
Algorithmic Self-assembly
by Accretion and by Carving in MGS

Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto

LaMI UMR 8042 CNRS – Université d’Evry, Genopole,
523 place des Terrasses de l’Agora, 91000 Evry, France
{aspicher, michel, giavitto}@lami.univ-evry.fr,

http://mgs.lami.univ-evry.fr

Abstract. We report the use of MGS, a declarative and rule-based lan-
guage, for the modeling of various self-assembly processes. The approach
is illustrated on the fabrication of a fractal pattern, a Sierpinsky triangle,
using two approaches: by accretive growth and by carving. The notion
of topological collections available in MGS enables the easy and concise
modeling of self-assembly processes on various lattice geometries as well
as more arbitrary constructions of multi-dimensional objects.

1 Introduction

Self-assembly is a process that creates incrementally complex hierarchical spatial
structures. Nature presents a lots of examples, ranging from crystallization in
physics to morphogenesis in developmental biology. There is no unified general
theory of self-assembling, nor a unique definition. However, understanding the
principles underlying self-assembly processing will open entire new opportuni-
ties for our technological capabilities. Self-assembled systems can be thought to
be built of basic building elements (molecules, cells, etc.); together these basic
elements exhibit a new, often highly, complex behaviour.

For a computer scientist, self-assembly processes are particularly inspiring
because the dynamic organization of the involved entities emerge from many
decentralized and local interactions that occur concurrently at several time and
space scales. As a matter of fact, they have inspired several new computational
models like amorphous computing [1] or autonomic computing [7].

The emergence of the global structure of self-assembled systems cannot be
deduced from the individual composing elements. To obtain a deeper insight of
these complex systems, simulation models are often the only available option.
However, the modeling and the simulation of self-assembly can be very difficult
to achieve, because of the representation of the underlying space and of the
handling of complex spatial structures build in this space.

1.1 Self-assembly by Accretive Growth and by Carving

A central thema in the research in self-assembly processes is the organizational
principles that can be used to structure a population of basic elements. The
structure is incrementally built and often corresponds to a spatial structure. In
this paper we will focus on the modeling of two kinds of self-assembly.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 189–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

190 A. Spicher, O. Michel, J.-L. Giavitto

Self-Assembly by Accretive Growth. One of the most fundamental kind of self-
assembly is certainly processes where basic elements are united into a structure
during a growth process. A growth process can be described as an iteration
process. In such a process the output of an iteration step is used again as input
for the next iteration step. In a growth process the form of a growing object
in a certain growth stage is also determined by the form of the object in the
preceding growth stage. In each growth stage, new basic entities (e.g., material)
are added to this preceding growth stage.

We use the term accretive growth to qualify a growing process that takes place
on the boundaries of the system. This kind of growth is to oppose to “intercalary
growth” where the growing process is from the inside of the assembly.

Self-Assembly by Carving. Manca et al. have introduced a somewhat unusual
type of computation strategy called computation by carving [9]. The idea is to
generate a (large) set of candidate solutions of a problem, then remove the non-
solutions such that what remains is the set of solutions. This idea to remove
unwanted elements is also present in building shapes by space carving [8], an
algorithm to compute a volume that is consistent with a set of photos of a
3D shape. Transposed in the domain of self-assembly, this leads to the idea to
iteratively remove elements, starting from an initial shape.

1.2 DSL for the Simulation of Self-assembly

As noted above, the simulation of self-assembly can be very difficult to achieve.
In this paper, we advocate the use of a domain specific language (DSL) for the
modeling and the simulation, in an abstract and uniform setting, of accretive
growth and carving.

DSLs are specially tailored programming languages designed for solving prob-
lems in a particular domain. To this end, a DSL provides abstractions and nota-
tions for the domain at hand. DSLs are usually small, and more declarative than
imperative. Moreover, DSLs are more attractive for programming in the dedi-
cated domain than general-purpose languages because of easier programming,
systematic reuse, better productivity and flexibility. Our approach relies on two
dedicated notions:

– dedicated data-structures, called topological collections are used to repre-
sent the space underlying a self-assembly process and/or the self-assembled
system; and

– rewriting rules on topological collection, called transformations, are used to
implement the local evolution rules usually used to specify the self-assembly
process.

These two notions are studied in an experimental programming language called
MGS. MGS is a vehicle used to investigate the notions of topological collections
and transformations and to study their adequacy to the simulation of various
biological and self-assembly processes [6, 4].

Algorithmic Self-assembly by Accretion and by Carving in MGS 191

1.3 Organization of the Paper

The rest of this paper is organized as follows. The next section provides a quick
introduction to MGS. Two kinds of topological collections are sketched: group-
based data fields which are used to define various lattices used in the modeling of
accretive growth, and abstract cellular complexes used to model arbitrary shape
for carving. Section 3 presents three short and well-known examples of growth
by aggregation processes in MGS. Section 4 shows the self-assembly of Sierpinsky
triangles and section 5 build the same shape but using a carving process. The
conclusion reviews some previous, related and future work.

2 A Short MGS Presentation

2.1 Transformations of Topological Collections

In this section, we present the notions needed to understand the MGS coding
of the previous computation processes. MGS is a declarative programming lan-
guage aimed at the representation and manipulation of local transformations of
entities structured by abstract topologies [4]. A set of entities organized by an
abstract topology is called a topological collection. Topological means here that
each collection type defines a neighborhood relation specifying the notions of
locality, path and sub-collection. A path is a finite sequence of elements ei where
ei+1 is a neighbor of ei. A sub-collection B of a collection A is a subset of el-
ements of A defined by some path and inheriting its organization from A. The
global transformation of a topological collection C consists in the parallel appli-
cation of a set of local transformations. A local transformation is specified by a
rewriting rule r that specifies the change of a sub-collection. The application of
a rewrite rule β ⇒ f(β, ...) to a collection A:

1. selects a sub-collection B of A whose elements match the pattern β,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C in place of B into A.

The collection types can range in MGS from totally unstructured with sets and
multisets to more structured with sequences, “group-based data fields” and “ab-
stract cellular complexes”. There are two kinds of patterns that can be used in
a transformation.

Path Patterns. Path patterns match paths in a collection. A path pattern is a
sequence of elements separated by a comma. The path pattern x, y defines a
path of two elements, where y must be a neighbor of x. Arbitrary condition can
be tested using guards inserted in a path pattern: (x / x>0), (y / y>x) matches
two elements x and y such that the value of x is strictly positive and y is a
neighbor of x and the value of y must be greater than the value of x.

Patch Patterns. Patch patterns allow the matching of arbitrary sub-collection.
A patch pattern is specified using a set of clauses. We will present the patch
pattern features we need on section 5.

192 A. Spicher, O. Michel, J.-L. Giavitto

2.2 Group-Based Data Field

Group-based data fields (GBF in short) are used to define topological collections
with uniform neighborhood. A GBF is an extension of the notion of array, where
the elements are indexed by the elements of a group, called the shape of the
GBF [5]. The elements of the group are called the positions of the GBF. For
example:

gbf Grid2 = < north, east >

defines a GBF collection type called Grid2, corresponding to the regular Von
Neuman neighborhood in a classical array (a cell above, below, left or right – not
diagonal). The two names north and east (together with their inverses -north
and -east, always provided in a group structure) refer to the directions that
can be followed to reach the neighbors of an element. These directions are the
generators of the underlying group structure. The right hand side (r.h.s.) of the
GBF definition gives a finite presentation of the group structure.

The list of the generators can be completed by giving equations that con-
straint the displacements in the shape:

gbf Hex2 = < east, north, northeast; east + north = northeast >

defines an hexagonal lattice that tiles the plane, see figure 1. Each cell has six
neighbors (following the three generators and their inverses). The equation east
+ north = northeast specifies that a move following northeast is the same
as a move following the east direction followed by a move following the north
direction.

For convenience, we identify the type of a GBF with the presentation of the
underlying group. A GBF g of type G can be formalized as a partial function
g from the group specified by G to some set of values: g associates a value to
some positions. In other word, the group elements act as indices of a generalized
array. An empty GBF is the everywhere undefined function.

The topology of the collections of type G is easily visualized as the Cayley
graph G of G: each vertex in the Cayley graph is an element of the group G

C

C

C

C

C
C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Fig. 1. Eden’s model on an hexagonal mesh (initial state, and states after 3 and 7
time steps). This shape corresponds to the Cayley graph of Hex2 with the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graphs
share an edge in this representation. An empty cell has an undefined value. Only a part
of the infinite domain is figured.

Algorithmic Self-assembly by Accretion and by Carving in MGS 193

and vertex x and y are linked if there is a generator u in the presentation of G
such that x + u = y. A word (a sum of generators) is a path. Path composition
corresponds to group addition. A closed path (a cycle) is a word equal to e (the
identity of the group). An equation v = w can be rewritten v − w = e and then
corresponds to a cycle in the graph. There are two kinds of cycles in the graph:
the cycles that are present in all Cayley graphs and corresponding to group laws
(intuitively: a backtracking path like east+ north− north− east) and closed
paths specific to the own group equations (e.g.: east− north− east+ north).
The graph connectivity (there is always a path going from P to Q) is equivalent
to say that there is always a solution x to equation P + x = Q.

3 Growth Processes in MGS

Eden’s Process. We start with a simple model of growth sometimes called the
Eden model [3]. The model has been used since the 1960’s as a model for such
things as tumor growth and growth of cities. In this model, a 2D space is par-
titioned in empty or occupied cells (we use the value true for an occupied cell
and left undefined the unoccupied cells). We start with only one occupied cell.
At each step, occupied cells with an empty neighbor are selected, and the cor-
responding empty cell is made occupied.

The Eden’s aggregation process is simply described as the following MGS
global transformation: trans Eden = { x, <undef> => x, true }.

The Growth of a Snowflake. A crystal forms when a liquid is cooled below its
freezing point. Crystals start from a seed and then grow by progressively adding
more molecules to their surface. As an idealization, the molecules of a snowflake
lie on an hexagonal grid and when a piece of ice is added to the snowflake, the
heat released by this process inhibits the addition of ice nearby.

This phenomenon leads to the following cellular automata rule [16]: a black
cell (value 1) represents a place of the crystal filled with ice and a white cell
(value 0) is an empty place. A white cell becomes black if it has exactly one black
neighbor, otherwise it remains white. The corresponding MGS transformation is:

Fig. 2. Formation of a snowflake. The pictured states are the steps at time steps 1, 4,
8, 12, 16, 18, 20 and 23.

194 A. Spicher, O. Michel, J.-L. Giavitto

trans SnowFlake = { 0 as x / 1 == FoldNeighbor[+,0](x) => 1 }

The construct FoldNeighbor is not a function but an operator available only
within a rule: it enables to fold a function on the defined neighbors of an element
matched in the l.h.s. Here, this operator is used to compute the number of
neighbors (the accumulating function is the sum and the initial value is 0). This
transformation acts on a value of type Hex2 and a possible run is illustrated in
figure 2.

Diffusion Limited Aggregation. In a diffusion limited aggregation process, or
DLA [15], a set of particles diffuse randomly on a given spatial domain. Initially
one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. This process leads to a simple lattice gas
automata that could be easily done in MGS using a topological collection and
transformation:

trans dla = {
‘mobile, ‘fixed => ‘fixed, ‘fixed
‘mobile, <undef> => <undef>, ‘mobile

}

We use two symbols ‘mobile and ‘fixed to represent respectively a mobile
and a fixed particle (MGS’s symbols are like Lisp’s atoms). The two rules of the
transformation deal with:

1. the aggregation: the first rule specifies that if a diffusing particle is the
neighbor of a fixed one, then it becomes fixed (at the current position);

2. the diffusion: if a mobile particle is neighbor of an empty place (position),
then it may leave its current position to occupy the empty neighbor (and its
current position is made empty).

Note that the order of the rules is important because, following the rule
application semantics of MGS, the first one has priority over the second. Figure 3
presents the final state of the application of the transformation dla on two
kinds of topological collections: on the left, the neighborhood relationship is
homogeneous and a GBF is used. On the right, the dla transformation is applied

Fig. 3. Example of DLA on two different topologies: an hexagonal mesh and a sphere.
The plain hexagons and facets represent fixed particles. On the sphere, the empty
positions are not drawn. The same transformation is used on the two collections.

Algorithmic Self-assembly by Accretion and by Carving in MGS 195

on a meshed sphere. The elements are the facets, and two facets are neighbors
if they share an edge. For more details, refer to [13].

4 Accretive Growth of Sierpinski Triangles

The Sierpinski triangles (ST from now on) is a fractal described by Sierpinski
in 1915 and appearing in Italian art from the 13th century. It is also called the
Sierpinski gasket or Sierpinski sieve [14]. The ST can be produced by taking
the Pascal’s triangle modulo 2 (see figure 4), or equivalently by iterating the
bidimensional morphism defined on {0, 1} by 0 −→ 0 0

0 0 and 1 −→ 1 0
1 1 . Starting

from 1, we obtain:

1 −→ 1 0
1 1 −→

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

−→

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

−→ . . .

The formula for the binomial coefficient in Pascal’s triangle is: P (0, j) = 1,
P (i, j) = 0 for i > j and P (i, j) = P (i − 1, j − 1) + P (i − 1, j) for the remaining
cases. Considered modulo 2, this formula gives raise to the transformation below
acting on a lattice Grid2:

trans ST1 = { <undef> |south> x |west> y => (x+y)mod 2, x, y }

In this rule, the comma is refined using a GBF generator: a |south> b means
that b is a neighbor of a following the south direction. The transformation must
be iterated on an initial lattice where the position (0, j) are filled with 1 and
positions (i, 0) are filled with 0 for i > 0.

However, this transformation uses arithmetic operators (the + and mod). A
more elementary computation is possible, turning the formula modulo 2 into a
tiling process. Following [11] we consider 4 tiles corresponding to the two boolean

1

1

1

1

3

2

1

0

3

0

0

1

1

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0mod 2

1

north

south

east

west

Fig. 4. Upper line: taking the binomial coefficients modulo 2 produces the shape of the
ST. Lower line: ST can also be produced by iterating the carving of a triangle inside
another triangle.

196 A. Spicher, O. Michel, J.-L. Giavitto

values a cell (i, j) receives from the cells (i − 1, j − 1) and (i − 1, j). This tiling
is easily coded and then simulated in MGS. We use the four 4 symbols ‘T00,
‘T10, ‘T01 and ‘T11 to represents the 4 types of tiles: tile ‘Txy at position (i, j)
means that x is the value of P (i − 1, j) and y is the value of P (i − 1, j − 1). So
the value 0 is represented by either ‘T00 or ‘T11 and the value 1 by ‘T10 or
‘T01. Finally, we use a transformation with 4 rules to specify the placement of
the tiles:

trans ST2 = {
<undef> |south> (‘T00|‘T11) as x |west> (‘T01|‘T10) as y
=> ‘T01, x, y

<undef> |south> (‘T00|‘T11) as x |west> (‘T00|‘T11) as y
=> ‘T11, x, y

... two additional symmetric rules ...
}

The path pattern works as follow: the | operator in a pattern denotes an alterna-
tive: ‘T00 | ‘T11 matches the symbol ‘T00 or the symbol ‘T11; the as construct
is used to bind the value of a pattern fragment to a variable: in (‘T00 | ‘T11)
as x the pattern variable is bound to the actual value matched by the pattern.

5 Carving Sierpinski Triangles

Building a ST by carving is illustrated in figure 4. This process is also easily
coded in MGS using patch patterns on abstract cellular complexes.

An abstract cellular complex is composed of elements of various dimen-
sions (vertices, edges, surfaces, . . .) called topological cells of dimension n or
n-cells [10]. These basic elements are organized following the incidence relation-
ship that relies on the notion of boundary: let c1 and c2 be respectively a n1-cell
and an n2-cell with n1 < n2, c1 is incident to c2 if c1 belongs to the border of c2.
More especially, if n1 = n2 − 1, c1 is called a face of c2, and c2 is a coface of c1.

f
v1

v2v3 e2

e3 e1

(3,0)(−3,0)

(0,4)

5 5

6

12

Fig. 5. On the left is an example of a cellular complex: it is composed of 3 0-cells (v1,
v2, v3), 3 1-cells (e1, e2, e3), and a 2-cell f . The boundary of f is formed by its incident
cells v1, v2, v3, e1, e2 and e3. Especially, the 3 edges are the faces of f , and therefore,
f is the coface of e1, e2 and e3. On the right, data are associated with the topological
cells: positions are associated with vertices, lengths with edges and area with f .

Algorithmic Self-assembly by Accretion and by Carving in MGS 197

This data structure generalizes the idea of graph, that is a complex composed
of 0-cells and 1-cells. As the definition of a GBF collection uses the elements
of a mathematical group as indexes, here n-cells are used as indexes to define
a cellular complex based topological collection. Basically, a value is associated
with each topological cell. This corresponds to the concept of topological chain
in algebraic topology. This notion won’t be detailled in the paper. An example
of such a collection is given on figure 5.

Patch transformations have been created to handle any arbitrary cellular sub-
complex. The main advantage of using these complexes is that we can handle
cells of various dimensions to represent all the elements that compose the ST. In
fact, in the previous representation, the ST were patterns appearing on a matrix
of digits, that is, on a predefined space. Here the concrete geometric structure
of the ST is specified and the building of the ST also builds “its own embeding
space”.

To represent the ST, we use an abstract cellular complex where the value of
a vertex represents the coordinate of an embedding of the ST in the plane.

There are two transformations used to carve the ST. The first one, AV, adds
a vertex in the middle of each edges (see figure 6):

patch AV = {
~v1 < e:[dim = 1] > ~v2
=> ‘v:[dim = 0, cofaces = (‘e1,‘e2),

val = { x=(v1.x+v2.x)/2, y=(v1.y+v2.y)/2, new=true }]
‘e1:[dim = 1, faces = (v1,‘v)]
‘e2:[dim = 1, faces = (v2,‘v)]

}

The keyword patch is used instead of the keyword trans to outline that the
defined transformation uses patch patterns in its rules. In this patch transfor-
mation, v1 and v2 are not consumed (the ˜ qualifier in front of an identifier)
to allow the matching of all the edges incident to a same vertex. Indeed, if an
element is matched by a pattern, it can’t be matched in another one: two subcol-
lections matched by the l.h.s. of some rules of a transformation cannot overlap.
We say that the elements matched by a pattern are consumed. Here, if a vertex
was matched and consumed together with one of its incident edges, no any other
incident edges could be matched by the rule. A clause c1 < c2 means that cell
c1 is incident to cell c2 and of lower dimension. The right hand side of the rule is
a special form used to transform the matched edge e into two edges ‘e1 and ‘e2
incident to a new vertex ‘v. A flag new distinguishes the newly created vertices.

The next step looks for all the hexagons and replaces them with three trian-
gles (see figure 6):

patch RF = {
f:[dim=2, faces = (e1,e2,e3,e4,e5,e6)]
~v1 < ~e1 > ~v2:[? v2.new] < ~e2 >
~v3 < ~e3 > ~v4:[? v4.new] < ~e4 >
~v5 < ~e5 > ~v6:[? v6.new] < ~e6 > ~v1

198 A. Spicher, O. Michel, J.-L. Giavitto

e2

v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

f
v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

‘f2‘f3

‘e46

‘f1

‘e62

‘e24

RFAV

Fig. 6. Carving a triangle. The first transformation AV adds vertex in the middle of an
every edge. The second transformation RV refines the central hexagonal face into three
triangles.

=> ‘e24:[dim=1, faces=(v2,v4)]
‘e46:[dim=1, faces=(v4,v6)]
‘e62:[dim=1, faces=(v6,v2)]
‘f1:[dim=2, faces=(e6,e1,‘e62)]
‘f2:[dim=2, faces=(e2,e3,‘e24)]
‘f3:[dim=2, faces=(e4,e5,‘e46)]

}
In this patch, only the hexagon f is matched and consumed. We select its bound-
ary without consuming it. Note the guards in the specification of the matched
vertices: a flag is used to match only newly created hexagons.

6 Discussion and Conclusion

In this paper we have presented the use of a DSL language for the modeling
and the simulation of two kinds of self-assembly processes: by accretive growth
and by space carving. Despite their specificities, we are convinced that they are
paradigmatic of a full class of self-assembly processes.

Most of the examples described in this paper relie on chemical processes. The
sierpinsky gasket pattern has been really implemented using DNA molecules. Pre-
viously, the process has been designed and simulated using the kinetic Tile Assem-
bling Model (kTAM) [11]. kTAM provides a complete framework for the descrip-
tion of such chemical reactions where a lot of physical parameters (like tempera-
ture, error rates, . . .) are taken into account to allow accurate studies of crystal-
lization processes. The DNA assembly of tridimensional fractal has been proposed
and studied in [2], based on DNA trigonal tiles. Compared to this work, the MGS
modelings presented in this work are much more abstract: the purpose is not to
study the physical implementation using a DNA computing paradigm but to in-
vestigate the shape produced by some families of abstract self-assembly processes.

Obviously, the mechanisms provided by MGS allow the specifications of more
complex and abstract operations, that could be very difficult to implement
using polymerization and depolymerization reactions of kTAM for instance.
These higher level features can be used in the domain of robotics self-assembly.
For instance, [17] presents the elaboration of a self-reproducing machine. This

Algorithmic Self-assembly by Accretion and by Carving in MGS 199

Fig. 7. On top, Sierpinski sponge building process: initial state and steps 1, 2, 3 and
4. At bottom, Menger sponge building process: initial state and steps 1 and 2.

machine is composed of elementary cubic modules. Each module is able to be-
have in different ways: pivoting, connecting or disconnecting with other modules,
transfering data and power to its connected neighbors. The organization and the
complex behaviors of the whole machine could be captured by a MGS modeling
using topological collections and transformations. The modeling in MGS of such
complex self-assembly processes, where we must specify the complex interaction
of a few complex entities, is a part of our current work.

We insist on the expressivity brought by the notions of topological collections
and their transformations. For example, the patch language used in section 5 is
powerful enough to produce Sierpinski and Menger sponge (a generalization of
carving a tetrahedron and a cube in 3D), see figure 7. MGS has also been suc-
cesfully used to model several biological growth processes, like the development
of an epithelial sheet or a neurulation process [12], as well as the flock of birds
or the subdivision of a triangulated surface.

References

[1] Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and
Weiss. Amorphous computing. CACM: Communications of the ACM, 43, 2000.

[2] A. Carbone, C. Mao, P. E. Constantinou, B. Ding, J. Kopatsch, W. B. Sher-
man, and N. C. Seeman. 3D fractal DNA assembly from coding, geometry and
protection. Natural Computing, 3(3):235–252, 2004.

200 A. Spicher, O. Michel, J.-L. Giavitto

[3] M. Eden. In H. P. Yockey, editor, Symposium on Information Theory in Biology,
page 359, New York, 1958. Pergamon Press.

[4] J.-L. Giavitto. Invited talk: Topological collections, transformations and their
application to the modeling and the simulation of dynamical systems. In Rewriting
Technics and Applications (RTA’03), volume LNCS 2706 of LNCS, pages 208 –
233, Valencia, June 2003. Springer.

[5] J.-L. Giavitto and O. Michel. Declarative definition of group indexed data struc-
tures and approximation of their domains. In Proceedings of the 3nd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP-01). ACM Press, Sept. 2001.

[6] J.-L. Giavitto and O. Michel. Modeling the topological organization of cellular
processes. BioSystems, 70(2):149–163, 2003.

[7] P. Horn. Autonomic computing: IBM’s perspective on the state of information
technology. Technical report, IBM Research, Oct. 2001. http://www.research.
ibm.com/autonomic/manifesto/autonomic_computing.pdf.

[8] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. International
Journal of Computer Vision, 38(3):199–218, July 2000.

[9] V. Manca, C. Martin-Vide, and G. Paun. New computing paradigms suggested
by dna computing: computing by carving. Biosystems, 52(1-3):47–54, Oct. 1999.

[10] J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
[11] P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly

of dna sierpinski triangles. PLoS Biol, 2(12):e424, 2004. www.plosbiology.org.
[12] A. Spicher and O. Michel. Declarative modeling of a neurulation-like process.

In Sixth International Workshop on Information Processing in Cells and Tissues
(IPCAT’05), pages 304–317, York, August 2005.

[13] A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the speci-
fication and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume
3305 of LNCS, Amsterdam, October 2004. Springer.

[14] I. Stewart. Four encounters with sierpinski’s gasket. Mathematical Intelligencer,
17:52–64, 1995.

[15] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical
phenomenon. Phys. Rev. Lett., 47:1400–1403, 1981.

[16] S. Wolfram. A new kind of science. Wolfram Media, 2002.
[17] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines.

Nature, 435(7038):163–164, 2005.

http://www.research.
ibm.com/autonomic/manifesto/autonomic_computing.pdf

	Introduction
	Self-assembly by Accretive Growth and by Carving
	DSL for the Simulation of Self-assembly
	Organization of the Paper

	A Short MGS Presentation
	Transformations of Topological Collections
	Group-Based Data Field

	Growth Processes in MGS
	Accretive Growth of Sierpinski Triangles
	Carving Sierpinski Triangles
	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

