
Enhancements of NSGA II and Its Application
to the Vehicle Routing Problem with Route

Balancing

Nicolas Jozefowiez1, Frédéric Semet2, and El-Ghazali Talbi1
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2 Université de Valenciennes et du Hainaut-Cambrésis, Laboratoire d’Automatique,
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Abstract. In this paper, we address a bi-objective vehicle routing prob-
lem in which the total length of routes is minimized as well as the bal-
ance of routes, i.e. the difference between the maximal route length and
the minimal route length. For this problem, we propose an implementa-
tion of the standard multi-objective evolutionary algorithm NSGA II. To
improve its efficiency, two mechanisms have been added. First, a paral-
lelization of NSGA II by means of an island model is proposed. Second,
an elitist diversification mechanism is adapted to be used with NSGA
II. Our method is tested on standard benchmarks for the vehicle routing
problem. The contribution of the introduced mechanisms is evaluated by
different performance metrics. All the experimentations indicate a strict
improvement of the generated Pareto set.

1 Introduction

This paper investigates the use of two variants of NSGA II to solve a bi-objective
vehicle routing problem. The elementary version of the vehicle routing problem
is the capacitated vehicle routing problem (CVRP). It can be modeled as a
problem on a complete graph where the vertices are associated to a unique
depot and to m customers. Each customer must be served a quantity qi of
goods (i = 1, . . . , m) from the unique depot. To deliver these goods, vehicles are
available. With each vehicle is associated a maximal amount Q of goods it can
transport. A solution of the CVRP is a collection of routes where each customer
is visited only once and the total demand for each route is at most Q. With each
arc (i, j) is associated the distance between vertex i and vertex j. The CVRP
aims to determine a minimal total length solution. It has been proved NP-hard
[1] and solution methods range from exact methods to specific heuristics, and
meta-heuristic approaches [2].
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Table 1. Objective values for the best found solutions by Taburoute and by Prins’ GA

Taburoute Prins’ GA
Instance Distance Balance Distance Balance
E51-05e 524.61 20.07 524.61 20.07
E76-10e 835.32 78.10 835.26 91.08
E101-08e 826.14 97.88 826.14 97.88
E151-12c 1031.17 98.24 1031.63 100.34
E200-17c 1311.35 106.70 1300.23 82.31
E121-07c 1042.11 146.67 1042.11 146.67
E101-10c 819.56 93.43 819.56 93.43

Another natural objective to consider in addition to the minimization of
the total length is the balance of the routes. Route balancing can be expressed
in several ways. In [3], the authors balance the time needed for each trip. It
is computed as the sum of the differences between each route length and the
shortest route length. Route balancing is also an objective in [4] which addresses
a three objective multi-period vehicle routing problem. In this paper the balance
is measured by the standard deviation and the load of a route consists in the
number of visited customers. In [5], the minimization of the time spent on a
bus, which has some common points with the route balancing, is considered.
In [6], the authors take into account 8 objectives in the context of a real-life
VRP faced by a Belgian transportation firm. One of them is identical to our
second objective; i.e. the minimization of the difference between the maximal
route length and the minimal route length.

In this paper, we address a variant of the CVRP: the vehicle routing problem
with route balancing (VRPRB). The following two objectives are considered:

1. Minimization of the distance traveled by the vehicles.
2. Minimization of the difference between the longest route length and the

shortest route length.

In Table 1, the seven CVRP benchmarks proposed by Christofides and Eilon [7],
and Christofides and al. [8], are considered. Following the naming scheme used in
Toth and Vigo [2], the name of each instance has the form Ei−jk. E means that
the distance metric is Euclidean. i is the number of vertices including the depot
vertex. j is the number of available vehicles. k is a character which identifies
the paper where the distance data are provided. k = e refers to Christofides
and Eilon [7], k = c to Christofides et al. [8]. For each instance, we report both
objective values associated with the best solutions obtained using Taburoute
[9] and Prins’ GA [10]. These methods, which can be regarded as some of the
best algorithms for the CVRP, do not take into account the route balancing
objective. This clearly appears in Table 1 where the best solutions are of poor
quality regarding the additional objective.

Our solution to generate the Pareto set is based on the standard multi-
objective evolutionary algorithm (MOEA) NSGA II proposed by Deb et al. [11].
Our choice of meta-heuristics is motivated by the difficulty of solving the problem
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with exact approaches. Since a Pareto set has to be generated, a population based
method like NSGA II seems well-fitted. To improve the results of NSGA II on the
VRPRB, we propose a parallelization of the problem. To obtain well-diversified
approximations of the Pareto set, we have adpated the elitist diversification
mechanism initially proposed in [12, 13] for NSGA II.

The paper is organized as follows. Section 2 presents our implementation of
NSGA II for the VRPRB and its parallelization into an island model. In section
3, we specify the adaptation of the elitist diversification mechanism for NSGA II.
In section 4, we assess the efficiency of the new mechanisms on a set of standard
benchmarks. Conclusions are drawn in section 5.

2 NSGA II for the Vehicle Routing Problem with Route
Balancing

We first describe the general framework of NSGA II in subsection 2.1. Then, the
recombination phase (i.e. STEP 4) is given in the subsection 2.2 since it is the
only step which needs to be adapted for the VRPRB. Finally, an improvement
of NSGA II by means of an island model is proposed in subsection 2.3.

2.1 NSGA II

NSGA II can be described as follows. Its population Rt, where t is the number
of the current generation, is divided into two subpopulations Pt and Qt. The
sizes of Pt and Qt are equal to N and, therefore, the size of Rt is 2N . The
subpopulation Pt corresponds to the parents and Qt to the offspring. The four
main steps of NSGA II are presented below without going into the details of the
mechanisms used such as the ranking and the crowding distance. It is sufficient
to recall that a solution i has two fitnesses according to the current population:
a rank ri which represents its quality in terms of convergence toward the optimal
Pareto set, and a crowding distance di which corresponds to its quality in terms
of diversification. The lower the rank and the crowding distance are, the better
the solution is. For additional details about NSGA II, the reader is refered to [11].
At generation t, the different steps are:

STEP 1. Combine the parent and offspring populations to create Rt = Pt ∪Qt.
Compute the ranks and crowding distances of the solutions in Rt. Sort the
solution according to their ranks in an increasing order. Identify the fronts
Fi, i = 1, . . . , r, where i represents a rank.

STEP 2. Create a new population Pt+1 = ∅. Set i = 1. While |Pt+1|+|Fi| < N ,
do Pt+1 = Pt+1 ∪ Fi and i = i + 1.

STEP 3. Sort the solutions of Fi according to their crowding distance in a de-
creasing order. The (N −|Pt+1|) first solutions of Fi (i.e. the most diversified
solutions) are included to Pt+1.

STEP 4. Create Qt+1 from Pt+1.

The solution provided by NSGA II is the set of solutions not dominated
in the final population R. However, experiments have shown that the size of
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Algorithm 1. recombination phase(P, Q: POPULATION)
Q ← ∅
for i ← 1, . . . , N do

pa1 ← tournament(P ∪ C)
pa2 ← tournament(P ∪ C)
if rand() < 0.5 then

s ← RBX(pa1, pa2)
else

s ← SPLIT (pa1, pa2)
end if
if rand() < 0.4 then

s ← or opt(s)
end if
2opt local search(s)
Q ← Q ∪ {s}

end for

the potentially Pareto optimal solution set can be very large for the VRPRB.
Therefore, we have added an archive to NSGA II whose only purpose is to save
the potentially Pareto optimal solutions identified during the search. It prevents
such solutions to be lost due to the stochastic behavior of the algorithm and the
limited size of the population.

2.2 The Recombination Phase

The recombination phase is described in Algorithm 1. The tournament operator
is the binary tournament as described by Deb et al.. Two solutions are randomly
selected and the solution with the best rank is kept. To break the tie, the solution
with the greatest crowding distance is selected. The crossover operators are the
route based crossover (RBX) [14] and the SPLIT crossover [12, 13] inspired by
Prins’ genetic algorithm [10]. When a solution is created, a 2-opt local search is
applied on each route in order to avoid artificially balanced solutions [12, 13].

2.3 Parallelization

To improve the results obtained by NSGA II, we have implemented it in an island
model. The model is built as follows: each island corresponds to one instantiation
of NSGA II with its own population. The communication network is a ring, and
therefore each island has two neighbors. One island sends information to its
neighbors regularly in terms of generations. When the generation corresponds
to a communication phase, which is performed instead of recombination (STEP
4). Due to the fact that the communication network is a ring, an island receives
information at the same time it sends information. The computations of a given
island do not begin again until it has received the information from its two
neighbors.

The communication phase runs as follows. An island sends to its two neigh-
bors the N

2 best solutions from its population (i.e. the N
2 first solutions, according
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Fig. 1. Extension of NSGA II into an island model

to the ranking and crowding distance sort, of the population after the selection
phase (STEP 1 to STEP 3). Therefore, an island receives N

2 solutions twice.
These solutions replace those from Qt since they would have been lost in the
case of a standard recombination phase. Figure 1 illustrates the communications
in the case of four islands.

3 Using the Elitist Diversification Mechanism in
NSGA II

In this section, we propose the enhancement of NSGA II by means of a diversifi-
cation mechanism called the elitist diversification mechanism initially proposed
in [12, 13]. First, the mechanism is presented. Then, the general parallel model
is described as well as its use in the case of NSGA II.

3.1 The Elitist Diversification Mechanism

In the elitist diversification, additional archives are considered. They contain
the potentially optimal Pareto solutions (PPS) when one objective is maximized
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Fig. 2. The basic co-operative model - the toric structure is not shown in order not to
obfuscate the figure

instead of being minimized. It may be noted that we suppose that every objective
is to be minimized. Let S(A) be the subset of solutions of the decision space found
by an algorithm A, and k the index of the objective function component which
is maximized. To define new archives, the dominance operator ≺k is introduced:

∀y, z ∈ S(A), y ≺k z ⇐⇒(∀i ∈ {1 . . . n} \ {k}, fi(y) ≤ fi(z))
∧ (fk(y) ≥ fk(z))
∧ ((∃i ∈ {1 . . . n} \ {k}, fi(y) < fi(z))

∨ (fk(y) > fk(z)))

Then, we have Ak = {s ∈ S(A)|∀s′ ∈ S(A), s′ ≺k s}, with k = 1, . . . , n, the
archive of PPS associated with the maximization of the kth objective component
instead of the minimization. We denote ≺0 the classical dominance operator i.e.
a solution x is said to dominate a solution y if x is not worse than y on every
objective and there is at least one objective where x is strictly better than y.

Like in the elitism strategy, solutions from the new archives are included into
the population of the MOEA at each generation. The role of these solutions is
to attract the population to unexplored areas, and so to avoid the premature
convergence to a specific area of the objective space. Indeed, using solutions from
these archives ensures that an exploration is done while favorising one objective.
Preliminary experiments point out that the improvement is less important when
all archives are embedded in the same MOEA. This leads us to distribute the
archives among several searches resulting in a co-operative model. In the general
case with n objectives, the co-operative model is composed of n islands denoted
Ik. Each island Ik has two types of archive: A0 and Ak. At each Migrationt

generation, Ik sends its A0 archive to its two neighbors Ik−1 and Ik+1. The
communication topology is toric, therefore k is computed modulo n. This co-
operative model and its communication topology consist in the model described
in Figure 2.

3.2 Parallel Extension of the Elitist Diversification Mechanism

The co-operative model described previously formed the elementary brick of a
more general island model used to favor the convergence and diversification tasks
(see Figure 3). This parallelization is not used in order to speed up the search but
to search a larger part of the solution space in a given time. Since every island
will be executed at the same time, it will take the same computational time as
a single island while the number of solutions created will be multiplied by the
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Fig. 3. The complete co-operative model - the toric structure is not shown in order
not to obfuscate the figure

number of islands. An island is denoted Ii
j . It means it belongs to the ith brick

and its additional archive is of Aj type. The island Ii
j sends its A0 archive to all

its neighbors: Ii
j−1, Ii

j+1, Ii−1
j , and Ii+1

j . It only communicates its Aj archive to
Ii−1
j and Ii+1

j . Since the communication topology between and within the bricks
is toric, the indexes are computed modulo n.

3.3 Inclusion of the Elitist Diversification Mechanism in NSGA II

The goal is to add the management of the additional archives in NSGA II. It
must be noted that NSGA II initially used no archive and the main population
plays the role of the A0 archive, i.e. it saves the non-dominated solutions found
during the search. Therefore, each island of the parallel model described before
corresponds to one instantiation of NSGA II to which one additional archive has
been added. This archive is used during the recombination phase: k individuals
are chosen among those belonging to the additional archive and form the set Ct.
Then, the recombination phase is the same as the standard one except that the
tournament used to select the parents is modified as follows. Two solutions are
selected randomly in Pt∪Ct. If pa1 or pa2 belongs to Ct, the solution from Ct wins
the tournament. If both solutions belong to Ct, one is chosen randomly. Finally,
if both solutions come from Pt, the standard binary tournament of NSGA II is
applied. The additional archive is updated after each recombination phase ; we
try to include the solutions generated during the phase.
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The exchange strategy between the islands is the same as the one used in 2.3.
However, since an island has four neighbors in this model, it communicates only
the N

4 best solutions from its population after the selection phase. Therefore,
an island receives four times N

4 solutions which replace those from Qt. However,
there are two special cases. First, in the bi-objective case, an elementary brick
is formed of only two genetic algorithms. Then, an island receives twice the N

4
best solutions from the other genetic algorithm of the brick. It is not relevant
and, in this case, the strategy is modified for the algorithms from a same brick
to exchange N

2 solutions between them. The same difficulty occurs when there
are only two elementary bricks and can be solved in a similar way.

4 Computational Results

4.1 Protocol

NSGA II for the VRPRB, the parallel model pNSGA II, the variant with elitist
diversification NSGAED, and the parallel variant with elitist diversification pNS-
GAED have been coded in C. MPI has been used for the parallel aspect of the im-
plementation. Experiments have been realised on an IBM RS6000/SP equipped
with Power4 1.1 Ghz processors.

Evaluations have been made on the benchmark by Christofides et al. [7] for
the capacitated vehicle routing problem. Each instance has been solved 10 times
by each method.

The parameterization of the methods has been set experimentally. For the
population of NSGA II, N has been fixed to 128. NSGA II and pNSGA II stopped
after 100000 generations while NSGAED and pNSGAED stopped after 50000.
Thus, we insure that each process generates the same number of solutions. For
the elitist diversification, 15 solutions were used from each archive.

As suggested in [15], the S metric [16] was used. S(A) gives the size of the area
dominated by the approximation generated by A. The values of the objectives
were normalized according to the reference point used in the S metric.

4.2 Contribution of the Parallelization

We have tested the contribution of the parallelization scheme when 1, 4, 8, and
16 processors were used. Table 2 reports the mean values and the standard
deviations of the S metric for the different cases. As it can be expected, the
results are improved with the number of processors used. However, the impact
of more than 4 processors is less significant than the difference between the
sequential version and the one with 4 processors. According to the behavior of
the standard deviation, it seems that increasing in the number of processors
contributes to improve the robustness of the method.

The impact of communications on computational times have also been as-
sessed. The average computational times in seconds according to the number of
processors are reported in Table 3. It seems that communication times do not
play a significant role.
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Table 2. Mean values and standard deviations of the S metric for NSGA II according
to the number of used processors

Instance 1 proc. 4 proc. 8 proc. 16 proc.
E51-05e Mean 0.511232 0.527863 0.527733 0.530235

standard deviation 0.006132 0.001838 0.004329 0.001987
E76-10e Mean 0.414035 0.420253 0.425498 0.426979

standard deviation 0.002988 0.001714 0.002892 0.002052
E101-08e Mean 0.570935 0.576901 0.577431 0.579026

standard deviation 0.001779 0.001638 0.000724 0.000418
E151-12c Mean 0.618357 0.631726 0.634581 0.637956

standard deviation 0.006315 0.001637 0.003460 0.001426
E200-17c Mean 0.607886 0.628112 0.632612 0.639964

standard deviation 0.014343 0.005537 0.008276 0.002474
E121-07c Mean 0.516538 0.526248 0.527154 0.527934

standard deviation 0.007145 0.001480 0.001405 0.000637
E101-10c Mean 0.584904 0.620338 0.627408 0.629321

standard deviation 0.018182 0.004675 0.003061 0.002398

Table 3. Average computation times of NSGA II according to the number of processors

Instance E51-05e E76-10e E101-08e E151-12c E200-17c E121-07c E101-10c
4 proc. 993.4 1453.4 2451.3 4082.1 4996.3 4615.1 2640.1
8 proc. 937.8 1300.8 2406.1 3621.9 4463.7 4791.1 2425.3
16 proc. 1080.7 1329.0 2289.6 3794.5 4677.7 5171.1 2451.6

Table 4. Mean values and standard deviation of the S metric for NSGA II without
and with the elitist diversification mecanism

1 processor 8 processors
Instance NSGA II NSGAED pNSGA II pNSGAED
E51-05e Mean 0.511232 0.521232 0.527733 0.529467

standard deviation 0.006132 0.004139 0.004329 0.001282
E76-10e Mean 0.414035 0.415599 0.425498 0.425809

standard deviation 0.002988 0.003651 0.002892 0.002992
E101-08e Mean 0.570935 0.573612 0.577431 0.577501

standard deviation 0.001779 0.001800 0.000724 0.001430
E151-12c Mean 0.618357 0.619450 0.634581 0.635170

standard deviation 0.006315 0.007012 0.003460 0.003016
E200-17c Mean 0.607886 0.617594 0.632612 0.643165

standard deviation 0.014343 0.006185 0.008276 0.004848
E121-07c Mean 0.516538 0.518553 0.527154 0.527442

standard deviation 0.007145 0.007998 0.001405 0.000478
E101-10c Mean 0.584904 0.602430 0.627408 0.629226

standard deviation 0.018182 0.020408 0.003061 0.003343
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4.3 Contribution of the Elitist Diversification Mechanism

We have evaluated the performance of NSGAED, pNSGAED with 8 bricks com-
pared to the performance of NSGA II and pNSGA II with 8 processors. The
mean values and the standard deviation of the S metric are reported in Table 4.

It appears that the elitist diversification is always able to improve the re-
sults of NSGA II when only one processor is used. The improvement is more
important for large instances such as E200-17c. We have also evaluated the con-
tribution when eight processors are used. The contribution is less important on
the smallest instances since the parallelization without the elitist diversification
was already able to improve the results significantly. However, the contribution
is still important on the largest instances.

4.4 Global Efficiency of NSGA II for the Vehicle Routing Problem
with Route Balancing

Optimal Pareto sets are not known for the VRPRB. Therefore, we have compared
the results of our MOEA with the best-known values on the length objective
and with the evident lower bound that is 0 for the balance objective. We have
also reported the number of potentially Pareto optimal solutions in Table 5
as follows: for each entry, the first line corresponds to the best found length
with its associated balance, the second line to the best found balance with its
associated length, and the third line to the average number of solutions in the
approximations. It appears that the elitist diversification is able to improve the
results toward the best-known values for the total length objective. Since the
best balance is very close to 0, we may assume that very well-balanced solutions
are obtained.

5 Conclusions

In this paper, we have described an implementation of NSGA II for a bi-objective
vehicle routing problem, called the vehicle routing problem with route balancing,
where both the minimization of the total length and the balance of the routes,
i.e. the minimization of the difference between the longest route length and the
shortest route length, have to be optimized. Two enhancements of NSGA II have
been proposed. The first one is the parallelization of NSGA II by means of an
island model. The second one is the use of the elitist diversification mechanism,
which aims to improve the diversification in NSGA II. Their contributions were
evaluated on a set of standard benchmarks with standard metrics. The positive
impact of both mechanisms has been observed through computational experi-
ments. Since optimal Pareto sets remain unknown for the problem, the fact that
the values found for the total length objective are close to the best-known ones,
and that the best values for the route balancing objective are quite small tends
to indicate that our generated approximations are of good quality.
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