surface normal change as we move in various direc-
tions in the tangent plane (Fig. 2(a)). X denotes the position vector field (thus
X(p) = p) and N the unit surface normal vector field. We require explicit for-
mulas for their change as we move along v in the tangent plane Tp(M) (i.e.∇vX
and ∇vN ).

Proposition 1. Let X be the special vector field Σ3
i=1xiEi, where x1, x2, and x3

are the Euclidian coordinate functions of R3. Then ∇vX = v for every tangent
vector v.

v

(a) (b) (c)

Fig. 2. (a) Shows the change of position vector field X and the unit surface normal
vector field N by moving v in the tangent plane. (b) The predicted position X∗(q)
in the neighborhood can be obtained from X(p) and ∇vX(p). Geometric consistency
in position is determined by comparing X∗(q) with the true measurements X(q) in
the neighborhood. Also shown is a less consistent one X̃(q). (c) The predicted sur-
face normal N∗(q) in the neighborhood can be obtained from N(p) and ∇vN(p).
Geometric consistency in orientation is determined by comparing N∗(q) with the true
measurements N(q) in the neighborhood. Also shown is a less consistent one Ñ(q).



50 G. Li and S.W. Zucker

Proof: Rewrite ∇vX according to its definition and express it as the sum of
directional derivatives. We have ∇vX = Σ3

i=1v[xi]Ei(p). Further expand the
directional derivative part by vp[f ] = Σ3

j=1vj
∂f
∂xj

(p); we have Σ3
i=1v[xi]Ei(p) =

Σ3
i=1Σ

3
j=1vj

∂xi

∂xj
(p)Ei = Σ3

i=1viEi = v. ��
From point p on M , if we move along v in the tangent plane, then to first order
approximation the new position is:

X∗(q) = X(p) +∇vX(p) = X(p) + v (5)

Interpret this computed position X∗(q) as the “transported” geometric infor-
mation to a neighboring position q along the surface (from the measurements)
at p. Since direct measurements are also available at q (denoted X(q)), the
discrepancy between X∗(q) and X(q) can be used to measure the geometric
consistency between nearby candidate matching points p and q. Fig. 2(b) il-
lustrates this point using two (possible) measured points X(q). Clearly the one
on the same surface as p should be very close to the transported position, i.e.
X∗(q).

And similarly for surface normal. Given the shape operator Sp(v) = −∇vN
of M at p, the change of surface normal N is characterized by the covariant
derivative ∇vN for any v in the tangent plane Tp(M). To emphasize its impor-
tance we show it as a proposition.

Proposition 2. Let N be the unit normal vector field. Then for every tangent
vector v = δt1rx + δt2ry in the tangent plane, ∇vN is given by:

∇vN = ∇δt1rx+δt2ryN = (δt1∇rxN + δt2∇ryN) (6)
= −(δt1a11 + δt2a12)rx − (δt1a21 + δt2a22)ry

where aij ’s are given in equation (4).

Proof: This follows from the linearity of covariant derivative and the calculations
in the previous section. ��
Again, if we move along v in the tangent plane from p, then the surface normal
at the new position N∗(q) can be computed from N(p) and ∇vN(p). To first
order approximation the new normal is:

N∗(q) = N(p)+∇vN(p) = N(p)−(δt1a11+δt2a12)rx−(δt1a21+δt2a22)ry (7)

After nomalization this computed unit surface normal N∗(q) is the “trans-
ported” geometric information along the surface (from the measurements) at p.
Since direct measurements are also available at q to obtain N(q), the discrepancy
between N∗(q) and N(q) can be used to measure the geometric consistency be-
tween nearby candidate matching points p and q. Fig. 2(c) illustrates this point
by showing the transported normal N∗(q), which should agree with the geo-
metrically consistent normal at q. Observe that for planar surfaces (all zeros for
matrix II) this implies constant surface normal (e.g. see Remark 2), which was
discussed in [14].
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The principle of geometric consistency between two neighboring points p
and q holds that, based on the geometric information at p (i.e. X(p), N(p),
∇vX(p), and ∇vN(p)), the transported (computed) geometric information at
q (i.e. X∗(q) and N∗(q)) should agree with the measurements at q (i.e. X(q)
and N(q)) if it is on the same surface as p.

4.1 Geometric Contextual Information for Stereo

Our geometric way of using contextual information is in the Cartan moving
frame model [6, 11]. It specifies how adpated frame fields change when they
are transported along an object, and is concisely encoded in the connection
equations. This model can be used to integrate local geometric information with
geometric information in the neighborhood. Given candidate matches (obtained
from initial local measurements), now we can impose the smoothness constraint
in the neighborhood based on the geometric study just performed. Note that
this is our unique construction in using contextual information geometrically.
Both the position and the normal should be used in defining such geometric
consistency.

Definition. The geometric compatibility between candidate match points p and
q is:

rpq =
1
2
((1− 1

m
‖X∗(q)−X(q)‖) + |N∗(q) ·N(q)|) (8)

where m is a normalization constant related to the neighborhood size.

Remark 4. 0 ≤ rpq ≤ 1, with rpq = 1 for consistent p and q, while rpq =
0 for inconsistent p and q. We use a mixed norm in defining such geometric
consistency, but other formulas are also possible. ��
The geometric constraint (eqn. (8)) can be used in the cooperative framework.
For a candidate match point p (hypothesis), we initialize its support s0

p according
to its deformed window SSD (denoted by cp) and iteratively update sp by the
geometric support it receives from its neighboring candidate matching point q:

s0
p = 1− cp

c
(9)

st+1
p =

∑
q∈Np

rpqs
t
q∑

q∈Np
st

q

(10)

with c a normalization factor, Np denotes the neighbors of p (in our experiments
we use a 21x21x7 (u, v, d) region). Note that here we use subscript to denote the
measure with respect to candidate match point p (not the partial derivatives!).
The true correspondence will be supported by its neighbors since their local sur-
face geometry estimates are geometrically consistent. False matches are unlikely
to get support from neighbors. We also experimented with a two label relax-
ation labeling algorithm [15, 13], and observed similar results. According to the
taxonomy [22], such an iterative algorithm is neither a local method (e.g. SSD)
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nor a global method (e.g. graph cuts). It is in the spirit of a cooperative algo-
rithm [17, 27], which iteratively performs local computations and uses nonlinear
operations resulting in a final effect similar to global optimization.

Assuming the noise in the surface normals is roughly zero mean Gaussian
i.i.d. (independent and identically distributed), the “best fit” (in a least-squares
sense) unit normal at p is updated as [20]: Nt+1

p = (
∑

Nt
q)/‖

∑
Nt

q‖, with q
points in the neighborhood of p and within a normal threshold (e.g. π/4).

4.2 Stereo Algorithm

A simple algorithm illustrates how such geometric contextual information could
be used.

(1) Use deformed window SSD to get the intial candidate matches. We first
use a traditional SSD (15x15 window) to get integer disparity values at each
(u, v) and only keep the top δ% (we use 3 non-immediate neighboring ones) as
the initial guesses. Then as explained in Section 2, for each disparity guess at
every (u, v), we obtain {d, ∂d

∂u , ∂d
∂v} (interpolated in the continuous domain) that

minimizes deformed window SSD in equation (1). Several local minima could
exist at each pixel (u, v). Geometric contextual information will be explored in
the next few steps.

(2) Compute differential properties (e.g. surface normal N, shape operator
S) for every candidate match point p (Section 3).

(3) Compute the initial support s0
p for each candidate match point p by

equation (9), which encodes the similarity measure based on deformed window
SSD.

(4) Iteratively update the geometric support sp at every p by equation (10)
until it converges (in practice we run a preset number (e.g. 8) of iterations). To
get the geometric compatibilities between nearby putative matches rpq (eqn. (8)):
first project (q − p) onto the tangent plane of p, resulting in the displacement
vector v ∈ Tp(M); then compute the predicted position and normal according to
eqn. (5)(7); and finally use eqn. (8). Also update surface normal Np at p based
on the normals of neighbors, to reduce the effect of local noisy measurements.

(5) For each (u, v) select the the updated candidate match with the highest
support s, output disparity (depth) and surface normal.

Observe that steps (2)-(5) are the unique geometric content of our algorithm.

5 Experimental Results

Fig. 3 provides a comparison between algorithms guided by the frontal parallel
plane assumption for contextual interaction (e.g., graph cuts [3, 12], belief prop-
agation [24, 26]) and those designed for more general surfaces (e.g., diffusion
[21] and our algorithm). As expected, the first group yields “scalloped” surfaces
broken into piecewise frontal parallel planar patches, even with subpixel inter-
polation (by parabola fitting of the costs of a 15x15 SSD window), while the
second group follows the surface more robustly.
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(a) Left (reference) image (b) Right image (c) Error statistics

(d) Belief Prop. (e) Graph Cut (f) Diffusion

(g) BP+Subpixel (h) GC+Subpixel (i) Our Result

Fig. 3. Synthetic sphere example separates the performance of algorithms with the
frontal parallel plane assumption from those designed for smooth surfaces. (c) shows
the percentage of bad matching pixels (occluded region not counted) using the taxon-
omy package [22] at 7 different thresholds ranging from 0.25–1.75 pixels. Performance
for the diffusion algorithm and our approach were similar for this spherical surface.
Other algorithms were obtained from the stereo package provided by Scharstein and
Szeliski [22] for nonlinear diffustion (the membrane model) [21], and max-product ([26])
for belief propagation; The α-expansion algorithm [12] for graph cuts. The stereo pair
was rendered with 152mm baseline and focal length 1303 pixels (obtained from real
calibration data). Image size is 640x480 pixels, disparity range 41 pixels; Sphere has
radius 100mm and center at 750mm distance.

Remark 5. To illustrate the numerical stability of our computation we pick a
typical point (u, v) = (526, 240), i.e. (x, y) = (1.90, 0.0). From the ground truth we
obtain z = 687.29mm, and (zx, zy) = (1.242, 0.0). In our result we get
(zx, zy) = (1.239, 0.0) and (zxx, zxy, zyy) = (0.0406, 0, 0.0159), further compu-

tation shows matrix I is
[
2.5432 0.0000
0.0000 1.0000

]
, matrix II is

[
0.0254 0.0000
0.0000 0.0100

]
, and

the matrix of the shape operator is:
[
0.0100 0.0000
0.0000 0.0100

]
. These numbers are clearly

meaningful numerically; however, by Remark 1, note that previous attempts
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(a) Left (reference) image (b) Right image (c) True Disparity

(d) Belief Prop. (e) Graph Cut (f) Diffusion

(g) BP+Subpixel (h) GC+Subpixel (i) Our Result

Fig. 4. Human face example. Shown are results from other algorithms (as in previous
caption), and our result. While the scalloping remains present in belief propagation and
graph cuts, again diffusion and our algorithm appear smoothest. A detailed analysis of
the statistical data reveals the difference (in the next Fig.). Ground truth data from
CyberwareTM laser scanner dataset. Timing: Our algorithm takes 982.69 seconds on a
Intel Xeon 2.4GHz CPU; accelerated belief propogation takes 1977.57 sec.; graph cuts
takes 221.28 sec. and diffusion 59.82 sec.

(e.g.,[5]) at surface computations in (u, v)-space would have to multiply the above
entries by (about) 10−4 for second order properties, thus placing them right at the
limit of measurable quantities even for this idealized example. ��
The second set of examples illustrates the difference between our approach and
diffusion. Faces have rich surface geometry needed to support graphical rendering
and different types of recognition, and the 3D details matter. Ground truth data
(3D geometry and texture map) were obtained from the CyberwareTM laser
scanner dataset. The true disparity map is then computed. The stereo pair has
a baseline of 6cm and focal length 1143 pixels. The human head ranges from
26.5cm to 53.5cm in front of the camera. The original image size is 1024x768
pixels but is then subsampled to 512x384 pixels with a disparity range 66 pixels.
Results are in Fig. 4; once again, the diffusion algorithm is closest to ours but
differences are emerging.
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Fig. 5. Error statistics of bad matching pixels: (LEFT) Whole image. (RIGHT) A
30x30 pixel region around the side of the nose. Notice in particular how the statistics
diverge for the nose region, where surface normal is changing rapidly. It is in places
such as this that our algorithm noticeably outperforms diffusion.

Fig. 6. Reconstruction results. (LEFT) Reconstructed surface normal. (RIGHT) Zoom
in of nose region. For display purpose surface normal and depth are subsampled to one
in five pixels in both x and y directions.
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Fig. 7. More results on face stereo pair with ground truth
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The membrane model underlying the diffusion algorithm applies uniform
smoothing in proportion to iteration number. Our algorithm, by contrast, im-
plements regularization in proportion to surface geometry, as a more detailed
analysis indicates. The error statistics are shown in Fig. 5. While our algorithm
differs from diffusion when averaged across the entire image, it differs sharply
in those regions where the surface normal is rapidly changing (Fig. 5(RIGHT)).
Diffusion oversmoothes these regions to get the smoothing right in larger, less
varied regions. Our reconstructed surface normals are shown in Fig. 6; note how
exquisitely the normal follows the nose in the blow-up.

Several other stereo face pairs are basically the same; see Fig. 7. Due to space
limits we only report our result and error statistics of bad matching pixels; again,
zooms on rapidly curving regions are informative.

6 Conclusion

We introduced the principle of geometric consistency to stereo, which holds that
local observations of spatial disparity and surface shape should agree with neigh-
boring observations; and that agreement between these neighboring observations
can be implemented with a transport operation. In effect, nearby normals can be
transported along (estimates of) the surface to be compared with directly mea-
sured normals. We provided direct calculations of these transport operations,
and demonstrated their efficacy with a simple stereo algorithm. The geometric
compatibility function could also be used in more powerful inference frameworks
[26, 3], or developed into a richer probabilistic form.

Several limitations remain, though. Occlusion is not considered currently, nor
the object boundaries, which provide information about depth discontinuities.
The geometry underlying these will be studied in our next paper.
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Abstract. Conventional photometric stereo has a fundamental limita-
tion that the scale of recovered geometry is limited to the resolution
of the input images. However, surfaces that contain sub-pixel geomet-
ric structures are not well modelled by a single normal direction per
pixel. In this work, we propose a technique for resolution-enhanced pho-
tometric stereo, in which surface geometry is computed at a resolution
higher than that of the input images. To achieve this goal, our method
first utilizes a generalized reflectance model to recover the distribution of
surface normals inside each pixel. This normal distribution is then used
to infer sub-pixel structures on a surface of uniform material by spatially
arranging the normals among pixels at a higher resolution according to
a minimum description length criterion on 3D textons over the surface.
With the presented method, high resolution geometry that is lost in con-
ventional photometric stereo can be recovered from low resolution input
images.

1 Introduction

From a given viewing direction, the appearance of surface points vary according
to their orientation, reflectance, and illumination conditions. With an assumed
reflectance, photometric stereo methods utilize this relationship to compute sur-
face normals by examining transformations in image intensities that result from
changes in lighting directions. Traditionally, reflectance is assumed to be Lam-
bertian [1, 2], and with calibrated illumination directions, three images are suf-
ficient to recover surface normals and albedos [3].

The reflectance of a surface, however, often does not adhere to the Lambertian
model, and in such cases, conventional photometric stereo may yield poor results.
To deal with this problem, methods based on non-Lambertian reflectance models
have been proposed. Some techniques utilize a composite reflectance model that
consists of Lambertian diffuse reflection plus specular reflection [4, 5, 6], while
others employ physically-based models that account for the effects of fine-scale
roughness in surface structure [7, 8]. In all of these approaches, reflectance is
assumed to be a function of a single principal normal direction.

In many instances, the surface structure within a pixel exhibits greater com-
plexity, and the resulting reflectance cannot be accurately expressed in terms of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 58–71, 2006.
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a single normal. When a surface is imaged at a resolution coarser than its surface
structure, multiple disparate principal normal directions may exist within each
pixel. Since previous photometric stereo methods compute a normal map at the
same resolution as the input images, they are unable to recover this sub-pixel
geometric structure.

In this work, we present a technique for estimating the geometry of a uniform-
material surface at a resolution higher than that of the input images. The pro-
posed method recovers a general distribution of normals per pixel from an ample
number of photometric stereo images, and then estimate a spatial arrangement
of this normal distribution in a higher resolution image. For normal distribution
recovery, we perform photometric stereo with a reflectance model that is based
on a general representation of normal distributions. For robustness in the re-
covery of these complex distributions, we present an Expectation-Maximization
approach to solve for the distribution parameters.

With the recovered normal distributions of each pixel, enhanced resolution
of surface geometry is computed by dividing the distribution according to the
level of enhancement, e.g., four sub-distributions in a 2x2 enhancement of pho-
tometric stereo. After partitioning the distribution, their arrangement in the
higher resolution normal map is formulated from constraints that favor consis-
tency of geometric structure over a surface. Consistency is evaluated in terms
of surface integrability and simplicity of surface description with respect to 3D
textons, which is motivated by the minimum description length principle [9] and
the observation that a surface is generally composed of only a small number
of perceptually distinct local structures [10]. To solve this complicated arrange-
ment problem, we utilize the Belief Propagation algorithm [11, 12] to compute an
initial solution from a graphical model that represents integrability constraints.
Starting from this initial solution, simulated annealing [13] is used to find an
optimal arrangement that accounts for complexity of surface description.

This approach enhances resolution differently from image super-resolution
methods [14, 15] in that sub-pixel viewpoint displacements are not used to obtain
variations in spatial sampling. In photometric stereo, all images are captured at
a fixed viewpoint, and the proposed technique estimates higher spatial resolution
based on super-resolution recovery of surface normals and constraints on surface
structure. The described approach also differs from learning-based hallucination
methods [16, 17] that utilize a training set of high resolution / low resolution
image pairs to infer enhanced resolution. In contrast to image hallucination
methods, our technique is able to recover partial information from the input for
resolution enhancement, in the form of the actual normal distribution within a
low resolution pixel. Therefore, our method need not fully conjecture on the high
resolution data, which is difficult to do by hallucination since reliable training
databases are challenging to construct for general geometric structure. Rather,
it infers only the arrangement of known surface normal information. With this
approach, fine-scale surface detail that is missed in conventional photometric
stereo can be revealed.
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2 Recovery of Normal Distributions

In the first stage of our technique, we use photometric stereo to recover a normal
distribution for each pixel of the input images. To determine a distribution of
normals, our method utilizes a generalized reflectance model, where a Gaussian
mixture model (GMM) of normal distributions is used to account for reflectance
effects of sub-pixel geometric structure. We briefly review this reflectance model
and present a method for employing it in photometric stereo to recover a general
normal distribution within each pixel.

2.1 Generalized Reflectance Model

In physically-based reflectance modeling [18, 19, 20], a surface is typically mod-
elled as a collection of tiny flat faces, called microfacets. The overall reflectance of
a surface area imaged within a pixel is therefore an aggregate effect of this micro-
facet collection, which is generally described by the distribution of their normal
directions. For an arbitrary microfacet normal distribution p(n), reflectance may
be physically represented by a model proposed in [20]:

ρ(l,v) =
p(h)F (l · h)

4Ks(l)Km(v)

where l,v are unit lighting and viewing directions, and h is their unit bisector.
F denotes the Fresnel reflectance term, and Ks, Km are factors that account
for shadowing and masking among microfacets. Since microfacet-based models
generally treat microfacets as mirror reflectors, recovery of p(h) gives us p(n).

Generally in reflectance modeling, the normal distribution is considered to
be centered at a principal surface normal direction, around which the collection
of microfacet normals is distributed. When the scale of geometric structure is
smaller than the image resolution, as illustrated in Fig. 1, multiple principal
surface normals may exist within a pixel. To more generally represent normal
distributions, we utilize Gaussian mixture models, which have long been used

N

facet normal distributionpixel area

Fig. 1. At low resolution, sub-pixel geometric structure can lead to a complex distrib-
ution of normals within a pixel
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to represent general distributions. In this work, to facilitate parameter estima-
tion the shadowing and masking terms Ks, Km and the Fresnel term F are all
modelled as constant, as done in numerous reflectance modeling works (e.g.,
[5, 20, 21]). With this simplification and a normal distribution represented by
a Gaussian mixture model G(n) =

∑N
i=1 αig(n; µi, σi), reflectance can be ex-

pressed as

ρ(l,v) =
F

4KsKm

N∑
i=0

αig(h; µi, σi) = A ·G(h) (1)

where A is a constant, and µi, σi denote the mean and variance of Gaussian i.
By incorporating this generalized reflectance model into photometric stereo, our
method more comprehensively acquires surface normal information in each pixel.

2.2 Reflectance Estimation

Due to the complexity of this reflectance model, it is non-trivial to determine
from photometric stereo images the parameters of a general normal distribution.
In photometric stereo, a set of K images containing reflectance data {Ok; 1 ≤
k ≤ K} is measured under different lighting conditions {lk; 1 ≤ k ≤ K} and a
fixed viewing direction v. From this data, parameters of the Gaussian mixture
normal distribution could in principle be estimated at each pixel by general
non-linear least squares fitting:

Θ = arg min
K∑

k=1

||ρ(lk,v)−Ok||2 = argmin
K∑

k=1

||A
N∑

i=0

αig(hk; µi, σi)−Ok||2,

where Θ = {A, (αi, µi, σi); 1 ≤ i ≤ N} signifies the reflectance parameters with
an N -Gaussian GMM. However, as described in [21], due to the high nonlinearity
of reflectance functions, fitting a model with more than two lobes by general non-
linear least squares is rather unstable and gives unreliable results.

To deal with this issue, we can regard Eq. (1) as a probability distribution
function (pdf) defined on a hemisphere with respect to bisector direction h and
scaled by a factor A. We can furthermore consider measured intensities in the
photometric stereo images as samples from this distribution. Estimation of a pdf
in terms of a Gaussian mixture model from a set of samples is a well studied
problem and can be robustly computed by the Expectation-Maximization (EM)
algorithm [22, 23]. With a generalized reflectance model that represents normal
distributions with a GMM, we can conveniently utilize this method to recover
this detailed surface information.

According to the Law of Large Numbers, the value of a pdf at a given point
is the frequency that the point appears in random sampling. For each bisector
direction hk, the actual pdf function has the value Ok/A, which should lead to
Ok/A samples being observed at position hk. In other words, for each observation
Ok, we put a sample of weight Ok/A at direction hk. To estimate the actual pdf,
GMM parameters can be computed according to these weighted samples using
the EM algorithm, by iteratively computing the E-step:
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Ezik = αig(hk; µi, σi)/
N∑

j=1

αjg(hk; µj , σj)

and the M-step:

αi =
∑K

k=1
Ok

A Ezik∑K
k=1

Ok

A

=
∑K

k=1 OkEzik∑K
k=1 Ok

µi =
∑K

k=1
Ok

A Ezikhk∑K
k=1

Ok

A

=
∑K

k=1 OkEzikhk∑K
k=1 Ok

σ2
i =

∑K
k=1

Ok

A Ezik||hk − µi||2∑K
k=1

Ok

A

=
∑K

k=1 OkEzik||hk − µi||2∑K
k=1 Ok

where zik are hidden variables and Ezik is the probability that the k-th sample
is generated by the i-th component. For purposes of resolution enhancement as
later described in Sec. 3, we utilize GMMs with Gaussians of equal weight, such
that we set αi = 1

N for an N -Gaussian GMM.
The scale factor A is seen to cancel out in the computation of the normal

distribution parameters. Intuitively, these GMM parameters, which describe the
geometric characteristics of a surface, are independent of A, which represent
optical properties, and can be optimized separately. With the computed GMM
parameters, A may be solved by linear least squares

A = argmin
K∑

k−1

||Ok −AG(hk)||,

but need not be estimated in our application because only the normal distribu-
tions are used in surface reconstruction.

(a) (b)

Fig. 2. (a) Visualization of observed data from 65 photometric stereo images. The
radius of each sample point is set to the radiance intensity at the corresponding lighting
direction. (b) Radiance distribution computed according to our fitted parameters.
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The performance of this EM-based parameter estimation is exemplified in
Fig. 2, which compares a radiance distribution computed with our generalized
model and recovery technique to the observed data from photometric images
with 65 sampled illumination directions. The intensity of a single pixel under
different lighting directions is visualized as a function defined on a hemisphere,
whose value is represented by the radius. While some deviation can be observed
at grazing angles, the fitted radiance distribution approximately models the cap-
tured distribution using 4-Gaussian GMMs. With greater numbers of Gaussians,
closer approximations can be obtained.

3 Resolution Enhancement

For resolution enhancement, our method divides the recovered distribution of
normal directions among pixels at a higher resolution. For an R × R enhance-
ment, with M = R2, each higher resolution pixel covers 1/M of a pixel at the
original resolution, such that 1/M of the recovered normal distribution should be
assigned to each of the higher resolution pixels. Using a mixture of M uniform-
weight Gaussians in the reflectance estimation of Sec. 2.2, we employ a simplified
arrangement procedure where each component of the M -Gaussian GMM is as-
signed to one of the M higher resolution pixels. With this, the principal normal
direction of each high resolution pixel is given by the mean vector of the assigned
GMM component.

For determining the spatial organization of these GMM components among
the high resolution pixels, we employ constraints based on geometric consistency.
These constraints lead to a challenging optimization problem, which is solved
using a combination of belief propagation and simulated annealing.

3.1 Constraints on Normal Arrangement

Since no direct information on sub-pixel spatial arrangements of principal normal
directions can be derived from fixed-view photometric stereo images, our method
relies upon common characteristics of surface structure to constrain the solution.
One fundamental constraint in a normal map is that the curl of the normal map
be equal to zero, which is known as the integrability constraint and is widely used
in surface reconstruction (e.g., [24, 25, 26]). This constraint itself does not provide
sufficient information for determining a reliable solution, so we additionally take
advantage of the observation that at a local scale there generally exists only
a small number of perceptually distinct structural features on a surface. This
surface property is the basis for work on 3D textons [10], which represent the
appearance of points on a surface by indexing to a small vocabulary of prototype
surface patches.

In our method, we utilize a constraint on normal arrangements that is moti-
vated by the work on 3D textons and the minimum description length principle
[9]. Specifically, our formulation favors normal arrangements that minimize the
number of local structural features, or 3D textons, needed to describe the imaged
surface at the enhanced resolution. In [10], 3D texton primitives are represented
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Arrangement SpacePixel 

Arrange
ment 1

Arrange
ment 2

GMM normal 
distribution

Textons Clusters

i

Fig. 3. Mapping of possible normal arrangements of all pixels into a high dimen-
sional arrangement space. Each arrangement of a pixel is a point in this space. Similar
arrangements form clusters that represent possible textons of the surface.

in terms of co-occurring responses to a bank of Gaussian derivative filters of
different orientations and spatial frequencies, but for our context of photomet-
ric stereo, we instead describe these structural primitives simply as a concate-
nated vector of principal normal orientations. In our implementation, the size of
the texton area is set to be the that of a pixel at the original, captured image
resolution.

To minimize the number of distinct structural features (textons) in the surface
description, we first cluster similar normal arrangements that may occur on the
surface, and represent each cluster by a single representative arrangement, or tex-
ton. As illustrated in Fig. 3, every possible arrangement of the GMM components
of all low resolution pixels on the surface are plotted as points in an arrangement
space, and these normal arrangements are grouped into texton clusters that are
each represented by its mean vector. Specifically, in clustering, each arrangement
is represented by a concatenated vector of principal normal directions inside each
pixel. For example, in the case of 2 × 2 resolution enhancement, a 12-D space is
formed by concatenating four principal normals expressed as 3D vectors. In our
implementation, the structure of this space is obtained by employing the EM al-
gorithm to cluster arrangements as components of a GMM G, referred to as the
texton GMM. In this process, we fit a GMM with a large number of components
and then eliminate components that have weights below a threshold.

Distinct textons may contain the same set of GMM components of a nor-
mal distribution and differ only in their arrangement, as is the case for multiple
arrangements for a given pixel. To minimize the geometric description, we also
group these textons into equivalence classes as shown in Fig. 4(a), and represent
each class by a single texton. These equivalence classes can be determined by
grouping texton clusters that are associated with the same pixels, since this in-
dicates that the textons are rearrangements of each other. In real applications,
this grouping is computed by a voting scheme in which the affinity of two textons



Resolution-Enhanced Photometric Stereo 65

Equivalence Classes

Pixel   , arrangement   

Pixel   , arrangement   

Pixel   , arrangement   

Pixel   , arrangement  

i

i

j

j

k

l

m

n

Pixels of equivalence class 1

Pixels of equivalence class 2

Pixels of equivalence class 3

(a) (b)

Fig. 4. Texton equivalence classes. (a) Textons that differ in high-resolution structure
but have a similar low-resolution distribution of normals are grouped in an equivalence
class. (b) Each pixel belongs to one of the equivalent classes. A single texton is com-
puted for each class, and the pixels of the class are assigned the geometric structure of
this representative texton.

Fig. 5. Closed curves for evaluating integrability. (a) each pixel at the original resolu-
tion; (b) each shifted pixel (shaded area) that overlaps two pixels.

is measured by the number of common pixels among the two sets of clusters.
Thresholding this affinity measure gives a partitioning of textons into equiva-
lence classes. With this partitioning, each pixel is associated with the equivalence
class that contains the largest number of its possible normal arrangements, as
illustrated in Fig. 4(b). When a texton is later assigned to represent an equiva-
lence class, the pixels associated with the class will then be assigned the normal
arrangement of that texton.

To determine the set of textons that are used to represent the set of equiva-
lence classes, which we refer to as solution textons, we solve for the set of textons
that best models the surface. Since any integrable texton from an equivalence
class can accurately represent the pixels associated with the class, we determine
the solution textons that maximize the consistency with the resulting shifted
pixels, where shifted pixels refer to pixel areas that overlap multiple pixels at
low resolution as exemplified in Fig. 5(b). Based on our criterion for surface con-
sistency, shifted pixels should also be represented by the solution textons. In the
following section, we describe how a minimal texton description in conjunction
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with integrability constraints are used to compute the representative texton of
each equivalence class.

3.2 Arrangement Optimization

To solve for the solution textons, and hence the arrangement of normals over the
surface, we formulate objective functions that account for texton and integra-
bility constraints. For each pixel s̄ = (x, y) and its texton L(s̄), the integrability
constraint requires the line integration of the arranged principal normals over a
closed curve to equal zero. For a curve that extends over a pixel as illustrated
in Fig. 5(a), this constraint can be expressed as

Intg1(s̄, L(s̄)) = ax + bx − by − dy − dx − cx + cy + ay = 0

where a = (ax, ay, 1),b = (bx, by, 1), c = (cx, cy, 1) and d = (dx, dy, 1) are the
principal normal directions of the pixel. An energy function with respect to
integrability can therefore be defined on each pixel as

E1(s̄, L(s̄)) = exp
(−||Intg1(s̄, L(s̄))− c1(s̄)||2

)
where c1(s̄) is the minimum line integration value among all the arrangements
of pixel s̄. Maximizing E1 favors normal arrangements with minimal integration
values.

For each pair of neighboring pixels s̄, t̄ and their textons L(s̄), L(t̄), the in-
tegrability constraint also applies to the shifted pixel that overlaps s̄, t̄, shown
as a shaded region in Fig. 5(b). The integrability constraint in this instance can
similarly be expressed as:

Intg2(s̄, t̄, L(s̄), L(t̄)) = ex + fx − fy − hy − hx − gx + gy + ey = 0.

A shifted pixel additionally should be associated to a solution texton. This con-
dition can be quantified as max1≤j≤T Pij (efgh), where efgh is the concatenated
vector of principal normals e, f,g,h, {Li1 , Li2 , . . . LiT } is the set of solution tex-
tons, Pij (·) is the pdf function of the ij-th Gaussian component of the texton
GMM model G. Then an energy function can be defined on each pixel pair as:

E2(s̄, t̄, L(s̄), L(t̄)) = exp
(−||Intg2(s̄, t̄, L(s̄), L(t̄))− c1(s̄, t̄)||2

)· max
1≤j≤T

Pij (efgh)

Maximizing E2 will favor the selection of textons for s̄ and t̄ for which the
normal arrangement of their shifted pixel is integrable and consistent with the
set of solution textons.

In principle, integrability and an association to solution textons should also
exist for other pixel displacements, e.g., a shifted pixel that overlaps the corners
of four pixels. In our current implementation, these cases are not considered
because the added complexity to the energy formulation makes optimization
quite challenging.
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The solution textons {Li1 , Li2 , . . . LiT } can be computed by maximizing the
product of E1 and E2 over the whole image as

{Li1 , Li2 , . . . LiT } = arg max
∏
s̄

E1(s̄, L(s̄))
∏

Neighbor(s̄,t̄)

E2(s̄, t̄, L(s̄), L(t̄))

where s̄ indexes all the pixels in the image, and Neighbor(s̄, t̄) represent all
pairs of neighboring pixels. Due to the complexity of this optimization problem, a
solution is obtained using a two-step process. In the second step, we use simulated
annealing to compute an arrangement solution that accounts for both texton and
integrability constraints. To aid simulated annealing in reaching a good solution,
the first step formulates the integrability constraints in a graphical network and
employs belief propagation to compute a good initial solution for input into the
annealing process.

In this first step, the problem is formulated as an undirected graph model,
where each node v of the graph represents an equivalence class. Two nodes are
connected if and only if they contain pixels that are 4-neighbors of each other
in the image. Each node has a number of candidate textons that are indexed
by labels. Integrability constraints are applied to the graphical model as energy
functions defined on nodes and edges.

From the above discussion, we can define an energy term for each label L of
a node as

E(L; v) =
∏
s̄∈v

E1(s̄, L(s̄)) =
∏
s̄∈v

E1(s̄, L)

where s̄ ∈ v denotes pixels s̄ in equivalence class v. For each pair of connected
nodes v1, v2 in the graphical model and their labels L1, L2, we define an energy
on the connecting edge as:

E(L1, L2; v1, v2) =
∏

Neighbor(s̄,t̄);s̄∈v1;t̄∈v2

E′
2(s̄, t̄, L(s̄), L(t̄))

=
∏

Neighbor(s̄,t̄);s̄∈v1;t̄∈v2

E′
2(s̄, t̄, L1, L2)

where E′
2 denotes the energy E2 without the texton constraint max1≤j≤T

Pij (efgh). The initial solution is determined by maximizing the energy over
the entire graphical model using the belief propagation algorithm in [12].

The second step takes the solution of the first step as an initialization to the
simulated annealing process for the energy function

E =
∏
s̄

E1(s̄, L(s̄))
∏

Neighbor(s̄,t̄)

E2(s̄, t̄, L(s̄), L(t̄)).

At each iteration of simulated annealing, an equivalence class is randomly se-
lected and its texton label is randomly exchanged. This randomized modification
is accepted according to its change in energy and a given temperature schedule.

With this approach, various degrees of resolution enhancement can be ob-
tained, but greater amounts of enhancement lead to substantial increases in
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computation, due to the R2! possible normal arrangements for an R × R en-
hancement. To alleviate this problem, an approximation can be employed where
2×2 enhancements are performed iteratively to reach higher levels of resolution.

4 Results

In our experiments, a surface is captured by a fixed camera with evenly sampled
lighting directions given by seven bulbs attached to an arc that rotates around
the surface. The seven bulbs are attached to the arc at equal angular intervals,
and the arc rotates at intervals of 30 degrees. At two of the arc rotation angles,
lighting is occluded by the capture device, and other occlusions of illumination
occasionally occur. Generally, 60 – 70 photometric stereo images are captured
for each surface.

We applied our method to several real surfaces, displayed in Fig. 6, Fig. 7,
and Fig. 8. For each of the figures, an input image at the original, captured
resolution is shown. For visualization purposes, normal maps are integrated into
height fields according to the method in [25]. Height fields computed at the
captured resolution lack the geometric detail. With 2×2 resolution enhancement,
sub-pixel structures lost in conventional photometric stereo are recovered. 4 ×
4 enhancement adds further detail. As greater enhancement is applied, some

Fig. 6. Example of a shiny metal surface. Images are normalized in size for easier
comparison. To view finer detail, please zoom in on the electronic version. (a) One
of the photometric stereo images; (b) Height field recovered at original resolution; (c)
Height field recovered at 2 × 2 enhanced resolution; (d) Height field recovered at 4 × 4
enhanced resolution.

Fig. 7. Example of a stone carving. Images are normalized in size for easier comparison.
To view finer detail, please zoom in on the electronic version. (a) One of the photometric
stereo images; (b) Height field recovered at original resolution; (c) Height field recovered
at 2 × 2 enhanced resolution; (d) Height field recovered at 4 × 4 enhanced resolution.



Resolution-Enhanced Photometric Stereo 69

Fig. 8. Example of a wood flower frame with shiny paint. Images are normalized in size
for easier comparison. To view finer detail, please zoom in on the electronic version. (a)
One of the photometric stereo images; (b) Height field recovered at original resolution;
(c) Height field recovered at 2 × 2 enhanced resolution; (d) Height field recovered at
4 × 4 enhanced resolution.

Fig. 9. Rendering of the recovered height fields from a novel viewpoint. Left to right:
original resolution, 2×2 enhancement, 4×4 enhancement and ground truth computed
from a close-up image sequence captured at around 3 × 3 enhancement.

increase in noise is evident, partially due to the greater complexity in determining
proper normal arrangements. Noise may also arise from deviations of the actual
reflectance from the mathematical model we used for normal recovery.

In Fig. 9, to provide another form of visualization and comparison to ground
truth height field, we render the recovered height fields from a novel viewpoint
for the original resolution, 2×2 enhancement, 4×4 enhancement and the ground
truth computed from a close-up image sequence captured at around 3 × 3 en-
hancement. Geometric detail that is seen in the ground truth height field become
increasing clearer with greater enhancement.
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5 Conclusion

In this work, we proposed a method to enhance the resolution of photometric
stereo by recovering a general normal distribution per pixel and then arranging
these normals spatially within the pixel by employing consistency and simplicity
constraints on surface structure. With this approach, fine-scale surface structure
that is missing in conventional photometric stereo can be inferred from low
resolution input.

There exist a number of interesting directions for future work. In our current
technique, information from shadows in photometric stereo images is not utilized,
but can provide useful constraints in the enhancement process. Another direction
we plan to investigate is optimization of normal arrangements in a manner that
can incorporate integrability and texton constraints for arbitrary pixel shifts.
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Abstract. Many previous works on photometric stereo have shown how
to recover the shape and reflectance properties of an object using multi-
ple images taken under a fixed viewpoint and variable lighting conditions.
However, most of them only dealt with a single point light source in each
image. In this paper, we show how to perform photometric stereo with
four images which are taken under distant but general lighting condi-
tions. Our method is based on the representation that uses low-order
spherical harmonics for Lambertian objects. Attached shadows are con-
sidered in this representation. We show that the lighting conditions can
be estimated regardless of object shape and reflectance properties. The
estimated illumination conditions can then help to recover the shape and
reflectance properties.

1 Introduction

Photometric stereo methods recover the shape and reflectance properties of an
object using multiple images under varying lighting conditions but fixed view-
point. Most works on this problem assumed that lighting comes from a single
source, generally a point source or a controlled, diffused source of light. Wood-
ham [1] first introduced photometric stereo for Lambertian surfaces assuming
known albedos and known lighting directions. The method was based on the
use of the so-called reflectance maps in the form of look-up tables. Three im-
ages were used to solve the reflectance equation for recovering surface gradients
and albedos of a Lambertian surface. Coleman and Jain [2] used four images
to detect and exclude highlight pixels. They used four combinations of three
light sources to compute four albedo values at each pixel. Presence of specular
highlight will make the computed albedos different, indicating that some mea-
surement should be excluded. Barskey and Petrou [3] showed that the method
in [2] is still problematic if shadows are present, and generalized it to handle
color images.

Moses [4] and Shashua [5] have pointed out that one can only recover the
scaled surface normals up to an unknown linear transformation when each image
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of the target object is lit by a single point source with unknown intensity and
direction. Hayakawa [6] used [4, 5]’s result in a factorization framework to han-
dle many images. These results assumed there is no shadow. In [7, 8, 9], it has
been shown that integrability reduces the ambiguity to a generalized bas-relief
transformation, which allows the recovery of a surface up to a stretch and shear
in the z-direction.

By considering non-Lambertian surfaces, Tagare and deFigueriredo [10] de-
veloped a theory of photometric stereo for the class of m-lobed reflectance map.
Kay and Caelly [11] continued their work and investigated the problem from a
practical point of view. They applied nonlinear regression to a larger number of
input images. Solomon and Ikeuchi [12] extended the method in [2] by separat-
ing the object into different areas. The Torrance-Sparrow model was then used
to compute the surface roughness. Nayar et al. [13] used a hybrid reflectance
model, and recovered not only the surface gradients but also parameters of the
reflectance model. In these approaches, the models used are usually somewhat
complex, and more parameters need to be estimated.

Hertzmann and Seitz [14] used a reference object and presented an ap-
proach to compute surface orientations and reflectance properties. They made
use of orientation consistency to establish correspondence between the unknown
object and a known reference object. In many cases, however, obtaining a refer-
ence object for correspondence can be very difficult. Goldman et al. [15] fur-
ther extended this method so that the reference object is no longer needed
but assumed that objects are composed of a small number of fundamental
materials.

Previous work on this problem shows a progression towards lighting con-
ditions that are less constrained, but most of them still focused on recovering
structure based on the assumption of a single point source in each image. For
complicated lighting environments, Basri et al. [16] and Ramamoorthi et al. [17]
have provided a new way to describe the effect of general lighting on a Lam-
bertian object. Their results showed that only the low frequency components of
lighting have a significant effect on the reflectance function of a Lambertian ob-
ject. These components are represented as low-order spherical harmonics. They
showed that the set of images produced by a convex Lambertian object under
arbitrary lighting can be well approximated by a low dimensional linear set of
images. This set is 4D for a first-order approximation, 9D for a second-order
approximation.

Basri and Jacobs [18] used this representation to handle the photometric
stereo problem under general lighting. They assumed that the zero- and first-
order harmonics, which correspond to the albedos and surface normals scaled by
albedos, will show up in the space spanned by the principal components obtained
by performing SVD on input images. Their method can reconstruct object shape
well when a large number of images are available.

In this paper, we also consider images produced by general lighting condi-
tions that are not known ahead of time, and we require only four images of
the target object. The starting point of our method is the spherical harmonic
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representation. We first estimate the lighting condition without knowing the ob-
ject shape with the 4D approximation. Then we couple our refinement techniques
for surface normal, albedo, and lighting condition into an iterative process, where
improved shape results in improved lighting and albedo estimation and vice
versa. We confirm experimentally that these optimization procedures produce
good results in spite of the approximations made by the low-order spherical har-
monic representations. Existing techniques can then be used to translate these
normals into an integrable surface, if desired. We also present some experiments
to illustrate the potential of our method.

We formulate our problem and show the spherical harmonic representation
used by our method in Section 2. Lighting estimation method without knowing
object shape is described in Section 3. The shape and reflectance reconstruction
process is shown in Section 4, where we also propose an iterative optimization
algorithm to obtain a more robust solution. Section 5 shows experimental results
of both synthetic and real images, while conclusions and future work are made
in Section 6.

2 Problem Formulation

The inputs of our method are four images of a static object taken at a fixed pose
but under different illuminations. The lighting conditions, shape, and reflectance
properties are all unknown. From these inputs, we seek to estimate the lighting
conditions, and to reconstruct the shape and reflectance properties.

We assume that the surface of the target object has Lambertian reflectance.
The only parameter of this model is the albedo of each point on the object, which
describes the fraction of the light reflected. We also assume that this object is
illuminated by distant light sources, so that the directions and intensities of light
sources are the same for all points of this object. We do not model the effects of
cast shadows and interreflections.

The output of our method are albedos, surface normals of each pixel, and the
lighting conditions of four input images. We can then reconstruct the surface by
integrating the normal field. We can also render novel images under new lighting
conditions or new viewpoints.

2.1 Modeling Reflection

We use the symbol Ii to represent the intensity of a certain pixel in input image i,
i = 1 . . . 4. With distant light source assumption, the intensities of a Lambertian
object under general lighting conditions can be represented as follows:

Ii = ρ

∫
Li(l)max(l ·N, 0) dl, (1)

where ρ and N are the albedo and surface normal of this pixel, l is the unit vector
indicating the direction of incoming light, and Li(l) is the radiance intensity from
direction l in image i. The integral is over all possible lighting directions.
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In [16, 17], the authors viewed this process of light reflection as a convolu-
tion, where the incident illumination signal is filtered by the reflective properties
of the surface, which is the Lambertian kernel in our case. They also showed
that the Lambertian kernel acts like a low-pass filter, preserving only the lowest
frequency components of the lighting. According to their results, the effects of
general lighting on a Lambertian object can be represented by spherical har-
monics:

Ii = ρ

∞∑
n=0

n∑
m=−n

√
4π

2n + 1
knlnmYnm(N), (2)

where Ynm are the surface spherical harmonics, kn and lnm are the coefficients of
harmonic expansions of the Lambertian kernel and lighting, respectively. It has
been proved in [16] that for any distant and isotropic lighting, at least 98% of the
resulting function can be captured by the second-order spherical harmonic ap-
proximation. A first-order approximation captures at least 75% of the reflectance.
These bounds are not tight, and in fact many common lighting conditions yield
significantly better approximations. For example, under a point source illumina-
tion the first- and second-order harmonics approximate the reflectance function
to 87.5% and 99.22% respectively.

Then, we can relate the intensity quadruple of the same pixel in four input
images to the spherical harmonics with the second-order approximation:

I =


I1
I2
I3
I4

 = ρL4×9H9×1 = ρL4×9



1
Nx

Ny

Nz

3N2
z − 1

NxNy

NxNz

NyNz

N2
x −N2

y


, (3)

where I is the stack of intensity quadruple, each row of L4×9 is the lighting
configuration of each image, and H9×1 is the spherical harmonics which can be
decided analytically when the surface normal N = [Nx, Ny, Nz]T is known. Note
that we omit additional constant factors since they do not change the space
spanned by these bases.

3 Lighting Estimation

In an uncalibrated photometric stereo problem, the lighting condition L, albedo
ρ, and surface normal N are all unknown, making it highly unconstrained. How-
ever, with first-order approximation of spherical harmonics, we show in this
section that, regardless of object shape and reflectance, the lighting conditions
are constrained and can be estimated up to a subgroup of the 4× 4 linear trans-
formation, called Lorentz transformations (also in [18]).



76 C.-P. Chen and C.-S. Chen

When first-order approximation of spherical harmonics is adopted, the inten-
sity quadruple can be rewritten from (3) as follows:

I = ρL4×4H4×1 = ρL4×4
[
1 Nx Ny Nz

]T
. (4)

When L is known, the albedo and surface normal can be recovered simply
by inverting this equation as:

ρH =
[
ρ ρNx ρNy ρNz

]T = L−1I . (5)

However, in a photometric stereo problem under general lighting, L is usually
unknown. In the following, we show how to estimate L with this first-order
approximation.

Since N is the unit surface normal, NT N = 1. Let J = diag{−1, 1, 1, 1}, it
can be easily verified that

(ρH)T J (ρH) =
(
IT L−T

)
J
(
L−1I

)
= IT BI = 0, (6)

where B = L−T JL−1 is a 4 × 4 symmetric matrix. Equation (6) indicates that
intensity quadruples are constrained to lie on a quadratic surface regardless of
what the albedos and surface normals are:

0 = B11I
2
1 + B22I

2
2 + B33I

2
3 + B44I

2
4 +

2B12I1I2 + 2B13I1I3 + 2B14I1I4 + (7)
2B23I2I3 + 2B24I2I4 + 2B34I3I4 .

This equation has only ten unknowns, which follows from the fact that the matrix
B is symmetric, and we can list one equation per pixel.

The ten unknowns of B can be determined even when the lighting conditions
L is unknown and even when there is no object point where the albedo ρ and
surface normal N are given. All that is required is having sufficient measured
intensity quadruples. A standard linear least-squares method can be used to
estimate these ten unknowns. This least-squares estimation should be robust
since the number of image pixels are usually large and each measured intensity
quadruple contributes useful information. However, because this linear system
is homogeneous, B can only be solved up to an unknown scale. This ambiguity
comes from (4). For any scalar s > 0,

I = (
ρ

s
)(sL)H, (8)

which means that we cannot distinguish between brighter surfaces lit by a dim-
mer illumination or darker surfaces lit by a brighter illumination. In the remain-
der of this paper, we will therefore ignore this scale ambiguity.

Thus, empirical measurements determine the matrix B. The constraint that
B imposes on the lighting condition L can be interpreted when expressed in
terms of B−1:

B−1 = (L−T JL−1)−1 = LJLT , (9)
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where J−1 = J . Because B−1 is also symmetric, B−1 can be factorized as follows
by Symmetric Schur Decomposition:

B−1 = QJΛQT , (10)

where Q contains the orthogonal eigenvectors and Λ = diag{|λ1|, λ2, λ3, λ4} is
the eigenvalue matrix. Without lost of generality, we order Λ and Q so that the
negative eigenvalue λ1 is the first, and we move the negative sign into J to ensure
that every element of Λ is positive. Then we can decide that L =

√
ΛQ. If there

is only one positive eigenvalue we reverse the sign of B−1.
When there is significant noise, or when the assumptions do not strictly hold

(Lambertian surfaces, distant light source, etc.), the eigenvalues of B may not
have the proper signs. In that case we resort to an iterative optimization to find
L that minimizes the Frobenous norm ||B−1 − LJLT ||.

At this point we have recovered a valid L. However, there is still an unsolved
ambiguity. For any matrix C that satisfies CJCT = J , B−1 = (LC)J(LC)T =
LJLT . This set of transformations forms the Lorentz group [19]. Because the
symmetric quadratic form CJCT = J gives ten quadratic equations in the 16
unknown components of C, a Lorentz transformation has six degrees of freedom.
We can resolve this ambiguity, for example, if we know the surface normals and
albedos of two points, or we can remove this ambiguity by enforcing surface
integrability as in [9].

In sum, the lighting condition can be estimated using the first-order approx-
imation of spherical harmonics, regardless of the albedo and surface normal.
Although not very accurate, this first-order approximation suffices for good ini-
tial lighting conditions. It helps us reconstruct shape and reflectance properties
of the target object and can be refined afterwards.

4 Shape and Reflectance Reconstruction

In the previous section we show how to estimate the initial lighting conditions
without knowing the albedos and surface normals of the target object. With
this initial estimation L4×4, we can easily recover the albedo ρ and surface
normal N by (5). However, the results could not be accurate enough because
only first-order spherical harmonics are used. In this section, we apply the es-
timated lighting conditions and surface normals from the first-order approxi-
mation as initial, and iteratively refine lighting conditions, albedos, and surface
normals by incorporating second-order spherical harmonics into an optimization
process.

4.1 Refine Lighting Estimation

When the surface normals are reconstructed to some extent, they can really help
the re-estimation of lighting conditions even if they are not very accurate. In the
following, we show how to refine the lighting conditions with the second-order
spherical harmonics when surface normals are available.
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Given a surface normal N and two image intensities Is and It, its albedo can
be estimated using Equation 3 as:

ρs =
Is

LsH9×1
or as ρt =

It

LtH9×1
, (11)

where Ls and Lt are the sth and tth rows of L4×9, respectively. By expanding
ρs = ρt, we obtain: [−Is It

]
1×2

[
Lt

Ls

]
2×9

H9×1 = 0, (12)

where H9×1 can be derived analytically given surface normal N , and Is, It are
the observed intensities in two input images. This forms a linear equation where
only the lighting conditions Ls and Lt are unknown. Four observed intensities in
the four input images yield three independent equations for every pixel. With P
pixels, we have 3P equations to solve the 36 unknown coefficients of L4×9. Since
usually 3P � 36, we can solve L4×9 effectively using least-squares methods with
the help of known surface normals.

4.2 Refine Reflectance

Once we have a better estimation of the lighting conditions, we can improve the
albedo estimation with known surface normals. This can be easily done with the
following equation:

ρL4×9H9×1 = ρ


L1H
L2H
L3H
L4H

 =


I1
I2
I3
I4

 . (13)

The optimal albedo which has the least square error can be derived as:

ρ =
4∑

i=1

(LiHIi)/
4∑

s=1

(LiH)2 . (14)

4.3 Refine Surface Normals

With refined lighting conditions and albedos, we can further improve the esti-
mation of surface normals. For each pixel, we seek to find the best unit surface
normal N that minimizes the following energy function:

E(N) = ||ρL4×9H9×1 − I||2 =
4∑

i=1

(ρLiH9×1 − Ii)2 . (15)

Instead of using conventional convex minimization over the continuous sur-
face normal field and enforcing unity constraint explicitly on N , we adopt dis-
crete optimization over a fixed number of available unit normals. We seek an
optimal labeling which minimizes (15)

v∗ = argmin
v

E(N̂v), (16)
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where {N̂v|v = 1, 2, . . . V } is the set of available unit directions. Then the surface
normal N is refined as N̂v∗ . To produce uniform sampling of normal directions,
we start with an icosahedron, and perform subdivision on each face 5 times
recursively [20]. Totally, 10168 points are uniformly sampled on the unit sphere.

One problem of the above estimation is that the surface normals are refined
one by one independently. The generated normal field is not guaranteed to be
consistent with a 3D surface, thus we enforce integrability by solving a Poisson
equation to obtain a least-squares surface reconstruction, and subsequently the
normals are recomputed by differentiate this surface. To compute a 3D surface
from the estimated surface orientations, given the normal field N(x, y), we solve
the height field z(x, y) that minimizes

Ψ(z) =
∑
x,y

(
δz(x, y)

δx
+

Nx(x, y)
Nz(x, y)

)2

+
(

δz(x, y)
δy

+
Ny(x, y)
Nz(x, y)

)2

. (17)

This amounts to integrating the normal field. The minimization gives rise to
a large but sparse system of linear equations. The normals are then recom-
puted from this surface approximation. This step can be viewed as projecting
the possibly non-integrable normal field into the subspace of feasible normal
fields.

4.4 Iterative Algorithm

We couple our lighting, albedo, and shape estimation techniques described above
into an iterative process, where improved shape estimation leads to improved
lighting and albedo estimation and vice versa.

Initialization. Get an initial estimation of lighting condition L4×4 as described
in Section 2, then recover the surface normal N by (5).

Step 1. Refine lighting conditions L4×9 with the help of the estimated surface
normal N by solving (12).

Step 2. Refine albedos with currently estimated surface normals and lighting
conditions according to (14).

Step 3. Search the optimal surface normal for each pixel by (16). Integrate
the normal field to get an approximated surface according to (17) and then
recompute the surface normals again.

Termination. Step 1-3 are iterated until the estimated components no longer
change or the specified maximum iteration number is reached.

Each step in our iterative algorithm is guaranteed to monotonically decrease
the reconstruction error |ρLH − I| between reconstructed images and input im-
ages, except the enforcement of integrability. However, this integration step only
makes little changes to the surface in our experience and the reconstruction er-
ror does not change much after a few iterations. Therefore, our optimization
algorithm is likely to find a solution near a local optimum.
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5 Experiments

We now present experiments to evaluate our method. Because we use the second-
order approximation of spherical harmonics, certain built-in errors persist even
in the ideal case. So we first describe experiments on synthetic data to verify
some basic properties of our method.

We generate four images of a diffuse unit sphere with uniform albedo under
four different lighting conditions. We then use our method to recover the surface
normals of this sphere. Since we have ground truth, we can resolve the Lorentz
ambiguity by some known surface normals. Figure 1 shows the four input images
of this unit sphere. The recovered surface normals are shown in Figure 2, where
positive values are shown in green, and negative values are shown in red. The
mean error between the recovered and real surface normals is 0.12 degrees. This
experiment tells us that our method will produce good results in ideal situation,
that is, in the absence of sensing error, cast shadow, specularity and any other
source of noise.

We have also run our method on real images from Yale Face Database B [21].
To reduce the effect that may be caused by cast shadows, only frontally illumi-
nated images are used. Each image is lit by a single point source; thus we average
pairs of images to simulate complicated lighting conditions. This time we enforce
the integrability constraint to resolve the Lorentz ambiguity. Figure 3(a) shows
the four input images. The recovered albedos and surface normals are shown in
Figure 4. Note that there are some cast shadows, noises, unreliable pixels that
have been saturated in the four input images. But the results of our method
are still quite satisfactory. Noticeable artifacts occur in the eyes which exhibit
highly specular reflection, in the side of the nose where there are cast shadows
that we do not model, as well as in the outline of eyebrow because of alignment
error since this target object is not really static.

Fig. 1. Four input images of an unit sphere

Fig. 2. Recovered surface normals of the unit sphere. Positive values are shown in
green, and negative values are shown in red.
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(a) Input images.

(b) Surface normals rendered under estimated lighting conditions.

(c) Re-rendered images under estimated lighting conditions.

(d) De-lighted images.

Fig. 3. Experiments on real images

Albedo Nx Ny Nz

Fig. 4. Recovered albedo and surface normals. Positive values are shown in green, and
negative values are shown in red.
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Fig. 5. Re-rendered images under novel lighting and viewpoints

Figure 3(b) shows the recovered surface normals rendered with uniform albe-
dos under the estimated lighting condition of each input image. The re-rendered
images with the estimated albedos reproduce the four input images quite well, as
shown in Figure 3(c). The de-lighted images shown in Figure 3(d) exhibit much
less structure than original ones, because shading effects that are accounted for
changes in shape have been greatly attenuated. We also render novel views under
different lighting conditions and viewpoints, as shown in Figure 5. These novels
views are quite realistic, which indicates the usefulness of our method for many
applications, such as recognition under novel lighting conditions and viewpoints.

6 Conclusions and Future Work

In this paper, we proposed a method that handles the 4-source photometric
stereo problem under general unknown lighting conditions. We showed that the
lighting conditions can be estimated regardless of the albedos and object shape
when first-order approximation of spherical harmonics is adopted. Then we used
this initial estimation in an iterative process, where second-order spherical har-
monics were incorporated. During the optimization process, improved shape es-
timation leads to improved lighting and albedo estimation and vice versa. The
effects of attached shadows are considered, which benefits from the spherical
harmonic representation. The experimental results showed that our method can
derive quite satisfactory results even when only four input images are used. Fu-
ture work will be focused on introducing specularity models, prediction of cast
shadows, and utilization of color information.
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Abstract. We address the problem of segmenting an image sequence into rigidly
moving 3D objects. An elegant solution to this problem is the multibody factor-
ization approach in which the measurement matrix is factored into lower rank
matrices. Despite progress in factorization algorithms, the performance is still
far from satisfactory and in scenes with missing data and noise, most existing
algorithms fail.

In this paper we propose a method for incorporating 2D non-motion cues
(such as spatial coherence) into multibody factorization. We formulate the prob-
lem in terms of constrained factor analysis and use the EM algorithm to find the
segmentation. We show that adding these cues improves performance in real and
synthetic sequences.

1 Introduction

The task of segmenting an image or an image sequence into objects is a basic step
towards the understanding of image contents. Despite vast research in this area, perfor-
mance of automatic systems still falls far behind human perception.

Motion segmentation provides a powerful cue for separating scenes consisting of
multiple independently moving objects. Multibody factorization algorithms [1, 2, 3, 4, 5]
provide an elegant framework for segmentation based on the 3D motion of the object.
These methods get as input a matrix that contains the location of a number of points in
many frames, and use algebraic factorization techniques to calculate the segmentation
of the points into objects, as well as the 3D structure and motion of each object. A major
advantage of these approaches is that they explicitly use the full temporal trajectory of
every point, and therefore they are capable of segmenting objects whose motions cannot
be distinguished using only two frames [4].

Despite recent progress in multibody factorization algorithms, their performance is
still far from satisfactory. In many sequences, for which the correct segmentation is
easily apparent from a single frame, current algorithms often fail to reach it.

Given the power of single frame cues and the poor performance of 3D motion seg-
mentation algorithms, it seems natural to search for a common framework that could
incorporate both cues. In this paper we provide such a framework. We use a latent
variable approach to 3D motion segmentation and show how to modify the M step in
an EM algorithm to take advantage of 2D affinities. We show that these cues improve
performance in real and synthetic image sequences.
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1.1 Previous Work

The factorization approach to 3D segmentation has been suggested by Costeira and
Kanade [1] who suggested to search for a block structure in the 3D structure matrix by
computing a P × P affinity matrix Q from the SVD of the measurements matrix. It
can be shown that in the absence of noise, Q(i, j) = 0 for points belonging to differ-
ent segments. In noisy situations the inter block elements Q(i, j) are not zero, and in
general they cannot be separated from the intra block elements by thresholding. Sorting
the matrix Q to find the segments is an NP-complete problem. Instead, Costeira and
Kanade, suggested a greedy suboptimal clustering heuristic which turns out to be very
sensitive to noise. In addition, the rank of the noise free measurements matrix should be
found from the noisy measurements matrix as an initial step. This is a difficult problem
which is discussed extensively in [2].

Gear [2] suggested a similar method that use the reduced row echelon form of the
measurements matrix as an affinity matrix. Again, in noisy situations the algorithm does
not guarantee correct segmentation. Some assumptions regarding the rank of the mo-
tion matrix are needed. Zelnik et al. [3] incorporate directional uncertainty by applying
Gear’s method on a matrix defined by measurable image quantities (spatial and tempo-
ral derivatives). Kanatani [6] proposed an algorithm that takes advantage of the affine
subspace constraint. Recent works by [5, 4] have addressed the problem of motion seg-
mentation with missing data. Both methods do not make any assumptions nor require
prior information regarding the rank of the motion matrix. In addition [4] handles corre-
lated non-uniform noise in the measurements and utilizes probabilistic prior knowledge
on camera motion and scene structure.

Several authors have addressed the related, but different problem of 3D rigid body
segmentation based on two frames or instantaneous motion [7, 8, 9, 10]. While these
methods show encouraging results, they lack the attractive property of factorization
methods in which information from the full temporal sequence is used simultaneously.

A different approach for image segmentation is to use single image cues such as
color, intensity, texture and spatial proximity. A common approach is to present seg-
mentation problems as problems of partitioning a weighted graph where the nodes
of the graph represent pixels and the weights represent similarity or dissimilarity be-
tween them. Then some cost function of the partition should be minimized to find
the desired segmentation. In many cases this optimization problem is NP-complete.
Shi and Malik [11] introduced the Normalized Cut criterion and suggested an approx-
imation algorithm based on the spectral properties of a weighted graph describing the
affinities between pixels. Shi and Malik extend their work to 2D motion segmenta-
tion [12].

Single image cues have been used to improve the performance of various segmen-
tation algorithms. An EM framework for incorporating spatial coherence and 2D image
motion was presented in [13]. Kolmogorov and Zabih [14] have discussed incorporat-
ing spatial coherence into various segmentation algorithms. In this work we show how
to incorporate spatial coherence (as well as other 2D non-motion cues) into 3D motion
segmentation, as an extension of [15, 4].
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1.2 Main Contribution of This Work

In this paper we present a unified framework for segmentation using information emerg-
ing from a diversity of cues. While previous segmentation methods can utilize either 3D
motion information or 2D affinities but not both, we combine both sources of informa-
tion.

We follow the constrained factorization approach for motion segmentation [4] based
on the factorization formulation introduced by Costeira-Kanade [1]. We use 2D affini-
ties to place priors on the desired semgnetation similar to [11] and show how the priors
on the segmentation induce priors directly on the desired matrix factors. Then con-
strained factorization with priors is performed using the EM algorithm.

In contrast, previous approaches ([1, 2, 3, 5]) are based on algorithms (svd, reduced
row echelon form, powerfactorization) which do not provide any apparent way to use
priors on the segmentation.

Using the constrained factorization approach, we avoid the combinatorial search
required by previous factorization approaches (e.g. [1, 2, 3]) in noisy scenarios. In our
approach it is guaranteed to find a factorization where the interaction between points
that belong to different motions is strictly 0 even in the presence of noise. In addition,
with this formulation it is easy to deal with missing data and directional uncertainty
(correlated non-uniform noise in the coordinates of tracked points such as the aperture
problem). Another benefit of our formulation is that no assumptions are made regard-
ing the rank of the motion matrix M (all affine motions are dealt with), and no prior
knowledge about it is needed, unlike most previous methods for 3D motion segmen-
tation that require some knowledge or assumptions regarding the rank of the motion
matrix M (see [2] for discussion).

The EM algorithm is guaranteed to find a local maximum of the likelihood of S. Our
experiments show that the additional information in the form of 2D affinities reduces
the dependency in the initialization of the algorithm. Compared to the previous motion-
only EM algorithm [4], the number of initializations required for success has diminished
(details are given in the experiments section).

2 Model

2.1 3D Motion Segmentation – Problem Formulation

A set of P feature points in F images are tracked along an image sequence. Let (ufp,
vfp) denote image coordinates of feature point p in frame f . Let U = (ufp), V = (vfp)
and W = (wij) where w2i−1,j = uij and w2i,j = vij for 1 ≤ i ≤ F , i.e. W is
an interleaving of the rows of U and V . Let K be the number of different motion
components in the sequence. Let {Gk}Kk=1 be a partition of the tracked feature points
into K disjoint sets, each consists of all the points that conform to the kth motion, and
let Pk be the number of feature points in Gk (

∑
Pk = P ). Let M j

i be a 2 × 4 matrix
describing the jth camera parameters at time i, and let Sj be a 4×Pj matrix describing
the 3D homogeneous coordinates of the Pj points in Gj moving according to the jth
motion component.
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mj
i and nj

i are 3 × 1 vectors that describe the rotation of the jth camera; dj
i and ej

i are
scalars describing camera translation1, and Sj describes points location in 3D. Let W̃
be a matrix of observations ordered according to the grouping {Gk}Kk=1, i.e. the first P1

columns of W̃ correspond to the points in G1 and so on. Under affine projection, and
in the absence of noise, Costeira and Kanade [1] formulated this problem in the form:[

W̃
]
2F×P

= [M ]2F×4K

[
S̃
]
4K×P

(2)

where

M =

M1
1 · · · MK

1
...

M1
F · · · MK

F


2F×4K

and S̃ =


S1 0 · · · 0
0 S2 · · · 0
...
0 0 · · · SK


4K×P

(3)

If the segmentation {Gk}Kk=1 were known, then we could have separated the point
tracks (columns of the observations matrix) into K disjoint submatrices according to
{Gk}, and run a single structure from motion algorithm (for example [16]) on each
submatrix. In real sequences, where segmentation is unknown, the observation matrix,
W , is a column permutation of the ordered matrix W̃ :

W = W̃Π = MS ⇒ S = S̃Π (4)

where S is a 4K × P matrix describing scene structure (with unordered columns) and
ΠP×P is a column permutation matrix. Hence, the structure matrix S is in general not
block diagonal, but rather a column permutation of a block diagonal matrix. The motion
matrix, M , remains unchanged.

For noisy observations, the model is:

[W ]2F×P = [M ]2F×4K [S]4K×P + [η]2F×P (5)

where η is Gaussian noise. We seek a factorization of W to M and S under the con-
straint that S is a permuted block diagonal matrix S̃, that minimizes the weighted
squared error

∑
t[(Wt−MtS)T Ψ−1

t (Wt−MtS)], where Ψ−1
t is the inverse covariance

matrix of the 2D tracked feature points in frame t.
Let π be a labeling of all points, i.e. π = (π1, . . . , πP ), where πp = k stands

for point p is moving according to the kth motion (p ∈ Gk). Let sp denote the 3D

1 We do not subtract the mean of each row from it, since in case of missing data the centroid of
points visible in a certain frame does not coincide with the centroid of all points.
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coordinates of point p, and let Ŝ denote [s1, . . . , sP ] the 3D coordinates of all points
(S contains both segmentation and geometry information, Ŝ contains only geometry
information). Taking the negative log of the complete likelihood (which will be needed
for the EM algorithm presented in section 3), the energy function due to 3D motion is:

E3D-Motion(Ŝ, π, M) =
∑

p

E3D-Motion(sp, πp, M) = (6)

∑
p

∑
t

((Wt,p −M
πp

t sp)T Ψ−1
t,p (Wt,p −M

πp

t sp))

Notice that if the motion M is given, E3D-Motion(Ŝ, π, M) is a sum of functions of
variables related to a single point independent of the others.

2.2 2D Affinities

We define affinity between pixels along a sequence similar to [11]. Shi et al. [11] define
similarity weights in an image as the product of a feature similarity term and a spatial
proximity term:

wi,j = e

−‖F(i)−F (j)‖2
2

σ2
I ·

 e

−‖X(i)−X(j)‖2
2

σ2
X if ‖X(i)−X(j)‖22 < r

0 otherwise
(7)

where X(i) is the 2D coordinates of point i in the image and F is the vector of features
used for segmentation. For example, if segmentation is performed according to spatial
proximity, F (i) = 1 for all points.

The weights wij were defined in [11] for a single image. We adapt them to a se-
quence of images:

1. In order to use the information from all given frames rather than only one, we sum

the energy terms −‖Xt(i)−Xt(j)‖2
2

σ2
X

, −‖Ft(i)−Ft(j)‖2
2

σ2
I

, over the entire sequence. In
the summation, if one of the points is unobserved at a certain frame, this frame is
omitted.

2. Since point locations along the sequence are the output of a tracking algorithm,
they are given up to some uncertainty. We give weights to these locations according
to R−1

t (i, j), the inverse covariance matrix of (Xt(i) − Xt(j)) in frame t (it can
be shown that the posterior inverse covariance matrix of a 2D point location is[ ∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

]
. see [15, 4, 17]), thereby replacing ‖Xt(i) − Xt(j)‖22 with

(Xt(i)− Xt(j))T R−1
t (i, j)(Xt(i)−Xt(j)). For frames where either point i or j

is missing, R−1
t (i, j) = 0. In other words, frame t is omitted from the summation.

The energy of an assignment due to spatial coherence is then:

E2D-coherence(π) =
∑
p,q

wp,q · (1 − δ(πp − πq)) (8)

Notice that E2D-coherence(π) is a sum of functions of two variables at a time.
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3 An EM Algorithm for Multibody Factorization

Our goal is to find the best segmentation and 3D structure. We are looking for

Ŝ, π = argmax
Ŝ,π

Pr(Ŝ, π|W ) = argmax
Ŝ,π

< Pr(Ŝ, π|M, W ) >M (9)

Maximizing the likelihood of W given Ŝ, π, M is equivalent to minimizing the
energy E(Ŝ, π, M), i.e. the negative log of the likelihood function. This energy consists
of two terms: a term of 3D motion information and a term of 2D coherence. These are
the terms E3D-Motion(sp, πp, M) and E2D-coherence(π) introduced before.

E(Ŝ, π, M) = E3D-Motion(Ŝ, π, M) + λE2D-coherence(π) (10)

In order to find the optimal Ŝ and π, we minimize the energy with respect to Ŝ and
π while averaging over M using the EM algorithm. The EM algorithm works with the
expected complete log likelihood which is the expectation of the energy (taken with
respect to the motion, M ).

E(Ŝ, π) =< E(Ŝ, π, M) >M= (11)

< E3D-Motion(Ŝ, π, M) + λE2D-coherence(π) >M=

< E3D-Motion(Ŝ, π, M) >M +λE2D-coherence(π)

In the E step, sufficient statistics of the motion distribution are computed, such that
< E(Ŝ, π, M) >M can be computed for every Ŝ, π. In the M-step, < E(Ŝ, π, M) >M

is minimized with respect to Ŝ and π.

3.1 Optimization with Respect to π

In this section, we focus on the optimization of < E(Ŝ, π, M) >M with respect to π
which is a part of the M-step. The missing details regarding the E step and optimization
with respect to Ŝ in the M step are given in the next subsection.

The motion energy term (averaged over M ) can be written as a sum of functions,
Dp, each of which is a function of variables (sp, πp) related to a single pixel:

< E3D-Motion(Ŝ, π, M) >M=
∑

p

< E3D-Motion(sp, πp, M) >M= (12)

∑
p

Dp(sp, πp)

The 2D coherence energy function is a sum of terms of pairwise energy Vp,q(πp, πq)
for each pair of pixels p, q:

E2D-coherence(π) =
∑
p,q

E2D-coherence(πp, πq) = (13)

∑
p,q

Vp,q(πp, πq)
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Therefore < E(Ŝ, π, M) >M can be represented as a sum of terms Dp involving a
single point and terms Vp,q involving pairs of points.

< E(Ŝ, π, M) >M=
∑

p

Dp(sp, πp) +
∑
p,q

Vp,q(πp, πq) (14)

With this representation, if sp is known for all p, then πp can be found for all p by
solving a standard energy minimization problem in a Potts model. In the binary case
(i.e. K = 2), the optimal minimum of the energy function can be found efficiently
using graph cuts [18]. If there are more than two objects, an approximation can be
found using either graph cuts [18] or loopy belief propagation [19].

Since sp is not known, we define

Dp(πp) = min
sp

Dp(sp, πp) (15)

and then

min
Ŝ,π

< E(Ŝ, π, M) >M= (16)

min
π

[∑
p

min
sp

Dp(sp, πp) +
∑
p,q

Vp,q(πp, πq)

]
=

min
π

[∑
p

Dp(πp) +
∑
p,q

Vp,q(πp, πq)

]
In the next section we show how Dp(πp) is computed for each possible value of πp.

The pairwise terms, Vp,q(πp, πq) are computed directly from the images. Given Dp(πp),
Vp,q(πp, πq) for all possible values of πp, πq , then one of the standard minimization
algorithms for Potts model can be applied to find the optimal π.

3.2 Complete Description of the EM Algorithm

In the E-step, sufficient statistics of < E(Ŝ, π) >M are computed. Recall that only the
3D motion energy term of < E(Ŝ, π) >M depends on M , therefore only calculation
of the expectation < E3D-Motion(sp, πp, Mp) >M is required (E2D-coherence(π) is
constant with respect to M ). We compute these sufficient statistics by representing the
factorization problem of equation 5 as a problem of factor analysis [15, 4].

In standard factor analysis we have a set of observations {y(t)} that are linear com-
binations of a latent variable x(t):

y(t) = Ax(t) + η(t) (17)

with x(t) ∼ N(0, σ2
xI) and η(t) ∼ N(0, Ψt). We now show how to rewrite the multi-

body factorization problem in this form.
In equation 5 the horizontal and vertical coordinates of the same point appear in

different rows. To get an equation with all the measurements taken from the same frame
in the same line of the measurements matrix, It can be rewritten as:

[U V ]F×2P = [MU MV ]F×8K

[
S 0
0 S

]
8K×2P

+ [η]F×2P (18)
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where MU is the submatrix of M consisting of rows corresponding to U (odd rows),
and MV is the submatrix of M consisting of rows corresponding to V (even rows).

Let A =
[

ST 0
0 ST

]
. Identifying y(t) with the tth row of the matrix [U V ] and

x(t) with the tth row of [MU MV ], then equation 18 is equivalent (transposed) to equa-
tion 17. For diagonal covariance matrices Ψt (the case where Ψt is not diagonal is dis-
cussed in [15, 4]) the standard algorithm [20] gives:

E step:

E(x(t)|y(t)) =
(
σ−2

x I + AT Ψ−1
t A

)−1
AT Ψ−1

t y(t) (19)

V (x(t)|y(t)) =
(
σ−2

x I + AT Ψ−1
t A

)−1
(20)

< x(t) > = E(x(t)|y(t)) (21)

< x(t)x(t)T > = V (x(t)|y(t))+ < x(t) >< x(t) >T (22)

Although in our setting the matrix A must satisfy certain constraints, the E-step (in
which the matrix A is assumed to be given from the M-step) remains the same as in
standard factor analysis. In [15], priors regarding the motion are incorporated into the
E-step.

M step:
In the M-step, < E(Ŝ, π) >M is minimized with respect to Ŝ and π. Section 3

describes how π is found provided that Dp(k) is known. Here we describe how to
compute Dp(k) for all p and k before the algorithm from section 3 can be applied. We
also describe how the optimal Ŝ is found.

Denote by sk
p a vector of length 3 that contains the optimal 3D coordinates of point

p assuming it belongs to motion model k. In other words,

sk
p

∆= argmin
sp

Dp(sp, k) (23)

For a diagonal noise covariance matrix Ψt (for a non-diagonal Ψt see [15, 4]), by taking
the derivative of < E(Ŝ, π) >M , we get:

sk
p = BpkC−1

pk (24)

where

Bpk =
∑

t

[
Ψ−1

t (p, p)(utp− < dk
t >) < mk(t)T > (25)

+ Ψ−1
t (p + P, p + P )(vtp− < ek

t >) < nk(t) >T
]

Cpk =
∑

t

[
Ψ−1

t (p, p) < mk(t)mk(t)T >

+ Ψ−1
t (p + P, p + P ) < nk(t)nk(t)T >

]
The expectations required in the M step are the appropriate subvectors and submatrices
of < x(t) > and < x(t)x(t)T > (recall equation 1 and the definition of x(t)). Notice
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that sk
p depends only on the motion distribution, the observations of point p and k. It is

independent on the other points and their assignments, given the motion distribution.
Dp(k) is therefore

Dp(k) = min
sp

Dp(sp, k) = Dp(sk
p, k) = (26)

<
∑

t

(Wt,p −Mk
t sk

p)T Ψ−1
t,p (Wt,p −Mk

t sk
p) >M=∑

t

< (Wt,p −Mk
t sk

p)T Ψ−1
t,p (Wt,p −Mk

t sk
p) >M=∑

t

[
WT

t,pΨ
−1
t,p Wt,p − 2 < xt,k >T aT

p,kΨ−1
t,p Wt,p+

trace(aT
p,kΨ−1

t,p ap,k < xt,kxT
t,k >)

]
where ap,k is a 2 × 8 matrix ap,k =

[
(sk

p)T 0
0 (sk

p)T

]
, xt,k is the subvector of x(t)

corresponding to the k-th motion (entries 4(k − 1) + 1, . . . , 4k and 4K + 4(k − 1) +
1, . . . , 4K + 4k) and the required expectations < xt,k >M and < xt,kxT

t,k >M were
computed in the E-step.

Now that Dp(k) is known for all p for every k, π is found as described in section 3.
After finding π, then sp = s

πp
p . An outline of the algorithm is given in Algorithm 1.

Algorithm 1. An outline of the EM algorithm for segmentation
Iterate until convergence:

1. E-step:
(a) for t = 1, . . . , T ,

– Compute < x(t) >, < x(t)x(t)T > using equations 19 - 22.
2. M-step:

(a) for p = 1, . . . , P ,
– for k = 1, . . . , K,

i. Compute sk
p using equation 24.

ii. Compute Dp(k) using equation 26.
(b) find π using a standard energy minimization algorithm (for example, graph cuts or BP).
(c) for p = 1, . . . , P ,

– assign sp = s
πp
p

(d) Update A

The proposed segmentation algorithm can handle correlated non-uniform noise and
can be applied even when there is missing data (these are just points for which Ψ−1

t (i, i)
= 0). See [15, 4] for further details. Even in the presence of noise and missing data, it
is guaranteed to find a factorization where the structure matrix has at most 4 nonzero
elements per column, resulting in increased robustness.
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4 Experiments

In this section we test our algorithm and compare it to previous algorithms on synthetic
and real sequences.

EM guarantees convergence to a local maximum which is dependent on the ini-
tialization. In these experiments, we start with several (random) initializations for each
input, and choose the output that achieves maximal likelihood to be the final result.
Empirical results show that for (synthetic) noise free scenes, the global maximum is
usually found with a single initialization. As the amount of noise increases, the number
of initializations needed for success also increases. For the experiments reported here,
the maximal number of initializations is 10 (for both EM versions).

The global minimum of equation 16 was found using graph cuts in the experiments
with two objects. Loopy belief propagation was used for minimization in experiments
with more than two objects.

4.1 Experiments with Synthetic Data

We begin with a series of synthetic examples that demonstrate our approach vs. previous
approaches of: 2 [1, 11, 4] and normalized cut with affinities that are a linear combina-
tion of 2D affinities and the Costeira-Kanade motion interaction matrix (referred as
NCut Motion+2D in table 1). The following scenarios are tested (see figure 1):

1. A scene containing two objects with different 3D motions that are located far away
from each other,

2. A scene with two coaxial objects (and thus cannot be separated spatially) rotating
with different angular velocities,

3. And a scene containing two objects that are close to each other and have similar
(yet different) motions.

We test each of these scenes in the presence and absence of mild amount of noise
(σ = 0.5) and significant amount of noise (σ = 10, that was selected to show the
difference in the performance of the two versions of EM).

In the first scenario, both 3D motion and spatial proximity provide a good sepa-
ration between the objects. All algorithms have shown perfect results when there was
no noise, as expected. Once mild amount of noise was added, the performance of CK
(Costeira-Kanade, [1]) deteriorated while the segmentation results of the 3 other algo-
rithms remained unchanged.

In the second scenario, the objects cannot be separated spatially in each individual
image, but in the overall sequence some spatial information exists as the objects have
different angular velocities. Despite of the existence of some spatial information, both
versions of Normalized Cut failed to segment the objects in both the clean and noisy
scenes. The other 3 algorithms have separated the objects perfectly in the noise free
scenario due to their different motions (which were chosen to create a full rank motion
matrix, M ). Once mild amount of noise was added, again CK failed while the results of

2 For the experiments with Normalized Cut we used the code available at http://www.seas.
upenn.edu/∼timothee/software ncut/software.html
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Spatially Separated Coaxial Objects Near By Objects

−20020406080100120140
−20

0

20

40

60

80

100

120

140

−15−10−505101520253035
−15

−10

−5

0

5

10

15

20

25

30

35

−30−25−20−15−10−505101520
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Fig. 1. Three scenarios we use to demonstrate the power of combining 3D motion information
and 2D affinities. We compare the EM algorithm proposed in this paper with [1],[11] and [4] on
clean and noisy (σ = 0.5 and σ = 10) input for scenes where (a) objects are spatially separable
(and have different motions), (b) motion is the only cue for separation and (c) information from
both sources is available, and in the noisy case required for separation. results are reported in
table 1.

Table 1. Numbers of points that were misclassified by each of the algorithms for scenes from
figure 1. These examples demonstrate the additional power of combining motion and non-motion
information and the robustness of EM.

Scene Properties Costeira- NCut NCut Motion-Only Spatially-
Kanade [1] [11] Motion+2D EM [4] Coherent EM

Clean, Spatially separated 0 0 0 0 0
Noisy (σ = 0.5), Spatially separated 26 0 0 0 0
Noisy (σ = 10), Spatially separated 34 0 0 9 0

Clean, Coaxial 0 22 23 0 0
Noisy (σ = 0.5), Coaxial 14 22 25 1 0
Noisy (σ = 10), Coaxial 46 29 28 33 31

Clean, Near by 0 25 24 0 0
Noisy (σ = 0.5), Near by 8 25 24 3 1
Noisy (σ = 10), Near by 48 35 27 27 1

Can Book Tea Tins 3-Cars

Fig. 2. The first image from the sequences: Can Book, Tea Tins and 3-Cars used for comparing
the proposed EM algorithm and [5]. Results of this comparison are summarized in table 2.

both versions of the EM algorithm did not change. When a significant amount of noise
was added, all algorithms failed because there was not enough information neither in
the 3D motion nor in the spatial proximity.
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Table 2. Misclassification error of segmentation using PowerFactorization and GPCA ([5]) and
the algorithm proposed in this paper (EM) for the inputs from [5]

Sequence Points Frames Motions GPCA [5] EM

Can Book 170 3 2 1.18% 0.00%
Tea Tins 84 3 2 1.19% 0.00%
3-Cars 173 15 3 4.62% 0.00%
Puma 64 16 2 0.00% 0.00%
Castle 56 11 2 0.00% 0.00%

In the last scenario we tested what do we gain from the combination of 2D spatial
coherence information and 3D motion information. Although objects were not coaxial
as in the previous scenario, they were not separated spatially well enough and both
versions of Normalized Cut failed in both the noise free and noisy scenarios. As in
previous cases CK found perfect segmentation when there was no noise, but failed in the
noisy case. In the presence of significant amount of noise, we see that spatially coherent
EM utilizes spatial information if it exists, and outperforms motion-only based EM.

4.2 Experiments with Real Data

We compared our algorithm to GPCA [5] by using 5 sequences that appeared in [5].
These sequences contain degenerate and non-degenerate motions, some contain only 3
frames. In this experiment, the maximal number of initializations of EM was 5, and the
results of GPCA were taken from [5]. The results are presented in table 2: EM shows
perfect results on all these input sequences, even when the number of frames is small
(3) or when the motions matrix, M , is rank deficient.

Next, we checked the performance of spatially coherent EM on the sequence used
in [4] and compared it to the motion based only EM algorithm from [4]. The input
sequence consists of two cans rotating horizontally around parallel different axes in
different angular velocities. 149 feature points were tracked along 20 frames, from
which 93 are from one can, and 56 are from the other. Some of the feature points
were occluded in part of the sequence, due to the rotation. Using motion-only based

(a) (b)

Fig. 3. (a) A sequence of two cans rotating around different parallel axes. Spatial coherent EM
succeeds to find correct segmentation and 3D structure up to 2 segmentation errors, comparing
to 8 of motion-only EM and a failure of other methods. (b) First out of 13 frames taken from
“Matrix Reloaded”. 6 points were misclassified comparing to 14 by motion-only EM.
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EM 8 points were misclassified. With the addition of spatial coherence, only 2 points
were misclassified and the 3D was correctly reconstructed. Figure 3(a) shows the first
frame of the sequence and the tracks superimposed. For comparison, Costeira-Kanade
(using the maximal full submatrix of the measurements matrix) resulted in 30 misclas-
sified points and a failure in 3D structure reconstruction.

Our last input sequence is taken from the film “Matrix Reloaded”. In this experi-
ment 69 points were tracked along 13 frames: 28 on the car rotating in the air and 41
points were tracked on the front car approaching on the left (see figure 3(b)). On each
object, points were selected from to be roughly in the same depth to avoid projective
effects. Spatially coherent EM misclassified 6 points comparing to 14 points that were
misclassified by motion-only EM and 19 points that were misclassified by Ncut.

5 Discussion

In this paper we presented an algorithm for incorporating 2D non-motion affinities into
3D motion segmentation using the EM algorithm. We showed that using a coherence
prior on the segmentation is easily implemented and gives rise to better segmentation
results. In the E step, the mean and covariance of the 3D motions are calculated using
matrix operations, and in the M step the structure and the segmentation are calculated
by performing energy minimization.

With the EM framework, missing data and directional uncertainty are easily han-
dled. Placing meaningful priors and imposing constraints on the desired factorization
greatly increase the robustness of the algorithm.

Future work includes incorporation of other sources of information, for examples
other principles of perceptual organization suggested by the Gestalt psychologists. An-
other direction for future work is to place the spatial coherence prior directly on the 3D
of the points: solving together for structure and segmentation, where the prior on the
segmentation depends directly on the reconstructed 3D structure.
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Abstract. A multi-view multi-hypothesis approach to segmenting and
tracking multiple (possibly occluded) persons on a ground plane is pro-
posed. During tracking, several iterations of segmentation are performed
using information from human appearance models and ground plane ho-
mography. To more precisely locate the ground location of a person, all
center vertical axes of the person across views are mapped to the top-
view plane and their intersection point on the ground is estimated. To
tackle the explosive state space due to multiple targets and views, it-
erative segmentation-searching is incorporated into a particle filtering
framework. By searching for people’s ground point locations from seg-
mentations, a set of a few good particles can be identified, resulting in low
computational cost. In addition, even if all the particles are away from
the true ground point, some of them move towards the true one through
the iterated process as long as they are located nearby. We demonstrate
the performance of the approach on several video sequences.

1 Introduction

Tracking and segmenting people in cluttered or complex situations is a chal-
lenging visual surveillance problem since the high density of objects results
in occlusion. Elgammal and Davis [20] presented a general framework which
uses maximum likelihood estimation and occlusion reasoning to obtain the best
arrangement for people. To handle more people in a crowded scene, Zhao and
Nevatia [9] described a model-based segmentation approach to segment individ-
ual humans in a high-density scene using a Markov chain Monte Carlo method.

When a single camera is not sufficient to detect and track objects due to
limited visibility or occlusion, multiple cameras can be employed. There are a
number of papers which address detection and tracking using overlapping or
non-overlapping multiple views, for example, [6, 7, 19]. M2Tracker [19], which
is similar to our work, used a region-based stereo algorithm to find 3D points
inside an object, and Bayesian pixel classification with occlusion analysis to
segment people occluded in different levels of crowd density. Unlike M2Tracker’s
requirement of having calibrated stereo pairs of cameras, we do not require strong
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calibration, but only a ground plane homography. For outdoor cameras, it is
practically very challenging to accurately calibrate them, so 3D points at a large
distance from a camera are difficult to measure accurately.

Our goal is to ‘segment’ and ‘track’ people on a ground plane viewed from
multiple overlapping views. To make tracking robust, multiple hypothesis track-
ers, such as particle filter [12], are widely used [17, 16]. However, as the numbers
of targets and views increase, the state space of combination of targets’ states in-
creases exponentially. Additionally, the observation processes for visual tracking
are typically computationally expensive. Previous research has tried to solve this
state space explosion issue as in [13, 1, 14, 8, 15]. We also designed our tracker to
solve this issue. Each hypothesis is refined by iterative mean-shift-like multi-view
segmentation to maintain mostly “good” samples, resulting in lower computa-
tional cost.

This paper is organized as follows. Sec.2 presents a human appearance model.
A framework for segmenting and tracking occluded people moving on a ground
plane is presented in Sec.3. In Sec.4, the multi-view tracker is extended to a multi-
hypothesis framework using particle filtering. We demonstrate the experimental
results of the proposed approach on video sequences in Sec.5. Conclusion and
discussion are given in the final section.

2 Human Appearance Model

First, we describe an appearance color model as a function of height that assumes
that people are standing upright and are dressed, generally, so that consistently
colored or textured color regions are aligned vertically. Each body part has its
own color model represented by a color distribution. To allow multimodal den-
sities inside each part, we use kernel density estimation.

Let M = {ci}i=1...NM be a set of pixels from a body part with colors ci. Using
Gaussian kernels and an independence assumption between d color channels, the
probability that an input pixel c = {c1, ..., cd} is from the model M is estimated
as

pM (c) =
1

NM

NM∑
i=1

d∏
j=1

1√
2πσj

e
− 1

2
cj−ci,j

σj

2

(1)

In order to handle illumination changes, we use normalized color (r= R
R+G+B ,

g = G
R+G+B , s = R+G+B

3 ) or Hue-Saturation-Value (HSV) color space with a
wider kernel for ‘s’ and ‘V’ to cope with the higher variability of these lightness
variables. We used both the normalized color and HSV spaces in our experiments
and observed similar performances.

Viewpoint-independent models can be obtained by viewing people from dif-
ferent perspectives using multiple cameras. A related calibration issue was ad-
dressed in [2, 5] since each camera output of the same scene point taken at the
same time or different time may vary slightly depending on camera types and
parameters. We used the same type of cameras and observed there is almost no
difference between camera outputs except for different illumination levels (due
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to shadow and orientation effects) depending on the side of person’s body. This
level of variability is accounted for by our color model.

3 Multi-camera Multi-person Segmentation and Tracking

3.1 Foreground Segmentation

Given image sequences from multiple overlapping views including people to
track, we start by performing detection using background subtraction to obtain
the foreground maps in each view. The codebook-based background subtraction
algorithm [18] is used. Its shadow removal capability increases the performance
of segmentation and tracking.

Each foreground pixel in each view is labelled as the best matching person
(i.e., the most likely class) by Bayesian pixel classification as in [19]. The posterior
probability that an observed pixel x (containing both color c and image position
(x, y) information) comes from person k is given by

P (k|x) =
P (k)P (x|k)

P (x)
(2)

We use the color model in Eq.1 for the conditional probability P (x|k). The
color model of the person’s body part to be evaluated is determined by the infor-
mation of x’s position as well as the person’s ground point and full-body height
in the camera view (See Fig.1(a)). The ground point and height are determined
initially by the method defined subsequently in Sec.3.2.

The prior reflects the probability that person k occupies pixel x. Given the
ground point and full-body height of the person, we can measure x’s height from
the ground and its distance to the person’s center vertical axis. The occupancy
probability is then defined by

Ok(hk(x), wk(x)) = P [wk(x) < W (hk(x))] = 1− cdfW (hk(x))(wk(x)) (3)

where hk(x) and wk(x) are the height and width of x relative to the person k.
hk and wk are measured relative to the full height of the person. W (hk(x)) is the
person’s height-dependent width and cdfW (.) is the cumulative density function
for W . If x is located at distance W (hk(x)) from the person’s center at a distance
W , the occupancy probability is designed so that it will be exactly 0.5 (while it
increases or decreases as x move towards or move away from the center).

The prior must also incorporate possible occlusion. Suppose that some person
l has a lower ground point than a person k in some view. Then the probability
that l occludes k depends on their relative positions and l’s (probabilistic) width.
Hence, the prior probability P (k) that a pixel x is the image of person k, based
on this occlusion model, is

P (k) = Ok(hk, wk)
∏

gy(k)<gy(l)

(1−Ol(hl, wl)) (4)
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Fig. 1. (a) Illustration of appearance model, (b) Bounding box detection

where gy(k) is the y-location of the ground point of k and x is omitted for
simplicity (i.e., hk = hk(x) and wk = wk(x)). The best class k∗ is determined
by maximum a posteriori (MAP) estimation: k∗ = argmax

k
P (k)P (x|k). Finally,

the foreground maps are segmented into the best matching persons based on
their appearance models and occlusion information.

3.2 Model Initialization and Update

Full automatic tracking is enabled by initializing the human appearance model
when a person is detected in a view by searching for isolated foreground blobs
(See Fig.1(b)). In order to get a bounding box of a person from the foreground
map, we used the object detection technique in [3]. The bounding boxes in the
figure were created when the blobs are isolated before. For the case when a
person does not constitute an isolated blob, a manual selection is employed.

The full-body height of a person is initialized upon model creation and is
updated during segmentation. In some cases, fixing the average height scaled
by the y-location of the ground point provides a robust height measurement
when the segmentation is unreliable. When the unclassified pixels (those hav-
ing a probability in Eq.1 lower than a given threshold) constitute a connected
component of non-negligible size, a new appearance model should be created.

3.3 Multi-view Integration

Ground Plane Homography. The segmented blobs across views are inte-
grated to obtain the ground plane locations of people. The correspondence of
a human across multiple cameras is established by the geometric constraints of
planar homographies. For NV camera views, NV (NV − 1) homography matrices
can possibly be calculated for correspondence; but in order to reduce the com-
putational complexity we instead reconstruct the top-view of the ground plane
on which the hypotheses of peoples’ locations are generated.

Integration by Vertical Axes. Given the pixel classification results from
Sec.3.1, a ground point of a person could be simply obtained by detecting the
lowest point of the person’s blob. However those ground points are not reliable
due to the errors from background subtraction and segmentation.
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Fig. 2. All vertical axes of a person across views intersect at (or are very close to) a
single point when mapped to the top-view

We, instead, develop a localization algorithm that employs the center vertical
axis of a human body, which can be estimated more robustly even with poor
background subtraction [11]. Ideally, a person’s body pixels are arranged more of
less symmetrically about a person’s central vertical axis. An estimate of this axis
can be obtained by Least Mean Squares of the perpendicular distance between
the body pixel and the axis as in 3© in Fig.2. Alternatively, the Least Median
Squares could be used since it is more robust to outliers.

The homographic images of all the vertical axes of a person across differ-
ent views intersect at (or are very close to) a single point (the location of that
person on the ground) when mapped to the top-view (See [11]). In fact, even
when the ground point of a person from some view is occluded, the top-view
ground point integrated from all the views is obtainable if the vertical axis is
estimated correctly. This intersection point can be calculated by minimizing the
perpendicular distances to the axes. Fig.2 depicts an example of reliable detec-
tion of the ground point from the segmented blobs of a person. The Nv verti-
cal axes are mapped to the top-view and transferred back to each image view.
Let each axis Li be parameterized by two points {(xi,1, yi,1), (xi,2, yi,2)}i=1...NV .
When mapped to the top-view by homography as in 4© in Fig.2, we obtain
{(x̂i,1, ŷi,1), (x̂i,2, ŷi,2)}i=1...NV . The distance of a ground point (x, y) to the axis
is written as d ((x, y), Li) = |aix+biy+ci|√

a2
i +b2i

where ai = ŷi,1 − ŷi,2, bi = x̂i,2 − x̂i,1,

and ci = x̂i,1ŷi,2 − x̂i,2ŷi,1. The solution is the point that minimizes a weighted
sum of square distances:

(x∗, y∗) = arg min
(x,y)

NV∑
i=1

w2
i d2((x, y), Li) (5)

The weight wi is determined by the segmentation quality (confidence level) of
the body blob of Li (We used the pixel classification score in Eq.2).
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If a person is occluded severely by others in a view (i.e., the axis information
is unreliable), the corresponding body axis from that view will not contribute
heavily to the calculation in Eq.5. When only one axis is found reliably, then the
lowest body point along the axis is chosen.

To obtain a better ground point and segmentation result, we can iterate
the segmentation and ground-point integration process until the ground point
converges to a fixed location within a certain bound ε. That is, given a set
of initial ground-point hypotheses of people as in 1© in Fig.2, segmentation in
Sec.3.1 is performed ( 2©), and then newly moved ground points are obtained
based on multi-view integration ( 4© and 5©). These new ground points are an
input to the next iteration. 2-3 iterations gave satisfactory results for our data
sets.

There are several advantages of our approach. Even though a person’s ground
point is invisible or there are segmentation and background subtraction errors,
the robust final ground point is obtainable once at least two vertical axes are
correctly detected. When total occlusion occurs from one view, robust tracking
is possible using the other views’ information if available; visibility of a person
can be maximized if cameras are placed at proper angles. Since the good views
for each tracked person are changing over time, our algorithm maximizes the
effective usage of all available information across views. By iterating the multi-
view integration process, a ground point moves to the optimal position that
explains the segmentation results of all views. This nice property is used, in the
next section, for a small number of hypotheses to explore in a large state space
that incorporates multiple persons and multiple views.

4 Extension to Multi-hypothesis Tracker

Next, we extend our single-hypothesis tracker to one with multiple hypotheses. A
single hypothesis tracker, while computationally efficient, can be easily distracted
by occlusion or nearby similarly colored objects.

As the number of targets and views increase, the state space of combination
of targets’ states increases exponentially. Additionally, the observation processes
for visual tracking are typically very expensive. We would, therefore, choose to
employ techniques that require small numbers of particles.

The iterative segmentation-searching presented in Sec.3 is naturally incor-
porated with a particle filtering framework. There are two advantages - (1) By
searching for a person’s ground point from a segmentation, a set of a few good
particles can be identified, resulting in low computational costs, (2) Even if all
the particles are away from the true ground point, some of them will move to-
wards the true one as long as they are initially located nearby. This does not
happen generally with particle filters, which need to wait until the target “comes
to” the particles.

Our final algorithm of segmentation and tracking is presented with a particle
filter overview and our state space, dynamics, and observation model.
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4.1 Overview of Particle Filter, State Space, and Dynamics

The key idea of particle filtering is to approximate a probability distribution by
a weighted sample set S = {(s(n), π(n))|n = 1...N}. Each sample, s, represents
one hypothetical state of the object, with a corresponding discrete sampling
probability π, where

∑N
n=1 π(n) = 1. Each element of the set is then weighted

in terms of the observations and N samples are drawn with replacement, by
choosing a particular sample with probability π

(n)
t = P (zt|xt = s(n)

t ).
In our particle filtering framework, each sample of the distribution is simply

given as s = (x, y) where x, y specify the ground location of the object in the
top-view. For multi-person tracking, a state st = (s1,t, ..., sNp,t) is defined as a
combination of Np single-person states. Our state transition dynamic model is
a random walk where a new predicted single-person state is acquired by adding
a zero mean Gaussian with a covariance Σ to the previous state. Alternatively,
the velocity ẋ, ẏ or the size variable height and width can be added to the state
space and then a more complex dynamic model can be applied if relevant.

4.2 Observation

Each person is associated with a reference color model q� which is obtained
by histogram techniques [16]. The histograms are produced using a function
b(ci) ∈ {1, ..., Nb} that assigns the color vector ci to its corresponding bin. We
used the color model defined in Sec.2 to construct the histogram of the reference
model in the normalized color or HSV space using Nb (e.g., 10× 10× 5) bins to
make the observation less sensitive to lighting conditions.

The histogram q(C) = {q(u; C)}u=1...Nb
of the color distribution of the sam-

ple set C is given by

q(u; C) = η

NC∑
i=1

δ[b(ci)− u] (6)

where u is the bin index, δ is the Kronecker delta function, and η is a normalizing
constant ensuring

∑Nb

u=1 q(u; C) = 1. This model associates a probability to each
of the Nb color bins.

If we denote q� as the reference color model and q as a candidate color
model, q� is obtained from the stored samples of person k’s appearance model
as mentioned before while q is specified by a particle sk,t = (x, y). The sample
set C in Eq.6 is replaced with the sample set specified by sk,t. The top-view
point (x, y) is transformed to an image ground point for a certain camera view
v, Hv(sk,t), where Hv is a homography mapping the top-view to the view v.
Based on the ground point, a region to be compared with the reference model
is determined. The pixel values inside the region are drawn to construct q.
Note that the region can be constrained from the prior probability in Eq.4,
including the occupancy and occlusion information (i.e., by picking pixels such
that P (k) > Threshold, typically 0.5). In addition, as done in pixel classification,
the color histograms are separately defined for each body part to incorporate the
spatial layout of the color distribution. Therefore, we apply the likelihood as the
sum of the histograms associated with each body part.
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Then, we need to measure the data likelihood between q� and q. The Bhat-
tacharyya similarity coefficient is used to define a distance d on color histograms:

d[q�,q(s)] =
[
1−

Nb∑
u=1

√
q � (u)q(u; s)

] 1
2

. Thus, the likelihood (πv,k,t) of person

k consisting of Nr body parts at view v, the actual view-integrated likelihood
(πk,t) of a person sk,t, and the final weight of the particle (πk,t) of a concatena-
tion of Np person states are respectively given by:

πv,k,t ∝ e
Nr
r=1 −λd2[q�

r ,qr(Hv(sk,t))], πk,t = ΠNV
v=1πv,k,t, πt = Π

Np

k=1πk,t (7)

where λ is a constant which can be experimentally determined.

4.3 The Final Algorithm

The algorithm below combines the particle filtering framework described before
and the iterated segmentation-and-search in Sec.3 into a final multi-view multi-
target multi-hypothesis tracking algorithm. Iteration of segmentation and multi-
view integration moves a predicted particle to an a better position on which all
the segmentation results of the person agree. The transformed particle is re-
sampled for processing of the next frames.

Algorithm for Multi-view Multi-target Multi-hypothesis tracking

I. From the “old” sample set St−1 = {s(n)
t−1, π

(n)
t−1}n=1,...,N at time t − 1,

construct the new samples as follows:
II. Prediction: for n = 1, ..., N , draw s̃(n)

t from the dynamics. Iterate Step
III to IV for each particle s̃(n)

t .
III. Segmentation & Search

s̃t = {s̃k,t}k=1...Np contains all persons’ states. The superscript (n) is
omitted through the Observation step.
i. for v ← 1 to NV do

(a) For each person k, (k = 1...Np), transform the top-view point
s̃k,t into the ground point in view v by homography, Hv (̃sk,t)

(b) perform segmentation on the foreground map in view v with
the occlusion information according to Sec2.

end for
ii. For each person k, obtain the center vertical axes of the person across

views, then integrate them on the top-view to obtain a newly moved
point s̃∗k,t as in Sec3.

iii. For all persons, if ‖s̃k,t − s̃∗k,t‖ < ε, then go to the next step. Otherwise,
set s̃k,t ← s̃∗k,t and go to Step III-i.
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IV. Observation
i. for v ← 1 to NV do

For each person k, estimate the likelihood πv,k,t in view v accord-
ing to Eq.7. s̃k,t needs to be transferred to view v by mapping
through Hv for evaluation. Note that qr(Hv (̃sk,t)) is constructed
only from the non-occluded body region.

end for
ii. For each person k, obtain the person likelihood πk,t by Eq.7.
iii. Set πt ← Π

Np

k=1πk,t as the final weight for the multi-person state s̃t.

V. Selection: Normalize {π(n)
t }i so that

∑N
n=1 π

(n)
t = 1.

For i = n...N , sample index a(n) from discrete probability {π(n)
t }i over

{1...N}, and set s(n)
t ← s̃a(n)

t .
VI. Estimation: the mean top-view position of person k is

∑N
n=1 π

(n)
t s(n)

k,t .

5 Experiments

We now present experimental results obtained on outdoor and indoor multi-view
sequences to illustrate the performance of our algorithm.

The results on the indoor sequences are depicted in Fig.3. The bottom-most
row shows how the persons’ vertical axes are intersecting on the top-view to
obtain their ground points. Small orange box markers are overlaid on the images
of frame 198 for determination of the camera orientations. Note that, in the fig-
ures of ‘vertical axes’, the axis of a severely occluded person does not contribute
to localization of the ground point. When occlusion occurs, the ground points
being tracked are displaced a little from their correct positions but are restored
to the correct positions quickly. Only 5 particles (one particle is a combination
of 4 single-person states) was used for robust tracking. Those indoor cameras
could be easily placed properly in order to maximize the effectiveness of our
multi-view integration and the visibility of the people.

Fig.4(a) depicts the graph of the total distance error of people’s tracked
ground points to the ground truth points. It shows the advantage of multiple
views for tracking of people under severe occlusion.

Fig.4(b) visualizes the homographic top-view images of possible vertical axes.
A vertical axis in each indoor image view can range from 1 to each maximum
image width. 7 transformed vertical axes for each view are depicted for visu-
alization. It helps to understand how the vertical axis location obtained from
segmentation affects ground point (intersection) errors on the top-view. When
angular separation is close to 180 degrees (although visibility is maximized),
the intersection point of two vertical axes transformed to top-view may not be
reliable because a small amount of angular perturbation make the intersection
point move dramatically.

The outdoor sequences (3 views, 4 persons) are challenging in that three peo-
ple are wearing similarly-colored clothes and the illumination conditions change
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Fig. 3. The tracking results of 4-view indoor sequences from Frame 138 to 198 are
shown with the segmentation result of Frame 138
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frame362 frame407

deterministic
search only

general
particle filter

our method
Initially, all methods are good.

Fig. 5. Comparison on three methods: While the deterministic search with a single
hypothesis (persons 2 and 4 are good, cannot recover lost tracks) and the general
particle filter (only person 3 is good, insufficient observations during occlusion) fail in
tracking all the persons correctly, our proposed method succeeds with a minor error.
The view 2 was only shown here. The proposed system tracks the ground positions of
people afterwards over nearly 1000 frames.

over time, making segmentation difficult. In order to demonstrate the advan-
tage of our approach, single hypothesis (deterministic search only) tracker, gen-
eral particle filter, and particle filter with deterministic search by segmentation
(our proposed method) are compared in Fig.5. The number of particles used
is 15.

6 Conclusion and Discussion

A framework to segment and track people on a ground plane is presented. Human
appearance models are used to segment foreground pixels obtained from back-
ground subtraction. We developed a method to effectively integrate segmented
blobs across views on a top-view reconstruction, with a help of ground plane ho-
mography. The multi-view tracker is extended to a multi-hypothesis framework
using particle filtering.

We have illustrated results on challenging videos to show the usefulness of
the proposed approach. Segmentation of people is expedited by processing sub-
sampled foreground pixels and robust tracking is achieved without loss of accu-
racy; it was actually confirmed by the experiments with sub-sampling by factors
from 2 to 70.

In order to make our system more general, several improvements could be
considered, such as handling different observed appearances of an object across
views [2], extending the method to tracking in environments which are not pla-
nar, or including automatic homography mapping [10].
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Abstract. In this paper, we describe an unsupervised learning framework to seg-
ment a scene into semantic regions and to build semantic scene models from long-
term observations of moving objects in the scene. First, we introduce two novel 
similarity measures for comparing trajectories in far-field visual surveillance. The 
measures simultaneously compare the spatial distribution of trajectories and other 
attributes, such as velocity and object size, along the trajectories. They also pro-
vide a comparison confidence measure which indicates how well the measured 
image-based similarity approximates true physical similarity.  We also introduce 
novel clustering algorithms which use both similarity and comparison confidence. 
Based on the proposed similarity measures and clustering methods, a framework 
to learn semantic scene models by trajectory analysis is developed. Trajectories 
are first clustered into vehicles and pedestrians, and then further grouped based on 
spatial and velocity distributions. Different trajectory clusters represent different 
activities. The geometric and statistical models of structures in the scene, such as 
roads, walk paths, sources and sinks, are automatically learned from the trajectory 
clusters. Abnormal activities are detected using the semantic scene models. The 
system is robust to low-level tracking errors. 

1   Introduction 

The visual surveillance task is to monitor the activity of objects in a scene. In far-field 
settings (i.e., wide outdoor areas), the majority of visible activities are objects moving 
from one location to another. Monitoring activity requires low-level detection, track-
ing, and classification of moving objects. Both high-level activity analysis and low-
level vision can be improved with knowledge of scene structure (e.g., roads, paths, 
and entry and exit points). Scene knowledge supports activity descriptions with spa-
tial context, such as “car moving off road,” and “person waiting at bus stop.”  Scene 
information can also improve low-level tracking and classification [1].  For example, 
if an object disappears, but not at an exit point, then it is likely a tracking failure in-
stead of a true exit. In classification, we can leverage the fact that vehicles are much 
more likely than pedestrians to move on the road. 

Complementary to the geometric description are the statistics of the scene. A statis-
tical scene model provides an a priori probability distributions on where, when, and 
what types of activities occur.  It also places priors on the attributes of moving ob-
jects, such as velocity and size. Figure 1(d), shows distributions of location and direc-
tion of vehicles on three paths.  
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                                            (a)                                        (b) 

  
                                             (c)                                          (d)              

Fig. 1. Examples of far-field scene structures. (a): Far-field scene S1; (b): Semantic regions 
automatically learned in S1. (c): Far-field scene S2. Images of objects undergo substantial 
projective distortion so that nearby pedestrians appear larger than far vehicles. (d): Automati-
cally learned spatial layout of three vehicle paths showing distributions of location and moving 
direction, sources marked by cyan cross and sinks marked by magenta cross in S2. 

One way to formally model a scene is to represent it as an attributed graph. Verti-
ces as regions and edges as paths represent the coarse structure and topology of the 
scene. Attributes on vertices and edges further describe the geometry and statistics of 
the scene. For example, a source (entry) vertex can be attributed with a mean location 
and covariance, along with a birth probability. An edge joining a source and sink 
(exit) can be attributed with the spatial extent of the path and its velocity distribution. 
In far-field settings, we primarily deal with sources, sinks, and paths between them.  
     A scene model may be manually input, or possibly automatically extracted from 
the static scene appearance. However, manual input is tedious if many scenes require 
labeling, and static scene appearance has large variation and ambiguity. In addition, it 
is difficult to handcraft the statistics of a scene, or to estimate them from static ap-
pearance alone. An example is shown in Figure 1(a)(b). From the image of scene S1, 
we see one road. However, the road is composed of two lanes of opposing traffic 
(cyan and red paths). The black path is a one-way u-turn lane. There are two entrances 
on the left.  Vehicles from these entrances wait in the orange region in Figure 1(b) and 
cross the yellow region on the cyan lane in order to enter the red lane. Pedestrians 
cross the road via the gray region. In this paper we show how this information can be 
automatically learned by passive observation of the scene.  Our method is based on 
the idea that because scene structure affects the behavior of moving objects, the struc-
ture of the scene can be learned from observing the behavior of moving objects. 

1.1   Our Algorithm 

Gross positions and sizes of moving objects can be obtained from a blob tracker. A 
moving object traces out a trajectory of locations and sizes from entry to exit. From 
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long-term observation we can obtain thousands of trajectories in the same scene. We 
propose a framework to cluster trajectories based on types of activities, and to learn 
scene models from the trajectory clusters. In each cluster, trajectories are from the 
same class of objects (vehicle or pedestrian), spatially close and have similar direc-
tions of motion. In Section 3, we first describe two novel trajectory similarity meas-
ures insensitive to low-level tracking failures, which compare: 

(I) both spatial distribution and other features along trajectories: two trajectories are 
similar if they are close in space and have similar feature distribution, e.g. velocity. 
(II) only particular features along trajectories, and augment trajectory similarity with a 
comparison confidence measure.  This is used to separate vehicle and pedestrian tra-
jectories by comparing object size. Under this measure, two trajectories are similar if 
they have similar features, but need not be close in space. A low comparison confi-
dence means the observed similarity may not reflect true similarity in the physical 
world. In far-field visual surveillance, images of objects undergo large projective 
distortion in different places as shown in Figure 1(c). It is difficult to compare the size 
of the two objects when they are far apart. The comparison confidence measure cap-
tures this uncertainty. 

In Section 4, we propose novel clustering methods which use both similarity and 
confidence measures, whereas traditional clustering algorithms assume certainty in 
the similarities. Based on the novel trajectory similarity measures and clustering 
methods, we propose a framework to learn semantic scene models summarized in 
Figure 2. The method is robust to tracking errors and noise. 

Input: a set of trajectories obtained by the Stauffer-Grimson tracker [2] from raw 
video (trajectories may be fragmented because of tracking errors). 

1. Cluster trajectories into vehicles and pedestrians based on size using trajec-
tory similarity measure II and clustering methods in Section 4. 

2. Detect and remove outlier trajectories which are anomalous or noisy. 

3. Further subdivide vehicle and pedestrian trajectories into different clusters 
based on spatial and velocity distribution using trajectory similarity I. 

4. Learn semantic scene models from trajectory clusters. In particular, sources 
and sinks are estimated using local density-velocity maps from each clus-
ter, which is robust to fragmented trajectories. 

5. Real-time detection of anomalous activity using the learned semantic scene 
models. 

 

Fig. 2. Summary of the scene model learning process 

2   Related Work 

Two path detection approaches can be found in [3][4]. Both iteratively merge trajecto-
ries into an expanded path. In many settings where observed trajectories are noisy and 
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there are objects roaming between paths, the path regions will become increasingly 
broader, finally merging into a single large path after long observation. In our frame-
work, trajectories can be well clustered even with the existence of noisy and outlier 
trajectories.  [3][4] ignored attributes along the trajectories.  

A straightforward way to learn sources and sinks is to build Gaussian mixture 
models from the start and end points of the trajectories [5][6]. However, tracking 
sequences are often fragmented because of object interaction, occlusion, and scene 
clutter. False entry/exit points caused by broken trajectories will bias the estimation of 
sources and sinks. We solve this problem utilizing the fact that sources and sinks can 
only appear at the two ends of a path. False entry/exit points inside the path region are 
detected and removed by inspecting the local density-velocity distribution in a small 
neighborhood.  

There is a large literature on vehicle vs. pedestrian classification. Our work is re-
lated to [7][8] which used object positions in the scene to normalize object features 
with projective distortion. In both previous approaches, spatial location was treated as 
extra features for similarity, while in out method spatial location is used to calculate 
the comparison confidence. 

3   Trajectory Similarity 

A trajectory is a sequence of observations }{ iaA = , where >= < a
i

a
i

a
ii yxa β,, , ),( a

i
a
i yx  

are the spatial coordinates of the ith observation, and a
iβ  is its feature vector, such as 

object size and velocity.  

3.1   Trajectory Similarity I 

Considering two trajectories { }iaA = and { }ibB = , for a observation ia  on A, its near-

est observation on B is  

( ) ( )b
j

a
i

b
j

a
i

Bj
yyxxi −−=

∈
,minargψ . 

The directed spatial distance between A and B is 

( ) ( )
∈

−−=
Aia

b
i

a
i

b
i

a
i

A
yyxx

N
BAh )()( ,

1
, ψψ ,                                (1) 

where AN  is the observation number in A. This is similar to the modified Hausdorff 

distance [9]. It is small when A is close to B in space. However, in some cases, we 
want to distinguish two trajectories even though they are close in space. For exam-
ple, to separate a road and a walkway beside it, we need to distinguish vehicles and 
pedestrians by their size difference. If we want to separate two lanes in opposite 
moving directions, we have to distinguish trajectories with different velocities. 
Therefore, we further compare other features along the trajectories, and the directed 
distance is, 
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It is transformed to a similarity measure  

( ) ( )( )σ/,exp, BAFBAS f −= .                               (4) 

Under this measure, two trajectories are similar only if they are close in space and 
their observations in nearby locations have similar attributes. In (3), we use a mini-
mum instead of the maximum used in the Hausdorff distance. Thus this measure can 
handle broken trajectories caused by tracking errors. If A is a short broken trajectory 
beside a long trajectory B, h(A, B) is small while h(B, A) is large. Under (3), the dis-
similarity between A and B could be small. It satisfies our expectation that all broken 
trajectories on the same path should be grouped into the same cluster. 

3.2   Trajectory Similarity II 

The above similarity measure is inadequate for clustering all trajectories into two 
classes, vehicles and pedestrians, by comparing size differences. Trajectories of the 
same class are not necessarily close in space. Furthermore, features on the trajectories 
cannot be directly compared because of different geometric and photometric trans-
formations in the scene. For example, vehicles are much larger than pedestrians, and 
thus should be easily distinguished by size. However, as shown in Figure 1(c), be-
cause of projective distortion, some pedestrians close to the camera appear larger than 
vehicles far away in the scene. Without knowledge of camera geometric parameters, 
we only have the sense that if two objects are close in space, their observed image 
size similarity reflects their true size similarity, since both objects undergo the same 
geometric transform in the same place.  

If two pedestrian trajectories are far apart or they are only close at some points, 
such as A and C in Figure 3, their similarity will be small using the measure in  
Section 3.1. In the former case, it is difficult to ascertain the true similarity because 
of projective distortion. In the latter case, we can obtain similarity by comparing the 
trajectories at intersection points, and ignoring other points which are far apart.  
This leads us to augment the trajectory similarity measure with a comparison  
confidence. 

We first define the comparison confidence between two observations as 
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A

B

C

                                  

Fig. 3. A, B, C are three trajectories in the 
same class. Because of projective distortion, 
A and B has low similarity, while C has 
high similarity with both A and B. 

Fig. 4. Transform functions from S to W, 
setting 1,9.0,,2.0,1.0,0=C  

To compare trajectories A and B, the directed similarity BAS →  and comparison confi-

dence BAC →  are: 
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iii dbas −=  is the feature similarity between observa-

tions ia  and )(ibψ . For each observation ia  on trajectory A, we find its spatially  

nearest observation )(ibψ  on B, and compute the feature similarity ),( )(ii bas ψ  and 

comparison confidence ),( )(ii bac ψ . Along trajectory A, feature similarities of observa-

tions are averaged, weighted by the comparison confidences to get BAS → . The simi-

larity of observations close in space has larger weight for computing trajectory simi-
larity. BAC →  indicates how far apart A is from B. The symmetric similarity ( )BAS ,  
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The behavior of the comparison confidence measure in several typical cases is ana-
lyzed in [11].   

4   Clustering with Confidences 

Our clustering method is based on pairwise similarity. As mentioned in Section 3.2, 
some measured similarities between samples may not well approximate the true  
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similarity in the physical world. This makes traditional clustering methods inadequate 
because they assume uniformly confident similarity values. For example, in Figure 3, 
A, B and C are three trajectories in the same class. The observed similarity between A 
and B may be low because they are far apart and there is projective distortion, and 
comparison confidence is also low. C has high similarity with both A and B under our 
similarity measure, since C intersects A and B. We should emphasize similarities with 
high confidence, while ignore similarities with low confidence in the cost function. 
Given the similarity ijS  and confidence ijC  between any pair of samples, the task is 

to partition the sample set V into two subsets 1V  and 2V . There are two ways to aug-

ment clustering methods using both similarity and comparison confidence measures: 
(a) map similarity and confidence measures to a new weight measure, and then apply 
traditional clustering methods, such as spectral clustering, to the new weight; (b) 
modify the clustering cost function. 

4.1   Remapping Weights 

Let g be a function mapping ijS  and ijC  to a new weight, ( )ijijij CSgW ,= . The key is 

to preserve similarities with high confidence and leave low confidence similarities 
uncertain. If the confidence is small, the weight should be set to a median value. We 
compute ijW  as 
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The transform functions from similarity to weight given different confidence values 
from 0 to 1 are shown in Figure 4.  When we have no confidence in the similarity 
( 0=C ), the weight is 0.5, providing little information for clustering. When we have 
full confidence ( 1=C ), the weight is exactly the similarity measure. When C changes 
from 0 to 1, the transform function has a gradual change between the two extremes. 
Before doing the transform, we first perform histogram equalization on the distribu-
tion of similarity values of all the samples in the data set, so that similarities have a 
uniform distribution from 0 to 1. This normalization makes 0.5 a reasonable value for 
zero confidence in similarity. Then we apply spectral clustering using the new 
weights. 

4.2   Modify the Clustering Criterion 

Traditional clustering methods also can be augmented by including the comparison 
confidence measure in the cost function. In this work we modify the average cut. Let 
z be an N = |V| dimensional indicator vector, 1=iz  if sample i is in 1V , and 0=iz  if 

sample i is in 2V . We propose the cost function as the average similarity of the edges 

connecting 1V  and 2V , weighted by the confidence measures: 
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The goal is to find the optimal z minimizing ),(_ 21 VVcutave . Here, NNijQQ ×= ][ , 

ijijij SCQ = , NNijCC ×= ][ . D and T are two NN ×  diagonal matrix with d and t on 

their diagonal, ( ) =
j

ijQid , ( ) =
j

ijCit . Similar to the spectral clustering methods, 

(11) can be minimized by solving the generalized eigenvalue system. Because of the 
space limit, we omit the proof. A detailed description can be found in [11].  

5   Trajectory Clustering 

5.1   Clustering Different Types of Trajectories (Vehicles vs. Pedestrians) 

Scene structures and activities are often related to the class of objects, we first cluster 
trajectories into vehicles and pedestrians using the similarity and confidence measure 
proposed in Section 3.2 and the clustering methods in Section 4. The feature similar-
ity between observations in (6), is defined as 
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where a
ir  and b

jr  are the sizes of observations ia  and jb . We set parameter 

01.021 == σσ in (5) and (12). 

5.2   Clustering Activity Group 

Each class of trajectories, vehicles or pedestrians, is further clustered according to 
different spatial and velocity distributions. We define the trajectory similarity as de-
scribed in Section 3.1, considering velocity direction along the trajectories. Dissimi-
larity between observation features in (2) is 

( )( ) ( )

( )
b

i
a
i

b
i

a
ib

i
a
i

vv

vv
d

ψ

ψ
ψββ

⋅

⋅
−= 1,                                   (13) 

a
iv  and ( )

b
jvψ  are the velocities of ia  and ( )ibψ . The width and the height of the scene 

is normalized to 1 and parameter γ  in (2) is set to 0.25. Spectral clustering is applied 
using the defined trajectory similarity.  

Before clustering, we first remove outlier trajectories. Usually these are noisy tra-
jectories caused by tracking errors, anomalous trajectories, e.g., a car drives out of the 
way, or some pedestrians roaming between different paths. In visual surveillance, 
they may be of particular interest, and it is nice that our algorithm can detect them by 
comparing trajectories. Because they are not strongly constrained by scene structures, 
the scene structure models will be learnt more accurately by removing them. For each 
trajectory A, we find its N nearest trajectories iB ( )Ni ,,1= , and compute the aver-

age distance. We reject trajectories with large average distance to neighbors as  
outliers. 
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5.3   Experiments 

In Table 1, we report the results of clustering trajectories into vehicles and pedestrians 
using different clustering methods and similarity measures. There are two data sets 
from the two scenes shown in Figure 1. We show the numbers of vehicle and pedes-
trian trajectories in each cluster. The average observation size along the trajectory 
cannot separate vehicles and pedestrians, since there is overlap between the size  

Table 1. Results of clustering trajectories into vehicles and pedestrians. I: compare average 
observation size along the trajectory and use spectral clustering; II:  compare more observa-
tion features, (size, speed, size variation, aspect ratio and percentage occupancy of silhou-
ette), also averaged along the trajectory; III: size similarity defined in (2)(3)(4) without 
considering comparison confidence; IV: compare trajectory distance in space as define in 
(1); V: combine size similarity and comparison confidence as described in Section 3.2 and 4. 

Method Scene Cluster Vehicle Pedestrian 

Cluster 1 127 0 
S1 

Cluster 2 42 368 

Cluster 1 55 2 
I 

S2 
Cluster 2 14 16 

Cluster 1 162 154 
S1 

Cluster 2 7 214 

Cluster 1 65 0 
II 

S2 
Cluster 2 4 18 

Cluster 1 152 0 
S1 

Cluster 2 17 368 

Cluster 1 61 0 
III 

S2 
Cluster 2 8 18 

Cluster 1 166 242 
S1 

Cluster 2 3 126 

Cluster 1 40 8 
IV 

S2 
Cluster 2 29 10 

Cluster 1 167 0 
S1 

Cluster 2 2 368 

Cluster 1 69 0 
V 

S2 
Cluster 2 0 18 
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distributions of the two classes. In method II, we add more features, such as speed, 
size variation, aspect ratio and percentage occupancy of silhouette, which proved 
effective in vehicle/pedestrian classification [8], to compute the similarity. Although 
these discriminative features work well in supervised classification using some com-
plex classifiers, they are not effective in clustering. Our two clustering approaches in 
Section 4.1 and 4.2 using both similarity and confidence measures give the same 
result on this data set. They perfectly separate vehicle and pedestrian trajectories in 
Scene S2, and incorrectly cluster only two among 537 trajectories in Scene S1. If we 
only use the size similarity measure as define in (2)(3)(4), or only compare spatial 
distance as defined in (1), the result is worse. Note that our method is essentially un-
supervised and only requires labeling a cluster as vehicle or pedestrian. 

  

    (a)                                (b)                               (c)                               (d) 

Fig. 5. Clustering vehicle and pedestrian trajectories in Scene S1. (a): outlier vehicle trajecto-
ries in red; (b): six vehicle trajectory clusters (c): outlier pedestrian trajectories in red; (d): five 
pedestrian clusters. 

The separated vehicle trajectories and pedestrian trajectories are further clustered 
into different activity groups. Some results from scene S1 are shown in Figure 5. The 
vehicle trajectories are clustered into six clusters. Because the road has two opposite 
driving directions, the trajectories on the two lanes are separated into cyan and red 
clusters. The vehicles from the two entrances on the left of the scene enter the road 
along three different paths. The black clusters detect the one-way road and u-turn in 
the upper center of the scene. Most of the pedestrian trajectories crossing the road and 
roaming between the two walk paths are first removed as outlier trajectories. The 
remaining pedestrian trajectories are well clustered into five clusters on the two walk 
paths aside the road and one path crossing the road, because there are two opposite 
moving directions on each walk path aside the road.  

6   Learning Semantic Scene Models 

6.1   Road and Walk Path Models 

For each cluster Ω , we detect its spatial extent in the scene, and estimate the density 
and velocity direction distributions in the region. The density at position ),( yx  is 

estimated as, 

( ) ( )

∈ Ω∈
Ω =

Aa A

yx

yx a
i

a
i

yxp ,

),(
, φ ,                                    (14) 
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where ( ) ( )−−−= 3
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yyxx . The velocity direction distribution at 

),( yx  is modeled as a circular normal (von Mises) distribution [12], 
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where a
iθ  is the angle of velocity direction at ia .  

The path region is obtained by thresholding the density distribution, using 
( ) 10/,max yxPΩ .  Experimental results on scene S1 are shown in Figure 1(a)(b). The 

vehicles and pedestrian paths are shown in Figure 1(a). Using some logical operations 
on the path regions of different clusters, some semantic regions are obtained. In  
Figure 1(b), the cyan and red regions are two lanes on the main road in the scene. The 
black color marks a u-turn. When the vehicles merge from two entrances on the left of 
the scene, they wait in the orange region before entering the road, and cross the yel-
low region on the cyan road in order to be on the red road. The purple region has a 
similar semantic explanation. Pedestrians cross the road via the gray region. 

6.2   Sources and Sinks 

Two interesting scene structures are locations where vehicles or pedestrians enter or 
exit the scene. They are called sources and sinks. Trajectories are often broken be-
cause of inevitable tracking failures. There are false entry/exit points biasing the esti-
mation of sources and sinks as shown in Figure 7(a). We remove them using the local 
density-velocity map. Sources and sinks should be on the two ends of the path re-
gions. A false entry/exit point inside the path region has high density around its 
neighborhood, since there are many other trajectories passing through this point. In  
 

                   
                                                           A                          B                          C
       (a)                      (b)                                                    (c) 

A

B

C

 

Fig. 6. Removing break points in trajectory clusters. (a): Find local path of the red point based 
on velocity distribution; (b): Examples of entry point (A), exit point (C), false entry/exit point 
(B) on cluster density map; (c): Density distributions along local paths of A, B, C. 
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Fig 7. Learning vehicle sources and sinks models in Scene S1 

each trajectory cluster, starting from a start/end point of the trajectory, we find its 
local path by searching forward and backward L steps. On the local path, the next 
point is decided by the average velocity direction at the current position as shown in 
Figure 6 (a). In Figure 6 (b), we sample an entry point (A), an exit point (C), and a 
false entry/exit point (B) on the density map of one trajectory cluster. We can clearly 
see their difference on density distribution along the local path. The entry point has a 
very low density along the path behind it. The exit point has a very low density along 
the local path ahead of it. A false entry/exit point has little change on density along 
the whole local path, since trajectories in the same cluster have similar moving direc-
tions and they do not diverge. We distinguish them comparing the average densities 
of the two halves of the local path. Results are shown in Figure 7. 

6.3   More Experimental Results 

More experimental results of learning semantic scene models in scene S2 and S3 are 
shown in Figure 1(c)(d) and Figure 8. In S3, there is a red pedestrian path crossing the 
road, however, it is not the crosswalk beside it. People tend to take a short cut instead 
of using the crosswalk. This is one illustration of how our learnt scene models can 
provide additional information unavailable from the static image. 

           

     (a) Vehicles                                               (b) Pedestrians 

Fig. 8. Extract paths, sources and sinks of vehicles and pedestrians in Scene S3. Path bounda-
ries are marked by different color, the source and sink centers are marked by cyan and magenta 
crosses. The yellow ellipses indicate the estimated extent of sources/sinks. 

 

(a) Gaussian mixture models of sources 
and sinks directly learnt from the start 
and end points of trajectories. 

(b) Gaussian mixture models of sources 
and sinks learnt from the trajectory clus-
ters after removing break points. 



122 X. Wang, K. Tieu, and E. Grimson 

 

7   Abnormal Trajectory Detection 

As mentioned in Section 5, anomalous trajectories can be detected as outlier samples. 
In Figure 9 (a), outlier vehicle trajectories in S3 are marked by different colors. The 
green trajectory is a car backing up in the middle of the road. The car on the red tra-
jectory first drives along the purple path in Figure 9(a), then it turns left, crosses the 
red path on its left side, and has opposite moving direction with the trajectories in the 
cyan cluster. So it is detected as an anomalous trajectory.  

We further develop the system to real-time detect anomalous activity. When an ob-
ject enters the scene, we classify it into vehicle or pedestrian. For each vehi-
cle/pedestrian class, we model the density and velocity direction distributions in the 
scene as mixture models, since we have built the statistical model for each cluster in 
Section 7. When the object passes a location, a likelihood is computed, so we can 
monitor the object at each position without requiring the whole trajectory data. In 
Figure 9 (b) we plot the log likelihood of the red trajectory in Figure 9(a) at different 
locations. The probability is very low when it turns left crossing the red path. 

  
                                                (a)                                     (b) 

Fig. 9. Detect anomalous trajectories in S3. (a): outlier trajectories; (b): transform the log-
likelihood into density map. The white color indicates low probabilities (highly anomalous). 

8   Discussion 

We described a framework to learn semantic scene models by trajectory analysis. 
Trajectories related to different kinds of activities are separated into different clusters 
using novel trajectory similarity measures, and clustering methods with similarity and 
comparison confidences. The scene semantic models are applied to anomalous activ-
ity detection. We believe there are further applications of our learned scene model 
such as more complex activities across longer time scales and involving multiple 
objects.  Finally, our notion of clustering with confidences deserves further study and 
may be applicable to other areas of computer vision and statistical modeling. 
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Abstract. This paper presents a learning based approach to tracking
articulated human body motion from a single camera. In order to ad-
dress the problem of pose ambiguity, a one-to-many mapping from image
features to state space is learned using a set of relevance vector ma-
chines, extended to handle multivariate outputs. The image features are
Hausdorff matching scores obtained by matching different shape tem-
plates to the image, where the multivariate relevance vector machines
(MVRVM) select a sparse set of these templates. We demonstrate that
these Hausdorff features reduce the estimation error in clutter compared
to shape-context histograms. The method is applied to the pose esti-
mation problem from a single input frame, and is embedded within a
probabilistic tracking framework to include temporal information. We
apply the algorithm to 3D hand tracking and full human body tracking.

1 Introduction

This paper considers the problem of estimating the 3D pose of an articulated
object such as the human body from a single view. This problem is difficult
due to the large number of degrees of freedom and the inherent ambiguities
that arise when projecting a 3D structure into the 2D image [5, 9]. In generative
methods for tracking, the pose is estimated using a 3D geometric model and a
likelihood function that evaluates different pose estimates. For example, various
algorithms based on particle filtering have been proposed for human body or
hand tracking [7, 15, 17, 26]. However, in order to track the motion of the full
body or the hand, a large number of particles and a strong dynamic model are
required.

More importantly, in order to build a practical system, the initialization task
needs to be solved. This can be seen as an multi-object recognition problem,
where recognizing a single object corresponds to recognizing the articulated ob-
ject in a particular pose. Once this problem is solved, temporal information can
be used to smooth motion and resolve potential pose ambiguities. This divides

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 124–138, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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the continuous pose estimation task into two distinct problems: (1) estimate a
distribution of possible configurations from a single frame, (2) combine frame-
by-frame estimates to obtain smooth trajectories.

One approach to pose estimation is to generate a large database of examples
from a 3D model and use efficient techniques to classify the current input image,
e.g. using hierarchical search [18] or hashing techniques [14]. The main problem
in this approach, however, is the very large number of templates required to
represent the pose space. The number of templates depends on the range of
possible motion and required accuracy, and can be in the order of hundreds of
thousands of templates [14]. Only a fraction of the templates is searched for each
query image, however all templates need to be stored.

The method for hand pose estimation from a single image by Rosales et al.
addressed some of these issues [13]. Image features were directly mapped to likely
hand poses using a set of specialized mappings. A 3D model was projected into
the image in these hypothesized poses and evaluated using an image based cost
function. The features used were low-dimensional vectors of silhouette shape
moments, which are often not discriminative enough for precise pose estimation.

Agarwal and Triggs proposed a method for selecting relevant features using
RVM regression [1]. The used image features were shape-contexts [4] of silhou-
ette points. Pose estimation was formulated as a one-to-one mapping from the
feature space to pose space. This mapping required about 10% of the train-
ing examples. The method was further extended to include dynamic informa-
tion by joint regression with respect to two variables, the feature vector and
a predicted state obtained with a dynamic model [2]. There are two concerns
with this approach. Firstly, features from a single view, such as silhouettes, are

(a) (b)

Fig. 1. (a) Multiple mapping functions. Given a single view, the mapping from
image features to pose is inherently one-to-many. Mutually exclusive regions in state
space can correspond to overlapping regions in feature space. This ambiguity can be
resolved by learning several mapping functions from the feature space to different
regions of the state space. (b) Feature extraction. The features are obtained from
matching costs (Hausdorff fractions) of shape templates to the edge map. These costs
are used for creating the basis function vector φHD.
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often not powerful enough to solve the pose ambiguity problem. The mapping
from silhouette features to state space is inherently one-to-many, as similar fea-
tures can be generated by regions in the parameter space that are far apart, see
figure 1(a). Hence it is important to maintain multiple hypotheses over time. The
second concern is that shape-context features have been shown to be sensitive
to background clutter [20] and hence a relatively clean silhouette is needed as
input. In this paper we propose the use of robust measures that are based on
edge-based template matching. Edge-based matching has been used in a number
of pose estimation and tracking algorithms [8, 12, 18, 23].

In this paper the pose estimation problem from template matching is for-
mulated as learning one-to-many mapping functions that map from the feature
space to the state space. The features are Hausdorff matching scores, which are
obtained by matching a set of shape templates to the edge map of the input im-
age, see figure 1(b). A set of RVM mapping functions is then learned to map these
scores to different state-space regions to handle pose ambiguity, see figure 1(a).
Each mapping function achieves sparsity by selecting only a small fraction of the
total number of templates. However, each RVM function will select a different
set of templates. This work is closely related to the work of Sminchisescu et
al. [16] and Agarwal et al. [3]. Both follow a mixture of experts [11] approach to
learn a number of mapping functions (or experts). A gating function is learned
for each mapping function during training, and these gating functions are then
used to assign the input to one or many mapping functions during the inference
stage. In contrast, we use likelihood estimation from projecting the 3D-model to
verify the output of each mapping function.

The main contributions of this paper are (1) an EM type algorithm for learn-
ing a one-to-many mapping using a set of RVMs, resulting in a sparse set of tem-
plates, (2) an extension of the RVM algorithm to multivariate outputs, (3) im-
proving the robustness to image clutter using Hausdorff fractions, and (4) the
application to the pose estimation problem and embedding within a probabilistic
tracking framework.

The rest of the paper is organized as follows: The algorithm for learning the
one-to-many mapping using multiple RVMs is introduced in section 2. Section 3
describes a scheme for training the parameters of a single RVM mapping function
with multivariate outputs and section 4 explains the image features, which are
based on Hausdorff matching. The pose estimation and tracking framework is
presented in section 5, and results on hand tracking and full body tracking are
shown in section 6. We conclude in section 7.

2 Learning Multiple RVMs

The pose of an articulated object, in our case a hand or a full human body, is
represented by a parameter vector x ∈ RM . The features z are Canny edges
extracted from the image. Given a set of training examples or templates V =
{v(n)}Nn=1 consisting of pairs v(n) = {(x(n), z(n))} of state vector and feature
vector, we want to learn a one-to-many mapping from feature space to state
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Algorithm 1. EM for learning multiple mapping functions Wk

1. Initialize
Partition the training set V into K subsets by applying the K-means algorithm on the
state variable xn of each data point vn. Initialize probability matrix C.
2. Iterate
(i) Estimate regression parameters
Given the matrix C ∈ R

N×K , where element cnk = c
(n)
k is the probability that sample

point n belongs to mapping function k, learn the parameters Wk,Sk of each mapping
function, by multivariate RVM regression minimizing the following cost function

Lk =
N

n=1

c
(n)
k y(n)

k

T

Sk y(n)
k , where y(n)

k = x(n) − Wkφ(z(n)). (1)

Note: for speed up, samples with low probabilities may be ignored.
(ii) Estimate probability matrix C
Estimate the probability of each example belonging to each of the mapping function:

p(x(n)|z(n),Wk,Sk) =
1

2π|S|1/2 exp −0.5 y(n)
k

T

Sk y(n)
k , (2)

c
(n)
k =

p(x(n)|z(n),Wk,Sk)
K
j=1 p(x(n)|z(n),Wj ,Sj)

. (3)

space. We do this by learning K different regression functions, which map the
input z to different regions in state space. We choose the following model for the
regression functions

x = Wkφ(z) + ξk, (4)

where ξk is a Gaussian noise vector with 0 mean and diagonal covariance matrix
Sk = diag

{
(σk

1 )2, . . . , (σk
M )2

}
. Here φ(z) is a vector of basis functions of the form

φ(z) = [1, G(z, z(1)), G(z, z(2)), ..., G(z, z(N))]T , where G can be any function
that compares two sets of image features. The weights of the basis functions are
written in matrix form Wk ∈ RM×P and P = N + 1. We use an EM type
algorithm, outlined in Algorithm 1, to learn the parameters {Wk,Sk}Kk=1 of the
mapping functions. The regression results on a toy dataset are shown in figure 2.

The case of ambiguous poses means that the training set contains examples
that are close or the same in feature space but are far apart in state space, see
figure 1(a). When a single RVM is trained with this data, the output states tend
to average different plausible poses [1]. We therefore experimentally evaluated
the effect of learning mapping functions with different numbers of RVMs (with
Hausdorff fractions as the input to the mapping functions, see section 4). The
data was generated by random sampling from a region in the 4-dimensional
state space of global rotation and scale, and projecting a 3D hand model into
the image. The size of the training set was 7000 and the size of the test set
was 5000. Different numbers of mapping functions were trained to obtain a one-
to-many mapping from the features to the state space. The results are shown
in figure 3(a). Training multiple mapping functions reduces the estimation error
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Fig. 2. RVM regression on a toy dataset. The data set consists of 200 samples
from three polynomial functions with added Gaussian noise. (a) Initial clustering using
K-means. (b), (c),(d) Learned RVM regressors after the 1st, 4th and 10th iteration,
respectively. Each sample data is shown with the colour of the regressor with the highest
probability. A Gaussian kernel with a kernel width of 1.0 was used to create the basis
functions. Only 14 samples were retained after convergence.

# RVMs relevant approx. total mean RMS
templates training time error

1 13.48 % 360 min 15.82°
5 13.04 % 150 min 7.68°
10 10.76 % 90 min 5.23°
15 9.52 % 40 min 4.69°
20 7.78 % 25 min 3.89°
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Fig. 3. (a) Single vs. multiple RVMs. Results of training different numbers of
RVMs on the same dataset. Multiple RVMs learn sparser models, require less training
time and yield a smaller estimation error. (b) Robustness analysis. Pose estimation
error when using two different types of features: histograms of shape contexts (SC)
and Hausdorff matching costs (HD). Plotted is the mean and standard deviation of
the RMS error of three estimated pose parameters as a function of image noise level.
Hausdorff features are more robust to edge noise.

and creates sparser template sets. Additionally, the total training time is reduced
because the RVM training time increases quadratically with the number of data
points and the samples are divided among the different RVMs.

3 Training an RVM with Multivariate Outputs

During the regression stage, each mapping function is learned using an extension
of the RVM regression algorithm [21]. The attraction of the RVM is that it has
good generalization performance, while achieving sparsity in the representation.
For our case this means that the matrices Wk only have few non-zero columns.
Each column corresponds to the Hausdorff scores obtained by matching a specific
shape template to the examples edge maps. Hence, only a fraction of the total
number of shape templates needs to be stored. The RVM is a Bayesian regression
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framework, in which the weights of each input example are governed by a set of
hyperparameters. These hyperparameters describe the posterior distribution of
the weights and are estimated iteratively during training. Most hyperparameters
approach infinity, causing the posterior distributions of the effectively setting the
corresponding weights to zero. The remaining examples with non-zero weights
are called relevance vectors.

Tipping’s formulation in [21] only allows regression from multivariate input to
a univariate output variable. One solution is to use a single RVM for each output
dimension. For example, Williams et al. used separate RVMs to track the four
parameters of a 2D similarity transform of an image region [25]. This solution
has the drawback that one needs to keep separate sets of selected examples for
each RVM. We introduce the multivariate RVM (MVRVM) which extends the
RVM framework to multivariate outputs, making it a general regression tool.1

This formulation allows us to choose the same set of templates for all output
dimensions.

A ridge regression scheme is used in [1, 2], which also allows selecting the
same templates for all output dimensions. However, ridge regression directly
optimizes over the weights without the use of hyperparameters. In contrast, we
extend the framework in [21] to handle multivariate outputs. A data likelihood
is obtained as a function of weight variables and hyperparameters. The weight
variables are then analytically integrated out to a obtain marginal likelihood as
function of the hyperparameters. An optimal set of hyperparameters is obtained
by maximizing the marginal likelihood over the hyperparameters using a version
of the fast marginal likelihood maximization algorithm [22]. The optimal weight
matrix is obtained using the optimal set of hyperparameters.

The rest of this section details our proposed extension of the RVM framework
to handle multivariate outputs and how this is used to minimize the cost function
described in eqn (1) and learn the parameters of a mapping function, Wk and
Sk. We can rewrite eqn (1) in the following form

Lk =
N∑

n=1

logN (x̂(n)
k |Wkφ̂k(z(n)),Sk), (5)

where, x̂(n)
k =

√
c
(n)
k x(n) and φ̂k(z(n)) =

√
c
(n)
k φ(z(n)) (6)

We need to specify a prior on the weight matrix to avoid overfitting. We
follow Tipping’s relevance vector approach [21] and assume a Gaussian prior
for the weights of each basis function. Let A = diag(α−2

1 , . . . , α−2
P ), where each

element αj is a hyperparameter that determines the relevance of the associated
basis function. The prior distribution over the weights is then

p(Wk|Ak) =
M∏

r=1

P∏
j=1

N (wk
rj |0, α−2

j ) , (7)

1 Code is available from http://mi.eng.cam.ac.uk/˜ at315/MVRVM.htm
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where wk
rj is the element at (r, j) of the weight matrix Wk. We can now com-

pletely specify the parameters of the kth mapping function as {Wk,Sk,Ak}. As
the form and the learning routines of parameters of each expert are the same, we
drop the index k for clarity in the rest of the section. A likelihood distribution
of the weight matrix W can be written as

p({x̂(n)}Nn=1|W,S) =
N∏

n=1

N (x̂(n)|Wφ̂(z(n)),S) . (8)

Let wr be the weight vector for the rth component of the output vector x,
such that W = [w1, . . . ,wr, . . . ,wM ]T and let τr be the vector with the rth

component of all the example output vectors. Exploiting the diagonal form of S,
the likelihood can be written as a product of separate Gaussians of the weight
vectors of each output dimension:

p({x̂(n)}Nn=1|W,S) =
M∏

r=1

N (τr |wrΦ̂, σ2
r) , (9)

where Φ̂ = [1, φ̂(z1), φ̂(z2), . . . , φ̂(zN )] is the design matrix. The prior distribu-
tion over the weights is rewritten in the following form

p(W|A) =
M∏

r=1

P∏
j=1

N (wrj |0, α−2
j ) =

M∏
r=1

N (wr|0,A). (10)

Now the posterior on W can be written as the product of separate Gaussians
for the weight vectors of each output dimension:

p(W|{x̂}Nn=1,S,A) ∝ p({x̂}Nn=1|W,S) p(W|A) (11)

∝ ∏M
r=1N (wr|µr,Σr) , (12)

where µr = σ−2
r ΣrΦ

T τr and Σr = (σ−2
r ΦT Φ + A)−1 are the mean and the

covariance of the distribution of wr. Given the posterior for the weights, we
can choose an optimal weight matrix if we obtain a set of hyperparameters that
maximise the data likelihood in eqn (12). The Gaussian form of the distribution
allows us to the remove the weight variables by analytically integrating them
out. Exploiting the diagonal form of S and A once more, we marginalize the
data likelihood over the weights:

p({x̂}Nn=1|A,S) =
∫

p({x̂}Nn=1|W,S) p(W|A) dW (13)

=
M∏

r=1

∫
N (τr |wrΦ̂, σ2

r )N (wr|0,A) (14)

=
M∏

r=1

|Hr|−
1
2 exp(−1

2
τT
r H−1

r τr) , (15)
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where Hr = σ2
rI + Φ̂A−1Φ̂

T
. An optimal set of hyperparameters {αopt

j }Pj=1 and
noise parameters {σopt

r }Mr=1 is obtained by maximising the marginal likelihood
using bottom-up basis function selection as described by Tipping et al. in [22].
Again, the method was extended to handle the multivariate outputs. Details of
this extension can be found in [19]. The optimal hyperparameters are then used
to obtain the optimal weight matrix:

Aopt = diag(αopt
1 , . . . , αopt

P ) Σopt
r = ((σopt

r )−2 Φ̂
T
Φ̂ + Aopt)−1

µopt
r = (σopt

r )−2 Σopt
r ΦT τr Wopt = [µopt

1 , . . . , µopt
M ]T

4 Robust Representation of Image Features

In this paper, we use Hausdorff fractions [10] in the feature comparison function
G. Given two shapes represented by edge point sets z(i) and z(j), the Hausdorff
fraction fHD is defined as the ratio of points of the first shape that are within a
certain distance δ from the points of the second shape:

fHD(z(i), z(j)) =
|z(i)

δ |
|z(i)| , where z(i)

δ ={a∈z(i) : min
b∈z(j)

||a− b|| < δ}. (16)

GHD(z(i), z(j)) = exp
{−fHD

}
. (17)

The use of edge gradient information increases the discriminative power of these
matching methods [12], thus we compute the matching cost with eight discrete
orientation channels [8, 18].

We performed experiments comparing the robustness of Hausdorff fraction
based features GHD and features based on 100-dimensional shape-context his-
tograms GSC , described in [1, 2]. For this, a training image set is created by
sampling a region in state space, in this case three rotation angles over a limited
range, and using the sampled pose vectors to project a 3D hand model into the
image. Because the Hausdorff features are neither translation nor scale invariant,
additional training images of scaled and locally shifted examples are generated.
After RVM training, a set of around 30 templates out of 200 are chosen for
both, shape context and Hausdorff features. However note that the templates
chosen by the RVM for each methods may differ. For testing, 200 poses are
generated by randomly sampling the same region in parameter space and in-
troducing different amounts of noise by introducing edges of varying length and
curvature. Figure 3(b) shows the dependency of the RMS estimation error (mean
and standard deviation) on the noise level. Hausdorff features are significantly
more robust to edge noise than shape context features.

5 Pose Estimation and Tracking

Given a candidate object location in the image we obtain K possible poses
from the mapping functions, see figure 4(a). For each mapping function Wk
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Fig. 4. (a) Pose estimation. At each candidate location the features are obtained
by Hausdorff matching and the RVMs yield pose estimates. These are used to project
the 3D model and evaluate likelihoods. (b) Probabilistic tracking. The modes of
likelihood distribution, obtained through the RVM mapping functions, are propagated
through a bank of Kalman filters [6]. The posterior distributions are represented with
an L-mode piecewise Gaussian model. At each frame, the L Kalman filter predictions
and K RVM observations are combined to generate possible L × K Gaussian distri-
butions. Out of these, L Gaussians are chosen to represent the posterior probability
and propagated to the next level. The circles in the figure represent the covariance of
Gaussians.

the templates selected by the RVM are matched to the input and the resulting
Hausdorff fractions form the basis function vector φHD. We then use regression
to obtain K pose estimates via xk = WkφHD. A set of candidate object locations
is obtained by skin colour detection for hands and background estimation for full
human body motion. Given M candidate positions we thus obtain K ×M pose
hypotheses, which are used to project the 3D object model into the image and
obtain image likelihoods.

The observation model for the likelihood computation is based on edge and
silhouette cues. As a likelihood model for hand tracking we use the function
proposed in [18], which combines chamfer matching with foreground silhouette
matching, where the foreground is found by skin colour segmentation. The same
likelihood function is used in the full body tracking experiments, with the dif-
ference that in this case the foreground silhouette is estimated by background
subtraction.

Temporal information is needed to resolve the ambiguous poses and to ob-
tain a smooth trajectory through the state-space after the pose estimation is
done at every frame. We embed pose estimation with multiple RVMs within a
probabilistic tracking framework, which involves representing and maintaining
distributions of the state x over time.

The distributions are represented using a piecewise Gaussian model [6] with
L components. The evaluation of the distribution at one time instant t involves
the following steps (see figure 4(b)):

(1) Predict each of the L components,
(2) perform RVM regression to obtain K hypotheses,
(3) evaluate likelihood computation for each hypothesis,
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(4) compute the posterior distribution for each of L×K components,
(5) select L components to propagate to next time step.

The dynamics are modeled using a constant velocity model with large process
noise [6], where the noise variance is set to the variance of the mapping error
estimated at the RVM learning stage. At step (5) k-means clustering is used to
identify the main components of the posterior distribution in the state space,
similar to [24]. Components with the largest posterior probability are chosen
from each cluster in turn, ensuring that not all components represent only one
region of the state-space.

For a given frame the correct pose does not always have the largest posterior
probability. Additionally, the uncertainty of pose estimation is larger in some
regions in state space than in others, and a certain number of frames may be
needed before the pose ambiguity can be resolved. The largest peak of the pos-
terior fluctuates among different trajectories as the distribution is propagated.
Hence a history of the peaks of the posterior probability needs to be considered
before a consistent trajectory is found that links the peaks over time. In our
experiments a batch Viterbi algorithm is used to find such a path.

6 Results and Evaluation

Global pose: In our first experiment, we estimate the three rotation angles
and the scale of a pointing hand. We use 10 RVMs to learn the mapping. First
5000 templates are created from a 3D model by random sampling from the
state-space. The task is to choose the relevant templates for pose estimation
from these templates. Even though we do not estimate image plane translation
using the mapping functions, we allow random translation within 7 pixels range
in the generated images to achieve translation invariance within a short range.
After training the RVMs, a total of 325 relevant templates out of 5000 were
selected. For comparison, Stenger et al. used approximately 12 000 templates
to estimate a similar type of motion [18]. The learned RVM mapping functions
are used to estimate the rotation angles and the scale of a pointing hand in a
sequence of 1100 frames. Skin colour detection is used to find candidate locations

Fig. 5. Tracking a pointing hand. Example frames from tracking a pointing hand
sequence with 1100 frames using a single camera are shown. The model contours corre-
sponding to the optimal path through the state distribution are superimposed, and the
3D model is shown below. A total of 389 relevant templates, divided between 10 RVM
mapping functions, were used to estimate the hand pose. For comparison, Stenger et
al. [18] used 12 000 templates to estimate a similar type of motion.
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for applying the mapping functions. However, the mapping functions themselves
only receive an edge map as their input. The tracking framework described in
section 5 is then applied to the detection results at every frame. Figure (5) shows
some example frames from this sequence.

Hand articulation : The method is applied to the hand open-close sequence
with 88 frames from [18], where approximately 30 000 templates were required
for tracking. To capture typical hand motion data, we use a large set of 10
dimensional joint angle data obtained from a data glove. The pose data was
approximated by the first four principal components. We then projected original
hand glove data into those 4 dimensions. The global motion of the hand in that
sequence was limited to a certain region of the global space (80°, 60°and 40°
in rotation angles and 0.6 to 0.8 in scale). The eight-dimensional state space
is defined by the four global and four articulation parameters. A set of 10 000
templates is generated by random sampling in this state space. After training
10 RVMs, 455 templates out of 10 000 are retained. Due to the large amount of
background clutter in the sequence, skin colour detection is used in this sequence
to remove some of the background edges for this sequence. Tracking results are
shown in figure (6).

Full body articulation: In order to track full body motion, we use a data
set from the CMU motion capture database of walking persons (∼ 9000 data
points). In order to reduce the RVM training time, the data is projected onto
the first six principal components.

The first input sequence is a person walking fronto parallel to the camera. The
global motion is mainly limited to translation. The eight-dimensional state-space
is defined by two global and six articulation parameters. A set of 13,000 training
samples were created by sampling the region. We use 4 RVM mapping functions
to approximate the one-to-many mapping. A set of 118 relevant templates is
retained after training. Background subtraction is used to remove some of the
background edges. The tracking results are shown in figure (7). The second
input sequence is a video of a person walking in a circle from [15]. The range
of global motion is set to 360° around axis normal to the ground plane and 20°

Fig. 6. Tracking an opening and closing hand. This sequence shows tracking of
opening and closing hand motion together with global motion on a sequence from [18].
A total of 537 relevant templates were used with 20 RVM mapping functions for pose
estimation. As a comparison [18] used about 30 000 templates to track the same se-
quence.
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Fig. 7. Tracking a person walking fronto parallel to the camera. The first and
second rows shows the frames from [15], overlaid with the body pose corresponding
to the optimal path through the posterior distribution and the corresponding the 3D
model, respectively. Similarly, second and third rows show the second best path. Notice
that the second path describes the walk equally well except for the right-left leg flip
which is one of the common ambiguity that arises in human pose estimation from
monocular view. A total of 118 templates with 4 RVM mapping functions were used.

Fig. 8. Tracking a person walking in a circle. This figure shows the results of the
tracking algorithm on a sequence from [15]. Overlaid is the body pose corresponding
to the optimal path through the posterior distribution, the 3D model is shown below.
A total of 1429 templates with 50 RVM mapping functions were used.

in the tilt angle. The range of scales is 0.3 to 0.7. The nine-dimensional state-
space region is defined by these three global and six articulation parameters.
A set of 50 000 templates is generated by sampling this region. We use 50
RVM mapping functions to approximate the one-to-many mapping. A set of 984
relevant templates is retained after training. Background subtraction is used
to remove some of the background edges. The tracking results are shown in
figure (8).

Computation time: The execution time in the experiments varies from 5
to 20 seconds per frame (on a Pentium IV, 2.1 GHz PC), depending on the
number of candidate locations in each frame. The computational bottleneck is
the model projection in order to compute the likelihoods (approximately 100 per
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second). For example, for 30 search locations and 50 RVM mapping functions
result in 1500 model projections, requiring 15 seconds. It can be observed that
most mapping functions do not yield high likelihoods, thus identifying them
early will help to reduce the computation time.

7 Summary and Conclusion

This paper has introduced an EM type algorithm to learn a one-to-many map-
ping using multiple relevance vector machines. To this end the original RVM
formulation was extended to allow for multivariate outputs. The method was
applied to the problem of pose estimation from a single frame, where the RVMs
were used to select relevant templates from a large set of candidate templates.

Pose estimation was embedded within a tracking framework, combining both
discriminative and generative methods: At each frame the set of mappings from
feature to parameter space generates a set of pose hypotheses, which are then
used to project a 3D model and compute an image likelihood. The state posterior
distribution, represented by a piecewise Gaussian distribution, is propagated
over time, and dynamic information is included using a bank of Kalman filters.
A batch Viterbi algorithm is used to find a path through the peaks of this
distribution in order to resolve ambiguous poses.

Template-based pose estimation schemes solve the problem of initialisation
and pose-recovery and maintain multiple hypothesis in tracking articulated ob-
jects. Furthermore edge-based schemes are resistant to background clutter and
image deformations to a certain degree. However, a major problem is the large
number of templates that are needed for the pose estimation of articulated ob-
jects [18]. We have presented a scheme where we achieve reduction of two to
three orders of magnitude in the number of templates.
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Abstract. This paper presents a novel solution to the difficult task of
both detecting and estimating the 3D pose of humans in monoscopic
images. The approach consists of two parts. Firstly the location of a
human is identified by a probabalistic assembly of detected body parts.
Detectors for the face, torso and hands are learnt using adaBoost. A
pose likliehood is then obtained using an a priori mixture model on
body configuration and possible configurations assembled from available
evidence using RANSAC. Once a human has been detected, the location
is used to initialise a matching algorithm which matches the silhouette
and edge map of a subject with a 3D model. This is done efficiently
using chamfer matching, integral images and pose estimation from the
initial detection stage. We demonstrate the application of the approach
to large, cluttered natural images and at near framerate operation (16fps)
on lower resolution video streams.

1 Introduction

Our objective is to automatically locate the presence of human figures in natural
images, and to estimate the 3D skeletal pose of that figure. Fitting a 3D model
to a monocular image of a person requires a reliable estimate of the position
of that person. Our first objective is therefore to robustly estimate the location
and approximate 2D pose of a user in a real world cluttered scene. This is a
challenging task as the shape and appearance of the human figure is highly
variable. We have extended AdaBoost [15] to create body part detectors for
the face, torso and hands. Detections are then assembled into an upper body
pose via RANSAC [4] in real-time. Once an upper body 2D pose is selected, the
second objective, is to reconstruct the 3D upper body pose making use of a prior
dataset of human motion capture.

Human detection is often facilitated by detecting individual body parts, and
assembling them into a human figure. Ioffe and Forsyth [6] make use of a paral-
lel edge segment detector to locate body parts, and assemble them into a ‘body
plan’ using a pre-defined top level classifier. Similarly, Felzenszwalb and Hutten-
locher [3] use rectangular colour-basedpart detectors, and assemble detected parts
into a body plan using pictorial structures. Ronfard et al.[10] use detectors trained
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by dedicated Support Vector Machines (SVM) where a feature set consists of a
Gaussian filter image and 1st and 2nd derivatives. Haar wavelets are used by Mo-
han et al. [9] to represent candidate regions and SVMs to classify the patterns.
Roberts et al. [11] have created probabilistic region templates for the head, torso
and limbs where likelihood ratios for individual parts are learned from the dissim-
ilarity of the foreground and adjacent background distributions. Mikolajczyk et
al. [8] model humans as flexible combinations of boosted face, torso and leg detec-
tors. Parts are represented by the co-occurrence of orientation features based on
1st and 2nd derivatives. The procedure is computationally expensive, and ‘robust
part detection is the key to the approach’ [8].

Our approach is novel in that it uses RANSAC to combine appearance, colour
and structural cues with a strong prior on pose configuration to detect human
structures. 3D reconstruction from a single camera has also recieved considerable
attention. Howe [5] et al. tracked 20 body points from a monocular sequence,
and adopted a bayesian framework to compute prior probabilities of 3D motions
with the aid of training data. An alternative is proposed by Sigal et al. [13]
where the human body is represented as a graphical model where relationships
between body parts are represented by conditional probability distributions. The
pose estimation problem becomes one of probabilistic inference over a graphical
model with random variables modelling individual limb parameters. Fitting a 3D
model to a single image of an object is achieved by comparing shape and edge
templates of an example database to the object of interest. This has been applied
to hand pose estimation [14] where shape matching follows a cascaded approach
to reduce the number of edge template comparisons. Most 3D reconstruction
approaches rely upon tracking assuming an initial pose is already known. Here,
we combine robust detection with 3D estimation allowing the visually accurate
reconstruction of pose within a single image. We also extend this approach to
tracking in a video stream.

This paper is set out as follows: A basic discussion of AdaBoost applied to
object detection is presented in Section 2. Our first contribution offers a method
of assembling body part detections using RANSAC, a heuristic, and an a priori
mixture model of upper-body configurations (Section 3). The chosen assembly
is then used to assist in reconstructing the corresponding upper body 3D pose
(Section 5). Section 5.1 describes the acquisition of the database of 2D upper
body frontal poses from the 3D animated avatar, which is then subdivided into
subsidiary databases. Matching the silhouette and edge templates of the user to
those of example databases is discussed in Section 5.4.Finally, results are shown,
and conclusions drawn.

2 Boosted Body Parts Detectors

Boosting is a general method that can be used for improving the accuracy of
a given learning algorithm.More specifically, it is based on the principle that a
highly accurate or ‘strong’ classifier can be produced through the linear combina-
tion of many inaccurate or ‘weak’ classifiers. The efficiency of the final classifier
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is increased further by organising the weak classifiers into a collection of cas-
caded layers. This design consists of a set of layers with an increasing number
of weak classifiers, where each layer acts as a non-body-part rejector with in-
creasing complexity. An input image is first passed to the simplest top layer for
consideration, and is only moved to the next layer if it is classified as true by the
current layer. The reader is directed to [15] for a detailed discussion of AdaBoost
cascades.

Using AdaBoost, we separately trained four different body part detectors
using their respective image databases. In order to detect a specific body part in
a bounding box, we offset all the weak classifiers belonging to that detector to
that location. A positive or negative detection is then computed by combining
weak classifier outputs in strong-classifier layers. Each detector returns a score
for part detection, which is then normalised to produce a likelihood, defined as
LF , LT , and LH respectively.

Since detections are performed in gray scale, it would be advantageous to
exploit colour cues to contribute to a detection’s legitimacy. Here, the face and
hands benefit from this constraint. Initially, a weak skin colour model in the
Hue-Saturation colour space built from a large selection of natural images con-
taining skin regions. Using this generic skin model, we determine the median skin
likelihood for the face (LFS) and from this face detection we obtain a refined
user specific skin model for use in hand detection (LHS).

3 Human Body Assembly

The methods described in the previous sections provide the detected body parts
needed to construct a human model. To ensure that most of the body parts are
detected, fewer layers in the cascade are selected, resulting in a larger number
of false detections. In order to determine liklely body configuration from the
numerous detected body parts, a three step process is followed: 1) RANSAC is
used to assemble random body configurations, each consisting of a head, a torso,
and a pair of hands. A weak heuristic is then applied to each configuration to
eliminate obvious outliers (3.1). 2) Each remaining configuration is compared
to an a priori mixture model of upper-body configurations, yielding a likelihood
for the upper body pose (3.2). 3) A resultant likelihood for each configuration

Fig. 1. Virtuvian Man
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is obtained by combining the likelihood determined by the prior model with
those of the body part detectors and corresponding skin colour (if applicable).
Configurations with a high likelihood are determined and the support assessed
via RANSAC (3.3).

3.1 Building a Coarse Heuristic

An image with several human figures and dense background clutter can produce
multiple part detections in addition to false detections. RANSAC selects subsets
of detections that represent body configurations, however testing all these con-
figurations would be computationally expensive; a coarse heuristic is therefore
employed to discard unlikely configurations.

Rules of the heuristic are designed according to a generic human model,
and include a reference length measurement. Referring to Da Vinci’s Virtuvian
Man (Figure 1) the human figure is subdivided into eight lengths, each equal
to the “head length (the top of the skull to the chin). For the purpose of this
paper, this length is referred to as a skeletal unit length. The head can be further
subdivided into 3 lengths, a,b and c – a typical face detection occupies b and c,
thereby allowing us to approximate the skeletal unit length.

Comparing the ROC curves of Figure 6a it is evident that the face detector is
the most robust. For this reason, the face detector forms the base for every body
configuration. The skeletal unit length and centre position of a selected face is
determined, and form the parameters that assist in solving a body configuration.

The rules of the heuristic are set out in the following order, with x and
y referring to horizontal and vertical directions: 1) A torso is added to the
model only if: its centre x position lies within the face width; the torso scale is
approximately 3 × face scale (± 0.5); the face centre lies within the detected
torso region. 2) A pair of hands are added only if: both hands are less that
4 × skeletal unit lengths from the face; the hand scale ≈ face scale (± 0.2).
False hand detections form the bottleneck in the system as a large number are
accepted by the heuristic. The configurations that are passed by the heuristic
are then compared to an a priori mixture model of upper-body configurations
to obtain a likelihood for the upper body pose (see equation 1), which plays an
important role in eliminating false hand detections as awkward hand poses yield
a low likelihood.

3.2 Prior Data for Pose Likelihood

In this second step, we use an a priori mixture model of upper-body config-
urations to estimate the optimal upper body pose. Each body configuration
obtained by the above-mentioned selection process provides the position of 8
points, namely the four corners of the torso detector, the chin and brow of the
face detector, and the hands. These 8 x, y coordinates are concatenated to form
a feature vector Y ∈ �16.

An a priori model φ of upper-body configurations was built from approxi-
mately 4500 hand labelled representative examples (∈ �16 as above) from image
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sequences of subjects performing various articulated motions. A Gaussian Mix-
ture Model (GMM) is then used to represent this non-linear training set. The
number of components k is chosen through analysis of the cost function, con-
structed from k-means. Here, k = 100. k 16x16 covariance matrices Covφ,k are
formed from data set φ, where Covφ,k = 1

Nk−1 (φi − µφ,k)(φi − µφ,k)T , and µφ,k

is the mean of each component of the GMM. A measure of how well each newly
assembled body configuration fits the prior data set can now be determined.

The Mahalanobis distance between the configuration and the prior is deter-
mined and a final pose likelihood LP is obtained from the weighted sum of the
likelihoods for each component:

LP =
k∑

i=1

Ni

N

[(
2π

d
2 |Covφ,i| 12

)−1
exp(−1

2
md2

φ,i)
]

(1)

3.3 Final Configuration Selection

The eight determined likelihoods, namely the mixture model (LP ), face (LF ),
face skin (LFS), torso (LT ), left hand (LLH), left hand skin (LLHS), right hand
(LRH) and right hand skin (LRHS) are combined to provide an overall body
configuration likelihood, LBC .

LBCi = LPi.LFi.LFSi.LTi.LLHi.LLHSi.LRHi.LRHSi (2)

To determine the most likely pose consensus for a specific pose is accumulated
by RANSAC. This is possible as objects tend to produce multiple overlapping
detections.

4 Detection in Sequences

Extending this work to video sequences allows us to take advantage of back-
ground segmentation and to apply the detectors in a tracking framework.

Our background removal algorithm was originally developed for exterior
visual surveillance and relies upon modelling the colour distribution with a
Gaussian mixture model on a per pixel basis [7]. This allows each pixel to be
assigned a foreground likelihood which increases according to sudden intensity
variation. We apply the detectors on the full natural frame, and include the
mean foreground likelihood LFG of a detection’s bounding box. The body con-
figuration likelihood of Equation 2 is therefore updated as follows:

LBCi = (LPi)× (LFi.LFSi.LFGFi)× (LTi.LFGTi)
×(LLHi.LLHSi.LFGLHi)× (LRHi.LRHSi.LFGRHi) (3)

The chief advantage of detection in a video sequence lies in the tracking
framework where the search space is localised in subsequent frames, thereby
reducing the number of false detections, the number of hypotheses assessed by
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RANSAC, and therefore improving speed performance. An initial face detection
is conducted as before, with consequent body part detections limited by the
heuristic proximity rules as defined in section 3.1. Subsequent position and scale
variations of each detector are governed by prior detections. Should a body part
fail to be detected, the search region for the corresponding detector is increased
linearly and the scale is adjusted by a Gaussian drift term until the detector
recovers.

5 Estimating the 3D Pose

Once an upper body assembly is selected, we estimate the corresponding 3D pose
by matching the silhouette and edge map of the user to those of the animated
3D avatar.

5.1 Data Acquisition

Using a 3D graphics package, a skeleton is skinned with a generic human mesh
to resemble a person wearing loose fitting clothing and rendered using cell shad-
ing. A rendered model with one colour level resembles a simple silhouette. We
therefore colour the respective body parts independently to preserve edges be-
tween different limbs and the body. The left and right hands are coloured blue
and yellow respectively to provide independent labelling. Only the upper body
is rendered by assigning the lower body a transparent material.

A single target camera (a camera whereby the camera-to-target distance
remains fixed) is then attached to the chest bone of the skeleton, and is allowed
to roll in accordance with it. The skeleton is then animated and rendered with
a variety of movements using motion capture data (5000 frames), yielding a
database of 2D frontal view images (Frontal View Database) of an upright upper
body that has a fixed scale, and is centred at position P (Figure 2 (a)).

Subsidiary Datasets. The images of the Frontal View Database are then
used to produce a hierarchy of three subsidiary databases. These are computed
offline, and are loaded in when the application is executed. All examples in these
databases are indexed according to the original frontal image database and the

(a) (b) (c)

Fig. 2. (a) Frontal 2D representation of 3D model (b) Boundary image (c) Edge map
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corresponding pose configuration data that generated it. From parent down: 1)
Hand Position Database. This consists of the 2D positions of the left and
right hands that are obtained by determining the centroid of the blue and yellow
(hand) regions of each frame. 2) Silhouette Database. This is easy to create
as the background of each example is black. The boundary of silhouette images
are efficiently stored as entry and exit pairs for each row of the silhouette. This
representation also offers a fast and efficient method of comparison to the input
silhouette, which is represented as an integral image (see Section 5.4). 3) Edge
Map Database. Conducting an edge detection on the cell shaded and multi-
coloured model provides clean edge images (Figure 2 (c)). Again, to conserve
memory, only the edge locations are stored.

5.2 Input Image Adjustment

The sections below discuss the processes that occur at run-time, after the sub-
sidiary databases have been loaded. Referring to an example of the Frontal View
Database (Figure 2 (a)), the length from the top of the head to the neckline H ,
is constant across all examples, and is used as the reference point with which to
scale the input image. Position P and length H are pre-computed.

Comparing the Frontal View Database and its subsidiaries to the input image
requires that the input image foreground exists in same spatial domain (see
Figure 3 (b)). To do this, the input image neck centre IP and head length
IH must be determined. The assembled body determined in Section 4 provides
the dimensions of the face, from which the skeletal unit length is approximated
(Section 3.1).

The scale factor is determined by S = IH/H , and the offset from P to IP is
determined by offset = P−IP/S. The input image is scaled and translated in a
single pass, creating the adjusted input image (AdjIm) of Figure 3 (b). We then
extract an input silhouette IS and edge map from this adjusted input image.

5.3 Extracting Subsidiary Database Examples

Before conducting silhouette matching, we initially extract a subset of the Sil-
houette Database by considering the user’s hand positions. Using the left and
right hand bounding boxes provided by the tracking algorithm as reference, we

(a) (b) (c)

Fig. 3. Input Image: (a) Original (b) Adjusted (c) Integral image / boundary overlap
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search through the Hand Position Database for hand positions that are simul-
taneously contained by these bounding boxes, and extract the corresponding
examples from the Silhouette Database. This too can be precomputed by index-
ing examples in the database to the gaussian components of the GMM used in
the pose likliehood. From the possible examples identified; a matching score is
therefore calculated for each example as per Section 5.4.

5.4 Silhoutte Matching Using Integral Images and Chamfer
Matching

We determine a set of matching scores for the Slihouette Database subset by
computing the percentage pixel overlap between the input silhouette and each
example. The matching procedure is made more efficient by using an integral
image II as an intermediate representation of the input silhouette IS.

The II encodes the shape of the object by computing the summation of
pixels on a row by row basis. The value of the II(x, y) equals the sum of all the

non-zero pixels to the left of, and including IS(x, y):II(x, y) =
x∫

i=0
IS(i, y)di.

The entire II can be computed in this manner for all (x, y), however for
efficiency we compute this incrementally: ∀x, y II(x, y) = IS(x, y)+ II(x− 1, y)
Figure 3 (c) offers a visualisation of the integral image of the input silhouette
(extracted from Figure 3 (b)), with a silhouette boundary example of the Sil-
houette Database superimposed. Referring to Figure 3 (c), the number of pixels
between boundary pair (y, x1) to (y, x2) is computed as NB(y) = x2−x1+1. The
number of pixels of the input silhouette for the corresponding range is therefore
computed as NIS(y) = II(y, x2) − II(y, x1) + 1 ,where

∑
NB and

∑
NIS are

computed for all boundary pairs, and the matching score is therefore computed
as S =

∑
NIS/

∑
NB. This score is computed in a few hundred operations;

considerably less than tens of thousands of pixel-pixel comparisons.
A matching score is computed for each example of the Silhouette Database

subset, the top 10% of which are compared to the corresponding edge maps
from the Edge Map Database using Chamfer Matching [1]. To achieve this, the
distance transform [2] of the input edge image (Figure 4 (a)) is obtained to
‘blur’ the edges (Figure 4 (b)), where the intensity of a distance transform pixel
is proportional to its distance to an edge. We then superimpose the example

(a) (b) (c)

Fig. 4. (a) Edge image (b) Distance image (c) Chamfer match
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edge map on the distance image, and determine the edge distance – the mean
of the distance image pixel values that co-occur with example edge maps. The
example that yields the shortest distance represents the best match, and is used
to access the 3D data from the original database.

6 Results

Comparison of the different part detectors is a difficult task. The most obvious
problem is that each part is of different scale, and we would therefore expect a
larger number of false hand detections than false torso detections for example.
Our in-house face database consists of colour images containing 500 faces, and is
similar in size to the MIT-CMU face database (507 faces). The torso were tested
on 460 (of 900) images of the MIT pedestrian database, while the hand detector
was tested on a colour image database containing 400 hands. Figure 6a shows the
detection performance of the detectors applied to their respective test datasets,
where layers from the classifier are removed to increase the detection rate. In
this research, detection is considered true if at least 75% of its bounding box
encloses the groundtruthed body part. In addition, we do not merge overlapping
false detections as in [12]. We have plotted two curves for the face detector to

Fig. 5. Top row (from left): All detections, Reduced detections and Final Assembly.
Middle Row: Body part assembly from a video sequence. Bottom row (from left):
synthesised leg positions due to leg detection failure, synthesised hand positions due
to hand occlusions, detections for non-frontal body and face poses.
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Fig. 6. Detector performance on (a) test databases (b) video sequence (c) simulated
occlusions of body parts

show the advantage of including colour. The face detector proves to be the most
robust of the detectors, since the face is a self contained region. Other body parts
are affected by background clutter and have a greater variability in appearance.
Due to the high variability of hand shape, we expect the hand detector to offer
the poorest performance.

Making use of the ROC curves plotted for each detector, the desired num-
ber of layers was chosen such that the probability of detecting all objects was
no less than 80%, with the trade-off of an increased number of false detections.
The initial detections from the body part detectors are rapidly eliminated using
RANSAC and the heuristic, before being narrowed down to the body configu-
ration with the largest likelihood as determined by the joint-likelihood model
as shown in Figure 5 (top row). The entire process from detection to assembly
takes approximately 5 seconds on a P4, an improvement over [8], which takes 10
seconds and does not include hand detection.

The middle row of Figure 5 illustrates the body part assembly of a subject
walking into an office and performing hand gestures using background segmen-
tation as described in Section 4. The scene is particularly complex with wooden
furniture and cream walls, thereby yielding poor background segmentation. Our
assembly system overcomes these difficulties and operates at 8 frames/sec
(frames sized at 640x480), a considerable improvement from the static image
case. For completeness, elbow positions that have been determined by statisti-
cal inference [7] are given. A corresponding performance curve for this sequence
is given (Figure 6b). To maintain consistency with the performance curves of
Figure 6a, each frame of this sequence was treated as a discrete image, with the
search space encompassing the entire image. However, to illustrate the benefit
of background suppression, the hand detector includes the foreground fitness,
and offers similar performance to the torso detector. In using a sequence the
performance of the assembly method on a full subject could be evaluated. As
expected, the assembly curve supersedes the others, illustrating the robust false
part elimination of the assembly methodology.

To test our method for tolerance to occlusions, an increasing number of body
parts detections were deliberately removed randomly at each frame. The number
of correct assembly body configurations found across the entire video sequence
was calculated, repeated 5 times and the mean result of correct assembly vs per-
centage of removed body parts obtained (Figure 6c). The black plot is the output
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Fig. 7. Frontal pose with corresponding 3D model

from using a tracking framework where the detection window for each part is
limited. The red plot treats each frame independently and has lower performance
due to increased ambiguities. Also illustrated is how other cases of occlusions
and non-frontal body poses through synthesis of missing parts are handled (Fig-
ure 5(bottom row)). Figure 7 shows the selected body assembly of subjects from
various sequences and its representative CG model. The frames are captured at
320x240, and runs at 16 frames/sec. Comparison of the various scenes shows the
matching method to be invariant to the user’s scale and position.

7 Conclusions

We have extended an existing boosting technique for face detection to build
two additional body part detectors. Due to the variability of these body parts,
their detection performance is lower, and a technique was developed to elimi-
nate false detections. By combining a coarse body configuration heuristic with
RANSAC and an a priori mixture model of upper-body configurations, we are
able to assemble detections into accurate configurations to estimate the upper
body pose. When this approach is applied to a video sequence, exploitation of
temporal data reduces the false detection rate of all the detectors, and improves
speed performance dramatically. We have also been successful in matching a cor-
responding 3D model to the selected body part assembly. Matching by example
does however require a large example dataset, and we have therefore stored our
datasets in their simplest forms. These simple representations Examples from
the large example dataset, were stored in their simplest forms, for fast access,
contributing efficiency to the fast matching methods employed. Furthermore, the
hierarchical structure restricts analysis to subsets of the subsidiary databases,
thereby contributing to the real-time aspect of the approach.
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Abstract. Gait analyses have recently gained attention as methods of
identification of individuals at a distance from a camera. However, ap-
pearance changes due to view direction changes cause difficulties for
gait recognition systems. Here, we propose a method of gait recognition
from various view directions using frequency-domain features and a view
transformation model. We first construct a spatio-temporal silhouette
volume of a walking person and then extract frequency-domain features
of the volume by Fourier analysis based on gait periodicity. Next, our
view transformation model is obtained with a training set of multiple
persons from multiple view directions. In a recognition phase, the model
transforms gallery features into the same view direction as that of an in-
put feature, and so the features match each other. Experiments involving
gait recognition from 24 view directions demonstrate the effectiveness of
the proposed method.

1 Introduction

There is a growing necessity in modern society for identification of individuals
in many situations, such as from surveillance systems and for access control.
For personal identification, many biometrics-based authentication methods are
proposed using a wide variety of cues; fingerprint, finger or hand vein, voiceprint,
iris, face, handwriting, and gait. Among these, gait recognition has recently
gained considerable attention because gait is a promising cue for surveillance
systems to ascertain identity at a distance from a camera.

Current approaches of gait recognition are mainly divided into model-based
and appearance-based ones.

The model-based approaches extract gait features such as shape and motion
by fitting the model to input images. Some methods [1][2] extracted periodical
features of leg motion by Fourier analysis. Bobick et al. [3] extracted parameters
of shape and stride. Wagg et al. [4] extracted static shape parameters and gait
period with an articulated body model, and Urtasun et al. [5] extracted joint
angles with an articulated body model. Those model-based approaches often
face difficulties with model fitting or feature extraction.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 151–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Appearance-based approaches directly analyze images and extract features
without body models. Sarkar et al. [6] proposed direct matching of silhouette im-
age sequences as a baseline algorithm. Murase et al. [7] represented a gait image
sequence as a trajectory in an eigen space and matched the trajectories. Ohara et
al. [8] and Niyogi et al. [9] constructed a spatio-temporal volume (x-y-t volume)
by combining gait images and matched features extracted from the volume. In-
deed, many gait features are proposed as being useful [10][11][12][13][14][15][16].

One of the difficulties facing appearance-based approaches is that appearance
changes due to a change of the viewing or walking directions. In fact, BenAb-
delkader [17] and Yu et al. [18] reported that view changes caused a drop in gait
recognition performance.

To cope with the view changes, Shakhnarovich et al. [19] and Lee [20] pro-
posed methods to synthesize an image for a virtual view direction using a visual
hull. However, this method needs images taken synchronously from multiple view
directions for all subjects and then necessitates the use of a multi-camera system
or for there to be a solution to the troublesome problem of frame synchroniza-
tion. Kale et al. [21] proposed a method to synthesize arbitrary-view images
from a single-view image with perspective projection by assuming gait motion
occurs in a sagittal plane. This method, however, does not work well because
self occlusion occurs when an angle formed by an image plane and the sagittal
plane is large.

To overcome these defects, we exploit a view transformation model (VTM)
for appearance-based gait recognition. In the proposed method, once we obtain
a VTM using a training set, made up of images of multiple subjects from mul-
tiple views, we can make images of a new subject taken from the multiple view
directions by transforming a single-view image of the new subject.

In other computer vision areas, many methods have achieved adaptation to
view direction changes with VTM. Mukaigawa et al. [22] applied the model to
face image synthesis with pose and expression changes, and Utsumi et al. [23]
applied it to transform images with pose and view changes.

However, these approaches just transform a static image into another sta-
tic image; gait analysis, on the other hand, treats not a static image but a
spatio-temporal volume. View transformation from a volume into another vol-
ume, though, causes troublesome problems such as frame synchronization. To
overcome this, we first extract frequency-domain features from a spatio-temporal
gait silhouette volume (GSV), and then we apply the VTM for frequency-domain
features. Note that the use of the frequency-domain features releases us from
the need for frame synchronization when view transformation and matching are
performed.

The outline of this paper is as follows. We describe the construction of a GSV
in section 2, and the matching of a GSV in section 3. Then, adaptation to view
direction changes is addressed with the formulation of our VTM in section 4,
and experiments of gait recognition from various view directions are shown in
section 5. In section 6, we present our conclusions and indicate future works.
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2 Construction of a GSV

2.1 Extraction of Gait Silhouette Images

The first step in constructing a GSV is to extract gait silhouette images; to do this,
background subtraction is exploited. Background subtraction, however, some-
times fails because of cast shadows and illumination condition changes (see
Fig. 1 (a) (b)). To avoid such difficulties, we execute a temperature-based back-
ground subtraction using an infrared-ray camera (NEC TH1702MX) instead of a
conventional color camera. The infrared-ray camera captures 30 frames per second
sized at 320 × 240 pixels. Figure 1(c) is an input image taken by the infrared-ray
camera. In it we can see that the temperatures of a person are higher than those of
the background; therefore we can extract clear regions as a gait silhouette image
(see Fig. 1(d)). Here, for simplicity we assume only one person exists in the image,
thus we keep only the largest connected region as the person.

2.2 Scaling and Registration of Silhouette Images

The next step is scaling and registration of the extracted silhouette images. First,
the top, the bottom, and horizontal center of the regions for each frame are

(a) Input image
with color camera

(b) Background
subtraction

(c) Input image
with infrared-ray

camera

(d) Background
subtraction

Fig. 1. Comparison of background subtraction between color camera and infrared-ray
camera (In (c), brighter colors indicate higher temperature))

(a) time slice images (x-y plane, every 3 frames)

(b) horizontal slice image (t-x plane at y = 27)

(c) vertical slice image (t-y plane at x = 6)

Fig. 2. An example of GSV
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obtained. The horizontal center is chosen as the median of horizontal positions
belonging to the region. Second, a moving average filter of 30 frames is applied to
those positions. Third, we scale the silhouette images so that the height can be
just 30 pixels based on the averaged positions, and so that the aspect ratio of each
region can be kept. Finally, we produce a 20 × 30 pixel-sized image in which the
averaged horizontal median corresponds to the horizontal center of the image.

We show an example of a constructed GSV in Fig. 2 as time slice (x-y plane),
horizontal slice (t-x plane), and vertical slice (t-y plane) images. We can confirm
gait periodicity from Fig. 2(b), (c).

3 Matching of a GSV

3.1 Gait Period Detection

The first step for matching is gait period detection. We calculate the normalized
autocorrelation of a GSV for the temporal axis as

C(N) = x,y
Ntotal−N−1
n=0 ggsv(x, y, n)ggsv(x, y, n + N)

x,y
Ntotal−N−1
n=0 ggsv(x, y, n)2 x,y

Ntotal−N−1
n=0 ggsv(x, y, n + N)2

,

(1)

where C(N) is the autocorrelation for the N frame shift, ggsv(x, y, n) is the
silhouette value at position (x, y) at the nth frame, and Ntotal is the number of
total frames in the sequence. We set the domain of N to be [20, 40] empirically
for the natural gait period; this because various gait types such as running, brisk
walking, and ox walking are not within the scope of this paper. Thus, the gait
period Ngait is estimated as

Ngait = arg max
N∈[20,40]

C(N). (2)

3.2 Extraction of Frequency-Domain Features

As mentioned in the introduction, we use frequency-domain features based on
the gait period Ngait as gait features to avoid troublesome frame synchronization
when matching and view transformations are executed. First we pick up the
subsequences {Si}(i = 1, 2, ..., Nsub) for every Ngait frames from a total sequence
S. Note that the frame range of the ith subsequence Si is [iNgait, (i+1)Ngait−1].
Then the Discrete Fourier Transformation (DFT) for the temporal axis is applied
for each subsequence, and amplitude spectra are subsequently calculated as

Gi(x, y, k) =
(i+1)Ngait−1∑

n=iNgait

ggsv(x, y, n)e−jω0kn (3)

Ai(x, y, k) = |Gi(x, y, k)|, (4)

where ω0 is a base angular frequency for the gait period Ngait, Gi(x, y, k) is
the DFT of GSV for k-times the gait period, and Ai(x, y, k) is an amplitude
spectrum for Gi(x, y, k).
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Fig. 3. Extracted features for every 15 degree view direction for some subjects

Direct-current elements (k = 0) of the DFT do not represent gait periodicity;
therefore, they should be removed from the features. Moreover, high frequency
elements (k > kthresh) have less intensity than lower-frequency ones and mainly
consist of noise, thus they also should be removed. In this paper, we decide
kthresh = 5 experimentally. As a result, Ai(x, y, k)(k = 1, · · · , 5) is used as the
gait feature and its dimension NA sums up to 20× 30× 5 = 3000.

Figure 3 shows extracted amplitude spectra for various view directions. The
view direction is defined as the angle formed by an optical axis and a walking
direction, as shown in Fig. 4, and in this paper the unit of the view direction is a
degree. Amplitude spectra vary widely among view directions for each subject,
and to some extent they also have individual variations for each view direction.
Moreover, we can see that all the subjects have similar common tendencies for
amplitude spectra variations across view direction changes. This fact indicates
a real possibility that the variations across view direction changes are expressed
with the VTM independently of individual variations.

optical axis

walking direction

walking person

view direction: θcamera

Image plane

virtual camera 

at opposite side

Fig. 4. Definition of view direction θ at top view
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3.3 Matching Measures

We first define a matching measure between two subsequences. Let a(Si) be a
NA dimensional feature vector composed of elements of the amplitude spectra
Ai(x, y, k). The matching measure d(Si,Sj) is simply chosen as the Euclidean
distance:

d(Si,Sj) = ||a(Si)− a(Sj)||. (5)

Next, we define a matching measure between two total sequences. Let SP

and SG be total sequences for probe and gallery, respectively, and let {SPi}(i =
1, 2, . . .) and {SGj}(j = 1, 2, . . .) be their subsequences, respectively. Gallery
subsequences {SGj} have variations in general and probe subsequences {SPi}
may contain outliers. A measure candidate D(SP,SG) to cope with them is
the median value of the minimum distances of each probe subsequence SPi and
gallery subsequences {SGj}(j = 1, 2, . . .):

D(SP,SG) = Mediani [min
j
{d(SPi ,SGj )}. (6)

4 Adaptation to View Direction Changes

We briefly describe the formulation of a VTM in a way similar to that in [23].
Note that we apply the model to the frequency-domain feature extracted from
gait image sequences while that in [23] directly applied it to a static image.

We first quantize view directions into K directions. Let am
θk

be a NA dimen-
sional feature vector for the kth view direction of the mth subject. Supposing
that the feature vectors for K view directions of M subjects are obtained as
a training set, we can construct a matrix whose row indicates view direction
changes and whose column indicates each subject; and so can decompose it by
Singular Value Decomposition (SVD) as a1

θ1
· · · aM

θ1
...

. . .
...

a1
θK
· · · aM

θK

 = USV T =

 Pθ1

...
PθK

 [v1 · · · vM
]
, (7)

where U is the KNA×M orthogonal matrix, V is the M×M orthogonal matrix,
S is the M×M diagonal matrix composed of singular values, Pθk

is the NA×M
submatrix of US, and vm is the M dimensional column vector.

The vector vm is an intrinsic feature vector of the mth subject and is inde-
pendent of view directions. The submatrix Pθk

is a projection matrix from the
intrinsic vector v to the feature vector for view direction θk, and is common for
all subjects, that is, it is independent of the subject. Thus, the feature vector
am

θi
for the view direction θi of the mth subject is represented as

am
θi

= Pθiv
m. (8)

Then, feature vector transformation from view direction θj to θi is easily
obtained as

am
θi

= PθiP
+
θj

am
θj

, (9)
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where P+
θj

is the pseudo inverse matrix of Pθj . In practical use, transformation
from one view direction may be insufficient because motions orthogonal to the
image plane are degenerated in the silhouette image. For example, it is difficult
for even us humans to estimate a feature am

90 from am
0 (see Fig. 3 for exam-

ple). Therefore, when features for more than one view direction (let them be
θj(1), . . . , θj(k)) are obtained, we can more precisely transform a feature for the
view direction θi as

am
θi

= Pθi

Pθj(1)
...

Pθj(k)


+ am

θj(1)
...

am
θj(k)

 . (10)

In the above formulation, there are no constraints for view transformation,
but each body point such as head, hands, and knees appears at the same height,
respectively, for all view directions because of the height scaling as described in
sec. 2. Therefore, we constrain transformation from a height yi to another height
yj(= yi) and define the above transformation separately at each height yi.

Moreover, we introduce a simple opposite view transformation. Let the range
of a view direction [θi, θj] be R[θi,θj ]. When a target subject is observed at a dis-
tance from a camera and weak perspective projection is assumed, the silhouette
image observed with a virtual camera at the opposite side from the view direc-
tion1 θ as shown in Fig. 4 (let the image be Iopp(θ)), becomes a mirror image of
the original silhouette image from view direction θ (let it be I(θ)). In addition,
it is clear that Iopp(θ) is the same as I(θ + 180). Hence, I(θ + 180) is trans-
formed as a mirror image of I(θ). In the same way, once the amplitude spectra
for R[0,180) are obtained, the remaining features for R[180,360) are obtained by
transformation. Thus, a training set for VTM is only composed of features for
R[0,180).

5 Experiments

5.1 Datasets

We use a total of 719 gait sequences from 20 subjects for the experiments. The
sequences include 24 view directions at every 15 degrees. The training set for
the VTM is composed of 120 sequences of 10 subjects from 12 view directions:
θ =0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, and 165. Then, we prepare
5 gallery sets: G0, G45, G90, G135, G0−90, where Gθ has 20 sequences from 20
subjects with view direction θ, and Gθi−θj is a compound gallery of Gθi and Gθj ;
that is, it has 40 sequences from 20 subjects with 2 views, θi and θj . A probe
set (test set) is composed of the other sequences except for those of subjects
included in the training set, and each sequence is indexed in advance with the
view direction because view direction estimation is easily done using a walking
person’s velocity in the image or by view direction classification with averaged

1 Note that the view direction θ is defined for the actual camera and that it is used
in common for both the actual and the virtual cameras.
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features for each view direction. In the following subsections, for convenience,
we represent a gallery transformed by eq. (9) or eq. (10), and probe with view
direction θ as Gsθ and Prθ, respectively.

5.2 Feature Transformation

For comparison, we first briefly describe image transformation by perspective
projection (PP) [21]. This method approximates that gait motion is represented
in the sagittal plane when the person is observed at a distance from a camera.
This method cannot transform images if G0 is given, thus we substitute a lon-
gitudinal plane orthogonal to the sagittal plane in such case. Moreover, in the
case of G0−90, we use the sagittal plane for R[45,135] and R[225,315] and use the
orthogonal plane for the other directions.

We show transformed features using PP in Fig. 5. We can see that the trans-
formed features whose view directions are near those of the original galleries
are relative fine (especially Gs75 and Gs105 for G90) and that the other features
differ a lot from the original features.

We show transformed features with our VTM in Fig. 6. Because G0 con-
tains relatively few features, the transformed features from G0 are very poor
(Fig. 6(b)). On the other hand, the other view directions contain relatively many
features, and the transformed features (Fig. 6(c)-(f)) seem to be similar to the
original ones (Fig. 6(a)).

(a): original feature, (b)-(f): transformed features from G0, G45, G90, G135, and G0−90

respectively.

Fig. 5. Transformed features with PP
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(a): original feature, (b)-(f): transformed features from G0, G45, G90, G135, and G0−90

respectively.

Fig. 6. Transformed features with VTM

5.3 Performance of Gait Recognition

We constructed a matching test using the transformed features by both PP and
VTM from the 5 above gallery sets. A probe is assigned verification when eq. (6)
is above a certain threshold value, and a Receiver Operating Characteristics
(ROC) [24] curve is obtained by plotting pairs of verification rate and false
alarm rate for various threshold values. The tests are repeated for different 20
training sets and the averaged performance evaluated by the ROC curve shown
in Fig. 7. In this graph, probes are limited to Pr0, Pr45, Pr90, and Pr135 for
visibility.

It is clear that the probes with the same view direction as the gallery have
very high performances for all galleries. Then, as seen from the transformed
features in the previous subsection, the performances for G0 are very poor for
both PP and VTM. In the other galleries, Pr135 for G45 and Pr45 for G135 in PP
have relatively high performances; which is why the transformed features for the
view directions θ and (180− θ) become the same in the case that gait motion is
completely symmetric with a phase shift of a half of the gait period. Except for
this point, the performances of the VTM are better than those of PP, especially
in G0−90 (Fig. 7(e)).

Figure 8 shows that the verification rate at a false positive rate (PF ) is 10 % in
the ROC curves and the averaged verification rate. For view directions R[180,360),
the mirror (horizontally reversed) features are transformed as described in sec. 4.

As shown in Fig. 7, performances for G0 are very poor in both PP and
VTM. As for PP, probes whose view directions are near to those of the gallery
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%begincenter

(a) G0

(b) G45

(c) G90

(d) G135

(e) G0−90

Fig. 7. ROC curves of gait recognition performance for PP (left side) and VTM (right
side). Legend marks are common in all graphs.
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(a) G0 (b) G45

(c) G90 (d) G135

(e) G0−90 (f) Average performance

Fig. 8. Performance comparison of PP and VTM with verification rate at PF = 10 %.
Legend marks are common in (a)-(e).

have relatively high performances (e.g. Pr75 and Pr105 for G90) because the
weak perspective projection to the sagittal plane works well. In addition, probes
with advantages of symmetry (e.g. Pr135 for G45 and Pr45 for G135) also have
relatively high performances.

On the other hand, almost all of the other VTM performances except for
the above probes are superior to those of PP, especially Pr45, Pr135, Pr225, and
Pr315 in G0−90 achieve fairly good performances compared with PP. As a result,
the averaged performance of the VTM is superior to that of PP, except for G0.

6 Conclusion and Future Works

In this paper, we proposed a gait recognition method using amplitude spectra for
the temporal axis and our view transformation model (VTM). First, a walking
person is extracted utilizing temperature-based background subtraction using
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an infrared-ray camera, and the gait silhouette volume (GSV) is constructed by
scaling and registering the silhouette images. Then the gait period is detected by
normalized autocorrelation, and the amplitude spectra of the GSV are calculated
by Fourier analysis based on the gait period. After the VTM is obtained with
a training set of multiple subjects from multiple view directions, the features of
various view directions can be made by transformation from features of one or
a few of the view directions. We made experiments using 719 sequences from 20
subjects of the 24 view directions. As a result, the proposed methods achieve
higher performance than the previously proposed perspective projection (PP)
method.

Future works are as follows.

– Combination of VTM and PP for better view change adaptation.
– Experiments for a general database, such as the HumanID Gait Challenge

Problem Datasets [6].
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Abstract. This paper presents a method for video mensuration using
a single stationary camera. The problem we address is simple, i.e., the
mensuration of any arbitrary line segment on the reference plane using
multiple frames with minimal calibration. Unlike previous solutions that
are based on planar rectification, our approach is based on fitting the
image of multiple concentric circles on the plane. Further, the proposed
method aims to minimize the error in mensuration. Hence we can cal-
culate the mensuration of the line segments not lying on the reference
plane. Using an algorithm for detecting and tracking wheels of an au-
tomobile, we have implemented a fully automatic system for wheel base
mensuration. The mensuration results are accurate enough that they can
be used to determine the vehicle classes. Furthermore, we measure the
line segment between any two points on the vehicle and plot them in top
and side views.

1 Introduction

Mensuration in image and videos has been studied as an interesting problem
with many applications. It has two stages: spatial localization and estimation of
dimension. The spatial localization stage estimates an object’s position relative
to the environment, e.g., the ball’s position with respect to the goal post can be
used to determine whether a goal has been scored in a soccer game [1]. Since
the object’s location changes with time, generally multiple concurrent views
are needed. Determining the dimension involves the estimation of the distance
between two points on the same rigid object [2]. It has received more attention
since the results can be used to recognize or identify the object itself. As the
two points are invariant relative to the object in the world system, evidences
accumulated using multiple frames always improve the mensuration result.

Mensuration requires less calibration information compared to 3D reconstruc-
tion problems. A common setup includes one or more parallel reference planes.
In stationary surveillance scenarios, the reference plane generally refers to the
ground. Minimal calibration [3], defined as the combination of the vanishing line
of the reference plane and vertical vanishing point, is assumed to be available.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 164–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The objective is to estimate the ratio of lengths between two parallel line seg-
ments in the world system. If one of them has a known length, the length of
other can be calculated.

Unlike existing approaches, we consider the lengths of line segments that
are nonparallel in multiple frames under minimal calibration. Our method can
be briefly described in three steps: (1) moving the line segments in parallel to
share a common point; (2) fitting ellipses through the other end points under
concentric constraints; and (3) calculating the ratio of lengths from the fitting
parameters. We then extend the method to measure any line segments that do
not lie on the reference plane.

Surveillance applications require the recognition of vehicles as well as human
beings. Since different types of vehicles appear similar (e.g., BMW 3 and BMW
5), distinguishing among vehicle classes is very important. We have built a men-
suration system for vehicles using the result of a wheel detection and tracking
algorithm. Based on the color difference between the black tire and the silver
wheel cover, wheels are extracted using an intensity threshold. An algorithm for
measuring the wheel base, the distance between two wheel centers on the same
side, is implemented and the result is used for mensuration of other parts of the
vehicle.

The rest of the paper is organized as follows: Section 2 discusses related
work. Section 3 introduces the basic idea of mensuration, the algorithm and
error analysis. Section 4 describes the mensuration system for determining the
wheel base of vehicles. Section 5 presents real video experiments results.

2 Related Work

Mensuration and related problems have been studied for more than ten years.
It is well known that the ratio of two line segments can be recovered when the
camera’s parameters (intrinsic and extrinsic) are known. To simplify the prob-
lem, many assumptions have been made, such as: unit aspect ratio, zero skew
and coincidence of principal point and the image center. Caprile and Torre, in
their classical work, developed an algorithm to compute the focal length and
projection matrix using the properties of vanishing points from a single view [4].
Liebowitz and Zisserman presented a two-step algorithm to rectify the perspec-
tive images of planes [5]. The first step estimates the vanishing line by detecting
vanishing points, and transforms the image from projective to affine. The second
step transforms the image from affine to metric using three constrains. Triggs
presented a systematic error analysis [6] for autocalibration from planar scenes.
Criminisi, et al. considered the estimation of height from an uncalibrated im-
age [3] using projective geometry and cross-ratio, which have become popular in
height estimation. In their subsequent work [2], the idea is extended to multiple
reference planes. Kim, et al. calibrated a camera using a pattern of concentric
circles [7]. Chen rectified a planar metric by obtaining the absolute conic from
a projected circle and the vanishing line. [8]. Given two sets of perpendicular
lines, Wang et al. measured the line segments on the reference plane without
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rectification [9]. Moons et al. presented an algorithm for recovering the 3D affine
structure from two perspective views taken by a camera undergoing pure trans-
lation [10]. Assuming that the focal lengths are constant, Hartley developed an
algorithm based on matrix factorizations for self calibration [11]. In the context
of video mensuration, Lv et al. proposed an algorithm for calibrating a station-
ary camera from a video using walking humans [12]. Stauffer et al. built a linear
model to normalize objects size in a video [13]. Bose and Grimson rectified the
plane by tracking objects moving on a straight line with constant speed [14].

Existing mensuration approaches rely on parallel line segments, which is not
practical in video. Although sometimes mensuration can be solved by other meth-
ods such as rectification, those algorithms estimate global parameters, which may
not be optimal to a specific object. The simplest problem of video mensuration
can be stated as:

Problem 1. Given a reference length on the reference plane in multiple frames, es-
timate the length of any line segment on the reference plane (in multiple frames).

This problem cannot be solved using a single frame. It can be proved that at
least three reference lengths are needed. First, we present the solution based on
three frames and then show how more frames can be used. Combining the probe
and reference lengths together, we obtain the ratio between the two lengths
by fitting two concentric ellipses; our solution is computationally efficient and
optimal. Using the results of wheel centers detection and tracking algorithm,
mensuration results are provided for measuring the wheel base of cars.

3 Algorithm

In the rest of the paper, we use upper case letters to indicate points in the
world system and the corresponding lower case letters for their images. A line
segment with endpoints P and Q is denoted as PQ and its length is denoted as
‖PQ‖. The reference plane is labelled as R, its vanishing line as L. The vertical
vanishing point is denoted as z.

3.1 Lemmas on Projective Geometry

We present two lemmas:

Lemma 1. Given four collinear points m, n, p and q in the image plane and
the vanishing point v along this direction. Let dk stand for ‖vk‖ for k = m, n,
p and q. The ratio between two line segments ‖MN‖ and ‖PQ‖ can be written
as:

r =
‖MN‖
‖PQ‖ =

dp

dm

dq

dn

(dm − dn)
(dp − dq)

(1)

Lemma 1 can be easily proved using the property of cross-ratio.
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o

m

n

k

p q

the vanishing line L

Fig. 1. An illustration of Lemma 2. mn is parallel moved to ok, where o is given and
k is unknown. p and q are two points on the vanishing line.

Lemma 2. Given a line segment mn and a point o, let mn and mo intersect
the vanishing line L at points p, q respectively. Denote the intersecting point of
lines nq and op as k (see Fig. 1). In the world system, OK is parallel to MN
and ‖OK‖ = ‖MN‖.

Proof. Because p and q are vanishing points, OP and MN are parallel, and NQ
and MN are parallel. MNKO forms a parallelogram, so ‖OK‖ = ‖MN‖ ��

k can be represented using the dot product as:

k =
(n • L)(o • L)m − (m • L)(n • L)o− (o • L)(m • L)n

(n • L)(o • L)− (m • L)(n • L)− (o • L)(m • L)
(2)

Lemma 2 enables the parallel move of a line segment MN in the world system
so that M maps to a given point O and N to an unknown point K. The image
of K can be localized in the image plane using the image of other three points.

3.2 Reference Length in Three Frames

We consider a simplified problem

Problem 2. Given the reference length ‖MN‖ = 1 on the reference plane in
three frames as mini (i = 1, 2, 3), estimate the length of any line segment OP
on the reference plane using one frame.

‖OP‖ can be acquired using the following steps:

1. Localize ki on the image plane using the method in Lemma 2, such that
OKi is a parallel move of MiNi in the world system.

2. Estimate the point ki+3 on the line kio so that ‖KiO‖ = ‖OKi+3‖.
3. Fit an ellipse E passing through all the points ki (i = 1, 2, ..., 6). Denote the

intersection between line op and E as k0.
4. Calculate r = ‖OP‖ : ‖OK0‖ using the cross-ratio as the mensuration

result.
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Proof. Using steps 1 and 2, we have OKi = 1 for i = 1, 2, ..6. Ellipse E is the
image of a unit circle centered at point O in the world system. Thus OK0 = 1,
and r is the length of the probe line segment. ��
Assuming that the detected points have the same error distribution, we note
that the mensuration result of a longer line segment is likely to be better than
for shorter lines, because the estimated error compared to the length of the line
segment is relatively small. This answers why the mensuration of horizontal line
segments in the image plane is generally better than vertical ones. However, this
is not always true. It depends on the angles of the reference lengths.

3.3 Reference and Probe Lengths in Multiple Frames

Now consider the mensuration of a probe length using multiple frames while the
reference length also appears in multiple frames. This can be expressed as

Problem 3. Given a reference length ‖MN‖ = 1 in multiple frames mini (i =
1, 2, ...f) and and a probe line segment ST also in multiple frames sjtj (j =
1, 2, ...g), measure ‖ST‖.

Arbitrarily select a point on the image plane as o. Parallel move mini to opi

and sjtj to oqj ; localize pi+f on opi so that ‖OPi‖ = ‖OPi+f‖, same for qj+g .
Consider the relationship between points in the world system: ‖OPi‖ = 1

(i = 1, 2, ...2f), ‖OQj‖ = r (j = 1, 2, ...2g), and all points on the reference plane.
Denote O’s coordinate as (xo, yo), then Pi and Qi are on two concentric circles
Cp : (x − xo)2 + (y − yo)2 − 1 = 0 and Cq : (x − xo)2 + (y − yo)2 − r2 = 0
respectively. Define a trivial circular conic as

C0 =

 1 0 −xo

0 1 −yo
−xo −yo x2

o + y2
o

 (3)

which represents the single point O. We have

Cp = C0 −
0 0 0

0 0 0
0 0 1

 , Cq = C0 − r2

0 0 0
0 0 0
0 0 1

 (4)

The 3×3 matrix from the world reference plane to the image plane is denoted
as H. Then the conic in the image plane is known as E = H−�CH−1. Define
L = H−�diag(0, 0, 1)H−1. The image of concentric circles is of the form

Ep = E0 − L Eq = E0 − r2L (5)

Let the vanishing line be denoted as L = (L(1) L(2) L(3)). H−1 can be written
as

H−1 = α

 h11 h12 h13
h21 h22 h23
L(1) L(2) L(3)

 (6)
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Since E0 stands for a single point o = (xo, yo), it can be written as a0(x −
xo)2 + b0(x−xo)(y− yo)2 + c0(y− yo)2 = 0 (we ignore the restriction b2 < 4ac).
Ellipse Ep and Eq then can be written as

a0(x− xo)2 + b0(x− xo)(y − yo) + c0(y − yo)2 − αvl = 0 (7)
a0(x− xo)2 + b0(x− xo)(y − yo) + c0(y − yo)2 − βvl = 0 (8)

where β = αr2 and v = (x2 xy y2 x y 1)

l = (L(1)2 2L(1)L(2) L(2)2 2L(1)L(3) 2L(2)L(3) L(3)2)�

Define e = (a b c α β)�, a vector with components

up = ((x − xo)2 (x− xo)(y − yo) (y − yo)2 v(p)l 0 )

uq = ((x − xo)2 (x− xo)(y − yo) (y − yo)2 0 v(q)l)

The coefficient matrix is M = (up1 up1 . . . upf uq1 . . .uqg)�, and it becomes a
linear fitting problem:

Me = 0 (9)

The nontrivial least square solution is:

e = argmin‖Me‖ subject to ‖e‖ = 1

It can be solved by performing a Singular Value Decomposition (SVD), M =
USV� where e is the singular vector corresponding to the smallest singular value
of M [15].

After determining α and β, the length of the probe line segment can be
calculated directly from

r =
√

β/α (10)

This method also works for mensuration of multiple line segments by esti-
mating α, β, and γ, etc.

Algorithm in noisy environments. The above algorithm assumes that reference
(probe) lengths are equally important during the fitting process. The real case is
that the noise from each detected endpoint is independent identically distributed.
The perturbation of ki due to the noise can be derived using (2), which is
decomposed into two parts: the one tangent to the ellipse, ti, the one normal to
the ellipse, ni. Since ti does not affect the fitting result, only ni is considered.
The mensuration algorithm can then be modified as follows:

1. Fit the two ellipses using M as described before.
2. Calculate the perturbation of the reference and probe lengths along with the

normal direction of the fitted ellipses.
3. Estimate the total errors of each probe, denoted as ni

4. Refit the two ellipse using a new matrix M′. Each row of M′ is constructed by
the row of M times a factor fi ∼ 1/ni.
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The algorithm actually gives a weight to each point during fitting, which
is inversely proportional to the perturbation. The Expectation-Maximization
(EM) algorithm may be applied: the E-step is for estimating the errors from the
ellipses; and the M-step for fitting the ellipses to minimize the errors. However,
experiments have shown that the EM algorithm may not be necessary as one
iteration often produces acceptable results.

3.4 Arbitrary Line Segment Mensuration

We briefly discuss the mensuration of line segments not lying on the reference
plane, given a line segment on the reference plane as a reference. Since the
reference lengths can be freely parallel moved on the reference plane, the problem
can be restated as:

Problem 4. Given a reference line segment mini, estimate the length of mipi.

Let Q be the projective point of P onto R. From the results of last section,
mq can be measured using mn. The mensuration of pq can be obtained us-
ing Criminisi’s method [3]. ‖MP‖ can be achieved using the Pythagoras’s rule:
‖MP‖ =

√‖MQ‖2 + ‖PQ‖2. This problem reduces to localizing the projective
point q on the image plane.

Simplified Case. We first study a simplified version of the problem by adding a
constraint to point P:

Problem 5. Given a reference line segment mn, estimate the length of mp, under
the constraint that the plane formed by M,N, and P is perpendicular to the
reference plane R.

Let the lines mn and pz interest at q, where z is the vertical vanishing point.
Point q is the projective point because (1) the line PQ is perpendicular to R as
it passes through the vertical vanishing point and (2) Q lies at the intersection
of plane MNP and plane R.

General Case. To solve problem 4 at least two frames are required.

Theorem 1. Given reference lengths mini (‖M1N1‖ = ‖M2N2‖) and a point
q1on the reference plane R, a point q2 can be localized so that ‖Q2M2‖ =
‖Q1M1‖ and � Q2M2N2 = Q1M1N1.

Proof. Draw an ellipse Em so that for any point x on Em, ‖XM2‖ = ‖Q1M1‖;
ellipse En so that for any point x on En, ‖XN2‖ = ‖Q1N1‖. Denote the inter-
section point of the two ellipses as q2. We have �M2N2Q2 � �M1N1Q1, thus
q2 satisfies the requirement. ��
Theorem 1 actually suggests a rotation operation on the reference plane. We can
then obtain q from two frames by: rotating frame 1 to 1’ so that m′

1 = m2 and
n′

1 = n2. The vertical point z then becomes z′. The intersection point of z′p′
1

and zp2 is q2 = q′
1 (see Fig. 2), since during the rotation, q is always on the

line pz. A mensuration method from multiple frames can then be described as:
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1. Denote MN’s midpoint as K, find Ki in each frame.
2. Properly rotate each frame, so that k′

i = k0 and m′
in

′
i is parallel to x-axis.

Here k0 is any fixed point.
3. Localize the point q0 which minimizes the distance to z′ip

′
i:

q0 = argminq dist2(q, z′ip
′
i).

4. Project q0 to z′ip
′
i as q′

i.
5. Estimate ‖M′

iP
′
i‖ through q′

i and combine the result.

m
1

n
1

m
2
(m’

1
) n

2
(n’

1
)

p
1

p
2

z
z’

p’
1

q
2
(q’

1
)

Fig. 2. Illustration of Theorem 1. Red dashed and blue solid indicate frames 1 and 2
separatively. The black dash dot line is the transformed frame 1.

4 System Implementation

In this section we discuss the implementation details for a wheel base mensura-
tion system.

4.1 Wheels Detection and Tracking

After background subtraction [16], we estimate the vehicle’s direction of motion
using optical flow. We attach a system of skew coordinates to the moving vehicle
(x′, y′). x′ is along the direction of motion, as shown in Fig. 3. Since the tire
of a vehicle is always black and the wheel cover is silver or gray, even a simple

 x ’

 y ’

Fig. 3. Skew coordinate using vehicle’s moving direction
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intensity filter can separate the wheel cover from the tire. We gradually raise the
threshold and remove pixels whose intensity is lower than the threshold from
the foreground vehicle mask. The whole mask breaks into pieces step by step.
The threshold stops increasing when two similar blobs appear at the bottom
(with low y′). These two blobs are treated as the mask of wheel covers. The
centers of the blobs are used as the detected wheel centers.

The algorithm to track wheels uses the same idea. To speed up the procedure,
the initial threshold of the current frame is set as the threshold from the previous
frame after subtracting a small value. The detected region focuses on the previous
wheel center location and the shift of the vehicle center. After detection, the
wheel centers can be tracked in near realtime.

4.2 Minimal Calibration

Without assuming the presence of parallel lines or a moving object along a
straight line, the wheel base itself is used to estimate the vanishing line. Our
algorithm includes two approaches.

Approach One. We first use a simplified camera model by assuming unit aspect
ratio, zero skew, and coincidence of the principal point and the image center.
Then the vanishing line is determined by the only unknown intrinsic parameter:
the focal length f , and two other extrinsic parameters: the elevation angle θ
and the rotation angle φ. The transform matrix from the reference plane to the
image plane can be written as:

H =

 cos(φ) − sin(φ) cos(θ) 0
sin(φ) cos(φ) cos(θ) 0

0 sin(θ) l

 (11)

The vanishing line is

L = (− sin(φ) sin(θ) cos(φ) sin(θ) − f cos(θ)) (12)

Since the inverse transform can be written as H−1 = SAP, where S, A and P are
similarity, affine, and perspective transform matrices respectively, with structure
as [5]

A =

 1
β −α

β 0
0 1 0
0 0 1

 , P =

 1 0 0
0 1 0
L(1) L(2) L(3)

 (13)

By comparison, (α, β) can be solved as

α =
cos(φ) sin(φ) sin(θ)

cos2(θ) cos2(φ) + sin2(φ)
, β =

cos(θ)
cos2(θ) cos2(φ) + sin2(φ)

(14)

If the vanishing lineL is known, φ can be obtained from tan(φ) = −L(1)/L(2).
P can be applied to the end points of the wheel base. Assume that the resulting
wheel bases in two different frames are joined by (xi1, yi1) and (xi2, yi2) (i = 1, 2
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is the frame number). Using the constraint that the two wheel bases are of the
same length in the world system, Liebowitz proved the following condition [5]: In
2D complex space with α and β as real and imaginary axes respectively, the point
(α, β) lies on a circle with center (cα, 0) and radius r.

cα =
δx1δy1 − δx2δy2

δy2
1 − δy2

2
, r =

∣∣∣∣δx2δy1 − δx1δy2

δx2
1 − δt22

∣∣∣∣ (15)

where δxi = xi1 − xi2, δyi = yi1 − yi2. Using (14), θ can be solved by

cos2 θ = − cos2 φ− r2 sin φ− 2cα cosφ sin φ + c2
α sinφ

sin2 φ− r2 cos2 φ + cα cosφ sin φ + c2
α cosφ

. (16)

Since the wheel base appears in multiple frames, each pair of two (if they
are not parallel) can be used to solve for cos2 θ. If the vanishing line is correct,
all the estimated results of cos2 θ should be same or very close to each other;
otherwise, the result should be different from each other. We use the variance
to indicate how close the results are. The vanishing line can then be coarsely
estimated using the following steps:

1. Select those wheel base pairs, which are unlikely to be parallel in the world
system

2. Guess the vanishing line L. Note that in a video sequence, as φ normally is
close to 0, only the small slope of the vanishing line is considered.

3. Estimate cos2 θ from each pair, and calculate its variance var(cos2 θ)
4. Choose the best vanishing line with minimized var(cos2 θ) from all of them.

Denote the vanishing line as L

Although step 2 requires a lot of examples, this algorithm is very fast and
obtains a good estimate of the vanishing line.

Approach Two. This does not require the simplified camera model assumption.
First, we prove that the vanishing line can be obtained from the image of a circle
and its center on the reference plane:

Lemma 3. Given the image of a circle on the reference plane as E with para-
meter vector e = (a b c d e f)� and the image of the circle center as o = (0, 0),
the vanishing line can be written as L = (d e 2f).

Proof. As explained in the last section, the parameter vector of the ellipse can
be written as e = e0 − αl. By comparing the elements in each vector, we have

d = 2αL(1)L(3), e = 2αL(2)L(3), f = αL(3)2 (17)

which leads to L = (d e 2f). ��
Using the above Lemma, we can refine the estimate of the vanishing line from a
start point L0 using the following steps:
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1. Let the iteration number p = 0
2. Parallel move the wheel base in frames mini using Lp so that one of their

end point shares the common point o and the other becomes ki.
3. Fit an ellipse E though ki.
4. Estimate the vanishing line, denoted as Lp+1. If Lp+1 � Lp, output Lp+1

and exit; otherwise, p = p + 1 and repeat from 2.

5 Experiment Results

The video sequences were captured using cameras located above 25 meters from
the ground. Four type of vehicles: 2004 Toyota Camry, 2001 Honda Civic, 2004
Huyndai Elantra and 2004 Ford Explorer were imaged. The frame rate is 20
frame/second and each frame has 480×720 pixels. The sample frames are shown
in Fig. 4. Samples of detected wheels are shown in Fig. 4 (e).

The probability of the mensuration result is shown in Fig. 5. From Table 1,
although Civic and Elantra are not distinguishable, the Camry vehicle can be
separated from them. The Explorer is different from Camry also. Thus the result
can be used to determine the vehicles class.

Side View and Top View. By tracking feature points on the object using the
KLT [17][18] tracker, the geometric properties of an object can be derived. We
track the window corners and rack crossing points of the Ford Explorer and
then measure their spacial locations using our method. The window corners are
assumed to form a vertical plane passing through the two wheel centers (thus
we can use the simplified method) and the rack points have no such constraint.
The initial points are manually selected.

(a) (b)

(c) (d) (e)

Fig. 4. Sample frames from outdoor sequences. (a) Toyota Camry (b) Honda Civic (c)
Hyundai Elantra (d) Ford Explorer and (e) Sample of detected wheels. The detected
wheel centers are indicated bye white crosses.
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Table 1. Wheel base mensuration results

Year/Make/Model Size/Category Ground Truth(In.) Mensuration result(In.)
2004 Hyundai Elantra compact sedan 102.7 102.83 ± 1.75

2001 Honda Civic compact sedan 103.1 103.47 ± 2.77
2004 Toyota Camry midsize sedan 107.1 108.02 ± 2.45
2004 Ford Explorer Large SUV 113.8 115.04 ± 2.32
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Fig. 5. Wheelbase mensuration probability plots

(a) side view (b) top view

Fig. 6. Mensuration of the tracked points from reference wheel base

Fig. 6 compares our result with the ground truth images from side and top
views. Major errors occur when the tracking points drift away as frames are
processed.

6 Summary

We have presented a method for video mensuration. It measures any arbitrary
line segments, including those with an angle to the reference plane. A fully
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automatic system has been developed for vehicle mensuration. We recover the
minimal calibration of the scene by tracking the wheel centers. Further, the line
segments joined by any two points on the vehicle is measured using the reference
wheel base in single or multiple frames. The wheel base mensuration is very
accurate and can be applied to classify the size of vehicles. Other mensuration
steps generate side and top views of a vehicle with decent accuracies.
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Abstract. In this paper we introduce a principled approach to modeling the im-
age brightness constraint for optical flow algorithms. Using a simple noise model,
we derive a probabilistic representation for optical flow. This representation sub-
sumes existing approaches to flow modeling, provides insights into the behaviour
and limitations of existing methods and leads to modified algorithms that out-
perform other approaches that use the brightness constraint. Based on this repre-
sentation we develop algorithms for flow estimation using different smoothness
assumptions, namely constant and affine flow. Experiments on standard data sets
demonstrate the superiority of our approach.

1 Introduction

Computing the optical flow field between images has been a central problem in com-
puter vision. Thanks to numerous investigations over the past two decades, both our
understanding of the problem and its algorithmic implementation have become increas-
ing sophisticated (see [1, 2, 3, 4, 5, 6] and references therein). Most flow algorithms are
based on the brightness constraint that is derived from an intensity conservation princi-
ple. Given two images taken at time-instants t and t + 1 and denoting the flow at pixel
(x, y) by (u, v), by conservation of intensity we have the relationship, I(x, y, t) =
I(x + u, y + v, t + 1). By expanding this function as a Taylor series we have a first-
order approximation I(x + u, y + v, t + 1) ≈ I(x, y, t) + ∂I

∂xu + ∂I
∂y v + ∂I

∂t .1 which
simplifies to Ixu + Iyv + It = 0 where Ix, Iy and It are the derivatives in the x, y and
t dimensions respectively. This relationship is known as the brightness constraint and
can be interpreted as a line in the (u, v) flow space. Since the flow at a point consists of
two values, a single brightness constraint is insufficient, i.e. flow estimation is ill-posed.
Therefore, flow is estimated by imposing additional assumptions of smoothness on the
flow field.

There are three significant issues with using the brightness constraint that need to
be addressed simultaneously in any representation. Firstly, the brightness constraint is
derived using a first-order Taylor approximation implying that the flow magnitude is
assumed to be small. However many algorithms violate this underlying assumption and

� The work in this paper was partially supported by NSF Grant IIS-03-25715 during the author’s
visit to the University of Maryland, College Park, USA.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 177–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



178 V.M. Govindu

treat the brightness constraint as an algebraic line with infinite extent1. Secondly, the in-
terpretation of the brightness constraint as a single line in the u−v space is based on the
assumption that the image derivatives observed are ‘true’ values. Thus the existence of
noise in the observed image data is not explicitly accounted for, leading to unprincipled
algorithms. Thirdly and most importantly, the derivation of the brightness constraint it-
self is based on an incorrect model where the temporal dimension is treated differently
from the spatial dimensions which introduces undesirable biases. Perhaps this derives
from the early methods which assumed that only two images were available, i.e. with
a time-step of 1. We shall demonstrate in this paper that the correct approach is to
model the spatio-temporal volume in a uniform and continuous manner and introduce
the specific discretisation of the spatio-temporal image data only as an algorithmic de-
tail. This approach immediately allows us to explain the behaviour of well-known flow
algorithms and also recast their assumptions into more accurate versions.

In this paper we simultaneously address all the three limitations mentioned above.
We systematically account for the data noise and also naturally allow for incorporation
of priors that agree with the small flow assumption. By treating the spatio-temporal
dimensions in a uniform framework, a key insight that arises is that the correct repre-
sentation for estimating image flow is not the two-dimensional vector field, but rather
its homogeneous counterpart, i.e. normalised volume-flow2. We will also show that the
popular least-squares (i.e. Lucas-Kanade) and Total Least Squares (henceforth referred
to as TLS) methods for constant flow in a patch can both be seen as specific instances
of our model. We also emphasise that an optic flow estimator consists of two compo-
nents, namely the choice of data representation (brightness constraint in our case) and
the computational model used to solve the estimation problem. Recent advances in flow
estimation have been based on increasingly sophisticated computational approaches,
eg. [4, 5, 6, 7]. In contrast this paper focuses on the choice of data representation and
not on the computational model. The representation proposed here can be incorporated
into any computational framework that uses the brightness constraint. We also point
out that important issues like robustness to data outliers and motion segmentation are
outside the scope of this paper.

2 Probabilistic Brightness Constraint

In this section we derive a probabilistic model for the image brightness constraint.
We develop our solution assuming a continuous space-time image volume. We re-
emphasise that a time-step of 1 is an artifact of image acquisition and should not in-
fluence our problem formulation. Thus, although the spatial and temporal resolutions
are different, we make an essential distinction between the model and its algorithmic

1 While multi-scale techniques exist they are designed to reduce the magnitude of the true flow in
an image. This, in principle, does not impose any constraint on the magnitude of the estimated
flow.

2 Volume-flow measures the flow field in the spatio-temporal volume and optical flow is its
projection onto the image plane. The unit-norm vector, normalised volume-flow is projectively
equivalent to optic flow and should not be confused with ‘normal flow’ which represents the
projection of optical flow in a direction orthogonal to the brightness constraint line.
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utilisation. We develop our method for continuous data and at the appropriate juncture
replace the image derivatives involved by those calculated on discrete image data. This
model is at the heart of the subsequent algorithms that we shall develop using different
smoothness assumptions.

The estimated image derivatives are represented by Id = [Ix, Iy , It]
T . We repre-

sent the error in the image derivatives using an additive Gaussian noise model, i.e.
Id = Id0 + n, where Id0 = [Ix0, Iy0, It0]

T is the true value of the derivatives and
n = [nx, ny, nt]

T is the noise term. For the sake of simplicity of presentation, we
shall in the following assume that the noise is zero-mean, independent and identically
distributed, i.e. n ∼ N(0, σ2I3) where I3 is the 3 × 3 identity matrix. However this
does not preclude the use of more general forms of noise covariance matrices since
the measurements can be whitened before applying our analysis. In general, it is re-
alistic to assume that the spatial and temporal derivatives have different covariances
due to the nature of sampling in space and time. We denote the three-dimensional
volume-flow at a point as F = [U, V, W ]T where U, V and W are the displacements
in the x, y and t dimensions respectively. The two-dimensional optical flow is the pro-
jection of the volume-flow vector F onto the x − y image plane and is denoted as
(u, v) where u = U

W and v = V
W . It will be noted that normalised volume-flow f

is given by f = F
||F || and is also projectively equivalent to the optical flow (u, v),

i.e. f ∝ [u, v, 1]T . Using the principle of image brightness conservation, we have
I(x + U, y + V, t + W ) = I(x, y, t). By a Taylor series expansion around the point
(x, y, t) we have I(x, y, t) + ∂I

∂xU + ∂I
∂y V + ∂I

∂t W = I(x, y, t) leading to

∂I

∂x
U +

∂I

∂y
V +

∂I

∂t
W = 0 (1)

which is a brightness constraint equation in three-dimensions and can be simply ex-
pressed as Id

T F = 0. It will be immediately observed here that we have an unknown
scale factor for F , i.e. Id

T F = Id
T (αF ) = 0, implying that we can only derive

F upto a scale factor. Hence we fix the scale by using the normalised volume-flow
vector, f = F

||F || . However, Eqn. 1 applies to the true image derivatives, whereas
we can only observe the estimated derivatives. Thus to define the conditional dis-
tribution of the flow given the observed image derivatives Id using the relationship,
Id0

T F = (Id − n)T
F = 0, we apply the chain rule for conditional probabilities result-

ing in

P (F |Id) =
∫

P (F |Id0)P (Id0|Id) dId0 (2)

From Eqn. 1, for the true image derivatives we note that the linear constraint implies that
only flow values that satisfy this equation are admissible. Thus the conditional probabil-
ity P (F |Id0) is described by our brightness constraint and is equal to δ(Id0

T F ) where
δ(.) is the Delta Function. Also since the true derivatives are perturbed by Gaussian
noise to give the observed derivative estimates, we can represent the conditional proba-
bility P (Id0|Id) by using the Gaussian noise prior. This is true since we can equivalently

write Id0 = Id − n. Thus P (Id0|Id) = e−
nT n
2σ2 where n = [nx, ny, nt]

T represent the
noise in the image derivatives. Consequently
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P (F |Id) =
∫

δ(Id0
T F )︸ ︷︷ ︸

P (F |Id0)

e−
1

2σ2 (nx
2+ny

2+nt
2)︸ ︷︷ ︸

P (Id0|Id)

dnxdnydnt

For, simplicity of presentation we ignore the normalisation required here to ensure that
the integral measure on the delta-function is equal to one. Expanding the constraint into
its respective terms we have Id0

T F = Id
T F − (nxU + nyV + ntW ). To solve for the

integral, we integrate out one variable (nt in this case) to derive the following

P (F |Id) =
1
|W |

∫
e−

1
2σ2 (nx

2+ny
2+ (nxU+nyV −c)2

W2 )dnxdny (3)

where c = Id
T F . This is obtained by integrating out the constraint and substituting for

nt. After some simple algebra, we can rewrite the exponential term of Eqn. 3 as the
form

(n− µ)T
R(n− µ) + µ0 (4)

with R = 1
W 2

[
U2 + W 2 UV

UV V 2 + W 2

]
, µ0 = (IxU+IyV +ItW )2

U2+V 2+W 2 . Therefore ,

P (F |Id) =
e−

µ0
2σ2

|W |
∫

e−
1

2σ2 (n−µ)T R(n−µ)dn (5)

The integral can be seen to be that of a Gaussian with a covariance of R−1 implying

that the integral is equal to |R|− 1
2 and is independent of the value of µ. Now |R| =

U2+V 2+W 2

W 2 , implying that

P (F |Id) ∝ e
− 1

2σ2
(IxU+IyV +ItW )2

(U2+V 2+W2)

√
U2 + V 2 + W 2

As observed earlier, the optical flow (u, v) is independent of the magnitude of the
volume-flow vector F , hence we can set ||F || = 1. This implies that for the homo-
geneous image flow f (or normalised volume-flow) we have

P (f |Id) ∝ e
− 1

2σ2
fT Mf

fT f (6)

where the 3× 3 matrix M is given by

M =

 Ix

Iy

It

× [
Ix Iy It

]
=

 IxIx IxIy IxIt

IxIy IyIy IyIt

IxIt IyIt ItIt

 (7)

An analysis of this distribution is instructive. If we consider a single pixel, we will
note that the probability value in Eqn. 6 is maximised when f is orthogonal to Id, i.e.
Id

T fmax = 0. Thus fmax lies in the plane that is normal to Id. However since ||f || = 1,
we have fmax confined to the surface of a unit-sphere. Therefore, the locus of fmax is a
great circle on the unit-sphere, see Fig. 1(a). As f deviates from the great circle fmax,
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(a) Single pixel constraint (b) Probability form of
constraint

(c) Projection of distribution
on image plane

Fig. 1. Representations of a brightness constraint. (a) the brightness constraint plane intersects
with the unit-sphere resulting in a great circle which is equivalent to the conventional brightness
constraint line; (b) shows the probability distribution of normalised volume-flow for a single
pixel. (c) shows the projection of the distribution in (b) on the x − y image plane. Note the
‘fuzzy bow-tie’ form of the flow distribution. The maxima of this distribution is the conventional
brightness constraint line.

the magnitude of the probability distribution decreases according to Eqn. 6. Thus the
probability distribution of the normalised volume-flow vector for a single pixel is a
Gaussian-like distribution on the unit-sphere centered on the great circle fmax as seen
in Fig. 1(b). The great circle and distribution in Fig. 1(b) can be seen to be the unit-
sphere equivalents of the brightness constraint line and a Gaussian distribution centered
on the line respectively.

However instead of considering a representation of f on the unit-sphere, the con-
ventional approach has been to use F = [u, v, 1]. If we substitute this form in Eqn. 6,

we see that the exponential term is equal to (Ixu+Iyv+It)2

(u2+v2+1) which is identical to the
TLS form used in [8, 9, 10]. In turn the equivalent probability distribution for (u, v) is
shown in Fig. 1(c) and can be seen to have the so-called ‘fuzzy bow-tie’ form [11].
As is obvious from the above analysis and the distributions of f in Fig. 1, we note
that the fuzzy bow-tie form of the flow distribution is nothing but an artifact of using
a reduced representational space for the flow information. This arises from projecting
a Gaussian-like form on the unit-sphere onto the image plane, i.e. the fuzzy bow-tie
form in Fig. 1(c) is the projection of the distribution of Fig. 1(b) onto the image plane.
Thus the fuzzy bow-tie distribution is not very illuminating and the probability form of
Eqn. 6 is desirable as it leads to more accurate flow estimates. We also point out that
our probability model is fundamentally different from that of [12] where a Gaussian
noise model is applied to the flow (instead of the image derivatives) and a Gaussian
distribution of flow on the image plane is derived. In our case the flow distribution in
Eqn. 6 is the natural representation of the information in the image derivatives and as
will be seen in the rest of the paper, this is a powerful, general representation that can
be applied to various smoothness assumptions. It is also germane to point out that in
this paper we are modeling the optic flow field based on image derivatives which should
not be confused with modeling the motion field which would depend on a taxonomy
of camera motions, zooming, rotating, translating etc. which results in specific types of
motion fields.



182 V.M. Govindu

3 Optic Flow Algorithms

In Sec. 2 we derived a probability distribution for optical flow at a pixel given its corre-
sponding image derivatives. However, since the optical flow field consists of two values
at each pixel, the probability distribution derived from a single pixel is insufficient to
determine optical flow. In particular, matrix M in Eqn. 6 for a single pixel can be seen
to be of rank one. In general, the ill-posedness of optical flow is addressed by making a
variety of smoothness assumptions on the flow field which allows us to estimate the flow
field using fewer parameters than the number of constraints available. The smoothness
assumptions can be broadly characterised as being implicitly due to a parametric model
or explicitly due to the use of a regularising smoothness term. Examples of the for-
mer are the constant flow assumption of Lucas and Kanade [3], affine flow [13, 14, 15],
whereas [2, 6] are examples of an explicit smoothing strategy. In all of these methods,
the estimation process is considerable affected by the assumption of a time-step of 1 in
the corresponding formulations resulting in bias or a greater error. By explicitly apply-
ing our probabilistic formulation to these smoothness assumptions we derive modified
algorithms that both clarify the behaviour of the conventional methods and significantly
improve their performance. In the remainder of this section we consider constant and
affine models and examine their implications for estimating optical flow.

3.1 Constant Flow

The simplest assumption for flow estimation is that of constant flow for an image patch
which is the basis for the famous Lucas-Kanade algorithm [3]. Here the brightness
constraint is represented by Ixu + Iyv + It = 0 and for a patch, the residual error is
E =

∑
k(Ix

ku + Iy
kv + It

k)2 where k denotes the index of individual pixels in the
patch. The minimiser of E is the Lucas-Kanade solution and is identical to the Ordinary
Least Squares (henceforth OLS) solution:[

u
v

]
=
[

IxIx IxIy

IxIy IyIy

]−1[−IxIt

−IyIt

]
(8)

where IxIx =
∑

k Ix
kIx

k etc. As had been noted in [16] this yields a linear, biased
estimate of the flow. The bias appears due to the implicit assumption that the temporal
derivatives are noise-free and the use of the TLS method has been suggested to over-
come this bias [8, 9]. This can also be explained using our probability distribution for
optical flow. For constant flow over a patch, using the conditional probability distrib-
ution of Eqn. 6 we have P (f |patch) =

∏
k P (f |Id

k). The flow can be estimated by
maximising the conditional probability distribution

max
f

∏
k

P (f |Id
k)⇒ min

f
e−

1
2σ2 fT ( k Mk)f (9)

The estimated flow is the smallest eigen-vector for matrix

M =
1
N

N∑
k=1

Mk =
1
N

 IxIx IxIy IxIt

IxIy IyIy IyIt

IxIt IyIt ItIt

 (10)
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where N is the number of pixels in the patch. This is identical to the TLS solution.
However, it must be pointed out that the above derivation of the Maximum Likelihood
Estimate (MLE) of flow does not incorporate a prior distribution for the flow values. As
has been noted in Sec. 1, the brightness constraint is valid only for a small deviation
from the point around which the Taylor series expansion is made, i.e. flow cannot be
large. This implicit assumption cannot be captured by treating the brightness constraint
as an algebraic equation and is often ignored. In our case, since we represent the infor-
mation at a pixel as a conditional probability distribution we can incorporate the small
flow assumption as a prior on the flow field. For the flow values to be small, we note
that since (u, v) = ( U

W , V
W ), we require the contribution of U and V to the magnitude

of the volume-flow ||F || = ||(U, V, W )|| to be small. This notion can be captured by
using a Gaussian distribution on the relative magnitudes of U and V , i.e. U

||F || and V
||F || .

This leads to a distribution of the form

P (.) = e
− 1

2σf
2

U2+V 2

U2+V 2+W2 = e
− 1

2σf
2

fT Df

fT f

where D is a diagonal matrix D = diag([1, 1, 0]) and the variable σf controls the
influence of the prior on the estimator. If we reintroduce this prior into Eqn. 2 to weight
the δ-function appropriately, our measurement matrix for flow estimation is modified
into a Maximum A Posteriori (MAP) Estimate. Thus instead of averaged matrix M of
Eqn. 10, the flow is seen to be the smallest eigen-vector of matrix Mmap for

Mmap =
1

σn
2 NM +

1
σf

2 D (11)

where N is the number of pixels in the patch and σn and σf are the priors for the image
derivative noise and flow magnitude respectively. It will be noted that the observation
matrix in Eqn. 11 represents a regularised solution for the TLS problem [17]. For the
sake of simplicity we reparametrise this matrix as M + λD where λ represents the
weight (influence) of the regularising term D. For a given value of λ, the estimated
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Fig. 2. Flow as a function of the regularisation term λ. The least-squares solution (Lucas-Kanade)
lies on this curve. True flow and the TLS solution are also indicated. See Sec. 3.1 for details.
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optical flow value is given by the smallest eigen-vector associated with the matrix M +
λD. The behaviour of this parametrised form is particularly illuminating as illustrated
in Fig. 2. In the case when λ = 0, the regulariser has no influence on the estimate
and we get the TLS solution. When λ = ∞, the solution is determined solely by the
null-space of the regularising matrix D, i.e. [0, 0, 1]T equivalent to a flow of (0, 0).
This is intuitively correct since here the flow is determined only by the prior which is a
Gaussian centered at the origin. As λ varies from 0 to∞ the estimated optic flow traces
a curve from the TLS solution to the origin. Of particular significance is the fact that
the Lucas-Kanade (or OLS) solution lies exactly on this parametrised curve, i.e. it is
identical to a regularised TLS solution of optical flow for a particular value of λ! This
relationship is formally described by the following lemma.

Lemma 1. The Lucas-Kanade estimate of flow (i.e. OLS solution) is identical to the
TLS solution for the regularised observation matrix M + λD where λ = 1

N

∑N
k=1 It

k

(Ix
ku + Iy

kv + It
k), N is the number of pixels in the patch and (u, v) is the Lucas-

Kanade (or OLS) solution.

Proof: We represent the three-dimension homogeneous co-ordinates of the flow vec-
tor as [x, 1]T = [u, v, 1]T . Further we partition the 3 × 3 observation matrix as M =[

A b
bT c

]
. Since the regularising matrix D=diag([1,1,0]) we have M+λD =

[
A + λI b

bT c

]
where I is the 2×2 identity matrix. For the TLS solution of the regularised observation
matrix, we have

(M + λD)
[

x
1

]
=
[
A + λI b

bT c

] [
x
1

]
= α

[
x
1

]
⇒ (A + λI)x + b = αx (12)

Here α is the eigen-value associated with the TLS solution for a given λ. The lemma
can now be proved by examination. Let us assume that the flow estimate x is the OLS
solution xOLS . By examining the observation matrix M of Eqn. 10 and the solution for
xOLS in Eqn. 8 we note that AxOLS + b = 0 which implies that for x = xOLS the
relationship in Eqn. 12 is satisfied

(A + λI)xOLS + b = λxOLS + AxOLS + b︸ ︷︷ ︸
=0

= αxOLS

implying that λ = α. Thus the eigen-relationship for M + λD is satisfied for x =
xOLS which proves that the OLS flow (i.e. Lucas-Kanade) is also a solution for the
regularised TLS for λ = α. The value of λ can now be easily derived by noting the lower
relationship in Eqn. 12, i.e. α = λ = bT xOLS + c. The terms bT and c are the third row
of the observation matrix M in Eqn. 10 implying that λ = 1

N

∑N
k=1 It

k(Ix
ku+ Iy

kv+
It

k). The form of λ is also intuitively satisfying. Informally speaking, it represents
a measure of ‘texturedness’ in the temporal direction implying that as the temporal
derivatives grow in magnitude, the Lucas-Kanade method introduces a greater amount
of bias. It is well known that while the TLS solution is unbiased, compared to the OLS
solution, the TLS has greater variance. In this context, the influence of the patch size
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on λ is informative. When the patch size (N ) is small, λ is large implying that our
solution introduces a bias to reduce the variance of the solution. Conversely, when the
patch size is large, λ is small implying that our solution is closer to the TLS estimate as
desired. Thus our formulation can naturally capture the correct representation required
for accurate flow estimation and also explains the behaviour of Lucas-Kanade and TLS
algorithms.

3.2 Affine Flow

While the constant flow model is simple to implement, its accuracy is inherently lim-
ited as flow fields are seldom close to a piece-wise constant model. A more appropriate

assumption is that of an affine model. An affine flow field is described by
[
u v

]T =

A
[
x y

]T +
[
tx ty

]T
where (u, v) is the flow at position (x, y) and A is a 2×2 matrix.

The affine model has been used to estimate optical flow in [13, 14, 15]. While the TLS
estimator is unbiased it has a higher variance than the OLS solution. This implies that
for small image patches, with few equations the Lucas-Kanade solution is preferable to
the TLS solution. However as we noted in the previous subsection, when we have many
equations the TLS solution is preferable to the biased OLS estimate. In general, the
affine flow model is estimated for patches larger than those for constant flow since we
need many more equations to reliably estimate the six parameters of the affine model.
This implies that in our probabilistic model, the prior has little influence on affine es-
timation and can be neglected in our analysis here. By re-writing the optical flow in
homogeneous co-ordinates we have f = Pa, where P represents terms relating to pixel
position (x, y) and a is the vectorised representation for the affine parameters. Using
this form in the probability model of Eqn. 6 we have

P (flow|patch) = max
model

∏
k

e−
1

2σ2
fT Mkf

fT f

⇒ P (a|patch) = max
a

∏
k

e
− 1

2σ2
(Pka)T MkPka

(Pka)T Pka

⇒ a = arg min
a

∑
k

aT Pk
T MkPka

aT Pk
T Pka

(10)

Thus the problem of estimating the affine parameters is reduced to the minimisation
of a sum of Rayleigh quotients3. This particular quotient form occurs frequently in
computer vision problems like ellipse fitting etc. and a significant body of work has
been devoted to its minimisation. In our solution for the affine parameters we use the
First-Order Renormalisation of [19].

3.3 Performance of Affine Flow Estimation

In this subsection we evaluate our affine flow estimation scheme using the standard im-
age sequences of Barron et al [1]. All experiments are performed with a fixed set of

3 In [18], the authors use algebraic arguments to approximate the above objective function as a
single ratio of quadratic forms where the numerator is an average over the patch for the terms
PT MP and the denominator is held to be PT P for a given pixel co-ordinates (x, y).
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parameters. Each image sequence is smoothed using a separable Gaussian kernel with
uniform spatial and temporal standard deviation of 1.4 pixels. The derivative filter is
the series-design filter used in [18]. Apart from the image derivative filter the patch
size is an important parameter that influences performance by determining the trade-off
between estimation accuracy (requiring large patches) and resolution (requiring small
patches). Throughout our experiments we use a constant patch size of 31 × 31 pixels
and estimate the affine flow for such patches with a shift of 5 pixels in each direction.
Thus each pixel is present in multiple patches and the flow estimate is the average over
all patch estimates. We tabulate our results in Tables 1- 4. The error measure is identical
to that of [1] and can be seen to measure the angle between the normalised volume-flow
representations of the ground truth and the estimate. The error values for the first four
methods are taken from [1]. As can be easily observed, our algorithm performs very
well with respect to the other procedures. In particular, we point out that our accuracy
is achieved without the use of any adaptive schemes. Also the standard deviation of
our error values are significantly smaller compared to other methods. For the Yosemite
sequence, we note that in comparison with the adaptive scheme of [4], our estimator
has almost the same performance (error of 1.16◦ compared to 1.14◦) whereas our stan-
dard deviation is significantly smaller (1.17◦ compared to 2.14◦). While, the results
of [5] on the Yosemite sequence are superior to ours, we reiterate that our performance

Table 1. Sinusoid Sequence Results

Method Error (in ◦) Density
µ σ

Lucas-Kanade 2.47 0.16 100 %
Horn-Schunck 2.55 0.59 100 %
Fleet-Jepson 0.03 0.01 100 %
Uras et al. 2.59 0.71 100 %
Farneback [20] 0.74 0.03 100 %
Liu et al. [18] 0.31 0.05 100 %

Our method 0.09 0.03 100 %

Table 2. Translating Tree Results

Method Error (in ◦) Density
µ σ

Lucas-Kanade 0.66 0.67 39.8 %
Horn-Schunck 2.02 2.27 100 %
Fleet-Jepson 0.32 0.38 74.5 %
Uras et al. 0.62 0.52 100 %
Farneback [20] 0.62 1.99 100 %
Liu et al. [18] 0.20 0.62 100 %

Our method 0.15 0.10 100 %

Table 3. Diverging Tree Results

Method Error (in ◦) Density
µ σ

Lucas-Kanade 1.94 2.06 48.2 %
Horn-Schunck 2.55 3.67 100 %
Fleet-Jepson 0.99 0.78 61.0 %
Uras et al. 4.64 3.48 100 %
Farneback [20] 0.75 0.69 100 %
Liu et al. [18] 0.65 1.73 100 %

Our method 0.51 0.21 100 %

Table 4. Yosemite Results (without clouds)

Method Error (in ◦) Density
µ σ

Lucas-Kanade (λ2 ≥ 1.0) 3.21 5.34 39.5 %
Horn-Schunck 3.68 4.90 100 %
Uras et al. 6.47 9.48 84.6 %
Memin-Perez [7] 1.58 1.21 100 %
Weickert et al. [6] 1.46 * 100 %
Liu et al. [18] 1.39 2.83 100 %
Farneback [20] 1.40 2.57 100 %
Farneback [4] 1.14 2.14 100 %
Papenberg et al. [5] 0.99 1.17 100 %

Our method 1.16 1.17 100 %
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is achieved by focusing on the representation of the brightness constraint and not on
sophisticated numerical minimisers. In summary, we note that our probability represen-
tation is powerful and even a straight-forward application of this model outperforms
almost all other flow estimators. Other refinements like robustness, adaptive patches,
and more accurate minimisers can be expected to further improve our results.

4 Conclusions

In this paper we have introduced a principled approach to modeling the brightness con-
straint. The resultant probabilistic model is shown to be powerful and can both explain
the behaviour of existing flow algorithms and significantly improve their performance.
Future work will address more sophisticated minimisation approaches and also the utili-
sation of our probabilistic model to solve for volume-flow in the spatio-temporal volume
of images and for direct motion estimation and segmentation.
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Abstract. Triangulation consists in finding a 3D point reprojecting the
best as possible onto corresponding image points. It is classical to min-
imize the reprojection error, which, in the pinhole camera model case,
is nonlinear in the 3D point coordinates. We study the triangulation of
points lying on a 3D line, which is a typical problem for Structure-From-
Motion in man-made environments. We show that the reprojection error
can be minimized by finding the real roots of a polynomial in a single
variable, which degree depends on the number of images. We use a set
of transformations in 3D and in the images to make the degree of this
polynomial as low as possible, and derive a practical reconstruction al-
gorithm. Experimental comparisons with an algebraic approximation al-
gorithm and minimization of the reprojection error using Gauss-Newton
are reported for simulated and real data. Our algorithm finds the op-
timal solution with high accuracy in all cases, showing that the poly-
nomial equation is very stable. It only computes the roots correspond-
ing to feasible points, and can thus deal with a very large number of
views – triangulation from hundreds of views is performed in a few sec-
onds. Reconstruction accuracy is shown to be greatly improved compared
to standard triangulation methods that do not take the line constraint
into account.

1 Introduction

Triangulation is one of the main building blocks of Structure-From-Motion al-
gorithms. Given image feature correspondences and camera matrices, it consists
in finding the position of the underlying 3D feature, by minimizing some error
criterion. This criterion is often chosen as the reprojection error – the Maximum
Likelihood criterion for a Gaussian, centred and i.i.d. noise model on the image
point positions - though other criteria are possible [5, 9, 10].

Traditionally, triangulation is carried out by some sub-optimal procedure
and is then refined by local optimization, see e.g. [7]. A drawback of this is that
convergence to the optimal solution is not guaranteed. Optimal procedures for
triangulating points from two and three views were proposed in [6, 13].

We address the problem of triangulating points lying on a line, that is, given
image point correspondences, camera matrices and a 3D line, finding the 3D
point lying on the 3D line, such that the reprojection error is minimized.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 189–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our main contribution is to show that the problem can be solved by comput-
ing the real roots of a degree-(3n-2) polynomial, where n is the number of views.
Extensive experiments on simulated data show that the polynomial is very well
balanced since large number of views and large level of noise are handled. The
method is valid whatever the calibration level of the cameras is – projective,
affine, metric or Euclidean.

One may argue that triangulating points on a line only has a theoretical
interest since in practice, triangulating a line from multiple views is done by
minimizing the reprojection error over its supporting points which 3D positions
are hence reconstructed along with the 3D line. Indeed, most work consider the
case where the supporting points do not match accross the images, see e.g. [3].
When one identifies correspondences of supporting points accross the images,
it is fruitful to incorporate these constraints into the bundle adjustment, as
is demonstrated by our experiments. This is typically the case in man-made
environments, where one identifies e.g. matching corners at the meet of planar
facades or around windows. Bartoli et al. [2] dubbed Pencil-of-Points or ‘pop’ this
type of features. In order to find an initial 3D reconstruction, a natural way is to
compute the 3D line by some means (e.g. by ignoring the matching constraints
of the supporting points, from 3D primitives such as the intersection of two
planes, or from a registered wireframe cad model) and then to triangulate the
supporting point correspondences using point on line triangulation. The result
can then be plugged into a bundle adjustment incorporating the constraints.

Our triangulation method is derived in §2. A linear least squares method
minimizing an algebraic distance is provided in §3. Gauss-Newton refinement is
summarized in §4. Experimental results are reported in §5 and our conclusions
in §6.
Notation. Vectors are written using bold fonts, e.g. q, and matrices using sans-
serif fonts, e.g. P. Almost everything is homogeneous, i.e. defined up to scale.
Equality up to scale is denoted ∼. The inhomogenous part of a vector is denoted
using a bar, e.g. qT ∼ (q̄T 1) where T is transposition. Index i = 1, . . . , n, and
sometime j are used for the images. The point in the i-th image is qi. Its elements
are qT

i ∼ (qi,1 qi,2 1). The 3D line joining points M and N is denoted (M,N).
The L2-norm of a vector is denoted as in ‖x‖2 = xTx. The Euclidean distance
measure de is defined by:

d2
e(x,y) =

∥∥∥∥ x
x3
− y

y3

∥∥∥∥2

=
(

x1

x3
− y1

y3

)2

+
(

x2

x3
− y2

y3

)2

. (1)

Related work. Optimal procedures for triangulating points in 3D space, and
points lying on a plane were previously studied. Hartley and Sturm [6] showed
that triangulating points in 3D space from two views, in other words finding
a pair of points satisfying the epipolar geometry and lying as close as possible
to the measured points, can be solved by finding the real roots of a degree-6
polynomial. The optimal solution is then selected by straightforward evaluation
of the reprojection error. Stewénius et al. [13] extended the method to three
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views. The optimal solution is one of the real roots of a system of 3 degree-
6 polynomials in the 3 coordinates of the point. Chum et al. [4] show that
triangulating points lying on a plane, in other words finding a pair of points
satisfying an homography and lying as close as possible to the measured points,
can be solved by finding the real roots of a degree-8 polynomial.

2 Minimizing the Reprojection Error

We derive our optimal triangulation algorithm for point on line, dubbed ‘Poly’.

2.1 Problem Statement and Parameterization

We want to compute a 3D point Q, lying on a 3D line (M,N), represented by
two 3D points M and N. The (3 × 4) perspective camera matrices are denoted
Pi with i = 1, . . . , n the image index. The problem is to find the point Q̂ such
that:

Q̂ ∼ arg min
Q∈(M,N)

C2
n(Q),

where Cn is the n-view reprojection error:

C2
n(Q) =

n∑
i=1

d2
e(qi, PiQ). (2)

We parameterize the point Q ∈ (M,N) using a single parameter λ ∈ R as:

Q ∼ λM + (1− λ)N ∼ λ(M−N) + N. (3)

Introducing this parameterization into the reprojection error (2) yields:

C2
n(λ) =

n∑
i=1

d2
e(qi, Pi(λ(M−N) + N)).

Defining bi = Pi(M−N) and di = PiN, we get:

C2
n(λ) =

n∑
i=1

d2
e(qi, λbi + di). (4)

Note that a similar parameterization can be derived by considering the inter-
image homographies induced by the 3D line [12].

2.2 Simplification

We simplify the expression (4) of the reprojection error by changing the 3D co-
ordinate frame and the image coordinate frames. This is intended to lower the
degree of the polynomial equation that will ultimately have to be solved. Since
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the reprojection error is based on Euclidean distances measured in the images,
only rigid image transformations are allowed to keep invariant the error function,
while full projective homographies can be used in 3D. We thus setup a standard
canonical 3D coordinate frame, see e.g. [8], such that the first camera matrix be-
comes P1 ∼ ( I 0). Note that using a projective basis does not harm Euclidean
triangulation since the normalization is undone once the point is triangulated.
The canonical basis is setup by the following simple operations:

H←
(

P1
0 0 0 1

)
Pi ← PiH−1 M← HM N← HN.

Within this coordinate frame, we can write MT = (• • 1 •) and NT = (• •
1 •) without loss of generality, as pointed out in [7, §A6], from which we get:

b1 = P1(M−N) = (b1,1 b1,2 0)T

d1 = P1N = (d1,1 d1,2 1)T.

We then apply a rigid transformation Ti in each image defined such that Tibi

lies on the y-axis and such that Tidi = TiPiN lies at the origin. This requires
that the point N does not project at infinity is any of the images. We ensure this
by constraining N to project as close as possible to one of the image points1, say
q1. The reprojection error (4) for the first view is C2

1(λ) = d2
e(q1, λb1 + d1) =

‖λb̄1 + d̄1 − q̄1‖2. We compute λ as the solution of ∂C2
1

∂λ = 0, which gives, after
some minor calculations, λ = (q̄1 − d̄1)

Tb̄1/‖b̄1‖2. Substituting in equation (3)
yields the following operations:

N← (P1N− q1)
TP1(M−N)

‖P1(M−N)‖2 (M−N) + N.

Obviously, the di = PiN must be recomputed. These simplications lead to:

b1 = (0 b1,2 0)T d1 =(0 0 1)T bi>1 =(0 bi,2 bi,3)
T di>1 =(0 0 di,3)

T
.

The rigid transformations Ti are quickly derived below. For each image i, we look
for Ti mapping di to the origin, and bi to a point on the y-axis. We decompose
Ti as a rotation around the origin and a translation:

Ti =
(

Ri 0
0T 1

)(
I −ti

0T 1

)
.

The translation is directly given from Tidi ∼ (0 0 1)T as ti = d̄i/di,3. For the
rotation, we consider Tibi ∼ (0 • •)T, from which, setting ri = b̄i − bi,3ti, we

obtain Ri =
(

ri,2 −ri,1
ri,1 ri,2

)
/‖r̄i‖.

1 Note that this is equivalent to solving the single view triangulation problem.
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This leads to the following expression for the reprojection error (4) where we
separated the leading term:

C2
n(λ) = q2

1,1 + (λb1,2 − q1,2)2 +
n∑

i=2

(
q2
i,1 +

(
λbi,2

λbi,3 − di,3
− qi,2

)2
)

.

The constant terms q2
1,1 and q2

i,1 represent the vertical counterparts of the
point to line distance in the images. This means that only the errors along the
lines are to be minimized.

2.3 Solving the Polynomial Equation

Looking for the minima of the reprojection error C2
n is equivalent to finding the

roots of its derivative, i.e. solving ∂C2
n

∂λ = 0. Define Dn = 1
2

∂C2

∂λ :

Dn(λ) = (λb1,2 − q1,2)b1,2 +
n∑

i=2

(
λbi,2

λbi,3 + di,3
− qi,2

)(
bi,2di,3

(λbi,3 + di,3)2

)
.

This is a nonlinear function. Directly solving Dn(λ) = 0 is therefore very difficult
in general. We thus define D̃n(λ) = Dn(λ)Kn(λ), where we choose Kn in order to
cancel out the denominators including λ in Dn. Finding the zeros of D̃n is thus
equivalent to finding the zeros of Dn. Inspecting the expression of Dn reveals
that Kn(λ) =

∏n
i=2(λbi,3 + di,3)3 does the trick:

D̃n(λ) = (λb1,2 − q1,2)b1,2

n∏
i=2

(λbi,3 + di,3)3

+
n∑

i=2

bi,2di,3 (λbi,2 − qi,2(λbi,3 + di,3))
n∏

j=2,j �=i

(λbj,3 + dj,3)3

 .

(5)

As expected, D̃n is a polynomial function, whose degree depends on the number
of images n. We observe that cancelling the denominator out for the contribution
of each (i > 1)-image requires to multiply Dn by a cubic, namely (λbi,3 + di,3)3.
Since the polynomial required for image i = 1 is linear, the degree of the poly-
nomial to solve is 3(n− 1) + 1 = 3n− 2.

Given the real roots λk of D̃n(λ), that we compute as detailled below for
different number of images, we simply select the one for which the reprojection
error is minimized, i.e. λ̂ = arg mink C2

n(λk), substitute it in equation (3) and
transfer the recovered point back to the original coordinate frame:

Q̂ ∼ H−1
(
λ̂M +

(
1− λ̂

)
N
)

.

A single image. For n = 1 image, the point is triangulated by projecting its
image onto the image projection of the line. The intersection of the associated
viewing ray with the 3D line gives the 3D point. In our framework, equation (5)
is indeed linear in λ for n = 1: D̃1(λ) = (λb1,2 − q1,2)b1,2 = b2

1,2λ− q1,2b1,2.
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A pair of images. For n = 2 images, equation (5) gives:

D̃2(λ) = (λb1,2 − q1,2)b1,2(λb2,3 + d2,3)3 + b2,2d2,3(λb2,2 − q2,2(λb2,3 + d2,3)),

which is a quartic in λ that can be solved in closed-form using Cardano’s for-
mulas: D̃2(λ) ∼∑4

d=1 cdλ
d, with:

c0 = −q2,2d
2
2,3b2,2 − b1,2q1,2d

3
2,3

c1 = d2,3(b2
2,2 − 3b1,2q1,2b2,3d2,3 + b2

1,2d
2
2,3 − q2,2b2,3b2,2)

c2 = 3b1,2b2,3d2,3(b1,2d2,3 − q1,2b2,3)
c3 = b1,2b

2
2,3(3b1,2d2,3 − q1,2b2,3)

c4 = b2
1,2b

3
2,3.

Multiple images. Solving the n ≥ 3 view case is done in two steps. The first step
is to compute the coefficients cj , j = 0, . . . , 3n-2 of a polynomial. The second
step is to compute its real roots. Computing the coefficients in closed-form from
equation (5), as is done above for the single- and the two-view cases, lead to very
large, awkward formulas, which may lead to roundoff errors. We thus perform a
numerical computation.

A standard root-finding technique is to compute the eigenvalues of the ((3n-
2)×(3n-2)) companion matrix of the polynomial, see e.g. [1]. Computing all the
roots ensures the optimal solution to be found. This can be done if the number
of images is not too large, i.e. lower than 100, and if computation time is not an
issue. However, for large numbers of images, or if real-time computation must be
achieved, it is not possible to compute and try all roots. In that case, we propose
to compute only the roots corresponding to feasible points.

Let λ0 be an approximation of the sought-after root. For example, one can
take the result of the algebraic method of §3, or even λ0 = 0 since our parame-
terization takes the sought-after root very close to 0. Obviously, we could launch
an iterative root-finding procedure such as Newton-Raphson from λ0 but this
would not guarantee that the optimal solution is found.

One solution to efficiently compute only the feasible roots is to reparameter-
ize the polynomial such that those lie close to 0, and use an iterative algorithm
for computing the eigenvalues of the companion matrix on turn. For example,
Arnoldi or Lanczos’ methods, compute the eigenvalues with increasing magni-
tude starting from the smallest one. Let λc be the last computed eigenvalue, and
Q1 and Q2 the reconstructed points corresponding to λc and −λc. If both Q1
and Q2 reproject outside the images, the computation is stopped. Indeed, the
next root that would be computed would have greater magnitude than λc, and
would obviously lead to a point reprojecting further away than the previous one
outside the images.

The reparameterization is done by computing a polynomial Pn(λ) = D̃n(λ+
λ0). A simple way to achieve this reparameterization is to estimate the coef-
ficients cj, j = 1, . . . , 3n-1, of Pn, as follows. We evaluate z ≥ 3n-1 values
vk = D̃n(λk + λ0) from equation (5) for λk ∈ [−δ, δ], and solve the associated
Vandermonde system:

∑3n−2
j=0 cjλ

j
k = vk for k = 1, . . . , z. We typically use
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z = 10(3n-1). The parameter δ ∈ R∗+ reflects the size of the sampling interval
around λ0. We noticed that this parameter does not influence the results, and
typically chose δ = 1. Obviously, in theory, using z = 3n-1, i.e. the minimum
number of samples, at distinct points, is equivalent for finding the coefficients.
However we experimentally found that using extra samples evenly spread around
the expected root λ0 has the benefit of ‘averaging’ the roundoff error, and sta-
bilizes the computation.

One could argue that with this method for estimating the coefficients, the
simplifying transformations of §2.2 are not necessary. A short calculation shows
that this is partly true since if the canonical 3D projective basis were not used
along with the normalization of the third entries of M and N to unity, then the
degree of the polynomial would be 3n instead of 3n-2.

3 An Algebraic Criterion

We give a linear algorithm, dubbed ‘Algebraic’, based on approximating the
reprojection error (2) by replacing the Euclidean distance measure de by the
algebraic distance measure da defined by d2

a(x,y) = S[x]×y with S = ( 1 0 0
0 1 0 ),

and where [x]× is the (3×3) skew-symmetric matrix associated to cross-product,
i.e. [x]×y = x× y. This gives an algebraic error function:

E2
n(λ) =

n∑
i=1

d2
a(λbi + di,qi) =

n∑
i=1

‖λS[qi]×bi + S[qi]×di‖2.

A closed-form solution is obtained, giving λa in the least squares sense:

λa = −
∑n

i=1 bT
i [qi]×Ĩ[qi]×di∑n

i=1 bT
i [qi]×Ĩ[qi]×bi

with Ĩ ∼ STS ∼
(

1 0 0
0 1 0
0 0 0

)
.

4 Gauss-Newton Refinement

As is usual for triangulation and bundle adjustment [7], we use the Gauss-Newton
algorithm for refining an estimate of λ̂ by minimizing the nonlinear least squares
reprojection error (2). The algorithm, that we do not derived in details, is dubbed
‘Gauss-Newton’. We use the best solution amongst Poly and Algebraic as
the initial solution.

5 Experimental Results
5.1 Simulated Data

We simulated a 3D line observed by n cameras Pi. In order to simulate realistic
data, we reconstructed the 3D line as follows. We projected the line onto the
images, and regularly sampled points on it, that were offset orthogonally to
the image line with a Gaussian centred noise with variance σl. The 3D line
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Fig. 1. Reprojection error (left) and 3D error (right) versus the level of noise

was then reconstructed from the noisy points using the Maximum Likelihood
triangulation method in [3], which provided M and N. Finally, a point lying on
the true 3D line was projected onto the images, and corrupted with a Gaussian
centred noise with variance σp, which gave the qi. We varied some parameters
of this setup, namely n and σp, and the spatial configuration of the cameras, in
order to compare the algorithms under different conditions. We compared two
cases for the cameras: a stable one, in which they were evenly spread around the
3D line, and an unstable one, in which they were very close to each other. The
default parameters of the setup are σl = 0.1 pixels, σp = 3 pixels, n = 10 views
and stable cameras.

We had two main goals in these experiments. First, we wanted to determine
what in practice is the maximum number of views and noise that the proposed
triangulation method can deal with, for stable and unstable camera configu-
rations. Second, we wanted to determine to which extent the line constraint
improves the accuracy of the reconstructed 3D point, compared to standard
unconstrained triangulation. We measured two kinds of error: the reprojection
error, quantifying the ability of the methods to fit the measurements, and a 3D
error, quantifying the accuracy of the reconstruction.

We compared the three algorithms, described in the paper (Poly, §2 ; Alge-
braic, §3 ; Gauss-Newton, §4) and 3DTriangulation, which is a standard
Maximum Likelihood triangulation, ignoring the line constraint, e.g. [7].

Figure 1 shows the results for varying noise level on the image points (σp =
1, . . . , 10 pixels), and figure 2 for varying number of views (n = 2, . . . , 200). Note
the logarithmic scaling on the abscissa. General comments can be made about
these results:

– 3DTriangulation always gives the lowest reprojection error.
– Algebraic always gives the highest reprojection error and 3D error.
– Poly and Gauss-Newton always give the lowest 3D error.

Small differences in the reprojection error may lead to large discrepancies in
the 3D error. For example, Poly and Gauss-Newton are undistinguisable on
figures 1 (left) and 2 (left), showing the reprojection error, while they can clearly
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Fig. 2. Reprojection error (left) and 3D error (right) versus the number of views

be distinguished on figures 1 (right) and 2 (right), showing the 3D error. This is
due to the fact that Gauss-Newton converges when some standard precision
is reached on the reprojection error. Increasing the precision may improve the
results, but would make convergence slower.

For n = 10 views, figure 1 shows that the accuracy of the 3D reconstruction is
clearly better for the optimal methods Poly and Gauss-Newton using the line
constraint, compared to 3DTriangulation that does not use this constraint.
The difference in 3D accuracy is getting larger as the noise level increases. For
a σp = 1 pixel noise, which is what one can expect in practice, the difference in
accuracy is 1 cm, corresponding to 1% of the simulated scene scale. This is an
important difference.

However, for σp = 3 pixels, beyond 20 views, figure 2 (left) shows that the re-
projection error for 3DTriangulation and Poly/Gauss-Newton are hardly
distinguishable, while we expect from figure 2 (right) the difference in 3D error
to be negligible beyond 200 views.

The results presented above concern the stable camera setup. For the unstable
case, we obtained slightly lower reprojection errors, which is due to the fact that
the 3D model is less constrained, making the observations easier to “explain”.
However, as was expected, the 3D errors are higher by a factor of around 2.
The order of the different methods remains the same as in the stable case. We
noticed that incorporating the line constraint improves the accuracy compared
to 3DTriangulation to a much higher extent than in the stable case.

5.2 Real Data

We tested the four reconstruction algorithms on several real data sets. For two of
them, we show results. We used a Canny detector to retrieve salient edgels in the
images, and adjusted segments using robust least squares. Finally, we matched
the segments by hand between the images, except for the 387 frame ‘build-
ing’ sequence where automatic traking was used. The point on line correspon-
dences were manually given, again besides for the ‘building’ sequence for which
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Frame 1 Frame 3 Frame 6

Fig. 3. 3 out of the 6 images taken from the ‘Valbonne church’ sequence, overlaid with
6 matching segments and 13 corresponding points
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Fig. 4. Reprojected 3D lines and 3D points. (a) shows 4 different numbered points, for
which (b) shows a close up for all the 6 images. The squares are the original points, the
diamonds are the points reconstructed by Algebraic, and the circles are the points
reconstructed from Poly and Gauss-Newton (they are undistinguishable).

correlation based tracking was used. We reconstructed the 3D lines from the
edgels by the Maximum Likelihood method in [3].

The ‘Valbonne church’ sequence. We used 6 views from the popular ‘Valbonne
church’ image set. Some of them are shown on figure 3, together with the 6 input
segments and 13 inputs points. The cameras were obtained by Euclidean bundle
adjustment over a set of points [11]. The reprojection errors we obtained were:
Algebraic→ 1.37 pixels ; Poly→ 0.77 pixels ; Gauss-Newton→ 0.77 pixels.
Figure 4 (a) shows lines and points reprojected from the 3D reconstruction. The
reprojection errors we obtained for the points shown on figure 4 (b) were:
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Point Algebraic Poly Gauss-Newton
1 4.03 pixels 2.14 pixels 2.14 pixels
2 6.97 pixels 1.95 pixels 1.95 pixels
3 2.84 pixels 2.21 pixels 2.21 pixels
4 4.65 pixels 2.14 pixels 2.14 pixels

The ‘Building’ sequence. This sequence is a continuous video stream consisting
of 387 frames, showing a building imaged by a hand-held camera, see figure 5.
We reconstructed calibrated cameras by bundle adjustment from interest points
that were tracked using a correlation based tracker.

The segment we tracked is almost the only one that is visible throughout
the sequence, and thus allows to test our triangulation methods for a very large
number of views, namely 387. For the 7 points we selected, we obtained a mean
reprojection error of 4.57 pixels for Algebraic, of 3.45 pixels for Poly and
Gauss-Newton. Unconstrained triangulation gave a 2.90 pixels reprojection
error. These errors which are higher than for the two previous data sets, are
explained by the fact that there is non negligible radial distortion in the images,
as can be seen on figure 5.

Frame 1 Frame 387

Fig. 5. 2 out of the 387 images of the ‘building’ sequence, overlaid with the matching
segments and 7 corresponding points

6 Conclusions

We proposed an algorithm for the optimal triangulation, in the Maximum Like-
lihood sense, of a point lying on a given 3D line. Several transformations of 3D
space and in the images lead to a degree-(3n-2) polynomial equation. An efficient
algorithm computes the real roots leading to feasible points only. Experimental
evaluation on simulated and real data show that the method can be applied to
large numbers of images, up to 387 in our experiments. The experiments were
done for many different real data sets, indoor and outdoor, small, medium and
large number of images, calibrated and uncalibrated reconstructions. Compari-
son of triangulated points with ground truth for the case of simulated data show
that using the line constraint greatly improves the accuracy of the reconstruction.
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Abstract. Many traditional stereo correspondence methods emphasized
on utilizing epipolar constraint and ignored the information embedded
in inter-epipolar lines. Actually some researchers have already proposed
several grid-based algorithms for fully utilizing information embodied
in both intra- and inter-epipolar lines. Though their performances are
greatly improved, they are very time-consuming. The new graph-cut and
believe-propagation methods have made the grid-based algorithms more
efficient, but time-consuming still remains a hard problem for many ap-
plications. Recently, a tree dynamic programming algorithm is proposed.
Though the computation speed is much higher than that of grid-based
methods, the performance is degraded apparently. We think that the
problem stems from the pixel-based tree construction. Many edges in the
original grid are forced to be cut out, and much information embedded in
these edges is thus lost. In this paper, a novel line segment based stereo
correspondence algorithm using tree dynamic programming (LSTDP) is
presented. Each epipolar line of the reference image is segmented into
segments first, and a tree is then constructed with these line segments as
its vertexes. The tree dynamic programming is adopted to compute the
correspondence of each line segment. By using line segments as the ver-
texes instead of pixels, the connection between neighboring pixels within
the same region can be reserved as completely as possible. Experimental
results show that our algorithm can obtain comparable performance with
state-of-the-art algorithms but is much more time-efficient.

1 Introduction

Stereo correspondence has been one of the most important problems in computer
vision, and still remains a hard problem that needs more efforts. It is used
in many areas like robot navigation, 3D reconstruction, tracking and so on.
Introduction of different stereo correspondence algorithms can be found in the
survey by Scharstern and Szeliski [1] and the one by Brown et al. [2].

Because of the noise and ambiguity, stereo correspondence problem is con-
sidered to be greatly ill-posed. To achieve a reasonable result, people use some
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c© Springer-Verlag Berlin Heidelberg 2006



202 Y. Deng and X. Lin

assumptions on the scene, one of which is the smoothness assumption. This as-
sumption supposes that the disparity map is almost smooth everywhere except
at the borders of the objects, or equivalently that the scene is composed of
several smooth structures. We formulate stereo algorithms as an energy mini-
mization framework, and impose the smoothness assumption in a smoothness
energy function. The optimal disparity map f will minimize the energy function
as follow:

E(f) =
∑

p

Ep
data(fp) +

∑
〈p,q〉∈N

Ep,q
smooth(fp, fq) , (1)

where p and q are some points in the image, fp and fq are the disparities assigned
to them, Ep

data(fp) is the matching energy (error) for point p if assigned with
disparity fp, and Ep,q

smooth(fp, fq) is the smoothness energy that imposes punish-
ment if disparities of two neighboring points are not smooth. N is a neighboring
system that contains the pairs of points which need to be imposed with smooth-
ness assumption. The choice of N is essential because it will affect both the
accuracy and efficiency of the algorithm.

In traditional algorithms, e.g. classic dynamic programming methods [3] [4],
N is often chosen within the same scanline (without lost of generality, from now
on we use scanline as rectified epipolar line) for imposing the disparity inconsis-
tency punishment. The inter-scanline smoothness is usually ignored or consid-
ered in the post-processing procedure. The equivalent neighboring system graph
is shown in Fig. 1.b. It is obvious that such asymmetric manner is unnatural and
can not receive good performance. Based on this observation, graph-based global
method (we use the terminology of [1]) has been proposed. In a global method,
N is chosen as a four-connected grid in the image (shown in Fig. 1.a). Except
the points on the image borders and corners, each point is connected with its
four neighbors. This structure fully uses the correlation between neighboring
points, and leads to the state-of-the-art performance [1] [5] [6]. But except for
some special cases [7], the four-connected grid structure makes the minimiza-
tion of the energy function generally NP-hard, and even using approximation
methods are still very time-consuming. The traditional simulated annealing [8]
algorithm usually takes hours to run, and the recent fast minimization methods,
e.g. graph-cuts [6] and belief propagation[5], still need several minutes. They are
still far from being in real-time.

Fig. 1. Effective edges (marked by solid lines) for difference algorithms. In (d), points
of each line segment are encircled by a dashed line.



A Fast Line Segment Based Dense Stereo Algorithm 203

Recently, Veksler [9] proposed a novel approach that connected all the pixels
with a tree, and performed the dynamic programming on that tree (see Fig. 1.c).
Since more edges are remained, and more importantly, horizontal and vertical
edges are chosen in a symmetric style, better performance than classic dynamic
programming methods is obtained. When using some special smoothness functin,
the complexity of dynamic programming becomes as low as O(hn) [9], supposing
h is the number of possible disparities and n is the number of points.

Nevertheless, the performance of dynamic programming methods is still not
comparable with that of global methods. We consider this problem by analyz-
ing how much information has been lost in dynamic programming compared with
global methods. Suppose the image is in the size of N × N . We can see that the
number of edges in Fig. 1.a is about 2N2, and in Fig. 1.b and Fig. 1.c the number of
effective1 edges has been reduced to about N2. That is to say, half of the edges are
discarded in dynamic programming methods, and much information embodied in
these edges is lost. This is the main reason why their performance is apparently
worse than global methods. Then our new approach is motivated by how to re-
main as many effective edges as possible while still utilizing the time efficiency of
dynamic programming. This is achieved with the help of color segmentation.

Color segmentation is used in recent years to improve the performance of
stereo correspondence in several publications [10] [11] [12] [13], called segment-
based approaches. In the surfaces in the scene can be approximated by several
slanted planes, better performance is achieved especially on textureless and dis-
continuity areas. The main assumption they use is that discontinuity may happen
at the boundary of a segmented area. All the pixels within a segment are as-
signed with the same label, which means they must belong to the same plane
in the scene. At the same time, we only need one vertex for all the pixels in
one segment, which means the scale of the graph is decreased. Besides, segment-
based methods commonly use a 3-parameter linear transform label space which
can well model slanted planes in the scene.

In our approach, we segment each scanline into several line segments accord-
ing to the colors of pixels. Pixels in one line segment are assigned with the same
label, or we use the line segment as the matching unit. A tree is constructed
to connect all segments, and smoothness is imposed in a line segment level. In
this way, when the edge connecting two line segments in different scanlines are
remained, it is equivalent to remain a number of edges in pixel level. The num-
ber of effective edges removed is greatly reduced, as shown in Fig. 1.d. Therefor
our algorithm gives a much better approximation to the four-connected grid,
and better correspondence result can be achieved. Our experimental results also
show that the accuracy of our algorithm is comparable to the global methods,
while the algorithm is still very time-efficient. Besides, using the 3-parameter
linear transform space, we can well model the slanted plane and give a sub-pixel
disparity map as the results. Disparities of the half-occluded area are given a
good guess which will be shown in our experimental results in Sect. 4.1.

1 The effective edges mentioned here means the information embodied in those edges
are used.
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The rest of the paper is organized as follow: Section 2 introduces our for-
mulation of the stereo correspondence problem and how to compose a tree on
line segments that can mostly estimate the grid structure. In Sect. 3, we discuss
some implementation issues which are also essential to the performance of our
algorithm. Experimental results and analysis are given in Sect. 4 and Sect. 5 is
the conclusion.

2 Tree Dynamic Programming on Line Segments

In this section, we firstly formulate the stereo correspondence problem into a
labelling problem in the line segment level. Then the construction of the tree for
dynamic programming, which is the key of our algorithm, is introduced.

2.1 Problem Formulation

We denote the left and right images as IL and IR, and choose the left image as
the reference image. The color segmentation algorithm, (described in Sect. 3.1
in detail), will segment the scanlines of the image into a set of line segments,
denoted as S.Our goal is to assign each line segment s ∈ S a label fs ∈ L, where
L is the set of all possible labels (the label space). Each label in L represents a
correspondence between points in left and right image respectively.

In order to model the slanted plane in the scene, the label space L is chosen
to be a 3-parameter linear transform space:

fs = 〈c1, c2, c3〉 ⇔
∀p ∈ s, p

〈c1,c2,c3〉↔ p′, with p′x = c1px + c2py + c3, p′y = py ,

where p′ is a point in the right image, and p
〈c1,c2,c3〉↔ p′ means p and p′ are

corresponding points if assigned by a label 〈c1, c2, c3〉.
We formulate the correspondence problem in an energy minimization frame-

work, and the optimal label configuration fopt for line segments S is:

fopt(S) = arg min
D(S)

∑
s

Es
data(fs) +

∑
〈s,t〉∈N

Es,t
smooth(fs, ft) , (2)

where f(S) is the disparity map represented in the line segment level, and N is
the neighboring system in the line segment level. Es

data(fs) is the data term that
measures how well the label fs agrees with the input image pairs. One simple
choice (which is used in our experiment in this paper) is to use the summation
of the matching costs of all the points in the segment, i.e.:

Es
data(fs) =

∑
p∈s

C(p, p′), p
fs↔ p′, p ∈ IL, p′ ∈ IR . (3)
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We use the combination of trimmed linear function and Potts model as our
smoothness energy function Es,t

smooth:

Es,t
smooth(fs, ft) = vstLc(s, t) ·

{
sλ,τ

T (fs, ft) FRNT (fs) and FRNT (ft)
sP (fs, ft) otherwise

, (4)

where vst is a coefficient which is a descending function of the color difference
between s and t, and Lc(s, t) is the length of the boundary shared by s and t.
FRNT (fs) returns whether fs represents a fronto plane, i.e.:

FRNT (〈c1, c2, c3〉) =

{
true c1 = c2 = 0
false otherwise

.

sT is the trimmed linear function defined as:

sλ,τ
T (〈0, 0, cs

3〉, 〈0, 0, ct
3〉) = min{λ|cs

3 − ct
3|, τ} .

sP is the Potts smoothness function:

sP (fs, ft) =

{
0 fs = ft

1 otherwise
.

2.2 Constructing the Tree

Selecting the neighboring system N or constructing the tree is the key of our
algorithm.

Let G(V, E) be a graph with vertices V and edges E. Each vertex in V
represents a line segment in S. All possible edges in E reflects the connection
between two neighboring line segments. In general, G is a graph with many loops
inside. Our goal is to find a spanning tree of G, denoted as GT , to best estimate
the full grid graph.

Two criteria for the selection of the optimal tree among all possible ones are
used:

1. The line segments connected by a remained edge in the GT are likely with
similar disparities, they are probably belonging to the same region in the
image, and

2. The connected line segment pair should have as many neighboring pixels as
possible from each other.

The first criterion is similar to the strategy used in [9], which means the neigh-
boring segments with similar color attribution values more likely share the same
disparity. The second one assures that the edge that connects line segment pair
sharing the longer boundary are preferred to remain in GT .

Combining above two criteria, we define a weight function wst between two
neighboring line segments 〈s, t〉 as follows:

wst = Lmax − σ(Īs, Īt)Lc(s, t) ,
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where Lmax is the length of the longest segment of S in pixels, Īs and Īt are av-
erage colors of the segments s and t respectively, σ is a similarity function which
returns a real value between 0 and 1 representing how similar the two colors are.
For consecutive segments within the same scanline, Lc(s, t) is 1, and for segments
in neighboring scanlines Lc(s, t) = min{smax, tmax} − max{smin, tmin}, where
smin and tmin are horizontal coordinates of the left ends of segment s and t, and
smax and tmax are those of the right ends.

After defining the weights for each neighboring line segment pair, we use
standard minimum-spanning tree (MST) algorithm, which can be found in any
data-structure book, to choose the optimal tree. The complexity is almost linear
to the number of segments |S|. It can be seen that the MID tree construction
algorithm in [9] can be considered as a special case of ours, in which line segments
have degenerated to individual points. In their situation, Lmax and Lc are always
1, and then wpq = 1−σ(Ip, Iq) is proportional to the intensity (or color) difference
between two neighboring pixels.

3 Implementation

The flowchart of our algorithm is shown in Fig. 2. Each part is described in
detail in the sub-sections.

Fig. 2. The flowchart of our LSTDP algorithm

3.1 Line Segmentation

The line segmentation algorithm segments each scanline into several small parts,
each of which contains pixels with similar colors. We do not choose some compli-
cated segmentation algorithms, such as mean-shift [14] or normalized cuts [15],
because they are not efficient and may become the bottleneck of the whole
algorithm. Instead, we design a simple and fast scanline segmentation algo-
rithm.
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Our algorithm contains 3 steps as follows:
1. Computing Initialization Marks

For each image line, we scan the pixels from left to right. Two registers stores
the minimum and maximum intensities of the current segment. For color
images, the registers are both vectors with three channels. If the difference
between the minimum and maximum intensities are greater than a threshold
Tseg, a mark is put at the current position and two registers are reset. After
processing, the points between two marks are considered as one line segment.
The maximum intensity difference between pixels within a segment is no
more than Tseg.

2. Repositioning Marks
The marks made in the first step may not lay at the accurate edge. So a
repositioning procedure is performed. Each mark is moved to the near local
maximum of intensity gradients without changing their orders.

3. Removing Isolated Marks
The image noise often leads to some isolated marks in the image, and makes
the image being wrongly segmented. We check each mark and remove those
who do not have enough close neighbors in 2D area.

This segmentation method works fast and produces good segmentation in
our algorithm. We show the results of segmentation results in Fig. 3.

Color image Initial Repositioned Isolated removed

Fig. 3. Results of different steps of the segmentation on the “Venus” image

3.2 Label Selection

The label set L is first initialized with all possible fronto linear transforms, i.e.
{〈0, 0,−d〉|d = 0, . . . , Dmax}.

Then we need to estimate some possible 3-parameter linear transform labels.
To do this, we first segment both left and right images. Line segments on two
images are matched locally according to their average colors. For each matched
line segment pair, whose colors are similar enough, we obtain two matched point
pairs(the corresponding ends). This matching is rough and may contains many
errors. A robust estimation method, like M-estimators [16], is then used to ex-
tract the linear planes by fitting on the sparse correspondences robustly.

3.3 Tree Construction

The algorithm described in Sect. 2.2 is used to construct a tree on the reference
image.
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3.4 Dynamic Programming

Dynamic programming is performed on the constructed tree to minimize the
energy function defined in (2). Readers can find more details in [9]. Using the
technology introduced in [17] and [9], our energy function with smoothness en-
ergy defined in (4) can be minimized with the complexity of O(hn).

4 Experiments

Our experiments include two parts. First, we perform our algorithm on the
testbed of Middlebury University [1], and performance is compared with other
algorithms submitted to that testbed. To further test the accuracy and efficiency
on the real-time system, we embed our algorithm into a realtime automatic
navigation system, in which outdoor image series are processed.

4.1 Experiments on Middlebury dataset

We adopted Birchfield and Tomasi’s matching cost [18] which is insensitive to
image sampling as C(p, p′) in (3). vst in (4) is defined as

vst = C1 + σ(Īs, Īt)C2

All parameters are listed in Table 1, and are used for all image pairs. Com-
puted disparity maps are shown in Fig. 4 accompany with the results from [9].
We also listed the time (in milliseconds) of the different parts of our algorithm,
i.e. DSI (Disparity Space Image[1]) computing, line segmentation, label selec-
tion, and tree dynamic programming, and the total time in Table 3. They are
measured on a computer with an Intel Pentium IV 2.4 GHz processor. We sub-
mit the results into Middlebury test-bed and show the accuracy evaluations in
Table 2. Three criteria are used in the evaluation table which are percentages
of: bad points in non-occluded area, in all area, and near discontinuities. A bad
point is a point whose absolute disparity error is greater than one [1].

From the evaluation table we can see that our algorithm can achieve over-
all accuracy comparable with the state-of-the-art global methods (4 out of 13).
The result of “venus” is almost equal to the best one. For all the four images,
the rank of “all” column of our algorithm, which includes the guessing for half-
occluded areas, is better than the other two. That is because we use the line
segment as the matching unit, and the disparities of some occluded pixels can
be inferred by the disparity of the segment where the occluded pixels belong to.
Besides the good performance, our algorithm runs very fast. Processing time for
“tsukuba” is only about 160ms, and the other three can be processed within one

Table 1. Parameter values set for experiments for Middlebury image pairs

Parameter C1 C2 λ τ Tseg

Value 5 75 0.5 1.0 20
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tsukuba venus teddy cones

Fig. 4. Experimental results for Middlebury database. The first row is left images, the
second row is ground truth of disparity map, the third row is results by our LSTDP
algorithm, and the last row is the results of pixel-based Tree DP method from [9].

Table 2. Accuracy Evaluation Results on Middlebury Stereo Test-bed

Algorithm Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Sym.BP+occl0.97 1 1.75 2 5.09 1 0.16 1 0.33 2 2.19 1 6.47 3 10.7 2 17.0 3 4.79 4 10.7 3 10.9 3
Segm+visb 1.30 4 1.57 1 6.92 4 0.79 3 1.06 3 6.76 5 5.00 1 6.54 1 12.3 1 3.72 2 8.62 1 10.2 2
SemiGlob 3.26 9 3.96 8 12.812 1.00 4 1.57 4 11.3 9 6.02 2 12.2 3 16.3 2 3.06 1 9.75 2 8.90 1
LSTDP 1.93 6 2.59 6 9.70 8 0.19 2 0.26 1 2.49 2 11.1 6 16.4 5 23.4 8 6.39 7 11.8 5 13.5 7
Layered 1.57 5 1.87 3 8.28 5 1.34 6 1.85 5 6.85 6 8.64 4 14.3 4 18.5 4 6.59 8 14.7 8 14.4 8
GC+occ 1.19 2 2.01 5 6.24 2 1.64 8 2.19 8 6.75 4 11.2 7 17.4 7 19.8 5 5.36 6 12.4 7 13.0 6
MultiCamGC 1.27 3 1.99 4 6.48 3 2.7910 3.13 9 3.60 3 12.0 8 17.6 8 22.0 7 4.89 5 11.8 6 12.1 4
TensorVoting 3.7910 4.7910 8.86 6 1.23 5 1.88 6 11.510 9.76 5 17.0 6 24.0 9 4.38 3 11.4 4 12.2 5
TreeDP 1.99 8 2.84 7 9.96 9 1.41 7 2.10 7 7.74 7 15.910 23.910 27.112 10.010 18.310 18.910

...
...

SO[1c] 5.0812 7.2213 12.211 9.4412 10.912 21.913 19.913 28.213 26.311 13.013 22.813 22.312

second. From Table 3, we can see that besides the dynamic programming modula,
half of the processing time is spent on preprocessing modules, and they can be
greatly accelerated with special hardware if necessary. Like other segment-based
methods, some artifacts caused by segmentation can be found in the disparity
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Table 3. Time Analysis of Our Algorithm on Middlebury Dataset

Size |S| Disp. Range DSI Line-Segm. Lab-Sel Tree-DP Total

tsukuba 384×288 19621 0..15 30 8 37 88 163
venus 434×384 29664 0..19 76 12 89 143 320
teddy 450×375 37435 0..59 195 10 359 299 863
cones 450×375 50780 0..59 194 16 170 370 750

† Unit for all the time (the last 5 columns) in this table is millisecond.

Table 4. Effective edges of three kinds of algorithms

Size |S| Global Pixel-TDP LSTDP
Total Hard Soft

tsukuba 384×288 19621 220512 110591 (50.1%) 192517 (87.3%) 90971 101546
venus 434×384 29664 332494 166655 (50.1%) 283241 (85.2%) 136558 146683
teddy 450×375 37435 336675 168749 (50.1%) 274557 (81.6%) 131315 143242
cones 450×375 50780 336675 168749 (50.1%) 259205 (77.0%) 117970 141235

† The percentages of equivalent edges of Pixel-TDP and LSTDP over full grid(Global) are
listed in brackets.

‡ In the LSTDP columns, Hard means edges connecting pixels within a line segment, and
Soft means the equivalent edges crossing line segments.

map. But this only happens along the scanline direction, because we do not
perform a hard constraint on inter-scanlines.

Moreover, we give the statistics on the numbers of effective edges in Table 4.
Note that the effective edges here are not the edges in the tree on the line
segment level, but the equivalent edges in pixel level. Our algorithm remains
much more edges than pixel-based dynamic programming method (Pixel-TDP).
Less than a quarter of the edges are discarded, and for images with less texture,
e.g. “tsukuba”, almost 90% of edges are remained.

Left Image Disparity Map

Fig. 5. Disparity and elevation results in a real-time outdoor automatic navigation
system. The upper row is one of the frame captured on an avenue, and the lower row
is from a country road.
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4.2 Results on a Real-Time System

Our algorithm is used in a real-time outdoor stereo system. Because the outdoor
images are of relatively higher contrast and for obtaining higher efficiency, the
input images are first converted into gray-level images. The dynamic histogram
warping algorithm by Cox et al. [19] is used to rectify the difference of image
capturing. We only use fronto labels and hence label selection is not performed.
The size of the input images is 320 × 240, and disparity ranges from 0 to 40. No
acceleration hardware is used. Two frames of results are shown in Fig. 5. One is
from an avenue environment and the other is from a country road. We can see
that our matching results are rather accurate. The system is running on a Dual
Intel Xeron 2.4 GHz processor, and the processing time for each frame is only
60–70ms.

5 Conclusion

In this paper, we proposed a fast stereo correspondence algorithm based on line
segments using tree dynamic programming. From our preliminary experimental
results on both standard image pairs and real image sequences, it can be seen
that the performance of our algorithm is comparable to those of state-of-the-art
algorithms while our algorithm runs much faster. It can be used in different
real-time systems providing high accuracy disparity map.

We will continue our work on this proposed method to further improve the
performance of our method. Our future work includes occlusion modelling, new
construction rules for the tree, and parallel algorithm for the tree dynamic pro-
gramming.
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Abstract. A novel shape descriptor is introduced. It groups pairs of
points that share a geometrical property that is based on their mutual
symmetry. The descriptor is visualized as a diagonally symmetric dia-
gram with binary valued regions. This diagram is a fingerprint of global
symmetry between pairs of points along the shape. The descriptive power
of the method is tested on a well-known shape data base containing sev-
eral classes of shapes and partially occluded shapes. First tests with
simple, elementary matching algorithms show good results.

1 Introduction

One method to describe 2D objects is by their outlines, or shapes. The com-
plicated task of comparing objects then changes to comparing shapes. With a
suitable representation, this task can be simplified. Several representations of
shapes have been investigated in order to be able to perform this comparison ef-
ficiently and effectively. One of the earliest representations is Blum’s biologically
motivated skeleton [1]. As Kimia points out [2], there is evidence that humans
use this type of representation.

Research on skeleton-based methods has been carried out in enormous extent
ever since, see e.g. [3, 4]. The Shock Graph approach [5] has lead to a shape
descriptor that can perform the comparison task very well [4, 6, 7]. This method
depends on results obtained from the so-called Symmetry Set [8, 9], a super set
of the Medial Axis. In these cases, the shape is probed with circles tangent to it
at at least two places. The Symmetry Set is obtained as the centres of all these
circles, while the Medial Axis is the sub set containing only maximal circles.

From the field of robotics, probing shapes is also of interest. Blake et al.
[10, 11] describe a grasping method by the set of points that are pair wise parallel.
At such a pair a parallel jaw gripper can grasp the object. These points form
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the union of the Symmetry Set and a set they called anti-Symmetry Set, as it is
closely related to the symmetry set [12].

In this work, we combine the ideas of these two fields of shape analysis by
investigating the set of pairs of points at which a circle is tangent to the shape.
We do not consider the centre of the circle, but the combination of the two
points. A geometric method is given to derive the pairs of points, based on a
zero crossing argument. Therefore, to each pair of points a signed value can be
assigned, yielding a matrix of values (−1, 0, 1).

This matrix is then used as a shape descriptor. Its properties and allowed
changes follow directly from the Symmetry Set, just as in the Shock Graph
method. Next, a simple comparison algorithm is introduced to perform the task
of object comparison. For this purpose, the two matrices for each pair of objects
are set to equal dimensions and the normalised inner product is taken as equiva-
lence measure. This procedure is tested on two data bases containing objects in
different classes, where some objects are occluded or noisy. Given the simplicity
of the algorithm, results are promising and main erroneous results are due to
the algorithm, showing the potential power of the representation.

2 Problem Framework and Definitions

The Medial Axis can be defined as the closure of the loci of the maximal circles
tangent to a shape (see e.g. [9]). This somewhat abstract formulation can be
made clear by investigation of Figure 1a. A circle with radius r is tangent to a
shape at two points. The unit length normal vectors (N1 and N2) of the circle
and the shape coincide. The centre of the circle is a Medial Axis point, that
is found by multiplying each normal vector with −r and taking the tangency
point as tail of the vector −rNi. As there are for each point several combinations
satisfying this tangency argument1, the set is taken for with −r is maximal, i.e.
the set with the smallest radius.

The two points can be found using geometrical arguments [8], see Fig. 1b.
Take an arbitrary origin point and let p1 and p2 be vectors pointing to the
two locations of tangency. Then p1 − p2 is a vector pointing from one tangency
point to the other. From the construction of the circle as described before, the
vector −rN1 + rN2 (and when normal vectors are pointing inward and outward
−rN1 − rN2) is parallel to p1 − p2. Consequently (p1 − p2).(N1 ± N2) = 0 for
these two points. Let a shape be continuously parameterised then for each point
p several points qj can be found for which

(p− qj).(N(p)±N(qj)) = 0 (1)

where N(.) denotes the normal vector. Note that if the normal vectors are par-
allel, the inner product is zero as well. Such points are the anti-Symmetry Set
points described by Blake et al. [10, 11] for the parallel jaw gripper. If the shape

1 It can be shown that for each point there are at least two other points [8]. Constel-
lations with tangency normal vectors pointing inside and outside can occur [9].
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Fig. 1. a) A pair of tangency points that gives rise to a Medial Axis point. b) The
constellation of position and normal vectors is special at such points.

is parameterised by N points (p1, p2, . . . , pN ), then the tangency pairs are found
as the zero crossings of Eq. 1. To find these zero crossings, it suffices to look at
the square sign of inner product diagram P (i, j) of the signed values of Eq.1:

P (i, j) = sign [(pi − pj).(Ni ±Nj)] (2)

In Figure 2 a fish shape is shown, together with its sign of inner product
diagram. When actual zero crossings are computed, i.e. when the boundaries of
the regions in such a diagram are taken, one obtains a so-called pre-Symmetry
Set that is used to derive the distinct branches of the Symmetry Set [8, 13]. The
possible changes of these boundaries when the shape changes, are known [14]
and relate to the possible changes of the Medial Axis [9].

Changes in the shape lead to movement of the boundaries and therefore to
changes of areas. Topological changes fall apart into two classes: Firstly, bound-
aries can meet and establish a different connection when a white (or black) region

Fig. 2. a) A fish shape. b) Sign of inner product diagram for the fish shape.
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is locally split into two parts. Secondly, regions can be annihilated or created,
either on the diagonal or pair-wise off-diagonal. Other possible changes of the
Symmetry Set do not lead to topological changes.

As may be clear from Eq. 2, the diagram is symmetric in the diagonal. It can
be identified with the shape, just as (by definition) the axes of the diagram. The
values on the diagonal equal zero, as these points cannot be evaluated in Eq. 1.
Second, on all other point combinations it is non-generic to encounter exactly a
zero-crossing, so either a positive or a negative sign is obtained.

3 Sign of Inner Product Diagram Based Matching

The task of comparing objects has now become the task of comparing diagrams.
If the parameterisations of two shapes consist of the same amount of points n,
the corresponding sign of inner product diagrams can be multiplied element wise
with each other. If the shapes are identical and the parameterisations are equal,
this inner product equals n(n− 1), since the diagonal consists of n points.

If the parameterisations are taken at a different starting position, so that
pi = qi+α, rotated version of the sign of inner product diagram should be taken
into account. This rotation takes place in horizontal and vertical directions si-
multaneously, as P (i, j) = Q(i+α, j +α), values taken modulo n. So to validate
each possible starting position, n instances need to be compared.

Finally, the number of points for both shapes need not be equal. If the dif-
ference is m rows (and columns), a method must be chosen that removes m
rows and columns. One choice is to remove them equally spread over the largest
sign of inner product diagram. This relates to removing a set of equidistant
points along shape with the largest number of points. It can be regarded as a
re-parameterisation of the shape with the largest number of points.

Now let two shapes S1, S2 be parameterised with n1 and n2 points. Assume
without loss of generality n1 ≤ n2. The sign of inner product diagram of S2 is
denoted by P1. Let n = n1 and m = n2 − n1. Build P2 by removing each ( m

n2
)th

row and column of the sign of inner product diagram of S2. Let P r
1 denote the

sign of inner product diagram P1 considered with as starting position point r on
the shape, i.e. P1 with its first r − 1 columns and rows transferred to positions
n + 1, . . . , n + r − 1:

P r
1 (i, j) = P1(i− r + 1, j − r + 1),

where values are taken modulo n. This matches the shapes regardless of begin
position of the parameterisations. Then the matching D(P1, P2) between S1, S2
is set as

D(S1, S2) = max
r

(D(Sr
1 , S2)) (3)

with

D(Sr
1 , S2) =

∑n
i=1

∑n
j=1 P r

1 (i, j)P2(i, j)
n(n− 1)

− m

2n2
(4)
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The first term in Eq. 4 denotes the weighted equality of the two sign of inner
product diagram P r

1 , P2. Perfect match is given by 1, while a complete mismatch
equals −1 and a random match 0. The second term penalises the difference in
number of points in a parameterisation, as this difference is ignored in the first
term by construction. Adding this penalty is motivated by the way the shapes
are obtained, viz. as the outlines of standardised binary images. Therefore, the
number of points relates to the complexity of the shape.

4 Data Base Matching

As first test set 41 shapes from an online data base are taken2. They form three
classes: fishes, planes, and tools. Some fishes and planes are artificially drawn,
and form inter class instances. The results of matching all shapes with each

1. 0.8115 0.7989 0.7093 0.6972 0.6325 0.5997 0.5716

1. 0.7284 0.6567 0.638 0.6326 0.6124 0.6077 0.5965

1. 0.7989 0.7635 0.6866 0.6738 0.6374 0.623 0.5796

1. 0.7232 0.6972 0.6738 0.6083 0.5208 0.5094 0.4947

1. 0.9171 0.6705 0.6251 0.6075
0.5494

0.5291 0.5176

1. 0.6661 0.6194
0.6131 0.6084 0.6075 0.5498 0.538

1. 0.6661 0.6233 0.5241
0.5008 0.4926 0.469 0.4625

1. 0.9171 0.6815 0.6522 0.6194
0.5618

0.52 0.5193

1. 0.5844 0.4592 0.4376
0.416

0.4003 0.3955 0.3776

1. 0.628 0.6081 0.5014 0.4936 0.4661 0.4581 0.4525

1. 0.6655 0.5546 0.5169
0.5121

0.4678 0.4661 0.456

1. 0.6815 0.6705 0.5944 0.5564
0.5482

0.5156 0.5033

1. 0.5844 0.5484 0.5008 0.464 0.4401
0.4388

0.4366

1. 0.6655 0.6081 0.5942
0.5675

0.5639 0.5428 0.5079

1. 0.5484
0.5442

0.5428 0.5094 0.4936 0.4783 0.4671

1. 0.628 0.5942 0.5546 0.5237 0.5203 0.5094 0.5029

1.
0.6131 0.5675 0.5618 0.5494 0.5488 0.5482 0.5442

1. 0.6522 0.6251 0.6233 0.6084 0.5944
0.5488

0.5086

1. 0.5491 0.5317 0.5291 0.5203 0.5169 0.5079 0.5014

1. 0.5639 0.5169
0.4656

0.4525 0.4439 0.4423 0.4326

1. 0.5155 0.3829 0.375 0.2924
0.2821 0.2791 0.2735

1. 0.4871 0.4327 0.3418 0.3254 0.3216 0.2912
0.2859

1. 0.5086 0.4327 0.4108 0.4101 0.3955 0.3829
0.3675

1. 0.4871 0.393 0.3672 0.3545 0.344 0.3252 0.3232

1. 0.5155 0.3533 0.3509 0.3488 0.3185 0.3184
0.3069

1. 0.344 0.3418 0.3123 0.2984 0.2439
0.2315

0.2229

1. 0.291 0.2884 0.2821 0.2089 0.2024 0.1968 0.1931

1. 0.3123 0.253 0.2312 0.2132 0.2112 0.2094 0.2065

1. 0.7075 0.6847 0.6644 0.6617 0.659 0.6451 0.6215

1. 0.6874 0.6698 0.6655 0.663 0.652 0.6354 0.6208

1. 0.8408 0.817 0.7901 0.7485 0.7341 0.7259 0.6698

1. 0.8225 0.8179 0.7736 0.7651 0.7585 0.7485 0.7075

1. 0.6257 0.624 0.6215 0.6198 0.6105 0.6087 0.5833

1. 0.663 0.6381 0.6257 0.6172 0.6059 0.6032 0.5912

1. 0.7723 0.7284 0.7093 0.6866 0.6784 0.6703 0.6543

1. 0.8115 0.7723 0.7635 0.7232 0.6151 0.6144 0.6077

1. 0.8225 0.752 0.7389 0.7341 0.6867 0.6847 0.6704

1. 0.8596 0.7901 0.7854 0.7585 0.7032 0.6704 0.6451

1. 0.8179 0.752 0.7311 0.7259 0.7208 0.7032 0.6644

1. 0.8596 0.8257 0.817 0.7736 0.7311 0.6867 0.6703

1. 0.8408 0.8257 0.7854 0.7651 0.7389 0.7208 0.6874

Fig. 3. Matching of fishes, tools, and planes

2 http://www.lems.brown.edu/vision/researchAreas/SIID/
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other can be seen in Figure 3. For each shape, the best eight matches are shown:
The first column has score zero, as each shape matches to itself without differ-
ence. The second column gives the second best match, etc.

The matching is consistent with [15], where this database is introduced. One
can see, for instance, that tools match to tools, and that the wrenches and double
wrenches match to the correct set. The erroneous matches – the appearances of
shapes of a different class – occur at a match D = .5 or less. These errors can

Table 1. Score of inter-class matches

class score
1 11,11,11,11,11,11,11,8,6,7,1
2 11,11,9,10,8,6,8,5,4,5,2
3 11,10,10,10,10,10,9,8,9,7,2
4 11,11,11,10,10,8,9,10,7,6,3
5 11,10,9,9,7,8,1,2,0,3,6
6 11,11,11,11,11,11,11,11,11,11,11
7 11,11,11,10,10,8,6,8,2,3,3
8 11,10,10,11,9,9,9,8,7,3,2
9 11,11,11,11,11,11,11,11,11,11,11

0 395 442 466 523 527 559 566 591 609 611

0 315 374 376 467 503 527 547 556 568 578

0 442 518 568 586 593 609 669 691 692 700

0 466 483 501 501 518 556 613 636 654 656

0 374 377 453 507 514 591 612 612 615 617

0 309 399 419 503 507 524 562 609 613 614

0 309 376 377 395 435 449 559 580 587 617

0 399 449 467 491 501 503 523 539 551 554

0 395 501 539 562 587 593 626 637 641 642

0 395 419 503 514 545 613 645 649 649 653

0 315 435 453 483 491 524 545 566 567 586

Fig. 4. Class 1
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0 596 616 650 717 763 766 769 784 785 785

0 543 657 752 762 779 780 795 795 815 837

0 523 782 814 815 836 839 840 840 849 855

0 523 737 769 798 809 848 848 854 876 876

0 576 601 657 709 719 721 726 761 774 806

0 467 532 548 708 721 724 737 743 752 758

0 543 548 638 709 743 783 787 795 796 797

0 322 532 717 741 752 754 760 764 766 779

0 322 467 638 650 686 700 726 762 790 792

0 68 596 601 686 743 752 758 772 799 809

0 68 576 616 700 737 754 770 781 795 805

0 93 449 452 459 498 636 701 702 732 734

0 93 476 481 481 523 650 696 699 705 722

0 620 682 687 688 691 706 713 714 726 728

0 95 346 452 481 487 647 664 672 720 721

0 95 383 449 476 510 669 691 695 734 750

0 230 346 383 442 459 481 488 499 578 700

0 230 269 384 399 487 498 510 515 523 713

0 94 259 272 384 488 664 691 699 701 709

0 94 260 270 399 499 672 695 698 702 704

0 259 260 333 515 578 644 708 720 727 750

0 269 270 272 333 442 636 647 650 669 721

Fig. 5. Classes 2 and 3

visually be explained: A coarse plane “looks” more like a fish with two big fins
than a very detailed plane.

Next, this approach is used on the data base used by Sebastian et al. [16].
This data base contains 9 classes with 11 shapes each. Some of the shapes are
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occluded or deformed versions of another shape in the class. Just as in [16], a
score D∗(S1, S2) is set to be a non-negative number, ranging towards 1000. This
is achieved by taking (recall Eq. 3)

D∗(S1, S2) = 1000(1−D(S1, S2)) (5)

Now 0 denotes a perfect match and values towards 1000 a random match.
The results per class are shown in Figs. 4-8. We have chosen to show all results,
as this better reveals the potential of matching methodology.

In each of the figures, the first column resembles the shape matched with
itself, resulting in a score of 0. The next 10 columns give the second to eleventh
best match. Ideally, this would be shapes from the same class. The score of each
shape is taken as an eleven dimensional vector with each value being zero or one.
A one at position i denotes a shape at the ith position that belongs to the same
class, while a zero denotes a shape of a different class. The total class score is
then given as the sum of the eleven vectors in the class, ideally being a vector
containing 11 elevens. Table 1 gives these results.

5 Discussion of Results

Table 1 shows that some classes (6 and 9) yield a perfect score. Other classes
contain matchings to objects of other classes. For some this occurs at higher
positions, but in three cases already the second best match is wrong.

All these cases are caused by the choice of the matching algorithm, the re-
moval of equidistant points. This is strongest visible in the third class, bottom
of Fig. 5. The 9th row introduces a shape that has a large occlusion. This relates
to removing a set of neighbouring points along the shape instead of the taken
approach. An indication that “something is wrong” is given by the high cost for
the second best match (620), compared to the other second best matches in this
class (≤ 269). Is introduces a complete row of wrong matches.

A similar effect, albeit in the opposite way, occurs in the fifth class, bottom of
Fig. 6. The third row shows an occluded hand, which relates to a local addition
of a set of neighbouring points along the shape. Again a high cost for the second
best match is obtained. Assuming only equidistant removal of points, however,
the second best match is visually correct. The fingers correspond to the four legs
of the cow, while the blown-up thumb relates to the cow’s head and body. The
same thing can be said about the occluded rabbit in class 8, top of Fig. 8.

Obviously, the human classification is not perfectly mimicked by the algo-
rithm. The total amount of errors compared to the human observer classification
is given by (0, 3, 6, 6, 12, 17, 24, 28, 42, 43, 58). If the three most clear occlusion-
caused outliers are left out, this is (0, 0, 3, 5, 9, 15, 22, 25, 39, 41, 56).

As a way to avoid the removal of points in one of the sign of inner product
diagram, one can obtain a parameterisation of exactly n points. This results
in more or less the same outcome, since it still does not take into account the
effects of occlusion. Secondly, forcing a standard number of points along the
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0 533 682 689 694 698 728 747 778 780 791

0 508 632 683 689 700 704 707 709 713 722

0 394 533 598 632 639 644 721 730 761 761

0 394 508 618 655 662 682 722 735 760 768

0 308 617 618 618 644 669 683 698 772 826

0 308 673 675 691 721 728 734 735 755 778

0 360 566 617 639 673 694 722 783 794 812

0 360 618 655 680 691 707 730 747 780 833

0 669 755 780 794 833 835 842 842 852 854

0 566 675 680 772 805 830 849 856 874 877

0 598 662 713 721 724 726 734 734 752 761

0 334 614 708 715 781 787 787 788 791 818

0 334 630 681 727 783 789 789 802 803 809

0 488 488 496 646 694 795 807 827 839 848

0 253 254 443 496 591 809 842 862 883 897

0 3 254 304 488 562 779 786 847 848 855

0 358 560 562 591 694 737 781 782 840 849

0 614 644 681 698 710 721 743 769 772 786

0 630 715 724 756 758 761 772 780 787 805

0 842 900 902 916 917 918 954 965 969 969

0 304 309 358 443 646 763 795 798 818 825

0 3 253 309 488 560 780 785 848 848 855

Fig. 6. Classes 4 and 5
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0 130 194 236 241 267 283 296 301 373 397

0 130 180 196 198 247 274 283 289 381 405

0 347 373 405 418 452 473 502 518 527 583

0 215 221 227 236 266 283 283 299 411 518

0 219 221 236 236 262 274 283 296 348 502

0 180 194 214 215 236 266 274 307 372 452

0 221 234 262 289 291 301 301 307 342 473

0 198 214 221 236 260 262 291 299 376 418

0 247 260 267 274 342 347 348 361 411 471

0 227 283 301 327 372 376 381 397 471 583

0 196 215 215 219 234 241 262 327 361 527

0 356 408 577 580 592 628 636 638 641 641

0 356 530 562 611 612 615 628 648 659 659

0 346 425 477 484 489 505 533 580 620 630

0 346 375 410 467 481 503 547 635 636 665

0 562 636 641 670 681 687 689 696 697 697

0 344 408 477 486 490 503 530 541 608 615

0 375 425 483 486 573 583 592 600 609 610

0 344 428 489 501 547 560 594 602 609 614

0 357 428 467 483 484 541 543 619 655 656

0 317 481 543 610 630 663 712 719 724 727

0 317 357 410 501 533 573 623 688 708 732

Fig. 7. Classes 6 and 7

shape wipes out the complexity of shape, so the matching actually yields worse
results.

First attempts have been made in order to remove a set of m
n2

locally neigh-
bouring points. For the occluded human figure, this yielded a better matching
to other human shapes. It is, however, computationally very expensive imple-
mented. To compare two shapes takes approximately tens of minutes, compared
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0 310 366 404 439 448 498 514 584 591 608

0 353 366 379 379 425 469 561 583 589 629

0 425 430 441 491 514 549 551 560 575 590

0 446 449 494 498 520 561 561 590 614 615

0 338 338 358 439 469 494 567 587 601 606

0 310 318 338 362 379 449 491 505 592 613

0 505 561 587 591 615 632 642 686 689 700

0 124 338 362 379 430 448 520 537 547 554

0 490 505 549 577 600 602 635 671 685 689

0 537 556 575 580 583 584 592 637 642 649

0 124 318 353 358 404 441 446 556 578 585

0 228 230 230 287 427 457 489 533 535 549

0 216 243 287 293 395 438 484 515 519 520

0 255 278 320 330 339 478 497 505 520 535

0 216 228 259 266 337 373 413 417 445 478

0 160 230 259 293 453 459 493 497 573 592

0 160 230 243 266 455 471 502 505 577 578

0 193 228 262 278 393 445 519 549 577 592

0 255 393 406 413 427 438 453 455 456 484

0 219 225 228 337 339 395 438 457 459 471

0 189 225 262 320 373 406 438 489 493 502

0 189 193 219 330 417 456 515 533 573 578

Fig. 8. Classes 8 and 9
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to several seconds in the equidistant case. However, as the optimal match is a
summation of a set of multiplications, a fast dynamic program may be available.
In this case the task would be to find a shortest manifold in 4D.

6 Summary and Conclusions

A new shape descriptor is introduced. It is based on pairs of points on the shape
that lie on a circle that is tangent to the shape at these points. It is therefore
closely related to both Medial Axis and Symmetry Set methods. Each point on
the shape is compared to all other points on the shape regarding a geometrical
relation. Based on this, to each pair of points a value +1 or −1 is assigned. This
yields an efficient data structure.

Secondly, shapes can be compared using this data structure. As test, a general
data base [16] was used, containing shapes in different classes. Some of the
shapes are severely occluded. To compare two data structures, the used approach
removed a set of equidistant points along the shape, thus enforcing two shapes
parameterised with the same number of points. This allows simple comparison
of two data structures.

Although this matching assumption is very general and a priori not suited for
occluded shapes, results were relatively good. The comparison of two shapes can
be done in few seconds, using non-optimised Mathematica code. Some shape
classes were completely correct classified, while other had a correct score for
most of the shapes. The shapes that significantly scored bad were shapes with
a large blocked occlusion, or with a locally removed part. These parts cannot
be matched correctly by definition with the used method. We note that these
deformed shapes give a relatively simple different Medial Axis. Secondly, we
only matched one shape to another, allowing the changes to appear in only one
shape. In general, the matching involves changes to both shapes, for example
in matching the hands of class 5 (see Fig. 6, bottom) with different occluded
fingers.

An obvious amendment of the matching algorithm is the possibility of remov-
ing a set of neighbouring points. This will solve the problem of occluded parts,
both where a part of the shape is removed, and where a part (a block) is added.
Second, the method is to be designed to find the optimal solution allowing both
data structures to be changed. As the optimal match is a summation of a series
of multiplications, a fast shortest-path based dynamic program may be available
to incorporate these two amendments simultaneously.

References

1. Blum, H.: Biological shape and visual science (part i). Journal of Theoretical
Biology 38 (1973) 205–287

2. Kimia, B.: On the role of medial geometry in human vision. Journal of Physiology
- Paris 97 (2003) 155–190
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Abstract. Visibility estimation is arguably the most difficult problem
in dense 3D reconstruction from multiple arbitrary views. In this pa-
per, we propose a simple new approach to estimating visibility based on
position and orientation of local surface patches. Using our concept of
oriented visibility, we present a new algorithm for multiview reconstruc-
tion based on exact global optimization of surface photoconsistency using
graph cuts on a CW-complex. In contrast to many previous methods for
3D reconstruction from arbitrary views, our method does not depend on
initialization and is robust to photometrically difficult situations.

Keywords: multiview reconstruction, image-based modeling, visibility,
dense stereo, graph cuts, directed graphs, CW-complex, global optimiza-
tion.

1 Introduction

A multiview reconstruction is a problem of inferring a 3D shape of a scene from
a set of its 2D views. In a sequel, we assume that these views are registered
within the global world coordinate system, i.e. for each point in the world space,
it is possible to determine the coordinates of its projection onto each view.

Recent advances in multiview reconstruction are by far concerned with dis-
crete optimization methods. Such methods (graph cuts [5], belief propagation[12],
tree-reweighted message passing [19]) allow efficient minimization of a specific
class of energies that can be associated with Markov random fields (MRF).
These methods do not require initialization and converge to strong minima of
the energy functionals; in particular, graph cuts are able to find a globally op-
timal labelling for a wide class of binary-labelled MRFs [10]. Due to all these
benefits, approaches based on discrete optimization methods are now considered
as state-of-the-art for several special cases of multiview reconstruction, namely,
reconstruction from a stereo pair [8], from a set of views with similar viewing
directions [9, 11], and from a set of views with controlled background [16].

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 226–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Two approaches to visibility approximation. Left — state-based visibility: a
current global scene configuration is used to estimate the visibility for a point X on its
surface. Right — oriented visibility: a local patch (X, n) is considered visible from the
viewpoints within the predefined angle from the normal direction n.

In this paper, we consider the most general case of multiview reconstruction,
i.e. reconstruction from the views observing the scene from the arbitrarily distrib-
uted viewpoints. Only this case allows to infer the complete shape of an object
and therefore is the most interesting for many applications. Unfortunately, this
case is the most difficult, as any matching process between views has to reason
explicitly about visibility of different scene parts in different views.

To estimate the true visibility of some surface element one needs to know the
true scene geometry and vice versa. To solve this chicken-and-egg problem, it
is necessary to use some approximation of visibility. Current approaches (space
carving [7], level sets stereo [4]) reconstruct the scene geometry during iterative
process, and at each moment of time, a point is considered visible from a view-
point if it is not occluded with current scene configuration (Fig. 1-left). We call
this approach state-based visibility, as the visibility is determined by the current
state of the scene.

Using iterative optimization results in a significant problem: iterative up-
dates are not guaranteed to converge to the globally optimal configuration. This
convergence essentially depends on the initialization and/or on the threshold
values. The problem with convergence is worsened by the fact that if the current
scene state is far from the true state, state-based visibility approximates the true
visibility with significant errors.

The convergence problem could be solved by the application of discrete op-
timization. Unfortunately, state-based visibility results in an energy function
that models interaction between distant scene parts, and discrete optimization
methods become really inefficient for such energies with long-range dependence.
One possible way to get rid of long-range dependence and to apply discrete
optimization is proposed in [15, 17, 18]. There, the reconstruction is initialized
with some given-from-aside approximation, and the state-based visibility is cal-
culated based on this approximation. As the true surface is assumed to be close
to the initialization, the energy function ignores the visibility changes and is,
therefore, short-range dependent and suitable for discrete optimization. Though
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using discrete optimization, these approach still require a good initial approxi-
mation. Thus, state-based visibility prevents them from taking full advantage of
the discrete optimization’ virtues.

In this paper, we propose a reconstruction method employing an alternative
approach to visibility estimation. This approach called oriented visibility (sec-
tion 2) is based on the geometric fact that the visibility of a local patch is to
a large extent determined by its orientation. Therefore, oriented visibility esti-
mates the visibility of a patch from a viewpoint based on the patch position and
normal direction (Fig. 1-right).

This local approach to visibility is in contrast with the traditional global
state-based visibility. The main benefit is that the energy functional based on
this visibility estimate (formulated in section 3) is amenable for efficient discrete
minimization with graph cuts (section 4), which yield its global minimum. From
the application standpoint, the key advantage of our method is its ability to
find the globally optimal (with respect to the reconstruction functional) scene
configuration within given bounding volume without any initialization.

Both state-based visibility (global) and oriented visibility (local) are not ex-
act. We argue, however, that in the situation when no good initialization is given,
our reconstruction method based on oriented visibility is a good choice. At the
very least, it can be used to supply an initial guess to any of the reconstruction
methods relying on state-based visibility; due to their dependency on initializa-
tion, this would greatly promote their convergence to the correct scene state. We
also briefly discuss an alternative iterative reconstruction method, which fuses
state-based and oriented visibilities (section 5). The results of our approach on
real and synthetic imagery are demonstrated in section 6, and the discussion of
its perspectives in section 7 concludes the paper.

2 Oriented Visibility

To formalize the idea of oriented visibility, we need to introduce some notations.
We assume, that the whole scene (or its part we are interested in) is located
within some bounding volume B. Each allowed scene configuration is character-
ized by some occupied subvolume M ⊂ B with the piecewise-smooth oriented
boundary ∂M (the scene surface).

Let us assume that the scene is observed by N views, taken with pinhole
cameras with viewpoints p1, p2, . . . pN . The positions, orientations, and intrin-
sic parameters of the cameras are assumed known. Consequently, each point
X ∈ B can be projected onto each view. Then, let c1(X), c2(X), . . . cN (X) be
the colors of the projections (either grayscale intensities or RGB triples). Let
also v1(X), v2(X), . . .vN (X) be the vectors representing normalized viewing di-
rections from X to pi:

vi(X) =
pi −X

‖pi −X‖ . (1)

Let (X, n) denote an infinitesimal patch located at point X and having out-
ward looking normal n. Then the scene surface ∂M can be regarded as a union
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(A, nA)
(B, nB)

Fig. 2. Oriented visibility in action. Note, that the shown oriented visibility correspond-
ing to the value φ = 60◦ is correct for patch (A, nA) but underestimates visibility for
patch (B, nB).

of patches (X, n∂M ), where X lies on ∂M and n∂M is an outward normal to
∂M at X .

Let α1(X, n), α2(X, n), . . . αM (X, n) be the binary variables indicating the
visibility of a patch (X, n) in the corresponding view. Then, orientation-based
αi is calculated as

αi(X, n) =

1, if �
(
vi(X), n

)
< φ

0, otherwise
, (2)

where φ is some acute angle (Fig. 1-right).
Thus, our approximation of visibility reflects the fact that the surface ele-

ment will be always self-occluded for the viewpoints behind it and frequently
self-occluded for the viewpoints observing it from oblique angles. The angle φ,
therefore, determines the threshold of obliqueness, below which the observation
from the viewpoint is considered unreliable. Setting φ small allows to estimate
visibility correctly for concave parts of a scene, while setting it large allows to
involve more cameras and hence to increase the discriminative power of our pho-
toconsistency measure (Fig. 2). In our experiments, we found φ ≈ 60◦ to suit a
large variety of scenes and adhered to this value.

3 Energetic Formulation

The goal of this section is to render a multiview reconstruction as an energy
minimization problem by assigning an energy cost based on oriented visibility
to each scene configuration. As do most other approaches, we assume that the
surface of the unknown scene is nearly lambertian, i.e. the color of some small
patch on its surface is independent on the viewpoint it is observed from.

Under this assumption, patches belonging to the true surface should have
similar colors in the viewpoints observing them (be photoconsistent). Therefore,
the energy cost A(X, n) of a patch can be defined as:



230 V. Lempitsky, Y. Boykov, and D. Ivanov

A(X, n) =
1
T

∑
i<j

αi(X,n)=1,αj(X,n)=1

‖ci(X)− cj(X)‖2 , (3)

where T is the number of items in the summation. Thus, this cost is the mean of
pairwise squared differences between the colors of the projections onto the views
observing the patch (L2-norm is used for RGB triples). The smaller is this cost,
the more photoconsistent is the patch and the more likely does it belong to the
surface of the scene.

The overall surface energy cost for the scene configuration (M, ∂M) is then
calculated by integrating the patches’ costs over the scene surface:

EI(∂M) =
∫∫
∂M

A(X, n∂M ) dS . (4)

Now, we have expressed the surface photoconsistency with an energy term
EI(∂M). Minimizing EI(∂M) solely is, however, uninteresting as it has an obvi-
ous global minimum (M, ∂M) = ∅ that equals zero. In fact, it has been demon-
strated in [7] that in the absence of noise, the scene configuration consistent
with a given set of views is not unique, and there is a continuous family of such
configurations. Therefore, reconstruction based solely on photoconsistency is an
ill-posed problem.

To regularize it, we propose to augment the energy functional with a regular-
ization term ER(M) =

∫∫∫
M

B(X) dV . Here, B(X) is some volume potential corre-

sponding to the prior tendency for point X to belong or not to the reconstruction.
E.g., constant negative B(X) produces monotonic ballooning effect biasing the
reconstruction process towards larger reconstructions. This simple potential can
be used if no prior knowledge is available. It is also possible to introduce bound-
ary conditions in the problem by setting B(X) to large positive or negative values
near the boundary. In our experiments, we used the combination of the balloon-
ing potential and the potential encoding the boundary conditions (more details
are given in Section 6). An interesting option is to construct B(X) based on the
information about background in a way analogous to [16]. Finally, B(X) can en-
code some prior domain-specific knowledge about the scene geometry.

In conclusion of this section, let us write down the full energy functional
guiding the reconstruction:

E(M, ∂M) = EI(∂M) + ER(M) =
∫∫
∂M

A(X, n∂M ) dS +
∫∫∫

M

B(X) dV . (5)

4 Energy Minimization

4.1 Problem Discretization

To make the minimization of functional (5) tractable, we discretize our prob-
lem. The bounding volume B is subdivided into polyhedral cells R1, R2, . . . RK
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a)

B

b)

c) d)

Fig. 3. Discrete optimization of our energy. a) A bounding volume B is discretized into
a complex C. One of the C-consistent configurations is shaded. b) The local structure of
our complex. Two adjacent cells Ri and Rj are separated with a pair of oriented faces Fij

and Fji. c) The cells of our three-dimensional complex produced by voxel subdivision.
One of the cells is emphasized. d) Local structure of the graph G dual to the complex from
b). The vertices Vi and Vj dual to the cells Ri and Rj are connected with two directed
n-links Eij and Eji dual to the faces Fij and Fji (t-links are not shown).

(Fig. 3a). Each pair of neighboring cells Ri and Rj is considered to be sepa-
rated with a pair of oriented polygonal faces – Fij separating Rj from Ri and
Fji separating Ri from Rj (Fig. 3b). We denote an outward looking normal
to Fij directed towards Rj as nij . We will refer to our discretization structure
{Ri, Fij} as complex (borrowing this term from algebraic geometry where similar
structures are called ’CW-complexes’).

Given a particular complex C, we may introduce the notion of C-consistent
scene configuration (Fig. 3a). We call the scene configuration (M, ∂M) consistent
with complex C (or, simply, C-consistent) if M is composed from the cells of the
complex:

M =
⊔

k=1..Q

Rik
. (6)

Then, the boundary ∂M consists of oriented faces, separating a cell not belonging
to M from a cell within M :

∂M =
⊔
i,j

Ri⊂M,Rj⊂M

Fij . (7)
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Assuming that our complex has an appropriate resolution, we can restrict our
optimization process to the set of C-consistent scene configurations. The energy
cost E(M, ∂M) for a C-consistent configuration can be calculated as:

E(M, ∂M) =
∫∫
∂M

A(X, n∂M ) dS +
∫∫∫

M

B(X) dV =

∑
i,j

Ri⊂M,Rj⊂M

∫∫
Fij

A(X, nij) dS +
∑

Ai⊂M

∫∫∫
Ri

B(X) dV =

∑
i,j

Ri⊂M,Rj⊂M

wij +
∑

Ai⊂M

wi ,

where wij =
∫∫
Fij

A(X, nij) dS is the energy cost for including the oriented face

Fij into the scene surface ∂M (face cost), and wi =
∫∫∫
Ri

B(X) dV is the energy

cost for including the cell Ri into the scene M (cell cost).
After the numeric computation of these costs, we have a purely discrete

optimization problem: find the set of cells with the minimal sum of cell costs
and boundary faces costs.

4.2 Graph Cuts Minimization

Although there are so many (2K) possible C-consistent configurations, the best C-
consistent configuration can be found in a low order polynomial on K time using
graph cuts, recently employed for the optimization of energies in many vision
problems (e.g. [1, 14, 2]; the last one having the most similar optimization scheme
to ours). Under graph cuts, they usually mean the mincut/maxflow algorithm
solving the following problem.

Consider a directed graph with two distinguished vertices (terminals) S and
T . To each edge between non-terminal vertices (n-link), a nonnegative scalar
weight is assigned. Edges going to and from terminal vertices (t-links) are at-
tributed with arbitrary real weights. A cut is a partition of all vertices into two
non-intersecting sets called S-set and T -set, such that the former contains ter-
minal S and the latter contains terminal T . A weight of a cut is by definition
the sum of the weights of all edges going from a vertex in S-set to a vertex in
T -set (cut edges). Mincut algorithms are able to find the cut with the minimal
possible weight (the minimal cut) in the time that is low order polynomial on
the graph complexity.

To render our problem as a mincut/maxflow problem, we embed a dual graph
G into our complex C (Fig. 3d). For each cell Ri from C, G contains a vertex Vi

located in the center of a cell. For each oriented face Fij from C, G contains an
n-link Eij going from Vi to Vj with the weight wij . Thus, the direction of this
n-link is in accordance with the direction of an outward looking normal nij . We
also augment G with two terminal vertices S and T and add t-links ET

i going
from Vi to T having weights wi.
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To any C-consistent scene configuration (M, ∂M), there corresponds the cut
on G with S-set including the vertices corresponding to the cells within M plus
the terminal S.

M =
⊔

k=1..Q

Rik
←→ S-set = {Vik

|k = 1..Q} ∪ {S} . (8)

With such correspondence, any n-link is cut iff the corresponding oriented face
is included in the boundary ∂M , and any t-link is cut iff the corresponding cell
is included in the scene. Consequently, the weight of a cut always equals the
energy cost of a corresponding C-consistent configuration.

Due to this equality, the minimal cut corresponds to the C-consistent scene
configuration with the minimal energy. The multiview reconstruction is therefore
performed as follows. First, construct a complex C. Second, calculate face costs
and cell costs. Third, embed a dual graph G; find a minimal cut on G and the
corresponding scene configuration.

4.3 Complex Construction

Let us now consider the choice of an exact structure of the complex C. Assume
that our bounding volume B is a box, and let us qualitatively analyze the factors
that should be taken into consideration while choosing the complex.

The choice of C determines how ”densely” C-consistent configurations sample
the set of all configurations and how close would be the minimal C-consistent
scene configuration to the global minimum over the whole set of scene configu-
rations. Obviously, the smaller is the size of cells and faces, and the larger are
their numbers, the richer is the set of C-consistent configurations. The fineness
of resolution is not, however, the only factor to be considered. Due to the depen-
dence of A(x,n) on the orientation, another important matter is how densely the
orientations of complex faces sample the set of all possible orientations. Thus,
a straightforward but not a proper choice for C would be a commonly-used rec-
tangular voxel grid. The deficiency of such grid is that it has the oriented faces
of only six orientations irrespective of the resolution.

There can be several strategies in constructing complex better than rectan-
gular grid. In our experiments, we first subdivide our bounding box into voxel
cubes and then subdivide each cube with six planes, each passing through a pair
of opposite cube edges (Fig. 3c). As a result, the voxel in split into 24 tetrahedral
cells. This complex has an advantage of having oriented faces with as much as
18 different orientations.

Apart from the tripled number of orientations, another pleasant property of
our complex is that the surfaces of scene configurations consistent with it are
triangular meshes suitable for immediate storage and rendering. More than that,
with such complex, typical reconstructed surfaces are not so jaggy as those com-
posed from voxels and do not require additional smoothening quality-degrading
postprocessing like marching cubes.
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5 Semi-local Optimization

Oriented visibility gives incorrect visibility estimate in a situations when a part
of a scene has an orientation visible from a viewpoint but is occluded by another
distant part of a scene (distant occlusion). In many cases, however, such distantly
occluded areas constitute a relatively small part of the scene surface.

When the accurate reconstruction of distantly occluded parts is required, the
result obtained with our method can be used as a starting point for any other re-
construction method relying on iterative optimization and state-based visibility.
Alternatively, we developed our own algorithm for a (semi-)local optimization,
which searches for a globally optimal configuration within a band around the
previous configuration.

Making use of the current state of the scene, this algorithm combines both
state-based and oriented approaches to visibility, yielding the following visibility
estimate for a patch (X, n) from the ith viewpoint:

αi(X, n) = αor
i (X, n) · αstate

i (X) , (9)

where αor
i (X, n) is the oriented visibility indicator defined in (2), and αstate

i (X)
is a visibility computed based on the current state of the scene. Thus, the role
of αstate

i (X) is to detect distant occlusions. In all other aspects, our semi-local
optimization procedure is similar to the initial global optimization step.

With such visibility updates, the semi-local optimization can be reapplied
several times, each time considering the band around a previous configuration
as a novel bounding volume. Changing the thickness of a band allows to trade
between the accuracy of distant occlusion estimate on one side and the speed
of convergence and the robustness to trapping in local minima on the other.
Typically, a few (< 10) iterations is enough to converge.

As the computations are restricted to a narrow band around current con-
figuration, it is also possible to use finer resolution of the complex within the
same amount of memory and computation time, thus obtaining more accurate
results.

6 Experimental Results

In this section, we present the results of our method on three image sets (Fig. 4).
The artificial solids setup contains virtual objects “hanging” in the air. Its
main challenges are fine texture details paired with a uniform background. For
many photoconsistency-based algorithms such combination results in numer-
ous “floating” artifacts. The real camel and matreshkas setups contain objects
placed on the ground table/plane. The position of this plane as well as camera
parameters using structure-and-motion methods. The matreshkas setup is par-
ticularly difficult for reconstruction, as the varnished surfaces are highly non-
lambertian.
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Fig. 4. Samples of the source imagery in our experiments. Image sets comprised 16–
20 views surrounding the scene from all accessible positions. Left — solids setup was
rendered artificially using POV-Raytm [13]. Middle and right — camel and matreshkas
setups were taken using consumer digital camera.

The following volume potentials expressing the prior geometric knowledge
were used for reconstruction (B1 for solids, B2 for camel and matreshkas):

B1(X) =

{
+∞ near the bounding box boundary ,
β inside bounding box .

B2(X) =


−∞ below ground plane ,
+∞ near the bounding box boundary above ground plane ,
β inside bounding box .

Here, β is some small negative value introducing a slight ballooning effect, which
was kept constant throughout our experiments. Infinities in the volume potential
ensure the closeness of the recovered scene for solids and the ”object on the
ground” topology for camel and matreshkas.

For the evaluation purposes, we implemented an improved version [3] of the
popular space carving approach [7]. Since space carving is very sensitive to the
selection of photoconsistency threshold, we did our best while selecting the opti-
mal threshold for each setup. However, as demonstrates Fig. 5a, our setups were
too photometrically difficult for space carving.

The results of our method are presented on the rest of Fig. 5. Note, that
despite significant distant occlusions, global optimization based on the oriented
visibility solely (Fig. 5-middle) produced generally correct reconstructions for
solids and camel setups. This suggests that the ability to find a global minimum
often justifies the use of inexact visibility estimate.

In our experiments, the complex C comprised upto 20 million of cells re-
sulting in the same number of vertices in the dual graph G. Therefore the
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a)

b)

c)

d)

Fig. 5. The reconstruction results. a) The results of space carving algorithm. b) The
results of the proposed algorithm after global optimization. c) The results after three
steps of subsequent semi-local optimization. d) Renderings of image based textured
models created from real imagery with our method.

mincut/maxflow algorithm was the computational bottleneck for our approach.
Performing global reconstruction for such resolution demanded upto 20 minutes
on a P4-2.6GHz computer. Subsequent semi-local updates took few minutes.
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7 Discussion

In this paper, we have proposed a novel orientation-based approach to visibility
estimation. Such purely local visibility estimate allows us to cast a multiview
reconstruction problem as an optimization of a novel energy functional amenable
for minimization with graph cuts.

Our main advantage over other methods, which rely on state-based visibility
and on iterative updates, is the independence from the initialization due to the
ability of our optimization to yield a global minimum of the energy functional.
The result produced with our global optimization can be improved with our
semi-local optimization combining oriented and state-based approaches to visi-
bility. Alternatively, it can be used as a good starting point for any of the other
reconstruction methods.

The main limitation of our method in its current implementation is its compu-
tational demands. To deal with this problem, one can consider complexes based
on spatially non-uniform sampling of the reconstruction space. Non-uniform sam-
pling can be driven by some domain-specific knowledge or the cues resulting from
another reconstruction algorithm. In both cases, uncertain knowledge about po-
sition and orientation of the surface may be used to include faces in the complex
at some positions and with some orientations more frequently then others. An
interesting option for implementing this are random grids arranged in BSP-trees
proposed for discrete minimal surface search in [6].

The second deficiency of our method is the difficulties it faces while recovering
the protruding parts of objects (e.g. camel ears). This problem is, however,
inherent to all minimal surface methods, since they minimize the integral of
non-negative energy function over a scene surface.

Another prospect for future investigation is concerned with the fact that our
patch energy cost A(X, n) accounts for both position and orientation of a patch.
This can allow to use different shading models in our method. Thus, we can
consider the reconstruction based on non-lambertian reflectivity models (e.g.
Phong model) or shape-from-shading reconstruction.
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Abstract. Integration of surface normal vectors is a vital component
in many shape reconstruction algorithms that require integrating surface
normals to produce their final outputs, the depth values. In this paper,
we introduce a fast and efficient method for computing the depth val-
ues from surface normal vectors. The method is based on solving the
Eikonal equation using Fast Marching Method. We introduce two ideas.
First, while it is not possible to solve for the depths Z directly using
Fast Marching Method, we solve the Eikonal equation for a function W
of the form W = Z +λf . With appropriately chosen values for λ, we can
ensure that the Eikonal equation for W can be solved using Fast March-
ing Method. Second, we solve for W in two stages with two different λ
values, first in a small neighborhood of the given initial point with large
λ, and then for the rest of the domain with a smaller λ. This step is
needed because of the finite machine precision and rounding-off errors.
The proposed method is very easy to implement, and we demonstrate
experimentally that, with insignificant loss in precision, our method is
considerably faster than the usual optimization method that uses conju-
gate gradient to minimize an error function.

1 Introduction

Many shape reconstruction algorithms in computer vision require integrating
surface normal vectors. Reconstruction algorithms that use multi-view corre-
spondences, such as structure from motion, generally recover the depth values
directly from the pixel correspondences. However, algorithms that depend on ex-
ploiting illumination effects, such as photometric stereo and shape from shading,
the depth values in general cannot be computed directly. Instead, under the usual
Lambertian assumption, the normal vectors of the object’s surface are recovered,
and the depth values are obtained by integrating the surface normals. Successes
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abound in applying these techniques to important reconstruction problems in
computer vision, ranging from the human face reconstruction [1] to the more re-
cent optical-flow based object reconstruction from video sequences [2]. And in all
these successes, integration of normal vectors is an important part of the story.
This paper proposes a new method for integrating surface normals, which, with
insignificant loss in precision, is about two order of magnitude faster than the
traditional algorithm that uses conjugate descent to minimize some error func-
tion. This improvement in performance is particularly noticeable on large-scale
problems, with images containing up to two million pixels.

The normal integration problem can be stated very simply as follows. For an
usual XY grid, we are given a normal vector N = N(x, y) at each grid point
(x, y). The task is then to recover a surface S, represented by the height function
Z(x, y), such that N is a normal vector field of S. A simple calculation shows
that a normal vector of S at a point (x, y) is given by the formula,

N(x, y) = (
∂Z

∂x
,
∂Z

∂x
,−1). (1)

In the following discussion, we will adhere to the convention and denote
quotients Nx

Nz
and Nx

Nz
by P and Q, respectively. Since the normal vector is only

defined up to multiplication by a constant, for any normal vector N, the ratios
of its x and y components with its z-component are the partial derivatives of Z
with respect to x and y, respectively. Namely,

∂Z

∂x
= −Nx

Nz
= −P, (2)

∂Z

∂y
= −Ny

Nz
= −Q, (3)

where Nx, Ny and Nz are the x, y and z components of N. A straightforward way
of solving this system of PDEs is then to minimize the following error function
over the entire grid [3]:

E(Z) =
∑
i,j

(
∂Z

∂x
+

Nx

Nz
)2 + (

∂Z

∂y
+

Ny

Nz
)2. (4)

The error function E is a quadratic function of its variables, zi,j , the values
of the function Z at the grid point (i, j). In principle, its global minimum can
be determined by solving the K-by-K1 linear system Ax = b derived from the
condition,

∇E = 0. (5)

While this is perfectly doable, it is definitely not recommended for a large system.
For example, on an image of size 1401-by-1401, the dimension of the linear
system above is roughly two millions. While A is sparse, it is still a daunting

1 K is the number of grid points.
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task to solve the linear system Ax = b directly using, e.g. LU factorization,
which has the complexity of O(K3). Therefore, conjugate gradient is often used
to find a minimum of E . The main problem with this approach is the speed of
convergence. As is well-known, it depends on the initial point (some given height
function Z) that starts the iteration as well as the conditioning of the matrix
A. Of course, it also depends on the size of the problem. Not surprisingly, for
large scale problems, the convergence of the conjugate gradient optimization of
Equation 4 is often excruciatingly slow.

The other commonly used method for solving the normal integration problem
is to transform the problem to the frequency domain [4]. Suppose P and Q have
the following Fourier expansions:

P =
∑

cP (ωx, ωy)ei(ωxx+ωyy),

Q =
∑

cQ(ωx, ωy)ei(ωxx+ωyy),

where ωx, ωy are the fundamental frequencies. Then, a best surface (in the least
square sense) is then given by the formula

Z =
∑

c(ωx, ωy)ei(ωxx+ωyy),

where

c(ωx, ωy) =
iωxcP (ωx, ωy) + iωycQ(ωx, ωy)

ω2
x + ω2

y

Fast Fourier Transform can be applied to efficiently solve the problem. However,
as is well-known, FFT works well only with grids whose sizes are powers of 2,
and there are also other problems associated with this approach.

In this paper, we propose a fast method for solving the normal integration
problem. The algorithm is based on solving the Eikonal equation, and it uses the
Fast Marching Method developed by Sethian and others for solving the Eikonal
equation [5]. Our idea is as follows. While Fast Marching Method cannot be
applied directly to solve for the height values Z, we can nevertheless try to solve
for a function W of the form W = Z +λf , where λ is a parameter and f is some
known function. The idea is to find a pair of λ and f so that we can use Fast
Marching Method to solve for the Eikonal equation for W . Even though the idea
is simple, to the best of our knowledge, nothing similar has been reported in the
computer vision literature before.

This paper is structured as follows. In the next section, we describe the
proposed method of integration. In Section 3, we briefly review some related
work, and we describe the similarities as well as disparities between the problem
we solve here and the shape from shading problem. Experimental results com-
paring our method with the direct optimization of Equation 4 using conjugate
gradient is reported in Section 4. The paper ends with a short summary and
conclusion.
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2 Integrating Surface Normals by Solving Eikonal
Equation

It is well-known that the problem of integrating surface normals is intimately
related to the solution of the Eikonal equation (e.g. [5]). Starting with the pair
of equations in Equations 2 and 3, we have the following Eikonal equation:

‖∇Z‖ =
√

P 2 + Q2. (6)

Therefore, a solution of the above equation is the desired height function Z. The
Eikonal equation has appeared in various places in computer vision literature.
For example, in many algorithms that use the level-set technique, Eikonal equa-
tion is often solved to produce a signed-distance function from the level set, and
this re-initialization of the level-set function is a crucial step. Lately, there has
been a considerable amount of interests in studying a modified Eikonal equation
for solving the shape from shading problems [6]. Our approach here is also about
solving the Eikonal equation.
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Fig. 1. Left: A function with two local minimums that cannot be recovered using
Fast Marching Method. Right: We solve for W with two different λ values in two
complementary regions.

The Fast Marching Method [5] provides a very efficient method to solve
the Eikonal equation. Starting with an initial value at some given point u, it
determines the Z value at every point by computing the time of arrival of an
expanding wavefront. This method is very efficient, and it has the time complex-
ity of roughly O(K log K) with K the number of grid points, using an auxiliary
heap structure for keeping track of the wavefront. In addition, it is also very
easy to implement. Unfortunately, Fast Marching Method cannot be applied di-
rectly here. For one thing, the initial point u has to be the global minimum of Z
and in general, this information is not available. Furthermore, it will also have
a difficulty dealing with functions that have local minimums. For example, the
simple function depicted in Figure 1(Left) with two local minimums cannot be
recovered by a straightforward application of Fast Marching Method. A modi-
fied Fast Marching approach [5][7] is to determine the local minimums first, and
starting from these local minimums, every step extends reconstruction to higher
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depths and the entire reconstruction is then accomplished in one single pass.
However, in our problem, we do not assume that we know the locations of these
local minimums. In principle, one can detect the local minimums by determining
the locations where ∂Z/∂x = ∂Z/∂y = 0, and the Hessian

H(x, y) =

(
∂2Z
∂2x

∂2Z
∂y∂x

∂2Z
∂x∂y

∂2Z
∂2y

)
(7)

is positive definite. However, with the noise present in the data as well as quan-
tization effect, there is no guarantee on how accurately these local minimums
can be located.

Instead, we propose to solve the Eikonal equation for a function W of the
form

W = Z + λf, (8)

where λ is a constant and f is some function such that W is a function with
one single global minimum at the initial point u and without any other critical
points. In a way, the function f is here to cancel off any critical point of Z so that
W is critical point free except at u. In particular, the level-set W−1(c) is always
topologically the same for any value of c such that W−1(c) contains more than
one point. Clearly, W can be solved using Fast Marching Method, and hence Z
can be recovered from W if f and λ are known.

Since we are solving the height function Z over a finite domain, we can as-
sume that both Z as well as its derivatives are bounded, |Z| < c1 and ‖∇Z‖ < c2.
In practice, this is not a restrictive assumption since the surfaces been recovered
by most shape reconstruction algorithms are often assumed to be smooth, and
in many variational approaches [8], there is usually a smoothing term that min-
imizes the norm of ∇Z anyway. With this assumption in mind, we take f to be
the squared-distance function (from the point u = (ux, uy)):

f = (x− ux)2 + (x− uy)2.

Without loss of generality, we assume that the initial point u is the origin in the
following discussion. The derivatives of f vanish at the origin; therefore, u is not
a critical point of W = Z + λf unless it is a critical point of Z. However, with
sufficiently large λ, one can show that the critical points of W = Z + λf are all
confined to a disk centered at origin with radius r = q/2, where q is the grid
spacing, the distance between two neighboring grid points:

Lemma 1. Suppose ‖∇Z‖ < c2. If λ > c2
2R for some real number R, then

W = Z +λf has no critical point outside of a disk Dr centered at the origin with
radius R.

The proof is trivial since in the region outside Dr, ‖∇f‖ > 2R and ‖λ∇f‖ >
2Rλ > c2 > ‖∇Z‖. That is, ∇W = ∇Z + λ∇f can never be zero outside of
Dr since ∇Z and λ∇f can never be the same. Therefore, in principle, we can
choose a sufficiently large λ such that W only has critical points in the disk of
radius q/2. Since we are computing everything on the grid, these critical points
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will be invisible, and we can treat the origin as the only critical point of W . The
constant c2 can be determined in a single pass over the input datum P and Q.
Note that since we know the derivatives of Z as well as those of f , the Eikonal
equation for W is simply

‖∇W‖ =
√

(P + 2x)2 + (Q + 2y)2. (9)

Once W is computed, Z can be easily recovered.
While the approach above is mathematically valid, because of finite machine

precision, large λ would have incurred large rounding-off errors for the Z values.
The situation is particularly urgent for points far away from the origin, where
the term λf would have been considerably larger than Z. In this region, we
prefer a small λ, while in the region close to the origin, we can accommodate a
larger value for λ. Our second idea is then to solve the problem in two stages.
In the first stage, we solve for Z in a small neighborhood of the origin, e.g., in a
disk of radius R = 1. In this region, we can use larger values for λ because the
term λ(x2 +y2) will in general still be manageable. In the second stage, we solve
Z for the rest of the domain using the result from the first stage as the initial
values. By the Lemma above, we can take λ to be c2

2 + 1. See Figure 1(Right).
In our implementation, we choose the neighborhood Dr beforehand, and we fix
it to be a window W of size, say 15-by-15, centered at the given point u. We
take λ to be

λ = max
p=(x,y)/∈W

‖∇Z‖
2‖p‖ + 1 = max

p=(x,y)/∈W

√
P 2 + Q2

2
√

x2 + y2
+ 1. (10)

Again, λ can be determined in a single pass over the input datum P and Q.
The other way to solve for the Z values in a small neighborhood of the

origin is to explicitly invert the linear system Ax = b. Since the neighborhood
is supposed to be small, it makes sense to solve the system directly, and the
inversion process is relatively cheap. In particularly, if we fix the size of this
neighborhood W , and because A depends only on the connectivity of W , the
LU factorization of A can be computed off-line and the online inversion of the
linear system is then fast and effortless.

3 Comparison with Shaping from Shading Literature

One common method for solving the shape from shading problem is to solve an
Eikonal equation of the form [5]:

‖Z‖ =

√
1
I2 − 1. (11)

Here we assume that the single light source is from the direction (0, 0, 1), and the
Lambertian object has uniform albedo of value 1. I above denotes the image in-
tensity value. Many papers have been devoted to solving this equation (e.g. [6]).
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We point out, however, that the major distinction between our problem of inte-
grating surface normal vectors and the shape from shading problem formulated
above is that in our case, we have the values for the x and y components of ∇Z,
while in the shape from shading problem, only the magnitude of ∇Z is known,
and it is related to the intensity value through the equation above.

It is precisely because we know the x and y components of ∇Z, we can
solve the Eikonal equation for W in Equation 9 since the right hand side can
be computed. An equation analogous Equation 9 is not available for the shape
from shading problem. Therefore, more elaborated scheme has to be designed in
order to solve the Eikonal equation efficiently.

Finally, we also mention one important fact about the comparison between
using the proposed method and the direct minimization of Equation 4 using
conjugate gradient descent. While Fast Marching Method is unquestionably effi-
cient in solving the Eikonal equation, it is not an iterative process and therefore,
there is no way to further improve the quality of the solution. Typically, as in
the experiments reported in the next section, there will always be errors between
the reconstructed depths and the true depths. In our experiment, the error is
usually at most 1% of the true depth value. The point we try to make in this
paper is that to reach the precision obtained via our method would usually re-
quire conjugate gradient to run as much as 200 times longer. However, being an
iterative scheme, conjugate gradient can keep running until it reaches a global
minimum (or within the given tolerance set by the machine precision and the
user). Therefore, there are two ways to apply our proposed method in a normal
integration problem. If the precision requirement is stringent (with relative error
< 10−3), one can use the proposed method to quickly obtain an initial surface
estimate, and feed this result into an efficient optimization method to yield a
more precise result. On the other hand, if the precision requirement is not too
demanding, the output of our method will usually be sufficient.

4 Experiments and Results

In this section, we report our experimental results. All experiments reported
below were run on a 3.19 GHz DELL Pentium desktop computer with 2.00 GB
of RAM running Windows XP. We implemented the proposed method using
a simple C++ implementation without any optimization except a heap struc-
ture for keeping track of the front points and their neighbors. We compare the
performance of the proposed method with the standard conjugate gradient min-
imization of Equation 42. The implementation of the conjugate gradient descent
is taken straight out of [9]. Except for the Brent line minimization, no further
optimization of the code has been implemented.

Below, we provide two types of experiments. In the second group of experi-
ments, we work with the (noisy) normal vectors of a human face estimated using
2 The standard conjugate gradient without line search usually fails to converge to the

precision we required. Therefore, we include the line minimization to ensure that the
iterative process will converge to the required precision.
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the photometric stereo algorithm [1]. In the first group of experiments, which is
our main focus, we work with surfaces with known depths and normal vectors.
The goal is to compare the speed of our method and that of the conjugate gradi-
ent descent under the same precision requirement. For each of the four functions
Z = Z(x, y) given below, we compute the normals of the surface represented
by Z using Equation 1. The estimated depth value Z ′ is computed using both
methods at each point, and also the relative error

ε =
|Z − Z ′|
|Z| .

The mean, median and also the standard deviation of the relative errors are
computed for each function, and they serve as the measurements used to compare
both methods.

4.1 Experiment with Simulated Data

In this group of experiments, we study the performance of our method for sur-
faces with known depths and normals. We run the experiments on a grid of size
1401×1401, and there are roughly two million grid points. In all experiments, it
takes less than three seconds (2.677 to be exact) for our method to finish. Note
that the speed of our method is independent of the value of λ as well as the
chosen initial starting point. We compute the mean, median and standard devi-
ation of the relative errors of the reconstruction result given by our method. We
then run the conjugate gradient (CG) with sufficiently many iterations in order
to reach the same precision requirement. In the experiments reported below, CG
usually takes about 250 to 350 iterations to converge to the required precision,
and this translates into roughly from 475 to 700 seconds. Averagely, our method
is about 200 times faster than the conjugate gradient method.

Sphere. For the first experiment, we look at the simplest case of a sphere,

Z =
√

1.52 − x2 − y2

over the domain D ≡ {(x, y)| − 0.7 ≤ x, y ≤ 0.7}. In this example, we take the
domain Dr to be the disk with radius r = 7 grid points. For the first experiment,
the initial starting point is chosen at the center of the grid, the apex of the sphere
over the domainD. We pick the optimal value of λ = 6 determined by Equation 9.
The mean, median and the standard deviation of the relative errors with this λ
setting are 0.0046, 0.0045, and 0.0015, respectively, which is sufficiently accurate
for many applications.

Next, we vary the value of λ from 0 to 100. The mean, median and the stand
derivation for these values of λ are plotted in Figure 2. The optimal λ value of 6 is
very close to the empirical optimal value of λ = 4, which gives the mean, median,
standard deviation of 0.0042, 0.0042, and 0.0015, respectively. Note that with
λ = 0, which corresponds to a direct application of Fast Marching Method to
solve the Eikonal equation, the result is, as expected, completely incorrect. Also
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Fig. 2. From Left to Right: Plots of the mean, median and standard deviation of the
relative errors of the reconstruction results for the sphere with λ ranging from 0 to 100

Fig. 3. From Left to Right: Reconstruction results for the sphere using λ = 0, 6 and
100, respectively. The images are colored-coded according to depth values.

as expected, as the value of λ increases, the rounding-off errors start creeping in
and accumulating, the reconstruction result begins to deteriorate. However, even
with the relatively large value of λ = 60, the median and mean of the relative
error is still below 3% with standard deviation less than 2%.

In Figure 3, we show the reconstruction results using λ = 0, 6, 100. Clearly,
the reconstruction result for λ = 0 is completely incorrect.

Monkey Saddle. While we have passed the rudimentary test using sphere, the
next example, which is a little more challenging, uses the function

Z = x(x2 − 3y2) + 3.

Instead of the global maximum in the example above, the origin is now a saddle
point of the function Z. We run the experiment over the same range of λ, from
0 to 100. The mean, median and the stand derivation of the relative errors for
these values of λ are plotted in Figure 4. Again, we observe the similar pattern
as above that when λ = 0, the reconstruction result is completely incorrect.
Furthermore, the quality of the reconstruction, as measured by the mean, median
and standard deviation of the relative errors, deteriorates as λ increases. In this
example, we have used λ = 12 and it is close to the empirical optimal value of
λ = 18.
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Fig. 4. From Left to Right: Plots of the mean, median and standard deviation of the
relative errors of the reconstruction results for the Monkey Saddle with λ ranging from
0 to 100

Fig. 5. From Left to Right: Reconstruction results for the Monkey Saddle using λ =
0, 12 and 100, respectively

Fig. 6. From Left to Right: Reconstruction results for the function Z = sin(2π(x2 +
y2)) + 3 using λ = 4, 30 and 100, respectively

Sinusoidal Function and Gaussian. Figures 6 and 7 display the reconstruc-
tion results for the following two functions:

Z = sin(2π(x2 + y2)) + 3 (12)

Z = e−x2−y2
+ 10 (13)
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Fig. 7. From Left to Right: Reconstruction results for Z = e−x2−y2
+10 using λ = 0, 8

and 100, respectively

Fig. 8. From Left to Right: Three views of the reconstruction result of one individual
in the Yale Face Database B

For the gaussian exponential function, again, we see that the reconstruction
result for λ = 0 is incorrect. For the function Z = sin(2π(x2 + y2)) + 3, instead
of displaying the reconstruction result for λ = 0, we show the result with λ = 4,
which is clearly incorrect and incomplete.

4.2 Experiment with Real Data

In this experiment, we work with the normal vectors provided in the Yale Face
Database B [1]. Images of each of the ten individuals in the database were taken
under different illumination conditions. The normal vectors are estimated using
the photometric stereo algorithm of [10]. Figure 8 shows the reconstruction result
using our method for one individual in the database. Since the image here is of
size 168 × 192, which is considerably smaller than the ones we used above, it
takes less then 0.02 second for our method to complete the integration.

5 Conclusion

In this paper, we have presented a method for computing depth values from
surface normal vectors. The proposed method is based on the Fast Marching
Method for solving the Eikonal equation. Our main contribution is the obser-
vation that while we cannot apply Fast Marching Method directly to solve the
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Eikonal equation for the unknown depth Z directly, we can solve the Eikonal
equation for a function W , which is the sum of the unknown depth plus and
some function. The idea is that W is a function with one critical point and Fast
Marching Method can be applied to solve W quickly, and hence Z recovered.
Because of the finite machine precision and rounding-off errors, we are forced to
solve W in two stages, first in a small neighborhood containing the given initial
point and then solve W for the rest of the domain. We have presented several
different experiments with synthetic examples, which allow us to examine pre-
cisely several aspects of our algorithm. In all examples, we have demonstrated
that given the same precision requirement, the proposed method is considerably
faster than the old method based on conjugate gradient descent. Since surface
normal integration is an important component in many shape reconstruction
algorithms, we believe that the results presented in this paper will be of interest
to a sizable portion of the computer vision community.
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Abstract. We address the problem of comparing sets of images for ob-
ject recognition, where the sets may represent arbitrary variations in an
object’s appearance due to changing camera pose and lighting condi-
tions. The concept of Canonical Correlations (also known as principal
angles) can be viewed as the angles between two subspaces. As a way
of comparing sets of vectors or images, canonical correlations offer many
benefits in accuracy, efficiency, and robustness compared to the classical
parametric distribution-based and non-parametric sample-based meth-
ods. Here, this is demonstrated experimentally for reasonably sized data
sets using existing methods exploiting canonical correlations. Motivated
by their proven effectiveness, a novel discriminative learning over sets is
proposed for object recognition. Specifically, inspired by classical Linear
Discriminant Analysis (LDA), we develop a linear discriminant func-
tion that maximizes the canonical correlations of within-class sets and
minimizes the canonical correlations of between-class sets. The proposed
method significantly outperforms the state-of-the-art methods on two
different object recognition problems using face image sets with arbi-
trary motion captured under different illuminations and image sets of
five hundred general object categories taken at different views.

1 Introduction

Whereas most previous works for object recognition have focused on the prob-
lems of single-to-single or single-to-many vector matching, many tasks can
be cast as matching problems of vector sets (i.e. many-to-many) for robust
object recognition. In object recognition, e.g., a set of vectors may represent a
variation in an object’s appearance – be it due to camera pose changes, non-
rigid deformations or variation in illumination conditions. The objective of this
work is to efficiently classify a novel set of vectors to one of the training classes,
each also represented by one or several vector sets. In this study, sets may be
derived from sparse and unordered observations acquired by e.g. multiple still
shots of a three dimensional object or a long term surveillance systems, where
a subject would not face the camera all the time. Without temporal coherence,
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(a)

(b)

Fig. 1. Examples of image sets. (a) Two sets (top and bottom) contain images of an
3D object taken from different views but with a certain overlap in their views. (b) Face
image sets collected from videos taken under different illumination settings. Face pat-
terns of the two sets (top and bottom) vary in both lighting and pose.

training sets can be conveniently augmented. See Figure 1 for examples of pat-
tern sets of objects. The previous works exploiting temporal coherence between
consecutive images [1, 2] are irrelevant to this study. Furthermore, this work
does not explicitly exploit any data-semantics in images, but is purely based
on automatic learning of given labelled image sets. Therefore, we expect that
the proposed method can be applied to many other problems requiring a set
comparison.

Relevant previous approaches for set matching can be broadly partitioned
into model-based and sample-based methods. In the parametric model-based
approaches [3, 4], each set is represented by a parametric distribution function,
typically Gaussian. The closeness of the two distributions is then measured by
the Kullback-Leibler Divergence (KLD) [3]. Due to the difficulty of parameter es-
timation under limited training data, these methods easily fail when the training
and test sets do not have strong statistical correlations.

More suitable methods for comparing sets are based on the matching of pair-
wise samples of sets, e.g. Nearest Neighbour (NN) or Hausdorff distance match-
ing [5]. The methods are based on the premise that similarity of a pair of sets
is reflected by the similarity of the modes (or NNs) of the two respective sets.
This is useful in many computer vision applications, where the data acquisition
conditions and the semantics of sets may change dramatically over time. How-
ever, they do not take into account the effect of outliers as well as the natural
variability of the sensory data due to the 3D nature of the observed objects.
Note also that such methods are very computationally expensive as they require
a comparison of every pairwise samples of any two sets.

Another model-based approaches are based on the concept of canonical
correlations, which has attracted increasing attention for image set matching
in [8]-[11], following the early works [12, 13]. Each set is represented by a linear
subspace and the angles between two subspaces are exploited as a similarity
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measure of two sets. As a method of comparing sets, the benefits of canoni-
cal correlations, as compared with both, distribution based and sample based
matching, have been noted in [4, 10]. A nonlinear extension of canonical correla-
tion has been proposed in [9, 10]. The previous work called Constrained Mutual
Subspace Method (CMSM) [11] is the most related with this paper. In CMSM,
a constrained subspace is defined as the subspace in which the entire class pop-
ulation exhibits small variance. The authors showed that the sets of different
classes in the constrained subspace had small canonical correlations. However,
the principle of CMSM is rather heuristic, especially the process of selecting the
dimensionality of the constrained subspace. If the dimensionality is too low, the
subspace will be a null space. In the opposite case, the subspace simply passes all
the energy of the original data and thus could not play a role as a discriminant
function.

Given a similarity function of two sets, an important problem in set classi-
fication is how to learn discriminative information (or a discriminant function)
from data associated with the given similarity function. To our knowledge, the
topic of discriminative learning over sets has not been given a proper attention
in literature. This paper presents a novel method for an optimal linear discrimi-
nant function of image sets based on canonical correlations. A linear discriminant
function that maximizes the canonical correlations of within-class sets and min-
imizes the canonical correlations of between-class sets is devised, by analogy to
the optimization concept of Linear Discriminant Analysis (LDA) [6]. The linear
mapping is found by a novel iterative optimization algorithm. The discriminative
capability of the proposed method is shown to be significantly better than the
method [8] that simply aggregates canonical correlations and the k-NN meth-
ods in LDA subspace [5]. Compared with CMSM [11], the proposed method is
more practical by easiness of feature selection as well as it is more theoretically
appealing.

2 Discriminative Canonical Correlations (DCC)

2.1 Canonical Correlations

Canonical correlations, which are cosines of principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤
(π/2) between any two d-dimensional linear subspaces L1 and L2 are uniquely
defined as:

cos θi = max
ui∈L1

max
vi∈L2

uT
i vi (1)

subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, for i = j. Of the various ways
to solve this problem, the Singular Value Decomposition (SVD) solution [13] is
more numerically stable. The SVD solution is as follows: Assume that P1 ∈ Rn×d

and P2 ∈ Rn×d form unitary orthogonal basis matrices for two linear subspaces,
L1 and L2. Let the SVD of PT

1 P2 be

PT
1 P2 = Q12ΛQT

21 s.t. Λ = diag(σ1, ..., σd) (2)
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(a)

(b)

Fig. 2. Principal components vs. canonical vectors. (a) The first 5 principal
components computed from the four image sets shown in Figure 1. The principal com-
ponents of the different image sets (see each column) show significantly different varia-
tions even for the same objects. (b) The first 5 canonical vectors of the four image sets.
Every pair of canonical vectors (each column) well captures the common modes (views
and illuminations) of the two sets, i.e. the pairwise canonical vectors are almost similar.
The canonical vectors of different dimensions represent different pattern variations e.g.
in pose or lighting.

where Q12,Q21 are orthogonal matrices, i.e. QT
ijQij = QijQT

ij = Id. Canoni-
cal correlations are {σ1, ..., σd} and the associated canonical vectors are U =
P1Q12 = [u1, ...,ud], V = P2Q21 = [v1, ...,vd]. The canonical correlations tell
us how close are the closest vectors of two subspaces. Different canonical corre-
lations tell about the proximity of vectors in other dimensions (perpendicular to
the previous ones) of the two subspaces. See Figure 2 for the canonical vectors
computed from the sample image sets given in Figure 1. Whereas the principal
components vary for different imaging conditions of the sets, the canonical vec-
tors well capture the common modes of the two different sets.

Compared with the parametric distribution-based matching, this concept is
much more flexible as it effectively places a uniform prior over the subspace of
possible pattern variations. Compared with the NN matching of samples, this
approach is much more stable as patterns are confined to certain subspaces. The
low computational complexity of matching by canonical correlations is also much
favorable.

3 Learning a Discriminant Function of Canonical
Correlations

3.1 Problem Formulation

Assume m sets of vectors are given as {X1, ...,Xm}, where Xi describes a data
matrix of the i th set containing observation vectors (or images) in its columns.
Each set belongs to one of object classes denoted by Ci. A d-dimensional linear
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subspace of the i th set is represented by an orthonormal basis matrix Pi ∈ Rn×d

s.t. XiXT
i � PiΛiPT

i , where Λi,Pi are the eigenvalue and eigenvector matrices
of the d largest eigenvalues respectively and n denotes the vector dimension. We
define a transformation matrix T s.t. T : Xi → Yi = TT Xi. The matrix T
is to transform images so that the transformed image sets are more class-wise
discriminative using canonical correlations.

Representation. Orthonormal basis matrices of the subspaces for the trans-
formed data are obtained from the previous matrix factorization of XiXT

i :

YiYT
i = (TT Xi)(TT Xi)T � (TT Pi)Λi(TT Pi)T (3)

Except when T is an orthogonal matrix, TT Pi is not generally an orthonormal
basis matrix. Note that canonical correlations are only defined for orthonormal
basis matrices of subspaces. Any orthonormal components of TT Pi now defined
by TT P′

i can represent an orthonormal basis matrix of the transformed data.
See Section 3.2 for details.

Set Similarity. The similarity of any two transformed data sets are defined
as the sum of canonical correlations by

Fij = max
Qij ,Qji

tr(Mij), (4)

Mij = QT
ijP

′T
i TTT P′

jQji or TT P′
jQjiQT

ijP
′T
i T, (5)

as tr(AB) = tr(BA) for any matrix A, B. Qij ,Qji are the rotation matrices
defined in the solution of canonical correlations (2).

Discriminant Function. The discriminative function T is found to maximize
the similarities of any pairs of sets of within-classes while minimizing the simi-
larities of pairwise sets of between-classes. Matrix T is defined by

T = argmax
T

∑m
i=1

∑
k∈Wi

Fik∑m
i=1

∑
l∈Bi

Fil
(6)

where Wi = {j |Xj ∈ Ci} and Bi = {j |Xj /∈ Ci}. That is, the two sets Wi, Bi

denote the within-class and between-class sets of a given set class i respectively,
which are similarly defined with [7].

3.2 Iterative Optimization

The optimization problem of T involves the variables of Q,P′ as well as T. As
the other variables are not explicitly represented by T, a closed form solution
for T is hard to find. We propose an iterative optimization algorithm. Specifi-
cally, we compute an optimal solution for one of the three variables at a time
by fixing the other two and repeating this for a certain number of iterations.
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Algorithm 1. Discriminative Canonical Correlations (DCC)

Input: All Pi ∈ Rn×d Output: T ∈ Rn×n

1.T ← In

2.Do iterate the followings:
3. For all i, do QR-decomposition: TT Pi = Φi∆i → P′

i = Pi∆−1
i

4. For every pair i, j, do SVD: P′T
i TTT P′

j = QijΛQT
ji

5. Compute S′
b = m

i=1 l∈Bi
(P′

lQli − P′
iQil)(P′

lQli − P′
iQil)T ,

S′
w = m

i=1 k∈Wi
(P′

kQki − P′
iQik)(P′

kQki − P′
iQik)T .

6. Compute eigenvectors {ti}n
i=1 of (S′

w)−1S′
b, T ← [t1, ..., tn]

7.End

Thus, the proposed iterative optimization is comprised of the three main steps:
normalization of P, optimization of matrices Q, and T. Each step is explained
below:

Normalization. The matrix Pi is normalized to P′
i for a fixed T so that the

columns of TT P′
i are orthonormal. QR-decomposition of TT Pi is performed

s.t. TT Pi = Φi∆i, where Φi ∈ Rn×d is the orthonormal matrix with the first
d columns and ∆i ∈ Rd×d is the invertible upper-triangular matrix with the
first d rows. From (3), Yi = TT Pi

√
Λi = Φi∆i

√
Λi. As ∆i

√
Λi is still an

upper-triangular matrix, Φi can represent an orthonormal basis matrix of the
transformed data Yi. As ∆i is invertible,

Φi = TT (Pi∆−1
i ) → P′

i = Pi∆−1
i . (7)

Computation of Rotation Matrices Q. Rotation matrices Qij for every
i, j are obtained for a fixed T and P′

i. The correlation matrix Mij in the left
of (5) can be conveniently used for the optimization of Qij , as it has Qij outside
of the matrix product. Let the SVD of P′T

i TTT P′
j be

P′T
i TTT P′

j = QijΛQT
ji (8)

where Λ is a singular matrix and Qij ,Qji are orthogonal rotation matrices.

Computation of T. The optimal discriminant transformation T is computed
for given P′

i and Qij by using the definition of Mij in the right of (5) and (6).
With T being on the outside of the matrix product, it is convenient to solve for.
The discriminative function is found by

T = maxargT tr(TTSwT)/tr(TTSbT) (9)

Sw =
∑m

i=1
∑

k∈Wi
P′

kQkiQT
ikP

′T
i , Sb =

∑m
i=1

∑
l∈Bi

P′
lQliQT

ilP
′T
i (10)

where Wi = {j |Xj ∈ Ci} and Bi = {j |Xj /∈ Ci}. For a more stable solution,
an alternative optimization is finally proposed by

T = maxargT tr(TT S′
bT)/tr(TT S′

wT) (11)
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Fig. 3. Example of learning. (a) The cost function for the number of iterations.
Confusion matrices of the training set (b) before the learning (T = I) and (c) after the
learning. The discriminability of canonical correlations was significantly improved by
the proposed learning.

S′
b =

∑m
i=1

∑
l∈Bi

(P′
lQli −P′

iQil)(P′
lQli −P′

iQil)T , (12)

S′
w =

∑m
i=1

∑
k∈Wi

(P′
kQki −P′

iQik)(P′
kQki −P′

iQik)T . (13)

Note that no loss of generality is incurred by this modification of the objective
function as

AT B = I− 1/2 · (A−B)T (A−B),

where A = TT P′
iQij , B = TT P′

jQji. The solution {ti}ni=1 is obtained by
solving the following generalized eigenvalue problem: S′

bt = λS′
wt. When S′

w is
non singular, the optimal T is computed by eigen-decomposition on (S′

w)−1S′
b.

Note also that the proposed learning can avoid a singular case of S′
w by pre-

applying PCA to data similarly with the Fisherface method [6] and speed up by
using a small number of nearest neighboring sets for Bi, Wi in (6) like [7].

With the identity matrix I ∈ Rn×n as the initial value of T, the algorithm
is iterated until it converges to a stable point. A Pseudo-code for the learning
is given in Algorithm 1. See Figure 3 for an example of learning. It converges
fast and stably and dramatically improves the discriminability of the simple
aggregation method of canonical correlations (i.e. T = I). After T is found to
maximize the canonical correlations of within-class sets and minimize those of
between-class sets, a comparisons of any two sets is achieved using the similarity
value defined in (4).

4 Experimental Results and Discussion
4.1 Experimental Setting for Face Recognition

Database and Protocol. We have acquired a database called the Cambridge-
Toshiba Face Video Database with 100 individuals of varying age and eth-
nicity, and equally represented genders. For each person, 7 video sequences of
the person in arbitrary motion were collected. Each sequence was recorded in a
different illumination setting for 10s at 10fps and 320×240 pixel resolution (see
Figure 4). Following automatic localization using a cascaded face detector [14]
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(a)

(b)

Fig. 4. Face data sets. (a) Frames of a typical face video sequence. (b) Face proto-
types of 7 different lighting sequences.

and cropping to the uniform scale of 20×20 pixels, images of faces were histogram
equalized. Training of all the algorithms was performed with data acquired in a
single illumination setting and testing with a single other setting. We used 18
randomly selected training/test combinations for reporting identification rates.

Comparative Methods. We compared the performance of our learning algo-
rithm (DCC) to that of:

– K-L Divergence algorithm (KLD) [3],
– k-Nearest Neighbours (k-NN) and Hausdorff distance1 in (i) PCA, and (ii)

LDA [6] subspaces estimated from training data [5],
– Mutual Subspace Method (MSM) [8], which is equivalent to the simple ag-

gregation of canonical correlations,
– Constrained MSM (CMSM) [11] used in a state-of-the-art commercial system

FacePass [16].

Dimensionality Selection. In KLD, 96% of data energy was explained by the
principal subspace of training data used. In NN-PCA, the optimal number of
principal components was 150 without the first three. In NN-LDA, PCA with
150 dimensions (removal of the first 3 principal components did not improve
the LDA performance) was applied first to avoid singularity problems and the
best dimension of LDA subspace was 150 again. In both MSM and CMSM, the
PCA dimension of each image set was fixed to 10, which represents more than
98% of data energy of the set. All 10 canonical correlations were exploited. In
CMSM, the best dimension of the constrained subspace was found to be 360 in
terms of the test identification rates as shown in Figure 5. The CMSM exhibits
a peaking and does not have a principled way of choosing dimensionality of the
constrained subspace in practice. By contrast, the proposed method provided
constant identification rates regardless of dimensionality of T beyond a certain
point, as shown in Figure 5. Thus we could fix the dimensionality at 400 for all
experiments. This behaviour is highly beneficial from the practical point of view.
The PCA dimension of image sets was also fixed to 10 for the proposed method.

Construction of Within-Class Sets for the Proposed Method. In the face
image set experiment, the images drawn from a single video sequence of arbitrary

1 d(X1, X2) = minx1∈X1 maxx2∈X2 d(x1, x2)
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Fig. 5. Dimensionality selection for the proposed method and CMSM. The
proposed method is more favorable than CMSM in dimensionality selection. CMSM
shows a high peaking. The accuracy of CMSM at 400 is just equivalent to that of simple
aggregation of canonical correlations.

head movement were randomly divided into the two within-class sets. The test
recognition rates changed by less than 1-2 % for the different trials of random par-
titioning. In the experiment of general object recognition in Section 4.3, the two
sets defined according to different viewing scopes comprised the within class sets.

4.2 Accuracy Comparison for Face Experiments

The 18 experiments were arranged in the order of increasing K-L Divergence
between the training and test data. Lower K-L Divergence indicates more sim-
ilar conditions. The identification rates of the evaluated algorithms is shown in
Figure 6.

First, different methods of measuring set similarity were compared in Figure 6
(a). Most of the methods generally had lower recognition rates for experiments
having larger KL-Divergence. The KLD method achieved by far the worst recog-
nition rate. Seeing that the illumination conditions varied across data and that
the face motion was largely unconstrained, the distribution of within-class face

(a) (b)

Fig. 6. Identification rates for the 18 experiments. (a) Methods of set match-
ing. (b) Methods of set matching combined with discriminative transformations. (The
variation between the training and test data of the experiments increases along the
horizontal axis. Note that (a) and (b) have different scales for vertical axis.)
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patterns was very broad, making this result unsurprising. As representatives
of non-parametric sample-based matching, the 1-NN, 10-NN, and Hausdorff-
distance methods defined in the PCA subspace were evaluated. It was observed
that the Hausdorff-distance measure provided consistent but far poorer results
than the NN methods. 10-NN yielded the best accuracy of the three, which is
worse than MSM by 8.6% on average. Its performance greatly varied across the
experiments while MSM showed robust performance under the different experi-
mental conditions.

Second, methods combined with any discriminant function were compared
in Figure 6 (b). Note that Figure 6 (a) and (b) have different scales. By taking
MSM as a gauging proxy, 1-NN, 10-NN, and Hausdorff distance in the LDA
subspace and CMSM were compared with the proposed algorithm. Here again,
10-NN was the best of the three LDA methods. For better visualization of com-
parative results, the performance of 1-NN and Hausdorff in LDA was removed
from the figure. 10-NN-LDA yielded a big improvement over 10-NN-PCA but
the accuracy of the method again greatly varied across the experiments. Note
that 10-NN-LDA outperformed MSM for similar conditions between the train-
ing and test sets, but it became noticeably inferior as the conditions changed.
The recognition rate of NN-LDA was considerably inferior to our method for
the more difficult experiments (experiments 11 to 18 in Figure 6 (b)). NN-LDA
yielded just 75% recognition rate for exp.18 where two very different illumina-
tion settings (see last two of Figure 4 (b)) were used for the training and test
data. The accuracy of our method remained high at 97%. Note that the exper-
iments 11 to 18 in Figure 6 are more realistic than the first half because they
have greater variation in lighting conditions between training and testing. The
proposed method also constantly provided a significant improvement over MSM.
Just one exception for the proposed method due to overfitting were noted. Ex-
cept this single case, the proposed method improved MSM by 5-10 % reaching
almost more than 97% recognition rate.

Although the proposed method achieved a comparable accuracy with CMSM
in the face recognition experiment, the latter had to be optimised aposteriori by
dimensionality selection. By contrast, DCC does not need any feature selec-
tion. The underlying concept of CMSM is to orthogonalize different class sub-
spaces [17], i.e. to make Pi

T Pj = O if Ci = Cj , where O is a zero matrix.
Then, canonical correlations (2) of the orthogonal subspaces become zeros as
tr(QT

ijPi
T PjQji) = 0. However, subspaces can not always be orthogonal to all

the other subspaces. Then, a direct optimization of canonical correlations in the
proposed method would be preferred.

4.3 Experiment on Large Scale General Object Classes

The ALOI database [15] with 500 general object categories of different viewing
angles provides another experimental data set for the comparison. Object images
were segmented from the simple background and scaled to 20×20 pixel size.
The training and five test sets were set up with different viewing angles of the
objects as shown in Figure 7 (a) and (b). All images in the test sets had at least
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(a)

(b) (c)

Fig. 7. ALOI experiment. (a) The training set consists of 18 images taken at every
10 degree. (b) Two test sets are shown. Each test set contains 9 images at 10 degree
intervals, different from the training set. (c) Cumulative identification plots of several
methods.

5 degree pose difference from every sample of the training set. The methods of
MSM, NN-LDA and CMSM were compared with the proposed method in terms
of identification rate. The PCA dimensionality of each set was fixed to 5 and
thus 5 canonical correlations were exploited for MSM, CMSM and the proposed
method. Similarly, 5 nearest neighbours were used in LDA. See Figure 7 (c) for
the cumulative identification rates. Unlike the face experiment, NN-LDA yielded
better accuracy than MSM. This might be due to the nearest neighbours of the
training and test set differed only slightly by the five degree pose difference
(The two sets had no changes in lighting and they had accurate localization of
the objects.). Here again, the proposed method were substantially superior to
both MSM and NN-LDA. The proposed method outperformed even the best
behaviour of CMSM in this scenario.

4.4 Computational Complexity

The matching complexity of the methods using canonical correlations, O(d3), is
far lower than that of the sample-based matching methods such as k-NN, O(c2n),
where d is the subspace dimension of each set, c is the number of samples of each
set and n is the dimensionality of feature space, since d� c, n.

5 Conclusions

A novel discriminative learning framework has been proposed for object recog-
nition using canonical correlations of image sets. The proposed method has been
evaluated on both face image sets obtained from videos and image sets of five
hundred general object categories. The new technique facilitates effective dis-
criminative learning over sets, thus providing an impressive set classification ac-
curacy. It significantly outperformed the KLD method representing a parametric
distribution-based matching and NN in both PCA/LDA subspaces as examples
of non-parametric sample-based matching. It also largely outperformed MSM



262 T.-K. Kim, J. Kittler, and R. Cipolla

and achieved a comparable accuracy with the best behavior of CMSM but, more
pertinently, without the need for feature selection. The proposed method is also
more theoretically appealing than CMSM.
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Abstract. Bayesian inference provides a powerful framework to optimally inte-
grate statistically learned prior knowledge into numerous computer vision algo-
rithms. While the Bayesian approach has been successfully applied in the Markov
random field literature, the resulting combinatorial optimization problems have
been commonly treated with rather inefficient and inexact general purpose opti-
mization methods such as Simulated Annealing. An efficient method to compute
the global optima of certain classes of cost functions defined on binary-valued
variables is given by graph min-cuts. In this paper, we propose to reconsider
the problem of statistical learning for Bayesian inference in the context of ef-
ficient optimization schemes. Specifically, we address the question: Which prior
information may be learned while retaining the ability to apply Graph Cut opti-
mization? We provide a framework to learn and impose prior knowledge on the
distribution of pairs and triplets of labels. As an illustration, we demonstrate
that one can optimally restore binary textures from very noisy images with run-
times on the order of a second while imposing hundreds of statistically learned
constraints per pixel.

1 Introduction

In his 1948 paper, Shannon considered the formation of text as a stochastic process.
He suggested to learn the probabilities governing this process by computing the his-
tograms of occurrences and co-occurrences of letters from a sample text. Subsequently
he validated the accuracy of the generated model by sampling new texts from the es-
timated stochastic model. Not surprisingly, the successive integration of higher order
terms (occurrence of letter triplets rather than pairs etc.) provides for the emergence of
increasingly familiar or meaningful structures in the synthesized text.

In the context of images, similar approaches have been proposed in the Markov ran-
dom field literature. We refer to [24] for an excellent introduction. Going back at least
as far as Abend’s work [1], Markov random fields have endured a sustained interest in
the vision community. Besag [3] applied them in the context of binary image restora-
tion and Derin [8] and Gimelfarb and coworkers [12] analyzed texture in the context of
a Markov random field using learned priors based on gray level co-occurrences. Work
has continued through new applications such as texture segmentation [20] or through
extension of the basic model, for example by considering higher-order cliques [23].

There are two major computational challenges arising in the application of Markov
random fields for Bayesian inference. Firstly, one needs to devise methods to efficiently

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 263–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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learn priors given a set of representative sample data. Secondly, upon imposing the
learned prior, the inference problem requires global optimization of a given cost func-
tion. In this work, we will focus on binary-valued cost functions

E : {0, 1}n → R (1)

over a large set of variables {x1, . . . , xn}. The optimization of such functions has a long
tradition, going back to the work of Ising on ferromagnetism [15]. Numerous methods
have been proposed to tackle these combinatorial optimization problems. Geman and
Geman [11] showed that the method of Simulated Annealing [16, 21] is guaranteed to
find the global optimum of a given function. Alternative continuation methods such as
Graduated Non-Convexity [4] have been proposed as well. Unfortunately, general pur-
pose optimization methods such as Simulated Annealing require exponential runtime
and can be quite slow for the number of nodes considered in most realistic applica-
tions.1 In contrast, deterministic or approximation algorithms are not guaranteed to find
a global optimum. The key challenge addressed in the present paper is therefore to de-
vise methods to efficiently impose statistically learned knowledge in such combinatorial
optimization problems.

The optimization of cost functions of the form (1) is in general an NP-hard combi-
natorial problem. The pioneering works of Picard and Ratliff [22] and of Greig et al.
[13] showed that certain functions E of binary-valued variables can be represented by
a directed graph G(V , E) with nonnegative edge weights and two nodes s and t, called
source and sink, such that the optimum of the function E corresponds to the minimal
s-t-cut of the respective graph. According to the theorem of Ford and Fulkerson [9],
the computation of the minimal cut is equivalent to computing the maximum flow from
the source to the sink. Several algorithms exist to compute this flow in polynomial time
(see e.g. [5]). For applications of Graph Cuts to non-binary cases, we refer to [6, 14]. To
restate, for certain combinatorial optimization problems, max-flow/min-cut algorithms
provide both a fast and an exact solution.

Recently, theoretical efforts have been made to determine which classes of functions
can be optimized by Graph Cuts. Ishikawa [14] provided constructive results showing
how Graph Cuts may be applied to optimize Markov random fields for convex ex-
pressions. Kolmogorov and Zabih [17] pointed out that a class of energies satisfying
certain submodularity constraints are graph representable, i.e. they can be efficiently
minimized by computing the cut of an appropriate graph.

One should mention that Belief Propagation (BP) has become popular to efficiently
perform Bayesian inference on graphs (see [10]). While BP is not limited by the above
submodularity constraints, to the best of our knowledge there are no optimality guaran-
tees for graphs with loops, such as the ones considered here.

The goal of the present paper is to provide a framework for learning empirical dis-
tributions of labels from sample graphs, to impose these as statistical priors in the
framework of Bayesian inference on graphs and to specify which kinds of priors are
consistent with graph-representable energy terms. The interpretation of submodularity
in the context of statistical learning allows us to specify a class of priors which can be

1 In practice, increased speed of Markov Chain Monte Carlo methods can be obtained by using
bottom-up proposals and flipping entire patches of label values [2].
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learned from samples and efficiently imposed within the framework of Bayesian infer-
ence. By restricting ourselves to graph-representable priors, we can guarantee global
optima in polynomial time. In practice, we find the optimization times to be extremely
fast.

As an illustration of our approach, we consider the problem of Bayesian restoration
of binary images. In particular, we will show that one can impose previously learned
information on correlation of the labels of pairs and triplets of vertices, as long as vertex
labels are positively correlated. Numerical experiments demonstrate that fairly complex
textural information can be learned, compactly represented and used for the efficient
and optimal restoration from noisy images. While the restoration of binary textures
may be considered a toy example, it shows that our method allows to impose statis-
tically learned shape information in large-scale combinatorial optimization problems,
providing global optima in polynomial runtime.

The outline of the paper is as follows. In Section 2, we will briefly review two lines
of work which form the backbone of our method, namely the concept of Bayesian in-
ference on graphs, and the submodularity conditions discussed in [17]. In Section 3,
we introduce the key contribution of this paper, namely a characterization of a class
of translation-invariant statistical priors on vertex labels which can be learned from
sample graphs and which can be efficiently imposed in Bayesian inference via Graph
Cuts. We define a measure of relevance of coupling terms which allows one to impose
only the most relevant of learned priors. In Section 4, we provide numerical results on
the restoration of binary images that illuminate different aspects of our method: highly
accurate restorations despite large amounts of noise, optimal restorations of fairly com-
plex textures in runtimes below one second, drastic speed-up through the use of sparse
priors, and improved restoration by using higher-order priors.

2 Bayesian Inference on Graphs

Let x = (x1, . . . , xn) ∈ {0, 1}n be a vector of binary variables. Assume we are given
a noisy version I = (I1, . . . , In) ∈ Rn of this binary-valued vector. Then we can make
use of the framework of Bayesian inference in order to reconstruct the vector x by
maximizing the posterior probability

P(x | I) =
P(I |x) P(x)
P(I)

. (2)

The Bayesian reasoning has become increasingly popular in the computer vision com-
munity [24], mainly for two reasons. Firstly, the conditional probabilityP(I |x) is often
easier to model, since it represents the likelihood of a certain observation I given a state
of the model x. Secondly, the Bayesian inference allows one to optimally integrate prior
knowledge by the term P(x), specifying which interpretations of the data are a priori
more or less likely.

In this paper, we will consider the specific case that the measurements Ii are mutu-
ally independent and that moreover they only depend on the value xi at the node i. Un-
der these assumptions, the data term in (2) can be written as: P(I |x) =

∏
i

P(Ii |xi).
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In this paper, we consider the data term:

P (Ii |xi) ∝ exp
(

λ

1 + |Ii − xi|
)

. (3)

While alternative choices are conceivable, this is not the focus of this work. The free
parameter λ is currently chosen manually. Future research is focused on identifying an
automatic estimate. The application of Bayesian inference amounts to a combinatorial
optimization problem.

Kolmogorov and Zabih [17] recently discussed a class of cost functions which are
able to be optimized efficiently by Graph Cuts. To this end, one considers two classes of
cost functions denoted by F2 (and F3), representing functions E which can be written
as a sum of functions of up to two variables at a time:

E(x1, . . . , xn) =
∑
i<j

Eij(xi, xj), (4)

and up to three variables for F3. In this way, one can consider nested classes of pro-
gressively more complex functions F1 ⊂ F2 ⊂ . . . ⊂ Fn, where the latter class
corresponds to the full class of binary-valued functions.

In [17], Kolmogorov and Zabih pointed out that functions in F1, F2 and F3 can be
optimized in polynomial time with the Graph Cuts algorithm if they fulfill certain sub-
modularity constraints [18]. Namely, all functions in F1 are submodular, while func-
tions in F2 and F3 are submodular if, for all terms Eij(xi, xj) of two arguments

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0), (5)

and, for all terms Eijk(xi, xj , xk) of three arguments, the same inequality must hold in
the remaining two arguments once any one of them is fixed.

3 Statistical Priors for Bayesian Inference

In the context of restoration of binary images, researchers have successfully exploited
generic priorsP(x) on the space of label configurations x — such as the one used in the
well-known Ising model [15] — which favor neighboring nodes to have the same label.
Such priors lead to smooth restorations and are well suited for the removal of noise. Yet
they also lead to a blurring of (possibly relevant) small-scale structures. Moreover, given
sample images of the structures of interest, one may ask whether it is possible to learn
more appropriate object-specific priors P(x) and impose these within the framework of
Bayesian inference.

In this work, we are interested in priors which can be easily computed from the
histograms of joint co-occurrence of label pairs or triplets, along the lines pioneered
in [7, 12]. For a more sophisticated alternative to directly learn posterior distributions
using MCMC sampling, we refer to [19]. To link statistical priors to co-occurrence
frequencies, we rewrite the generic prior on a set of n variables as follows:
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P(x1, . . . , xn) = P(x1, x2 |x3, . . . , xn)P(x3, . . . , xn)
= P(x1, x2 |x3, . . . , xn)P(x3, x4 |x5, . . . , xn)P(x5, . . . , xn)

= . . . =
∏
i odd

P(xi, xi+1 |xi+2, . . . , xn).
(6)

Let us now assume that the co-occurrence probability for any two variables does not
depend on a third variable. Under this assumption, (6) then simplifies to

P(x1, . . . , xn) =
∏
i odd

P(xi, xi+1). (7)

Obviously, we can carry out the same rearrangement using arbitrary pairings of the n
variables xi. Upon multiplying all these equations, each pair (xi, xj) obviously appears
the same number of times as a factor in the right-hand side. We get:

(P(x1, . . . , xn))Γ =
∏
i�=j

P(xi, xj), (8)

where the constant Γ denotes the number of ways to generate such pairings divided by
the number of times each pair appears in the overall product. In the case of label pairs,
we have Γ =

(
n
2

)
. We obtain the prior energy:

E(x1, . . . , xn) = − logP(x1, . . . , xn) = − 1
Γ

∑
i�=j

logP(xi, xj). (9)

Similarly, the relaxed assumption that the co-occurrence of labels for any triplet
(xi, xj , xk) does not depend on a fourth node, leads to an energy of the form

E(x1, . . . , xn) = − 1
Γ̃

∑
ijk

logP(xi, xj , xk), (10)

where the sum extends over all pairwise distinct triplets of nodes and Γ̃ =
(
n
3

)
. While

the above independency assumptions will generally not be fulfilled, let us make two
remarks: Firstly, the expressions for the priors (9) and (10) also hold if higher-order
effects do not contribute on the average. Secondly, the independency assumption can
be gradually relaxed by considering terms of increasing order of interaction. We will
refer to priors with an energy E ∈ Fk as priors of order k. In the following, we will
focus on the spaces F2 and F3. To circumvent the approximation in (7), the Markov
random field community has developed more sophisticated techniques to approximate
the prior in terms of local characteristics (see e.g. [24]).

For a second-order prior P , the energy E in (6) is of the form (4). Since we are
dealing with binary-valued variables, the each term Eij in (4) is of the form

Eij(xi, xj) = α11
ij xixj + α10

ij xi(1−xj) + α01
ij (1−xi)xj + α00

ij (1−xi)(1−xj), (11)

with four parameters associated with each vertex pair. According to (6), we can relate
these parameters to the probability of co-occurrence of label values:

α11
ij = − logP (xi =1 ∩ xj =1) , α10

ij = − logP (xi =1 ∩ xj =0) , . . . (12)



268 D. Cremers and L. Grady

In the case of a third-order prior on binary-valued variables, the energy E in (6) is
given by a sum of energies Eijk taking on the form

Eijk(xi, xj , xk) = α111
ijk xixjxk + α110

ijk xixj(1−xk) + α101
ijk xi(1−xj)xk + . . .

with eight parameters associated with each vertex triplet and

α111
ijk = − logP(xi =1 ∩ xj =1 ∩ xk =1), α110

ijk = . . . (13)

The central idea of learning priors is to determine the parameters of the probabilis-
tic model (6) from samples of labeled graphs. According to (13), the parameter α111

ijk ,
for example, corresponds to the negative logarithm of the relative frequency of label
configuration (1, 1, 1) at the three nodes i, j and k.

In most relevant restoration algorithms one does not know the location of structures
of interest. Therefore it is meaningful to focus on the subclass of translation-invariant
priors, i.e. priors which treat all nodes identically. These are also referred to as spa-
tially homogeneous priors [24]. For priors of second order, the model parameters in
expression (11) can only depend on the relative location of node i and node j. In other
words αij = α(j−i) etc., where (j − i) denotes the vector connecting node i to node
j. Given a training image, one can estimate the parameters α11

(j−i), α
01
(j−i), α

10
(j−i), and

α00
(j−i) defining the translation-invariant prior distributions of second order, because the

probabilities of co-occurrence of label pairs in (12) can be approximated by their his-
togram values. Similarly, in the case of third-order priors, the eight parameters αijk in
(3) associated with each triplet of nodes only depend on the relative location of nodes i,
j and k. These parameters can be estimated from joint histograms of triplets computed
on a sample image.

Along the lines sketched above, it is possible to learn priors on the set of binary
variables from the empirical histograms computed on sample images. Such statistical
priors can be used in various ways. For example, as suggested by Shannon, one could
generate synthetic label configurations (binary images if the nodes correspond to image
pixels) by randomly sampling from the estimated distributions — see for example [7].
In the following, we will instead employ the empirically learned priors for the purpose
of reconstructing a labeling x = {x1, . . . , xn} ∈ {0, 1}n of a graph given a noisy
version I = {I1, . . . , In} ∈ Rn of it and given the knowledge that the labeling is
statistically similar to previously observed label configurations. The optimal restoration
is given by the maximum a posteriori estimate in (2). Equivalently, we can minimize
the negative logarithm of (2). With (3) and a translation-invariant prior of second order
obtained from equations (9), (4) and (11) this leads to an energy of the form:

E(x1, .., xn) =
∑

i

−λ

1 + |Ii − xi| +
∑
i<j

(
α11

(j−i)xixj + α10
(j−i)xi(1−xj) (14)

+α01
(j−i)(1−xi)xj + α00

(j−i)(1−xi)(1−xj)
)
.

Similarly binary restoration with a translation-invariant prior of third order is done by
minimizing an energy of the form:
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E({xi}) =
∑

i

−λ

1 + |Ii − xi| +
∑

i<j<k

(
α111

(j−i,k−i)xixjxk + α110
(j−i,k−i)xixj(1−xk) + ...

)
,

(15)
with eight terms imposing learned correlations of the label at node i with labels at nodes
j and k. Due to the translation invariance, the parameters αijk = α(j−i,k−i) merely
depend on the vectors from i to j and from i to k.

Minimizing energies of the forms (14) or (15) over the space of binary variables
x ∈ {0, 1}n is in general a hard combinatorial problem.2 In the context of images with
relevant size, the number of nodes is on the order of n∼ 2562 or larger, therefore an
exhaustive search or stochastic optimization methods such as simulated annealing are
not well-suited for this task.

While the Graph Cuts algorithm allows an efficient global optimization in polyno-
mial time, it only applies to a certain class of energies. The submodularity constraints
reviewed in Section 2, however, allow us to make a precise statement about which pri-
ors can be efficiently imposed in the Bayesian restoration using Graph Cuts. Using
the relation between energies and prior distributions given in (9), we can express the
submodularity constraint (5) in terms of probabilities:

− logP00 − logP11 ≤ − logP01 − logP10, (16)

where P00 = P(xi = 0 ∩ xj = 0) stands for the probability that both labels are 0 etc.
The above inequality is equivalent to the requirement that:

P00 P11 ≥ P01 P10. (17)

If the joint probability of label values at nodes i and j fulfills the above inequality,
then it can be efficiently imposed in the Bayesian restoration by solving the respective
max-flow/min-cut problem. In particular, this implies that for any two nodes which are
positively correlated (i.e. P00 ≥ max{P01,P10} and P11 ≥ max{P01,P10}), one can
impose their joint probability within the Graph Cuts framework. Beyond this, one can
also integrate priors stating that, for example, the label configuration (01) dominates all
other configurations while the configuration (10) is sufficiently unlikely for inequality
(17) to be fulfilled. On the other hand, joint priors modeling negative correlation, where
opposite labels (01) and (10) dominate, are not consistent with inequality (17).

Similarly, the submodularity constraints in [17] impose conditions for which the
distributions of triplets can be imposed within the Graph Cuts optimization. Namely,
the inequalities have to hold with respect to the remaining two arguments once any one
of them is fixed, i.e. if xi = 0 is fixed then the inequality in nodes j and k states:

P000 P011 ≥ P001 P010, (18)

whereP000 =P(xi =0∩xj =0∩xk =0) represents the joint occurrence of three labels
of 0, etc. There are eight such constraints for each triplet.

In practice, we compute these joint histograms from sample images and retain only
those priors which are consistent with the submodularity constraints (17) or (18). The

2 For an example of an NP-hard problem in the class F2 see [17].
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resulting cost function can be efficiently optimized by the Graph Cuts algorithm. In
other words: once we have selected an appropriate set of statistically learned priors,
we can perform the Bayesian inference in polynomial runtime. For details on how to
convert energy terms into respective edge weights of a graph, we refer to [17].

While the global optimum of the resulting restoration problem is guaranteed to be
computable in polynomial time, experimental evidence shows that increasing the num-
ber of constraints (and thereby the number of edges in the graph) will typically increase
the computation time: While the computation time for n = 2562 nodes with four con-
straints per node was on the order of 0.03 seconds, increasing the number of constraints
per node to 716 leads to a computation time of more than one minute. A simple remedy
to this problem is to only impose the most relevant constraints. The submodularity con-
straint in (5) guarantees that the edges of the corresponding graph have non-negative
weights [17]. Moreover, if the left side of inequality (5) is much smaller than the right
side, then the respective edges will have very large positive weights, hence they will
be very relevant to the computation of the minimal cut. Therefore, we can heuristically
define the relevance of a coupling term (11) between nodes i and j as the weight of
introduced edges:

relij = α10
ij + α01

ij − α11
ij − α00

ij . (19)

In the context of priors of third order, there are six submodularity constraints associ-
ated with each node triplet. As a measure of the relevance of a given triplet of nodes,
we simply compute the mean of the associated six relevance measures in (19). Qual-
itatively, this relevance measure states that the co-occurrence of identical label values
should dominate the histogram for a prior to be relevant.

4 Experimental Results

Figure 1 shows a binary pattern of vertical stripes of width two pixels, corrupted by
various amounts of salt-and-pepper noise.3 The second image shows the restoration
(with λ = 1) obtained using a second order prior coupling each pixel to the two nodes
directly above and to the right. The priors estimated from empirical histograms of stripe
patterns simply state that vertically neighboring pixels are very likely to be of the same
color. There is no preference in the horizontal direction: since the stripes are two pixels
wide, all pair combinations are equally likely. As a consequence, the restoration of the
noisier version is suboptimal in that the vertical stripes in the restoration are no longer
equidistantly spaced.4 With increasing noise level, the Bayesian restoration requires
increasingly sophisticated priors. The above prior on neighboring pairs of labels can
be extended in two ways: by increasing the neighborhood size and by generalizing to
higher-order interactions.

By increasing the neighborhood window in which priors are learned and imposed,
the resulting prior is still of second order, but it integrates correlations of a given node
with more distant nodes. In the case of the stripe pattern in Figure 1, we learned the
joint probabilities for a pixel and its neighbors in 9× 9 window. This provides coupling

3 “80% noise” means 80% of the pixels are replaced by a random value.
4 The restoration error gives the percentage of incorrectly labeled pixels.
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80% noise Restor. (0% error) 90% noise Restor. (7% error)

Fig. 1. Fast restoration of simple patterns: Optimal restorations of noisy stripe patterns using
statistical priors learned from the joint histograms of a pixel with the neighbor above and the
neighbor to the right. While the left image was perfectly restored in 0.02 seconds, the right one
has a restoration error6 of 7% in 0.03 seconds (on a 200×200 image). Including couplings in
larger neighborhoods improves the restoration.

Brodatz texture with 70% noise Restor. (375 constr.) Restor. (5 constr.)

Fig. 2. Efficient restoration of complex textures: The images on the left show a binarized Bro-
datz texture with 70% of noise. Using only relevant constraints (right image), the algorithm is not
only faster, but it also provides a better restoration. See Table 1 for a numerical comparison.

to 40 neighbors, 22 of which are submodular. This prior allows to identify horizontal
correlations. In the case of the stripe pattern in Figure 1, bottom, it provides a perfect
restoration in 1.6 seconds for an image of size 200×200, with λ = 1.5

In order to restore more complex patterns, it is necessary to consider joint distri-
butions of labels in increasingly large neighborhoods. This will lead to an increasing
number of edges in the respective graph, coupling each pixel to a larger and larger
number of surrounding pixels. In order to keep the computation time low, we impose
only the most relevant constraints according to the measure defined in (19). Figure 2
shows a binarized Brodatz texture (256×256 pixels) and the same texture with 70%
salt-and-pepper noise. On a sample texture image, we estimated the pairwise joint dis-
tributions for pixel couplings in a neighborhood of 35×35 pixels. Among these 612
possible neighbor nodes, 375 provided submodular constraints fulfilling the inequality
(17). Using all 375 constraints, the computation of the optimal restoration took 23.2 sec-
onds, giving a restoration error of 23.6%. Using only the five most relevant constraints
allowed an optimal restoration in 0.4 seconds. Surprisingly, the restoration error was
only 20%. Respective restorations are shown in Figure 2, third and fourth image.

5 Imposing pair priors on a neighborhood size of 9 × 9, we found that one obtains perfect
restorations of the stripe pattern in Figure 1 even with 99% noise.
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Table 1. Efficiency with sparse priors: Run time, restoration error and appropriate λ values for
decreasing number of constraints imposed in the restoration of the Brodatz texture (Fig. 2). Using
only the most relevant constraints leads to improvements both with respect to the run time and,
surprisingly, with respect to the restoration error (up to a minimal set of constraints) — see text.
The highlighted error values are associated with the restorations in Fig. 2.

Number of constraints 375 53 21 13 7 5 3

CPU time (s) 23.2 2.92 1.45 0.86 0.47 0.40 0.33

Restoration error (%) 23.6 23.6 22.2 21.2 20.0 20.0 23.3

λ 38 38 33 20 13 8 4

Escher drawing with 50% noise Restoration (19.6% error)

Fig. 3. Larger neighborhood systems: Restoration of a noisy drawing of M. C. Escher using the
20 most relevant second order constraints estimated in a 130×130 window. In contrast to generic
smoothness priors, the statistically learned priors do not lead to a blurring of image structures.

Table 1 shows respective run-times, restoration errors and appropriate values of λ
for imposing varying numbers of relevant constraints which were selected by thresh-
olding the relevance (19) computed for each node pair. The computation time decreases
with fewer constraints used. Moreover, the restoration error decreases when using only
the most relevant constraints (up to a certain minimal set of constraints). We believe
that this property is due to the fact that less relevant constraints may impose spurious
correlations, especially when computed from not perfectly periodic textures such as the
Brodatz texture. Using only the relevant constraints will assure that the algorithm makes
use of only those couplings that are persistent throughout the entire texture.

The selection of relevant terms becomes more crucial when learning priors for
larger-scale structures, as these require to consider larger neighborhoods. Figure 3 shows
the restoration of a noisy version of a drawing by M. C. Escher.

As suggested in Section 2, one can learn and impose priors on the joint distribution
of triplets of labels — provided that the submodularity conditions (18) are fulfilled.
In practice, the key difficulty of learning third-order priors is that the consideration of
all possible node triplets is infeasible for graphs of meaningful size: For a graph of

256×256 nodes, there exist
(

2562

3

)
≈ 5 ·1013 possible triplets. To consider all possible

triplets within a certain neighborhood of each node (without counting some more often
than others) turns out to be a challenging problem as well. In order to count all triplets in
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Noisy Brodatz texture 2nd order restor. (ε=14.4%) 3rd order restor. (ε=13.5%)

Fig. 4. Triplets versus pairs: Restoration using priors of second and third order on a Brodatz tex-
ture with 50% noise. Both priors impose the eleven most relevant constraints in a neighborhood
of 15 pixels. Including terms of third order reduces the reconstruction error ε from 14.4% (com-
puted in 0.5 seconds) to 13.5% (computed in 2.8 seconds). Exploiting knowledge about the joint
probability of triplets (rather than pairs) provides additional submodularity of the reconstruction.

a certain “vicinity” of a node, we revert to the following solution: For each node of the
graph, we consider all triangles of a fixed maximal circumference δ (measured in the
Manhattan distance) with one vertex at the node of interest. The parameter δ provides
a measure of the “vicinity” analogous to the window size in the case of pairs. Figure 4
shows restorations of a noisy Brodatz texture obtained with second and third order
priors, respectively. In the specified neighborhood, we identified 215760 triplets per
node, 7873 of which provided submodular constraints. We used a threshold θ = 2.1 on
the respective relevance of pairs (or triplets) — see (19) — leaving eleven constraints
for each node in the graph. Imposing constraints on the joint distribution of triplets
(rather than pairs) reduced the restoration error ε from 14.4% to 13.5%.

5 Conclusion

We proposed to introduce statistically learned priors into an efficient method for
Bayesian inference on graphs. Building up on submodularity constraints for graph-
representability, we specified a class of spatially homogeneous priors of second and
third order which can be learned from co-occurrence histograms and which can be effi-
ciently imposed by computing Graph Cuts. In particular, we showed that priors favoring
labels to be similar are part of this class. To the best of our knowledge, this is the first
time that statistically learned priors of second and third order were introduced into an
efficient and exact combinatorial optimization algorithm. We believe that our contribu-
tion will help to bridge the gap between statistical learning for Bayesian inference and
efficient combinatorial optimization. As an illustration of our method, we demonstrated
that one can compute optimal restorations of rather complex binary textures from im-
ages which are heavily corrupted by noise in runtimes on the order of seconds. Future
work aims at answering several open questions: Are there graph-representable priors
beyond the class considered here? Are there ways of generalizing the invariance group
from translation to rotation and scale invariance?
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Abstract. We present a novel method for dimensionality reduction and recog-
nition based on Linear Discriminant Analysis (LDA), which specifically deals
with the Small Sample Size (SSS) problem in Computer Vision applications. Un-
like the traditional methods, which impose specific assumptions to address the
SSS problem, our approach introduces a variant of bootstrap bumping technique,
which is a general framework in statistics for model search and inference. An in-
termediate linear representation is first hypothesized from each bootstrap sample.
Then LDA is performed in the reduced subspace. Lastly, the final model is se-
lected among all hypotheses for the best classification. Experiments on synthetic
and real datasets demonstrate the advantages of our Bootstrap Bumping LDA
(BB-LDA) approach over the traditional LDA based methods.

1 Introduction

As a statistical method for dimensionality reduction and classification [1], Linear Dis-
criminant Analysis (LDA) has been widely employed in Computer Vision research
(e.g., face and gait recognition [2, 3, 4, 5]). Since LDA assumes multiple Gaussians
with equal covariance, its success largely depends on accurate estimates of the model
parameters (class means and common covariance). However in most Computer Vision
applications, the sample size N is relatively small in comparison to the input dimension
D. The traditional Maximum Likelihood (ML) estimates show poor convergence to the
true parameters due to the curse of the dimensionality. Furthermore, when N < D, the
ML estimate of the common covariance Σ̂ is even singular (the LDA solution is under-
constrained due to the non-existence of Σ̂−1). These two issues together constitute the
so-called Small Sample Size (SSS) problem in LDA.

The traditional LDA methods [6, 2, 3, 7, 8] focus only on the second issue of a sin-
gular Σ̂, but ignore the accurate estimate of the true model parameters. Even if N > D,
as long as N is not much larger than D, the SSS problem persists. From this point of
view, the dual impact of the SSS problem is crucial to the success of LDA in Computer
Vision applications.

In this work, we propose to deal with the SSS problem from a more general aspect
with the goal of accurately estimating the model parameters. Instead of imposing ex-
plicit assumptions to simply invert the singular Σ̂, we introduce a variant of a general
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statistical framework, bootstrap bumping, which creates a hypothesis from each boot-
strap sample (a subset of examples) and selects the best model according to a target
criteria. The original bumping technique was developed in [9] for finding better lo-
cal minima, resistant fitting, and optimization under constraints. We develop the idea
to deal with the SSS problem by hypothesizing an intermediate linear representation
from each bootstrap sample and choosing the final model (representation) with the best
recognition performance. This extension not only has the same asymptotical property as
the original bumping procedure, but now improves the estimation accuracy and implic-
itly handles the singularity problem of Σ̂ in the SSS problem. We present experiments
on synthetic and real datasets to clearly show the advantages of our approach over the
traditional LDA methods.

In the remainder of this paper, we first discuss the background and related work of
LDA and bootstrap bumping in Sect. 2. Then we describe our proposed approach in
Sect. 3, which specifically deals with the SSS problem in LDA. Lastly, experimental
results are presented in Sect. 4, followed by conclusions in Sect. 5.

2 Background and Related Work

There are two different perspectives looking at LDA. Fisher’s LDA is defined by max-
imizing the ratio of the between-class and within-class scatter matrices (Sb and Sw) in
a linear feature space [10, 11]. In Bayesian decision theory, LDA is defined for the case
of multiple Gaussians with equal covariance. The two approaches were shown to be
equivalent in [12] with Sw being the ML estimate Σ̂ and Sb being derived from the ML
estimates of the class means. The mathematical description of both approaches can be
found in detail in [13], which we omit here due to space constraints.

2.1 LDA and the SSS Problem

Although well-grounded in theory, LDA faces the challenge of the SSS problem in real
applications. Traditional methods only aim to solve the singularity problem of Σ̂ by
imposing specific assumptions to simply invert Σ̂.

The simple approach PINV-LDA [6] substitutes the inverse operation with pseudoin-
verse. The two-stage method PCA+LDA [2] projects the data in the nearly complete
PCA subspace to make the Σ̂ projection just full rank. However, with a small num-
ber of examples, Σ̂ is unstable especially in those components with small eigenvalues
which are mostly emphasized in the inverse operation. Both methods of PINV-LDA and
PCA+LDA are sensitive to noise and small perturbations.

As one improvement, Enhanced Fisher’s Linear Discriminant (EFLD) [3] varies
the number of PCA components to regulate the projection of Σ̂. This assumes that the
small components are not informative for classification, which may impose a perfor-
mance limitation. Another approach Direct LDA (D-LDA) [7] assumes the null space
of Sb contains no useful information for recognition. However, as shown in our prior
work [14], D-LDA is equivalent to directly taking the linear space of class means as the
LDA solution. It has severe limitations by ignoring the common covariance estimate Σ̂
(or Sw). Lastly, Σ̂ can be modified to avoid the singularity problem, such as Σ̂ + σI
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in Regularized LDA (R-LDA) [8]1. With σ usually being a small scalar, R-LDA heav-
ily relies on the small components and even null components for recognition, which is
neither stable nor supported by the existing examples. For σ = inf , R-LDA is equiva-
lent to D-LDA by ignoring Σ̂. Furthermore, R-LDA is computationally inefficient for a
large input dimension D since the full-rank matrix Σ̂ + σI is of size D ×D and is to
be inverted in LDA.

Traditional LDA methods only focus on the singularity problem of Σ̂. Systematic
attempts to reduce the variance of the ML estimates (for both class means and common
covariance) in the general SSS problem have not yet been reported. We address this
issue in our proposed framework of Bootstrap Bumping LDA.

Additionally there are approaches to address the model limitations of LDA, such
as methods to extract non-linear features in Quadratic Discriminant Analysis (QDA)
[13] for multiple Gaussians with non-equal covariance, kernel-based Generalized LDA
(GLDA) [15], and Locally Linear Discriminant Analysis (LLDA) [16]. Since more ex-
amples are usually required to constrain more complex solutions, these methods are
even more sensitive to the SSS problem. As a hybrid model of LDA and QDA, Oriented
Discriminant Analysis (ODA) [17] assumes the same as QDA of multiple Gaussians
with non-equal covariance, but extracts linear features by maximizing the Kullback-
Liebler divergence between classes. However its explicit explanation remains unclear
in Bayesian decision theory since quadratic features are inherently required under the
model assumption. As another modification, Optimal Linear Representation [18] al-
lows classifiers (e.g., k-Nearest Neighbor) other than thresholding (assumed by LDA)
by searching the solution space (a set of linear subspaces, or Grassmann manifold)
with regard to a searching strategy. But this heuristic approach lacks theoretical sup-
port from Bayesian decision theory. It is computationally expensive, as Markov Chain
Monte Carlo (MCMC) simulation is often employed, and it is even doubtful whether
such a search is bounded or stable in a high dimensional space with few examples.

2.2 Bootstrap Methods

The general bumping procedure was proposed in [9] as a method for model search and
inference. It is based on bootstrap resampling theory [19], which was originally used for
assessing the statistical accuracy of an estimator. A “bootstrap sample” is a “subset of
examples” randomly drawn with replacement from the original set of training examples.
It was shown that the empirical distribution of bootstrap samples can be used to approx-
imate the sampling distribution of random variables (e.g., variance of an estimator) to be
estimated from the observed data. Additionally, recent research demonstrated that the
bootstrap technique can be employed to improve the accuracy of an estimator, such as
bagging [20], boosting [21, 22] (with an enhanced version called AdaBoosting [23, 24]
which employs adaptive sampling and weighted voting), and bumping [9]. By averag-
ing the estimates from multiple bootstrap samples, bagging produces a new estimator,
which often has a smaller variance. In comparison, the boosting method improves the
classification performance by combining multiple weak learners, individually trained

1 The original idea was to smoothly blend LDA with Quadratic Discriminant Analysis (QDA)
by adding the common covariance (scaled by σ) to the individual covariance of each class.
Although not explicitly described in [8], R-LDA is often referred to Σ̂ + σI in the literature.
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from a subset of examples. However, if we desire a single LDA classifier or a set of
LDA linear features for dimensionality reduction, the bagged (averaged) linear classi-
fier from subsets may not perform well, and the boosted classifier results in complex
decision boundaries, which is non-linear and is not applicable for dimensionality reduc-
tion. In this sense, both bagged and boosted LDA [25, 26] are no longer true “LDA”.

However, in our proposed approach, the bumping procedure [9] follows the para-
digm of hypothesis and test. Bootstrap samples are used to provide candidate models.
The procedure then selects the model which best explains the observed data according
to a target criteria. The method reduces the variance of the original estimates, while
preserving the same structure and interpretation. This ideally suites our need to address
the SSS problem in LDA.

3 Bootstrap Bumping LDA (BB-LDA)

The original bumping procedure [9] directly hypothesizes a model from each bootstrap
sample and selects the best model for a target criteria. However, this approach is not
directly applicable to the SSS problem in LDA. Because each bootstrap sample contains
even fewer examples, the SSS problem is more problematic for the LDA model directly
trained/estimated from bootstrap samples. Furthermore, the singularity problem of Σ̂
in LDA is not yet addressed in the original bumping procedure.

Instead we propose a new bumping procedure called Bootstrap Bumping LDA (BB-
LDA). The approach first hypothesizes an intermediate linear representation from each
bootstrap sample. Then all of the training examples are projected into the representa-
tion space and analyzed by the classic LDA. The new procedure not only has the same
asymptotic property of convergence as original bumping, but now avoids the singular-
ity problem of Σ̂ and improves the estimation accuracy of model parameters in the SSS
problem. Our approach is significant in that it addresses the dual aspects of the
SSS problem in a general statistical framework without imposing specific assumptions
(as the traditional methods). It also preserves LDA interpretation by avoiding averag-
ing (bagging) or voting (boosting). We begin with a description of the general bumping
procedure in Sect. 3.1 and present our extension in Sect. 3.2.

3.1 Bootstrap Bumping

Let z = (z1, z2, · · · , zN ) be the set of all labeled training examples. Assume a data
model depends on a set of parameters θ, which is to be estimated by minimizing a
target criteria R as

θ̂ = argminθ R(z, θ). (1)

The criteria R can be of any general form, such as median squared error for linear
regression, or the Maximum Likelihood (ML) estimates of the model parameters, which
have closed-form solutions. Ultimately, minimizing R obtains the target estimation θ̂
from the input data z

Suppose there is another working criteria R0, which may be more convenient for
minimization (e.g., replacing least median square with least mean square). At a partic-
ular sampling rate/ratio α, each bootstrap sample z∗1, z∗2, · · · , z∗B is randomly drawn
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from z with replacement (each sample has αN training examples). The estimate of θ
via R0 from each bootstrap sample is

θ̂∗b = argminθ R0(z∗b, θ). (2)

The original bumping procedure [9] chooses θ̂BB as the value among the θ̂∗b which has
the smallest value in the target criteria R(z, θ) for the entire dataset z:

θ̂BB = θ̂∗b̂, where b̂ = argminb R(z, θ̂∗b) (3)

The working criteria R0 may be the same as the target criteria R, in which case the
bumping procedure simply estimates suboptimal parameters θ̂∗b from each bootstrap
sample (a subset of training examples) and selects the best θ̂∗b over all hypothesized
candidates. This has been shown in [9] to be useful for finding a better local minima.
For different working and target criteria [9], the bumping procedure can also be used
for robust fitting (with R0 as the outlier-free version of R) and constrained optimization
(R0 as the unconstrained version of R).

Furthermore, the working criteria R0 needs to be “compatible” with the target cri-
teria R in order for the bumping estimate θ̂BB to asymptotically converge to the true
model parameters θ. For the same criteria R0 and R, it has been proven in [9] that
the bumping procedure preserves the property of asymptotic convergence. For different
criteria R0 and R, compatibility should be carefully examined by considering the as-
ymptotic behavior of the procedure. Otherwise, the bumping procedure only provides
an approximation of R with a simple form R0 largely for the ease of computation.

3.2 Proposed Approach – Bootstrap Bumping LDA

The original bumping procedure was not designed to handle the SSS problem. With
regards to LDA, we choose the target criteria R as the ML solution, which measures
the misclassification rate on z for linear decision boundaries θ. The minimization of
R has a closed-form solution by first obtaining the ML estimates of LDA from z and
then calculating the corresponding decision boundaries θ̂ (the linear projections and
thresholds). If we employ the same working criteria R0 = R, the original bumping
procedure hypothesizes linear decision boundaries θ̂∗b from each bootstrap sample z∗b.
However, since each bootstrap sample z∗b has fewer examples than z, when there are
not enough examples, the estimate θ̂∗b is even more unstable than the original θ̂. The
impact of the SSS problem is magnified, not suppressed.

To deal with this issue, instead of directly estimating θ, we propose to first hypoth-
esize an intermediate representation space L̂∗b from each bootstrap sample z∗b as

L̂∗b = argminL Rrep(z∗b, L). (4)

Here the new working criteria Rrep measures the capacity of a given representation L
(e.g., linear, quadratic, etc.) for the bootstrap sample z∗b, which we call the representa-
tion criteria. We want to choose the representation with minimum capacity (the simplest
representation), which still faithfully reconstructs the bootstrap sample and is compati-
ble with the model assumption. With regards to LDA, a linear subspace defined by z∗b
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is minimum in terms of capacity among all compatible representations. Therefore we
can directly replace Eqn. 4 with

L̂∗b = LinearSpace(z∗b). (5)

For other models, the representation should be chosen accordingly. For example, for
QDA a quadratic representation should be hypothesized from each bootstrap sample.

Then we follow the similar bumping procedure. we evaluate the discrimination per-
formance of the hypothesized representation L̂∗b over the entire dataset z and choose
the representation with the minimum misclassification rate as in

L̂BB−LDA = L̂∗b̂, where b̂ = argminb Rdis(z, L̂∗b) (6)

The new target criteria Rdis measures the misclassification rate of z with regard to the
representation space L̂∗b, which we call the discrimination criteria. The target criteria
Rdis can be easily evaluated using the best estimated model parameters θ̂∗b based on
the representation L̂∗b

Rdis(z, L̂∗b) = R(z, θ̂∗b), where (7)

θ̂∗b = argminθ R̃(z, θ; L̂∗b). (8)

As a constrained version of the original bumping criteria R in the representation space
L̂∗b, the modified criteria R̃ is equivalent to first projecting z into L̂∗b (e.g., correlating
with a linear basis in LDA), estimating the model parameters (e.g., ML), and lastly re-
constructing the parameters back to the original D-dimensional space (e.g., multiplying
the feature vectors with the basis ).

Lastly, we obtain the LDA solution of BB-LDA as the corresponding model esti-
mates for the selected representation space

θ̂BB−LDA = θ̂∗b̂. (9)

In essence, the approach seeks out the key prototype examples that best represent the
space of z for the purpose of discrimination. The BB-LDA algorithm is summarized in
Alg. 1. For any new example znew, it can then be classified by projecting it onto the
reconstructed feature space and thresholding.

Our proposed approach addresses the SSS problem in a general statistical frame-
work. At a particular sampling ratio α, only a portion of examples are used to hypothe-
size a representation, which can ensure Σ̂ being full rank in the projection space L̂∗b for
the entire dataset z. Since duplicate examples do not affect the representation, bootstrap
samples are drawn at a fixed size αN from z without replacement in BB-LDA for the
ease of analysis and implementation. The prior probability of each class is also main-
tained in sampling to ensure a fair representation. Furthermore because LDA is invariant
to the basis selection, a non-orthonormal basis Tb is used for simplicity, which is equiv-
alent to linearly correlating the entire dataset with examples in each bootstrap sample.
The smaller the sampling ratio α, the more compact the representation, and the more
examples left to generalize the model for discrimination. However, too few examples
negatively affect the representation power, which may in turn limit the upper bound for
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Algorithm 1. BB-LDA Algorithm

1: Randomly draw B bootstrap samples z∗1, z∗2, · · · , z∗B from z at the sampling ratio α.
2: for b = 1 to B do
3: Let Ab = [z∗b

1 , z∗b
2 , · · · , z∗b

k ] be one basis of the linear subspace L̂∗b.
4: Project z in Ab as yb = AT

b z. Run LDA with ML estimates on yb to obtain the model
parameters, including the feature vector(s) wb and the threshold(s) tb.

5: Calculate the misclassification rate on yb based on the estimated model parameters.
6: end for
7: Choose the representation Ab which has the minimum misclassification rate. Obtain the BB-

LDA solution θ̂BB−LDA by reconstructing the feature vectors Abwb and keeping the same
threshold tb.

discrimination. The application-dependent sampling ratio α can be determined through
cross-validation to properly balance the representation and discrimination.

With regards to the the number of bootstrap samples B, the percentage of training
examples p covered by all bootstrap samples is p = 1− (1− α)B . At a given sampling
ratio α, B can be calculated for a specific coverage (e.g., p = 99.9%) with

B = log(1− p)/log(1− α). (10)

While the traditional subspace LDA approaches (e.g., PINV-LDA, PCA+LDA) have the
time complexity of O(N2D) in the SSS problem, BB-LDA has the time complexity of
O(BαN2D). From Eqn. 10, the worse case time complexity of BB-LDA occurs at
O(−log(1 − p)N2D) when α → 0, which is on the same order as the traditional
subspace LDA [6, 2, 3]. Additionally, it is possible to reduce the computational cost of
BB-LDA with a smaller coverage p, which may be useful for extremely large datasets.

Since different working (Rrep) and target (Rdis) criteria are used for representation
and discrimination, according to the bumping theory [9], Rrep needs to be “compati-
ble” with Rdis in order for our new procedure to asymptotically converge to the true
parameters. This can be proved by considering the compatibility between a linear rep-
resentation and LDA. At a fixed sampling ratio α, when the number of representative
examples αN > D (as in BB-LDA), the representation space is even larger than the
original input space (assuming linear independence among examples in each bootstrap
sample). Estimating an LDA model in each hypothesized representation in Eqn. 8 is
equivalent to directly applying ML in the original input space. Thus the bumping pro-
cedure is equivalent to LDA with ML estimates when N > D/α. Because of the as-
ymptotic convergence property of the ML estimates, this proves the compatibility of
our working criteria Rrep and target criteria Rdis.

Lastly, the bootstrap sampling process is not limited to be uniform. Parameterized
bootstrapping [27] can be utilized to accommodate the underlying structure of the data.
Other extensions, such as employing clustering or domain knowledge for bootstrap re-
sampling, are possible.

4 Experiments

We evaluated the performance of BB-LDA with both synthetic and real datasets in
comparison to traditional LDA methods in dealing with the SSS problem.
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Fig. 1. Results of synthetic experiments. With the best α ∈ [0.25, 0.5, 0.75], BB-LDA outper-
formed traditional LDA methods when their assumptions were intentionally violated in (a), (c),
and (e), and yielded comparable performance when the assumptions were satisfied in (b) and (d).
As shown in (f), BB-LDA converges to the ML estimate with a large enough sample size.
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4.1 Results on Synthetic Data

In our synthetic experiments, two Gaussians with equal covariance were simulated
with equal priors in a D = 100 dimensional space for a range of sample sizes N =
[10 : 10 : 400]. The difficulty of the classification was controlled using a fixed Fisher
ratio of 4, which corresponds to a 97.7% Bayesian classification rate. Each configura-
tion (class means and common covariance) was simulated 25 times to report the average
recognition rate of the model with regards to the ground-truth data. We chose the per-
centage coverage p = 99.9% to determine the number of bootstrap samples, which
achieves good utilization of training examples and reasonable computational efficiency.

We first looked at the case of N ≤ 100 (singular Σ̂), which was previously focused
on by the traditional methods (PINV-LDA, PCA+LDA, EFLD, R-LDA, and D-LDA).
As shown in Fig. 1a, the EFLD recognition rates were hardly better than 50% for 3
selected percentage fits (85%, 90%, and 95%) of the simulated data, when the true fea-
ture vector lies outside the major PCA components (90% fit of the true data variance).
This is because EFLD assumes no information in the small components and discards
them to constrain the LDA solution. Similarly, D-LDA showed low performance in
Fig. 1c when a large portion of the true feature vector resides in the null space of Sb

(class means). For the remaining methods, PINV-LDA, PCA+LDA, and R-LDA also
performed poorly for a large N as they are sensitive to noise and small perturbations
due to the over-emphasis of small components in their solutions (Fig. 1e).

As a comparison, at an appropriate sampling ratio α, BB-LDA outperformed the
traditional methods in all the above cases (see Fig. 1a,c,e). Furthermore, when the model
assumptions of EFLD and D-LDA were satisfied as shown in Fig. 1b and 1d, BB-LDA
still yielded comparable performance to the two methods. The valid case of PINV-LDA,
PCA+LDA, and R-LDA is not available due to their unstable nature.

Then we studied the performance of BB-LDA in handling the SSS estimation prob-
lem for the case (a), (c), and (d) with 100 < N ≤ 400, which has enough examples
to avoid a singular Σ̂. The sampling ratio was selected for the best average recognition
rate in the previous range of N ≤ 100 with α at 0.5, 0.25, and 0.5. As shown in Fig.
1f, BB-LDA outperformed classic LDA in the lower end of the range of N , due to rel-
atively few examples for the ML estimates to converge. In the higher end with enough
examples, BB-LDA showed the trend of convergence to ML. The results demonstrate
BB-LDA as a general method to deal with the SSS problem in various cases.

4.2 Results on Real Data

In our real experiments, we explored 3 datasets frequently used in Computer Vision
research for face and gait recognition: Yale face database [2], ORL face dataset [28],
and the CMU gait database [29]. For each dataset, images were first aligned to control
position and scaling. Then they were down-sampled and tightly cropped to the region of
interest as shown in Fig. 2. For the gait database, two different types of MHI (overlay of
silhouette images with timestamps represented in pixel intensity) [30] templates were
created, which correspond the stride opening and closing phase of a walking cycle (Fig.
2c and 2d). All traditional methods used in Sect. 4.1 were evaluated except R-LDA due
to its inherit high computational complexity for a large input dimension (e.g., D = 1600
for images in the Yale face database). Cross-validation was employed to determine the
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(a)

(b)

(c)

(d)

Fig. 2. Sample images of 3 datasets. (a) Yale face database (15 subjects, glasses vs. no glasses).
(b) ORL face dataset (40 subjects). (c) CMU Gait database (25 subjects, fast vs. slow walk) in
Type-1 MHI representation. (d) Corresponding Type-2 MHI Gait representation.

optimal model parameters of BB-LDA (the sampling ratio α ∈ [0.1 : 0.1 : 0.9] and the
best representation/classifier) and EFLD (the number of PCA components) with each
time 10% of examples drawn for testing. The same bootstrap coverage p = 99.9% was
chosen as in Sect. 4.1.

The Yale face dataset includes 15 subjects and 11 images of each person across
various conditions (e.g., lighting, expressions, etc.). In addition to face recognition, we
examined the task of distinguishing people with glasses from people without glasses
(36 with and 129 without), a much larger set than the case of 36 images studied in [2].
We then examined face recognition using the ORL face dataset with 40 subjects and 10
images per person. Lastly, we looked at the CMU gait database of 25 subjects with 16
cycles extracted for each person (8 slow and 8 fast). Both identity and walking speed
recognition were performed over two types of MHI representation.

The comparative results of those experiments are summarized in Table 1. Since
PINV-LDA and PCA+LDA mostly emphasize the small components, they are sensi-
tive to noise and yielded lower recognition rates. By adjusting the number of PCA
components, EFLD improved the performance of PCA+LDA and is the best among
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Table 1. Classification results of different LDA-based algorithms. Our proposed BB-LDA ap-
proach outperformed the other traditional LDA methods.

Yale - ID
(11 sets)

Yale - Glasses
(36 sets)

ORL - ID
(10 sets)

CMU - ID (24 sets) CMU - Speed (30 sets)
Type-1 Type-2 Type-1 Type-2

PINV-LDA 82.7 83.6 88.8 99.7 99.1 92.6 89.5
PCA+LDA 45.5 85.2 27.3 54.6 62.7 93.6 90.7

EFLD
90.6

(57 PCs)
89.7

(85 PCs)
92.3

(95 PCs)
100.0

(90 PCs)
99.7

(132 PCs)
97.0

(318 PCs)
95.3

(321 PCs)

D-LDA 70.3 72.0 79.8 77.8 76.3 77.4 65.8

BB-LDA
93.9

(α = 0.3)
95.1

(α = 0.3)
95.5

(α = 0.2)
100.0

(α = 0.2)
100.0

(α = 0.2)
97.8

(α = 0.6)
97.1

(α = 0.4)

all the traditional methods. But this assumes the small components contain no infor-
mation for classification. Lastly, D-LDA imposes a significant performance limitation
by constraining the feature vectors to be in the linear space of Sb (class means). As
a comparison, our proposed BB-LDA approach gave the best classification rate in all
test cases. Only in CMU-ID (Type-1), EFLD yielded the same classification of 100%,
which is high due the simplicity of the task (MHI images of multiple cycles for one
subject are highly similar).

The performance advantages of BB-LDA come from the employment of a gen-
eral statistical framework of bootstrap bumping in dealing with the SSS problem. This
avoids the explicit assumptions in the traditional methods. By sampling a subset of
training examples to hypothesize a representation and selecting the best model for dis-
crimination over the entire dataset, our approach is capable of improving the estimation
accuracy in the SSS problem. The sampling ratio α provides a balance of examples for
representation and discrimination. In our real experiments, a small α value was used
in most cases, which suggests that only a few prototype examples were needed for
representation, while the rest can be used for discrimination. Both synthetic and real
experiments illustrated the advantages of BB-LDA in dealing with the SSS problem.

5 Conclusion

We presented a novel method of Bootstrap Bumping LDA (BB-LDA) to deal with the
SSS problem in Computer Vision applications. The method hypothesizes candidate rep-
resentations from each subset of examples (bootstrap sample) and tests over the entire
dataset for the best classification. As a general statistical framework, our approach is
capable of improving the estimation accuracy without imposing explicit assumptions.
The method asymptotically converges to the true LDA solution given enough examples
and outperforms the traditional LDA methods in dealing with the SSS problem. Both
synthetic and real experiments on several popular datasets showed the advantages of our
BB-LDA approach. In future work, we plan to address the model limitations of LDA
with more complex representations (e.g., non-linear) and investigate other applications
of BB-LDA (e.g., person detection).
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Studying Aesthetics in Photographic Images
Using a Computational Approach
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Abstract. Aesthetics, in the world of art and photography, refers to
the principles of the nature and appreciation of beauty. Judging beauty
and other aesthetic qualities of photographs is a highly subjective task.
Hence, there is no unanimously agreed standard for measuring aesthetic
value. In spite of the lack of firm rules, certain features in photographic
images are believed, by many, to please humans more than certain oth-
ers. In this paper, we treat the challenge of automatically inferring aes-
thetic quality of pictures using their visual content as a machine learning
problem, with a peer-rated online photo sharing Website as data source.
We extract certain visual features based on the intuition that they can
discriminate between aesthetically pleasing and displeasing images. Au-
tomated classifiers are built using support vector machines and classifi-
cation trees. Linear regression on polynomial terms of the features is also
applied to infer numerical aesthetics ratings. The work attempts to ex-
plore the relationship between emotions which pictures arouse in people,
and their low-level content. Potential applications include content-based
image retrieval and digital photography.

1 Introduction

Photography is defined as the art or practice of taking and processing pho-
tographs. Aesthetics in photography is how people usually characterize beauty
in this form of art. There are various ways in which aesthetics is defined by
different people. There exists no single consensus on what it exactly pertains to.
The broad idea is that photographic images that are pleasing to the eyes are
considered to be higher in terms of their aesthetic beauty. While the average
individual may simply be interested in how soothing a picture is to the eyes, a
photographic artist may be looking at the composition of the picture, the use
of colors and light, and any additional meanings conveyed by the picture. A
professional photographer, on the other hand, may be wondering how difficult
it may have been to take or to process a particular shot, the sharpness and the
color contrast of the picture, or whether the “rules of thumb” in photography
have been maintained. All these issues make the measurement of aesthetics in
pictures or photographs extremely subjective.
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In spite of the ambiguous definition of aesthetics, we show in this paper
that there exist certain visual properties which make photographs, in general,
more aesthetically beautiful. We tackle the problem computationally and exper-
imentally through a statistical learning approach. This allows us to reduce the
influence of exceptions and to identify certain features which are statistically
significant in good quality photographs.

Content analysis in photographic images has been studied by the multime-
dia and vision research community in the past decade. Today, several efficient
region-based image retrieval engines are in use [13, 6, 21, 18]. Statistical modeling
approaches have been proposed for automatic image annotation [4, 12]. Cultur-
ally significant pictures are being archived in digital libraries [7]. Online photo
sharing communities are becoming more and more common [1, 3, 11, 15]. In this
age of digital picture explosion, it is critical to continuously develop intelligent
systems for automatic image content analysis.

1.1 Community-Based Photo Ratings as Data Source

One good data source is a large online photo sharing community, Photo.net, pos-
sibly the first of its kind, started in 1997 by Philip Greenspun, then a researcher
on online communities at MIT [15]. Primarily intended for photography enthusi-
asts, the Website attracts more than 400, 000 registered members. Many amateur
and professional photographers visit the site frequently, share photos, and rate
and comment on photos taken by peers. There are more than one million pho-
tographs uploaded by these users for perusal by the community. Of interest to us
is the fact that many of these photographs are peer-rated in terms of two quali-
ties, namely aesthetics and originality. The scores are given in the range of one to
seven, with a higher number indicating better rating. This site acts as the main
source of data for our computational aesthetics work. The reason we chose such
an online community is that it provides photos which are rated by a relatively
diverse group. This ensures generality in the ratings, averaged out over the en-
tire spectrum of amateurs to serious professionals. While amateurs represent the
general population, the professionals tend to spend more time on the technical
details before rating the photographs. One caveat: The nature of any peer-rated
community is such that it leads to unfair judgments under certain circumstances,
and Photo.net is no exception, making our acquired data fairly noisy. Ideally, the
data should have been collected from a random sample of human subjects under
controlled setup, but resource constraints prevented us from doing so.

We downloaded those pictures and their associated metadata which were
rated by at least two members of the community. For each image downloaded, we
parsed the pages and gathered the following information: (1) average aesthetics
score between 1.0 and 7.0, (2) average originality score between 1.0 and 7.0, (3)
number of times viewed by members, and (4) number of peer ratings.

1.2 Aesthetics and Originality

According to the Oxford Advanced Learner’s Dictionary, Aesthetics means (1)
“concerned with beauty and art and the understanding of beautiful things”, and
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(2) “made in an artistic way and beautiful to look at”. A more specific discussion
on the definition of aesthetics can be found in [16]. As can be observed, no con-
sensus was reached on the topic among the users, many of whom are professional
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Fig. 1. Correlation between the aes-
thetics and originality ratings for
3581 photographs

photographers. Originality has a more spe-
cific definition of being something that is
unique and rarely observed. The originality
score given to some photographs can also be
hard to interpret, because what seems origi-
nal to some viewers may not be so for others.
Depending on the experiences of the viewers,
the originality scores for the same photo can
vary considerably. Thus the originality score
is subjective to a large extent as well.

One of the first observations made on the
gathered data was the strong correlation be-
tween the aesthetics and originality ratings
for a given image. A plot of 3581 unique photograph ratings can be seen in
Fig. 1. As can be seen, aesthetics and originality ratings have approximately
linear correlation with each other. This can be due to a number of factors. Many
users quickly rate a batch of photos in a given day. They tend not to spend too
much time trying to distinguish between these two parameters when judging
a photo. They more often than not rate photographs based on a general im-
pression. Typically, a very original concept leads to good aesthetic value, while
beauty can often be characterized by originality in view angle, color, lighting,
or composition. Also, because the ratings are averages over a number of people,
disparity by individuals may not be reflected as high in the averages. Hence
there is generally not much disparity in the average ratings. In fact, out of the
3581 randomly chosen photos, only about 1.1% have a disparity of more than
1.0 between average aesthetics and average originality, with a peak of 2.0.

Fig. 2. Aesthetics scores can
be significantly influenced by the
semantics. Loneliness is depicted
using a person in this frame,
though the area occupied by the
person is very small. Avg. aes-
thetics: 6.0/7.0.

As a result of this observation, we chose to
limit the rest of our study to aesthetics ratings
only, since the value of one can be approximated
to the value of the other, and among the two,
aesthetics has a rough definition that in princi-
ple depends somewhat less on the content or the
semantics of the photograph, something that is
very hard for present day machine intelligence
to interpret accurately. Nonetheless, the strong
dependence on originality ratings means that
aesthetics ratings are also largely influenced by
the semantics. As a result, some visually simi-
lar photographs are rated very differently. For
example in Fig. 2, loneliness is depicted using a
man in the frame, increasing its appeal, while
the lack of the person makes the photograph
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uninteresting and is likely to cause poorer ratings from peers. This makes the
task of automatically determining aesthetics of photographs highly challenging.

1.3 Our Computational Aesthetics Approach

A classic treatise on psychological theories for understanding human perception
can be found in [2]. Here, we take the first step in using a computational approach
to understand what aspects of a photograph appeal to people, from a population
and statistical standpoint. For this purpose, we aim to build (1) a classifier that
can qualitatively distinguish between pictures of high and low aesthetic value,
or (2) a regression model that can quantitatively predict the aesthetics score,
both approaches relying on low-level visual features only. We define high or low
in terms of predefined ranges of aesthetics scores.

There are reasons to believe that classification may be a more appropri-
ate model than regression in tackling this problem. For one, the measures are
highly subjective, and there are no agreed standards for rating. This may render
absolute scores less meaningful. Again, ratings above or below certain thresh-
olds on an average by a set of unique users generally reflect on the photo-
graph’s quality. This way we also get around the problem of consistency where
two identical photographs can be scored differently by different groups of
people. However, it is more likely that both the group averages are within
the same range and hence are treated fairly when posed as a classification
problem.

On the other hand, the ‘ideal’ case is when a machine can replicate the task
of robustly giving images aesthetics scores in the range of (1.0-7.0) the humans
do. This is the regression formulation of the problem. The possible benefits of
building a computational aesthetics model can be summarized as follows: If the
low-level image features alone can tell what range aesthetics ratings the image
deserves, this can potentially be used by photographers to get a rough estimate
of their shot composition quality, leading to adjustment in camera parameters or
shot positioning for improved aesthetics. Camera manufacturers can incorporate
a ‘suggested composition’ feature into their products. Alternatively, a content-
based image retrieval (CBIR) system can use the aesthetics score to discriminate
between visually similar images, giving greater priority to more pleasing query
results. Biologically speaking, a reasonable solution to this problem may lead to
a better understanding of the human vision.

2 Visual Feature Extraction

Experiences with photography lead us to believe in certain aspects as being
critical to quality. This entire study is on such beliefs or hypotheses and their
validation through numerical results. We treat each downloaded image separately
and extract features from them. We use the following notation: The RGB data of
each image is converted to HSV color space, producing two-dimensional matrices
IH , IS , and IV , each of dimension X × Y .
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Our motivation for the choice of features was principled, based on (1) rules
of thumb in photography, (2) common intuition, and (3) observed trends in
ratings. In photography and color psychology, color tones and saturation play
important roles, and hence working in the HSV color space makes computation
more convenient. For some features we extract information from objects within
the photographs. An approximate way to find objects within images is segmen-
tation, under the assumption that homogeneous regions correspond to objects.
We use a fast segmentation method based on clustering. For this purpose the
image is transformed into the LUV space, since in this space locally Euclidean
distances model the perceived color change well. Using a fixed threshold for all
the photographs, we use the K-Center algorithm to compute cluster centroids,
treating the image pixels as a bag of vectors in LUV space. With these centroids
as seeds, a K-means algorithm computes clusters. Following a connected compo-
nent analysis, color-based segments are obtained. The 5 largest segments formed
are retained and denoted as {s1, ..., s5}. These clusters are used to compute
region-based features as we shall discuss in Sec. 2.7.

We extracted 56 visual features for each image. The feature set was care-
fully chosen but limited because our goal was mainly to study the trends or
patterns, if any, that lead to higher or lower aesthetics ratings. If the goal was
to only build a strong classifier or regression model, it would have made sense
to generate exhaustive features and apply typical machine-learning techniques
such as boosting. Without meaningful features it is difficult to make meaningful
conclusions from the results. We refer to our features as candidate features and
denote them as F = {fi|1 ≤ i ≤ 56} which are described as follows.

2.1 Exposure of Light and Colorfulness

Measuring the brightness using a light meter and a gray card, controlling the
exposure using the aperture and shutter speed settings, and darkroom print-
ing with dodging and burning are basic skills for any professional photographer.
Too much exposure (leading to brighter shots) often yields lower quality pictures.
Those that are too dark are often also not appealing. Thus light exposure can
often be a good discriminant between high and low quality photographs. Note
that there are always exceptions to any ‘rules of thumb’. An over-exposed or
under-exposed photograph under certain scenarios may yield very original and
beautiful shots. Ideally, the use of light should be characterized as normal day-
light, shooting into the sun, backlighting, shadow, night etc. We use the average
pixel intensity f1 = 1

XY

∑X−1
x=0

∑Y −1
y=0 IV (x, y) to characterize the use of light.

We propose a fast and robust method to compute relative color distribution,
distinguishing multi-colored images from monochromatic, sepia or simply low
contrast images. We use the Earth Mover’s Distance (EMD) [17], which is a
measure of similarity between any two weighted distributions. We divide the
RGB color space into 64 cubic blocks with four equal partitions along each
dimension, taking each such cube as a sample point. Distribution D1 is generated
as the color distribution of a hypothetical image such that for each of 64 sample
points, the frequency is 1/64. Distribution D2 is computed from the given image
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by finding the frequency of occurrence of color within each of the 64 cubes. The
EMD measure requires that the pairwise distance between sampling points in
the two distributions be supplied. Since the sampling points in both of them are
identical, we compute the pairwise Euclidean distances between the geometric
centers ci of each cube i, after conversion to LUV space. Thus the colorfulness
measure f2 is computed as follows: f2 = emd(D1, D2, {d(a, b) | 0 ≤ a, b ≤ 63}),
where d(a, b) = ||rgb2luv(ca)− rgb2luv(cb)|| .

Fig. 3. The proposed colorfulness measure. The two photographs on the left have high
values while the two on the right have low values.

The distribution D1 can be interpreted as the ideal color distribution of a
‘colorful’ image. How similar the color distribution of an arbitrary image is to
this one is a rough measure of how colorful that image is. Examples of images
producing high and low values of f2 are shown in Fig. 3.

2.2 Saturation and Hue

Saturation indicates chromatic purity. Pure colors in a photo tend to be more
appealing than dull or impure ones. In natural out-door landscape photography,
professionals use specialized film such as the Fuji Velvia to enhance the sat-
uration to result in deeper blue sky, greener grass, more vivid flowers, etc. We
compute the average saturation f3 = 1

XY

∑X−1
x=0

∑Y −1
y=0 IS(x, y) as the saturation

indicator. Hue is similarly computed averaged over IH to get feature f4, though
the interpretation of such a feature is not as clear as the former. This is because
hue as defined in the HSV space corresponds to angles in a color wheel.

2.3 The Rule of Thirds

A very popular rule of thumb in photography is the Rule of Thirds. The rule can
be considered as a sloppy approximation to the ‘golden ratio’ (about 0.618). It
specifies that the main element, or the center of interest, in a photograph should
lie at one of the four intersections as shown in Fig. 4 (a). We observed that most
professional photographs that follow this rule have the main object stretch from
an intersection up to the center of the image. Also noticed was the fact that
centers of interest, e.g., the eye of a man, were often placed aligned to one of the
edges, on the inside. This implies that a large part of the main object often lies
on the periphery or inside of the inner rectangle. Based on these observations,
we computed the average hue as f5 = 9

XY

∑2X/3
x=X/3

∑2Y/3
y=Y/3 IH(x, y), with f6 and

f7 being similarly computed for IS and IV respectively.
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LL HL

LH HH

(a) (b) (c) (d)

Fig. 4. (a) The rule of thirds in photography: Imaginary lines cut the image horizontally
and vertically each into three parts. Intersection points are chosen to place important
parts of the composition instead of the center. (b)-(d) Daubechies wavelet transform.
Left: Original image. Middle: Three-level transform, levels separated by borders. Right:
Arrangement of three bands LH, HL and HH of the coefficients.

2.4 Familiarity Measure

We humans learn to rate the aesthetics of pictures from the experience gathered
by seeing other pictures. Our opinions are often governed by what we have
seen in the past. Because of our curiosity, when we see something unusual or
rare we perceive it in a way different from what we get to see on a regular
basis. In order to capture this factor in human judgment of photography, we
define a new measure of familiarity based on the integrated region matching
(IRM) image distance [21]. The IRM distance computes image similarity by using
color, texture and shape information from automatically segmented regions, and
performing a robust region-based matching with other images. Primarily meant
for image retrieval applications, we use it here to quantify familiarity. Given
a pre-determined anchor database of images with a well-spread distribution of
aesthetics scores, we retrieve the top K closest matches in it with the candidate
image as query. Denoting IRM distances of the top matches for each image
in decreasing order of rank as {q(i)|1 ≤ i ≤ K}. We compute f8 and f9 as
f8 = 1

20

∑20
i=1 q(i) , f9 = 1

100

∑100
i=1 q(i).

In effect, these measures should yield higher values for uncommon images.
Two different scales of 20 and 100 top matches are used since they may poten-
tially tell different stories about the uniqueness of the picture. While the former
measures average similarity in a local neighborhood, the latter does so on a more
global basis. Because of the strong correlation between aesthetics and originality,
it is intuitive that a higher value of f8 or f9 corresponds to greater originality
and hence we expect greater aesthetics score.

2.5 Wavelet-Based Texture

Graininess or smoothness in a photograph can be interpreted in different ways.
If as a whole it is grainy, one possibility is that the picture was taken with a
grainy film or under high ISO settings. If as a whole it is smooth, the picture can
be out-of-focus, in which case it is in general not pleasing to the eye. Graininess
can also indicate the presence/absence and nature of texture within the image.

The use of texture is a composition skill in photography. One way to mea-
sure spatial smoothness in the image is to use Daubechies wavelet transform [10],
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which has often been used in the literature to characterize texture. We perform
a three-level wavelet transform on all three color bands IH , IS and IV . An ex-
ample of such a transform on the intensity band is shown in Fig. 4 (b)-(c). The
three levels of wavelet bands are arranged from top left to bottom right in the
transformed image, and the four coefficients per level, LL, LH , HL, and HH are
arranged as shown in Fig. 4 (d). Denoting the coefficients (except LL) in level
i for the wavelet transform on hue image IH as whh

i , whl
i and wlh

i , i = {1, 2, 3},
we define features f10, f11 and f12 as follows:

fi+9 =
1
Si

{∑
x

∑
y

whh
i (x, y) +

∑
x

∑
y

whl
i (x, y) +

∑
x

∑
y

wlh
i (x, y)

}
where Sk = |whh

i | + |whl
i | + |whh

i | and i = 1, 2, 3. The corresponding wavelet
features for saturation (IS) and intensity (IV ) images are computed similarly
to get f13 through f15 and f16 through f18 respectively. Three more wavelet
features are derived. The sum of the average wavelet coefficients over all three
frequency levels for each of H , S and V are taken to form three additional
features: f19 =

∑12
i=10 fi, f20 =

∑15
i=13 fi, and f21 =

∑18
i=16 fi.

2.6 Size and Aspect Ratio

The size of an image has a good chance of affecting the photo ratings. Although
scaling is possible in digital and print media, the size presented initially must be
agreeable to the content of the photograph. A more crucial parameter is the aspect
ratio. It is well-known that 4 : 3 and 16 : 9 aspect ratios, which approximate the
‘golden ratio,’ are chosen as standards for television screens or 70mm movies, for
reasons related to viewing pleasure. The 35mm film used by most photographers
has a ratio of 3 : 2 while larger formats include ratios like 7 : 6 and 5 : 4. While
size feature is f22 = X + Y , the aspect ratio feature is f23 = X

Y .

2.7 Region Composition

Fig. 5. The HSV
Color Wheel

Segmentation results in rough grouping of similar pixels,
which often correspond to objects in the scene. We denote
the set of pixels in the largest five connected components
or patches formed by the segmentation process described
before as {s1, ...s5}. The number of patches t ≤ 5 which
satisfy |si| ≥ XY

100 denotes feature f24. The number of color-
based clusters formed by K-Means in the LUV space is
feature f25. This number is image dependent and dynami-
cally chosen, based on the complexity of the image. These
two features combine to measure how many distinct color blobs and how many
disconnected significantly large regions are present.

We then compute the average H , S and V values for each of the top 5 patches
as features f26 through f30, f31 through f35 and f36 through f40 respectively.
Features f41 through f45 store the relative size of each segment with respect to
the image, and are computed as fi+40 = |si|/(XY ) where i = 1, ..., 5.
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The hue component of HSV is such that the colors that are 180◦ apart in
the color circle (Fig. 5) are complimentary to each other, which means that they
add up to ‘white’ color. These colors tend to look pleasing together. Based on
this idea, we define two new features, f46 and f47 in the following manner, cor-
responding to average color spread around the wheel and average complimentary
colors among the top 5 patch hues. These features are defined as

f46 =
5∑

i=1

5∑
j=1

|hi − hj |, f47 =
5∑

i=1

5∑
j=1

l(|hi − hj |), hi =
∑

(x,y)∈si

IH(x, y),

where l(k) = k if k ≤ 180◦, 360◦ − k if k > 180◦ . Finally, the rough po-
sitions of each segment are stored as features f48 through f52. We divide the
image into 3 equal parts along horizontal and vertical directions, locate the
block containing the centroid of each patch si, and set f47+i = (10r + c) where
(r, c) ∈ {(1, 1), ..., (3, 3)} indicates the corresponding block starting with top-left.

2.8 Low Depth of Field Indicators

Pictures with a simplistic composition and a well-focused center of interest are
sometimes more pleasing than pictures with many different objects. Professional
photographers often reduce the depth of field (DOF) for shooting single objects
by using larger aperture settings, macro lenses, or telephoto lenses. DOF is the
range of distance from a camera that is acceptably sharp in the photograph. On
the photo, areas in the DOF are noticeably sharper.

We noticed that a large number of low DOF photographs, e.g., insects, other
small creatures, animals in motion, were given high ratings. One reason may
be that these shots are difficult to take, since it is hard to focus steadily on
small and/or fast moving objects like insects and birds. A common feature is
that they are taken either by macro or by telephoto lenses. We propose a novel
method to detect low DOF and macro images. We divide the image into 16
equal rectangular blocks {M1, ...M16}, numbered in row-major order. Let w3 =
{wlh

3 , whl
3 , whh

3 } denote the set of wavelet coefficients in the high-frequency (level
3 by the notation in Sec. 2.5) of the hue image IH . The low depth of field indicator
feature f53 for hue is computed as follows, with f54 and f55 being computed
similarly for IS and IV respectively:

f53 =

∑
(x,y)∈M6∪M7∪M10∪M11

w3(x, y)∑16
i=1

∑
(x,y)∈Mi

w3(x, y)

The object of interest in a macro shot is usually in sharp focus near the
center, while the surrounding is usually out of focus. This essentially means that
a large value of the low DOF indicator features tend to occur for macro shots.

2.9 Shape Convexity

It is believed that shapes in a picture also influence the degree of aesthetic
beauty perceived by humans. The challenge in designing a shape feature lies in
the understanding of what kind of shape pleases humans, and whether any such
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Fig. 6. Demonstrating the shape convexity feature. Left: Original photograph. Middle:
Three largest non-background segments shown in original color. Right: Exclusive re-
gions of the convex hull generated for each segment are shown in white. The proportion
of white regions determine the convexity value.

measure generalizes well enough or not. As always, we hypothesize that convex
shapes like perfect moon, well-shaped fruits, boxes, or windows have an appeal,
positive or negative, which is different from concave or highly irregular shapes.
Let the image be segmented, as described before, and R patches {p1, ..., pR} are
obtained such that |pk| ≥ XY

200 . For each pk, we compute its convex hull, denoted
by g(pk). For a perfectly convex shape, pk∩g(pk) = pk, i.e. |pk|

|g(pk)| = 1. We define

the shape convexity feature as f56 = 1
XY {

∑R
k=1 I( |pk|

|g(pk)| ≥ 0.8)|pk|}, allowing
some room for irregularities of edge and error due to digitization. Here I(·) is
the indicator function. This feature can be interpreted as the fraction of the
image covered by approximately convex-shaped homogeneous regions, ignoring
the insignificant image regions. This feature is demonstrated in Fig. 6. Note that
a critical factor here is the segmentation process, since we are characterizing
shape by segments. Often, a perfectly convex object is split into concave or
irregular parts, considerably reducing the reliability of this measure.

3 Feature Selection, Classification, and Regression

A contribution of our work is the feature extraction process itself, since each fea-
ture represents an interesting aspects of photography. We now perform selection
in order to (1) discover features that show correlation with community-based
aesthetics scores, and (2) build a classification/regression model using a sub-
set of strongly/weakly relevant features such that generalization performance is
near optimal. Instead of using any regression model, we use a one-dimensional
support vector machine (SVM) [20]. SVMs are essentially powerful binary clas-
sifiers that project the data space into higher dimensions where the two classes
of points are linearly separable. Naturally, for one-dimensional data, they can
be more flexible than a single threshold classifier.

For the 3581 images downloaded, all 56 features in F were extracted and nor-
malized to the [0, 1] range to form the experimental data. Two classes of data are
chosen, high containing samples with aesthetics scores greater than 5.8, and low
with scores less than 4.2. Only images that were rated by at least two unique mem-
bers were used. The reason for choosing classes with a gap is that pictures with close
lying aesthetic scores, e.g., 5.0 and 5.1 are not likely to have any distinguishing fea-
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ture, and may merely be representing the noise in the whole peer-rating process.
For all experiments we ensure equal priors by replicating data to generate equal
number of samples per class. A total of 1664 samples is thus obtained, forming the
basis for our classification experiments. We perform classification using the stan-
dard RBF Kernel (γ = 3.7, cost = 1.0) using the LibSVM package [9]. SVM is run
20 times per feature, randomly permuting the data-set each time, andusing a 5-fold
cross-validation (5-CV). The top 15 among the 56 features in terms of model accu-
racy are obtained. The stability of these single features as classifiers is also tested.
We proceed to build a classifier that can separate low from high. For this, we use
SVM as well as the classification and regression trees (CART) algorithm [8]. While
SVM is a powerful classifier, a limitation is that when there are too many irrele-
vant features in the data, the generalization performance tends to suffer. Feature
selection for classification purposes is a well-studied topic [5], with some recent
work related specifically to feature selection for SVMs. Filter-based methods and
wrapper-based methods are two broad techniques for feature selection. While the
former eliminates irrelevant features before training the classifier, the latter chooses
features using the classifier itself as an integral part of the selection process. In this
work, we combine these two methods to reduce computational complexity while
obtaining features that yield good generalization performance: (1) The top 30
features in terms of their one-dimensional SVM performance are retained while the
rest of the features are filtered out. (2) We use forward selection, a wrapper-based
approach in which we start with an empty set of features and iteratively add one
feature at a time that increases the 5-fold CV accuracy the most. We stop at 15
iterations (i.e. 15 features) and use this set to build the SVM-based classifier.

Classifiers that help understand the influence of different features directly
are tree-based approaches such as CART. We used the recursive partitioning
(RPART) implementation [19], to build a two-class classification tree model for
the same set of 1664 data samples. Finally, we perform linear regression on
polynomial terms of the features values to see if it is possible to directly predict
the aesthetics scores in the 1 to 7 range from the feature vector. The quality
of regression is usually measured in terms of the residual sum-of-squares error
R2

res = 1
N−1

∑N
i=1(Yi − Ŷi)2 where Ŷi is the predicted value of Yi. Here Y being

the aesthetics scores, in the worst case Ȳ is chosen every time without using the
regression model, yielding R2

res = σ2 (variance of Y ). Hence, if the independent
variables explain something about Y , it must be that Rres ≤ σ2. For this part,
all 3581 samples are used, and for each feature fi, the polynomials (fi, f2

i , f3
i ,

f
1
3
i , and f

2
3
i ) are used as independent variables.

4 Experimental Results

For the one-dimensional SVM performed on individual features, the top 15 re-
sults obtained in decreasing order of 5-CV accuracy are as follows: {f31, f1, f6,
f15, f9, f8, f32, f10, f55, f3, f36, f16, f54, f48, f22}. The maximum classification
rate achieved by any single feature was f31 with 59.3%. With accuracy over 54%,
they act as weak classifiers and hence show some correlation with the aesthetics.
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Fig. 7. Left: Variation of 5 − CV SVM accuracy with the minimum number of unique
ratings per picture. Right: Variation of 5 − CV SVM accuracy with inter-class gap δ.

The combined filter and wrapper method for feature selection yielded the
following set of 15 features:{f31, f1, f54, f28, f43, f25, f22, f17, f15, f20, f2, f9,
f21, f23, f6}. The accuracy achieved with 15 features is 70.12%, with precision
of detecting high class being 68.08%, and low class being 72.31%. Considering
the nature of this problem, these classification results are indeed promising.
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Fig. 8. Decision tree obtained using CART and the
56 visual features (partial view)

The stability of these clas-
sification results in terms of
number of ratings is consid-
ered next. Samples are cho-
sen in such a way that each
photo is rated by at least K
unique users, K varying from
1 to 8, and the 5-CV accu-
racy and precision plotted, as
shown in Fig. 7. It is observed
that accuracy values show an
upward trend with increasing
number of unique ratings per
sample, and stabilize some-
what when this value touches
5. This reflects on the peer-
rating process - the inherent
noise in this data gets averaged out as the number of ratings increase, converg-
ing toward a somewhat ‘fair’ score. We then experimented with how accuracy
and precision varied with the gap in aesthetics ratings between the two classes
high and low. So far we have considered ratings ≥ 5.8 as high and ≤ 4.2 as low.
In general, considering that ratings ≥ 5.0 + δ

2 , be (high) and ratings ≤ 5.0− δ
2

be (low), we have based all classification experiments on δ = 1.6. The value 5.0
is chosen as it is the median aesthetics rating over the 3581 samples. We now
vary δ while keeping all other factors constant, and compute SVM accuracy and
precision for each value. These results are plotted in Fig. 7. Not surprisingly,
the accuracy increases as δ increases. This is accounted by the fact that as δ
increases, so does the distinction between the two classes.
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Fig. 8 shows the CART decision tree obtained using the 56 visual features.
In the figures, the decision nodes are denoted by squares while leaf nodes are de-
noted by circles. The decisions used at each split and the number of observations
which fall in each node during the decision process, are also shown in the figures.
Shaded nodes have a higher percentage of low class pictures, hence making them
low nodes, while un-shaded nodes are those where the dominating class is high.
The RPART implementation uses 5-CV to prune the tree to yield lowest risk.
We used a 5-fold cross validation scheme. With complexity parameter governing
the tree complexity set to 0.0036, the tree generated 61 splits, yielding an 85.9%
model accuracy and a modest 62.3% 5-CV accuracy. More important than the
accuracy, the tree provides us with a lot of information on how aesthetics can
be related to individual features. We do not have the space to include and dis-
cuss the entire tree. Let us discuss some interesting decision paths, in each tree,
which support our choice of features. The features denoted by IRM100, i.e. f9,
and the low DOF indicators for S and V components, respectively (denoted by
low DOF s, i.e. f54 and low DOF v, i.e. f55), appear to play crucial roles in the
decision process. The expected loss at L3 and L4 are 0% and 9%, respectively. A
large numeric value of the low DOF indicators shows that the picture is focused
on a central object of interest. As discussed before, taking such pictures requires
professional expertise and hence high peer rating is not unexpected.

Finally, we report the regression results. The variance σ2 of the aesthetics
score over the 3581 samples is 0.69. With 5 polynomial terms for each of the 56,
we achieved a residual sum-of-squares R2

res = 0.5020, which is a 28% reduction
from the variance σ2. This score is not very high, but considering the challenge
involved, this does suggest that visual features are able to predict human-rated
aesthetics scores with some success. To ensure that this was actually demonstrat-
ing some correlation, we randomly permuted the aesthetics scores (breaking the
correspondence with the features) and performed the same regression. This time,
Rres is 0.65, clearly showing that the reduction in expected error was not merely
by the over-fitting of a complex model.

5 Conclusions and Future Work

We have established significant correlation between various visual properties
of photographic images and their aesthetics ratings. We have shown, through
using a community-based database and ratings, that certain visual properties
tend to yield better discrimination of aesthetic quality than some others. De-
spite the inherent noise in data, our SVM-based classifier is robust enough to
produce good accuracy using only 15 visual features in separating high and
low rated photographs. In the process of designing the classifier, we have de-
veloped a number of new features relevant to photographic quality, including a
low depth-of-field indicator, a colorfulness measure, a shape convexity score and
a familiarity measure. Even though certain extracted features did not show a
significant correlation with aesthetics, they may have applications in other pho-
tographic image analysis work as they are sound formulations of basic principles
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in photographic art. In summary, our work is a significant step toward the highly
challenging task of understanding the correlation of human emotions and pic-
tures they see by a computational approach. There are yet a lot of open avenues
in this direction. The accuracy can potentially be improved by incorporating
new features like dominant lines, converging lines, light source classification,
and subject-background relationships.
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Abstract. This paper introduces the Located Hidden Random Field
(LHRF), a conditional model for simultaneous part-based detection and
segmentation of objects of a given class. Given a training set of images
with segmentation masks for the object of interest, the LHRF automati-
cally learns a set of parts that are both discriminative in terms of appear-
ance and informative about the location of the object. By introducing
the global position of the object as a latent variable, the LHRF models
the long-range spatial configuration of these parts, as well as their local
interactions. Experiments on benchmark datasets show that the use of
discriminative parts leads to state-of-the-art detection and segmentation
performance, with the additional benefit of obtaining a labeling of the
object’s component parts.

1 Introduction

This paper addresses the problem of simultaneous detection and segmentation
of objects belonging to a particular class. Our approach is to use a conditional
model which is capable of learning discriminative parts of an object. A part is
considered discriminative if it can be reliably detected by its local appearance
in the image and if it is well localized on the object and hence informative as to
the object’s location.

The use of parts has several advantages. First, there are local spatial inter-
actions between parts that can help with detection, for example, we expect to
find the nose right above the mouth on a face. Hence, we can exploit local part
interactions to exclude invalid hypotheses at a local level. Second, knowing the
location of one part highly constrains the locations of other parts. For example,
knowing the locations of wheels of a car constrains the positions where rest of
the car can be detected. Thus, we can improve object detection by incorporating
long range spatial constraints on the parts. Third, by inferring a part labeling
for the training data, we can accurately assess the variability in the appearance
of each part, giving better part detection and hence better object detection. Fi-
nally, the use of parts gives the potential for detecting objects even if they are
partially occluded.
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One possibility for training a parts-based system is to use supervised training
with hand-labeled parts. The disadvantage of this approach is that it is very
expensive to get training data annotated for parts, plus it is unclear which parts
should be selected. Existing generative approaches try to address these problems
by clustering visually similar image patches to build a codebook in the hope that
clusters correspond to different parts of the object. However, this codebook has
to allow for all sources of variability in appearance – we provide a discriminative
alternative where irrelevant sources of variability do not need to be modeled.

This paper introduces Located Hidden Random Field, a novel extension to
the Conditional Random Field [1] that can learn parts discriminatively. We in-
troduce a latent part label for each pixel which is learned simultaneously with
model parameters, given the segmentation mask for the object. Further, the ob-
ject’s position is explicitly represented in the model, allowing long-range spatial
interactions between different object parts to be learned.

2 Related Work

There have been a number of parts-based approaches to segmentation or detec-
tion. It is possible to pre-select which parts are used as in [2] – however, this re-
quires significant human effort for each new object class. Alternatively, parts can
be learned by clustering visually similar image patches [3, 4] but this approach
does not exploit the spatial layout of the parts in the training images. There
has been work with generative models that do learn spatially coherent parts in
an unsupervised manner. For example, the constellation models of Fergus et al.
[5, 6] learn parts which occur in a particular spatial arrangement. However, the
parts correspond to sparsely detected interest points and so parts are limited in
size, cannot represent untextured regions and do not provide a segmentation of
the image. More recently, Winn and Jojic [7] used a dense generative model to
learn a partitioning of the object into parts, along with an unsupervised segmen-
tation of the object. Their method does not learn a model of object appearance
(only of object shape) and so cannot be used for object detection in cluttered
images.

As well as unsupervised methods, there are a range of supervised methods
for segmentation and detection. Ullman and Borenstein [8] use a fragment-based
method for segmentation, but do not provide detection results. Shotton et al. [9]
use a boosting method based on image contours for detection, but this does not
lead to a segmentation. There are a number of methods using Conditional Ran-
dom Fields (CRFs) to achieve segmentation [10] or sparse part-based detection
[11]. The OBJ CUT work of Kumar et al. [12] uses a discriminative model for
detection and a separate generative model for segmentation but requires that the
parts are learned in advance from video. Unlike the work presented in this paper,
none of these approaches achieves part-learning, segmentation and detection in
a single probabilistic framework.

Our choice of model has been motivated by Szummer’s [13] Hidden Random
Field (HRF) for classifying handwritten ink. The HRF automatically learns parts
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of diagram elements (boxes, arrows etc.) and models the local interaction be-
tween them. However, the parts learned using an HRF are not spatially localized
as the relative location of the part on the object is not modeled. In this paper
we introduce the Located HRF, which models the spatial organization of parts
and hence learns part which are spatially localized.

3 Discriminative Models for Object Detection

Our aim is to take an n×m image x and infer a label for each pixel indicating
the class of object that pixel belongs to. We denote the set of all image pixels as
V and for each pixel i ∈ V define a label yi ∈ {0, 1} where the background class
is indicated by yi = 0 and the foreground by yi = 1. The simplest approach is to
classify each pixel independently of other pixels based upon some local features,
corresponding to the graphical model of Fig. 1a. However, as we would like to
model the dependencies between pixels, a conditional random field can be used.

Conditional Random Field (CRF): this consists of a network of classifiers
that interact with one another such that the decision of each classifier is influ-
enced by the decision of its neighbors. In the graphical model for a CRF, the class
label corresponding to every pixel is connected to its neighbors in a 4-connected
grid, as shown in Fig. 1b. We denote this new set of edges as E.

Given an image x, a CRF induces a conditional probability distribution
p(y |x, θ) using the potential functions ψ1

i and ψ2
ij . Here, ψ1

i encodes compatibil-
ity of the label given to the ith pixel with the observed image x and ψ2

ij encodes

(a) Unary Classification

y

x

(b) CRF

y

x

(c) HRF

y

h

x

(d)

h

x

y

T

l

LHRF

Fig. 1. Graphical models for different discriminative models of images. The
image x and the shaded vertices are observed during training time. The parts h, denoted
by unfilled circles, are not observed and are learnt during the training. In the LHRF
model, the node corresponding to T is connected to all the locations li, depicted using
thick dotted lines.
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the pairwise label compatibilities for all (i, j) ∈ E conditioned on x. Thus, the
conditional distribution p(y |x) induced by a CRF can be written as:

p(y |x; θ) =
1

Z(θ,x)

∏
i∈V

ψ1
i (yi,x; θ)

∏
(i,j)∈E

ψ2
ij(yi, yj ,x; θ) (1)

where the partition function Z(θ,x) depends upon the observed image x as well
as the parameters θ of the model. We assume that the potentials ψ1

i and ψ2
ij

take the following form:

ψ1
i (yi,x; θ1) = exp[θ1(yi)Tgi(x)]

ψ2
ij(yi, yj ,x; θ2) = exp[θ2(yi, yj)Tfij(x)]

Here, gi : Rn×m → Rd is a function that computes a d-dimensional feature
vector at pixel i, given the image x. Similarly, the function fij : Rn×m → Rd

computes the d-dimensional feature vector for edge ij.

Hidden Random Field: a Hidden Random Field (HRF) [13] is an extension to
a CRF which introduces a number of parts for each object class. Each pixel has
an additional hidden variable hi ∈ {1 . . .H} where H is the total number of parts
across all classes. These hidden variables represent the assignment of pixels to
parts and are not observed during training. Rather than modeling the interaction
between foreground and background labels, an HRF instead models the local
interaction between the parts. Fig. 1c shows the graphical model corresponding
to an HRF showing that the local dependencies captured are now between parts
rather than between class labels. There is also an additional edge from a part
label hi to the corresponding class label yi. Similar to [13], we assume that
every part is uniquely allocated to an object class and so parts are not shared.
Specifically, there is deterministic mapping from parts to object-class and we
can denote it using y(hi).

Similarly to the CRF, we can define a conditional model for the label image
y and part image h:

p(y,h |x; θ) =
1

Z(θ,x)

∏
i∈V

ψ1
i (hi,x; θ1) φ(yi, hi)

∏
(i,j)∈E

ψ2
ij(hi, hj,x; θ2) (2)

where the potentials are defined as:

ψ1
i (hi,x; θ1) = exp[θ1(hi)Tgi(x)]

ψ2
ij(hi, hj ,x; θ2) = exp[θ2(hi, hj)Tfij(x)]

φ(yi, hi) = δ(y(hi) = yi)

where δ is an indicator function. The hidden variables in the HRF can be used to
model parts and interaction between those parts, providing a more flexible model
which in turn can improve detection performance. However, there is no guarantee
that the learnt parts are spatially localized. Also, as the model only contains
local connections, it does not exploit the long-range dependencies between all
the parts of the object.
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3.1 Located Hidden Random Field

The Located Hidden Random Field (LHRF) is an extension to the HRF, where
the parts are used to infer not only the background/foreground labels but also
a position label in a coordinate system defined relative to the object. We aug-
ment the model to include the position of the object T , encoded as a discrete
latent variable indexing all possible locations. We assume a fixed object size so a
particular object position defines a rectangular reference frame enclosing the ob-
ject. This reference frame is coarsely discretized into bins, representing different
discrete locations within the reference frame. Fig. 2 shows an example image,
the object mask and the reference frame divided into bins (shown color-coded).

Image Object Mask Location Map

(a) (b) (c)

Fig. 2. Instantiation of different nodes in an LHRF. (a) image x, (b) class labels
y showing ground truth segmentation (c) color-coded location map l. The darkest color
corresponds to the background.

We also introduce a set of location variables li ∈ {0, .., L}, where li takes the
non-zero index of the corresponding bin, or 0 if the pixel lies outside the reference
frame. Given a location T the location labels are uniquely defined according to
the corresponding reference frame. Hence, when T is unobserved, the location
variables are all tied together via their connections to T . These connections
allow the long-range spatial dependencies between parts to be learned. As there
is only a single location variable T , this model makes the assumption that there
is a single object in the image (although it can be used recursively for detecting
multiple objects – see Section 4).

We define a conditional model for the label image y, the position T , the part
image h and the locations l as:

p(y,h, l, T |x; θ) =
∏
i∈V

ψ1
i (hi,x; θ1) φ(yi, hi) ψ3(hi, li; θ3) δ(li = loc(i, T ))

×
∏

(i,j)∈E

ψ2
ij(hi, hj,x; θ2)× 1

Z(θ,x)
(3)

where the potentials ψ1, ψ2, φ are defined as in the HRF, and loc(i, T ) is the
location label of the ith pixel when the reference frame is in position T . The
potential encoding the compatibility between parts and locations is given by:

ψ3(hi, li; θ3) = exp[θ3(hi, li)] (4)

where θ3(hi, li) is a look-up table with an entry for each part and location index.
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Table 1. Comparison of Different Discriminative Models

Parts-Based Spatially Models Local Models Long
Informative Spatial Range Spatial

Parts Coherence Configuration

Unary Classifier No – No No
CRF No – Yes No
HRF Yes No Yes No
LHRF Yes Yes Yes Yes

In the LHRF, the parts need to be compatible with the location index as
well as the class label, which means that the part needs to be informative about
the spatial location of the object as well as its class. Hence, unlike the HRF, the
LHRF learns spatially coherent parts which occur in a consistent location on the
object. The spatial layout of these parts is captured in the parameter vector θ3,
which encodes where each part lies in the co-ordinate system of the object.

Table 1 gives a summary of the properties of the four discriminative models
which have been described in this section.

4 Inference and Learning

There are two key tasks that need to be solved when using the LHRF model:
learning the model parameters θ and inferring the labels for an input image x.

Inference: Given a novel image x and parameters θ, we can classify an ith

pixel as background or foreground by first computing the marginal p(yi |x; θ)
and assigning the label that maximizes this marginal. The required marginal is
computed by marginalizing out the part variables h, the location variables l, the
position variable T and all the labels y except yi.

p(yi |x; θ) =
∑
y/yi

∑
h,l,T

p(y,h, l, T |x; θ)

If the graph had small tree width, this marginalization could be performed ex-
actly using the junction tree algorithm. However, even ignoring the long range
connections to T , the tree width of a grid is the length of its shortest side and
so exact inference is computationally prohibitive. The earlier described models,
CRF and HRF, all have such a grid-like structure, which is of the same size as
the input image; thus, we resort to approximate inference techniques. In par-
ticular, we considered both loopy belief propagation (LBP) and sequential tree-
reweighted message passing (TRWS) [14]. Specifically, we compared the accuracy
of max-product and the sum-product variants of LBP and the max-product form
of TRWS (an efficient implementation of sum-product TRWS was not available
– we intend to develop one for future work). The max-product algorithms have
the advantage that we can exploit distance transforms [15] to reduce the running
time of the algorithm to be linear in terms of number of states. We found that
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both max-product algorithms performed best on the CRF with TRWS outper-
forming LBP. However, on the HRF and LHRF models, the sum-product LBP
gave significantly better performance than either max-product method. This is
probably because the max-product assumption that the posterior mass is con-
centrated at the mode is inaccurate due to the uncertainty in the latent part
variables. Hence, we used sum-product LBP for all LHRF experiments.

When applying LBP in the graph, we need to send messages from each hi to
T and update the approximate posterior p(T ) as the product of these; hence,

log p(T ) =
∑
i∈V

log
∑
hi

b(hi) ψ3(hi, loc(i, T )) (5)

where b(hi) is the product of messages into the ith node, excluding the message
from T . To speed up the computation of p(T ), we make the following approxi-
mation:

log p(T ) ≈
∑
i∈V

∑
hi

b(hi) log ψ3(hi, loc(i, T )). (6)

This posterior can now be computed very efficiently using convolutions.

Parameter Learning: Given an image x with labels y and location map l,
the parameters θ are learnt by maximizing the conditional likelihood p(y, l|x, θ)
multiplied by the Gaussian prior p(θ) = N (θ|0, σ2I). Hence, we seek to maximize
the objective function F(θ) = L(θ) + log p(θ), where L(θ) is the log of the
conditional likelihood.

F(θ) = log p(y, l|x; θ) + log p(θ) = log
∑
h

p(y,h, l|x; θ) + log p(θ)

= − log Z(θ,x) + log
∑
h

p̃(y,h, l,x; θ) + log p(θ) (7)

where:

p̃(y,h, l,x; θ) =
∏

i

ψ1
i (hi,x; θ1)φ(yi, hi)ψ3(hi, li; θ3)

∏
(i,j)∈E

ψ2
ij(hi, hj ,x; θ2).

We use gradient ascent to maximize the objective with respect to the para-
meters θ. The derivative of the log likelihood L(θ) with respect to the model
parameters θ = {θ1, θ2, θ3} can be written in terms of the features, single node
marginals and pairwise marginals:

δL(θ)
δθ1(h′)

=
∑
i∈V

gi(x) · (p(hi =h′|x,y, l; θ)− p(hi =h′|x; θ))

δL(θ)
δθ2(h′, h′′)

=
∑

(i,j)∈E

fij(x) · (p(hi =h′, hj =h′′|x,y, l; θ)− p(hi =h′, hj =h′′|x; θ))

δL(θ)
δθ3(h′, l′)

=
∑
i∈V

p(hi =h′, li = l′|x,y, l; θ)− p(hi =h′, li = l′|x; θ)
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It is intractable to compute the partition function Z(θ,x) and hence the objec-
tive function (7) cannot be computed exactly. Instead, we use the approximation
to the partition function given by the LBP or TRWS inference algorithm, which
is also used to provide approximations to the marginals required to compute
the derivative of the objective. Notice that the location variable T comes into
effect only when computing marginals for the unclamped model (where y and l
are not observed), as the sum over l should be restricted to those configurations
consistent with a value of T . We have trained the model both with and without
this restriction. Better detection results are achieved without it. This is for two
reasons: including this restriction makes the model very sensitive to changes in
image size and secondly, when used for detecting multiple objects, the restric-
tion of a single object instance does not apply, and hence should not be included
when training part detectors.

Image Features: We aim to use image features which are informative about
the part label but invariant to changes in illumination and small changes in
pose. The features used in this work for both unary and pairwise potentials are
SIFT descriptors [16], except that we compute these descriptors at only one
scale and do not rotate the descriptor, due to the assumption of fixed object
scale and rotation. For efficiency of learning, we apply the model at a coarser
resolution than the pixel resolution – the results given in this paper use a grid
whose nodes correspond 2 × 2 pixel squares. For the unary potentials, SIFT
descriptors are computed at the center of the each grid square. For the edge
potentials, the SIFT descriptors are computed at the location half-way between
two neighboring squares. To allow parameter sharing between horizontal and
vertical edge potentials, the features corresponding to the vertical edges in the
graphs are rotated by 90 degrees.

Detecting Multiple Objects: Our model assumes that a single object is
present in the image. We can reject images with no objects by comparing the
evidence for this model with the evidence for a background-only model. Specif-
ically, for each given image we compute the approximation of p(model |x, θ),
which is the normalization constant Z(θ,x) in (3). This model evidence is com-
pared with the evidence for a model which labels the entire image as background
p(noobject |x, θ). By defining a prior on these two models, we define the thresh-
old on the ratio of the model evidences used to determine if an object is present or
absent. By varying this prior, we can obtain precision-recall curves for detection.

We can use this methodology to detect multiple objects in a single image, by
applying the model recursively. Given an image, we detect whether it contains
an object instance. If we detect an object, the unary potentials are set to uniform
for all pixels labeled as foreground. The model is then reapplied to detect further
object instances. This process is repeated until no further objects are detected.

5 Experiments and Results

We performed experiments to (i) demonstrate the different parts learnt by the
LHRF, (ii) compare different discriminative models on the task of pixelwise
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segmentation and (iii) demonstrate simultaneous detection and segmentation of
objects in test images.

Training the Models: We trained each discriminative model on two different
datasets: the TU Darmstadt car dataset [4] and the Weizmann horse dataset [8].
From the TU Darmstadt dataset, we extracted 50 images of different cars viewed
from the side, of which 35 were used for training. The cars were all facing left and
were at the same scale in all the images. To gain comparable results for horses,
we used 50 images of horses taken from the Weizmann horse dataset, similarly
partitioned into training and test sets. All images were resized to 75×100 pixels.
Ground truth segmentations are available for both of these data sets, which
were used either for training or for assessing segmentation accuracy. For the car
images, the ground truth segmentations were modified to label car windows as
foreground rather than background.

Training the LHRF on 35 images of size 75 × 100 took about 2.5 hours on
a 3.2 GHz machine. Our implementation is in MATLAB except the loopy belief
propagation, which is implemented in C. Once trained, the model can be applied
to detect and segment an object in a 75×100 test image in around three seconds.

Learning Discriminative Parts: Fig. 3 illustrates the learned conditional
probability of location given parts p(l |h) for two, three and four parts for cars
and a four part model for horses. The results show that spatially localized parts
have been learned. For cars, the model discovers the top and the bottom parts
of the cars and these parts get split into wheels, middle body and the top-part
of the car as we increase the number of parts in the model. For horses, the parts
are less semantically meaningful, although the learned parts are still localized
within the object reference frame. One reason for this is that the images contain
horses in varying poses and so semantically meaningful parts (e.g. head, tail) do
not occur in the same location within a rigid reference frame.

Test Classification Test Classification Test Classification

4 Part Model: Cars2 Part Model: Cars 3 Part Model: Cars

Test Classification

4 Part Model: Horses

(a) (b)

Fig. 3. The learned discriminative parts for (a) Cars (side-view) and (b) Horses.
The first row shows, for each model, the conditional probability p(l|h), indicating where
the parts occur within the object reference frame. Dark regions correspond to a low
probability. The second row shows the part labeling of an example test image for each
model.
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Test Image Unary CRF HRF LHRF

Fig. 4. Segmentation results for car and horse images. The first column shows
the test image and the second, third, fourth and fifth column correspond to different
classifications obtained using unary, CRF, HRF and LHRF respectively. The colored
pixels correspond to the pixels classified as foreground. The different colors for HRF
and LHRF classification correspond to pixels classified as different parts.

Segmentation Accuracy: We evaluated the segmentation accuracy for the
car and horse training sets for the four different models of Fig. 1. As mentioned
above, we selected the first 35 out of 50 images for training and used the remain-
ing 15 to test. Segmentations for test images from the car and horse data sets are
shown in Fig. 4. Unsurprisingly, using the unary model leads to many discon-
nected regions. The results using CRF and HRF have spatially coherent regions
but local ambiguity in appearance means that background regions are frequently
classified as foreground. Note that the parts learned by the HRF are not spa-
tially coherent. Table 2 gives the relative accuracies of the four models where
accuracy is given by the percentage of pixels classified correctly as foreground
or background. We observe that LHRF gives a large improvement for cars and
a smaller, but significant improvement for horses. Horses are deformable objects
and parts occur varying positions in the location frame, reducing the advan-
tage of the LHRF. For comparison, Table 2 also gives accuracies from [7] and
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Table 2. Segmentation accuracies for dif-
ferent models and approaches

Cars Horses

Unary 84.5% 81.9%
CRF 85.3% 83.0%
HRF (4-Parts) 87.6% 85.1%
LHRF (4-Parts) 95.0% 88.1%

LOCUS [7] 94.0% 93.0%
Borenstein et al. [8] - 93.6%

Table 3. Segmentation accuracies for
LHRF with different numbers of parts

Model Cars

1-part LHRF 89.8%
2-part LHRF 92.5%
3-part LHRF 93.4%
4-part LHRF 95.0%

[8] obtained for different test sets taken from the same dataset. Both of these
approaches allow for deformable objects and hence gives better segmentation
accuracy for horses, whereas our model gives better accuracy for cars. In Sec-
tion 6 we propose to address this problem by using a flexible reference frame.
Notice however that, unlike both [7] and [8] our model is capable of segmenting
multiple objects from large images against a cluttered background.

Table 3 shows the segmentation accuracy as we vary the number of parts
in the LHRF and we observe that the accuracy improves with more parts. For
models with more than four parts, we found that at most only four of the parts
were used and hence the results were not improved further. It is possible that a
larger training set would provide evidence to support a larger number of parts.

Simultaneous Detection and Segmentation: To test detection performance,
we used the UIUC car dataset [3]. This dataset includes 170 images provided
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Fig. 5. Precision-recalls curves for detection on the UIUC dataset. (a) per-
formance for different numbers of parts. Note that the performance improves as the
number of parts increases. (b) relative performance for our approach against existing
methods.
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Table 4. Comparison of detection performance

Number of Equal
Training Images Error Rate

Leibe et al.(MDL) [4] 50 97.5%
Our method 35 94.0%
Shotton et al. [9] 100 92.1%
Leibe et al. [4] 50 91.0%
Garg et al. [17] 1000 ∼88.5%
Agarwal & Roth [3] 1000 ∼79.0%

Fig. 6. Examples of detection and segmentation on the UIUC dataset. The
top four rows show correct detections (green boxes) and the corresponding segmenta-
tions. The bottom row shows example false positives (red boxes) and false negatives.

for testing, containing a total of 200 cars, with some images containing multiple
cars. Again, all the cars in this test set are at the same scale.

Detection performance was evaluated for models trained on 35 images from
the TU Darmstadt dataset. Fig. 5(a) shows detection accuracy for varying num-
bers of foreground parts in the LHRF model. From the figure, we can see that
increasing the number of parts increases the detection performance, by exploit-
ing both local and long-range part interactions. Fig. 5(b) compares the detec-
tion performance with other existing approaches, with the results summarized in
Table 4. Our method is exceeded in accuracy only by the Liebe et al. method
and then only when an additional validation step is used, based on an MDL
criterion. This validation step could equally be applied in our case – without it,
our method gives a 3.0% improvement in accuracy over Liebe et al. Note, that
the number of examples used to train the model is less than used by all of the
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existing methods. Fig. 6 shows example detections and segmentations achieved
using the 4-part LHRF.

6 Conclusions and Future Work

We have presented a novel discriminative method for learning object parts to
achieve very competitive results for both the detection and segmentation tasks
simultaneously, despite using fewer training images than competing approaches.
The Located HRF has been shown to give improved performance over both the
HRF and the CRF by learning parts which are informative about the location
of the object, along with their spatial layout. We have also shown that increas-
ing the number of parts leads to improved accuracy on both the segmentation
and detections tasks. Additionally, once the model parameters are learned, our
method is efficient to apply to new images.

One extension of this model that we plan to investigate is to introduce edges
between the location labels. These edges would have asymmetric potentials en-
couraging the location labels to form into (partial) regular grids of the form of
Fig. 2c. By avoiding the use of a rigid global template, such a model would be
robust to significant partial occlusion of the object, to object deformation and
would also be able to detect multiple object instances in one pass. We also plan
to extend the model to multiple object classes and learn parts that can be shared
between these classes.

References

1. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: International Conference
on Machine Learning. (2001)

2. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based
recognition using statistical models. In: CVPR. (2005)

3. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In:
European Conference on Computer Vision. (2002)

4. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and seg-
mentation with an implicit shape model. In: Workshop on Statistical Learning in
Computer Vision. (2004)

5. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: Computer Vision and Pattern Recognition. (2003)

6. Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient
learning and exhaustive recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, San Diego. (2005)

7. Winn, J., Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmen-
tation. In: International Conference on Computer Vision. (2005)

8. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up
segmentation. In: Proceedings IEEE workshop on Perceptual Organization in Com-
puter Vision, CVPR 2004. (2004)

9. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection.
In: International Conference on Computer Vision. (2005)



Located Hidden Random Fields: Learning Discriminative Parts 315

10. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework
for contextual interaction in classification. In: ICCV. (2003)

11. Quattoni, A., Collins, M., Darrell, T.: Conditional random fields for object recog-
nition. In: Neural Information Processing Systems. (2004)

12. Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego. (2005)

13. Szummer, M.: Learning diagram parts with hidden random fields. In: International
Conference on Document Analysis and Recognition. (2005)

14. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. In: Workshop on Artificial Intelligence and Statistics. (2005)

15. Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. In:
Computer Vision and Pattern Recognition. (2004)

16. Lowe, D.: Object recognition from local scale-invariant features. In: International
Conference on Computer Vision. (1999)

17. Garg, A., Agarwal, S., Huang., T.S.: Fusion of global and local information for
object detection. In: International Conference on Pattern Recognition. (2002)



Learning Compositional Categorization Models

Björn Ommer and Joachim M. Buhmann�

Institute of Computational Science, ETH Zurich
8092 Zurich, Switzerland

{bjoern.ommer, jbuhmann}@inf.ethz.ch

Abstract. This contribution proposes a compositional approach to vi-
sual object categorization of scenes. Compositions are learned from the
Caltech 101 database1 and form intermediate abstractions of images that
are semantically situated between low-level representations and the high-
level categorization. Salient regions, which are described by localized fea-
ture histograms, are detected as image parts. Subsequently compositions
are formed as bags of parts with a locality constraint. After performing
a spatial binding of compositions by means of a shape model, coupled
probabilistic kernel classifiers are applied thereupon to establish the final
image categorization. In contrast to the discriminative training of the cat-
egorizer, intermediate compositions are learned in a generative manner
yielding relevant part agglomerations, i.e. groupings which are frequently
appearing in the dataset while simultaneously supporting the discrimina-
tion between sets of categories. Consequently, compositionality simplifies
the learning of a complex categorization model for complete scenes by
splitting it up into simpler, sharable compositions. The architecture is
evaluated on the highly challenging Caltech 101 database which exhibits
large intra-category variations. Our compositional approach shows com-
petitive retrieval rates in the range of 53.6±0.88% or, with a multi-scale
feature set, rates of 57.8 ± 0.79%.

1 Introduction

Automatically detecting and recognizing objects in images has been one of the
major goals in computer vision for several decades. Recently, there has been
significant interest in the subfield of object categorization, which aims at recog-
nizing visual objects of some general class in scenes. The large intra-category
variations which are observed in this setting turn learning and representing
category models into a key challenge. Therefore, common characteristics of a
category have to be captured while simultaneously offering invariance with re-
spect to variabilities or absence of these features. Typically, this problem has
been tackled by representing a scene with local descriptors and modeling their
configuration in a more or less rigid way, e.g. [1, 2, 3, 4, 5, 6, 7, 8].
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Overview over the Compositional Approach to Categorization: This
contribution proposes a system that learns category-dependent agglomerations
of local features, i.e. localized histograms, and binds them together using a shape
model to categorize scenes. It is evaluated on the challenging Caltech 101 image
database and shows competitive performance compared to the current state of
the art. Our approach has its foundation in the principle of compositionality [9]:
It can be observed that in cognition in general and especially in human vision (see
[10]) complex entities are perceived as compositions of comparably few, simple,
and widely usable parts. Objects are then represented based on their components
and the relations between them. In contrast to modeling the constellation of parts
directly (as [4]), the compositionality approach learns intermediate groupings of
parts—possibly even forming a hierarchy of recursive compositions [11]. As a
result compositions are establishing hidden layers between image features and
scene categorization [7]. We do however restrict our system to a single layer
of compositions as this already proves to be complex enough. The fundamen-
tal concept is then to find a trade-off between two extremes: On the one hand
objects have high intra-category variations so that learning representations for
whole objects directly becomes infeasible. On the other hand local part descrip-
tors fail to capture reliable information on the overall object category. Therefore
compositions represent category-distinctive subregions of an object, which show
minor intra-category variations compared to the whole object and turn learning
them into a feasible problem. As a result the description length of the intermedi-
ate compositional representation is reduced. Therefore we propose methods for
both, learning a set of compositions and establishing image categorization based
on compositions detected in an image. The underlying training is conducted in
a weakly supervised manner using only category labels for whole images.

Learning compositions is then guided by three modeling decisions: (i) Firstly,
it has to be determined which parts to group to form potential candidate compo-
sitions. Here we follow the principles of perceptual organization [12]. (ii) Secondly,
we aim at learning a fairly small set of compositions (currently 250) so that es-
timating category statistics on the training data becomes feasible. Therefore,
the system cannot afford to learn compositions that are observed only rarely
in the visual world. As an approximation on the training set we cluster poten-
tial composition candidates and estimate the priors of the different composition
prototypes. (iii) Thirdly, each composition should be valuable for the task of dis-
criminating sets of categories from another—not necessarily one category from
all others. Compositions representing background that is present in many differ-
ent categories or compositions that are only present in individual instances of a
category are to be discarded. This discriminative relevance of a composition is
estimated by the entropy of the category posterior distributions given the com-
position. Finally, the priors of composition prototypes and the entropy of the
category posterior are combined in a single cost function. Based on this function
relevant compositions are selected from the set of all prototypical compositions.

Crucial Modeling Decisions and Related Work: Methods in this field dif-
fer in the way they are approaching crucial modeling decisions: Firstly, various
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local descriptors have been used. A classical way to capture image region in-
formation are appearance patches (e.g. [6, 4, 5, 3]). This method extracts image
patches, converts them to grayscale, and subsamples them. As a result limited
invariance with respect to minor variations in such patches is obtained. The re-
sulting features are clustered to acquire a codebook of typically some thousand
local patch representatives that are category specific. Another popular choice
are SIFT features [13]. These are complex edge histogram features that have
been proposed to distinguish different instances of an object class from another.
Nevertheless they have also shown to perform reasonably well in the field of cat-
egorization. The high dimensionality and the specificity of these features with
respect to individual visual realizations of an object require to cluster them into
a large codebook representation. On the other end of the modeling spectrum
are methods that compute histograms over complete images (cf. [14]). Such an
approach offers utmost invariance with respect to changes of individual pixels at
the cost of limited specificity. An approach which formulates a trade-off between
these two classical extremes has been proposed in [7]. Here local edge and color
histograms of subpatches are combined to obtain a low dimensional represen-
tation of an image patch. The lack of specificity is made up for by capturing
relations between the local descriptors. We use these localized histograms in this
contribution. Another approach that has shown to perform reasonably well is
that of geometric blur [8]. This descriptor weights edge orientations around a
feature point using a spatially varying kernel.

A second choice concerns the combination of all local features into a single
model that captures the overall statistics of a scene. On the one hand individ-
ual local descriptors in a test image are to be matched against those from a
learned model. On the other hand the co-occurence and spatial relation between
individual features has to be taken into account. Here the simplest approach is
to histogram over all local descriptors found in an image (e.g. [15]) and cate-
gorize the image directly based on the overall feature frequencies. On the one
hand such bag of features methods offer robustness with respect to alteration
of individual parts of an object (e.g. due to occlusion) at low computational
costs. On the other hand they fail to capture any spatial relations between local
image patches and have a high chance to adapt to background features. At the
other end of the modeling spectrum are constellation models. Originally, Fischler
and Elschlager [1] have proposed a spring model for coupling local features. In-
spired by the Dynamic Link Architecture for cognitive processes, Lades et al.
[2] followed the same fundamental idea when proposing their face recognizer.
Lately increasingly complex models for capturing part constellations have been
proposed, e.g. [16, 4, 5, 17]. Finally Fergus et al. [4] estimate the joint Gaussian
spatial, scale, appearance, and edge curve distributions of all detected patches.
However the complexity of the joint model causes only small numbers of parts
to be feasible. In contrast to this [6, 3] build a comparably large codebook of
distinctive parts for a single category. Leibe and Schiele [3] estimate the mean of
all shifts between the positions of codebook patches in training and test images.
A probabilistic Hough voting strategy is then used to distinguish one category
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from the background. [7] further refines this approach and groups parts prior
to spatially coupling the resulting compositions in a graphical model. Conflict-
ing categorization hypotheses proposed by compositions and the spatial model
are then reconciled using belief propagation. In this contribution we extend the
shape model underlying [7] using probabilistic kernel classifiers. Finally, Berg et
al. [8] describe and regularize the spatial distortion resulting from matching an
image to a training sample using thin plate splines.

The approaches mentioned above are weekly supervised, that is they only
need training images (showing objects and probably even background clutter)
and the overall category label of an image. The restriction of user assistance
is a desirable property for scaling methods up to large numbers of categories
with huge training sets. In contrast to this a supervised approach to finding an
object of a certain class in images is taken by Felzenszwalb and Huttenlocher in
[18]. Given example images and the object configurations present in each image
they explicitly model the appearance of a small number of parts separately and
capture their spatial configuration with spring-like connections. Similarly, Heisele
et al. [19] learn characteristic regions of faces and their spatial constellation.
They create training faces from a textured 3-D head model by rendering and
determine rectangular components by manually selecting specific points of a
face (e.g. nose). Component sizes are estimated by reducing the error of a SVM.

Finally there are two broad categories of learning methods to choose from,
generative and discriminative models. While the former aims at estimating the
joint probability of category labels and features, the latter one calculates the cat-
egory posterior directly from the data. Although discriminative approaches have,
in principle, superior performance generative models have been very popular in
the vision community, e.g. [3, 4, 20, 6, 7, 8]. One reason is that they naturally es-
tablish correspondence between model components and image features. Thereby
the missing of features can be modeled intuitively. In contrast to this [15, 21]
pursue a discriminative approach to object class recognition. To recognize faces
in real-time Viola and Jones [21] use boosting to learn simple features in a fixed
configuration that measure the intensity difference between small image regions.
Holub et al. [17] propose a hybrid approach using Fisher kernels, thereby trying
to get the best of both worlds.

The next section summarizes our compositional approach to categorization.
Section 3 evaluates our architecture on the challenging Caltech 101 database
and shows competitive performance compared to other current approaches. We
conclude this presentation with a final discussion.

2 Categorization Using Compositional Models

The model can be best explained by considering recognition, see Figure 1(a).
Given a novel image, salient image regions are detected in a first stage using a
scale invariant Harris interest point detector [22]. Each region is then described
by localized histograms [7]. In a next step a perceptual grouping of these local
part descriptors is conducted to obtain a set of possible candidate compositions.
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Fig. 1. (a) Recognition based on compositions. The three learning stages (L1–L3) which
are involved are presented in Section 2.1, Section 2.3, and Section 2.4, respectively. (b)
Learning relevant compositions (learning stage L2 from (a)), see text for details.

This grouping leads to a sparse image representation based on (probably over-
lapping) subregions, where each candidate represents an agglomeration of local
parts. Consecutively, composition candidates have to be encoded. Therefore all
detected local part descriptors are represented as probability distributions over a
codebook which is obtained using histogram quantization in the learning stage.
This codebook models locally typical configurations of the categories under con-
sideration. A composition is then represented as a mixture distribution of all its
part distributions, i.e. a bag of parts.

In a next stage relevant compositions have to be selected, discarding irrelevant
candidates that represent background clutter. The set of relevant compositions
has to be computed in the learning phase from the training data in a weakly su-
pervised manner (see Figure 1(b)). As intermediate compositional representations
should have limited description length, this learning obeys the following
rationale: (i) Firstly, we aim at a set of compositions that occur frequently in the
visual world of the categories under consideration. For that purpose all composi-
tion candidates found in all the training images are clustered and the prior assign-
ment probabilities of candidates to these prototypes are estimated. (ii) Secondly,
relevant compositions have to support the discrimination of sets of categories from
another. Clutter that is present in many different categories or configurations that
are only observed in few instances of a category are to be discarded to reduce the
model complexity. In order to find a relevance measure the category posteriors of
compositions are learned from the training data. The relevance of a composition
for discriminating categories is then estimated by the entropy of its category pos-
terior. By combining both the priors of the prototypes and the entropy, a single
cost function is obtained that guides the selection of relevant compositions.



Learning Compositional Categorization Models 321

After discarding the irrelevant compositions from a new test image, the image
category has to be inferred based on all the remaining relevant compositions.
These compositions are spatially coupled by using a shape model similar to the
one presented in [7].

2.1 Codebook Representation of Local Part Descriptors

In order to render the learning of compositions robust and feasible, low dimen-
sional representations of local descriptors extracted from an image are sought.
We choose a slight variation of localized histograms presented in [7]. At each
interest point detected in an image a quadratic patch is extracted with a side
length of 10 to 20 pixel, depending on the local scale estimate. Each patch is then
divided up into four subpatches with locations fixed relative to the patch cen-
ter. For each of these subwindows marginal histograms of edge orientation and
edge strength are computed (allocating four bins to each of them). Moreover, an
eight bin color histogram over all subpatches is extracted. All these histograms
are then combined in a common feature vector ei.

By performing a k -means clustering on all feature vectors detected in the
training data a codebook (of currently k = 100 prototypes) is obtained. To
robustify the representation each feature is not merely described by its nearest
prototype but by a Gibbs distribution [23] over the codebook: Let dν(ei) denote
the squared euclidean distance of a measured feature ei to a centroid aν . The
local descriptor is then represented by the following distribution of its cluster
assignment random variable Fi,

P (Fi = ν|ei) := Z(ei)−1 exp (−dν(ei)) , (1)

Z(ei) :=
∑

ν

exp (−dν(ei)) . (2)

2.2 Forming Candidate Compositions

Given all detected local part descriptors in an image, our categorization algo-
rithm follows the principles of perceptual organization, i.e. Gestalt laws, to search
for possible candidates for compositions. For the sake of simplicity, the current
approach uses only the grouping principle of proximity although other agglomer-
ation strategies could be invoked: From the set of all parts detected in an image,
a subset (currently 30) is randomly selected. Each of these parts is then grouped
with neighboring parts that are not farther away than 60-100 pixel (depending
on the local scale estimate of the part mentioned in Section 2.1). Consequently
compositions sparsely cover salient image regions.

The resulting candidate compositions are then represented as mixtures of
the part distributions in (1). Let Γj = {e1, . . . , em} denote the grouping of
parts represented by features e1, . . . , em. The candidate composition is then
represented by the vector valued random variable Gj which is a bag of parts, i.e.
its value gj is a distribution over the k-dimensional codebook from Section 2.1

gj ∝
m∑

i=1

(
P (Fi = 1|ei), . . . , P (Fi = k|ei)

)T

. (3)
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This mixture model has the favorable property of robustness with respect to
variations in the individual parts.

2.3 Learning Relevant Compositions

Given all candidate compositions a selection has to be performed, retaining only
the discriminative ones and discarding clutter. Learning such compositions is
divided up into two stages, see Figure 1(b). First those groupings have to be re-
trieved which are representative for a large majority of objects observed among
the considered categories. Thereby, the system avoids to memorize compositions
that capture details of only specific instances of a category. Moreover, compo-
sitions should be shared among different categories. These concepts limit the
description length of a compositional image representation and, thereby, reduce
the risk of overfitting to specific object instances. In the learning phase the candi-
date compositions of all training images are therefore clustered (using k -means)
into a comparably large set Π of prototypes πi ∈ Π—currently 1000. Moreover,
the prior assignment probabilities of candidates to clusters, P (πi), are computed.

In a second stage those prototypes have to be selected that help in dis-
tinguishing sets of categories from another. As the system combines multiple
compositions found in one image, we do not have to solve the harder problem of
finding groupings that are characteristic for a single category. In contrast to such
an approach we pursue the robust setting of sharing compositions for multiple
categories (cf. [24]). To begin with, the category posterior of compositions has to
be estimated, i.e. the posterior of a categorization with label c ∈ L (L denotes
the set of all category labels) given a composition Γj ,

PΓj (c) := P (C = c|Γj) . (4)

This distribution is learned by training probabilistic two-class kernel classifiers on
all composition candidates found in the labeled training images. For the two-class
classification we choose nonlinear kernel discriminant analysis (NKDA)[25] and
perform a pairwise coupling to solve the multi-class problem (see [26, 25]). The
rationale behind our choice is that a joint optimization over all classes (one vs.
all classifiers) is unnecessarily hard and computationally much more costly than
solving the simpler pairwise subproblems. The combined probabilistic classifier
yields an estimate of the posterior (4) for the respective image category.

Subsequently the category posterior is used to calculate the relevance of
a composition for discriminating categories. Groupings that are present in all
categories are penalized by this idea, whereas combinations which are typical
for only a few classes are fostered. The discriminative relevance measure is then
modeled as the entropy of (4),

H(PΓj ) = −
∑
c∈L

P (C = c|Γj) log P (C = c|Γj) , (5)

which should be minimized.
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Fig. 2. Bayesian network that couples compositions
Gj using their relative location Sj , a bag of features
GI , and image categorization C. Shaded nodes de-
note evidence variables. See text for details.

Finally a cost function can be formulated that measures the total relevance of
a prototype πi. It combines the prior assignment probabilities of clusters, P (πi),
with the entropy (5),

S(πi) ∝ −P (πi) + λH(Pπi). (6)

Both constituents of the cost function should be normalized to the same dynamic
range, giving rise to an additional additive constant that can be discarded and
to the parameter λ > 0. The latter trades the occurrence frequencies of compo-
sitions against their discriminative usefulness.

A set of 250 relevant composition prototypes that is shared by all categories
can then be obtained by selecting the prototypes πi with minimal cost S(πi).
An image is then represented by retaining only those composition candidates
formed in Section 2.2 which are closer to one of the relevant prototypes than to
any irrelevant one. However, at least the best 5 candidates are retained, thereby
ensuring that images from the background category always yield a non-empty
representation.

2.4 Binding Compositions Using a Shape Model

Subsequently, all relevant compositions which have been detected in an image
are to be coupled with another using a shape model similar to that in [7]. First
we have to estimate the object location x. Therefore the positions xj of all
compositions gj are considered. Moreover, we include a composition gI of all
parts ei in the image, i.e. a bag of features descriptor for the whole image.

x =
∑

j

xj

∑
c∈L

p(gj |c,gI) P (c|gI). (7)

The first distribution is estimated using Parzen windows and the second one
using NKDA. For training images, for which the true category is available, the
second sum collapses to only the true category c and the distribution over cat-
egories is dropped. Following [7] the composition locations xj are transformed
into shifts, sj := x − xj . Finally, the bag of features descriptor gI , the relative
positions sj , and the image categorization c couple the compositions gj with
another as depicted in the graphical model in Figure 2. Using this model, the
categorization posterior can be written as

P
(
c
∣∣gI , {gj , sj}j=1:n

) ∝ exp
[
(1− n) log P (c|gI) +

∑
j

log P
(
c
∣∣gj, sj ,gI

)]
. (8)
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As already mentioned previously, both distributions on the right hand side are
estimated separately from the training data using NKDA. Consequently, novel
images cannot only be assigned a category label, but also a confidence in this
categorization.

3 Experiments

We evaluate our approach on the challenging Caltech 101 database consisting
of 101 object categories and a background category with varying numbers of
samples (between about 30 and 800). The dataset contains the full spectrum of
images ranging from photos with clutter to line drawings. However, there are only
limited variations in pose. Subsequently, the retrieval rate is to be computed. As
categories are having different sample sizes, we average over the retrieval rates
that are measured for each category individually, thereby avoiding a bias towards
classes with more images. Berg et al. [8] have calculated a reasonable baseline
performance of 16% using texton histograms. Moreover their approach which is
based on shape correspondence achieved a classification rate of 48%. Using a
constellation model Fei-Fei et al. performed at about 16%. Finally, Holub et al.
[17] extend the generative constellation model approaches with a discriminative
method and a fusion of several interest point detectors to achieve 40.1%.

Baseline Performance Without Compositions: Object categorization is
based on an intermediate compositional image representation in our approach.
The following experiments estimate a baseline performance of the system with-
out this hidden representational layer. Therefore we neglect all compositions and
consider only the bag of features representation gI of the whole image, intro-
duced in Section 2.4.

The basic evaluation scenario is as follows: For each class up to 50 training
images are randomly selected (the coupled classifiers are weighted to compensate
for the unequal priors) and the remainder is taken as test set (minimally 10
images in a class and over 4000 in total). To estimate the retrieval rate and its
error 5-fold cross-validation is performed, i.e. the same algorithm is applied to
5 different training and test set compositions. Figure 3(b) shows the resulting
category confusion table for the case of a feature bag which consists of 100
prototypes. This simple model achieves a retrieval rate of 33.3± 0.9%.

To evaluate its dependence on the size of the codebook from Section 2.1 the
simple bag of features approach is now evaluated with different numbers of clus-
ters. Figure 3(a) shows the retrieval rates under varying model complexity. In
the case of 1000 prototypes this model yields a retrieval rate of 38.4± 1.3%.
Compare this with the maximal performance of 29% that [17] obtain with their
discriminative method on the basis of a single interest point detector (like our
simple model presented in this section) and the 40.1% of the combination of all
three detectors. As the localized histograms are fairly low-dimensional descrip-
tors, comparably small codebooks do already yield considerable retrieval rates.
This is advantageous for modeling compositions robustly which are obviously
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Fig. 3. (a) Retrieval rates for a bag of features approach with codebooks of different
sizes. (b) Category confusion table for a bag of features approach with 100 prototypes.
The retrieval rate is 33.3 ± 0.9%.

consisting of fewer parts than a complete image and justifies our choice of a 100
prototype representation in the full compositional architecture.

Categorization Performance of the Compositional Model: Subsequently,
the full compositional model is learned to categorize images. Evaluation under
5-fold cross-validation yields a retrieval rate of 53.6± 0.88% which compares
favorably with the 48% of Berg et al. [8]. Additionally, we note that the overall
retrieval rate per image without averaging over categories is 67.3± 2.1%. Figure
4(a) depicts the respective category confusion table. When comparing this plot
with the one for the simple bag of features approach from above it is evident
that the number of incorrectly classified images has significantly decreased. The
categories with lowest performance are “octopus”, “wildcat”, and “ant”, the best
ones are “car”, “dollar bill”, and “accordion”. Amongst the off-diagonal elements
the confusions “water-lilly” vs. “lotus”, “ketch” vs. “schooner”, and “lobster”
vs. “crayfish” are the most prominent ones. All of these confusions are between
pairs that are either synonymous or at least semantically very close. To con-
clude, the observable gain in resolving ambiguities between classes emphasizes
the advantage of an intermediate compositional image representation in contrast
to a direct categorization.

Evaluating Compositions: The following evaluates the relevant compositions
that have been learned. Firstly, Figure 4(b) plots the number of parts that are
typically grouped to form a composition. On average there are approximately
57 parts coupled together. This is a significant increase compared to the tuple
groupings formed in [7].

The next experiment intends to visualize the learned compositions. Since
these are agglomerations of localized histograms that cannot be displayed
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Fig. 4. (a) Category confusion table of the compositional model. The retrieval rate is
53.6 ± 0.88%. (b) Distribution of the number of parts assigned to each composition.

directly an indirect method has to be pursued. We therefore plot image regions
from the test images that have been detected to contain a specific composition.
A displayed region is then simply the rectangular hull of all parts that have
been agglomerated to a composition. As space in this paper does not permit to
present the full set, Figure 5 visualizes a subset of all learned compositions by
showing 3 candidate regions for each. The zones are therefore scaled to equal
sizes. Observe that compositions are reflecting quite different, abstract concepts:
There are those that nicely correspond to salient structures in a single cate-
gory Figure 5(a)-(c). In the latter case there are however also representatives
from another category (motorbike) that show a visually similar pattern. Figure
5(d) and (e) exhibit more extended feature sharing. In (d) the triangular struc-
tures of airplane rudders and schooners are captured, while (e) combines sails
of different boat categories and butterfly wings. The composition in (f) grasps
roundish, metallic structures and (g) elongated, repetitive patterns of windsor
chairs and menorahs. The next two compositions are an example of textures.
The latter however also seems to model the presence of sharp edges, while (j)
captures characteristic contours of pianos and staplers. An example for drawings
is given in (k), while (l) seems to model the abstract concept of feet of chairs,
pianos, and insects. In conclusion various kinds of low level properties are com-
bined to represent fairly abstract concepts that help to discriminate between
categories.

Localizing Object Constituents: Subsequently the relevance of individual
compositions for the task of categorizing an image is to be evaluated. Therefore,
the relevant object constituents are to be identified and localized. We measure
how the categorization performance varies when a single composition is removed.
Relevance is then proportional to the decrease in categorization probability of
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(e) (f)

(g) (h)
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(k) (l)

Fig. 5. Visualization of compositions: The pictures show the rectangular hulls of test
image regions associated with different compositions. Different, abstract concepts cap-
tured by compositions: (a) Parts of faces, (b) accordions, and (c) cars, motorbikes.
Feature sharing for complex structures of airplanes and schooners in (d), and of boat
sails and butterfly wings in (e). (f) roundish structures. (g) elongated patterns of chairs
and menorah. (h), (i) texture with and without a sharp edge, respectively. (j) contours.
(k) drawings. (l) feet of chairs, pianos, and insects.
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Fig. 6. Relevance of detected compositions (black boxes). Brighter patches than back-
ground indicate high relevance, darker ones indicate compositions are not useful.

the true category. Figure 6 shows examples for the airplane category. It is obvious
that especially the noses and rudders are particularly relevant.

4 Discussion and Further Work

In this contribution we have successfully developed an architecture for categoriz-
ing scenes based on compositional models that are automatically learned. This
intermediate, semantic abstraction layer has been shown to yield competitive
performance compared to other current approaches on challenging test data.

Currently we are extending the system to incorporate multiple scales and
hierarchies of compositions. The multi-scale extension alone, which incorporates
additional features extracted on half the original scale, has boosted the retrieval
rate to 57.8± 0.79%. Therefore we consider these system design decisions as
a promising direction to further increase the robustness of our compositional
model.
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Abstract. We propose a fast algorithm, EMD-L1, for computing the
Earth Mover’s Distance (EMD) between a pair of histograms. Compared
to the original formulation, EMD-L1 has a largely simplified structure.
The number of unknown variables in EMD-L1 is O(N) that is signifi-
cantly less than O(N2) of the original EMD for a histogram with N bins.
In addition, the number of constraints is reduced by half and the objec-
tive function is also simplified. We prove that the EMD-L1 is formally
equivalent to the original EMD with L1 ground distance without ap-
proximation. Exploiting the L1 metric structure, an efficient tree-based
algorithm is designed to solve the EMD-L1 computation. An empirical
study demonstrates that the new algorithm has the time complexity of
O(N2), which is much faster than previously reported algorithms with
super-cubic complexities. The proposed algorithm thus allows the EMD
to be applied for comparing histogram-based features, which is practi-
cally impossible with previous algorithms. We conducted experiments
for shape recognition and interest point matching. EMD-L1 is applied
to compare shape contexts on the widely tested MPEG7 shape dataset
and SIFT image descriptors on a set of images with large deformation,
illumination change and heavy noise. The results show that our EMD-L1-
based solutions outperform previously reported state-of-the-art features
and distance measures in solving the two tasks.

1 Introduction

Histogram-based descriptors are used widely in various computer vision tasks
such as shape matching [1, 22, 23, 13], image retrieval [15, 8, 18, 16], texture analy-
sis [19, 9]. For comparing these descriptors, bin-to-bin distance functions, such as
Lp distance, χ2 statistics, and KL divergence, are most commonly used. These
approaches assume that the domain of the histograms are already aligned. How-
ever, in practice, such assumption can be violated due to various factors, such as
shape deformation, lighting variation, heavy noise, etc. The Earth Mover’s Dis-
tance (EMD) [20] is a cross-bin dissimilarity function that addresses the above
alignment problem by solving the transportation problem as a special case of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 330–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Distance d(a, b) d(b, c)
L1 1.0 0.875
L2 0.3953 0.3644
χ2 0.6667 0.6625

EMD 0.5 1.5625

(a) (b) (c) (d)

Fig. 1. An example where bin-to-bin distances meet problems. (a), (b) and (c) show
three shapes with log-polar bins on them and corresponding shape context histograms.
(d) lists the distances between them using different distance functions.

linear programming (LP). Beyond the color signature application proposed by
Rubner et al. [20] originally, we claim that EMD is useful for more general class
of histogram descriptors such as SIFT [15] and shape context [1].

Fig. 1 shows an example with shape context [1]. EMD correctly describes the
perceptual similarity of (a) and (b), while the three bin-to-bin distance func-
tions (L1, L2 and χ2) falsely state that (b) is closer to (c) than to (a). Despite
this favorable robustness property, EMD has seldom been applied to general
histogram-based local descriptors to our knowledge. The main reason lies in its
expensive computational cost, which is super-cubic1 for a histogram with N bins.

Rubner et al. [20] proposed using the transportation simplex (TS) [6] to
solve the EMD. They showed that TS has a super-cubic average time complex-
ity. In [20], EMD is applied to compact signatures instead of raw distributions
directly. This approach is efficient and effective especially for distributions with
sparse structures, e.g., color histograms in the CIE-Lab space in [20]. However,
the histogram-based descriptor is generally not sparse and can not be modelled
compactly. This forces the EMD algorithm to be applied to the raw distribution
directly. In real vision problems, the number of comparisons between these de-
scriptors is very large, which forbids the use of TS algorithm. Cohen and Guibas
[2] studied the problem of computing a transformation between distributions
with minimum EMD. Levina and Bickel [11] proved that EMD is equivalent to
the Mallows distance when applied to probability distributions. The L1 formu-
lation had been introduced by Wesolowsky [24] and then Cohen and Guibas [2].
In this paper we extended it to general histograms.

Indyk and Thaper [7] proposed a fast algorithm for image retrieval by em-
bedding the EMD metric into a Euclidean space. Grauman and Darrell [3] ex-
tended the approach for contour matching. The embedding is performed using
a hierarchical distribution analysis. A fast nearest neighbor retrieval is achieved
through locality-sensitive hashing. EMD can be approximated by measuring the
L1 distance in the Euclidean space after embedding. The time complexity of the
embedding is O(Nd log ∆), where N is the size of feature sets, d is the dimension
of the feature space and ∆ is the diameter of the union of the two feature sets to

1 By super-cubic, we mean a complexity between O(N3) and O(N4)



332 H. Ling and K. Okada

be compared. These approaches are efficient for retrieval tasks and global shape
comparison [7, 3]. However, they focused on the feature set matching rather than
the histogram comparison of our interest. In addition, they are approximative.
Thus the errors introduced by the embedding may reduce the performance for
the histogram-based descriptors. Recently, Grauman and Darrell [4] proposed
using the pyramid matching kernel (PMK) for feature set matching. PMK fur-
ther can be viewed as a further extension of the fast EMD embedding in that it
also compare the two distributions in a hierarchical fashion. PMK also handles
the partial matching through histogram intersections.

The contribution of this paper is twofold. First, we propose a new fast algo-
rithm, EMD-L1, to compute EMD between histograms with L1 ground distance.
The formulation of EMD-L1 is much simpler than the original EMD formulation.
It has only O(N) unknown variables, which is less than the O(N2) variables re-
quired in the original EMD. Furthermore, EMD-L1 has only half the number of
constraints and a more concise objective function. Unlike previous approximative
algorithms, we formally prove that EMD-L1 is equivalent to the original EMD
with L1 ground distance. An efficient tree-based algorithm is designed to solve
EMD-L1 and an empirical study shows that the time complexity of EMD-L1 is
O(N2), which significantly improves the previous super-cubic algorithm.

Second, the speedup gained by EMD-L1 enables us to compute the exact
EMD directly for histograms without reducing the discriminability. For the first
time, EMD is applied to compare histogram-based local descriptors. We tested
EMD-L1 in two experiments. First, it is applied to the inner-distance shape con-
text [13] for shape matching on the widely tested MPEG7 shape dataset, where
EMD-L1 achieves a better score than all previously reported results. Second,
EMD-L1 is applied to the SIFT [15] descriptors for feature matching on images
with large distortion. Again, EMD-L1 demonstrates excellent performance. In
addition, it also shows that EMD-L1 performs similar to the original EMD with
L2 ground distance, while the latter is much slower.

The rest of the paper is organized as follows. Sec. 2 reviews the EMD and
derives its formulation for histograms. Sec. 3 first gives the formulation of EMD-
L1. Then, the equivalence between EMD-L1 and EMD with L1 ground distance
is proved. Finally a fast algorithm for EMD-L1 is proposed, followed by an
empirical study of time complexity. Sec. 4 describes the experiments of applying
the EMD-L1 to shape recognition and interest point matching. Sec. 5 concludes.

2 The Earth Mover’s Distance (EMD)

2.1 The EMD Between Signatures

The Earth Mover’s Distance (EMD) is proposed by Rubner et al. [20] to measure
the dissimilarity between signatures. Signatures are extracted from distributions
via clustering. A signature of size N is defined as a set S = {sj = (wj , mj)}Nj=1.
Where mj is the position of the j-th element and wj is its weight.

Given two signatures P = {(pi, ui)}mi=1 and Q = {(qj , vj)}nj=1 with size m, n
respectively, the EMD between them is modeled as a transportation problem.
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The elements in P are treated as “supplies” located at ui’s and element in
Q as “demands” at vj ’s. pi and qj indicate the amount of supply and demand
respectively. The EMD is the minimum (normalized) work required for this task.
It is defined as

EMD(P, Q) = min
F={fij}

∑
i,j fijdij∑

i,j fij

such that
∑

j fij ≤ pi,
∑

i fij ≤ qj ,
∑

i,j fij = min{∑i pi,
∑

j qj} and fij ≥ 0.
F = {fij} is the set of flows. fij represents the amount transported from the
i-th supply to the j-th demand. dij is a distance between the position ui and vj

called the ground distance.

2.2 The EMD Between Histograms

Histograms can be viewed as a special type of signatures in that each bin cor-
responding to an element in a signature. Specifically, the histogram values are
treated as the weights wj in a signature S, and the grid locations (indices of
bins) are treated as positions mj in S.

In the following we will discuss two dimensional histograms which are widely
used for shape and image descriptors. Higher dimensional cases can be derived
similarly. Wlog, we use the following assumptions and notations.

– The histogram has m rows and n columns and N = m× n bins.
– The index set for bins is defined as I = {(i, j) : 1≤i≤m, 1≤j≤n}. We use

(i, j) to denote a bin or a node corresponding to it.
– The index set for flows is defined as J = {(i, j, k, l) : (i, j) ∈ I, (k, l) ∈ I}.
– P = {pij : (i, j) ∈ I} and Q = {qij : (i, j) ∈ I} are the two histograms to be

compared.
– Histograms are normalized to 1, i.e.,

∑
i,j pij = 1,

∑
i,j qij = 1.

Now the EMD between two histograms P and Q becomes

EMD(P, Q) = min
F={fi,j;k,l :(i,j,k,l)∈J}

∑
J

fi,j;k,ldi,j;k,l (1)

s.t.


∑

(k,l)∈I fi,j;k,l = pij ∀(i, j) ∈ I∑
(i,j)∈I fi,j;k,l = qkl ∀(k, l) ∈ I

fi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(2)

Where F is the flow from P to Q, i.e., fi,j;k,l is a flow from bin (i, j) to (k, l).
Note that we use “flow” to indicate both the set of flows in a graph and a
single flow between two nodes, when there is no confusion. A flow F satisfy-
ing (2) is called feasible. The ground distance di,j;k,l is usually defined by Lp

distance

di,j;k,l = ‖(i, j)� − (k, l)�‖p = (|i− k|p + |j − l|p)1/p (3)
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3 EMD-L1

This section presents the EMD-L1, a more efficient formulation of the EMD
between histograms. We first show that, by using L1 or Manhattan distance
as the ground distance, the EMD-L1 is drastically simplified compared to the
original one. Then, we prove that EMD-L1 is equivalent to the original EMD with
L1 ground distance. Finally an efficient algorithm and an empirical complexity
study are presented.

3.1 EMD with L1 Ground Distance

As shown later in Sec. 4.2 and Fig. 7(b), EMD’s with L1 and L2 ground distances
performs similarly for our purpose, while the former is much faster. Therefore,
we are interested in L1 ground distance. In the rest of the paper, L1 ground
distance is implicitly assumed. With L1 ground distance, formula (3) becomes

di,j;k,l = |i− k|+ |j − l|.
Note that the ground distance now takes only integer values. For convenience
of discussion, the flow index set J is divided into three disjointed parts J =
J0

⋃J1
⋃J2, each of them corresponds to one of three flow types.

– J0 = {(i, j, i, j) : (i, j) ∈ I} is for flows between bins at same location. We
call this kind of flow s-flows for the short of self-flow.

– J1 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l = 1} is for flows between neighbor
bins. We call this kind of flow n-flows.

– J2 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l > 1} is for other flows which are
called f-flows because of their far distances.

An important property of the L1 ground distance is that each positive f-flow
can be replaced with a sequence of n-flows. This is because L1 distance forms
a shortest path system along the integer lattice. For example, given an f-flow
fi,j;k,l, i≤k, j≤l, the L1 ground distance has the following decomposition

di,j;k,l = di,j;i,l + di,l;k,l =
∑

j≤x<l di,x;i,x+1 +
∑

i≤y<k dy,l;y+1,l .

Accordingly, the shortest path from (i, j) to (k, l) can be decomposed into neigh-
bor edges. It follows that, without changing the total weighted flow

∑
f∈F fd,

fi,j;k,l can be set to zero by first increasing all n-flows along the path [(i, j), (i, j+
1), . . . , (i, l), (i + 1, l), . . . , (k, l)] by fi,j;k,l. This is illustrated in Fig. 2

Fig. 2. Decompose an f-flow fi,j;k,l, k = i + 1, l = j + 2. Only related flows are shown.
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S-flows are also redundant due to their zero ground distances. With these
intuitions, we propose a new formulation of EMD, EMD-L1, as below

EMDL1(P, Q) = min
G={gi,j;k,l:(i,j,k,l)∈J1}

∑
J1

gi,j;k,l (4)

s.t.
{∑

k,l:(i,j,k,l)∈J1
(gi,j;k,l − gk,l;i,j) = bij ∀(i, j) ∈ I

gi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J1
(5)

Where bij = pij − qij is the difference between the two histograms. We call a
flow G satisfying (5) a feasible flow analogous to that in the original EMD.

EMD-L1 has large simplifications over the original EMD (1), including

1. There are only about O(N) variables in (4), one order of magnitude less than
that in (1). This is critical for speedup since the number of variables is a
dominant factor in the time complexity of all LP algorithms [6]. In addition,
the space efficiency gained by this is very favorable for large histograms.

2. The number of equality constraints is reduced by half. This is another im-
portant factor for the efficiency of the LP algorithms.

3. All the ground distances involved in the EMD-L1 are ones. This is practically
useful, because it saves multiplications during computation and allows the
use of integer operations to handle the coefficients.

Note that these simplifications can be extended to higher dimensional cases.
For example, the unknown variables for 3D histograms is 6N thus still of O(N)
complexity. These simplifications are used to design a fast tree-based algorithm.

3.2 Equivalence Between EMD-L1 and Original EMD

We now prove the equivalence between the EMD-L1 and the original EMD with
L1 ground distance. The equivalence is in the sense of the weighted total flows.
That is, a flow G for EMD-L1 and a flow F in the original EMD is said to be
equivalent if

∑
J1

gi,j;k,l =
∑

J di,j;k,lfi,j;k,l, i.e., they have same total weighted
flow. The following proposition states the equivalence in which we are interested.

Proposition. Given two histograms P and Q as defined above

EMD(P, Q) = EMDL1(P, Q) . (6)

The discussion in the last subsection hints that, for any flow F for the original
EMD, an equivalent flow G for EMD-L1 can be created by eliminating f-flows
and s-flows. This implies EMD(P, Q) ≥ EMDL1(P, Q). Now we need to verify
the other direction. Given a flow G for EMD-L1, find an equivalent F for the
original EMD. The key issue is how to satisfy the constraints (2) in the original
EMD. To do this, we use a “merge” procedure instead of the decomposition.
The idea is to merge input and output flows at each bin such that either input
or output flow survives as a result. This is demonstrated in Fig. 3. Notice that
we only need an F to have a total weight not greater than that of G. This makes
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the merge procedure much simpler, since we can just merge any pair of input
and output flows.

Proof. It suffices to prove
EMD(P, Q)≥EMDL1(P, Q) and EMD(P, Q)≤EMDL1(P, Q).

Part I. Proof of EMD(P, Q)≥EMDL1(P, Q).
It suffices to prove that for any feasible flow F = {fi,j;k,l : (i, j, k, l) ∈ J }

for the original EMD, there exists an equivalent feasible flow G = {gi,j;k,l :
(i, j, k, l) ∈ J1} for EMD-L1, i.e.∑

J
fi,j;k,ldi,j;k,l =

∑
J1

gi,j;k,l (7)

For any F satisfying (2), we create an auxiliary flow F ′ = {f ′
i,j;k,l:(i,j,k,l)∈J }.

First, F ′ is initialized by F . F ′ has three properties which will be maintained
during its evolution

∑
J f ′

i,j;k,ldi,j;k,l =
∑

J fi,j;k,ldi,j;k,l∑
k,l(f

′
i,j;k,l − f ′

k,l;i,j) = bij ∀(i, j) ∈ I
f ′

i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(8)

Then, we evolve F ′ to make all f-flows vanish. For every positive f-flow f ′
i,j;k,l

in F ′, we decompose it into a sequence of n-flows as illustrated in Fig. 2. In
detail, assume i≤k, j≤l (other cases are similar), the three modifications to F ′

are conducted in the given order
f ′

i,x;i,x+1 ← f ′
i,x;i,x+1 + f ′

i,j;k,l ∀x, j≤x < l

f ′
y,l;y+1,l ← f ′

y,l;y+1,l + f ′
i,j;k,l ∀y, i≤y < k

f ′
i,j;k,l ← 0

(9)

It is clear that (8) always holds because (9) does not change it. After all the
f-flows vanish, we build G from F ′

gi,j;k,l = f ′
i,j;k,l , ∀(i, j, k, l) ∈ J1 (10)

From (8) it follows that G satisfies (5) and (7).

Part II. Proof of EMD(P, Q)≤EMDL1(P, Q).
It suffices to prove that, for any G = {gi,j;k,l : (i, j, k, l) ∈ J1} satisfying (5),

there exists F = {fi,j;k,l : (i, j, k, l) ∈ J } satisfying (2), such that∑
J

fi,j;k,ldi,j;k,l ≤
∑
J1

gi,j;k,l (11)

For any G satisfying (5), we create an auxiliary flow G′ = {g′i,j;k,l : (i, j, k, l) ∈
J }. G′ is first initialized by G

g′i,j;k,l =
{

gi,j;k,l ∀(i, j, k, l) ∈ J1
0 ∀(i, j, k, l) ∈ J0

⋃J2
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Fig. 3. Flow merging, where bij > 0, g′
i,j;k′,l′ > g′

k,l;i,j > 0

G′ has three properties which will be maintained during its evolution
∑

J g′i,j;k,ldi,j;k,l ≤
∑

J1
gi,j;k,l∑

k,l∈I(g′i,j;k,l − g′k,l;i,j) = bij ∀(i, j) ∈ I
g′i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J

(12)

Note that in the first equation of (12) “≤” is used instead of “=”.
Now we will evolve G′ targeting the equality constraints (2) in the original

EMD. This is done by the following procedure.

Procedure: Merge G′

FOR each grid node (i, j)
WHILE exists flow g′k,l;i,j > 0 AND flow g′i,j;k′,l′ > 0 DO

δ ← min{g′i,j;k′,l′ , g
′
k,l;i,j}

g′k,l;k′,l′ ← g′k,l;k′,l′ + δ

g′k,l;i,j ← g′k,l;i,j − δ

g′i,j;k′,l′ ← g′i,j;k′,l′ − δ

(13)

END WHILE
END FOR

Fig. 3 shows an example of merging. The four steps in (13) need to be applied
in the order as given. Moreover, each run of (13) removes at least one non-zero
flow, so the procedure is guaranteed to terminate.

Because of the triangle inequality dk,l;k′,l′ ≤ dk,l;i,j + di,j;k′,l′ , (13) will only
decrease the left hand side of the first inequality in (12) and hence will not
change it. The second equation in (12) also holds because (13) changes the input
and output flows of a node with the same amount (δ). The third condition in
(12) is obvious.

An important observation due to (12) and the procedure is{
g′i,j;k,l = 0 ∀(i, j, k, l) ∈ J if bij ≤ 0
g′k,l;i,j = 0 ∀(i, j, k, l) ∈ J if bij ≥ 0 (14)

Now we build F from G′:

fi,j;k,l =
{

min{pij , qkl} ∀(i, j, k, l) ∈ J0
g′i,j;k,l ∀(i, j, k, l) ∈ J1

⋃J2
(15)

From (14), (12) and (15), we have that F satisfies (2) and (11). �
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3.3 Algorithmic Solution for EMD-L1

EMD-L1 is clearly a LP problem by its definition. The simplex algorithm be-
comes a natural solution. In addition, EMD-L1 also has a very special structure
similar to the original EMD. Therefore, a fast simplex algorithm can be designed
analogous to the transportation simplex used for the original EMD [20, 6]. We
propose an even faster tree-based algorithm, Tree-EMD. The algorithm can be
derived from the fast simplex algorithm. It takes the benefit of the simplex
while exploiting a tree structure for further speedup. In addition, Tree-EMD has
a more intuitive interpretation. Finally, the tree structure also makes coding easy
for different dimensions. Due to the space limitation, we only briefly describe the
outlines of the algorithm and left the details to its longer version [14].

Fig. 4. The EMD-L1 as a network flow problem for 3 × 5 histograms

To gain intuition, EMD-L1 is modeled as a graph G =< V, B, G > as il-
lustrated in Fig. 4. V = {vij : (i, j) ∈ I} is the set of nodes in the graph.
B = {bij : (i, j) ∈ I} is the weights associated to V ,

∑
I bij = 0. G is the set of

flows between neighbor nodes. The task is to find the minimum flow such that
all nodes have zero weights after applying the flow.

Before describing Tree-EMD, we give some definitions derived from the classic
simplex algorithm [6]. A flow G is called feasible if (5) holds. A feasible flow G
is called a basic feasible tree (BFT) if G has only mn−1 elements that can
be non-zero and they form a tree. Such elements are called basic variable(BV)
flows.

Notes: 1) The loops and trees in this paper are undirected, although flows do
have directions. 2) A BFT is actually a spanning tree since there are mn nodes
in the graph.

The task becomes to find a feasible flow G with minimum total flow
∑

g∈G g.
It can be shown that there exists an optimal BFT G [14]. Therefore, the search
space of the optimum solution can be restricted within the set of BFT’s.

Tree-EMD is an iterative algorithm for searching the optimum BFT tree.
First, an initial BFT tree G is built using the greedy algorithm. Then, G is
iteratively replaced by a better BFT tree with smaller flow until the optimum
is reached. In each iteration, an entering flow gi0,j0;k0,l0 is found and added
to G. Accordingly, a leaving BV flow gi1,j1;k1,l1 is picked to avoid loops. G is
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then modified by adding gi0,j0;k0,l0 and removing gi1,j1;k1,l1 and adjusting flow
values to keep it as a BFT. The iteration is guaranteed to terminate at a global
minimum due to its underlying simplex algorithm.

The most important variables in Tree-EMD are uij ’s for nodes vij ’s and
ci,j;k,l for flows gi,j;k,l’s. They have following relations

ci,j;k,l = 1− ui,j + uk,l ∀(i, j, k, l) ∈ J1 (16)
ci,j;k,l = 1− ui,j + uk,l = 0 if gi,j;k,l is a BV flow (17)

We now discuss several key issues in the algorithm.

1. Optimality test : A BFT G is optimum iff ci,j;k,l ≥ 0, ∀(i, j, k, l) ∈ J1.
2. Finding gi0,j0;k0,l0 : (i0, j0, k0, l0) = argmin(i,j,k,l)∈J1

ci,j;k,l.
3. Finding gi1,j1;k1,l1 : First, find the loop formed by adding gi0,j0;k0,l0 into G.

Then gi1,j1;k1,l1 is the flow in the loop with minimum flow value and reversed
direction of gi0,j0;k0,l0 .

4. Updating G: First, adding gi0,j0;k0,l0 in G. Then modify flow values along the
loop mentioned above (gi1,j1;k1,l1 becomes zero). After that, remove gi1,j1;k1,l1

and adjust the links in G accordingly.

Table 1. Tree-EMD

Step 0 /*Define some key variables*/
r: the root of the tree
p∗: the root of the subtree to be updated

Step 1 /*Initialization*/
Initialize BFT by a greedy initial solution
p∗←r

Step 2 /*Iteration*/
WHILE(1)

/*Recursively update u in the subtree rooted at p∗) */
FOR any child q of p∗

Update uij at node q according to (17)
Recursively update q’s children

END FOR
/*Optimality test*/
Compute ci,j;k,l’s
IF (optimum is reached) goto Step 3 END IF
/*Find a new improved BF solution*/
Find entering BV flow gi0,j0;k0,l0

Find loop by tracing from vi0,j0 and vk0,l0 to their common ancestor
Find the leaving BV gi1,j1;k1,l1

Update flow values in G along the loop
Maintain the tree, include removing gi1,j1;k1,l1 , adding gi0,j0;k0,l0

and updating links.
Set p∗ as the root of subtree where uij ’s need to be updated.

END WHILE
Step 3 Compute the total flow as the EMD distance.
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5. Updating uij’s : Fix uij of the root to zero. Other uij ’s can be computed
starting from the root by using (17). In fact, only a small amount of uij ’s in
a subtree need to be updated in more iterations.

6. Updating ci,j;k,l’s : When uij ’s determined, use formula (16).

A brief description of Tree-EMD is given in Table 1.

3.4 Empirical Study for Time Complexity

To study the time complexity of the proposed algorithm, we conduct an empirical
study similar to that in [20]. First, two sets of 2D random histograms for each
size n × n, 2 ≤ n ≤ 20 are generated. For each n, 1000 random histograms
are generated for each set. Then, the two sets are paired and the average time
to compute EMD for each size n is recorded. We compare EMD-L1 (with tree-
EMD) and the original EMD (with TS2). In addition, EMD-L1 is tested for 3D
histograms with similar settings, except 2 ≤ n ≤ 8. The results are shown in
Fig. 5. From (a) it is clear that EMD-L1 is much faster than the original one. (b)
shows that EMD-L1 has a complexity around O(N2), where N is the number of
bins (n2 for 2D and n3 for 3D).
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Fig. 5. Empirical time complexity study of EMD-L1 (Tree-EMD). Left: In comparison
to the original EMD (TS). Right: Average running time vs. square of histogram sizes.

4 Experiments

4.1 Shape Matching with Shape Context

EMD-L1 is tested for shape matching by applying it to the inner-distance shape
context (IDSC)[13]. IDSC is an extension of shape context (SC)[1] by using
the shortest path distances. These studies used χ2 distance for comparing the
shape descriptors. In [13], IDSC is used for contour comparison with a dynamic
programming (DP) scheme. We use the same framework, except for replacing
the χ2 distance with the EMD-L1. In addition, the lower bound of EMD [20] is
used for speeding up the dynamic programming.
2 With Rubner’s code, http://ai.stanford.edu/∼rubner/emd/default.htm
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Fig. 6. Typical shape images from the MPEG7 CE-Shape-1, one image per class

Table 2. Retrieval rate (bullseye) of different methods for the MPEG7 CE-Shape-1

Alg. CSS[17] Vis. Parts[10] SC[1] Curve Edit[21]Gen. Mod.[23] IDSC[13]EMD-L1

Score 75.44% 76.45% 76.51% 78.17% 80.03% 85.40% 86.56%

The MPEG7 CE-Shape-1 [10] database is widely used for benchmarking dif-
ferent shape matching algorithms. The data set contains 1400 silhouette images
from 70 classes. Each class has 20 different shapes (e.g. Fig. 6). The performance
is measured by the Bullseye test. Every image in the database is matched with all
other images and the top 40 most similar candidates are counted. At most 20 of
the 40 candidates are correct hits. The Bullseye score is the ratio of the number
of correct hits of all images to the highest possible number of hits (20x1400).

We use the same experimental setup as [13]. The bullseye score is listed in
Tab. 2 with previously reported results. The excellent performance, outperform-
ing the previous best scores, demonstrates the effectiveness of EMD-L1.

4.2 Image Feature Matching

This subsection describes our experiment using the EMD-L1 for interest point
matching. The experiment was conducted on a set of ten image pairs containing
synthetic deformation, noise and illumination change. Some testing images are
shown in Fig. 7 (a).

Interest point. We use Harris corners [5] for the matching experiments. The
reason for this choice is that, due to the large deformation, noise and lighting
change, it is hard to apply other interest point detectors. Furthermore, we focus
more on comparing descriptors than the interest points. For each image, we pick
300 points with the largest cornerness responses.
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Fig. 7. (a) Some testing images with synthetic deformation, illumination change and
noise. (b) ROCs for EMD-L1 and other dissimilarity functions on SIFT.
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Descriptors. We use the SIFT proposed by Lowe [15] as the descriptors. SIFT
is a very popular histogram-based descriptor. In our case, since scale invariant
detectors are not available, a fixed support region is used (with diameter 41, sim-
ilar to the setting used in [16]. SIFT is a three dimensional weighted histogram,
4 for each spatial dimensions and 8 for gradient orientation.

Evaluation criterion. For each pair of images together with their interest
points, we first automatically obtained the ground truth correspondence from
the synthesis procedure. Then, every interest point in Image 1 is compared with
all interest points in Image 2 by comparing the SIFT extracted on them. An
interest point p1 in Image 1 is treated as a correct match of another point p2 in
Image 2 if the displacement of p1 is within a fixed distance of p2. The detection
rate among the top N matches is used to study the performance. The detection
rate is defined as: r = # correct matches

# possible matches = # correct matches
# points in Image 1.

Experiment results. We tested the EMD-L1 along with several bin-to-bin dis-
tance measures, including χ2, KL-divergence (symmetric), Jensen-Shannon(JS)
divergence [12], L2, etc. The EMD with L2 ground distance is also tested for com-
parison. A Receiver Operating Characteristic (ROC) based criterion is used to
show the detection rates versus N , which is the number of most similar matches
allowed. The ROC curves for the experiment are shown in Fig. 7 (b). The EMD-
L1 outperforms all other bin-to-bin metrics. In addition, EMD-L1 and EMD
with L2 ground distance have very similar performance, though the former takes
about 25 seconds per pair while the latter takes about 2100 seconds.

5 Conclusion

We propose a fast algorithm, EMD-L1 for computing Earth Mover’s Distance
(EMD) between histograms with L1 ground distance. The new algorithm re-
formulates the EMD into a drastically simplified version by using the special
structure of L1 metric on histograms. We proved that EMD-L1 is equivalent to
the EMD with L1 ground distance for histograms. We then designed an efficient
tree-based algorithm to solve the EMD-L1. An empirical study shows that EMD-
L1 is significantly faster than previous EMD algorithms. The speedup allows the
EMD to be applied to 2D/3D histogram-based features for the first time. Exper-
iments on both shape descriptors (shape context [1]) and image features (SIFT
[15]) show the superiority of EMD-L1 for handling the matching tasks with large
deformation, noise and lighting change, etc.
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Abstract. We present a 2D and 3D multimodal hybrid face recognition
algorithm and demonstrate its performance on the FRGC v1.0 data. We
use hybrid (feature-based and holistic) matching for the 3D faces and a
holistic matching approach on the 2D faces. Feature-based matching is
performed by offline segmenting each 3D face in the gallery into three
regions, namely the eyes-forehead, the nose and the cheeks. The cheeks
are discarded to avoid facial expressions and hair. During recognition,
each feature in the gallery is automatically matched, using a modified
ICP algorithm, with a complete probe face. The holistic 3D and 2D face
matching is performed using PCA. Individual matching scores are fused
after normalization and the results are compared to the BEE baseline
performances in order to provide some answers to the first three con-
jectures of the FRGC. Our multimodal hybrid algorithm substantially
outperformed others by achieving 100% verification rate at 0.0006 FAR.

1 Introduction

Machine recognition of human faces has fascinated many researchers because of
its potential applications in scenarios where fingerprinting or iris scanning are
impractical (e.g. surveillance) or undesirable due to problems of social acceptance
[7]. Considerable work has been done in this area for over three decades [14] which
has resulted in a number of face recognition algorithms. These algorithms are
categorized from two different perspectives, namely the type of data and the type
of approach they use. From the first perspective, face recognition algorithms are
divided into (1) 2D face recognition (which use 2D greyscale or colour images),
(2) 3D face recognition (which use 3D range images or pointclouds of faces) and
(3) multimodal face recognition algorithms (which use both 2D and 3D facial
data) e.g [8]. Bowyer et al. [4] give a detailed survey of 3D and multimodal face
recognition algorithms and state that multimodal face recognition outperforms
both 2D and 3D face recognition alone. A comprehensive survey of 2D face
recognition algorithms is given by Zhao et al. [14]. They also categorize face
recognition into (1) holistic, (2) feature-based (referred to as region-based in this
paper) and (3) hybrid matching face recognition algorithms. Holistic algorithms
match the faces as a whole whereas region-based algorithms match local regions
of the faces e.g. eyes and nose. Hybrid algorithms perform recognition on the

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 344–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. First three experiments of FRGC. Gallery and probe correspond to the
database face and the face to be tested respectively. “Controlled” means controlled
illumination and normal expression.

Experiment 3 Single 3D image (shape & texture) Single 3D image (shape & texture)

Experiment 1

Experiment 2

Gallery Probe

Single controlled 2D image

Four controlled 2D images

Single controlled 2D image

Four controlled 2D images

basis of both holistic and region-based matching. It is argued that the hybrid
methods “could potentially offer the best of the two types of methods” [14].

One of the major limitations in comparing different face recognition algo-
rithms is that most researchers perform their experiments on different datasets.
In most cases these datasets are very sparse and insufficient to provide sta-
tistically significant inference. To overcome this problem the Face Recognition
Grand Challenge (FRGC) [10] was designed, with an objective to pursue the
development of face recognition algorithms by providing sufficient datasets, chal-
lenge problems and standard benchmarks so that the performance of different
algorithms can be compared on similar benchmarks. The first three challenge
problems (or experiments) of FRGC which are related to this paper are listed in
Table 1. FRGC also states five conjectures [10], the first three of which regard 2D
versus 3D face recognition. For completeness, the relevant conjectures are sum-
marized below (> stands for “performance will be better than” and “texture”
means the 2D luminance image acquired by a 3D sensor).

Conjecture I-A: Exp3 (shape only) > Exp3 (texture only). 3D face recognition
will perform better than 2D face recognition at equal resolution.
Conjecture I-D: Exp3 (shape only) > Exp1. 3D face recognition will perform
better than higher resolution 2D face recognition.
Conjecture I-E: Exp3 (shape + texture) > Exp1. Multimodal (2D and 3D)
face recognition will perform better than higher resolution 2D face recognition.
Conjecture II: The opposite of I-D and I-E.
Conjecture III-A: Exp2 > Exp3 (shape + texture). 2D face recognition using
four high resolution images will perform better than multimodal (2D and 3D)
face recognition at lower resolution.
Conjecture III-B: Exp2 > Exp3 (shape only). 2D face recognition using four
high resolution images will perform better than 3D face recognition at lower
resolution.

In this paper, we present a multimodal hybrid face recognition approach and
perform Experiment 3 (see Table 1) on the FRGC v1.0 dataset (frontal views
of faces). Our algorithm is multimodal as it utilizes both the shape and texture
data of a face. At the same time it is hybrid as it performs recognition on the
basis of region-based and holistic matching. In order to provide some answers
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to the above listed conjectures, we compare our results to those of Experiment
1, 2 and 3 (see Table 1) when using the BEE (Biometric Experimentation En-
vironment) baseline algorithms (PCA-based face recognition [12]). Comparison
is performed using the FRGC criterion i.e. verification rate at 0.001 FAR (False
Acceptance Rate). Our multimodal hybrid algorithm significantly outperforms
the BEE baseline performance by achieving 100% verification rate at 0.0006 FAR
which is well below the FRGC benchmark of 0.001 FAR. Our results clearly sup-
port Conjecture I-A, I-D and I-E and go against Conjectures II and III. In other
words, 3D face recognition using our region-based matching algorithm performs
better than PCA based 2D face recognition.

1.1 Overview of Multimodal Hybrid Face Recognition

Most sensors, including the Minolta scanner which was used to acquire the FRGC
data, give a 3D pointcloud of the face along with its registered coloured texture
map. We use the texture map for 2D holistic face recognition using the BEE
baseline PCA algorithm. The 3D facial data consist of the x, y and z compo-
nents of the pointcloud of the face. Taking the z component alone results in the
range image of the face where each pixel value represents the depth of the corre-
sponding facial point. The range image of the face is used separately for holistic
3D face recognition using the BEE baseline PCA algorithm. Additionally, the 3D
pointcloud of the face is segmented into three disjoint regions, namely the eyes-
forehead, the nose, and the cheeks, in order to perform a region-based matching
[9]. For region-based matching, a modified version of the ICP algorithm [1] is
used. An advantage of using this algorithm is that a partial region (e.g. nose)
from the gallery can be matched directly with a complete probe face without
segmenting the probe. Only the eyes-forehead (referred to as “forehead” here-
after) and the nose are used for region-based matching in order to avoid facial
expressions and artifacts resulting from facial hair. These matching processes
result in four similarity matrices which are normalized and subsequently fused.
A min-max rule is used for normalization and a multiplication rule is used for
fusion. The resulting similarity matrix is normalized once again and used to cal-
culate the verification and identification rates of our algorithm. Fig. 1 shows the
block diagram of our multimodal hybrid face recognition algorithm. The region-
based 3D matching (left blocks of Fig. 1) algorithm was initially proposed in [9]
however it is explained in Section 2 for completeness.

3D Eyes−forehead matching
(modified ICP algorithm)

3D Nose matching
(modified ICP algorithm)

Similarity
normalization

Similarity
normalization

Fusion

3D Holistic face matching
(BEE PCA algorithm)

2D Holistic face matching
(BEE PCA algorithm)

Similarity
normalization

Similarity
normalization

Similarity
normalization

Multimodal hybrid face recognition results

Fig. 1. Illustration of our multimodal hybrid face recognition algorithm
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2 3D Region-Based Matching Algorithm

2.1 Offline Preprocessing

A face is first detected in its 2D image using Viola and Jones’ algorithm [13]
and both the 2D and its corresponding 3D images are cropped. The resolution of
FRGC 3D faces is very high (480 × 640). Therefore, we downsampled the spatial
data (by a factor of 1

4 ) by eliminating alternate rows and columns. Each 3D face
is preprocessed to remove spikes and noise. Spikes are removed by converting the
3D pointcloud of a face into a triangular mesh and removing triangles with long
edges. This is followed by the elimination of disconnected points. The resulting
mesh is smoothed using Taubin’s algorithm [11] (50 iterations using the mesh
toolbox of The Robotics Institute, CMU). Unlike the BEE baseline algorithms,
which rely on prespecified landmarks on the gallery as well as the probe faces
for their normalization, our region-based matching approach is fully au-
tomatic and requires no user intervention during the online recognition phase.
However, during offline preprocessing, we manually identify six landmarks on
each gallery face for its segmentation (Fig. 2). Note that this does not affect the
automatism of our approach since this operation is only performed during the
offline preprocessing phase. Moreover, this identification of landmarks can be
replaced with an automatic feature detection algorithm [2] in order to automate
the offline process as well.

Fig. 2. Six points are manually identified on a gallery face (i.e. off-line) to segment its
corresponding 3D face into three disjoint regions i.e. eyes-forehead, nose and cheeks
(reproduced from [9]).

Fig. 3. (a) 2D coloured image of an eyes-forehead region. (b) Skin map after skin
detection. (c) The corresponding 3D eyes-forehead region before skin detection and
after skin detection (d). Note that small holes have been interpolated (reproduced
from [9]).
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The identified landmarks are used to segment the gallery face into three
disjoint regions, namely the forehead, the nose, and the cheeks (Fig. 2). The
forehead region may contain artifacts caused by the eyes and hair (see Fig. 3-a
and c). The latter causes more problems since it covers more area. To remove
these artifacts a skin detection algorithm [3] is used to detect the skin pixels
in the 2D coloured image of the forehead region. Points in the 3D forehead
region which do not correspond to the skin pixels are removed (see Fig. 3-d).
The threshold for skin detection is tuned to minimize false positives so that the
non-skin pixels are rejected with a high probability.

2.2 Online Nose Matching

During online recognition, the probe face is first detected using Viola and Jones’
algorithm [13] and preprocessed as explained in Section 2.1. However, a prior seg-
mentation of the probe is not required. This makes the online matching process
fully automatic. Next, each gallery nose is registered to the probe for matching.
Registration is performed in two steps. First, a gallery nose is coarsely regis-
tered to the probe nose by aligning their ridge lines and points of maximum
slope. Next, the registration is refined with our modified version of the ICP al-
gorithm [1] (explained in Section 2.3). Advantages of using this algorithm are
that the gallery and probe need not cover exactly the same area of the face nor
are they required to have the same resolution. A gallery nose, for example, can
be registered to the nose of a complete probe face without having to segment
the probe (see Fig. 5). The only requirement is that the probe nose must first
be detected in order to coarsely register the gallery nose to it. For this purpose,
the ridge line of the probe nose and its point of maximum slope are detected
as follows. First, the 3D probe face is horizontally sliced at different vertical
positions and a cubic spline is then passed through the points of each slice in
order to accurately detect the peak of the slice. Next, a line is passed through
the peak points of all the slices using RANSAC. This line forms the nose ridge.
Since not every slice may contain the nose, a decision is made on the basis of the
spline curvatures, the side lengths and area of the triangle (Fig. 4) on whether
or not a slice contains the nose. Once the nose ridge is detected, the probe is
vertically sliced along the nose ridge, a cubic spline is passed through the slice

Fig. 4. Online nose detection in the 3D probe face (reproduced from [9])
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Fig. 5. A correct match between a 3D probe face (shaded white) and a gallery (shaded
dark blue) (a) nose and (b) forehead. Note that some holes may have been interpolated.

data points and the point of maximum slope is detected on the spline. The ridge
lines and points of maximum slope of the probe and gallery noses are aligned
and the registration is then refined with our modified version of the ICP algo-
rithm [1]. The average registration error eN normalized with the resolution of
the probe is taken as the matching score between the two (a lower value of eN

means a better match). Fig. 5-a shows a gallery nose registered to a complete
probe face.

2.3 Online Forehead Matching

Forehead matching is performed by registering each gallery forehead to the probe
without segmenting the probe. This process is also fully automatic. Since, the
forehead and nose of each gallery face exist in the same coordinate basis, the
rigid transformation resulting from the nose matching can be used as the coarse
registration for the forehead matching. This registration is further refined with
our modified version of the ICP algorithm. Our modified ICP algorithm estab-
lishes correspondences between the nearest points of the probe and a gallery
region whose mutual distance is below a threshold tc. Correspondences whose
mutual distance is more than tc are considered outliers and are therefore re-
moved. A high initial value (four times the resolution of the probe) is chosen for
tc which is then reduced as the registration is refined. To speed up the corre-
spondence search, a kd-tree data structure is used. After few iterations (when
the registration error falls below a threshold), a region of interest (within the
neighborhood of the gallery region) is cropped in the probe face to gain further
computational efficiency. A conservative threshold is chosen for this purpose to
avoid removing the overlapping region of the probe. The registration is refined
iteratively until the correspondences between the probe and the gallery reaches
a maximum saturation value. Next, tc is further reduced and the above process
is repeated. At the final stage, the stopping criterion of the algorithm is changed
to the minimization of the registration error. Moreover at this stage, in the case
of the forehead only, the correspondences are established between points which
are close in the xy plane. In other words, correspondences are established along
the approximate viewing direction. Points which are close in the xy plane but
far in the z-dimension are still considered corresponding points as they provide
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useful information regarding the similarity or dissimilarity of the gallery and the
probe. Fig. 5-b shows a gallery forehead registered to a complete probe face.

3 Online Holistic 3D and 2D Face Matching

Holistic 3D and 2D face matching was performed using the BEE (Biometric Ex-
perimentation Environment) baseline PCA-based algorithm [12]. For 2D face
matching, the texture maps accompanied with the 3D face data were used,
whereas for 3D face matching, the range image (see Section 1.1) of the 3D
faces was used. The parameters of the PCA algorithm were separately tuned
in the case of 2D and 3D face matching in order to maximize their individual
performance (i.e. verification rate at 0.001 FAR). The BEE algorithm utilizes
prespecified landmarks on the faces, which are provided along with the data in
a metadata file, for their normalization. Note that we did not use these land-
marks for the online region-based matching as it is fully automatic and does not
require manually specified landmarks. The BEE algorithm normalizes the faces
with respect to pose and illumination and scales them to 150 × 130 spatial pixels
each. A mask is used to crop out unwanted pixels. The normalized faces are then
projected onto the PCA space and matched using the Mahalanobis distance.

4 Fusion

Each matching process results in a similarity matrix Si (where i denotes a modal-
ity) of size P ×G = 668× 275 (where P is the number of tested probes and G
is the number of faces in the gallery). An element src (at row r and column c)
of a matrix Si denotes the similarity score between probe number r and gallery
face number c. Each Si has a negative polarity in our case i.e. a smaller value
of src means high similarity. The similarity matrices resulting from the 3D nose
matching, 3D forehead matching, 3D holistic face matching and 2D holistic face
matching are normalized before fusion. Since none of the similarity matrices had
outliers a simple min-max rule (Eqn. 1) was used for normalizing each one of
them on a scale of 0 to 1.

S′
i =

Si −min(Si)
max(Si −min(Si))−min(Si −min(Si))

where i = 1 . . . n (1)

S =
n∏

i=1

S′
i (2)

S′ =
S−min(S)

max(S−min(S))−min(S−min(S))
(3)

In Eqn. 1 and Eqn. 3, max(Si) and min(Si) mean the overall minimum and
maximum value (i.e. a scalar) of the entries of matrix Si respectively. In Eqn.
2, n is the number of modalities used. The normalized similarity matrices S′

i

are then fused using a multiplication rule (Eqn. 2) to get a combined similarity
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matrix S which is normalized using the min-max rule (Eqn. 3) once again. S′

is used to calculate the combined performance of the used modalities. We also
tested a weighted sum rule for fusing the similarity matrices with the weights
adjusted according to the confidence in each modality. However, this technique
gave slightly worse results compared to the multiplication rule.

5 Results

The FRGC v1.0 [10] data contain multiple high resolution 2D images of 275
subjects. For Experiment 1 and 2, 2D images of subjects are acquired with a high
resolution camera (4 megapixel) under controlled illumination and expressions.
For Experiment 3, multiple 3D snapshots (3D shape and texture) of 275 subjects
are acquired under a controlled environment. For the sake of comparison, we fixed
the gallery size to 275 subjects and the number of tested probes to 668 for each
experiment. For each experiment, a brute force matching approach was used i.e.
every probe was matched with every gallery face to get a 668 × 275 similarity
matrix. Although brute force matching could have been avoided through the use
of some indexing scheme, it was still performed to get dense non-match scores
[10] in order to derive statistically more significant inferences.

5.1 Multimodal Hybrid Face Recognition Results

Fig. 6 shows the individual and combined results Receiver Operating Character-
istic (ROC) curve and identification rate) of our multimodal hybrid face recog-
nition on Experiment 3. The region based matching was performed using our
modified ICP algorithm whereas the holistic face recognition was performed us-
ing the BEE baseline PCA algorithm. Our results show that the forehead shape
matching has the best performance which indicates that this region contains
the most discriminating information regarding a face. These results support the
findings of Zhao et al. [14] which state that the upper part of the face is more

Fig. 6. Individual and combined results of the multimodal hybrid face recognition. The
holistic face recognition is performed using the BEE baseline PCA algorithm.



352 A. Mian, M. Bennamoun, and R. Owens

important for recognition compared to the lower part. As expected, the perfor-
mance of the nose shape matching is the lowest due to the sparsity of information
in this region. However, a significant improvement in performance is achieved
when the results of the nose are fused with those of the forehead (see Fig. 8).
The overall performance of our multimodal hybrid face recognition algorithm is
very high with a combined verification rate of 100% reached at 0.0006 FAR (well
below the 0.001 FAR benchmark of FRGC).

One of the important findings of our results is that when the region-based
(forehead and nose) shape matching results are fused with the holistic face
matching (shape only) results, no significant improvement in performance is
achieved. Therefore, we excluded the holistic 3D face matching while comparing
our results to the BEE baseline performances on Experiment 1 and 2.

Fig. 7. Conjecture 1-A (Supported): Experiment 3 (shape only) performance is better
than Experiment 3 (texture only) when region-based matching of shape is performed
with our modified ICP algorithm and the BEE baseline PCA algorithm is used for
holistic matching of texture.

Fig. 8. Conjecture 1-D (Supported): Experiment 3 (shape only) performance is better
than Experiment 1 when region-based shape matching is performed with our modified
ICP algorithm and BEE baseline PCA algorithm is used for holistic 2D face matching.
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5.2 Conjecture I and II

Fig. 7 and 8 show that Experiment 3 (shape only) using the region-based ap-
proach gives far better verification and identification performance compared to
Experiment 3 (texture only) as well as Experiment 1 using the BEE base-
line PCA algorithm. Moreover, Fig. 9 shows that Experiment 3 (shape and
texture) using our multimodal hybrid matching approach gives better perfor-
mance compared to Experiment 1 using the BEE baseline PCA algorithm.
These results support Conjecture I-A, I-D and I-E respectively and oppose
Conjecture II. Put another way, 3D face recognition (with or without texture)
significantly outperforms PCA based 2D face recognition (at equal or higher
resolution).

Fig. 9. Conjecture 1-E (Supported): Experiment 3 (shape and texture) performance
using our multimodal hybrid (MH) face recognition algorithm is better compared to
Experiment 1 using the BEE baseline PCA algorithm.

Fig. 10. Conjecture 3-A (Opposed). Experiment 3 (shape and texture) performance
using our multimodal hybrid (MH) face recognition algorithm performance is better
than the BEE baseline performance on Experiment 2.
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5.3 Conjecture III

Fig. 10 and Fig. 11 show that regardless of whether texture information is used,
our algorithm outperforms the BEE baseline performance on Experiment 2 where
four high resolution images per gallery and probe are used. These results oppose
Conjecture III-A and III-B. In other words, our results show that 3D face recog-
nition (with or without texture) outperforms PCA based 2D face recognition
even when multiple high resolution images per face are used in the latter case.

Fig. 11. Conjecture 3-B (Opposed). Experiment 3 (shape only) performance using
region-based shape matching with our modified ICP algorithm is better than the BEE
baseline performance on Experiment 2.

6 Analysis and Conclusion

We presented a multimodal hybrid face recognition algorithm and demonstrated
its performance on the FRGC v1.0 dataset. The results were compared to the BEE
baseline performances on Experiment 1, 2 and 3 in order to answer the important
conjectures of the FRGC which compare 2D and 3D face recognition. Our results
show that our multimodal hybrid algorithm significantly outperforms others by
achieving 100% verification rate at 0.0006 FAR. The fact that our region-based
3D face recognition performance alone is better than 2D face recognition using
multiple high resolution images per face in the latter case is a strong indicator of
the potential of 3D face recognition. A number of additional important conclusions
can be drawn from our results. Firstly, the eyes-forehead region of a face contains
the maximum discriminating features important for face recognition. Secondly,
the nose which apparently plays an insignificant role in face recognition from 2D
frontal views [14], plays a more significant role in the 3D case. Finally, fusing the
results of an inferior classifier (e.g. holistic 3D face matching using PCA) with
that of a superior classifier (e.g. region-based 3D face matching using ICP) when
operating on the same modality (i.e. 3D face in our example) does not improve
performance as much as when the results of classifiers which operate on different
modalities (e.g. 3D and 2D face) are fused. Recall that the region-based 3D face
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matching was performed at 1
4 of the original resolution of the FRGC data. Using

full resolution is likely to further improve the performance. Based on our findings
we would like to add the following conjecture to the FRGC.

Conjecture MBO: Exploiting multimodal hybrid matching techniques has the
potential to give the best face recognition performance.

Our conjecture gives rise to a number of questions. What combination of
modalities (e.g. 2D face, 3D face and IR image of the face) should be used? For
each modality, what is the best possible segmentation of the face to perform
region-based matching? What is the best matching algorithm for each modality
and region? Finally, what fusion technique will produce the best results? These
questions give directions for focusing future research of the FRGC.
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Abstract. We present a new scheme to robustly detect a type of human
attentive behavior, which we call frequent change in focus of attention
(FCFA), from video sequences. FCFA behavior can be easily perceived
by people as temporal changes of human head pose (normally the pan
angle). For recognition of this behavior by computer, we propose an algo-
rithm to estimate the head pan angle in each frame of the sequence within
a normal range of the head tilt angles. Developed from the ISOMAP, we
learn a non-linear head pose embedding space in 2-D, which is suitable
as a feature space for person-independent head pose estimation. These
features are used in a mapping system to map the high dimensional head
images into the 2-D feature space from which the head pan angle is cal-
culated very simply. The non-linear person-independent mapping system
is composed of two parts: 1) Radial Basis Function (RBF) interpolation,
and 2) an adaptive local fitting technique. The results show that head
orientation can be estimated robustly. Following the head pan angle es-
timation, an entropy-based classifier is used to characterize the attentive
behaviors. The experimental results show that entropy of the head pan
angle is a good measure, which is quite distinct for FCFA and focused
attention behavior. Thus by setting an experimental threshold on the
entropy value we can successfully and robustly detect FCFA behavior.

1 Introduction

Human attentive behavior is a means to express mental state [1], from which
an observer can infer their beliefs and desires. Attentive behavior analysis by
computer seeks to mimic an observer’s perception.

We propose a novel attentive behavior analysis technique to classify two kinds
of human attentive behaviors, i.e. a frequent change in focus of attention (FCFA)
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and focused attention. We would expect that FCFA behavior requires a frequent
change of head pose, while focused attention means that the head pose will be
in limited orientations for the observation period. Hence, this motivates us to
detect head pose in each frame of a video sequence, so that the change of head
pose can be analyzed and subsequently classified.

Applications can be easily found in video surveillance and monitoring, or a
remote learning environment [2], where system operators are interested in the
attentive behavior of the learners. If learners are found to be distracted, it may
be a helpful hint to change or modify the teaching materials.

One category of research related to our work is head pose estimation, such
as [3, 4]. Generally, head pose estimation methods can be categorized into two
classes: 1) feature-based approaches, such as [5], and 2) view-based approaches,
such as [6, 7]. Feature-based techniques try to locate facial features in an image
from which it is possible to calculate the actual head orientation. These features
can be obvious facial characteristics like eyes, nose, mouth etc. View-based tech-
niques, on the other hand, analyze the entire head image in order to decide a
person’s head orientation.

An ideal way to detect human’s attentive behavior is to estimate the eye
gaze, such as [8], where Stiefelhagen used a Hidden Markov Model (HMM) to
estimate the gaze and further infer the focus of attention. However, in many
cases, the eye area in the image is not large enough to detect gaze.

Another way is to model the head pose by dimensionality reduction methods
such as PCA, Isometric Feature Mapping (ISOMAP) [9] and Locally Linear
Embedding (LLE) [10], which have been used to solve vision problems. Pless
[11] used ISOMAP to visualize the image space for toy images and to find the
video trajectory for bird flying videos. Elgammal et al. [12] built a generative
model from LLE to reconstruct incomplete human walking sequences as well as
to generate laughing faces. Vlachos et al. [13] modified the ISOMAP algorithm
itself for classification and visualization. Efros [14] enhanced the ISOMAP by
solving the leakage problem.

Here we propose a novel scheme for the estimation of head pan orientation
and behaviour detection. Our algorithm works with an uncalibrated, single cam-
era, and can give accurate and robust estimate of the pan orientation even when
the person’s head is totally or partially turned back to the camera. As showing
later, our method requires only very few images to be labeled in the training
data in contrast to other methods which need intensive labeling of face or head.
In addition, our method works very well on low resolution video sequences. This
makes its use possible in monitoring systems where high resolution images are
hard to acquire.

2 Methodology

The algorithm for head pan angle estimation consists of: i) unified embedding
to find the 2-D feature space and ii) parameter learning to find a person-
independent mapping. This is then used in an entropy-based classifier to detect
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FCFA behavior. We use a simple foreground segmentation and edge detection
method to extract the head in each frame of the sequence. However, our method
can also be used with different head tracking algorithms (see a review in [15]).

All the image sequences used were obtained from fixed video cameras. To
successfully estimate the head pan angle regardless of the tilt angle, for every
person in the training set, we obtained three video sequences where the heads
faced horizontally, or somewhat downwards and upwards while panning. Ob-
tained sequences were first Gaussian filtered and histogram equalized to reduce
the effects of varying illumination and noise. Since the size of the head within
a sequence or between different sequences could vary, we normalized them to a
fixed size of n1 × n2. Preprocessed sample sequences for one person are shown
in Fig. 1.

(i) Facing horizontally (ii) Facing downwards (iii) Facing upwards

Fig. 1. Normalized sample sequences used in our proposed method

2.1 Unified Embedding

Nonlinear Dimensionality Reduction. Since the image sequences primar-
ily exhibit head pose changes, we believe that even though the images are in
high dimensional space, they must lie on some manifold with dimensionality
much lower than the original. Recently, several new non-linear dimensionality
reduction techniques have been proposed, such as Isometric Feature Mapping
(ISOMAP) [9] and Locally Linear Embedding (LLE) [10]. Both methods have
been shown to successfully embed manifolds in high dimensional space onto a
low dimensional space in several examples.

Fig. 2(a) shows the 2-D embedding of the sequence sampled in Fig. 1(ii) using
the K-ISOMAP (K varies according to the density of the nearest neighbors in
our experiments) algorithm. As can be noticed from Fig. 2(a), the embedding
can discriminate between different pan angles and forms an ellipse-like manifold.
The frames with head pan angles close to each other in the images are also close
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Fig. 2. 2-D embedding of the sequence sampled in Fig. 1(ii) (a) by ISOMAP, (b) by
PCA, (c) by LLE.
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in the embedded space. One point to be emphasized is that we do not use the
temporal relationships to achieve the embedding, since the goal is to obtain an
embedding that preserves the geometry of the manifold.

Fig. 2(b) and (c) showed the corresponding results using the classic linear
dimensionality reduction method of principal component analysis (PCA) and the
non-linear dimensionality reduction method of LLE on the same sequence. We
also choose 2-D embedding to make them comparable. As can be seen, ISOMAP
keeps the intrinsic property of the head pose change in the manifold according
to the pan orientation in an ellipse, while PCA and LLE don’t. Hence we adopt
the ISOMAP framework.

Embedding Multiple Manifolds. Although the ISOMAP can effectively rep-
resent a hidden manifold in high dimensional space into a low dimensional em-
bedded space as shown in Fig. 2(a), it fails to embed multiple people’s data
together into one manifold. Since typically intra-person differences are much
smaller than inter-person differences, the residual variance minimization tech-
nique used in ISOMAP tries to preserve large contributions from inter-person
variations. This is shown in Fig. 3 where ISOMAP is used to embed two people’s
manifolds (care has been taken to ensure that all the inputs are spatially reg-
istered). Here, the embedding shows separate manifolds (note one manifold has
degenerated into a point because the embedding is dominated by inter-person
distances which are much larger than intra-person distances.) Besides, another
fundamental problem is that different persons will have different-looking mani-
folds as can be seen in Fig. 5 (though they are essentially ellipse-like).
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Fig. 3. Embedding obtained by ISOMAP
on the combination of two person’s se-
quences
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Fig. 4. The results of the ellipse (solid
line) fitted on the sequence (dotted
points)

To embed multiple persons’ data to find a useful, common 2-D feature space,
each person’s manifolds are first embedded individually using ISOMAP. An in-
teresting point here is that, although the appearance of the manifolds for each
person differs, they are all ellipse-like. We then find a best fitting ellipse [16] to
represent each manifold before we further normalize it. Fig. 4 shows the results
of the ellipse fitted on the manifold of the sequence sampled in Fig. 1(ii). The
parameters of each ellipse are then used to scale the coordinate axes of each
embedded space to obtain a unit circle.
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Fig. 5. Separate embedding of two manifolds for two people’s head pan images

After normalizing the coordinates in every person’s embedded manifolds into
a unit circle, we find an interesting property that on every person’s unit circle the
angle between any two points is roughly the same as the difference between their
corresponding pan angles in the original images. However, when using ISOMAP
to embed each person’s manifold individually, it cannot be ensured that different
person’s frontal faces are close in angle in each embedded space. Thus, further
normalization is needed to make all persons’ frontal face images to be located at
the same angle in the manifold so that they are comparable and it is meaningful
to build a unified embedded space. To do this, we first manually label the frames
in each sequence with frontal views of the head. To reduce the labeling error,
we label all the frames with a frontal or near frontal view, take the mean of
the corresponding coordinates in the embedded space, and rotate it so that the
frontal faces are located at the 90◦ angle. In this way, we align all the person’s
frontal view coordinates to the same angle.

Next, since the embedding can turn out to be either clockwise or anticlock-
wise, which makes the left profile frames be located at about either 0◦ or 180◦,
we form a mirror image along the Y -axis for those unit circles where the left pro-
file faces are at around 180◦, i.e., anticlockwise embeddings. Finally, we have a
unified embedded space where different persons’ similar head pan angle images
are close to each other on the unit circle, and we call this unified embedding
space the feature space. Fig. 6 shows the two sequences in Fig. 1 (i) and (iii)
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Fig. 6. Unified embedding space for sequences shown in Fig.1 (i) and (iii) whose low-
dimensional embedded manifolds have been normalized (shown separately)
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Table 1. A complete description of our unified embedding algorithm

Step Description

1 INDIVIDUAL EMBEDDING
Define Y P = {yP

1 , · · · ,yP
nP

} the vector sequence of length nP in the original
measurement space for person P . ISOMAP is used to embed Y P to a 2-D
embedded space. ZP = {zP

1 , · · · , zP
nP

} are the corresponding coordinates in the
2-D embedded space for person P .

2 ELLIPSE FITTING
For person P , we use an ellipse to fit ZP , resulting in the ellipse with para-
meters: center cP

e = (cP
x , cP

y )T , major and minor axes aP and bP respectively,
and orientation ΦP

e .

3 MULTIPLE EMBEDDING
For person P , let zP

i = (zP
i1, z

P
i2)

T , i = 1, · · · , nP . We rotate, scale and translate

every zP
i to obtain z∗P

i =
1/aP 0
0 1/bP

cosΦP
e −sinΦP

e

sinΦP
e cosΦP

e
zP

i − cP
e .

Identify the frontal face frames for Person P , and the corresponding {z∗P
i } of

these frames. The mean of these points is calculated, and the embedded space
is rotated so that this mean value lies at the 90 degrees angle. After that, we
choose a frame l showing left profile and test whether z∗P

l is close to 0 degrees.

If not, we set z∗P

i =
−1 0
0 1 · z∗P

i .

normalized into the unified embedding space. The details of obtaining the unified
embedded space are given in Table 1.

2.2 Person-Independent Mapping

RBF Interpolation. After the unified embedding as described in Table 1,
we learn a nonlinear interpolative mapping from the input images to the cor-
responding coordinates in the feature space by using Radial Basis Functions
(RBF).

We combine all the persons’ sequences together, Γ = {Y P1 , · · · , Y Pk} =
{y1, · · · ,yn0}, and their corresponding coordinates in the feature space, Λ =
{Z∗P1

, · · · , Z∗Pk } = {z∗1, · · · , z∗n0
}, where n0 = nP1 + · · ·+ nPk

is the total num-
ber of input images. For every single point in the feature space, we take the
interpolative mapping function to have the form

f(y) = ω0 +
M∑
i=1

ωi · ψ(‖y − ci‖). (1)

where ψ(·) is a Gaussian basis function, ωi are real coefficients, ci are centers of
the basis functions on RD (original input space), ‖·‖ is the norm on RD.

We used k-means clustering [17] algorithm to find the centers and variances
σ2

i of the basis functions.
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To decide the number of basis function to use, we experimentally tested
various values of M and calculated the mean squared error of the RBF output.
We found M = 14 to be a good choice.

Let ψi = ψ(‖y − ci‖) and by introducing an extra basis function ψ0 = 1, (1)
can be written as

f(y) =
M∑
i=0

ωiψi. (2)

With points in the feature space denoted as z∗i = (z∗i1, z
∗
i2), after obtaining

the centers ci, and widths σ2
i of the basis functions, to determine the weights

ωi, we solve a set of overdetermined linear equations

fl(yi) =
M∑

j=0

ωlj · ψ(‖yi − cj‖) = z∗il, i = 1, · · · , n0, (3)

where l = 1, 2. wlj’s are obtained by using standard least squares.

Adaptive Local Fitting. In a generic human attentive behaviour sequence, the
head poses will be geometrically continuous along the temporal axis when located
or mapped onto the learned manifold. Based on this observation, an adaptive
local fitting (ALF) technique is proposed, assuming temporal continuity and
temporal local linearity assumption, to correct unreasonable mappings, as well
as to smooth the outputs of RBF interpolation. Our ALF algorithm is composed
of two parts: 1) adaptive outlier correction; 2) locally linear fitting.

In adaptive outlier correction, estimates which are far away from those of
their S (an even number, e.g. S = 2s0) temporally nearest neighbor (S-TNN)
frames are defined as outliers. Let zt be the output of the RBF interpolator for
the t-th frame, and DS(t) be the distance between zt and the mean of its TNNs
{zt−k| − s0 ≤ k ≤ s0, k = 0}:

DS(t) =

∥∥∥∥∥∥zt − 1
S

s0∑
k=−s0,k �=0

zt−k

∥∥∥∥∥∥ , (4)

where ‖·‖ is the norm on the 2-D feature space.
For the t-th frame, we wait until the (t+s0)-th image (to obtain all S-TNNs)

for updating. We then calculate the relative difference RS(t) between DS(t) and
DS(t− 1) as:

RS(t) =
∣∣∣∣ DS(t)
DS(t− 1)

− 1
∣∣∣∣ . (5)

To check for outliers, we set a threshold R0. Different values of R0 can make
the system tolerant to different degrees of sudden change in the head pose. If
RS(t) ≥ R0, we deem point zt to be an outlier, and set zt = median(zt−s0 , · · · ,
zt−1, zt+1, · · · , zt+s0).

In locally linear fitting, we assume local linearity within a temporal window
of length L. We employed the technique suggested in [18] for linear fitting to
smooth the output of RBF interpolation.
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After the above process, the head pan angle can be easily estimated as

θt = tan−1(
zt2

zt1
). (6)

2.3 Entropy Classifier

Here we propose a simple method to detect FCFA behavior in a video sequence,
given the head pan angle estimated for each frame as in (6). The head pan angle
range of 0◦-360◦ is divided into Q equally spaced angular regions. Given a video
sequence of length N , a pan angle histogram with Q bins is calculated as

pi =
ni

N
, i = 1, 2, · · · , Q (7)

where ni is the number of pose angles which fall into the i-th bin. The head pose
entropy E of the sequence is then estimated as

E = −
Q∑

i=1

pilogpi. (8)

For focused attention, we expect that the entropy will be low, and become
high for FCFA behavior. Hence we can set a threshold on E to detect FCFA.

3 Experiments

In the first experiment, we tested the generalization ability of our person-indepen-
dent mapping function to determine head pan angles. To test our algorithm’s
ability to detect FCFA behavior, we performed a second experiment using new
video data exhibiting simulated FCFA and focused attention.

3.1 Data Description and Preprocessing

The data we used is composed of two parts: 1) Sequences used to investigate
person independent mapping to estimate pose angle (these sequences were also
used to train the system for FCFA detection); 2) Sequences exhibiting FCFA and
focused attention behavior. All image sequence data were obtained from fixed
video cameras. To simplify the problem, we set the camera to be approximately
level with the heads. As described in Section 2, the size of the head images is
normalized to n1 × n2 = 24× 16 in preprocessing.

For parameter learning, we used 7 persons’ sequences, a subset of which is
shown in Fig. 1. The corresponding lengths of the 7x3=21 sequences are from
322 to 1462, totally 13832 frames in the sequences. One frontal face is labeled in
each sequences for the manifold embedding.

For use in classification and detection of FCFA behavior, we obtained 14 more
sequences, where six exhibited FCFA and eight exhibited focused attention. The
corresponding lengths of the 14 sequences are from 311 to 3368.
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3.2 Pose Estimation

To test our person-independent mapping method, we used leave-one-out cross-
validation (LOOCV). Fig. 7 shows the results of the person-independent map-
ping to estimate the head pan angle in each frame for the three sequences
corresponding to Fig. 1 where all 18 sequences of the other 6 persons’ were
used in parameter learning. The green lines correspond to the reference curve.
This is obtained by calculating the projection of the test sequence into the uni-
fied 2-D embedded space. The head pan angles on the reference curve are very
similar to what a human being perceives. This reference curve is for comparison
with the pan angles estimated from the person-independent RBF interpolation
system shown with red lines. It can be seen that the latter are very good approx-
imations to the reference curve. The values above the small head images are the
head pan angles of those images calculated from person-independent mapping.
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Fig. 7. LOOCV results of our person-independent mapping system to estimate head
pan angle where the sequences sampled in Fig. 1 were used as the testing data. The
pan angles can be corretly estimated within a normal range of the tilt angles. Green
lines correspond to the reference curve, while red lines show the pan angles estimated
by the person-independent mapping. The numbers above the images are the pan angles
estimated by our system. (The 3 sequences were tested separately because there was
no temporal continuity among these sequences).

We found that our proposed person-independent mapping system works well
even if the face displays small facial expressions. This is the case for one of the
people in our database, where he appears to be smiling.

3.3 Validation on FCFA and Focused Attention Data

After testing the framework for person-independent head pan angle mapping
system, we tested its use for detecting FCFA behavior. We processed every se-
quence in the person-independent mapping system to estimate the pan angle in
each frame and then calculated the pan angle entropy value E for that sequence
as described in Section 2.3. To visualize the pose angles in sequences of FCFA
and focused attention, we combined the estimated pose angle with temporal in-
formation to draw the trajectories as shown in Fig. 8 for one FCFA sequence
and in Fig. 9 for one focused attention sequence. Here the roughly circular tra-
jectory in Fig. 8 depicts the FCFA behavior of a person looking around, while
for focused attention when a person is looking roughly in two directions, the
trajectory in Fig. 9 depicts the situation quite well.
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Fig. 8. One trajectory of FCFA behavior
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Fig. 9. One trajectory of focused atten-
tion behavior

Table 2. The entropy value of head pose for the simulated sequences

Sequence 1 2 3 4 5 6 7 8

FCFA 3.07 3.00 3.31 3.24 3.18 2.72

Focused Attention 1.17 1.91 1.66 1.43 1.73 1.19 2.37 1.47
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Fig. 10. Trajectories for Sequence 6 of FCFA (left) and Sequence 7 of focused attention
(right)

Table 2 shows the corresponding value of E for the 14 sequences calculated
using Q = 36 angular bins. It can be seen that the entropy values of FCFA are
distinct from those of focused attention. By setting a threshold of E0 = 2.5, we
can detect FCFA behavior perfectly in the 14 sequences. However, for Sequence
6 of FCFA and Sequence 7 of focused attention (trajectories shown in Fig. 10),
the entropy values are near the threshold E0. As can be seen, for Sequence 6 of
FCFA, the range of the person’s head pan is over 180◦ but less than 360◦, while
for Sequence 7 of focused attention, the range is less than 180◦ but close to it.
Thus, we suggest that they are assigned to a new class between FCFA behavior
and focused attention behavior. To be noted that a small head change (nodding,
slight shaking) will be still recognized as focused behaviour, which is due to the
tolerance of the proposed method against the small tile and quantization of the
orientation in the entropy calculation.
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4 Discussion

Our method works on images acquired from an uncalibrated single camera and
can robustly estimate the head pan angle even when the person is totally or par-
tially turned back to the camera and within a normal range of the head tilt angle.
The data we used was acquired under different illuminations, in different rooms
and with different background (inhomogeneous), and the method was found
to be robust to these variations. The unified embedding using ISOMAP com-
bined with the nonlinear RBF mapping makes our method person-independent
regardless of whether the person is in our database. In addition, our system is
also robust to small facial expression changes, since the training data we used
to learn the non-linear mapping includes those where the person is smiling.

If the input data is well represented by the training data, the estimation
results will be quite accurate, such as the left and right figures in Fig. 7. However,
since our person-independent mapping system is based on an interpolative RBF
system, the results may degrade if the test images or sequences were not well
represented in the original training space.

As can be seen in the middle figure in Fig. 7, the LOOCV results are not as
good as the other two. The reason may be that the downward tilt of the faces
makes it difficult to extract it well in the segmentation stage so that it is not
accurately represented in our database. This we believe can be solved if a better
segmentation and head extraction algorithm is incorporated.

Here, we have assumed that the direction of visual attention is fully charac-
terized by the head pan angle and did not consider eye gaze. As the head images
we used in the experiment were relatively small and sometimes the eyes were not
clear, gaze detection was very difficult. Besides, in many cases, in order to look
at a big area, it is more convenient for people to change the head pose rather
than eye gaze, which motivated the development of the proposed method.

5 Conclusion

We have presented an attentive behavior detection system, where we used
ISOMAP to embed each individual’s high dimensional head image data into
a low dimensional (2-D) space. By ellipse fitting, and normalizing by rescaling,
rotating, and mirror imaging if needed, the individual embedded space is con-
verted to a unified embedded space for multiple people. A RBF interpolation
technique is used to find a person-independent mapping for new input head im-
age data into the unified embedding space, i.e. our feature space. For head image
sequences, we proposed an adaptive local fitting algorithm to remove outliers and
to smooth the output of RBF interpolation, which enhanced the robustness of
our system. The head pan angle estimate in each frame is then obtained by
a simple coordinate-angle converter. To detect FCFA behavior from video se-
quences, the entropy of the head pan angle estimates over the entire sequence
is used to classify the sequence as a FCFA or a focused attention behavior. The
experimental results showed that our method robustly estimate the head pan
angle even when the head is turned back to the camera and within a normal
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range of the head tilt angles. By setting a threshold on the entropy of head pan
angle, we can successfully detect FCFA behavior.

Future work includes extending our method to a system that can also work
with large facial expressions. Finding a 3-D embedding for both tilt and pan
angle of an individual is also a possible future work.
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Abstract. Tracking body poses of multiple persons in monocular video
is a challenging problem due to the high dimensionality of the state space
and issues such as inter-occlusion of the persons’ bodies. We proposed a
three-stage approach with a multi-level state representation that enables
a hierarchical estimation of 3D body poses. At the first stage, humans
are tracked as blobs. In the second stage, parts such as face, shoulders
and limbs are estimated and estimates are combined by grid-based be-
lief propagation to infer 2D joint positions. The derived belief maps are
used as proposal functions in the third stage to infer the 3D pose using
data-driven Markov chain Monte Carlo. Experimental results on realistic
indoor video sequences show that the method is able to track multiple
persons during complex movement such as turning movement with inter-
occlusion.

1 Introduction

Human body pose tracking is important for many applications, including under-
standing human activity and other applications in video analysis. For example
in surveillance applications, people are often the main object of interest in the
monitored scenes. Analyzing the body poses of the people allows for inference of
the people’s activities and their interactions. In the general case, analyzing body
poses involves estimating the positions of the main body components such as the
head, torso, and limbs, and the angles of joints such as shoulders and elbows.

Existing research work on human pose estimation is motivated by different
applications. In human motion capture and human computer interaction, one can
simplify the problem by using multiple cameras and controlling the environment
and the subject’s appearance. In our work however, we focus on applications for
video understanding and surveillance that deal with uncontrolled scenes with
only a single camera; multiple persons may also be present. This is a difficult
problem for many reasons including variations in individual body shapes and
choice of clothing. Furthermore, the humans need to be segmented from the
background and self-occlusions need to be considered. The presence of multiple
persons in the scene makes the problem more complex as people may occlude
each other.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 368–381, 2006.
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Our aim is to recover body and limb positions and orientations, i.e. their
poses, in 3D from monocular video sequences without any special markers on
the body. We use a model-based approach to overcome the above difficulties. By
modeling separately the human body and other aspects of the image generation
process (including dynamics, image projection, and observation process model),
fewer training images can be used to handle more varying environments. An
analysis-by-synthesis approach is often used to evaluate hypotheses of the state
that represents the pose parameters but efficient search for the state solution in
a high dimension space is a key issue. For a sequence, we can use the dynamic
model to reduce the search space; nonetheless, we must still estimate the initial
state and re-initialize when tracking becomes unreliable. In this paper, we present
a novel three-stage approach for 3D pose estimation and tracking of multiple
people from a monocular sequence (See Fig. 1). To improve the search efficiency,
a hierarchical approach is used since some parameters are easier to estimate than
others. In addition, bottom-up detection of body components is used to reduce
the search space. We focus on sequences on a meeting room environment. The
camera is stationary and the resolution is such that a persons height is about
200 to 250 pixels.

Fig. 1. Three stages approach. From left: (i) input, (ii) Stage 1: blobs tracking, (iii)
Stage 2: 2D inference, (iv) Stage 3: 3D inference. The scene consists of three persons in
a meeting room environment. The poses are estimated in a hierarchical coarse-to-fine
manner.

In the first stage, moving people are detected and tracked as elliptical blobs.
A coarse histogram-based appearance model for each person is learned during
tracking so that when one person occludes another, we can determine the depth
ordering from the appearance. This stage provides a coarse estimation of the
persons’ positions, sizes and the occluding layers.

In the second stage, part detection modules are used to locate the faces,
shoulders and limbs. Inferences from these local component detections are in-
tegrated in a belief network; a belief propagation technique is used to estimate
the marginalized belief of each state. Restricting the second stage to 2D infer-
ence enables us to use grid-based representations for the belief functions that
can handle complex distributions efficiently. This approach is different from the
nonparametric belief propagation method (NBP) [6] [10] [14] [17] , as we do not
use Monte Carlo sampling or a mixture-of-Gaussians approximation.

In the third stage, a method based on data-driven Markov chain Monte Carlo
(DD-MCMC) [21] is used to estimate the full 3D body poses in each frame.
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A state candidate is evaluated by generating synthesized humans (we assume
an orthographic projection and known camera orientation) and comparing it
to the input image. With this generative approach, we can consider nonlinear
constraints such as inter-occlusion and non-self-penetration. To search the state
space efficiently, the Markov chain transition uses proposal functions generated
from the previous stage (estimates of 2D joint positions).

With these three stages, the body poses of each frame are estimated with
multiple hypotheses. The body trajectories of the people can be estimated by
combining results of multiple frames. A human dynamic model is used to apply
temporal constraints of body kinematics. A dynamic programming technique is
used to compute the optimal trajectories of the persons motion.

Part of the implementation of Stage 3 is based on our earlier work on pose
estimation for a single person in mainly upright and frontal poses [8]. This work
extends the method to dynamic pose estimation of multiple persons in sequences
and includes more difficult scenarios such as turning movements as well as oc-
clusions among people.

1.1 Related Work

There has been substantial work on estimating 2D human pose [11] [12] [22].
Estimating 3D pose is more challenging as some degrees of motion freedom are
not observed and it is difficult to find a mapping from observations to state
parameters directly. Several learning based techniques have been proposed [1]
[13], but these rely on accurate body silhouette extraction and having rela-
tively large number of training images. Model-based approaches are popular
because it is easy to evaluate a state candidate by synthesizing the human ap-
pearance. In [3], particle filtering is used for 3D pose tracking with multiple
cameras by approximating the state posterior distribution with a set of samples.
It is however difficult to extend this to tracking monocular view because of sig-
nificant ambiguities in depth. In [15], a mixture density propagation approach
is used to overcome the depth ambiguities of articulated joints seen in monoc-
ular view. A hybrid Monte Carlo technique is used in [2] for tracking walking
people. Nonetheless, the issue of pose initialization is not addressed in these
techniques.

The non-parametric belief propagation (NBP) method [10] [17] has been used
for pose estimation [6] [14] and hand tracking [18]. A mean field Monte Carlo al-
gorithm is also proposed in [20] for tracking articulated body. These techniques
use a graphical model, with each node representing a body joint. Inference is
made by propagating beliefs along the network. Our method uses belief prop-
agation only at the second stage to bootstrap the 3D inference at the third
stage where a complete analysis, including self-occlusion, is performed. Recently,
bottom-up, local parts detection has been used as a data-driven mechanism for
the pose estimation [6] [9] [12] and this has now been recognized as an important
component in a body pose estimation solution and is the main motivation for
this work.
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2 Human Ellipse Tracking

We describe in this section the first stage of our approach which involves the
tracking of humans whose shape is approximated as ellipses in the video. The ob-
jective here is to determine the number of people in the scene, estimate coarsely
their positions and sizes and infer the depth ordering when they overlap with
each other in the image.

Given a sequence, the static background is learned using an adaptive mixture
model approach [16] and the foreground moving blobs are extracted by back-
ground subtraction. Human ellipses are detected and tracked by matching them
with the foreground. A human blob is represented by a simple ellipse that has
five parameters: positions, width, height and rotation. The matching between the
ellipses and foreground is described by a cost function based on region matching
of the estimated ellipses with the foreground (see Fig. 2). A track is initiated
automatically by the presence of an unmatched foreground blob of sufficiently
large size. At each time frame, the states are updated by performing a block
search to minimize the cost function. We assume that the ellipse size changes
slowly and that the ellipses are allowed to overlap each other. A color histogram
is used to represent the appearance of a human blob and is learned by adaptive
updating. When the ellipses overlap, we determine the depth order by comparing
the overlapped region with the learned color histograms.

This is a simple method to track the human blobs as the first coarse stage
to estimate human pose and is adequate for uncrowded scenes.

Fig. 2. Human blobs tracking. Left: extracted foreground. Right: estimated ellipses
representing human blobs with inference of depth order.

3 Inference of 2D Joint Positions

The second stage aims to make efficient inference of 2D image position of body
joints, using results from various body component detections, as well as the
dependency between the various joints. We use a graphical model to represent
the human body. For a single frame, this graphical model is a tree where each
node corresponds to the image position of a body joint and each edge represents
the pair-wise dependency between the adjacent joints, as shown in Fig. 3. We
let the state of the ith body joint be denoted by ri = (ui, vi). These states are
approximates of the 3D pose.
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Fig. 3. Left: Graphical model in 2nd stage; right: extension to two frames showing
temporal constraints. Note: observation nodes are not shown here.

3.1 Observation Function

For each node, there is a corresponding observation function, denoted by φi(ri) =
φi(uj , vj). These functions are generated from various detection modules applied
to the current frame. The observations include the outputs of human blob ellipse
detector, face, torso, head-shoulder contour matching and skin blob extraction
(Fig. 4); part detectors are described in more detail in [7][8]. Our proposed
framework can be used with other detection modules proposed in the literature,
for example in [11][12][14][16][22]. In general, these observations may contain
localization noise, outliers, missed detections, and data association ambiguities
in the presence of multiple persons. In [14], a mixture-of-Gaussians was used
to approximate the observation function, but observations from multiple views
were used to provide greater accuracy. For a monocular view, the observation
function can be quite complex, and such an approximation scheme is inadequate.
We therefore use a grid-based method to represent the observation function.

Fig. 4. Parts detection. (a) face-body tracker, (b) head-shoulder contour, (c) skin color
blobs (for face and hand).

3.2 Potential Function

For each pair of adjacent nodes connected by an edge (i, j), there is a potential
function denoted by ψi,j(ri, rj) that encodes the joint distribution of neighbour-
ing states. This potential function is shift invariant and can be simplified as a
2D function: ψi,j(ri, rj) = ψi,j(ui − uj , vi − vj). We use an approximate grid
representation for each potential function. In our current implementation, the
grid is of the same size as the image.
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The potential functions are however dependent on the image scale. We denote
by s the scale representing the image height of a person when in a standing pose.
The scale is estimated by the width of the detected human ellipse, denoted by
wellipse, which is insensitive to occlusion of the lower body. Given the scale, the
conditional potential function can be expressed as

ψi,j(ri, rj |s) = ψ̂i,j

(
ui − uj

s
,
vi − vj

s

)
,

where ψ̂i,j (·) is a scale invariant function. Therefore, when learning the potential
functions, the training data is normalized by scale.

The potential function, marginalized by scale, can be expressed as:

ψi,j(ri, rj) =
∫

ψi,j(ri, rj |s)p(s|wellipse)ds,

where wellipse is the width of the ellipse detected in the first stage and p(s|wellipse)
is the posterior probability of scale given the width. In practice, the observed
ellipse provides a fairly reliable estimate of the scale, so that the observation
function can be approximated by p(s|wellipse) = δ(s− s′), where δ(·) is the delta
function, s′ = λwellipse is the estimated scale, and λ is a constant estimated
from training data. The potential function can now be simplified as:

ψi,j(ri, rj) = ψ̂i,j

(
ui − uj

s′
,
vi − vj

s′

)
.

3.3 Grid-Based Belief Propagation

Belief propagation is a statistical inference technique used to estimate the state
belief in the graphical model as in [10][14][17][18]. At each iteration, each node
passes messages to its neighbors. A message from ith node to the jth node is
denoted by mi,j(rj) and is expressed as:

mi,j(rj) =
∫

ψi,j(ri, rj)φi(ri)
∏

k∈Γi\j

mki(ri)dri,

where ri is an image position of the ith node and Γi is the set of neighbors of
ith node. The belief of the ith node is given as:

bi(ri) ∝ φi(ri)
∏

k∈Γi

mki(ri).

By using 2D grid representations for the observation functions, potential func-
tions, messages and beliefs, the belief propagation computation is simplified. The
message is expressed as:

mi,j(uj , vj) =
∑
ui

∑
vi

ψi,j(ui − uj , vi − vj)φi(ui, vi)
∏

k∈Γi\j

mki(ui, vi).
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This is a discrete convolution and can be rewritten as:

mi,j(uj , vj) = ψi,j(u, v)⊗
φi(u, v)

∏
k∈Γi\j

mki(u, v)

 ,

where the symbol ⊗ represents the convolution operation. The belief is now
written as:

bi(uj , vj) ∝ φi(uj , vj)
∏

k∈Γi

mki(uj , vj).

We call these 2D belief functions as belief maps and they can be computed
efficiently by using the fast Fourier transform for the discrete convolution. The
maps are used as proposal functions in Stage 3 described later.

For a single frame, the graphical model is a tree. Each iteration involves a
parallel updating of all the nodes. The number of iterations required for belief
propagation is equal to the longest path between nodes, or the diameter of the
graph. In our case, six iterations are sufficient.

The graphical model is extended to multiple frames, (see Fig. 3). Let rt
i

denotes the state of ith node at time t. The temporal potential function of this
node between consecutive frames is denoted by ψT,i(r

t
i , r

t−1
i ). This function is

time invariant and can also be expressed as a grid representation:

ψT,i(r
t
i , r

t−1
i ) = ψT,i(ut

i − ut−1
i , vt

i − vt−1
i ).

The resulting graphical model now contains loops and the belief updating
process becomes a loopy belief propagation which in general does not guaran-
tee convergence. However, in practice, our network always converges during
experiment. This is because the temporal potential function serves as a tem-
poral smoother and this prevents oscillations. In our experiment, we observed

Fig. 5. Inference of 2D face positions. (a) Face detection from different cues with many
false alarms, (b) initial face belief map before belief propagation, (c)-(e) face belief
maps for each person after belief propagation. Dark regions indicate higher probability
values.
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Fig. 6. Further examples of belief maps, each row for each body joint and each column
for each person

that ten iterations are sufficient for convergence. Fig. 5 and Fig. 6 shows exam-
ples of belief maps for each person in the scene. In these maps, some ambigu-
ities still exist; but the beliefs are much better compared to initial observation
function.

The computations of messages and beliefs are deterministic. In comparison,
nonparametric belief propagation uses Monte Carlo sampling which is less suit-
able in a multiple persons scene where the observations are more ambigious and
distributions are complex.

4 3D pose inference

3D pose estimation is performed at the third stage. Estimating these object-
centered parameters is important for providing view-invariant pose recognition
and infering spatial relations between objects in the scene, for example during
a pointing gesture. We use a model-based approach and MCMC inference tech-
nique. The belief maps generated in Stage 2 are used to generate data-driven
proposal in this third stage.

In this section, we describe the key components including the human model,
the observation, and the formulation of the prior distribution and likelihood
function. We have extended a previous work [8] by formulating a joint prior
distribution and a joint likelihood function for all persons in the scene.
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4.1 Body Model and Likelihood Function

We use an articulated limb model of human body that defines the pose parame-
ters as consisting of the torso position and orientation, and various limb joint
angles. Additional latent parameters that describe the shape of the torso and
limbs and the clothing type are also included to synthesize the human appear-
ance more accurately for pose evaluation, as described in [7].

Pose estimation is formulated as the problem of estimating the state of a sys-
tem. State for a sequence with T frames is represented by {θ1, θ2, ..., θT }, where
θt represents the states of all humans at the tth frame. It can be decomposed by
θt = {Mt, X1,t, ..., XM,t} where Mt is the number of human at time it t (deter-
mined in Stage 1), Xm,t is the state of the mth person. This state includes the
pose, shape and clothing parameters.

The observed shape of a moving person tends to change due to clothing
and posture. Therefore, the shape parameters are dynamic to allow deformation
so that the synthesized human is aligned to the input more accurately. The
observed images, denoted as {I1, I2, ..., IT }, and are assumed to be conditionally
dependent on the current states only.

The prior distribution of the state, denoted by p(θ1, θ2, ..., θT ), can be de-
composed into prior distributions and a series of conditional distributions.

p(θ1, θ2, ..., θT ) =
1
z

M1∏
m=1

p(Xm,1)
T−1∏
t=1

Mt∏
m=1

p(Xm,t+1|Xm,t)

where Z is a normalization constant (we simplified the above expression by as-
suming all tracks start from t=1). The prior distribution is learned from a train-
ing set of human poses in static image and sets of motion capture data. The
conditional distribution is based on a zeroth-order dynamic model and is ap-
proximated by a normal distribution.

p(Xm,t+1|Xm,t) ≈ N(Xm,t+1 −Xm,t, Σ), (1)

where Σ is the covariance matrix of the dynamic model and is learned from
motion capture data.

Fig. 7. Joint likelihood. Top left: predicted human poses; top right: predicted fore-
ground regions; bottom left: predicted skin regions; bottom right: predicted non-skin
regions.



Human Pose Tracking Using Multi-level Structured Models 377

A state candidate θt is evaluated by a likelihood function denoted by p(It|θt).
We formulate the image likelihood function as consisting of four components,
based on (i) region coherency, (ii) color dissimilarity with background, (iii) skin
color and (iv) foreground matching, respectively.

p(It|θt) = Lregion(It, θt)× Lcolor(It, θt)× Lskin(It, θt)× Lforeground(It, θt)

These likelihood components are described in detail in [7][8]; we have extended
them to a joint likelihood measure for all humans in the scene that considers the
inter-occlusion among them. Fig. 7 illustrates some of the synthesized variables
that are generated when computing the likelihood measure.

4.2 Proposal Mechanisms

Different proposal mechanisms are used for the Markov chain transitions. We
follow the procedure described in [8] and provide only a brief summary here for
completeness. The MCMC approach uses a proposal function to generate state
candidates. In theory, one can generate a candidate for the whole sequence of
states {θ1, θ2, ..., θT } but such schemes have high computation complexity and
difficult to implement. Instead, at each Markov transition, we update only the
state of one person at one frame, Xm,t. From a current state, X ′

m,t, a new state
candidate, X∗

m,t, is generated by three types of evidence:
1. The estimation of previous state, Xm,t−1, can be propagated using a human

dynamic model to generate candidates for the current state. We denote this
proposal as q(X∗

m,t|Xm,t−1).
2. The candidates can be generated from the belief maps derived in the second

stage. This is an adaptation of a bottom-up data-driven approach [21] that has
now been used for a number of computer vision tasks [19][23]. In each belief map,
the value at each pixel position represents the importance sampling probability
of the corresponding joint’s image position. The maps are used to generate pose
candidates in a component-based Metropolis-Hastings approach. In [7], it is shown
how this framework can be adapted for estimating 3D kinematics parameters
by constructing reversible jumps using the belief maps and inverse kinematics
computation; and it approximately satisfies the detailed balance requirement
for MCMC. We denote this proposal function as q(X∗

m,t|Im,t, X
′
m,t), where Im,t

represents the set of belief maps for the mth person derived in Stage 2.
3. Using backward-propagation, the next state estimates, can also be used

to generate candidates for the current state. We denote this proposal as q(X∗
m,t|

Xm,t+1).
The proposal distribution is denoted by q(X∗

m,t|Xm,t−1, Im,t, Xm,t+1, X
′
m,t),

where X ′
m,t is the current Markov chain state. For simplicity, the distribution

can be decomposed into its components:

q(X∗
m,t|Xm,t−1, Im,t, Xm,t+1, X

′
m,t)

= α1q(X∗
m,t|Xm,t−1) + α2q(X∗

m,t|Im,t, X
′
m,t) + α3q(X∗

m,t|Xm,t+1) + α4q(X∗
m,t|X ′

m,t)
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where α1, α2, α3, α4 are the mixing ratios for the different components. The
last component, q(X∗

m,t|X ′
m,t), represents a proposal distribution derived from

the current Markov state. It is implemented to involve both the random-walk
sampler [5] and the flip kinematic jump [15] that is designed to explore the depth
space [7].

4.3 Dynamic Proposals

Dynamic proposal mechanism involves generating a state candidate for the cur-
rent frame, X∗

m,t, either from the estimates in the previous frame, Xm,t−1, or in
the next frame, Xm,t+1. For the following discussion, we focus on the former.

The state estimation in the previous frame is represented by a set of state
samples {X1

m,t−1, X
2
m,t−1, ...} generated by the Markov chain search. These sam-

ples are clustered to form a compact set of representative samples

{X(1)
m,t−1, X

(2)
m,t−1, ..., X

(N)
m,t−1},

where N is the number of mixture components. We use N=50 in our experiments.
These components are weighted according to their cluster sizes. To generate a
candidate for the current frame, a sample X

(∗)
m,t−1 is selected from the set of

mixture components in the previous frame based on their normalized weights
{w(1)

m,t−1, w
(2)
m,t−1, ..., w

(N)
m,t−1}. Using a zeroth-order dynamic model, the state can-

didate is generated by sampling a normal distribution centered at X
(∗)
m,t−1, with

Σ as the covariance matrix from Equation ( 1).

4.4 Extracting Pose Trajectory

The previous section describes state estimation for each frame. The set of gen-
erated Markov samples can be represented compactly using a mixture model as
described earlier. Using dynamic programming, an estimated trajectory of the
each person can be obtained by ”traversing” along the sequence and selecting a
set of poses from these mixture components as in [8].

5 Experimental Results

In this section, we describe the experimental setup and discuss the result. We
used a realistic sequence depicting a meeting room scene1 [4]. We annotated the
video manually to aid in evaluation by locating the image positions of the body
joints. The depths of these joints, relative to the hip, were also estimated. The
annotation data are used for evaluation only and not for training.

A set of training data is used to learn the prior distribution of state parame-
ters, potential functions, dynamic model and observation models. These include
motion capture data and annotated video sequences; and they are from sources
1 The video was provided to us by the National Institute for Standards and Technology

of the U.S. Government.
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different from the test sequences and are of different scenes. The position of the
table in the meeting room is annotated manually and provided to the system,
and this information is used to infer occlusion of the body by the table.

5.1 Pose Tracking Results

The results of pose estimation are shown in Fig. 8. The initialization of each
human model is automatic. The shape of the human model was initialized as
the mean of the shape prior distribution.

As the results show, the proposed method is able to initialize and track the
human poses robustly. The system is able to recover after partial self-occlusion
or inter-occlusion. Estimation of the salient components including the face, torso
and hands are fairly accurate. These help to boost the estimation of the other
joints that are either less salient (e.g. elbows) or are temporarily occluded.

Some instances of temporary failure are observed due to lack of reliable ob-
servation, especially for the lower arms. Nonetheless, the results demonstrate the
robustness of our approach in recovering from these partial failures.

For evaluation, we compare the estimated joint position with the annotated
data. In the tth frame, we compute the 2D Euclidean distance error (in pixels)
for the jth joint, denoted by ej

t . A weighted average error, denoted by Et, is
defined by:

Et =

 K∑
j=1

wje
j
t

/
K∑

j=1

wj

 ,

where K is the number of joints used for evaluation and {wj |j = 1, ..., K} are
the weights. The weights are chosen to approximate the relative size of the
corresponding body parts, and the values are: 1.0 for torso and neck; 0.6 for
shoulders, elbows and knees; 0.4 for wrists and ankles; 0.3 for head; and 0.2 for
hand-tips. We ignore those joints that are always occluded, namely the lower

Fig. 8. Multiple persons pose tracking in meeting room scene
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body joints of the sitting persons. The error for the pose estimation is 22.51
pixels or about 15.5cm (one pixel is approximately 0.69cm).

The experiment was performed on a 2.8GHz Intel PC in Windows XP and
C++ programming code. For each frame, 1000 Markov state samples were
generated in the third stage. The total processing for each frame took on aver-
age 5 minutes. We believe the computation can be improved significantly with
later code optimization and the use of graphics hardware which we are currently
exploring.

5.2 Discussion

We have shown how a novel three-stage approach using multi-level models can
estimate and track poses accurately in highly realistic scene. This method al-
lows us to perform a hierarchical estimation to overcome difficulties associated
with realistic scene of multiple persons. By limiting the 2nd stage to 2D infer-
ence and using a grid-based representation, our method can efficiently integrate
bottom-up observations with belief propagation using deterministic computa-
tion. Overall, the computation cost is slightly higher compared with that in [14]
where nonparametric belief propagation is used to infer 3D pose directly (both
methods run at several minutes per frame), but our system handles monocular
views and considers inter-occlusion and non self-penetration constraints which
we believe are essential for general applications related to event recognition and
stored-video analysis.

The test sequences are different from the training data we used; this shows
some generality of this model-based approach. A strength of this method is the
ability to perform automatic initialization and recover from partial track failures
due to occlusion. This is achieved without prior learning of the person’s specific
appearance or movement; these constraints are important in video understanding
applications.
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Abstract. Context information other than faces, such as clothes, picture-
taken-time and some logical constraints, can provide rich cues for recog-
nizing people. This aim of this work is to automatically cluster pictures
according to person’s identity by exploiting as much context information
as possible in addition to faces. Toward that end, a clothes recognition al-
gorithm is first developed, which is effective for different types of clothes
(smooth or highly textured). Clothes recognition results are integrated
with face recognition to provide similarity measurements for clustering.
Picture-taken-time is usedwhen combining faces and clothes, and the cases
of faces or clothes missing are handled in a principle way. A spectral clus-
tering algorithm which can enforce hard constraints (positive and nega-
tive) is presented to incorporate logic-based cues (e.g. two persons in one
picture must be different individuals) and user feedback. Experiments on
real consumer photos show the effectiveness of the algorithm.

1 Introduction

Being able to identify people is important for automatic organizing and retrieving
photo albums and for security applications, where face recognition has been
playing a major role. But reliable face recognition is still a challenging problem
after many research efforts [5], especially when imaging condition changes. On
the other hand, information besides faces (called ’context’ relative to face) can
provide rich cues for recognizing people.

Generally speaking, there are three types of context information. The first
type is appearance-based, such as a person’s hair style or the clothes he is wear-
ing; the second type is logic-based, for instance, different faces in one picture
belong to different persons or some people are more likely to be pictured to-
gether (e.g. husband and wife); the third type is the meta-data for pictures such
as the picture-taken-time. This context information is often used by human ob-
servers consciously or unconsciously. It is very tempting to investigate how to
build algorithms which can utilize this context information effectively to improve
human recognition accuracy.

The aim of this work is to automatically organize pictures according to per-
son’s identity by using faces and as much context information as possible. Assum-
ing we have a face recognition engine, we want to improve upon it via contexts.
We want to develop a clustering algorithm which can put persons in the pictures

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 382–395, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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into groups (clusters). The ideal results will be that all the images of the same
individual are in one cluster and images from different individuals are in different
clusters. Towards this end, we need to answer the following three questions: 1)
what context information to use? 2) what is the clustering algorithm? 3) how to
put context information into the clustering algorithm?

Regarding to the first question, we use the appearance-based and logic-based
context explicitly, and the picture taken time implicitly. For the appearance-
based context, clothes provide an important cue for recognizing people in the
same event (or on the same day) when clothes are not changed. They are com-
plimentary to faces and remain very useful when face pose changes, poor face
quality, and facial expression variations occur. Therefore, it is intuitively ap-
pealing to use clothes information. However, in practice, due to different types
of clothes (solid colored or heavily textured) and changes in clothes imaging con-
dition (occlusions, pose changes, lighting changes, etc), it is not a trivial matter
to use clothes information effectively. We strive to develop an effective clothes
recognition method in this paper. For the logic-based context, we want to enforce
some hard constraints. A constraint is hard when it must be satisfied in order
for a clustering result to be correct. For example, the fact that different faces in
one picture belonging to different individuals is a hard constraint.

Many clustering algorithms have been developed, from traditional K-means
to the recently popular spectral clustering ( [10, 14, 8, 15]). One major advantage
of spectral clustering methods over K-means ([8]) is that K-means easily fails
when clusters do not correspond to convex regions (similar for mixture of models
using EM, which often assumes that the density of each cluster is Gaussian). In
human clustering, imaging conditions can change from different aspects, hence
one cluster doesn’t necessarily form a convex region. Therefore a spectral clus-
tering algorithm is favored.

Now we are facing the question of how to put the context information into
the clustering algorithm. The base of a spectral clustering algorithm is the sim-
ilarity measure between nodes (for human recognition, each node represents a
person image). It is a natural thought to combine clothes recognition results
with face recognition results as the similarity measurements. But due to occlu-
sion or pose changes, either face or clothes information may be missing or when
different people wear the same clothes on the same day, the clothes information
can become unreliable. We propose a principled way to handle these cases. The
next issue is how to enforce the hard constraints? For K-means, hard constraints
can be enforced as in [13]. Though spectral clustering methods have the afore-
mentioned advantage over K-means, it is hard to enforce hard constraints. In
[15], a solution of imposing positive constraints (two nodes must belong to the
same cluster) is addressed, but there is no guarantee that the positive constraints
will be respected and the problem of enforcing negative constraints (two nodes
cannot belong to the same cluster) remains open. In this paper, by taking ad-
vantages of both K-means and spectral clustering methods, we devise a spectral
clustering method which can enforce hard constraints.
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In [18], clothes information is used for annotating faces. Our work differs from
that in (1) a new clothes recognition algorithm is developed, and the results from
face and clothes recognition are integrated in a principled way; (2) a constrained
spectral clustering algorithm, which can enforce hard constraints, is proposed,
so that other context cues (e.g. persons from one picture should be in different
clusters) and user feedback can be imposed.

The rest of the paper is organized as follows. The clothes recognition method
is presented in Section 2. Section 3 describes how to combine clothes recognition
results with face recognition into one similarity measurement. Section 4 depicts
the spectral clustering algorithm and how to put some logic-based context cues
(i.e. enforcing hard constraints) into the clustering algorithm. Experimental re-
sults are presented in Section 5. Finally, Section 6 gives concluding remarks.

2 Clothes Recognition

Clothes recognition is to judge how similar two pieces of clothes image are and
therefore to indicate how likely they are from the same individual. There are
three major steps for clothes recognition: clothes detection and segmentation,
clothes representation (or feature extraction), and similarity computation based
on extracted features.

2.1 Clothes Detection and Segmentation

Clothes detection and segmentation is to obtain the clothes part from an image.
For recognition purpose, precise contours of clothes are not necessary, but we
need to get the representive part and get rid of clutters.

An initial estimation of the clothes location can be obtained by first run-
ning face detection 1 and taking some parts below the head. However, this is
often unsatisfactory due to occlusion by another person or by the person’s self
limbs (skin) or presence of other objects in the environment. To improve upon
the initial estimations, the following two steps are therefore performed. One
is to segment clothes among different people via maximizing the difference of
neighboring clothes pieces, which can be computed by the χ2 distance of color
histograms in CIElab space. Assuming that the ’true’ clothes are not far away
from the initial guess, candidate locations can be obtained by shifting and re-
sizing the initial estimation. The candidates which can maximize the difference
are chosen. Figure 1 shows an example.

The next step is to get rid of clutters not belonging to clothes. Clutters are
handled in two ways. For predictable clutters like human skin, a common cause
of occlusion, we build a skin detector using techniques similar to what described

1 Here we obtain a quick initial guess of the clothes location from face detection. Face
detection [9, 12, 2] can currently achieve better accuracy than face recognition so
results derived from face detection can be complimentary to face recognition results.
For example, profile faces can be detected (so are the corresponding clothes), but
they present a challenge for state-of-the-art face recognition algorithms.
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Fig. 1. (a) initial estimation from face detection (shown by the dashed yellow lines,
small red circles show the eye positions); (b) refined segmentation by maximizing the
difference between people (shown by the solid green lines)

in next section. More details on skin detection will be given in Section 2.4. For
more random clutters not persistent across pictures, we diminish their influence
in the feature extraction step (Section 2.2).

2.2 Clothes Representation (or Feature Extraction)

After extracting clothes from an image, the next issue is to represent it quan-
titatively: clothes representation (or feature extraction). In the literature, there
are generally two types of features being extracted: local features and global fea-
tures. Local features have recently received a lot of research attention (such as
[6, 1, 7, 11]) and have been successfully used in some recognition systems. How-
ever, most local features are selected based on some kind of local extrema (e.g.
with ’maximum entropy’ or ’maximum change’), which cannot work if the clothes
under consideration is a smooth colored region without textures or patterns (e.g.
a single-colored T-shirt). Then how about global features like color histogram
and/or orientation histogram? Color histogram suffers when lighting changes.
Clothes are often folded and therefore create false edges and self-shadows, which
create difficulties for orientation histograms. Thus some more effective features
are desired. To take advantage of global representations (which can be more ro-
bust to pose changes), the features extracted will be histograms of ’something’.
But unlike color histograms or orientation histograms, we want the ’something’
to be representive patches for clothes under consideration and to exclude ran-
dom clutters. In order to achieve that, we devise the following feature extraction
method - the representive patches are learned automatically from a set of clothes.

The method uses code-word (representive patches) frequency as feature vec-
tors. The code-words are learned as follows. Overlapped small image patches
(e.g. 7x7 pixel patches with two neighboring patches 3 pixels apart) are taken
from each normalized clothes piece (according to the size of faces - from face de-
tection module). All the patches from all the clothes pieces in the image set are
gathered. If a small patch is of 7x7 pixels, and the total number of small patches
is N , we have N 147-dimensional (3 color channels for each pixel) vectors.

In order to get rid of noise and make the computation efficient, principle
component analysis (PCA) is used to reduce the dimensionality of these vectors.



386 Y. Song and T. Leung

1   14.78 2   10.32 3   10.08 4   7.778 5   7.458 6   5.977 7   5.708 8   3.133 9   3.015 10   2.992

11   2.948 12   2.881 13   2.671 14   2.605 15   2.521 16   2.048 17   1.609 18   1.571 19   1.567 20   1.481

21   1.159 22   1.132 23   0.7804 24   0.6782 25   0.6435 26   0.5781 27   0.5281 28   0.522 29   0.4719 30   0.3606

Fig. 2. Examples of code-words obtained. The occurrence frequency of these code-
words in a clothes piece is used as the feature vector.

Each small patch is represented by projections under the first k (we use k = 15)
principle components. Vector quantization (e.g. K-means clustering) is then run
on these N k-dimensional vectors to obtain code-words. The Mahalanobis dis-
tance, given by d(x1, x2) = √(x1 − x2)

T
Σ−1(x1 − x2) for any two vectors x1

and x2 (where Σ is the covariance matrix), is used for K-means clustering. The
number of code-words (i.e. the number of clusters for K-means) can vary accord-
ing to the complexity of the data. 30 code-words are used in our experiments.
Figure 2 shows code-words obtained (i.e. centers of k-means clustering) for the
image set including the image in Figure 1.

By vector quantization, each small patch is quantized into one of the code-
words, and one clothes piece can be represented by the vector describing the
frequency of these code-words. Suppose that the number of code-words is C, then
this code-word frequency vector is C-dimensional, Vthiscloth = [v1, · · · vi, · · · , vC ],
with each component vi = nthiscloth

i

nthiscloth , where nthiscloth
i is the number of occurrence

of code-word i in the clothes piece and nthiscloth is the total number of small
patches in the clothes piece.

The above feature extraction method has the following advantages for clothes
recognition. 1) The clustering process selects consistent features as representive
patches (code-words) and is more immune to background clutters which are not
consistently present since small image patches from non-persistent background
are less likely to form a cluster. 2) It uses color and texture information at
the same time, and it can handle both smooth and highly textured regions.
3) Code-word frequency counts all the small patches and does not rely on any
particular features. Hence it can handle pose changes to a certain degree. 4)
Compared to color histograms, it is more robust to lighting changes. Image
patches corresponding to the same clothes part can have different appearance due
to lighting changes. For example, a green patch can have different brightness and
saturation. Through PCA dimension reduction and using Mahalanobis distance,
these patches are more likely to belong to the same cluster than to the same
color bin for color histogram.

2.3 Similarity Computation

The similarity between two pieces of clothes is computed in a way similar to [11].
Each component of the code-word frequency vector is multiplied by log( 1

wi
),
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where wi is the percentage of small patches quantized into code-word i among
all the N patches. By putting these weights, higher priorities are given to those
code-words (features) occurring less frequently. This is based on the idea that
less frequent features can be more distinctive therefore more important.

The similarity score of two pieces of clothes is given by the normalized scalar
product (cosine of angle) of their weighted code-word frequency vectors.

2.4 Skin Detection

As described in section 2.1, skin is a common type of clutter. However, general
skin detection is not a trivial matter due to lighting changes. Fortunately for a
set of images, skin from faces and from limbs usually looks similar. Therefore a
skin detector can be learned from faces.

Learning Skin Code-words from Faces. The representive skin patches (code-
words for skin detection) are learned from faces. First, small skin patches are
obtained from faces (majorly cheek part). Each small skin patch is represented
by the mean of each color channel. K-means clustering are then performed on
these 3-dimensional vectors. The centers from k-means clustering form the code-
words for skin detection.

Detect Skin in Clothes. In order to decide whether a small patch is skin or not,
we first get its mean of three color channels, and then compute its Mahalanobis
distance to each code-word. If the smallest distance is less than a pre-defined
threshold and the patch satisfies certain smoothness criterion, the patch is taken
as skin. The smoothness of a patch is measured by the variance of luminance.
Only those non-skin patches will be used for further computation.

3 Integrating Clothes Context with Face Recognition

The clothes recognition scheme presented in the previous section tells how similar
a pair of clothes pieces are. To achieve higher human recognition accuracy, clothes
cues are to be integrated with face cues. These combination results provide
similarity measurements for clustering (section 4).

For any pair of person images, let xf be the score from face recognition
(e.g. [5]), xc be the score from clothes recognition. Let random variable Y indicate
whether the pair is from the same person or not: Y = 1 means from the same
person and Y = 0 means otherwise. We want to estimate the probability of
the pair belonging to the same individual given certain face and clothes scores
P (Y = 1|xf , xc). In linear logistic regression,

P (Y = 1|xf , xc) =
1

1 + exp(−wfxf − wcxc − w0)
(1)

where w̄ = [wf , wc, w0] are parameters to be learned. The best w̄, which maxi-
mizes the log-likelihood of a set of training examples, can be obtained iteratively
through Newton-Raphson’s method.
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In testing, for any pair of face recognition and clothes recognition scores, we
plug them into equation (1), and get P (Y = 1|xf , xc), i.e., the probability of
being from the same person. Other cue combination algorithms, such as using
Fisher linear discriminant analysis and mixture of experts ([4]), were also experi-
mented. They gave close results for our application though the mixture of experts
method is potentially more powerful. Linear logistic regression is adopted here
because it is simple and works well. It also provides a good way for handling the
cases of face or clothes information missing.

3.1 Recognition When Face or Clothes Are Missing

While one advantage of using clothes context is to help improve human recog-
nition accuracy, another is that it makes human recognition possible when face
recognition results are unavailable (e.g. faces are occluded or profile to back view
of faces). Clothes information can also be missing due to occlusion or become
unreliable for images taken on different days (events) or when different people
in the same picture wearing the same clothes. Hence we need to handle the case
of face or clothes information missing. The similarity measurements under all
the situations (with face recognition only, clothes recognition only, and face and
clothes combined) need to be compatible so that they can be compared directly
and fairly.

Using the same notations as in the previous section, when face or clothes
scores are missing, P (Y = 1|xc) or P (Y = 1|xf ) needs to be computed. The
compatibility requirement is satisfied if P (Y = 1|xf ) and P (Y = 1|xc) are the
marginal probabilities of P (Y = 1|xf , xc). By Bayesian rule and equation (1),

P (Y = 1|xc) =
∫

xf

1
1 + exp(−wfxf − wcxc − w0)

P (xf |xc) dxf

If we assume that xf = C · xc + C0 for some constant C and C0, i.e.,
P (xf |xc) = δ(xf − Cxc − C0), then

P (Y = 1|xc) =
1

1 + exp(−wf · C · xc − wf · C0 − wcxc − w0)

=
1

1 + exp(−w′
cxc − w′

0)
(2)

Therefore, P (Y = 1|xc) is also in the form of a logistic function, so does P (Y =
1|xf ). The parameters of these logistic functions such as w′

c, and w′
0 can be

estimated in a similar fashion to those of equation (1).
Note that equation (2) is derived assuming that face scores are a linear

function of clothes scores so that only clothes information determines the sim-
ilarity between a pair of person images. This could be a reasonable assump-
tion when face information missing. We tested the compatibility of computed
P (Y = 1|xf , xc), P (Y = 1|xf ) and P (Y = 1|xc) in experiments.
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3.2 Handling the Case of People Wearing the Same Clothes

People wearing the same (or similar) clothes poses difficulties for incorporating
clothes information. Two persons in one picture usually are not the same indi-
vidual. Thus if in one picture, two persons wear the same (or similar) clothes, we
need to discard the clothes information. The clothes information also becomes
possibly misleading when the pair-wise similarity between other clothes pieces
and either of those two is high. The clothes information is therefore treated as
missing for these cases, and similarities are computed as in section 3.1.

4 Human Clustering with Hard Constraints

The previous sections depict a clothes recognition algorithm as well as how to
integrate clothes context with faces into one similarity measure. These pair-wise
similarity measurements provide grounds for clustering. This section focuses on
the clustering algorithm and how to put logic-based contexts (such as some hard
constraints) into clustering.

4.1 Spectral Clustering

Spectral clustering methods cluster points by eigenvalues and eigenvectors of a
matrix derived from the pair-wise similarities between points. Spectral clustering
is often looked as a graph partitioning problem: each point is a node in the graph
and similarity between points gives weight of the edge. In human clustering, each
point is a person’s image, and similarity measurements are from face and/or
clothes recognition.

One effective spectral clustering method used in computer vision is normal-
ized cuts [10], with generalization in [15]. The normalized cuts criterion is to
maximize links (similarities) within each cluster and to minimize links between
clusters. Suppose that we have a set of points S = {s1, . . . , sN}, and we want
to cluster them into K clusters. Let W be the N ×N weight matrix with each
term Wij being the similarity between points si and sj, and let D denote the
diagonal matrix with the i-th diagonal element being the sum of W ’s ith row
(i.e. the degree for the ith node). The clustering results can be represented by a
N×K partition matrix X , with Xik = 1 if and only if point si belongs to the kth

cluster and 0 otherwise. Let Xl denote the lth column vector of X , 1 ≤ l ≤ K.
Xl is the membership indicator vector for the lth cluster. Using this notations,
the normalized cut criterion is to find the best partition matrix X∗ which can
maximize ε(X) = 1

K

∑K
l=1

XT
l WXl

XT
l DXl

.
Relaxing the binary partition matrix constraint on X and using Rayleigh-Ritz

theorem, it can be shown that the optimal solution in the continuous domain are
derived through the K largest eigenvectors of D−1/2WD−1/2. Let vi be the ith

largest eigenvector of D−1/2WD−1/2, and V K = [v1, v2, . . . , vK ]. Then the con-
tinuous optimum of ε(X) can be achieved by X∗

conti, the row normalized version
of V K ( each row of X∗

conti has unit length). In fact, the optimal solution is not
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unique - the optima are a set of matrices up to an orthonormal transformation:
{X∗

contiO : OT O = IK}, where IK is the K ×K identity matrix.
In [15], a repulsion matrix is introduced to model the dissimilarities between

points. The clustering goal becomes to maximize within-cluster similarities and
between-cluster dissimilarities, but to minimize their compliments. Let A be the
matrix quantifying similarities (affinity matrix), R be the matrix representing
dissimilarities (repulsion matrix), and DA and DR be the diagonal matrices
corresponding to the row sum of A and R respectively. Define Ŵ = A−R +DR

and D̂ = DA + DR, then the goal is to find the partition matrix X which can
maximize 1

K

∑K
l=1

XT
l ŴXl

XT
l D̂Xl

. The continuous optima can be found through the K

largest eigenvectors of D̂−1/2Ŵ D̂−1/2 in a similar fashion to the case of without
a repulsion matrix.

Since a continuous solution can be found by solving eigensystems, the above
methods are fast and can achieve global optimum in the continuous domain.
However, for clustering, a continuous solution needs to be discretized. In [15],
discretization is done iteratively to find the binary partition matrix X∗

discrete

which can minimize ‖Xdiscrete −X∗
contiO‖2, where ‖M‖ is the Frobenius norm

of matrix M : ‖M‖ =
√

tr(MMT ), O is any orthonormal matrix, and X∗
contiO

is a continuous optimum.

4.2 Incorporating More Context Cues: Enforcing Hard Constraints

Some logic-based contexts can be expressed as hard constraints, e.g., one use-
ful negative hard constraint is that different persons in one picture should be
different individuals. It is desirable to be able to enforce these constraints in hu-
man clustering. However, incorporating priors (such as hard constraints) poses
a challenge for spectral clustering algorithms. In [16, 15], a method to impose
positive constraints (two points mush belong to the same cluster) was proposed,
but the constraints may be violated in the discretization step. To the best of
our knowledge, there is no previous work which can enforce negative hard con-
straints (two points cannot be in the same cluster) in spectral clustering meth-
ods. This section explores how to enforce hard constraints, negative as well as
positive.

Using the same notations as in section 4.1, if si and sj are in the same
picture, we want to make sure si and sj are in different clusters. To achieve
that, the corresponding term in the affinity matrix Aij is set to be zero. A
repulsion matrix R is also used to enhance the constraints: Rij is set to be 1 if
si and sj cannot be in the same cluster. However, this is not enough: there is no
guarantee that the hard constraints are satisfied. We resort to the discretization
step.

A constrained K-means algorithm is presented in [13] to integrate hard con-
straints into K-means clustering. We want to take advantage of that: we propose
to use constrained K-means in the discretization step to enforce hard constraints.
Our work was inspired by [8], where K-means was used in the discretization step.
But in [8], a repulsion matrix was not used, the use of K-means with a repulsion
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matrix was not justified, regular K-means instead of constrained K-means was
used, and therefore no constraints were imposed.

In the following, we will first justify the use of K-means (with or without a
repulsion matrix), and therefore the use of constrained K-means. We take each
row of X∗

conti as a point, and perform K-means clustering 2. If the ith row of
X∗

conti belongs to the kth cluster, then assign the original point si to the kth

cluster. We argue that this K-means clustering can achieve as good results as
the best partition matrix X∗

discrete minimizing ‖Xdiscrete −X∗
contiO‖2.

Proposition 1. For any orthonormal matrix O, row vectors of X∗
contiO and

X∗
conti have the same K-means clustering results under the following condition:

if cl is the lth initial center for X∗
conti, then clO is the lth initial center for

X∗
contiO.

Proposition 2. Suppose X∗
discrete and O∗ are the discrete partition matrix and

rotation matrix minimizing ‖Xdiscrete − X∗
contiO‖2. If rows of K × K identity

matrix IK are taken as cluster centers, then one iteration of K-means clustering
on row vectors of X∗

contiO
∗ achieves the same clustering results as what repre-

sented by partition matrix X∗
discrete. Further, if ‖X∗

discrete−X∗
contiO

∗‖2 is small,
then the cluster centers will not go far away from rows of IK , and therefore the
K-means clustering on rows of X∗

contiO
∗ will converge to the same clustering

results as X∗
discrete.

From propositions 1 and 2, if ‖X∗
discrete − X∗

contiO
∗‖2 is small, and rows of

(O∗)−1 are taken as initial cluster centers, then K-means clustering on X∗
conti

achieves the same results as X∗
discrete. Small ‖X∗

discrete−X∗
contiO

∗‖2 means that
the points actually form good clusters, otherwise no clustering algorithm can
work well. A good approximation of (O∗)−1 can be found by finding orthogonal
vectors among rows of X∗

conti.
K-means clustering on rows of X∗

conti with proper initializations (or through
multiple initializations) can achieve as good results 3 as minimizing ‖Xdiscrete−
X∗

contiO‖2. On the other hand, hard constraints can be enforced by constrained
K-means. So to incorporate hard constraints, K-means is a better discretization
method.

Using constrained K-means in discretization step is to take row vectors of
X∗

conti as points and run constrained K-means on them. In each iteration of the
constrained K-means algorithm [13], when a point is assigned to a cluster, two
criteria are used: (1) distance to the center of the cluster; and (2) whether the
hard constraint is satisfied. A point is assigned to the closest cluster not violating
hard constraints. Therefore, the constrained K-means guarantees that the hard
constraints are satisfied.

2 One might wonder what the difference is between performing K-means clustering
on the original points and here at the discretization step. K-means clustering can
work here because previous steps in spectral clustering have possibly transformed
non-convex clusters into convex clusters (See more examples in [8]).

3 In [17], similar observation is presented through simulation, for the case of regular
K-means and without a repulsion matrix.
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5 Experiments

Experiments are performed on real consumer photos. Collections from three
families are used (Table 1). Face detection ([2]) is first run on these photos, and
persons’ identities are manually labeled to provide ground truth for evaluation
(only those individuals with 8 or more pictures are labeled). The data include a
variety of scenes such as vacations in theme parks, a group of friends mountain
climbing, having parties, fun activities at home, and children’s sports event.

5.1 Proposed Clothes Features vs. Color Histogram

The proposed clothes features (sections 2.2 and 2.3) are compared with color his-
tograms (using χ2 distance in CIElab space). To make the comparison fair, the
same clothes detection and segmentation method (section 2.1) is used.
Figure 3(a) shows the results by receiver operating characteristics (ROC) curves
on five days’ images (from families 1 and 2), with around 100 pictures. Any pair
of clothes pieces from the same person the same day are considered as a positive
example, and any pair of clothes pieces from different people are considered as
a negative example. These results show that the proposed method outperforms
color histograms. More detailed studies reveal that the advantages of the new
feature representation are more dominant when lighting condition changes.

5.2 Integrating Clothes and Hard Constraints with Face
Recognition

Clothes recognition results are to be combined with face recognition to provide
pair-wise similarity measurements for clustering. Raw face scores are obtained
from a face recognition module ([3, 5]). Logistic regression is used to combine
face and clothes recognition results (section 3). The parameters of those logistic
functions are learned using data from another family with around 200 faces and
clothes pieces.

Figure 4 shows an illustrative example using images from a children’s party.
Figure 4(b) is from face recognition only. Figure 4(c) gives results using addi-
tional contexts (clothes recognition and enforcing the constraint that different
persons in one image must belong to different clusters). Five clusters are used,

Table 1. Summary of image data. Time span of each collection is shown in the second
column. The third column gives the total number of days when the pictures were taken.

number number of number number of number of faces
time span of pictures of faces persons

days with person labeled (clusters) for each person
family 1 Apr-Aug 2002 13 182 342 8 126,68,45,35,26,16,15,11
family 2 May-Nov 2003 14 149 224 16 42,16,16,16,16,14,13,12,11,

11,11,11,10,10,9,9,8
family 3 May-Dec 2002 22 165 203 3 85,69,49
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Fig. 3. (a): ROC curves: the proposed clothes features (EER: 20.1%) vs. color his-
tograms (EER:28.3%). (b), (c), and (d): clustering results on family collections 1,
2, and 3 (Table 1), respectively. Blue dashed (with ’+’): face recognition only; red
dashdot (with ’*’): clothes combined with faces, but without constraints; green solid
curves (with ’o’): clothes and faces combined, and with constraints enforced. The most
upper-right points of blue dashed (with ’+’) and red dashdot (with ’*’) curves corre-
spond to the number of clusters being one, and from right to left with the increase of
number of clusters. The minimum number of clusters for all the samples to satisfy hard
negative constraints is displayed on the title ’minCluster(CK)’. The first point (from
top right) of each green solid curve (’o’) gives the results for that minimum number of
clusters. The dashed curve in each graph connects results under that minimum number
of clusters. ’Samepair’ and ’Diffpair’ on the title mean the total number of positive and
negative pairs, respectively. (e): results of adding positive constraints. The vertical
bars on the curves give standard deviation (from 30 runs for each fixed proportion).

which is the minimum number of clusters in order to satisfy the hard constraint.
Figure 4 illustrates the benefits of using contexts. For instance, in the top row
of Figure 4(b), there are faces from persons ’M’ and ’R’, and two faces from one
image are in the same cluster (’R I4’ and ’M I4’). This is corrected by using
contexts as shown in Figure 4(c).

For images collected on multiple days, the affinity matrix is constructed
as follows. For any pair of person images, if they are from pictures taken on the
same day, both face and clothes information are used; otherwise, only face infor-
mation is used. Clothes information is treated as missing if clothes are occluded
or different people wear similar clothes. To enforce the negative hard constraint
that two persons in one picture must be different individuals, repulsion matrix
and constraint K-means are applied.

We use Rand index ([13]) to characterize clustering performance. Suppose
we have N pieces of person images, any clustering results can be viewed as a
collection of N ∗ (N − 1)/2 pairwise decisions. A false alarm happens when a
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Fig. 4. An illustrative example. (a): two sample images (’I1’ and ’I4’) with face detec-
tion (in small red circles) and clothes detection (in green lines). (b): clustering results
from faces only. Each row denotes one cluster. The first letter on top of each face gives
the ground truth identity of the face, and the last two letters show which image it
comes from. (c): results from faces plus contexts (clothes recognition and the hard
constraint that two faces in one image belonging to different clusters).

pair actually from different individuals, but the algorithm claims they are the
same individual. A true positive (detection) is when a pair actually from the
same individual and the algorithm also claims so.

Clustering performance varies with the number of clusters. We experiment
with different number of clusters: from one cluster to two times of the ground
truth number of clusters (see Table 1). In applications, the desired number of
clusters may be input by the user. Figure 3(b), (c), and (d) show the results
on family collections 1, 2, and 3, respectively. From these curves, we can see
that (1) clustering performance generally improves with the use of clothes; (2)
the compatibility of logistic functions in section 3 is verified to a certain degree
since similarities from face and clothes and similarities from face only are used
in one affinity matrix, which outperforms the affinity matrix from face only;
(3) hard constraints can help improve the results. Note that the performance
improvements due to hard constraints are more dominant in Figure 3(b) and
(d) than in (c). One possible reason is that the set of labeled faces from family
2 belong to 16 individuals. So for any random pair, the probability of belong-
ing to different individuals is high, and hard negative constraints provide less
information.

Positive constraints (meaning that a pair of person images must belong to
the same individual) can also be applied. In practice, positive constraints are
available through user feedback. Here we randomly choose a certain number of
positive pairs to simulate the situation. Figure 3(e) shows experimental results
on images from family 2. The ground truth number of clusters, 16, is used. Fig-
ure 3(e) indicates that positive constraints can improve clustering performance,
especially for the detection rates.



Context-Aided Human Recognition – Clustering 395

6 Conclusions and Future Work

In this paper, we have developed a clothes recognition method which can work
well for different types of clothes (smooth or highly textured), and under imag-
ing condition changes. A principled way is provided to integrate clothes recog-
nition results with face recognition results, and the cases when face or clothes
information is missing are handled naturally. A constrained spectral clustering
algorithm, which can utilize face, clothes and other context information (e.g. per-
sons from one picture should be in different clusters), has been presented. Hard
constraints are enforced in the spectral clustering algorithm so that logic-based
context cues and user feedbacks can be used effectively. Picture-taken-time is
used when face and clothes recognition results are combined. Experiments on
real consumer photos show significant performance improvements. Future work
includes exploring how to select the number of clusters automatically, although
in human clustering applications, it can possibly be input by users.
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Abstract. Recent studies on three-dimensional face recognition pro-
posed to model facial expressions as isometries of the facial surface.
Based on this model, expression-invariant signatures of the face were con-
structed by means of approximate isometric embedding into flat spaces.
Here, we apply a new method for measuring isometry-invariant similarity
between faces by embedding one facial surface into another. We demon-
strate that our approach has several significant advantages, one of which
is the ability to handle partially missing data. Promising face recogni-
tion results are obtained in numerical experiments even when the facial
surfaces are severely occluded.

1 Introduction

Face recognition deals with the problem of identifying a human subject using
information describing his or her face. A description of a subject to be identified
(probe), is compared to those stored in the database of subjects with known
identity (usually referred to as gallery). The probe is accepted if identified with
one of the gallery subject, or otherwise rejected, based on some distance function.
Ideally, there should be no false acceptances or false rejections.

Recently, three-dimensional (3D) face recognition has become an emerging
modality, trying to use 3D geometry of the face for accurate identification of
the subject. While traditional two-dimensional (2D) face recognition methods
suffer from sensitivity to factors such as illumination, head pose and the use
of cosmetics, 3D methods appear to be more robust to these factors. Yet, the
problem of facial expressions is a major issue in 3D face recognition, since the
geometry of the face significantly changes as a result of facial expressions. One of
the focuses of the recent Face Recognition Grand Challenge (FRGC) competition
is robustness to facial expressions [1, 2].

In [3], we introduced an expression-invariant 3D face recognition method.
Our main thesis is the isometric model, according to which facial expressions are
modelled as isometries of the facial surface. The subject’s identity is associated
with the intrinsic geometry of the surface (i.e. its metric structure), which ap-
pears to be nearly expression-invariant [3]. Getting rid of the extrinsic geometry
of the surface and using its intrinsic geometry only, an expression-invariant rep-
resentation of the face is constructed. We used the approach presented by Elad

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 396–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and Kimmel [4]. Mapping the surface in an isometric way into R3, where the
original geodesic distances are replaced with the Euclidean ones, one creates a
representation of the intrinsic geometry, which can be simply handled as a rigid
surface. Such a mapping is termed isometric embedding. Elad and Kimmel used
a numerical procedure called multidimensional scaling (MDS) [5] to compute
the embedding.

Face recognition based on the isometric embedding approach is simple and
computationally-efficient (in [3], a real-time system that acquires and matches
two surfaces in less than 5 sec was obtained). The disadvantage is the fact that
in general, a surface cannot be isometrically embedded into R

m, and therefore,
such a mapping introduces an inevitable distortion of the distances (embedding
error or metric distortion), which reduces the recognition accuracy. Attempts to
reduce the embedding error were made in [6, 7, 8] by resorting to non-Euclidean
embedding spaces. In [8], it was conjectured that smaller embedding error results
in better face recognition accuracy. This conjecture was proved experimentally
using two-dimensional spheres with different radii as the embedding space.

The main limitation of the different embedding spaces used beforehand was
the demand that the geodesic distances are expressed analytically. This practi-
cally limits the possibilities to spheres and flat domains. It is obvious, however,
that the embedding of one surface into another results in zero metric distortion
if the surfaces are isometric. If the surfaces are not isometric, the embedding
error could be a measure of how different their intrinsic geometry is.

Unfortunately, a facial surface has a complicated metric structure and the
geodesic distances can not be expressed analytically. The price we have to pay in
order to perform embedding into such spaces is that the geodesic distances must
be computed numerically. However, the apparent advantages seem to justify it. In
addition to higher accuracy, this kind of embedding allows to compare partially
missing surfaces. This is especially important in practical 3D face recognition,
where due to acquisition imperfections the facial surfaces can be occluded. The
ability to handle partially missing data also frees us from the need to perform
sophisticated cropping identical for all faces, which is required in [3].

This paper consists of five sections. In Section 2, we review the expression-
invariant face recognition method based on the isometric model. In Section 3,
we introduce the notion of partial embedding and outline a recent generalization
of MDS as a way to compute it [9]. Section 4 outlines a hierarchical matching
scheme for one-to-many face recognition with very large databases. Section 5 is
devoted to experimental results. We show that our approach works accurately
even in a setting where the facial surface is severely occluded. Section 6 concludes
the paper.

2 Expression-Invariant Face Recognition

Our starting point is the isometric model of facial expressions, introduced in [3].
The facial surface is described as a smooth compact connected two-dimensional
Riemannian manifold (surface), denoted by S. The minimal geodesics between
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s1, s2 ∈ S are curves of minimum length on S connecting s1 and s2. The geo-
desics are denoted by C∗

S(s1, s2). The geodesic distances refer to the lengths of
the minimum geodesics and are denoted by dS(s1, s2) = length(C∗

S(s1, s2)). A
transformation ψ : S → Q is called an isometry if dS(s1, s2) = dQ(ψ(s1), ψ(s2))
for all s1, s2 ∈ S. In other words, an isometry preserves the intrinsic metric
structure of the surface.

The isometric model, assuming facial expressions to be isometries of some
“neutral facial expression”, is based on the intuitive observation that the facial
skin stretches only slightly. All expressions of a face are assumed to be intrinsi-
cally equivalent (i.e. have the same metric structure), and extrinsically different.
Broadly speaking, the intrinsic geometry of the facial surface can be attributed
to the subject’s identity, while the extrinsic geometry is attributed to the facial
expression. The isometric model tacitly assumes that the expressions preserve
the topology of the surface. This assumption is valid for most regions of the face
except the mouth. Opening the mouth changes the topology of the surface by
virtually creating a “hole”, which was treated in [10] by imposing topological
constraints.

The goal of expression-invariant face recognition, under the assumption of
the isometric model, is to perform an isometry-invariant matching of facial sur-
faces. In other words, we are looking for some distance function d(S,Q) to
compare between two facial surfaces S and Q, such that d(S, f(S)) = 0 for
all isometries f of S. Since the geodesic distances are an obvious isometry-
invariant, one could think of d(S,Q) comparing the geodesic distances on S
and Q. However, in practice only sampled versions of the surfaces are available,
and therefore we have the intrinsic geometry of S and Q represented as finite
metric spaces ({s1, ..., sN},∆S) and ({q1, ..., qM},∆Q), where the N × N ma-
trix ∆S = (dS(si, sj)) and the M ×M matrix ∆Q = (dQ(qi, qj)) denote the
pair-wise geodesic distances (which, in practice, must be computed numerically)
between the samples of S and Q. There is no guarantee that different instances
of the same facial surface are sampled at the same points, nor that the number
of samples is the same. Moreover, even if the samples are the same, they can be
ordered arbitrarily. This ambiguity, which theoretically requires examining all
the permutations between the points on the two surfaces, makes impractical the
use of the geodesic distances per se for isometry-invariant surface matching. Yet,
we point to a recent fundamental paper by Mémoli and Sapiro [11], which relates
the permutation-based distance between surfaces represented as point clouds to
the Gromov-Hausdorff distance and shows a probabilistic framework allowing to
approximate it without computing all the permutations.

2.1 Isometric Embedding

An alternative proposed by Elad and Kimmel [4] and adopted in [3] for face
recognition is to avoid dealing explicitly with the matrix of geodesic distances
and represent S as a subset of R

m, such that the original intrinsic geometry is
approximately preserved. Such a procedure is called an isometric embedding. The
image of S under the embedding is referred to as the canonical form of S, and
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Rm as the embedding space. As a result of isometric embedding, the canonical
forms of all the isometries of S are identical, up to the isometry group in Rm

(rotations, translations and reflections), which is easy to deal with. The distance
d(S,Q) is computed by comparing the canonical forms of S and Q in a rigid
way.

In the discrete setting, isometric embedding is a mapping between two finite
metric spaces

ϕ : ({s1, ..., sN} ⊂ S,∆S)→ ({x1, ..., xN} ⊂ R
m,D) , (1)

such that dS(si, sj) = dRm(xi, xj) for all i, j = 1, ..., N . Here dRm denotes the
Euclidean metric, and D = (dRm(xi, xj)) is the matrix of pair-wise geodesic
distances between the points in the embedding space. In practice, this matrix is
computed approximately using the fast marching method (FMM) [12].

2.2 Multidimensional Scaling

Unfortunately, it appears that a general surface like the human face usually
cannot be isometrically embedded into R

m of any finite dimension [13], and
therefore, such an embedding introduces a distortion of the geodesic distances,
referred to as the embedding error. Yet, though an exact isometric embedding of
S into Rm does not exist, it is possible to compute an approximately isometric
embedding, which minimizes the embedding error. In [4], the raw stress [5] was
used

σraw(X;∆S) =
∑
i>j

(dRm(xi,xj)− dS(si, sj))
2 . (2)

as the embedding error criterion. Here ∆S denotes the geodesic distances matrix
of the surface S, and X is a N ×m matrix of coordinates in Rm. The solution

XS = argmin
X

σraw(X;∆S) (3)

obtained by gradient descent minimization of the stress is the discrete canonical
form of S, and the whole process is called multidimensional scaling (MDS). The
optimization problem (3) is non-convex and therefore convex optimization algo-
rithms cannot guarantee global convergence. Yet, this problem can be usually
resolved using good intialization or employing multiscale or multigrid optimiza-
tion [14].

2.3 Canonical Form Matching

The similarity function between two surfaces S and Q in the canonical forms
(CF) algorithm is computed as the Euclidean distance between the vector of
P -th order high-dimensional moments of the corresponding canonical forms XS
and XQ after alignment [15]

dCF(S,Q) =
∑

p1+...pm≤P

(
µXS

p1,...,pm
− µXQR+b

p1,...,pm

)2
, (4)
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where

µX
p1,...,pm

=
N∑

i=1

m∏
j=1

x
pj

ij , (5)

is the (p1, ..., pm)-th moment of X, and XQR + b is an m-dimensional Euclid-
ean transformation (rotation, reflection and translation) aligning the canonical
forms XS and XQ. In [4], the alignment transformation is obtained by centering
the canonical forms, diagonalizing their matrices of second-order moments, and
reordering the axes such that the variance values in each axis are decreasing.
Alternatively, the alignment can be performed using three fiducial points [3].

2.4 Remarks

The CF approach does not allow exact isometry-invariant surface matching, as
the embedding is not exactly isometric and inevitably introduces an error. In
other words, generally dCF(f(S),S) > 0 for a surface S and its isometry f . The
algorithm is sensitive to the definition of the boundaries of the surfaces, and does
not allow for matching of surfaces with different topologies, or more generally,
partial matching.

The alignment ambiguity and the use of rigid matching algorithms for the
canonical forms poses a restriction on the number of the surface samples. It must
be sufficiently large (N ∼ 1000) in order for the alignment and matching to work
accurately. In [3], we found that 2500 samples were required for face recognition
with a reasonable recognition rate. The number of points is a major issue in
terms of computational complexity, as the cost of the stress and its gradient
computation is O(N2), while the computation of the geodesic distance matrix
is at least O(N2).

Another major issue in face recognition with large databases is precompu-
tation of distances between faces. Using the method of moments, in the CF
approach it is possible to precompute the moments signatures for all faces in
the gallery. When a new probe face has to be matched, its moment signature is
computed and efficiently matched to the gallery signatures.

3 Generalized Multidimensional Scaling

The main thesis of this paper is measuring the intrinsic similarity of two fa-
cial surfaces by embedding them into each other, based on [9]. Embedding two
isometric surfaces into each other results in zero embedding error. In the gen-
eral case when two surfaces are not isometric, the embedding error is a measure
of their similarity. Conceptually, the difference between Euclidean and partial
embedding is presented in Figure 1.

We assume to be given the model surface S from the gallery, sampled at
N points, and the probe surface Q sampled at M points (typically, M � N).
Possibly, Q is partially missing. We are looking for a mapping

ϕ : ({q1, ..., qN} ⊂ Q,∆Q)→ ({s1, ..., sN} ⊂ S,∆S) ,
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Fig. 1. Schematic representation of face recognition using expression-invariant canoni-
cal forms obtained using MDS (left), and the proposed method of embedding one facial
surface into another using GMDS (right)

such that dQ(qi, qj) is as close as possible to dS(ϕ(qi), ϕ(qj)) for all i, j = 1, ..., N .
Note that dS is assumed continuous here, as si = ϕ(qi) can be an arbitrary point.
In practice, the values of dS must be approximated numerically. We refer to such
ϕ as partial embedding of Q into S.

In order to compute the partial embedding, we use a procedure similar to
MDS, which we call the generalized MDS or GMDS [9]. Since our new embedding
space S is a general 2D manifold, we have to represent the points on S in their
parametric coordinates. Let us assume that Q is given in parametric from by the
mapping u ∈ I ⊂ R

2 → S, where I is the parametrization domain, which can
be assumed to be [0, 1]× [0, 1]. Similarly to the Euclidean case, the generalized
stress is defined as [9]

σgen(U;∆Q,W, dS) =
∑
i>j

wij (dS(ui,uj)− dQ(qi, qj))
2
. (6)

Here ui, i = 1, ..., M denote the vectors of parametric coordinates of si, and W =
(wij) is a symmetric matrix of non-negative weights. In case of full matching,
wij = 1 are used. When the probe is partially missing, the weights must be
chosen differently [9].

Minimization of the stress is performed iteratively, like in the former case,
using gradient-descent type methods or more sophisticated optimization algo-
rithms [16]. Note that, in practice, dS is available only between N samples of S.
Hence, it must be approximated for all the rest of the points. This computation
is critical for the GMDS. For that goal we developed the three-point geodesic
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distance approximation. The idea of this numerical procedure is to produce a
computationally efficient C1-approximation for dS and its derivatives, interpo-
lating their values from the matrix ∆S of pairwise geodesic distances on S. For
further details, the reader is referred to [17].

The partial embedding distance function between the probe surface Q and
the model surface S is defined as

dPE(S,Q) =

√
argminU σgen(U;∆Q,W, dS)∑

i>j wij
, (7)

which is independent of the number of points. dPE has length units and can be
interpreted as an RMS metric distortion.

3.1 Partial Matching

One of the most important properties of dPE is that it allows to perform par-
tial matching of surfaces (note that, indeed, dPE(S,Q) is not symmetric, which
allows to embed a patch of Q into S). Partial matching is important in practi-
cal face recognition applications, where imperfections of the acquisition devices
and occlusions of the face (e.g. when the subject is wearing glasses) result in a
partially missing probe surfaces.

Let us assume that we wish to compare two facial surfaces: a model S and
a probe Q, which is acquired with occlusions such that only a patch Q′ ⊂ Q is
available. If Q′ is sufficiently large, dPE(S,Q′) ≈ dPE(S,Q); the difference can be
bounded by the diameter ofQ\Q′ [9]. Yet, it is tacitly assumed that the geodesic
distances on Q′ are given by dQ′(q1, q2) = dQ|Q′(q1, q2) (this notation implies
that dQ′ (q1, q2) = dQ(q1, q2) for all q1, q2 ∈ Q′). However, dQ′ is computed
numerically on Q′ and can be inconsistent with dQ|Q′ . The problem potentially
arises for example with geodesics that touch the boundary ∂Q′; such geodesics
can be different on Q and Q′ (see Figure 2), and the corresponding distance is
therefore inconsistent. To resolve this problem, we assign zero weight wij = 0
to every pair of points (qi, qj) such that dQ′(qi, ∂Q′)+ dQ′(qj , ∂Q′) < dQ′ (qi, qj)
For more details, the reader is referred to [17].

3.2 Comparison to the Canonical Forms Approach

A major difference of the CF and the PE algorithms is that in the former,
isometric embedding is used only as an intermediate stage to obtain an isometry-
invariant representation of the surfaces, whereas in our approach isometric
embedding is used directly to compute the similarity between surfaces. The
consequences of this difference are several. First, the codimension of the canon-
ical form in the embedding space is at least one. In PE, the codimension is
always zero. Secondly, embedding into Euclidean space still leaves the degrees
of freedom of an Euclidean isometry (rotation, translation and reflection). In
embedding into a general surface, if it is rich enough, such ambiguity usually
does not exist. Thirdly, this ambiguity requires alignment of the CF canonical
forms, which is avoided in PE. Due to the fact that the metric distortion serves
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q2

q1

dQ (q1,q2)

dQ (q1,q2) 

Q Q

Fig. 2. Partial matching problem. Shown in blue dotted is a geodesic between the
points q1, q2 ∈ Q; the corresponding inconsistent geodesic on Q′ is shown in black.

Table 1. Comparison of partial embedding and the canonical forms algorithm

Canonical forms Partial Embedding
Accuracy

Distance function

Alignment

Partial matching
Precomputation

Samples
Preprocessing

Numerical core

up to minimum distortion
caused by the embedding
space
moments or ICP

required to resolve rotation,
translation and reflection
ambiguity
difficult
possible using moment signa-
tures
∼ 1000
requires geometrically-
consistent cropping of the
facial surfaces using geodesic
mask; particularly sensitive
to lip cropping in case of
open-mouth expressions
FMM, MDS

up to numerical errors

embedding error is used
as distance
no alignment ambiguity

natural
possible to some extent using
hierarchial matching
10 ∼ 100
the probe can be an arbitrary
patch of the facial surface

FMM, GMDS

as a dissimilarity measure in PE rather than a side effect (as in CF), a small
number of surface samples suffices for accurate matching, and practically, as few
as tens of points were enough in all of our face recognition experiments.

Another major issue is preprocessing. The performance of the CF approach
depends heavily on the facial surface preprocessing, since it is important that
the probe and the model surfaces contain the same region of the face. In [3],
a geodesic mask was used to crop the facial surfaces. The problem is especially
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acute if one wishes to handle expressions with open mouth and uses a topological
constraint by cutting off the lips [10]. The PE approach, on the other hand, is
insensitive to preprocessing, since it allows partial matching. Practically, the
probe can be an arbitrary patch of the model surface.

Since dPE between any two faces is computed iteratively, it is impossible to
precompute it as in the CF approach. However, it is still possible to speed-up
the matching significantly using a hierarchial comparison. We address this issue
in Section 4. The comparison of the PE and the CF approaches is summarized
in Table 1.

4 Hierarchial Matching

An apparent limitation of the proposed face recognition method stems from the
fact that, unlike the CF approach that allows to match canonical forms using mo-
ment signatures, the partial embedding distance cannot be precomputed. ¿From
this point of view, our approach is similar to methods proposing the use of the
iterative closest point algorithm (ICP). Taking, for example, about 1 sec per
comparison, matching a probe to a gallery of 100, 000 faces would take about 30
hours on a single CPU. Such computational complexity makes the one-to-many
face recognition scenario infeasible. However, our method can still be used for
one-to-many face recognition with very large databases by taking advantage of
a hierarchical matching scheme, which is briefly outlined here.

Let the gallery database consist of K0 faces,
{S0

1 , ...,S0
K0

}
. We aggregate

groups of faces close in the sense of dPE, replacing them with a single represen-
tative, as usually done in vector quantization [18]. The number of faces forming
an aggregate can be either constant or adaptive, and depends on the specific
aggregation algorithm used. As a result, a smaller set

{S1
1 , ...,S1

K1

}
is obtained.

Repeating the procedure iteratively, a tree-like structure is created, where at
the top level there is a relatively small set

{SL
1 , ...,SL

KL

}
of representative faces.

Here L denotes the number of levels in the tree. Such hierarchial representation
can be computed off-line once for a given database. Adding new faces to it can
be made very efficient using techniques from heap and sorting trees, requiring
O (log K) comparisons.

Hierarchical comparison of a probe face to the entire database is performed
in a top-down manner: first, the probe Q is compared to KL top-level faces{SL

i

}
; SL

i minimizing dPE
(SL

i ,Q) is selected, and the probe is compared to
its subtree. The process is repeated until the lowest level is reached. Such a
scheme allows to perform face recognition with only O (log K) matches and
is suitable for one-to-many comparison scenarios with very large database of
faces.

5 Results

The presented face recognition algorithm was tested on a set of 30 subjects
from the Notre Dame 3D face database used in the FRGC competition [1, 2].
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GALLERY   P R O B E S   

Fig. 3. Gallery (leftmost) and four probe faces of a representative subject in the data-
base

MILD OCCLUSION SEVERE OCCLUSION 

Fig. 4. Left: probe face with mild occlusions; right: the same probe face with severe
occlusions. Surface samples are denoted by black dots.

The gallery consisted of one neutral expression per subject; five instances with
moderate facial expressions were used as probes for each subject, yielding the
total of 180 faces (see Figure 3). Gallery faces were cropped with a wide rec-
tangular mask, which included most of the facial surface. These surfaces were
subsequently sampled on a regular Cartesian grid consisting of approximately
2500 points. Pairwise geodesic distances between these points were measured
using an efficient modification of parametric FMM [12, 12, 19] requiring about
1 sec for computing a 2500 × 2500 distance matrix. Two sets of probes were
created: in the first experiment, the probe faces were cropped using a nar-
row geodesic mask, which excluded hair and other unrelated details, covering
most of the relevant parts of the face (Figure 4, left). In the second experiment,
random parts of the surface were intentionally removed, resulting in severe oc-
clusions of the facial surface (see example in Figure 4, right). In both exper-
iments, the surfaces were sampled at 53 points using furthest point sampling
strategy [20].
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Fig. 5. ROC curves obtained in the face recognition experiment with mild (solid) and
severe (dashed) occlusions

Face recognition was carried out by embedding the probe surface into the
gallery surface using GMDS1; dPE served as a dissimilarity measure between
the faces. Figure 5 depicts the receiver operator characteristic (ROC) curves
obtained in the two experiments. Comparison of mildly and severely occluded
faces resulted in about 3.1% and 5.5% equal-error rate (EER), respectively. In
both experiments 100% rank-1 recognition rate was achieved. Our non-optimized
C code required about 1÷ 5 sec per surface comparison.

6 Conclusions

Following the isometric model of facial expression introduced in [3], we proposed
a novel expression-invariant face recognition algorithm. The main idea of our
approach is to embed the probe facial surface into that of the model. Faces
belonging to the same subject are nearly isometric and thus result in low em-
bedding error, whereas different subjects are expected to have different intrinsic
geometry, and thus produce higher embedding error. Unlike the previous ap-
proaches, our method does not introduce unnecessary metric distortions due to
the embedding itself. Moreover, the probe and the model are not required to
contain the same amount of information; matching a probe with partially miss-
ing data is natural to our approach. To the best of our knowledge, it is the first
method to allow partial isometry-invariant matching of surfaces in general and
of facial geometry in particular.

The numerical core of our face recognition method is the GMDS procedure,
which has the same computational complexity as that of the standard MDS
1 The GMDS MATLAB implementation will be available for download from
http://tosca.cs.technion.ac.il as a part of the TOSCA (Toolbox for Surface
Comparison and Analysis) Project.
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procedure. Although our algorithm does not permit pre-computation of simple
efficiently comparable signatures, we outlined a hierarchical matching strategy
that enables the use of our approach for one-to-many face recognition in large
databases.

Promising face recognition results were obtained on a small database of 30
subjects even when the facial surfaces were severely occluded. In sequel studies,
we intend to demonstrate the performance of our approach on larger databases
with extreme facial expression. Noting that GMDS is capable of finding intrin-
sic correspondence between two facial surfaces, our approach can be readily
extended to handle texture as well, similarly to [21].

References

1. K. Chang, K. W. Bowyer, and P. J. Flynn. Face recognition using 2D and 3D facial
data. In ACM Workshop on Multimodal User Authentication, pages 25–32, 2003.

2. P. J. Flynn, K. W. Bowyer, and P. J. Phillips. Assessment of time dependency
in face recognition: an initial study. In Audio- and Video-Based Biometric Person
Authentication, pages 44–51, 2003.

3. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Three-dimensional face recog-
nition. Intl. J. Computer Vision, 64(1):5–30, August 2005.

4. A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Trans.
PAMI, 25(10):1285–1295, 2003.

5. I. Borg and P. Groenen. Modern multidimensional scaling - theory and applications.
Springer-Verlag, Berlin Heidelberg New York, 1997.

6. J. Walter and H. Ritter. On interactive visualization of high-dimensional data using
the hyperbolic plane. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, pages 123–131, 2002.

7. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. On isometric embedding
of facial surfaces into S

3. In Proc. Int’l Conf. Scale Space and PDE Methods in
Computer Vision, number 3459 in Lecture Notes on Computer Science, pages 622–
631. Springer, 2005.

8. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-invariant face
recognition via spherical embedding. In Proc. ICIP, 2005.

9. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional
scaling: a framework for isometry-invariant partial surface matching. Proc. Nat.
Acad. Sci., 103(5):1168–1172, January 2006.

10. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-invariant repre-
sentations for human faces. Technical Report CIS-2005-01, Dept. of Computer
Science, Technion, Israel, June 2005.

11. F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry
invariant recognition of point cloud data. Foundations of Computational Mathe-
matics, 2005. to appear.

12. R. Kimmel and J. A. Sethian. Computing geodesic on manifolds. In Proc. US
National Academy of Science, volume 95, pages 8431–8435, 1998.

13. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some its
algorithmic applications. Combinatorica, 15:333–344, 1995.

14. M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh. A multigrid ap-
proach for multidimensional scaling. In Proc. Copper Mountain Conf. Multigrid
Methods, 2005.



408 A.M. Bronstein, M.M. Bronstein, and R. Kimmel

15. A. Tal, M. Elad, and S. Ar. Content based retrieval of VRML objects - an iterative
and interactive approach. In Proc. Eurographics Workshop on Multimedia, 2001.

16. D. Bertsekas. Nonlinear programming. Atlanta Scientific, 2 edition, 1999.
17. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Effcient computation of the

Gromov-Hausdorff distance for smooth surfaces. Technical Report CIS-2006-01,
Dept. of Computer Science, Technion, Israel, January 2006.

18. A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer
Academic Publishers, Boston, 1992.

19. A. Spira and R. Kimmel. An efficient solution to the eikonal equation on parametric
manifolds. Interfaces and Free Boundaries, 6(3):315–327, 2004.

20. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy
for progressive image sampling. IEEE Trans. Image Processing, 6(9):1305–1315,
1997.

21. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening
via multi-dimensional scaling. IEEE Trans. Visualization and computer graphics,
9(2):198–207, 2002.



An Integral Solution to Surface Evolution PDEs
Via Geo-cuts

Yuri Boykov1, Vladimir Kolmogorov2, Daniel Cremers3, and Andrew Delong1

1 University of Western Ontario, Canada
{yuri, adelong3}@csd.uwo.ca

2 University College London, UK
vnk@adastral.ucl.ac.uk

3 University of Bonn, Germany
cremers@cs.ucla.edu

Abstract. We introduce a new approach to modelling gradient flows
of contours and surfaces. While standard variational methods (e.g. level
sets) compute local interface motion in a differential fashion by estimat-
ing local contour velocity via energy derivatives, we propose to solve
surface evolution PDEs by explicitly estimating integral motion of the
whole surface. We formulate an optimization problem directly based on
an integral characterization of gradient flow as an infinitesimal move of
the (whole) surface giving the largest energy decrease among all moves
of equal size. We show that this problem can be efficiently solved us-
ing recent advances in algorithms for global hypersurface optimization
[4, 2, 11]. In particular, we employ the geo-cuts method [4] that uses ideas
from integral geometry to represent continuous surfaces as cuts on dis-
crete graphs. The resulting interface evolution algorithm is validated on
some 2D and 3D examples similar to typical demonstrations of level-set
methods. Our method can compute gradient flows of hypersurfaces with
respect to a fairly general class of continuous functionals and it is flex-
ible with respect to distance metrics on the space of contours/surfaces.
Preliminary tests for standard L2 distance metric demonstrate numerical
stability, topological changes and an absence of any oscillatory motion.

1 Introduction

As detailed in [4, 11, 12], discrete minimum cut/maximum flow algorithms on
graphs can be effectively used for optimization of a fairly wide class of function-
als defined on contours and surfaces in continuous metric spaces. So far, graph
based methods were presented as a global optimization alternative to local vari-
ational optimization methods such as the level set method. Efficient algorithms
for finding global optima have a number of advantages over local optimization
methods. However, in some cases it is necessary to observe gradual changes of a
contour/surface that they display under gradient flow (or gradient descent). For
example, gradient flow models dynamics of many natural phenomena in physics.
In computer vision, ability to track gradual changes in segmentation allowed
variational methods to successfully incorporate shape priors [8, 14].
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In this paper we propose a new integral approach to computing gradient flow
of interfaces with respect to a fairly general class of energy functionals. The pro-
posed algorithm generates a timely sequence of cuts corresponding to gradient
flow of a given contour. Note that the proposed method is not a new imple-
mentation of level set methods but rather an alternative numerical method for
evolving interfaces. Our method does not use any level set function to represent
contours/surfaces. Instead, it uses an implicit contour/surface representation via
geo-cuts [4]. As the level set method, our approach handles topological changes
of the evolving interface.

2 Variational Methods and PDEs in Computer Vision

Numerous computer vision problems can be addressed by variational methods.
Based on certain assumptions regarding the image formation process, one for-
mulates an appropriate cost functional which is subsequently minimized by im-
plementing the Euler-Lagrange equations in a gradient flow partial differential
equation (PDE). This technique has become standard in various fields of com-
puter vision ranging from motion estimation [9, 3, 17, 13], over image enhance-
ment [15, 16] to segmentation [10, 6]. While not all PDEs are derived from a
variational approach, in this work we will focus on the class of PDEs which
correspond to the gradient flow to an underlying variational principle.

Despite their enormous success in the local optimization of a large class of
cost functionals, PDEs suffer from certain drawbacks. In particular, they are
inherently differential approaches, they rely on the notion of an energy gradient
which – in many cases — requires intense numerical computations. The numeri-
cal discretization of PDEs requires a careful choice of appropriate time step sizes.
Extensive research went into determining conditions which guarantee stability
of the respective implementations. In practice, meaningful time step sizes are
often chosen based on various heuristics.

In contrast to this differential approach, we develop in this paper an integral
approach to solving a certain class of gradient flow PDEs. To this end we revert
to efficient combinatorial optimization methods acting on a discrete space. In
a number or recent papers [4, 2, 11], it was shown that various optimization
problems defined on surfaces in continuous spaces can be efficiently solved by
discrete combinatorial optimization methods. In contrast to these works, the
present paper is not focussed on determining the global optima of respective cost
functions, but rather on actually modelling the local gradient descent evolution of
the corresponding variational approaches. In this sense, we hope to further bridge
the gap between continuous variational approaches and discrete combinatorial
approaches to optimization.

3 From Differential to Integral Approach

Our main goal is an algorithm for computing gradient flows for hypersurfaces
based on novel optimization techniques [4, 2, 11] which are fundamentally
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different from standard variational methodology. Gradient flow for contours and
surfaces amounts to evolving an initial boundary under Euler-Lagrange equation
of a given energy functional. Such propagation of surfaces corresponds to many
natural phenomena and it can be derived from the laws of physics. Standard
variational calculus justifies the corresponding PDE in the context of (local)
energy optimization and provides numerical methods (including level-sets) for
solving it directly via finite difference or finite element schemes. In contrast, our
new approach solves the corresponding PDE indirectly.

Our approach to gradient flow was motivated by the numerical stability of
global optimization methods in [4, 2, 11]. In this paper we show how to turn them
into robust surface evolution methods that may overcome some of the numerical
limitations of standard variational techniques. Note that variational methods
rely on estimates of energy derivatives in order to compute each point’s local
differential motion (velocity). In contrast, our main idea is to compute integral
motion of the surface as a whole. In particular, geo-cuts [4] allow to compute
such motion by means of integral geometry without estimating derivatives.

When trying to model surface evolutions by global optimization approaches,
we are faced with the following discrepancy between local and global optimiza-
tion methods: while existing global optimization methods [4, 2, 11] are merely fo-
cussed on finding the boundary with the lowest energy, the gradient approaches
make use of the energy gradient, i.e. they focus on the maximal energy reduction
per change in the boundary. Therefore, any algorithm for computing gradient
flow needs to have means to incorporate a measure of the boundary change.

3.1 Distances Between Contours

There are numerous metrics to measure change between boundaries. In fact, the
question of which metric on the space of contours should be used has been largely
ignored in the context of calculus of variation. Most so-called gradient descent
evolutions implicitly assume an L2 inner product. Several recent advances were
made regarding the derivation of Euler-Lagrange equations with respect to more
sophisticated contour metrics, focussed either on using the correct metric [19],
or on designing novel gradient flows with certain desirable properties [7]. A very
similar freedom in the choice of metric on the space of contours will also arise
in our novel integral formulation of boundary evolution.

Note that motion of a contour C in a differential framework is described by a
(normal) vector field v = dC

dt where velocity vector vs is given for every contour
point s. Then, standard L2 measure for boundary change is defined as ||dC

dt ||2 =∫
C
|vs|2ds = 〈dC

dt , dC
dt 〉 using Euclidean inner product 〈, 〉. As mentioned above,

employing other inner products on the space of contours will entail different
kinds of gradient flows of a contour.

In order to avoid local differential computations, we will represent the motion
of a contour C by integral measures of boundary change: a distance metric on
the space of contours that for any two contours C and C0 assigns a (nonnegative)
distance value dist(C, C0). Such distance metric could be consistent with ideas
for measuring boundary change in the differential framework if for C → C0
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(a) Differential framework (b) Integral framework

〈dC, dC〉 =
C0

dC2
s ds dist(C,C0) = 2

∆C
d0(p)dp

Fig. 1. L2 distance between two near-by contours. In the integral framework dist(C,C0)
is equal to a weighted area of the highlighted region. The weight of each point p is given
by a distance d0(p) to the nearest point on C0.

dist(C, C0) = 〈dC, dC〉 + o(||dC||2) (1)

where dC = C − C0 is a field of (normal) vectors defined on points in C0 and
connecting them with points on C as shown in Figure 1(a). In other words: The
integral distance metric is consistent with the differential approach if the two
metrics are identical up to higher order terms.

Example 1. (L2 metrics) Figure 1 illustrates relationship between differential
and integral approaches to measuring boundary change between two contours
for the most standard case of L2 inner product 〈, 〉. The corresponding distance
metric on the space of contours in R2 is

dist(C, C0) = 2 ·
∫

∆C

d0(p)dp

where p are points in R2, function d0(p) is a distance from p to the nearest
point on C0 (distance map), and ∆C is a region between two contours. Then, (1)
holds because integrating the distance function 2d0(p) along a (normal) direction
connecting some point s ∈ C0 and a point q ∈ C gives ||q − s||2 = dC2

s .

Our general integral approach to front propagation is described in the next
subsection. The method is well defined for any distance metric on the space
of contours. However, if one wants to model the gradient flow corresponding
to a differential formulation with a given inner product 〈, 〉 then the consistent
distance metric (1) should be used.

3.2 Integral Formulation of Gradient Flow

Our method for solving PDEs for contours or surfaces evolution is motivated
as follows. Gradient flow (descent) of an interface C under any given energy
functional F (C) can be intuitively viewed as a temporal sequence of infinitesimal
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steps where each step gives the largest decrease of the contour energy among all
steps of the same size. This almost banal interpretation of the gradient descent
suggests that the contour Ct+dt corresponding to an infinitesimal step in the
gradient descent from a contour Ct can be obtained by solving the following
constrained optimization problem:

min
C : dist(C,Ct)=ε

F (C)

for some (arbitrarily) small value ε > 0 fixing the distance dist(C, Ct) from the
contour Ct. Equivalently, the method of Lagrangian multipliers shows that Ct+dt

should also solve unconstrained optimization problem

min
C

F (C) + λ · dist(C, Ct)

for some (arbitrarily) large value of parameter λ. These formulations for Ct+dt do
not establish an explicit relationship between the temporal step size dt and the
values of ε or λ. We just know that for each small dt there is some corresponding
small ε = ε(dt) or some corresponding large λ = λ(dt).

In fact, it is not difficult to establish an exact relationship between λ and dt
using a well known PDE for evolution of an interface C under a gradient flow
(descent) with respect to a given energy functional F (C). Our general approach
to computing gradient flows will be based on optimization of energy (2).

Theorem 1. Consider a family of contours Ct minimizing energy

Et(C) = F (C) +
1

2(t− t0)
· dist(C, C0) (2)

where metric dist(C, C0) is consistent with some inner product 〈, 〉 according to
equation (1). Then, as t→ t0

Ct = C0 + v · (t− t0) + o(∆t)

where vector field v = − dF
dC is a gradient of F with respect to inner product 〈, 〉.

That is, as t→ t0 the contour Ct solves the standard gradient flow PDE

∂C

∂t
= −dF

dC
(3)

Proof. Since Et(C) = F (C) + 1
2(t−t0)

〈C − C0, C − C0〉 then any contour C

optimizing Et should satisfy

0 =
dEt

dC
=

dF

dC
+

1
(t− t0)

· (C − C0).

Thus, optimality of Ct for Et implies Ct−C0 = −(t− t0) · dF
dC which is equivalent

to the standard gradient flow equation (3) as t→ t0.
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Standard variational (differential) methods for computing contour evolution un-
der gradient flow, including level sets, explicitly estimate the derivative dF

dC and
use finite differences or finite elements to approximate the PDE (3). Theorem 1
suggests an alternative integral approach to computing gradient flows. Assuming
that C0 is a current state of the contour, we can obtain an optimal contour Ct

minimizing (2) for some small time step ∆t = (t−t0). The gradient flow problem
is solved by a sequence of optimal steps {C0 → Ct} where at each new iteration
C0 is reset to the optimal contour computed in the previous step.

Optimization of Et may look like a difficult task. However, our integral ap-
proach is practical because a wide class of continuous functionals F (C) and
metrics dist(C, C0) in energy (2) can be efficiently optimized by recent global
methods [4, 2, 11]. In particular, Section 4 describes details of a discrete approxi-
mation algorithm for gradient flows based on geo-cuts [4]. This algorithm is based
on implicit representation of continuous contours as cuts on discrete graphs. Op-
timization of continuous contour/surface energy (2) via geo-cuts avoids explicit
differentiation of Et and relies on efficient combinatorial algorithms.

3.3 Discussion and Relation to Previous Approaches

Note that energy Et in (2) can be globally minimized using geo-cuts [4] when
the first term, hypersurface functional F (C), includes anisotropic Riemannian
length/area and any regional bias. It is important, however, that energy (2)
contains another term dist(C, C0). This second term is critical for implement-
ing gradient flow instead of global minimization of functional F (C). Note that
dist(C, C0) enforces shape stabilization and slows down the contour generating
gradual motion instead of a jump into a global minima. As shown in Exam-
ple 1 from Section 3.1, standard gradient flow with respect to L2 inner product
corresponds to shape constraint dist(C, C0) penalizing deviation of C from C0
according to the area between the contours weighted by the distance from C0. In
fact, this is a simple regional bias that can be easily incorporated into geo-cuts.
Additional details are given in Section 4.

Our approach can also compute gradient flow with respect to inner prod-
ucts different from L2. One has to determine the distance metric dist(C, C0)
consistent with the corresponding inner product as in equation (1).

Generally speaking, one can use our general framework for propagating hyper-
surfaces by optimizing energy (2) with an arbitrary distance metric dist(C, C0).
In this case the method may not really correspond to any true gradient flow but it
may still generate some gradual motion of an interface. That may be sufficient for
many practical applications in computer vision that do not need exact gradient
flow. The results in [19, 7] suggest that using specialized distance metrics could be
beneficial in applications.

Interestingly, some existing discrete algorithms for active contours are special
cases of our general approach for some specific distance metric dist(C, C0).

Example 2. (DP snakes) A well-known dynamic programming approach to 2D
snakes [1] uses control points to represent discrete snake C. Then, a typical snake
energy functional F (C) is iteratively minimized by dynamic programming over
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positions of control points. In order to simulate gradient-descent-like motion,
the algorithm in [1] allows each point to move only in a small box around their
current position. Intuitively speaking, this idea does capture the spirit of gradient
flow motion. However, as easily follows from our theories in Section 3.2, the
motion generated in [1] corresponds to energy (2) with a 0 − 1 boxy distance
metric on a space of snakes dist(C, C0) =

∏
p δ|dCp|>ε where ε is a given box

size and dCp = C(p) − C0(p) is a shift of snake’s control point p. This distance
metric is not consistent with any inner product (bilinear form). Therefore, the
corresponding algorithm does not generate a true gradient flow1. At the same
time, our theories suggest a simple correction to the problem; In order to get
a true L2 gradient flow, DP-snakes algorithm [1] could amend box-based move
constraints with a quadratic motion penalty dist(C, C0) =

∑
p dC2

p which can
be easily handled by dynamic programming.

Example 3. (Fixed Band Graph-Cuts) An approach to segmentation in [18] is
very similar to DP-snakes algorithm in [1]. Dynamic programming in DP-snakes
is replaced by graph cuts but [18] still uses the idea of a fixed size “box”. Since
graph cuts do not use control points to represent contours and instead rely
on implicit binary graph-partitioning representation, the boxes around control
points are replaces by a small band around a current cut. Otherwise, the active
contour algorithm presented in [18] can be described through energy (2) with
the same 0 − 1 boxy distance metric dist(C, C0) = δ|dC|h>ε where |dC|h is the
Hausdorff distance between C and C0. It follows that the method in [18] does not
correspond to gradient flow for any reasonable inner product. In fact, fixed-band
approach in [18] is likely to generate a jerky non-smooth motion. In contrast,
our theoretical framework allows a principled approach to contour evolution via
graph cuts. Using proper distance dist(C, C0) consistent with some (continuous)
inner product 〈, 〉 allows to control geometric artifacts that may arise in front
propagation using discrete optimization techniques.

4 Computing Gradient Flow Via Geo-Cuts

As discussed before, there are a number of algorithms that can (globally) mini-
mize continuous functional (2) and practically implement our approach to solv-
ing gradient flow PDEs. This paper concentrates on a solution based on
geo-cuts [4].

4.1 Review of Geo-cuts

Geo-cuts is a graph based approach to minimizing continuous functionals E(C)
based on representing contours as cuts on a discrete graph (Fig. 2). Nodes in
this graph correspond to sampled points in space. A cut is a binary labeling of

1 A standard DP snake [1] under Euclidean length functional F (C) will not generate
a true mean curvature motion. In particular, this snake may not converge to a circle
before collapsing into a point.
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Fig. 2. Geo-cuts: Any continuous contour C corresponds to a cut on a graph. Edge
weights define discrete cut metric assigning length to C based on the cost of the cor-
responding cut. With appropriately chosen weights, cut metric approximates any con-
tinuous anisotropic Riemannian metric.

these nodes. In the context of continuous contour representation, binary labels
{1, 0} say if the point (node) is inside or outside of the contour. Note that this
implicit representation of continuous contours does not say precisely where the
boundary is between the two neighboring graph nodes (points in space) with
different labels. In fact, the lack of sub-pixel accuracy does not cause problems
for geo-cuts because they do not use estimates of local gradients/derivatives, e.g.
curvature, and rely on methods of integral geometry instead.

There are also two special nodes, terminals s and t (source and sink). Graph
edges are n-links and t-links, as in Fig. 2. Typically, n-links encode regularization
term in the energy (length or area) while t-links encode regional bias.

The first step in the geo-cuts approach is to construct a graph whose cut
metric approximates that of functional E(C). Such construction exists for a fairly
large class of continuous functionals E, as shown in [4, 12]. In general, E(C) can
be any submodular (graph-representable) functional over contours/surfaces. In
particular, it can include the following terms:

– Geometric length/area under a fairly wide class of continuous metrics (in-
cluding any anisotropic Riemannian metric);

– Flux with respect to any continuous vector field;
– Regional term integrating arbitrary potential function over the interior of C.

After constructing an appropriate graph, the cut with the smallest cost can be
computed very efficiently via min cut/max flow algorithms.

We now apply this framework to the problem of computing gradient flow
at time t given current contour C0. In order to minimize functional Et(C) in
eq. (2), we need to approximate terms F (C) and dist(C, C0) with a discrete cut
metric. According to the characterization above, the first term F (C) can be any
submodular functional over contours/surfaces. This covers a widely used special
case when F is a geometric length/area in a Riemannian metric induced by the
image. Let us consider the second term.

As discussed in section 3.1, we have some freedom in choosing function
dist(C, C0). There are many distance measures corresponding to different inner
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products 〈, 〉. For example, in order to incorporate standard L2 inner product
we can use the distance function described in example 1. It can be rewritten as

dist(C, C0) = −2 ·
∫

int(C0)
d0(p)dp + 2 ·

∫
int(C)

d0(p)dp (4)

where int(C) is the interior of C and d0(p) is now the signed distance map; it
is negative inside C0 and positive outside. The first term above is a constant
independent of C. The second term is a regional bias that can be incorporated
into geo-cuts using t-links. Note that we can use non-Euclidean signed distance
maps to implement metrics on the space of contours different from L2.

4.2 Minimizing Energy Et with Geo-cuts

Our approach to gradient flows amounts to finding small moves C(t) from C(0) =
C0 for (t − t0) < δt and then resetting time and energy (2) for C′

0 = C(t).
Section 4.3 describes this move-reset algorithm. In this section, however, we
assume that C0 is fixed and discuss properties of a timely sequence of cuts
{C(t)|t ≥ 0} where each particular cut C(t) is a global minima of Et(C) for a
given t. For simplicity of notation we will assume that t0 = 0.

It can be shown that the time axis can be split into a finite number of intervals
[ti, ti+1] such that there is cut Ci which is optimal for all t ∈ [ti, ti+1]. Our goal
is therefore to find a sequence of critical time instances t1, t2, t3, . . . , tn when
an optimal cut changes. We will also need to find the corresponding sequence
of optimal cuts C1, C2, C3, . . . , Cn. Note that the initial contour C0 will be an
optimal cut for any t ∈ [0, t1]. Also, “final cut” Cn is a global minimizer of
functional F (C). It may happen that C0 is already a global minimum, in which
case n = 0. Below we list a number of useful facts about this sequence of cuts.

Remark 1. It is possible to prove that

F (C0) > F (C1) > F (C2) > ... > F (Cn)

Therefore, the energy will never increase during the algorithm. This will prevent
any oscillatory behaviour present in some implementations of level sets.

Remark 2. Similar to the continuous case, the gradient flow (gradient descent)
algorithm above is related to the following constrained optimization problem
(where C is now a discrete cut and F (·) encodes cut metric):

min
C : dist(C0,C)=ε

F (C) (5)

More precisely, an optimal solution Ct for energy (2) at any given time t > 0
solves the constrained minimization problem above for

εt = dist(C0, C) (6)

Indeed, suppose that there is some other cut C such that dist(C0, C) = εt and
F (C) < F (Ct). Then, F (C) + 1

2tdist(C0, C) < F (Ct) + 1
2tdist(C0, C) and we

have a contradiction to the fact that Ct is optimal for energy (2).
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Equation (6) explicitly determines the “size” of each gradient descent step
εi = dist(C0, Ci) generated by our algorithm. It is easy to show that

0 < ε1 < ε2 < . . . < εn <∞
Remark 3. An interesting observation is that C1 (the first cut different from
initial solution C0) is a solution for

min
C �=C0

F (C)− F (C0)
dist(C0, C)

The proof is based on the fact that at time t1 energy (2) has two distinct optimal
cuts C1 and C0. Thus, F (C0) = F (C1) + 1

2t1
dist(C0, C1) and the proof follows

from a standard “binary search” algorithm for ratio optimization. It also follows
that the corresponding optimal value of the ratio is equal to − 1

2t1
. Note that the

optimal (minimal) ratio value has to be negative (non-positive). Indeed, unless
C0 is a global minimizer of F (·) we have at least one cut (e.g. C1) where the
value of the ratio is negative (since F (C1) < F (C0)). Note that optimization of
the ratio above is meaningful in discrete formulation only. It can be shown that
in the continuous case the ratio above converges to −∞ as C → C0.

Remark 4. The first cut C1 is the most accurate gradient descent step from C0
as it corresponds to the smallest step size ε1. Ideally, we want to compute the
optimal solution of (5) for the smallest value of ε while ε1 is the smallest step
size where our graph cut algorithm can detect an optimal move. The size of that
smallest step ε1 is possibly due to approximation errors in our discrete graph-cut
formulation and may depend on graph “resolution”.

4.3 Summary of Gradient Flow Algorithm

It follows that the gradient flow is approximated the best when we reset to initial
cut C′

0 = C1 and update the energy (2) after each small move C1. In practice we
may not need to be so conservative but that needs to be checked experimentally.

It is possible to show that

ε1 ≈ (2t1 · ||∇F ||)2 = (2t1 · ||dF

dC
(C0)||)2 (7)

Indeed, using remark 3 and expression ε1 = dist(C0, C1) ≈ ||C1 − C0||2 we get

− 1
2t1

=
F (C1)− F (C0)

ε1
≈ 〈∇F, C1 − C0〉

ε1
≈ −||∇F || · ||C1 − C0||

ε1
≈ −||∇F ||√

ε1

Equation (7) allows to determine a stopping criteria for our algorithm when
we converged to a local minima where ∇F = 0. In practice we may stop if
the gradient of F is smaller than some predefined threshold, ||∇F || < δ, which
corresponds to the stopping condition

dist(C0, C1) < (2t1 · δ)2
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5 Experimental Validation

Although the focus of our paper is mainly theoretical, we have generated pre-
liminary results to show that gradient flow can indeed be approximated with an
integral representation of length and hypersurfaces. The image sequences that
follow were generated by combining the geo-cuts method for computing F (C)
and a signed distance map for computing dist(C, C0) as in (4). The distance
map is computed in such a way that for pixels p at the boundary of cut C0 there
holds d0(p) = ±0.5. (Pixel p is said to be at the boundary if it is 4-connected
to some pixel q in the other segment). In our tests we compute the first cut C1
and reset t′0 = t1, C

′
0 = C1. We use an implementation of maxflow graph-cuts [5]

as a tool for optimizing the energy. Note that in the figures below we show only
selected time frames of the gradient flow motion computed by out method.

In Figures 3, 6 and 7 we have intentionally used low-resolution grids to il-
lustrate that even extremely coarse integral representations can yield accurate
gradient flow motion, despite a lack of sub-pixel accuracy. Our test results on

(a) Curvature flow in “Manhattan” L1 metric (4-neighborhood)

(b) Curvature flow in “Octagonal” metric (8-neighborhood)

(c) Curvature flow in Euclidean (L2) metric (16-neighborhood)

Fig. 3. Length minimizing (curvature) flow of a 2D contour under different homoge-
neous metrics. Pixalization reflects the actual resolution used in the experiments and
demonstrates that our discrete geo-cuts representation of contours generates accurate
gradient flow without explicitly tracking the contour with sub-pixel accuracy as in
level-sets.
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Fig. 4. Empirical plot of a radius of a circle under curvature flow. Theoretically, this
function is r(t) =

√
const − 2t.

Fig. 5. Euclidean length minimizing flow of a 2D “sausage” (16-neighb). Note that the
straight sides have zero curvature and they do not move until the top and the bottom
sides (with positive curvature) collapse the “sausage” to a circle.

length/area minimization with a Euclidian metric demonstrate that our algo-
rithm first converges to a circle/sphere and then converges about the center to
a point–exactly the progression expected of a correct gradient flow simulation,
and is a critical test of any such algorithm.

A plot in Figure 4 presents empirical evidence confirming that gradient flow
generated by our method has accurate temporal dynamics. This plot shows
the radius of a circle evolving under (Euclidean) curvature flow computed by
our method. Our algorithm directly generates time ∆t for each step allow-
ing us to show actual temporal dynamics of the flow. The plot demonstrates
accurate temporal behaviour of the moving circle consistent with the theory.
The same plot also demonstrates that our algorithm can compute gradient
flow with a high temporal resolution so that the generated motion is very
gradual.

Figure 5 provides additional evidence of our method’s accuracy. We compute
(Euclidean) curvature flow of a “sausage” which gradually moves from the ends
where the curvature is non-zero while the straight sides do not move until the
sausage turns into a circle. This result would be impossible to obtain with a DP-
snake [1] or fixed-band graph cuts [18]. For example, each step of the algorithm
in [18] will uniformly erode the “sausage” from all sides. The “sausage” will
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Fig. 6. Length minimizing flow of a 2D contour (blue) under image-based anisotropic
Riemannian metric (16-neighborhood)

(a) Gradient flow for a cube (26-neighborhood)

(b) Gradient flow for a blob (26-neighborhood)

Fig. 7. Euclidean area minimizing flow of a surface in 3D. Voxalization reflects the
actual resolution.

collapse into a line interval (not into a point) in jumpy moves of equal size (band
width).

Our tests with image-based Riemannian metrics (e.g. see Figure 6) have
confirmed that topological changes in contours occur in a similar manner to level-
set methods, and that contours do not exhibit oscillatory motion but instead
remain fixed at local minima.

As of this writing, we have yet to experiment with more justified ways of
both controlling the time steps and the manner in which the distance map(s)
are used. One potential source of inaccuracy lies in the fact that the distance map
can be determined only with precision 0.5, since we use discrete representation
of contours via geo-cuts. The influence of this effect is most significant near the
boundary of contour C0. This suggests that using the first cut C1 is not neces-
sarily the most accurate method. The problem, however, may be solved by using
cuts Ck for bigger time step tk > t1. This idea can be combined with supersam-
pling the grid graph. Despite this potential difficulty, the experiments indicate
that even our preliminary implementation gives very encouraging results, which
show that geo-cuts approach may provide a numerically stable method for solv-
ing gradient flow PDEs.
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Abstract. The steady improvement in image/video editing techniques has en-
abled people to synthesize realistic images/videos conveniently. Some legal is-
sues may occur when a doctored image cannot be distinguished from a real one
by visual examination. Realizing that it might be impossible to develop a method
that is universal for all kinds of images and JPEG is the most frequently used
image format, we propose an approach that can detect doctored JPEG images
and further locate the doctored parts, by examining the double quantization effect
hidden among the DCT coefficients. Up to date, this approach is the only one that
can locate the doctored part automatically. And it has several other advantages:
the ability to detect images doctored by different kinds of synthesizing methods
(such as alpha matting and inpainting, besides simple image cut/paste), the abil-
ity to work without fully decompressing the JPEG images, and the fast speed.
Experiments show that our method is effective for JPEG images, especially when
the compression quality is high.

1 Introduction

In recent years, numerous image/video editing techniques (e.g. [1]-[12]) have been de-
veloped so that realistic synthetic images/videos can be produced conveniently without
leaving noticeable visual artifacts (e.g. Figures 1(a) and (d)). Although image/video
editing technologies can greatly enrich the user experience and reduce the produc-
tion cost, realistic synthetic images/videos may also cause problems. The B. Walski
event [17] is an example of news report with degraded fidelity. Therefore, developing
technologies to judge whether the content of an image/video has been altered is very
important.

Watermark [13] has been successful in digital right management (DRM). How-
ever, doctored image/video detection is a problem that is different from DRM. More-
over, plenty of images/videos are not protected by watermark. Therefore, watermark-
independent technologies for doctored image/video detection are necessary, as pointed
out in [14, 19]. Farid et al. have done some pioneering work on this problem. They pro-
posed testing some statistics of the images that may be changed after tempering [14]
(but did not develop effective algorithms that use these statistics to detect doctored im-
ages), including the interpolation relationship among the nearby pixels if resampling
happens when synthesis, the double quantization (DQ) effect of two JPEG compression

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 423–435, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Examples of image doctoring and our detection results. (a) and (d) are two doctored JPEG
images, where (a) is synthesized by replacing the face and (b) is by masking the lion and inpaint-
ing with structure propagation [9]. (b) and (e) are our detection results, where the doctored parts
are shown as the black regions. For comparison, the original images are given in (c) and (f).

steps with different qualities before and after the images are synthesized, the gamma
consistency via blind gamma estimation using the bicoherence, the signal to noise ratio
(SNR) consistency, and the Color Filter Array (CFA) interpolation relationship among
the nearby pixels [15]. Ng [18] improved the bicoherence technique in [14] to detect
spliced images. But temporarily they only presented their work on testing whether a
given 128 × 128 patch, rather than a complete image, is a spliced one or not. Lin et
al. [19] also proposed an algorithm that checks the normality and consistency of the
camera response functions computed from different selections of patches along certain
kinds of edges. These approaches may be effective in some aspects, but are by no means
always reliable or provide a complete solution.

It is already recognized that doctored image detection, as a passive image authen-
tication technique, can easily have counter measures [14] if the detection algorithm is
known to the public. For example, resampling test [14] fails when the image is further
resampled after synthesis. The SNR test [14] fails if the same noise is added across the
whole synthesized image. The blind gamma estimation [14] and camera response func-
tion computation [19] do not work if the forger synthesizes in the irradiance domain
by converting the graylevel into irradiance using the camera response functions [19]
estimated in the component images, and then applying a consistent camera response
function to convert the irradiance back into graylevel. And the CFA checking [15] fails
if the synthesized image is downsampled into a Bayer pattern and then demosaicked
again. That is why Popescu and Farid conclude at the end of [14] that developing im-
age authentication techniques will increase the difficulties in creating convincing im-
age forgeries, rather than solving the problem completely. In the battle between image
forgery and forgery detection, the techniques of both sides are expected to improve
alternately.

To proceed, we first give some definitions (Figure 2). A “doctored” image (Fig-
ure 2(a)) means part of the content of a real image is altered. Note that this concept
does not include those wholly synthesized images, e.g. an image completely rendered
by computer graphics or by texture synthesis. But if part of the content of a real im-
age is replaced by those synthesized or copied data, then it is viewed as “doctored”.
In other words, that an image is doctored implies that it must contain two parts: the
undoctored part and the doctored part. A DCT block (Figure 2(b)), or simply called a
“block”, is a group of pixels in an 8 × 8 window. It is the unit of DCT that is used in
JPEG. A DCT grid is the horizontal lines and the vertical lines that partition an image
into blocks when doing JPEG compression. A doctored block (Figure 2(c)) refers to
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Fig. 2. Illustrations to clarify some terminologies used in the body text. (a) A doctored image
must contain the undoctored part (blank area) and the doctored part (shaded area). Note that the
undoctored part can either be the background (left figure) or the foreground (right figure). (b) A
DCT block is a group of pixels in an 8×8 window on which DCT is operated when compression.
A DCT block is also call a block for brevity. The gray block is one of the DCT blocks. The DCT
grid is the grid that partition the image into DCT blocks. (c) A doctored block (shaded blocks) is
a DCT block that is inside the doctored part or across the synthesis edge. An undoctored block
(blank blocks) is a DCT block that is completely inside the undoctored part.
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Fig. 3. The work flow of our algorithm

a block in the doctored part or along the synthesis edge and an undoctored block is a
block in the undoctored part.

Realizing that it might be impossible to have a universal algorithm that is effec-
tive for all kinds of images, in this paper, we focus on detecting doctored JPEG im-
ages only, by checking the DQ effects (detailed in Section 2.2) of the double
quantized DCT coefficients. Intuitively speaking, the DQ effect is the exhibition of
periodic peaks and valleys in the histograms of the DCT coefficients. The reason we
target JPEG images is because JPEG is the most widely used image format. Partic-
ularly in digital cameras, JPEG may be the most preferred image format due to its
efficiency of compression. What is remarkable is that the doctored part can be automat-
ically located using our algorithm. This capability is rarely possessed by the previous
methods.

Although DQ effect is already suggested in [14, 20] and the underlying theory is also
exposed in [14, 20], those papers actually only suggested that DQ effect can be utilized
for image authentication: those having DQ effects are possibly doctored. This is not a
strong testing as people may simply save the same image with different compression
qualities. No workable algorithm was proposed in [14, 20] to tell whether an image is
doctored or not. In contrast, our algorithm is more sophisticated. It actually detects the
parts that break the DQ effect and deems this part as doctored.

Figure 3 shows the work flow of our algorithm. Given a JPEG image, we first
dump its DCT coefficients and quantization matrices for YUV channels. If the
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image is originally stored in other lossless format, we first convert it to the JPEG for-
mat at the highest compression quality. Then we build histograms for each channel and
each frequency. Note that the DCT coefficients are of 64 frequencies in total, vary-
ing from (0,0) to (7,7). For each frequency, the DCT coefficients of all the blocks can
be gathered to build a histogram. Moreover, a color image is always converted into
YUV space for JPEG compression. Therefore, we can build at most 64 × 3 = 192
histograms of DCT coefficients of different frequencies and different channels. How-
ever, as high frequency DCT coefficients are often quantized to zeros, we actually
only build the histograms of low frequencies of each channel. For each block in the
image, using a histogram we compute one probability of its being a doctored block,
by checking the DQ effect of this histogram (more details will be presented in Sec-
tion 3.2). With these histograms, we can fuse the probabilities to give the normality
of that block. Then the normality map is thresholded to differentiate the possibly doc-
tored part and possibly undoctored part. With such a segmentation, a four dimensional
feature vector is computed for the image. Finally, a trained SVM is applied to decide
whether the image is doctored. If it is doctored, then the segmented doctored part is also
output.

Our method has several advantages. First, it is capable of locating the doctored part
automatically. This is a feature that is rarely possessed by the existing methods. The
duplicated region detection [16] may be the only exception. But copying a part of an
image to another position of the image is not a common practice in image forging.
Second, most of the existing methods aim at detecting doctored images synthesized
by the cut/paste skill. In contrast, our method could deal with images whose doctored
part is produced by different kinds of methods such as inpainting, alpha matting, tex-
ture synthesis and other editing skills besides image cut/paste. Third, our algorithm
directly analyzes the DCT coefficients without fully decompressing the JPEG image.
This saves the memory cost and the computation load. Finally, our method is much
faster than the bi-coherence based approaches [14, 18], iterative methods [14], and the
camera response function based algorithm [19].

However, it is not surprising that there are cases under which our method does not
work:

1. The original image to contribute the undoctored part is not a JPEG image. In this
case the DQ effect of the undoctored part cannot be detected.

2. Heavy compression after image forgery. Suppose the JPEG compression quality
of the real image is Q1, and after it is doctored, the new image is saved with
compression quality of Q2. Generally speaking, the smaller Q2/Q1 is, the more
invisible the DQ effect of the undoctored part is, hence the more difficult our de-
tection is.

The rest of this paper is organized as follows. We first give the background of our
approach in Section 2, then introduce the core part of our algorithm in Section 3. Next
we present the experimental results in Section 4. Finally, we conclude our paper with
discussions and future work in Section 5.
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2 Background

2.1 The Model of Image Forgery and JPEG Compression

We model the image forgery process in three steps:

1. Load a JPEG compressed image I1.
2. Replace a region of I1 by pasting or matting a region from another JPEG com-

pressed image I2, or inpainting or synthesizing new content inside the region.
3. Save the forged image in any lossless format or JPEG. When detection, we will

re-save the image as JPEG with quantization steps being 1 if it is saved in a lossless
format1.

To explain the DQ effect that results from double JPEG compression, we shall give
a brief introduction of JPEG compression. The encoding (compression) of JPEG image
involves three basic steps [14]:

1. Discrete cosine transform (DCT): An image is first divided into DCT blocks. Each
block is subtracted by 128 and transformed to the YUV color space. Finally DCT
is applied to each channel of the block.

2. Quantization: the DCT coefficients are divided by a quantization step and rounded
to the nearest integer.

3. Entropy coding: lossless entropy coding of quantized DCT coefficients (e.g. Huff-
man coding).

The quantization steps for different frequencies are stored in quantization matrices (lu-
minance matrix for Y channel or chroma matrix for U and V channels). The quanti-
zation matrices can be retrieved from the JPEG image. Here, two points need to be
mentioned:

1. The higher the compression quality is, the smaller the quantization step will be, and
vice versa;

2. The quantization step may be different for different frequencies and different chan-
nels.

The decoding of a JPEG image involves the inverse of the pervious three steps taken
in reverse order: entropy decoding, de-quantization, and inverse DCT (IDCT). Unlike
the other two operations, the quantization step is not invertible as will be discussed in
Section 2.2. The entropy encoding and decoding step will be ignored in the following
discussion, since it has nothing to do with our method.

Consequently, when an image is doubly JPEG compressed, it will undergo the fol-
lowing steps and the DCT coefficients will change accordingly:

1. The first compression:
(a) DCT (suppose after this step a coefficient value is u).
(b) the first quantization with a quantization step q1 (now the coefficient value

becomes Qq1(u) = [u/q1], where [x] means rounding x to the nearest integer).

1 Note that most of the existing image formats other than JPEG and JPEG2000 are lossless.
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2. The first decompression:
(a) dequantization with q1 (now the coefficient value becomes Q−1

q1
(Qq1(u)) =

[u/q1] q1.
(b) inverse DCT (IDCT).

3. The second compression:
(a) DCT.
(b) the second quantization with a quantization step q2 (now the coefficient value

u becomes Qq1q2(u) = [[u/q1] q1/q2]).

We will show in the following section that the histograms of double quantized DCT
coefficients have some unique properties that can be utilized for forgery detection.

2.2 Double Quantization Effect

The DQ effect has been discussed in [14], but their discussion is based on quantization
with the floor function. However, in JPEG compression the rounding function, instead
of the floor function, is utilized in the quantization step. So we provide the analysis
of DQ effect based on quantization with the rounding function here, which can more
accurately explain the DQ effect caused by double JPEG compression.

Denote h1 and h2 the histograms of DCT coefficients of a frequency before the first
quantization and after the second quantization, respectively. We will investigate how h1
changes after double quantization. Suppose a DCT coefficient in the u1-th bin of h1 is
relocated in a bin u2 in h2, then

Qq1q2(u1) =
[[

u1

q1

]
q1

q2

]
= u2.

Hence,

u2 − 1
2
≤
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2
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where �x� and �x� denote the ceiling and floor function, respectively.
If q1 is even, then
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In either cases, the number n(u2) of the original histogram bins contributing to bin
u2 in the double quantized histogram h2 depends on u2 and can be expressed as:

n(u2) = q1

(⌊
q2

q1

(
u2 +

1
2

)⌋
−
⌈

q2

q1

(
u2 − 1
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)⌉
+ 1

)
. (1)



Detecting Doctored JPEG Images Via DCT Coefficient Analysis 429

0 10 20 30 40 50 60
0

100

200

300

400

500

600

0 5 10 15 20 25
0

500

1000

1500

0 10 20 30 40 50 60
0

500

1000

1500

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

(a) (b) (c) (d)

Fig. 4. The left two figures are histograms of single quantized signals with steps 2 (a) and 5 (b).
The right two figures are histograms of double quantized signals with steps 5 followed by 2 (c),
and 2 followed by 3 (d). Note the periodic artifacts in the histograms of double quantized signals.
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Fig. 5. A typical DCT coefficient histogram of a doctored JPEG image. This histogram can be
viewed as the sum of two histograms. One has high peaks and deep valleys and the other has a
random distribution. The first “virtual” histogram collects the contribution of undoctored blocks,
while the second one collects the contribution of doctored blocks.

Note that n(u2) is a periodic function, with a period:

p = q1/gcd(q1, q2),

where gcd(q1, q2) is the greatest common divider of q1 and q2. This periodicity is the
reason of the periodic pattern in histograms of double quantized signals (Figures 4(c)
and (d) and Figure 5).

What is notable is that when q2 < q1 the histogram after double quantization can
have periodically missing values (For example, when q1 = 5, q2 = 2, then n(5k+1) =
0. Please also refer to Figure 4(c).), while when q2 > q1 the histogram can exhibit some
periodic pattern of peaks and valleys (Figures 4(d) and 5). In both cases, it could be
viewed as showing peaks and valleys periodically. This is called the double quantization
(DQ) effect.

3 Core of Our Algorithm

3.1 DQ Effect Analysis in Doctored JPEG Images

Although DQ effect has been suggested for doctored image detection in [14, 20], by
detecting the DQ effect from the spectrum of the histogram and using the DQ effect as
the indicator of doctored images, [14, 20] actually did not develop a workable algorithm
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for real-world doctored image detection. Since people may simply compress a real im-
age twice with different quality, the presence of DQ effect does not necessary imply the
existence of forgery of the image.

However, we have found that if we analyze the DCT coefficients more deeply and
thoroughly, it will be possible for us to detect the doctored image, and even locate the
doctored part automatically. Our idea is that: as long as a JPEG image contains both the
doctored part and the undoctored part, the DCT coefficient histograms of the undoctored
part will still have DQ effect, because this part of the doctored image is the same as that
of the double compressed original JPEG image. But the histograms of doctored part
will not have DQ effects. There are several reasons:

1. Absence of the first JPEG compression in the doctored part. Suppose the doctored
part is cut from a BMP image or other kind of images rather than JPEG ones,
then the doctored part will not undergo the first JPEG compression, and of course
does not have DQ effect. Similarly, when the doctored part is synthesized by alpha
matting or inpainting, or other similar skills, then the doctored part will not have
DQ effect either.

2. Mismatch of the DCT grid of the doctored part with that of the undoctored part.
Suppose the doctored part is cut from a JPEG image, or even the original JPEG
image itself, the doctored part is still of little possibility to have DQ effect. Recall
the description in Section 2.1, one assumption to assure the existence of DQ effect
is that the DCT in the second compression should be just the inverse operation
of IDCT in the first decompression. But if there is mismatch of the DCT grids,
then the assumption is violated. For example, if the first block of a JPEG image,
i.e. the block from pixel (0,0) to pixel (7,7), is pasted to another position of the
same image, say to the position from pixel (18,18) to (25,25), then in the second
compression step, the doctored part will be divided into four sub-blocks: block
(18,18)-(23,23), block (24,18)-(25,23), block (18,24)-(23,25), and block (24,24)-
(25,25). None of these sub-blocks can recover the DCT coefficients of the original
block.

3. Composition of DCT blocks along the boundary of the doctored part. There is little
possibility that the doctored part exactly consists of 8 × 8 blocks, so blocks along
the boundary of the doctored part will consist of pixels in the doctored part and
also pixels in the undoctored part. These blocks also do not follow the rules of DQ
effect. Moreover, some post-processing, such as smoothing or alpha matting, along
the boundary of the doctored part can also cause those blocks break the rules of DQ
effect.

In summary, when the doctored part is synthesized or edited by different skills,
such as image cut/past, matting, texture synthesis, inpaiting, and computer graphics
rendering, there might always exist one or more reasons, especially the last two, that
cause the absence of DQ effect in the doctored part. Therefore, the histogram of the
whole doctored JPEG image could be regarded as the superposition of two histograms:
one has periodical peaks and valleys, and the other has random bin values in the same
period. They are contributed by the undoctored part and the doctored part, respectively.
Figure 5 shows a typical histogram of a doctored JPEG image.
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3.2 Bayesian Approach of Detecting Doctored Blocks

From the analysis in Section 3.1, we know that doctored blocks and undoctored blocks
will have different possibility to contribute to the same bin in one period of a histogram
h. Suppose a period starts from the s0-bin and ends at the (s0 + p − 1)-th bin, then
the possibility of an undoctored block which contributes to that period appearing in the
(s0 + i)-bin can be estimated as:

Pu(s0 + i) = h(s0 + i)/
p−1∑
k=0

h(s0 + k), (2)

because it tends to appear in the high peaks and the above formula indeed gives high
values at high peaks. Here, h(k) denotes the value of the k-th bin of the DCT coefficient
histogram h. On the other hand, the possibility of a doctored block which contributes
to that period appearing in the bin (s0 + i) can be estimated as:

Pd(s0 + i) = 1/p, (3)

because its distribution in one period should be random. From the naive Bayesian ap-
proach, if a block contributes to the (s0 + i)-th bin, then the posteriori probability of it
being a doctored block or an undoctored block is:

P (doctored|s0 + i) = Pd/(Pd + Pu), and (4)

P (undoctored|s0 + i) = Pu/(Pd + Pu), (5)

respectively.
In the discussion above, we need to know the period p in order to compute Pu or

Pd. It can be estimated as follows. Suppose s0 is the index of the bin that has the largest
value. For each p between 1 and smax/20, we compute the following quantity:

H(p) =
1

imax − imin + 1

imax∑
i=imin

[h(i · p + s0)]α,

where imax = �(smax − s0)/p�, imin = �(smin − s0)/p�, smax and smin are the
maximum and minimum index of the bins in the histogram, respectively, and α is a
parameter (can be simply chosen as 1). H(p) evaluates how well the supposed period p
gathers the high-valued bins. The period p is finally estimated as: p = argmax

p
H(p). If

p = 1, then this histogram suggests that the JPEG image is single compressed. There-
fore, it cannot tell whether a block is doctored or not and we should turn to the next
histogram.

If p > 1, then each period of the histogram assigns a probability to every block
that contributes to the bins in that period, using equation (4). And this is done for every
histogram with estimated period p > 1. Consequently, we obtain a normality map of
blocks of the image under examination, each pixel value of which being the accumu-
lated posterior probabilities.
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3.3 Feature Extraction

If the image is doctored, we expect that low normality blocks cluster. Any image seg-
mentation algorithm can be applied to do this task. However, to save computation, we
simply threshold the normality map by choosing a threshold:

Topt = argmax
T

(σ/(σ0 + σ1)) , (6)

where given a T the blocks are classified into to classes C0 and C1, σ0 and σ1 are the
variances of the normalities in each class, respectively, and σ is the squared difference
between the mean normalities of the classes. The formulation of (6) is similar to the
Fisher discriminator in pattern recognition.

With the optimal threshold, we expect that those blocks in class C0 (i.e. those having
normalities below Topt) are doctored blocks. However, this is still insufficient for confi-
dent decision because any normality map can be segmented in the above manner. How-
ever, based on the segmentation, we can extract four features: Topt, σ, σ0 + σ1, and the
connectivity K0 of C0. Again, there are many methods to define the connectivity K0.
Considering the computation load, we choose to compute the connectivity as follows.
First the normality map is medium filtered. Then for each block i in C0, find the num-
ber ei of blocks in class C1 in its 4-neighborhood. Then K0 =

∑
i

max(ei − 2, 0)/N0,

where N0 is the number of blocks in C0. As we can see, the more connected C0 is,
the smaller K0 is. We use max(ei − 2, 0) instead of ei directly because we also allow
narrowly shaped C0: if ei is used, round shaped C0 will be preferred.

With the four-dimensional feature vector, i.e. Topt, σ, σ0 + σ1, and K0, we can
safely decide whether the image is doctored by feeding the feature vector into a trained
SVM. If the output is positive, then C0 is decided as the doctored part of the image.

4 Experiments

The training and evaluation of a doctored image detection algorithm is actually quite
embarrassing. If the images are donated by others or downloaded from the web, then we
cannot be completely sure about whether they are doctored or original because usually
we cannot tell them by visual inspection. Even the donator claims that s/he does not
make any change to the image, as long as the image is not produced by him or her,
it is still unsafe. To have a large database, may be the only way is to synthesize by
ourselves, using the images that are also captured by ourselves. However, people may
still challenge us with the diversity of the doctoring techniques and the doctored images.
Therefore, temporarily maybe the best way is to present many detection results that we
are sure about the ground truth.

We synthesized 20 images using the Lazy Snapping tool [11], the Poisson Matting
tool [8], the image completion tool [9], and the image inpainting tool (it is a part of the
image completion tool), and trained an SVM using these images. Then we apply our
algorithm and the SVM to detect the images that are contributed by authors of some
Siggraph papers. As we believe in their claims that they are the owner of the images,
we take their labelling of doctored or undoctored as the ground truth.
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Fig. 6. Some detection results of our algorithm. The images are all taken from Siggaph papers.
The first two images are doctored by inpainting. The last two images are doctored by matting. The
left columns are the doctored images. The third column are the original images. The normality
maps and the masks of doctored parts are shown in the middle column. For comparison, the
normality maps of original images are also shown on the right-most column. Visual examination
may fail for these images.
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Fig. 7. The estimated column-wise gammas using the blind gamma estimation algorithm in [14].
(a) and (b) correspond to Figures 6(i) and (k), respectively. The horizontal axis is the column
index and the vertical axis is the gamma value. The gamma is searched from 0.8 to 2.8 with a
step size 0.2. By the methodology in [14], Figure 6(k) is more likely to be classified as doctored
than Figure 6(i) is because the gamma distribution in (b) is more abnormal than that in (a).

Figure 6 shows some examples of successful detection. Given the doctored images
shown in the first column, human inspection may fail. However, our algorithm can
detect the doctored parts almost correctly. In comparison, the normalities of the original
images do not show much variance.

Our algorithm is fast. Analyzing an image of a size 500× 500 only requires about 4
seconds on our Pentium 1.9GHz PC, with unoptimized codes. For comparison,
Figures 7 (a) and (b) show the estimated gammas for each column of Figures 6(i) and
(k), respectively, using the blind gamma estimation algorithm proposed in [14]. Our al-
gorithm only took 4.1 seconds to analyze Figure 6(i) or (k) and gave the correct results,
while the blind gamma estimation algorithm [14] took 610 seconds but the detection
was still erroneous.

5 Discussions and Future Work

With the improvement of image/video editing technologies, realistic images can be syn-
thesized easily. Such eye-fooling images have caused some problems. Thus it is
necessary to develop technologies that detect or help us detect those doctored images.
Observing that JPEG is the most frequently used image format, especially in digital cam-
eras, we have proposed an algorithm for doctored JPEG image detection by analyzing the
DQ effects hidden among the histograms of the DCT coefficients. The four advantages
possessed by our algorithm, namely automatic doctored part determination, resistent to
different kinds of forgery techniques in the doctored part, ability to work without full
decompression, and fast detection speed, make our algorithm very attractive.

However, more investigations are still needed to improve our approach. For exam-
ple, a more accurate definition of (2) should be:

Pu(s0 + i) = n(s0 + i)/
p−1∑
k=0

n(s0 + k).

But we need to know q1 and q2 in order to compute n(k) according to (1). Actu-
ally q2 can be dumped from the JPEG image. Unfortunately, q1 is lost after the first
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decompression and hence has to be estimated. Although Lukas and Fridrich [20] have
proposed an algorithm to estimate the first quantization matrix, the algorithm is too re-
strictive and may not be reliable. Hence we are exploring a simple yet practical method
to estimate q1. Moreover, since counter measures can be easily designed to break our
detection (e.g. resizing the doctored JPEG image or compressing the doctored image
heavily after synthesis), we still have to improve our algorithm by finding more robust
low-level cues.
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and Dr. Yuwen He and Dr. Debing Liu for providing us the code to dump the DCT
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Abstract. Foreground and background segmentation is a typical prob-
lem in computer vision and medical imaging. In this paper, we propose
a new learning based approach for 3D segmentation, and we show its
application on colon detagging. In many problems in vision, both the
foreground and the background observe large intra-class variation and
inter-class similarity. This makes the task of modeling and segregation of
the foreground and the background very hard. The framework presented
in this paper has the following key components: (1) We adopt probabilis-
tic boosting tree [9] for learning discriminative models for the appearance
of complex foreground and background. The discriminative model ra-
tio is proved to be a pseudo-likelihood ratio modeling the appearances.
(2) Integral volume and a set of 3D Haar filters are used to achieve effi-
cient computation. (3) We devise a 3D topology representation, grid-line,
to perform fast boundary evolution. The proposed algorithm has been
tested on over 100 volumes of size 500 × 512 × 512 at the speed of 2 ∼ 3
minutes per volume. The results obtained are encouraging.

1 Introduction

There have been many 3D segmentation methods proposed recently [4, 11, 14]. In
these methods, Gaussian/mixture/non-parametric i.i.d. forms, or Markov ran-
dom fields are often adopted to model the appearances/textures of patterns of
interest. Often, they have problems in dealing with situations in which the fore-
ground and the background are complex and confusing.

Virtual colonoscopy is a new technology being developed to find polyps in
3D CT data. However, patients currently are required to physically cleanse their
colons before the examination, which is very inconvenient. By tagging the resid-
ual materials (stool) to make them bright in CT volumes, we can remove stool
electronically [3, 15]. This process is also called colon detagging, which can be
done if we can successfully perform colon segmentation since residual materials
are always inside the colon. However, residual materials observe large variations
in appearance depending upon where they are, what the patients eat, and how
they are tagged. Fig. (1) shows a view of a typical 3D CT volume. There are two
types of objects inside a colon, air and stool. Though most of them appear to be

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 436–448, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Learning Based Approach for 3D Segmentation and Colon Detagging 437

(a) (b)

Fig. 1. Examples of clean and tagged CT volumes. (a) gives a view of a physically
cleansed volume. The bright parts are bones in this volume. (b) is a view of an un-
cleansed volume. The bright parts on the upper part of the volume are tagged materials
and the lower parts are bones same as in (a).

either very dark (air) or very bright (if successfully tagged), there are still a large
portion of residual materials which have similar intensity values as tissues due
to poor tagging. Also, some colon walls are bright due to the interference of the
surrounding tagged stool. In addition, there are two types of tagging methods,
liquid or solid, in which residual materials have very different textures. Fig. 9
shows some examples. For an input volume, we don’t know what type of tagging
it is and it can even a mixture of both. All these factors make the task of colon
detagging very challenging.

In this paper, we propose a learning based algorithm for 3D segmentation
and show its application on colon detagging. The algorithm learns the appear-
ance models for the foreground and the background based on a large set an-
notated data by experts. The system therefore is highly adaptive and nearly
has no parameter to tune. To account for the large intra-class variation, we
adopt probabilistic boosting-tree [9] to learn the discriminative models. One com-
mon solution in 3D segmentation is to define/learn high-level shape models
and use them as priors in defining a posterior distribution. High-level knowl-
edge or more specifically, contextual information, plays a key role in telling
whether some part belongs to colon or background. However, not only is high-
level knowledge very hard to capture, but also it introduces additional computa-
tional burden in the inference phase. Instead, we put the support of contextual
information implicitly in discriminative models, which are nicely turned into
pseudo-likelihood appearance model ratio. This is done by learning/computing
the discriminative models of each voxel based on its surrounding voxels. The
use of PBT approach has several advantages over many existing discriminative
methods [2, 1]. First, it inherits the merit in the boosting methods which select
and fuse a set of weak classifiers from a very large pool of candidates. Second,
it outputs a unified discriminative probability through a hierarchical structure.
Third, combined with integral volume and 3D Haar filters, it achieves rapid
computation.

Here, we design a 3D representation, grid-line, for boundary evolution. In
spirit, it is similar to the discrete surface model proposed by Malandain et al. [7].
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Instead of representing the topology implicitly [12], we code the region topology
explicitly on the grid node of each slice of a volume. Thus, the neighborhood
structure of the boundaries can be traced explicitly.

Training of the discriminative models is performed on 10 typical volumes.
The overall system is capable of robustly segmenting uncleansed colon for a
volume of 500× 512× 512 in 2 ∼ 3 minutes on a modern PC. It has been tested
on around 100 volumes with fixed setting and we report some results in Sect. (6).

2 Problem Formulation

In this section, we give the problem formulation for 3D segmentation and show
that the pseudo-likelihood ratio is essentially a discriminative model ratio, which
can be learned and computed by a discriminative learning framework. We start
our discussion with an ideal model and show that the pseudo-likelihood model
is an approximation to it.

2.1 An Ideal Model

For an input volume, V, the task of foreground and background segmentation
in 3D is to infer what voxels belong to the foreground and what voxels belong
to the background. The solution W can be denoted as

W = ((R−1, θ−1), (R+1, θ+1)),

where R−1, R+1, θ−1, and θ+1 are the domains (voxel set) and model parameters
for the background and the foreground respectively. We have R−1

⋃
R+1 = Λ

where Λ defines the 3D lattice of the input V, which is the set of all the voxels.
R−1 ∩ R+1 = ∅. The optimal solution W ∗ can be inferred by the Bayesian
framework

W ∗ = arg maxW p(W |V)
= arg maxW p(V|(R−1, θ−1), (R+1, θ+1)) · p((R−1, θ−1), (R+1, θ+1)). (1)

This requires the knowledge about the complex appearance models of the
foreground and the background, their shapes, relations, and configurations. This
“ideal” model is often out of reach in reality.

2.2 Pseudo-likelihood Models

A popular model for segmentation is the Mumford-Shah model [8]∫
ω

(u− u0)2dxdy + µ

∫
Ω/C

|∇u|2dxdy + ν|C|.

The first term is the fidelity term encouraging the estimation u to be similar
to the observation u0, the second term penalizes big change in u, and the third
term favors compact regions. Many similar models assume i.i.d. likelihood in
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modeling the texture. They are usually hard to resolve the confusion between
the foreground and the background. The first column in Fig. (4) shows two slices
along different planes in a volume. The second column in Fig. (4) displays the
results by doing thresholding at an optimal value. We observe the “ring” effect
due to the influence of tagged materials to the air. These interface voxels have
similar intensity patterns as the background. Intuitively, the decision of where
to place the colon boundary should be made jointly according to the overall
shape and appearance of a colon. This information can be accounted in the
“ideal” models discussed before. However, we don’t know what ideal models are
and it is very difficult to learn and compute them in reality. Therefore, we seek
approximations to the “ideal” models.

Let a segmentation result now be W = (R−1, R+1), where R−1 and R+1 are
the domains for the background and foreground respectively. Instead, we can
put the contextual information into a model as

p̂(W |V) ∝
∏

s∈R−1

p(V(s), y = −1|V(N(s)/s)) ·
∏

s∈R+1

p(V(s), y = +1|V(N(s)/s))

· p(R−1, R+1), (2)

where N(s) is the sub-volume centered at voxel s, N(s)/s include all the voxels
sub-volume except for s, and y ∈ {−1, +1} is the label for each voxel, and
p(R−1, R+1) defines the shape prior of the colon border. Our goal is to find the
optimal W ∗ that maximizes the posterior p̂(W |V). Next, we show how to learn
these models. Let

− log p̂(W |V) = E1 + E2 + Ec

where Ec is a constant and does not depend on R−1 and R+1,

E2 = − log p(R−1, R+1),

and

E1 = −
s∈R−1

log p(V(s), y = −1|V(N(s)/s)) −
s∈R+1

log p(V(s), y = +1|V(N(s)/s))

= −
s∈Λ

log p(V(s), y = −1|V(N(s)/s)) −
s∈R+1

log
p(y = +1|V(N(s)))p(y = −1)
p(y = −1|V(N(s)))p(y = +1)

.

(3)

This is done by taking a common part for p(V(s), y = −1|V(N(s)/s) in R+1.
The first term in the above equation does not depend on R−1 and R+1. There-
fore, maximizing the probability p̂(W |V) is equivalent to minimizing the
energy

E = −
∑

s∈R+1

log
p(l = +1|V(N(s)))
p(l = −1|V(N(s)))

− |R+1| · log
p(y = −1)
p(y = +1)

− log p(R−1, R+1),

(4)
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where |R+1| is the size of volume of R+1. Here, the models capturing the ap-
pearances of foreground and background are nicely turned into the discrimina-
tive probability model (classification) ratio. Note that p(y = +1|V(N(s))) is
the posterior probability of a voxel s belonging to the foreground (colon) given
the sub-volume centered at s. The optimal segmentation W ∗ is the one that
minimizes the above energy E.

3 Learning Discriminative Models

Now the task is to learn and compute the discriminative model p(y|V(N(s)))
for each voxel s given a sub-volume centered at s. As shown in Fig. (2), both
the foreground and the background show complex patterns. Therefore, in or-
der to make a firm decision, we need to combine various types of information
together, e.g., intensities, gradients, and the surrounding voxels in the sub-
volume.

AdaBoost algorithm [5] proposed by Freund and Schapire combines a number
of weak classifiers into a strong classifier H(x)=sign(f(x))=sign(

∑T
t=1 αtht(x)).

Moreover, it is proved that AdaBoost and its variations are asymptotically ap-
proaching the posterior distribution [6].

p(y|x)← q(y|x) =
exp{2yf(x)}

1 + exp{2yf(x)} . (5)

However, AdaBoost algorithm is still shown to be rigid and hard to deal with
large intra-class variation. We adopt a new learning framework, probabilistic
boosting tree [9], to learn complex discriminative models.

(a) Slice view of background sub-volume. (b) Slice view of colon sub-volume.

Fig. 2. Slice view of 3D sub-volumes of background and colon. We consider the center
voxel here. They observe large intra-class variability and inter-class similarity.

3.1 Probabilistic Boosting-Tree

The details of the discussion of PBT can be found in [9]. It has also been ap-
plied to learn affinity maps in perceptual grouping in [10]. We use it to learn
appearance models here. The algorithm is intuitive. It recursively learns a tree.
At each node, a strong classifier is learned using a standard boosting algorithm.
The training samples are then divided into two new sets using the learned clas-
sifier, the left one and the right one, which are then used to train a left sub-tree
and right sub-tree respectively. Under this model, positive and negative samples
are naturally divided into sub-groups. Fig. (3b) illustrates an abstract version
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(a) 1D, 2D, and 3D Haar filters (b) Illustration of a PBT learned

Fig. 3. (a) shows various Haar filters in 1D, 2D, and 3D used. (b) illustrates an abstract
version of a tree learned.

of a tree learned. Samples which are hard to classify are passed further down
leading to the expansion of the tree. Since each tree node is a strong classifier, it
can deal with samples of complex distributions. Compared with other existing
hierarchical discriminative models, PBT learns a strong classifier at each tree
node and outputs a unified posterior distribution.

During the testing stage, the overall discriminative model is computed as

p(y|x) =
∑
l1

p̃(y|l1, x)q(l1|x) =
∑
l1,l2

p̃(y|l2, l1, x)q(l2|l1, x)q(l1|x)

=
∑

l1,..,ln

p̃(y|ln, ..., l1, x), ..., q(l2|l1, x)q(l1|x).

The procedure is consistent with the training stage. For each sample, it com-
putes a probability at each node. Then the sample is sent to either the left,
the right, or both sides of the tree based on this probability. At the top of the
tree, information is accumulated from its descendants and an overall posterior
distribution is reported. It is worth to mention that the Vapnik-Chervonenkis
dimension theory shows that the test error is bounded by

TESTERR(α) ≤ TRAINERR(α) +

√
h(log(2N/h + 1− log(η)

N
,

where N is the number of training samples and h is the VC dimension of a
classifier. In PBT, h is decided by the complexity of weak classifiers d, the number
of classifiers on each tree node T , and the maximum depth of the tree L. By
extending a derivation from [5]

h(PBT ) ≤ 2(d + 1)(T + 1) log2[e(T + 1)](2L − 1).

In this application, to keep the test error under check, we set the maximum
depth of the tree to be 9 and train a classifier with half a million samples through
bootstrapping.
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(a) (b) (c) (d)

Fig. 4. a) shows two slice views of part of a volume. b) illustrates the results by
thresholding at an optimal value. We can clearly see some “ring” effects and a big part
of colon in the second row is not removed. c) displays the saliency (probability) maps
p(y = +1|V(N(s))). The higher the intensity values, the more likely it belongs to the
foreground colon. d) illustrates the results by thresholding on p(y = +1|V(N(s))) at
0.5. The results are much better than direct thresholding in (b) though it is bit jagged.
This is ameliorated by using the p(y = |V(N(s))) as a soft value with a local shape
prior in the energy minimization formulation. Fig. (8) shows improved results by the
overall algorithm.

3.2 Weak Classifiers and Features

Each training sample is of size 31× 31× 31 and we want to learn a classification
model p(y|V(N(s))) for the center voxel s. PBT selects and combines a set of
weak classifiers into a strong classifier out of a large number of candidates. For
a training sample, the features are the intensity and gradient values, curvatures
at the center voxel and its surrounding voxels. Also, we design 1D, 2D, and 3D
Haar filters at various locations with different aspect ratios, which are shown
in Fig. (3). Therefore, local and context information are combined to give an
overall decision on how likely a voxel is on the colon or not. There are around
25,000 candidate features each of which corresponds to a weak classifier.

For an input volume, we compute integral volume first, similar to the integral
image used in [13]. At each location (x1, y1, z1), an integral volume is computed∫

x1

∫
y1

∫
z1

V (x, y, z)dxdydz. The computational cost of computing Haar filters is
therefore largely reduced since every time we only need to sum up the values
of corners of the Haar in the integral volume. Also, due to the tree structure as
shown in Fig. (3).b, majority of the sub-volumes are only passed onto the top
levels. Fig. (4) shows some results. We see the improvement on the place where
context information is needed. Training of discriminative models is performed
on 10 typical volumes (by liquid and solid tagging) with a couple of rounds of
bootstrapping. We also implemented two other approaches, one node AdaBoost
and a cascade of AdaBoost. The training errors for both the methods are sig-
nificantly worse than that by PBT. For the cascade approach, the training error
can not decrease too much after 4 levels due to the confusing patterns of the
foreground and the background.
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4 3D Representation for Boundary Evolution

Once we compute the discriminative model p(y|V(N(s))) for each voxel s, we
then need to search the optimal segmentation that minimizes the energy E in
eqn. (4). If we only do thresholding at 0.5 based on p(y = +1|V(N(s))), as
shown in Fig. (4).d, the colon borders are not so smooth.

A popular implementation for boundary evolution in variational method is by
level-set approaches [12]. Here, we design another 3D representation, grid-line,
for fast boundary evolution, which is in spirit similar to [7]. Instead of repre-
senting the topology implicitly by different level sets, we code the topologies
explicitly on the grid node of each slice of a volume. Thus, the neighborhood
structure of the boundaries can be traced explicitly. Fig. (5) illustrates an ex-
ample. For each voxel in the volume V, we explicitly code its label by +1 if
it is on the foreground (colon part), and −1 if is on the background. With the
label map only, it does not easily facilitate the process of boundary evolution.
We also code the segmentation topology at each slice along XY , XZ, and Y Z
planes. On each slice, boundary nodes have 4 corners with two types of labels.
We code each possible situation for a boundary node on the grid. This is illus-
trated in Fig. (5c). Given any grid node on the boundary, we can obtain its most
immediate nodes (clockwise or counter clockwise) ) based on the configuration
of the current node and its 4 connected neighboring nodes ( special care needs
to be taken on the nodes along the edge of the volume). Therefore, at each grid
node on the boundary, we can explicitly compute its normal direction, curvature
etc. Also, the explicit 3D representation allows us to have the property that the
foreground is connected. This is often a desirable property in object specific 3D
segmentation in which occlusion usually does not exist.

X-Y planes

X-Z planes
Y-Z planes

(a) 3D grid-line representation (b) Topology representation 
in one X-Y plane

Boundary evolution Different topologies on a node

(c)  Topology representation 
on the nodes

Fig. 5. A 3D topology representation for boundary evolution. In the volume shown in
(a), we explicitly code the label of each voxel being either on the foreground, +1, or
on the background, −1. In addition, we code the topology of each grid node of slices
at the XY , XZ, and Y Z planes. This is illustrated in (b). (c) lists various possible
topologies of a grid node on the boundary. We also show an example of a boundary
move in (b) and (c).
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The term p(R−1, R+1) for shape prior is left undefined in eqn. (4). Indeed,
part of the shape information is implicitly modeled in the discriminative model
p(y|V(N(s))). Intuitively, the possibility of a voxel label is decided by its own
intensity and the appearances of its surrounding voxels based on various features
including gradients and curvatures. This implicitly reinforces certain degree of
spatial coherence. In addition, we put an explicit shape prior term to encourage
the boundaries to be smooth. Let A be the surface between R−1 and R+1

− log p(R−1, R+1) = α

∫
A

ds

By Euler-Lagrange equation on E in eqn. , we obtain eqn. (4), we have

dE

ds
= −(log

p(y = +1|V(N(s)))
p(y = −1|V(N(s)))

+ log
p(y = −1)
p(y = +1)

+ αH)n

where H and n are the mean curvature and normal direction at s respectively.
The boundary evolution is performed using the above evolution equation based
on the grid-line representation discussed above.

5 Outline of the Algorithm

The outline of the overall algorithm is illustrated below.

• Given an input volume, compute p(y|V(N(s))) for each voxel s.
• Perform thresholding on p(y|V(N(s))).
• Find seed regions in 2D slices and perform morphological region growing to obtain

an initial 3D segmentation.
• Perform boundary evolution.
• Remove the segmented colon part in the original volume to perform detagging.
• Report the final segmentation results.

Fig. 6. Outline of the overall algorithm

After computing the discriminative models, the algorithm further proceeds
for two more steps: (1) Based on thresholding on p(y = |V(N(s))), sample slices
are taken along the XY plane to select some regions which show round shapes.
We then use morphological region growing to obtain an initial 3D segmentation.
(2) We perform boundary evolution method discussed in the previous section to
obtain refined segmentation.

6 Experiments

We use 10 typical volumes for training. Fig. (8) shows the results by our method
on a testing volume and those by Mumford-Shah model. We see some improve-
ments on the place where context information is needed. The boundaries ob-
tained are smoother than using just classification in the last row of Fig. (4).
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Fig. 7. Initial segmentation. The image in the left column shows the volumes by thresh-
olding at 0.5 for p(y = +1|V(N(s))). We then obtain a number of slice images on the
thresholded volumes along the XY planes. The colon part in these slices appear to be
more or less round. Some seed regions are the selected based on its size and shape.
These are shown in the middle of the figure. An initial segmentation, shown in the
right, is then obtained using morphological region growing.

Original Slices Mumford-Shah Proposed Method

Fig. 8. The first column shows two original slices. The second column some results by
Mumford-Shah model. The results by the proposed algorithm is shown in the third
column.

We have tested the reported algorithm on 100 volumes with the same setting
and the results are very promising. Four of which are shown in Fig. (9). The
first 3 volumes are by solid tagging and the last one is by liquid tagging. Since
it is very hard to obtain the ground truth for even a single 3D volume, we
measure the error by comparing the results with manual annotation at some
typical slices by experts. We use randomly selected 20 volumes with 15 slices
in each volume. The measurement is taken by the difference of the overlaps
error = (miss(R+1)+miss(R−1))/|V|, where miss(R+1) is the number of miss
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Fig. 9. Some results on colon segmentation. The first rows shows some input volumes.
The first three uses solid tagging and the last one uses liquid tagging. The second row
shows the volume by segmenting out the colon volume. The third row demonstrates the
colon part only. The fourth row illustrates some 2D slice views of the original volume.
The last row shows the corresponding views after detagging.

segmented voxels in the foreground and miss(R−1) is the number of miss seg-
mented voxels in the background. The error rate is lower than 0.1% by the algo-
rithm. If we only consier those voxels that are within certain distance of the true
boundary, the error rate is 5.2% while it is 20.3% for direct thresholding. Bones
in these volumes appear to be very bright and their local sub-volumes look very
like tagged materials. An example can be seen in Fig. (1). In our algorithm, the
seed selection stage avoids picking up bones since they don’t have round struc-
tures in 2D slices. Also, by enforcing the foreground regions to be connected in
the boundary evolution, bones will not be touched in the boundary evolution
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stage. This is an important feature in our method. Existing methods [3, 15] only
deal with liquid tagging, like the one in the fifth column in Fig. (9), which is
relatively easy. Also, they usually do not distinguish between bones and colons,
leading bones being mistakenly removed.

7 Discussion

In the paper, we have introduced a new learning based framework for 3D seg-
mentation and shown its application on colon detagging. We use a probabilistic
boosting tree (PBT) method to learn pseudo-likelihood models for the complex
patterns. Integral volume and 1D, 2D, and 3D Haar wavelets are designed for
fast computation. A 3D representation is used to efficiently evolve the boundary.
This gives rise to a system capable of automatically segmenting colon volume of
512×512×400 in 2 ∼ 3 minutes. There is no need to specify liquid or slid tagging,
and the system is fully automatic. Also, the system learns the model based on a
large database of annotation, which makes it very general and highly adaptive.
It can be used in many problems in medical imaging and computer vision.

Our algorithm still has some problems to deal with situations where stool
is very poorly tagged. The sub-volume used in computing the discriminative
models is yet not big enough to capture big scope of context. Increasing it size
will largely increase the complexity of the learner. It still remains to see how to
combine high-level shape prior to further improve the results.
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Abstract. For many medical segmentation tasks, the contrast along
most of the boundary of the target object is high, allowing simple thresh-
olding or region growing approaches to provide nearly sufficient solu-
tions for the task. However, the regions recovered by these techniques
frequently leak through bottlenecks in which the contrast is low or non-
existent. We propose a new approach based on a novel speed-up of the
isoperimetric algorithm [1] that can solve the problem of leaks through a
bottleneck. The speed enhancement converts the isoperimetric segmen-
tation algorithm to a fast, linear-time computation by using a tree repre-
sentation as the underlying graph instead of a standard lattice structure.
In this paper, we show how to create an appropriate tree substrate for the
segmentation problem and how to use this structure to perform a linear-
time computation of the isoperimetric algorithm. This approach is shown
to overcome common problems with watershed-based techniques and to
provide fast, high-quality results on large datasets.

1 Introduction

Modern medical datasets are often so large that only the most simple, efficient
segmentation algorithms may be employed to obtain results in a reasonable
amount of time. Consequently, the present body of sophisticated, global seg-
mentation algorithms are typically unsuitable in this context. In practice, thresh-
olding, region growing [2] and watershed [3] algorithms appear to be the only
approaches that are feasible under these circumstances.

Often, especially with CT data, simple intensity thresholding (or region grow-
ing) is almost sufficient to segment the entire object. However, the problem fre-
quently occurs that the thresholded object is weakly connected to (i.e., touching)
another object of equal intensity, leading to the common “leaking” problem asso-
ciated with region growing. Therefore, an important problem for medical image
segmentation is the fast segmentation of a mask into constituent parts via bot-
tleneck detection within the mask. We will refer to this problem as the mask
segmentation problem, where the mask is assumed to have been given by a sim-
ple thresholding or region growing process. Watershed algorithms, based either

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 449–462, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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on intensity or the distance transform of the mask, are usually the algorithm of
choice for breaking the mask into desired parts. Although this approach can be
successful, watershed algorithms have a few common problems: 1) Small amounts
of noise in the mask may lead to an overabundance of watershed regions (requir-
ing a subsequent merging procedure), 2) Two objects may be included inside a
single watershed region, 3) No measure of segmentation quality is included in
the algorithm.

The recent isoperimetric algorithm for graph partitioning [1] has been suc-
cessfully applied to image segmentation [4] and is specifically designed to use
global information to cut a graph (mask) at bottlenecks, while remaining robust
to noise, requiring only foreground seeds for initialization and offering a measure
of partition quality. Although the isoperimetric algorithm is efficient enough for
images or small volumes, ultimately requiring solution to a sparse linear system
of equations, the size of medical volumes demands a faster approach. In this pa-
per we show that the linear system associated with the isoperimetric algorithm
may be solved in low-constant linear time if the underlying graph is a tree, pro-
pose an easily-computable tree from input data (which we call a distance tree),
and show that our use of the isoperimetric algorithm with distance trees pro-
vides a fast, global, high-quality segmentation algorithm that correctly handles
situations in which a watershed algorithm fails. For the remainder of this work,
we shall refer to the approach of applying the isoperimetric graph partitioning
algorithm to the mask-derived distance tree as the IDT (Isoperimetric Distance
Tree) algorithm.

This paper is organized as follows: Section 2 gives context for the present al-
gorithm by reviewing previous work. Section 3 recalls the isoperimetric algorithm
for graph partitioning, shows how an underlying tree offers a linear-time solu-
tion, introduces the distance tree concept and summarizes the IDT algorithm.
Section 4 compares the present algorithm to watersheds on several illustrative
examples and provides results and runtimes for the IDT algorithm on real-world
medical data. Section 5 draws conclusions and outlines future work.

2 Previous Work

The prior literature on segmentation is extremely large. Additionally, the special
properties of trees have resulted in their use in many different contexts. Here,
we attempt to review only those most relevant previous works in the context of
segmentation on large datasets.

Level sets have attracted recent interest in the computer vision literature for
general-purpose image segmentation [5]. However, in the context of segmenting
large medical volumes, recent approaches still range from minutes to hours [6].
Furthermore, levels set techniques have not, to our knowledge, been applied to
our present problem of mask segmentation.

For the task of mask segmentation, there is really only one option that is
currently employed on a full resolution mask: the watershed algorithm [3]. De-
spite the speed of watershed approaches, there are several common problems, as
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outlined in the previous section. In Section 4 we show that the proposed IDT
algorithm does not suffer from these problems, which maintaining the speed of
a watershed approach.

Minimal/maximal spanning trees have seen extensive use in the computer
vision literature since as early as Zahn [7] and Urquhart [8]. Despite the speed of
these techniques, they are often insufficient for producing high-quality segmen-
tations of a weakly-connected graph, as illustrated by the authors themselves.
Although some papers have used gradient-based minimal spanning trees for seg-
mentation [9] and others have used distance map-based maximal spanning trees
for centerline extraction [10] the use of such a tree as the setting for computing
a linear-time isoperimetric segmentation is novel. We note that the intense com-
putations associated with finding solutions to Markov Random Fields have also
led to approximations defined on trees (Bethe trees) instead of a full lattice [11].
Additionally, the use of quadtrees is ubiquitous in split-and-merge segmentation
techniques [12] but, unlike the present approach, the algebraic or topological
properties of the tree are typically not of any particular significance.

The recently-developed isoperimetric method of graph partitioning [1] has
demonstrated that quality partitions of a graph may be determined quickly and
that the partitions are stable with respect to small changes in the graph (mask).
Additionally, the same method was also applied to image segmentation, showing
quality results [4]. Other methods of graph partitioning have gained prominence
in the computer vision literature, most notably the normalized cuts algorithm
[13], max-flow/min-cut [14] and the random walker algorithm [15]. However, each
of these algorithms is far too computationally expensive to be applied on the
full medical image volume, even after thresholding a mask. Additionally, using
a tree as the underlying graph is not suitable in any of these algorithms, since
normalized cuts would still require an expensive eigenvector computation (albeit
somewhat faster on a tree [16]), max-flow/min-cut will cut at the weakest edge
in the tree (making it equivalent to Zahn’s algorithm [7]) and random walker
would simply return a cut such that voxels with a shorter distance to each seed
(with respect to the tree) would be classified with the label of that seed.

3 Method

In this section, we review the isoperimetric algorithm of [1], show that the com-
putations may be performed in linear time if the underlying graph is a tree,
introduce the distance tree and summarize the entire IDT algorithm.

The isoperimetric algorithm is formulated on a graph where, in the image
processing context, each node represents a voxel and edges connect neighboring
voxels in a 6-connected lattice. Formally, a graph is a pair G = (V, E) with
vertices v ∈ V and edges e ∈ E ⊆ V × V . An edge, e, spanning two vertices, vi

and vj , is denoted by eij . Let n = |V | and m = |E| where | · | denotes cardinality.
A weighted graph has a value (here assumed to be nonnegative and real)
assigned to each edge called a weight. The weight of edge eij , is denoted by
w(eij) or wij and represents the strength of affinity between neighboring voxels.
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3.1 Isoperimetric Graph Partitioning

The isoperimetric graph partitioning algorithm of [1] was motivated by the solu-
tion to the classical isoperimetric problem, namely: Given an area of fixed size,
what shape has the minimum perimeter? In 2, the answer has been known since
ancient times to be a circle. However, on an arbitrary manifold, particularly with
an unusual metric, the solution is not always obvious. In particular, it is known
that the solution to the isoperimetric problem often partitions the manifold at
bottleneck points, as exhibited in Cheeger’s classic paper on the subject [17].

Unfortunately, on a discrete manifold (represented as a graph), the solution
to the isoperimetric problem is known to be NP-Hard [1]. However, one may give
a sense of how close a particular partition is to the solution of the isoperimetric
problem by defining the isoperimetric ratio as the ratio of the perimeter of
a node set to the number of nodes in the set and looking for a partition that
minimizes this ratio [1].

The isoperimetric algorithm for graph partitioning may be developed by writ-
ing the isoperimetric ratio as

hG(x) = min
x

xT Lx

xT r
, (1)

subject to xT r ≤ n
2 , where r is the vector of all ones, x represents a vector

indicating node membership in a set S ⊆ V , i.e.,

xi =

{
0 if vi ∈ S,

1 if vi ∈ S.
(2)

The n× n matrix L is the Laplacian matrix [18] of the graph, defined as

Lvivj =


di if i = j,

−w(eij) if eij ∈ E,

0 otherwise.
(3)

where di denotes the weighted degree of vertex vi

di =
∑
eij

w(eij) ∀ eij ∈ E. (4)

The notation Lvivj is used to indicate that the matrix L is indexed by vertices
vi and vj .

With these definitions, the numerator of the ratio in (1) represents the sum
of the weights of the edges spanning S and S, while the denominator gives the
cardinality of S.

By relaxing the binary definition of x and minimizing the numerator of (1)
with respect to x, given the cardinality constraint |V |−xT r = k, one is left with
a singular system of equations. The singularity may be overcome by arbitrarily
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assigning one node, vg, (termed the ground in [1] by way of a circuit analogy)
to S, resulting in the nonsingular system

L0x0 = r0, (5)

where the subscript indicates that the row corresponding to vg has been removed
(or the row and column, in the case of L0).

Given a real-valued solution to (5), one may convert this solution into a
partition by finding the threshold that produces a partitioning with minimal
isoperimetric ratio, which requires trying only n thresholds. When trying thresh-
olds in order to measure the isoperimetric ratio of the resulting segmentation,
we employ a denominator of xT r if xT r < n

2 and
(
n− xT r

)
otherwise. It was

proved in [1] that this strategy produces a connected object and shown that the
ground node behaves as a specification of the foreground , while the background
is determined from the thresholding of the solution to (5).

In the present context, we are only interested in the geometry of the graph
(mask), and therefore, during the solution to (5) we treat all wij = 1.

3.2 Trees

Although the solution of the linear system in (5) is fast, since the matrix is
sparse, symmetric and positive-definite (allowing for the use of such memory
efficient methods as conjugate gradients), the enormity of data that comprises
current medical volumes demands an even faster approach.

Since it is known that a matrix with a sparsity pattern representing a tree
has a zero-fill Gaussian elimination ordering [19], we propose to replace the

Original 1st elimination 2nd elimination 3rd elimination Final elimination

Fig. 1. Gaussian elimination of the Laplacian matrix of a tree with ordering given by
the numbers inside the nodes. Note that the resulting Gaussian elimination has the
same sparsity structure as the original matrix when a no-fill ordering is used (e.g., as
computed by Algorithm 1). This is why we need only compute the no-fill ordering,
and not the full Gaussian elimination, in order to solve the linear system required by
the isoperimetric algorithm. Note that the Laplacian matrix is singular — the last
elimination produces a row of all zeros. Once the graph has been grounded, as in
(5), this is no longer a concern e.g., if node 5 were grounded, the elimination would
stop after the third elimination and x5 = 0 would be used to recover the remaining
values of the solution. Top row: Elimination of the tree — the figures depict the graph
represented by the lower triangle of the matrix. Bottom row: Laplacian matrix of the
tree after each elimination step.
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Algorithm 1. Produce a no-fill ordering of a tree
1: void compute ordering(degree, tree, ground, ordering)
2: k ⇐ 0
3: degree[root] ⇐ 0 {Fixed so that ground is not eliminated}
4: ordering[N − 1] ⇐ ground
5: for each node in the graph do
6: while degree[current node] equals 1 do
7: ordering[k] ⇐ current node
8: degree[current node] ⇐ degree[current node]−1
9: current node ⇐ tree[current node]

10: degree[current node] ⇐ degree[current node]−1
11: k ⇐ k + 1
12: end while
13: k ⇐ k + 1
14: end for

standard lattice edge set with a tree. A zero-fill Gaussian elimination ordering
means that the system of linear equations may be solved in two passes, with
storage equal to n, since all entries in the matrix that were initially zero remain
zero during the Gaussian elimination. Specifically, the ordering may be found in
linear time by eliminating the nodes with (unweighted) degree of one (i.e., leaf
nodes in the tree) and recursively eliminating nodes which subsequently have
degree one until a root node is reached. In this case, a convenient root node
is the ground. Algorithm 1 accomplishes the ordering in linear time, where the
array tree contains, for each node, the index of one neighbor (with no edges
overrepresented) and the array degree contains the degree of each node in the
tree. This representation is possible since a tree has n− 1 edges (where the root
would contain a ‘0’).

Figure 1 illustrates a small tree with corresponding L and elimination. Once
the elimination ordering is computed, the system in (5) may be solved by taking
a forward pass over the nodes to modify the right hand side (i.e., the elimination
of Figure 1) and then a backward pass to compute the solution. Algorithm 2
finds a solution to (5) in linear time, given a tree and an elimination ordering.
Note that, as stated above, we assume that all wij = 1 and that the graph
geometry (i.e., mask shape) encodes the pertinent information.

Consequently, when the graph is a tree, a low-constant linear time algorithm
is available to compute a no-fill Gaussian elimination ordering, solution of (5)
and subsequent thresholding to produce a partition. We note also that Branin
has shown how to produce an explicit inverse for the Cholesky factors of a
grounded Laplacian matrix [20]. Recall that the Cholesky factors are the results
of Gaussian elimination for a symmetric, positive-definite matrix, i.e., from an
LU matrix decomposition, L = U = C for a symmetric, positive-definite matrix,
where C is the Cholesky factor. However, the above procedure is simpler and
more memory efficient than explicitly constructing the inverses of the Cholesky
factors.
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Algorithm 2. Given a tree, solve (5)
1: solve system(ordering, diagonal, tree, r, output)
2: {Forward pass}
3: k ⇐ 0
4: for each non-ground node do
5: r[tree[ordering[k]]] ⇐ r[ordering[k]]/diagonal[ordering[k]]
6: k ⇐ k + 1
7: end for
8:
9: output[ordering[N−1]] ⇐ r[ordering[N−1]]/diagonal[ordering[N − 1]]

10:
11: {Backward pass}
12: k ⇐ N−2 {Last non-ground node}
13: for each non-ground node do
14: output[ordering[k]] ⇐ output[tree[ordering[k]]] +

r[ordering[k]]/diagonal[ordering[k]]
15: k ⇐ k − 1
16: end for

3.3 Distance Trees

In the above section, we have shown that by using a tree as the underlying graph
structure (instead of the usual lattice), a very fast, linear-time solution to (5)
may be obtained. We take the position that the desired cut will be a solution
to the isoperimetric problem (i.e., the cut will minimize the isoperimetric ratio)
and therefore we want to select a tree such that a threshold of the solution to
(5) will produce the desired cut.

The most important property of a tree, such that the solution will examine
the desired cut is: The path within the tree between the foreground point and
the remaining voxels in the foreground object do not pass through any voxels in
the background. i.e., the foreground is connected within the tree. If this condi-
tion is satisfied, and the background is also connected within the tree, then the
foreground and background are connected with a single edge (since there may
be no loops in a tree).

A tree satisfying the above desiderata may be constructed if the following
conditions are satisfied: 1) The foreground object is connected, 2) Gradient as-
cent on the distance map from each node stabilizes at a node in the same set
(i.e., foreground nodes stabilize on a foreground node and background nodes
stabilize on a background node), 3) The distance value at all neighboring nodes
that stabilize to different peaks is smallest along the true foreground/background
boundary. The tree may be constructed by assigning to each edge in the lattice
the weight

wij = D(vi) + D(vj), (6)

where D(vi) denotes the distance map [12] at node vi, and then compute the
maximal spanning tree [21]. The above desirable situation may also be restated
in terms of the watershed algorithm [3]. If the foreground/background boundary



456 L. Grady

occurs on the boundary of watershed basins and the height (in terms of D)
of the basins separating the foreground/background boundary is larger than
the basin boundaries internal to the foreground or background regions then
the MST will span the foreground/background with a single edge. We note,
however, that the above condition is simply sufficient to produce a tree with a
connected foreground, although not necessary. Since a watershed algorithm also
requires that the desired boundary lie on a watershed boundary, the isoperimetric
algorithm is expected to work whenever a watershed algorithm would work, given
a simply connected mask, but may additionally work in more difficult cases.

We term the maximal spanning tree of the image with weights given by (6)
as the distance tree. We note that, as with a watershed algorithm, it would
also be possible to employ different choices of function in (6). With respect to
the watershed literature, the most common choices would be a distance map
[12] of a masked part of the image, image gradient strength or image intensity.
Furthermore, these different choices may be combined via multiplication of their
respective weights. For purposes of the mask segmentation problem considered
here, we restrict ourselves to distance maps.

3.4 Summary of IDT

The IDT algorithm proposed here may be summarized in the following steps:

1. Obtain a mask from the image data (e.g., via thresholding or region growing).
2. Compute a distance map on the mask.
3. Obtain a problem-specific ground (foreground) point.
4. Compute the maximal spanning tree (using Kruskal, Prim, etc.) on the lat-

tice with edge weights given by (6).
5. Compute a no-fill ordering using Algorithm 1.
6. Solve the system in (5) using Algorithm 2.
7. Check n thresholds of the solution to (5) and choose the one such that the

resulting segmentation minimizes the isoperimetric ratio of (1).

All of the above steps have a O(n) complexity, except for computation of
the maximal spanning tree, which has a complexity of O(n log(n)) (for a lat-
tice). However, as demonstrated in Section 4, the algorithm performs quickly in
practice.

We note that several nodes may be used as the ground points, requiring their
removal from the L matrix in (5) and fixing their values to zero in the solution
procedure of Section 3.2. If desired, background seeds may also be incorporated
by only considering thresholds below the x values of the background seeds. Since
the x value of the ground will be zero, which will be the smallest x value of any
node [1], the threshold will be guaranteed to separate the foreground from the
background. Note also that the checking done by the algorithm for partition
quality (i.e., the last step in the above summary) is done using the original
graph (mask), not simply the tree.
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4 Results

In this section, we first show several synthetic examples of mask segmentation
problems where a region-growing or watershed algorithm would fail but the IDT
algorithm succeeds. Finally, several examples are given with real data.

4.1 Synthetic Examples

In Section 1, several common problems with watershed algorithms were outlined.
Specifically, a watershed approach fails if both objects fall in the same watershed
region and produces an overabundance of watershed regions in noisy images
(requiring an additional merging process).

In Figure 2 the problem of two touching circles is examined. Figure 2 illus-
trates the distance map and distance tree for two touching circles both with
and without noise. Despite the small amount of noise added to the shape and
the obviousness of the bottleneck, a watershed approach is left with many wa-
tershed regions, requiring an additional merging process to find the correct
solution. However, the distance tree is relatively unchanged with noise and

(a) Touching circles (b) Distance map (c) Segmentation (d) Segmentation

(e) Noisy circle (f) Distance map (g) Segmentation (h) Segmentation

Fig. 2. A simple case of two touching circles with noise. Although the distance map of
the two circle image in (a) has one watershed basin corresponding to each circle, the
small amount of noise associated with figure (e) results in many watershed basins within
each circle. Consequently, an additional merging process would need to be employed
by a watershed approach in order to obtain the desired segmentation. In contrast, no
modification is necessary for the IDT approach. Figures (c,d,g,h) give segmentation
results of the IDT algorithm. Each figure shows the user-supplied foreground point
represented by a small black dot and the resulting foreground segment outlined in
black. Note that no shape assumption was used — The IDT algorithm effectively
segments the mask at bottlenecks.
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Fig. 3. A thin bar strongly connected to a circle (i.e., the width of the intersection
exceeds the width of the bar). A watershed approach is incapable of separating the bar
from the circle, since they both fall in the same watershed region. In contrast, the IDT
algorithm is capable of finding a correct segmentation with a variety of ground points
and noise. a) Original image, b) Distance tree, c–f) Various ground points (black dot)
with corresponding segmentation (indicated by black line). Note that placement of the
ground node near the desired boundary does not disrupt the segmentation. g) Noise
was added to the mask to produce this multiply-connected example of the bar/circle.
h) Segmentation of noisy mask.

Figure 2 illustrates that the IDT approach correctly segments the mask, re-
gardless of noise or ground point. We note that this touching circles example
strongly resembles the “dumbbell” manifold described by Cheeger [17] for which
there is a clear solution to the isoperimetric problem, i.e., an algorithm based
on minimizing the isoperimetric ratio should be expected to handle this problem
well.

Figure 3 describes an entirely different scenario. Again, two objects (a circle
and a bar) are weakly connected, requiring a sophisticated bottleneck detec-
tor. However, since the width of the circle/bar connection exceeds the width
of the bar, both objects occupy the same watershed basin. Therefore, even a
sophisticated basin-merging procedure (necessary for the situation of Figure 2)
is incapable of assisting in the present situation, since both the circle and the
bar occupy the same basin. However, as shown in Figure 3, such a situation
is not a problem for the IDT algorithm. Specifically, choosing a ground (fore-
ground point) in either the circle or the bar will produce the same circle/bar
separation.
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4.2 Real-World Volumes

The above results on synthetic examples suggest that the IDT algorithm should
be expected to produce fast, quality results on large volumes. In this section, we
explore the questions of quality and speed for large medical volumes. Segmen-
tation examples were chosen to highlight the versatility of the IDT approach.
All computation times reflect the amount of time required to perform all steps
of the IDT algorithm given in Section 3.4. Since a Euclidean distance map was
unnecessary for our algorithm, we employed a fast L1-metric distance map [22].
The maximal spanning tree was computed using a standard algorithm [21].

We first apply the IDT approach to a set of 2D examples with notoriously
unreliable boundaries — ultrasound images. The mask was generated by thresh-
olding out the dark regions and placing a ground point in the desired chamber.
Note that no background seeds were placed. The results of the segmentation
are displayed in Figure 4. Although the touching circles example of Figure 2

Fig. 4. Application of the IDT segmentation to 2D examples with notoriously unre-
liable boundaries — ultrasound images. The mask given to the IDT consisted of all
pixels with an intensity below a given threshold. The ground (foreground) point was
in the center of each object. Note the similarity of this problem to the touching circles
example of Figure 2, since the heart chambers are weakly connected to each other
through the open valve. All images were 240× 320 with approximately 92% of the pix-
els inside the mask and required approximately 0.3s to process. Note that the top-row
represents the images with their original (input) intensities, while the intensities in the
bottom row were whitened to enhance the visibility of the contours.
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Fig. 5. The IDT algorithm applied to left ventricle segmentation of a mask produced
by thresholding the volume to separate the blood pool from the background. A single
ground point was placed inside the left ventricle and the IDT algorithm was run in 3D.
No background seeds were given. Note that, with the open valve to the left atrium (and
the aorta), this problem resembles the touching circles scenario of Figure 2. Top row:
Slices from the original volume. Bottom row: Segmentation (outlined in black). The
time required to perform the segmentation on this 256×256×181 volume with 1,593,054
voxels inside the mask was 7.37s. Note that the papillary muscles were excluded from
the blood pool mask.

was synthetic, this type of bottleneck detection is also the essence of these ul-
trasound segmentations since the heart chambers are weakly connected to each
other through open valves and noisy boundaries.

The CT volume of Figure 5 is also suited to this segmentation approach. By
thresholding the volume at the level of the blood pool, a mask was produced such
that each chamber was weakly connected to each other by open or thin valves.
Consequently, it was possible to apply the IDT to the mask with a ground point
inside the desired chamber (in this case, the left ventricle). Figure 5 shows several
slices of the segmentation of the left ventricle, using a ground (foreground) point
inside the chamber. As with the ultrasound data, the mask contains weakly
connected objects (i.e., the left ventricle blood pool is weakly connected to the
atrium and the aorta through the thin valves, which are frequently open), making
this task analogous to the touching circles example, for which the IDT was shown
to behave robustly. Note that no background seeds were necessary to produce
these segmentations.

Although it is possible to threshold bone in CT data, calcified blood vessels
frequently also cross threshold and, more importantly, are pressed close against
the bone. Consequently, the separation of bone from vessel inside the mask is
a challenging task. However, as was shown in the bar/circle synthetic exam-
ple of Figure 3, the IDT approach is capable of separating two tightly pressed
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(a) Input (b) Seeds (c) Vessel

Fig. 6. The IDT algorithm applied to interactive vessel/bone separation. This prob-
lem is difficult because bone and vessel have similar intensities and strongly touch each
other (i.e., have a weak boundary) in several places, as in the bar/circle separation
problem of Figure 3. (a) Original 3D mask obtained by thresholding. (b) User-specified
seeds (ground) of vessel (foreground) and bone (background). (c) Resulting vessel seg-
mentation shaded in gray.

structures, even in noisy masks and when the point of contact is larger than
the bar (vessel). Figure 6 shows the results of applying the IDT interactively
to separate a blood vessel from bone. In this case, multiple grounds (i.e., vessel
seeds) were placed and, additionally, background seeds (i.e., bone seeds) were
also used to constrain the thresholding procedure.

5 Conclusion

The challenge of quickly segmenting regions of interest within large medical
volumes frequently forces the use of less-sophisticated segmentation algorithms.
Often, thresholding or region growing approaches are nearly sufficient for the
required segmentation task, except that one is left with a weakly connected
mask that a smart bottleneck detector is capable of parsing. Since watershed
algorithms are used almost exclusively in this setting, and there are signifi-
cant concerns with this approach, we have proposed a new algorithm based
on operating the recent, sophisticated isoperimetric algorithm [1] on a tree
derived from the mask geometry. This approach is shown to be fast, widely-
applicable, high-quality, robust to noise and initialization, require specification
of only a foreground seed and is not bound by the limitations of the watershed
algorithm.

Further work includes investigation of other useful tree structures (e.g., based
on functions other than a distance map), determining the suitability of graph
structures with a level of connectivity between the lattice and the tree and
domain-specific applications of this general approach to mask segmentation.
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Abstract. High angular resolution diffusion imaging (HARDI) permits
the computation of water molecule displacement probabilities over a
sphere of possible displacement directions. This probability is often re-
ferred to as the orientation distribution function (ODF). In this paper
we present a novel model for the diffusion ODF namely, a mixture of
von Mises-Fisher (vMF) distributions. Our model is compact in that it
requires very few variables to model complicated ODF geometries which
occur specifically in the presence of heterogeneous nerve fiber orienta-
tion. We also present a Riemannian geometric framework for computing
intrinsic distances, in closed-form, and performing interpolation between
ODFs represented by vMF mixtures. As an example, we apply the intrin-
sic distance within a hidden Markov measure field segmentation scheme.
We present results of this segmentation for HARDI images of rat spinal
cords – which show distinct regions within both the white and gray mat-
ter. It should be noted that such a fine level of parcellation of the gray
and white matter cannot be obtained either from contrast MRI scans or
Diffusion Tensor MRI scans. We validate the segmentation algorithm by
applying it to synthetic data sets where the ground truth is known.

1 Introduction

High angular resolution diffusion imaging (HARDI) has become a popular dif-
fusion imaging mechanism lately in the research communities of MR imaging
and analysis. Diffusion tensor models have been used in the past to explain the
local geometry of the diffusivity function characterizing the tissue being imaged.
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A diffuson tensor model primarily assumes a single dominant direction of dif-
fusion and hence is well suited for modeling tissue that exhibits unidirectional
diffusivity behavior. In general however, more general mathematical models are
needed to represent the diffusivity function which may exhibit X-shaped local
geometry corresponding to crossing fibers or bifurcating fibers. The DTI model
is well known for its deficiency in coping with such complex local geometries
and HARDI is one way to overcome this problem. Several research articles have
been published that describe techniques for processing HARDI data sets. For
example, Tuch [1, 2] developed the HARDI acquisition and processing and later
Frank [3] used the spherical harmonics expansion of the HARDI data to charac-
terize the local geometry of the diffusivity profiles. Neither one of these methods
address the issue of segmenting the field of probability distributions. A level-set
approach to segmenting HARDI data has been given by Jonasson et al. [4].

Several research groups have actively pursued the problem of segmenting DTI
data sets. Some have used scalar-valued maps computed from DTI and applied
standard level-set based scalar image segmentation methods to them [5] while,
Feddern et al., [6] extended the geodesic active contour model to accomodate ten-
sor field segmentation. A region-based active contour was used with a Frobenius
norm based tensor distance in Wang et. al., [7] and Rousson et. al., [8] developed
an extension of the classical surface evolution scheme by incorporating region
based statistics computed from the tensor field. Recently, Wang et. al., [9, 10]
introduced an affine invariant tensor dissimilarity and used it to reformulate the
active contour implementation of the Mumford-Shah piecewise constant version
[11] and the piecewise smooth version [12] of the segmentation model to suit
tensor field segmentation. The piecewise constant DTI segmentation model was
generalized by Lenglet et al. [13] to the case of regions with piecewise constant
non-unit variances.

Since HARDI data have the ability to resolve fiber crossings, it would be nat-
ural to expect a better parcellation of the fiber connectivity pattern than that
obtained using DTI. In this paper, we will present results on synthetic data sets
that will demonstrate the truth of this hypothesis. We will also present segmen-
tation results on real HARDI data acquired from a rat spinal cord. These results
were visually validated, but quantitative validation of real data segmentation
will be the focus of future work.

2 Modeling Diffusion

In DTI, data are modeled in terms of the diffusion tensor. The apparent diffusion
coefficient is a quadratic form involving the tensor, and the diffusion displace-
ment pdf is a Gaussian with covariance matrix equal to a constant multiple of
the inverse of the tensor. For HARDI, we will model neither the diffusivity nor
the displacement pdf, but will instead model the diffusion ODF.

In order to design efficient algorithms, we wish to find a continuous para-
metric model for the ODF with a small number of parameters, which is capable
of describing diffusion in the presence of intravoxel orientational heterogeneity.
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To put our proposed model in perspective we will first review some models for
diffusion used in previous literature.

Gaussian mixture models (GMM) are one of the most commonly used models
for multimodal distributions. The GMM is a convex combination of Gaussian
density functions, N(x|µi, Σi). Each Gaussian component is characterized by a
3 × 3 covariance matrix, Σi, which has 6 independent elements. For diffusion
data, all components have a mean µ = 0.

The GMM, P (x) =
∑m

i=1 wiN(x|µi, Σi), where m is the number of com-
ponents in the mixture, can describe the 3-dimensional diffusion displacement
pdf. Each Gaussian component has its own 3 × 3 covariance matrix, Σi, which
will have 6 independent elements. For diffusion data, all components will have
µi = 0.

However, we are primarily concerned with the directional characteristics of
diffusion. This can be characterized by the marginal distribution, P (θ, φ) ob-
tained by integrating over the radial component of P (x). Additionally, with the
GMM, we must be careful to impose the positive-definiteness constraint on the
covariance matrix of each component of the mixture. Previously Fletcher and
Joshi [14] have described geodesic analysis on the space of diffusion tensors. The
analysis includes an algorithm for computing the intrinsic mean of diffusion ten-
sors. Later in this paper we will describe a similar analysis on the space of ODFs
which will result in much simpler algorithms.

The spherical harmonic (SH) expansion is a useful representation for complex-
valued functions on the sphere. We can represent the diffusion with the expansion
d(θ, φ) =

∑L
l=0

∑l
m=−l al,mYl,m(θ, φ), where Yl,m are the spherical harmonic

basis functions. Note that the coefficients al,m are complex-valued, so that the
storage requirement is double that of an equivalent model with real variables,
and the arithmetic operations are more costly as well. Frank [15] suggests an ex-
pansion truncated at order L = 4 (or higher) to describe multiple fiber diffusion.
This requires at least 15 complex-valued coefficients per voxel. In general, the
order L expansion can describe diffusion with L/2 fiber directions. Özarslan [16]
has developed an extremely fast algorithm for computing a SH expansion for the
ODF given a SH expansion of the diffusivity. Chen et al. [17] have previously
presented a technique for estimating a regularized field of apparent diffusion
coefficient (ADC) profiles as a SH expansion.

The diffusion tensor imaging model described previously represents diffusion
using a rank-2 tensor. Diffusion has been described more generally by Özarslan
et al. [18, 19] by considering tensors of higher rank. A cartesian tensor of rank I
will, in general, have 3I components. Due to symmetry, the number of distinct
components in a high rank diffusion tensor will be much smaller. By generalizing
the concept of trace, it is possible to quantify the anisotropy of diffusion described
by tensors of arbitrary rank [20].

Since tensors of odd rank imply negative diffusion coefficients, only even rank
tensors are appropriate for describing diffusion. For diffusion tensors of rank 4,6,
and 8, the number of distinct components are 15, 28, and 45 respectively. It is
not clear how to extract fiber directions from higher rank tensors.
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2.1 von Mises-Fisher Mixture Model

Many statistical approaches involve data over �n. Since we are dealing with
multivariate data over the sphere, S2, we wish to express the data using distri-
butions over this domain. Distributions over spherical domains are discussed in
detail by Mardia and Jupp [21].

In this section we will present a directional model for the ODF in terms of
von Mises-Fisher distributions. This model has fewer variables than the previ-
ously discussed models, allows the fiber directions to be extracted easily, involves
constraints which are simpler to satisfy, and leads to a closed-form for several
useful measures. The von Mises distribution over the circle can be generalized

Fig. 1. Example vMF distributions (κ = 1, 5, 15, 25) with same mean direction, µ

to spheres of arbitrary geometry by keeping the log of the distribution linear in
the random variable x as in

Mp(x|µ, κ) =
(κ

2

)p/2−1 1
2πΓ (p/2)Ip/2−1(κ)

exp(κµT x) (1)

where |x| = 1 and |µ| = 1, κ is the concentration parameter and Ik denotes
the modified Bessel function of the first kind, order k. The concentration pa-
rameter, κ, quantifies how tightly the function is distributed around the mean
direction µ. For κ = 0 the distribution is uniform over the sphere. The distribu-
tions are unimodal and rotationally symmetric around the direction µ.

For p = 3 the distribution is called the von Mises-Fisher (vMF) distribution,
and can be written

M3(x|µ, κ) =
κ

4π sinh(κ)
exp(κµT x). (2)

A useful characteristic of the vMF distribution is that the product of two vMFs
may also be written as an unnormalized vMF. Since

exp(κiµ
T
i x) exp(κjµ

T
j x) = exp((κiµi + κjµj)T x) (3)

we have

M3(x|µi, κi)M3(x|µj , κj) ∝M3(x|( κiµi + κjµj

ρ(κi, κj , µi, µj)
), ρ(κi, κj, µi, µj)),

ρ(κi, κj , µi, µj) =
√

κ2
i + κ2

j + 2κiκj(µi · µj). (4)

Since the vMF distribution is unimodal, we require a combination of these dis-
tributions to represent a general ODF. In fact, since the ODF is antipodally
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symmetric, we will need a mixture to describe diffusion in even a single fiber
region. Since the antipodal pair have µ1 = −µ2, we can specify a mixture with
only 3 variables per component: the two spherical coordinate angles describing
µ, and κ. The general ODF will have the form

ODF (x) =
m∑

i=1

wiM3(x|µi, κi) (5)

where m is the number of components in the mixture. Choosing a convex com-
bination of vMF distributions, the weights have the property

∑m
i=1 wi = 1 and

wi ≥ 0. This ensures that the mixture still has nonnegative probabilities, and
will integrate to 1. Since vMF distributions obey the property (3), the product
of two von Mises-Fisher mixture models is also proportional to a vMF mixture
model.

It can also be shown [22] that the Renyi entropy (order α) of the vMF mixture
has closed form (for certain values of α). This is useful since the entropy of the
mixture model can be used as measure of anisotropy. It can also be shown, using
property (3), that there is a closed-form equation for the L2 distance between
two vMF mixtures.

2.2 Fitting the vMF Mixture

In this section we describe a nonlinear least-squares technique for computing
the vMF mixture model. We will assume that we have been given a discrete set
of samples of the ODF. We seek a mixture of vMFs which agrees with these
samples in the least-squares sense while obeying the constraints imposed on the
vMF parameters.

Using the spherical coordinates x = [cos θ sin φ, sin θ sin φ, cosφ]T and µ =
[cosα sin β, sin α sin β, cosβ]T , we may write the vMF in polar form:

M3(θ, φ|α, β, κ) =
κ

4π sinh(κ)
exp(κ[cosφ cosβ + sin φ sin β cos(θ − α)]) (6)

The energy function we will seek to minimize is

min
w,κ,µ

N∑
i=1

[p(xi)−
m/2∑
j=1

wj

2
(M(xi|κj , µj) + M(xi|κj ,−µj))]2

−γ1

m/2∑
j=1

log(wj) + γ2(1−
m/2∑
j=1

wj)2 − γ3

m/2∑
j=1

log(κj) (7)

where the first term is the least-squares error. Note that we are fitting the data,
p(x), to a mixture of m/2 antipodal vMF pairs. The second term, with weight
γ1, is a barrier function which constrains the weights, wj , to be greater than
zero. The third term, with weight γ2, constrains the sum of the weights to be
1. The fourth term, with weight γ3, is a barrier function which constrains the
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concentration parameters, κj , to be greater than zero. Equation (7) is solved
using Levenberg-Marquardt.

It is likely that most voxels will fit a mixture of 4 vMF pairs (4 fiber ori-
entations per voxel) quite well. In this case the mixture of 8 vMF distributions
requires only 15 real-valued parameters to completely describe due to pairwise
antipodal symmetry. Once we have fit the vMF mixture to the ODF, we can
directly extract the fiber directions, {µ}.

3 The Space of vMF Distributions

The von Mises-Fisher distribution is parameterized by two variables: the con-
centration parameter κ ∈ �+ and µ ∈ S2. For each point in �+ × S2 there is
a corresponding vMF distribution. The curved geometry of this space of vMF
distributions will influence how we formulate distances, geodesics, interpolation
functions and means. A general treatment of the geometry of the spaces formed
by parametric distributions is given by Amari [23, 24].

3.1 Riemannian Geometry

The space of vMF distributions forms a differentiable manifold, a space which
locally behaves like Euclidean space. A Riemannian manifold is a smooth mani-
fold supplied with a Riemannian metric. This metric takes the form of an inner
product, 〈v, w〉p defined on the tangent space, TpM , for each point, p, on the
manifold, M . The Riemannian metric allows us to measure the length of a curve,
γ(t) between two points, p, q on M .

L(γ) =
∫ q

p

(〈γ′(t), γ′(t)〉γ(t))
1
2 dt (8)

We will see how the notions of metric, distance, geodesics, interpolation and
mean are all related. The mean can be defined in terms of the distance, d, as
the point, µ, which satisfies

min
µ∈M

N∑
i=1

d2(µ, xi). (9)

Interpolation can be defined in terms of a weighted mean, so we can interpolate
between the distributions p, q by minimizing

min
µ∈M

td(µ, p) + (1 − t)d(µ, q). (10)

3.2 Riemannian Exp and Log Maps

Let M be some manifold, and TpM be the tangent space at p ∈M . Consider all
geodesics going through the point, p, on M . Given a tangent vector, v ∈ TpM ,
it is known that there is a unique geodesic, γ, such that γ(0) = p, and γ′(0) = v.
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If the manifold is geodesically complete, as it is in our case, the Riemannian
exponential map, Expp : TpM →M , can be defined as Expp(v) = γ(1).

The Riemannian log map is the inverse of the exponential map, Logp : M →
TpM . This map only exists in the region near p where the Exp map is invertible.
If the log map, Logp exists at q, we can write the Riemannian distance between
p and q as d(p, q) = ||Logp(q)||p.

3.3 Overview of the Geodesic Analysis

In this section we will give a brief overview of the geodesic analysis of the space of
vMF mixtures. The complete analysis is given by McGraw [22]. Similar analysis
has been presented by Fletcher and Joshi [14] for the space of diffusion tensors,
and by Fletcher et al. [25] for the space of shapes represented by medial atoms.
An outline of our analysis is given below:

1. Show that �+ and S2 are symmetric spaces.
2. Show that M = �+ × S2 is a symmetric space.
3. Find a transitive Lie group action on M .
4. Formulate arbitrary geodesics on M by applying the Lie group action to a

known geodesic.
5. Formulate the Exp and Log maps for M .

A symmetric space [26] is a connected Riemannian manifold such that at
each point on the manifold there exists a distance preserving mapping which
reverses geodesics through that point. Such a mapping can be computed for the
spaces �+ and S2. It can also be shown that the direct product of symmetric
spaces is also a symmetric space.

Now we can consider a vMF distribution to be a point in a symmetric space.
If M1 and M2 are two metric spaces and x1, y1 ∈M1 and x2, y2 ∈M2, then the
metric for M1 ×M2 is d((x1, x2), (y1, y2))2 = d(x1, y1)2 + d(x2, y2)2. This result
allows us to formulate distances between vMF distributions in terms of distances
on the spaces �+ and S2.

The action of group G on M is called transitive if for any two x, y ∈M there
exists a g ∈ G such that g · x = y. If the group action is transitive then M
can be shown to be a homogeneous space, and the action of G does not change
distances on M : d(g · p, g · q) = d(p, q). Geodesics on a homogeneous space can
then be computed by applying the group action to other geodesics.

3.4 Exp and Log Maps for vMF Distributions

We have used the fact that the direct product of symmetric spaces is also a
symmetric space to deduce that the space of vMF distributions is symmetric.
Now we will use this fact to compute the Exp map for vMFs. For spaces which
are expressed as direct products, we can write the exponential map as the direct
product of the exponential maps for the constituent spaces. For a single vMF,
let p = (κ, µ) represent the distribution M3(x|κ, µ), and v = (a, u) ∈ TpM be
the tangent vector. Then
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Expp(v) =

κ exp(a), Q

ux
sin ||u||
||u||

uy
sin ||u||
||u||

cos ||u||




T

(11)

where Q is the orthogonal matrix which transforms µ to [0, 0, 1]T . The distance
between vMFs can be written using the Log maps as

d((κi, µi), (κj , µj)) =
√

log(
κj

κi
)2 + (cos−1(µi · µj))2. (12)

An example of interpolation between two vMF distributions computed using the
Exp and Log maps is shown in Figure 2.

(a) γ(0) (b)
γ(0.25)

(c)
γ(0.5)

(d)
γ(0.75)

(e) γ(1)

Fig. 2. Points along the geodesic between two vMF distributions

4 The Space of vMF Mixtures

Now, let us investigate the space of mixtures of vMF distributions. The mixture
model of m components is given in Equation (5). At first, it may seem that
we can simply extend the results of the previous section, and consider these
mixtures to come from the space (�+×�+×S2)m. However, considering the set
of weights as an point in (�+)m ignores the convexity constraint on the weights.
The space (�+)m includes linear combinations of vMFs whose weights do not
sum to 1.

Instead, we consider the square roots of the weights, {√w1...
√

wm}. The
convexity constraint now becomes

∑m
i=1
√

wi
2 = 1 with wi >= 0. So, we can

consider the space of the square roots of the weights to be a hypersphere, Sm−1.
Then, the space of mixtures with m components is Sm−1 × (�+ × S2)m.

4.1 Exp and Log Maps for the Space of vMF Mixtures

For the vMF mixture, the exponential map is the direct product of the exponen-
tial maps for each vMF, and the exponential map for Sm−1. Since we are quite
unlikely to have more than 4 fiber orientations present within a single voxel, we
will consider further the case of mixtures having 8 antipodal pairs, or 4 inde-
pendent weights. In this case, the space of the square roots of {w} is the unit
hypersphere S3. Fortunately, the space S3 is well studied, since this is equivalent
to the space of unit quaternions. In fact, S3 forms a Lie group with respect to
the quaternion multiplication operator.
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The exponential map for S3 is

Expp(v) =
(

sin(1
2 ||v||)
||v|| v, cos(

1
2
||v||)

)T

(13)

and the log map is given by

Logp(q) =
2 cos−1(qw)
|qvec| qvec (14)

where qvec and qw are the vector and scalar parts respectively of the quaternion q.
We may now simply extend the results of the previous section to formulate the
distance between mixtures. An example of interpolation between mixtures is
shown in Figure 3.

(a) γ(0) (b)
γ(0.25)

(c)
γ(0.5)

(d)
γ(0.75)

(e) γ(1)

Fig. 3. Points along the geodesic between two vMF mixtures

Previously, the intrinsic mean problem has been solved with a gradient de-
scent algorithm [27, 25, 28]. The gradient of the energy function in Equation (9)
can be written in terms of the Log map. The algorithm, as given by Fletcher
and Joshi [25] is

Given: x1, ..., xN ∈M
Find: µ ∈M , the intrinsic mean
µ0 = x1
repeat

∆µ = τ
N

∑N
i=1 Logµt

(xi)
µt+1 = Expµj

(∆µ)
until ||∆µ|| < ε

5 Application to Segmentation

The mean and distance formulations discussed in the previous section can be
quite useful in the context of model-based segmentation. In this section we will
present results obtained using the hidden Markov measure field (HMMF) model,
though the model we have developed may be used with many other segmentation
schemes. This method, presented by Marroquin et al. [29], is a variation on the
Markov random field segmentation model, but has fewer variables and can solved
without slow stochastic methods. We use the gradient projection Newtonian
descent algorithm for finding the resulting optimization problem.
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5.1 Results

The proposed vMF fitting technique was applied to a synthetic dataset. This data
simulated anisotropic Gaussian diffusion in a medium with a single dominant
orientation. The orientation varies spatially according to a sinusoidal function.
The result of the fitting is shown in Figure 4. The angular difference between the
known dominant orientation and the mean direction, µ, of the dominant vMF
component was computed at each voxel. The average angular error was 0.026
degrees. The results of the HMMF segmentation using the geodesic distance
applied to synthetic HARDI data are presented below. The first two datasets
are piecewise constant vMF fields with two regions. The results are presented
in Figure 5a and b. Figure 5a shows the segmentation obtained from a field
where the two regions differ in direction. In Figure 5b, the regions differ only
in the concentration parameter, κ. There are no classification errors. In Figure
5c the results for segmentation of vMF mixtures is shown. The data consists of
several piecewise constant areas and a crossing. Here the algorithm has correctly
segmented each region and the crossing.

Fig. 4. vMF model fit to synthetic data

(a) (b) (c)

(d) (e) (f)

Fig. 5. HMMF segmentation of synthetic data
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Next the algorithm was tested on curved regions. A synthetic dataset con-
sisting of a circular region with vMFs oriented tangentially was created. A two
region segmentation was computed in Figure 5d, and a three phase segmentation
was computed in Figure 5e. Note that the two phase segmentation has identi-
fied nearly the entire circular region, even though the segmentation model is
piecewise constant. Three regions was sufficient to segment the entire circular
region.

The algorithm was then tested on a dataset with curved geometry and cross-
ings. The results are shown in Figure 5f. In this case, the algorithm was able to
discriminate between adjacent regions with multiple directions.

Finally the algorithm was applied to the lumbar region of a rat spinal cord.
The data were acquired at the McKnight Brain Institute on a 14.1 Tesla Bruker
Avance Imaging system with a diffusion weighted spin echo pulse sequence. Imag-
ing parameters were : effective TR = 2000 ms, ∆ = 17.5 ms, δ = 1.5 ms.
Diffusion-weighted images were acquired with 46 different gradient directions
with b = 1500 and a single image was acquired with b ≈ 0. The image field of
view was 60 x 60 x 300 µm3, and the acquisition matrix was 72 x 72 x 40.

The RMS difference between the vMF model and a 6th order spherical har-
monic expansion of the ODF are shown in Table (1). The spherical harmonic
expansion was computed using the diffusion orientation transformation described
by Özarslan et al. [16]. The RMS differences were computed for real and synthetic
data in regions with one and two fibers per voxel. The single-fiber synthetic data
show the best fitting results. The single and double-fiber fitting errors for the
real data are comparable.

Table 1. RMS fitting error between vMF model and 6th order SH expansion

Single Fiber Double Fiber
Synthetic Data 0.0003 0.0013
Real Data 0.0018 0.0022

Fig. 6. Segmentation of spinal cord dataset (left) and anatomy from atlas (right)

The results of the segmentation are shown in the left side of Figure 6. The
anatomical atlas shown in the right side of Figure 6 shows the the gray matter
and white matter in an axial slice of the lumbar region of the spinal cord in
gray and white respectively. Several of the distinct regions of the gray matter
we would like to be able to segment are depicted in this image. Due to the low
resolution of the data, we are unable to segment some of the finer structures.
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We are, however, able to distinguish the lateral motor neurons (labeled A in
the atlas) and the dorsal gray commissure (labeled B in the atlas) from the
remainder of the gray matter.

6 Conclusion

We have introduced a novel model for orientational diffusion with mixtures of
von Mises-Fisher distributions. This model leads to closed-form expressions for
distances and anisotropy measures. A geodesic framework for working with this
model was also presented. The results were applied within the hidden Markov
measure field segmentation framework, and the results were presented for syn-
thetic and real data. The technique was able to distinguish between regions of
gray matter in the rat spinal cord which correspond to known anatomy.
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20. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion
MRI using trace, variance and entropy. Magn. Reson. Med. 53 (2005) 866–876

21. Mardia, K.V., Jupp, P.: Directional Statistics. 2nd edn. John Wiley and Sons Ltd.,
New York (2000)

22. McGraw, T.: Denoising, Segmentation and Visualization of Diffusion Weighted
MRI. PhD dissertation, University of Florida, Gainesville, FL (2005)

23. Amari, S.: Information geometry on hierarchy of probability distributions. IEEE
Trans. Information Theory 47 (2001) 1701–1711

24. Amari, S., Nagaoka, H.: Methods of information geometry. AMS, Providence, RI
(2000)

25. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23
(2004) 995–1005

26. Klingenberg, W.: Riemannian Geometry. de Gruyter, Berlin (1982)
27. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing.

International Journal of Computer Vision 65 (2005) to appear
28. Karcher, H.: Riemannian center of mass and mollifier smoothing. Comm. Pure

Appl. Math. 30 (1977) 509–541
29. Marroquin, J.L., Santana, E.A., Botello, S.: Hidden Markov measure field mod-

els for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003)
1380–1387



Globally Optimal Active Contours, Sequential Monte
Carlo and On-Line Learning for Vessel Segmentation

Charles Florin1, Nikos Paragios2, and Jim Williams1

1 Imaging & Visualization Department,
Siemens Corporate Research, Princeton, NJ, USA
755 College Road East, Princeton, NJ 08540, USA

2 MAS - Ecole Centrale de Paris, Grande Voie des Vignes,
F-92 295 Chatenay-Malabry Cedex, France

Abstract. In this paper we propose a Particle Filter-based propagation approach
for the segmentation of vascular structures in 3D volumes. Because of pathologies
and inhomogeneities, many deterministic methods fail to segment certain types
of vessel. Statistical methods represent the solution using a probability density
function (pdf). This pdf does not only indicate the best possible solution, but also
valuable information about the solution’s variance. Particle Filters are used to
learn the variations of direction and appearance of the vessel as the segmentation
goes. These variations are used in turn in the particle filters framework to control
the perturbations introduced in the Sampling Importance Resampling step (SIR).
For the segmentation itself, successive planes of the vessel are modeled as states
of a Particle Filter. Such states consist of the orientation, position and appearance
(in statistical terms) of the vessel. The shape of the vessel and subsequently the
particles pdf are recovered using globally active contours, implemented using
circular shortest paths by branch and bound [1] that guarantees the global optimal
solution. Promising results on the segmentation of coronary arteries demonstrate
the potential of the proposed approach.

1 Introduction

Segmentation of vascular structures is a problem that arises in numerous situations in
medical imaging, in particular for cardiac applications. Coronary arteries are thin ves-
sels responsible for feeding the heart muscle in blood, and their segmentation provides
a valuable tool for clinicians to diagnose diseases such as calcifications, and stenosis.
Because of the low contrast conditions, and the coronaries vicinity to the blood pool,
segmentation is a difficult task.

Since Computer Tomography (CT) and Magnetic Resonance (MR) imaging of the
heart are now widely available, the number of patients imaged has significantly in-
creased these past few years. Clinicians are now interested in periodically getting new
images from the same patients to measure the development and severity of vascular dis-
eases and their effects on the heart function. Such information is used to optimize the
time of surgical operation and the effectiveness of treatments.

Vessel segmentation techniques consist of model-free and model-based methods.
Skeleton-based techniques are the most primitive among the model-free [29] and aim
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at detecting the vessel skeletons, from which the whole vessel tree is reconstructed.
Vessel enhancement using a multiscale-structural term derived from the image intensity
Hessian matrix [27, 12] and differential geometry-driven methods [19] refer to a differ-
ent class of model-free approaches that characterize tubular structures using the ratios
between the Hessian matrix eigenvalues. Voxels that best fit the characterization are
rendered brighter than the others, and the resulting image enhance tubular structures.

In [3], an anisotropic filtering technique, called Vesselness Enhancement Diffusion,
is introduced that can be used to filter noisy images preserving vessels boundaries. The
diffusivity function relies on the vesselness function introduced in [12] to filter along
the vessel principal direction and not across. In the resulting image, the background is
smoothed, whereas the vessel remains unchanged. The flux maximization criterion, a
step forwards, was introduced in [31] and was exploited for vessel segmentation in [6]
in low contrast conditions using vessel measures introduced in [12].

Region growing methods [33] progressively segment the vessels from a seed point,
based on intensity similarity between adjacent pixels. These methods work fine for
homogeneous regions, but not for pathological vessels, and may leak into other structures
ofsimilar intensity.Morphologicaloperators[11]canbeapplied tocorrectasegmentation,
smooth its edges or eventually fill holes in the structure of interest, but fail to account
for prior knowledge. Tracking approaches [17, 30] are based on the application of local
operators to track the vessel. Given a starting condition, such methods recover the vessel
centerline through processing information on the vessel cross section [16]. Various
forms of edge-driven techniques, similarity/matching terms between the vessel profile
in successive planes, as well as their combination, were considered to perform tracking.

On the other hand, model-based techniques use prior knowledge and features to
match a model with the input image and extract the vessels. The knowledge may con-
cern the whole structure, or consist in modeling locally the vessel. Vessels template
matching techniques (Deformable Template Matcher) [25] have been investigated. The
structure model consists of a series of connected nodes that is deformed to best match
the input image. Generalized Cylindrical models are modified in Extruded Generalized
Cylinders in [23] to recover vessels in angiograms. For curvy vessels, the local basis
used for classical generalized cylinders may be twisted, and a non-orthogonality issue
may occur. This problem is solved keeping the vessel cross section orthogonal to the
centerline, and the two normal vectors always on the same side of the tangent vector
spine, as the algorithm moves along the vessel.

Nevertheless, since vessels vary enormously from one patient to another, deformable
models are preferred to template models. Deformable models can either be parametric
or geometric. Parametric deformable models [26] can be viewed as elastic surfaces
(often called snakes), and cannot handle topological changes. Geometric deformable
models [4, 28], on the contrary, can change their topology during the process and there-
fore are well suited to vessel segmentation. Like snakes, deformable models aim at
minimizing the energy computed along the model. Level sets [24] are a way to ap-
ply deformable model to non-linear problems, such as vessel segmentation [21]. One
can refer to the fast marching algorithm and its variant for vessel segmentation us-
ing the minimal path principle [2, 5] to determine the path of minimal length between
two points, backtracking from one point toward the other crossing the isosurfaces
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perpendicularly. To discourage leaking, a local shape term that constrains the diame-
ter of the vessel was proposed in [22]. One should also mention the method introduced
in [20], where the optimization of a co-dimension two active contour was presented to
segment brain vessels.

One can claim that existing approaches suffer from certain limitations. Local opera-
tors, region growing techniques, morphological filters as well as geometric contours
might be very sensitive to local minima and fail to take into account prior knowl-
edge on the form of the vessel. Parallel to that, cylindrical models, parametric active
contours and template matching techniques may not be well suited to account for the
non-linearity of the vessel structure, and require particular handling of branchings and
bifurcations. Tracking methods can often fail in the presence of missing and corrupted
data, or sudden changes. Level sets are very computational time-consuming and the
Fast Marching algorithm loses all the local implicit function properties.

To improve segmentation results, a new method must account for non-linearities
coming from branchings, pathologies, and acquisition artifacts, such as motion blur
or CT beam hardening. This excludes any type of parametric models, or linear mod-
els, which would require special handling for bifurcations and non-linearities. Further-
more, the low contrast condition that features the coronaries drove the authors toward a
method that would handle multiple hypotheses, and keep only the few most probable.
The segmentation result would not be a deterministic result, but rather the most prob-
able state of a vessel among several suppositions. Last, but not least, medical imaging
is a field with vast prior knowledge; therefore, the new method must account for prior
knowledge - if available -.

In this paper, we propose a particle-based approach to vessel segmentation where
we re-formulate the problem of recovering successive planes of the vessel in a proba-
bilistic fashion with numerous possible states. To this end, given an initial state for the
vessel position, several hypotheses are generated uniformly in the feature space, and
evaluated according to the observed data. From these hypothesis, a probability density
function (pdf) can be defined, and used as a prior for a more efficient distribution of the
hypothesis. Such an approach:

– combines edge-driven and region-based tracking metrics,
– recovers at each plane the optimal segmentation solution, that is the global mini-

mum of the designed cost function,
– accounts for the structural and appearance non-linearity of the vessel,
– addresses pathological cases, and can incorporate prior local knowledge on the ves-

sel structure.

The final paradigm consists of a fast multiple hypothesis propagation technique where
the vessel structure as well as its appearance are successfully recovered. Such a frame-
work allows to naturally address the non-linearity of the geometry and the appearance
of coronaries and is compared in a favorable fashion with the existing approaches. The
remainder of this paper is organized as follows. In section 2, we motivate vessel seg-
mentation, introduce the feature space, and describe the measure used to quantify the
quality of a given hypothesis. Random sampling and Particle Filters for tracking are in-
troduced in section 3 while section 4 presents the overall system actually used to track
vessels. Experimental results and discussion are part of the last section.
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2 Vessel Segmentation

Cardio-vascular diseases are the leading cause of deaths in the USA (39%) and therefore
there is a constant demand for improvement of diagnostic tools to detect and measure
anomalies in the coronary tree. Such tools aid early diagnosis of the problem and there-
fore prevention that can significantly decrease the mortality rate due to cardiac diseases.
One can consider the problem of vessel segmentation as a tracking problem of tubular
structures in 3D volumes. Thus, given a starting position, the objective is to consider
a feature vector that, upon its successful propagation, provides a complete segmenta-
tion of the coronaries. The statistical interpretation of such an objective refers to the
introduction of a probability density function (pdf) that uses previous states to predict
possible new positions of the vessel and image features to evaluate the new position. To
this end, we define

– a state/feature vector, that defines the local geometry of a coronary artery
– an iterative process to update the density function, to predict the next state
– a distance between prediction and actual observation, to measure the quality of a

given feature vector with respect to the image data.

2.1 The State/Feature Vector

One can define the state of the vessel at a given time as follows:

x = (x1, x2, x3)︸ ︷︷ ︸
position

,Θ = (θ1, θ2, θ3)︸ ︷︷ ︸
orientation

, pvessel︸ ︷︷ ︸
appearance

where the vessel state vector consists of the 3D location of the vessel x , the tangent
vector Θ, and the parameters required for the pdf estimation of the appearance of the
vessel pvessel , as a mixture of two gaussians:

pvessel = ((PB , µB, σB), (PC , µC , σC)) (1)

It is reasonable to assume irregularity in the appearance of the vessel because of the
presence of calcifications, stents, stenosis and diseased vessel lumen [FIG. (1)]. There-
fore simple parametric statistical models on the appearance space will fail to account
for the statistical properties of the vessel and more complex distributions are to be con-
sidered. We consider a Gaussian mixture model that consists of two components to rep-
resent the evolving distribution of the vessel, the contrast enhanced blood (PB , µB, σB)
and the high density components, such as calcifications or stent, (PC , µC , σC) subject
to the constraint [PC + PB = 1] leading to the following state vector:

ω = (x, Θ, (PB , µB, σB), (PC , µC , σC)) (2)

Such a state vector is to be recored for subsequent planes leading to complete re-
construction of the vessel tree. However, neither the planes position and orientation, nor
the actual position of the vessel within this plane is known. In order to recover the most
prominent plane position, a constrained multiple hypotheses framework will be used
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(a) (b) (c) (d)

Fig. 1. (a) calcification, (b) stent (high intensity prosthesis), (c) branching with obtuse angles, (d)
stenosis (sudden reduction of vessel cross section diameter)

according to a particle filter implementation. Such a framework will be explained at a
later section.

Let us assume for the moment that the plane position is known as well as its orien-
tation. Vessel segmentation consists of recovering the area of image within this plane
that corresponds to the vessel. Snakes [18] as well as their geometric alternatives have
been popular techniques to address such a demand. Despite numerous improvements,
such methods often converge to local minimum. Such a limitation was addressed in [1]
- known as circular shortest path algorithm by branch and bound - once appropriate
initial conditions have been given to the process, that in our case could be satisfied.

2.2 Circular Shortest Paths and 2D Vessel Segmentation

The Circular Shortest Paths by Branch and Bound (CSP) [1] is a binary search-tree
technique to recover the globally optimal active contour, given a point inside the contour
and a potential map. First of all, let us note that the problem of finding the globally
optimal active contour is equivalent to computing the minimal weight path (given a
Riemannian metric) that connects a point at angle θ = 0 to its equivalent at θ = 2π
across the log-polar transform of the original image, see [FIG. (2)]. Given a Riemannian
metric g (usually equal to the image gradient), the weight W of a path P is defined as:

W (P) =
∫

P
g (P(s)) ds. (3)

Given a start point p0 at θ = 0, the end point p2π at θ = 2π of the minimal noncircular
path is defined as

p = argminP(2π)=pW (P). (4)

This end point p2π is very quickly found using the well-known Dijkstra [7] algorithm,
with the Riemannian metric g ([EQ. (3)]) playing the role of potential map. To demon-
strate the use of a binary search-tree, a property needs to be stated at that point, whose
proof is straightforward (see [1]):

for two subsets S1 ⊆ S2, the minimal path P2 of S2 has a lower weight than
the minimal path P1 of S1, otherwise stated as W (P2) ≤W (P1).

A corollary is:

for any point set S, the weight of the minimal path P (circular or not) is a lower
bound of the minimal circular path weight. Therefore, if {S1, S2} is a partition
of S, and W (P1) ≤ W (P2), the minimal circular path of S has its starting
point p0 (and obviously ending point p2π as well) in the subset S1.
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Fig. 2. Discreet grid of a log-polar image, with a circular path (dashed, subset S1) and a noncir-
cular path (plain, subset S2)

Consequently, a binary search-tree is used in the CSP algorithm. First, any set of initial
points S = {p0} is divided into two subsets S1 = {p0}1 and S2 = {p0}2; second, the
minimal noncircular paths P1 and P2 are computed using [EQ. (4)] for the two subsets.
This procedure is then repeated with the subset of minimal path until the subsets are re-
duced to a single point. At the bottom of the binary search-tree, the subsets are reduced
to singletons, and their minimal path are naturally circular. The Globally Optimal Cir-
cular Shortest Path is obtained that way. The low cost complexity (for width u and
height v, O(u1.6v) average time, or less than a milisecond for 15x15 pixels cross sec-
tion profile, see [FIG. (4)]) makes this method very attractive for repetitive testings, such
as the particle filters presented in [SEC. (3)]. It also reduces the dimensionality of the
feature space, compared to model-based methods (elliptic models, tubular models,...) .

The CSP algorithm is an efficient technique to image segmentation for closest struc-
tures under the assumption that a point is given in the structure interior. Since segmen-
tation in our case is approached as a multiple hypotheses testing, one can assume that
each hypotheses generation could provide a start point to the CSP that is a necessity
for the construction of the log-polar image. The multiple hypotheses generation could
be done in a number of fashions. Sequential Monte Carlo is the prominent technique
that associates evolving densities to the different hypotheses, and maintains a number
of them. Particle filters is the most prominent technique to implemented such a strategy.

3 Particle Filters

3.1 Particle Filters: Generalities

Particle Filters [8, 15] are a sequential Monte-Carlo technique that is used to estimate
the Bayesian posterior probability density function (pdf) with a set of samples [13, 32].
In terms of a mathematical formulation, such a method approximates the posterior pdf
by M random measures {xm

t , m = 1..M} associated to M weights {wm
t , m = 1..M},

such that

p(xt|z1:t) ≈
M∑

m=1

wm
t δ(xt − xm

t ). (5)

where each weight wm
t reflects the importance of the sample xm

t in the pdf, given the ob-
servations sequence z1:t, as shown in [FIG. (3)]. Using Bayes rule, one can sequentially
estimate p(xt|z1:t) from p(xt−1|z1:t−1), knowing p(xt|xt−1) and measuring p(zt|xt):
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Fig. 3. The resampling process: a random selection chooses the samples with the highest weights
where a local perturbation is applied

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1)

∝ p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

p(zt|xt) is discussed in [SEC. (4.1)], while a novel method to locally estimate p(xt|xt−1)
is presented in [SEC. (3.3)]. The samples xm

t are drawn using the principle of Impor-
tance Density [14], of pdf q(xt|xm

1:t, zt), and it is shown that their weights wm
t are

updated according to

wm
t ∝ wm

t−1
p(zt|xm

t )p(xm
t |xm

t−1)
q(xm

t |xm
t−1, zt)

. (6)

Once a set of samples has been drawn, p(xm
t |xm

t−1, zt) can be computed out of the ob-
servation zt for each sample, and the estimation of the posteriori pdf can be sequentially
updated. Such a process will remove most of the particles and only the ones that express
the data will present significant weights. Consequently the model will lose its ability to
track significant changes on the pdf; therefore a resampling procedure has to be ex-
ecuted on a regular basis. Such a process will preserve as many samples as possible
with respectful weights. One can find in the literature several resampling techniques.
We chose the most prominent one, Sampling Importance Resampling, for its simplicity
to implement, and because it allows more hypothesis with low probability to survive,
compared to more selective techniques such as Stratified Resampling [10].

3.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) algorithm [13] consists of choosing the
prior density p(xt|xt−1) as importance density q(xt|xm

1:t, zt). This leads to the follow-
ing condition, from [EQ. (6)]

wm
t ∝ wm

t−1p(zt|xm
t ). (7)

The samples are updated by setting xm
t ∝ p(xt|xm

t−1), and perturbed according to a
random noise vector ε, so that xm

t ∝ p(xt|xm
t−1). The SIR algorithm is the most widely
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used resampling method because of its simplicity from the implementation point of
view. Nevertheless, the SIR uses mostly the prior knowledge p(xt|xt−1), and does not
take into account the most recent observations zt. Such a strategy could lead to an
overestimation of outliers. On the other hand, because SIR resampling is performed at
each step, fewer samples are required, and thus the computational cost may be reduced
with respect to other resampling algorithms. Finally, in practice, the estimation of ε’s
law is difficult, and prior knowledge is usually required. A novel method is proposed
in the following section [SEC. (3.3)] to circumvent this issue, by locally estimating
p(xt|xm

t−1).

3.3 Reinforced SIR: The State Transition Noise Pdf

After a particle xm
t−1 has been selected by the SIR algorithm, a random noise vector

ε is added (see previous section [SEC. (3.2)]). A straightforward solution consists in
using prior knowledge to estimate the law of ε once for all. This method presents two
difficulties: first, prior knowledge may be limited and/or hard to obtain, second, vessels
are linear structures only very locally, therefore the law of ε may greatly vary from
one patient to another. In the technique presented in this paper, the distribution of ε
is updated at every time step. At a given time step, each particle xm

t−1 selected by the
SIR generates N offsprings by adding a random noise vector, uniformly distributed, and
moving it forward (in the direction of the vessel, given by the particle hypothesis). Once
their probability is estimated, these N offsprings particles provide a pdf (p(xt|xm

t−1))
which is then used for the distribution of the random vector ε.

The final paradigm for resampling follows the procedure:

1. first, particles are selected randomly according to their probability, as in any SIR
procedure

2. second, the selected particles generates N new offsprings uniformly distributed
3. these offsprings probabilities are estimated, and a pdf is then drawn for each SIR

selected particle
4. finally, this pdf is used to generate a random noise vector ε that perturbs the SIR

selected particles

In other words, once the SIR selected a particle xm
t−1 to be resampled, p(xt|xm

t−1, zt) is
estimated in a way similar to [EQ. (5)]:

p(xt|xm
t−1, zt) ≈

N∑
i=1

wi
tδ(xt − xi

t), (8)

where the xi
t are generated from xm

t−1 + εi, with the εi uniformly distributed. The
weights wi

t are estimated from the observation zt.
This method presents two main advantages. First, as the noise vector ε is random,

the advantages of SIR over exhaustive search are preserved. Second, the distribution of
ε is updated at every time step, and for every particle, avoiding the disadvantages of
having a noise distribution that would be determined once for all from prior knowledge.
Vessels can be straight and suddenly become tortuous, or can have a very homogeneous
shape/appearance before encountering a very inhomogeneous region. This Reinforced
SIR captures the conditions change and adapts the noise vector distribution.
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4 Particle Filters and Vessel Tracking

We now consider the application of such non linear model to vessel segmentation and
tracking. Without loss of generality one can assume that the root of a coronary is known,
either provided by the user or through some automatic procedure. Simple segmentation
of that area can provide an initial guess on the statistical properties of the vessel

pvessel = ( (PB , µB, σB) , (PC , µC , σC) ) (9)

using an expectation/maximization process. Then, one can consider the problem of ves-
sel segmentation equivalent to the recovery of successive cross-sections, along with
the position of the vessel at any given cross-section. Such an approach is equivalent
to finding a deterministic number of sequential states ωτ = (xτ , Θτ ,pvessel), which
belong to the feature space (see [SEC. (2.1)]) where we use the notion of Particle
Filters.

The multiple hypotheses nature of the method requires a metric definition to validate
their correctness. Given, the current state and the perturbation law we produce a number
of new states following this law. Such states refer to a new plane, as well as a center
point for the elliptic structure and therefore the CSP algorithm can be used to provide
the most prominent area for the vessel given these initial conditions. We use this area
and two metrics that aim to account for the shape and appearance of the vessel toward
validation of the considered hypotheses.

4.1 Prediction and Observation: Distance

To this end, we are using mostly the image terms, and in particular the intensities that
do correspond to the vessel in the current cross-section. The observed distribution of
this set is approximated using a Gaussian mixture model according to the expectancy-
maximization principle. Each hypothesis is composed by the features given in [EQ.
(2)], therefore, the probability measure is essentially the likelihood of the observation z,
given the appearance A model. The following measures (abusively called probabilities)
are normalized so that their sum over all particles is equal to one.

– Probability measure for shape
Once the vessel’s edge is detected using Circular Shortest Path [SEC. (2.2)], a
measure of contrast, called the ribbon measure, R is computed:{

R = −∞ , µint ≤ µext

R = µint−µext

µint+µext
, otherwise

while the correctness of the prediction is given by:

p(z|S) = e
− |R|

R0

where µint is the mean intensity value for the voxels in the vessel, and µext is the
intensities mean value for the voxels in a band outside the vessel, such that the band
and the vessel’s lumen have the same area.
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Fig. 4. Three vessels cross sections detected using the ribbon measure

Since the coronary arteries are brighter than the background, the best match
maximizes R (see [FIG. (4)]).

– Probability measure for appearance
For the vessel lumen pixels distribution pvessel [EQ. (1)], the probability is mea-
sured as the distance between the hypothesized distribution and the distribution
actually observed.
The distance we use is the symmetrized Kullback-Leibler distance D between the
model p(x) = pvessel and the observation q(x), obtained from the CSP segmenta-
tion:

D =
∫

p(x)log(
p(x)
q(x)

) + q(x)log(
q(x)
p(x)

)dx,

p(z|A) = e−
|D|
D0 .

The combination of edge-driven and region-based metrics measures the fitness of
the observation to the prior knowledge included in the state vector.

4.2 Branching Detection

When a branching occurs, the particles split up in the two daughter branches, and then
track them separately (see [FIG. (5)]). As branchings are never perfectly balanced,
one of the branches attracts most of the particles after few resampling steps. To avoid
the collapse of one of the modes, two techniques are available: either to increase the
number of particles in the weakest branch, or to treat the two branches separately. The
second approach is preferred in this paper. To this end, a simple K-means clustering
on the joint space (position+orientation) of the particles is considered. When the two
clusters are well separated, the number of particles is doubled and equally dispatched
in the two branches. The segmentation goes on, according to [EQ. (6)], with a bi-modal
distribution.

The K-means algorithm [9] partitions N points, xn, into K disjoint clusters, of cen-
ters µj , minimizing the sum-of-squares

J =
K∑

j=0

N∑
n=0

|xn − µj |2.

The K-mean procedure alternates two steps: first each point is associated to the nearest
center µj , then each center is moved in the barycenter of the cluster.



486 C. Florin, N. Paragios, and J. Williams

(a)

(b)

Fig. 5. (a) branching points between LCX and LAD for three patients with the particles’ mean
state overlaid, (b) the particles , clustered using K-means, follow up the two branches

Table 1. Results table showing the percentage of branches correctly segmented, over a dataset of
34 patients, using Particle Filters (PF) and Front Propagation (FP)

vessel name RCA Acute Marginal LAD First Septal LCX Obtuse Marginal
% of branches, using PF 100% 85.3% 100% 94% 100% 94%
% of branches, using FP 64% 18% 53% 32% 39% 22%

4.3 Implementation and Validation

Regarding the initial configuration, the use of approximatively 1, 000 particles gave suf-
ficient results for our experiments. We perform a systematic resampling according to
the Sampling Importance Resampling every time the effective sampling size Neff =∑

i 1/w2
i (where wi is the weight of the ith particle) falls below half the number of

particles. As mentioned in Section 3.1, the preference for SIR, compared to Stratified
Resampling [10], is motivated by the robustness of the segmentation. The reinforced SIR
strategy exposed in [SEC. (3.3)] gives better results, for a constant number of particles.

Validation is a difficult part for any coronary segmentation method. The algorithm
has been evaluated on 34 patients, and has successfully recovered all the main arteries
(RCA, LAD, LCX) for each patient as shown in the following table, while a small
portion of visual results are also presented in [FIG. (6)].

The percentage in the above table corresponds to the number of branches segmented
by Particle Filters and identified by a human expert. For comparison purposes, the same
test is performed using Front Propagation based on the image Hessian matrix [27].
These results were achieved with a one-click initialization; a method based on a PCA
on the intensity volume gives the approximative initial direction. All patients presented
some kind of artery pathologies in one, at least, of their coronary vessels. This means
the Particle Filter successfully segmented both healthy and unhealthy coronaries. The
method seems to outperform regarding the detection of the main branchings, while in
some cases smaller branchings at the lowest parts of the vessel tree, have been missed.
Nevertheless, one can argue that their clinical use is of lower importance. However,
current studies focus on the issue of branchings for narrow vessels in very low contrast
conditions. The comparative study demonstrate the Particle Filters capability to outper-
form deterministic hessian based methods in cases with corrupt data (pathologies).
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(1)

(2)
(a) (b) (c) (d)

Fig. 6. Segmentation of the Left anterior descending coronary artery and Right coronary artery
in CTA (in red) for four patients (1) & (2); (a) coronary tree, (b,c,d) Different 3D views super-
imposed to the cardiac volume are presented.

5 Discussion

In this paper, we have shown that Particle Filters can be used for vascular segmentation.
In the context of vascular segmentation, Particle Filters sequentially estimate the pdf
of segmentations in a particular feature space. The case of coronary arteries was con-
sidered to validate such an approach where the ability to handle discontinuities on the
structural (branching) as well as appearance space (calcifications, pathological cases,
etc.) was demonstrated. The main advantage of such methods is the non-linearity as-
sumption on the evolution of samples. Experiments were conducted on several healthy
and diseased patients CTA data sets, segmenting the Left Main Coronary Artery and the
Right Coronary Artery [FIG. (6)].

Introducing further prior knowledge in the segmentation process is the most promi-
nent future direction. One can see such a contribution in two parallel paths. First, build-
ing better models that account for the appearance of the vessel seems to be a necessity
toward capturing the coronaries at the lowest parts of the vessel tree. The current model
is based on the global statistics of the appearance of the vessel and one can claim is a
meaningful measure for vessel cross sections with a certain area.
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Abstract. Establishing correspondence between features of a set of im-
ages has been a long-standing issue amongst the computer vision commu-
nity. We propose a method that solves the multi-frame correspondence
problem by imposing a rank constraint on the observed scene, i.e. rigidity
is assumed. Since our algorithm is based solely on a geometrical (global)
criterion, it does not suffer from issues usually associated to local meth-
ods, such as the aperture problem.

We model feature matching by introducing the assignment tensor,
which allows simultaneous feature alignment for all images, thus pro-
viding a coherent solution to the calibrated multi-frame correspondence
problem in a single step of linear complexity. Also, an iterative method
is presented that is able to cope with the non-calibrated case. Moreover,
our method is able to seamlessly reject a large number of outliers in every
image, thus also handling occlusion in an integrated manner.

1 Introduction

The establishment of correspondence between image features extracted from
different viewpoints of the same scene is an essential step to the the 3D re-
construction process. In fact, most reconstruction algorithms rely on previously
established correspondences to determine 3D structure. Clear examples of this
are classical factorization algorithms such as [15] and more recent methods as
[6], [14] and [7]. A notable exception is presented in [3], where correspondences
are not explicitly extracted - maximum likelihood structure and motion are cal-
culated using an EM framework.

The difficulty of the correspondence problem is associated to its combina-
torial nature. Furthermore, matching in multiple frames presents an additional
difficulty to the traditional correspondence problem: coherence between every
pairwise correspondence has to be guaranteed. Several models have been pro-
posed in order to obtain a matching solution with an acceptable computational
cost. In [12] and [8], the n-frame correspondence problem is formulated as a
maximum-flow problem and is solved through graph cut algorithms. Different
approaches involving graphs have been presented in [13] and in [5].

A natural way to associate a cost function to the correspondence problem is to
exploit a constant characteristic of an important class of 3D scenes: rigidity. The
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use of rigidity presents the advantage of leading to intrinsically global algorithms;
moreover, it naturally overcomes the aperture problem, since features are not
characterized by their specific local properties. This geometric constraint can
be translated into a rank constraint on the matrix containing the coordinates
of the extracted features (the measurement matrix). Actually, it can be shown
that when features in different viewpoints are correctly aligned (and only then)
this matrix is highly rank-deficient - [9], [11]. Rank-deficiency for multi-frame
correspondence has also been exploited in [10].

A first approach to correspondence exploiting rigidity has been made in [9],
where the authors use a cost function based on the determinant of the mea-
surement matrix to match features in a pair of images. This approach, al-
though theoretically sound, has two main shortcomings: it is unable to handle
the multi-image case and the cost function is intrinsically non-linear, present-
ing a high computational burden. In [11] the authors presented a new algo-
rithm based on an alternative cost function, which would detect rank-deficiency
based on the sum of the non-dominant singular values of the measurement
matrix. This cost function allows the rigidity constraint to be applied to a multi-
frame system. However, to obtain an acceptable computational complexity rank
is imposed iteratively by matching each image individually with the remain-
ing frames. Since rank is a global constraint this is not a desirable formula-
tion. Moreover, occlusion cannot be modeled even within the iterative frame-
work.

In this text, we propose a solution that generalizes the concept of assignment
matrix used in our previous work to establish correspondences between the fea-
tures in each of the frames. We introduce the assignment tensor that defines all
correspondences in a single structure. With this formulation, linear complexity
is retained even when dealing with more than two images, while occlusion is
easily modeled.

2 Problem Formulation

We present in this paper a formulation that is capable of dealing with the multi-
frame correspondence problem in the factorization context. Our objective is to
align the observations in each image in a matrix W so that corresponding features
share the same column. Optimal alignment is achieved by exploiting the intrinsic
rank-deficiency associated to a correctly matched W .

Since our method relies solely on global geometric constraints of the scene,
we place no constraints on the feature points selected - in particular, they do
not have to contain significant texture in their vicinity. To emphasize this issue,
our matching candidates are extracted from generic contour points, i.e. in areas
prone to the aperture problem, and not from corners.

The method described herein assumes an orthographic camera, although it
is easily extendable to any generic affine camera. In fact, the only factor limiting
the camera model is the validity of the rank-defficiency condition on W .
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2.1 The Assignment Tensor

Feature correspondence in a system containing nf viewpoints is uniquely defined
by a 2D point in each of the viewpoints such that all 2D points in the set are the
projections of the same 3D feature. Bearing this in mind, it is straightforward to
represent each correspondence in an nf -dimensional structure - the assignment
tensor. For the sake of simplicity, and without loss of generality, we will present
these properties for the 3 image case. Extension to an arbitrary number of images
is straightforward.

Suppose the three frames have p1, p2 and p3 features, respectively. Each
dimension of the assignment tensor contains a number of entries equal to the
number of matching candidates (i.e. 2D features) in the associated frame: i =
1, ..., p1, j = 1, ..., p2, k = 1, ..., p3. Tijk = 1 iff the ith, jth and kth features in the
first, second and third frames respectively are projections of the same 3D point,
i.e., if they represent a correct match. Otherwise, Tijk = 0.

We represent the three-frame case as an example in Fig. 1 below.

Fig. 1. The assignment tensor for the three-frame case. If feature i in the first image,
j in the second and k in third are a valid correspondence, then Tijk = 1.

Although the tensor establishes correspondence for all frames, the match be-
tween any subset of images can also be easily determined by summing over the
dimensions not associated to the aforementioned images. In the 3-frame case, the
relation Pmn between features in frame m and n can be easily obtained, as shown
below (note that in this special case Pmn actually reduces to an assignment ma-
trix). As will become evident in the next sections, the fact that any pairwise
correspondence (represented by an assignment matrix ) can be extracted from
the assignment tensor is of key importance to our algorithm, as is the fact that
the expression for each assignment matrix is linear in the elements of T . For the
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three image case, all pairwise correspondences are represented by the assignment
matrices in Fig. 1:

P12 =
p3∑

k=1
Tijk, P13 =

p2∑
j=1

Tijk, P23 =
p1∑

i=1
Tijk. (1)

To achieve a correct result, the assignment tensor must respect constraints
that are intrinsic to the correspondence problem, such as unicity - a certain
feature can be matched to at most one feature in another image. When match-
ing a pair of images, this constraint is formulated by demanding that the sum
of the rows/columns of the assignment matrix be less or equal to one. A sim-
ilar set of constraints applies to the assignment tensor. In this case, it is re-
quired that the sum over any dimension is less or equal to one. This forces
each feature to correspond to at most another feature in each of the remain-
ing frames. For the three image case, the restrictions apply in the following
manner:

∀j, k
p1∑

i=1
Tijk ≤ 1, ∀i, k

p2∑
j=1

Tijk ≤ 1, ∀i, j
p3∑

k=1
Tijk ≤ 1, Tijk ∈ {0, 1} . (2)

To avoid the trivial (and undesirable!) result of a null assignment tensor, a
minimum number pt of ones (i.e. matches) is forced on the tensor. This is done
through the following restriction:

p1∑
i=1

p2∑
j=1

p3∑
k=1

Tijk = pt (3)

The expressions for the three-frame case will be directly applied in the section
dedicated to experiments.

2.2 Feature Point Representation

Observations on each frame are represented as a set of image coordinates con-
taining the orthogonal projection of 3D feature points in the scene. Assuming
pf feature points, we represent the u and v image coordinates of a frame f in
the uf and vf vectors. We assume that each set of pf feature points is corrupted
by a certain number of outliers which will have to be rejected. The data corre-
sponding to frame f is thus represented by 2× pf matrix wf containing the uf

and vf vectors.
Measurements corresponding to several frames can be vertically stacked in

order to create a measurement matrix Wf that incorporates the projection of
the feature points up to scene f . However, outliers in each frame have to be
rejected beforehand; moreover, the remaining points have to be aligned so that
corresponding features share the same column in Wf . Matrix Pf simultaneously
aligns the feature points and rejects the outliers in the corresponding measure-
ment matrix wf . Wf can consequently be written as
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Wf =


w1 P1
w2 P2
...

...
wf Pf

 =



[
u1

1 · · · u1
p1

v1
1 · · · v1

p1

]
P1[p1×p1]

[
u2

1 · · · u2
p2

v2
1 · · · v2

p2

]
P2[p2×p1]

...
...[

uf
1 · · · uf

pf

vf
1 · · · vf

pf

]
Pf [pf×p1]


(4)

We assume that only the best p0 matches are to determined, where p0 ≤
pk, ∀k. In (4), each Pk, for k ≥ 2, represents a rank-p0 assignment matrix which
determines the correspondences between the first and the kth frame. It has been
seen in the previous section that these assignment matrices can easily be written
as a linear expression of the terms of T as defined in (1). Under these assump-
tions, each assignment matrix is defined by the conditions in (5).

Pkij = {0, 1}, ∀i = 1...pk, ∀j = 1...p0
∑
i

Pkij ≤ 1,∀j = 1...p1∑
j

Pkij ≤ 1,∀i = 1...pk

∑
i,j

Pkij = p0
(5)

Note that P1 has a slightly different structure: it is a rank-p0 matrix where
ones are only allowed in the diagonal. Consequently, unlike the other Pk, it does
not permute columns, it only forces certain columns of w1 (corresponding to
features that become occluded and thus do not have a match) to zero. As a
result, Wf will have a set of null columns. This does not have any influence in
subsequent calculations - in particular, this does not alter rank.

2.3 The Rank Constraint

It has been shown in [15] that a measurement matrix similar to the one presented
in (2) is highly rank deficient. More specifically, when including translation Wf

is at most rank-4. To this end it is however assumed that image coordinates
corresponding to the same 3D feature point occupy the same column. In the
presence of incorrect alignment, the resulting Wf is (generally) of higher rank.
Note that in the presence of a limited amount of noise the rank-4 constraint for
a correctly matched Wf may still be assumed as valid, as shown in [9].

Our problem is thus equivalent to finding the correct assignment tensor T .
The tensor yields a set of assignment matrices Pk - each of these matrices aligns
the corresponding wk, so that a rank-4 Wf is generated.

2.4 The Cost Function

The multi-frame correspondence problem can be stated as the search for the
assignment tensor that yields the optimal (pairwise) assignment matrices Pk as
described in (1). The assignment matrices are optimal in a sense that these result
in a rank-4 Wf (recall that Wf is a function of the assignment matrices). We
consider the SVD decomposition of Wf = QΣV T and define Z as
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Z = WfWT
f =


w1P1P

T
1 wT

1 w1P1P
T
2 wT

2 · · · w1P1P
T
f wT

f

w2P2P
T
1 wT

1 w2P2P
T
2 wT

2 · · · w2P2P
T
f wT

f
...

...
...

wfPfPT
1 wT

1 wfPfPT
2 wT

2 · · · wfPfPT
f wT

f

 (6)

Recall that the aim of our algorithm is to find the matching solution that
creates the best rank-4 Wf in the least-squares sense. This can be achieved
by minimizing the sum of all eigenvalues λi of Z, with the exception of the
four largest ones. This is a heuristic similar to the one used in [4], where rank
minimization is achieved through minimization of the dual of the spectral norm.
The eigenvalues of Z can be obtained, by definition, as the result of the following
expression, where qi represents the ith column of Q, i. e. the ith eigenvector
of Z:

λi = qT
i Z(P1, P2, ..., Pf )qi, P1 ∈ D, P2 ∈ P2, ..., Pf ∈ Pf (7)

where Pf represents the set of rank-p0 assignment matrices of dimension [pf × p1]
and D represents the set of rank-p0 diagonal matrices of dimension [p1 × p1].The
eigenvectors of Z are assumed known because these are the columns of Q, that
under the factorization context is related to motion. In a calibrated system, Q
is thus not a variable. For a rank-deficient Z, each of the non-dominant eigen-
vectors is a base vector for the null space of the column space of Wf defining
in fact camera movement.

Our matching problem must thus be formalized as the search for the optimal
set of assignment matrices P ∗

1 , ..., P ∗
f (e.g. optimal assignment tensor) such that:

P1∗, ..., P ∗
f = arg min

P1,...,Pf

(∑
i>4

λi(P1, ..., Pf )

)
=arg min

P1...,Pf

(∑
i>4

qT
i Z(P1, ..., Pf )qi

)
(8)

3 Minimizing the Cost Function Using Linear
Programming

In general, solving the multi-frame correspondence problem through the mini-
mization of (8) is a very tough problem. In particular, when considering only iso-
lated assignment matrices, as was done in [11], the cost function in (8) is clearly
quadratic, since there are certain terms (the crossed terms wiPiPk

T wk
T , i = k)

which cannot be expressed as a linear function of the elements of the associated
assignment matrices. Note that this is not an intrinsic property of the problem,
but rather a consequence of an inadequate formulation: in fact, when working with
single assignment matrices there are restrictions which are not considered. This
is not the case with the assignment tensor, which takes into account all the inter-
frame restrictions. In the present formulation, the crossed terms actually do have
a linear form in the terms of the tensor - in other words, we can solve the cor-
respondence problem as a linear problem. Moreover, we show that this problem
can be easily solved through relaxation. In this section, the tensor formulation of
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the correspondence problem will be used to generate a linear formulation in the
elements of T for the cost function presented in the previous section.

3.1 Unicity Constraints Revisited

The unicity constraints governing the structure of the assignment tensor, as they
have been presented in (2), are awkward to use in the following calculations. We
will consequently derive an equivalent formulation for these constraints.

We recall that the unicity condition requires that the sum over any dimension
of the assignment tensor be at most one. Although these restrictions are trivially
extendable to an arbitrary number of frames we will once more focus on the three-
frame case, which allows a simple insight on the technique. This formulation
would amount to:

∀j, k, m, n,
∑
i=1

Tijk.Timn =
(∑

i=1
Tijk.Timn

)
.δjmδkn,

∀i, k, l, n,
∑
j=1

Tijk.Tljn =

(∑
j=1

Tijk.Tljn

)
.δilδkn,

∀i, j, l, m,
∑
k=1

Tijk.Tlmk =
(∑

k=1
Tijk.Tlmk

)
.δilδjm,

(9)

In practice, this formulation is equivalent to saying that any two vectors
in the same dimensions are orthogonal. This in turn will prevent two non-zero
elements of the tensor of sharing the same dimension, thus enforcing the unicity
conditions.

3.2 Solving for the Assignment Tensor

In this section we show that the cost function can be written as a linear pro-
gram, thus effectively solving multi-frame correspondence with a low computa-
tional cost. Recall that the cost function has the following structure (the index
i represents the order of the eigenvectors of Z):∑

i>4

qT
i WfWT

f qi (10)

Our objective is to extract the optimal assignment tensor T , which is uniquely
determined by the optimal set of assignment matrices P2, ..., Pf . Given a tensor
T , the vec operator stacks its dimensions successively (from the first to the last)
in order to form a vector: x = vec(T ).

Note the relation between T and the structure of the assignment matrices
(P2, ..., Pf ): the elements of these matrices are a linear function of the elements of
T , as explained in section 2.1. Furthermore, products of matrices (such as P2P

T
3 )

actually represent pairwise correspondences (in this case between the second and
third frame - P23) and are thus also a linear cost function of x - the simplification
becomes evident when using the constraints in the form presented in (9). Given
each of the qi, we can thus rearrange (10) as a linear function of x. Optimal



Optimal Multi-frame Correspondence with Assignment Tensors 497

correspondence will consequently be given by (11), where T represents the set
of all assignment tensors of dimension p1 × p2 × p3 and rank p0; in the generic
case, the number of dimensions contained in the dimension set is determined by
the number of frames in the system.

x∗ = arg min
x

c.x, s.t. x = vec (T ) , T ∈ T (11)

The coefficient vector c can be calculated directly from the original formu-
lation of the cost function by developing the expression in (10) in order to the
elements of the assignment tensor. The calculation of c for the three image case
is presented in the Appendix.

The formulation presented in (11) still remains an integer minimization prob-
lem and as such has no efficient solution. However, in the continuous domain
there are algorithms that allow the solution to this problem to be obtained in
a simple and swift manner. Fortunately, it can easily be shown that the assign-
ment tensor possesses equivalent properties that allow an exact relaxation to
take place - all that is needed is to demonstrate that the matrix containing the
restrictions on the vector x is totally unimodular, as shown in [2].

The resulting problem is thus equivalent to the original, but for this class of
problems (linear programming problems) there exist several efficient algorithms
that can provide an adequate solution such as the simplex algorithm.

This method of solving the integer optimization problem has originally been
proposed in [9].

4 Extensions to the Algorithm

4.1 The Non-calibrated Case

Up to this point, Q has been considered as known. However, an iterative solu-
tion has been devised which allows the solution of non-calibrated systems with
small baselines provided a reasonably good initialization is available. Under this
assumption, an initial estimate of the qi is used to solve an approximate match-
ing problem, which in turn returns an improved value for the qi. This process
is repeated until convergence is achieved; a similar method has already been
published by the authors in [11].

Note that in the non-calibrated case two sets of unknowns are present: the
elements of T and the columns of Q. Our iterative optimization scheme is anal-
ogous to a cyclic coordinate descent algorithm, in the sense that it optimizes a
set of unknowns while keeping the remaining unknowns constant.

4.2 The Support Tensor

As can be inferred from the previous sections, the size of the linear program to
be solved in order to obtain a matching solution can be potentially rather large.
If some a priori knowledge is available, improbable matches can be excluded,
thus reducing the dimensionality of the problem. To this end, a support tensor
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is used, which is a binary structure in which allowable matches are marked. All
null variables are consequently eliminated from the x vector, thus rendering a
smaller xc vector.

5 Experiments

We describe in this section a set of experiments in order to validate the algo-
rithm that has been presented. An experiment with real data provides a proof-
of-concept solution, while demonstrating the ability of the algorithm to function
under less than optimal conditions (i.e., with noise and deviations to the theo-
retical model). A non-calibrated example is also presented that illustrates how
absence of information regarding motion may be circumvented.

5.1 The LEGO Grid

In this experiment three images of a LEGO grid are used. The grid defines two
perpendicular planes in the 3D space. In this experiment, only contour points in the
images are considered. In the first image, 99 points from the contour are selected as
features. Note that the features are selected in areas where the contour is a straight
line , so as to demonstrate the robustness of the method to the aperture problem.
In the remaining images, the matching candidates are simply the contours of the
images. In order to illustrate the handling of occlusion, parts of the contour have
been removed in the second and third frames in order to create a situation under
which some features in the first image do not have a valid match. No ground-truth
is available, but correspondences can be verified by visual inspection.

Fig. 2. Results for the LEGO Grid data set. Counter-clockwise from upper left: First
image with features selected in red; second and third images with matching candidates
in green and correspondences in red; feature trajectories in the third image.
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Note that only a minimal error is noticeable by visual inspection, despite the
fact that the camera was modeled as orthographic and that only approximate
values were available for the qi. Features which did not have valid matching
candidates were successfully rejected. In this experiment a support tensor based
on epipolar geometry was applied, so that candidates for each feature only exist
in the vicinity of its epipolar lines. In total, ca. 3600 matching candidates were
available for the 99 features in each of the frames. Using support, only 11000
matches were possible - consequently, only a subset of the total number of match-
ing candidates is an actual candidate for each feature. It should be underlined
that the use of the support tensor does not alter the result of the experiment;
however, it does speed it up considerably - this problem, including support com-
putation, can be solved in less than 15 min. on MATLAB. The actual matching
algorithm, implemented in C, takes but a few seconds.

5.2 The Hotel Sequence

In this experiment information about camera motion is inexistent in the sequence,
except in the first three frames. In the first two images 43 points (37 features
and 6 points without matching candidates) have been singled out. Every image
is matched against the first two using approximate values for motion informa-
tion, i.e. the qi. These are extrapolated based on the movement of frames already
matched. These estimates are then iterated upon as referred in section 4.1. Note

Fig. 3. Results for the Hotel data set. Counter-clockwise from upper left: First image
with features in red and occluded points in blue; last image with correspondences in
red; last image with trajectories; point cloud resulting from reconstruction, viewed from
above.
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that this is a simplified version of the presented algorithm, used only to illustrate
the possibility of applying this work to uncalibrated images sequences; as such,
matches are done pairwise to accelerate the procedure. Support based on maxi-
mum disparity between images is used.

No significant error is noticeable in this experiment, as the 37 features are
correctly tracked and the 6 occluded points are rejected in every frame. Recon-
struction based on the matches is precise. Each of the frames presents a total
of ca. 11000 matching candidates, which after application of support reduces to
only 1100 points.

6 Conclusions

We have presented in this text a novel approach to multi-view matching that
allows correspondence to be obtained with linear complexity. This is achieved
through a generalization of the concept of assignment matrix to the multidi-
mensional assignment tensor. This tensor shares most of the properties of the
assignment matrix, while adding constraints that allow a coherent solution be-
tween frames to be enforced. A cost function based on rigidity, as understood
under the factorization context, has been used in conjunction with the assign-
ment tensor to successfully determine correspondence between images. This cost
function not only yields a global solution but also overcomes the aperture prob-
lem, owing to the fact that it does not depend on photometry as most present
methods.
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Appendix

In this section an explicit expression for the coefficient vector of the linear pro-
gram in (11) is presented, for the three-frame case. Each ci is divided into a set
of terms as in (12) corresponding, respectively, to the terms depending only on
P2, and P3, and to the terms in P2P3

T , P1P
T
1 , P2P2

T and P3P3
T .

ci = 2cP2 + 2cP3 + 2cP2P3 + cP 1P1 + cP2P2 + cP3P3 ,

cP2 = 1[1×p3] ⊗ qi1:2
T w1 ⊗ qi3:4

T w2

cP3 = qi5:6
T w3 ⊗ qi1:2

T w1 ⊗ 1[1×p2]

cP1P1 = 1[1×p3] ⊗ qT
i1:2w1 • qT

i1:2w1 ⊗ 1[1×p2]

cP2P3 = vecr qi5:6
T w3 ⊗ qi3:4

T w2

cP2P2 = vec 1[pt×p3] ⊗ diag I[p2×p2] ⊗ qi3:4
T w2 E2E2

T I[p2×p2] ⊗ w2
T qi3:4

T

cP3P3 = vec diag I[p3×p3] ⊗ qi5:6
T w3 E3E3

T I[p3×p3] ⊗ w3
T qi5:6

T ⊗ 1[pt×p2]

Ei = e1e
T
1 · · · epie

T
pi

T

(12)

The vecr operator acts in a similar way to vec, except that it stacks the
rows of a matrix instead of its columns. ei represents the ith versor in the pi-
dimensional space. The complete c is constructed by the sum of all ci.
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Abstract. A new information measure for probability distributions is
presented; based on it, a similarity measure between images is derived,
which is used for constructing a robust image registration algorithm
based on random sampling, similar to classical approaches like mutual
information. It is shown that the registration method obtained with the
new similarity measure shows a significantly better performance for small
sampling sets; this makes it specially suited for the estimation of non-
parametric deformation fields, where the estimation of the local trans-
formation is done on small windows. This is confirmed by extensive com-
parisons using synthetic deformations of real images.

1 Introduction

Image registration is a fundamental task in many fields like medical image
processing, analysis of satellital images, and robot vision, among others (see
[1][2][3] and references contained there in). Moreover, the methods used to reg-
ister images, can be adapted to solve other important problems like motion
segmentation, stereoscopic registration and the tracking of objects in motion.

When registering two images, I1 and I2 , one tries to find the transformation
T that applied to I1 aligns it spatially to I2. Many registration methods suppose
that the intensity of every point is conserved between frames, that is, the equality
I1[T (x)] = I2(x) is assumed for all the points x; this is known as the Optical
Flow Constraint, and there is a huge number of registration methods based
on this assumption, [4][5][6][7]. However, situations are found very easily where
this constraint is violated, for example when the illumination sources change
between frames, when the surfaces of the illuminated objects are not lambertian
or when registering medical images acquired by different modalities. In these
cases, image registration by the maximization of Mutual Information (MI) has
been widely used because it does not assume a functional relationship between
the intensities of the images; instead, it is based on the fact that if aligned, the
maximal dependency (information) between the images intensities is found.
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Given two images, I1 and I2, their mutual information is defined as:

MI(I1, I2) = H(I1) + H(I2)−H(I1, I2) (1)

where H(·) is the entropy function defined over the probabilities of the images
intensities. For a discrete random variable, the entropy function is written as:

H(I) = −
N∑

i=1

pi log pi (2)

with pi = p(I = bi), where bi is the i-th valid intensity value, and for continuous
random variables the entropy is written as:

H(I) = −
∫ ∞

−∞
p(b) ln[p(b)]db .

The first applications of MI to the image registration problem, were pub-
lished simultaneously by Viola et al. [8] and Collignon et al. [9], both in the
middle of the last decade. Since then, a great number of publications have ap-
peared extending the initial work to problems like nonparametric multimodal
image registration [10][11], registration of stereoscopic pairs [12][13] or feature
tracking in images [14].

In general, methods based on the maximization of MI, start with an initial
transformation T 0, leading to a MI value MI0, and using a proper optimiza-
tion method, a sequence of transformations is generated in such a way that the
associated MI is increased until convergence. During the optimization process,
the increment in MI can be calculated with the expression:

∆(MI) = ∆H [I1(T )] + ∆H(I2)−∆H [I1(T ), I2] .

If the discrete version of the entropy is considered, this is a function of the
entries of the probability vector; using a Taylor series expansion, a linear ap-
proximation for the increment in entropy is given by:

∆(H) = −
N∑

i=1

[1 + log pi]∆pi

and because the coefficient [1 + log pi] is big for small probability values, this
increment is highly determined by small features in the images to be registered
(which are generally associated with small probability values). This can trap the
registration algorithm in local optima, generated when aligning small features,
particularly if the small probabilities are not accurately computed. This makes
it difficult to apply MI in cases where only a limited sampling is available, for
example when measuring entropy at a local level in images, which is important in
interesting problems like nonparametric image registration, and in the segmen-
tation of motion between frames, where local measures must be done in order
to learn the local motion models and to have enough spatial definition at the
motion interfaces.
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Another problem related to the application of MI, occurs when working
with images with a large background compared to the region of interest, as
frequently happens in medical image problems. Under this circumstance the
sum of the marginal entropies can become larger than the joint entropy, leading
to an increase of MI, instead of decreasing it in misregistration. Studholme
et al. [15] proposed the use of a normalized version of the MI to overcome
this disadvantage. This measure is known as Normalized Mutual Information
(NMI):

NMI(I1, I2) =
H(I1) + H(I2)

H(I1, I2)
. (3)

In this work, we propose the use of a new information measure for probability
distributions, which we call Kernel-Predictability (KP ). KP , evaluated in the
marginal and joint distributions of two images, is integrated in a similarity mea-
sure between images, normalized as (3), and applied to the registration problem.
Unlike entropy, the increment of this measure when updated by an optimization
method, is mostly determined by the larger entries of the probability vector,
which is reflected in a higher robustness in problems where only limited sam-
pling is available. Our proposal is discussed in the next section and in section
3 its performance in image registration problems is compared to that obtained
under maximization of MI and NMI. The experimental results show that an
important reduction in registration errors is obtained by the use of our method
compared to MI and NMI.

2 Kernel-Predictability

In order to introduce our information measure for a given distribution F , consider
the following guessing game: someone generates a value x1 from F and we guess
x1 by generating (independently) a value x2 from F . We denote by K(x1, x2)
the obtained reward. More generally, considering various games, we can define
the average reward E(K(X1, X2)). We suppose that the reward function favors
guesses close to the true value, i.e., K(·, ·) is a decreasing function of the distance
between x1 and x2. Under this assumption it is clear that the less uncertainty
is contained in F , the higher will be the average reward.

The above motivates the following measure for a given distribution F :

KP (F ) = E[K(X1, X2)] =
∫

Rd

∫
Rd

K(x1, x2)dF (x1)dF (x2) . (4)

The last integral is a regular statistical functional of degree two (two is the
number of arguments in K) [16][17], and the real function K is called the kernel.
This functional measures the predictability of the random variables distributed
according to F , weighted by K, and we denominate it Kernel−Predictability.

For the discrete case, this becomes:

KP (p) =
M∑
i=1

M∑
j=1

Kijpipj = pT Kp (5)
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where M is the number of the different values taken by the random variable X
and K is the matrix which stores in the entry Kij , the reward given for guessing
the value xi when the generated value was xj . This reward must be maximal,
say KM , when i = j, and if it does not depend on i (if we don’t have preference
to guess any particular value of X), Kii = KM , ∀i and KM > Kij if i = j. In
general, Kij must be selected as a decreasing function of the distance between
the values xi and xj .

Observe that if only a unit reward is given for an exact guess, i.e. K is
the identity matrix, KP reduces to the l2 norm of the probability vector, and
KP (p) = 1−G(p), where G(·) is the well known Gini index of Machine Learn-
ing [18]. Opposite to the Gini index and other information measures like the
discrete entropy which are invariant under a permutation of the values of the
measurement scale, KP can incorporate the quantitative nature of the measure-
ment scale by means of a proper reward function that expresses how close the
guess is to the true value.

KP (·) is maximal for random variables which take a fixed value with prob-
ability one, by the next inequality:

KP (p) =
∑

i

∑
j

Kijpipj ≤ KM

∑
i

∑
j

pipj = KM

note that KM is the value of KP for variables with pi = 1 for any particular
value i and pj = 0 for all j = i.

Taking again K = I, the minimal KP is obtained for uniformly distributed
variables, as can easily be proved. It should be noted that KP is a predictability
measure, so it behaves in an inverse way compared to the entropy, which is an
uncertainty measure.

Returning to the case K = I, we can measure the increment in kernel-
predictability, which may be associated to the optimization process:

∆(KP ) = 2
M∑
i=1

pi∆pi .

From this equation one can see that the increment in KP is mainly determined
by the larger entries of the probability vector, and for that reason, by the more
important features in the images to be registered. This is an important difference
with respect to entropy.

2.1 Estimation of the Kernel-Predictability

In practice, it is not always possible to know exactly the distribution function
required to evaluate (4) and (5), so an estimation of KP must be done based
on a sampling set composed by n independent and identically distributed ran-
dom variables, X = {X1, X2, . . . , Xn} ,with Xi ∼ F , ∀i. Two estimators to
approximate (4) are:
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K̂P =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

K(Xi, Xj) (6)

K̂P ′ =
1(
n
2

)2 n/2∑
i=1

n∑
j=n/2+1

K(Xi, Xj) . (7)

In the first estimator, all possible pairs of variables in X appear in the sum; in
the second, the set X is divided in two subsets and the kernel is evaluated at each
couple formed by taking one variable from the first set and other variable from
the second one. Both estimators are unbiased, and if the kernel K is symmetric
then K̂P has the minimal variance among all the unbiased estimators, as shown
in [16][17]. K̂P ′ has more variance than K̂P but is cheaper to evaluate. Both
variances tend to the same value when the sampling set is increased in size; for
these reasons, we use the estimator K̂P ′ in the present work.

2.2 Image Registration with Kernel-Predictability

Using KP , one can define a similarity measure between images I1(T ) and I2, in
the following way:

SKP (I1(T ), I2) =
KP [F (I1(T ), I2)]

KP [F (I1(T ))] + KP [F (I2)]
. (8)

This similarity measure makes a comparison between the predictability of the
joint distribution and that of the marginal distributions for the images I1(T )
and I2. The registration is done by searching for the transformation T ∗ with
maximal SKP , T ∗ = arg maxT [SKP (I1(T ), I2)], due to the fact that the joint
distribution of the aligned images gets an ordered and more predictable structure
than the one obtained with misregistered images. As done with NMI, our sim-
ilarity measure is normalized to make it more robust in problems with different
content of background and information of interest.

In [19], a measure called Kernel Density Correlation (KDC) is proposed for
image registration; that measure shares some similarity with the approximation
(7) to the functional (4); however important differences should be noted: firstly,
for the approximation of KP (defined in the functional 4), more estimators
can be used besides (7), e.g. equation (6), so KP is more general than KDC;
moreover in [19] KDC is used for image registration taking the cartesian product
of the points in the two images, penalizing the differences in intensities for points
that are near in the overlapping coordinates, which implies that this method
cannot be applied for multimodal image registration problems; in our case we
are using the KP measure to search for peaked joint distributions of intensities
in the corresponding regions, which is quite different, and indeed permits its use
for multimodal registration.

The similarity defined in (8) can be estimated using the alternatives given
above to approximate the KP . In particular, we sample uniformly the coordi-
nates of the images, generating the set X = {X1, X2, . . . , Xn}; then, evaluate
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the intensities of the image I2 over this set, and the intensities of the image I1
over the set T (X). Using the estimator (7), the approximation to (8) can be
written in the following way:

ŜKP (I1(T ), I2) =
n/2
i=1

n
j=n/2+1 K2(Ii

J−Ij
J )

n/2
i=1

n
j=n/2+1 K1(Ii

T −Ij
T )+ n/2

i=1
n
j=n/2+1 K1(Ii

2−Ij
2)

= KP ′
J

KP ′
T +KP ′

2

(9)

where Ii
J = (I1[T (Xi)], I2(Xi)), Ii

2 = I2(Xi), Ii
T = I1[T (Xi)], K2 is the kernel

used to measure the predictability of the joint distribution of I1(T ) and I2 and
K1 for the marginal distributions of I1(T ) and I2. For example, if gaussian
kernels are used, then:

K2(Ii
J − Ij

J ) = exp

{
−‖I

i
J − Ij

J‖2
2σ2

2

}
(10)

K1(Ii − Ij) = exp
{
− (Ii − Ij)2

2σ2
1

}
. (11)

The maximization can be done using gradient ascent, starting with an initial
transformation T 0 and actualizing it with the relation:

T t+1 = T t + λ
d

dT t
ŜKP (I1(T t), I2)

with:

d

dT
ŜKP (I1(T ), I2) =

1

K̂P ′
T + K̂P ′

2

d

dT
K̂P ′

J −
K̂P ′

J

(K̂P ′
T + K̂P ′

2)2
d

dT
K̂P ′

T

and in particular, when using the kernels (10) and (11), the last derivatives are:

d
dT K̂P ′

J = − 1
σ2
2

∑n/2
i=1

∑n
j=n/2+1 exp

{
− ‖Ii

J−Ij
J‖2

2σ2
2

}
(Ii

T − Ij
T ) d

dT (Ii
T − Ij

T )
d

dT K̂P ′
T = − 1

σ2
1

∑n/2
i=1

∑n
j=n/2+1 exp

{
− ‖Ii

T −Ij
T ‖2

2σ2
1

}
(Ii

T − Ij
T ) d

dT (Ii
T − Ij

T ) .

3 Results

This section shows the results obtained by solving the image registration prob-
lem, with the application of the similarity measure defined in (9). These results
are compared with those obtained by the maximization of MI and NMI. For
both versions of mutual information, the entropy was estimated using Parzen
windows to approximate the probability densities, following [8]. These approxi-
mations are:

H(I2) = − 2
n

∑n/2
i=1 ln

{
2
n

∑n
j=n/2+1 K1(Ii

2 − Ij
2)
}

H [I1(T )] = − 2
n

∑n/2
i=1 ln

{
2
n

∑n
j=n/2+1 K1(Ii

T − Ij
T )
}

H [I1(T ), I2] = − 2
n

∑n/2
i=1 ln

{
2
n

∑n
j=n/2+1 K2(Ii

J − Ij
J )
}

.
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The use of Parzen windows is more suitable, when working with limited sam-
pling, than other approaches used to estimate the entropy (e.g. normalized his-
tograms); an additional advantage is that, the approximate similarity measures
become differentiable, facilitating the optimization process. Gaussian kernels,
(10) and (11), were used to approximate the entropies in MI and NMI (using
integration constants to normalize the densities as is required by the Parzen
windows) and the corresponding kernel-predictability measure. To make the 3
methods comparable, all the corresponding variances were set to equal values.
As is done with the estimation of the KP values, two different, equally sized
sampling sets of coordinates are used to estimate the entropy, again following
the proposal in [8]. It should be noted that when using Parzen windows the con-
tinuous version of the entropy is used; this version can be negative depending
on the domain of the variables, and the NMI can be maximal for a negative
sum of the marginal entropies and a small negative joint entropy, to avoid this
problem the images were scaled to [0,100]. All the methods were optimized using
gradient ascent.

3.1 Global Multimodal Image Registration

In the first set of experiments, the 3 methods were tested, using 2 two-dimensional
MR images, obtained by the simulator at the Montreal Neurological Institute
[20], shown in figure 1. The first image corresponds to a modality T1, with
9% of noise level, and 40% of spatial inhomogeneities in intensity; the second
corresponds to a modality T2. A set of 50 random rigid transformations was
created, and applied to the T2 MR image. The T1 MR image was used as I1,
so the transformation was always started with the identity. The values for the
rotation angles θ were chosen uniformly distributed, θ ∼ U{−30◦, 30◦}, and the
translation vectors t, taking t ∼ U{−25, 25} (in pixels). Each sampling set was
created taking at random coordinates uniformly distributed in the overlapping
region of the images; when this kind of sampling is done, then the part of I2
which is in the overlap depends on the actual transformation T , and in order
to use gradient ascent, the derivative of I2 with respect to the transformation
must be calculated; but I2 does not depend directly on T , so the gradient of
the 3 similarity measures with respect to T was approximated using central fi-
nite differences. Though a rigid transformation was applied to the images, the

Fig. 1. Images (217 × 181 pixels) used for the global transformations experiments
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Fig. 2. Success percentage (left) and mean registration error (right) for MI (squares),
NMI (circles) and SKP(triangles)

registrations were done searching for the best affine transformation in order to
avoid the nonlinearity of the rigid transformations with respect to the rotation
angle. In the experiments, the size of the sampling sets was progressively varied,
and for each sampling size, the set of 50 registration problems was run.

Figure 2, shows the percentage of successful registrations and the mean regis-
tration error obtained for the 3 algorithms. The registration error was measured
adding the length of the difference between the applied and the estimated vectors
for all the pixels, and then taking the mean value; if the mean value was smaller
than 1 pixel, then the registration was considered as successful, and only the
successful registrations were considered in the computation of the mean error
in the set of 50 transformations. As one can see, one obtains comparable errors
using KP , but a significantly higher success rate, specially for small sampling
sets, which means that one can obtain performances similar to MI and NMI
at a significantly smaller computational cost.

3.2 Local Multimodal Image Registration

The above results suggest that KP should exhibit significantly better perfor-
mance than MI and NMI when the size of the sampling set is limited by the
problem itself; this is the case when the methods are applied for the estimation
of nonparametric (local) deformation fields.

To test the performance of the three methods under local multimodal image
registration in two-dimensional images, 10 different transformation fields were
generated, synthesized by means of two rectangular grids of 5 × 5 nodes (one
grid for each component of the translation vectors) and centering over each node
a cubic B-spline function. The nodal values were assigned randomly with values
uniformly distributed over a certain interval, in such a way that for each pixel
(x, y) a translation vector [u(x, y), v(x, y)] was defined in the following way:

u(x, y) =
∑

i

∑
j Uijβ[k1(x− xi)]β[k2(y − yj)]

v(x, y) =
∑

i

∑
j Vijβ[k1(x − xi)]β[k2(y − yj)]

(12)

with Uij , Vij ∼ U{−7, 7}, for all centering nodes (xi, yj), kd is the proportion of
nodes versus the image dimension in the direction d; and:
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β(z) =


2
3 − |z|2 + |z|3

2 , |z| < 1.
(2−|z|)3

6 , 1 ≤ |z| < 2
0, |z| ≥ 2.

Each generated field, was applied to the images shown in figs. 3 and 4, with
2 different tone transfer functions f1 and f2 that distort the intensities of the
transformed images. The three registration methods were run locally on a set
of nonoverlapping windows centered at pixels uniformly distributed over the
images, in order to find the best translation vector that explains the true field
[u(x, y), v(x, y)] for each point (x, y); the center points were separated 10 pixels
of each other in every direction (the images are 128 × 128 pixels of size). All
the measures were estimated locally, i.e. using only the pixels placed within each
window of size w×w. The 2 sampling sets were built by assigning alternatively
pixels in the window to each sampling set (each of the sampling sets had w2

2
pixels). The window size was progressively reduced and the registrations repeated
for each field. The performance of the three methods was measured using the
mean angular error, as proposed by [21]; for that we extend the estimated, de =
(ue, ve), and true vectors dt = (ut, vt) to d′e = (ue, ve, 1) d′t = (ut, vt, 1) now
representing the displacement in space and time for every pixel; the angular
error is calculated by: err = arccos( d′

e·d
′
t

‖d′
e‖‖d′

t‖
). Figures 3 and 4, summarize the

results obtained by the three methods.
Our registration method can be applied effectively in nonparametric registra-

tion problems, as is confirmed in the table 1 which summarizes the results of the
application of the 3 measures for the computation of a dense transformation field.

(a) (b)

Fig. 3. Mean angular error for MI (squares), NMI (circles) and SKP(triangles). The
subfigure (a) summarizes the results obtained using the tone transfer function f1(i) =
100( i

100 )1.35, and the subfigure (b) f2(i) = 100[1 − ( i
100 )1.35], i ∈ [0, 100]. The second

row shows the original and the transformed images in each case.
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(a) (b)

Fig. 4. Mean angular error for MI (squares), NMI (circles) and SKP(triangles). The
subfigure (a) summarizes the results obtained using the tone transfer function f1(i) =
100( i

100 )1.35, and the subfigure (b) f2(i) = 100[1 − ( i
100 )1.35], i ∈ [0, 100]. The second

row shows the original and the transformed images in each case.

Table 1. Mean angular error for nonparametric registration

Image SKP NMI MI
Figs. 3(a) 13.31 ◦ 17.96 ◦ 20.52 ◦

Figs. 3(b) 14.89 ◦ 19.06 ◦ 20.97 ◦

Figs. 4(a) 28.40 ◦ 33.09 ◦ 36.14
Figs. 4(b) 29.19 ◦ 34.29 ◦ 36.27 ◦

For each of the 3 similarities, the registration was done maximizing the sum of the
similarity evaluated in small squared windows centered on each pixel and adding
an elastic regularization term. The width of the windows was set to 5 pixels. As
was done in the last experiment, 10 synthetic random fields were generated using
cubic B-spline functions, but now taking grids with 15×15 nodes for each dimen-
sion; each field was applied to the images shown in figs. 3 and 4, with 2 different
tone transfer functions, f1 and f2. The 3 methods were run for each field and the
mean angular error was evaluated.

As can be seen, an important reduction in the registration errors is obtained
using our proposal, making it very promising to be applied in local registration
problems.

4 Conclusions and Future Work

The similarity measure based in kernel-predictability presented in this paper
allows for registrations with errors equivalent to those obtained with MI and
NMI but using significantly less sampling. For this reason, our proposal is more
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effective for local (nonparametric) registration, based on small windows as is
confirmed by the experimental results. The robustness of KP in registration
problems with small sampling is due to the fact that the corresponding simi-
larity measure is controlled by the most important features in the images. This
robustness makes our measure very promising to be applied in problems where
local registration must be done. Our future work will be focused in applying this
similarity measure to problems like motion segmentation and image tracking
under variable lighting conditions.
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Abstract. We present an algebraic solution to both direct and feature-
based registration of diffusion tensor images under various local defor-
mation models. In the direct case, we show how to linearly recover a local
deformation from the partial derivatives of the tensor using the so-called
Diffusion Tensor Constancy Constraint, a generalization of the bright-
ness constancy constraint to diffusion tensor data. In the feature-based
case, we show that the tensor reorientation map can be found in closed
form by exploiting the spectral properties of the rotation group. Given
this map, solving for an affine deformation becomes a linear problem. We
test our approach on synthetic, brain and heart diffusion tensor images.

1 Introduction

Diffusion Tensor Imaging (DTI) is a relatively new 3-D imaging technique that
measures the diffusion of water molecules in human and animal tissues. As the
directional dependence of water diffusion rates is closely related to the structural
anisotropy of the medium, DTI can be potentially used to infer the organization
and orientation of tissue components. This has generated much enthusiasm and
high expectations, because DTI is presently the only available approach to non-
invasively study the three-dimensional architecture of white matter tracts, and
quantify physical and geometrical properties of neuronal fibers in vivo.

Unfortunately, current image processing and computer vision algorithms are
unable to take full advantage of what DTI offers. The main reason is that, unlike
conventional images, DTI not only measures the intensity at each voxel, but also
the orientation. Orientation at each voxel is represented mathematically with a
symmetric positive semi-definite (SPSD) tensor field D : R

3 → SPSD(3) ⊂ R3×3

that measures the diffusion in a direction v ∈ R
3 as vT Dv. Since the image

data live on a 6-dimensional space with nontrivial geometry, problems such as
filtering, smoothing, edge detection, matching, segmentation, registration, etc.,
need to be reconsidered in light of the new mathematical structure of the data.

Up until now, most of the research on DTI has focused on fiber tracking and
segmentation. Fiber tracking refers to the problem of extracting 3-D curves on
the image that follow the main orientation of the tensor field at each voxel. By
assuming that the largest principal axis of the diffusion tensor (DT) aligns with
the predominant fiber orientation, one can obtain a 3-D vector field representing

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 514–525, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the fiber orientation at each voxel. Fiber tracking is then equivalent to find-
ing integral curves of this vector field. Existing fiber tracking methods include
streamline techniques [1], tensor deflection [2], PDE-based curve evolution [3, 4],
and dynamic programming [5]. Segmentation refers to the problem of group-
ing the fibers into tracts. For example, in images of the spinal cord, bundles of
fibers have different functions, and one would like to cluster all fibers having the
same or similar functions. Existing segmentation methods either assume that
fiber tracts have already been extracted and segment these curves according to
a certain cost function, or else segment the tensor data directly using various
metrics on SPSD(3) [6, 7], such as the Euclidean distance between two fibers,
or the ratio of the length of corresponding portions of the fibers to the overall
length of the pairs [8]. In [9], fibers are reduced to a feature vector extracted
from the statistical moments of the fibers, and segmentation is done by applying
normalized cuts [10] to these feature vectors. [11] first reduces tensor data to a
scalar anisotropic measure, and then applies a level set segmentation method.

Although registration of conventional 2-D and 3-D scalar images is a rela-
tively well understood problem, registration of DT images is a problem that has
received much less attention. The main difference between registration of scalar
images and registration of tensor images is that in addition to estimating a local
deformation model, e.g., translational, rigid or affine, one must also reorient each
tensor so that it remains consistent with the surrounding anatomical structure
in the image. In [12], several tensor reorientation approaches are proposed. The
most commonly used method is the Finite Strain scheme [7, 13, 14], which, given
an affine transformation A, reorients the tensor using the rotational component
of A. Existing methods for registration of DT images are based on minimizing
a cost function [15], such as sum-of-squared differences [13, 14], correlation [13],
Euclidean distance [7] or diffusion profile [7], under an affine deformation model
combined with the finite strain reorientation method. However, such methods
are usually computationally intensive, and require good initialization.

The objective of this paper is to develop simple linear registration algorithms
that can be used for initializing computationally intensive methods. The main
contribution is to show that for the standard Euclidean metric in SPSD(3), the
DTI registration problem can be solved in closed form, both directly from dif-
fusion tensor data as well as from feature-point correspondences. Our direct ap-
proach is based on the so-called Diffusion Tensor Constancy Constraint (DTCC),
a generalization of the well-known brightness constancy constraint (BCC) to DT
data. We show that for various local deformation models, such as translational,
rigid, and affine, together with the finite strain reorientation scheme, the DTCC
leads to a linear relationship between the parameters of the deformation, the DT
data and its first order partial derivatives. Our feature-based approach assumes
that we are given a set of point correspondences in two images. We show that
the tensor reorientation map can be computed directly from the singular value
decompositions (SVD) of two corresponding tensors. Once this map has been
computed, solving for a rigid or affine deformation becomes a linear problem.
We test our approach on synthetic, brain and heart DT images.
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2 Direct Registration of Diffusion Tensor Images

In this section, we present an algebraic method for registering two diffusion
tensor images D1 ∈ SPSD(3) and D2 ∈ SPSD(3) under various local deformation
models. We also extend our method to a multi-resolution framework using a
coarse-to-fine refinement strategy.

We assume that the coordinates of the voxels in the two images, x1, x2 ∈ R3,
are locally related by an affine deformation model

x2 = Ax1 + t, (1)

where A ∈ R3×3 and t ∈ R3. This local deformation model not only transforms
the voxel coordinates, but also reorients the tensor data. We model the tensor
reorientation with the Finite Strain (FS) method [7, 13, 14], which uses the Polar
Decomposition Theorem [16] to express the affine matrix A as the product of a
rotation matrix R ∈ SO(3) and a strain matrix S ∈ SPSD(3), i.e. A = RS. The
tensor is then reoriented using the rotational component of A as

D2 = RD1R
�. (2)

By combining the local deformation model with the tensor reorientation model,
we obtain the following Diffusion Tensor Constancy Constraint (DTCC)

D2(Ax + t) = RD1(x)R�. (3)

In order to locally register D1 and D2 in the presence of noise, at each voxel
y we seek the parameters (A, t) that minimize the Frobenius norm of the error
between the two tensors

J =
∑

x∈Ω(y)

trace
(
D2(Ax + t)−RD1(x)R�)2, (4)

where Ω(y) ⊂ R3×3 is a neighborhood of voxel y at which the affine model is
valid. While there are many possible metrics in SPSD(3) [6, 7], we have chosen
the Frobenius norm, because it enables us to solve the registration problem in
closed form for various 3-D deformation models, such as translational, rigid and
affine, as we will show in the next subsections.

2.1 3-D Translational Model

In this subsection, we assume that the deformation is translational, i.e. A = R =
S = I. Under this deformation model, the DTCC (3) reduces to

D2(x + t) = D1(x). (5)

After expanding the left hand side in Taylor series, we obtain

D2(x + t) ≈ D2(x) + Dxd1 + Dyd2 + Dzd3, (6)
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where x = (x, y, z)�, t = (d1, d2, d3)�, and (Dx, Dy, Dz) are the partial deriv-
atives of the diffusion tensor at x. Substituting (6) in (5) yields the following
differential DTCC

Dxd1 + Dyd2 + Dzd3 + Dt = 03×3. (7)

Notice that (7) is a natural generalization of the well-known brightness constancy
constraint (BCC) Ixu + Iyv + It = 0 from scalar 2-D images I(x, y, t) to DT
images D(x, y, z, t). However, an important difference is that while the BCC
provides one equation in two unknowns, the DTCC provides 6 equations in 3
unknowns, because Dx, Dy, Dz are 3× 3 symmetric matrices.

Thanks to the DTCC, we may rewrite our cost function (4) as:

J =
∑
Ω

trace
(
Dxd1 + Dyd2 + Dzd3 + Dt

)2
. (8)

After differentiating J with respect to d1, we obtain

∂J

∂d1
= 2

∑
Ω

trace
(
Dx(Dxd1 + Dyd2 + Dzd3 + Dt)

)
,

and similarly for d2 and d3. By setting these derivatives to zero, we can linearly
solve for the displacement u = (d1, d2, d3)� from

Gu = −b, (9)

where

G=
∑
Ω

trace(DxDx) trace(DxDy) trace(DxDz)
trace(DyDx) trace(DyDy) trace(DyDz)
trace(DzDx) trace(DzDy) trace(DzDz)

 and b=
∑
Ω

trace(DtDx)
trace(DtDy)
trace(DtDz)

 .

The similarity with the case of 2-D scalar images, where u is computed from
a linear system of the form (9) with G =

∑
Ω

[
I2

x IxIy

IxIy I2
y

]
and b =

∑
Ω

[
ItIx

ItIy

]
,

is immediate. However, in the scalar case rank(G) = 1 when Ω consists of a
single pixel, while in the tensor-valued case G ∈ R3×3 is full rank for a generic
tensor field D, even if Ω consists of a single voxel. Hence, with generic data one
can solve for t at each voxel independently. Obviously, in the presence of noise
estimating t from a single voxel is not robust, thus in practice one assumes that
t is constant on a neighborhood Ω of size much larger than one.

2.2 3-D Rigid Model

Assume now that the deformation model is a rigid-body transformation, i.e.
A = R ∈ SO(3) and S = I, and let x = (x, y, z)� and t = (d1, d2, d3)�. In
this case, we use the well-known first order approximation [17] of the rotational
component of the deformation R = I + [w]×, where [w]× ∈ so(3) is the skew-
symmetric matrix generating the cross product by w = (w1, w2, w3)�. After
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replacing this first order approximation into the expressions for the diffusion
tensors D1 and D2, we obtain

D2(Rx+t)≈D2(x + [w]×x + t)

≈D2(x)+Dx(e�
1 [w]×x+d1)+Dy(e�

2 [w]×x+d2)+Dz(e�
3 [w]×x+d3)

=D2(x)+Dx(zw2−yw3+d1)+Dy(xw3−zw1+d2)+Dz(yw1−xw2+d3)

RD1(x)R� ≈ (I + [w]×)D1(x)(I + [w]�×) ≈ D1(x) + [w]×D1(x) + D1(x)[w]�×,

where e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�. Therefore, the cost
function (4) can be rewritten as

J =
∑
Ω

trace(U1w1 + U2w2 + U3w3 + U4d1 + U5d2 + U6d3 + Dt)2, (10)

where

U1 = −M1 + yDz − zDy , U2 = −M2 + zDx − xDz, U3 = −M3 + xDy − yDx,

U4 = Dx, U5 = Dy, U6 = Dz ,

Dt = D2(x) − D1(x), Mj = ([ej ]×D1 + D1[ej ]�×), j = 1, . . . , 3.

After taking derivatives of J with respect to u = (w1, w2, w3, d1, d2, d3)� and
setting them to zero, we obtain the following system of linear equations on u

Gu = −b, (11)

where Gij =
∑

Ω trace(UiUj) for i, j = 1, . . . , 6 and bi =
∑

Ω trace(UiDt) for
i=1, . . . , 6.

Notice that, with generic data, each voxel gives 6 linearly independent equa-
tions in 6 unknowns in u. This implies that rank(G) = 6, even if G is computed
from a single voxel. Therefore, the minimum number of voxels needed to solve
the registration problem is one, as in the translational case.

2.3 3-D Affine Model

Consider now the DTCC for the full affine deformation model

D2(Ax + t) = RD1(x)R�, (12)

where A = RS with R ∈ SO(3) and S ∈ SPSD(3). If we approximate R and S
up to first order as R ≈ I + [w]× and S ≈ I + ŝ, where ŝ is a symmetric matrix,
we obtain the following first order approximation for A ≈ I + [w]× + ŝ. This
gives

D2(Ax + t)≈D2(x)+Dx(e�
1 [w]×x+e�

1 ŝx + d1)

+Dy(e�
2 [w]×x+e�

2 ŝx + d2)+Dz(e�
3 [w]×x + e�

3 ŝx + d3).
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Note that the only differences between this expression and the corresponding
one for the rigid model are the terms involving ŝ, which can be expressed as

s11xDx+s12(yDx+xDy)+s13(xDz+zDx)+s22yDy+s23(zDy+yDz)+s33zDz.

Therefore, we may rewrite the cost function (4) as

J =
∑
Ω

trace(U1w1 + U2w2 + U3w3 + U4d1 + U5d2 + U6d3 + Dt+

U7s11 + U8s12 + U9s13 + U10s22 + U11s23 + U12s33)2, (13)

where U1, . . . , U6 are defined as in the rigid case and

U7 = xDx, U8 = yDx + xDy, U9 = xDz + zDx,

U10 = yDy, U11 = zDy + yDz, U12 = zDz.

After differentiating the cost function J with respect to the unknown model
parameters u = (w1, w2, w3, d1, d2, d3, s11, s12, s13, s22, s23, s33)� and setting the
result to zero, we obtain the following linear system on u

Gu = −b, (14)

with Gij =
∑

Ω trace(UiUj) for i, j = 1, . . . , 12 and bi =
∑

Ω trace(UiDt) for
i=1, . . . , 12.

Notice that, with generic data, each voxel provides 6 linearly independent
equations in 12 unknowns in u. This implies that rank(G) = 6 when G is com-
puted from a single voxel. Therefore, the minimum number of voxels needed to
solve the registration problem is two.

2.4 Multiscale Iterative Refinement

The algebraic registration method presented in the previous subsections assumes
implicitly that the spatial-temporal discretization of the DT image is adequate
for representing the deformation of the DT volume. When this is not the case,
an approach that combines motion estimates across multiple scales is needed.
The existing literature on estimation of optical flow from 2-D images provides
various multiscale methods for motion estimation [18]. In our implementation,
we adapt such methods to the case of DT data.

Our multiscale algorithm proceeds as follows:

1. Downsample D1 and D2 by a factor of 2n and compute transformation un

between the downsampled images by solving the linear system Gnun = −bn.
2. Warp current D1 to D1(x)← RnD1(RnSnx + 2ntn)R�

n , where (Rn, Sn, tn)
are the deformation parameters corresponding to un.

3. If n ≥ 1, set n← n− 1 and go to 1.
4. Set u =

∑n
i=0(w1, w2, w3, 2id1, 2id2, 2id3, s11, s12, s13, s22, s23, s33)�i , where

ui = (w1, w2, w3, d1, d2, d3, s11, s12, s13, s22, s23, s33)�i .

Notice that in transforming the motion parameters from one scale to another
only the translational part of the affine deformation is affected. This is because
when scaling the voxel coordinates by a factor λ we obtain λx2 = Aλx1 + λt,
thus t is scaled, but A is not.
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3 Feature-Based Registration of Diffusion Tensor Images

Consider now the registration of diffusion tensor images from a set of point
correspondences in two images x1 ↔ x2. If we are given 4 or more point corre-
spondences, then recovering a global deformation model (A, t) from the equation
x2 = Ax1 + t is simply a linear problem. However, this linear solution does not
make use of any tensor information, because the constraints due to tensor reori-
entation are not incorporated. Since a point correspondence x1 ↔ x2 naturally
induces a tensor correspondence D1 ↔ D2, we propose a feature-based registra-
tion method that exploits both point and tensor correspondences. In fact, we
show that in spite of the need for a tensor reorientation model, the registration
problem can still be solved linearly.

3.1 Rigid Registration from Point and Tensor Correspondences

Under a rigid transformation (R, t) ∈ SE(3), where R ∈ SO(3) is the rotation
and t ∈ R

3 is the translation, the two images are related by the equations

x2 = Rx1 + t and D2 = RD1R
�. (15)

From the first equation in (15), note that if R were known, we could immediately
solve for t as x2−Rx1. Thus, solving the registration problem for a single voxel
boils down to estimating the rotation matrix from the second equation in (15).

To this end, consider the SVD of the diffusion tensors D1 = U1Σ1U
�
1 and

D2 = U2Σ2U
�
2 . In the absence of noise, the equation D2 = RD1R

� implies that
D1 and D2 share the same singular values, i.e. Σ1 = Σ2. In addition, we have

U2Σ2U
�
2 = RU1Σ1U

�
1 R� =⇒ Σ2 = U�

2 RU1Σ1U
�
1 R�U2.

Therefore, if the three singular values of D1 are different, we can immediately
solve for the rotation as R = U2U

�
1 or R = −U2U

�
1 , depending on whether

det(U2U
�
1 ) = 1 or not.

In the presence of noise, the matrices Σ1 and Σ2 will not necessarily coincide,
thus we seek a rotation R that minimizes the error in (4), which in the case of
a single correspondence is given by trace(D2 −RD1R

�)2. Minimizing this error
is equivalent to solving the following optimization problem

max
R

trace(D2RD1R
�) = max

R
trace(U2Σ2U

�
2 RU1Σ1U

�
1 R�). (16)

We now prove that the solution to this optimization problem is R = U2U
�
1 or

R = −U2U
�
1 as well. The proof will follow from the following theorem [19].

Theorem 1. Let A, B ∈ Rn×n. If both AB and BA are positive semidefinite,
then there exists a permutation τ of the integers 1, 2, . . . , n, such that

trace(AB) =
n∑

i=1

σi(A)στ(i)(B) ≤
n∑

i=1

σi(A)σi(B),

where {σi(C)}ni=1 are the singular values of C arranged in non-decreasing order.
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By applying Theorem 1 to equation (16) with A = D2 and B = RD1R
�, we

obtain

trace(D2RD1R
�) =

n∑
i=1

σi(D1)στ(i)(D2) =
n∑

i=1

σi(Σ1)στ(i)(Σ2) ≤ trace(Σ1Σ2).

If we now substitute R = ±U2U
�
1 on the left hand side we get

trace(D2RD1R
�)=trace(U2Σ2U

�
2 U2U

�
1 U1Σ1U

�
1 U1U

�
2 )

=trace(U2Σ2Σ1U
�
2 ) = trace(Σ2Σ1).

Hence the rotation matrix R = U2U
�
1 or R = −U2U

�
1 achieves the maximum,

as claimed. Notice that in order for the maximum to be unique, it is necessary
that both D1 and D2 have different singular values, so that U1 and U2, hence
R, are uniquely defined.

In the case of N correspondences, we seek to find the optimal rotation that
minimizes

∑N
i=1 trace(D2i−RD1iR

�)2. We are not aware of an exact solution to
this problem. We compute an approximate solution by averaging the rotations
Ri = U2iU

�
1i computed from the individual correspondences. We use the method

in [20] for computing the average rotation.

3.2 Affine Registration from Point and Tensor Correspondences

We now extend the registration method from a rigid to an affine deformation

x2 = Ax1 + t and D2 = RD1R
�.

First, we proceed as in the rigid case in order to obtain the rotation matrix
R from the DTs. Since A can be expressed uniquely as A = RS, where R ∈
SO(3) and S ∈ SPSD(3), there are 6 independent parameters in S and 3 in t.
Since each point correspondence (x1, x2) provides 3 equations, we will need 3
correspondences in order to solve for S and t. More specifically, let (x11, x21),
(x12, x22) and (x13, x23) be such correspondences. We can solve for S and t
linearly from

x21 = RSx11 + t, x22 = RSx12 + t, and x23 = RSx13 + t.

4 Experimental Results

We evaluate the performance of the proposed registration algorithm on a real
DT image of the human brain [21]. The image size is 148 × 190 × 160 voxels
and the voxel size is 1mm × 1mm × 1mm. The implementation is done in a
hierarchy where we start downsampling at scale of 22. At this scale, a window
Ω of size 5× 5× 5 is used for the local computation of the deformation. For the
subsequent scale of 21, the window size is 11× 11× 11, followed by 21× 21× 21
at the original resolution. Fig. 1 shows the estimated transformation at each
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(a) Deformation at scale 22

(b) Deformation at scale 21

(c) Final deformation

Fig. 1. Zoomed-in results for a DT
brain image

(a) Deformation at scale 22

(b) Deformation at scale 21

(c) Final deformation

Fig. 2. Zoomed-in results of a DT
heart image
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scale for a translational deformation of t = (0, 8, 8) voxels. It can be seen that
the DTCC-based method correctly estimates the direction of the deformation for
most of the image, though it usually underestimates the magnitude. The method
performs significantly poorer in regions where there is a sharp variation of the
tensor field along a 1-D curve or a 2-D surface, e.g., in boundary regions, or
regions where the tensor data has low variability. This is because the G matrix,
from which the deformation field is estimated, is rank deficient in these regions.
This is simply a generalization of the well-known aperture problem in standard
2-D images, which refers to the impossibility of estimating optical flow in regions
with low texture using a local method.

Similar experiments are done on a DT image of a human heart obtained
from [22]. Fig. 2 shows the estimated deformation field for a translational defor-
mation of t = (0, 5, 5). Notice that the performance of the algorithm on the heart
dataset is worse than in the brain dataset. This is expected as the proportion of
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the volume of the heart data that contains high variability and is away from the
boundaries is significantly smaller.

Finally, we evaluate the proposed feature-based affine registration algorithm
on synthetic data for varying levels of noise on the image data. We generate a
20×20×20 volume containing the tensor Rranddiag{[10; 5; 2]+trand}R�

rand, where
Rrand is a rotation matrix with an arbitrary rotation at each voxel and trand ∈ R

3

is a translation vector whose entries are distributed uniformly in [0, 1]. Given an
affine transformation (A, t) with A = RS, we construct the second volume by
applying the transformation x2 = Ax1 + t + n to the voxel coordinates, where
n ∼ N(0, σ2

nI), and the transformation D2 = RU1(Σ1 +Sn)U�
1 R� to the tensor

data, where D1 = U1Σ1U
�
1 is the SVD of D1 and Sn = σsRsmallΣ1R

�
small.

σs is the amount of noise, and Rsmall is a rotation matrix generated via the
exponential map by Rsmall = exp (σs|w1|v), where v ∈ R3 is a unit random
vector and [w1]× = log U1.

We apply our algorithm to the so-generated data for varying the levels of
noise σn and σs. For each noise level, we calculated the percentage of error as
|p− p̂|/|p̂|× 100, where p is A, S or t and p̂ is the corresponding true parameter.
The rotation error is calculate as cos−1((trace(RR̂�) − 1)/2). Fig. 3 shows the
mean errors over 30 trials. As expected, the errors increase as a function of
noise. Also, note that when σs = 0, the rotation error is zero for all σn, as
expected.

5 Summary and Conclusions

We have presented a closed form solution to the registration of diffusion ten-
sor images. The first contribution of this paper is to show that by using the
diffusion tensor constancy constraint (DTCC), it is possible to have a linear
relationship between the deformation parameters, the tensor data and its first
order derivatives. Comparing our results on brain and heart DT images to those
in [23], it is apparent that the multiscale algebraic approach presented in this
paper is able to better estimate the deformation parameters. However, there is
still much work to be done in order to improve the accuracy of the estimated
transformation.

The second contribution of this paper is to show that if point correspondences
are known, then it is again easy to find the deformation parameters A, R, t by
solving a set of linear equations. The computational complexity of both linear
methods is significantly smaller compared to gradient descent methods.
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Abstract. Sometimes called the smoothing assumption, the prior model of a
stereo matching algorithm is the algorithm’s expectation on the surfaces in the
world. Any stereo algorithm makes assumptions about the probability to see each
surface that can be represented in its representation system. Although the past
decade has seen much continued progress in stereo matching algorithms, the prior
models used in them have not changed much in three decades: most algorithms
still use a smoothing prior that minimizes some function of the difference of
depths between neighboring sites, sometimes allowing for discontinuities.

However, one system seems to use a very different prior model from all other
systems: the human vision system. In this paper, we first report the observa-
tions we made in examining human disparity interpolation using stereo pairs with
sparse identifiable features. Then we mathematically analyze the implication of
using current prior models and explain why the human system seems to use a
model that is not only different but in a sense diametrically opposite from all cur-
rent models. Finally, we propose two candidate models that reflect the behavior
of human vision. Although the two models look very different, we show that they
are closely related.

1 Introduction

The main task in low-level vision is to filter out as much as possible irrelevant informa-
tion that clutter the input image. There, disambiguation is one of the central problems,
since resolving ambiguity eliminates great amount of later processing. Ambiguity arises
because input images to a vision system usually do not contain enough information to
determine the scene. Thus the vision system must have a prior knowledge on the kinds
of scenes that it is likely to encounter in order to choose among possible interpretation
of given data. In the case of stereo matching, where the correspondences between lo-
cations in the two or more images are determined and the depths are recovered from
their disparity, ambiguity arising from such factors as noise, periodicity, and large re-
gions of constant intensity makes it impossible in general to identify all locations in
the two images with certainty. Thus, any stereo algorithm must have a way to resolve
ambiguities and interpolate missing data. In the Bayesian formalism of stereo vision,
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this is given by the prior model. The prior model of a stereo matching algorithm is the
algorithm’s expectation on the surfaces in the world, where it makes assumptions about
the probability to see each surface that can be represented in its representation system.

The prior model is an ingredient of stereo matching reasonably separate from other
aspects of the process: whether a stereo system uses Dynamic Programming or Graph
Cut or Belief Propagation, it explicitly or implicitly assumes a prior; and it is also usu-
ally independent of image formation model, which affects the selection of features in
the images to match and the cost function to compare them. Also, in some algorithms,
it is less obvious than in others to discern the prior models they utilize, especially when
the smoothing assumption is implicit as in most local, window-based algorithms. In
some cases, it is intricately entwined with the image formation model, as in the case
where a discontinuity in disparity is encouraged at locations where there are intensity
edges. As far as we could determine, however, the prior models that are used in stereo
matching algorithms have not changed much in three decades. Computational models
(Marr and Poggio[15, 16]; Grimson[8]; Poggio and Poggio[19]; Pollard, Mayhew, and
Frisby[18]; Gillam and Borsting[7]; Ayache[1]; Belhumeur and Mumford[3]; Jones and
Malik[10]; Faugeras[5]; Geiger, Ladendorf, and Yuille[6]; Belhumeur[2]) have gener-
ally used as the criterion some form of smoothness in terms of dense information such
as the depth and its derivatives, sometimes allowing for discontinuities; among them,
the most common by far is the minimization of the square difference of disparities be-
tween neighboring pixels, which encourage front-parallel surfaces.

Perhaps that most of the citations above are at least ten years old is indicative of
the neglect the problem of prior model selection has suffered. The latest crop of al-
gorithms, using Graph Cut (Roy and Cox[21, 20]; Ishikawa and Geiger[9]; Boykov et
al.[4]; Kolmogorov and Zabih[12],) did not improve on the prior models, concentrat-
ing on the optimization. The excellent recent survey of stereo algorithms by Scharstein
and Szeliski[22] does not classify the algorithms in their taxonomy by prior models–
rightly, because there are not much difference in this respect among them.

Of course, by itself it might mean that the selection was exactly correct the very
first time. However, it appears that there is a glaring exception to the widespread use
of smoothing / front-parallel criterion as the prior model: the human vision system. In
this paper, we first report the observations we made in examining human disparity in-
terpolation using stereo pairs with sparse identifiable features. Then we mathematically
analyze the implication of using current prior models and explain why the human sys-
tem seems to use a model that is not only different but in a sense diametrically opposite
from all current models. Finally, we propose two candidate models that reflect the be-
havior of human vision. Although the two models look very different, we show that
they are closely related.

2 Experiment and Analysis

We used a stereogram, shown in Fig.1a, of textureless surface patches with explicit
luminance contours to investigate the prior model the human vision uses. In these dis-
plays, there are very few features that can be depended upon when matching the points.
The only distinguishing feature is the intensity edges on the circumference of the shape,
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a

b c

d e

Left LeftRight

Epipolar line

Fig. 1. The stereogram and possible surfaces. (a) A stereo pair. When the right images are cross-
fused (or the left two images are fused divergently,) a three-dimensional surface is perceived. (b)
The thick lines represent the disparity values unambiguously obtainable from local feature. (c),
(d) The human brain tend to perceive either of these two. However, no current algorithm has this
behavior. (e) Algorithms that seek to minimize gradient give a “soap bubble” surface like the one
shown here. Models in which the prior on epipolar lines are independent line-by-line also give
this solution.
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where the discontinuous change in luminance occurs. There are no other cues that are
ordinarily present, such as surface shade and partial occlusions (Gillam and Borsting[7];
Nakayama and Shimojo[17]; Malik[13]). Matching the edges gives the depth informa-
tion illustrated in Fig. 1b. Everywhere else, each location in one image can perfectly
match to a variety of locations in the other. This corresponds to the fact that any per-
fectly black surface spanning the two segments in Fig. 1b looks exactly the same.

Nevertheless, the perception human observers report is much less ambiguous. We
examined shape judgments by human observers from the interpolated stereoscopic dis-
parity. The details of the experiment can be found in the appendix. Most observers who
viewed the stereogram reported the percept of one of the two surfaces shown in Fig. 1c
and d, which we call S0 and S1. This result is in stark contrast to the smooth surface
Shp, shown in Fig. 1e, that is predicted by most extant computational models of stereo,
as we explain in the following subsections.

2.1 One-Dimensional Models

First of all, any 1D interpolating model would predict the ruled surface Shp. The three-
dimensional geometry of image formation dictates the possible pairs of points in the
image that can match each other (Fig. 2a). A point in a 3D scene and the two focal
points determine a plane in the space. The projecting rays from the point through the
focal points onto the retinae must lie on this plane. Thus, when the correspondence is
not known, it can at least be said that a feature on one image can match only those
locations on the other image that lie on the plane determined by the point and the two
foci. Such possible matching points form a line called the epipolar line. Imagine a plane
rotating around the line connecting the two foci: it sweeps the retinae, defining a set of
corresponding epipolar lines. Geometrically, only points on the corresponding epipolar
lines can match to each other. Thus, in theory, the stereopsis can be a 1D process that

Focus

Focus

Epipolar lines
Epipolar line

Depth
c

e

d

a b

Fig. 2. (a) The geometry of stereopsis. Only points on the corresponding epipolar lines can match
to each other. (b) The cross sections for solutions in Fig. 1c,d, and e on an epipolar line.
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matches the locations on the two images line by line. One may be lead to postulate that
the interpolation is also done one-dimensionally. However, the experiment shows that is
not what is done in human perception. If the interpolation is done one-dimensionally on
each epipolar line as Fig. 2b shows, the perceived surfaces S0 and S1 have forms that
cannot be readily explained (c and d in Fig. 2b). Since the sole depth data given on each
epipolar line are at the two endpoints, the only reasonable 1D interpolation is to connect
the two points by a straight line, as indicated as e in Fig. 2b. As a whole, the lines give
the smooth surface Shp. Thus, theories that only use one-dimensional information do
not predict the surfaces usually seen by human observers.

2.2 Gradient Minimization Models

In some computational models of stereopsis, epipolar lines are not independent. It
would be useful to have an interaction between the matching on different epipolar lines
even just for the sake of robustness in the presence of noise. Most current theories
model the matching by a depth surface that gives a dense map of the depth at each point
in the view. Mathematically, a depth surface S is typically represented by specifying the
value of the depth dS

i,j at each of dense sample points, which usually are laid out as an
equally-spaced grid X = (i, j). In such models, distinguishing feature such as intensity
edges can give a strong evidence of matches, determining the depth value dS

i,j at some
of the sample points. Ever since Marr and Poggio[15, 16] and Pollard, Mayhew, and
Frisby[18], most computational models of stereopsis used a weak smoothing scheme
that in effect predicts a surface S that minimizes the total change in depth:

E(S) =
∑
X

{(dS
i+1,j − dS

i,j)
2 + (dS

i,j+1 − dS
i,j)

2}, (1)

which approximates the total depth gradient
∫ |∇dS |2. Here, the sum evaluates how

much the depth value changes from one sample point to the next. One can see that the
value E(S) is minimum when the surface is flat and the depths dS

i,j at all points are
equal, in which case E(S) = 0. When some data points have definite depth values
that come from the matching, which is usually the case, these models predict a depth
surface S that minimizes E(S) under the constraint that it has definite values where
they are known. Or, the data from the feature matching are evaluated as another “en-
ergy” function and the sum of the two is minimized. This can be considered as giving
a probability to each possible surface. If the surface has the depth value that is strongly
supported by the matching, it would have a higher probability; other than that, the sur-
face has higher probability when the sum (1) is smaller. In the Bayesian formulation
of stereopsis (Szeliski[23]; Belhumeur and Mumford[3]; Belhumeur[2]), this “energy”
corresponds to a negative logarithm of the prior probability distribution, which gives an
a priori probability for possible surfaces. It represents the model’s idea of what surfaces
are more likely in the absence of data. In the case of the image pair in Fig. 1a, the edges
determine the depth at the two intensity edges that can be matched, as illustrated in
Fig. 1b. At other sample points, however, there is not enough data to decide what depth
to give to the point. This is why the model must have some disambiguating process.

How would such models react to the stereo pair in Fig. 1a? The answer is that all
current theories predict a surface similar to Shp, rather than the most perceived surfaces



Rethinking the Prior Model for Stereo 531

S0 and S1. This is because the gradient modulus |∇dS |, at all points, is larger for S0
and S1 than for Shp. This can be easily seen by simple calculation as follows.

Let 2l be the side of the square and 2h the height (the difference of the maximum
and the minimum depth) of the surface. We set up a coordinate system where the four
corners of the square have the coordinates (x, y) = (±l,±l). Of the definite depths
determined by matching the intensity edges, we assume that the two corners (l, l) and
(−l,−l) have the depth h and the other two have the depth −h. Thus, the boundary
condition is the two line segments, shown in Fig. 1b, determined by the equations x =
l, d = h

l y,−l ≤ y ≤ l and x = −l, d = −h
l y,−l ≤ y ≤ l. Then, the depth and the

depth gradient for the surfaces S0 and S1 are as follows:

S0 :

dS0(x, y) =

{
h
l (x− y) + h (x ≤ y)
h
l (−x + y) + h (x ≥ y)

∇dS0(x, y) =

{
(h

l ,−h
l ) (x < y),

(−h
l , h

l ) (x > y)

S1 :

dS1(x, y) =

{
h
l (x + y)− h (x ≥ −y)
h
l (−x− y)− h (x ≤ −y)

∇dS1(x, y) =

{
(h

l ,
h
l ) (x > −y),

(−h
l ,−h

l ) (x < −y)

Thus, we obtain
√

2h
l as the gradient modulus for S0 and S1 everywhere on the square,

except on the diagonal where it is not defined. On the other hand, the depth and its
gradient for Shp at point (x, y) are defined by

Shp :
dShp(x, y) =

h

l2
xy

∇dShp(x, y) =(
h

l2
y,

h

l2
x)

Thus the gradient modulus for Shp at point (x, y) is h
l2

√
x2 + y2, which is smaller than√

2h
l wherever x2 + y2 is smaller than 2l2, which is the case inside the square. In fact,

this observation rules out not only the energy (1) but also any energy that is the sum of
an increasing function of the gradient modulus, which is to say most models.

2.3 Convex Models

To rule out the rest of the current prior models (and more), we can consider a functional
of the form

E(S) =
∑
X

f(δdS), (2)

where δdS represents the derivative of some order of the depth function. For instance,
the first-order case is the gradient such as in (1). The derivative δdS , which in general is
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a cb

Fig. 3. Convex and non-convex functions of the magnitude. (a) A convex function. (b) A convex
function with a cut-off value. (c) A concave function.

a vector, can be of any order, or a combination of several derivatives of different orders.
Then, for a real number u between 0 and 1, we define a surface Su that interpolates the
two surfaces:

dSu = (1 − u)dS0 + udS1 (0 ≤ u ≤ 1).

We assume that f is a convex function of the derivative. In general, a function f(x) that
has the property

f((1− u)x0 + ux1) ≤ (1 − u)f(x0) + uf(x1), (0 ≤ u ≤ 1)

is said to be convex (see Fig. 3a.) If f is convex, then

E(Su) ≤ (1 − u)E(S0) + uE(S1) ≤ max{E(S0), E(S1)}

implies that any linear interpolation of the two surfaces has the value of E(S) that is at
least as small as the larger of the values for the two surfaces. Moreover, if the energy is
symmetric with respect to the sign inversion of depth, it would give E(S0) = E(S1);
and if the energy is strictly convex, the extremes S0 and S1 would be maxima among all
the interpolated surfaces, not minima. All convex theories of which we are aware satisfy
the latter two conditions. We conclude that the perceived surfaces are not predicted
by any theory that uses the minimization of the energy function of the form (2) with
convex f for disambiguation. Most current theories, including thin plate and harmonic,
employ a convex energy functional as their prior, when seen in this representation. The
minimization problem of the continuous version of (1) (called the Dirichlet integral)
has the hyperbolic paraboloid Shp as the solution.

2.4 Non-convex Models

Note that dS’s total sum is determined by the boundary condition. In order to minimize
a sum f(x) + f(y) of a convex function f(x) while keeping x + y constant, the value
should be distributed as much as possible. Thus convex energy functions such as (1)
tend to round the corners and smooth the surface. What, then, about functions that
are not convex? More recent theories of stereopsis use sophisticated priors that model
discontinuity in depth and slope. One such model (Belhumeur[2]) minimizes the second
derivative of depth, except for certain locus where it gives up and allows discontinuities
in slope, or a crease, making it non-convex. In effect, it uses a function f(x) such as



Rethinking the Prior Model for Stereo 533

Left LeftRight

a

b c

d e

Fig. 4. Another stereogram further rules out possible theories. (a) Another stereo pair. (b) The
unambiguous wire frame. (c), (d), and (e) are all possible surfaces that agree with the boundary
condition. The human brain perceives either (c) or (d). Even algorithms that use non-convex
functionals to allow discontinuities in depth and slope cannot have the solution (c) and (d) without
having (e) as a better solution.

shown in Fig. 3b, which is still convex in low-modulus region but with a cut-off value
beyond which the function value stays constant. This model actually can predict S0 and
S1, with right parameter values, since both surfaces have zero second derivatives except
at the crease, where the curvature can be as high as needed without any impact on the
functional more than the cut-off value.

However, this model fails to predict the outcome on another stereogram, shown
in Fig. 4a. Most observers reported a percept of one of the surfaces in either Fig. 4c
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or d. Assume that the non-convex energy above predicts the outcome. That there are no
creases in the two solutions indicates that the curvature stays below the cut-off value
everywhere. Since the function is convex in this domain, and because any interpolation
of the two solutions would also have no creases, the same argument as the convex case
applies. It follows that any interpolation of the two surfaces would have lower function
value than the higher of the two.

Going even further, we can think of using concave functions, such as shown in
Fig. 3c. This is akin to minimizing

√
x +
√

y while keeping x + y constant, and tend
to concentrate the value to fewer variables. If we use such a function f(x) in (2) with
a second-order δdS , it would try to concentrate the second derivative at fewer points,
and always predict a creased, piecewise-flat surface, never a smooth surface as shown
in Fig. 4c or d.

2.5 Discussion

Thus, it seems no prior model in current computational model predicts the same sur-
faces as the human brain does. The experiment shows a clear tendency that the hu-
man vision has towards the opposite direction than such theories predict, leading us
to the conclusion that the current computational theories of stereopsis are not very
similar to the disambiguation by the human brain. The prior model that human vi-
sion seems to use is diametrically opposite to the current models in the sense that it
predicts the extreme surfaces according to the energy functional representation of these
models.

Is it possible that minimum disparity gradient or some similar models are used in
human vision except when overridden by a strong prior preference for some special
features? For instance, in the case of Fig. 1a, the observers’ percepts might be biased
towards S0 and S1 and away from Shp because of the linear contours and sharp cor-
ners of the black square, since normally straight boundary contour edges derive from
polygonal objects while curved contour edges derive from curved surfaces. However,
the second experiment shows that even in the case where there are no straight edges, the
percepts tend to be those of the extreme surfaces, rather than the hyperbolic paraboloid.
Three of the observers were shown the round shape in Fig. 4a first (thus no bias because
of the other pair) and still reported the percept of either convex or concave shape. Note
that the same computational models are excluded by the second experiment alone, by
the same argument as above. Thus, even if there is a bias towards linear surfaces for
linear contours and sharp corners, it is not enough to explain the observation, nor does
it change our conclusion.

Also, it has been demonstrated (Mamassian and Landy[14]) that human percep-
tion prefers elliptic (egg shaped) to hyperbolic (saddle shaped). Since the prediction of
current theories is hyperbolic, the observed departure from it may be because of this
bias. However, note that all the surfaces that are preferred are parabolic, i.e., neither
elliptic nor hyperbolic. This is remarkable since the parabolic case constitutes a set of
measure zero in the space of all possible local shapes. Because of this, it is hard to
argue that any tendency or bias toward elliptic brought the percept exactly to that rare
position.
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3 Alternatives

The consideration of parabolic nature of the surfaces that are perceived by the human
vision leads to a model that reflects this respect of human vision. Namely, the Gaussian
curvature of the four preferred surfaces in the two experiments is zero everywhere it is
defined. Zero Gaussian curvature is a characteristic of parabolic points. Surfaces with
zero Gaussian curvature are developable, meaning they can be made by rolling and
bending a piece of paper. In other words, one possibility is that the human vision system
tries to fit a paper on the boundary wire frame (the sparse frame that represent definite
depth data shown in Fig. 1b and Fig. 4b in the case of the experiments).

Thus, minimizing the total sum of the absolute value or square of Gaussian cur-
vature, for example, may predict the surfaces similar to those that are perceived by
humans. Such a functional would be neither convex nor concave. It is also nonlinear,
which means that the solutions depend on the starting location; that makes the analysis
of such a problem nontrivial, which is why we said it may predict the surfaces.

From a very different point of view, it is also noteworthy that in both of the examples
the two surfaces most perceived by the human brain are the front and back of the convex
hull of the boundary wire frame. A set in a space is called convex when any line segment
that connects two of its points is also contained in it. The convex hull of a set of points
is the minimal convex set containing all the points. In the case of Fig. 1b, the convex
hull is the tetrahedron defined by the four endpoints of the line segments with definite
depth data. This leads us to another model: a model that predicts surfaces that are a face
of the convex hull of the depth points that are determined by matching.

Now, although these two models are very different, it turns out that they are closely
related. That is, the Gaussian curvature of the surface of the convex hull of a set (such
as the boundary wire frame) at a point that does not belong to the original set is zero,
wherever it is defined. We are not aware of any mention of this fact in the literature; so
we present it here as a theorem:

Theorem. Let A be a set in the three-dimensional Euclidean space, B its convex hull,
and p a point in ∂B \ A, where ∂B denotes the boundary of B. Assume that a neigh-
borhood of p in ∂B is a smooth surface. Then the Gaussian curvature of ∂B at p is
zero.

Proof. Since p is in the convex hull of A, there are finite number of points q1, . . . , qn in
A and positive numbers a1, . . . , an such that p =

∑n
i=1 aiqi and

∑n
i=1 ai = 1, where

qi’s are all distinct and n ≥ 2, since p is not in A. Also, since p is on the boundary ∂B
of a convex set B, all points of B are in the same half space H whose boundary ∂H is
the tangent plane of ∂B at p. Since p is on the plane ∂H and all qi’s are in H , it follows
that all qi’s are on ∂H because ai’s are all positive. (To see this, imagine a coordinate
system in which p is at the origin and ∂H is the x-y plane; consider the z coordinates
of qi’s, which we can assume are all on or above the x-y plane; if any of them had a
positive z coordinate, so would p.) Consider the convex hull C of {q1, . . . , qn}. Then C
is in B, since B is convex. It is also in ∂H , since all qi’s are. Thus, it follows C ⊂ ∂B
since C ⊂ B ∩ ∂H . Since n ≥ 2 implies that C is not a point, the plane ∂H is tangent
to the surface ∂B around p along at least a line segment. Thus the Gaussian curvature
of ∂B at p is zero. "#
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This guarantees that, in a situation as in the experiments where there are points with
definite depths and those with no information at all, we can take the convex hull of
the points with depth information and take one of its faces to obtain a surface with
minimum Gaussian curvature.

The minimization of Gaussian curvature seems a more familiar course for machine
vision, while the convex-hull model gives some intuitive reason to think why these mod-
els might work better: the convex hull has the “simplest” 3D shape that is compatible with
the data, much in the way the Kanizsa triangle (Kanizsa[11]) is the simplest 2D shape
that explains incomplete contour information; and in the real world, most surfaces are in
fact faces of some body; so it makes sense to try to interpolate the surfaces as such.

4 Conclusion

In this paper, we have reported the observations we made in examining human dis-
parity interpolation using stereo pairs with sparse identifiable features. A mathematical
analysis revealed that the prior models used in current algorithms don’t have the same
behavior as the human vision system; rather, they work in a diametrically opposite way.
In discussing the implications of the findings, we have also proposed two quite different
candidate models that reflect the behavior of human vision, and discussed the relations
between them.
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References

1. N. Ayache. Artificial Vision for Mobile Robots. MIT Press. Cambridge, MA. 1991.
2. P. N. Belhumeur. “A Bayesian approach to binocular stereopsis”. Int. J. Comput. Vision 19,

pp. 237–262, 1996.
3. P. N. Belhumeur and D. Mumford.“A Bayesian treatment of the stereo correspondence prob-

lem using half-occluded regions”. In: Proc. CVPR ’92, pp.506–512, 1992.
4. Y. Boykov, O. Veksler, R. Zabih. “Fast approximate energy minimization via graph cuts.”

IEEE T. PAMI 23, pp. 1222-1239, 2001.
5. O. Faugeras. Three-Dimensional Computer Vision. MIT Press. Cambridge, MA. 1993.
6. D. Geiger, B. Ladendorf, and A. Yuille. “Occlusions and binocular stereo”. Int. J. Comput.

Vision 14, pp. 211–226, 1995.
7. B. Gillam and E. Borsting. “The role of monocular regions in stereoscopic displays”. Per-

ception 17, pp. 603–608, 1988.
8. W. E. Grimson. From Images to Surfaces. MIT Press. Cambridge, MA. 1981.
9. H. Ishikawa and D. Geiger. “Occlusions, discontinuities, and epipolar lines in stereo.” In

Fifth European Conference on Computer Vision, Freiburg, Germany. 232–248, 1998.
10. J. Jones and J. Malik. Image Vision Comput. 10, pp. 699–708, 1992.
11. G. Kanizsa. Organization in Vision. Praeger. New York. 1979.
12. V. Kolmogorov and R. Zabih. “Computing Visual Correspondence with Occlusions via

Graph Cuts.” In ICCV2001, Vancouver, Canada. pp. 508–515.
13. J. Malik. “On Binocularly viewed occlusion Junctions”. In: Fourth European Conference on

Computer Vision, vol.1, pp. 167–174, 1996.



Rethinking the Prior Model for Stereo 537

14. P. Mamassian and M. S. Landy. “Observer biases in the 3D interpretation of line drawings.”
Vision Research 38, pp. 2817-2832, 1998.

15. D. Marr and T. Poggio. “Cooperative computation of stereo disparity”. Science 194, pp. 283–
287, 1976.

16. D. Marr and T. Poggio. “A computational theory of human stereo vision”. Proc. R. Soc. Lond.
B 204, pp. 301–328, 1979.

17. K. Nakayama and S. Shimojo. “Da Vinci stereopsis: depth and subjective occluding contours
from unpaired image points”. Vision Research 30, pp. 1811–1825, 1990.

18. S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. “PMF: A stereo correspondence algorithm
using a disparity gradient”. Perception, 14, pp. 449–470, 1985.

19. G. Poggio and T. Poggio. “The Analysis of Stereopsis”. Annu. Rev. Neurosci. 7, pp. 379–412,
1984.

20. S. Roy. Stereo without epipolar lines : A maximum-flow formulation. Int. J. Comput. Vision
34, pp. 147–162, 1999.

21. S. Roy and I. Cox. A maximum-flow formulation of the N-camera stereo correspondence
problem. In International Conference on Computer Vision, Bombai, India. pp. 492–499,
1998.

22. D. Scharstein and R. Szeliski. “A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms”. Int. J. Computer Vision 47, pp. 7–42, 2002.

23. R. Szeliski. “A Bayesian modelling of uncertainty in low-level vision”. Kluwer Academic
Press. Boston, MA. 1989.

Appendix. Methods

Seven observers naı̈ve to the purpose of the experiment viewed the stereoscopic im-
ages in Fig. 1a and Fig. 4a. The images were presented on a 17-inch CRT monitor at a
viewing distance of 1.5m through liquid crystal shutter goggles, which switch between
opaque and transparent at 100Hz, synchronized to the monitor so that alternate frames
can be presented to the left and right eyes, allowing stereoscopic displays. Images con-
tained the black shape shown in the figures, the height of which was 10cm on the mon-
itor surface. Four of the observers first viewed the image in Fig. 1a, and then Fig. 4a;
the rest viewed the images in the reverse order. In each viewing, the observer was asked
to describe what was perceived after 15 seconds; and then was asked to choose from
the three pictures in Fig. 1c-e (when Fig. 1a is shown) or Fig. 4c-e. There was no dis-
crepancy between what they described and what they chose. A few stereo pairs of color
pictures were shown to each viewer prior to the experiment in order to ascertain that the
observer is capable of binocular stereo perception. Only one of the observers reported
the percept of a saddle-type shape (Fig. 1e). Other six viewers reported the percept of
either convex (Fig. 1c) or concave (Fig. 1d) shape. One reported the percept of both of
the convex and concave shapes.

Viewer #1 #2 #3 #4 #5 #6 #7
Fig. 1a convex saddle concave concave convex convex both
Fig. 4a concave saddle concave concave convex convex convex

Which first? Fig. 1a Fig. 1a Fig. 1a Fig. 1a Fig. 4a Fig. 4a Fig. 4a
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Abstract. We introduced an algorithm for sequence alignment, based on maxi-
mizing local space-time correlations. Our algorithm aligns sequences of the same
action performed at different times and places by different people, possibly at
different speeds, and wearing different clothes. Moreover, the algorithm offers a
unified approach to the problem of sequence alignment for a wide range of sce-
narios (e.g., sequence pairs taken with stationary or jointly moving cameras, with
the same or different photometric properties, with or without moving objects).
Our algorithm is applied directly to the dense space-time intensity information
of the two sequences (or to filtered versions of them). This is done without prior
segmentation of foreground moving objects, and without prior detection of corre-
sponding features across the sequences. Examples of challenging sequences with
complex actions are shown, including ballet dancing, actions in the presence of
other complex scene dynamics (clutter), as well as multi-sensor sequence pairs.

1 Introduction

Given two video sequences of a dynamic scene, the problem of sequence alignment is
defined as finding the spatial and temporal coordinate transformation that brings one
sequence into alignment with the other, both in space and in time. In this work we focus
on the alignment of sequences with similar dynamics, but with significantly different
appearance properties. In particular, we address two applications in a single unified
framework:

1. Action Alignment: The same action is performed at different times and places by
different people, possibly at different speeds, and wearing different clothes (optionally
with different sensors). We would like to recover the space-time transformation which
best aligns the actions (the foreground moving object), regardless of their backgrounds
or other dynamic scene clutter.
2. Multi-sensor Alignment: The same dynamic scene is recorded simultaneously by mul-
tiple cameras (of same or of different sensing modalities). In this case (of simultaneous
recording) we would like to bring into alignment the entire scene (both the foreground
moving objects and the background scene).

While sequences obtained by different sensors have significantly different spatial
appearances, their temporal properties (scene or camera motion, trajectories of moving
objects, etc.) are usually invariant to the sensing modalities, and are therefore shared by
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the two sequences. The same observation is true also for sequences of the same action
performed by different people at different times and places. Such temporal changes are
not captured in any individual frame. They are, however, contained in the space-time
volumes generated by the two sequences. Sequence-to-sequence alignment is there-
fore a more powerful approach to handle those difficult scenarios than image-to-image
alignment.

Several approaches to sequence alignment were suggested. Most of these methods
assume that the video sequences are recorded simultaneously. Moreover, they are re-
stricted to a particular scenario (e.g., moving objects [5], moving cameras [3], similar
appearance properties [4]). Moreover, none of these methods is applicable to alignment
of actions performed at different times and places.

Methods for aligning actions were also suggested (e.g., [10, 6, 2]). However, these
require manual selection of corresponding feature points across the sequences. Some
of them provide only temporal synchronization. In [11] an approach was proposed for
detecting behavioral correlations in video under spatial and temporal shifts. Its out-
put is a coarse space-time correlation volume. This approach does not account for
spatial nor temporal scaling (nor more complex geometric deformations), nor was it
used for aligning video clips (since video alignment requires sub-pixel and sub-frame
accuracy).

In this paper we propose a unified approach to sequence alignment which is suited
both for sequences recorded simultaneously (for a variety of scenarios), as well as
for action sequences. Our approach is inspired by the multi-sensor image-alignment
method presented in [8]. We extend it into space-time, and take it beyond multi-sensor
alignment, to alignment of actions. Alignment in space and time is obtained by max-
imizing the local space-time correlations between the two sequences. Our method is
applied directly to the dense space-time intensity information of the two sequences
(or to filtered versions of them), without prior segmentation of foreground moving
objects, and without prior detection of corresponding features across the sequences.
Our approach offers two main advantages over existing approaches to sequence
alignment:

1. It is capable of aligning sequences of the same action performed at different times
and places by different people wearing different clothes, regardless of their photometric
properties and other static or dynamic scene clutter.
2. It provides a unified approach to multi-sensor sequence alignment for a wide range
of scenarios, including: (i) sequences taken with either stationary or jointly moving
cameras, (ii) sequences with the same or different photometric properties, and (iii) se-
quences with or without moving objects. Our approach does assume, however, that the
cameras are rigid with respect to each other (although they may move jointly).

The remainder of this work is organized as follows: Sec. 2 formulates the problem,
Sec. 3 presents the space-time similarity measure between the two sequences. Sec. 4
presents the space-time alignment algorithm. Sec. 5 provides experimental results on
real sequences. Sec. 6 discusses the robustness of the algorithm to noise and to other
dynamic scene clutter.
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2 Problem Formulation

Given two sequences, f and g, we seek the spatio-temporal parametric transformation p
that maximizes a global similarity measure M between the two sequences after bringing
them into alignment according to p. f and g may be either the original video sequences,
or some filtered version of them, depending on the underlying application (see Sec. 5).

For each space-time point (x, y, t) in the sequence f , we denote its spatio-temporal
displacement vector by u = (u1, u2, u3). u is a function of both the space-time point
coordinates and the unknown parameter vector p, i.e., u = u(x, y, t; p).

We assume that the relative internal and external parameters between the cameras
are fixed (but unknown). The cameras may be either stationary or moving (jointly). In
our current implementation we have chosen a 2D affine transformation to model the
spatial transformation between corresponding frames across the two sequences (such a
model is applicable when the scene is planar, or distant, or when the two cameras are
relatively close to each other). A 1D affine transformation was chosen to model the tem-
poral transformation between the two sequences (supporting sequences with different
frame rates as well as a time offset between the sequences). The space-time transfor-
mation p therefore comprises of 8 parameters, where the first 6 parameters (p1, . . . , p6)
capture the spatial 2D affine transformation and the remaining 2 parameters (p7, p8)
capture the temporal 1D affine transformation. The spatio-temporal displacement vec-
tor u(x, y, t; p) is therefore:

u(x, y, t; p) =

u1(x, y, t; p)
u2(x, y, t; p)
u3(x, y, t; p)

 =

p1x + p2y + p3
p4x + p5y + p6

p7t + p8


This can be written more compactly as:

u(x, y, t; p) = X(x, y, t) · p (1)

where p = (p1, . . . , p8), and:

X(x, y, t) =

x y 1 0 0 0 0 0
0 0 0 x y 1 0 0
0 0 0 0 0 0 t 1

 .

3 The Similarity Measure

Sequences of actions recorded at different times and places, as well as sequences ob-
tained by different sensing modalities (e.g., an IR and a visible light camera) have
significantly different photometric properties. As such, their intensities are related by
highly non-linear transformations.

In [8] the following observations were made for a multi-sensor image pair: (i) the
intensities of images taken with sensors of different modalities are usually related by a
highly non-linear global transformation which depends not only on the image intensity,
but also on its image location. Such intensity transformations are not handled well by
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Mutual Information (which assumes spatial invariance). Nevertheless, (ii) for very small
corresponding image patches across the two images, their intensities are locally related
by some linear intensity transformation. Since normalized-correlation is invariant to
linear intensity transformations, it can be used as a local similarity measure applied to
small image patches.

Our approach is based on extending this approach to space-time, and takes it be-
yond multi-sensor alignment, to alignment of actions. Local normalized correlations
are computed within small space-time patches (in our implementation they were of
size 7 × 7 × 7). A global similarity measure is then computed as the sum of all those
local measures in the entire sequence. The resulting global similarity measure is thus
invariant to spatially and temporally varying non-linear intensity transformations.

Given two corresponding space-time patches/windows, wf and wg , one from each
sequence, their local Normalized Correlation (NC) can be estimated as follows [7]:
NC(wf , wg) = cov(wf ,wg)√

var(wf )
√

var(wg)
, where cov and var stand for the covariance and

variance of intensities. Squaring the NC measure further accounts for contrast rever-
sal, which is common in multi-sensor sequence pairs. Our patch-wise local similarity
measure is therefore:

C(wf , wg) =
cov2(wf , wg)

var(wf )var(wg) + α
(2)

where the constant α is added to account for noise (in our experiments we used α = 10,
but the algorithm is not particularly sensitive to the choice of α).

The global similarity measure M between two sequences (f and g) is computed as
the sum of all the local measures C applied to small space-time patches around each
pixel in the sequence:

M(f, g) =
∑

x

∑
y

∑
t

C (wf (x, y, t), wg(x, y, t)) (3)

This results in a global measure which is invariant to highly non-linear intensity trans-
formations (which may vary spatially and temporally over the sequences).

Our goal is to recover the global geometric space-time transformation which max-
imizes the global measure M between the two sequences. To do so, we reformulate
the local measure C and the global measure M in terms of the unknown parametric
transformation p. For each space-time point (x, y, t) in the sequence f and its spatio-
temporal displacement vector u = (u1, u2, u3), the local normalized correlation mea-
sure of Eq. (2) can be written as a function of u:

C(x,y,t)(u) = C (wf (x, y, t), wg(x + u1, y + u2, t + u3))

where wf (x, y, t) is the 7 × 7 × 7 space-time window around pixel (x, y, t) in f , and
wg(x+u1, y+u2, t+u3) is the 7×7×7 space-time window around pixel (x+u1, y+
u2, t + u3) in g. We can therefore formulate the alignment problem as follows: Find
p (the set of global spatio-temporal parameters) that maximizes the global similarity
measure M(p):

M(p) =
∑

(x,y,t)∈f

C(x,y,t) (u(x, y, t; p)) (4)
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4 The Alignment Algorithm

4.1 The Maximization Process

We use Newton’s method [9] for the optimization task. Local quadratic approximations
of M(p) are used in order to iteratively converge to the correct value of the space-time
transformation p. Let p0 be the current estimate of the transformation parameters p.
We can write the quadratic approximation of M(p) around p0 as:

M(p) = M(p0) + (∇pM(p0))
T

δp +
1
2
δT

p HM (p0)δp

where ∇pM and HM are the gradient and hessian of M , respectively (both computed
around p0), and δp = p−p0 is the unknown refinement step. By differentiating this ap-
proximation with respect to δp and equating to zero, we obtain the following expression
for δp:

δp = − (HM (p0))
−1 · ∇pM(p0) (5)

From Eqs. (1) and (4) and the chain rule of differentiation, we can evaluate∇pM and
HM :

∇pM(p) =
∑

(x,y,t)∈f

∇pC(x,y,t)(u)

=
∑

(x,y,t)∈f

(
XT · ∇uC(x,y,t)(u)

)
(6)

HM (p) =
∑

(x,y,t)∈f

(
XT ·HC(x,y,t)(u) ·X

)
(7)

where ∇uC(x,y,t) and HC(x,y,t) are the gradient and hessian of C(x,y,t)(u), respec-
tively, computed around u0 = u(x, y, t; p0). Substituting Eq. (6) and Eq. (7) into
Eq. (5), we get the following expression for the refinement step δp, in terms of the
normalized correlation function C(x,y,t)(u):

δp =−
 ∑

(x,y,t)∈f

XT HC(x,y,t)(u0)X

−1

·
∑

(x,y,t)∈f

XT∇uC(x,y,t)(u0) (8)

In order to calculate the refinement step of Eq. (8) we need to differentiate the normal-
ized correlation function C(x,y,t) of each space-time point (x, y, t) around its currently
estimated displacement vector u0 = u(x, y, t; p0). This is done as follows: For each
space-time point (x, y, t), a local normalized correlation function (volume) C(x,y,t)(u)
is evaluated for a set of spatio-temporal displacements around u0. Then, the first and
second derivatives of C(x,y,t) with respect to u = (u1, u2, u3) are extracted in order to
obtain∇uC(x,y,t) and HC(x,y,t) :

∇uC(x,y,t) =
[
∂C(x,y,t)

∂x

∂C(x,y,t)

∂y

∂C(x,y,t)

∂t

]T
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HC(x,y,t) =


∂2C(x,y,t)

∂x2
∂2C(x,y,t)

∂x∂y
∂2C(x,y,t)

∂x∂t

∂2C(x,y,t)

∂y∂x
∂2C(x,y,t)

∂y2
∂2C(x,y,t)

∂y∂t

∂2C(x,y,t)

∂t∂x
∂2C(x,y,t)

∂t∂y
∂2C(x,y,t)

∂t2

 (9)

In practice, we evaluate C(x,y,t)(u) for displacements of u0 ± 2 in x, y, t (i.e., the cor-
relation function is a volume of size 5 × 5 × 5). To account for large misalignments,
the above maximization scheme is performed within a coarse-to-fine data structure. The
resulting algorithm is therefore as follows:

The Algorithm:
1. Construct a space-time Gaussian pyramid for each sequence (Sec. 4.3).
2. Find an initial guess p0 for the space-time transformation parameters in the coarsest
(smallest) pyramid level (Sec. 4.4).
3. Apply several maximization iterations in the current pyramid level until convergence.
In each iteration do:
(a) Use the current parameter estimate p0 from the last iteration to compute the refine-
ment step δp (Eq. (8)).
(b) Update the current parameter estimate p0 = p0 + δp.
(c) Test for convergence: If the change in the values of M(p) for two successive itera-
tions is small enough, go to step 4. Otherwise, go back to step 3.(a).
4. Proceed to the next pyramid level and go back to step 3.

4.2 Confidence-Weighted Regression

To further stabilize the maximization process, we consider only space-time points
(x, y, t) in which the quadratic approximation of the normalized correlation function
is concave. Other space-time points are ignored (are outliers), since they incorporate
false information into the regression. Moreover, the contribution of each space-time
point is weighted by its reliability, which is measured by the degree of concavity of the
normalized correlation function at this point.

A twice-differentiable function is concave at a point if and only if the hessian of the
function at the point is negative semidefinite [12], i.e., if all its kth order leading prin-
cipal minors are non-positive for an odd k and non-negative for an even k. Therefore,
the hessian matrix HC(x,y,t)(u0) of Eq. (9) is checked for negative semidefiniteness by:

∣∣HC(u0)
∣∣ ≤ 0 ,

∣∣∣∣∣∣
∂2C(u0)

∂x2
∂2C(u0)

∂x∂y

∂2C(u0)
∂y∂x

∂2C(u0)
∂y2

∣∣∣∣∣∣ ≥ 0 ,
∂2C(u0)

∂x2 ≤ 0

where C(u0) = C(x,y,t)(u0), and | · | denotes the determinant of a matrix. Only space-
time points (x, y, t) in which the corresponding hessian HC(x,y,t)(u0) is negative semi-
definite are considered as inliers in the maximization process. Let S denote this set of
inlier space-time points. Each space-time point in S is further weighted by the deter-
minant of its corresponding hessian, which indicates the degree of concavity at that
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point. This outlier rejection and weighting scheme is incorporated into the algorithm by
extending Eq. (8):

δp =−
 ∑
(x,y,t)∈S

w(u0)XTHC(u0)X

−1

·
∑

(x,y,t)∈S

w(u0)XT∇uC(u0)

where w(u0) = w(x,y,t)(u0) = − ∣∣HC(u0)
∣∣.

4.3 The Space-Time Gaussian Pyramid

To handle large spatio-temporal misalignments between the two sequences, the opti-
mization is done coarse-to-fine (in space and in time). Caspi and Irani [4] presented a
space-time Gaussian pyramid for video sequences. Each pyramid level was constructed
by applying a Gaussian low-pass filter to the previous level, followed by sub-sampling
by a factor of 2. The filtering and sub-sampling phases were performed both in space
and in time (i.e., in x, y and t). Our coarse-to-fine estimation is performed within such a
data structure, with a small modification to handle sequences whose temporal and spa-
tial dimensions are significantly different (otherwise, the coarsest pyramid level will be
too coarse in one dimension, while not coarse enough in the other dimensions). Filter-
ing and sub-sampling is first applied along the largest dimension(s), until it is of similar
size to the other dimensions, and then proceeding as in [4]. To guarantee numerical
stability, the coarsest (smallest) pyramid level is at least 30× 30× 30.

4.4 The Initial Parametric Transformation p0

An initial guess p0 for the space-time parametric transformation is computed at the
coarsest pyramid level. We seek for initial non-zero values only for the translational
parameters of p in x, y and t (i.e., p3, p6 and p8), leaving all the other parameters to
be zero. This is done by evaluating the similarity measure M of Eq. (4) for each possi-
ble spatio-temporal integer shift within a search radius (in our implementation we used
a radius of 25% of the sequence in each dimension). The translation parameters that
provide the highest similarity value M are used in the initial guess p0 for the trans-
formation parameters. Initializing only p3, p6 and p8 is usually sufficient for the initial
guess. The remaining parameters in p tend to be smaller, and initializing them with
zero-values usually suffice for convergence. All the parameters in p are updated dur-
ing the optimization process. Note that although an “exhaustive” search is performed
at the coarsest pyramid level, this process is not time consuming since the smallest
spatio-temporal pyramid level is typically of size 30× 30× 30.

5 Applications and Results

Recall that we focus on two applications of sequence alignment: (1) Alignment of action
sequences, taken at different times and places, and (2) Alignment of sequences recorded
simultaneously by different cameras, where the most difficult case is when these are sen-
sors of different modalities. We use the same alignment algorithm for these two applica-
tions. However, we apply the algorithm to different sequence representations, which are
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obtained by pre-filtering the original input sequences with different linear filters. These
prior filters emphasize the part of the data which we want to bring into alignment. The
chosen filters for each application along with experimental results are presented next.

5.1 Multi-sensor Alignment

The common information across a multi-sensor pair of sequences (e.g., infra-red and
visible-light) is the details in the scene (spatial or temporal). These are captured mostly
by high-frequency information (both in time and in space). The multi-sensor pair differ
in their photometric properties which are captured by low frequencies. Thus, to enhance
the common detail information and suppress the non-common photometric properties,
differentiation operators are applied to the sequences. Since directional information is
important, the input sequences f and g are differentiated separately with respect to x, y
and t, resulting in three sequences of directional derivatives (fx, fy, ft and gx, gy, gt).
An absolute value is further taken to account for contrast reversal. Thus, the global
similarity measure of Eq. (3) becomes:

M(f, g) =M
(
fabs

x , gabs
x

)
+ M

(
fabs

y , gabs
y

)
+ M

(
fabs

t , gabs
t

)
Due to lack of space we omitted the figures of the multi-sensor alignment results

from the paper. However, these results (i.e., multi-sensor sequences before and after
space-time alignment) can be found on our web site: http://www.wisdom.weizmann.ac.
il/∼vision/SpaceTimeCorrelations.html. We display there different examples of multi-
sensor pairs obtained under different scenarios – in one case the cameras are moving,
while in another case the cameras are still and there are moving objects in the scene. All
these sequence pairs were brought into space-time alignment using the above algorithm.
Previous methods for sequence alignment were usually restricted to one type of scenario
(either moving cameras [3] or moving objects [5]).

5.2 Action Alignment

Given two sequences that contain a similar action, performed by different people at
different times and places, we would like to align only the action (i.e., the foreground
moving objects), ignoring the different backgrounds and the photometric properties of
the sequences. For example, given two sequences of walking people, we want to align
only the walking people themselves, regardless of their backgrounds, the scale and ori-
entation of the walking people, the walking speed, the illumination, and the clothing
colors. The common information in two such sequences is captured mostly by the tem-
poral variations (derivatives), and not by the spatial ones. Therefore, for the purpose of
Action Alignment, Eq. (3) becomes:

M(f, g) = M
(
fabs

t , gabs
t

)
(10)

The two sequences in Fig. 1.a and 1.b contain a person walking at different times
and in different places (the cameras are stationary). There are four significant differ-
ences between the two input sequences: (1) their backgrounds are different (trees in
one sequence, and a wall in the other), (2) the spatial scale of the walking person is
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a) c) e) g)

b) d) f) h)

Fig. 1. Action alignment. (a) and (b) show frames 74 of the two input sequences, f and g. (c)
and (d) show the absolute value of their temporal derivatives (fabs

t in magenta and gabs
t in

green). (e) Initial misalignment (superposition of (c) and (d)). (f) Superposition of corresponding
frames after alignment both in space and in time. The white color is a result of superposition
of the green and magenta. (g) and (h) show superposition of the input sequences before and af-
ter alignment (one in green and one in magenta). For color figure and full video sequence see
http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeCorrelations.html.

significantly different (by approximately 36%), (3) the walking speed is different (be
approximately 13%), and (4) the clothing colors are different. Figs. 1.c and 1.d show
the absolute values of the temporal derivatives (fabs

t and gabs
t ) of the input sequences.

Fig. 1.e displays the initial misalignment between the two sequences through an overlay
of 1.c and 1.d before alignment. Fig. 1.f shows the same display after alignment of the
actions both in space and in time. The white color in Fig. 1.f is obtained from super-
position of the green and magenta, which indicates good alignment (please see color
figures and color sequences on our web site). Figs 1.g and 1.h display super-position
of the two input video sequences before and after alignment, respectively (where one
sequence is displayed in green and the other sequence is displayed in magenta).

The two sequences in Fig. 2.a and 2.b contain two different dancers that perform a
similar ballet dance. Figs 2.c display super-position of the two input video sequences
before alignment (where the first sequence is displayed in green and the second se-
quence is displayed in magenta). Initially, the two dancers are misaligned both in space
and in time. 2.d shows a similar super-position after alignment. The two dancers are
now aligned both in space and in time (although their movements are not identical).

Applications. This capability of aligning actions can be used for various applications,
including: (i) Action/Event recognition: Given a sequence of an action and a database
of sequences with different actions, find the action in the database that achieves best
alignment with the query action, i.e., that yields the highest value for the measure M
of Eq. (4). (ii) Identification of people by the way they behave: Given a sequence of a
person performing some action, and a database of different people performing the same
action, find the database sequence that provides the best alignment (maximal score M )
with the query sequence. This will allow to identify the person in the query sequence.
Carlsson [2] proposed an algorithm for recognizing people by the way they walk.
However, his algorithm required manual marking of specific body locations in each
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a)

b)

c)

d)

Fig. 2. Action alignment. (a) and (b) show several frames of the two input sequences, f and g
(with same frame numbers). (c) shows superposition of (a) and (b) before alignment (f in green
and g in magenta). (d) shows superposition of corresponding frames after alignment both in
space and in time. This compensates for the global parametric geometric deformations (spatial
scale, speed, orientation, position, etc.) The residual non-parametric local deformations highlight
the differences in performance of the two dancers. For color figure and full video sequence see
http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeCorrelations.html.

frame of the two sequences, whereas our approach is automatic. (iii) Comparing per-
formance and style of people in various sport activities.

Action Alignment vs. Background Alignment. The choice of the sequence represen-
tation is important. For example, consider the two input sequences in Fig. 3.a and 3.b.
There are two different people walking against the same background (recorded at dif-
ferent times). Fig. 3.c shows the initial misalignment between the two input sequences.
Note that both the walking people and their backgrounds are not aligned. Fig. 3.d shows
the results of applying the alignment algorithm to the derivatives of the input sequences
with respect to t alone (using the global similarity measure in Eq. (10)). As expected,
only the actions are aligned, and the backgrounds are not aligned. Figure 3.e shows
the results of applying the alignment algorithm to the derivatives of the same input
sequences, but this time differentiated with respect to x and y. This is done by replac-
ing Eq. (3) with:

M(f, g) = M
(
fabs

x , gabs
x

)
+ M

(
fabs

y , gabs
y

)
(11)
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a) b)

c) d) e)

Fig. 3. Action alignment vs. background alignment. (a) and (b) show frame 45 of the two input
sequences. (c) Initial misalignment (superposition of (a) and (b)). (d) Superposition after space-
time alignment using temporal derivatives only (Eq. (10)). (e) Superposition after space-time
alignment using spatial derivatives only (Eq. (11)). For color figure and full video sequence see
http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeCorrelations.html.

Since only the spatial variations of the sequences are used in the alignment process, the
backgrounds are brought into alignment, while the walking people are not.

6 Robustness and Locking Property

One of the benefits of a coarse-to-fine estimation process is the “locking property”,
which provides robustness to noise, as well as the ability to lock onto a dominant space-
time transformation. Burt et al. [1] discussed this effect in the context of image align-
ment in the presence of multiple motions. According to [1], since pyramids provide
a separation of the spectrum into different frequency bands, motion components with
different frequency characteristics tend to be separated. This separation causes the mo-
tion estimator to “lock” onto a single (dominant) motion component, even when other
motions are present. A similar phenomena occurs in our sequence alignment algorithm,
which tends to lock onto a dominant space-time coordinate transformation between the
two sequences. Figs. 4 and 5 demonstrate the locking property.

Fig. 4 displays the robustness of our algorithm to noise. Gaussian noise with zero
mean and a standard deviation of 40 gray-level units (out of 255) was added to the
two input sequences of Fig. 1.a and 1.b. The resulting sequences are shown in Figs.
4.a and 4.b. Figs. 4.c and 4.d display the absolute values of the temporal derivatives of
the input sequences. The presence of a significant noise is clearly seen in these figures.
An overlay of 4.c and 4.d before alignment is shown in Fig. 4.e. Fig. 4.f displays an
overlay of corresponding frames after alignment in space and in time. Good alignment
is obtained despite the significant noise.

Fig. 5 displays the locking property in the case of multiple transparent layers. Again,
we took the two input sequences of Fig. 1.a and 1.b, but this time mixed them with two
different sequences that contain significant non-rigid motions (a waving flag and a wa-
terfall). The first input sequence (Fig. 5.a) contains a walking person (with trees in the
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a) c) e)

b) d) f)

Fig. 4. Robustness to noise. (a) and (b) show frame 74 of the two noisy input sequences
(see text for more details). (c) and (d) show the absolute value of the temporal derivatives
of (a) and (b), respectively. (e) Initial misalignment (superposition of (c) and (d)). (f) Super-
position after alignment in space and in time. For color figure and full video sequence see
http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeCorrelations.html.

a) c) e)

b) d) f)

Fig. 5. The locking property. (a) Frame 61 of the first sequence: a mixture of the sequence of
Fig. 1.a with a flag sequence. (b) Frame 61 of the second sequence: a mixture of the sequence of
Fig. 1.b with a waterfall sequence. (c) and (d) show the absolute value of the temporal derivatives
of (a) and (b), respectively. (e) Initial misalignment (superposition of (c) and (d)). (f) Super-
position after alignment in space and in time. The algorithm locks onto the common walking
action, despite the presence of other scene dynamics. For color figure and full video sequence see
http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeCorrelations.html.

background) mixed with a waving flag, and the second input sequence (Fig. 5.b) con-
tains a walking person (with a wall in the background) mixed with a waterfall. Figs. 5.c
and 5.d display the absolute values of the temporal derivatives of the input sequences.
The presence of the multiple layers is clearly seen in these figures. An overlay of 5.c and
5.d before alignment is shown in Fig. 5.e. Fig. 5.f displays an overlay of corresponding
frames after alignment in space and in time. The white color in Fig. 5.f indicates that
the algorithm automatically locked on the common walking action, despite the other
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scene dynamics. The regression was applied to the entire sequence. This illustrates the
strong locking property of the algorithm. The results can be seen much more clearly in
the video on our web site.

7 Summary

We introduced an algorithm for sequence alignment, based on maximizing local space-
time correlations. Our algorithm aligns sequences of the same action performed at dif-
ferent times and places by different people, possibly at different speeds, and wearing
different clothes. Moreover, the algorithm offers a unified approach to the sequence
alignment problem for a wide range of scenarios (sequence pairs taken with stationary
or jointly moving cameras, with the same or different photometric properties, with or
without moving objects). Our algorithm is applied directly to the dense space-time in-
tensity information of the two sequences (or to filtered versions of them). This is done
without prior segmentation of foreground moving objects, and without prior detection
of corresponding features across the sequences.
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Abstract. Estimating a meaningful average or mean shape from a set of
shapes represented by unlabeled point-sets is a challenging problem since,
usually this involves solving for point correspondence under a non-rigid
motion setting. In this paper, we propose a novel and robust algorithm
that is capable of simultaneously computing the mean shape from multi-
ple unlabeled point-sets (represented by finite mixtures) and registering
them nonrigidly to this emerging mean shape. This algorithm avoids the
correspondence problem by minimizing the Jensen-Shannon (JS) diver-
gence between the point sets represented as finite mixtures. We derive the
analytic gradient of the cost function namely, the JS-divergence, in order
to efficiently achieve the optimal solution. The cost function is fully sym-
metric with no bias toward any of the given shapes to be registered and
whose mean is being sought. Our algorithm can be especially useful for
creating atlases of various shapes present in images as well as for simul-
taneously (rigidly or non-rigidly) registering 3D range data sets without
having to establish any correspondence. We present experimental results
on non-rigidly registering 2D as well as 3D real data (point sets).

1 Introduction

In recent years, there has been considerable interest in the application of statis-
tical shape analysis to problems in medical image analysis, computer graphics
and computer vision. Regardless of whether shapes are parameterized by points,
lines, curves etc., the fundamental problem of estimating mean and covariance
of shapes remains. We are particularly interested in the unlabeled point-set pa-
rameterization since statistical shape analysis of point-sets is very mature [1].
Means, covariances and probability distributions on shape manifolds can now be
defined and estimated.

The primary technical challenge in using point-set representations of shapes is
the correspondence problem. Typically correspondences can be estimated once
the point-sets are properly aligned with appropriate spatial transformations. If
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the objects at hand are deformable, the adequate transformation would obvi-
ously be a non-rigid spatial mapping. Solving for nonrigid deformations between
point-sets with unknown correspondence is a hard problem. In fact, many cur-
rent methods only attempt to solve for affine transformation for the alignment.
Furthermore, we also encounter the issue of the bias problem in atlas creation.
Since we have more than two sample point-sets to be aligned for creating an
atlas, a question that arises is: How do we align all the point-sets in a symmetric
manner so that there is no bias toward any particular point-set?

To overcome these aforementioned problems, we present a novel approach to
simultaneously register multiple point-sets and construct the atlas. The idea is
to model each point set by a kernel probability distribution, then quantify the
distance between these probability distributions using an information-theoretic
measure. The distance is optimized over a space of coordinate transformations
yielding the desired registrations. It is obvious that once all the point sets are
deformed into the same shape, the distance measure between these distributions
should be minimized since all the distribution are identical to each other. We
impose regularization on each deformation field to prevent over-deforming of each
point-sets (e.g. all the point-sets may deform into a single data point). Jensen-
Shannon divergence, first introduced in [2], serves as a model divergence measure
between multiple probability distributions. It has some very desirable properties,
researchers have used it as a dissimilarity measure for image registration and
retrieval applications [3, 4].

The rest of this paper is organized as follows. The remainder of section 1 gives
a brief review of the literature, focusing on difference between these methods and
ours. Section 2 contains a description of our formulation using JS-divergence for
our simultaneous nonrigid registration and atlas construction model. Experi-
mental results on 2D as well as 3D point-sets are presented in Section 3.

1.1 Previous Work

Extensive studies on the atlas construction for deformable shapes can be found
in literature covering both theoretical and practical issues relating to computer
vision and pattern recognition. According to the shape representation, they can
be classified into two distinct categories. One is the methods dealing with shapes
represented by feature point-sets, and everything else is in the other category
including those shapes represented as curves and surfaces of the shape boundary,
and these curves and surfaces may be either intrinsicly or extrinsicly parameter-
ized (e.g. using point locations and spline coefficients).

The work presented in [5] is a representative method using an intrinsic curve
parameterization to analyze deformable shapes. Shapes are represented as ele-
ments of infinite-dimensional spaces and their pairwise difference are quantified
using the lengths of geodesics connecting them on these spaces, the intrinsic
mean (Karcher mean) can be computed as a point on the manifold (of shapes)
which minimize the sum of square geodesic distance between this unknown point
to each individual shape, which lies on the manifold. However the curves are lim-
ited by closed curves, and it has not been extended to the 3D surface shapes.
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For methods using intrinsic curve or surface representations [5, 6], further sta-
tistical analysis on these representations is much more difficult than analysis on
the point representation, but the reward maybe higher due to the use of intrinsic
higher order representation.

Among these methods using point-sets parameterization, the idea of using
nonrigid spatial mapping functions, specifically thin-plate splines [7, 8, 9], to an-
alyze deformable shape has been widely adopted. Bookstein’s work in [7], suc-
cessfully initiated the research efforts on the usage of thin-plate splines to model
the deformation of shapes. This method is landmark-based, it avoids the cor-
respondence problem since the placement of corresponding points is driven by
the visual perception of experts, however it suffers from the the typical problem
besetting landmark methods, e.g. inconsistency. Several significant articles on
robust and non-rigid point set matching have been published by Rangaranjan
and collaborators [8] using thin-plate splines. The main strength of their work
is the ability to jointly determine the correspondences and non-rigid transfor-
mation between each point sets to the emerging mean shape using deterministic
annealing and soft-assign. However, in their work, the stability of the registra-
tion result is not guaranteed in the case of data with outliers, and hence a good
stopping criterion is required. Unlike their approach, we do not need to first solve
a correspondence problem in order to subsequently solve a non-rigid registration
problem.

The active shape model proposed in [10] utilized points to represent de-
formable shapes. Their work pioneered the efforts in building point distribu-
tion models to understand deformable shapes [10]. Objects are represented as
carefully-defined landmark points and variation of shapes are modeled using a
principal component analysis. These landmark points are acquired through a
more or less manual landmarking process where an expert goes through all the
samples to mark corresponding points on each sample. It is a rather tedious
process and accuracy is limited. In recent work [11], the authors attempt to
overcome this limitation by attempting to automatically solve for the correspon-
dences in a nonrigid setting. The resulting algorithm is very similar to the earlier
work in [6] and is restricted to curves.

There are several papers in the point-sets alignment literature which bear
close relation to our research reported here. For instance, Tsin and Kanade [12]
proposed a kernel correlation based point set registration approach where the
cost function is proportional to the correlation of two kernel density estimates.
It is similar to our work since we too model each of the point sets by a kernel
density function and then quantify the (dis)similarity between them using an
information-theoretic measure, followed by an optimization of a (dis)similarity
function over a space of coordinate transformations yielding the desired trans-
formation. The difference lies in the fact that JS-divergence used in our work
is a lot more general than the information-theoretic measure used in [12], and
can be easily extended to multiple point-sets. More recently, in [13], Glaunes
et al. convert the point matching problem into an image matching problem by
treating points as delta functions. Then they ”lift” these delta functions and
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diffeomorphically match them. The main problem for this technique is that they
need a 3D spatial integral which must be numerically computed, while we do
not need this due to the empirical computation of the JS-divergence. We will
show it in the experimental results that our method, when applied to match
point-sets, achieves very good performance in terms of both robustness and
accuracy.

2 Methodology

In this section, we present the details of the proposed simultaneous atlas con-
struction and non-rigid registration method. The basic idea is to model each
point set by a probability distribution, then quantify the distance between these
probability distributions using an information-theoretic measure. The distance
measure is optimized over a space of coordinate transformations yielding the
desired transformations. We will begin by presenting the finite mixtures used to
model the probability distributions of the given point-sets.

2.1 Finite Mixture Models

Considering the point set as a collection of Dirac Delta functions, it is natural
to think of a finite mixture model as representation of a point set. As the most
frequently used mixture model, a Gaussian mixture [14] is defined as a convex
combination of Gaussian component densities.

We use the following notation: The data point-sets are denoted by {Xp, p ∈
{1, ..., N}}. Each point-set Xp consists of points {xp

i ∈ RD, i ∈ {1, ..., np} }.
To model each point-set as a Gaussian mixture, we define a set of cluster cen-
ters, one for each point-set, to serve as the Gaussian mixture centers. Since the
feature point-sets are usually highly structured, we can expect them to clus-
ter well. Furthermore we can greatly improve the algorithm efficiency by using
limited number of clusters. Note that we can choose the cluster centers to be
the point-set itself if the size of point-sets are quite small. The cluster center
point-sets are denoted by {V p, p ∈ {1, ..., N}}. Each point-set V p consists of
points {vp

i ∈ RD, i ∈ {1, ..., Kp} }. Note that there are Kp points in each V p,
and the number of clusters for each point-set may be different (in our imple-
mentation, the number of clusters were usually chosen to be proportional to the
size of the point-sets). The cluster centers are estimated by using a clustering
process over the original sample points xp

i , and we only need to do this once
before the process of joint atlas estimation and point-sets registration. The atlas
points-set is denoted by Z. We begin by specifying the density function of each
point set.

p(Xp|V p, αp) =
np

i=1

Kp

a=1

αp
ap(xp

i |vp
a) (1)

In Equation (1), the occupancy probability which is different for each data point-
set is denoted by αp. p(Xp|V p, αp) is a mixture model containing the component
densities p(xp

i |vp
a), where



Simultaneous Nonrigid Registration of Multiple Point Sets 555

p(xp
i )|vp

a) =
1

(2π)
D
2 Σ

1
2
a

exp − 1
2

xp
i − vp

a
T
Σ−1

a xp
i − vp

a (2)

Later, we set the occupancy probability to be uniform and make the covariance
matrices Σa to be proportional to the identity matrix in order to simplify atlas
estimation procedure.

Having specified the Gaussian mixtures of each point-set, we would like to
compute a meaningful average/mean (shape) point-set Z, given all the sample
sets and their associated distributions. Intuitively, if these point-sets are aligned
correctly under appropriate nonrigid deformations, the resulting mixtures should
be statistically similar to each other. Consequently, this raises the key question:
how to measure the similarity/closeness between these distributions represented
by Gaussian mixtures? We will answer this in the following paragraphs.

2.2 Jensen-Shannon Divergence for Learning the Atlas

Jensen-Shannon (JS) divergence, first introduced in [2], serves as a measure of
cohesion between multiple probability distributions. It has been used by some
researchers as a dissimilarity measure for image registration and retrieval appli-
cations [3, 4] with very good results. It has some very desirable properties, to
name a few, 1) The square root of JS-divergence (in the case when its parameter
is fixed to 1

2 ) is a metric [15]; 2) JS-divergence relates to other information-
theoretic functionals, such as the relative entropy or the Kullback divergence,
and hence it shares their mathematical properties as well as their intuitive ap-
peal; 3) The compared distributions using the JS-divergence can be weighted,
which allows one to take into account the different sizes of the point set sam-
ples from which the probability distributions are computed; 4) The JS-divergence
measure also allows us to have different numbers of cluster centers in each point-
set. There is NO requirement that the cluster centers be in correspondence as is
required by Chui et al [16]. Given n probability distributions Pi, i ∈ {1, ..., n},
the JS-divergence of Pi is defined by

JSπ(P1,P2, ..., Pn) = H( πiPi) − πiH(Pi) (3)

where π = {π1, π2, ..., πn|πi > 0,
∑

πi = 1} are the weights of the probabil-
ity distributions Pi and H(Pi) is the Shannon entropy. The two terms on the
right hand side of Equation (3) are the entropy of P :=

∑
πiPi (the π- convex

combination of the Pis ) and the same convex combination of the respective
entropies.

Assume that each point set Xp is related to Z via a function fp, µp is the set
of the transformation parameters associated with each function fp. To compute
the mean shape from these point-sets and register them to the emerging mean
shape, we need to recover these transformation parameters to construct the mean
shape. This problem can modeled as an optimization problem with the objec-
tive function being the JS-divergence between the distributions of the deformed
point-sets, represented as Pi = p(f i(X i)), the atlas construction problem can
now be formulated as,
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min
µi

JSβ(P1, P2, ..., PN ) + λ

N

i=1

||Lf i||2

= min
µi

H( βiPi) − βiH(Pi) + λ

N

i=1

||Lf i||2
(4)

In (4), the weight parameter λ is a positive constant the operator L determines
the kind of regularization imposed. For example, L could correspond to a thin-
plate spline, a Gaussian radial basis function, etc. Each choice of L is in turn
related to a kernel and a metric of the deformation from and to Z.

Following the approach in [8], we choose the thin-plate spline (TPS) to repre-
sent the non-rigid deformation. Given n control points x1, . . . ,xn in Rd, a general
nonrigid mapping f : R

d → R
d represented by thin-plate spline can be written

analytically as: f(x) = WU(x) + Ax + t Here Ax + t is the linear part of f .
The nonlinear part is determined by a d× n matrix, W. And U(x) is an n× 1
vector consisting of n basis functions Ui(x) = U(x,xi) = U(‖x − xi‖) where
U(r) is the kernel function of thin-plate spline. For example, if the dimension is
2 (d = 2) and the regularization functional is defined on the second derivatives
of f , we have U(r) = 1/(8π)r2ln(r).

Therefore, the cost function for non-rigid registration can be formulated as an
energy functional in a regularization framework, where the regularization term
in equation 4 is governed by the bending energy of the thin-plate spline warping
and can be explicitly given by trace(WKWT ) where K = (Kij), Kij = U(pi, pj)
describes the internal structure of the control point sets. In our experiments, the
clusters is used as control points. Other schemes to choose control points may
also be considered. Note the linear part can be obtained by an initial affine
registration, then an optimization can be performed to find the parameter W.

Having introduced the cost function and the transformation model, now the
task is to design an efficient way to estimate empirical JS-divergence from the
Gaussian mixtures and derive the analytic gradient of the estimated divergence
in order to achieve the optimal solution efficiently.

2.3 Estimating the Empirical JS

For simplicity, we choose βi = 1
N , ∀i = {1, 2, ..., N}. Let Q

xj
i

p :=
∑K

a=1 αp
ap(f j(xj

i )
|fp(vp

a)) be a mixture model containing component densities p(f j(xj
i )|fp(vp

a)),

p(f j(xj
i )|fp(vp

a)) =
1

(2π)
D
2 Σ

1
2
a

exp − 1
2

f j(xj
i )−fp(vp

a) T
Σ−1

a f j(xj
i )−fp(vp

a) (5)

Where {Σa, a ∈ {1, ..., K}} is the set of cluster covariance matrices. For the
sake of simplicity and ease of implementation, we assume that the occupancy
probabilities are uniform (αp

a = 1
K ) and the covariance matrices Σa are isotropic,

diagonal, and identical [(Σa = σ2ID)]. Having specified the density function of
the data, we can then rewrite Equation (4) as follows,

JSβ(P1,P2, ..., PN ) =
1
N

[H(
1
N

Pi) − H(P1)]

+ [H(
1
N

Pi) − H(P2)] + · · · + [H(
1
N

Pi) − H(PN )]
(6)
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For each term in the equation, we can estimate the entropy using the weak law
of large numbers, which is given by,
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x

j
i

N

N
+

1
ni

ni

i=1

log Q
x

j
i

j

=
1
ni

ni

i=1

log
NQ

x
j
i

j

Q
x

j
i

1 + Q
x

j
i

2 + ... + Q
x

j
i

N

(7)

Combining these terms we have,

JS(P1, P2, ...,PN ) =
1
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(8)

2.4 Optimizing the Cost Function

Computation of the gradient of the energy function is necessary in the mini-
mization process when employing a gradient-based scheme. If this can be done
in analytical form, it leads to an efficient optimization method. We now present
the analytic form of the gradient of the JS-divergence (our cost function):

∇JS = [
∂JS

∂µ1
,

∂JS

∂µ2
, ...,

∂JS

∂µN
] (9)

Each component of the gradient maybe found by differentiating Eqn (8) with
respect to the transformation parameters. In order to compute this gradient,

let’s first calculate the derivative of Q
xj

i
p with respect to µl,
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where Fjp := f j(xj
i )− fp(vp

a). Based on this, it is straight forward to derive the
gradient of the JS-divergence with respect to the transformation parameters µl,
which is given by
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Since the analytic gradients with respect to these transformation parameters has
be explicitly derived in equation (12), we can use them in gradient-based numer-
ical optimization techniques like the Quasi-Newton method and the nonlinear
Conjugate-Gradient method to yield a fast solution.

Note that our algorithm can be applied to registration problems other than
the atlas construction, e.g. we can apply it to align any two point-sets in 2D or
3D, in this case, there is a model point-set and a scene point-set (N=2). The only
modification to the above procedure is to keep the scene point-set fixed and we
try to recover the motion from the model point-set to the scene point-set such
that the JS-divergence between these two distributions is minimized. We will
present experimental results on point-set alignment between two given point-
sets as well as atlas construction from multiple point-sets in the next section.

3 Experiment Results

We now present experimental results on the application of our algorithm to both
synthetic and real data sets. First, to demonstrate the robustness and accuracy
of our algorithm, we show the alignment results by applying the JS-divergence
to the point-set matching problem. Then, we will present the atlas construction
results in the second part of this section.

3.1 Alignment Results

First, to test the validity of our approach, we perform a set of exact rigid reg-
istration experiments on both synthetic and real data sets without noise and
outliers. Some examples are shown in Figure 1. The top row shows the regis-
tration result for a 2D real range data set of a road (which was also used in
Tsin and Kanade’s experiments [12]). The figure depicts the real data and the
registered (using rigid motion). Top left frame contains two unregistered point
sets superposed on each other. Top right frame contains the same point sets after
registration using our algorithm. A 3D helix example is presented in the second
row (with the same arrangement as the top row). We also tested our method
against the KC method [12] and the ICP methods, as expected, our method and

Fig. 1. Results of rigid registration in noiseless case. ’o’ and ’+’ indicate the model
and scene points respectively.
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KC method exhibit a much wider convergence basin/range than the ICP and
both achieve very high accuracy in the noiseless case.

Next, to see how our method behaves in the presence of noise and outliers, we
designed the following procedure to generate a corrupted template point set from
a model set. For a model set with n points, we control the degree of corruption
by (1) discarding a subset of size (1−ρ)n from the model point set, (2) applying
a rigid transformation (R,t) to the template, (3) perturbing the points of the
template with noise (of strength ε), and (4) adding (τ − ρ)n spurious, uniformly
distributed points to the template. Thus, after corruption, a template point set
will have a total of τn points, of which only ρn correspond to points in the model
set. Since ICP is known to be prone to outliers, we only compare our method with
the more robust KC method in terms of the sensitivity of noise and outliers. The
comparison is done via a set of 2D experiments.At each of several noise levels
and outlier strengths, we generate five models and six corrupted templates from
each model for a total of 30 pairs at each noise and outlier strength setting. For
each pair, we use our algorithm and the KC method to estimate the known rigid

Fig. 2. Robustness to outliers in the presence of large noise. Errors in estimated rigid
transform vs. proportion of outliers ((τ −ρ)/(ρ)) for both our method and KC method.

Fig. 3. Nonrigid registration of the corpus callosum data. Left column: two manually
segmented corpus callosum slices before and after registration; Middle column: warping
of the 2D grid using the recovered motion; Top right: same slices with one corrupted
by noise and outliers, before and after registration.
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transformation which was partially responsible for the corruption. Results show
when the noise level is low, both KC and the presented method have strong
resistance to outliers. However, we observe that when the noise level is high, our
method exhibits stronger resistance to outliers than the KC method, as shown in
Figure 2. We also applied our algorithm to nonrigidly register medical datasets
(2D point-sets). Figure 3 depicts some results of our registration method applied
to a set of 2D corpus callosum slices with feature points manually extracted by
human experts. Registration result is shown in the left column with the warping
of 2D grid under the recovered motion which is shown in the middle column.
Our non-rigid alignment performs well in the presence of noise and outliers
(Figure 3 right column). For the purpose of comparison, we also tested the TPS-
RPM program provided in [8] on this data set, and found that TPS-RPM can
correctly register the pair without outliers (Figure 3 top left) but failed to match
the corrupted pair (Figure 3 top right).

3.2 Atlas Construction Results

In this section, we begin with a simple but demonstrative example of our al-
gorithm for 2D atlas estimation. After this example, we describe a 3D imple-
mentations on real hippocampal data sets. The structure we are interested in
this experiment is the corpus callosum as it appears in MR brain images. Con-
structing an atlas for the corpus callosum and subsequently analyzing the indi-
vidual shape variation from ”normal” anatomy has been regarded as potentially

Fig. 4. Experiment results on 6 2D corpus collasum point sets. The first two rows
shows the deformation of each point-set to the atlas, superimposed with initial point
set (show in ’o’) and deformed point-set (shown in ’+’). Left image in the third row:
The estimated atlas is shown superimposed over all the point-sets. Right: An atlas
contour is traced and shown superimposed over all the original contours.
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Fig. 5. Atlas construction from three 3D hipcampal point sets. The first row shows the
deformation of each point-set to the atlas (represented as cluster centers), superimposed
with initial point set (show in ’o’) and deformed point-set (shown in ’+’). Left image
in the second row: Scatter plot of the original three hippocampal point-sets. Right:
Scatter plot of all the warped point-sets.

valuable for the study of brain diseases such as agenesis of the corpus callo-
sum(ACC), and fetal alcohol syndrome(FAS).

We manually extracted points on the outer contour of the corpus callosum
from six normal subjects, (as shown Figure 4, indicated by ”o”). The recovered
deformation between each point-set and the mean shape are superimposed on the
first two rows in Figure 4. The resulting atlas (mean point-set) is shown in third
row of Figure 4, and is superimposed over all the point-sets. As we described
earlier, all these results are computed simultaneously and automatically. This
example clearly demonstrate that our joint matching and atlas construction
algorithm can simultaneously align multiple shapes (modeled by sample point-
sets) and compute a meaningful atlas/mean shape.

Next, we present results on 3D hippocampal point-sets. Three 3D point-sets
were extracted from epilepsy patients with left anterior temporal lobe foci iden-
tified with EEG. An interactive segmentation tool was used to segment the
hippocampus in the 3D anatomical brain MRI of the 3 subjects. The point-sets
differ in shape, with the number of points 450, 421, 376 in each point-set respec-
tively. In the first row of Figure 5, the recovered nonrigid deformation between
each hippocampal point-set to the atlas is shown along with a superimposition
on all of the original data sets. In second row of the Figure 5, we also show the
scatter plot of original point-sets along with all the point-sets after the non-rigid
warping. An examination of the two scatter plots clearly shows the efficacy of
our recovered non-rigid warping. Note that validation of what an atlas shape
ought to be in the real data case is not feasible.
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4 Conclusions

In this paper, we presented a novel and robust algorithm that utilize an in-
formation theoretic measure, namely Jensen-Shannon divergence, to simultane-
ously compute the mean shape from multiple unlabeled point-sets (represented
by finite mixtures) and register them nonrigidly to this emerging mean shape.
Atlas construction normally requires the task of non-rigid registration prior to
forming the atlas. However, the unique feature of our work is that the atlas
emerges as a byproduct of the non-rigid registration. Other advantages of using
the JS-divergence over existing methods in literature for atlas construction and
non-rigid registration is that, the JS-divergence is symmetric, is a metric and
allows for use of unequal cardinality of the given point sets to be registered. The
cost function optimization is achieved very efficiently by computing analytic gra-
dients of the same and utilizing them in a quasi-Newton scheme. We compared
our algorithm performance with competing methods on real and synthetic data
sets and showed significantly improved performance in the context of robustness
to noise and outliers in the data. Experiments were depicted with both 2D and
3D point sets from medical and non-medical domains. Our future work will focus
on generalizing the non-rigid deformations to diffeomorphic mappings.
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Abstract. Real-time stereo matching has many important applications in areas 
such as robotic navigation and immersive teleconferencing. When processing 
stereo sequences most existing real-time stereo algorithms calculate disparity 
maps for different frames independently without considering temporal 
consistency between adjacent frames. While it is known that temporal 
consistency information can help to produce better results, there is no efficient 
way to enforce temporal consistency in real-time applications. 

In this paper the temporal correspondences between disparity maps of 
adjacent frames are modeled using a new concept called disparity flow. A 
disparity flow map for a given view depicts the 3D motion in the scene that is 
observed from this view. An algorithm is developed to compute both disparity 
maps and disparity flow maps in an integrated process. The disparity flow map 
generated for the current frame is used to predict the disparity map for the next 
frame and hence, the temporal consistency between the two frames is enforced. 
All computations are performed in the image space of the given view, leading 
to an efficient implementation. In addition, most calculations are executed on 
programmable graphics hardware which further accelerates the processing 
speed. The current implementation can achieve 89 million disparity estimations 
per second on an ATI Radeon X800 graphic card. Experimental results on two 
stereo sequences demonstrate the effectiveness of the algorithm. 

1   Introduction 

Stereo vision studies how to estimate disparity maps based on spatial correspondences 
among the input images captured at different views [2, 11]. It has been one of the 
most actively researched topics in computer vision with a variety of algorithms 
proposed in the past few years. Some of these have obtained excellent results by 
casting stereo vision as a global optimization problem and solving it using techniques 
such as graph cuts [7] and belief propagation [12]. 

Many applications, including robot navigation and immersive teleconferencing, 
require disparity maps to be generated in real-time. While global optimization 
techniques help to produce accurate disparity maps, they generally require long 
computation time. Most real-time stereo applications today either optimize each pixel 
locally using a simple winner-take-all (WTA) approach [4, 6, 8, 15-17] or optimize 
different scanlines separately using dynamic programming [3, 5]. 

When handling a stereo sequence, the above real-time algorithms process different 
frames in the sequence independently, without considering the temporal consistency 
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between adjacent frames. Previous research has shown that that utilizing temporal 
consistency information helps to produce better results [1, 13, 18]. However, there is 
no efficient way to enforce temporal consistency in real-time stereo matching. 

In this paper, the temporal consistency between disparity maps of adjacent frames 
is modeled using a new concept called disparity flow. Disparity flow is defined in the 
disparity space of a given view and can be considered as view-dependent scene flow 
[14]. Just as a disparity map is a 2D array of scalars describing the observation of the 
3D geometry in the scene from a given view, a disparity flow map is a 2D array of 3D 
vectors depicting the observation of the 3D motion in the scene from a given view. 
Since both disparity maps and disparity flow maps are defined in the disparity space, 
using disparity flow maps to enforce temporal consistency is very efficient. 

An algorithm is presented in this paper to compute both disparity maps and 
disparity flow maps in an integrated process. The disparity flow map obtained for the 
current frame is used to predict the disparity map for the next frame and hence the 
temporal consistency between the two frames is enforced. The disparity maps found 
also provide the spatial correspondence information which is used to cross-validate 
the disparity flow maps estimated for different views. 

All computations involved in the algorithm can be performed in the image space 
of a given view. This allows for efficient implementation using programmable 
graphics hardware which further accelerates the processing speed. When handling 
binocular stereo sequences, the current implementation can produce disparity maps 
for both views at 17.8 frames per second (fps) on an ATI Radeon X800 graphic card, 
i.e., about 89 million disparity estimations per second (Mde/s). 

1.1   Related Works 

Several techniques have been proposed to obtain more accurate disparity maps from 
stereo sequences by utilizing consistency in the temporal domain [1, 13, 18]. Some of 
them assume either that the scenes are static/quasi-static or that the motion is 
negligible compared to the sampling frequency [1, 18]. These approaches can produce 
accurate disparity maps for static scenes based on stereo sequences captured under 
varying lighting conditions, but they have difficulty handling dynamic scenes or 
scenes with constant lighting. 

How to enforce temporal consistency for dynamic scenes has been investigated in 
[9, 13]. In Tao et al.’s approach [13], the input images are segmented into 
homogeneous color regions and each segment is modeled using a 3D planar surface 
patch. The projections of a given planar patch on two adjacent frames are related by a 
temporal homography. The temporal homography, together with the spatial 
homography, is then used to estimate the parameters of the planar patch. Since their 
approach is segmentation-based both the accuracy of the results and the processing 
speed are limited by the image segmentation algorithm used. 

Leung et al.’s approach [9] does not require image segmentation. The temporal 
consistency is enforced by minimizing the difference between the disparity maps of 
adjacent frames. However, since disparity changes are always penalized, this 
approach may have difficulties in handling scenes that contain large motions. This 
approach is also designed for offline processing only  it takes pre-captured stereo 
sequences as input and calculates the disparity maps for all frames at the same time. 
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Different from the above approaches, the proposed algorithm models temporal 
consistency in disparity space using the concept of disparity flow. This makes it 
possible to enforce temporal consistency in real-time online stereo calculation. 

This paper is also related to existing graphics hardware based stereo matching 
techniques. Modern programmable graphics hardware allows developers to write their 
own computational kernels that can be executed in parallel on the Graphics 
Processing Units (GPUs). Several approaches have been proposed to accelerate the 
stereo matching computation using the processing power of GPUs [5, 15-17]. They 
typically use the graphics hardware’s texture capability to compute the matching costs 
and then select optimal disparity values for different pixels. In [17], a very high 
processing speed of 289Mde/s has been achieved on an ATI 9800 card. 

The proposed algorithm differs from existing GPU-based stereo approaches in that 
it estimates both disparity maps and disparity flow maps for the input stereo sequence. 
The disparity flow maps obtained depict the 3D motion of the scene and are used to 
enforce temporal consistency between disparity maps of adjacent frames. As yet, 
there seem to be no published reports on implementing a 3D motion estimation 
algorithm on the GPU. 

2   Definition of Disparity Flow 

A disparity flow map is a 2D array of 3D vectors defined on a particular view. 
Assume that at frame t and under a given view k, a pixel (u,v) has a disparity value d 
(the disparity can be defined either based on a stereo pair or more generally based on 
the inverse distance between the corresponding 3D point and the image plane of view 
k [10]). The triple <u,v,d> is called the disparity space coordinate of the 
corresponding 3D point at frame t and under view k. Due to the motion of this 3D 
point, the disparity space coordinate of this point may change to <u+ u,v+ v,d+ d> 
at frame t+1. The difference between the two coordinates, < u, v, d>, is defined as 
the disparity flow of pixel (u,v) at frame t. 

The relationships among disparity, disparity flow, and optical flow is illustrated in 
Fig. 1 using a binocular stereo scenario. Assume that, at time t, a physical point at  
 

(x,y,z)

(x+ x,y+ y,
z+ z)

(u1+ u1,
v1+ v1)

(u1,v1)
(u2+ u2,
v2+ v2)

(u2,v2)

Baseline 2nd image

1st image

 

Fig. 1. Disparity flow under a binocular stereo scenario 
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location (x,y,z) in the scene is observed at pixel (u1,v1) in the first image and at pixel 
(u2,v2) in the second image. This point has a 3D motion ( x, y, z), which causes 
optical flows of ( u1, v1) and ( u2, v2) being observed in the two images. Now 
assume that, when observed from the first view, the disparity of the physical point is 
d1 at time t and d1+ d1 at time t+1. When observed from the second view, the 
disparity of the same point is d2 and d2+ d2 for time t and time t+1. According to the 
definition above, the disparity flow of pixel (u1,v1) is < u1, v1, d1>, and that of pixel 
(u2,v2) is < u2, v2, d2>. As a result, the first two coordinates in the disparity flow of 
a given pixel is simply the optical flow observed at that pixel, while the third 
coordinate is equal to the change in the corresponding 3D point’s disparity value. 

2.1   Constraints Between Disparity and Disparity Flow 

While the disparity flow map provides temporal correspondences between disparity 
maps of adjacent frames, the disparity map also provides spatial correspondences 
between the disparity flow maps of different views. Two additional constraints can be 
derived based on these relations, which help to produce better disparity and disparity 
flow maps. In this section, these two constraints are formulated under a rectified left-
and-right stereo scenario. It is noteworthy that similar constraints exist for arbitrary 
stereo pairs, though not in as concise a form. 

First, a disparity flow map obtained at a given view can be used to enforce a 
temporal consistency constraint between the disparity maps of adjacent frames at the 
same view. Assume that the disparity and the disparity flow found for a given pixel 
(u,v) at view k are d and < u, v, d>, respectively. According to the definition of the 
disparity flow, this suggests that the corresponding 3D point moves from coordinates 
<u,v,d> in the disparity space of view k to coordinates <u+ u,v+ v,d+ d>. 
Therefore, the disparity of pixel (u+ u,v+ v) in the next frame should be d+ d, i.e., 
the following temporal consistency constraint holds: 
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where Dt(u,v) and Ft(u,v) are the disparity and disparity flow of pixel (u,v) at frame t. 
Secondly, a disparity map obtained for a given frame also provides a spatial 

consistency constraint on disparity flow maps generated at different views for the 
same frame. As shown in Fig. 1, assume that pixel (u2,v2) in the right view is the 
corresponding pixel of (u1,v1) in the left view and that the disparity flows of these two 
pixels are < u1, v1, d1> and < u2, v2, d2>, respectively. Then: 

• the epipolar constraint gives: 
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• since the two image planes are coplanar, the distances from the 3D point to both 
image planes are the same, i.e.: 
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• finally, based on the definition of the disparity, the following can be derived: 
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Hence, the following spatial consistency constraint can be derived, which 
specifies the relations between the disparity flow maps for the left and the right views: 
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where Dleft/right(u,v) and Fleft/right(u,v) are the disparity and disparity flow of pixel (u,v) 
in the left/right views, respectively. 

3   The Proposed Real-Time Stereo Algorithm 

In order to derive a simple and efficient algorithm for real-time applications, it is 
assumed that the input stereo sequences are pre-rectified. In addition, scenes are 
assumed to be Lambertian so that the constant brightness assumption holds. For 
simplicity, here the algorithm is discussed under a binocular (left-and-right) stereo 
setting. As shown in the experiments, when trinocular (left-center-top) stereo 
sequences are available the algorithm can also make use of the additional view to 
better solve the visibility problem. 

The outline of the presented algorithm is shown in Fig. 2 In the following 
sections, different stages shown in the figure are discussed in detail. 

For each view k, compute the 
disparity map D0

k for frame 0 

For each view k, use the temporal consistency constraint 
to generate a predicted disparity map Pt+1

k for frame t+1

Use the spatial consistency constraint to cross-
validate disparity maps for different views 

Use the spatial consistency constraint to cross-
validate disparity flow maps for different views

For each view k, compute the disparity flow 
map Ftk between frame t and frame t+1

For each view k, compute the disparity 
map Dtk for frame t based on Ptk

Set t = t+1Set t = 0 

 

Fig. 2. The outline of the proposed real-time stereo algorithm 
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3.1   Compute a Disparity Map for the First Frame of Each View 

For a given binocular stereo sequence, the algorithm starts by computing the disparity 
maps for the first frames of both views. Since there is no temporal consistency 
information available yet, the process used at this step is similar to existing GPU-
based stereo algorithms [15-17]. Without losing generality, only the process for the 
right view in the left-and-right stereo pair is described in detail. This process involves 
three steps: matching costs calculation, cost aggregation, and disparity optimization. 

The first step calculates the costs of assigning different disparity hypotheses to 
different pixels at the first frame (frame 0) of the right view. The obtained costs form 
a 3D matrix C0

right, which is often referred as the disparity space. Based on the 
constant brightness assumption, the cost for each disparity assignment is calculated 
using the color differences between the corresponding pixels in the two views, i.e.: 
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where It
k(u,v) is the color of pixel (u,v) at frame t of view k. cmax is a predefined value 

for maximum matching cost. For color images the average absolute difference among 
the three color channels is used. The final costs are normalized to the interval [0,1]. 

In order to achieve real-time performance the above cost calculation is conducted 
on the GPU. The input stereo images are treated as textures and a pixel shader is used 
to calculate the cost for different pixels under different disparity hypotheses. To fully 
utilize the vector processing capacity of the GPU, the pixel shader calculates the 
matching costs for four different disparity hypotheses in one rendering pass and packs 
the costs into the four color channels of the rendering target. For efficiency, the 
results obtained for the four different disparity hypotheses groups are tiled together 
and kept as a single 2D texture (see Fig. 3 as an example). 

In the second step, the matching costs calculated based on a single pixel are 
propagated to its neighbors. Similar to existing stereo approaches, the shiftable square 
window is used [11]. The entire aggregation step is implemented on the GPU with 
four rendering passes involved. The first two rendering passes replace a current cost 
with the average cost of its local neighbors along horizontal and then vertical 
directions, which give the effect of mean filtering over a local square window. The 
next two passes replace a cost with the minimum cost of its local neighbors along 
horizontal and then vertical directions, which give the effect of a shift filter. In the 
experiments shown in this paper, 9×9 mean filter and 5×5 shift filter are used. 

The third step searches for an optimal disparity map D0
right based on the cost 

matrix C0
right. To achieve real-time performance the simplest local WTA optimization 

is used to find the disparity value that gives the smallest matching cost at each pixel in 
the image. This process requires D/4 rendering passes, where D is the total number of 
disparity hypotheses. The first rendering pass takes the first tile in the 2D texture 
shown in Fig. 3 as input, computes for different pixels the smallest costs among  
those for the first four disparity hypotheses, and stores the costs and the 
corresponding disparity values in the green and red channels of the rendering target 
respectively. The remaining rendering passes step through other tiles in the texture  
 



570 M. Gong 

 

 

Fig. 3. The texture used for representing the 3D disparity space. The matching costs under 40 
different disparity hypotheses are encoded using 10 tiles. 

 
(a) (b) 

 
(c) 

Fig. 4. The texture that encodes the result of disparity computation. The red channel (a) keeps 
the best disparity hypotheses, the green channel (b) stores the corresponding matching costs, 
and the blue channel (c) indicates whether the disparity values pass the validation. Image 
intensity in (a) is adjusted for better visibility. 

and update the minimum costs and the best disparity values at different pixels. At the 
end of the process, the red channel of the output texture holds the disparity maps 
generated (shown in Fig. 4). 

3.2   Cross-Validate Disparity Maps for Different Views 

The WTA optimization is efficient but may produce noisy disparity maps. In order to 
distinguish correct disparity values from potentially incorrect ones, a cross-validation 
process is implemented to verify the disparity maps generated for the current frame t. 
According to the spatial consistency constraint (Eq. 2), the disparity value at pixel 
(u,v) in the right view is considered potentially incorrect if it fails the test below: 

 ( ) ( )( ) 1,,, ≤+− vvuDuDvuD right

t

left

t

right

t
 

Please note that the above test condition does not require the corresponding 
disparity values in the two views to be exactly the same. This is reasonable as the true 
value normally lies in between two quantized disparity values. Similarly, the disparity 
map for the left view is validated using the following criteria: 

 ( ) ( )( ) 1,,, ≤−− vvuDuDvuD left

t

right
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left

t
 

The validation process is implemented on the GPU using one rendering pass for 
each view. When processing view k, the pixel shader takes both disparity maps as 
input, tests the disparity value of each pixel in view k, and sets the blue channel of 
each pixel to either ‘1’ or ‘0’ according to whether the corresponding disparity value 
passes the validation (see Fig. 4 as an example). 
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3.3   Compute a Disparity Flow Map for Each View 

In the next stage, a disparity flow map between frame t and frame t+1 is computed for 
each of the two views. Again, only the process for the right view is described in 
detail. The one for the left view is similar. 

Under the binocular stereo setting, if a pixel (u,v) in the right view has a disparity 
value of d and a disparity flow of < u, v, d>, in the next frame the corresponding 
3D point should move to a location that projects to pixel (u+ u,v+ v) in the right 
view and to pixel (u+ u+d+ d,v+ v) in the left view. Based on the constant 
brightness assumption, the correct disparity flow for pixel (u,v) should minimize the 
color difference between It

right(u,v) and It+1
right(u+ u,v+ v), as well as between 

It
right(u,v) and It+1

left(u+ u+d+ d,v+ v). Similar to the disparity map computation 
process, the costs for assigning different disparity flow hypotheses to different pixels 
in the frame t of the right view are kept in a 5D matrix Bt

right. This 5D matrix is 
referred as the disparity flow space in this paper and is calculated using: 
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The above equation is calculated on the GPU using a process similar to the one for 
computing costs in the disparity space. For efficiency, the costs in the 5D disparity flow 
space are also packed into a 2D color texture. The color texture contains multiple tiles 
with each tile keeping the matching costs for all pixels under four different disparity 
flow hypotheses. Under this packing scheme, costs in a given tile can be calculated 
using a single rendering pass: the pixel shader takes It

right, Dt
right, It+1

right, and It+1
left as 

input textures, calculates the matching costs for the current pixel under the four disparity 
flow hypotheses, and stores the costs into different channels of the rendering target. 

The next step is cost aggregation, in which the matching costs are convoluted on 
the GPU with a 9×9 mean filter, followed by a 5×5 shift filter. The aggregated 
matching costs are then used for searching optimal disparity flows using a GPU-based 
local WTA procedure. Similar to the one described in section 0, this procedure takes 
multiple rendering passes, with each rendering pass handling four disparity flow 
hypotheses. The output of the procedure is a 2D texture with the minimum matching  
 

(a) (b) (c) (d) 

Fig. 5. The texture that encodes the result of disparity flow computation. The red (a), green (b), 
and blue (c) channels keep the u, v, and d components of the best disparity flow 
hypotheses. The alpha channel (d) stores the corresponding matching costs. Image intensities in 
(a), (b), and (c) are adjusted for better visibility. 
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cost for each pixel stored in its alpha channel and the three components of the 
corresponding disparity flow vector encoded in its red, green, and blue channels (see 
Fig. 5 as an example). 

3.4   Cross-Validate Disparity Flow Maps for Different Views 

Similar to the case of disparity map computation, the disparity flow maps generated 
using local WTA approach can be noisy. An additional validation process is used to 
distinguish correct disparity flows from potentially incorrect ones so that only the 
former ones are used to enforce the temporal consistency constraint. 

Based on the spatial consistency constraint (Eq. 2), the disparity flow found for 
pixel (u,v) in the right view is considered potentially incorrect if it fails the test below: 
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where F|d is the d component of the disparity flow vector. 
Similarly, the disparity flow for the left view is validated using the following 

criteria: 
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The validation process is implemented on the GPU and takes one rendering pass for 
each view to be validated. The pixel shader takes both disparity flow maps as input 
textures and tests disparity flows for different pixels of the current view. The output is a 
copy of the original disparity flow map with information about whether a given disparity 
value passes the validation stored in the alpha channel of the corresponding pixel. 

3.5   Predict a Disparity Map for the Next Frame of Each View 

With both disparity maps and disparity flow maps calculated for frame t, it is now 
possible to predict the disparity maps for frame t+1 based on the temporal consistency 
constraint. For a given view k, the predicted disparity map Pt+1

k is calculated from Dt
k 

and Ft
k based on Eq. 1. To prevent error propagation, a pixel is used if and only if 

both the disparity value and the disparity flow found for this pixel are validated, i.e., 
they pass the corresponding cross-validation processes. 

The predicting process goes through all pixels that have validated disparity values 
and disparity flows, warps these pixels to the next frame based on their disparity 
flows, and sets the disparity values for the corresponding pixels. It is possible that two 
or more pixels in the current frame are warped to the same pixel in the next frame. In 
such a case, the highest disparity value will be used as it represents the 3D point that 
is the closest to the camera and should be the visible one. 

Implementing the above forward mapping process on current graphics hardware is 
difficult as writing to an arbitrary position of the rendering target is not supported. 
Hence, this process is implemented using a CPU-based procedure. Since the inputs of 
the procedure are the disparity map and disparity flow map and the output is a single 
predicted disparity map, there is very little overhead for transferring data between the 
system memory and the video memory. 
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(a) (b) 

 
(c) 

Fig. 6. Disparity prediction process: (a) validated disparity map for frame t; (b) validated 
disparity flow map ( u channel only) for frame t; (c) predicted disparity map for frame t+1. 
Green color indicates pixels that do not pass the validation. 

3.6   Compute Disparity Maps Based on Previous Predictions 

When predicted disparity maps are generated by previous calculations, the process 
used for computing the disparity maps differs slightly from the one described in 
section 0. When computing Dt

k for each give view k, the new process uses the 
predicted disparity map Pt

k as a guide so that validated matches found for the previous 
frame can help to solve ambiguities. 

As shown in Fig. 6(c), even though the Pt
k is generated using only validated 

disparity values and disparity flows found for the previous frame, it may still contain 
mismatches. Therefore, if all disparity values predicted by Pt

k were selected into Dt
k 

directly, these mismatches would be propagated over different frames. To prevent 
error propagation, in the proposed algorithm the predicted disparity values are used to 
adjust matching costs only. The final disparity value calculated for a given view may 
differ from the original prediction. 

The new disparity map computation process involves four steps: matching cost 
calculation, cost adjustment, cost aggregation, and disparity optimization. In the first 
step, a 3D matching cost matrix Ct

k is initialized based on the tth frames captured at 
different views. The same GPU-based procedure as the one described in section 0 is 
used here. The output of the procedure is a 2D texture, shown in Fig. 7(a), encoding 
the costs calculated. 

The second step takes both Ct
k and Pt

k as input textures and updates the matching 
cost matrix using the following equation: 
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As suggested by the equation, if a disparity value Pt
k(u,v) is predicted for pixel 

(u,v), the matching costs for all other disparity hypotheses d, d Pt
k(u,v), are tripled. 

This encourages disparity value Pt
k(u,v) to be selected into the final disparity map Dt

k 
so that Dt

k is temporally consistent with Dt-1
k. 

The cost adjustment step is implemented on the GPU using one rendering pass. 
The output of the shader is a 2D texture that encodes the adjusted matching costs. As 
shown in Fig. 7(c), the texture that encodes the adjusted matching costs has higher 
contrast than the one encoding the unadjusted costs. This suggests that there should be 
fewer ambiguous matches when using the adjusted costs to compute disparity map. 



574 M. Gong 

 

(a) 

(c) 

 
(b) 

 
(d) 

Fig. 7. Stereo matching based on previous prediction: (a) matching costs calculated using input 
images; (b) previous disparity map prediction Pt

k (the same image as Fig. 6(c)); (c) adjusted 
matching cost based on Pt

k; (d) the final disparity map Dt
k, in which many incorrect predictions 

shown in Pt
k are corrected 

In the next two steps, the adjusted matching costs are aggregated before they are 
used for computing the disparity map. The same GPU-based procedures as the ones 
described in section 0 are used in these two steps. As shown in Fig. 7(d), since the 
disparity optimization step is based on the aggregated matching costs, isolated noise 
in the predicted disparity maps is corrected. 

4   Experimental Results 

The algorithm presented in this paper is tested using a variety of stereo sequences. 
Due to the space limits, only the results for two sequences are shown here. The first 
one is a color sequence captured using PointGrey’s Bumblebee stereo camera; while 
the second one is a grayscale sequence captured using PointGrey’s Digiclops camera. 
Both sequences are captured at 512×384 resolution, but are cropped and 
downsampled to 288×216 to focus on the moving persons as well as to remove the 
black border and oversampling caused by the rectification process. As shown in  
Fig. 8(a), both sequences are challenging due to the existence of textureless surfaces 
(whiteboard in both scenes), non-Lambertian reflection (highlighted background wall 
in the first scene and floor in the second scene), and areas with periodic textures 
(checkerboard pattern in the second scene). 

The algorithm is configured to use the same set of parameters for both sequences. 
The disparity computation process considers 40 different disparity hypotheses. The  
search range for the disparity flow computation is set to [-4,4] for both horizontal and 
vertical directions, but is set to [-1,1] for the disparity direction since the motion along 
the disparity direction is much smaller. As a result, the total number of disparity flow 
hypotheses is 243. 

As shown in Fig. 8(b), for both sequences the disparity maps generated using only 
the 15th frames captured at different views are quite noisy. Many mismatches are  
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(a)                             (b)                              (c)                              (d) 

Fig. 8. Results comparison on the 15th frames of both sequences: (a) source images; (b) 
disparity maps generated without enforcing temporal consistency constraint; (c) disparity maps 
generated with temporal consistency constraint enforced; (d) cross-validated disparity maps 
using spatial consistency constraint 

Fig. 9. Semi-dense disparity maps generated for the first eight frames in the binocular 
sequence. As more frames became available, there are fewer mismatches caused by ambiguities 
and fewer pixels with unvalidated disparities as well. 

caused by ambiguities such as in the area of the checkerboard pattern in the second 
scene. Enforcing temporal consistency constraint helps to remove these mismatches. 
The disparity flows obtained, shown in Fig. 8(c), are much smoother and appear 
mostly accurate. Most of the remaining errors are caused by occlusions, which are 
filtered out in the semi-dense disparity maps obtained after the cross-validation 
process (shown in Fig. 8(d)). It is noteworthy that there are considerably fewer 
mismatches caused by occlusions in the results generated for the trinocular sequence 
as the algorithm can utilize the additional view to solve occlusions. 

A screen captured animation is submitted with the paper. The animation compares 
the disparity sequences generated using both the single frame approach and the 
proposed approach. The latter shows noticeable improvements in temporal 
consistency. At the beginning of the animation one can also observe how mismatches 
are gradually removed from the estimation results as more frames become available 
(see Fig. 9 as an example). 
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In terms of the processing speed, testing shows that, for the binocular sequence 
above, the current implementation can generate disparity maps for both the left and 
the right views at 17.8 fps on a 3GHz P4 computer equipped with an ATI Radeon 
X800 card. This means that the algorithm can perform 89M disparity evaluations per 
second. It is worth noting that the disparity flow maps for the two views are also 
generated at the same time. 

5   Conclusions 

A real-time stereo matching algorithm that enforces temporal consistency constraint is 
presented in this paper. The temporal correspondences between the disparity maps of 
adjacent frames are modeled using disparity flow, which can be considered as view-
dependent scene flow. The concept of disparity flow provides simple and efficient 
ways to enforce temporal consistency between disparity maps generated for the 
adjacent frames at the same view, as well as to cross-validate the spatial consistency 
between disparity flow maps generated for the same frame at different views. 

The proposed algorithm integrates the disparity map and disparity flow map 
computations in an integrated process. As a result, both computations benefit from 
each other. In particular, when generating disparity map for the next frame, the 
disparity flow map obtained for the current frame is used to enforce the temporal 
consistency constraint through a disparity predicting process. To prevent mismatches 
being propagated over time, only validated disparity values and disparity flows are 
used in the disparity predicting process. Furthermore, the predicted disparity values 
are used to guide the disparity computation through the cost adjustment process 
instead of being used directly in the disparity map for the next frame. 

In order to achieve real-time performance and to utilize the processing power of 
GPUs the proposed algorithm uses the simplest WTA optimization in both disparity 
and disparity flow computation. However, the idea of using disparity flow map to 
enforce temporal consistency constraint can be integrated with global optimization 
techniques as well. The resulting algorithm will be able to produce temporally 
consistent disparity maps for stereo sequences though not at real time speed. 
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Abstract. In this paper we address the problem of aligning 3-D data
with articulated shapes. This problem resides at the core of many mo-
tion tracking methods with applications in human motion capture, ac-
tion recognition, medical-image analysis, etc. We describe an articulated
and bending surface representation well suited for this task as well as a
method which aligns (or registers) such a surface to 3-D data. Articu-
lated objects, e.g., humans and animals, are covered with clothes and skin
which may be seen as textured surfaces. These surfaces are both articu-
lated and deformable and one realistic way to model them is to assume
that they bend in the neighborhood of the shape’s joints. We will intro-
duce a surface-bending model as a function of the articulated-motion pa-
rameters. This combined articulated-motion and surface-bending model
better predicts the observed phenomena in the data and therefore is well
suited for surface registration. Given a set of sparse 3-D data (gathered
with a stereo camera pair) and a textured, articulated, and bending sur-
face, we describe a register-and-fit method that proceeds as follows. First,
the data-to-surface registration problem is formalized as a classifier and
is carried out using an EM algorithm. Second, the data-to-surface fitting
problem is carried out by minimizing the distance from the registered
data points to the surface over the joint variables. In order to illustrate
the method we applied it to the problem of hand tracking. A hand model
with 27 degrees of freedom is successfully registered and fitted to a se-
quence of 3-D data points gathered with a stereo camera pair.

1 Introduction

In this paper we address the problem of aligning 3-D data to articulated shapes.
This problem resides at the core of a variety of methods, including object local-
ization, tracking, e.g., human-body motion capture, model-to-data registration,
etc. The problem is difficult for a number of reasons. First of all, there is a
lack of a general framework for representing large varieties of objects, such as
humans and their body parts, animals, etc. Second it is difficult to predict the
appearance of such objects such that the tasks of identifying them in images
and of locating them become tractable. Third, since they have a large number
of degrees of freedom, the problem of estimating their pose is confronted with a
difficult optimization problem that can be trapped in local minima.
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A first class of methods addresses the problem of articulated object tracking
[1]. A human motion tracker, for example, uses a previously estimated pose as
a prior to predict the current pose and to update the model’s parameters [2],
[3], [4], [5], [6]. Objects may have large motion amplitudes between two video
frames and their aspect may drastically change as one body part is occluded by
another one or when it turns away from the camera’s field of view [7], [8]. Image
data are often ambiguous and it is not easy to separate the tracked object from
the background or from other moving objects.

A second class of methods addresses the problem of aligning (or registering)
a point data set to a rigid or a deformable object. The data may lie at some
distance from the object and the shape of the object may change over time.
There are two classes of techniques available for solving this problem. The first
class describes the object as a point data set and estimates the motion para-
meters using point-to-point assignments [9]. This type of methods works well
provided that point-assignments (that may well be viewed as hidden variables)
are properly established. The second class of techniques describes the object as
a parameterized surface (or a curve) and fits the latter to the data [10], [2], [3].
This type of methods works well provided that the data are not too far from
the object, that the data are evenly distributed around the object and that they
are not corrupted by large-amplitude noise or outliers. Indeed, the distance from
a datum to a surface (whether algebraic or Euclidean) is a non-linear function
of the model’s parameters and the associated non-linear optimization problem
does not have a trivial solution.

In this paper we address both object tracking and object registration. One
one side we consider a 3-D point data set, e.g., data gathered with a stereo
camera pair. On the other side we consider articulated objects with their asso-
ciated surface and we assume that this surface is textured. The surface itself is
parameterized by the joint parameters associated with an underlying kinematic
chain. The texture points are loosely attached to the kinematic chain such that
when the surface bends, the texture points slightly slide along the surface. The
amount of sliding is controlled by a set of bending parameters such that the
texture sliding is proportional to the amount of surface bending.

We introduce an align-and-fit method that proceeds as follows. Alignment:
The data points are associated with texture points. This point-to-point assign-
ment is modelled as a classification problem. The texture points are viewed as
classes and each data point is assigned to one of these classes. Data classifica-
tion is carried out by an EM algorithm that performs three tasks: it classifies the
points, it rejects outliers, and it estimates the joint parameters. Fit: The surface
is fitted to the registered data points by minimizing a distance function over the
joint parameters. An example is shown on Figure 1.

The methodology described in this paper has several contributions. We intro-
duce an object representation framework that is well suited for describing articu-
lated shapes with bending surfaces. We cast the data-to-model association
problem into a classification problem. We show that it is more judicious, both from
theoretical and practical points of view, to allow for one-to-many data-to-model
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+ →

Fig. 1. This figure illustrates the alignment method described in this paper. Left: The
articulated model (texture and surface) shown in its previously estimated pose, Middle:
a set of 3-D data points obtained by stereo, and Right: the result of aligning the data
(middle) with the model (left).

assignments, rather than pair-wise assignments, as is usually the case with most
existing methods. We combine the advantages of point registration and of pa-
rameterized surface fitting. We emphasize that the point-to-surface alignment
problem has primarily been addressed in the case of rigid and deformable ob-
jects, and has barely been considered in the case of articulated objects.

The idea of approximatively matching sets of points stems from [11]. [12].
These same authors propose a point matching algorithm able to deal with outliers
[13]. However, they constrain the points to be assigned pair-wise which leads to
some difficulties, as explained in section 4. The idea of using the EM algorithm
[14] for solving the point matching problem was used by others [15], [16], [17].
However, previous work did not attempt to with articulated shapes. Moreover,
the prolem of outlier rejection is not handled by their EM algorithms.

The remainder of this paper is organized as follows. Section 2 describes the
articulated and bending surface model. Section 3 is a detailed account of the
point-to-surface alignment method. In section 4, we compare our method with
other similar methods and section 5 describes experiments performed with a 3-D
hand tracker.

2 Articulated Shapes with Bending Surfaces

The object model that will be used throughout the paper has three main
components:
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– It has one or several kinematic chains linked to a common part, i.e., a base
part. The kinematic joints are the model’s parameters;

– A volumetric representation that describes the shape of each part of the
kinematic chain as well as a surface embedding the whole object, and

– a texture that is described by a set of points loosely attached to the under-
lying surface, i.e., the texture is allowed to slide in the neighbourhood of the
kinematic joints where the surface bends.

The kinematic model. A kinematic chain consists in P elementary parts which
are referred by Q1...QP in this paper. These parts are linked by rotational joints.
The motion of this chain can be described by a set of K parameters, one for each
degree of freedom, Θ = {θ1, ..., θK}. The first six parameters will correspond to
the 3-D position and orientation of the chain’s base-part, and the remaining
parameters correspond to the joints angles. The position and orientation of each
part Qp is therefore determined by by Θ. The kinematically-constrained motion
of such a multi-chain articulated structure is conveniently described by the rigid
motions, Tp(Θ), of its parts.

A hand, for example, can be described with 5 such kinematic chains, and a
total of 16 parts and 27 degrees of freedom. The base-part (the palm) has six
degrees of freedom which correspond to the free motion of the hand. There are
five degrees of freedom for the thumb and four degrees of freedom for the other
fingers. The thumb has two joints with two rotational degrees of freedom and
one joint with one degree of freedom, while the other fingers have one joint with
two degrees of freedom and two joints with one degree of freedom.

The 3-D shape model. We will associate a rigid shape to each elementary part
Qp of the kinematic chain. In principle, it is possible to use a large variety of
shapes, such as truncated cylinders or cones, quadrics, superquadrics, and so
forth. One needs to have in mind that it is important to efficiently compute the
distance d(X,Qp) from a point X to such a part.

In order to obtain a single and continuous surface describing the whole object,
we will fuse these parts into a single one using isosurfaces. Isosurfaces are a
very useful tool to create complex shapes, such as human-body parts, and have
already been used in computer vision [10, 2]. To build this isosurface we will first
associate a field function φp to each part Qp of the model:

φp(X) = e−
d(X,Qp)

ν (1)

The surface associated to the part Qp can be described by the implicit equation
φp(X) = 1. The fusion of the parts Qp is obtained simply by summing up the
field functions in one single field function φ(X) =

∑
p φp(X), and by considering

the surface S defined by φ(X) = 1. The coefficient ν allows some amount of
control of the fusion. In practice the summation will not be carried out over all
the elements Qp. Indeed, a blind summation over all the elementary parts will
have the tendency to fuse them whenever they are close to each other, even if
they are not adjacent within the kinematic chain. For example, one doesn’t want
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two touching fingers to be glued together. To prevent this effect, whenever we
determine the field at a surface point X, e.g., φ(X), we look for the part Qp that
corresponds to the most important contribution φp(X), and we only consider
the contribution of this part and the adjacent parts in the kinematic chain.

The distance between a point X and a part Qp is evaluated through the
formula d(X,Qp) = −ν log(φp(X)) Similarly, the distance from a point X to
the isosurface S will be evaluated through the formula:

d(X,Θ) = −ν log(φ(X)) (2)

This distance depends on the position of the point X and on the parameters
Θ = {θk}1≤k≤K . For points close to the surface one may take the first order
Taylor expansion of the above expression, so that the quantity −ν(φp(X) − 1)
is a good approximation of d(X,Θ).

The hand model uses ellipsoids as basic volumes to describe each part. Ellip-
soids are relatively simple objects and correspond quite precisely to the shape of
the fingers’ phalanxes. To estimate the distance from a point to an ellipsoid, one
may use the algebraic distance, i.e., the quadratic form X�QpX. Estimation of
the Euclidean distance from a point to an ellipsoid requires to solve for a six
degree polynomial. In practice we will use a pseudo-Euclidean distance which
is more efficiently computed than the Euclidean distance, [7]. Finally, by fusing
these ellipsoids together, we are able to build a realistic model of the hand.

Modelling bending surfaces. The description detailed so far yields a surface
model that is parameterized by the kinematic-joint parameters. Nevertheless,
this model contains no information about how to control the non-rigid behav-
iour of the texture lying onto the object’s surface, when the joint parameters
vary. Consider again the case of the hand. In between two phalanxes the skin
will stretch on one side of the finger and will be compressed on the opposite
side. In other terms, the skin will slide along the underlying bones whenever the
finger is bent. This is a non-rigid motion and therefore this phenomenon will not
be properly modelled if surface points are rigidly attached to a part Qp. We will
use an approach similar to skinning techniques in graphics.

The motion of a point X, that lies nearby the surface of the object, is modelled
as a linear combination of the rigid motions Tp and Tr of two adjacent parts Qp

and Qr; We will use the field function φp(Xi) for weighting the contributions of
these two motions:

T (X,Θ) =
(φp(X,Θ))aTp(Θ)X + (φr(X,Θ))aTr(Θ)X

(φp(X,Θ))a + (φr(X,Θ))a
(3)

The parameter a allows to adjust the sliding when the distances to both Qp

and Qr are of comparable value. A small value for a yields a nicely interpolated
motion while the points remain attached to either Qp or to Qr for a large a. A
few examples of how the sliding is controlled in this way are shown on figure 2.
For the hand, we use a = 2.
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Fig. 2. The sliding of the texture onto a bending surface is controlled by the parameter
a. For a = 2 (top) the texture nicely compresses and streches when the surface bends.
For a = 10 (bottom) the texture is rigidly attached to the nearest rigid part.

3 3-D Point-to-Surface Alignment

The input data of our method consist in 3-D points extracted at time t and we
denote these points by {Yj}1≤j≤m. The input model consists in an articulated
surface. We want to estimate the articulated motion of this surface from its
pose at time t− dt to the its pose at time t. Moreover, the surface has a texture
associated with it and the latter is desribed as a set of 3-D points that we denote
by {Xi}1≤i≤n. These points correspond to data points that were correctly fitted
to the surface at t − dt, i.e., the distance from eachone of these points to the
surface falls below a threshold ε. The latter depends on the accuracy with which
one wants to estimate the motion parameters, the accuracy of the data, and the
accuracy of the model. For the hand-tracking experiments we use ε = 5mm.

3.1 3-D Point Matching Via Classification

Given a set of model points {Xi}1≤i≤n and a set of data points {Yj}1≤j≤m, the
goal is to estimate the transformation T . Therefore, one needs to find correspon-
dences between the priors and the candidates. This is known in statistics as a
missing data problem that can be formulated as a classification problem. Each
point Yj should be either associated to one (or several) of the points Xi, or be
rejected as an outlier. Therefore, the Xi’s can be seen as classes into which the
Yj’s have to be classified or thrown out.

To recast the problem in a statistical framework, the {Yj}1≤j≤m are the
observed values of a set of random variables {Yj}1≤j≤m. Each Yj is associated
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to another random variableZj , whose specific value is unknown, which represents
the point associated to Yj when Yj = Yj. More specifically, Zj is equal to one of
the points Xi, or fall into a special additionnal “outlier” class when the observed
point Yj does not correspond to any point among the Xi’s.

Let us specify some additionnal entities that will be needed. The prior proba-
bilities {Πi}1≤i≤n+1 of each of the classes {X1, ...,Xn, outlier}, and probability
distribution fj(Yj|Zj = Xi) of a point Yj when its class Zj is known and equal
to Xi, or fj(Yj|Zj = outlier) when Yj cannot be associated to any of the Xi’s.

The prior probability, for a point in a working space of volume V , to be
associated to a given point Xi corresponds to the probability of finding it in a
volume v < V around the new position of the point, T (Xi). Therefore, we have

Πi =
v

V
. (4)

The prior probability for a point to be an outlier (meaning that the point is not
in any of the small volumes v) will then be:

Πoutlier =
V − nv

V
. (5)

The probability distribution for Yj can also be written quite easily. If this
point Yj corresponds to a point Xi, its position Yj should be close to the new
position of this point (after the motion), T (Xi). We will choose a Gaussian
distribution N , centered in T (Xi) with variance σ2:

fj(Yj|Zj = Xi) = N (Yj; T (Xi), σ2) (6)

If the point Yj is an outlier, this probability distribution should be uniform over
the working space. So, if V is the volume of the working space,

∀ Yj ∈ V , fj(Yj|Zj = outlier) =
1
V

(7)

Using Bayes’ formula, we can then write the distribution of the random vari-
able Yj , which is :

fj(Yj) =
n∑

i=1

Πi fj(Yj|Zj = Xi) + Πoutlier fj(Yj|Zj = outlier) (8)

or, by specifying the different terms,

fj(Yj) =
n∑

i=1

v

V
N (Yj; T (Xi), σ2) +

V − nv

V 2 (9)

For the volume v, we will use a sphere of radius σ, so that we have v = 4πσ3/3.
We can choose a working space large enough so that the quantity nv is negligeable
when compared to V . We will use this remark later for simplification.
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3.2 A Robust EM Algorithm

To simplify the notations, we will denote by Ψ the set of unknown parameters,
i.e., the joint variables Θ defining the transformation T and the variance σ. We
seek the parameters Ψ which maximize the likelihood P(Y|Ψ), where the Yj’s
are the measured positions of the points {Yj}1≤j≤m.

Due to the unknowns Zj , this is a missing data problem and the EM algorithm
will be used. In addition of providing estimates of Ψ , the algorithm will provide
values for the unknown Zj ’s. We will use the following notation:

αi,j = P(Zj = Xi|Y, Ψ) (10)

Therefore, αi,j denotes the probability that the class Zj of the observed point
Yj corresponds to the prior point Xi.

Starting with an initial guess Ψ0, the EM algorithm proceeds iteratively and
the iteration q consists in searching for the parameters Ψ that maximize the
following term:

Q(Ψ |Ψ q) = E [ log(P(Y,Z|Ψ)) | Y, Ψ q ] (11)

where Ψ q is the prior estimation of Ψ available at the current iteration q. The
expectation is taken over all the values of Z, thus taking into account all possible
values of the Zj ’s. This process will be iterated until convergence. We will first
develop Q(Ψ |Ψ q) for the distributions (6) and (7) that we defined in the previous
section. First, one can write that:

P(Y,Z|Ψ) =
m∏

j=1

(
n∏

i=1

(Πifj(Yj|Zj = Xi, T , σ))δ{Zj=Xi}

× (Πoutlierfj(Yj|Zj = outlier))δ{Zj=outlier}

) (12)

where δ{Zj=Xi} (resp. δ{Zj=outlier}) equals 1 when the class Zj of the point Yj

is Xi (resp. is an outlier), and 0 otherwise. Note that in the second product, all
terms but one are equal to 1. Therefore, we have:

log (P(Y,Z|Ψ)) =
m∑

j=1

(
n∑

i=1

(log Πi + log fj(Yj|Zj = Xi, T , σ)) δ{Zj=Xi}

+ (log Πoutlier + log fj(Yj|Zj = outlier, T , σ)) δ{Zj=outlier}

)
.

(13)

By reporting the expression (13) in (11), we obtain :

Q(Ψ |Ψ q) =
n∑

j=1

(
m∑

i=1

(log Πi + log fj(Yj|Zj = Xi, T , σ))P(Zj = Xi|Y, Ψ q)

+ (log Πoutlier + log fj(Yj|Zj = outlier, T , σ))P(Zj = outlier|Y, Ψ q)

)
.

(14)
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This expression involves the probabilities αq
i,j = P(Zj = Xi|Y, Ψ q) which, using

the Bayes formula, can be written as:

αq
i,j =

Πifj(Yj|Zj = Xi, T q, σq)∑n
k=1 Πkfj(Yj|Zj = Xk, T q, σq) + Πoutlierfj(Yj|Zj = outlier)

(15)

where

fj(Yj|Zj = Xi, T q, σ2
q) =

1
(2πσ2

q )
3
2

e
−‖Yj−T q(Xi)‖

2

2σ2
q . (16)

The expression of αq
i,j , i.e., the probability that a point Yj is matched with the

point Xi, can be further developed using expressions (4), (5) and (7):

αq
i,j =

e
−

‖Yj−T q(Xi)‖
2

2σ2
q∑m

k=1 e
− ‖Yj−T q(Xk)‖2

2σ2
q + c

(17)

where

c = 3
√

π

2

(
1− nvq

V

)
� 3

√
π

2
since we assumed nvq � V. (18)

This expression for the αq
i,j is at the core of the robust method (outlier rejection):

– If the transformation T q does not take any point Xi, i.e., the action T q(Xi),
in a small volume of radius σq around Yj then all the terms in the denomi-
nator’s sum will be small compared to c. Therefore, all the coefficients αq

i,j

corresponding to the point Yj will lean towards zero. We will see in the
following section that it will mean that the point Yj will not be taken into
account for the estimation of the transformation T .

– On the contrary, a point Xi taken by T q within the neighborhood of Yj will
yield a value for αq

i,j that is close to 1 (if only one point Xi is present in
this neighborhood), and the association between Xi and Yj will be used to
determine T .

3.3 Estimating the Transformation T q

It is now possible to derive a simpler expression of equation (14). Neither the
coefficients Πi, nor the second row of eq. (14) depend on the transformation T .
By substituting fi in (14) by its expression (16), we obtain a new expression for
Q(Ψ |Ψ q):

Q(Ψ |Ψ q) = − 1
2σ2

q

n∑
i=1

m∑
j=1

αq
i,j‖Yj − T (Xi,Θ)‖2 + Cst (19)

where the constant term does not depend on the transformation T . To maximize
Q, the EM algorithm iterates a two-step procedure:
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– Expectation: The probabilities αq
i,j are evaluated using equation (17).

– Maximization: We seek the parameters Θ that maximize the criterion Q,
given the αq

i,j ’s previously evaluated. As it will be explained below, σq will not
be evaluated through the maximization process. Its value will be evaluated
through an annealing schedule.

These two steps are carried out until changes between T q and T fall under a
given threshold.

After developing the sum over j in equation (19) and after a few algebraic
manipulation, one obtains that the maximization of (19) is equivalent to the
minimization of:

E(Θ) =
n∑

i=1

λq
i ‖T (Xi,Θ)−Gq

i ‖2 (20)

with:

λq
i =

m∑
j=1

αq
i,j and Gq

i =
1
λq

i

m∑
j=1

αq
i,jYj .

It is less complex and more efficient to minimize equation (20) rather than
to maximize eq. x(19). Indeed, the summation is restricted to the priors Xi.
Moreover, it is straightforward to evaluate the Jacobian matrix associated with
the transformation T given by equation (3). As the value of E(Θ) decreases, the
model points Xi which do not have a data-point assignment will rapidly disap-
pear from the summation since their associated coefficient λi rapidly converges
to 0 as the value of σq decreases. On the contrary, for those priors Xi which do
have one or several data-point assignments, their center of gravity, Gi, will get
closer to the data point Yj which is the closest to T (Xi).

Conventionally, EM algorithms also include the evaluation of σq during the
maximisation step. In fact, it has been observed by us and by other authors
that this does not lead to good alignment results. Very often, the values of σq

evaluated by the maximization step, decrease too quickly, and the algorithm
tends to get trapped in a local minimum. To prevent this, we will simply specify
an annealing schedule for σq , in the spirit of simulated annealing techniques.
The initial value, σ0, will be set at the threshold previously defined, σm, which
corresponds to the largest allowed motion of a point. At each step of the algo-
rithm, σq will decrease geometrically, according to σq+1 = κσq with κ < 1. The
value σ should not fall below the variance σr of the noise associatd with the 3-D
locations of the points (a few millimeters in our case), and the decrease of σq is
stopped when it reaches this threshold σr. The decrease rate κ is chosen so that
it takes about five steps to go from σm downto σr.

3.4 Surface Fitting

Now that outliers were rejected and that the articulated object moved such
that the inliers are in the neighbourhood of the object’s surface, it is worthile
to perform surface fitting. This introduces small corrections and it is useful to
prevent drift over time. We will simply refine the position of the model (through
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the parameters Θ) so that the 3-D points lie on the surface or as close as possible
to this surface. The minimization criterium can be written as, [2], [7]:

Es(Θ) =
m∑

j=1

βjd(Yj,Θ)2 (21)

where d is given by equation (2), and

βj = e−
d(Yj)

2

σ2 (22)

4 Comparison with Other Methods

The main and fundamental difference between our method and other methods
such as [11], [12], [13], [15], and [16] resides both in the expression of the prob-
abilities αi,j provided by equation (17) and in the fact that these probabilites
are subject to the constraint

∑
j αi,j = 1 i.e., a summation over the data points.

This constraint imposes that to each model point Xi corresponds a unique data
point Yj but a data point may correspond to several model points.

The SoftAssign method described in [11] treats the data- and the model-points
symmetrically, and hence it needs the additional constraint

∑
i αi,j = 1 i.e., a

summation over the model points. From a statistical point of view, it means that
one needs to consider two non-independent classifiers. A formal derivation for
the αi,j ’s is more delicate. In [11] [12] it is suggested to normalize the αi,j ’s,
alternating over i and over j, until convergence, the latter being insured by the
Sinkhorn theorem. However this is computationally expensive. In addition, since
the data and the model are treated symmetrically, it is crucial to reject outliers
both from the data and from the model. This is done by adding one row and
one column to the matrix αi,j . For example, a data point Yj which is an outlier
will have a “1” entry in the extra row and a model point Xi which is an outlier
will have a “1” entry in the extra column. The normalization along the rows
and along the columns should not affect, however, these extra row and column.
Indeed, there should be several outliers and therefore there should be several
1’s in each one of these extra row and column. We implemented this method
and noticed that when the normalization is not applied to these extra row and
column, the final solution depends a lot upon the initial entries of these row and
column. If the initial probabilities to have outliers are too high, all the points
will be classified as outliers. If these initial probabilities are too low, there will
be no outliers.

5 Experimental Results

The method described in this paper was applied to the problem of tracking a
hand model with 3-D data. We used a calibrated stereo camera pair together
with a stereo algorithm. This algorithm provides a dense disparity map. Texture
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Fig. 3. Three different stereo video sequences of a hand. When the hand turns, the
tracker has difficulties because the texture of the hidden side of the hand has not yet
been included in the model. When the fingers bend, the hand may be tracked from
both its sides.

points are extracted from both the left and right images using the Harris interest
point detector. Since a dense disparity map is available, the texture points are
easily matched and their 3-D positions estimated.

We gathered several stereoscopic video sequences at 20 frames per second.
Each sequence has approximatively 100 frames. There are in between 500 and
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1000 3-D data points associated with each stereo pair in the sequence. Notice
that while some background points may be easily thrown out, there still remain
many unrelevant points, such as those on the forearm (which is not modelled),
e.g., Figure 1.

The results of applying the alignment method are shown on three different
image sequences on Figure 3. In the first example, the hand rotates around an
axis parallel to the image plane. In the next two examples the fingers bend and
the hand is viewed from two different viewpoints.

The tracker maintains approximatively 250 inliers. Notice that the number of
data points varies a lot as a function of the position of the hand with respect
to the cameras. In particular, when the hand flips from one side to another,
the tracker has to start the alignment from scratch because there are no model
points with the side of the hand that has never been seen. Due to the fact
that the hand-model has 27 degrees of freedom, it cannot capture all the hand’s
deformations.

6 Conclusion

In this paper we described a new method for aligning a set of 3-D data points to
an articulated shape. We introduced a shape model that includes both an artic-
ulated kinematic representation and a surface-bending model. We described in
detail an alignment method that robustly classifies data points as model points,
i.e., points that lie onto the model’s surface. The alignment problem was formal-
ized as an EM algorithm that is able to reject outliers. The EM procedure that
we described finds data-point-to-model-point assignments (expectation) and es-
timates the best transformation that maps the model points onto the data points
(maximization). Our EM algorithm differs from previous attempts to solve for
the point-registration problem: it has a built-in outlier rejection mechanism and
it allows, one-to-many data classsifications (or data assignments). Relaxing the
pair-wise assignment constraint results in a more efficient and more reliable
alignment method. Also, we appear to be the first ones to apply EM-based point
registration to complex articulated shapes.

In the near future we plan to address the problem of articulated shape match-
ing, where there may be a large discrepancy between the pose parameters of the
model and the unknown pose parameters to be estimated from the data. We plan
to add a relational-graph representation of the model and to address the match-
ing problem as the problem of both matching the model-graph to the data-graph
and of finding the kinematic pose.
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Abstract. We propose a fast approach to 3–D object detection and pose
estimation that owes its robustness to a training phase during which the
target object slowly moves with respect to the camera. No additional
information is provided to the system, save a very rough initialization
in the first frame of the training sequence. It can be used to detect the
target object in each video frame independently.

Our approach relies on a Randomized Tree-based approach to wide-
baseline feature matching. Unlike previous classification-based appro-
aches to 3–D pose estimation, we do not require an a priori 3–D model.
Instead, our algorithm learns both geometry and appearance. In the
process, it collects, or harvests, a list of features that can be reliably
recognized even when large motions and aspect changes cause complex
variations of feature appearances. This is made possible by the great flex-
ibility of Randomized Trees, which lets us add and remove feature points
to our list as needed with a minimum amount of extra computation.

1 Introduction

In many 3–D object-detection and pose estimation problems ranging from Aug-
mented Reality to Visual Servoing, run-time performance is of critical impor-
tance. However, there usually is time to train the system before actually using
it. It has recently been shown [1] that, given a 3–D model, statistical learning
techniques [2] can be used during this training phase to achieve robust real-
time performance by learning the appearance of features on the target object.
As a result, at run-time, it becomes possible to perform wide-baseline matching
quickly and robustly, which is then used to detect the object and compute its
3–D pose. Here we show that this approach extends naturally to the case where
no a priori 3–D model is available, thus removing one of the major limitations
of the original method and yielding the behavior depicted by Fig. 1.

The key ingredient of our approach is what we refer to as feature harvesting:
Assuming that we can first observe the target object moving slowly, we define an
ellipsoid that roughly projects at the object’s location in the first frame. We ex-
tract feature points inside this projection and use the image patches surrounding
them to train a first classifier, which is then used to match these initial features
in the following frames. As more and more new frames become available, we

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 592–605, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Feature Harvesting for Tracking-by-Detection 593

T
ra

in
in

g
R

un
−

T
im

e
T

ra
in

in
g

R
un

−
T

im
e

T
ra

in
in

g
R

un
−

T
im

e

Fig. 1. Our approach to 3–D object detection applied to a toy car, a face, and a glass.
In each one of the three cases, we show two rows of pictures. The first represents the
training sequence, while the second depicts detection results in individual frames that
are not part of the training sequence. We overlay the ellipsoid we use as our initial
model on the images of the first row. The only required manual intervention is to
position it in the very first image. To visualize the results, we attach a 3–D referential
to the center of gravity of the ellipsoid and use the estimated 3–D pose to project it
into the images. Note that, once trained, our system can handle large aspect, scale,
and lighting changes. It can deal with the transparent glass as well as with the hand
substantially occluding the car. And when a complete occlusion occurs, such as when
the book completely hides the face, it simply returns no answer and recovers when the
target object becomes visible again.

discard features that cannot be reliably found and add new ones to account for
aspect changes. We use new views of the features we retain to refine the classi-
fier and, each time we add or remove a feature, we update it accordingly. Once
all the training frames have been processed, we run a bundle-adjustment algo-
rithm on the tracked feature points to also refine the model’s geometry. In short,
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starting from the simple ellipsoid shown in the top row of Fig. 1, we robustly
learn both geometry and appearance. An alternative approach to initializing the
process would have been to use a fully automated on-line SLAM algorithm [3].
We chose the ellipsoid both for simplicity’s sake—successfully implementing a
SLAM method is far from trivial—and because it has proved to be sufficient, at
least for objects that can be enclosed by one.

The originality of our approach is to use exactly the same tracking and statis-
tical classification techniques, first, to train the system and automatically select
the most stable features and, second, to detect them at run-time and compute
the pose. In other words, the features we harvest are those that can be effectively
tracked by the specific wide-baseline matching algorithm we use. This contrasts
with standard classification-based approaches in which classifiers are built be-
forehand, using a training set manually labeled and that may or may not be
optimal for the task at hand. As a result, our system is very easy to train by
simply showing it the object slowly moving and, once trained, both very fast and
very robust to a wide range of motions and aspect changes, which may cause
complex variations of feature appearances.

2 Related Work

In recent years, feature-based approaches to object recognition and pose estima-
tion have become increasingly popular for the purpose of 3–D object tracking
and detection [4, 5, 6, 7], mostly because they are relatively insensitive to partial
occlusions and cluttered backgrounds.

These features are often designed to be affine invariant [8]. Once they have
been extracted, various local descriptors have been proposed to match them
across images. Among these, SIFT [9] has been shown to be one of the most
effective [10]. It relies on local orientation histograms and tolerates significant
local deformations. In [8], it is applied to rectified affine invariant regions to
achieve perspective invariance. In [11], a similar result is obtained by training
the system using multiple views of a target object, storing all the SIFT features
from these views, and matching against all of them. However, computing such
descriptors can be costly. Furthermore, matching is usually performed by nearest-
neighbor search, which tends to be computationally expensive, even when using
an efficient data structure [12].

Another weakness of these descriptors is that they are predefined and do
not adapt to the specific images under consideration. [5] addresses this issue by
building the set of the image neighborhoods of features tracked over a sequence.
Kernel PCA is then performed on this set to compute a descriptor for each
feature. This approach, however, remains computationally expensive.

By contrast, [1] proposes a classification-based approach that is both generic
and faster. Since the set of possible patches around an image feature under
changing perspective and lighting conditions can be seen as a class, it is pos-
sible to train a classifier—made of Randomized Trees (RT) [2]—to recognize
feature points by feeding it samples of their possible appearances. In the case of
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3–D objects, these samples are synthesized using a textured model of the target
object. This is effective because it allows the system to learn potentially complex
appearance changes. However, it requires building the 3–D model. This can be
cumbersome if the object is either complex or made of a non-Lambertian ma-
terial that makes the creation of an accurate texture-map non-trivial. If one is
willing to invest the effort, it can of course be done but it is time consuming.
The approach we introduce here completely does away with this requirement.

3 Randomized Trees for Feature Recognition

The approach we use as a starting point [1] relies on matching image features
extracted from training images and those extracted from images acquired at run-
time under potentially large perspective and scale variations. It formulates wide-
baseline matching as a classification problem by treating the set of all possible
appearances of each individual object feature, typically a 3–D point on the object
surface, as a class. During training, given at least one image of the target object,
image features, are extracted and associated to object features. These features
are taken to be extrema of Laplacian extracted from the first few octaves of the
images. This simple multi-scale extraction and the classifier work in tandem to
recognize the features under large variation of both scale and appearance. Image
patches surrounding the image features are then warped to generate numerous
synthetic views of their possible appearance under perspective distortion, which
are then used to train a set of Randomized Trees (RTs) [2]. These RTs are used at
run-time to recognize the object features under perspective and scale variations
by deciding to which class, if any, their appearance belongs.

The training procedure outlined above assumes that a fixed number of image
features have been extracted beforehand and that their number does not change.
This is not true in our case because image features can be added or discarded
during training. Therefore, in the remainder of this section, we first recall the
original formulation [1] and then extend it to allow the addition and removal of
object features on the fly. RTs appear to be a very good trade-off between the
efficiency of the recognition, and these possibilities of manipulations.

3.1 Wide Baseline Matching Using Randomized Trees

Let us consider a set of 3–D object features {Mi} that lie on the target object and
let us assume that we have collected a number of image patches fi,j centered
on the projections of Mi into image j, for all available i and j. The {fi,j}
constitute the training set we use to train the classifier R̂ to predict to which
Mi, if any, a given image patch f corresponds, in other words, to approximate
as well as possible the actual mapping R(f) = i. At run-time, R̂ can then be
used to recognize the object features by considering the image patch f around
a detected image feature. Given the 3–D position of the Mi, this is what is
required to compute 3–D pose.

In principle any kind of classifier could have been used. RTs, however, are
particularly well adapted because they naturally handle multi-class problems,
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while being both robust and fast. Multiple trees are grown so that each one
yields a different partition of the space of image patches. The tree leaves contain
an estimate of the posterior distribution over the classes, which is learned from
training data. A patch f is classified by dropping it down each tree and perform-
ing an elementary test at each node, which sends it to one side or the other, and
considering the sum of the probabilities stored in the leaves it reaches. We write

R̂(f) = argmax
i

∑
T∈T

P̂L(T,f)(R(f) = i) , (1)

where i is a label, the P̂L(T,f)(R(f) = i) are the posterior probabilities stored in
the leaf L(T, f) of tree T reached by f , and T is the set of Randomized Trees.
Such probabilities are evaluated during training as the ratio of the number nL

i

of patches of class i in the training set that reach L and the total number ni of
patches of class i that is used in the training. This yields

P̂L(R(f) = i) � nL
i /ni

SL
, (2)

where SL =
∑

j

nL
j

nj
is a normalization term that enforces

∑
i P̂L(R(f) = i) = 1.

We normalize by the number of patches because the real prior on the class
is expected to be uniform, while this is not true in our training population.
Although any kind of test could be performed at the nodes, simple binary tests
based on the difference of intensities of two pixels have proved sufficient. Given
two pixels m1 and m2 in f and their gray levels I(f,m1) and I(f,m2) after
some Gaussian smoothing, these tests are of the form

If I(f,m1) ≤ I(f,m2) go to left child,
otherwise go to right child.

(3)

This test is very simple and requires only pixel intensity comparisons. In practice,
classifying a patch involves only a few hundreds of intensity comparisons and
additions per patch, and is therefore very fast.

3.2 Randomized Trees and On-Line Training

The approach described above assumes that the complete training set is available
from the beginning, which is not true in our case as object features may be added
or removed while the classifier is being trained. Here we show how to overcome
this limitation by modifying the tree-building algorithm in two significant ways.

First, in [1], the node tests are chosen so as to minimize leaf entropy, which is
estimated according to the training set. Without the complete training set, this
cannot be meaningfully done. Instead, we build the tree by randomly selecting
the tests, that is to say the m1 and m2 locations of Eq. 3. The training data
is only used to evaluate the P̂L posterior probabilities in the leaves of these
randomly generated trees. Surprisingly, this much simplified procedure, which
is going to allow us to iteratively estimate the P̂L values, results in virtually
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no loss of classification performance [13]. Interestingly, a similar result has also
been reported in the context of 2–D object recognition [14].

Second, we introduce a mechanism for updating the tree when new views of
an existing object feature are introduced or when an object feature is either
added or removed, which the RT approach lets us do very elegantly as follows.

– Incorporating New Views of Object Features. Recall that, during the
initial training phase, patches are dropped down the tree and the number
of patches reaching leaf L is plugged into Eq. 2 to derive P̂L for each class
at leaf L. Given a new view, we want to use it to refine these probability
estimates. To this end, we invert the previous step and compute the number
of patches reaching leaf L as

nL
i = P̂L(R(f) = i)× ni × SL.

This only requires storing the normalization terms SL at each leaf L and
keeping the ni counters for each class. We then use newly detected patches
to increment nL

i and ni. When all the new patches have been processed, we
again use Eq. 2 to obtain the refined values of P̂L. Note that we do not store
the image patches themselves, which could cost a lot of memory for long
training sequences.

– Adding and Removing Object Features. The flexible procedure out-
lined above can also be used to add, remove or replace the classes corre-
sponding to specific object features during training. Removing class i and
the corresponding object feature merely requires setting

nL
i = ni = 0.

We can then replace the ith feature by a new one by simply changing the Mi

3–D coordinates introduced at the beginning of Section 3.1 to be those of the
new object feature and using patches centered around the new projections
of Mi to estimate P̂L.

These update mechanisms are the basic tools we use to recursively estimate
the RTs while harvesting features, as discussed in the next section.

4 From Harvesting to Detection

In this section, we show that standard frame-to-frame tracking and independent
3–D detection in each individual frame can be formalized similarly and, therefore,
combined seamlessly as opportunity dictates. This combination is what we refer
to as tracking-by-detection. The originality of our approach is to use exactly the
same image feature recognition technique at all stages of the process, first, to
train the system and automatically select the most stable features and, second,
to detect them at run-time.

We first give an overview of our method. We then explain how the tracking
is performed without updating the classifier, and conclude with the complete
“feature harvesting” framework.
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4.1 Overview

As shown in the top row of Fig. 1, to initialize the training process, we position
the ellipsoid that we use as an initial 3–D model so that it projects on the target
object in the first frame. We then extract a number of image features from this
first image and back-project them to the ellipsoid, thus creating an initial set
of the {Mi} object features of Section 3.1. By affine warping lightly the image
patches surrounding the image features, we create the fi,j image patches that
let us instantiate a first set of randomized trees.
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Fig. 2. The five steps of feature harvesting introduced at the beginning of Section 4.1

During training, new features detected on the object are integrated into the
classifier. Because the number of such features can become prohibitively large
when dealing with long training sequences, it is desirable to keep the ones that
are successfully detected and recognized by the classifier most often, and remove
the other ones. More precisely, given the set of trees trained using the first frame
or more generally all frames up to frame t − 1, we handle frame t using the
five-step feature-harvesting procedure described below and illustrated by Fig. 2:

1. We extract image features from frame t and use the classifier to match them,
which, in general, will only be successful for a subset of these features.

2. We derive a first estimate γ̃t of the camera pose from these correspondences
using a robust estimator that lets us reject erroneous correspondences.

3. We use γ̃t to project unmatched image features from frame t−1 into frame t
and match them by looking for the image features closest to their projections.

4. Using these additional correspondences, we derive a refined estimate γ̂t.
5. We use small affine warping of the patches around image features matched

in frame t to update the classifier as discussed in Section 3.2. Features that
have not been recognized often are removed to be replaced by new ones.

At run-time, we use the exact same procedure, with one single change: We stop
updating the classifier, which simply amounts to skipping the fifth step.

4.2 3–D Tracking by Detection

Let us first assume that the classifier R has already been trained. Both tracking
and detection can then be formalized as the estimation of the camera pose Γt

from image features extracted from all previous images that we denote Is≤t. In
other words, we seek to estimate the conditional density p(Γt | Is≤t).
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A camera motion model —appearing as the term p(Γt |Γt−1) in the following
derivations— should be chosen. It often assumes either constant velocity or con-
stant acceleration. This is fine to regularize the recovered motion but can also
lead to complete failure. This tends to occur after an abrupt motion or if Γt−1
is incorrectly estimated, for example due to a complete occlusion. Γt can then
have any value no matter what the estimate of Γt−1 is. In such a case, we should
consider the density of Γt as uniform and write p(Γt |Γt−1) ∝ λ, which amounts
to treating each frame completely independently. In our implementation, we use
a mixture of these two approaches and take the distribution to be

p(Γt |Γt−1) ∝ m(Γt−1, Γt) = exp
(
− (Γt − Γtq−1)

� Σ−1 (Γt − Γt−1)
)

+ λ . (4)

This lets us both enforce temporal consistency constraints and to recover from
tracking failures by relying on single-frame detection results. In our implemen-
tation, the respective values of Σ and λ were chosen manually.

Unfortunately, introducing the term λ process precludes the use of standard
particle filtering techniques. Our camera pose space has six dimensions, and the
required number of particles, which grows exponentially with the number of
dimensions, would be too large to make particle filters tractable. Therefore we
have to restrict ourself to the estimation of the mode γ̂t of this density:

γ̂t = argmax
γ

P (Γt = γ | Is≤t) ,

in which the expression of P (Γt = γ | Is≤t) can be found using the standard
Bayesian tracking relation:

P (Γt = γ | Is≤t) ∝ P (It |Γt = γ)P (Γt = γ|Γt−1 = γ̂t−1)P (Γt−1 = γ̂t−1|Is<t) .
(5)

As described in the overview, we apply a RANSAC based approach on the set
ñt of correspondences obtained using the classifier to derive a first estimate γ̃t for
the camera pose. A new set n̂t is then made of the inliers of ñt, and completed
by projecting the unmatched object features with γ̃t and matched each of them
with the closest image feature. A numerical optimization is then performed to
find γ̂t by minimizing the log-likelihood of m(γ̂t−1, γ)P (It |Γt = γ):

γ̂t = argmin
γ

∑
n∈nt

‖P(γ)M(n)−m(n)‖2 + ρ
(
(γ − γ̂t−1)

� Σ−1 (γ − γ̂t−1)
)

(6)

where P(γ) is the projection matrix for the camera pose γ, ρ is the Tukey
robust estimator that approximates the logarithm of (4), and M(n) and m(n)
are respectively the object feature and the image feature for correspondence n.

The advantage of the classifier is that there is no need for the previous pose.
However, this procedure can result in some jittering on the estimated pose over
a sequence. To enforce temporal consistency and reduce the effect, when γ̂t−1
is valid, we also consider transient object features which projections can be
matched across It−1 and It using standard cross-correlation. Their 3–D positions
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can be estimated from the rough model and γ̂t−1 by back-projection. According
to our experience, over two consecutive frames, this position is accurate enough
to improve the recovered displacement. These additional correspondences are
integrated in Eq. (6) for pose estimation exactly in the same way as the corre-
spondences established with the classifier. Note that these correspondences are
not required by our method, but they are useful to reduce the jittering effect.

4.3 Feature Harvesting

During training we use the same process but now the classifier is not initially
available and we want to create it incrementally by “feature harvesting.” This
implies keeping or discarding object features such as those shown in Fig. 3. Let
us first denote by r∗t the best classifier obtained with the images Is≤t and the
feature correspondences computed using the poses γs≤t:

r∗t = argmax
r

P (R = r |Γs≤t = γs≤t, Is≤t) .

Here we show that r∗t can be used to compute γ̂t+1 under reasonable assumptions.
We have:

P (Γs≤t = γs≤t, Is≤t)

=
∑

r

P (Γs≤t =γs≤t, Is≤t, R =r) =
∑

r

P (Γt = γt, It, Γs<t = γs<t, Is<t, R = r)

=
∑

r

P (Γt = γt, It |Γs<t = γs<t, Is<t, R = r)P (R = r |Γs<t = γs<t, Is<t)×

P (Γs<t = γs<t, Is<t)

All the classifiers have a negligible probability P (R = r |Ps<t = γs<t, Is<t)
except for those concentrated around r = r∗t−1. Otherwise, that would mean that
other classifiers than r∗t−1 constructed with γs<t, Is<t would be as good as r∗t−1,

(a)

(b)

(c)

Fig. 3. The harvest. (a) Three sample patches for three distinct features on the glass.
Note that the foreground is relatively constant while the background changes drasti-
cally. (b) Three sample patches for three distinct face features, obtained under changing
light and orientation. (c) Patches corresponding to object features found to be unreli-
able and discarded during training.
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which is not realistic since r∗t−1 has been built from these poses and images. Let
us continue the derivation:

� P (Γt = γt, It |Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)
= P (It |Γt = γt, Γs<t = γs<t, Is<t, R = r∗t−1)×

P (Γt = γt |Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)
� P (It |Γt = γt, R = r∗t−1)P (Γt = γt |Γs<t = γs<t)P (Γs<t = γs<t, Is<t)

because the incoming image does not depend on the poses except on the current
one, and the current pose does not depend on the previous images neither on
the classifier, which is reasonable. By applying the Bayes’ theorem on the terms
P (Γs≤t = γs≤t, Is≤t) and P (Γs<t = γs<t, Is<t), we get:

P (Γs≤t = γs≤t | Is≤t) �
P (Is<t)
P (Is≤t)

P (It |Pt =γt, R =r∗t−1)P (Γt = γt |Γt−1s<t = γs<t)P (Γs<t = γs<t | Is<t)

And under standard probabilistic tracking hypotheses, we finally obtain:

P (Γt = γt | Is≤t) ∝
P (It |Pt = γt, R = r∗t−1)P (Γt = γt |Γt−1 = γt)P (Γt−1 = γt−1 | Is<t)

which is the same expression as Eq. 5 used for tracking, except that the classifier
r∗t−1 appears in the observation model. That means that the same method as in
Section 4.2 can be used to estimate γ̂t. Once this pose is found, r∗t−1 is updated
using correspondences between object features and image features to give r∗t as
explained in Section 3.2.

To validate this training procedure, we performed the experiment depicted by
Fig. 4, which clearly shows that the recovered camera trajectory does not drift.

(a) (b)

after bundle−adjustment
Car object features

(c)

Fig. 4. (a) Sample frames from a training sequence where the toy car is fixed to a
tripod and rotated four times. The frames marked with a star show the reference
position which is reached in all four loops. (b) Recovered relative camera motion with
respect to the toy car after the first loop. The trajectory is shown in the referential
of the ellipsoid. The dots represent the trajectory before bundle-adjustment, the plain
curve after. (c) Camera motion for all four loops. As can be seen, there is no drift.
Note that all four loops go through the star.
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5 Results

In this section we demonstrate the effectiveness and generality of our approach
using three very different objects, a toy car, a face, and a partially-textured
transparent glass. In all three cases, we follow the same procedure: We show the
system the training sequence depicted by the top rows of Fig. 1, which is used to
harvest features as discussed in Section 4.3. When all the training frames have
been processed, we freeze the set of RTs we have built and proceed with the
tracking-by-detection approach of Section 4.2. Our non-optimized implementa-
tion runs at 5Hz during tracking, and 1Hz during training. About 20% of the
time is devoted to extracting and recognizing the features, and the remaining
80% by the pose estimation procedure. This could be considerably sped-up by
using more efficient strategies [15].

Fig. 5. Detecting the car in a sequence that involves abrupt motions, large scale and
lighting changes, and very substantial occlusions. To visualize the results, we attach a
3–D referential to the center of gravity of the initial ellipsoid and use the estimated
3–D pose to project it into the images. We also overlay the projections of the harvested
object feature points. The toy car is successfully detected in all frames except those
where it is almost entirely occluded. And, because the object is re-detected in every
frame, the system easily recovers after such a failure.
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(a)

(b)

(c)

(d)

Fig. 6. Face results. Note that by contrast with previous face detection approaches,
the face pose can be retrieved under (a) large rotations, (b) scale and lighting changes,
and (c) different facial expressions. (d) After the occlusion by the book, the algorithm
automatically recovers.

Fig. 7. Detecting a transparent object with partial texture. The squares in the first
three images outline the patches around the features detected at three different scales
in a test frame. The straight line segments connect the feature with the corresponding
one in a frame of the training sequence. Since during training the system learned
which parts of the patches are meaningful as shown in Fig. 3, the image features can
be recognized even if the patch overlaps the background or the transparent parts. As
shown in the fourth frame, the glass is successfully detected.

Figs 5, 6, and 7 show a number of frames extracted from test sequences of
several hundreds frames—the toy sequence is made of about 1500 frames—in
which our target objects translate and rotate. Because the object is re-detected
in every frame, the algorithm is robust to abrupt motion and complete occlusion.
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For example, after the third frame of Fig. 5, the car falls on the ground and has
to be picked up. As soon as it becomes visible again, the system reacquires it.
The same happens in the example of Fig. 6 after the subject hides his face behind
the book. These examples highlight some of the strengths of our algorithm:

– Robustness to cluttered background. Once trained, the classifier is
feature-specific enough so that it does not get confused by cluttered back-
ground as shown in Fig. 5.

– Insensitivity to scale changes. Thanks to the multi-scale approach to
feature detection described at the beginning of Section 3, the algorithm can
handle a very broad range of scales, including scales that were not part of
the training sequence. As shown in several of the examples of Figs 5 and
6, the system keeps on successfully detecting even though the target object
moves both much closer and much further.

– Robustness to complex illumination effects. In the case of the face,
we deliberately changed the lighting when acquiring the training sequence
of Fig. 1 to build lighting invariance into the classifier. As can be seen in the
bottom rows of Fig. 6, this was successful and gives the system robustness
to very marked lighting changes. While it was not necessary for the toy car
because it has a simple shape, it experimentally appeared that a training
sequence with such variations greatly improve the results.

– Handling transparencies. Finally, we can also handle the partially-
textured transparent glass of Fig. 6 by using a suitable training sequence
with a complex background. It lets the classifier learn that the parts of the
patches surrounding feature points that overlap the transparent parts or the
background are not relevant for classification purposes. Our algorithm can
automatically reject feature points on transparent parts. At run-time fea-
tures can thus be successfully recognized even if the background has changed.

6 Conclusion

Feature-based approaches to 3–D object detection that take advantage of a priori
knowledge of the object’s shape have consistently shown to be among the most
effective. Their drawback is that building an accurate model that includes both
3–D and texture information, while usually possible, tends to be cumbersome.
The approach proposed here exhibits the same reliability but completely does
away with a priori 3–D model building. Instead, during an automated training
phase, the system learns both geometry and appearance of object feature points
that have been harvested because they can be reliably recognized.

In a more global context, learning based on the consistency between two un-
known stochastic variables, in our case between the appearance and the pose and
between two poses close in time, is known to tremendously reduce the required
amount of expert knowledge. This paradigm has proved its power in speech
processing with the Baum-Welch algorithm [16], and as our results demonstrate,
is also suitable for object recognition and tracking.
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We believe this to be an important step towards developing applications that
can handle a hundreds or thousands of objects. Indeed, this will only be possible
if only minimal amounts of manual intervention are required, which may preclude
the building of 3–D models for all target objects.
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Abstract. In this paper, we adaptively model the appearance of objects based 
on Mixture of Gaussians in a joint spatial-color space (the approach is called 
SMOG). We propose a new SMOG-based similarity measure. SMOG captures 
richer information than the general color histogram because it incorporates spa-
tial layout in addition to color. This appearance model and the similarity meas-
ure are used in a framework of Bayesian probability for tracking natural objects. 
In the second part of the paper, we propose an Integral Gaussian Mixture (IGM) 
technique, as a fast way to extract the parameters of SMOG for target candidate. 
With IGM, the parameters of SMOG can be computed efficiently by using only 
simple arithmetic operations (addition, subtraction, division) and thus the com-
putation is reduced to linear complexity. Experiments show that our method can 
successfully track objects despite changes in foreground appearance, clutter, 
occlusion, etc.; and that it outperforms several color-histogram based methods.  

1   Introduction 

Visual tracking in unconstrained environments is one of the most challenging tasks in 
computer vision because it has to overcome many difficulties arising from sensor 
noise, clutter, occlusions and changes in lighting, background and foreground appear-
ance etc. Yet tracking objects is an important task with many practical applications 
such as smart rooms, human-computer interaction, video surveillance, and gesture recog-
nition. Generally speaking, methods for visual tracking can be roughly classified into two 
major groups: deterministic methods and stochastic methods.  

In deterministic methods (for example, the Mean Shift (MS) tracker [1]), the target 
object is located by maximizing the similarity between a template image and the cur-
rent image. The localization is implemented by iterative search. These methods are 
computationally efficient, but they are sensitive to background distraction, clutter, 
occlusion, etc. Once they lose the target object, they can not recover from the failure 
on their own. This problem can be mitigated by stochastic methods, which maintain 
multiple hypotheses in the state space and in this way, achieve more robustness. For 
example, the Particle Filter (PF) [2, 3, 4] has been widely applied in visual tracking in 
recent years.  

A particle filter tracks multiple hypotheses simultaneously and weights them ac-
cording to a similarity measure (i.e., the observation likelihood function). This paper 
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is essentially concerned with devising and calculating this likelihood func-
tion/similarity measure. Visual similarity can be measured using many features such 
as intensity, color, gradient, contour, texture, or spatial layout. A popular feature is 
color [1, 2, 4, 5, 6], due to its simplicity and robustness (against scaling, rotation, 
partial occlusion, and non-rigid deformation). Usually, the appearance of a region is 
represented by its color histogram, and the distance between the normalized color 
histograms of two regions is measured by the Bhattacharyya distance [2, 4].  

Despite its popularity, the color histogram also has several disadvantages:  

1) The spatial layout information of a tracked object is completely ignored (see 
figure 1(a)). As a result, a tracker based on color histograms is easily confused 
when two objects with similar colors but different spatial distributions get close 
to each other. An ad-hoc solution is to manually split the tracked region into 
several sub-regions (e.g., [4, 7]).   

2) Since the appearance of the target object is reduced to a global histogram, the 
similarity measure (e.g., the Bhattacharyya coefficient) is not discriminative 
enough (see Fig. 1) [8].  

3) For a classical color histogram based particle filter, the construction of the his-
tograms is a bottleneck. The computation is quadratic in the number of sam-
ples.  

In order to overcome the disadvantages of color histograms, we describe a Spa-
tial-color Mixture of Gaussians (called SMOG) appearance model and propose a 
SMOG-based similarity measure in Sect. 2. The main advantage of SMOG over color 
histograms and general Gaussian Mixtures is in that both the color information and 
the spatial layout information are utilized in the objective function of SMOG. There-
fore, the SMOG-based similarity measure is more discriminative.  

When SMOG and the SMOG-based similarity measure are used in particle filters, 
one major bottleneck is the extraction of the parameters (weight, mean, and covari-
ance) of SMOG for each particle. In Sect. 3, we propose an Integral Gaussian Mixture 
(IGM) technique as a fast way to extract these parameters and which also requires less 
memory storage than the integral histogram [9].  

In Sect. 4, experiments showing the advantages of our method over other popular 
methods are provided. We summarize the paper in Sect. 5. 

2   SMOG for Particle Filters 

2.1   A Brief Review of the Particle Filter 

Denoting by Xt and Yt the hidden state and the observation respectively at time t. The 
goal is to estimate the posterior probability density function (pdf) p(Xt) of the target 
object state given all available observations up to time t: Y1:t={Yi, i=1, …,t}.  Em-
ploying the first-order Markovian assumption 

1: 1 1p(X |X ) p(X |X )t t t t− −= , the posterior 

distribution of the state variable can be formulated as follows: 

1 : 1 1 1 : 1 1p (X |Y ) ( Y | X ) p (X |X ) p ( X |Y ) Xt t t t t t t t tL d− − − −∝            (1) 
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Given the dynamic model
1p(X |X )t t− and the observation likelihood model 

(Y | X )t tL , the posterior pdf distribution in Eq (1) can be recursively calculated.  

The particle filter approximates the posteriori distribution p(Xt| Y1:t) based on a fi-
nite set of random particles and associated weights ( ) ( )

1
{ X , } M

j

j j
t tW =

. If we draw parti-

cles from an importance density, i.e., ( ) ( ) ( )
1 1:X ~ ( X | X , Y )

t t t

j j j
tq

−
, the weights of new 

particles become:  

( )
( ) ( ) ( )

( ) ( )
1

1 1:

(Y | X )p(X | X )

(X | X , Y )
t t t

t t

j j j
tj

t j j
t

L
W

q
−

−

∝                                        (2) 

Then, the state estimate of the object at each frame can be obtained by either the 
mean state or a maximum a posteriori (MAP) estimate [10]. 

The observation likelihood function (Y | X )
ttL plays an important role in the particle 

filter. It determines the weights of particles and thereby could significantly influence 
the performance [11]. The likelihood function mainly affects the particle filter by the 
following ways: 

1) It affects the way particles are re-sampled. Re-sampling is necessary to de-
crease the number of low weighted particles and to increase the ones with more 
potential particles. Particles are re-sampled according to their weights.  

2) It affects the state estimate X̂ t
of the target object.  

Two popular likelihood function categories are: contour-based models (e.g., [12]) 
and color-based models (e.g. [1, 2, 4, 6]).  Although the contour-based model can 
accurately describe the shape of a target, it performs poorly in clutter and the time 
complexity is high. In the color-based model, a color histogram (due to its robustness 
to noise, rotation, and partial occlusion, etc.) is frequently employed with the Bhat-
tacharyya coefficient as a similarity measure. However, color histogram has some 
limitations, as we show next. 

2.2   Limitations of Color-Histogram Based Similarity Measure  

We illustrate the main disadvantage of the color histogram based similarity measure: 
it lacks information about the spatial layout of the target object, and is thus not 
discriminative enough.  

Denote by ( )
1,...,{ }

t t

u
O O u mφ φ == and ( )

1,...,{ }u
O O u mν ν
φ φ == respectively the m-bin normalized 

color histograms of target model 
t

O and the target candidate Oν , the Bhattacharyya 

coefficient (i.e., the similarity measure) between the reference region and candidate 
region is: 

( ) ( ) ( )

1

,
t t v

m
u u

O O O O
u

ν
ρ φ φ φ φ

=

=                                          (3) 

In Fig. 1, we track a face comprising pixels within a red rectangle region in a video 
sequence from http://vision.stanford.edu/~birch/headtracker/seq/. Target candidates  
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          (a)          (b)                 (c)         (d)   
Fig. 1. Color-histogram based similarity measure. The score of the similarity measure over (b) 
x-translation; (c) y-translation; and (d) scaling. (see text below and compare with Fig. 2). 

are generated by translating the rectangle from -20 to 20 horizontally or vertically, 
and by scaling the rectangle by a factor of 0.2 (the smaller green rectangle inside the 
target model) to 2 (the larger green rectangle inside the target model) in steps of 0.2. 
We use 8x8x8 color histogram bins. From Fig. 1, we can see that the similarity meas-
ure by Eq. (3) obtains very similar scores for different target candidates, and does not 
discriminate well between different candidate regions.  

2.3   SMOG: A Joint Spatial-Color Appearance Model  

Both the appearance model and the similarity measure are very important to the 
performance of particle filters. The color histogram, as described above, is one 
popular appearance model. Other popular models for foreground and/or background 
appearance include: the Gaussian [13], the kernel density  [14, 15] and the MOG 
(Mixture of Gaussians) based appearance model [10, 16, 17, 18, 19, 20]. For exam-
ple, [13] represented humans by blobs and modeled each blob by a Gaussian  
model.  

The kernel density based model is robust to noise and does not require the 
calculation of parameters (such as weights, mean and covariance of the Gaussian 
model) but it is computationally expensive and requires a large storage space. It is 
also not trivial to update the appearance changes. The disadvantage of the general 
MOG-based model is that it treats each pixel independently without using any 
spatial information. Moreover, it requires setting the number of Gaussians and a 
learning rate. Despite these limits, it is popular because (1) it can model the multi-
modal distribution of the appearance; (2) it is computationally efficient; (3) it is 
easy to adapt to the changes of the appearance; and (4) it does not require a large 
storage space.  

We model the appearance of an object with a joint spatial-color mixture of Gaus-
sians. We refer to this approach as SMOG. We denote by Si=(xi, yi) and 

j
j=1,...,C ={C }i i d

respectively the spatial feature (i.e., the 2D coordinates) and the color 

feature with d color channels (in RGB color space, C ={R ,G ,B }i i i i
 and d=3) at pixel xi. 

Thus, we can write the features of xi as the Cartesian product of its position and color: 
(S ,C )i i ix = . We assume that the spatial feature (S) and the color feature (C) are inde-

pendent to each other. For the mean and the covariance of the lth mode of the  
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Gaussian Mixtures, we have S C S C
, , , , , ,( , )and ( , )t l t l t l t l t l t lµ µ µ= Σ = Σ Σ . The estimated density 

at the point xi in the joint spatial-color space can be written as: 

 

(4) 

2.4   SMOG-Based Similarity Measure  

We model the appearance of a target object Ot by SMOG with k modes. We initialize 
the parameters of SMOG for a target object S, C, S, C,

1, 1, 1, 1, 1, 1,...,{ , , , , }t t t t tO O O O O
t l t l t l t l t l l kω µ µ= = = = = =Σ Σ by a  

K-means algorithm followed by a standard EM algorithm. Once we obtain the parame-
ters of the target object, we either update these parameters in an “exponential forget-
ting” way or keep the parameters (if we detect that it is occluded by other objects) in 
the following frames (t=2,3…). At time t, we sample M particles (i.e., target candidates 
Ov) and evaluate the likelihood function in Eq. (1) for each particle. The parameters of 
each target candidate S, C, S, C,

, , , , , 1,...,{ , , , , }O O O O O
t l t l t l t l t l l k
ν ν ν ν νω µ µ =Σ Σ  are calculated by: 

1. Calculate the Mahalanobis distances between pixels {xi} in the target candidate 
Ov={ xi}i=1,…N to each mode of SMOG of the target object Ot in color space: 

C, C, C, C, C,2 1
, , , , ,(C , , ) (C ) ( ) (C )t t t t tO O O O OT

l i t l t l i t l t l i t lD µ µ µ−Σ = − Σ −                  (5) 

2. Label the pixels satisfying ANY(|Dl| l=1,…,k 2.5) with the number of the mode to 
which the Mahalanobis distance is the least. For other pixels, label them with zero.  

( ) arg mini l
l

LB x D=                                         (6) 

3. Calculate the parameters S, C, S, C,
, , , , , 1,...,{ , , , , }O O O O O

t l t l t l t l t l l k
ν ν ν ν νω µ µ =Σ Σ of the target candidate 

by: 

( ) ( )

,
1 1 1

S, C,
, , ,

1 1

S, C,
, , , , ,

1

( ( ) ) ( ( ) )

( , ) ( ( ) ) ( ( ) )

( , ) ( ( ) ) (

N k N
O
t l i i

i l i

N N
O O O
t l t l t l i i i

i i

N TO O O O O
t l t l t l i t l i t l i

i

LB x l LB x l

x LB x l LB x l

x x LB x l L

ν

ν ν ν

ν ν ν ν ν

ω δ δ

µ µ µ δ δ

µ µ δ δ

= = =

= =

=

= − −

= = − −

Σ = Σ Σ = − − −
1

( ) )
N

i
i

B x l
=

−

(7) 

     where  is the Kronecker delta function. The covariance matrix is taken to be a 
diagonal matrix for simplicity. One should normalize the coordinate space first 
so that the coordinates of pixels in the target candidate (and target object) are 
within the range [0, 1].         

Let S C
, ,andt l t lΛ Λ  be respectively the spatial and the color similarity measure be-

tween the lth mode of the target candidate Ov and the lth mode of the target object Ot. 
The SMOG-based similarity measure (as compared to the color-histogram based 
similarity measure in Eq. (3)) between two regions (Ov and Ot) in the joint spatial-
color space is defined as:  

S S 1 S C C 1 C
, , , , , ,

, S 1/ 2 / 2 C 1/ 2
1 , ,

1 1
exp (S ) ( ) (S ) exp (C ) ( ) (C )

2 2( )
2 | | (2 ) | |

T T
i t l t l i t l i t l t l i t lk

o i t l d
l t l t l

p x
µ µ µ µ

ω
π π

− −

=

− − Σ − − − Σ −
=

Σ Σ
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 S C
, ,

1

( , )
k

t v t l t l
l

O O
=

Λ = Λ Λ                                             (8) 

where S, S, S, S,S S 1
, , , , , ,

1 ˆexp ( ) ( ) ( )
2

t tO O O OT
t l t l t l t l t l t l

ν νµ µ µ µ−Λ = − − Σ − with S, S,S 1 1 1
, , ,

ˆ( ) ( ) ( )tO O
t l t l t l

ν− − −Σ = Σ + Σ  

and C
, , ,min( , )tO O

t l t l t l
νω ωΛ = .  

The likelihood function in our method is given by: 

( )2

1
(Y | X ) exp 1 ( , )

2t t t v
b

L O O
σ

∝ − −Λ                            
(9) 

where b is the observation variance. 
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               (a)             (b)                                 (c)   

Fig. 2. The score by the SMOG-based similarity measure over (a) x-translation; (b) y-
translation; and (c) scale 

We repeat the experiment in Fig. 1 using SMOG. As shown in Fig. 2, the SMOG-
based similarity measure (Eq. (8)) is more discriminative than the color-histogram 
based similarity measure in Eq. (3). 

Recently, Birchfield et al. [21] proposed a method (Spatiograms), which captures the 
spatial information of the general histogram bins, and applied it to the Mean Shift 
(MS) tracker. The spatial mean and covariance of each bin is computed. In contrast, 
we consider the spatial layout and color distribution of each mode of SMOG. The 
number of the Gaussians (normally, k is set within the range from 3 to 7 in our case) 
is much less than the number of the histogram bins. SMOG is also more efficient in 
estimating density distribution of the data and in computation, and requires less stor-
age space to build up an integral Gaussian mixtures image (as described in Sect. 3) 
than the integral histogram method [9].  

2.5   Updating the Parameters of SMOG 

We dynamically model the object appearance by updating the parameters of SMOG 
through a learning rate . The assumption made here is that in the temporally 
neighboring frames (e.g., frame t and frame t-1), the appearance (including both spa-
tial and color distributions) of an object does not change dramatically.   

Similar to [10] and [17], we assume that the past appearance is exponentially 
forgotten and new information is gradually added to the appearance model.  

To handle occlusion where image outliers exist, we use a heuristic way: we update 
the appearance only if the score of the similarity measure is larger than a threshold Tu. 
When occlusion is declared (i.e., the score is less than Tu), we stop updating the ap-
pearance model.  
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2.6   Choosing the Color Space 

We employ the normalized color space in our method. The normalized chromaticity 
coordinates of (r, g, b) can be written as: r=R/(R+G+B); g=G/(R+G+B); 
b=R/(R+G+B). The intensity information is also exploited. Thus we use (r, g, I) as the 
color feature in our method.   

In Fig. 3, we show an experiment illustrating the advantage of (r, g, I) over (R, G, 
B) color space in dealing with illumination changes. (r, g, I) color space shows more 
robustness to the illumination change. In contrast, the method employing (R, G, B) 
achieved less accurate results and lost the target at the end.   

Fig. 4 shows the adaptation of the proposed method to the appearance changes by 
updating the appearance model in subsection 2.5. Our method succeeds in adaptation 
to appearance changes throughout the sequence. 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

                      t=21                                    t=34                                    t=52 

Fig. 3. Tracking results employing RGB as color feature (in the first row) and rgI as color 
feature (in the second row)  

 

Fig. 4. The appearance of the tracked target changes with time increasing 
 

3   Integral Gaussian Mixture for Higher Computational Efficiency 

To efficiently calculate the similarity measure ( , )t vO OΛ (in Eq. (8)), we need to cal-

culate { }S, S,

1,...,
, ,O O O

l l l l k

ν ν νω µ
=

Σ for each target candidate. One possible way, which is 
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usually used in the color-histogram based particle filters (such as [2, 4]), is to ran-
domly sample a particle, and generate a target candidate, and then calculate the pa-
rameters corresponding to the candidate region. This is computationally inefficient 
because particles may have many overlapped regions and the same operator for each 
possible region can be repeated many times.  

To overcome this inefficiency, integral methods exploiting rectangle features were 
introduced by Viola et al. [22] and more recently, were developed by Porikli [9]. In 
[22], a grey-level image is converted to integral image format (i.e., the value of each 
pixel is the sum of values of all pixels to the left and above of the current pixel). In 
[9], integral histogram is constructed by a recursive propagation of an aggregated histo-
gram in a Cartesian data space.  

We propose an Integral Gaussian Mixture (IGM) technique as a fast and efficient 
way to extract the parameters of SMOG for each particle. To calculate the parameters 
of the lth mode of a target candidate, we need to calculate 2 2

x, y, x, y,( , , , , )l l l l ln µ µ σ σ , i.e., 

the number of pixels whose label is l, the spatial mean and variance values in x and y 
coordinates.  

We can write these quantities in the following form: 

1

x, y,
1 1

2 2 2 2 2 2
y, x, y, y,

1 1

( ( ) )

x ( ( ) ) ; y ( ( ) )

x ( ( ) ) ; y ( ( ) )

N

l i
i

N N

l i i l l i i l
i i

N N

l i i l l l i i l l
i i

n LB x l

LB x l n LB x l n

LB x l n LB x l n

δ

µ δ µ δ

σ δ µ σ δ µ

=

= =

= =

= −

= − = −

= − − = − −

(10) 

and we have 
2
x,S S

x, y, 2
1 y,

0
; ( , );

0

k
l

l l l l l l l
l l

n n
σ

ω µ µ µ
σ=

= = Σ =                            (11) 

The procedure of the IGM can be described as follows: 

1. Predict the region R , that includes all particles (i.e., target candidates), in the 2D image. 
2. Label each pixel 

ix  in R  by step 1 and 2 in subsection 2.4.  

3. Generate a GM image whose thi pixel is given by
1,...,,{ }l ki i l

x x == , where 
2 2

, ( ( ) )(1,x ,x ,y , y )i l i i i i ix LB x lδ= − .  

4. Build an IGM image, where each pixel is the sum of values of all pixels of the 
GM image to the left and above of the current pixel.  

5. Calculate the parameters of each target candidate by four table lookup opera-
tions, which are similar to [22]. 

We find that once the IGM is built, the calculation of the likelihood function is 
very fast. Fig. 5 gives a rough estimation of the computational time (in MATLAB 
code) to evaluate the likelihood function for particles. From Fig. 5, we can see that the 
calculation of the color histogram based similarity measure in Condensation is  
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                        (a)                                                     (b)  

Fig. 5. The computational time v.s. the number of particles for the color histogram based 
method and the proposed method. Candidate region size in (b) is twice as that in (a).   

computationally expensive and will be affected by both the number of particles and 
the size of target candidate regions. When we double the region size (Fig. 5 (b)) of the 
candidate region (Fig. 5 (a)), the computational time of the color histogram based 
Condensation increased by about 60%. In contrast, both the number of particles and 
the size of the target candidate regions have much less influence on the computational 
complexity of the proposed method: the processing time is about 10 to 20 times less 
than the color histogram based Condensation.  

4   Experiments 

We test the effectiveness of our method using a number of video sequences with differ-
ent environments and conditions1. We compare with two popular color histogram based  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
           t=1          t=8          t=12        t=20        t=25  

Fig. 6. Tracking results of the face sequence with the MS tracker (first row), Condensation 
(second row) and our method (third row)  

 

                                                           
1  Some demo video sequences of our method can be obtained from http://users.monash. 

edu.au/~hanzi 
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methods: the Mean Shift tracker and Condensation. Note: we employ the (r, g, I) color 
space for all three methods. For the Mean Shift tracker and the Condensation tracker, 
we use 16x16x16 color histogram bins. For both Condensation and our method, we 
employ a random walk dynamic model (number of particles M=200).  

In Fig. 6, the human face is moving to the left and right very quickly. The illumina-
tion on the face also changes. The background scene includes clutter and material of 
similar color to the face. As we can see in Fig. 6, the Mean Shift tracker fails to track 
the face very soon; the results of Condensation are not accurate and Condensation 
even fails to track the face in some frames because the color histogram based similar-
ity measure is not discriminative enough (section 2.2). In comparison, our method, 
which considers both color and spatial information of the target object, never loses the 
target and achieves the most accurate results. 

Fig. 7 and Fig. 8 show situations where two humans with very similar colors get 
close to each other and one occludes the other. In Fig. 7, when the man’s face gets 
close to and occludes the girl’s face, the results of both the MS tracker and Condensa-
tion are greatly influenced. In Fig. 8 (a), because the color histogram based similarity 
ignores the spatial information, both the MS tracker and Condensation break down 
when two players with similar colors, but different spatial distributions, get close to 
each other. In contrast, our method works well in both cases. Fig. 8 (b) shows that our 
method can still effectively track the human body even if it is almost completely oc-
cluded by another player. 

Next, we test the adaptation of our method to appearance changes. In Fig. 9, a par-
ticularly challenging (with high clutter) video sequence is used. The head of a player 
is tracked even though it moves fast and the appearance of the head changes fre-
quently (including occlusion, blurring, and changes in the spatial and color distribu-
tions of the appearance). Fig. 9 shows that our method has successfully tracked the 
target and adapted to the changes of the target appearance.  

 

           t=1                   t=31                    t=40                    t=53                    t=74  

Fig. 7. Tracking results of the girl sequence with the MS tracker (first row), Condensation 
(second row) and our method (third row). The tracked face is shown in the upper-right window. 
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               t=1                           t=53                            t=57                            t=60 
 

 
 
                                    
 
 
                                        
 
 
 
 
 
 
 
 
 

(a) 

 
(b) t=130 to t=144  

Fig. 8. Tracking results of the soccer sequence with three methods (a): the MS tracker (first 
row), Condensation (second row) and our method (third row). The tracked body is also shown 
in the upper-right window; (b) tracking results with occlusions by our method. 

               t=1                           t=18                            t=49                            t=73 
 
 
 
 
 

(a) 
 
 
 
 
 
a 
 
 

(b)  

Fig. 9. (a) Tracking results of the football sequence with the MS tracker (first row), Condensa-
tion (second row) and our method (third row); (b) the target appearance changes (frames from 2-77) 
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5   Conclusion 

We have described an effective appearance model (SMOG) in a joint spatial-color 
space and a new similarity measure based on SMOG. The SMOG appearance model 
and the SMOG-based similarity measure consider both the spatial distribution and the 
color distribution of objects: they utilize richer information than the general color 
histogram based appearance model and similarity measure.  

We also propose an Integral Gaussian Mixture (IGM) technique, which greatly 
improves the computational efficiency of our method. Thus the number of particles 
and the size of target candidate region can be greatly increased, without significant 
change in the processing time of the proposed method.  

We have successfully applied the SMOG appearance model and the SMOG-based 
similarity measure to the task of visual tracking in the framework of particle filters. Our 
tracking method can effectively handle clutter, illumination changes, appearance 
changes, occlusions, etc. Comparisons show that our method outperforms popular 
methods such as the general color histogram based MS tracker and Condensation. 
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Abstract. Successful multi-target tracking requires solving two prob-
lems - localize the targets and label their identity. An isolated target’s
identity can be unambiguously preserved from one frame to the next.
However, for long sequences of many moving targets, like a football game,
grouping scenarios will occur in which identity labellings cannot be main-
tained reliably by using continuity of motion or appearance. This paper
describes how to match targets’ identities despite these interactions.

Trajectories of when a target is isolated are found. These trajectories
end when targets interact and their labellings cannot be maintained.
The interactions (merges and splits) of these trajectories form a graph
structure. Appropriate feature vectors summarizing particular qualities
of each trajectory are extracted. A clustering procedure based on these
feature vectors allows the identities of temporally separated trajectories
to be matched. Results are shown from a football match captured by a
wide screen system giving a full stationary view of the pitch.

1 Introduction

This paper addresses the problem of the surveillance and tracking of multiple
persons over a wide area. Typical scenarios involve following pedestrians in traffic
or other crowded environments such as airports and shopping malls. There is
also the more specialized problem of tracking players in team sports, such as
football or ice-hockey, which we specifically explore. The first challenge is defining
a multiple camera set-up that ensures all the target objects are visible, at a
required resolution, at all times. Such a camera set-up is shown in figure 2.

Over the last years, many algorithms and results have been presented [1, 2]
with regard to the problem of multiple object tracking. Prevalent are algorithms
based on kalman filtering [3, 4] and advanced techniques of particle filtering
[5, 6, 7, 8]. These works demonstrate that the tracking of individual players is
no problem as long as they are isolated. Situations of congestion and confusion
due to multiple players occluding each other are generally resolved by exploiting
continuity of motion, appearance and relative depth. However, these properties
cannot be used to reliably solve all congested situations, see fig. 1. It is clear even
extremely sophisticated trackers will eventually lose the identity of a track due
to the complex scenarios that arise during a soccer game lasting 90 minutes. A

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 619–632, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. All the players from one team have congregated into a small area to celebrate a
goal. In this situation the players’ identities cannot be maintained by using continuity
of motion, appearance or relative depth, irrespective of the camera viewpoint.

Fig. 2. Four cameras are on one side of the field. Each one looks at a portion of the pitch
and the images obtained are stitched together using the inter camera homographies.

system for the automatic tracking of players over a whole game must, therefore,
address the problem of automatic track label initialization and re-initialization.

With these observations in mind, consider the strategy put forward in this
paper. Periods and trajectories when players are isolated are identified, which we
term player tracks. The merge and splits between the player tracks are recorded
to form a giant graph summarizing the game. A feature vector for each track,
encoding a player’s relative spatial position wrt his team-mates, is defined. The
identity of the player tracks are then linked through analysis of the recorded
merge and splits and clustering of the feature vectors associated with each
track.

Paper Overview. The paper is organized as follows. Section 2 is devoted to
explaining the imaging set-up and image processing performed to get an ini-
tial estimate of the player/target positions. The machinery used to temporally
analyze these results is then introduced in addition to describing how a graph
summarizing the interaction of the targets is obtained. Section 4 is concerned
with resolving some of the split and merge situations that occur using the prop-
erties of continuity of motion, appearance and relative depth ordering. Finally a
clustering procedure is described that allows the identity of temporally separated
player trajectories to be linked. The paper ends with a discussion on the merits
of the ideas put forward here and future avenues of research. Throughout results
are displayed from analyzing 10 minutes of an international football match.
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2 Video Capture and Processing

One of the innovations of this paper is the use of wide-screen video in our track-
ing/labelling algorithm. This video allows a wide field of view to be monitored
at each time instant at a high resolution. This makes it possible to track simul-
taneously a large group of targets spread over a large area. This wide screen
video is obtained by mounting several cameras (in our case 4) on a tripod with
each camera directed towards a portion of the area of interest. As the optical
centres of the cameras are aligned a homography relates the images between
each camera. This imaging set-up allows us a full, stationary view of the area-of-
interest, an ideal environment to perform background subtraction given a back-
ground image model. The next subsection describes how to find this background
model.

2.1 Background Modelling

A probabilistic model for the image gradient of each pixel in the background is
obtained. Note that the image gradient is learnt as opposed to the rgb values, as
often a football team’s uniform contains white, the colour of the pitch markings.
Also using the image gradient increases robustness to changes in illumination.

Let gt
x denote the image gradient at pixel x in frame t. Each background

pixel’s image gradient, gb
x, is modelled by a bivariate normal distribution with

mean µx and diagonal covariance matrix Σx. The parameters of this distribution
are learnt in the manner of Stauffer and Grimson [9]. Except we consider it as a
batch process and learn the background for a time interval. The initial learning
algorithm produces, for each pixel x, a mixture of Gaussians distribution to
describe the values of gx over a set of training images.

gx ∼
3∑

i=1

βi
x N2(µi

x, Σi
x) (1)

with each 0 ≤ βi
x ≤ 1 and the βi

x’s summing to one. It is assumed that at a given
location, x, the background is most commonly visible. To ensure this assumption

Fig. 3. The set of ellipses, Et, the highlighted regions, found by background subtraction
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is true, as players frequently stand still for relatively lengthy periods of time, for
a given time window of length T only every nth frame is used as input. Then set

(µx, Σx) = (µi
x, Σi

x) s.t. βi
x ≥ βj

x for j = 1, 2, 3. (2)

For a frame in the time window a pixel, x, is considered a foreground pixel if:

(gt
x − µx)T Σ−1

x (gt
x − µx) ≥ χ2

3,α, 0 < α < 1 (3)

Let Ft (Bt) be the set of foreground(background) pixels found at time t. Once
Ft has been calculated, connected components are identified. A set Et = {Ei

t}nt

i=1
of ellipses is used to represent these components, see figure 3. We assume that
each ellipse corresponds to at least one whole player. The raw connected compo-
nents are processed by deleting small connected components or joining them to
neighbouring larger ones to ensure this assumption is for the most part upheld.

3 Constructing the Target Interaction Graph

This section is devoted to the temporal analysis of the Et’s - spotting the merging
and splitting of ellipses from one frame to the next. Detection of these splits and
merges allows for the identification of ellipses corresponding to individual and
multiple targets and then to the trajectories of individual players.

3.1 Finding Player Tracks

The first aim is to put the ellipse in Et and Et+1 in correspondence. This requires
the definition of a relation, ∼, between ellipses in Et and Et+1. Let ellipses E1
and E2 be an exact match if their size and orientation are sufficiently similar
and the displacement between their centres is sufficiently small. If ∃Ej

t+1 ∈ Et+1

s.t. Ei
t and Ej

t+1 are an exact match then Ei
t ∼ Ej

t+1. If no such exact match
exists for Ei

t in Et+1 then Ei
t ∼ Ej

t+1 if

Area(Ei
t ∩ Ej

t+1) > 0 & Ej
t+1 has no exact match in Et. (4)

Define a mapping Ft, matching each ellipse in Et to its related ellipses in Et+1

Ft : It → {a : a ⊂ It+1} s.t. j ∈ Ft(i) ⇒ Ei
t ∼ Ej

t+1 (5)

where It = {1, · · · , nt} is the set of indices of the ellipses in Et (see figure 4). A
mapping Bt is then defined relating each ellipse in Et to a subset of Et+1,

Bt : It+1 → {a : a ⊂ It} s.t. k ∈ Bt(i) ⇒ i ∈ Ft(k) . (6)

With Ft and Bt it is easy to define events that can happen or have happened
at each ellipse at each frame given the cardinality of Ft(i) and Bt(i):

Signal Event Signal Event

|Ft(i)| > 1 split |Bt(j)| > 1 merge
|Ft(i)| = 0 disappear |Bt(j)| = 0 appear

|Ft(i)| = |Bt(Ft(i))| = 1 stable



Tracking and Labelling of Interacting Multiple Targets 623

(a) Ft (b) Bt

Fig. 4. The correspondences between the ellipses in one frame and those in the next

A maximal sequence of stable events sandwiched between non-stable events is
termed a track. Formally, it is a temporal sequence, starting at t of n ellipses
with indices k

T (t, n,k) = {Ek0
t , Ek1

t+1, · · · , Ekn−1
t+n−1} (7)

that unambiguously match to one another s.t. for i = 0, · · · , n− 2

|Ft+i(ki)| = 1, Ft+i(ki) = ki+1, |Bt+i(ki+1)| = 1 (8)

and a non-stable event occurs to go from Et−1 to Ek0
t and from E

kn−1
t+n−1 to Et+n.

During a track there is no change in the identity or number of the subjects
represented by the ellipses concerned. It is clear, therefore, that if either of the
following sequence of events occurs

track→ split or merge→ track (9)

the involved track corresponds to multiple players. However, when the involved
track appears in the sequence

{split, appear} → track→ {merge, disappear} (10)

it may correspond to exactly one player. If the track has long enough duration
and the size of the ellipses during the track is on average not too big then the
track is considered to be a player track. Each ellipse in a player track corresponds
to exactly one player and the identity of this player remains fixed over the track.

The application of this analysis results in a partition of all ellipses, found
from the background subtraction process, into player tracks or multiple player
tracks and the interactions of these tracks through merges and splits.

Modelling Player Appearance. Frequently in multi-target applications the
appearance of some or all of the targets will be distinctive. In a football game
there are two teams and officials with distinct uniforms. With a pdf for the rgb
values for each category it is possible to distinguish between them. These distri-
butions, pA,B,C , are learnt from a few labelled training examples. The likelihood
that ellipse Ej

t is team A is defined, naively, as:

p(Ej
t |A) =

∏
x∈Et

j

pA(Ix
t ) (11)
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Fig. 5. The player interaction graph. White/gray nodes correspond to team A/B player
tracks and black nodes to multiple player tracks. Edges indicate when tracks interact.
Shown is a small section of the ∼ 5000 node graph describing the 10 minutes analyzed.

where Ix
t represents the rgb values of pixel x at time t. The ellipse is classi-

fied as the category with the maximal likelihood. Each ellipse in a player track,
T (t, n,k), is classified accordingly. The label, λ, of the track is set to the cate-
gory that occurs most frequently amongst its ellipses. All these ellipses are then
set to the track label. As player tracks are quite long there is sufficient tempo-
ral evidence to compensate for less than perfect appearance models. Given the
labelling of the tracks and their interactions through merging and splitting, the
game can be summarized by a graph structure, see figure 5.

4 Linking Player Tracks

By examining the player interaction graph it is possible to isolate situations
where n individual player tracks merge (potentially staggered over time) and
then split into n individual player tracks (potentially staggered over time). These
merge-split situations are resolved by finding the correct correspondence between
the input and output tracks. This can often be done by exploiting the continuity
of motion, appearance and/or relative depth ordering of the players involved.

4.1 Matching Input and Output Tracks

The set of input and output tracks with labels to be put in correspondence are:

Input: {T (tsi , nsi ,k
si), λsi}ni=1 Output: {T (tfi , nfi ,k

fi), λfi}ni=1 (12)

For brevity we refer to T (tsi , nsi ,k
si) as Tsi . We wish to find the assignment,

M , of the inputs to the outputs. It is a bijective mapping M : {1, · · · , n} →
{1, · · · , n} s.t. M(i) = j implies that track Tsi and Tfj are the same player.
Not all assignments are physically possible, thus M is a valid assignment iff all
the input tracks and their matched output tracks have the same label and all
the input tracks finish before their matched output tracks begin. Finding the
correct assignment from the valid ones involves scoring each valid assignment
and choosing the most plausible one. Our score is computed as follows.
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For each valid assignment, M , we estimate the intermediate trajectories,
Tsi→fM(i) ’s between the matched player tracks Tsi and TfM(i) . There are numer-
ous reasonable ways in which each Tsi→fM(i) can be estimated. We return to this
issue later in the section. For now we continue with the discussion of finding the
correct valid assignment, assuming we have estimates for the Tsi→fM(i) ’s. We
define a score based on these estimated trajectories.

ScM =
n∑

i=1

(Dist(Tsi→fM(i)) + αPen(Tsi→fM(i))) (13)

where α > 0 and has a large value. The first term Dist(Tsi→fM(i)) is a mea-
sure of the distance traveled by the player during the hypothesized trajectory,
measured using the estimated feet positions on the ground plane transformed
via a homography to a rectified version of the pitch. The second term indicates
whether the estimated trajectories are consistent with the image data:

Pen(Ti) =
{

1 if Ti not consistent with relevant Ft’s
0 otherwise. (14)

Due to space constraints we summarize in words our consistency measure. Its
definition is based on deciding whether a sufficient number of a trajectory’s
ellipses intersect with a sufficient number of the foreground pixels. Once these
scores have been calculated the valid assignment which does not incur the penalty
α and whose intermediary trajectories cover the least distance is chosen.

4.2 Estimating Intermediary Tracks

We now focus on the task of estimating the intermediary trajectories {Tsi→fM(i)}.
We exploit the properties of maintaining continuity of motion and relative depth
ordering. At the first stage, we investigate if any of the intermediary tracks can

Data: A set of input and output player tracks as in eqn (12).

Algorithm:

1. Enumerate all the valid assignments {Mk}K′
k=1.

2. For each Mk estimate the intermediary trajectories {Tsi→fMk(i)} based solely
on linear interpolation. Score each assignment, eqn. (13), to obtain {ScMk}.

3. k′ = arg minkScMk , if ScMk′ < α set M = Mk′ and go to step 6.
4. If ScMk′ ≥ α repeat the process of finding the intermediary trajectories, but

based on piecewise linear interpolation. Update the set of scores accordingly.
5. k′ = arg minkScMk , if ScMk′ < α set M = Mk′ .
6. If M has been defined, for i = 1, · · · , n set

Tsi = Tsi ∪ Tsi→fM(i) ∪ TfM(i) . (15)

Update the interaction graph as the matched tracks have been concatenated.

Fig. 6. Algorithm for resolving merge-split scenarios in the player interaction graph
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⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒

continuity of relative depth

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒

continuity of motion

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒

both continuity of motion and relative depth

Fig. 7. Examples of resolved merge and split situations. In each example the first row
shows the split and merge scenario and the bottom row the found intermediary tracks.

be adequately described by a constant velocity motion model. To do this we
linearly interpolate between the parameters of the last ellipse of Tsi and the
first ellipse of TfM(i) . If there is sufficient image data evidence to support this
trajectory, that is Pen(Tsi→fM(i)) = 0, it is considered as feasible. Let ZM be
the set of the indices of the input tracks whose trajectory to its matched output
track cannot be modeled by a constant velocity trajectory.

The intermediate tracks for the elements of ZM have to be estimated. It is at
this stage we impose maintaining relative depth ordering amongst players from
the same team. Every mth frame in the interval [tS , tF ], the temporal extent of
the intermediate trajectories, is considered for analysis, with tk = tS + km. For
each tk let the subset Zk

M ⊂ ZM be the set of tracks that exists at this time
instant. Let EF

j be the final ellipse in each trajectory Tsj , j ∈ ZM . Then define
the region Rk({tj}) as the union of the ellipses EF

j , j ∈ Zk
M each displaced by

tj . The aim at each tk is to find the tj ’s to maximize the intersection of Rk({tj})
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Fig. 8. The left graph shows the temporal extent of the player tracks (≥ 250 frames) for
team A players during the 10 minutes of the game examined. Events causing congestion
are marked by the gray strips. The right graph shows for each player the percentage of
time it has been assigned to a player track. For the remaining frames the players are
assigned to multiple player tracks or short player tracks.

with the foreground pixels and minimize its intersection with the background
pixels or mathematically to maximize wrt the tj ’s:

α1 Area(Rk({tj}) ∩ Ftk
)− (1 − α1)Area(Rk({tj}) ∩ Btk

) (16)

with α1 > 0, subject to the constraint that the depth ordering amongst players
from the same team in ZM is maintained from tS throughout the tk’s. Given the
translations at each tk the full trajectories {Tsj→fM(j)}j∈ZM are computed by
interpolating between the displaced ellipses found at the fixed times.

We approximate this global optimization in a greedy manner. We first find the
translation for the player closest to the camera by ensuring the displaced ellipse
explains the relevant foreground pixels closest to the camera. Then similarly the
translation for the player furthest away is found and then the inner players. It
should be noted that we only analyze cases with n ≤ 5, this generally implies that
there are no more than 3 players from a single team are present. Figure 6 gives a
more detailed overview of the interaction between our trajectory estimation and
scoring. Throughout the sequence examined roughly 200 merge-split situations,
of varying complexity, are resolved. Figure 7 shows a few results obtained. Solving
these trajectories in this non-causal exhaustive manner proves to be very reliable.

Once all the possible simple merge and split situations have been solved, it
is interesting to see how frequently a player is assigned to a player track. Figure
8 gives an overview of this information for our football game clip. The tracks are
fairly evenly distributed throughout and are mainly only significantly interrupted
by the major congestion scenarios of corner kicks and goals. One player “Left
Midfield” is significantly less frequently in a player track. He is on the side of the
field furtherest from the camera. Thus we see the effect of our lack of resolution
on that side. It must be noted, though, that during the periods when a player is
not assigned to a player track, he is assigned to a multiple player track. Given
the interaction graph and player track identities, it is possible to ascertain the
identities of the players in a multiple player track. The next sections are devoted
to recreating the graph in figure 8(a) automatically.
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5 Clustering Player Tracks

At this stage we have resolved as many of the simple split and merge situations
as possible using continuity of appearance and motion of the player tracks. There
are, however, other features that can be used to associate the identity of player
tracks. For example in a football game, a player’s identity can be frequently
obtained by his relative position to his team-mates. The most obvious example
of this is the goal-keeper, who is behind all his teammates. This section describes
a feature vector built to encode this relative spatial information. A straight
forward clustering regime, based on this feature vector, is then explained. The
clustering aims to find clusters containing player tracks of the same identity.
This allows for the identity of temporally separated player tracks to be linked
and thus defines re-initialization points for each player throughout the game.

5.1 Player Track Feature Vector

The specific feature vector calculated to describe a player track is, of course,
biased by the application domain. What follows is a football dependent feature
vector. Though the same methodology could be applied to other applications.

Let AXt = {Axi
t}11i=1 be the x, y-coordinates of the team A players at frame t.

For each xi
t (dropping the A superscript for brevity) we construct a 4-dimensional

vector vi
t = (ri

t, l
i
t, f

i
t , b

i
t) recording the number of players to the right, left,

in front and behind player i, subject to a margin ε > 0. As there are eleven
players on each team ri

t + lit ≤ 10 and f i
t + bi

t ≤ 10. Thus there are 662 distinct
possible vi

t. To reduce this number the range from 0 to 10 is quantized into 6
bins {0, 1}, {2, 3}, · · · , {9, 10}. This quantization results in 212 distinct vi

t. Each
vi

t is assigned an index, id(vi
t) between 0 and 440.

From the subset of ellipses of Eti+j labelled as team A we can estimate AXti+j .
These computations take place once the players’ feet positions from each ellipse
have been estimated and transformed to a rectified version of the pitch. Consider
the player track, Ti = T (ti, ni,ki). The relative spatial arrangement of this player
during the track is encoded by the v-vector for each of its ellipses:

VTi = (id(vki
0

ti
), id(vki

1
ti+1), · · · , id(v

ki
ni−1

ti+ni−1)) (17)

Histogram VTi to define a feature vector fTi ∈ [0, 1]441 with jth entry

fTi(j) =
1
ni

ni∑
s=1

δ
j,id(v

ki
s

ts
)
. (18)

The distance between two tracks is then defined as D(Ti, Tl) = ‖fTi − fTl
‖2.

5.2 Clustering Procedure

Let U = {Ti}Ki=1 be the set of team A trajectories with length > 10 seconds.
This limit is chosen to ensure each trajectory has a reliably estimated feature
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vector. The goal is to partition U into L, 11 for football, clusters C = {Cl} s.t.
each cluster corresponds exactly to one player. This partition is subject to the
condition that one person can only be in one place at one time. Thus temporally
overlapping trajectories cannot be assigned to the same cluster. An indicator
function γ(Ti, Tj) is set to 1 if Ti and Tj temporally overlap and 0 otherwise.

Cluster Initialization. We have no explicit model for each player. Therefore
we rely upon un-supervised clustering. This necessitates proceeding carefully,
especially initially. We want to ensure finding representative members for each
cluster from which we can grow. For football, the longer a trajectory the more
likely it is to incorporate the state of a player from several team formations. The
clustering thus occurs in two stages - initialize the clusters and then expand them.
The first stage initializes the clusters by examining only temporally very long
trajectories which are fortuitously nicely separated in our chosen feature space.
Explicit details of the algorithm are given in figure 9, essentially the algorithm
finds compact clusters starting from tracks of decreasing temporal length. The
results of applying this algorithm to the football data are displayed in figure 10.
Thirteen clusters are found and each cluster contains only tracks of one identity.

Cluster Growing. The second stage of the clustering process involves expand-
ing the initial clusters to include the other trajectories of non-trivial length and
merging clusters when possible and necessary to reach the expected number of
11. To adequately describe the secondary clustering procedure some notation
and concepts are now introduced. A temporally dependent subset, a ⊂ U , is a
subset in which every pair of member tracks temporally overlap. Then define
S(U) as the set containing all such subsets of U . An assignment, Pa, from a set

Data: A set of player trajectories {Tij }K0
j=1 ⊂ U with temporal lengths nij ≥ 1000.

Constraints: All members of a cluster are within a distance ε > 0 of each other.
No two members of a cluster can temporally overlap.

Algorithm: Let the set of clusters C = ∅ and the set of unexplained trajectories
U ′ = {Tij }K0

j=1. Initialize the counter variables k = 0, l = 0.

while k ≤ K0

1. Choose Ti0 the longest track in U ′.
2. Set Cl = {Ti0}.

while |Cl| is increasing
– Find the longest track in Tij ∈ U ′ such that

γ(Tij , Tk) = 0 & D(Tij , Tk) < ε ∀Tk ∈ Cl.

– If such a Tij exists, set Cl = Cl ∪ Tij .end
3. Set C = C ∪ Cl, U ′ = U ′\Cl, l = l + 1 and k = k + |Cl|.

end

Fig. 9. The initial clustering algorithm
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Identity

Cluster gk lb lch rch rb lm lcm rcm rm s1 s2

1 100 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 70 0 0 0 0 0 0
3 0 0 0 64 0 0 0 0 0 0 0
4 0 0 53 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 68 0 0
6 0 0 0 0 0 0 24 0 0 0 0
7 0 0 0 0 0 0 0 0 0 30 0
8 0 56 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 30 0 0 0
10 0 0 0 0 0 0 0 0 0 0 24
11 0 0 0 0 0 0 0 10 0 0 0
12 0 0 0 0 0 0 9 0 0 0 0
13 0 0 0 0 0 15 0 0 0 0 0
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Fig. 10. (a) The distance between every pair of player tracks >40 sec is shown. Order-
ing is according to the clusters found by the initial clustering. Darker values indicate
smaller distances. (b) This graph displays the temporal extent and true identity of the
player tracks in each cluster. The legend shows the color and symbol representing each
identity. (c) This confusion table summarizes the homogeneity of the identities for a
cluster’s temporal extent. Each entry is the sum of the temporal lengths of the player
tracks in a cluster of one identity, shown as a percentage of the total sequence time.

a ∈ S(U) is a one-to-one mapping Pa : {1, · · · , |a|} → {1, · · · , L} s.t. the ith
track of a is assigned to cluster Pa(i). Pa is valid if for each Tai ∈ a

∃Tl ∈ CPa(i) s.t. D(Tl, Tai) < ε1 & Tl ∈ CPa(i) ⇒ γ(Tai , Tl) = 0 (19)

where ε1 > 0. The cost of such an assignment is

Sc(Pa) =
|a|∑
i=1

min
Tl∈CPa(i)

D(Tl, Tai). (20)

In essence the algorithm finds the valid assignments for temporally dependent
subsets and chooses the assignment with least cost. Finding the best fit with
respect to a temporal dependent subset offers greater robustness to using a
greedy algorithm on individual tracks and is still computational feasible.
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9 0 0 0 0 0 0 0 30 0 0 0
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11 0 0 0 0 0 0 0 22 0 0 0
12 0 0 0 0 0 22 0 0 0 0 0

Identity

Cluster gk lb lch rch rb lm lcm rcm rm s1 s2

1 100 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 81 0 0 0 3 0 0
3 0 0 0 76 0 0 0 0 0 0 0
4 0 0 68 2 2 0 3 0 0 0 0
5 0 0 0 0 0 0 0 0 77 0 0
6 0 0 0 0 0 2 52 7 0 0 0
7 0 0 0 0 0 0 0 0 0 51 0
8 0 64 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 7 65 0 0 0
10 0 0 0 0 0 0 0 0 0 0 53
11 0 3 0 0 0 41 0 0 0 0 5

(a) Tracks > 750 frames (b) Tracks > 250 frames

Fig. 11. Cluster growing results. The graphs and tables have the same format as figure
10. Column (a) shows the results when tracks of length > 750 are added to the initial
clusters. In this case, homogeneity of identity in the clusters is maintained. However,
when tracks of shorter length are added errors begin to occur, see column (b). The
columns of the right confusion table sum to the percentages displayed in figure 8 (b).

Results of applying the clustering algorithm are shown in figure 11. The left
column shows the results of including the tracks with temporal lengths between
750 and 1000 frames and the right column the additional tracks over 250 frames.
Results are good. Errors in the clustering begin to appear with the addition of
the shorter length tracks. Most of the errors occur at the major events when the
team switches between different formations. This would indicate that our feature
vector should be extended to take the overall team formation into account.

6 Conclusions and Discussion

This paper presents an approach to multi-target tracking and labelling that is
viable on long sequences with many targets, assuming there are no real-time
constraints. At each stage the reliable information is extracted and built upon.
Initially we find the trajectories when players are isolated, extend and concate-
nate these trajectories when possible by resolving merge-split situations. From
these trajectories a large graph summarizing the player interactions throughout
the game is built. The identities of the found, but temporally spread, trajec-
tories are linked using a two-stage clustering scheme. This sets re-initialization
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points for a player’s identity throughout the sequence. In combination with our
interaction graph this gives us, potentially, an estimation of each player’s posi-
tion throughout the sequence, with a varying degree of accuracy depending on
whether at a time instant he is assigned to a player track or multiple player track.

The methods are scalable to a whole game. We anticipate similar results, if
not better, could be obtained with more data. The feature vector may require
updating to cope with the different possible team formations. The labelling of
the shorter tracks may also require greater sophistication, taking into account
the graph structure and ensuring there is a path between every member of a
cluster. One word of caution though is that a fairly robust background subtrac-
tion process underpins this work. This is made possible by our wide screen video
and sports environment. A more probabilistic approach to the extraction of the
initial trajectories may allow more cluttered environments to be considered.

Acknowledgments. This work was supported by the Swedish Foundation for
Strategic Research funded project VISCOS. The authors would like to thank
Eric Hayman for providing the wide-screen video.
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Level-Set Curve Particles�
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Abstract. In many applications it is necessary to track a moving and
deforming boundary on the plane from infrequent, sparse measurements.
For instance, each of a set of mobile observers may be able to tell the
position of a point on the boundary. Often boundary components split,
merge, appear, and disappear over time. Data are typically sparse and
noisy and the underlying dynamics is uncertain. To address these issues,
we use a particle filter to represent a distribution in the large space of all
plane curves and propose a full-fledged combination of level sets and par-
ticle filters. Our main contribution is in controlling the potentially high
expense of multiplying the cost of a level set representation of boundaries
by the number of particles needed. Experiments on tracking the bound-
ary of a colon in tomographic imagery from sparse edge measurements
show the promise of the approach.

1 Introduction

Many applications require tracking boundaries that move and deform over time,
whether these are the contours of an oil spill in the ocean, a plume of smoke,
a hurricane, a wildfire, the dividing cells under a microscope, a running crowd
of people, or the contours of an anatomical structure tracked across slices of
a volumetric medical image. With imagery, measurements of the boundary of
interest are typically dense and abundant. Even so, the presence of clutter often
requires estimating the boundaries stochastically, by letting a probability distri-
bution entertain multiple hypotheses about the boundary’s position and shape.
In other applications, observations are much more sparse and perhaps less fre-
quent: a small number of mobile observers may know their own location through
GPS, and perhaps measure their distance from the boundary of interest through
imaging, range finding, or other sensors.

These problems have a common abstraction: a temporally discrete, possibly
spatially sparse distribution of noisy point measurements is used to infer the
shape and position of a boundary that moves and deforms on the plane under
the influence of only partially understood causes.

Conceptually, the solution ingredients are known: a dynamic system models
the underlying evolution phenomenon; stochastic estimation addresses sparsity
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and uncertainty of the measurements; and level sets elegantly represent bound-
aries whose components merge, split, appear, and disappear. All these ingre-
dients have been used with success. Their full combination, however, has not,
because of its potentially high computational complexity: the high cost of level
sets is charged to each of a large number of particles needed to represent a proba-
bility distribution in the space of plane curves. The number of particles required
depends on how large the space of all possible plane curves is. With some as-
sumptions and prior knowledge about the plane curves such as smoothness and
initialization, the probability distribution of the plane curves can be represented
by a particle filter of applicable size. However, the complexity of combining level
sets and particle filter is still high.

In this paper we show a way to keep this complexity in check. This leads to a
tracking method of great generality and flexibility, based on the core concept of
level-set curve particles. This method capitalizes on the observation that many of
the curves that populate the boundary distribution being tracked are very similar
to each other. In our method, a number of base curves account for macroscopic
differences between boundaries. Each base curve is then deformed by P base
perturbations which provide an implicit representation of the 2P deformations
obtained by applying any subset of the P base perturbations to the base curve.
Through this device, an exponential number of curves can be propagated and
their likelihoods can be computed at linear cost in the framework of a particle
filter. Resampling has still an exponential cost. However, the per-curve cost of
resampling is trivial, while the per-curve cost of propagation is proportional to
the size of the data structure needed to represent an entire level set, and the
unit cost of likelihood estimation is proportional to the number of measurements.
Saving on propagation has a huge effect on running time, and saving on likelihood
computation has a significant effect when measurements are plentiful.

In the next Section, we review related work. Section 3 defines level-set curve
particles and shows the tracking algorithm. Section 4 presents the experimental
results and Section 5 concludes with a summary and plans for future work.

2 Related Work

Active contours [1, 2] are based on ideas developed initially for Brownian motion
[3, 4], and later incorporated into particle filters (see [5] for a recent overview).
These approaches capture the uncertain position of a boundary at time t by a
probability distribution represented by a random sample of boundaries (parti-
cles). Each boundary is represented explicitly, e.g. with splines [6] and propagated
forward in time through an assumed, uncertain motion model. Measurements up-
date the particles through resampling, which weighs each particle by its posterior
probability given the measurements. This is computed from the likelihood (con-
ditional probability density of a measurement given a boundary) through Bayes’
theorem. New particles are drawn from the posterior, and are ready for a new
step of propagation. This cycle is analogous to the estimation loop of a Kalman
filter [7], but maintains a multi-modal distribution rather than a Gaussian one.
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Level sets [8, 9, 10] describe a boundary as the zero crossing of a function
φ(x, t) of space and time. While many functions φ share the same zero-crossing
B, computational considerations (see [11]) suggest using the signed distance func-
tion of B, which is then maintained in a narrow band [12] around the boundary
B. The motion model is then a PDE for φ. The main strength of level sets is
that they account effortlessly for changes of boundary topology, as exemplified
in applications to image segmentation [13], object detection [14], tracking [15],
shape modeling [16] and medical image segmentation [17], among others.

Recently, several papers [14, 18, 19, 20, 21, 22] have combined active contours
and level sets. These papers create suitable artificial “forces” that draw an initial
boundary towards a boundary of interest. These approaches essentially seek a
new boundary in each frame, view a boundary as a deterministic object, and
do not incorporate prior knowledge of boundary motion. This holds also for
work based on “shape averages” [23, 22] where the deformation of a boundary
is decomposed into an average motion plus a set of local deformations. More
specifically, in [22] the propagation of the local deformations is still deterministic
for each particle, with no way to add “noise” to model the uncertainty of the
underlying dynamics.

In contrast, we combine active contours and level sets into a full-fledged
particle filter for boundaries. Our level-set curve particles marry the power of
stochastic estimation methods from active contours with the flexibility of non-
parametric level sets.

3 Approach

3.1 Problem Statement

A dynamic boundary B is a variable number of moving and deforming closed
curves on the plane. These curves may merge, split, appear, and disappear over
time. The boundaries B(1) and B(2) at initial times 1 and 2 are assumed to be
known. M mobile and controllable observers make noisy measurements of the
position of a point on the boundary B. The boundary tracking problem is to use
the observations {Q(t)

m }Mm=1 made by the observers at times t = 3, 4, . . . to esti-
mate the posterior probability distribution of the boundary B(t) at these points
in time. The Maximum A Posteriori (MAP) boundary estimate may optionally
be computed when requested.

3.2 Level-Set Curve Particles

We use a set of P + 1 particles χt = {φ(t)
p , w

(t)
p }Pp=0 to represent the probability

distribution of the boundary B(t). Each particle is a signed distance function
φ

(t)
p : R2 → R whose zero level set denotes an estimate of the boundary B(t).

A weight w
(t)
p determined by the measurements is associated to each particle.

Since all the particles are estimates of the same boundary, it can be expected
that the signed distance function values are similar for most points on the plane.
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For efficiency, we represent particles as a multiple perturbation of a “mother”
particle φ

(t)
0 . The perturbations {φ(t)

p }Pp=1 are “child” particles. For each p > 0,

define a function ∆φ
(t)
p such that φ

(t)
p and φ

(t)
0 + ∆φ

(t)
p share the same zero level

crossing and ∆φ
(t)
p is nonzero only inside a small window W

(t)
p .

This construction yields P + 1 “explicit” particles. However, 2P of particles
can be obtained by combining the mother particle with subsets of the deforma-
tions ∆φ

(t)
p for its children. For example, a particle φ

(t)
1,2 = φ

(t)
0 + ∆φ

(t)
1 + ∆φ

(t)
2

can be obtained that concurrently deforms the mother particle in the union of
the two windows W

(t)
1 and W

(t)
2 . More generally, given the set of child indices

X = {1, . . . , P}, for every set Z in the power set of X we can define a new
perturbation φ

(t)
Z = φ

(t)
0 +

∑
j∈Z ∆φ

(t)
j of the mother particle φ

(t)
0 .

The probability distribution of the boundary B(t) is encoded by the set of pa-
rameters χt = {φ(t)

0 , {W (t)
p , ∆φ

(t)
p }Pp=1, {w(t)

p }Pp=0} which now represents a much
bigger sample. Of course, the challenge is to propagate, update, and resample
the 2P “implicit” particles by working only with the P + 1 “explicit” ones. The
next Sections show how to do this.

3.3 Tracking Algorithm

The outline of the proposed tracking method is Algorithm 1. Let Q
(t)
m denote

the estimate of a point on boundary B(t) returned by observer number m for
m = 1, . . . , M . Let χt be the level-set curve particle set at time step t. Since
B(1) and B(2) are known, the corresponding signed-distance functions φ(1) and
φ(2) can be computed. Tracking then starts from t = 3. The main parts of this
algorithm are discussed next.

Algorithm 1. Tracking algorithm
INPUT: χt−1 (t > 2)
OUTPUT: χt.
(1) Propagate χt−1 to χ̄t;
(2) Observers take measurements {Q

(t)
m }M

m=1;
(3) Update χ̄t;
(4) Resample and generate χt.

Initialization. Algorithm 1 must be initialized with an initial particle set χ2

that is, with a set of functions {φ(2)
p }Pp=0 each of which is a random perturbation

of a given initial boundary estimate B(2). All functions are given the same weight.
To define perturbations, we need a notion of “closeness” between boundaries.
Given ε > 0 and a boundary B, the neighborhood of B within distance ε is
defined as Nε(B) = {B′ : D(B,B′) < ε} where D(B,B′) is the symmetric set
difference between the areas enclosed by B and B′ normalized by the area of B.

We perturb B(2) by adding a function δ to φ(2). Then the zero crossing of
φ′ = φ(2) + δ is the perturbed boundary B′. To make B′ continuous and within
Nε(B(2)) for a given small ε > 0, the function δ should be continuous and its
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(a) (b) (c) (d)

Fig. 1. (a) The signed distance function φ of a boundary B. (b) The perturbed function
φ′. (c) The initial boundary B. (d) The perturbed boundary B′ (dark).

values should be small. We choose δ(x) = αG2(x, y, Σ), the product of a scalar
α and a 2D Gaussian function G2(x, y, Σ) with mean y and diagonal covariance
matrix Σ. The vector y determines the center of the perturbation, Σ controls its
extent, and α determines the amount of perturbation. All of these parameters
are generated randomly. y is usually chosen close to B(2), and α and Σ are
chosen to satisfy B′ ∈ Nε(B(2)). A sample perturbation is shown in Fig. 1.

With this method we generate P boundaries B′p(p = 1, . . . , P ) that perturb
B(2). From these, we compute P signed-distance functions φ′

p = γ(φ(2) + δp)
where γ(φ) denotes the signed distance function of the zero level set of φ. To
construct the initial particle set χ2, we define the mother particle φ

(2)
0 = φ(2).

The difference between each φ′
p and φ

(2)
0 is ∆φ

(2)
p = φ′

p − φ
(2)
0 . Each window

W
(2)
p is defined as the smallest rectangle which includes all the points x such that
|∆φ

(2)
p (x)| is not trivial and |φ′

p(x)| is below a small positive threshold dependent
on both the width of the narrow band and the dynamics of the boundary1.
The perturbations ∆φ

(2)
p (x) are then truncated to zero for x outside W

(2)
p . All

particles are given the same initial weight w
(2)
p = 1/(P + 1). Given the initial

particle set χ2, we maintain the particle set χt over time through Algorithm 1.

Propagation. Suppose that the velocity of each point on the plane at time t
is given as v(x). We wish to move all the points on the surface φ(t−1) to φ̄(t) as
φ(t−1)(x) = φ̄(t)(x + v(x)). Assume that mother particle φ

(t−1)
0 is propagated

to φ̄
(t)
0 , φ

(t−1)
0 (x) = φ̄

(t)
0 (x + v(x)). Similarly, the difference between mother

and child particles is propagated to ∆φ̄
(t)
p . According to the above equation,

φ̄
(t)
Z (x + v(x)) = φ

(t−1)
Z (x) = φ

(t−1)
0 (x) + Σj∈Z∆φ

(t−1)
j (x) = φ̄

(t)
0 (x + v(x)) +

Σj∈Z∆φ̄
(t)
j (x + v(x)). Therefore, we can define φ̄

(t)
Z = φ̄

(t)
0 + Σj∈Z∆φ̄

(t)
j if x→

x + v(x) is a one-to-one mapping, which implies that all “implicit” particles
can be propagated by only explicitly propagating the mother particle and the
differences between mother and child particles.

The windows W
(t−1)
p are propagated by modifying them to W

(t)
p so as to

properly enclose nonzero values of ∆φ̄
(t)
p . The propagated particle set is now

1 W
(2)
p should be large enough to include all possible boundary points at the next time

step. Derivation details for this threshold are omitted for lack of space.
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represented by χ̄t = {φ̄(t)
0 , {∆φ̄

(t)
p , W

(t)
p }Pp=1, {w(t−1)

p }Pp=0}. During propagation,

the particle weights w
(t−1)
p do not change. In our experiments, v(x) at each time

step t is generated from the difference between the maximum-likelihood particles
of the previous two time steps t−1 and t−2. However, in some applications, v(x)
might be measured separately. For numerical purposes, we enforce propagated
mother particle and child particles to be signed distance functions.

Update. After propagation, each observer returns a noisy measurement Q
(t)
m

of a point on the boundary. One simple likelihood function of a particle φ is
Λt(φ) =

∏M
m=1 G(φ(Q(t)

m )) where G is a Gaussian function whose standard de-
viation ζ depends on the noise statistics of the measurements, assumed to be
mutually independent. And φ(Q(t)

m ) denotes the function value of φ at point Q
(t)
m .

If |φ(Q(t)
m )| is large, Q

(t)
m is far away from the zero level set of φ and therefore

the likelihood that the zero crossing of φ passes through point Q
(t)
m is small. On

the other hand, if φ(Q(t)
m ) = 0, Q

(t)
m lies exactly on the zero crossing of φ. Given

Λt(φ), we can update the weight of each particle as w̄
(t)
p = w

(t−1)
p · Λt(φ̄

(t)
p ).

Since each child particle p only differs from the mother particle inside window

W
(t)
p , the ratio H

(t)
p =

Λt(φ̄(t)
p )

Λt(φ̄
(t)
0 )

depends only on the difference between function

values of φ̄
(t)
0 and φ̄

(t)
p at the measurement points Q

(t)
m inside window W

(t)
p . So

we can first calculate the likelihood Λt(φ̄
(t)
0 ) for the mother particle and then

check for each child particle p whether there are any Q
(t)
m inside W

(t)
p . If not,

the likelihoods of the mother and the child are same. Otherwise, calculate H
(t)
p

and get Λt(φ̄
(t)
p ) by the above ratio equation. After update, the particle set χ̄t

becomes {φ̄(t)
0 , {∆φ̄

(t)
p , W

(t)
p }Pp=1, {w̄(t)

p }Pp=0}.
Resampling. In a standard particle filter, resampling is drawing (with replace-
ment) from the set of particles with probabilities proportional to their weights.
In our method, P +1 “explicit” particles represent 2P “implicit” particles. From
χ̄t, only the weights of the “explicit” particles {w̄(t)

p }Pp=0 are known. So we need
to evaluate the weights of the “implicit” particles before resampling. First define

K
(t)
p = w(t)

p

w
(t)
0

and similarly K̄
(t)
p = w̄(t)

p

w̄
(t)
0

for each p > 0. We consider two cases:

Disjoint Windows. Assume W
(t)
i ∩W

(t)
j = ∅ for i = j, i, j = 1, . . . , P and for

all t. For this case, we can draw the following conclusion:

Lemma 1. Given Z ⊆ X = {1, . . . , P}, let w(φ(t−1)
Z ) = w

(t−1)
0 ·∏j∈Z K

(t−1)
j be

the weight of the “implicit” particle φ
(t)
Z . After propagation, if the corresponding

windows {W (t)
j }j∈Z are disjoint, the weight of φ̄

(t)
Z is w(φ̄(t)

Z ) = w̄
(t)
0 ·

∏
j∈Z K̄

(t)
j .

The proof is omitted here due to space limits. However, the result stands to rea-
son because measurements in each window contribute independently to w(φ(t)

Z ).
From Lemma 1, we see that if the condition w(φ(t−1)

Z ) = w
(t−1)
0 ·∏j∈Z K

(t−1)
j

is satisfied before propagation at time step t, the evaluation of w(φ̄(t)
Z ) is just the
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product of the weight of mother particle and K̄
(t)
j of each child particle in Z. This

condition is iteratively satisfied if the windows are always disjoint. In this case,
resampling can be done as follows. Let particle i correspond to an “implicit” par-
ticle φZi where Zi ⊆ X , (1 ≤ i ≤ 2P ). Let wi = w̄

(t)
0 ·

∏
j∈Zi

K̄
(t)
j be the weight

for particle i and πi = wi

Σ2P
i=1wi

be the normalized weight for particle i. We can

draw with replacement from the 2P particles with probabilities proportional to
πi. Suppose the newly generated weight for each particle is µi which might be dif-
ferent from πi due to the limited number of samples. Since we only maintain the
weights for P + 1 “explicit” particles instead of 2P “implicit” particles , it is de-
sirable to represent µi by a new set of Kp, i.e., each µi could be approximated
as Πj∈Zi

Kj

Σ2P
i=1Πj∈Zi

Kj

. Thus, the goal of resampling “implicit” particles is achieved by

changing the weight of “explicit” particles. This leads to minimizing2 the func-
tion F (K1, K2, . . . , KP ) =

∑2P

i=1(µi− Πj∈Zi
Kj

Σ2P
i=1Πj∈Zi

Kj

)2 by which we can find a new

set of Kp to replace K̄
(t)
p . Then the weight of each child particle is updated as

w
(t)
p = w̄

(t)
0 ·Kp while the weight of the mother particle does not change. After re-

sampling, a new particle set χt={φ(t)
0 , {∆φ

(t)
p , W

(t)
p }Pp=1, {w(t)

p }Pp=0} is generated.

Remark. Two special cases need to be handled. If Kp = 0, the weight of parti-
cle p is very small and discarded. If Kp is very large, this perturbation will be
generated with high probability, so it should be incorporated into the mother
particle. In both cases, we need generate new particles to replace the ones that
are eliminated. During resampling, we can also optionally find the particle with
the maximum weight and return its zero level set as the MAP estimate of B(t).

Intersecting Windows. Since windows move, even windows that are initially
disjoint may eventually intersect. Now consider the case in which any two win-
dows can intersect. Formally, ∃j = k, s. t. W

(t)
j ∩W

(t)
k = ∅, j, k = 1, . . . , P . In

this case, we need additional information to maintain the weights of the “im-
plicit” particles. Specifically, at each time step t, given χt, define {S(t)

jk } as a

set of
(
P
2

)
real numbers s.t. ∀Z ⊆ X , w(φ(t)

Z ) = w
(t)
0

∏
p∈Z K

(t)
p

∏
j,k∈Z,j �=k S

(t)
jk .

Then we have the following conclusion similar to Lemma 1:

Lemma 2. Given Z ⊆ X = {1, . . . , P}, suppose the combined particle φ
(t)
Z has

weight w(φ(t−1)
Z ) = w

(t−1)
0 · ∏p∈Z K

(t−1)
p

∏
j,k∈Z,j �=k S

(t−1)
jk before propagation.

After propagation, the weight of φ̄
(t)
Z is w(φ̄(t)

Z ) = w̄
(t)
0 ·

∏
p∈Z K̄

(t)
p

∏
j,k∈Z,j �=k S̄

(t)
jk

where S̄
(t)
jk =S

(t−1)
jk ·I(t)

jk and I
(t)
jk = exp(

∑
Q

(t)
m ∈W

(t)
j W

(t)
k

−2∆φ̄
(t)
j (Q(t)

m )∆φ̄
(t)
k (Q(t)

m )
ζ2 ).

This lemma tells us that if intersections between windows are allowed, in addition
to maintaining χt, it is also necessary to maintain an intersection factor set {S(t)

jk }
2 Minimizing F (K1, K2, . . . , KP ) is an approximation. If we can draw unlimited sam-

ples, µi will be equal to πi and therefore K̄
(t)
p = Kp. When the number of samples

is limited, {K̄
(t)
p } is a good starting point to find {Kp}, so convergence to a correct

minimum is likely. We do not yet have a proof for this conjecture.
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for every pair of child particles over time. S
(t)
jk is updated as S̄

(t)
jk = S

(t−1)
jk ·

I
(t)
jk . With S̄

(t)
jk , we could approximately optimize {K̄(t)

p } by minimizing function
F ′(K1, K2, . . . , KP ) which is defined similarly to F except that the products
of intersection factors are added as constants in F ′. The cost of maintaining
intersection factors {S(t)

jk } is O(MP 2).

New Component. If some measurement Q
(t)
m is far away from the zero level

sets of the current (implicit) particles, it is possible that a new component of the
dynamic boundary has appeared. To account for cases like this, we randomly
generate a small boundary component near Q

(t)
m and add it to the mother par-

ticle, so that all child particles inherit this component automatically. Results of
adding new components are shown in Section 4.

Efficiency. We now analyze the computation cost of the proposed method.
Assume that all level set functions are defined on a grid of size N . The com-
putation cost of the signed-distance function γ is O(N). For initialization, we
generate P child particles based on the given mother particle. For each child
particle, we randomly generate a 2D Gaussian perturbation, at a cost O(N).
Propagation advances P + 1 particles by the motion field, at a cost O(PN). For
each “explicit” particle, evaluating the weight according to M measurements
will takes O(PM) at worst. Resampling evaluates the weights for all 2P “im-
plicit” particles and then resamples 2P numbers to generate the new µi, so the
cost of this stage is O(2P ). Note however that this computation occurs on num-
bers instead of functions. So the constant factor that multiplies 2P is small. For
the case of intersecting windows, the cost of maintaining intersection factors
{S(t)

jk } is O(MP 2). Optimization of function F or F ′ is fast practically because

{K̄(t)
p } is very close to {Kp}. The generation of new components takes at most

O(MN) time. From this analysis, the total complexity for our tracking algo-
rithm is O(2P + PN + PM + MN + MP 2). If we had used a standard particle
filter with 2P “explicit” particles the cost for propagation and update would be
O(2P (N + M)) which is much higher than that for the proposed approach.

4 Experiments

Experimentation with our proposed framework runs apparently into two con-
flicting requirements: On one hand, we want to demonstrate the performance of
our tracker when the set of available measurements is sparse, because sparseness
is one of the main challenges of this problem. On the other hand, we need refer-
ence ground truth against which we can measure performance, and this requires
dense information about the true location of the boundary. In order to meet both
requirements, we have tracked the boundaries in a data set where we have dense
information, but where we simulate sparseness by withholding that information
from our algorithm. Specifically, we have obtained a sequence of 355 slices from
a Computerized Axial Tomography (CAT) scan of a human colon. The bound-
aries in this data are very complex (see Fig. 3(d)): the colon tube is convoluted,
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and its frequent turns make boundaries appear and disappear as we progress
from one slice to the next. In our experiments, we detected each boundary with
a standard edge detector. In Fig. 3(a)-(c), these “true” boundaries are drawn
in red. These are our ground truth, to which the tracker has no direct access.
Instead, the tracker obtains limited information through a set of observers, the
green marks in the figure, and generates the “cyan” tracking results. Only 10
child particles are used in this experiment.

Fig. 2 illustrates the variety that 1 mother and 5 child particles can make.
There are 32 combinations created some of which are very different from both
mother and child particles. Fig. 3(a) shows tracking details during frames 7-10.
The yellow window indicates the position where a new component is about to ap-
pear. The four small figures shows what happens inside the yellow window dur-
ing frames 7-10. In particular, in frame 8 a cyan curve is generated close to the
red (true) component because some measurement point reports that it is possible
that a new boundary component has appeared there. Fig. 3(b) shows a connected
component inside the yellow window splitting during frames 52-55. The tracking
algorithm captures the topological change. Conversely, Fig. 3(c) shows two com-

1 2

4

3

5

M

Fig. 2. A set of 32 “implicit” particles generated by one mother particle (top left) and
5 “child” particles (marked)
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(a)

(b)

(c)

(d)

Fig. 3. (a) A new component appears in the yellow window (left figure) which is de-
tected in frame 7 (top middle) and tracked from then on (see frames 8-10). Red is
ground truth from edge detection, cyan is the maximum-likelihood particle. The cyan
boundary will split in later frames (see figure (b)). The number inside each figure de-
notes the frame index. (b) The component in the yellow window splits in two between
frames 52 and 55. (c) The two components in the yellow window merge into one be-
tween frames 111 and 114. (d) 3D reconstruction of the entire colon boundary. The left
figure is based on the tracking result and the right is the ground truth.



Level-Set Curve Particles 643

ponents merging together during frames 111-114. The tracker, again, complies.
Finally, Fig. 3(d) displays the 3D reconstruction from all the tracking results for
355 slices in the frame sequence and compares it to the ground truth obtained from
edge detection. We use 100 measurement points in each slice, so the total number
of measurements for the sequence is 100 × 353 = 35, 300. The entire boundary
has 363,069 points at pixel resolution, so the ratio between reconstructed points
and measurements is about 10. The total tracking time for the sequence is 7121s,
that is, about two hours for the sequence, or 20 seconds per frame. We are still
far from real time performance. However, the code runs in Matlab and has sev-
eral nested loops, so a substantial speedup is likely just by code optimization in C.
Parallel implementation is of course trivially possible in obvious ways for particle
filters. Now that preliminary experiments have shown the conceptual validity of
our approach, we plan to turn some of our efforts to increasing efficiency through
appropriate data structures and approximation algorithms as well.

5 Conclusions and Future Work

To our knowledge this is the first full-fledged formulation of particle filters for
level sets. In our method, resampling has a cost proportional to the number of
particles, but very small constant factors. The propagation cost is proportional
to the logarithm of the number of particles, because P explicit particles repre-
sent 2P particles implicitly. This is crucial, because the propagation cost per
(explicit) particle is high for level sets. Preliminary experiments on tomographic
imagery have shown the practicality of the approach by reconstructing a surface
of 363, 000 points from only 35, 300 image measurements.

Immediate targets for future work are the improvement on the cost of main-
taining the intersection factors for intersections windows and the use of multi-
ple mother particles to represent macroscopic differences between particles. A
multi-resolution hierarchy of overlapping particles is our ultimate goal in this
respect. Now we are working on a finite-element perturbation strategy to make
the tracking process more efficient. Incidentally, the approximation error for Fi-
nite Element Method is inherently better understood than that of mixture of
Gaussian functions. Other plans for future work focus on the further reduction
of constant factors and on the design of strategies for dispatching travelling
observers as the boundaries move. Our experiments suggest in particular con-
centrating more observers close to high-curvature points on the boundary. This
will make it possible, for instance, to send robots to autonomously track the
moving boundary of an oil spill, wildfire, or cloud of pollutant. We intend to
investigate the application of our methods to other domains as well.
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