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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs respounsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlava¢, Jiri Matas and Tomés
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Ales Leonardis,
Horst Bischof,
Axel Pinz
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Blind Vision

Shai Avidan! and Moshe Butman?

! Mitsubishi Electric Research Labs,
201 Broadway, Cambridge, MA 02139
avidan@merl.com
2 Department of Computer Science,
Bar-Ilan University, Ramat-Gan Israel
butmanm@cs.biu.ac.il

Abstract. Alice would like to detect faces in a collection of sensitive
surveillance images she own. Bob has a face detection algorithm that
he is willing to let Alice use, for a fee, as long as she learns nothing
about his detector. Alice is willing to use Bob’s detector provided that
he will learn nothing about her images, not even the result of the face
detection operation. Blind wvision is about applying secure multi-party
techniques to vision algorithms so that Bob will learn nothing about the
images he operates on, not even the result of his own operation and Alice
will learn nothing about the detector. The proliferation of surveillance
cameras raises privacy concerns that can be addressed by secure multi-
party techniques and their adaptation to vision algorithms.

1 Introduction

The proliferation of surveillance cameras raises privacy concerns that must be
addressed. One way of protecting privacy is to encrypt the images on their
way from the camera to the remote server that controls it. However, in some
cases this might not be enough. For instance, when the client does not wish
to reveal the content of the image even to the server that runs the particular
vision algorithm. Consider, for example, a service center offering face detection
capabilities over the web. Clients might be interested in the service but reluctant
to reveal the content of their images, even to the service provider, either because
they don’t want the service center to learn the content of the image or they
are concerned that virus attacks on the service center will reveal the content
of the images. With slight modification the proposed algorithm can be used for
blind face recognition. For example, a government agency can have photos of
suspects and compare them to images taken from private surveillance cameras
without learning anything about the content of the images (so as not to invade
privacy), and without revealing the photos of the suspects. The only answer the
government agency will learn is either a given suspect appear in a particular
image or not. Another application might be in camera phones that does not
have the CPU power to run heavy vision algorithms and would like to run the
application securely on a remote server. Yet another application is blind OCR

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 1-13, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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in which the client is not willing to reveal the content of the document to the
server. In these cases one can resort to secure multi-party protocols that allow
two parties to execute a given algorithm without learning anything about the
other party.

Here we investigate the use of secure multi-party protocols for image analysis.
This is a challenging task because secure multi-party protocols are known to be
computationally intensive and applying them to large data sets, such as images
and video streams makes the task even harder. Domain-specific constraints allow
us to devise new schemes that are faster to use but might not be applicable to
general secure multi-party problems.

As a concrete setup we focus on a surveillance scenario in which Alice owns a
surveillance camera and Bob owns a server that runs a face detection algorithm.
In our hypothetical scenario Alice and Bob will engage in a protocol that will
allow Alice to learn if, and where, are faces in her images without learning
anything about Bobs’ detector. Bob will learn nothing about the images, not
even if faces were detected in them.

We adopt secure multi-party protocols to derive a secure classification proto-
col. The protocol allows Alice to send Bob a candidate detection window and get
a yes/no answer to the question “Is there a face in this window?”. This results
in a secure protocol that leaks no information to either party, but is slow in
practice because of the use of cryptographic primitives. Then we suggest ways
to drastically reduce the number of detection windows that Alice needs to send
to Bob by using a non-cryptographic protocol that is very fast in practice but is
not as secure as the secure classification protocol.

2 Background

Secure multi-party computation originated from the work of Yao [16] who gave
a solution to the two-party problem where two parties are interested in eval-
uating a given function that takes as input private input from each party. As
a concrete example consider the millionaire problem: Two parties want to find
which one has a larger number, without revealing anything else about the num-
bers themselves. Later, Goldriech et al. [7] extended the case to n > 2 parties.
However, the theoretical construct was still too demanding to be of practical
use. An easy introduction to Cryptography is given in [14] and a more advanced
and theoretical treatment is given in [6].

Since then many secure protocols were reported for various applications. Of
particular interest here are those dealing with oblivious transfer [2], secure dot-
product [1] or oblivious polynomial evaluation in general [11,3] and learning
decision trees [9]. Oblivious Polynomial Evaluation (OPE) [11, 3] assumes that
Bob has a polynomial P(z) and Alice wants to evaluate the polynomial for a
particular x, unknown to Bob, without learning anything about the polynomial
coefficients. This was later used by [9] to devise an ID3 decision tree learning
algorithm where each party holds part of the training data, yet both parties are
interested in learning a decision tree that uses all the available training data.
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In the end both parties learn the parameters of the decision tree, but nothing
about the training data of the other party.

Secure multi-party protocols are often analyzed for correctness, security and
complexity. Correctness is measured by comparing the proposed protocol to the
ideal protocol where the parties transfer their data to a trusted third party
that performs the computation. If the secure protocol is identical to the ideal
protocol then the protocol is declared correct (note that one might come up with
secure approximation to an ideal algorithm). In security one needs to show what
can and cannot be learned from the data exchange between the parties. One
often assumes that the parties are honest but curious, meaning that they will
follow the agreed-upon protocol but will try to learn as much as possible from
the data-flow between the two parties. Put another way, one party is willing to
trust the other party but is concerned that virus attacks on the other party will
reveal the information. Finally, in complexity, one shows the computational and
communication complexity of the secure algorithm.

3 Notations

All computations must be done over some finite field F' that is large enough to
represent all the intermediate results. One can approximate float numbers with
fixed arithmetic and represent it as integer numbers in this field. Denote by X
the image that Alice owns. A particular detection window within the image X
will be denoted by x € F* and x will be treated in vector form. Bob owns a
strong classifier of the form

N

H(x) = sign(} _ ha(x)), (1)

n=1

where h,(x) is a threshold function of the form

Qp XTYH > @n
hn(x) = {ﬂn otherwise, (2)

and y, € F¥ is the hyperplane of the threshold function h, (x). The parameters
an € F, B, € Fand 6, € F of h,(x) are determined during training; N is the
number of weak classifiers used.

4 Secure Classification

In this section we develop a secure classifier that is based on a linear combina-
tion of simple threshold function (’stumps’). However, the ideas presented here
can be used to develop other classifiers as well. For example, one can use the
OPE protocol mentioned earlier to construct a polynomial-kernel SVM. Work
still needs to be done to construct RBF-kernel SVM, or sigmoid-based neural
network.



4 S. Avidan and M. Butman

There is an inherent tension between secure multi-party methods and ma-
chine learning techniques in that one tries to hide and the other tries to infer.
In the extreme case, Alice can use Bob to label training data for her so that she
can later use the data to train a classifier of her own. The best we can hope for
is to ensure that Bob will not learn anything about Alice’s data and that Alice
will not help her own training algorithm, other than supplying it with labeled
examples, by running the secure classification protocol.

The cryptographic tool we will be using is Oblivious Transfer. Oblivious Trans-
fer allows Alice to choose one element from a database of elements that Bob holds
without revealing to Bob which element was chosen and without learning anything
about the rest of the elements. In the following we will denote OTM to indicate
that Alice needs to chose one out of M elements. We will use OT to develop a
series of secure sub-protocols that result in a secure classification protocol.

4.1 Oblivious Transfer

Oblivious Transfer allows Alice to choose one element from a database of ele-
ments that Bob holds without revealing to Bob which element was chosen and
without learning anything about the rest of the elements. The notion of oblivious
transfer was suggested by Even, Goldreich and Lempel [5] as a generalization of
Rabin’s “oblivious transfer” [13].

Bob privately owns two elements My, My and Alice wants to receive one of
them without letting Bob know which one. Bob is willing to let her do so provided
that she will not learn anything about the other elements. The following protocol,
based on RSA encryptions can be used to solve the problem in a semi-honest
(i-e. honest but curious) setting.

Algorithm 1. Oblivious Transfer
Input: Alice has o € {0,1}

Input: Bob has two strings Mo, M,
Output: Alice learns M, .

1. Bob sends Alice two different public encryption keys Ky and Kj.

2. Alice generates a key K and encrypts it with Ko or K. For the sake of argument,
let’s say she chooses Ko. She sends Bob E(K, Ko); that is, she encrypts K with
one of Bob’s public keys.

3. Bob does not know which public key Alice used, so he decrypts with both of his
private keys. He thus obtains both the real key K, and a bogus one K'.

4. Bob sends Alice E(My, K) and E(M;i, K'), in the same order he sent the keys Ko
and K in step 1. Alice decrypts the first of these messages with the key K and
obtains Mj.

Can Alice cheat? She would need to be able to find K’, but she cannot do this
unless she knows how to decrypt messages encrypted with the public key K;.

Can Bob cheat? He would have to be able to determine which one of K and
K’ was the key Alice generated. But K and K’ both look like random strings.
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4.2 Secure Dot Product

Before diving into the technical details, let us give an intuitive introduction. Our
goal is to break the result of the dot product operation x”y into two shares a
and b, where a is known only to Alice, b is known only to Bob and it holds that
xTy = a+b. We do this by breaking the product of every pair of elements x; *y;
into two shares a; and b; and then letting Alice and Bob sum the vectors a and
b, respectively to obtain shares of the dot product. Observe that a; and b; must
sum to x; * y; where x; is in the range [0,255] and y; € {—1,0, 1} so the size of
the field F' should be at least 512 to accommodate all possible cases. The details
are given in protocol 2.

Algorithm 2. Secure dot-product

Input: Alice has vector x € F'F
Input: Bob has vector y € FT
Output: Alice and Bob have private shares a and b s.t. a + b= xTy

1. Bob generates a random vector b € FT
2. For each i=1...1., Alice and Bob conduct the following sub-steps
(a) Bob enumerates all possible x; values and constructs a 256D vector a, s.t.

ai =yi*Xi —bi  x; €[0...255]

(b) Alice uses OT£*® with x; as her index, to choose the appropriate element from
the vector a and stores it as a;j.
3. Alice and Bob sum their private vectors a and b, respectively, to obtain the shares
a=3"  ajand b= X" b; of the dot-product x”y.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

— From Alice to Bob

e Instep 2(b) Alice uses OT with x; as an index to choose an element from
the vector a. Because OT is secure, Bob can not learn which element she
chose and hence can learn nothing about the vector x.
— From Bob to Alice

e For each element, Bob lets Alice pick one element from the vector a and
since a is the sum of the vector y with some random vector b, Alice can
learn nothing about y from a.

Complexity and Efficiency. The protocol is linear in L - the dimensionality
of the vectors x and y.
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4.3 Secure Millionaire

Alice and Bob would like to compare and find which one has a larger number,
without revealing anything else about their number [16]. We show here a solution
to the problem based on the OT primitive. The idea is to have Alice and Bob
represent their numbers in binary format, scan it one bit at a time from left
(most significant bit) to right (least significant bit) and then get the result. For
each bit Bob should prepare a lookup table that is based on his current bit
value and the two possible bit values of Alice. Alice will use OT# to obtain some

Algorithm 3. Secure Millionaire

Input: Alice has a number z € F
Input: Bob has a number y € F
Output: Alice and Bob find out if x > y

1.

Bob defines three states {.A, B,U} that correspond to: Alice has a larger number,
Bob has a larger number and Undecided, respectively. For each bit, Bob encodes
{A, B,U} using a different permutation of the numbers {1, 2, 3}.

For the left most bit, Bob constructs a 2-entry lookup table z(™ using the following
table.

Yn = 0lyn =1
T, =0 U B
T, =1 A u

where z,,y, are the left most (most significant) bit of the numbers x,y, respec-
tively. If y, = 0 then Bob should construct a table from the left column, otherwise
he should use the right column.

Alice uses OT? with x,, as her index to obtain s = 2™ (z,)

For each i =n —1,..., 1, Alice and Bob conduct the following sub-steps

(a) Bob constructs a 6-entry lookup table z® that is indexed by st and z,

s.t.
yi =0lyi =1
sUTD = Anz; =0] A A
st =BAz;, =0| B B
sSCHD =Y Az =0 U B
sUTD = ANz, =1 A A
st =BAz, =1| B B
sSSP —UYUpnz =1 A u

where stV is the state variable from the previous bit. If y; = 0 then Bob
should construct a table from the left column, otherwise he should use the

right column. _ ‘ _ ‘
(b) Alice uses OTY with 5" and z; as her indices to obtain s = 2 (s(+1 z,)

. Bob sends Alice the meaning of the three states of sV of the least significant bit.

Alice now knows which number is larger.

. If she wants, Alice can send the result to Bob.
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intermediate result and they both will continue to the next bit. The problem
with this approach is that comparing least significant bits is meaningless if the
most significant bits were already used to determine which number is larger.
Note, also, that Alice and Bob should not abort in the middle of the scan as
this might reveal some information about the numbers themselves. To solve this
problem we will use a state variable s that can take one of three states: A Alice
has a larger number, B Bob has a larger number or &/ Undecided yet. For each
bit Bob constructs a 6-way lookup table that consists of the 3 states of s and
the two possible values of the next bit of Alice, the output is the new state after
evaluating the current bit. For example, if s = 4, Bobs’ current bit is 1 and
Alice’s’ current bit is 0 then the output should be s = A and they both move to
the next bit. To prevent Alice from interpreting the state s Bob can use different
numbers to represent A, B,U for each bit so, for example, for the first bit A is
represented as the number 1 but for the second bit 1 might represent the symbol
B. The details are given in protocol 3.

Correctness. The protocol is clearly correct.

Security. The protocol is secure for both parties as we will show next

— From Alice to Bob
e In steps 3 and 4b Alice uses z; as her index in the OT operation. Since
OT is secure, Bob can learn nothing about the number z.
— From Bob to Alice

e For each bit, Bob lets Alice pick one element from the lookup table z
and returns the state s. Since the values of the state s are represented
using random numbers for each bit, Alice cannot determine what does a
change in s mean and can not learn anything about the number ¥, other
than learning, in the end, if x > y.

Complexity and Efficiency. The protocol is linear in the number of bits of
the numbers x and y.

4.4 Secure Classifier

We are now ready to present the secure classifier protocol. The protocol relies
on the secure dot-product and Millionaire protocols and the details are given in
protocol 4.

Correctness. The protocol is clearly correct.
Security. The protocol protects the security of both parties.

— From Alice to Bob

e In step 2(a) Alice and Bob engage in a secure dot-product protocol so
Bob learns nothing about the vector x.

e In step 2(b) and 3 Alice and Bob engage in secure Millionaire protocol
so Bob can learn nothing about Alice’s data.
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Algorithm 4. Secure Classifier

Input: Alice has input test pattern x € F'F

Input: Bob has a strong classifier of the form H(x) = sign(3~_; hn(x))
Output: Alice has the result H(x) and nothing else

Output: Bob learns nothing about the test pattern x

1. Bob generates a set of N random numbers: s1, ..., sy, such that s = Zgil

2. For each n =1,..., N, Alice and Bob conduct the following sub-steps:

Sn

(a) Alice and Bob obtain private shares a and b, respectively, of the dot product
xTy, using the secure-dot-product protocol.

(b) Alice and Bob use the secure Millionaire protocol to determine which number
is larger: a or ©,—b. Instead of returning A or B the secure Millionaire protocol
should return either o, + s, or 3, + s,. Alice stores the result in cp.

3. Alice and Bob use the secure Millionaire protocol to determine which number is
larger: 25:1 Cn Or Zgil Sn. If Alice has a larger number then x is positively
classified, otherwise x is negatively classified.

— From Bob to Alice

e In step 2(a) Alice and Bob engage in a secure dot-product protocol so
Alice learns nothing about Bobs’ data.

e In step 2(b) Alice and Bob engage in a secure Millionaire protocol so
Alice only learns if a > @,, — b but since she does not know b she can
not learn anything about the parameter @,,. Moreover, at the end of the
Millionaire protocol Alice learns either o, + s, or 3, + s,. In both cases,
the real parameter (a,, or 3,) is obfuscated by the random number s,,.

e In step 3 Alice learns if her number 25:1 Cp is greater than Bob’s num-

ber ZnN:l Sp. Since s is a random vector, she can gain no knowledge
about the actual parameters of Bobs’ strong classifier.

e Alice can learn the number of weak classifier N from the protocol. This
can easily be fixed if Bob will add several fake weak classifiers h,(x)
whose corresponding weights «,, 3, are zero. This way Alice will only
learn an upper bound on N and not N itself.

Complexity and Efficiency. The complexity of the protocol is O(NLK),
where N is the number of weak classifiers used, L is the dimensionality of the
test vector x and K it the number of bits in the dot-product x”y.

Applying the secure classification protocol to face detection is straightfor-
ward. Alice scans her image and sends each detection window to Bob for evalua-
tion. Bob learns nothing about the image and Alice only gets a binary answer for
every detection window. The problem with the protocol is speed. As we discuss
in the experimental section, it might take from a few seconds to a few minutes to
classify a detection window (depending on the number of levels in the rejection
cascade, see details in the experiments section). This means that the protocol is
prohibitively expensive to compute in practice. Therefor we investigate methods
to accelerate it.
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5 Accelerating Blind Vision

There are three methods to accelerate the above protocol. The first relies on
cryptographic methods that leverage a small number of OT operations to per-
form a large number of OT [12,8]. We will not explore these methods here.

A second approach would be for Bob to reveal a stripped-down version of
his classifier to Alice. This way, Alice can run the stripped-down classifier on
her data. This stripped-down classifier will effectively reject the vast majority of
detection windows and will allow Alice to use the expansive secure protocol on
a relatively small number of detection windows.

Finally, the last method of acceleration is to develop one-way hash functions
that will allow Alice to quickly hash her data but still let Bob correctly classify
the patterns without learning much about the original image itself. This will be
used as a filter to quickly reject the vast majority of detection windows, leaving
the “difficult” examples to be classified using the secure classification protocol.

5.1 Image Hashing Using Histograms of Oriented Gradients

There is a large body of literature on one way hash functions [14]. These functions
take the input message (detection window in our case) and map it to some hashed
vector in such a way that the original message can not be recovered. These one
way hash functions are not suitable for our purpose because they map nearby
patterns to different locations in hash space. So, two images that are nearby in
image space might be mapped to far-apart vectors in the hash space. There is
little hope then that a classifier will be able to learn something in the hash space,
because the basic assumption that nearby patterns should have similar labels is
violated.

We therefor use a domain-specific hash function. Specifically, we use the
Histogram of Oriented Gradients (HoG) as our hash function. HoG was proved
very useful in a variety of object recognition and detection applications [10, 4],
yet it destroys the spatial order of pixels, as well as their absolute values, and
is coarsely binned so we assume that recovering the original image patch from
a given HoG is impossible. Figure 1 show some examples of face and non-face
image patches and their corresponding HoGs.

In our system, Alice computes the HoG for each detection window and store
each bin in a response image. We use 18 bin HoG so there are 18 response images
used to represent the HoG for every detection window. That is, the 18 bins of
the HoG of a particular detection window are stored at the central pixel location
of that detection window, across all 18 response images.

By scrambling the order of pixels in the response images we effectively destroy
the spatial relationship between the HoGs so Bob can not use this information to
reconstruct the original image (the same scrambling permutation must be per-
formed on all 18 response images). Figure 2 show how the response image that
corresponds to one of the bins of the HoG looks like with and without scram-
bling the order of its pixels. Specifically, figure 2b shows a response image that
corresponds to one bin in the HoG. Scrambling the order of the pixels (figure 2¢)
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Fig. 1. Image to Histogram of Oriented Gradients (HoG) Hashing. (a) some examples
of face images and their corresponding HoG. (b) some example of non-face images and
their corresponding HoG. We assume that it is impossible to reconstruct an image from
its HoG.

Fig. 2. The importance of scrambling. (a) original image. (b) Image of the first bin of
the Histogram of Oriented Gradients (HoG). (c) Same as (b) after pixel scrambling.

destroys the spatial relationship between HoGs. In addition, Alice can bury the
scrambled image in a larger image that contain random values (not shown here).

The inclusion of fake HoGs, by burying the response images in a larger image,
prevents Bob from recovering the original image, because he does not know if
he is using HoGs that came from the original image. Moreover, it prevents Bob
from knowing the result of his classification, because he does not know if the
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HoGs that he classified as positive (i.e. originated from a detection window that
contains a face) correspond to real or fake image patches.

6 Experiments

We implemented the secure classification protocol in C++ using the NTL! pack-
age for large numbers and used RSA encryption with 128-bit long encryption
keys. The HoG detector was implemented in MATLAB. We simulated Alice and
Bob on one PC so communication delays are not reported here.

We converted our Viola-Jones type face detector [15] to a secure detector. In
the process we have converted the integral-image representation to regular dot-
product operation, a step that clearly slowed down our implementation as we no
longer take advantage of the integral image representation. Also, we shifted the
values of the filters from the range [—1, 1] to the range [0,2] to ensure that all
values are non-negative integers. We then converted all the thresholds to non-
negative integers and updated them to reflect the shift in the filter values. The
face detector consists of a cascade of 32 rejectors, where each rejector is of the
form presented in equation 1. The first rejector requires 6 dot-product operations
and the most complicated rejector require 300 dot-products. There is a total of
4303 dot-products to perform. Instead of computing the secure dot-product for
each filter, we use OT to compute the secure dot-product for all the weak clas-
sifiers in a given level and allowed Alice and Bob to make a decision after every
level of the cascade. This clearly reveal some information to Alice, as she knows
at what level of the cascade a pattern was rejected but it greatly accelerates the
performance of the program. We found that a single 24 x 24 detection window
can be classified in several minutes using all the levels of the cascade. In most
cases the first two levels of the cascade are enough to reject a pattern and they
can be processed in a few seconds per detection window. As expected, the main
bottleneck of the protocol is the extensive use of the OT operation.

To accelerate performance we used the HoG based image hashing. Each 24 x
24 detection window was mapped to HoG as follows. Alice first computes the
gradient of every pixel and ignores every pixel whose x and y gradients were
below 5 intensity values. Then she binned the gradient orientation into 18 bins
and stored the result in a histogram. She then sends the HoGs, in random order
and together with some fake HoGs, to Bob. Bob’s HoG detector consists of a
cascade of 45 levels. Each level of the cascade consists of a feed-forward neural
network with 5 hidden units that was trained to reject as many negative examples
as possible, while maintaining 98% of its positive examples. The unoptimized
HoG detector takes several seconds to process a single 240 x 320 image. We
found that on average the HoG detector rejects about 90% of the detection
windows in an image. The remaining 10 percent are classified using the secure
classifier protocol described earlier. In a typical case, about 15,000 detection
windows (out of a total of about 150,000 detection windows) will be passed to
the secure classification protocol. This approach accelerates secure classification

! Downloaded from http://www.shoup.net/ntl/index.html
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Fig. 3. Blind Face Detection. (a) result after running the HoG detection. (b) Final
detection result.

by an order of magnitude, at the risk of revealing some information. There is
clearly a trade-off between the quality of the HoG detector and the amount of
information revealed.

Figure 3 show some typical results. The top row shows the result of the HoG
detection, as Alice sees them. The bottom row shows the result, as Alice sees
it, after the secure classification. A couple of comments are in order. First, note
that after the HoG detection the only thing that Bob knows is that he detected
several thousands candidates. He does not know their spatial relationship, how
they actually look or if they came from the original image or are simply chaff
designed to confuse him. Second, the HoG detector is performed in a multi-scale
fashion. In our case Alice uses a 3 level pyramid with a scale factor of 1.2 between
scales. Finally, all the detection windows that were positively classified by the
HoG detector are then scaled to 24 x 24 windows and fed to the secure classifier
protocol.

7 Conclusions

Blind Vision applies secure multi-party techniques to image related algorithms.
As an example we have presented a blind face detection protocol that reveals
no information to either party at the expanse of heavy computation load. We
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then suggested image hashing technique, using Histogram of Oriented Gradients
(HoG) to accelerate the detection process, at the risk of revealing some informa-
tion about the original image. There are several extensions to this work. First is
the need to accelerate the detection process. Second is the need to develop secure
versions to other popular classifiers such as RBF or sigmoid function. Third, we
are investigating information theoretic approaches to analyze the amount of in-
formation leaked by the HoG hash function, as well as developing better and
more secure image hashing functions. Finally we are exploring ways to extend
Blind Vision to other vision algorithms such as object tracking or image seg-
mentation.
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Abstract. We propose a method for object detection in cluttered real images,
given a single hand-drawn example as model. The image edges are partitioned
into contour segments and organized in an image representation which encodes
their interconnections: the Contour Segment Network. The object detection prob-
lem is formulated as finding paths through the network resembling the model
outlines, and a computationally efficient detection technique is presented. An ex-
tensive experimental evaluation on detecting five diverse object classes over hun-
dreds of images demonstrates that our method works in very cluttered images,
allows for scale changes and considerable intra-class shape variation, is robust to
interrupted contours, and is computationally efficient.

1 Introduction

We aim at detecting and localizing objects in real, cluttered images, given a single hand-
drawn example as model of their shape. This example depicts the contour outlines of
an instance of the object class to be detected (e.g. bottles, figure 1d; or mugs, composed
by two outlines as in figure 5a).

The task presents several challenges. The image edges are not reliably extracted
from complex images of natural scenes. The contour of the desired object is typically
fragmented over several pieces, and sometimes parts are missing. Moreover, locally,
edges lack specificity, and can be recognized only when put in the wider context of
the whole shape [2]. In addition, the object often appears in cluttered images. Clutter,
combined with the need for a ‘global view’ of the shape, is the principal source of
difficulty. Finally, the object shape in the test image can differ considerably from the
one of the example, because of variations among instances within an object class (class
variability).

In this paper, we present a new approach to shape matching which addresses all
these issues, and is especially suited to detect objects in substantially cluttered im-
ages. We start by linking the image edges at their discontinuities, and partitioning them
into roughly straight contour segments (section 3). These segments are then connected
along the edges and across their links, to form the image representation at the core of
our method: the Contour Segment Network (section 4). By recording the segment inter-
connections, the network captures the underlying image structure, and enables to cast

* T. Tuytelaars acknowledges support by the Fund for Scientific Research Flanders (Belgium).
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object detection as finding paths through the network resembling the model outlines.
We propose a computationally efficient matching algorithm for this purpose (section 5).
The resulting, possibly partial, paths are combined into final detection hypotheses by a
dedicated integration stage (section 6).

Operating on the Contour Segment Network brings two key advantages. First, even
when most of the image is covered by clutter segments, only a limited number is con-
nected to a path corresponding to a model outline. As we detail in section 5, this greatly
limits the choices the matcher has to make, thus allowing to correctly locate objects
even in heavily cluttered images. Besides, it also makes the computational complexity
linear in the number of test image segments, making our system particularly efficient.
Second, since the network connects segments also over edge discontinuities, the system
is robust to interruptions along the object contours, and to short missing parts.

Our method accommodates considerable class variability by a flexible measure of
the similarity between configurations of segments, which focuses on their overall spa-
tial arrangement. This measure first guides the matching process towards network paths
similar to the model outlines, and is then used to evaluate the quality of the produced
paths and to integrate them into final detections. As other important features, our ap-
proach can find multiple object instances in the same image, produces point correspon-
dences, and handles large scale changes.

In section 7 we report results on detecting five diverse object classes over hundreds
of test images. Many of them are severely cluttered, in that the object contours form a
small minority of all image edges, and they comprise only a fraction of the image. Our
results compare favorably against a baseline Chamfer Matcher.

2 Previous Work

The construction of our Contour Segment Network (sections 3 - 4) is rooted in earlier
perceptual organization works [14, 12]. However, unlike these, we do not seek to single
out salient edge groups. Instead, we connect all subsequent segments in a single, global
network which comprises all possible contour paths. This enables our main contribu-
tion: to perform object class detection as path search on the network.

Much previous work on shape matching has focused on class variability. Several
measures of shape similarity have been proposed [2, 1]. They can distinguish objects
of different classes, while allowing for variations and deformations within a class. How-
ever, these works assume the object to be in a clean image, thereby avoiding the problem
of localization, and the difficulties of contour detection. Hence, the rest of this review
focuses on methods handling clutter.

Our algorithm of section 5 is related to “local search” [4] and “interpretation
trees” [11], as it iteratively matches model features to test image features. However,
at each iteration it meets an approximately constant, low number of matching candi-
dates (only those connected to the latest matched segment, section 5). Interpretation
Trees / Local Search approaches instead, need consider a large number of test features
(often all of them [4]). As a consequence, our method is far less likely to be confused
by clutter, and has lower computational complexity (/inear in the number of test seg-
ments), thus it can afford processing heavily cluttered images (with typically about 300
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clutter segments, compared to only 30 in [4]). Besides, both [4, 11] expect the model to
transform rigidly to the test image, while our method allows for shape variations.

Deformable template matching techniques deform a template shape so as to min-
imize some energy function, e.g. diffusion-snakes [7], elastic matching [5], and ac-
tive shape models [6]. These approaches require rough initialization near the object to
be found. Additionally, several such methods need multiple examples with registered
landmark points [6], and/or do not support scale changes [7]. Chamfer matching meth-
ods [10] can detect shapes in cluttered images, but, as pointed out by [17, 13], they
need a large number of templates to handle shape variations (a thousand in [10]), and
are prone to produce rather high false-positive rates (1-2 per image in [10]). Recently
Berg et al. [3] proposed a powerful point-matching method based on Integer Quadratic
Programming. However, the nature and computational complexity of the optimization
problem require to explicitly set rather low limits on the maximal portion of clutter
points, and on the total number of points considered from the test image (via a sam-
pling scheme). This is not suitable when the objects’ edge points are only a fraction of
the total in the image. Besides, [3] uses real images as models, so it is unclear how it
would perform when given simpler, less informative hand-drawings. The same holds
for [16], whose approach based on edge patches seems unsuited in our setting. Felzen-
szwalb [8] applies Dynamic Programming to find the optimal locations of the vertices
of a polygonal model on a regular image grid. Since the computational complexity is
quadratic in the number of grid points, it is intractable to have a high resolution grid,
which is necessary when the object covers a small portion of the image (while [8] has a
60 x 60 grid, taking 5 minutes, using a 180 x 180 grid would be 81 times slower).

In contrast to previous contributions, our method combines the attractive proper-
ties of dealing with highly cluttered images, allowing for shape variations and large
scale changes, working from a single example, being robust to broken edges, and being
computationally efficient.

3 Early Processing

Detecting and linking edgel-chains. Edgels are detected by the excellent Berkeley nat-
ural boundary detector [15], which was recently successfully applied to object recogni-
tion [3]. Next, edgels are chained and a smoothing spline curve is fit to each edgel-chain,
providing estimates of the edgels’ tangent orientations.

Due to the well-known brittleness of edge detection, a contour is often broken into
several edgel-chains. Besides, the ideal contour might have branchings, which are not
captured by simple edgel-chaining. We counter these issues by /inking edgel-chains: an
edgel-chain ¢, is linked to an edgel-chain c; if any edgel of cs lies within a search area
near an endpoint of ¢; (figure 1). The search area is an isosceles trapezium. The minor
base rests on the endpoint of ¢, and is perpendicular to the curve’s tangent orientation,
while the height points away from c;!. This criterion links c; to edgel-chains lying
in front of one of its endpoints, thereby indicating that it could continue over cy. The
trapezium shape expresses that the uncertainty about the continuation of ¢;’s location
grows with the distance from the breakpoint . Note how c; can link either to an endpoint

! The dimensions of the trapezium are fixed, and the same in all experiments.
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Fig. 1. (a-c) Example links between edgel-chains. (a) Endpoint-to-endpoint link. (b) Tangent-
continuous T-junction link. (c) Tangent-discontinuous link. (d) 8 segments on a bottle-shaped
edgel-chain. (e) A segment (marked with an arc) bridging over link b).

of co, or to an interior edgel. The latter allows to properly deal with T-junctions, as it
records that the curve could continue in two directions (figure 1b). Besides, we point
out that it is not necessary for the end of ¢; to be oriented like the bit of ¢, it links to (as
in figure 1b). Tangent-discontinuous links are also possible (figure Ic).

The edgel-chain links are the backbone structure on which the Contour Segment
Network will be built (section 4).

Contour segments. The elements composing the network are contour segments. These
are obtained by partitioning each edgel-chain into roughly straight segments. Figure 1d
shows the segmentation for a bottle-shaped edgel-chain. In addition to these regular
segments, we also construct segments bridging over tangent-continuous links between
edgel-chains. The idea is to bridge the breaks in the edges, thus recovering useful seg-
ments missed due to the breaks.

4 Building the Contour Segment Network

Equipped with edgel-chain links and contour segments, we are ready to build the im-
age representation which lies at the heart of this paper: the Contour Segment Network
(or just network, for short). To this end, we connect segments along edgel-chains, and
across links between edgel-chains. Thanks to the explicit modeling of the edgel-chains’
interconnections, the network supports robust matching of shapes in cluttered images.

Definitions. Before explaining how to build the network, we give a few definitions.
First, every segment is directed, in that it has a back and a front. This only serves to
differentiate the two endpoints, they have no semantic difference. As a convention, the
front of a segment is followed by the back of the next segment on the edgel-chain.
Second, every edgel-chain link is directed as well: the edgel-chain c;, on which the
trapezium search-area rests, is at the back, while the other edgel-chain cs is at the
front. This also defines the front and back endpoints of a segment bridging between
two edgel-chains. For clarity, we use the word links between edgel-chains, and connec-
tions between segments.

Rules. The network is built by applying the following rules, illustrated in figure 2. These
connect the front of each segment to a set of segments, and its back to another set of
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Fig.2. The six rules to build the Contour Segment Network. They connect (arrows) regular
segments and bridging segments (marked with an arc). Rules 2-6 connect segments over different
edgel-chains c;.

segments. Thus the network structure is unconstrained and its complexity adapts to the
image content.

1. The front of a segment is connected to the back of the next segment on the same
edgel-chain.

2. When two edgel-chains c;, ¢ are linked at endpoints, the segment of ¢; before the
link is connected to the segment of ¢y after the link.

3. Consider a T-junction link (i.e. from an endpoint of ¢; to the interior of c3). The
segment of ¢; before the link is connected to the rwo segments of ¢y with the closest
endpoints. As can be seen in figure 2.3, this records that the contour continues in
both directions.

4. Let s be a segment bridging over a link from ¢; to co. s is connected to the segment
of co coming after its front endpoint, and to the segment of ¢; coming before its
back endpoint.

5. Two bridging segments which have consecutive endpoints on the same edgel-chain
are connected. Here ‘consecutive’ means that no other segment lies inbetween.

6. Consider a bridging segment s without front connection, because it covers the front
edgel-chain ¢y until its end. If ¢, is linked to another edgel-chain c3, then we con-
nect s to the segment of c3 coming after its front endpoint. An analogue rule applies
if s lacks the back connection.

Although they might seem complex at first sight, the above rules are pretty natural. They
connect two segments if the edges provide evidence that they could be connected on an
ideal edge-map, where all edges would be detected and perfectly chained. Notice how
the last three rules, dedicated to bridging segments, create connections analog to those
made by the first three rules for regular segments. Therefore, both types are treated
consistently.

Since each edgel-chain is typically linked to several others, the rules generate a
complex branching structure, a network of connected segments. The systematic con-
nections across different edgel-chains, together with the proper integration of bridging
segments, make the network robust to incomplete or broken edgel-chains, which are
inevitable in real images. Figure 3 shows a segment on a bottle outline, along with all
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Fig.3. Network connectedness. All black segments are connected to .S, up to depth 8. They
include a path around the bottle (thick).

connected segments up to depth 8 (those reachable following up to 8 connections). Al-
though there is no single edgel-chain going all around the bottle, there is a path doing
s0, by spanning several edgel-chains. It is the task of the forthcoming matching stage to
discover such desired paths.

5 Basic Matching

By processing the test image as described before, we obtain its Contour Segment Net-
work. We also segment the contour chains of the model, giving a set of contour segment
chains along the outlines of the object.

The detection problem can now be formulated as finding paths through the net-
work which resemble the model chains. Let’s first consider a subproblem, termed basic
matching: find the path most resembling a model chain, starting from a basis match
between a model segment and a test image segment. However we do not know a priori
where to start from, as the test image is usually covered by a large majority of clutter
segments. Therefore, we apply the basic matching algorithm described in this section,
starting from all pairs of model and test segment with roughly similar orientations. The
resulting paths are then inspected and integrated into full detection hypotheses in the
next section.

We consider the object transformation from the model to the test image to be com-
posed of a global pose change, plus shape variations due to class variability. The pose
change is modeled by a translation t and a scale change o, while class variability is ac-
commodated by a flexible measure of the similarity between configurations of segments.

The basic matching algorithm. The algorithm starts with a basis match between a
model segment b,,, and a test segment b;, and then iteratively matches the other model
segments, thereby tracing out a path in the network. The matched path P initially only
contains {by,, b; }.

1. Compute the scale change o of the basis match.
2. Move to the next model segment m. Points 3-6 will match it to a test segment.
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3. Define a set C of candidate test segments. These are all successors> of the current
test segment in the network, and their successors (figure 4a). Including successors
at depth 2 brings robustness against spurious test segments which might lie along
the desired path.

4. Evaluate the candidates. Each candidate is evaluated according to its orientation
similarity to m, how well it fits in the path P constructed so far, and how strong its
edgels are (more details below).

5. Extend the path. The best candidate cpes; is matched to m and {m, cpest } is added
to P.

6. Update 0. Re-estimate the scale change over P (more details below).

7. Iterate. The algorithm iterates to point 2, until the end of the model segment chain,
or until the path comes to a dead end (C = (). At this point, the algorithm restarts
from the basis match, proceeding in the backward direction, so as to match the
model segments lying before the basis one.

For simplicity, the algorithm is presented above as greedy. In our actual implementa-
tion, we retain the best two candidates, and then evaluate their possible successors. The
candidate with the best sum of its own score and the score of the best successor wins.
As the algorithm looks one step ahead before making a choice, it can find better paths.

Evaluate the candidates. Each candidate test segment ¢ € C is evaluated by the fol-
lowing cost function®

qe = q(m, ¢, P) = wig Dia(m, ¢, P) + wigDia(m, ¢, P) + wo Do (m, c) )

The last term Dg(m, ¢) € [0, 1] measures the difference in orientation between m and
¢, normalized by 7.

The other terms consider the location of ¢ in the context of test segments matched
so far, and compare it to the location of m within the matched model segments. The
first such spatial relation is

1
Dio(m,c,P) = Gl Z Do (7, ct;)
{m;.,t;}eP

the average difference in direction between vectors imm; going from m’s center to the
centers of matched model segments m;, and corresponding vectors ct; going from c
to the matched test segments ¢; (see figure 4d). The second relation is analogous, but
focuses on the distances between segments

1 N —
Di(m,e,P) = ———= > |o|mm| — |||
odm|P| e

where d,,, is the diagonal of the model’s bounding-box, and hence od,,, is a normal-
ization factor adapted to the current scale change estimate o. Thus, all three terms of
function (1) are scale invariant.

2 All segments connected at its free endpoint, i.e. opposite the one connecting to P.
3 In all experiments, the weights are w;, = 0.7, wiq = 0.15,wp = 1 — wyq — wiq = 0.15.
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a b d

Fig.4. Basic matching. (a) Iteration 1: basis segment b, candidates C with g. < 0.3 (black
thin), and best candidate cpest (thick). (b) Matched path P after iteration 4. (¢) Model, with basis
segment b, and segments matched at iteration 1-4 labeled. (d) Example vectors used in D4, Di4.

The proposed cost function grows smoothly as the model transformation departs
from a pure pose change. In particular the D, term captures the structure of the spatial
arrangements, while still allowing for considerable shape variation. Function (1) is low
when c is located and oriented in a similar way as m, in the context of the rest of the
shape matched so far. Hence, it guides the algorithm towards a path of test segments
with an overall shape similar to the model.

Analyzing the values of ¢, over many test cases reveals that for most correct can-
didates g. < 0.15. In order to prevent the algorithm from deviating over a grossly
incorrect path when no plausible candidate is available, we discard all candidates with
g above the loose threshold ¢;;, = 0.3. Hence: C — {c|q. < qn}-

In addition to the geometric quality g. of a retained candidate c, we also consider
its relevance, in terms of the average strength of its edgels 7. € [0, 1]. Hence, we set
the overall cost of ¢ to ¢. - (1 — 57.). Experiments show a marked improvement over
treating edgels as binary features, when consistently exploiting edge strength here and
in the path evaluation score (next section).

Update o. After extending P the scale change o is re-estimated as follows. Let 6,,
be the average distance between pairs of edgels along the model segments, and 6; be
the corresponding distance for the test segments. Then, set 0 = 6‘5—; This estimation
considers the relative locations of the segments, together with their individual transfor-
mations, and is robust to mismatched segments within a correct path (unlike simpler
measures such as deriving o from the bounding-box areas). Thanks to this step, o is
continuously adapted to the growing path of segments, which is useful for computing
D;q when matching segments distant from the basis match. Due to shape variability
and detection inaccuracies, the scale change induced by a single segment holds only
locally.

Properties. The basic matching algorithm has several attractive properties, due to op-
erating on the Contour Segment Network. First and foremost, at every iteration it must
chose among only a few candidates (about 4 on average), because only segments con-
nected to the previous one are considered. Since it meets only few distractors, it is likely
to make the right choices and thus find the object even in substantially cluttered images.
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The systematic exploitation of connectedness is the key driving force of our system. It
keeps the average number of candidates D low, and independent of the total number of
test segments 7. As another consequence, the computational complexity for processing
all basis matches is O(TM Dlog®(M)), with M the number of model segments. In
contrast to “local search” [4] and “interpretation trees” [11], this is linear in T, mak-
ing it possible to process images with a very large number of clutter segments (even
thousands). Second, the spatial relations used in D, D;4 can easily be pre-computed
for all possible segment pairs. During basic matching, evaluating a candidate takes but
a few operations, making the whole algorithm computationally efficient. In our Matlab
implementation, it takes only 10 seconds on average to process the approximately 1000
basis matches occurring when matching a model to a typical test image. Third, thanks
to the careful construction of the network, there is no need for the object contour to be
fully or cleanly detected. Instead, it can be interrupted at several points, short parts can
be missing, and it can be intertwined with clutter contours.

6 Hypothesis Integration

Basic matching produces a large set H = {P;} of matched paths P;, termed hypothe-
ses. Since there are several correct basis matches to start from along the object contour,
there are typically several correct hypotheses on an object instance (figure Sb+c+d). In
this section we group hypotheses likely to belong to the same object instance, and fuse
them in a single integrated hypothesis. This brings two important advantages. First,
hypotheses matching different parts of the same model contour chain, are combined
into a single, more complete contour. The same holds for hypotheses covering different
model chains, which would otherwise remain disjoint (figure 5d). Second, the presence
of (partially) repeated hypotheses is a valuable indication of their correctness (i.e. that
they cover an object instance and not clutter). Since the basic matcher prefers the cor-
rect path over others, it produces similar hypotheses when starting from different points
along a correct path (figure Sb+c). Clutter paths instead, grow much more randomly.
Hence, hypothesis integration can accumulate the evidence brought by overlapping hy-
potheses, thereby separating them better from clutter.

Before proceeding with the hypothesis integration stage, we evaluate the quality of
each hypothesis P € H. Each segment match {m,t} € P is evaluated with respect to
the others using function (1): ¢ (m, ¢, P\{m,t}). Whereas during basic matching only
segments matched before were available as reference, here we evaluate {m, ¢} in the
context of the entire path. The score of {m, t} is now naturally defined by setting the
maximum value g, of ¢ as roof: q;p, — q (m,t, P\{m,t}). Finally, the total score of
‘P is the sum over the component matches’ scores, weighed by their relevance (edgel
strength /)

1
$(P)=— > Vi (an—q(m,t,P\{m,1}))

dih o er

the normalization by - makes ¢ range in [0, | P|]. In order to reduce noise and speedup
. qth, . .
further processing, we discard obvious garbage hypotheses, scoring below a low thresh-

old thh =1.5:H « {P|¢(P) > ¢th}-
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Fig. 5. Hypothesis integration. a) mug model, composed of an outer and an inner chain (hole). b-
d) 3 out of 14 hypotheses in a group. b) and ¢) are very similar, and arise from two different basis
matches along the outer model chain. Instead, d) covers the mug’s hole. ) All 14 hypothesis are
fused into a complete integrated hypothesis. Thanks to evidence accumulation, its score (28.6) is
much higher than that of individual hypotheses (b scores 2.8). Note the important variations of
the mug’s shape w.r.t the model.

Hypothesis integration consists of the following two phases:

Grouping phase.

1. Let A be a graph with nodes the hypotheses 7, and arcs (P;, P;) weighed by the
(in-)compatibility ¢, between the pose transformations of P;, P;: Cim (Pi, Pj) =
$(c(Ps, Pj) + c(Pj, Pi)) , with

c(Pi, Pj) = % - max (Z—;, Z—Z)
The first factor measures the translation mismatch, normalized by the scale change
o, while the second factor accounts for the scale mismatch.

2. Partition A using the Clique Partitioning algorithm proposed by [9]. Each resulting
group contains hypotheses with similar pose transformations. The crux is that a
group contains either hypotheses likely to belong to the same object instance, or
some clutter hypotheses. Mixed groups are rare.

Integration phase. We now combine the hypotheses within each group G C A into a
single integrated hypothesis.

1. Let the central hypothesis P, of G be the one maximizing

o) X [POP

P;e{G\P;}

-6 (Pj)

where | P; () P;| is the number of segment matches present in both P; and P;. The
central hypothesis best combines the features of having a good score and being
similar to the others. Hence, it is the best representative of the group. Note how
the selection of P. is stable w.r.t. fluctuations of the scores, and robust to clutter
hypotheses which occasionally slip into a correct group.

2. Initialize the integrated hypothesis as G;,,; = P, and add the hypothesis B resulting
in the highest combined score ¢(G;y,. ). This means adding the parts of 3 that match
model segments unexplained by G;,,; (figure 5d, with initial G;,,; in 5b). Iteratively
add hypotheses until ¢(G;,,;) increases no further.
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3. Score the integrated hypothesis by taking into account repetitions within the group,
so as to accumulate the evidence for its correctness. ¢(G;y:) is updated by multi-
plying the component matches’ scores by the number of times they are repeated.
Evidence accumulation raises the scores of correct integrated hypotheses, thus im-
proving their separation from false-positives.

In addition to assembling partial hypotheses into complete contours and accumulating
evidence, the hypothesis integration stage also enables the detection of multiple object
instances in the same test image (delivered as separate integrated hypotheses). More-
over, the computational cost is low (1-2 seconds on average).

The integrated hypotheses G;,,; are the final output of the system (called detections).
In case of multiple detections on the same image location, we keep only the one with
the highest score.

7 Results and Conclusions

We present results on detecting five diverse object classes (bottles, swans, mugs, gi-
raffes, apple logos) over 255 test images* covering several kinds of scenes. In total, the
objects appear 289 times, as some images contain multiple instances. As all images are
collected from Google Images and Flickr, they are taken under varying, uncontrolled
conditions. While most are photographs, some paintings, drawings, and computer ren-
derings are included as well. The target objects appear over a wide range of scales.
Between the smallest and the largest detected swan there is a scale factor of 4, while for
the apple logos class, there is a factor of 6. The system is given only a single hand-drawn
example of each class (figure 7, i2-j3), and its parameters are always kept fixed.

Figures 6 and 7 show example detections. In many test cases the object is success-
fully and accurately localized in spite of extensive clutter, and even when it comprises
only a small portion of the image (e.g. bl, b3, el, h2). The dominant presence of clutter
edges is illustrated in a2, b2, c2, with the edge-maps for cases al, b3, c3. The object
contours form only a small minority of all image edges (about 1/30). The capacity of
handling large scale changes is demonstrated in d1 and el, where the mug sizes dif-
fer by a scale factor of 3. Moreover, the individual shapes of the detected objects vary
considerably, and differ from the models, hence showing the system’s tolerance to class
variations. Compare d3 and e2 to the bottle model, or the variations among different
mugs. In d1 we overlay the model after applying the best possible translation and scale.

Five of the six mugs imaged in figure c1 are found by the system, proving its ability
to detect multiple object instances in the same image. As examples of the accuracy of
our method, figures d2 and g2 display the image contours matched to the object for
cases d1, d3, and gl (the other cases are reported as the bounding-boxes of the matched
contours).

We quantitatively assess performance as the number of correct detections (bounding-
box on an instance of the target object class) and false positives (other detections). All
five models have been matched to all 255 test images. The thick curves on plots i2-j3

* The dataset is available on our website: www.vision.ee.ethz.ch/~ferrari
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Fig. 6. Results (first page). See text for discussion.
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Fig.7. Results (second page). See text for discussion.
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depict the percentage of correct detections (detection-rate) versus the incidence of false-
positives (number of false-positives per image FPPI). The system performs well on all
five classes, and achieves a remarkable 82% average detection rate at the moderate rate
of 0.4 FPPI. For a baseline comparison, we processed the dataset also with a simple
Chamfer Matching algorithm®. The model is shifted over the image at several scales,
and the local maxima of the Chamfer distance give detection hypotheses. In case of
multiple overlapping hypotheses, only the strongest one is retained. As the plots show
(thin curves) the Chamfer Matcher performs markedly worse than our approach, and
reaches an average detection-rate of only 39% at 0.4 FPPI. As also pointed out by [13],
the reason is that the Chamfer distance is about as low on clutter edgels areas as it is on
the target object, resulting in many false-positives hardly distinguishable from correct
detections. The problem is particularly outspoken in our setting, where only a single
template shape is given [17]. Our approach instead, is much more distinctive and thus
brings satisfactory performance even in these highly cluttered images.

In conclusion, the experiments confirm the power of the presented approach in deal-
ing with extensive clutter, large scale changes, and intra-class shape variability, while
taking only a single hand-drawn example as input. Moreover, it is robust to discontin-
uous edges, and is computationally efficient (the complexity is linear in the number
of image segments). As one limitation, models cannot self-cross or branch, therefore
excluding some objects (e.g. chairs, text). Nevertheless, every object with a distinctive
silhouette can be modeled by a set of disjoint outlines, even if a detailed drawing would
feature crossing/branchings (e.g. most animals, tools, and logos). Future work aims at
addressing this issue, as well as learning the class variability from a few examples, to
apply it for constraining the matching.
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Abstract. In recent years there has been growing interest in recogni-
tion models using local image features for applications ranging from long
range motion matching to object class recognition systems. Currently,
many state-of-the-art approaches have models involving very restrictive
priors in terms of the number of local features and their spatial relations.
The adoption of such priors in those models are necessary for simplifying
both the learning and inference tasks. Also, most of the state-of-the-art
learning approaches are semi-supervised batch processes, which consid-
erably reduce their suitability in dynamic environments, where unanno-
tated new images are continuously presented to the learning system. In
this work we propose: 1) a new model representation that has a less re-
strictive prior on the geometry and number of local features, where the
geometry of each local feature is influenced by its k closest neighbors
and models may contain hundreds of features; and 2) a novel unsuper-
vised on-line learning algorithm that is capable of estimating the model
parameters efficiently and accurately. We implement a visual class recog-
nition system using the new model and learning method proposed here,
and demonstrate that our system produces competitive classification and
localization results compared to state-of-the-art methods. Moreover, we
show that the learning algorithm is able to model not only classes with
consistent texture (e.g., faces), but also classes with shape only (e.g.,
leaves), classes with a common shape but with a great variability in
terms of internal texture (e.g., cups), and classes of flexible objects (e.g.,
snake).!

1 Introduction

The visual recognition problem is currently one of the most difficult challenges
for the computer vision community. Albeit studied for decades, we are still far
from a solution that is truly generalizable to many types of visual classes. New at-
tention has been devoted to this problem after the influential papers [2, 5], where
their main contribution was a combination of principled probabilistic recognition
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models and (semi-)local image descriptors. The main goal is to represent a visual
class with a generative model comprising both the appearance and spatial distri-
butions of those descriptors. This problem has been aggressively tackled lately,
where the objective is to provide efficient models (in terms of learning and infer-
ence) with good recognition performance [13,14,12,4,10,17,20,21]. Note that
learning is a method to estimate the model parameters, and inference is an ap-
proach to classify a test image as being generated by one of the learned models.

In order to make the problem tractable, most of the current approaches make
the following assumptions: 1) mutual independence of the appearance of parts
given the model; 2) independence of appearance and geometry of parts given the
model; 3) restrictive priors in terms of the geometry and number of parts. It is
worth noting that we assume a model part to be represented by a local feature,
and the geometry of a part to comprise position, scale, and dominant orientation.
The third assumption above has two extremes. One extreme is that the geometry
of parts is independent given the model [10, 21] (see the bag of features model in
Fig. 1), which reduces the number of parameters to estimate during the learning
stage. However, this approach leads to a poor model representation that fails
to incorporate any information on the relative geometry of parts. The other
extreme is to model the joint distribution of the geometry of parts [13] (see
the constellation model in Fig. 1), which produces a rich representation. The
main challenge with the latter model is that the number of parameters grows
exponentially with the number of parts, and learning quickly becomes intractable
even with a relatively small number of parts (e.g., less than 10 parts). It is
unclear what types of visual classes can be effectively represented with such a
small number of parts.

The middle ground between these two extremes has been intensively studied
recently, where the goal is to assume restrictive priors in terms of the geometric
configuration of parts in order to improve the efficiency of inference (i.e., fewer
hypotheses from a test image to evaluate) and learning (i.e., fewer parameters
to estimate). For example, the assumption of a star-shaped [9, 14] or a hierarchi-
cal prior configuration of local features [12,4] (see Fig. 1) reduces the number
of parameters to estimate, and inference takes advantage of the fact that all
these models possess a “special” node (e.g., root in the tree, or center node in
the star-shape model), which serves as a starting point for the formation of hy-
potheses, and consequently reduces the inference complexity. However, it is not
clear what the limitations of those models are in terms of which visual classes
can be represented using such restrictive priors in terms of the geometry of parts.
Also, even though those methods are capable of dealing with more parts, there
is still a limit of 20 to 30 parts, which clearly represents an issue if more complex
classes are to be represented. A notable exception is the hierarchical model [4]
that is able to deal with hundreds of parts, but it assumes an embedded hi-
erarchical model with a small number of nodes, which might impose limits in
the visual classes that can be represented with it. Finally, most of these mod-
els’ parameters are learned using a (semi-)supervised off-line learning approach.
This learning approach decreases the flexibility of those methods in dynamic



Sparse Flexible Models of Local Features 31

M@

a) Constellation [13] ) Star 5hape [9, 14] k fan (k = 2) [9] d) Tree [12]
)
& @
@ ®
@ 2 k=1 k=2
e) Bag of features [10, 21] f) Hierarchy [4] g) Sparse flexible model

Fig. 1. Graphical geometric models of priors. Note that Xi represents a model part.

environments where new unannotated training images are continuously pre-
sented to the learning system.

In this paper we propose: 1) a new model for the visual classification prob-
lem that contains a less restrictive prior on the geometry and number of local
features, where the geometry of each model part depends on the geometry of
its k closest neighbors; and 2) an unsupervised on-line learning algorithm that
is capable of identifying commonalities among input images, forming clusters
of images with similar appearances, and also estimating the model parameters
efficiently and accurately. As commonly assumed in the state-of-the-art works,
we also assume that the appearance and the geometry of parts are indepen-
dent given the model, and that the appearance of parts is mutually independent
given model. The main novelty of our model is a prior based on a semi-full
dependency of the geometry of parts given model (see Fig. 1-(g)). Note from
the graph representing our model that the geometry of each feature depends on
the geometry of its k& neighboring features, where k is a parameter that defines
the degree of connectivity of each part. This prior enables an explicit control on
the connectivity of the parts, and it also allows for the object being modeled to
have (semi-)local rigid deformation within the area covered by the connected fea-
tures, and rigid /non-rigid global deformation. Our objective with this new model
is to extend the types of classes that can be represented with local image fea-
tures since the model can potentially have hundreds of parts, tightly connected
locally, but loosely connected globally.

We implement a new visual class recognition system using this new model
and learning method described above, and demonstrate that our system pro-
duces competitive classification and localization results compared to state-of-
the-art methods using standard databases. Moreover, we show that the learning
algorithm is able to model not only classes with reasonable texture (e.g., faces),
but also classes with shape only (e.g., leaves), classes with a common shape but
with a great variability in terms of internal texture (e.g., cups), and classes of
flexible objects (e.g., snakes).
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2 Local Image Features

A local image feature represents a part in our model, and consists of an image
representation of local spatial support comprising an image region at a selected
scale. In this work we assume that a local feature has appearance and geometry.
The appearance is the image feature extracted from the local region, while the
geometry represents the image position from where it was extracted, the domi-
nant orientation in that image position, and the filter scale used to extract the
image feature. Therefore, a local feature vector f is described as f = [a, g], where
a is the appearance, and g = [x,0, o] is the geometry consisting respectively of
the position x, orientation €, and scale o.

2.1 Correspondence Set

A correspondence set represents a data association between two sets of local
features. Let us say we have a set Fy = {fi,...,fa/} and another set Fp =
{f’h e f'N} An association is a mapping of the M features from set F; to the N
feature of set F». In this work, a correspondence set is denoted as

&= {(fl,f‘c(l))7 ceey (vafc(M))} = {61, ...,eM},

where f; € F, f'c(i) € Fo, and ¢(.) is a mapping function that associates a feature
from F; to Fo. When f; € F; is not paired with any feature from F», then the
correspondence is denoted as (f;, ).

3 Probabilistic Model

Assume that there are C visual classes in the database of models, where each
class w; is represented by a set F; of M features, and also by appearance and
geometry parameters. Also, consider the presence of a class wy that models
general background images. A test image I produces the set Fr of N features.
Then our goal is to first determine the likelihood of the presence of an instance
of class w; in the test image, and then determine the location of each instance.
Hereafter, we refer to the former problem as classification, and the latter as
localization. In order to solve the data association problem, assume that H;; is
the set of all possible correspondence sets from the model features to the test
image features. Thus, each correspondence set & € H;; has size M (i.e., the
number of model features).

The classification of model w; given the features F; extracted from image I
involves the computation of the following ratio:

P(wi|F1) _ P(Frlwi)P(wi)

f= P(wo‘f}) - P(F[‘wo)P(wo). (1)

The prior ratio I;E:J}o)) is assumed to be one, and the likelihood term can be

obtained by marginalizing out the variable &; € H,; that denotes the corre-
spondence set, as follows:
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P(Frlwi) = > P(Fr&ilw)= Y P(Fil&irwi)PEirlws).  (2)

Eir€HGr Eir€Hir

Hence, there can be O(M?Y) different correspondence sets between F; and F.
However, recall that we aim at a rich visual class representation with hundreds
of parts, and possibly thousands of features extracted from a test image, which
makes (2) intractable. Therefore, we have to rely on a heuristic that quickly
identifies a subset of H;; C H;; which contains correspondence sets that have
the potential to lead to a correct correspondence set. Finally, the likelihood ratio
in (1) is then approximated with

P(]'_]‘wi) ~ max P(]:I|5H,wi)P(5H\wi)
P(Frlwo) — &irertir P(F1|&ir,wo)P(Eirlwo)

3)

First let us concentrate on the term P(&;r|w) in the ratio (3) above. Given
the high number of model features, we assume that the prior of having a spe-
cific match in the correspondence set is mutually independent of other matches.

Therefore, we have
M

Pleat) = [T Plee) (4)

Basically, P(e;|w) describes the likelihood of detecting model feature f; in a test
image assuming the presence of model w.
The term P(F;|Eir,w) is computed as follows:

M
P(Fr|&ir,w) H (acjlej,w) | P{&c }i=1..m|Eir,w), (5)
where  P({gc(j) }j=1.m|Eir,w) = P(&can{8e()}j=1..(ar-1) i1, w)---P(&e(1)

|€ir,w), which is the decomposition of the likelihood of feature geometry us-
ing the chain rule of probability. The first term P(a.(;)|e;,w) represents the
likelihood of having the appearance matching between model feature f; and test
image feature f'c(j). The second term P({g.(;)};j=1..m|Eir,w) denotes the likeli-
hood of having a specific joint geometry of model features that were paired to
features in the test image. It is important to mention that the decomposition
can happen in all possible ways, which means that feature f; does not repre-
sent a “special” feature that needs to be found in the test image in order to
find all the other model features. As a result, another possible decomposition
would be P(g.(1)[{&c(j) }j=2..0m, Eir,w)... P(&c(ar)|w). Notice that even though we
decompose this joint distribution, its computation still has a high time complex-
ity. Moreover, this joint distribution would make the model sensitive to non-
rigid deformations. Therefore, in order to solve these two issues, we approximate

P(&cany{8e(j) }i=1..(M—1), Eir, w) to:

P(&c(m)[{&c(j) Fimarg (s (Far ki) Koir (Far s Ky Eir ), w), (6)
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where K;;(far, k, Eir) C &1 returns the correspondences containing the k closest
model features to feature fj; in the geometric space of the model. The parameter
k denotes how sparsely each model feature is connected to its neighbors and is
used to adjust the tradeoff between the richness of representation and the sensi-
tivity of the model to non-rigid deformations. Also the richer the representation
is (i.e., larger k), the higher the complexity of computing (6).

3.1 Probabilistic Correspondence Based on Semi-local Geometric
Coherence

Equation 6 introduces the likelihood of the geometry of the observed test image
feature g.(;) given the geometric information present in the respective k closest
model features to g; in the space of model geometry. Following up on the idea
described in [7], the geometric values of the test image feature fc(z) are predicted
using the following pairwise relations:

1 )0(0) Xelt) = Xe(0)) = 1% = Xo| + (£, ),
(ec(l) - 9(1(0))27‘1’ = (91 - 90)277 + TO(flvfo)a

Oc(l) 7/0c(o) __ 01—0o
Toto) == +rs(f, £,), (7)
_ _Xe() “Xe(o) ‘e o
where n.(j)c0) = T ==co T ()2r € 10,27), and r;(f}, f,) is a Gaussian noise
2

(f;,£,) for i = D,0,S. The predicted geometry
for fc(l), namely [iz(l),éz(l),&z(l)] (see Fig. 2), is computed by combining the
prediction produced by each one of the k model features assuming that: 1) the
variances o2 (fj, f,) are pairwise independent, and 2) the prediction produced by
each correspondence is weighted by 1) the distance between these two features
in the model space.

Therefore, the likelihood in Eq. 6 can be written as:

with zero mean and variance o;

9([Xe(ary, Ociary, oean)” = (X5 anys O anys Taan) s Z), (8)

Model w; Test Image I

{Aclual position of f .4

predicted location
~

{ Uncertainty in the
of fe)

Fig. 2. Example of position prediction. Given the set of model features {fi};c(1 2343,
suppose we want to estimate the position of test image feature f'c(4). The probable
location of the feature (represented by an ellipsoid) is based on a Gaussian distribution
computed using the position of the correspondences in the test and model images and
the pairwise variances a%(fl, f,) estimated in the learning stage.
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where ¢(.) is the Gaussian function with zero mean, and X; is the weighted
covariance computed with the k pairwise variances.

There are two important issues to mention in the computation above. The
first issue is the computation of the likelihood of the first match in the corre-
spondence set, which is calculated as P(g1 |/ (f1,k,Eir), w) = % %m,
where 27 represents the range of orientation, A is the area of the image in the
original image resolution, and (omax — omin) denotes the range of scales that
the image has been processed. The second issue is the computation of the geom-
etry likelihood assuming the model wg. Here we assume that, conditioned on
the model wy, the likelihood of finding a feature with some specific geometry
is independent and uniformly distributed, as follows P({g;};=1.m|Eir,wo) =
MLl 1

27 A {omax—omin)
3.2 Probabilistic Correspondences Based on Feature Appearance

The probability of the appearance match between model feature f; and test fea-
ture f'c(j) is denoted in (5) by P(a.(;)|ej,w). According to [8], the distribution
of feature similarities between f; and f'c(j) can be adequately approximated with
a beta distribution for the cases where this correspondence represents either a
correct or a false matching. The beta distribution, denoted as Pg(x;a,b), is de-
fined in terms of two parameters a and b. The parameters ao, and by, will be
learned for each feature f; belonging to the model w; to explain the observed
distribution of feature similarity values given a correct correspondence, and the
parameters aog and bog will be learned for the distribution of similarities given
a false correspondence. Hence, given the features f; and f'c(j), and their simi-
larity denoted by s(fjfc(j)) € [0,1), the likelihood of having correct and false
appearance correspondences are respectively computed with:

P(a,jlej,wi) = Ps(s(f, f(j))i aon(£)), bon (£7)),
P(aclej,wo) = Po(s(f), fo(j)); aom (£5), bost (£5))- 9)

Finally, recall from Sec. 2.1 that a model feature can remain unmatched. In
this case, the term P(e;|lw) in (4), which denotes the probability of detecting
model feature f;, works as a penalizing factor. That is, when e; = (f;,0), then
P((f;,0)|w) equals one minus the probability of detecting f; [8].

4 Matching

The basic matching process consists of finding an initial correspondence set, and
iteratively searching for additional correspondences assuming that the previous
matches are correct. This process iterates as long as there are still model features
available to match test image features. This matching process is not restricted
to work with a single type of local feature. As exemplified in [14], this helps
in the representation of different types of visual classes. Here, our model uses
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the following two different types of local image features: SIFT [18], and the
multi-scale phase feature [6].

Assuming that the parameters of the distributions above have been learned
(see Sec. b), the matching process selects correspondence sets that produce a
ratio R > 7R, where 7 is an arbitrary constant (note that we can have more
than one correct correspondence set, which means that several classes can be
detected in the same test image and also multiple instances of the same class
can also be detected in one test image). As explained in Sec. 3, the exhaustive
search of correspondence sets is intractable, so we rely on certain heuristics for
the matching process. We start the matching process with a nearest neighbor
search, which bullds the following correspondence set: & = {(f;,f.;))If; €
Fz,fc(j e Fr,s ( J c(j ) > 715, 03f, € F; st (fkafc(])) (f],fc(]))}, where
s(.) € [0, 1) represents the similarity between two features, and 7 is an arbitrary
threshold (here 7, = 0.6 for the phase feature and 7, = 0.55 for SIFT, where
the similarity measure for SIFT is normalized to be between 0 and 1). The
next step comprises a feature clustering step, which assumes that the model
suffered a specific type of spatial distortion and groups correspondences that
move coherently according to that distortion type. This clustering process can
assume rigid distortions (e.g., [18]) or non-rigid ones (e.g., [7,16]). Similarly
o [15,19,10], our method does not rely heavily on this initial set of matches
produced by the grouping algorithm. In fact, these initial groups are useful as
initial guesses for the matching algorithm. Moreover, it does not matter whether
this initial grouping is robust to non-rigid deformations since the model, in the
process of expanding its correspondence set, is robust to non-rigid deformation
because it depends more on nearby features than on far away features for the
semi-local coherence presented in Sec. 3.1. Therefore, we adopt a simple Hough
clustering approach with a restrictive rigid model (i.e., the bins in the Hough
transform space are relatively small) that makes it extremely robust to outliers
in the group, but sensitive to non-rigid deformations (see [7]). Specifically, for
Hough clustering we used the following bin sizes: 5° for rotation, factor of 2
for scale, and 0.05 times the maximum model diameter for translation. This
restrictiveness results in a high number of groups, with each one having just a
few correspondences.

4.1 Expanding the Correspondence Set

Given the groups built by the nearest neighbor search and clustering scheme,
the expansion of each group is based on the following algorithm:

Algorithm 1 (Matching). Assuming that G groups have been formed by the
clustering process, where each group is denoted as EJ;, the process of expanding
this initial correspondence set is based on the following steps:

1. For each set g € {1,...,G}, do
(a) Select the closest model feature f; to any of the model features in EF,

j = ar —x _
J g(f 67-1) (eﬁgq {II= X;j l”}elesfl
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(b) Select the the next correspondence to include in E; according to c(j) =

o EFT P(f’c(j)|gfpwi) (see Eq. 5). Note that this computation
does not have to be run over all test image features, since only a very
small percentage of test image features lie sufficiently close to the pre-
dicted position, orientation, and scale of model feature £;;

(c) If P(ac(jlej, wi) P(&ej) {8} j=1...(j—1), €, wi) Plejlwi) > 7p (here, 7p is
dynamically determined based on the appearance parameters of the fea-
ture in 9 and the pairwise variances in (7), then include the correspon-
dence (f.(;).£;) in €, else include (0,1;) in E;

(d) Return to step 1 above until all model features are included in EY;.

arg max;
c

An example of the matching between two images containing faces (of different
people) is shown in Fig. 3. Note that the matching algorithm tends to expand sig-
nificantly the initial set ¢ € {1,..,G} when it contains correct
correspondences.

Step 1(a) has complexity O(M) if performed with linear search, where M
is the number of model features. However, approximate nearest-neighbor search
algorithms [3] can find the nearest neighbor with high probability (which is
sufficient for our purposes) in O(log(M)) time. Both the number of groups to
try, G, and the number of test features to consider in step 1(b), K, are bounded
by constants. Therefore, the complexity of the Alg. 1is O(M log(M)). Recall that
the models leading to the most efficient matching procedures in the literature
are the k-fans [9] and the star shape [14]. The former method has complexity

c) Initial £7, d) Final £%,

Fig. 3. Matching a pair of images using Algorithm 1. The first column shows the initial
group from the heuristic based on nearest neighbor and Hough clustering. The next
column illustrates the final group after the process of expanding this initial group. The
group in the first row is a correct match that can be considerably expanded, while the
second row shows a false initial match. The octagonal shaped features represent the
multi-scale phase feature [6], and the square shaped features represent SIFT [18]. The
white line connecting features from the left to the right image shows the correspon-
dence.
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O(MH), where H is the total number of places in the image, where H >> M,
and K >= 1. The latter method has complexity O(N M), where N is the number
of parts detected in an image, so N > M. Hence, both methods would be
intractable for large values of M such as those used in our experiments.

5 Learning

In this section we describe the process of learning the following model parame-
ters:

— For each model feature f; € F; it is necessary to learn
e the parameters of the feature conditional similarity distribution given w;
(i.e., aon(f;) and bon(f;)) and wo (i-e., aos(f;) and bog(f;)),
o the probability of feature detection given w; and wy: P(ej|w;), and P(e;
|wo), respectively.
— For each pair of model features f; and f,, it is necessary to learn
e the variance of the Gaussian noise affecting the distance, main orienta-
tion, and scale between f; and f, (see Eq. 7): 0% (f;,£,), 05(f,£,), and
o%(f;,£,), respectively.

In the literature, the process of learning model parameters similar to the
above consists of, first, clustering features in the feature space (either manually
[12], or automatically [13]), and then, estimating the local feature and spatial
parameters based on maximum likelihood estimation. The main issue involved
in those learning methods is that the parameter estimation relies on gradient
descent algorithms that are fragile in the presence of a high number of parameters
since it can easily get stuck in local minima, which imposes very restrictive limits
in the number of parts present in a model. Also, the time and size of training
data required for this estimation grows quickly (e.g., exponential in [13]) in terms
of the number of parameters. Therefore, weakly connected models (e.g., the star-
shaped, or the hierarchical model) have been proposed in order to allow for faster
and more reliable learning methods with fewer degrees of freedom. Nevertheless,
if the number of parts exceeds say 20 parts, learning is usually intractable.

In this work, we propose the following unsupervised learning algorithm, where
the main idea is to build correspondence sets between pairs of images and to
cluster images that have strong correspondences.

Algorithm 2 (Learning). Consider a database of models §2 that is initially
empty, and for each mew training image I that is presented to the system, we
have the following steps:

1. For each w; € 12,
(a) Run the matching Algorithm 1 to find an instance of w; in I, and select
the correspondence set that mazximizes the following ratio:

P(F|E7, wi) P(EY |wy)
&l = arg max il il
7 s PG, wo) PG wo)
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(b) If the number of matched features in £ exceeds T¢ (i.e., correspondences
(fj,fc(j)) € &, such that f'c(j) # 0; here ¢ = 30) then update model
w; using the correspondence set £, as the initial guess for matching the
image I to each image included in model w; using the matching Algo-
rithm 1.

2. If the image I failed to match any model w; € (2, then form a new model
containing all image features and default values for the model parameters.

3. For every model w; € §2, build a graph, where each node represents an image
present in w;, and the edges between nodes have weights proportional to the
number of non-empty correspondences found between these two images, and
then run a connected component analysis so that the initial model can be
split into tightly connected groups of images.

4. Search for common images present in two distinct models, say w; andw; € §2.
If a common image is found between a pair of models, then check for common
features in this image that is present both models, and based on that, join the
two models into one single model.

The output of this learning algorithm is a database of models, where each model
consists of the images clustered together, the correspondence sets formed be-
tween pairs of model images, the features found in those sets, and the appearance
and geometric parameters. In order to learn the parameters of the feature con-
ditional similarity distribution given w; (i.e., aon(f;) and bon(f;)), we build the

Leaf

Fig. 4. Illustration of the correspondence sets between two pairs of images for each
model. Note that each correspondence set between two images of the same model is
shown in a single cell, where the arrangement of the features in the top image must
find a similar structure in the bottom image.
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histogram of feature similarities of each model feature and, assuming a beta dis-
tribution (Sec. 3.2), estimate its parameters [8]. The distribution given wy (i.e.,
aor (f5) and bog(f;)) is then estimated computing the similarities between the
model feature and the closest 20 background features (in the feature space)[8].
Note that the background features are extracted from 100 random images (see
[8] for more details). The probability of feature detection given w; is computed
with the detection rate of each model feature in w;, and the detection given wy is
the probability of detecting a feature in any image (this is done by computing the
detection rate of any feature in the database of random images). The variance of
the Gaussian noise affecting the distance, main orientation, and scale between
pairs of model feature is computed using the correspondence sets in the model
w;. Finally, it is important to mention that the user has to specify the upper
bound of the total number of features to be included in the model. Defining this
upper bound on the number of model features is important in order to limit the
computational complexity of the matching as defined in Sec. 4.1. Note that the
model can have any number of features as long as this number is smaller than
this user defined upper-bound. Whenever the learner has to eliminate features, it
resorts to the classification based on the appearance statistics of the feature [8].

Our learning algorithm is used to build the models of the following data-
bases: a) faces [13] (526 images), b) leaves [1] (186 images), ¢) mugs (74 images),
and d) snake of cans [7] (40 images). For each database, we randomly selected
half of the images for training, and the remaining images are used for testing.
Fig. 4 shows two examples of matchings between pair of images present in each
model.

6 Experimental Results

In this section we show the performance or our recognition system for the clas-
sification and localization problems.

6.1 Classification

Following [11], for each of the four object classes we use our recognition system
to predict the presence/absence of at least one object of that class in a test
image. The output of the classifier is the ratio (1) that represents the confidence
of the object’s presence so that a receiver operating curve (ROC) curve can be
drawn. Note that we use the database of background images from [1] to draw
the ROC curve.

In our first experiment, we show the ROC curves for each of the models in the
database, and some examples of matchings (see Fig. 5). The database of faces
is used in order to compare with the state-of-the-art methods in the literature.
In this database, under similar experimental conditions, we get an equal error
rate (EER) of 98.2% (recall that EER is the point at which the true positive
rate equals one minus the false positive rate). The Face model in this experiment
contains 3000 features and connectivity k& = 20. This represents a competitive
result compared to the EER=96.4% in [13] and of 98.2% in [9]. The EER is a
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Fig. 5. Two examples of correspondence sets found in test images and the ROC curve
for each model
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Fig. 6. EER versus number of training features and k for the Face database
function of the following two things (see Fig. 6): a) number of features present

in the model, and b) connectivity k. The number of features in the model can be
reduced by selecting a subset of the model features that are robust and detectable
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under model deformations, and distinctive (for details see [8]). Usually, the EER
improves with the number of model features until it reaches a point of saturation,
where more features do not improve the performance, but worsen the efficiency
of the system. Moreover, higher k also improves the richness of the representation
(i.e., better EER), but reduces the system’s efficiency. Finally, EER was 92.1%
for the Leaf database, and 100% for the Mug and Can Snake databases.

6.2 Localization

We also use the experimental conditions described in [11] to illustrate the local-
ization results. For each class, the task of our classifier is to predict the bounding
box of each object in a test image. Each bounding box produced by our system
is associated with a detection ratio (1) so that a precision/recall curve can be
drawn. To be considered a correct localization, the area of overlap between the
predicted bounding box B, and ground truth bounding box By; must exceed

. area(ByNBgt)
P% by the formula: WZUBM.

the four classes in Fig. 7 for P = 50% and P = 25%. The main conclusion from
these graphs is that our system is able to correctly localize the object in the
image, but the bounding box formed by position of the local features present in
the correspondence set tends to occupy a relatively small portion of the ground
truth.

We show the precision recall curves for each of

7 Conclusions

We have shown that it is possible to efficiently derive object class models con-
taining hundreds of features by allowing each feature to depend on only its &
closest neighbors. This has the additional advantage that it can represent flexi-
ble objects in a natural way because their local geometry is often more tightly
constrained than their global geometry. Our novel on-line learning algorithm is
able to cluster images with similar appearance, identify consistent subsets of
features, and efficiently estimate their model parameters. Experimental results
show that this approach can be applied across a variety of object classes, even
if they are defined by only a small subset of shared features.
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