
On a Property Analysis of Representations for
Spanning Tree Problems

Sang-Moon Soak1, David Corne2, and Byung-Ha Ahn1

1 Dept. of Mechatronics, Gwangju Institute of Science and Technology, South Korea
{soakbong, bayhay}@gist.ac.kr

2 Dept. of Computer Science, University of Exeter, Exeter EX4 4QJ, UK
D.W.Corne@exeter.ac.uk

Abstract. This paper investigates on some properties of encodings of
evolutionary algorithms for spanning tree based problems. Although de-
bate continues on how and why evolutionary algorithms work, many
researchers have observed that an EA is likely to perform well when
its encoding and operators exhibit locality, heritability and diversity. To
analyze these properties of various encodings, we use two kinds of analyt-
ical methods; static analysis and dynamic analysis and use the Optimum
Communication Spanning Tree (OCST) problem as a test problem. We
show it through these analysis that the encoding with extremely high lo-
cality and heritability may lose the diversity in population. And we show
that EA using Edge Window Decoder (EWD) has high locality and high
heritability but nevertheless it preserves high diversity for generations.

1 Introduction

For a long time, many researchers have proposed various analytical methods to
reveal the basic principle of encodings in EAs. Manderick et al. [6] used corre-
lation coefficients for the fitness values of solutions before and after operators
are applied. Sendhoff et al. [17] proposed the concept of “causality” to analyze
the locality of EAs. Gottlieb et al. [1],[4],[9] proposed “mutation innovation”,
“crossover innovation” and “crossover loss” to emphasize the importance of lo-
cality and heritability. Merz et.al [7], Reeves et.al [11] and Watson et.al [19] used
the fitness landscape analysis. Besides those, many literatures have dealt with
methods for analyzing the properties of encodings [5],[12],[15]. In this paper, we
concentrate on the analysis of locality, heritability and diversity of encodings
based on Gottlieb et al.’s study and the fitness landscape analysis.

A difficulty of the population-based optimization is that once the search has
narrowed near the previous optimal solution, the diversity in the population may
not be enough for the search to get out of there and proceed towards the new
optimal solution. Especially, if an evolutionary algorithm has very high locality or
very high heritability as well, it may suffer from much serious problem. (Often,
in these cases, diversity preserving mechanisms were used for avoiding these
problems [9],[10].)
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In this paper we show it through empirical tests that locality, heritability
and diversity are in conflict with each other. In other word, if an encoding has
extremely high locality and extremely high heritability, it may lose the diversity
in population after offsprings are created and lead the search toward the nar-
row space (exploitation) because offsprings generated by operators will be very
similar to their parents. Therefore, as generation goes, it will be deprived of the
ability of exploration. But, note that high diversity does not imply the loss of
locality and heritability. However, to obtain a good performance of evolutionary
algorithms the harmony of these properties is needed.

For empirical tests, we compare five encodings, the Prüfer encoding [3],
the network random key encoding (NetKey) [12], the link and node bias en-
coding (LNB) [8], the edge set encoding (Edge Set With Heuristic (ESWH)
and Edge Set Without Heuristic (ESWOH) : ESs) [9] and the edge-window-
decoder encoding (EWD) [18]. These encodings have been applied very success-
fully to spanning tree based problems like optimum communication spanning tree
problem, degree constrained minimum spanning tree problem and quadratic
spanning tree problem. For more details about each encoding, refer to the refer-
ences.

This paper is organized as follows. The optimum communication spanning
tree problem is described in Section 2. Section 3 presents the analysis of encod-
ings. We make some concluding remarks in Section 4.

2 Optimum Communication Spanning Tree Problem:
OCST

We perform an empirical analysis with OCST problem, which is one of the well-
known NP-hard constrained spanning tree problems.

Consider an undirected complete graph G = (V, E) , where V = {1, 2, ..., N}
is the set of N nodes and E = {1, 2, ..., M} is the set of M edges with given
distance (or cost). Generally, the MST is to find the minimal cost spanning tree.
In the case of the OCST, there are also “communication requirements” associated
with each pair of nodes, specified by R(i, j). E.g. these may represent the number
of expected daily telephone calls between two cities. For any spanning tree T
of G, the communication cost between two cities i and j is defined to be the
communications requirement multiplied by the distance between the two cities
on T, and the communication cost of T itself is the total communication cost
summed over all pairs of nodes.

The goal is to construct a spanning tree with minimum communication cost.
That is to find a spanning tree T such that formula (1) is minimized, where
dT (i, j) is the sum of the distance of edges along the route between i and j
on T.

Min [
∑

i,j∈V

R(i, j)dT (i, j)] (1)
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3 Analysis of Encodings

The properties, locality, heritability and diversity, of an encoding in evolution-
ary algorithms are the core factors for the effective search toward an optimal or
near optimal solution. Though debate still continues on, many researchers have
observed that an EA is likely to perform well when its encoding and operators
exhibit these properties [8],[10]. Therefore, we want to analyze the difference
among various encodings. To analyze this, we use the locality [1],[4], the heri-
tability [5] and the fitness landscape analysis [7],[11],[19].

3.1 Metrics

In order to analyze the properties of an encoding, suitable metrics have to be
defined.

First of all, there are two search spaces in computational space of evolutionary
algorithms; the genotypic search space and the phenotypic search space. Most
of the genetic operators work on the genotypes and the movement of genotypes
on the genotypic search space by the genetic operators results in the change of
corresponding phenotypes on the phenotypic search space. Finally, it makes the
fitness value of corresponding solutions be changed. Therefore, the genotypic
distance have to be defined preferentially. But since the genotypic distance is
dependent on the encoding used, it must have universality.

Since the majority of the research follow the concept of evolutionary biol-
ogy [16] when defining the genotypic distance, the genotypic distance is generally
defined as follow;

– The genotypic distance is the smallest number of individual mutations re-
quired for the inter-conversion of two genotypes.

On the other hand, “the phenotypic distance” and “the fitness distance” are
independent on the encoding used, but they are dependent on the problem used.
So, these two metrics should be defined as the problem.

Next, we define “phenotypic distance (dp)” and “fitness distance (df )” based
on the OCST problem which is used as the test problem in this paper.

– The phenotypic distance is the total number of different edges between two
phenotypes (spanning trees). Therefore, the phenotypic distance is the Ham-
ming distance.

dp(Ti, Tj) =
1
2

∑

u,v∈V

|Ei
uv − Ej

uv| (2)

where Ei
uv is 1 if an edge (u, v) exists in a tree Ti, otherwise 0.

– The fitness distance is the difference between the fitness values of two phe-
notypes (spanning trees).

df (Ti, Tj) = |f(Ti) − f(Tj)| (3)
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3.2 Locality

The locality can be defined as how well neighboring genotypes correspond to
neighboring phenotypes [1], [4], [15]. Therefore, the locality of representation is
high if small changes in the genotype result in small changes in the corresponding
phenotype. In this context, it is appropriate to measure the locality of encod-
ings using the mutation operator instead of the crossover operator, because the
mutation operator is usually responsible for small steps in the phenotypic space,
hence for gradual changes which we want to analysis.

Gottlieb and Eckert [1], [4] introduced the mutation innovation to measuring
the locality. Mutation operators work in the genotype, but their effect can only be
analyzed in the corresponding phenotype, which involves structural information
of candidate solutions. So, the effect of mutation can be measured by the distance
between the involved phenotypes. Therefore, the mutation innovation (MI) is
equal to the phenotypic distance (dp) but, only difference is to be compared
between parent and its mutant.

MI = dp(x, xm) (4)

where x and xm indicate parent and its mutant respectively.
To analyze the locality of each encoding, we generated 1,000 random initial so-

lutions in compliance with the used encoding, applied only a mutation operator to
each encoding and performed the experiment on the selected benchmark instances
(Palmer24 and Berry35U) and random generated instances (N = 10 ∼ 100).

In this experiment, the reciprocal exchange mutation is used for Prüfer,
NetKey and EWD, the random perturbation mutation is used for LNB and
the specialized mutation operator is used for ESs [10]. If two genes with the
identical gene value are selected when the reciprocal exchange mutation is ap-
plied to an encoding, it never generates a different offspring from the parent. So,
in this case two genes with different gene values are selected again.

Table 1 shows the locality comparison among encodings and here a mutation
was applied once to each encoding. In case of ESWH and ESWOH, all solutions
had MI = 1 at all instances. The reason is for their specialized mutation op-
erator; each mutation process changes exactly one edge on the genotype, and
for the genotype and the phenotype are the same; non-redundant encoding. On
the other hand, the others are a kind of redundant encodings except the Prüfer
encoding. So, although a mutation operator is applied to encodings, sometimes
it does not cause the change at the phenotype (the redundancy) or the different
genotypes can be mapped to the same phenotype (the heuristic bias).

P (MI = 0) represents these things. NetKey and LNB show higher frequency
than Prüfer and EWD. It relates to the degree of redundancy and the heuristic
bias of encodings. In case of NetKey, exactly two genes are exchanged by the
mutation (the reciprocal exchange mutation) and it results in the change of
sorting order at exactly two genes. So, if the selected genes are the genes which
are not selected for the previous phenotype, it never makes a difference between
the phenotypes. Therefore, P (MI = 0) will be increased as the size of network is
increased because only N−1 edges among the total edges N(N−1)/2 are selected
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Table 1. Comparison of locality on Palmer24, Berry35U and random generated In-
stances (Rand10 ∼ 100), based on randomly generating 1,000 genotypes and applying
mutation once to each

Palmer24 Prufer LNB NetKey ESWH ESWOH EWD Berry35U Prufer LNB NetKey ESWH ESWOH EWD
P (MI = 0)(%) 0.00 80.5 80.3 0.00 0.00 4.10 0.00 93.5 87.3 0.00 0.00 0.00
E(MI|MI > 0) 4.49 7.87 1.51 1.00 1.00 2.42 5.08 33.0 1.49 1.00 1.00 11.70

Max(MI) 12 22 2 1 1 7 17 33 3 1 1 18
σ(MI|MI > 0) 2.01 5.67 0.50 0.00 0.00 1.02 2.64 0.00 0.51 0.00 0.00 2.24

Rand10 Rand20
P (MI = 0)(%) 0.00 55.7 61.9 0.00 0.00 70 0.00 56.3 77.7 0.00 0.00 4.7
E(MI|MI > 0) 3.20 2.43 1.43 1.00 1.00 2.10 4.30 3.11 1.45 1.00 1.00 2.39

Max(MI) 6 8 2 1 1 5 10 11 2 1 1 6
σ(MI|MI > 0) 1.12 1.71 0.49 0.00 0.00 0.89 1.65 2.05 0.49 0.00 0.00 0.96

Rand30 Rand40
P (MI = 0)(%) 0.00 61.1 84.0 0.00 0.00 3.90 0.00 64.8 87.2 0.00 0.00 2.60
E(MI|MI > 0) 4.97 4.03 1.60 1.00 1.00 2.48 5.66 4.67 1.56 1.00 1.00 2.58

Max(MI) 14 22 2 1 1 9 19 18 2 1 1 7
σ(MI|MI > 0) 2.39 3.46 0.49 0.00 0.00 1.01 3.19 3.47 0.49 0.00 0.00 1.00

Rand50 Rand60
P (MI = 0)(%) 0.10 64.5 89.7 0.00 0.00 3.80 0.00 66.7 91.6 0.00 0.00 2.80
E(MI|MI > 0) 6.29 4.49 1.51 1.00 1.00 2.59 7.20 5.40 1.57 1.00 1.00 2.65

Max(MI) 21 23 2 1 1 6 27 25 3 1 1 8
σ(MI|MI > 0) 3.87 3.91 0.50 0.00 0.00 0.98 4.86 4.44 0.54 0.00 0.00 1.00

Rand70 Rand80
P (MI = 0)(%) 0.00 68.1 91.0 0.00 0.00 2.40 0.00 70.1 90.1 0.00 0.00 2.80
E(MI|MI > 0) 7.38 5.53 1.58 1.00 1.00 2.63 8.02 5.92 1.48 1.00 1.00 2.65

Max(MI) 31 22 2 1 1 7 29 23 3 1 1 9
σ(MI|MI > 0) 5.56 4.22 0.49 0.00 0.00 1.01 5.94 4.52 0.54 0.00 0.00 1.01

Rand90 Rand100
P (MI = 0)(%) 0.00 71.1 92.2 0.00 0.00 1.70 0.00 69.4 90.5 0.00 0.00 1.50
E(MI|MI > 0) 8.59 5.62 1.46 1.00 1.00 2.71 9.49 6.03 1.45 1.00 1.00 2.69

Max(MI) 36 23 3 1 1 6 38 23 3 1 1 5
σ(MI|MI > 0) 6.88 4.41 0.55 0.00 0.00 1.01 7.99 4.84 0.57 0.00 0.00 0.98

to generate a spanning tree. The test results show that. And LNB has also
the same redundancy as NetKey in terms of the length of the encoding, but in
addition to that it has a strong heuristic bias in the context of having a preference
toward a specific spanning tree [2]. Therefore, mutants over 80% at Palmer 24,
over 93% at Berry35U and over avg. 70% at the random generated instances are
the same as their parents. Especially, in Berry35U instance LNB shows much
higher P (MI = 0) value (93.5%) in comparison to those of the other encodings.
That is for the strong heuristic bias of LNB using Prim’s algorithm for sorting
all edges with the modified cost matrix and for the instance’s data set; all edge
distances are the same (In this case LNB can only generate a star tree [2]). In all
random instances, also LNB and NetKey show relatively higher values than the
others. In case of EWD, even though it is a redundant representation, it has much
lower redundancy comparing to NetKey and LNB. So, it exhibits relatively much
lower probability at P (MI = 0). The ESs and Prüfer show that all offsprings
were different from their parents (P (MI = 0) = 0). As mentioned above, the
reason is that the specialized mutation operator of ESs exactly changes one
edge to a different edge which is not included in the tree and in case of the
Prüfer encoding the mutation exchanges exactly two different genes. So, while
P (MI = 0) was 0%, P (MI = 1) was 100%.

In addition, this table shows three other indicators of locality, E(MI | MI >
0), σ(MI | MI > 0) and Max(MI). E(MI | MI > 0) represents the expected
mutation innovation in the case that some phenotypic property has actually been
affected. So, high values represent low degree of locality. Especially, ESs can be
seen as a very ideal case because single change in genotypes exactly causes 1
distance in phenotype. EWD shows low locality in comparison with NetKey and
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ESs but high locality in comparison with Prüfer and LNB. But, when considering
the redundancy of encodings, it is very difficult to distinguish which encoding
has better locality between EWD and NetKey. In case of σ(MI | MI > 0),
also this table shows the similar results. NetKey, ESs and EWD are much stable
than Prüfer and LNB. In Berry35U, LNB shows E(MI | MI > 0) = 33 and
σ(MI | MI > 0) = 0. The reason is for LNB implies a strong heuristic bias.
And the maximum number of edges modified (Max(MI)) does not exceed 38 at
Prüfer, 33 at LNB, 3 at NetKey, 1 at ESs and 9 at ESW.

In figure. 1, the upper two figures indicate the frequency of solutions with the
identical phenotypic distance (dp) when a mutation is applied to each encoding
once. EWD and Prüfer show that the solutions with various phenotypic distance
are generated by a mutation. That means the exploration ability of EWD and
Prüfer encoding. On the other hand, the other encodings exhibit their exploita-
tion ability.

(a) Palmer24 (b) Berry35U
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Fig. 1. The frequency of identical locality and the value of E(MI | MI > 0) and
σ(MI | MI > 0) according to generation. In here, E(MI | MI > 0) and σ(MI | MI >
0) represent values obtained by the phenotypic distance between the original solution
and its mutant generated after k generation (Pm=100).
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The other figures show the value of E(MI | MI > 0) and σ(MI | MI > 0)
according to generation. E(MI | MI > 0) and σ(MI | MI > 0) represent the
values obtained by the phenotypic distance between the original solution and
its mutant generated after k mutation. As k increases, it shows a significant
difference within 200 generation. NetKey and ESWH exhibit lower mean values
than the other encodings. That indicates high locality of the two encodings. But
NetKey is very unpredictable at Berry35U and ESWH indicates slightly higher
standard deviation values (STD) at Palmer24. On the other hand, even though
LNB shows relatively high mean values and especially at Berry35U instance the
mean values were all 33. As mentioned above, it is for strong bias toward a
specific tree structure - a star tree. Moreover, at Palmer24 LNB is very unstable
and unpredictable. Prüfer exhibits relatively high mean values -low locality- at
both instances but σ(MI | MI > 0) is very predictable at palmer24 instance.

Although ESWH and ESWOH start at the same E(MI | MI > 0) value at
the beginning of generation, the difference between ESWH and ESWOH becomes
large because of the heuristic bias of ESWH. EWD starts slightly high mean
value but finally the mean value becomes very similar to other encodings’ mean
value.

3.3 Heritability

The locality is a feature of the interaction between a coding and mutation oper-
ator. On the other hand, the heritability is a feature of the interaction between a
coding and crossover operator. Julstrom [5] defined the heritability as the num-
ber of edges in the offspring’s spanning tree that appeared in neither parent’s
tree. We define the heritability as a similar way.

– The heritability is the number of edges in the offspring’s spanning tree that
appeared in either parent’s tree.

Table 2. Comparison of Average Heritability based on randomly generating 1,000
genotypes and applying crossover once to each

Heritability Prufer LNB NetKey ESWH ESWOH EWD
Palmer24 15.72 19.08 18.79 23.00 23.00 16.77
Berry35U 22.27 26.63 27.90 34.00 34.00 17.77
Rand10 6.92 7.80 7.67 9.00 9.00 7.46
Rand20 13.24 16.20 15.56 19.00 19.00 15.80
Rand30 19.39 24.11 23.57 29.00 29.00 24.34
Rand40 25.90 32.83 31.72 39.00 39.00 33.27
Rand50 31.60 40.05 39.96 49.00 49.00 41.67
Rand60 37.91 47.71 47.82 59.00 59.00 51.02
Rand70 43.94 57.01 56.17 69.00 69.00 60.04
Rand80 49.96 64.78 64.32 79.00 79.00 67.93
Rand90 55.57 73.46 72.73 89.00 89.00 77.51
Rand100 62.49 81.14 80.81 99.00 99.00 86.17
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dh(Pi, Pj , O) = |(Pi ∪ Pj) ∩ O| (5)

where P and O represent parent and offspring.

Each encoding uses different crossover operators considering which crossover
operator can give better performance for the considering encoding [18]. So, Prüfer
uses two-point crossover, LNB one-point crossover, NetKey uniform crossover,
ESs their specialized crossover and EWD adjacent node crossover.

Table. 2 exhibits the average heritability of each encoding and the high dh

values imply the high heritability.
ESs show very ideal case at all instances because of their specialized crossover

operator. All of the generated offsprings are created by their parents’ edges.
However, they show the highest locality and heritability. In this empirical com-
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Fig. 2. The fitness landscape. 1,000 solutions are generated using each representation
methods and genetic operators are applied to a representation (Palmer24).



On a Property Analysis of Representations for Spanning Tree Problems 115

parison, EWD exhibits higher heritability than the other encodings except ESs
and Prüfer encoding exhibits the lowest heritability as the locality comparison.

3.4 Diversity

– If various different solutions coexist in population, the representation has
high diversity. Otherwise, it has low diversity.

We analyzed the diversity of encodings at two instances (palmer24 and
berry35U) and in this experiment all genetic operators were applied to encodings
as following [18].

Figure. 2 and figure. 3 show the relation between phenotypic distance and
fitness distance to optimum solution (palmer24) or the best known solution
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Fig. 3. The fitness landscape. 1,000 solutions are generated using each representation
methods and genetic operators are applied to a representation (Berry35U).
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(berry35U) according to generation. Here, different shape points represent the
distribution of solutions scattered at each generation. Note that EWD keeps pre-
serving the diversity of solution over generations at both instances and has high
diversity in population. On the other hand, the other encodings dramatically
lose the diversity of solution.

We conclude that the reason why the other encodings lose the diversity of
population is for the strong heuristic bias or extremely high locality. If an encod-
ing has extremely high locality, after operators are applied it keeps generating
very similar offsprings or nearly the same offsprings, and finally the population
will be filled by similar offsprings very fast as generation goes. As a result, the
search space which the encoding explores will narrow and then it will become
to lose the balance between “exploration” and “exploitation”. For example, at
the locality comparison NetKey and ESs exhibited higher locality. But, if con-
sidering the diversity distribution, the solutions are distributed in a very limited
space.

Observing the distribution of solutions, we can also estimate the difficulty of
problems. In Palmer24 instance, the solution distribution of each encoding shows
the positive correlation [15] between phenotypic distance and fitness distance. It
means that an algorithm which guides toward solutions with small fitness value
can easily find the optimum solution. On the other hand, in case of Berry35U,
the solution distribution of each encoding shows no correlation between pheno-
typic distance and fitness distance. For example, ESWH and ESWOH use the
specialized initialization operator, which is derived from Kruskal’s algorithm and
the operator prefers to shorter edges. So, the initial solution distributions of ESs
are scattered along x-axis and even though they find solutions with less fitness
distance, the phenotypic distance is still large. As a result, the figure shows that
if an algorithm guides toward a better fitness solution, it may fall into a local
optima, and preserving the diversity of solution can give a help to escape the
local optima.

4 Conclusions

We investigated the locality, heritability and diversity of encodings of evolution-
ary algorithms for spanning tree based problems and performed empirical tests
on the optimum communication spanning tree problem.

Generally, the Prüfer encoding has low locality so that it did not give good
performance in several literatures. We could also confirm low locality and low
heritability of the Prüfer encoding. And it is known that if an encoding has high
locality and high heritability, the evolutionary algorithm will give good perfor-
mance. But, in our experiment, we showed that if an encoding has extremely
high locality and heritability like ESs, it can lose the diversity of population.
So, some researchers used the diversity preservation strategy [9], [10] to avoid
this problem. However, it can be a good strategy. LNB and Netkey showed high
locality and high heritability because of the heuristic bias or the redundancy of
the encoding. But, these encodings also showed a feature of the diversity loss.
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On the other hand, EWD showed slightly low locality and high heritability and
the highest diversity in all test instances. And EWD showed a feature which it
is independent on the property of problem. That shows EWD can be applied
various spanning tree based problems and may give good performance.

As a result, EWD and ESs seem to be good encodings for the OCST, and
potentially other spanning tree based problems.
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