
E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 25 – 36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Classification-Rule Pruning Procedure for an Ant
Colony Algorithm

Allen Chan and Alex Freitas

Computing Laboratory, University of Kent,
Canterbury, CT2 7NF, UK

{ac207, A.A.Freitas}@kent.ac.uk

Abstract. This work proposes a new rule pruning procedure for Ant-Miner, an
Ant Colony algorithm that discovers classification rules in the context of data
mining. The performance of Ant-Miner with the new pruning procedure is
evaluated and compared with the performance of the original Ant-Miner across
several datasets. The results show that the new pruning procedure has a mixed
effect on the performance of Ant-Miner. On one hand, overall it tends to
decrease the classification accuracy more often than it improves it. On the other
hand, the new pruning procedure in general leads to the discovery of
classification rules that are considerably shorter, and so simpler (more easily
interpretable by the users) than the rules discovered by the original Ant-Miner.

1 Introduction

Ant-Miner [3] is an Ant Colony algorithm that discovers classification rules in the
context of data mining. The basic goal of data mining is to extract, from data,
knowledge that is not only accurate but also comprehensible to the user [9], [5].
Knowledge comprehensibility is important because in many applications of data
mining the user should validate and interpret discovered knowledge, rather than
blindly trust the result provided by an algorithm. A typical example of an application
where rule comprehensibility is crucial is medical diagnosis, where rules suggesting a
diagnosis for a patient must be interpreted and validated by a medical doctor.

Ant-Miner has been shown to be competitive with a well-known classification
algorithm in [3], in experiments across several datasets. However, those experiments
did not involve datasets with a large number of attributes, where the rule pruning
procedure of Ant-Miner tends to be very time consuming. In order to improve Ant-
Miner’s scalability to data sets with a larger number of attributes, this paper proposes
a faster rule pruning procedure for Ant-Miner. The proposed procedure is essentially a
hybrid pruning procedure. It combines Ant-Miner’s original pruner with a faster
pruning based on the information gain of individual attributes. (See [5] for a review of
information gain in general.) The basic idea is that, if the candidate rule to be pruned
is a long one, instead of applying Ant-Miner’s original pruner the algorithm first
applies the faster information gain-based pruner, as a first step to reduce the rule
length. In terms of computational cost, this first step “comes for free”, since the
required value of the information gain is already computed by another procedure of
Ant-Miner. Once the rule has been so reduced, Ant-Miner’s original pruner – slower
but more effective – can be applied to the rule, further reducing its length.

26 A. Chan and A. Freitas

The proposed hybrid rule pruner is evaluated across several datasets, most of them
with more than 100 attributes. The results are evaluated with respect to the
classification accuracy and the comprehensibility of the discovered rules.

The remainder of this paper is organized as follows. Section 2 reviews the Ant-
Miner algorithm. Section 3 describes the proposed hybrid rule pruner. Section 4
reports the results of computational experiments, and section 5 concludes the paper.

2 The Original Ant-Miner Classification Algorithm

A single ant within a colony is normally seen as a highly unintelligent individual, but
collectively, as a colony, ants exhibit what is known as swarm intelligence. While
ants forage for a food source they deposit on their paths a certain amount of
pheromone, a chemical substance to which other ants are attracted. It turns out that
over time shorter routes between two points (such as the colony’s nest and some food
source) will have more pheromone than longer routes, because in a fixed period of
time there will be more ants completing a shorter path than a longer path. When
selecting between multiple paths, ants will in general be attracted to those paths with
the highest concentration of pheromone. As a result, the ants will in general prefer to
follow the shortest route within a network of paths, which will further increase the
concentration of pheromones in the shortest path, attracting more ants to that path.
Therefore, over time ants will converge and follow the shortest route within a network
of paths. This has been shown by experiments performed by Deneubourg et al. [2].

Dorigo et al, inspired by this interesting behaviour of ant colonies, first developed
Ant Colony Optimization (ACO) to solve difficult combinatorial optimization
problems like the classic travelling salesman problem [1], [8]. This idea was then
taken from solving optimization problems and applied in the field of data mining for
discovering classification rules. The Ant-Miner algorithm, developed by Parpinelli et
al. [3], is an adaptation of the ACO paradigm especially for the classification task of
data mining. The algorithm implements the basic idea of awarding the best attributes
(used by the ants to construct the best rules) with pheromone, which increases the
probability of those attributes being selected by the next ants to construct other rules.
A simple high-level pseudocode of Ant-Miner is shown in Pseudocode 1, adapted
from [7]. A more detailed description of Ant-Miner can be found in [3].

The Ant-Miner algorithm uses a sequential covering approach to discover a list of
classification rules which will cover all or most of all the examples in the training set.
Rules discovered are in the form of: IF <term1> AND … AND <term-n> THEN
<class>. Each term takes the form <attribute=value>, where value belongs to the
domain of the attribute. The training set holds examples that are used for discovering
a list of classification rules. The discovered rule list is empty to start with. Every
iteration of the outer REPEAT-UNTIL loop of Pseudocode 1 discovers one
classification rule and adds it to the list of discovered rules. Each iteration of the inner
REPEAT-UNTIL loop corresponds to the trail of an ant that constructs one candidate
rule. At the end of the inner REPEAT-UNTIL loop, the best rule from the set of rules
constructed by all ants (i.e., in all iterations of the inner REPEAT-UNTIL loop) is
added to the discovered rule list. Examples correctly covered by this rule are removed
from the training set before the next iteration of the outer REPEAT-UNTIL loop
begins to discover the next rule. (An example is correctly covered by a rule if the
example satisfies all conditions of the rule and it has the class predicted by the rule.)

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 27

The first procedure of the inner REPEAT-UNTIL loop consists of incrementally
constructing a candidate rule. This procedure starts with an empty rule and then adds
one term at a time to the current rule. This incremental rule construction will
terminate when one of the following two stopping criteria is met: any term added to
the current rule would make the rule cover a number of examples less than a user
specified threshold, or when all attributes have already been used in the current rule
being generated, so that no other attribute is available. (A rule cannot have two
occurrences of the same attribute, because this would lead to invalid rules such as “IF
<gender = male> AND <gender = female>…”.)

The inner REPEAT-UNTIL loop will terminate when one of two stopping criteria
is met: the number of constructed rules is equal or greater than the maximum number
of ants specified by the user, or the rule constructed by an ant is exactly the same as
the rule constructed by the a certain number of previous ants. The latter criterion is
checked via a convergence test. These stopping criteria are controlled by parameters,
which are discussed in detail in [3]. Finally, the outer REPEAT-UNTIL loop
terminates when the number of examples in the training set becomes lower than a
predefined threshold.

TrainingSet = {all training examples};
DiscoveredRuleList = {} /* initialized with empty list */
REPEAT
 Initialize all trails with the same amount of
 pheromone;
 REPEAT
 An ant incrementally constructs a
 candidate classification rule;
 Prune the just-constructed rule;
 Update the pheromone of all trails;
 UNTIL (stopping criteria)
 Choose the best rule out of all candidate
 rules constructed by all ants;
 Add the best rule to DiscoveredRuleList;
 TrainingSet = TrainingSet – {examples correctly
 covered by best rule};
UNTIL (stopping criteria)

Pseudocode 1. A high-level description of the original Ant-Miner

For the purpose of this paper, the most important part of Ant-Miner is its rule
pruning procedure. This procedure is computationally expensive and it can be
considered the bottleneck of the algorithm with respect to processing time and
scalability to large data sets, as discussed in the next section.

3 Extending Ant-Miner with a Faster Rule Pruning Procedure

3.1 The Motivation for Rule Pruning

Rule pruning is a commonplace data mining technique, used in the vast majority of
rule induction algorithms [5]. Pruning can improve the quality of a rule by removing

28 A. Chan and A. Freitas

irrelevant terms from the rule antecedent. As a result, pruning can improve both the
predictive accuracy and the comprehensibility of the rule.

It should be noted that Ant-Miner, like the majority of rule induction algorithms,
can potentially discover rules with a long rule antecedent (with many terms),
hindering the comprehensibility of the rule. Indeed, rules take the form of IF
<antecedent> THEN <consequent> where the rule antecedent is a conjunction of n
terms, where the value of n can potentially be close to the total number of attributes in
the dataset. This means that a rule can become too long for a user to be able to
interpret it. Hence, there is a preference for shorter, more comprehensible rules.

3.2 Ant-Miner's Original Rule Pruner

Ant-Miner’s original rule pruner takes a freshly generated rule by the current ant and
tries to improve its quality (measured by the rule’s predictive accuracy), by removing
irrelevant terms from the rule antecedent. This is done by iteratively removing one
term at a time while it improves on the rule’s quality. This iterative process stops
when no term removal will further increase the quality of the current rule undergoing
pruning. The entire rule pruning process is described in Pseudocode 2.

Execute_pruning = true;
WHILE (Execute_pruning = true) AND
 (Number of terms in current rule antecedent > 1)
 FOR EACH (term ti in the current rule to be pruned)
 Temporarily remove ti and assign to
 the rule consequent the most frequent class among
 the examples covered by the rule antecedent;
 Evaluate rule quality;
 Reinstate term ti in rule antecedent;
 END FOR
 IF (rule quality was improved w.r.t. original rule’s
 Quality in some iteration of the FOR loop) THEN
 Remove permanently the term whose removal improves
 current rule most;
 ELSE
 Execute_pruning = false;
 END IF-THEN-ELSE
END WHILE

Pseudocode 2. A high-level description of Ant-Miner's original rule pruner

Initial experiments conducted by Parpinelli et al. [3] showed that Ant-Miner
produces rules that have a good predictive accuracy and are relatively short on average.
However, that work also presented an analysis of computational time complexity
showing that rule pruning is the most time consuming part of the algorithm, and that
the time taken by Ant-Miner’s rule pruner is quite sensitive to the number of attributes
in the data being mined. This is due to the fact that the larger the number of attributes
in the data being mined, in general the larger the number of terms in a constructed rule
before pruning, and so the larger the number of iterations in the loops of Pseudocode 2.
In each iteration of the FOR EACH loop a term is temporarily removed and the quality
of the reduced candidate rule has to be computed by formula (1).

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 29

Rule Quality = Sensitivity × Specificity = (TP / (TP+FN)) × (TN / (TN+FP)) (1)

where:

• TP (true positives) is the number of examples that are covered by the rule
and have the same class as predicted by the rule;

• FP (false positives) is the number of examples that are covered by the rule
and have a class different from the class predicted by the rule;

• TN (true negatives) is the number of examples that are not covered by rule
and have a class different from the class predicted by the rule;

• FN (false negatives) is the number of examples that are not covered by the
rule but have the same class as predicted by the rule.

The computation of formula (1) is computationally expensive because it requires
scanning the entire current training set in order to compute the values of TP, FP, TN
and FN. For rules generated with a small number of terms in its antecedent, the
pruning method shown in Pseudocode 2 is relatively quick, as there are not a large
number of terms to temporarily remove and evaluate rule quality. But for rule
antecedents containing a large number of terms, this type of pruning is very
computationally expensive. This is because the WHILE loop of the Pseudocode 2 is
potentially performed a large number of times (in the worse case the number of terms
in the original rule), each iteration of the while loop involves a FOR EACH loop over
all current terms in the rule, and each FOR EACH iteration involves a scan of the
training set.

It should be noted that the computational time taken by Ant-Miner was not a
significant problem in the experiments reported by Parpinelli et al. for the following
reason: those experiments involved datasets where the number of attributes was not
very large. However, in addition to the previously-mentioned theoretical analysis of
the computational time complexity of Ant-Miner identifying the rule pruner as the
bottleneck of the algorithm [3], there is empirical evidence that the computational
time taken by Ant-Miner becomes very long when the data being mined contains a
large number of attributes. This empirical evidence consists of recent experiments
trying to apply Ant-Miner to a large bioinformatics data set containing 33,079
examples and 854 attributes [10]. In that project Ant-Miner turned out to be so slow
that it was not viable to use it to discover classification rules, and a much faster hybrid
ACO/PSO (Particle Swarm Optimization) algorithm was developed and used instead.
To quote [10]: “…the unusually large amount of attributes and classes associated with
this problem mean an extremely large amount of computation time is required [by
Ant-Miner].” Therefore, there is a clear motivation for developing a considerably
faster rule pruning procedure for Ant-Miner and investigate its performance, which is
the focus of the remainder of the paper.

3.3 Proposed Hybrid Rule Pruner for Ant-Miner

After an analysis of Ant Miner’s original rule pruner, the following is a proposal to a
new hybrid rule pruner, combining the original Ant-Miner’s rule pruner with a rule
pruner based on information gain – the latter somewhat inspired by the rule pruner
proposed in [4]. (For a review of information gain in general, see [5].)

30 A. Chan and A. Freitas

INPUT:

a) information gain of all terms individually,
calculated using the entire current training set;
/* previously done by another procedure of Ant Miner */

b) value of r /* user-defined parameter: number of terms
in the current rule which will be given to Ant-Miner’s
original rule pruner */

Reduced_rule = {};
Num_terms_selected = 0;
IF (number of terms in current rule’s antecedent > r)
THEN
 WHILE (Num_terms_selected < r)
 FOR EACH (term ti in current rule’s antecedent)
 Calculate probability of selecting a term ti as:

prob(ti)= InfoGain(ti)
 T∑i=1(InfoGain(ti))

 /*T = number of terms in the rule antecedent */
 END FOR
 Create roulette wheel for selection and select one
 Term, called selected_term, by spinning the wheel;
 Reduced_rule = Reduced_rule ∪ selected_term;
 Remove selected_term from current rule’s antecedent
 to avoid reselection;
 Num_terms_selected = Num_terms_selected + 1;
 END WHILE
 Assign to the consequent of the Reduced_rule the most
 frequent class among all examples covered by the rule;
 Run Ant-Miner’s original rule pruner on Reduced_rule;
ELSE

 Run Ant-Miner’s original rule pruner on current rule;
END IF-THEN-ELSE

Pseudocode 3. A high-level description of the proposed hybrid rule pruner

First of all, the motivation for this new hybrid rule pruner is to significantly reduce
the computational time taken by Ant-Miner, and hopefully do it without unduly
reducing the accuracy of the discovered rules, by comparison with the original Ant-
Miner. In other words, the basic idea is to combine the effectiveness of the original
Ant-Miner pruner (in terms of maximizing predictive accuracy) with the speed of a
rule pruner based on information gain. This latter is very fast, because it does not
require any scan of the training set, as explained below.

The way this hybrid rule pruner functions is described in Pseudocode 3. The
information gain of each term has already been computed by Ant-Miner – in order to
compute the values of the heuristic function [3], and is re-used in this hybrid
procedure. The parameter r represents the number of terms in the rule antecedent that
will be subject to the original Ant-Miner’s rule pruner.

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 31

As shown in Pseudocode 3, the hybrid pruner selects r terms, out of all the terms in
the current rule, before applying Ant-Miner’s original rule pruner. If the number of
terms in the rule antecedent of a freshly generated rule exceeds the value of r, the rule
first undergoes reduction of the number of terms to the value of parameter r. This
reduction is obtained as follows. For each term within the rule antecedent, the rule
pruner computes a measure of the probability of selecting that term. This probability
measure is based on the pre-computed value of that term’s information gain with
respect to the class attribute. Then the rule pruner selects r number of terms using the
roulette wheel selection technique (commonplace in genetic algorithms), with the
probability of selecting each term proportional to the information gain of that term.
Once r terms have been selected by spinning the roulette wheel r times, the resulting
reduced rule is placed back into Ant-Miner’s original rule pruner.

If the original rule does not contain a number of terms in its rule antecedent
exceeding the value of r parameter, then it gets placed straight into Ant-Miner’s
original rule pruner, with no need to apply the information gain-based pruning.

Intuitively it is difficult to specify an ideal value for parameter r, since the best
value of this parameter tends to be dataset-dependent. Therefore we have conducted
experiments to investigate the influence of different values of this parameter in the
performance of the proposed hybrid rule pruner, as discussed in the next section.

4 Computational Results

4.1 Experimental Setup and Datasets Used in the Experiments

As discussed earlier, the proposed hybrid rule pruner has a parameter, r, which can
have a significant influence in the performance of Ant-Miner. To investigate this
issue, we conducted experiments with different values of r, varying from 3 to 10.
These experiments have two main goals. First, evaluating how sensitive the
performance of Ant-Miner with the hybrid pruner is with respect to different values of
the parameter r. Second, comparing the performance of the hybrid rule pruner with
the performance of the original Ant-Miner’s rule pruner.

The experiments used mainly 5 datasets – as summarised in Table 1, detailing key
statistics (the number of examples, attributes and classes) for each dataset. The Chess
and the House-votes datasets have been taken from the well-known UCI Machine
Learning dataset repository – see [6] for details about these data sets. They have a
small number of attributes, and were included in the experiments as control datasets.
By contrast, the three Web-mining datasets are more challenging, because they have a
considerably larger number of attributes, varying from 159 to 339. In addition, note
that these data sets are very “sparse”, in the sense that the number of examples is even
smaller than the number of attributes. (Such challenging datasets are commonplace in
text/web mining and bioinformatics applications, and therefore it is important to
investigate the performance of Ant-Miner in this kind of very sparse dataset.)

In the Web-mining datasets, each example is a web page, and the goal is to classify
each example into one of three classes: ‘Technology’, ‘Sport’ and ‘Education’. These
classes represent the general subject of the web page. These datasets were harvested
from a small selection of BBC and Yahoo web pages relating to the above named
subjects. All attributes within these datasets are binary, where each attribute denotes
whether or not a given word occurs in a given web page (example). These datasets

32 A. Chan and A. Freitas

have been collected by and previously been experimented with Ant-Miner by Holden
& Freitas [7].

In addition to the above datasets, we also did experiments with 2 bioinformatics
datasets using a single value of r. Both datasets have 1872 examples (proteins) and
the same values of 102 binary predictor attributes. Each attribute indicates whether or
not a protein has a given Prosite pattern. The datasets differ in the class to be
predicted: whether or not a protein is involved in DNA repair (first dataset) or in
DNA damage (second dataset). The creation of these datasets is explained in [11].

Table 1. Summarized details of the 5 main datasets used in the experiments

Dataset No. of examples No. of attributes No. of classes

Chess 3196 36 2

House-votes-84 434 16 2

Web-mining 1 124 159 3

Web-mining 2 124 293 3

Web-mining 3 124 339 3

Ant-Miner takes on several parameters besides the one we have discussed for the
hybrid pruning procedure. The values of all those other parameters were maintained at
their default values, specified in [3].

All the experiments were conducted using a stratified 5-fold cross validation
procedure [5]. In essence, the dataset was partitioned into five folds with each fold
retaining as closely as possible the class distribution of the whole dataset being
mined. Each version of Ant-Miner (with original pruner and with the new hybrid
pruner) is then run 5 times. In these runs, each fold was used four times as the training
set and once as a test set. All results reported in this paper were averaged over the five
iterations of the cross validation procedure.

4.2 Results on Classification Accuracy

Reported in Table 2 are the average classification accuracies on the test set and the
corresponding standard deviations for each value of r in the range of 3 to 10. The
classification accuracy is the number of correctly classified test examples divided by
the total number of test examples. The first line with results in the table shows the
classification accuracy of Ant-Miner using only its original rule pruner. The results
for this original version of Ant-Miner are provided as a comparison to see how well it
performs against the new hybrid rule pruner. For each dataset, the best result (out of
the trials using the hybrid pruner) is highlighted in bold, in order to indicate which
value of r yielded the highest accuracy.

From Table 2, in general there was a considerable variation in the classification
accuracy across different values of the parameter r. The only exception was the
House-votes dataset, where accuracies varied only in the range 93.1–95.4%. In the
Chess dataset, most values of r led to an accuracy higher than the accuracy obtained
with the original Ant-Miner’s rule pruner, although in general the differences are not

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 33

statistically significant (considering the standard deviations). On the other hand, in the
three Web-mining datasets the accuracies obtained with the hybrid rule pruner were
lower than the accuracies obtained with Ant-Miner’s original rule pruner. This drop in
accuracy associated with the use of the hybrid rule pruner in the Web-mining datasets
can be explained as follows.

Table 2. Classification accuracy rate (%) on the test set (5-fold cross validation)

Dataset
Value of r Chess House-votes Web-mining 1 Web-mining 2 Web-mining 3
Original 72.18±9.61 94.23±1.75 68.53±4.29 57.26±7.25 55.90±4.79

3 78.79±7.84 95.38±1.33 50.76±3.57 (-) 44.89±5.95 48.83±1.00 (-)
4 83.77±7.77 94.23±1.75 40.26±4.07 (-) 43.32±6.56 (-) 48.95±5.02
5 74.00±9.80 93.07±1.95 50.86±3.24 (-) 38.55±5.48 (-) 50.4±1.91
6 67.40±8.82 94.23±1.75 49.16±2.81 (-) 43.20±6.58 (-) 52.24±8.17
7 78.75±9.42 94.00±1.61 51.86±4.62 (-) 49.56±6.37 51.87±5.23
8 79.85±7.99 94.23±1.75 51.10±2.37 (-) 44.92±1.78 (-) 50.27±5.67
9 76.91±8.33 94.00±1.69 62.83±3.86 40.06±4.11 (-) 45.84±5.90

10 84.13±8.88 93.53±2.19 53.96±2.39 (-) 55.26±5.92 49.50±6.00

As mentioned earlier, the Web-mining datasets are particularly challenging because
they are very “sparse”. Each of those datasets contains a number of attributes greater
than the number of examples. Recall that the hybrid rule pruner selects r number of
terms, and terms are selected with probability based on their information gain. In very
sparse datasets such as the Web-mining datasets, the values of the information gain of
the attributes are not very “reliable”, since they are prone to overfitting issues. As a
result, the hybrid rule pruner has difficulty in selecting r relevant terms based on the
computed information gain values. Of course, the issue of overfitting also occurs with
the other component of the hybrid rule pruner, i.e., the original Ant-Miner’s rule
pruner. However, the latter is a more direct and more reliable measure of the
relevance (predictive power) of the terms, since it is based on evaluating a candidate
pruned rule as a whole, taking into account term interactions. By contrast, the
heuristic of selecting terms based on the information gain of individual attributes
seems more sensitive to overfitting issues, since the quality of each term is estimated
by ignoring term interactions, i.e., ignoring the actual effect of the term in the current
candidate rule. As a result, in the Web-mining datasets the accuracy obtained with the
hybrid rule pruner is consistently lower than the accuracy obtained with the Ant-
Miner’s original rule pruner; a phenomenon that is not observed in the much less
sparse Chess and House-votes datasets.

In any case, the difference of accuracy between Ant-Miner’s original rule pruner
and the new hybrid rule pruner is not significant in the majority of the cases in Table
2, taking into account the standard deviations. More precisely, in Table 2 the cells
where the accuracy of the hybrid pruner is significantly lower than the accuracy of
Ant-Miner’s original rule pruner – in the sense that the corresponding standard
deviation intervals do not overlap – are marked with the symbol “(-)”. The drop in
accuracy associated with the hybrid pruner was significant in 13 out of the 40 cells
with hybrid pruner results in Table 2. In the other 27 cells the difference in accuracy
is not significant, and as mentioned earlier the hybrid rule pruner even obtains a
somewhat higher accuracy in the majority of the cases for the Chess data set.

34 A. Chan and A. Freitas

We have also applied the hybrid rule pruner with a single value of r, viz. r = 5, to a
couple of bioinformatics datasets with 102 attributes and 1872 examples, as
mentioned in section 4.1, to evaluate the performance of the method in less sparse
datasets. In the DNA repair dataset the hybrid rule pruner obtained a predictive
accuracy of 97.69% ± 0.81%, against the original Ant-Miner’s accuracy of 98.50% ±
0.58%. In the DNA damage dataset the hybrid rule pruner obtained an accuracy of
95.30% ± 4.03%, against the original Ant-Miner’s accuracy of 93.25% ± 3.49%.
Hence, in these datasets the hybrid pruner did not significantly reduce the accuracy.

4.3 Results on Rule Comprehensibility

We now turn to another criterion of performance often used in data mining, namely
the comprehensibility of the discovered rules. We emphasize that rule
comprehensibility is an important performance criterion in the context of data mining
[5], [9] where the goal usually is to discover knowledge that can be interpreted and
validated by human beings, to support intelligent decision making. As usual in the
literature, we measure rule comprehensibility by the average number of terms in the
discovered rules. The basic idea is that in general the shorter a rule is (i.e., the fewer
terms it has in its antecedent), the simpler and more easily interpretable the rule is to
the user. In this spirit, Table 3 reports the average number of terms per discovered
rule when using the original Ant-Miner’s rule pruner and when using the hybrid rule
pruner – again, with values of r varying from 3 to 10. Similarly to Table 2, the
numbers after the symbol “±” are standard deviations. For each dataset, the best result
(i.e., the smallest number of terms per rule) is shown in bold.

Table 3. Average number of terms per discovered rule

Dataset
Value of r Chess House-votes Web-mining 1 Web-mining

2
Web-mining 3

Original 3.35±0.49 0.95±0.05 10.07±0.65 10.02±1.76 7.33±1.52
3 1.50±0.14 0.96±0.07 1.77±0.23 1.32±0.15 1.30±0.24
4 1.85±0.15 0.86±0.06 2.42±0.28 2.00±0.15 2.00±0.15
5 1.97±0.24 1.12±0.12 3.13±0.08 2.30±0.13 2.60±0.24
6 2.07±0.14 0.95±0.05 3.62±0.19 3.20±0.36 3.13±0.27
7 2.62±0.24 1.27±0.17 3.97±0.42 3.38±0.20 3.65±0.49
8 2.22±0.65 0.95±0.05 4.67±0.47 3.77±0.34 4.67±0.27
9 2.48±0.15 1.00±0.08 5.67±0.38 3.80±0.34 3.87±0.54

10 2.51±0.30 0.95±0.05 5.53±0.49 4.33±0.46 4.37±0.38

The only dataset in which the hybrid rule pruner did not significantly lower rule
length, by comparison with Ant-Miner’s original rule pruner, was the House-votes
dataset. In this dataset the original Ant-Miner already obtained a very short average
rule length, close to 1, and so it is perfectly acceptable that this result cannot be
significantly improved. In the other four datasets, the hybrid rule pruner has
significantly lowered the rule length, and so significantly improved rule
comprehensibility, taking into account the standard deviations, for all tested values of
r. The results were particularly good in the Web-mining datasets, as can be seen in
Table 3, where rule length is reduced to less than half the rule length associated with
the original Ant-Miner in most cases.

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 35

As expected, the shortest rule lengths were in general obtained with the smallest
tried value of r, i.e., r = 3. With this value of r, in the Web-mining datasets rule length
is reduced from about 10 or 7 to less than 1.5, a very significant improvement in rule
comprehensibility. In addition, in all datasets but the House-votes one, there is a clear
correlation between the value of r and the average length of the discovered rules. That
is, in four out of the five datasets, in general the larger the value of r the larger the
average rule length, and so the less comprehensible the discovered rules are. This
result can be explained by the fact that the hybrid rule pruner’s component based on
information gain is more “aggressive” than the other component – Ant-Miner’s
original pruner. The latter is more “conservative” in the sense that it will only remove
a term from a candidate rule if that removal improves the rule quality. By contrast, the
pruner based on information gain always reduces the rule to r terms as the first step of
the hybrid pruner, and so the hybrid pruner as a whole tends to produce shorter rules
as the value of r is reduced.

5 Conclusions and Future Work

This work has proposed a new hybrid rule pruner for the Ant-Miner algorithm. The
hybrid pruner combines Ant-Miner’s original pruner with a faster pruning based on
information gain. The basic idea is that, if the candidate rule to be pruned is a long
one, instead of applying Ant-Miner’s original pruner the algorithm first applies the
faster information gain-based pruner, as a first step to reduce the rule length. In terms
of computational cost, this first step “comes for free”, since the required value of the
information gain is already computed by another procedure of Ant-Miner. Once the
rule has been so reduced, Ant-Miner’s original pruner – slower but more effective –
can be applied to the rule, further reducing its length.

Experiments were performed with several data sets, comparing the performance of
the proposed hybrid rule pruner with the performance of Ant-Miner’s original rule
pruner. In general the hybrid pruner significantly reduced the computational time of
Ant-Miner, by comparison with the computational time taken with the original rule
pruner. In the datasets with the largest numbers of attributes (the Web-mining
datasets), in most cases the computational time was significantly reduced, by
comparison with the original Ant-Miner’s computational time. In particular, in the
Web-mining-2 data set, the use of the hybrid rule pruner reduced Ant-Miner’s
computational time to a fraction of the original Ant-Miner’s time in all cases, and this
fraction varied from 11.6% in the best case to 65.0% in the worst case. A larger
computational time reduction is expected in a dataset with a much larger number of
attributes and examples. Concerning the quality of the classification rules discovered
by Ant-Miner with the new hybrid rule pruner, there are three main conclusions.

First, the predictive accuracy of Ant-Miner is quite sensitive to values of a
parameter of the hybrid rule pruner that determines how aggressive the information
gain-based rule pruner is. Hence, when using the hybrid rule pruner in important real-
world problems, it is recommended to carry out experiments optimizing the value of
this parameter for the target dataset. Such parameter optimization is, of course,
normally recommended in the context of data mining in general, where the
performance of the algorithm is typically considerably dependent on the dataset being
mined. Second, with respect to the comprehensibility of the discovered rules, the

36 A. Chan and A. Freitas

hybrid rule pruner in general led to the discovery of rules considerably shorter (and so
more easily interpretable by users) than the rules discovered with the original Ant-
Miner’s rule pruner. Hence, the hybrid rule pruner is particularly recommended in
applications where rule comprehensibility is very important, such as medical
applications – where discovered rules should be carefully interpreted by experts
before they are actually used to diagnose a patient or suggest a medical treatment.
Third, the results suggest that, as long as the main parameter of the hybrid rule pruner
is suitably adjusted for the target data set, it is possible to obtain a good trade-off
between accuracy and comprehensibility. In each of the three web mining data sets –
where accuracy was overall most reduced by using the hybrid rule pruner – the hybrid
rule pruner with its best parameter value obtained a rule set with no significant drop in
accuracy and with a significant gain in comprehensibility. However, to be on the safe
side it is recommended to use Ant-Miner’s original rule pruner whenever possible, in
order to avoid the potential loss of accuracy associated with the hybrid rule pruner.

A future research direction is to develop a more adaptive version of the proposed
hybrid rule pruner, where the value of r is automatically adapted by the algorithm on-
the-fly, rather than being statically determined by the user.

References

[1] M. Dorigo, and L. M. Gambardella, “Ant colonies for the travelling salesman problem”,
BioSystems, 43: 73 – 81, 1997.

[2] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-organizing exploratory
pattern of the argentine ant.”, Journal of Insect Behaviour, 3:159 – 168, 1990.

[3] R.S. Parpinelli, H.S. Lopes and A.A. Freitas, “Data Mining with an Ant Colony
Optimization Algorithm”, IEEE Trans. on Evolutionary Comput., 6(4), Aug 2002, 321-
332

[4] Deborah R. Carvalho and A.A. Freitas, “A hybrid decision tree/genetic algorithm method
for data mining” Information Sciences 163(1-3), pp. 13-35. June 2004.

[5] I. H. Witten and E. Frank, Data Mining – Pratical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann 2000.

[6] UCI Machine Learning Repository (University of California at Irvine) –
http://www.ics.uci.edu/~mlearn/MLSummary.html (visited 14/10/2004)

[7] N.Holden and A.A.Freitas, “Web Page Classification with an Ant Colony Algorithm”
Proc. 2004 Parallel Problem Solving from Nature, LNCS 3242, 1092-1102. Springer,
2004.

[8] M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.
[9] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge

discovery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowledge Discovery
and Data Mining, 1-34. AAAI/MIT, 1996.

[10] N. Holden and A.A. Freitas. “A Hybrid Particle Swarm/Ant Colony Algorithm for the
Classification of Hierarchical Biological Data”. Proc. 2005 IEEE Swarm Intelligence
Symposium, 100-107. IEEE, 2005.

[11] A. Chen. Ant Colony Optimisation for High-Dimensional and Multi-Label Classification
in Data Mining. Master Thesis (in preparation). University of Kent, UK. Sep. 2005.

	Introduction
	The Original Ant-Miner Classification Algorithm
	Extending Ant-Miner with a Faster Rule Pruning Procedure
	The Motivation for Rule Pruning
	Ant-Miner's Original Rule Pruner
	Proposed Hybrid Rule Pruner for Ant-Miner

	Computational Results
	Experimental Setup and Datasets Used in the Experiments
	Results on Classification Accuracy
	Results on Rule Comprehensibility

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

