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Abstract. This work describes an adaptation of multilevel search to the
covering design problem. The search engine is a tabu search algorithm
which explores several levels of overlapping search spaces of a t−(v, k, λ)
covering design problem. Tabu search finds “good” approximations of
covering designs in each search space. Blocks from those approximate
solutions are transferred to other levels, redefining the corresponding
search spaces. The dynamics of cooperation among levels tends to re-
group good approximate solutions into small search spaces. Tabu search
has been quite effective at finding re-combinations of blocks in small
search spaces which provide successful search directions in larger search
spaces.
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1 Introduction

A t − (v, k, λ) covering design is a pair (X, B), where X is a set of size v, called
points and B is a collection of k-subsets of X , called blocks, such that every
t-subset of X is contained in at least λ blocks of B. Let Cλ(v, k, t) denote the
minimum number of blocks in any t − (v, k, λ) covering design. A t − (v, k, λ)
covering design is optimal if it has Cλ(v, k, t) blocks [12]. The covering design
problem is the problem of determining the value of Cλ(v, k, t). The covering
design problem has applications in lottery design, data compression and error-
trapping decoding [5].

The value Cλ(v, k, t) can be determined using an exact search algorithm.
Unfortunately, such algorithms are ineffective for all but a few set of parameters,
due to the effects of combinatorial explosion. Therefore, search heuristics may
be a viable option for improving upper bounds on Cλ(v, k, t).

In this paper, we introduce a cooperative multilevel search heuristic method
to improve upper bounds on Cλ(v, k, t). Assume we are looking for a t− (v, k, λ)
covering design of b blocks. Let

(
X
k

)
be the set of all k-subsets in X and let S0 =

{S ⊂
(
X
k

)
||S| = b} be the solution space for t − (v, k, λ). Assume S1, S2, . . . , Sl

are subsets of
(
X
k

)
such that Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0 =

(
X
k

)
. Each subset Si

defines a search space Si on t − (v, k, λ) in the same way as S0. A tabu search
algorithm explores independently each search space to seek sets of b blocks that
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cover as many t-subsets as possible. The cooperative multilevel search strat-
egy consists of substituting some blocks of the smallest search spaces by sets
of good blocks discovered by tabu search. This exchange of blocks eventually
brings combinations of good blocks in small search spaces where tabu search is
quite effective finding covering for large number of t-subsets. We have tested our
algorithm on covering design problems with tight gaps between lower and upper
bounds [8, 9]. Those are the most difficult upper bounds to improve. We were
able to find known upper bounds for all the problem instances tested and found
new upper bounds for several of them.

The subsequent sections of this paper are organized as follows. Section 2
provides background information on the covering design problem. In section 3,
we describe the multilevel paradigm. Section 4 summarizes the implementation
of our cooperative multilevel algorithm. Section 5 reports experimental results
and we conclude in Section 6.

2 Background

In this section we provide a short background on covering designs and search
heuristics for covering designs.

2.1 Covering Designs

The study of covering designs began around the end of the 1930’s. Turán (see
[5]) was one of the first researchers to study covering designs. Since then, many
researchers have studied covering designs from various directions. One such direc-
tion is the determination of Cλ(v, k, t) by means of computer programs. Because
the exact value of Cλ(v, k, t) has been computed only for small set of values for
v, k, t and λ, most research on covering designs has focused on determining the
upper and lower bounds for Cλ(v, k, t). In this section, we briefly describe some
important results about the lower bounds and upper bounds for Cλ(v, k, t).

The Schönheim lower bound (Lλ(v, k, t)) [19] provides a lower bound for
Cλ(v, k, t) given by:

Lλ(v, k, t) :=
⌈

v

k

⌈
v − 1
k − 1

. . .

⌈
v − t + 1
k − t + 1

λ

⌉
. . .

⌉⌉
≤ Cλ(v, k, t).

This bound is a very good general lower bound for Cλ(v, k, t). For many values of
v, k, and t where Cλ(v, k, t) is known, Lλ(v, k, t) attains the value Cλ(v, k, t) [13].

In 1963, Erdős and Hanani [7] conjectured that for fixed values of t and k,
where t < k.

lim
v→∞

C1(v, k, t)
(

k
t

)
(
v
t

) = 1.

This result was shown to be true in 1985 by Rödl [18], using probabilistic meth-

ods. This result implies that C1(v, k, t) = (1 + o(1))(v
t)

(k
t)

.
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Various techniques have been used to construct covering designs [9]. One of
the earliest constructions involved using finite geometries to construct covering
designs. For example, it has been found that the hyperplanes of the affine geom-
etry AG(t, q) form an optimal (qt, qt−1, t) covering design with qt+1−q

q−1 blocks.
Another common approach is to use recursive techniques for constructing cover-
ing designs. That is, using smaller covering designs to construct larger covering
designs [14]. For example, if S1 is a t − (v − 1, k, λ) covering design and S2 is a
(t − 1) − (v − 1, k − 1, λ) covering design, then a t − (v, k, λ) covering design can
be constructed by taking all blocks from S2 with adding a new point v to all of
these blocks and including all blocks from S1.

Exact search methods have also been used to construct covering designs.
Bate [2] developed a backtracking algorithm to exhaustively search for general-
ized covering designs to determine C1(v, k, t). In 2003, Margot [11] used integer
programming techniques, branch-and-cut and isomorphism rejection to design
an algorithm for computing C1(v, k, t). However, such algorithms are effective
for only a few set of parameters.

2.2 Search Heuristics for Covering Designs

Search heuristic methods are used to search for a t − (v, k, λ) covering design
which is smaller than the best known upper bound for Cλ(v, k, t). These methods
have worked well for small values of v, k, λ [15, 16]. For λ = 1, the covering design
problem can be modeled as a combinatorial optimization problem in

(
v
k

)
Boolean

decision variables, one for each k-subset. A feasible solution is a Boolean vector
where at most b variables are set to 1, where b is the size of the covering design
we are looking for. The cost function optimized by the search heuristic is the
number of t-subsets not covered at least one time by the current solution (a set
B of b blocks). More precisely, let

(
X
t

)
be the set of t-subsets and let covery be

the number of times the t-subset y ∈
(
X
t

)
is covered by the b blocks in B. Let

notcovery = max{0, λ − covery} denote the number of times the b blocks in B
fails to cover the t-subset y. The cost of solution B is given by

cost(B) =
∑

y∈(X
t )

notcovery .

When cost(B) = 0, then all t-subsets are covered at least λ times, meaning we
have discovered a t − (v, k, λ) covering design with b blocks.

A natural mapping function to define neighborhoods for covering design prob-
lems consists of choosing m points among the k points of a block and replace
these by m other points from the v − k points not belonging to this block. Such
a move can replace 1 ≤ m ≤ min(k, v−k) points belonging to a same block. The
neighborhood N (B) of solution B is a subset of S0 such that I ∈ N (B) if I has
b − 1 identical blocks with B and one block which differs by exactly m points.
The size of the neighborhood N (B) is given by |N (B)| = b ×

(
k
m

)
×

(
v−k
m

)
. Since

the size of neighborhoods based on swapping points increases rapidly in terms of
m, typical move based heuristics for covering designs are based on neighborhood
where m = 1.
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3 The Multilevel Paradigm

Multilevel approaches have first been proposed in the field of numerical ap-
proximation [3]. Based on the original problem domain discretization, coarser
discretizations (levels) are recursively constructed by increasing the grid spac-
ing in comparison with the latest generated grid. In nested iteration, the sim-
plest multilevel scheme [4], starting with the coarser grid, an approximation is
computed and then interpolated on the next grid, which is less coarsened. The
approximation is then refined using an iterative solver. The latest refined ap-
proximation is used as initial point of the relaxation in the original problem
domain discretization. The nested iteration scheme helps improve convergence
in the original domain discretization by providing a good initial point to the
relaxation method. In the V-cycle scheme, a first approximation is computed
on the original grid spacing. The residual error associated to the approximation
is projected on the next coarser grid where the system of linear equations is
solved for this residual error. One V-cycle consists of projections upward from
less coarsened grids toward coarser grids. Then interpolations from coarser grids
toward less coarsened grids refine the approximation. Projections change the
problem definition by solving for a new residual error at each level. They also
help to improve convergence of iterative solvers by focusing on the oscillatory
component of the error function at each level.

The multilevel approach has been adapted recently to combinatorial opti-
mization problems in combination with search algorithms. The basic framework
of multilevel search is the following: Let A denote a given combinatorial op-
timization problem and A0 a problem instance of A. During the coarsening
phase, a succession A1, . . . , Al of increasingly smaller problem instances of A
is generated by reducing the number of decision variables in comparison with
the definition of problem instance A0. During the initial search phase, a fea-
sible solution sl is computed for the smallest problem instance Al. During the
refinement phase, the feasible solution sl is used to interpolate values for the
decision variables of problem instance Al−1. This setting of decision variables in
Al−1 is used as initial solution for a search algorithm which explores the search
space of Al−1. The optimization of the cost function for Al−1 using a search algo-
rithm also improves (refines) the feasible solution sl obtained from the problem
instance Al. The refinement phase consists of interpolating and refining feasible
solutions until the values of the decision variables of s0 can be interpolated from
a feasible solution of problem instance A1. This last interpolation provides for
an initial solution for a search algorithm to optimize the cost function problem
instance A0.

The coarsening phase is critical to multilevel algorithms. It reduces the size
of the problem instance and, more importantly, it determines which regions
of the solution space will be explored during the initial search and refinement
phases. Coarsening strategies were first proposed in the context of applications
of the multilevel paradigm to the graph partitioning problem [1, 10]. These
strategies are based on clustering decision variables. Starting from the origi-
nal graph instance G0 = (V0, E0), pairs of adjacent vertices x, y are selected
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randomly and merged together to become a single vertex xy in the coarsened
graph G1 = (V1, E1). Edge {x, y} ∈ G0 is removed, edges {u, x} or {u, y} in
G0 are replaced by edge {u, xy} in G1. The coarsening of G0 yields a graph G1
where |V1| ≈ |V0

2 | and E1 ⊂ E0.
Let GPP (Gx) be the graph partitioning problem for the graph instance

Gx and Sx the solution space of GPP (Gx). The number of decision variables
in GPP (G1) is about half of GPP (G0). Nonetheless, a feasible solution of
GPP (G1) can be interpolated in the solution space of GPP (G0) by expand-
ing vertex xy ∈ V1 into vertices x, y ∈ V0 and placing x, y in the same partition
as xy. Consequently, S1 ⊂ S0, i.e., any feasible solution to GPP (G1) is also
a feasible solution to GPP (G0). The coarsening phase recursively applies the
above coarsening strategy to the latest coarsened graph and outputs a succes-
sion of increasingly coarsened graph G1, G2, · · · , Gl which satisfy the condition
Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0.

For several combinatorial optimization problems, coarsening by clustering
decision variables is hardly applicable. In [6], the authors proposed a coarsening
strategy by fixing the state of some decision variables. A decision variable is
fixed if its value cannot be changed by the solution process. Let x1, x2, . . . , xn

be the set of decision variables of a problem instance A0. By fixing some deci-
sion variables of A0, a new problem instance A1 is defined where S1 ⊂ S0. Any
solution to A1 can be trivially interpolated in the solution space of A0. Fixing
recursively the state of some decision variables has the effect of coarsening the
original problem instance A0 into problem instances with fewer decision vari-
ables. Furthermore, the strict inclusion condition Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0 is
also satisfied.

In most multilevel algorithms applied to combinatorial optimization prob-
lems, the refinement phase is reminiscent of the nested iteration scheme in multi-
grid approximation. Recently, a multi-cycle refinement phase has been proposed
[6, 17] in the context of parallel cooperative search algorithms. In multi-cycle
refinement, projection operators transformed the problem instance searched at
each level by changing its coarsening. Modification to the coarsening of levels
define new regions of the solution space that can be explored by search heuris-
tics. This allows for a new sequence of interpolations and searches, closing one
cycle. There are several possible variations in the multi-cycle refinement phase,
we propose a new one in this paper.

4 Multilevel Tabu Search Algorithm for the Covering
Design Problem

In this section, we introduce the design of our multilevel algorithm for the cover-
ing design problem. We describe our strategy to coarsen covering design problem
instances as well as the projection operator and re-coarsening strategies applied
to transform subsequently the initial coarsening. Next, we describe the tabu
search algorithm which is used to explore the search space defined by each level
of coarsening. Finally, we describe a variation of the multi-cycle refinement phase
adapted for the covering design problem.
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4.1 The Coarsening Phase

Our coarsening procedure defines search spaces (levels) by fixing recursively sub-
sets of decision variables. The decision variables for the covering design problem
correspond to the

(
v
k

)
blocks of a given problem instance. Each block is assigned

exclusively a level during the coarsening phase. An integer array (multilevel)
of dimension

(
v
k

)
expresses this assignment. Entry j of the array takes a value

i in the range 0 to l to indicate that the block j is assigned to level i. At the
initialization, all the

(
v
k

)
blocks are assigned to level 0. Then, through random

selection, blocks assigned to level 0 are re-assigned to level 1. This procedure is
repeated for each level i, re-assigning randomly blocks from level i− 1 to level i.

The number of blocks assigns to each level is decided by the coarsening factor
cf . The value of this coarsening factor is a function of the total number of blocks(

v
k

)
, the number of levels l+1 and |Ll| the number of blocks required at top level

l. It is computed as follows:

cf =

(
v
k

)
− (|Ll| × (l + 1))
(l + 1) × l

2

.

The value cf expresses the difference between the number of blocks assigned to
two adjacent levels i and i + 1. Assume Li represents the set of blocks assigned
to level i. The number of blocks |Li| that must be assigned to level i is given by
the following formula:

|Li| = |Ll| + (l − i) × cf

Therefore, the number of blocks |Ll−1| at level l − 1 is |Ll−1| = |Ll| + cf , the
number of blocks at level l − 2 is |Ll−2| = |Ll| + 2 × cf , etc. The number of
blocks at level 0 is |L0| = |Ll| + (l × cf). The sum of blocks assigned to all the
levels must be

∑l
i=0 |Li| =

(
v
k

)
.

A block is considered to be fixed for level i if it is assigned to a level lower
than i. Therefore, the number of decision variables at level i is Si =

∑l
k=i |Lk|,

the set of blocks assigned to levels greater or equal to i. The search space at
level i is constituted by all the possible combinations of b blocks in the set Si =
Li∪Li+1∪· · ·∪Ll. The search space S0 at level 0 corresponds to all combinations
of b blocks in the set

(
X
k

)
= ∪l

i=0Li. Note that the set of decision variables
Si = Li∪Li+1∪· · ·∪Ll of level i is a strict subset of Si−1 = Li−1∪Li∪· · ·∪Ll of
level i−1. Consequently, the strict inclusion condition Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0
among search spaces is satisfied by this coarsening procedure.

4.2 Projection and Re-coarsening

The projection operator copies from level i to level l the blocks B of the best
covering design approximation at level i. This operator is implemented by re-
assigning blocks in B to level l, as shown in the while loop of Fig. 1.

According to our coarsening procedure, each block in B is assigned to a level
greater or equal to i. Line 1 obtains the current level assignment of block s from
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projection(B)
while (B �= ∅) do

1. s = s ∈ B; B = B \ s; j = multilevel[s];
if (j �= l) then

2. multilevel[s] = l;
3. u = randomly select a free block assigned to level l; multilevel[u] = j;

Fig. 1. The projection procedure

the array multilevel (the array which stores the assignment of each block to a
specific level). Line 2 re-assigns to level l those blocks of B not already assigned
to level l.

Each time a block s is re-assigned by the projection operator from level j to
level l, it removes one block from level j and adds one block to level l. Given the
way levels are defined in our coarsening procedure, assigning a new block s to
level l is equivalent to adding the decision variable s to sets Sj+1, Sj+2, . . . , Sl

such that Sj+1 = Sj+1 ∪ s, Sj+2 = Sj+2 ∪ s, . . . , Sl = Sl ∪ s. The operation of
line 2 is in fact a re-coarsening of levels j + 1 to l, modifying the search space
of all these levels. In order to keep the number of blocks constant at each level,
line 3 re-assigns a block from level l to level j. Line 3 changes the coarsening of
levels j + 1 to l: Sj+1 = Sj+1 \ u, Sj+2 = Sj+2 \ u, . . . , Sl = Sl \ u.

Re-coarsening is designed to re-focus the search space of each level toward
better regions of the solution space. To achieve this purpose, the re-coarsening
of each level is biased by the cost function through the projection of the best
solutions to level l. In order to have a chance to influence the multilevel search,
a block entering the search space of level i through projection must not exit
this level before performing a search of the corresponding level. To enforce this
condition, the blocks of solutions that have been projected to level l must stay
assigned to level l for the duration of a search. The free blocks in line 3 of the
projection procedure are blocks that do not belong to any of the best solutions
recently projected to level l. In this manner, blocks that seem to contribute to
find good solutions are kept at level l. Blocks at level l are re-combined together
by the tabu search procedure or re-combined in the same manner with blocks
from any of the other levels. On the other hand, blocks not belonging to any
of the current best solutions are sent back to a lower level j through the last
operation of line 3, they then become excluded from combining with blocks
belonging to levels j + 1 to l.

4.3 The Tabu Search Procedure

The search space of each level is explored using a tabu search procedure. This
tabu search procedure uses two tabu lists. A first tabu list prohibits moves that
undo swaps of blocks x → y by entering in the tabu list the move y → x.
A second tabu list disallows a block from leaving the current solution B for
a certain number of tabu iterations after entering B. The size of the tabu list
varies randomly in a pre-defined range for each call to the tabu procedure. We
found that variations in the length of the tabu lists is helpful to diversify the
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exploration of search spaces when projection fails to re-coarsen some of the
levels. The termination criterion for this tabu search procedure is a pre-defined
number of iterations without improving the best known solution. Our tabu search
procedure is described in Fig. 2.

tabu search(initial solution)
best = initial solution; B = initial solution;
while (termination criterion not satisfied) do

B = V ∈ N (B) ∧ V not tabu; (V is the best solution in the neighborhood of B
and V is not in any of the two tabu lists)

update tabu lists;
if (cost(B) ≤ cost(best)) then

best = B;
return best;

Fig. 2. The tabu search procedure

4.4 The Multi-cycle Refinement Phase

This multilevel algorithm is based on a multi-cycle refinement phase. Refinement
cycles are divided into two categories: interpolation cycles and search cycles.

Interpolation Cycles. Interpolation cycles are initiated at level 0 as described
in Fig. 3. An interpolation operation at level i �= l uses the best solution of level
i+1 to restart the tabu search procedure at level i (line 1). At level l, the search
is restarted from the current best solution at level l (line 3). An interpolation
cycle ends by a restart of the search at level 0 using the current best solution at
level l (line 4). Each time the tabu search procedure has completed the search
initiated from the interpolated solution, the best solution in the search sequence
is projected to level l (lines 2 and 4). In an interpolation cycle, information
move downward through the interpolation operations and upward through the
projection operations performed at levels 0 to l − 1.

Interpolation cycle()
for (i = 0; i ≤ l − 1; i + +) do

1. besti = tabu search(besti+1);
2. projection(besti);

Bl = best solution of level l from the previous cycle;
3. bestl = tabu search(Bl);
4. best0 tmp = tabu search(bestl); projection(best0 tmp);

if (cost(best0 tmp) ≤ cost(best0) then best0 = best0 tmp;

Fig. 3. The interpolation cycle

Search Cycle. Search cycles run a tabu search procedure at each level, starting
at level l toward level 0. Search cycles have a dual purpose. One is to discover
improving solutions once re-coarsening has modified the search space of each level.
The second purpose is to diversify the exploration of the solution space S0.
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During a search cycle, the tabu search procedure at level i starts with the
current best solution at this level. If the search fails to improve the current best
solution, the exploration of the search space is then restricted to blocks in Li, the
blocks assigned to level i (line 3 in Fig. 4). In the search space defined uniquely
by blocks of Li, tabu search cannot access the blocks of the best solutions,
which are assigned to level l. Constrained to blocks in Li, the search usually
enters a sequence of uphill moves where blocks enter B that would not have
been included if all candidate neighbors had been considered. Then, search is
re-opened to the whole search space of level i (line 5). The last search sequence
at level i is initiated from the last solution visited in the restricted search space
(line 6). This is usually a poor solution, consequently, the last search sequence is
a sequence of downhill moves, replacing blocks in B with other blocks improving
the cost of B. The solution that is projected at the end of the search at level
i may or may not have a better cost than the best solution in the previous
cycle. However, because of the uphill and downhill search moves, level i is likely
to project to level l a more diversified set of blocks than if the search has been
performed uniquely in the search space of level i. This speed-up the re-coarsening
of each level, which in turn diversifies the exploration of the solution space S0.

Search cycle()
for (i = l; i ≥ 0; i − −) do

Bi = besti; (besti is the current best solution at level i)
1. search space = any combination of b blocks in Li ∪ Li+1 ∪ · · · ∪ Ll;

besti = tabu search(besti);
2. if (cost(besti) ≥ cost(Bi)) then
3. search space = any combination of b blocks in Li;
4. besti = last solution of tabu search(besti);
5. search space = any combination of b blocks in Li ∪ Li+1 ∪ · · · ∪ Ll;
6. besti = tabu search(besti);

if (i �= l) then projection(besti);

Fig. 4. Search procedure for refinement cycles

The Initial Search Phase. To compute the initial state of the multi-cycle
refinement phase, we run a pre-defined number of p search cycles (the value
of parameter is determined empirically). In the first search cycle, each tabu
search procedure is started from a randomly generated solution. The random
initial solution at level i is computed by selecting b blocks in the set of blocks
Si = Li ∪ Li+1 ∪ · · · ∪ Ll, as described in Fig. 5. Searches in the first cycle from
initial random solutions are likely to generate significant re-coarsenings at all
levels above level 0. The for loop of line 3 launch a sequence of p − 1 search
cycles in order to explore the new search spaces created by the re-coarsenings.

Refinement Phase. The entire multi-cycle refinement sequence is summarized
in Fig. 6. Beyond the initial search phase, the refinement phase is decomposed
into sequences of p cycles: first cycle is an interpolation cycle and it is followed
by p − 1 cycles.
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Initialization sequence()
1. for (i = l; i ≤ 0; i − −) do

Bi = ∅;
for (j = 1; j ≤ b; j + +) do

block = a randomly selected block in Si;
Bi = Bi ∪ block;

besti = tabu search(Bi);
2. if (i �= l) then projection(besti);
3. for (j = 2; j ≤ p; j + +) do

Search cycle(j);

Fig. 5. The initial search phase

Multi-cycle refinement phase()
Initialization sequence();
while (not found solution or number of cycles smaller than limit) do

Interpolation cycle();
for (j = 1; j ≤ p − 1; j + +) do

Search cycle()

Fig. 6. Multi-cycle refinement phase

5 Experimentation

Several tests have been performed during the development and validation phases
of this algorithm, we report the results in Table 1 below. The column “t −
(v, k, λ)” describes the parameters of the covering design problem while the
column “# of runs” reports how many time we have run our algorithm on each
problem. A large number of runs (such as 50 for 3-(14,5,1)) indicates that the
corresponding problem has been used as a test problem during the development
phase. The column “b” indicates the size of the covering design we have tested.
All values of b are one block less than the best known upper bounds, except for
some of the problems for which we have been able to improve the best known
upper bounds. (Our tests are based on the best known covering design upper
bounds as published on the web site [8] in Spring 2005). The columns “Cost”
reports, for all runs, the solution with the smallest number of t-subsets not
covered. For example, a cost of 2 indicates the best set of b blocks failed to cover
2 t-subsets. A cost of 0 indicates that we have improved the best known upper
bound. In this case, on the corresponding row under columns b, we report the
previous best known upper bound in () beside our new upper bound.

For runs where new upper bounds have been found, the total number of cycles
executed varies between 7 and 175. For these runs, the range in computational
time varies between 20 minutes to 15 hours on a 500 MHz sequential computer
(many factors impact the computational time requirements of a cycle, among
them the size of the covering design parameters). A run is aborted once 1000
cycles have been executed without discovering a new upper bound. For the tests
reported in Table 1, the computational time requirements vary between 1 hour
up to 168 hours (1 week) for runs that didn’t improve the best known upper
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Table 1. Experimental results

t − (v, k, λ) Cost b # of runs t − (v, k, λ) Cost b # of runs
3-(12,5,1) 2 28 5 3-(13,5,1) 1 33 10
3-(14,5,1) 1 42 50 3-(15,5,1) 2 55 5
3-(16,5,1) 2 64 5 3-(17,6,1) 1 43 50
3-(19,6,1) 5 62 3 3-(20,6,1) 30 71 8
4-(13,6,1) 2 65 5 4-(14,6,1) 8 79 5
4-(15,6,1) 32 116 5 4-(14,7,1) 2 43 5
4-(15,7,1) 7 56 5 4-(16,7,1) 1 75 2
4-(17,7,1) 53 98 3 4-(17,8,1) 4 53 5
4-(16,9,1) 6 25 5 4-(17,10,1) 5 22 5
5-(11,6,1) 6 99 3 5-(12,7,1) 5 58 2
5-(13,8,1) 1 42 8 5-(14,7,1) 10 137 2
5-(14,8,1) 6 54 4 5-(15,8,1) 7 88 8
5-(16,9,1) 0 61(62) 6 5-(16,10,1) 0 36(37) 8
6-(13,8,1) 7 99 2 6-(14,9,1) 0 72(75) 8
6-(15,9,1) 1 99 3 6-(15,10,1) 0 53(55) 7
6-(16,10,1) 4 76 8 6-(16,11,1) 11 43 8
6-(17,12,1) 31 35 8 7-(13,9,1) 7 78 8
7-(14,10,1) 0 56(57) 8 5-(17,10,1) 2 48 7

bound. Finally, in terms of comparison, we have ran extensive tests against
simulated annealing [15] for all the problems reported in Table 1, none was able
to improve the best known upper bound.

6 Conclusion

The general strategy of cooperative multilevel algorithms is to solve several prob-
lems and use the solutions to define a new set of problems. This paper has de-
scribed an exploratory application of this approach to covering designs. Blocks
of successful approximate solutions discovered by a tabu search procedure are
substituted to some blocks of an existing problem description, yielding a new
problem definition. The key observation here is that the new problem defini-
tion hold at its core a successful combination of blocks. By making the problem
small enough such that it holds only successful combination of blocks, we cre-
ate conditions to obtain successful search directions from the re-combinations of
blocks in the smaller problem. Furthermore, under the strict inclusion condition,
blocks of the smaller problem are included in the definition of all the other prob-
lems. This provide for individual blocks to be tested inside good combinations of
blocks, which often provides small increments in the definition of new success-
ful combination of blocks. Overall, this multilevel strategy has already delivered
interesting numerical results and seems to hold the potential to deliver more for
covering designs and other problems in the field of combinatorial designs.
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7. P. Erdős and H. Hanani. On a limit theorem in combinatorial analysis. Publica-
tiones Mathematicae Debrecen, 10:10–13, 1963.

8. C.J. Gordon. Web site of covering bounds. http://www.ccrwest.org/cover.html.
9. C.J. Gordon, O. Patashnik, and G. Kuperberg. New constructions for covering

designs. Journal of Combinatorial Designs, 3(4):269–284, 1995.
10. B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0. Report

SAND95-2344, Sandia National Laboratories, 1995.
11. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming,

94:207–220, 2003.
12. W. H. Mills and R. C. Mullin. Coverings and packings. In Contemporary De-

sign Theory: A Collection of Surveys, pages 371–399. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 1992.

13. W.H. Mills. Covering designs I: coverings by a small number of subsets. Ars
Combinatoria, 8:199–315, August 1979.

14. K. J. Nurmela. Constructing combinatorial designs by local search. Technical
report, Helsinki University of Technology, November 1993.
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16. K. J. Nurmela and P. R. J. Österg̊ard. New coverings of t-sets with (t+1)-sets.
Journal of Combinatorial Designs, 7:217–226, 1999.

17. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J.S. Deogun. Multi-
level Cooperative Search for the Circuit/Hypergraph Partitioning Problem. IEEE
Transactions on Computer-Aided Design, 21(6):685–693, 2002.
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