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Abstract. The performance of the Dynamic Weight Aggregation system as 
applied to a Genetic Algorithm (DWAGA) and NSGA-II are evaluated and 
compared against each other.  The algorithms are run on 11 two-objective test 
functions, and 2 three-objective test functions to observe the scalability of the 
two systems. It is discovered that, while the NSGA-II performs better on most 
of the two-objective test functions, the DWAGA can outperform the NSGA-II 
on the three-objective problems. We hypothesize that the DWAGA’s archive 
helps keep the searching population size down since it does not have to both 
search and store the Pareto front simultaneously, thus improving both the 
computation time and the quality of the front. 

1   Introduction 

At the present moment in the field of evolutionary computation there is very little 
research being conducted to investigate the behaviour of newly developed work by 
researchers other than the original creator.  This is a major deficiency in the field.  In 
most other disciplines of science the important aspect is the repeatability of 
experiments and confirmation of results by other independent research teams.  In this 
paper we are performing an un-bias study reproducing the newly developed Dynamic 
Weight Aggregation Evolutionary Strategy (DWAES) algorithm and comparing it to 
a popular Pareto front style algorithm (NSGA-II).   

There are two main approaches to evolutionary multi-objective optimization: 
weighted aggregation approaches and Pareto-based approaches.   

The weighted aggregation approaches are easier to implement and understand, as 
well as being the first of the Evolutionary Multi-Objective Optimization (EMOO) 
algorithms created. However, recently they have been deemed flawed since they only 
produce a single solution along the Pareto front, and in many circumstances cannot 
find particular solutions along the front, no matter what weightings are used. 
Consequently Pareto-based approach has risen in popularity and now dominates the 
literature.  This group of algorithms work by dividing its population into dominated 
and non-dominated solutions [1], where a non-dominated solution is one where no 
other solution is better than it across every objective.  These groups of algorithms 
have often been analysed and compared with each other.  
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Recently, a modification to the simplistic weighted aggregation approach was 
proposed: the Dynamic Weight Aggregation (DWA) system [2], [3]. This system, 
while based on the weighted aggregation approach, was designed to overcome the two 
shortcomings mentioned above1. Experimentation on traditional EMOO problems 
seemed to verify the technique. However, the DWA system was never directly 
compared to the Pareto based EMOO methods.   

In this paper we compare the DWA method as applied to the GA against a Pareto 
base EMOO system, the NSGA-II, to see if the DWA produces solutions of as high 
quality (as close to the Pareto front and covering the front as evenly). 

2   The Two Systems 

2.1   Non-dominated Sorting GA  

One of the most popular of the Pareto-based approaches is the NSGA-II algorithm, 
which is an enhancement of the original non-dominated sorting GA (NSGA) proposed 
by Srinivas and Deb in 1994 [4].  The NSGA algorithm first sorts the solutions by 
fronts: each subset of the population that is not dominated by any other member of 
population is separated from those that are, with this definition recursively applied as 
each front is removed from the population.  From this sorted population, standard 
reproduction techniques are applied using the front levels as fitness.   

The NSGA-II uses a new non-dominated sorting approach, which is more efficient 
than the original method [5].  The old sorting algorithm used in NSGA has a 
complexity of O(mN 3 ) .  The NSGA-II algorithm has improved the performance of the 
sort so it now has a complexity of O(mN 2 ) , where m is the number of objectives and 
N is the population size – this improves the execution time significantly. The NSGA-
II also incorporates elitism and has a parameter-less diversity preservation 
mechanism. 

2.2   The Dynamic Weighted Aggregation Systems  

The conventional weighted aggregation (CWA) approach, which is a simple weighted 
sum of the different objective fitness values into a single fitness value, while being the 
simplest approach to Evolutionary Multi-Objective Optimization (and the first 
utilized), has been severely criticized on account of two main weaknesses [1]: First, 
the conventional weighted aggregation can provide only one Pareto solution from one 
run of optimization.  Second, it has been shown that weighted aggregation is unable to 
deal with multi-objective optimization problems with a concave Pareto front. 

Recently a new dynamic weight aggregation algorithm was proposed with the 
claim that it has eliminated the two problems associated with the conventional 
approach [2], [3]. The idea behind the algorithm is that “if the weights for the 
different objectives are changing during optimization, the optimizer will go through 
all points on the Pareto front.  If the found non-dominated solutions are archived, the 
whole Pareto front can be achieved”[3].  This works for both the convex and concave 

                                                           
1 Similar dynamic weighting techniques have also been used in non-evolutionary search 

methods such as Pareto Simulated Annealing [10], and Multi-Objective Tabu Search [11]. 
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Pareto fronts.  A theory for why the CWA algorithm does not work on concave Pareto 
front is provided in [2], which states that the CWA can only converge to a Pareto-
optimal solution if the Pareto solution corresponding to the given weight combination 
is stable.  Since all points on convex Pareto front are stable CWA has no trouble with 
it, but it is unable to reach points on the concave Pareto front.  DWA algorithm on the 
other hand is able to go through all the points on the concave and convex Pareto front.  

Using the CWA approach, a total fitness value for the chromosome is computed 
from the multiple fitness functions by performing a weighted sum   

f (c) = w1 f1 (c) + w2 f 2 (c) = w1 f1 (c) + (1− w1 ) f 2 (c)  (1) 

where w1 and w2 are constant weights (which must sum to 1). 
In the DWA, the constant weights are changed to time varying weights, w1(t) and 

w2(t), where t is ‘time’ measured in generations. The equations used in [2] for the two 
dynamic weights are:  

)/2sin()(1 Tttw π=  (2) 

and  

w2 (t) = 1.0− w1(t)  (3) 

where T is the period, a user defined parameter that controls how rapidly the weights 
cycle from 0 to 1 and back again. 

In the case of a three objective problem, the weights are computed similarly, except 
that now there is rotation about two axes instead of just one and the weights are 
determined based on variables α and β. 

    

w1(α ) =| sin(2πα ) |

w2 (α , β ) = (1 − w1(α )) | sin(2πβ ) |

w3 (α , β ) = 1 − w1(α ) − w2 (α , β ),

 (4) 

where   0 ≤ α, β ≤ π 2 . 
Since the fitness function changes from generation to generation, it becomes 

important to store good solutions found in each generation. These good solutions are 
stored in the archive.  A solution is added to the archive if it is not Pareto-dominated 
by any member of the archive.  If a new solution Pareto-dominates members of the 
archive then all the dominated solutions are removed from it while the new solution is 
added. 

3   Experimental Design  

3.1   Algorithms and Parameters 

To compare NSGA-II with the DWA system, it is important to isolate the various 
features of the two systems. This is both to assure a fair comparison, and to prevent 
extraneous factors from obscuring the underlying differences or similarities. 
Consequently, we chose to keep the underlying evolutionary algorithms the same for 
both systems. This means that all the parameters, with the exception of any system 
specific parameters, are set in common. 
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Table 1. Parameter Settings 

Common parameter 
 2 obj 3 obj  2 obj 3 obj 

Population 
Generations 
Prob. of cross over 
Mutation Rate 

100 
150 
0.8 
0.1 

{600,800} 
{900,1200} 
0.8 
{0.071,0.0625} 

Length 
Tournament Sel Pres. 
Uniform xover prob. 
Alphabet Size 

10 
0.9 
0.4 
100 

{14,16} 
.9 
.4 
100 

DWAGA only parameters 
 2 obj 3 obj  2 objectives 3 obj 
# of 90º rotations  
Archive Size 

2 
100 

n/a 
1000 

Gen {150, 250, 600, 900, 2250} n/a 

To accomplish this uniformity for comparison we had to choose which 
evolutionary algorithm to base the two systems on. The NSGA, as its name implies, 
was designed to work on top of a Genetic Algorithm. The DWA, on the other hand, 
was originally written for an Evolutionary Strategy system. Since the DWA is just a 
modification of the fitness weights, which can be trivially used for either ES or GA, 
we chose to implement a Dynamic Weighted Aggregation Genetic Algorithm 
(DWAGA) to compare against the NSGA-II system. 

3.1.1   Two Objective Problems 
The performance of DWAGA was examined using 5 different period values (T).  The 
values for the period length varied all the way from 200 to 7500 depending on the test 
function.  It was discovered that DWAGA worked best when the period was set to a 
value that makes the number of 90º rotations equal to 2 (using equation 2). 

Using 150 generations the DWAGA with a period of 600 will perform one 90º 
rotation; a period of 300 will result in two 90º rotations, 200 results in 3 rotations, 150 
in 4 rotations, and 120 in 5 rotations.  

When testing we discovered that our implementation of the DWAGA was, in 
general, faster than the NSGA-II. Therefore the DWAGA could perform more 
generations and improve the solutions that it had obtained and still finish at the same 
time as the NSGA-II. Consequently we ran DWAGA for a varying number of 
generations, making sure that the time equaled that of the NSGA-II.  

The details for parameter values used for two objective problems can be found in 
table 1. 

3.1.2   Three Objective Problems 
When dealing with 3 objective problems we have to vary both α and β for the 
DWAGA system. Consequently, there are two periods for the 3-objective DWAGA 
system, with β cycling through its settings for every setting of α. Instead of 
complicating maters with two user-defined parameter both periods are set to be 
inversely proportional to the number of generations.  Also the DWAGA system only 
goes through one 90º rotation for both α and β instead of 180º. 

The details for parameter values used for three objective problems can again be 
found in table 1.  All experiments are repeated 30 times for statistical accuracy. 



 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 147 

Table 2. Function definitions for two tri-objective functions used in the test suite 
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3.1.3   Test Functions 
Since we are reconstructing the experiments of the creators of DWA we are 
comparing the NSGA-II algorithm against the DWAGA on the same five test 
functions that were used by them in [3], which we similarly label F1 to F5 (three of 
them F2, F3 and F5 were also used in [6] and called T1 to T3. 

In addition we are using an extra six multi-objective test functions that are used in 
test suites [6] and [7]. F6 – F8 corresponds to F3 – F5 as found in [7] and F9 to F11 
corresponds to T4 – T6 as found in [6]. 

We then tried two tri-objective functions to see how the two algorithms scale, see 
Table 2 for function definitions. 

3.1.4   Performance Measures 
The performance of the EMOO systems is evaluated by examining the following 
measures as suggested by [8]: the spacing, diversity, coverage and execution time of 
the respective systems.  Again, all measurement statistics are based on 30 repetitions. 

Spacing is a measure of how evenly the solutions are spaced on the Pareto front. 
Each distance between neighbouring solutions is compared against the average of the 
distance between neighbours. If all solutions are evenly spaced, the measure will read 
0, the more non-uniform the distribution along the Pareto front, the higher the 
number.  The formula for Spacing is: 

S = 1
n −1

(di − d )2

i=1

n −1

∑  (5) 

where di is the distance between two neighbouring solutions and d  is the average 
distance between neighbours.  

In the case of three objective problems the Pareto front is a plane instead of a line.  
As a result the distance there is measured between a solution and its closest 
neighbour. 

Diversity is similar to Spacing, but instead of being based on the L2-norm 
(associated with the Euclidean distance) it is based on the L1-norm (associated with 
the Hamming distance). Also, Diversity is designed to take into account the full range 
of the Pareto front. With Spacing, the system could produce solutions that are evenly 
spaced but only cover a small section of the Pareto front, yet produce the same result 
as a system that evenly covers the entire Pareto front. Diversity compensates for this 
effect.  
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Diversity =
d

f
+ d

l
+ | d

i
− d |

i=1

N−1

∑
d

f
+ d

l
+ (N −1)d 

 (6) 

Here df and dl are the distances between the end points of the found Pareto front and 
the (known) extreme solutions of the true Pareto front. N is the size of the solution 
set. 

In the case of three objective problems the corners of the Pareto front  plane are 
taken as the extreme solutions. 

Coverage of Two Sets:  this measure compares the size of the Pareto front from 
one of the optimization techniques with the size of the Pareto front formed from the 
combined fronts of each of the two techniques. 

Coverage_1(α)  = #(A ∩C) / #(C) (7) 

Coverage_2(α) = #(A ∩C) / #(A) (8) 

Coverage_3(α,β) = (#(A ∩C) - #(A∩B∩C))/ #(C) (9) 

where A is a Pareto front found by algorithm α, B is a Pareto front found by 
algorithm β, and C is a Pareto front formed when combining Pareto fronts A and B.  
Coverage_1(α) is the percentage of the combined Pareto front discovered by 
algorithm α and Coverage_2(α) is the percentage of the Pareto front discovered by α 
that is used in the combined Pareto front.  Coverage_3(α,β) is the percentage of the 
combined Pareto front discovered by algorithm α  that was not discovered by 
algorithm β. 

Execution time: the time it took on the computer that executed the two algorithms. 
Both programs were written in Java and run on AMD Athlon XP 1800, with a CPU 
Clock speed of 1150Mhz and with 512MB of RAM DDR of memory. 

Through experimentation it was discovered that the coverage-of-two-sets 
measurement was the most important measurement; often by itself it was informative 
enough to determine which algorithm is better.  When the Coverage measurement did 
not indicate a clear winner, the diversity measurement was a good way of breaking 
the tie and determining the winner.  When the diversity measurement did not indicate 
a clear winner, the spacing measurement was used to break the tie. 

Finally, for statistical accuracy, all experiments have been run 30 times each for 
each setting, i.e. all statistics are based on 30 repetitions. 

4   Results 

4.1   Results When NSGA-II Is Victorious 

The Coverage measurements indicate that for all these test functions the combined 
Pareto front consists entirely of the solutions found by NSGA-II algorithm (see  
Table 3).  This clearly shows that DWA is inferior for these test functions.  Since the 
performance difference on the coverage measurements between these two methods is 
so drastic, further measurements on diversity and spacing are not necessary. 
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Table 3. Coverage_1 and Coverage_2 measurements for the NSGA-II and DWAGA algorithms 

  Coverage_1(DWA) Coverage_1(NSGA) 
  avg std Conf Interval avg std Conf Interval 

f2 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f3 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f4 0.1% 0.3% -0.2% 0.3% 99.9% 0.3% 99.7% 100.2% 
f5 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f9 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f10 7.7% 19.8% -7.5% 22.9% 92.3% 19.8% 77.1% 107.5% 
f11 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 

 

  Coverage_2(DWA) Coverage_2(NSGA) 
  avg std Conf Interval avg std Conf Interval 
f2 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f3 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f4 0.1% 0.5% -0.3% 0.5% 100.0% 0.0% 100.0% 100.0% 
f5 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
f9 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 

f10 11.2% 27.3% -9.9% 32.2% 97.0% 16.3% 84.5% 109.6% 
f11 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0% 
avg = average std= standard deviation Conf Interval= Confidence Interval 

4.2   Results When NSGA-II Is Challenged on Two Objective Problems 

When the DWAGA and NSGA-II algorithms were tested on functions f1, f6, f7, and 
f8 it was observed that the NSGA-II was no longer a clear favorite and the DWAGA 
even had the superior performance on some test functions. 

As the behavior of the algorithms on each of these four test functions is so diverse, 
each of the four test functions will be examined in detail one at a time. 

4.2.1   F1 Comparison Results 
For F1 the combined Pareto front consists half from DWA and half from NSGA-II.  
As can be seen from the confidence intervals for coverage in table 4 the NSGA-II 
slightly outperforms DWA, but since the difference is this small it is important to also 
evaluate Diversity and spacing in order to be sure which algorithm is better.  It can be 
seen in Table 5 that NSGA-II is better in both spacing and diversity and as a result 
NSGA-II should be considered the better performer on F1 (but DWA is very close).  

4.2.2   F6 Comparison Results 
For F6 the combined Pareto front consists 1/3 from DWA and 2/3 from NSGA-II.  As 
can be seen from the confidence intervals, the NSGA-II outperforms DWA in 
coverage, but it can be seen that DWA also contributes good solutions since 1/3 is a 
decent proportion, and so we evaluate diversity and spacing. In the Diversity and 
spacing the NSGA-II outperforms DWA.  When these 3 measurements are considered 
together it is clearly seen that NSGA-II performs better. 
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Table 4. Comparing2 the Coverage_1 and Coverage_2 measurements for the NSGA-II and 
DWAGA algorithms 

  Coverage_1(DWA) Coverage_1(NSGA) 
 avg std Conf Interval avg std Conf Interval 

F1 46.9% 3.2% 3.2% 7.3% 53.1% 3.2% 50.6% 55.6% 
F6 33.4% 3.5% 3.5% 6.3% 66.6% 3.5% 63.9% 69.4% 
F7 69.1% 1.7% 67.8% 70.4% 30.9% 1.7% 29.6% 32.2% 
F8 59.0% 21.3% 42.5% 75.4% 41.0% 21.3% 24.6% 57.5% 

 
  Coverage_2(DWA) Coverage_2(NSGA) 

  avg std Conf Interval avg std Conf Interval 
F1 75.1% 7.3% 69.4% 80.7% 88.9% 3.6% 86.1% 91.7% 
F6 44.2% 6.3% 39.3% 49.1% 92.4% 2.2% 90.7% 94.1% 
F7 93.8% 2.2% 92.0% 95.5% 54.0% 4.0% 51.0% 57.1% 
F8 71.1% 25.3% 51.7% 90.6% 66.2% 34.0% 40.0% 92.5% 

Table 5. Comparing3 the Spacing and diversity for the NSGA-II and DWAGA algorithms on 
four bi-objective functions   

Spacing 

 
Rank 
(D) 

Rank 
(N) s p-value 

bonf corr. 
p-value Better 

Statistically 
Significant 

f1 45.5 15.5 2.37 4.1E-19 1.9E-17 NSGA Yes 
f6 42.0 19.0 3.20 1.4E-09 6.8E-08 NSGA Yes 
f7 8.0 45.5 2.44 4.1E-22 2.0E-20 DWA Yes 
f8 42.9 17.5 2.64 1.3E-13 6.0E-12 NSGA Yes 

Diversity 

 
Rank 
(D) 

Rank 
(N) 

Pooled 
Std. Dev. p-value 

bonf corr  
p-value Better 

Statistically 
Significant 

f1 45.5 15.5 2.27 4.1E-19 2.0E-17 NSGA Yes 
f6 45.5 15.5 3.20 3.2E-13 1.5E-11 NSGA Yes 
f7 25.5 27.5 2.44 4.1E-01 19.6 DWA No 
f8 15.8 45.2 2.64 5.3E-16 2.6E-14 DWA Yes 

4.2.3   F7 Comparison Results 
For F7 the combined Pareto front consists 2/3 from DWA and 1/3 from NSGA-II.  As 
can be seen from the confidence intervals for Coverage measure, this time the DWA 
outperforms NSGA-II. To be certain that DWA is in fact better than NSGA-II we first 
looked at Diversity, but since results of this test are inconclusive (the two algorithms 
can’t be statistically differentiated based on this test), spacing becomes the 
determining factor. Here the results are in DWA favour.  Based on these three 
measurements one can conclude that DWAGA is the better method for solving F7.   

This is an important result for the research in DWA because F7 has a concave 
Pareto front.  It has been assumed that DWA would have problems with solving this 
                                                           
2 The confidence intervals are formed using the normal parametric approach as the results were 

found to be normally distributed when using a normality plot. 
3 The results were found to not be normally distributed, so the T test was done on the ranks (a 

non-parametric test). 
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type of a function but not only did it solve the problem well but it also outperformed 
NSGA-II. 

4.2.4   F8 Comparison Results 
For F8 the combined Pareto front consists 3/5 from DWA and 2/5 from NSGA-II.  
As can be seen from the confidence intervals for Coverage measure it is 
inconclusive which algorithm is better.  The T-test in Table 6 confirms this.  As a 
result we look at Diversity of the two methods where DWA outperforms NSGA-II.  
So, based on these measurements we conclude that DWAGA performs better than 
NSGA-II on F8. 

Table 6. T Test4 for looking in more detail if there is an advantage in coverage for DWAGA.   
It can be seen that it cannot be determined that DWA has better coverage than NSGA-II. 

T Test on NSGA Coverage – DWA Coverage for f8

0.01 Diff(f8) 0.179

No. of Ind. tests 48 pooled std 0.0551

/ 48(see footnote5) 0.00021 -0.053

N 30
conf. interval

0.412

T 4.22 t-score 3.2578

p-value 0.0019

p-value * 48 (see footnote3) 0.0902
 

4.3   Results When Run on 3 Objective Problems 

The Coverage_1 measurements in Table 7 indicate that for functions F12 and F13, the 
combined Pareto front consists almost entirely of the solutions found by DWAGA 
algorithm while the NSGA-II had found a smaller part of the Pareto front.  The 
Coverage_2 results indicate that both algorithms find same quality of solutions 
because almost all solutions found by each algorithm are used in the combined Pareto 
front.  The Coverage_3 results indicate that the DWAGA has identified a large 
number of solutions that the NSGA-II was unable to find.  The DWAGA managed to 
find almost all the solutions that NSGA-II identified plus many more.  As a result the 
DWAGA provided a better and more detailed representation of the Pareto front and 
outperformed the NSGA-II. 

As can be seen in Table 8, the DWAGA is executing much faster than NSGA-II, 
which is a big benefit with the huge search spaces that are associated with multi-
objective problems. 
This shows a possible deficiency in the Pareto front style approach.  When a search 
space gets large, the NSGA seems to have trouble finding many solutions and is 
negatively impacted in its performance time.  For example by switching from 2 
objectives to 3, the Pareto front has changed from a line to a plane.  As the number of 
objectives increases, the size of the Pareto front increase geometrically in the size.  
 
                                                           
4 The regular T test was used as the results were found to be normally distributed when using a 

normality plot. 
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Table 7. The Coverage_1, Coverage_2, and Coverage_3 measurements for the NSGA-II and 
DWAGA algorithms on two tri-objective functions 

  Coverage_1(DWA) Coverage_1(NSGA) 

 avg std 
95% Confidence 

Interval 
avg std 

95% Confidence 
Interval 

F12 0.9729 0.0029 0.9719 0.9739 0.5203 0.00539 0.5182 0.5223 
F13 0.9007 0.0821 0.8713 0.9300 0.7108 0.02205 0.7029 0.7187 

 

  Coverage_2(DWA) Coverage_2(NSGA) 

  
avg std 

95% Confidence 
Interval 

avg std 
95% Confidence 

Interval 
F12 0.9997 0.0005 0.9995 0.9999 0.9791 0.0075 0.9765 0.9818 
F13 0.9859 0.0110 0.9820 0.9898 0.9889 0.0044 0.9873 0.9905 

 
  Coverage_3(DWA) Coverage_3(NSGA) 

  
avg std 

95% Confidence 
Interval 

avg std 
95% Confidence 

Interval 

F12 0.4797 0.0054 0.4777 0.4816 0.0271 0.0029 0.0261 0.0281 

F13 0.2892 0.0220 0.2813 0.2971 0.0993 0.0821 0.0700 0.1287 

Table 8. The algorithm run-time measurements for NSGA-II and DWAGA 

  Time (DWA) Time (NSGA) 

 avg std 
95% Confidence 

Interval 
avg std 

95% Confidence 
Interval 

F12 333009 151033 278962 387055 612279 5148 610437 614122 
F13 442595 92429 409520 475670 4257111 88272 4225523 4288699 

Consequently, to find this Pareto front, an algorithm must find a proportionately 
greater number of solutions.  Since the NSGA-II stores the Pareto front solutions in its 
population it requires an geometrically larger population size because once a 
population member finds an optimal solution it will keep that solution to the end, 
especially with elitism.  This causes more and more of the population members to be 
used for storing solutions instead of exploring.  Eventually near the end of the run 
only few population members will remain free to explore.  In order to have the 
NSGA-II be able to explore a large search space and be able to store solutions that 
represent it well, it will require the possession of a very large population.  This will 
cause the algorithm to run slowly, due to the fact that it has to perform fitness 
calculations as well as the time taken sorting this huge population.   

This problem does not apply to the DWAGA, which has an archive to store all the 
best solutions. It can have a smaller population, which can be used only for the 
searching of new solutions and not have to try to maintain all the best solutions.  This 
allows the algorithm to identify a very large solution space with a relatively small 
population.  This seems to allow the DWAGA to scale better than NSGA-II for 
problems with higher number of objectives. 
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5   Conclusion 

In this paper, we compared two EMOO methods against each other: the Non-dominated 
Sorting Genetic Algorithm (NSGA-II) and the Dynamic Weighted Aggregation (DWA) 
system. To make the comparison fair and to remove an extra factor from the analysis, the 
DWA has been layered on top of a GA instead of and ES algorithm that it was originated 
for (since the DWA can be easily applied to any EC system). Using various traditional 
EMOO measures, such as Coverage, Spacing and Diversity, we determined that the 
DWA could handle concave problems as advertised. Furthermore, while most of the bi-
objective functions we tried were better handled by the NSGA-II, when tri-objective 
problems were used, the DWAGA outperforms the NSGA-II and runs much faster. We 
believe that the cause of the DWAGA’s success at higher number of objectives is due to 
its use of an archive, alleviating the need of the storage of the Pareto front (which can 
grow exponentially with the number of objectives) within the population itself. 
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