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Abstract. The concept of backbone variables in the satisfiability prob-
lem has been recently introduced as a problem structure property and
shown to influence its complexity. This suggests that the performance
of stochastic local search algorithms for satisfiability problems can be
improved by using backbone information. The Partial MAX-SAT Prob-
lem (PMSAT) is a variant of MAX-SAT which consists of two CNF
formulas defined over the same variable set. Its solution must satisfy all
clauses of the first formula and as many clauses in the second formula as
possible. This study is concerned with the PMSAT solution in setting a
co-evolutionary stochastic local search algorithm guided by an estimated
backbone variables of the problem. The effectiveness of our algorithm is
examined by computational experiments. Reported results for a number
of PMSAT instances suggest that this approach can outperform state-
of-the-art PMSAT techniques.

1 Introduction

Many problems in artificial intelligence (AI) and operations research (OR) are
optimization problems, where the objective is to find a best assignment to a set
of variables such that a set of constraints are satisfied. Real world problems found
in application areas including scheduling [4] and pattern recognition [12] contain
hard and soft constraints. Hard constraints must be satisfied by any solution,
while soft constraints specify a function to be optimized. Various approaches have
been proposed to represent over-constrained problems. Freuder and Wallace [12]
presented the concept of partial constraint satisfaction, where the objective is to
maximize the total number of satisfied constraints. Borning et al. [7] introduced
the notion of constraint hierarchies, where the distinction between hard and soft
constraints is extended to a multiple level constraint hierarchy.

Boolean satisfiability (SAT) is among the most interesting AI formalisms for
reasoning, planning and learning [23]. The SAT problem asks to decide whether a
given propositional formula, in conjunctive normal form (CNF), has a model. The
maximum satisfiability (MAX-SAT) problem is the optimization version of SAT
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which consists to find an assignment maximizing the number of satisfied clauses.
The weighted MAX-SAT is a more general case, where each clause is associated
with a positive weight. The goal is to minimize the sum of weights of violated
clauses. Problems involving hard and soft constraints can be naturally encoded
as weighted MAX-SAT. Each hard constraint can be represented by a weighted
cost which exceeds the sum of the weighted cost of all soft constraints. However, a
solution for a MAX-SAT instance may violate some clauses whose satisfiability is
a necessary condition for the feasibility of the real solution. For example, a MAX-
SAT solution for a university time tabling may contain collisions of different
courses in the same room at the same time, the same lecturer can be scheduled in
different rooms at the same time, and so on. Cha et al. [8] introduced the Partial
MAX-SAT (PMSAT) to formulate independently hard and soft constraints. Hard
constraints are called mandatory clauses; their satisfiability is required for any
PMSAT solution. Other related problems to PMSAT are the DISTANCE-SAT
defined by Bailleux and Marquis [2], and the sub-SAT introduced by Xu et al.
[24]. The DISTANCE-SAT problem asks to check if there is a model of a CNF
formula, that conflicts with an expected configuration on at most a given number
of variables. The sub-SAT is a formulation for relaxed Boolean satisfiability, that
allows violation of a given number of clauses in a CNF formula.

The current research on algorithms used to solve PMSAT is limited. Cha et
al. [8] used a weighting-type stochastic local search to solve PMSAT by repeating
each mandatory clause n times. In this way, the search always prefers a solution
which satisfies all mandatory clauses, regardless of the level of remaining clause
violations. However, this can lead to an important increasing of the total number
of clauses when their number is initially large. They applied various strategies
to escape from local minima such as LWM, RESTART and RESET [8]. LWM
strategy consists to add weights to all unsatisfied clauses, and to continue the
search when a local minimum is reached. RESTART strategy allows the algo-
rithm to restart from a random initial assignment, while RESET consists to reset
the weights given by the algorithm and to continue the search from the current
assignment. In the reported experimental study [8], RESET outperforms LWM
and RESTART on random instances. In [14], a new approach for solving PMSAT
is described. It is based mainly on recycling a model of the mandatory clauses to
satisfy as many clauses in the second formula as possible. The reported results
show the overall superiority of this method in comparison to a weighting-type
local search algorithm. A problem of practical significance in the design of SAT
and MAX-SAT solvers, is how to identify and exploit the problem structure
properties to improve their performance. Some interesting properties which in-
fluence the hardness of a SAT have been identified such as the easy-hard-easy
phase transition [9, 15], and the backbone variables [16], a set of literals which
are true in every model. The backbone of a MAX-SAT instance is the set of
assignments of values to variables which are the same in every possible optimal
solution [20].

The aim of this paper is to integrate a backbone guide moves to a co-
evolutionary stochastic local search algorithm for solving the PMSAT problem.
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In a first phase, both formulas of a PMSAT instance are solved as a single MAX-
SAT instance using a backbone guided co-evolutionary search. In a second phase,
the best assignment found is recycled to satisfy all mandatory clauses using the
estimated backbone. The effectiveness of this algorithm is demonstrated empir-
ically on some PMSAT instances derived from standard SAT instances. In the
reminder of this paper, we explain in more details the proposed method for PM-
SAT and report on results of computational tests in which our algorithm is com-
pared to related approaches. In the next section, we describe a co-evolutionary
method used for MAX-SAT (Bose-Einstein Extremal Optimization). In section
3, we present a brief review of backbone variables and related notions. In section
4, we formalize a new method for PMSAT. In section 5, we report on experi-
mental results. We finally conclude and plan for future work in section 6.

2 Bose-Einstein Extremal Optimization Method for
MAX-SAT

Bose-Einstein Extremal Optimization (BE-EO) [13] is an approximative algo-
rithm for solving the MAX-SAT problem. It is based on an adaptation of Ex-
tremal Optimization (EO) [5] heuristic to MAX-SAT. The search space is
explored according to EO, while starting solutions are sampled using the Bose-
Einstein probability distribution.

Extremal Optimization method is introduced by Boettcher and Percus [5] for
solving hard optimization problems such as the Graph Partitioning. It was moti-
vated by the Bak-Sneppen [3] model of biological evolution which describes the
co-evolutionary process of species. In this model, optimal adaptation emerges
naturally from the dynamics of species by elimination of badly adapted ones.
Species are sites of a lattice and each one has an associated fitness value ranging
from 0 to 1. A fitness represents a time scale at which the species will mutate
to a different species or become extinct. A selection process against the worst
adapted species is applied. At each update, the smallest fitness value is replaced
by a new random one which impacts the fitness values of its neighbors. After a
certain number of steps, a state of optimal adaptation (Self-Organized Critical-
ity) is reached in which all species are intimately connected. When the system is
driven back to a SOC state, any perturbation of this equilibrium involves large
fluctuations in the configuration of fitness values (critical avalanches). The dura-
tion t of these avalanches follows a power-law distribution P (t) ∝ t−τ (τ close to
1). Extremal Optimization method is a conversion of the extremal dynamics of
the Bak-Sneppen model into an approximative algorithm for optimization prob-
lems. The search process is characterized by hill-climbing large fluctuations (i.e.
avalanches in the Bak-Sneppen model) allowing search diversification. It evolves
to a SOC state where sub-optimal solution can be found (almost all species have
optimal fitnesses).

The Bose-Einstein distribution is a quantum distribution function. It de-
scribes the probability distribution of an amount of energy between identical
but indistinguishable particles with integer spin, called bosons (e.g. photons).
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Szedmak [21] proved that this distribution function can improve the performance
of stochastic local search algorithms for satisfiability problems. He demonstrated
that the mean Hamming distance between a sample of initial solutions and the
optimal solution is reduced when initial solutions are generated using the Bose-
Einstein distribution rather than the uniform one.

Given a MAX-SAT instance of n Boolean variables x1, . . . , xn, and m wei-
ghted clauses (ci, wi)i=1,m. Each clause ci is a disjunction of literals (a variable
xi or its negation ¬xi), and wi ∈ N is its weight. A MAX-SAT instance is a
conjunction of clauses (CNF formula). The fitness λi of a variable xi is defined
as the negation of the fraction of the sum of weights of unsatisfied clauses in
which xi appears, by the total weights of clauses connected to this variable :

λi =
−

∑m
j=1 wj |xi ∈ cj , I(cj) = 0
∑m

k=1 wk|xi ∈ ck
(1)

I(cj) = 0 means that the clause cj is unsatisfied. The cost contribution of a
variable xi is defined by −λi. The best solution S found to a MAX-SAT instance
is associated to the minimum of the cost function C(S) = −

∑n
i=1 λi.

The algorithm BE-EO for MAX-SAT is outlined as follows [13].

Algorithm BE-EO/MAX-SAT

1. Randomly generate a solution S according to the Bose-Einstein distribution.
Set Smax ← S.

2. If S satisfies all the clauses of the MAX-SAT instance, return (S : model).
3. Evaluate λi for each variable xi.
4. Rank xi, (i = 1, n) from the worst to the best according to λi. Select a rank

j such that P (j) ∝ j−τ .
5. Flip the truth value of xj in S.
6. If C(S) < C(Smax) then set Smax ← S.
7. If the number of steps does not exceed the given bound, return to step 2.
8. If the number of generated Bose-Einstein initial solutions does not exceed

the given sample size, then randomly generate a solution S according to the
Bose-Einstein distribution. Return to step 2.

9. Return (Smax).

Good performance is reported for BE-EO/MAX-SAT on some specific classes
of weighted and unweighed MAX-SAT instances [13] outperforming WalkSAT
[18] and a tabu search method.

3 Backbone Variables

The backbone of a problem instance is a set of variables having fixed values in all
optimal solutions. These variables are critically constrained as the elimination of
any one of them will exclude any optimal solution. Related notions to backbone
in satisfiability are backdoors [23] and spine [6]. A backdoor is a variable subset
such that if some particular truth values are assigned to these variables, the
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simplified instance is satisfiable and can be solved in polynomial time. Williams et
al. [23] demonstrated that a concrete computational advantage can be obtained
by exploiting backdoors. The spine of a set of clauses is a set of literals which
are false in all models of a subset of satisfiable clauses [20].

Several researches dealing with competitive SAT and MAX-SAT solvers have
made use of backbone variables. Monasson et al. [16] investigated the backbones
of 3-SAT and (2 + p)-SAT, and conjectured that a backbone is an order para-
meter for the decision problems. Other studies [17, 19, 1] have demonstrated
that the size of the backbone is correlated with the hardness of SAT problems.
Slaney and Walsh [20] have studied backbones in optimization and approxi-
mation problems including graph coloring, traveling salesperson problem, num-
ber partitioning and blocks word planning. They showed that backbones are
often an important indicator of hardness in optimization and approximation.
Subsequently, heuristic methods which identify backbone variables, may reduce
problem difficulty and improve performance. Dubois and Dequen [11] proposed a
systematic search method which incorporates estimated backbone variables.
Telelis and Stamatopoulos [22] designed a method for generating initial assign-
ments to an iterated algorithm by sampling heuristically the backbone vari-
ables, and reported good results on some random MAX-SAT instances. Climer
and Zhang [10] developed a technique for identifying backbones and fat vari-
ables (variables which are absent from every optimal solution). They exploited it
for discovering backbone and fat arcs for instances of the asymmetric traveling
salesperson problem (ATSP) and achieved performance improvements. Zhang et
al. [25] improved the performance of the well known WalkSAT procedure [18]
on some instances of SAT and MAX-SAT from SATLIB [27] using structure
information of reached local minima.

4 Backbone-Based Co-evolutionary Heuristic for PMSAT

Given two CNF formulas fA and fB over a set of variables X = {x1, . . . , xn}.
The PMSAT problem P = fA ∧ fB asks to satisfy all the clauses of fA and as
many clauses in fB as possible. The number of satisfied clauses in fB determines
the quality of a solution to P .

We propose a two-phase algorithm for solving P . In a first phase, P is
considered as a MAX-SAT instance and approximated using a variant of the
algorithm BE-EO/MAX-SAT. A backbone variables sampling is integrated to
BE-EO/MAX-SAT to guide the search towards potentially good solutions. If the
best solution found SAB does not satisfy fA, then a second phase is performed
to recycle SAB to a model of fA using the backbone information captured in
the first phase. The backbone sampling may help to improve the performance of
the second phase process, as it encapsulates information about the likelihood of
each variable. However, exact backbone cannot be computed unless all optimal
solutions are known. Hence, only an estimated pseudo-backbone is performed
using information extracted from reached local minima.
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The pseudo-backbone sampling used in this work is inspired by the sampling
scheme presented in [22]. Let Ω be a set of solutions on X . S(xi) denotes the
truth value of xi in the solution S. A variable frequency of positive occurrences
of xi in all solutions of Ω, is defined by :

pi =
∑

S∈Ω S(xi)
|Ω| (2)

assuming that all local minima are of equal quality. Else a weight cost may be
assigned to each local minimum. Q(S) denotes the contribution of a solution
S, defined as the total number of satisfied clauses in fA and fB. A multiplier
coefficient, equals to |fA|, is added to Q(S) to underline the priority of satisfying
clauses of fA. Let #satfA(S) and #satfB (S) be the number of satisfied clauses
by S in fA and fB, respectively. Q(S) is defined by :

Q(S) = |fA| · #satfA(S) + #satfB (S) (3)

A more reliable definition of pi(i = 1, n) is given by :

pi =
∑

S∈Ω Q(S) · S(xi)
∑

S∈Ω Q(S)
(4)

Let Xα denotes the set of variables which appear in the set of clauses α. The
main steps of the algorithm, called BBC-PMSAT, are described as follows.

Algorithm BBC-PMSAT

Phase 1: Solving P = fA ∧ fB as a MAX-SAT instance
(a) Run BE-EO/MAX-SAT on P over X . Initialize Ω with reached local

minima.
(b) Solve P using a variant of BE-EO/MAX-SAT (initial solutions are gen-

erated from Ω using variable frequencies pi (Eqn. 4)).
At a new local minimum S, if Ω holds a solution S∗ such that
Q(S∗) < Q(S) (Eqn. 3), then replace S∗ by S in Ω.

(c) Let SAB be the best solution found after a preset number of steps.
If SAB satisfies fA then return SAB as a solution to P .

Phase 2: Recycling SAB to satisfy fA

(a) Let fA = fA1 ∧ fA2 , where fA1 is satisfied by SAB and XA1 ∩ XA2 = ∅
(simplification).

(b) Solve fA2 over XA2 as a SAT instance using a variant of the BE-EO/SAT
(Phase 1, step (b)). Partial assignments to the variables of XA2 are
generated using variable frequencies pi.

(c) After a preset number of steps, if a model SA2 is found, then update
SAB and return it as a solution to P . Else return that no solution to P
can be found.



A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 161

5 Performance Evaluation

Since no public PMSAT instances are available, we generated them using SAT
instances from DIMACS [26] and SATLIB [27] benchmark archives. We consid-
ered four sets of random and structured SAT instances of n variables and m
clauses:

– uuf125-538* (100 random “phase-transition” hard 3-SAT instances of n = 125
and m = 538);

– f* (3 large random “phase-transition” hard 3-SAT instances: f600 (n = 600,
m = 2550), f1000 (n = 1000, m = 4250), f2000(n = 2000, m = 8500);

– par8-* (5 instances of SAT-encoded parity learning problem of n = 350 and
1149 < m < 1171);

– flat* (10 instances of SAT-encoded graph coloring problem of n = 300 and
m = 1117).

All SAT instances are chosen satisfiable in order to guarantee the generation
of solvable PMSAT instances (fA must be satisfiable). Random SAT instances
are “phase-transition” hard (m

n � 4.3 for random 3-SAT instances). Structured
instances par8-* are also among the hardest DIMACS SAT ones. Random in-
stances are generally used to control average problem difficulty by varying the
ratio

(
m
n

)
of clauses to variables, while structured instances are used to mea-

sure the effect of hidden structure on algorithm performance. PMSAT instances
are generated using a partition of each SAT instance into two subsets FA and
FB (representing fA and fB formulas, resp.) such that |FA| = [αm] + 1 and
|FB| = m − |FA|, with 0 < α < 1. The program code is written in C and run
on a computer (Pentium IV 2.9 GHz with 1 GBs of RAM) running Linux. BE-
EO/MAX-SAT is run setting τ = 1.4. All the results are averaged over 10 runs
on each instance with a maximum of 300000 flips allowed per run. The total
number of tries for each run of the algorithm BBC-PMSAT is shared between
both phases of the algorithm. Let r be the first phase run length ratio of the
total run length, #sat the number of solutions to PMSAT instances over 10 runs
(it equals the average number of satisfied fA instances) and v the relative error
of a solution S given by:

v(%) =
(

1 − #satfB (S)
|FB|

)

× 100 (5)

A key question regarding the algorithm BBC-PMSAT is how to evaluate
its performance. The first objective is to determine the effect of the first phase
run length ratio of the total run length. The second objective is to determine
the impact of the pseudo-backbone variables size on the performance. The third
objective is to determine whether or not BBC-PMSAT is competitive with its
variant, called C-PMSAT, which does not integrate pseudo-backbone sampling.
Additionally, BBC-PMSAT is compared to a weighting-type local search algo-
rithm, called WLS, used by Cha et al. [8] with RESET strategy to solve PMSAT
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Fig. 1. Average error v (y-axis) and number of solutions #sat (additional y-axis) over
10 runs for instances f2000 and par8-4 (α = 0.3) are plotted against the run length
ratio of phase 1

instances. WLS/RESET solves PMSAT as MAX-SAT instance by repeating each
clause in FA, |FA| times.

Figure 1 presents average #sat and v over 10 runs obtained by BBC-PMSAT
on the instances f2000 and par8-4, varying r from 10% to 100%. We observe
clearly that the greater the value of r, the more the number of solutions #sat
and the error v are reduced. An error v less than 1% is achieved after at least
50% of the total runtime length. However, allowing much more time to the first
phase of the algorithm, means reducing the amount of time allowed to the second
phase. Hence, the number of solutions #sat to PMSAT may decrease. For all
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Fig. 2. (α = 0.3, r = 0.6) (a) Average number of solutions #sat (y-axis) is plotted
against the ratio of the pseudo-backbone size to the number n of variables for each
instance class. (b) Average error v (y-axis) is plotted against the ratio of the pseudo-
backbone sample size to the number n of variables for each instance class.
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the instances, the average best performance in terms of average #sat and v is
obtained with r ranging from 50% to 70%.

Figure 2 shows the number of solutions #sat and the average error v achieved
by BBC-PMSAT on all the instances when varying pb, the ratio of backbone size
to the number of variables n, from 0 to n (α = 0.3, r = 0.6). As illustrated in figure
2.a, the number of solutions #sat is generally increasing with pb. It is constant in
the case of uuf* which may have few backbone variables. For example, setting pb
to 0.5n, the gains achieved by BBC-PMSAT in terms of #sat on the instances
f*, flat* and par8-* are 5.71%, 6.92% and 2.96%, respectively. For pb = n, the
gains achieved on the same instances are 11.42%, 10.38% and 16.66%, respectively.
Figure 2.b shows a fall in the average error v for all the instances: v decreases
rapidly for the instances f*, until pb = 0.5n; v decreases relatively slowly for the
remaining instances. For all the instances, the average best performance, in terms
of quality of a solution (v), is obtained when pb ≥ 0.6n. BBC-PMSAT performs

Table 1. Results of the algorithm BBC-PMSAT (α = 0.3, r = 0.6, pb = 0.7n)

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 10 0 0.374 0.050 3881.9 556.0
f600 9 0.0113 6.092 1.815 28958.2 4623.1
f1000 7 0.0951 19.812 3.152 79575.1 8768.4
f2000 7 0.1135 44.655 3.547 138120.9 9868.5
flat* 2.8 0.0923 3.238 0.185 26926.8 1601.4
par8-1 7 0.0713 5.117 1.350 34877.1 9215.0
par8-2 7 0.1501 5.723 0.702 39681.0 4886.0
par8-3 6 0.1185 4.931 1.050 31657.5 7325.1
par8-4 5 0.1290 4.581 0.900 31917.0 6513.0
par8-5 5 0.1870 7.960 0.841 61275.4 4935.0
Average 6.58 0.0968 10.248 1.359 47687.0 5829.1

Table 2. Results of the algorithm C-PMSAT (α = 0.3, r = 0.6, pb = 0.7n)

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 10 0.0231 0.514 0.200 6162.0 971.3
f600 9 0.0130 10.973 2.532 57457.3 7929.7
f1000 6 1.9150 22.650 1.650 115059.2 7021.6
f2000 6 2.5710 54.458 7.940 189310.3 35641.8
flat* 2.6 0.1504 4.154 1.201 32795.1 5831.0
par8-1 6 0.3511 7.516 0.324 60513.3 1472.1
par8-2 6 0.2510 7.380 0.508 58764.0 2410.5
par8-3 6 0.2315 5.763 1.810 44210.4 8355.0
par8-4 4 0.1712 4.716 0.152 36638.1 790.0
par8-5 5 0.2415 10.550 0.380 71652.1 1582.0
Average 6.06 0.5918 12.867 1.669 67256.1 7200.5
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Table 3. Results of the algorithm WLS/RESET

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 9.8 0.0123 0.845 0.205 8316.4 1485.0
f600 9 0.0130 10.620 2.010 47150.6 18420.0
f1000 6 0.1235 29.271 2.055 136171.0 19040.0
f2000 5 1.5764 60.028 5.601 265124.5 41190.0
flat* 2.1 0.2351 6.068 1.295 43166.3 9147.6
par8-1 4 0.3133 10.408 0.520 79525.1 3290.0
par8-2 4 0.4840 9.120 0.180 70720.0 1123.1
par8-3 3 0.3586 7.151 0.642 53540.2 4058.0
par8-4 1 0.6315 5.154 0.210 39628.0 1620.5
par8-5 4 0.4099 10.250 1.261 73040.2 7850.0
Average 4.79 0.4158 14.891 1.397 81638.2 10722.4

particularly well on the instances par8-* which may have a large backbone size,
making all the variables critically constrained.

Computational results performed by BBC-PMSAT, C-PMSAT and
WLS/RESET are presented in tables 1, 2 and 3, respectively. The first col-
umn lists the benchmarks. Columns 2, 3 show the average number of solutions
#sat and the average error v over 10 runs. Columns 4, 5 show the average CPU
time and its standard deviation. Columns 6, 7 show the average number of flips
and its standard deviation. BBC-PMSAT is tested using α = 0.3, r = 0.6 and
pb = 0.7n. Overall, BBC-PMSAT outperforms C-PMSAT and WLS/RESET on
all the instances. The average gains in number of solutions are 8.58% and 37.36%
w.r.t. C-PMSAT and WLS/RESET, respectively. In term of runtime cost, the
average falls are 20.35% and 31.17% w.r.t. C-PMSAT and WLS/RESET, respec-
tively. In conclusion, our results demonstrate that BBC-PMSAT can find high
quality solution and performs faster than C-PMSAT and WLS/RESET.

6 Conclusion and Future Work

In this work, we introduced a backbone-based co-evolutionary algorithm for PM-
SAT (BBC-PMSAT). This algorithm is based on a co-evolutionary stochastic lo-
cal search method (BE-EO) which has been used successfully for solving a range
of MAX-SAT instances. BBC-PMSAT approximates solutions to PMSAT in two
main phases. In a first phase, PMSAT is solved as a MAX-SAT instance incor-
porating sampled pseudo-backbone variables to guide the search. In a second
phase, the previously found solution is recycled to satisfy all the constrained
clauses using estimated pseudo-backbone. BBC-PMSAT was compared to its
variant without pseudo-backbone sampling (C-PMSAT) and to a weighting-type
stochastic local search algorithm with RESET strategy (WLS/RESET) [8] for
PMSAT. These algorithms were tested on four classes of PMSAT instances gen-
erated from standard SAT instances. The results indicate the effectiveness of
using estimated pseudo-backbone variables. Indeed, BBC-PMSAT outperforms



A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 165

C-PMSAT and WLS/RESET on all the instances in terms of average number of
solutions and average runtime cost. The most significant gains are achieved on
instances which may have large backbone size. The encouraging results obtained
at this early stage, prove the high potential of this method. In future work,
we plan to further investigate how the performance of BBC-PMSAT depends
on the problem features and to continue computational tests on larger PMSAT
instances.
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