
Size Control with Maximum Homologous
Crossover

Michael Defoin Platel, Manuel Clergue, and Philippe Collard

Laboratoire I3S, CNRS-Université de Nice Sophia Antipolis

Abstract. Most of the Evolutionary Algorithms handling variable-sized
structures, like Genetic Programming, tend to produce too long solutions
and the recombination operator used is often considered to be partly re-
sponsible of this phenomenon, called bloat. The Maximum Homologous
Crossover (MHC) preserves similar structures from parents by aligning
them according to their homology. This operator has already demon-
strated interesting abilities in bloat reduction but also some weaknesses
in the exploration of the size of programs during evolution. In this paper,
we show that MHC do not induce any specific biases in the distribution
of sizes, allowing size control during evolution. Two different methods
for size control based on MHC are presented and tested on a symbolic
regression problem. Results show that an accurate control of the size is
possible while improving performances of MHC.

1 Introduction

One of the major research areas in Genetic Programming (GP) is the manage-
ment of the size of programs. Indeed, the “natural” trend of GP systems is to
quickly increase the size of individuals until they reach the maximum allowed
size, a phenomenon commonly known as bloat.

1.1 Bloat

This uncontrolled growth of programs is one of the weaknesses of GP as a
problem-solver: resources needed by the system to address a problem are not
adapted to the difficulty, the system consumes all the resources provided, lead-
ing generally to a waste of computing time and memory. Moreover, this behav-
ior may dramatically influence the efficiency of the system in terms of solution
quality and it works against the assumption [14] that between two equally fit
programs, we should retain the smaller, which is often more robust and more
evolvable.

Many authors have proposed explanations for bloat. To name a few, Al-
tenberg [1] notes that bloat arises during evolution as the population attempts
to protect useful subtrees from the crossover effects. This is the protection hy-
pothesis. On the other hand, in [8], Langdon and Poli argue that fitness causes
bloat. The idea is that the search starts from short genotypes with a given fit-
ness. Then after a while, since the chance of finding better solutions is low, the

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 M. Defoin Platel, M. Clergue, and P. Collard

process becomes neutral and only equally fit solutions can be retained. But the
search space contains many more long genotypes than short ones with the same
fitness. This is the drift hypothesis. We note that recent work on Exact Schemata
Theorems [14] tends to confirm this hypothesis, while giving a theoretical expla-
nation for bloat. In [16], authors give another explanation for bloat by pointing
out the asymmetric effects on the fitness of subtrees deletions and insertions.
Indeed, they show that when a subtree is removed, the effects on the fitness
depend on its size (strong effects for large subtrees) but not in case of a subtree
insertion. This is the removal bias hypothesis. Another important aspect of the
bloat problem is the presence in programs of inviable code, called the introns.
Most of bloat theories suggest that the phenomenon is due to the propagation of
introns. However, some interesting work [9][10] tends to contradict the introns
hypothesis.

Various methods have been investigated to solve the size problem. Maybe the
widespread idea to control the size, is tomodify thefitness ofprogramsand so the se-
lectionprocess. For examples,we canquote : the variable fitness [17], the parsimony
pressure [16], the multi-objective evaluation [5] and the Tarpeian method [12]. An-
other way to tackle the size control problem is based on specific genetic operators,
in particular more homologous crossover operators, [13] and [4].

1.2 Maximum Homologous Crossover

The Maximum Homologous Crossover (MHC) [7] is a recombination mechanism
mimicking natural crossover that maximally preserves homology between par-
ents. The MHC ensures that the genetic material exchanged during crossover is
chosen, according to an edit distance1 , in the most dissimilar regions of parents,
and so leaves unchanged their nearly identical parts, ie the homologous regions.
Thus, offspring can not be very different from their parents.

MHC was originally designed for Linear GP (LGP), where programs are se-
quences of instructions of an imperative language (C, machine code, . . .). Our
study is based on a stack-based GP implementation [11] and [3], where a se-
quence of instruction is evaluated using an operand stack. Figure 1 gives an
example of MHC recombination between two programs Px and Py in stack-
based representation. We see that during Step 1, an alignment (P x, P y) of the
two parents is computed, see [7] for details, to identify homologous regions. We
note that aligned programs may contain some gaps (ε) and that they always
have the same size. Thus, a crossover site can be chosen in (P x, P y), here at
position 5, and the classical 1-point crossover used in GA can be used, see Step
2. Finally, in Step 3, the inserted gaps are removed, producing offspring P ′

x and
P ′

y. In a previous study [6], authors have shown, on the Even-N Parity Problem,
that MHC is a less destructive operator than the Standard Crossover (SC) used
in LGP2. Moreover the performances of the two crossover operators were very
1 The edit distance corresponds to the minimal number of elementary operations (dele-

tion, insertion or substitution) required to change one program into the other.
2 In LGP, the SC operator randomly exchanges prefixes (or suffixes) between linear

sequences.

Size Control with Maximum Homologous Crossover 15

Px Py

DIV X
SUB COS
ADD DIV

X ADD
0.56 -1
MUL SUB

X
-0.10
MUL
SIN

1
=⇒

(Px, P y)
ε X
ε COS

DIV DIV
ε ADD
ε -1

SUB SUB
ADD ε

X X
0.56 -0.10
MUL MUL
ε SIN

2
=⇒

Xo(P x, P y)
ε X
ε COS

DIV DIV
ε ADD
-1 ε

SUB SUB
ε ADD
X X

-0.10 0.56
MUL MUL
SIN ε

3
=⇒

P ′
x P ′

y

DIV X
-1 COS

SUB DIV
X ADD

-0.10 SUB
MUL ADD
SIN X

0.56
MUL

Fig. 1. MHC of programs Px and Py in stack-based representation : Step 1, alignment
and Xover site selection (here 5); Step 2, swapping sequences ; Step 3, deletion of gaps

similar but MHC has demonstrated a significant tendency in bloat reduction.
The fact that using less desctructive operators allows a kind of reduction in
bloating behaviours tends to confirm the protection hypothesis. However, an un-
expected consequence of this size growth limitation was the need to accurately
tune initial sizes in the population. The hypothesis was that MHC is unable to
properly manage the size of individuals. In this context, the size may be viewed
as a new dimension of the search space that needs some specific operators to
be explored. Some experiments, on a flat landscape and on the Even-N Parity
Problem, have demonstrated the possibility of controlling the size of programs
using MHC.

In this paper, we investigate further, with two methods based on MHC, how
to control the size of program during evolution but also how to improve the
performances of MHC, as a fully functional recombination mechanism.

2 Size Control with MHC

In [14][15], authors have shown the biases introduced by SC in the exploration
of the size of programs. They concluded that, without selective pressure, the
distribution of the size converges toward a gamma distribution, ie SC does not
modify the average length of individuals but leads to an oversampling of shorter
programs of the search space and also to the creation of very long programs
compared to the average size. To compare the effects of SC and MHC on size
distribution, we have performed, for both crossover operators and without mu-
tatin, 200 experiments on a flat landscape with a population of 1000 individuals
during 1000 generations. The initial size of programs was randomly chosen be-
tween 1 and 50 instructions and the instruction set was defined with 10 different
symbols.

We can see, in Figures 2 and 3, the expected gamma distribution obtained
with SC, while with MHC, the distribution seems to converge much more slowly
toward a gamma distribution. More precisely, at the last generation, when SC

16 M. Defoin Platel, M. Clergue, and P. Collard

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 2. Distribution of programs size us-
ing SC and without selective pressure

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 3. Distribution of programs size us-
ing MHC and without selective pressure

is used, the most numerous programs, around 7% of the population, have only
2 instructions, while for MHC, they represent 4% of the population and have 23
instructions. So MHC is less biased than SC what explains its ability to reduce
bloat and at the same time its difficulty to explore efficiently the size dimension.

We have already mentioned that two main strategies have been investigated
to fight the bloat phenomenon. With the first one, the idea is to work on fitness
to modify the search space in order to eliminate too long programs. For exam-
ple, with the Tarpeian Method (TM) (see [12] for pseudo-code), some “holes”
are dynamically introduced in the fitness landscapes by assigning, with a given
probability, a very low fitness to programs whose size is higher than average in
the population. With the second strategy, the approach consist in designing unbi-
ased operators that prevent the creation of too long programs. For example, the
size-fair operators (cf. [4]) ensure that the amount of genetic material exchanged
during recombination is comparable between parents and so they modify little
the size of programs. In this case, the goal is to control the distribution of size
of programs that undergo the selection process. We focus on two different ways
to control the distribution of size with MHC.

Firstly, we propose to use the mutation operator to modify the average size of
programs during evolution. In our stack-based system, mutation consists either
of an insertion, a deletion or a substitution of one instruction, each operator
having its own application rate. We define an operator MHC+INSr to be MHC
combined with an insertion rate of r higher than deletion and substitution rates.
This unbalanced setting of the mutation rates must enable the system to increase
the average size of programs and so to increase the chances of visiting areas
of high performances. We note that, in [2], a similar setting was used in the
context of LGP with homologous recombination to improve performances. We
have plotted, in Figure 4, the size distribution obtained with MHC+INS1.0, ie
insertion rate equal to 1.0 and deletion and substitution rates fixed to 0.0. We
see that MHC+INSr allows a translation of the size distribution reported when
using MHC alone.

Size Control with Maximum Homologous Crossover 17

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 4. Distribution of programs size us-
ing MHC+INS1.0 and without selective
pressure

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 5. Distribution of programs size us-
ing MHC+SC0.2 and without selective
pressure

Secondly, we propose to use SC to modify the average size of programs during
evolution. An operator MHC+SCp is defined where MHC is used to perform
recombination but with p being the probability that SC will be used instead.
Thus, MHC+SC0.5 corresponds to an equally use of both MHC and SC. We
note that in [4], authors have already speculated that judicious mixing of size-
fair and standard operators could be the best way to encourage robust problem
solving performances. We have plotted, in Figure 5, the size distribution obtained
with MHC+SC0.2. We see that MHC+SCp allows a transformation of the size
distribution reported when using MHC alone.

3 Experimental Results

3.1 Problem and Parameters Settings

In this section, we aim to verify the ability to control the size of programs on a
Symbolic Regression Problem. We choose the Poly-10 problem [12], where the
target function is the 10-variate cubic polynomial x1x2 +x3x4 +x5x6 +x1x7x9 +
x3x6x10, because it was introduced as a benchmark for the study of the TM.
In this study, the fitness is the classical Root Mean-Square Error. The dataset
contains 50 test points and is generated by randomly assigning values to the
variables xi in the range [−1, 1].

We want to compare the performance between the operators SC with TM,
MHC and the two alternatives MHC+INS and MHC+SC. For the TM, we call
n the parameter giving the probability that programs whose size is higher than
average will receive a very bad fitness. We test different value for n varying from
0.05 to 0.9. The GP system has very distinct behavior according to the operator
used, this is why to perform a fair comparison, the evolutionary parameters
tuning must be extensively investigated. For each operator and for each tuning
of the size control parameters (n, p and r), we perform 50 independent runs with

18 M. Defoin Platel, M. Clergue, and P. Collard

various mutation and crossover rates. Let us notice that a mutation rate of 1.0
means that each program involved in reproduction will undergo, on average, one
insertion, one deletion and one substitution.

Populations of 500 individuals are randomly created according to a maximum
creation size of 50. The instruction set contains: the four arithmetic instructions
ADD, SUB, MUL, DIV, the ten variables X1. . . X10 and one stack-based GP
specific instruction DUP which duplicates the top of the operand stack. The
evolution, with elitism, maximum program size of 500, 16-tournament selection,
and steady-state replacement, takes place over 100 generations3. We use a sta-
tistical unpaired, two-tailed t-test with 95% confidence to determine if results
are significantly different.

3.2 Best Results

In what follows, SC stands for SC without TM (n=0), MHC+INS stands for
MHC+INS2.0 and MHC+SC stands for MHC+SC0.1. In Table 1, the best re-
sults, in terms of average fitness of the best program found, among all the pa-
rameters settings tested, are reported (crossover rate varying from 0 to 1.0 and
mutation rate from 0 to 2.0). As expected, using MHC, the system has found less

Table 1. Best Results

Xover Type Fitness Size Effective Size
SC 0.13(σ=0.03) 457.42(σ=79.07) 457.14(σ=79.25)

MHC 0.25(σ=0.05) 92.28(σ=31.39) 91.74(σ=31.45)

MHC+INS 0.14(σ=0.03) 247.18(σ=90.36) 245.00(σ=90.75)

MHC+SC 0.11(σ=0.02) 419.12(σ=96.90) 418.80(σ=96.82)

fit but smaller programs than using other operators. This is unsurprising since
the optimization of the “maximum initial size” parameter, needed by MHC (see
Section 1.2), has not been performed. Statistical analysis of the results of SC,
MHC+INS and MHC+SC shows that their average fitness does not differ sig-
nificantly. Conversely, the average size of the best solution found varies greatly.
The operator MHC+INS seems to give a good trade-off between fitness and size
since, in this case, the average size is almost 2 times smaller than with SC. We
note that an increase of the n parameter has always led to fitness degradation
for the SC operator.

3.3 Application Rates

In what follows, SC stands for SC without TM (n=0), MHC+INS stands for
MHC+INS2.0 and MHC+SC stands for MHC+SC0.1. We have gone to great
3 In a steady state system, the generation concept is somewhat artificial and is used

only for comparison with generational systems. Here, a generation corresponds to a
number of replacement equal to the number of individual in the population, ie 500.

Size Control with Maximum Homologous Crossover 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

Mutation Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 6. Average fitness of best as a func-
tion of the mutation rate on Poly-10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

Xover Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 7. Average fitness of best as a func-
tion of the crossover rate on Poly-10

effort to determine the appropriate setting for each operator studied. Figure 6
depicts the average fitness of the best program found as a function of the mu-
tation rate for the best crossover rate found. In other words, each point of the
plot corresponds, for a given mutation rate, to the best result found among all
crossover rates. All operators demonstrate a similar behavior according to the
mutation rate, except for MHC+INS, which has obtained better performances
without mutation. However, we know that it performs, by construction, at least
2.0 insertions on average per individual. The use of the mutation operator is
critical but with low rates (the optimal is less than 0.4). Let us recall that a
rate of 0.4 corresponds to, on average, 0.4 mutations of each type (insertion,
deletion and substitution) per individual, so to a little more than one change
per individual.

In Figure 7, we have plotted the best results found according to the crossover
rate for a mutation rate set to 0.2. We see that SC obtains its best result with
a small crossover rate but that its performances tend to worsen when too many
recombinations are performed. On the other hand, the performances of MHC,

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

S
iz

e

Xover Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 8. Average size of best as a func-
tion of the crossover rate on Poly-10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e

Generation

SC
MHC

Fig. 9. Evolution of the average size of
best on Poly-10

20 M. Defoin Platel, M. Clergue, and P. Collard

MHC+INS and MHC+SC operators do not vary so much according to the
crossover rate, but with a small tendency to increase for high rates. Figure 8 rep-
resents the average size of the best program found as a function of the crossover
rate for a mutation rate of 0.2. We see that the size of the programs found using
SC, MHC and MHC+INS does not depend on the crossover rate. More precisely,
for SC, the size is limited by the “maximum allowed size” parameter, here 500 in-
structions. Whereas for MHC, the “maximum creation size”, here 50 instructions,
is the major parameter influencing size (see also Figure 9). Finally for MHC+INS,
we see that the insertion of instructions, here 2.0 on average, in each individual
of the population leads to an increase of more than 100 instructions compared to
MHC. It is obvious that in the case of MHC+INS, when no recombination is per-
formed, size control does not work (around 400 instructions) since there is nothing
to compensate the unbalanced mutation setting. Conversely, the MHC+SC oper-
ator finds programs of different sizes according to the crossover rate. This means
that the size of programs does not depend only on the proportion of MHC and SC
(the parameter p) but rather on the number of SC recombinations performed per
generation, which increases with the crossover rate.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

S
iz

e

Fitness

SC
TM n=0.2
TM n=0.5
TM n=0.7
TM n=0.9

MHC
MHC+INS
MHC+SC

Fig. 10. Fitness vs Size Trade-off on Poly-10. Lines connecting points correspond to
Pareto frontiers.

Size Control with Maximum Homologous Crossover 21

3.4 Fitness vs Size Trade-Off

In order to visualize the fitness vs size trade-off, we have plotted, in Figure 10 a
scatter plot of the average fitness and the average size of the best solutions found.
Each point corresponds to one of the setting of the parameters (of both mutation
and crossover rates) tested in this study. Lines connecting points depict the
Pareto frontiers. We can see that the trade-off between size and fitness differs for
the four operators. We see that when SC with n=0 or MHC are used, variations
in the size dimension are very small. On the other hand, frontiers for SC with TM
and for both alternatives of MHC cover larger ranges in the fitness vs size space.
However, excepted for SC with n=0.9 that gives the shorter programs, the size
control methods using MHC report better trade-off than SC with TM. Let us
recall that results presented here do not correspond to a multi-objective approach
since our goal was not to minimize, in words of Pareto optimality, both size and
fitness criteria. We next investigate further the influence of the parameters r and
p on fitness and size for both MHC+INSr and MHC+SCp operators. We have
performed some specific experiments with a mutation rate of 0.2 and a crossover
of 0.80. Figures 11 and 12 show the variations of, respectively, the average fitness
and size of the best program found as a function of r for MHC+INSr. We see that
the insertion of instructions, controlled by r, always leads to an improvement in
fitness but that for r greater than 2.0, no gains can be obtained. The average
size is strongly correlated to the parameter r and all the allowed sizes in the
search space can be reached. Compared to the performances of MHC, using
MHC+INS2.0, we obtain programs around two times more fitter but also two
times bigger (see Table 1 above).

Figures 13 and 14 show the variations of, respectively, the average fitness
and size of the best program found as a function of p for MHC+SCp. We see
an improvement of the fitness, compared to MHC and SC, for all the values
of p. This means that the combination of both MHC and SC performed better

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

r

MHC+INS r
MHC

Fig. 11. Average fitness of best as
a function of r on Poly-10 with
MHC+INSr

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 S

iz
e
 o

f
B

e
s
t

r

MHC+INS r

Fig. 12. Average size of best as a func-
tion of r on Poly-10 with MHC+INSr

22 M. Defoin Platel, M. Clergue, and P. Collard

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 0.20 0.40 0.60 0.80 1.00

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

p

MHC+SC p
SC

MHC

Fig. 13. Average fitness of best as
a function of p on Poly-10 with
MHC+SCp

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.20 0.40 0.60 0.80 1.00

A
v
e
ra

g
e
 S

iz
e
 o

f
B

e
s
t

p

MHC+SC p

Fig. 14. Average size of best as a func-
tion of p on Poly-10 with MHC+SCp

than when MHC and SC are used separately. However the size of the programs
increases quickly with parameter p and seems to reach the maximum size when
p is greater than 0.5. Moreover, we note a minimum of the fitness curve, when
p is equal to 0.2. This implies that the p parameter must be carefully fixed. In
the size control context, we can define, for the Poly-10 problem, a “region of
interest” of the MHC+SCp operator for p in the range [0,0.2].

4 Conclusion and Perspectives

Contrary to SC, MHC do not induce any specific biases in the distribution of
sizes and so an accurate control of the distribution during evolution is possible
and have to be investigated.

In this paper, two methods for controlling the distribution with MHC are
introduced and tested. The first one, called MHC+INSr, where MHC works in
conjunction with the mutation operator, directly modifies the number of genes in
the population, ie the total amount of available instructions. In the second one,
called MHC+SCp, the MHC works in conjunction with SC to allow the creation
of much bigger programs than the average size in the population. As expected,
we note a significant increase in the average size and in the average fitness of the
solution found. This reinforces our first assumption: to be efficient with MHC,
the size of programs has to be explored as a new dimension of the search space.
Nevertheless, the two methods presented here are static and so require a specific
tuning that may depend on the problem addressed. Hopefully, the first steps in
the study of size control methods, and more generally of MHC behavior, allow
us to believe that dynamic control of the size is possible, according to some
exogenous or endogenous properties.

MHC understanding, thanks to experimental results, is improved. For various
benchmarks, the performance of this operator is equivalent but with an accurate
management of the size. Future work should consist in a study of much more
complex problems and then to real-world applications where an uncontrolled

Size Control with Maximum Homologous Crossover 23

growth of the size of programs is a strong limitation for GP. For this purpose,
the use and design of new dynamic methods for size control with MHC, tak-
ing into account some exogenous or endogenous additional informations, will
undoubtedly be required.

References

[1] L. Altenberg. The evolution of evolvability in genetic programming. In Advances
in Genetic Programming. MIT Press, 1994.

[2] M. Brameier and W. Bhanzhaf. Explicit control of diversity and effective variation
distance in linear genetic programming. In Genetic Programming, Proceedings of
the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 37–49,
Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

[3] W. S. Bruce. The lawnmower problem revisited: Stack-based genetic programming
and automatically defined functions. In Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 52–57, Stanford University, CA, USA,
13-16 1997. Morgan Kaufmann.

[4] R. Crawford-Marks and L. Spector. Size control via size fair genetic operators in
the PushGP genetic programming system. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 733–739, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[5] E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promoting
diversity using multi-objective methods. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pages 11–18, San Francisco,
2001. Morgan Kaufmann.

[6] M. Defoin Platel, M. Clergue, and P. Collard. Homolgy gives size control in genetic
porgramming. In Proceedings of the 2003 Congress on Evolutionary Computation
CEC2003, pages 281–288. IEEE Press, 2003.

[7] M. Defoin Platel, M. Clergue, and P. Collard. Maximum homologous crossover
for linear genetic programming. In Genetic Programming, Proceedings of Eu-
roGP’2003, volume 2610 of LNCS, pages 194–203, Essex, 14-16 April 2003.
Springer-Verlag.

[8] W. B. Langdon and R. Poli. Fitness causes bloat. In Second On-line World
Conference on Soft Computing in Engineering Design and Manufacturing, pages
13–22. Springer-Verlag London, 23-27 1997.

[9] S. Luke. Code growth is not caused by introns. In Late Breaking Papers at
the 2000 Genetic and Evolutionary Computation Conference, pages 228–235, Las
Vegas, Nevada, USA, 8 2000.

[10] S. Luke. Modification point depth and genome growth in genetic programming.
Evol. Comput., 11(1):67–106, 2003.

[11] T. Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages 148–153, Or-
lando, Florida, USA, 27-29 1994. IEEE Press.

[12] R. Poli. A simple but theoretically-motivated method to control bloat in genetic
programming. In Genetic Programming, Proceedings of EuroGP’2003, volume
2610 of LNCS, pages 204–214, Essex, 14-16 April 2003. Springer-Verlag.

[13] R. Poli and W. B. Langdon. Genetic programming with one-point crossover.
In Soft Computing in Engineering Design and Manufacturing, pages 180–189.
Springer-Verlag London, 23-27 June 1997.

24 M. Defoin Platel, M. Clergue, and P. Collard

[14] R. Poli and N. F. McPhee. Exact schema theorems for GP with one-point and
standard crossover operating on linear structures and their application to the
study of the evolution of size. In Genetic Programming, Proceedings of Eu-
roGP’2001, volume 2038, pages 126–142. Springer-Verlag, 18-20 2001.

[15] J. E. Rowe and N. F. McPhee. The effects of crossover and mutation operators
on variable length linear structures. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), pages 535–542, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

[16] T. Soule and J.A. Foster. An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines, 3(1):283–309, 2002.

[17] R.E. Keller W. Banzhaf, P. Nordin and F.D. Francone. Genetic Programming -
An Introduction. Morgan Kaufmann, 1998.

	Introduction
	Bloat
	Maximum Homologous Crossover

	Size Control with MHC
	Experimental Results
	Problem and Parameters Settings
	Best Results
	Application Rates
	Fitness vs Size Trade-Off

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

