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Abstract. Recently, an electromagnetism (EM) heuristic has been in-
troduced by Birbil and Fang (2003) to solve unconstrained optimization
problems. In this paper, we extend the EM methodology to combinatorial
optimization problems and illustrate its effectiveness on the well-known
resource-constrained project scheduling problem (RCPSP). We present
computational experiments on a standard benchmark dataset, compare
the results of the different modifications on the original EM framework
with current state-of-the-art heuristics, and show that the procedure is
capable of producing consistently good results for challenging instances
of the problem under study. We also give directions for future research
in order to further explore the potential of this new technique.

1 Introduction

The problem under study is the well-known resource-constrained project schedul-
ing problem (RCPSP). The RCPSP can be stated as follows. A set of activities
N, numbered from 1 to n (|]N| = n), is to be scheduled without pre-emption on
a set R of renewable resource types. Activity ¢ has a deterministic duration d; €
IN and requires r;; € IN units of resource type k, k € R, which has a constant
availability ag throughout the project horizon. We assume that r;; < ay for i €
N and k € R. The dummy start and end activities 1 and n have zero duration
while the other activities have a non-zero duration. The dummies also have zero
resource usage. A is the set of pairs of activities for which a finish-start prece-
dence relationship with time lag 0 exists. We use S; (P;) to denote the set of
immediate successors (predecessors) of activity ¢ and S, (P/) to refer to the set of
all (immediate and transitive) successors (predecessors) of this activity. We as-
sume graph G(N,A) to be acyclic. A schedule S is defined by an n-vector of start
times s = (s1, ..., $p) which implies an n-vector of finish times e (e; = s; + d;, Vi
€ N). A schedule is said to be feasible if the precedence and resource constraints
are satisfied. The objective of the RCPSP is to find a feasible schedule such that
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the schedule makespan e;, is minimized. In this paper we report results for the
application of a recent heuristic technique, electromagnetism (EM) [4]. EM is
an ’evolutionary’ algorithm that was originally developed for the optimization
of unconstrained continuous functions. As we modify the technique to solve the
RCPSP, we show that EM can also be used for combinatorial problems.

2 The Electromagnetism Meta-heuristic

Birbil and Fang [4] propose a so-called electromagnetism optimization heuris-
tic for unconstrained optimization problems, i.e. the minimization of non-linear
functions. These optimization problems with bounded variables can be modeled
as depicted at the left side of Fig. 1. At the right side, we show how the RCPSP
can be reformulated as an unconstrained optimization problem. To obtain a
Euclidean solution space, we opt for a schedule representation in random-key
(RK) format [I7]. To transform an RK vector x € IR™ into a schedule S = o(x)
with an associated makespan e, (c(z)), a schedule generation scheme (SGS) is
necessary. We make use of the serial SGS, as it is sometimes impossible to reach
an optimal solution with the parallel SGS [I4]. In the remainder of the paper
we assume that a higher RK value corresponds to a lower priority of the activ-
ity. By setting [; = 0 and u; = n, we assume that each priority element of an
RK vector is a real value between 1 and n. In order to decrease the solution
space of the search process, we adapt this vector with new lower and upper val-
ues to I; = |P/| + 1 and u; = n - |S}|. In doing so we increase the likelihood
that the obtained solution corresponds to a precedence-feasible priority struc-
ture where each activity has a lower priority (i.e. a higher RK value) than its
predecessors.

Consider the example project presented in Fig. 2. This project network con-
tains 9 non-dummy activities for which the duration is given above the node
and the resource requirement for the single resource below the node. The corre-
sponding lower and upper values (I; and ;) for the RK value of each activity ¢
are given between brackets. Assume that the resource availability equals 2, then
Fig. 3 depicts two feasible schedules for the example project.

The EM heuristic assumes a multidimensional solution space where each
point x represents a solution. A charge is associated to each point, related to

General RCPSP
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Fig. 1. Formulation of unconstrained optimization problems
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Fig. 3. Two feasible schedules for the example project

the objective function value f(x) associated with the solution point z. As in
evolutionary algorithms, a population is created in which each solution point
will exert attraction or repulsion on other points, of which the magnitude is
proportional to the product of the charges and inversely proportional to the dis-
tance between the points (Coulomb’s Law). The principle behind the algorithm
is that inferior solution points will prevent a move in their direction by repelling
other solution points in the population, and that attractive points will facilitate
moves in their direction. The generic pseudo-code for the EM algorithm is as
follows:

Algorithm EM

iter =1

while stop condition not satisfied do
compute_ forces
apply_ forces
local _search
iter++

endwhile

The function EM contains three subroutines (compute_ forces, apply— forces
and local_search), that are iteratively applied as long as the stop condition
is not satisfied. The total force exerted on each point by all other points is
calculated in the function compute_ forces and depends on the charge of the
point under consideration as well as on the points exerting the force. The charge
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of the k*® population point z* is determined by its objective function value f(z*)
in relation to the objective function value f(z°¢*!) of the current best point in the
population. For a minimization problem, the charge ¢* of point z* is determined
according to eq. [l In the first term we calculate the value of ¢* as given by
Birbil and Fang [4], and in the second term we translated the formulation to the
RCPSP context. Note that m represents the population size.

(1) o(=)) (e (ot cen o)

& = o \Zi (eh=seren) | A5, (snteen) —en(oerenn) 1)
The total force exerted on a point by all other points is calculated in a similar
way with Coulomb’s law and is inversely proportional to the distance between the
points and directly proportional to the product of their charges. The set of force
vectors F¥(k =1,...,m) exerted on the corresponding point z* is determined as
shown in eq.[2l The point with a relatively good objective function value attracts
the other one, the point with the inferior objective function value repels the other.
In ||dist(x!, 2¥)|| we measure the normalized distance between two points (sched-
ules) ¥ and z!. The distance equals the sum of the absolute deviations of the
priority values z* and 2! of each activity i, i.e. dist(z!, 2%) = 31" | |2t —2F|. In or-
der to normalize the distance measure to the interval [0, 1], we set ||dist(z!, 2*)||=
dist (2!, %) /dist,nae With dist,,q. the maximum of all distances between each pair
of points, i.e. diStyep = MaX;=1, _mik=1,....m dist(z!, 2*). Thus, points with a bet-
ter objective function value attract point ¥, while points with an inferior objec-
tive function value repel z*.

Fr= >

I=1,l#k (‘Tk - ml) Hdist(ag’.wk)” iff(ml) > f(xk)

The movement according to the resulting forces is performed in apply_ forces
and is shown in eq. Bl The move is based on the normalized force vector ||F*|| =
Fk/maxizl,,,,,n(Fik). Thus, the original force vector F*¥ only identifies the di-
rection of the move. The magnitude of each move is determined by a randomly
selected parameter A\, generated from a uniform distribution from the interval
[0,1] and also by the lower value I; and upper value u; for the priority value z*
belonging to the i*" activity of population element k.

o [+ M EE| (u; — 2F) i FF > 0 @)
e F A EA (e - 1) iFF <0

After the application of the forces on the population elements, local_search
aims to improve the newly obtained solution points. In the original version [4],
a local search technique that explores the immediate (Euclidian) neighbourhood
of individual points is proposed. However, for the RCPSP it is beneficial to use
the iterative forward/backward scheduling technique [21I] as a simple and ef-
fective local search technique. To obtain an improved schedule, the technique
iteratively performs backward and forward passes. A backward pass transforms
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a left-justified schedule in a right-justified schedule by scheduling the activities
backwards in decreasing order of their finish times. A forward pass transforms a
right-justified schedule in a left-justified schedule by scheduling the activities for-
wards in increasing order of their start times. In doing so, the schedule makespan
of each intermediate schedule is never higher than the makespan of the previous
one.

To the best of our knowledge, the EM philosophy has only been used for
scheduling projects by [7]. However, these authors present a scatter search algo-
rithm for the RCPSP, and seed their algorithm with very basic principles taken
from the electromagnetism philosophy. More precisely, they restrict the use of
the EM philosophy to the description of the hybrid two-point/electromagnetism
crossover operator. However, a closer look to this hybrid crossover reveals that

— Forces are only calculated based on one other population-element. This is
not in line with the basic EM philosophy in which a point exerts a force on
all other points.

— The forces are not related to the distance between solutions. This is in con-
tradiction to the EM philosophy in which the magnitude of the force is
inversely proportional to the distance between points, in order to follow the
law of Coulomb.

In section 3 of the current paper, we present a step-wise adaptation of our EM
algorithm to cope with the RCPSP, following the framework as proposed by [4].

3 Computational Experiments

We have coded the procedure in Visual C++ 6.0 and performed computational
tests on an Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using
the well-known PSPLIB dataset [19]. This set contains the subdatasets J30, J60,
J90 and J120 with problem instances of 30, 60, 90 and 120 activities. In section
3.1, we describe a step-wise adaptation of the algorithm of section 2 in order to
improve the performance. In doing so, we rely on specific characteristics of the
RCPSP. Section 3.2 compares the performance of our EM heuristic with other
state-of-the-art results.

3.1 Using Problem-Specific Characteristics of the RCPSP

Table 1 reports the results for our step-wise improvement scenarios as discussed
in the following subsections, based on a run with 5,000 schedules. The column
labelled ” Basic” reports the results for the basic EM meta-heuristic of section 2.
The following columns report the results for the different modifications on this
basic EM algorithm. More details are given in the following subsections. The rows
labelled ” Avg.Dev.Lb” report the average deviation from the optimal solution
(J30 instances) or from the critical path based lower-bound (J60, J90 and J120
instances). The rows labelled ” Avg.CPU” indicate the average computation time
to solve a problem instance (in seconds). For each adaptation, we have finetuned
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Table 1. Results for the step-wise improvement scenarios for the basic EM meta-
heuristic

Dataset Basic SRE MUT NBH SUB
Avg.Dev.Lh
J30 0.20% 0.22% 0.10%  0.11% 0.12%
J60 11.94% 11.50% 11.47% 11.43% 11.29%
Jo0 11.81% 11.06% 11.06% 11.03% 10.89%
J120 36.50% 34.32% 34.32% 34.21% 33.98%
Aveg.CPU
J30 0.09¢ 0.07= 0.08g 0.07s 0.06¢
J60 0.16s 0.15% 0.15s 0.14s 0.13s
J90 0.26s 0.23% 0.235 0.20s 0.19s
J120 0.36% 0.36s 0.36s 0.31s 0.34s
1
J30 40 35 30 30 25
J60 30 40 15 30 25
Joo 40 35 35 30 25
J120 40 35 30 15
17 s
J30 - - 0.10 0.10 0.10
J60 - - 0.01 0.01 0.01
J90 - - 0.00 0.00 0.00
J120 - - 0.00 0.00 0.00

the algorithm by setting the population size m to an optimal value. These values
are given in the rows ”m”. As an example, the table reveals that the basic version
of the algorithm reports the best results for a population size of 40 for the J30,
J90 and J120 instances and a population size of 30 for the J60 instances. The
rows labelled ”pyur” are used to display the percentage of mutation, which will
be discussed in section 3.1.2.

3.1.1 Topological-Order Representation or Standardized RK (SRK)

In the RK representation, each solution corresponds to a point in the Euclid-
ian n-space, so that geometric operations can be performed on its components.
Since this is one of the cornerstones of the EM method, we have adopted the
RK representation in our EM-heuristic. However, the RK representation suffers
from the fact that one schedule can have an infinite number of schedule rep-
resentations. To deal with this problem, we propose to use a topological-order
(TO) representation of schedules [30,31]. A TO representation in RK format
of a schedule is any RK vector x for which s; < s; implies z; < z;. To in-
corporate the TO condition, we change the RK representation to the so-called
standardized RK (SRK) as suggested by [7]. More precisely, we first rank the
activities according to their start times in the schedule, and then replace their
priority values by the place in the ranking. In doing so, the SRK vector fits
very well into the EM framework, since each vector element will have a value
between [; and u;. As an example, the SRK vector for the schedule of Fig. 3(a) is
{1,2,4,5,7,5,9,8,2,9,11}. Note that the SRK-value for each activity ¢ always
lies between I; = |P!| + 1 and u; = n — |S!| and that we can only transform an
RK vector = into SRK format w(x) after the schedule generation. The results
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Table 2. Input data for the example: the start RK vector and the two forces

Activityi | 1 2 3 4 5 [ 7 8 9 10 11
x 1 2 4 s 7 5 ) 8 2 9o n
AED ] 0 02 0m 000 015 003 057 005 014 017 0
2l | o 05 037 019 -044 002 -008 018 009 057 0

of the incorporation of the TO representation by using the SRK can be seen
in table 1 by comparing the columns labelled ”Basic” and ”SRK”. The results
show a beneficial effect for the J60, J90 and J120 sets and a negative effect for
the J30 instances.

Although the SRK representation embeds the logic that early scheduled ac-
tivities have a high priority, it also has a major drawback. The execution of a
force on an SRK vector 2° = 7(2%) modifies the priority structure of the vec-
tor to an RK-vector ! which will be transformed by means of the serial SGS
and the local search method to a schedule with a corresponding SRK notation
m(x'). It is, however, possible that the resulting schedule (and consequently, the
resulting SRK notation) is not different from the original one, i.e. 7(z%) = m(z!)
while 29 # z!. This effect might prevent to exploit the advantages of the basic
philosophy of the EM approach, which focuses on a gradual shift to other regions
of the solution space. Due to the transformation from z! to w(x!), this gradual
shift from 2° to z! will be cancelled out, having an effect on the next moves of
the meta-heuristic. More precisely, our tests revealed that 79% of the moves, per-
formed on solutions in SRK format, result in a schedule for which m(2°) = 7 (x!)
for the 30-activity networks. This value decreases to 65% for the J60 instances,
56% for the J90 instances and only 14% for the J120 instances. Thus, the cancel-
out problem is particularly relevant for small problem instances, as the solution
space is too small to escape from a solution point.

Consider the example project of Fig. 2 and the two corresponding schedules
of Fig. 3. The start vector z° corresponds to the schedule of Fig. 3(a). A!||F!|]
and A?|| F2|| are used to calculate the first and second move and are given in table
2. Table 3 displays the calculations of two moves in a sequence, based on the RK
vectors while table 4 displays the calculations of these moves based on the SRK.
In the first move of table 3, from z° to x!, the RK-representation changes, but
the corresponding schedule remains unchanged and is equal to the schedule of

Table 3. Illustration of the execution of two moves based on a RK vector

activity i 1 2 3 4 5 5 7 8 9 0 11
2 1 2 4 5 7 5 9 8 2 9 11
:

axl = A ||F=.1|ku!. -y 1.03 011 057 0.96

Axl = At ||Fz'1||(xi0 -1 o 021 027 -0.62 -0.3 0170
xf = x] + Ax] 1303 379 473 633 511 957 77 296 883 11

1 ] 2 1

af = 7 s, - 5 0.09 0.54 067

b = 2 |t - 1) 0 053 029 053 148 037 03 0
xi=xl+Ax) 1 15 35 42 49 52 92 74 35 95 11
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Table 4. Illustration of the execution of two moves based on a SRK vector

activity i 1 2 3 4 5 [} 7 8 9 10 11
2 1 2 4 5 7 5 g g 2 9 11
axf = 2|7 - ) 1.03 011 057 0.96

ax? = 11.|La.‘||(x£ -1 0 021 027 062 0.3 017 0
2l = 22+ Ax? 1 303 379 473 638 511 957 77 29 883 11
x} = m(x]) 1 2 4 5 7 5 9 8 2 9 11
Azl = f."ﬁf |(u,. - zh 0 0.09 063 057

Azl = ,12.|W|(x} -1 0 037 058 -175 032 036 0
2l =2+ Axl 1 2 363 442 525 509 268 764 263 957 11
x}=mix}) 1 2 4 5 7 5 9 3 2 9 11

Fig. 3(a). After the second move, from z! to 22, the RK-representation belongs
to the schedule depicted in Fig. 3(b). Table 4, however, cannot escape from the
schedule of Fig. 3(a) since the second move from m(z!) to 7(x?) also results in
the same schedule. This is due to the transformation of the RK vector z! to the
SRK vector 7(x!) after a makespan evaluation, which cancels out the gradual
shift of the move from z° to z!. In the next sub-section, we describe our mutation
approach to overcome this cancel-out problem.

3.1.2 Diversification Using Mutation (MUT)

In order to prevent the population from becoming overly homogeneous, we in-
troduce a basic version of diversification using mutation, by modifying randomly
chosen priority values of the vector z to a value uniformly chosen between
I, = |P/|+ 1 and u; = n — |S}|. This mutation is imposed right after a force
is executed, followed by a makespan evaluation.

In table 1, we use pyruT to denote the percentage of activities that are subject
to this mutation per move. The results reveal that mutation is only beneficial for
the J30 and J60 instances. For the J30 instances, we modify 10% of the priority
values per move, i.e. in each move, three activities receive a new priority value
randomly generated from the interval [I;,u;]. The average deviation decreases
from 0.22% to 0.10%. For the J60 instances, mutation is only beneficial to a
small extent (from 11.50% to 11.47% deviation) with a mutation rate of only
1%. For the J90 and J120 instances, mutation has no beneficial effect. These
results confirm that mutation can help to overcome the problem mentioned in
the previous section. Since the use of the SRK notation could possibly cancel
out the gradual shifts in the solution space, diversification using mutation will
be necessary to escape from a particular schedule. This problem was particularly
relevant for the J30 instances and - to a smaller extent - for the J60 instances.

3.1.3 Extended Neighbourhood (NBH)
In the original procedure [4] a parameter X is generated from a uniform distrib-
ution between 0 and 1, i.e. A € U(0, 1), in order to move from one schedule to
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another (see eq.[B]). We have extended this method by generating more schedules
out of a schedule by generating more values for A. To that purpose, we have
divided the interval [0, 1] in equal parts and tested a number of scenarios with
2, 3, 4, 5 and 6 different values for A and, consequently, up to 6 new schedules
per move. Tests have revealed that improved results can be found for J60, J90
and J120 by generating two new schedules with the following parameter values:
Al € U(0.2,0.6) and A? € U(0.6,1). Afterwards, the algorithm selects the best
schedule to enter the population. Note that moves with A < 0.2 are excluded
since this often leads to the cancel-out effect described in section 3.1.1.

3.1.4 Exert the Force F on a Sub-schedule (SUB)

Based on the calculated forces and resulting attraction or repulsion, points are
transformed, i.e. moved in the Euclidian space, resulting in a new population.
During each move, forces are exerted on the priority value of each activity. We
generalize this concept by allowing forces to act only in a particular subset
of the dimensions or activities. We randomly select ppn € [1,m — 1] and set
Dmaz = Pmin + 7 With 7 chosen randomly within [1/4.e,,(0(x)),3/4.e,(o(x))].
Then, we update only the RK values between pi, and ppa. (inclusive) ac-
cording to the forces exerted in these dimensions. Note that due to the SRK

Table 5. Comparative computational results

J30 J60 J120
Al gorithm AvgDev.Lb Rank]JAveDev.Lb Rank|Ave.Dev.Lb Rank
[Valls, Ballestin and Quintanilla [32] 0.06 2 11.10 1 32.54 1
[Debels, De Reyck, Leug, Vanhoucke [7] 0.11 5 11.10 1 33.10 2
[Valls, Ballestin and Quintanilla.[33] 0.20 12 11.27 5 33.24 3
K ochetov and Stolyar [13] 0.04 1 11.17 3 33.36 4
[Alcaraz, Maroto and Ruiz [2] 0.06 2 11.19 4 33.01 5
Our procedure 0.10 4 11.29 6 33.94 6
[Valls, Ballestin and Quintanilla.[33] 0.28 16 12.35 16 34.02 7
Tormos and Lova [29] 0.13 7 11.62 7 34.41 8
[Hartmann [9] 0.22 13 11.70 8 9
Merkle, Middendorf and Schmeck [23] - - 10
Tormos and Lova [28] 0.17 10 11.82 9 11
Tormos and Lova [27] 0.16 8 11.87 11 12
[Alcaraz and Maroto [1] 0.12 6 11.86 10 13
[Hartmann [8] 0.56 23 13.32 24 14
B ouleimen and Lecocq [5] 0.23 14 11.90 13 15
[Nonobe and Ibaraki [24] 0.16 8 12.18 15 16
Coelho and Tavares [6] 0.33 17 12.63 18 17
[Hartmann [8] 0.25 15 11.89 12 18
Schirmer [25] 0.44 18 12.58 17 19
[Kolisch [15] 0.53 21 13.23 22 20
[Kolisch [15,17] 1.28 26 13.21 21 21
[ olisch and Drexl [16] 0.52 20 13.06 20 22
Coelho and Tavares [6] 0.54 22 13.31 23 23
[Leon and Ramamoorthy [20] 1.50 29 13.49 26 24
K olisch [15] 1.29 27 13.53 27 25
[Hartmann [§] 1.12 25 12.74 19 26
[Kolisch [14] 1.00 24 14.30 28 27
[Kolisch [14] 1.48 28 15.17 29 28
[Klein [12] 0.17 10 12.03 14
B aar, Brucker and Knust [3] 0.44 18 13.48 25
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representation, the thus updated activities all start within a particular time in-
terval. The other RK components are not left unchanged, but are updated as
follows. We subtract the constant value n from all RK values lower than py,p,
and add the same constant to all values higher than p,,4.. Doing this preserves
the priority structure since the activities outside the interval [pmin, Pmaz] are
unaffected by the forces. Table 1 reveals that this leads to an additional im-
provement for the J60 (from 11.43% to 11.29%), J90 (from 11.05% to 10.89%)
and J120 (from 34.21% to 33.98%) instances.

3.2 Comparison with the State-of-the-Art Heuristics

To be able to compare procedures for the RCPSP, [10] presented a methodol-
ogy in which all procedures can be tested on the PSPLIB datasets by using the
number of generated schedules as a stop condition. Based on the methodology
they also report state-of-the-art results. In [I8] an update is given of these re-
sults. In table 5 we compare our algorithm with these results for the datasets
J30, J60 and J120 respectively and for a stop condition of 5,000 schedules. In
”Avg.Dev.Lb” we report the average deviation from the optimal solution for
J30 or from the critical path based lowerbound for J60 and J120. The proce-
dures are ranked according to their performance for the dataset J120. As this
ranking slightly differs from the ranking for J30 and J60, we also provide a
rank order in the column ”Rank”. The table reveals that the EM algorithm per-
forms consistently well over all problem sets. Furthermore, the procedures that
can outperform the EM procedure are hybrid heuristics. Consequently, we be-
lieve that the promising results might contribute to the further development of
electromagnetism, possibly in combination (hybridization) with principles from
other meta-heuristics.

4 Conclusions

This paper reports on results for the application of a new meta-heuristic pro-
cedure for solving combinatorial optimization problems. The procedure is a
population-based method that is developed originally for optimizing uncon-
strained continuous functions based on an analogy with the electromagnetism
theory. We illustrate the effective extension of this electromagnetism meta-
heuristic to the well-known RCPSP.

The computational results show that the procedure produces consistently
good results, compared to the state-of-the-art heuristics in the literature. Fur-
thermore, all procedures that outperform the EM procedure are hybrid heuristics
based on principles borrowed from various meta-heuristic approaches. Hence, we
believe that the incorporation of ideas from EM in hybrid frameworks might con-
tribute to the development of better meta-heuristic techniques. In the future we
want to improve the performance of the EM heuristic for solving combinatorial
problems by adding principles from other meta-heuristic techniques.
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