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Abstract. Ligation is a form of chemical self-assembly that involves
dynamic formation of strong covalent bonds in the presence of weak as-
sociative forces. We study an extremely simple form of ligation by means
of a dissipative particle dynamics (DPD) model extended to include the
dynamic making and breaking of strong bonds, which we term dynam-
ically bonding dissipative particle dynamics (DDPD). Then we use a
chemical genetic algorithm (CGA) to optimize the model’s parameters
to achieve a limited form of ligation of trimers—a proof of principle for
the evolutionary design of self-assembling chemical systems.

1 Evolutionary Design of Self-assembling Chemical
Systems

Many familiar examples of supramolecular self-assembly—such as micelles and
vesicles—result solely from the dynamics of weak associative forces between
molecules. Such structures contain strong intramolecular covalent bonds that
are relatively fixed during the self-assembly process. Here we consider the self-
assembly of supramolecular structures formed through the dynamics of strong
bond formation in the presence of weak associative forces. Specifically, we focus
on the self-assembly that occurs during monomer to polymer ligation, as part
of the process of complementary templating. During the ligation process, weak
associative forces enable the template to act as a physical catalyst for the con-
struction of the complementary polymer’s strong bonds. We study templating
partly because it is critical in the growth, reproduction, and evolution of all
contemporary biological life, but mainly because it is one of the simplest forms
of molecular self-assembly that involves the dynamics of both strong bonds and
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weak associative forces. In addition this process results in the replication and
transfer of chemical information.

Evolution in nature has created exquisite chemical systems for ligation. All
fundamental processes in the cell such as DNA replication, transcription and
translation are based upon template-directed ligation of monomers. Our goal
here is to create an artificial evolutionary process that designs a chemical system
that achieves a simple analog of ligation. Other kinds of artificial evolutionary
processes have been used for chemical design; in particular, “directed” or “in
vitro” evolution has been used to design molecules with specific desired func-
tionality [1, 2, 3, 4, 5, 6, 7]. But our evolutionary design procedure is different
from directed evolution in two crucial respects. First, rather than evolving a pop-
ulation of molecules (e.g., RNA) for a specific function, we evolve a population
of experimental parameters that describe a complete chemical system or process.
While directed evolution aims to optimize individual functional molecules, our
procedure aims to optimize whole chemical systems or processes containing a
number of chemical species engaged in myriad chemical reactions. Second, di-
rected evolution involves chemical systems that contain molecules encoding the
information that is evolving. By contrast, in our method the information that is
evolving is encoded outside the chemical system (in an experimenter’s lab note-
book or inside a computer). Thus, our method can be applied to design virtually
any kind of chemical system or process.

The work reported here concerns the evolutionary design of a chemical model,
not a real chemical system. However, this is not a limitation of our method. The
same method could be used to design real self-assembling chemical systems, ulti-
mately including quite complex systems like artificial cells that involve the inte-
gration of different chemical systems for containment, metabolism, and genetics
[8]. As it happens, the chemical systems we optimize here are analogous to the
chemical system of non-enzymatic template-directed synthesis [9, 10, 11, 12, 13,
14, 15]. Like template-directed systems of ligation in vivo and in vitro, our system
is supplied with a template molecule and an excess of monomers. It then evolves
so as to optimize the assembly of monomers on the template to produce a ligated
copy of the template. In Section 2 we describe our dynamic-bonding dissipative
particle dynamics (DDPD) chemical model. A description of the chemical ge-
netic algorithm (CGA) used to design chemical systems follows in Section 3. The
results of applying the chemical genetic algorithm to DDPD models that achieve
a simple form of ligation are presented and discussed in Section 4, followed in
Section 5 by a discussion of the proper design of CGAs and their practical lim-
itations. We conclude in Section 6 with a discussion of some different kinds of
dynamics in evolutionary design or “programming” of chemical systems.

2 Dynamic-Bonding Dissipative Particle Dynamics
(DDPD)

Our model of chemical reaction systems is based on the well-studied dissipative
particle dynamics (DPD) framework [16, 17, 18, 19, 20, 21]. The DPD framework
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is a mesoscopic system simulator meant to bridge the gap between molecular dy-
namics (MD) models and continuous substance models. The extreme computa-
tional demands of MD models make them appropriate only for simulating small
systems for brief intervals—orders of magnitude smaller than the time and length
scales of interest here. Continuous substance models are inappropriate as models
of molecular scale systems in which the discrete nature of particles impacts the
dynamics of the system.

In DPD, the equations of motion are second order, with explicit conservation
of momentum, in contrast to Langevin or Brownian dynamics. Solvent molecules
may be represented explicitly, but random and dissipative forces are included in
the dynamics to compensate for the dynamical effects of replacing the hard short-
range potentials of MD by softer potentials in DPD simulations. This procedure
allows a major accelaration of the simulation compared with MD.

Our work is based on a DPD implementation of a model of monomers
and polymers in water. Some elements in the model represent bulk water (one
model element representing many molecules). Other elements could represent hy-
drophilic or hydrophobic monomers. In some cases those elements are connected
by explicit bonds, which are represented as springs that freely rotate about
their ends. These complexes explicitly but very abstractly represent the three-
dimensional structure of polymers. For example, amphiphilic molecules can be
created by explicitly bonding a hydrophilic monomer “head” onto a hydrophobic
“tail” (chain of hydrophobic monomers).

All the elements move in a two- or three-dimensional continuous space, ac-
cording to the influences of four forces. A conservative force governs symmetric
pairwise repulsion and attraction of elements. A dissipative force causes the ki-
netic energy of elements to move towards equilibrium with other elements in the
region. A random force imparts kinetic energy to the elements in arbitrary di-
rections. The strength of the random force is calibrated to balance the lessening
of system energy due to the dissipative force, maintaining the temperature of
the system around a more or less fixed point. All of these forces are considered
to operate only within a certain local cutoff radius. The cutoff radius is a main
mechanism for improving model feasibility. Elements which are strongly bonded
to other elements are also influenced by the movement of those elements to which
they are bonded, through the spring that connects them.

The DPD framework supports two distinct types of particle interaction. The
first type of particle interaction is referred to as “strong bonds,” which represent
covalent chemical bonds. All strong bonds in DPD are specified initially, and
subsequently cannot form or break. Strong bonds are modeled by a Hooke’s
law spring. One limitation imposed on the DPD simulations discussed here is
that each element can have at most two strong bonds at a given time. The
second type of particle interaction corresponds to weak forces such as van der
Waals forces or hydrogen bonds. Weak interactions are modeled by the Lenard-
Jones potential, with different parameter values possible for interactions between
different particle types. In contrast to real systems, attractive forces are not
limited to a pair of elements, but may simultaneously occur between a single
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element and many others. Orientation of individual elements also plays no role,
as DPD elements are completely symmetrical. Thus, the pairing that occurs is
a cooperative phenomenon.

DPD thermodynamic forces can create self-assembled structures held to-
gether with the weak associative forces. For example, a DPD system with am-
phiphiles in water can exhibit a wide variety of the known supramolecular
amphiphilic phases, including monolayers, bilayers, micelles, rods, vesicles, and
bicontinuous cubic structures [19, 22, 23, 24, 25].

We augment the DPD framework by making strong bonds dynamic. This
dynamic-bonding DPD (or DDPD) is a DPD that is augmented with the follow-
ing two rules:

– Bonds form (probability 1) if elements are within the bond-forming radius.
– Bonds break (probability 1) if bonded elements are outside the bond-breaking

radius.

The strong bond strength parameter governs the strength of all strong bonds,
whether or not they were present in the initial conditions. An obvious general-
ization is to allow lower probabilities in the two bonding rules.

Note that the temperature of the system changes when bonds form and break.
However, the momentum in the system is constant, since the changes in the
momentum of individual elements due to bonding events are always symmetrical
with respect to the bonded particles.

Chemical amplification via templating is the basic mechanism of DNA repli-
cation, and also of simpler replicator systems such as von Kiedrowski’s autocat-
alytic replicator system [26] and peptide replicators [27]. Monomers of a given
type may participate in a weak interaction with monomers of a complementary
type, and each may form strong bonds with a monomer of any type if the two are
in the correct proximity and orientation. Given a template polymer made up of
different types of units and a reservoir of free floating monomers, each unit of the
template polymer can associate weakly with a complementary monomer. When
and if the weak forces bring the units into the correct orientation and proximity
with complementary units in the template polymer, strong bonds form between
the monomer units producing a complementary polymer through the process of
ligation.

If the paired complementary polymers are separated by a mechanism such
as duplex melting due to temperature change or protein action, then each poly-
mer may repeat the process, creating more templates and complements. By this
means, the overall number of polymers in the system increases. Although this
process results in the chemical amplification of polymers, the focus of the present
work is simply ligation, and the optimization of parameters that result in the
organization and ligation of monomers into polymers.

To keep the chemical system as simple as possible, we focus solely on the
ligation of two types of monomers into trimers, and we prevent strong bonds from
breaking. Pairs of opposite type units attract each other, while like type units
are unlikely to become associated by weak forces, which is roughly analogous to
complementary base pairing in the context of nucleotides.
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We do not report here a complete analysis on catalytic efficiency of the tem-
plating process, with fitting of rate constants and comparison with background
rates. Such analysis will be reported in future work.

3 Chemical Genetic Algorithm (CGA)

We now describe a “chemical genetic algorithm” (CGA) for designing chemical
systems. We use the CGA to optimize the parameters of a DDPD model of
ligation. The CGA could equally well be used to optimize parameters for other
models, or for other chemical systems, or for other systems in general.1

The search space of our CGA is a subset of DDPD parameters. In particular,
our genes are five chemical system parameters: (i) the strength of the attractive
conservative force between complementary particle types, (ii and iii) the strength
of the repulsive conservative force between the two types of like particles, (iv)
the bond-forming radius, and (v) the bond strength. In the context of this paper,
a genome is always a set of these five chemical systems parameters. Complete
details regarding the specific values used can be found in the appendix.

The CGA search procedure starts by measuring the fitness of the genomes
that form the first generation. Then the following loop is repeated until the
experiment ends: The most recently produced instance of the most fit genome
is used to create a subsequent generation of genomes, by mutations of the five
genome parameters. These mutations are governed by a global mutation rate,
which acts within a range and style of variation defined for each parameter.
A candidate mutated genome is included in a subsequent generation only if it
differs from each genome tested in any previous generation. Then the fitness of
each genome in the new generation is measured.

A genome’s fitness is measured by starting the DDPD with the genome’s
parameters and seeding the system with free monomers and template trimers.
No complementary trimers are included initially. The fitness of a genome is
the number of complementary trimers formed after a globally fixed number of
model updates. Many generalizations and modifications of our search algorithm
and fitness function could be explored.

4 Results of Evolutionary Design of a Ligation Model

We used the CGA to design chemical systems for complementary-bonding liga-
tion dozens of times, all with roughly the same results. Figure 1 shows the time

1 It is worth noting that our chemical genetic algorithm differs from another algorithm
devised by H. Suzuki that has been given the same name [28]. Inspired by metabolic
reactions of molecules responsible for the biological translation of genetic informa-
tion, Suzuki’s algorithm is an unusual genetic algorithm that includes analogues of
a cell containing tRNAs, amino acids, and aminoacyl-tRNAs, as well as DNA. Our
CGA, by contrast, is a ordinary genetic algorithm, but one that is applied to the
problem of designing optimal chemical systems.
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Fig. 1. A time series of the fitness (bold line) and allele values of the most fit chemical
system in each generation of a typical CGA run. This shows the lineage of the most
fit genomes through five-dimensional parameter space, indicating which allele (model
parameter) changes correspond to each fitness increase. Fitness and many model pa-
rameters are scaled to improve visualization. Note that fitness increases overall.

series of the fitness and allele values of the most fit chemical system in a typical
CGA run in this series. The fitness increases over time, in fits and starts (com-
mon with genetic algorithms), and the allele values in the genome of the most
fit system change with each fitness increase.

Figure 2 shows the genealogical tree of each chemical system generated in the
same CGA run. It vividly shows how the operation of the CGA allows only those
measured as most fit to be parents. The top line of the genealogy corresponds
to the lineage of the final optimal genome designed by the CGA.

Figure 3 again shows the maximum fitness in Figure 1, but now superim-
posed with twenty fitness measurements of some of the most fit systems. Each
scatter plot was created by rerunning the DDPD parameters with twenty differ-
ent random initial conditions. As might have been expected, the scatter reveals
significant noise in our fitness measurements.

Figure 3 supports two conclusions. First, the overall increase in average fitness
shows that the CGA is genuinely creating chemical systems with significantly
better fitness. In other words, the CGA works as desired; this holds in general
when we have used the CGA to program ligation systems. Second, increases in
measured fitness do not always correspond to increases in actual fitness, because
of noise in the fitness measurements, e.g., an initial configuration that creates
an unusually large number of complementary trimers.
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Fig. 2. A genealogical tree of each chemical system tested by the same CGA run shown
in Figure 1. The generation of each system is indicated on the x axis, and its fitness
on the y axis. Diagonal lines indicate parentage. Note that a parent is often not in the
generation immediately preceding its children. Multiple systems in a given generation
with the same fitness are shown as one point.

Fig. 3. A time series of the fitness of the most fit chemical system in each generation
of the CGA run shown in Figures 1 and 2, overlaid with scatter plots of twenty fitness
evaluations of some of those systems (with some random noise added, to distinguish
identical fitness values). As expected, the fitness of the most fit is sometimes higher
than any of the fitness values in the corresponding 20-value scatter plot, because the
CGA generates many more than 20 trials.

5 Chemical Genetic Algorithm Design

Proper design of a CGA involves confronting trade-offs between the accuracy
of fitness measurements and the evolutionary design time scale. More accurate
measurements are always possible, but they take more time. The number of
different systems that a CGA can evaluate is strongly limited by available time
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and technology. At the same time, the effectiveness of a CGA is limited by the
accuracy of its fitness measurements.

5.1 Noise in Fitness Measurements

The true fitness of a genome that describes the parameters of a given chemi-
cal system is the system’s propensity to produce templating reactions under a
variety of initial conditions. The fitness function actually used here, however,
is the number of complementary templates formed starting from a single ran-
dom initial configuration. Specific attention is not given to how the complements
were formed, what other chemical species were formed, or how many might form
under different initial conditions. The scatter in Figure 3 shows that this is an
imperfect measure of actual templating propensity. The noisiness of our fitness
measurements strongly depends on the chemical system’s experimental parame-
ters, whether or not they are in the genome.

In general, the noisiness of each fitness function must be measured empiri-
cally. We could do this by applying the fitness function to a single genome in a
variety of contexts, by varying such things as the number of model updates, U ,
used in one fitness measurement, the system size, S, and the initial density of
monomers, M . The noisiness of each point in U ×S×M space could be measured
with a scatter plot.

Any GA, including the CGA, can function properly only given sufficiently
accurate fitness measurements. One could more accurately assess fitness by aver-
aging repeated fitness measurements under different initial conditions, but this
takes substantially more time. To ensure both proper CGA function and optimal
CGA design speed, one should make the minimum number of fitness measure-
ments necessary for the requisite level of significance in measured fitness. This
raises a precise statistical question: How many fitness measurements are required
to get an accurate enough measurement that the CGA can continually find better
model parameters?

Fixing the values of all the simulation parameters and then repeating the
simulation from different random seeds n times, one obtains n values of the
fitness function, X1, . . . , Xn. Clearly, these variables are independent and iden-
tically distributed. The distribution of these variables depends on the details
of the simulation, which depend on the parameters that govern the simulation,
including U , S, and M , as well as the parameters encoded by the genome. As-
sume for the moment that this distribution is roughly approximated by a normal
distribution. Then we could infer the mean value, µ, of the fitness function for
n repetitions by means of standard confidence interval estimation techniques
based on the t-distribution for the pivotal quantity

√
n(x̄−µ)

σ̂ , where x̄ is the sam-
ple mean and σ̂ is the estimate of the standard deviation. This would permit us
to determine a sample size necessary to obtain an arbitrary desired accuracy, A.
For a 95 percent confidence interval we can in fact derive from A = ±tn−1;0.025

σ̂√
n

the smallest sample size that leads to the desired accuracy.
This would permit us to determine a sample size necessary to obtain an

arbitrary desired accuracy in estimated mean fitness, given the parameter values.
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Of course, one would have to validate empirically whether the variation in fitness
measurements is well approximated by a normal distribution. If not, through an
analysis of the simulation process, one could derive a better approximation of
this distribution and base the sample size calculation on this approximation.

5.2 Chemical Design Time Scales

The present discussion of time scales for simulation are based on use of a Mac-
intosh Dual 2 GHz PowerPC with no parallelization (single-threaded code). The
algorithm was not particularly optimized, but performs at speeds comparable to
other DPD research codes on benchmark problems.

The running time of a CGA depends on the following numbers (with values
for the present CGA results in parentheses):

– seconds per model update (10−1)
– model updates per fitness evaluation (102 − 103)
– systems evaluated (103 − 105)

Combining these numbers shows that each CGA run takes between 104−107 sec-
onds, that is, between hours and months. This spans the range of experiments
worth and not worth attempting. Furthermore, we saw above that successful
CGA operation might require averaging repeated fitness measurements before es-
timating a chemical system’s actual fitness. Such repeated measurements would
increase the running time of the CGA by an order of magnitude.

Thus, the time feasibility of our CGA designing DDPD parameters critically
depends on the number of model updates required for each fitness evaluation
and the accuracy of the evaluation. For example, the spontaneous self-assembly
of vesicles in the DPD framework typically takes on the order of a week of user
time, so the fitness function for a CGA designing vesicles would probably require
about the same amount of time. Hence, the CGA would take years to evaluate
the fitness of even hundreds of systems—which is clearly beyond the bounds of
human patience.

We conclude by noting that the execution times discussed here may be signif-
icantly improved by hardware and clever coding, as well as DDPD enhancements
that lead to more complex particle interaction primitives. On the other hand,
full simulation of dissociation at thermal equilibrium could increase execution
times.

6 Dynamics of Evolutionary Design of Chemical Systems

One can distinguish three kinds of dynamics involved in the evolutionary design
of chemical systems. First, the DDPD model involves the dynamic of chemical
species. This dynamic takes place in a continuous two- or three-dimensional
space supporting spontaneous self-assembly processes. Bonds form and break;
the concentrations of chemical species rise and fall; new species are created; old
species go extinct. DDPD models achieve these dynamics by the addition of
dynamic strong bonds.
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The evolutionary design of DDPD parameters sufficient for ligation of trimer
templates is a step toward a second kind of dynamic—evolution of informational
polymers by natural or artificial selection. Modeling the evolution of informa-
tional polymers is a burgeoning field. The focus on the line of work presented
here is a model in which the polymer evolution is produced by catalytic activity
physically embodied in explicit spatial structures—an example of what could be
called “embodied information processing.”

The chemical GA itself is a proof of principle for a third kind of dynamic,
specifically, the evolutionary design of a chemical system with prespecified func-
tional properties. The scheme used here for the evolutionary design of chemical
model parameters for ligation could be used to design model parameters for dif-
ferent self-assembled structures, such as micelles or lamellar sheets. The scheme
could also be used to design the parameters of other kinds of models entirely. If
those models are realistic, then the evolved model parameters could be used to
design real chemical systems. The CGA can also be used to design real chemical
systems directly, such as those that produce some desired kind of self-assembled
structures. Designing a CGA to produce a specific kind of self-assembled system
is a method for “programming” such systems.
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Appendix

The DDPD parameters in the work reported here were as follows: The conser-
vative force between particles i and j was given by an approximation of the
Lennard-Jones potential FC

ij = α( 1
ry

ij
− β

rz
ij

), where α is the maximum repulsive
force, β is the factor for the attractive force, rij is the distance between the
particles, and y and z are parameters governing the level of approximation. α
was initially set to 100 and allowed to vary between 1 and 100 for like type
interactions, while β was fixed at 1. For interactions between unlike types α was
fixed at 1 and β allowed to vary between 1 and 100, being initially set to 5. In
interactions with the “water” particle type, both α and β were fixed at 1. For
all particle interactions, y was set to 0 and x to -1.

Every DDPD simulation ran for 500 iterations. The scaling factor for the
dissipative and random forces, σ, was 3. The independent scaling factor for the
random force was 1.73205 (

√
3). The integration interval, dt, was 0.01. The spring

constant governing forces between bonded particles varied between 10 and 400,
being initially set to 100. The minimal energy length for bonds was 0.01. The
system was a 10 by 10 square initialized with 700 “water” particles, 90 free
type-one particles, 180 free type-two particles and 10 chains of two type-one
particles followed by a type-two, 1000 total particles, all randomly placed. The
dynamic bond forming radius was chosen from 0.1 to 0.5 with a starting value of
0.125. Bonds were not dynamically broken, loops were not allowed to form, and
the maximum length for dynamically formed polymers was fixed at 3. Dynamic
bonds were allowed to form only between like particles of type-one or -two, and
between type-one and type-two particles.

In the CGA, each generation had a population of 10 DDPD parameter files
based on the parameter file with the highest fitness to that point, or the more
recent file in case of ties. The five parameters that varied did so each with a
mutation probability of 0.5. If mutated, the dynamic bond forming radius was
chosen at random from ± 10% of the parent parameter. The range for all the
other parameters was half to double the parent value. Crossover was not used.
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