

Lecture Notes in Computer Science 3871
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

El-Ghazali Talbi Pierre Liardet
Pierre Collet Evelyne Lutton
Marc Schoenauer (Eds.)

Artificial Evolution

7th International Conference, Evolution Artificielle, EA 2005
Lille, France, October 26-28, 2005
Revised Selected Papers

13

Volume Editors

El-Ghazali Talbi
Université des Sciences et Technologies de Lille
Laboratoire d’Informatique Fondamentale de Lille (LIFL)
UMR CNRS 8022, Bâtiment M3, 59655 Villeneuve d’Ascq Cedex, France
E-mail: talbi@lifl.fr

Pierre Liardet
Université de Provence
Centre de Mathématiques et Informtique, Laboratoire LATP
UMR-CNRS 6632, 39 rue Frédéric Joliot-Curie, 13453 Marseille cedex 13, France
E-mail: liardet@cmi.univ-mrs.fr

Pierre Collet
Université du Littoral Côte d’Opale
Laboratoire d’Informatique du Littoral
BP 719, 62228 Calais cedex, France
E-mail: Pierre.Collet@univ-littoral.fr

Evelyne Lutton
INRIA Rocquencourt
Domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
E-mail: Evelyne.Lutton@inria.fr

Marc Schoenauer
Université Paris Sud
Equipe TAO, INRIA Futurs, LRI
Bâtiment 490, 91405 Orsay cedex, France
E-mail: Marc.Schoenauer@inria.fr

Library of Congress Control Number: 2006923564

CR Subject Classification (1998): F.1, F.2.2, I.2.6, I.5.1, G.1.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33589-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33589-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11740698 06/3142 5 4 3 2 1 0

Preface

This book is based on the best papers presented at the 7th Conference on Ar-
tificial Evolution, EA 2005, held in Lille (France). Previous EA meetings took
place in Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997),
Brest (1995), and Toulouse (1994).

There were 78 submitted papers, of which 27 were selected for presenta-
tion. They cover all aspects of artificial evolution: genetic programming, machine
learning, combinatorial optimization, co-evolution, self-assembling, artificial life
and bioinformatics.

In addition, the program included an invited talk by David Corne on “Evolu-
tionary Computation in Bioinformatics: How to Save Lives and Make Scientific
Breakthrough.”

Thanks to the Organizing Committee and the Steering Committee for their
hard work.

All the submissions were reviewed by at least three members of the Program
Committee. I am very grateful to the members for their conscientious work.

We take this opportunity to thank the different partners whose financial and
material support contributed to the success of the conference: Polytech’Lille,
Université des Sciences et Technologies de Lille, INRIA, AFIA, CNRS, Région
Nord-Pas-De-Calais, ROADEF, and EA association.

Finally, I wish to thank all the authors who submitted papers, and the au-
thors of accepted papers for sending their final versions on time.

January 2006 El-Ghazali Talbi

Organization

Steering Committee

El-Ghazali Talbi Université de Lille 1, France
Pierre Collet Université du Littoral, France
Cyril Fonlupt Université du Littoral, France
Evelyne Lutton INRIA Rocquencourt, France
Marc Schoenauer INRIA Futurs, France

Organizing Committee

El-Ghazali Talbi Université des Sciences et Technologies de Lille, France
Clarisse Dhaenens Université des Sciences et Technologies de Lille, France
Laetitia Jourdan Université des Sciences et Technologies de Lille, France
Nouredine Melab Université des Sciences et Technologies de Lille, France
Franck Seynhaeve Université des Sciences et Technologies de Lille, France

Referees

E. Alba
A. Auger
P. Bessière
C. Blum
J. Branke
B. Braunschweig
E.K. Burke
A. Caminada
E. Cantu-Paz
M. Capcarrère
U.K. Chakraborty
A. Channon
C.C. Coello
P. Collard
P. Collet
K. Deb
D. Delahaye
C. Dhaenens
M. Dorigo
N. Durand
M. Ebner
D. Fogel

C. Fonlupt
J. Gottlieb
M. Grana
S. Gustafson
N. Hansen
J-K. Hao
W. Hart
A. Jaszkiewicz
L. Jourdan
M. Keijzer
J. Knowles
N. Krasnogor
W. Langdon
Y. Landrin-Schweitzer
C. Lattaud
A. Leier
P. Liardet
E. Lutton
V. Masero
N. Melab
J.J. Merelo
Z. Michalewicz

N. Monmarché
M. Pelikan
P. Preux
G. Raidl
J-P. Rennard
C.C. Ribeiro
D. Robilliard
G. Rudolph
M. Schoenauer
M. Sebag
F. Seynhaeve
P. Siarry
T. Soule
T. Stuetzle
E.-G. Talbi
J. Timmis
S. Tsutsui
G. Venturini
S. Yang
E. Zitzler
A. Zomaya

VIII Organization

Sponsoring Institutions

Polytech’Lille (Ecole d’Ingénieurs)
USTL (Université des Sciences et Technologies de Lille) INRIA Futurs (Institut
National de Recherche en Informatique et Automatique)
AFIA (Association Française pour l’Intelligence Artificielle)
CNRS (Centre National de La Recherche Scientifique)
Région Nord Pas-de-Calais
ROADEF (Société française de recherche opérationnelle et d’aide à la décision)

Table of Contents

Genetic Programming

Santa Fe Trail Hazards
Denis Robilliard, Sébastien Mahler, Dominique Verhaghe,
Cyril Fonlupt . 1

Size Control with Maximum Homologous Crossover
Michael Defoin Platel, Manuel Clergue, Philippe Collard 13

Machine Learning

A New Classification-Rule Pruning Procedure for an Ant Colony
Algorithm

Allen Chan, Alex Freitas . 25

Swarm-Based Distributed Clustering in Peer-to-Peer Systems
Gianluigi Folino, Agostino Forestiero, Giandomenico Spezzano 37

Simultaneous Optimization of Weights and Structure of an RBF Neural
Network

Virginie Lefort, Carole Knibbe, Guillaume Beslon, Joël Favrel 49

An Exponential Representation in the API Algorithm for Hidden
Markov Models Training

Sébastien Aupetit, Nicolas Monmarché, Mohamed Slimane,
Pierre Liardet . 61

Applications

Memetic Algorithms for the MinLA Problem
Eduardo Rodriguez-Tello, Jin-Kao Hao, Jose Torres-Jimenez 73

Niching in Evolution Strategies and Its Application to Laser Pulse
Shaping

Ofer M. Shir, Christian Siedschlag, Thomas Bäck,
Marc J.J. Vrakking . 85

A Modified Genetic Algorithm for the Beam Angle Optimization
Problem in Intensity-Modulated Radiotherapy Planning

Yongjie Li, Dezhong Yao, Jiancheng Zheng, Jonathan Yao 97

X Table of Contents

Combinatorial Optimization

On a Property Analysis of Representations for Spanning Tree Problems
Sang-Moon Soak, David Corne, Byung-Ha Ahn . 107

A Cooperative Multilevel Tabu Search Algorithm for the Covering
Design Problem

Chaoying Dai, (Ben) Pak Ching Li, Michel Toulouse 119

Enhancements of NSGA II and Its Application to the Vehicle Routing
Problem with Route Balancing

Nicolas Jozefowiez, Frédéric Semet, El-Ghazali Talbi 131

The Importance of Scalability When Comparing Dynamic Weighted
Aggregation and Pareto Front Techniques

Grzegorz Drzadzewski, Mark Wineberg . 143

Co-evolution

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT
Mohamed El Bachir Menäı, Mohamed Batouche 155

Analysing Co-evolution Among Artificial 3D Creatures
Thomas Miconi, Alastair Channon . 167

Self-assembling

A Critical View of the Evolutionary Design of Self-assembling Systems
Natalio Krasnogor, Graciela Terrazas, David A. Pelta,
Gabriela Ochoa . 179

Algorithmic Self-assembly by Accretion and by Carving in MGS
Antoine Spicher, Olivier Michel, Jean-Louis Giavitto 189

Evolutionary Design of a DDPD Model of Ligation
Mark A. Bedau, Andrew Buchanan, Gianluca Gazzola,
Martin Hanczyc, Thomas Maeke, John McCaskill, Irene Poli,
Norman H. Packard . 201

Artificial Life and Bioinformatics

Population Structure and Artificial Evolution
Arthur M. Farley . 213

Table of Contents XI

Outlines of Artificial Life: A Brief History of Evolutionary Individual
Based Models

Stefan Bornhofen, Claude Lattaud . 226

An Enhanced Genetic Algorithm for Protein Structure Prediction
Using the 2D Hydrophobic-Polar Model

Heitor S. Lopes, Marcos P. Scapin . 238

Incorporating Knowledge of Secondary Structures in a L-System-Based
Encoding for Protein Folding

Gabriela Ochoa, Gabi Escuela, Natalio Krasnogor 247

Advances

The Electromagnetism Meta-heuristic Applied to the
Resource-Constrained Project Scheduling Problem

Dieter Debels, Mario Vanhoucke . 259

Applications of Racing Algorithms: An Industrial Perspective
Sven Becker, Jens Gottlieb, Thomas Stützle . 271

An Immunological Algorithm for Global Numerical Optimization
Vincenzo Cutello, Giuseppe Narzisi, Giuseppe Nicosia,
Mario Pavone . 284

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution
Strategies

Anne Auger, Mohammed Jebalia, Olivier Teytaud 296

Author Index . 309

Santa Fe Trail Hazards

Denis Robilliard, Sébastien Mahler, Dominique Verhaghe, and Cyril Fonlupt

Laboratoire d’Informatique du Littoral,
Université du Littoral-Côte d’Opale,
BP719, Calais Cedex 62228, France

Abstract. This paper focuses on methodological problems associated to
the famous Santa Fe Trail (SFT) problem, a very common benchmark for
evaluating Genetic Programming (GP) algorithms, introduced by Koza
in its first book on GP. We put in evidence the difficulty to ensure fair
comparisons especially with new genotype representations as found in
works on grammar-based automatic programming, such as Grammatical
Evolution, and Bayesian Automatic Programming. We extend a work by
Langdon et al. by measuring the effort to solve SFT by random search
with different time steps limits and a reduced but semantically equivalent
function set.

1 Introduction

The Santa Fe Trail (SFT) problem was inspired by Jefferson et al. Genesys–
Tracker system [1] and was first formally described and used as a Genetic Pro-
gramming (GP) benchmark by Koza in its seminal book [2] and also in [3]. This
problem can be briefly stated as finding a command program for a robotic ant
such that the ant retrieves a maximum number of food pellets forming a trail
with gaps and turns on a toroidal grid. This problem has become quite popular
as a benchmark in the GP field and is still repeatedly used, despite (or perhaps
because) it has been shown by Langdon and Poli that GP does not improve
much on pure random search [4, 5].

We focus on several recent works exploring two grammar-based automatic
programming paradigms, Grammatical Evolution (GE) and Bayesian Automatic
Programming (BAP). In recent papers introducing these techniques, their effi-
ciency against GP was measured on the SFT benchmark among other tests.
We show that the setup of these SFT experiments includes small changes in
the benchmark definition, having great consequences in solving the problem, up
to the point that comparisons with GP are called into question. However some
legitimate changes should be acknowledged when using the Santa Fe Trail bench-
mark with new automatic programming paradigm. We also compute the effort
to solve SFT with various time steps limits and a reduced function set.

The rest of the paper is organized as follows: after recalling the initial def-
inition of the SFT in Section 2, we briefly present GE, BAP and their imple-
mentations of the SFT in Section 3. In Section 4 we emphasize the differences
in experimental conditions introduced by these works, and how it relates to the
difficulty of the problem. Conclusion are drawn in Section 5.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D. Robilliard et al.

2 Santa Fe Trail and Genetic Programming

2.1 Presentation of the Problem

In this section we recall the basics of the SFT benchmark as it appeared in [2, 3].
It consists in generating a control program for a virtual ant robot to find the
maximum number of food pellets along an irregular trail on a toroidal grid.
The ant has only a limited perception of its environment. This is modeled by
a binary if-food-ahead conditional operator, that executes its first argument
only if the ant senses food on the neighboring cell in the direction it is facing,
or else executes its second argument. The ant can also move in its environment
by doing a 90 degrees rotation to the left or to the right, or by moving one grid
cell forward. Each move operation and each turn operation consumes one time
step. During the simulation of the ant foraging behavior, this control program is
iterated until a fixed number of time steps is exhausted. In a few words, the less
the number of time steps, the more “clever” the program should be to retrieve
the maximum amount of food.

To solve this problem with GP, Koza used his well-known Lisp-like parse tree
representation for programs, incorporating the set of functions:

– In [2]: { if-food-ahead, progn2, progn3 }
– In [3]: { if-food-ahead, progn }

where progn is the sequence operator that simply executes its arguments in
order, from left sibling to right sibling, and progn2, progn3 do the same with a
limitation of respectively 2 and 3 siblings.

The set of terminals, to implement the basic motion of the ant, was:

{ left, right, move }

Koza said he arbitrarily fixed to 400 the amount of available time steps.
Mutation was not used, fitness proportionate copy and crossover were used with
respective ratio of 10% and 90%. Initial solutions were limited to depth 4, and
crossover was also limited to produce at most depth 15 individuals. Different
population sizes were tried such as 500, 1000, 2000 and 4000, and these were
refined for 50 generations (not counting generation 0). We will call this setting
SFT. Notice that Langdon and Poli in [4] set the maximum time limit to 600
steps, assuming a possible mistype in the original Koza’s paper.

3 Two Context Free Grammars GP Variants

In this section we briefly present two variants of GP, Grammatical Evolution
and Bayesian Automatic Programming. A detailed description of these two tech-
niques is out of the scope of this paper, and we only sum-up their basic principles,
in order to introduce their genotype representation based on integer codons string
and their mapping process for translation of genotype codons string to phenotype
programs through derivation rules in a Backus Naur Form (BNF) grammar.

Santa Fe Trail Hazards 3

3.1 Grammatical Evolution Paradigm

One GP variant that has been tested many times on the SFT benchmark is
the Grammatical Evolution (GE) system from O’Neil and Ryan [6, 7]. Several
studies have been published dealing with this paradigm, notably [8, 9, 10], and
the SFT experiments with GP comparisons appear in [6, 11, 7, 12].

In GE, a genotype is a string of integers (called codons), and before an
individual can be evaluated it must be translated into a program. Codons are
parsed from left to right and each one is used to make a choice between available
derivation rules in a BNF grammar, beginning with the grammar start symbol.
The choice of the derivation for a given symbol is done by taking the integer
codon modulo the number of available rules (obviously, this introduces some
bias depending whether the codon range is divisible by the number of rules and
this has been addressed in [8]). The process is continued until every grammar
variable has been derived in terminal symbols. The resulting string of terminal
symbols is the phenotype program, and it is evaluated in the usual GP way. If
there are unused codons when derivation is complete, these are simply ignored,
and in case there are not enough codons, the translation process wraps over to
the beginning of the genotype. If the derivation is not complete after 10 wrapping
operations, then the individual is considered invalid and gets a very low fitness.

Table 1. An overview of the GE decoding scheme

(0)
(1) 101 101 mod 2 = 1

(1)

40 mod 2 = 0
50 mod 2 = 0
93 mod 1 = 0
91 mod 2 = 1
36 mod 3 = 0
1 mod 2 = 1
246 mod 3 = 0
17 mod 2 = 1
49 mod 3 = 1

4 D. Robilliard et al.

This wrapping mechanism can be avoided, notably with a refined strategy for
initializing the population as suggested in [12].

Table 1 gives the grammar used in [12] to implement the SFT, which will
be denoted SFT-GE. In this table, we also give an example derivation from
genotype to phenotype.

3.2 Bayesian Automatic Programming Paradigm

Bayesian Automatic Programming (BAP) has been recently introduced in [13],
where it is evaluated on a regression problem and on the Santa Fe Trail. BAP
proposes to tackle the task of automatic programming via the use of an Esti-
mation of Distribution Algorithm (EDA), namely a Bayesian network. Working
with integer codons strings, BNF grammars and derivation trees in the same way
as Grammatical Evolution (see details in section 3.1), BAP trains a Bayesian
network to learn the statistical correlations between codons in promising solu-
tions. A Conditional Probability Table (CPT) is built using the standard K2
algorithm from a fitness-biased selected subset of the population, and then this
CPT table is used to generate a new population of candidate solutions, this whole
generation process being iterated as in GP. Notice that this is not the first at-
tempt at using some sort of EDA for automatic programming, see also [14] for
example.

So BAP uses the same representation as GE and needs a grammar to im-
plement the SFT. This grammar is given in Table 2, and will be denoted
SFT-BAP. The BAP paper also refers to a GP function set for SFT, which is re-
ported as: {if-food-ahead, left, right, move} without detailing the sequence
operator.

Table 2. The SFT-BAP grammar used in the BAP versus GP experiment

4 Analysis and Discussion of SFT Variants

4.1 Representation Bias Versus Program Semantic

As seen above there is a small disagreement between the two 1992 Koza’s pub-
lications, whether one should use progn or rather progn2 and progn3. We
argue that this difference in representation does not bear on the ant control
possibilities:

Santa Fe Trail Hazards 5

– it could affect the chances to evolve successful solutions, as the space of
program trees explored is not the same: this is a representational bias;

– it does not affect the ant control, since any progn subtree can be exactly
translated using progn2 and progn3 operators and reciprocally, preserving
the semantic of the program. More formally, if we call respectively A and B
the search spaces associated to these two versions of the benchmark, we can
find a surjective mapping preserving program semantic both from A to B
and from B to A.

Thus we can say that these two versions of the Santa Fe trail have different
biases in searching two spaces of program trees with equivalent semantic.

4.2 Expressiveness of SFT-GE and SFT-BAP Grammars

A close observation of Table 1 shows that the expressiveness of the SFT-GE
grammar differs from what can be achieved by combining the terminal and func-
tion set from SFT. It is not possible to have a sequence of several instructions
embedded in an if-food-ahead statement like for example:

if-food-ahead { move right } else { right move move}

Thus there is no surjective mapping preserving semantic from the SFT-GE
to the SFT search spaces: if all SFT-GE programs have a translation in the SFT
framework, no all SFT programs have a translation in the SFT-GE grammar.

On the opposite, the SFT-BAP grammar allows sequences of instructions
everywhere an op instruction can appear, notably inside an if-food-ahead
statement. Any SFT program can be translated into an semantically equiva-
lent SFT-BAP derivation, and the converse is also true. We conclude that the
SFT-BAP and SFT search spaces are semantically equivalent, while the SFT-GE
grammar defines a related but different benchmark.

4.3 Assessing the Difficulty of SFT-GE Benchmark

Some clues about the importance of changes in the SFT-GE search space can be
obtained by comparing how GE solves the problem with the SFT-GE and SFT-
BAP grammars. This was done with the maximum allowed time steps limits
to retrieve the food ranging from 400 to 700 by increments of 50 time steps.
We used the cumulative success frequency (or cumulative probabiliy of success),
introduced in [2], computed on 100 runs with other parameters identical to [7].
The precison of this measure has been questionned notably by [15], but it will
be enough here to indicate the general trend. Results are displayed on Figure 1.

Notice that when using grammar SFT-GE no perfect solution to this problem
have been found up to and including 600 time steps in our experiments, and
almost all GE publications do indeed refer to a maximum allowed of 615 time
steps that differs from both Koza or Langdon’s settings (the GE limit is reported
as 600 time steps only in [7], a possible mistype).

To assess more precisely the difficulty of this new SFT-GE benchmark, we
tried to solve it by generating random strings of codons:

6 D. Robilliard et al.

400 450 500 550 600 650 700

0
20

40
60

80

Grammatical evolution:
 SFT−GE versus SFT−BAP grammars

Time steps limit

C
um

ul
at

iv
e

su
cc

es
s

fr
eq

ue
nc

y

SFT−GE grammar
SFT−BAP grammar

Fig. 1. Comparison of the GE system performance using 2 grammars SFT-GE and
SFT-BAP with several time steps limits to retrieve the food

– as we are not supposed to know in advance the size of a typical perfect
solution, we generate strings in a range of length from 3 to 102 codons;

– for every size in the interval, we generate 250 random solutions;
– we test if we obtain a perfect solution with, and without the GE wrapping

mechanism, using 615 time steps;

We also try a small variation of SFT-GE: in the second possible derivation of
the first rule, we swap the line and code variables. This first rule then becomes:
code ::= line | line code, and we call SFT-GEBIS this new grammar. This will
allow us to test the sensitivity of grammar-based systems.

Within these settings, we can compute a kind of cumulated success frequency
(CSF), as if we were doing a GP run of 100 pseudo-generations: a pseudo-
generation is a random draw of 250 individuals with a given solution size, and
the next pseudo-generation increases the size by 1 codon. If a perfect solution
is found, the run is stopped and a success is counted for that pseudo-generation
size. The whole run is repeated 100 times to obtain the usual CSF plot in Fig. 2.

There are two main observations on this plot:

– the problem is rather easy, since a random search can have a CSF of about
29% when using the same maximum number of evaluations as the GE ex-
periment;

– when wrapping is on, the small change between these two grammars imply
a noticeable change in the difficulty.

We compute the so-called effort defined in Koza [2]: let p be the probability of
finding a solution, the number of evaluations needed to ensure we find a solution,

Santa Fe Trail Hazards 7

Fig. 2. Randomly solving the benchmark defined by grammars SFT-GE and SFT-
GEBIS

Fig. 3. Effective length versus actual length for SFT-GE and SFT-GEBIS random
solutions

with probability at least 1− ε, is: Effort = − log(ε)/p. We have drawn 2, 500, 000
independent solutions with sizes from 3 to 102, and obtained 37 perfect solutions
with wrapping. This gives an effort of around 310, 000 for our random search to
solve SFT-GE with a 99% confidence.

A possible hint for the gap in performance between SFT-GE and SFT-GEBIS
with wrapping may be given by the difference in average effective length of
solutions (remember all codons are not always used). As it is shown in Figure 3,

8 D. Robilliard et al.

random SFT-GE solutions with wrapping have a slightly greater average length,
and this certainly allows to explore a more promising part of the search space.
The mapping process in combination with wrapping is also at the origin of
the quite astonishing “stair” effect that can be observed on Figure 3: the bias
introduced in the sampling of programs is rather complex and hard to foresee
using the grammar alone.

4.4 Semantic Equivalence Is Not Enough

Even when the competing heuristics work on semantically equivalent search
spaces, as is the case between SFT-BAP and SFT, a matter of concern raises
from the different probabilities of randomly sampling a given tree. This impinges
the run at least during the random initialization phase, between grammar-based
systems using the SFT-BAP grammar and standard GP “grow” or “ramped half
& half” mechanisms, but also during the evolution which is a stochastic pro-
cess:

– through random mutation;
– through crossover in GP and GE, since crossover points are chosen at ran-

dom; moreover in the GE scheme exchanged codons are often interpreted
differently in their new context, and it can also be seen as a kind of random
sampling;

– through the BAP generation phase, where the new population is drawn ran-
domly with the biases obtained from the Bayesian network;

Sampling biases are of course a well-known cause for different search perfor-
mances, and such discrepancies are certainly very hard to avoid in many cases,
but above all it can fairly be argued that these are indeed desirable, because
new paradigms are designed precisely to introduce new biases in the exploration
process. Then a refined definition of the SFT could state that:

“The search space of programs must be semantically equivalent to the
set of programs possible within the original SFT definition”.

This would be enough to discard the SFT-GE grammar and keep the SFT-
BAP one.

But then, if a new paradigm such as SFT-BAP is allowed to change the ex-
ploration bias, presumably to its best, one must also seek to give GP a good bias
if both are to be compared. As can be seen on Figures 4, 5 and 6, simply drop-
ping the progn3 statement from the function set gives a much more favourable
bias to random search and to GP, while the search space remains semantically
equivalent to the original SFT. From Figure 6, and from the plots and the ref-
erence to Koza appearing in [13], we can suppose that both progn2 and progn3
were used in their BAP versus GP experiment, in which case GP performance
was not measured at its best.

One can also notice that the ramped half and half random search effort
on Figure 4 incurs a sudden and dramatic drop when the time steps limit is

Santa Fe Trail Hazards 9

600 605 610 615 620

0
20

00
40

00
60

00
80

00
10

00
0

Effort to solve SFT with ramped−half&half random search

Time steps limit

 T
H

O
U

S
A

N
D

S
 o

f p
ro

gr
am

s

SFT {progn2,progn3}
SFT {progn2}

Fig. 4. Effort needed to solve with 99% confidence the SFT using Ramped Half and
Half random search, program depth in the range 2 to 6, time steps limits ranging from
600 to 620 and progn2 versus progn2 + progn3 operators

10 20 50 100 200

10
0

20
0

50
0

10
00

50
00

20
00

0

Effort to solve SFT with Uniform random search

fixed size of GP trees

nb
 o

f T
H

O
U

S
A

N
D

S
 o

f p
ro

gr
am

s

SFT {progn2} 600
SFT {progn2} 615
SFT {progn2,progn3} 600
SFT {progn2,progn3} 615

Fig. 5. Effort needed to solve with 99% confidence the SFT using uniform random
search, time steps limits 600 and 615, and progn2 versus progn2 + progn3 operators

pushed from 600 towards 615 steps. The 15, 000, 000 programs already reported
by Langdon et al. in [5] drops to around 2, 400, 000 with progn3, while it moves
from 6, 000, 000 to 620, 000 with progn2 alone. This seems to be a sensitive

10 D. Robilliard et al.

0 10 20 30 40 50

0
10

20
30

40
50

60
70

Genetic Programming:
 SFT with and without progn3 for several time steps limits

Generations

C
um

ul
at

iv
e

su
cc

es
s

fr
eq

ue
nc

y

SFT progn2 400 steps
SFT progn2 600 steps
SFT progn2 615 steps
SFT progn2+3 400 steps
SFT progn2+3 600 steps
SFT progn2+3 615 steps

Fig. 6. GP solves the SFT easier without progn3 for several time steps limits (other
parameters are taken from [5])

parameter in this range of values, even if there is no significant difference in the
way GP solves the problem as illustrated on Figure 6.

5 Conclusion

This paper shows how references to an a priori standard benchmark, the Santa
Fe Trail, can indeed cover different settings associated to various difficulty levels,
up to the point where comparing results is impossible. Let us say that this
problem is more likely to be encountered when the new paradigm to be tested
does not allow a straight re-use of fundamental concepts such as genotype and
phenotype representations, as it was the case in grammar-based systems due to
the translation phase via the derivation rules.

In the meantime, new paradigms also question whether some previously de-
fined parts of a benchmark should be considered as open to legitimate changes,
somehow contributing to define the search space associated to the problem. We
think it is the case when tackling the SFT: from a problem-oriented point of
view, it is enough to preserve the semantic of programs, whatever the biases
introduced by the representation. In turn, when comparing search methods with
different biases, it is of course necessary to push all competing heuristics to their
best and this may imply at least to drop the progn3 statement from the GP
function set.

Re-visiting some recent works, we have shown that the SFT-GE grammar
define a search space that is different from the SFT one, contrary to the SFT-
BAP grammar which is a fair equivalent as far as the semantic of programs

Santa Fe Trail Hazards 11

is concerned. We have pointed at the sensitivity of the grammar choice when
wrapping is allowed for GE. The work from Langdon et al. has also been extended
by computing the effort with the sequence operator progn2 alone, and showing a
sudden drop in the effort needed to solve SFT with ramped half and half random
search when the time limit moves from 600 to 615 steps.

References

[1] David Jefferson, Robert Collins, Claus Cooper, Michael Dyer, Margot Flowers,
Richerd Korf, Charles Taylor, and Alan Wang. Evolution as a theme in artificial
life: The genesys/tracker system. In Langton, Taylor, Farmer, and Rasmussen,
editors, Proceedings of Artificial Life 2, volume 10 of Proceedings volume in the
Santa Fe Institute studies in the sciences of complexity, pages 549–578. Addison
Wesley, 1992.

[2] John Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, 1992.

[3] John Koza. Genetic evolution and co-evolution of computer programs. In Lang-
ton, Taylor, Farmer, and Rasmussen, editors, Proceedings of Artificial Life 2, vol-
ume 10 of Proceedings volume in the Santa Fe Institute studies in the sciences of
complexity, pages 603–629. Addison Wesley, 1992.

[4] W. B. Langdon. Better trained ants. In Riccardo Poli, W. B. Langdon, Marc
Schoenauer, Terry Fogarty, and Wolfgang Banzhaf, editors, Late Breaking Papers
at EuroGP’98: the First European Workshop on Genetic Programming, pages 11–
13, Paris, France, 14-15 April 1998. CSRP-98-10, The University of Birmingham,
UK.

[5] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[6] Michael O’Neill and Conor Ryan. Evolving multi-line compilable C programs.
In Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fogarty,
editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS,
pages 83–92, Goteborg, Sweden, 26-27 May 1999. Springer-Verlag.

[7] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5(4):349–358, 2001.

[8] Maarten Keijzer, Michael O’Neill, Conor Ryan, and Mike Cattolico. Grammatical
evolution rules: The mod and the bucket rule. In James A. Foster, Evelyne Lut-
ton, Julian Miller, Conor Ryan, and Andrea G. B. Tettamanzi, editors, Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002, volume
2278 of LNCS, pages 123–130, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

[9] Conor Ryan, Miguel Nicolau, and Michael O’Neill. Genetic algorithms using
grammatical evolution. In James A. Foster, Evelyne Lutton, Julian Miller, Conor
Ryan, and Andrea G. B. Tettamanzi, editors, Genetic Programming, Proceedings
of the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 278–
287, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

[10] Michael O’Neill and Conor Ryan. Grammatical evolution by grammatical evolu-
tion: The evolution of grammar and genetic code. In Maarten Keijzer, Una-May
O’Reilly, Simon M. Lucas, Ernesto Costa, and Terence Soule, editors, Genetic
Programming 7th European Conference, EuroGP 2004, Proceedings, volume 3003
of LNCS, pages 138–149, Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

12 D. Robilliard et al.

[11] Michael O’Neill and Conor Ryan. Automatic generation of high level functions us-
ing evolutionary algorithms. In Conor Ryan and Jim Buckley, editors, Proceedings
of the 1st International Workshop on Soft Computing Applied to Software Eni-
neering, pages 21–29, University of Limerick, Ireland, 12-14 April 1999. Limerick
University Press.

[12] Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Auto-
matic Programming in a Arbitrary Language, volume 4 of Genetic programming.
Kluwer Academic Publishers, 2003.

[13] Evandro Nunes Regolin and Aurora Trinidad Ramirez Pozo. Bayesian automatic
programming. In Collet and Tomassini, editors, Proceedings of EuroGP’05, volume
3000 of LNCS, pages 39–48, Lausanne, 2005. Springer.

[14] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolu-
tion. Evolutionary Computation, 5(2):123–141, 1997.

[15] Sean Luke and Liviu Panait. Is the perfect the enemy of the good? In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Ge-
netic and Evolutionary Computation Conference, pages 820–828, New York, 9-13
July 2002. Morgan Kaufmann Publishers.

Size Control with Maximum Homologous
Crossover

Michael Defoin Platel, Manuel Clergue, and Philippe Collard

Laboratoire I3S, CNRS-Université de Nice Sophia Antipolis

Abstract. Most of the Evolutionary Algorithms handling variable-sized
structures, like Genetic Programming, tend to produce too long solutions
and the recombination operator used is often considered to be partly re-
sponsible of this phenomenon, called bloat. The Maximum Homologous
Crossover (MHC) preserves similar structures from parents by aligning
them according to their homology. This operator has already demon-
strated interesting abilities in bloat reduction but also some weaknesses
in the exploration of the size of programs during evolution. In this paper,
we show that MHC do not induce any specific biases in the distribution
of sizes, allowing size control during evolution. Two different methods
for size control based on MHC are presented and tested on a symbolic
regression problem. Results show that an accurate control of the size is
possible while improving performances of MHC.

1 Introduction

One of the major research areas in Genetic Programming (GP) is the manage-
ment of the size of programs. Indeed, the “natural” trend of GP systems is to
quickly increase the size of individuals until they reach the maximum allowed
size, a phenomenon commonly known as bloat.

1.1 Bloat

This uncontrolled growth of programs is one of the weaknesses of GP as a
problem-solver: resources needed by the system to address a problem are not
adapted to the difficulty, the system consumes all the resources provided, lead-
ing generally to a waste of computing time and memory. Moreover, this behav-
ior may dramatically influence the efficiency of the system in terms of solution
quality and it works against the assumption [14] that between two equally fit
programs, we should retain the smaller, which is often more robust and more
evolvable.

Many authors have proposed explanations for bloat. To name a few, Al-
tenberg [1] notes that bloat arises during evolution as the population attempts
to protect useful subtrees from the crossover effects. This is the protection hy-
pothesis. On the other hand, in [8], Langdon and Poli argue that fitness causes
bloat. The idea is that the search starts from short genotypes with a given fit-
ness. Then after a while, since the chance of finding better solutions is low, the

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 M. Defoin Platel, M. Clergue, and P. Collard

process becomes neutral and only equally fit solutions can be retained. But the
search space contains many more long genotypes than short ones with the same
fitness. This is the drift hypothesis. We note that recent work on Exact Schemata
Theorems [14] tends to confirm this hypothesis, while giving a theoretical expla-
nation for bloat. In [16], authors give another explanation for bloat by pointing
out the asymmetric effects on the fitness of subtrees deletions and insertions.
Indeed, they show that when a subtree is removed, the effects on the fitness
depend on its size (strong effects for large subtrees) but not in case of a subtree
insertion. This is the removal bias hypothesis. Another important aspect of the
bloat problem is the presence in programs of inviable code, called the introns.
Most of bloat theories suggest that the phenomenon is due to the propagation of
introns. However, some interesting work [9][10] tends to contradict the introns
hypothesis.

Various methods have been investigated to solve the size problem. Maybe the
widespread idea to control the size, is tomodify thefitness ofprogramsand so the se-
lectionprocess. For examples,we canquote : the variable fitness [17], the parsimony
pressure [16], the multi-objective evaluation [5] and the Tarpeian method [12]. An-
other way to tackle the size control problem is based on specific genetic operators,
in particular more homologous crossover operators, [13] and [4].

1.2 Maximum Homologous Crossover

The Maximum Homologous Crossover (MHC) [7] is a recombination mechanism
mimicking natural crossover that maximally preserves homology between par-
ents. The MHC ensures that the genetic material exchanged during crossover is
chosen, according to an edit distance1 , in the most dissimilar regions of parents,
and so leaves unchanged their nearly identical parts, ie the homologous regions.
Thus, offspring can not be very different from their parents.

MHC was originally designed for Linear GP (LGP), where programs are se-
quences of instructions of an imperative language (C, machine code, . . .). Our
study is based on a stack-based GP implementation [11] and [3], where a se-
quence of instruction is evaluated using an operand stack. Figure 1 gives an
example of MHC recombination between two programs Px and Py in stack-
based representation. We see that during Step 1, an alignment (P x, P y) of the
two parents is computed, see [7] for details, to identify homologous regions. We
note that aligned programs may contain some gaps (ε) and that they always
have the same size. Thus, a crossover site can be chosen in (P x, P y), here at
position 5, and the classical 1-point crossover used in GA can be used, see Step
2. Finally, in Step 3, the inserted gaps are removed, producing offspring P ′

x and
P ′

y. In a previous study [6], authors have shown, on the Even-N Parity Problem,
that MHC is a less destructive operator than the Standard Crossover (SC) used
in LGP2. Moreover the performances of the two crossover operators were very
1 The edit distance corresponds to the minimal number of elementary operations (dele-

tion, insertion or substitution) required to change one program into the other.
2 In LGP, the SC operator randomly exchanges prefixes (or suffixes) between linear

sequences.

Size Control with Maximum Homologous Crossover 15

Px Py

DIV X
SUB COS
ADD DIV

X ADD
0.56 -1
MUL SUB

X
-0.10
MUL
SIN

1
=⇒

(Px, P y)
ε X
ε COS

DIV DIV
ε ADD
ε -1

SUB SUB
ADD ε

X X
0.56 -0.10
MUL MUL
ε SIN

2
=⇒

Xo(P x, P y)
ε X
ε COS

DIV DIV
ε ADD
-1 ε

SUB SUB
ε ADD
X X

-0.10 0.56
MUL MUL
SIN ε

3
=⇒

P ′
x P ′

y

DIV X
-1 COS

SUB DIV
X ADD

-0.10 SUB
MUL ADD
SIN X

0.56
MUL

Fig. 1. MHC of programs Px and Py in stack-based representation : Step 1, alignment
and Xover site selection (here 5); Step 2, swapping sequences ; Step 3, deletion of gaps

similar but MHC has demonstrated a significant tendency in bloat reduction.
The fact that using less desctructive operators allows a kind of reduction in
bloating behaviours tends to confirm the protection hypothesis. However, an un-
expected consequence of this size growth limitation was the need to accurately
tune initial sizes in the population. The hypothesis was that MHC is unable to
properly manage the size of individuals. In this context, the size may be viewed
as a new dimension of the search space that needs some specific operators to
be explored. Some experiments, on a flat landscape and on the Even-N Parity
Problem, have demonstrated the possibility of controlling the size of programs
using MHC.

In this paper, we investigate further, with two methods based on MHC, how
to control the size of program during evolution but also how to improve the
performances of MHC, as a fully functional recombination mechanism.

2 Size Control with MHC

In [14][15], authors have shown the biases introduced by SC in the exploration
of the size of programs. They concluded that, without selective pressure, the
distribution of the size converges toward a gamma distribution, ie SC does not
modify the average length of individuals but leads to an oversampling of shorter
programs of the search space and also to the creation of very long programs
compared to the average size. To compare the effects of SC and MHC on size
distribution, we have performed, for both crossover operators and without mu-
tatin, 200 experiments on a flat landscape with a population of 1000 individuals
during 1000 generations. The initial size of programs was randomly chosen be-
tween 1 and 50 instructions and the instruction set was defined with 10 different
symbols.

We can see, in Figures 2 and 3, the expected gamma distribution obtained
with SC, while with MHC, the distribution seems to converge much more slowly
toward a gamma distribution. More precisely, at the last generation, when SC

16 M. Defoin Platel, M. Clergue, and P. Collard

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 2. Distribution of programs size us-
ing SC and without selective pressure

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 3. Distribution of programs size us-
ing MHC and without selective pressure

is used, the most numerous programs, around 7% of the population, have only
2 instructions, while for MHC, they represent 4% of the population and have 23
instructions. So MHC is less biased than SC what explains its ability to reduce
bloat and at the same time its difficulty to explore efficiently the size dimension.

We have already mentioned that two main strategies have been investigated
to fight the bloat phenomenon. With the first one, the idea is to work on fitness
to modify the search space in order to eliminate too long programs. For exam-
ple, with the Tarpeian Method (TM) (see [12] for pseudo-code), some “holes”
are dynamically introduced in the fitness landscapes by assigning, with a given
probability, a very low fitness to programs whose size is higher than average in
the population. With the second strategy, the approach consist in designing unbi-
ased operators that prevent the creation of too long programs. For example, the
size-fair operators (cf. [4]) ensure that the amount of genetic material exchanged
during recombination is comparable between parents and so they modify little
the size of programs. In this case, the goal is to control the distribution of size
of programs that undergo the selection process. We focus on two different ways
to control the distribution of size with MHC.

Firstly, we propose to use the mutation operator to modify the average size of
programs during evolution. In our stack-based system, mutation consists either
of an insertion, a deletion or a substitution of one instruction, each operator
having its own application rate. We define an operator MHC+INSr to be MHC
combined with an insertion rate of r higher than deletion and substitution rates.
This unbalanced setting of the mutation rates must enable the system to increase
the average size of programs and so to increase the chances of visiting areas
of high performances. We note that, in [2], a similar setting was used in the
context of LGP with homologous recombination to improve performances. We
have plotted, in Figure 4, the size distribution obtained with MHC+INS1.0, ie
insertion rate equal to 1.0 and deletion and substitution rates fixed to 0.0. We
see that MHC+INSr allows a translation of the size distribution reported when
using MHC alone.

Size Control with Maximum Homologous Crossover 17

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 4. Distribution of programs size us-
ing MHC+INS1.0 and without selective
pressure

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

%

Size

Generation 0
1

100
1000

Fig. 5. Distribution of programs size us-
ing MHC+SC0.2 and without selective
pressure

Secondly, we propose to use SC to modify the average size of programs during
evolution. An operator MHC+SCp is defined where MHC is used to perform
recombination but with p being the probability that SC will be used instead.
Thus, MHC+SC0.5 corresponds to an equally use of both MHC and SC. We
note that in [4], authors have already speculated that judicious mixing of size-
fair and standard operators could be the best way to encourage robust problem
solving performances. We have plotted, in Figure 5, the size distribution obtained
with MHC+SC0.2. We see that MHC+SCp allows a transformation of the size
distribution reported when using MHC alone.

3 Experimental Results

3.1 Problem and Parameters Settings

In this section, we aim to verify the ability to control the size of programs on a
Symbolic Regression Problem. We choose the Poly-10 problem [12], where the
target function is the 10-variate cubic polynomial x1x2 +x3x4 +x5x6 +x1x7x9 +
x3x6x10, because it was introduced as a benchmark for the study of the TM.
In this study, the fitness is the classical Root Mean-Square Error. The dataset
contains 50 test points and is generated by randomly assigning values to the
variables xi in the range [−1, 1].

We want to compare the performance between the operators SC with TM,
MHC and the two alternatives MHC+INS and MHC+SC. For the TM, we call
n the parameter giving the probability that programs whose size is higher than
average will receive a very bad fitness. We test different value for n varying from
0.05 to 0.9. The GP system has very distinct behavior according to the operator
used, this is why to perform a fair comparison, the evolutionary parameters
tuning must be extensively investigated. For each operator and for each tuning
of the size control parameters (n, p and r), we perform 50 independent runs with

18 M. Defoin Platel, M. Clergue, and P. Collard

various mutation and crossover rates. Let us notice that a mutation rate of 1.0
means that each program involved in reproduction will undergo, on average, one
insertion, one deletion and one substitution.

Populations of 500 individuals are randomly created according to a maximum
creation size of 50. The instruction set contains: the four arithmetic instructions
ADD, SUB, MUL, DIV, the ten variables X1. . . X10 and one stack-based GP
specific instruction DUP which duplicates the top of the operand stack. The
evolution, with elitism, maximum program size of 500, 16-tournament selection,
and steady-state replacement, takes place over 100 generations3. We use a sta-
tistical unpaired, two-tailed t-test with 95% confidence to determine if results
are significantly different.

3.2 Best Results

In what follows, SC stands for SC without TM (n=0), MHC+INS stands for
MHC+INS2.0 and MHC+SC stands for MHC+SC0.1. In Table 1, the best re-
sults, in terms of average fitness of the best program found, among all the pa-
rameters settings tested, are reported (crossover rate varying from 0 to 1.0 and
mutation rate from 0 to 2.0). As expected, using MHC, the system has found less

Table 1. Best Results

Xover Type Fitness Size Effective Size
SC 0.13(σ=0.03) 457.42(σ=79.07) 457.14(σ=79.25)

MHC 0.25(σ=0.05) 92.28(σ=31.39) 91.74(σ=31.45)

MHC+INS 0.14(σ=0.03) 247.18(σ=90.36) 245.00(σ=90.75)

MHC+SC 0.11(σ=0.02) 419.12(σ=96.90) 418.80(σ=96.82)

fit but smaller programs than using other operators. This is unsurprising since
the optimization of the “maximum initial size” parameter, needed by MHC (see
Section 1.2), has not been performed. Statistical analysis of the results of SC,
MHC+INS and MHC+SC shows that their average fitness does not differ sig-
nificantly. Conversely, the average size of the best solution found varies greatly.
The operator MHC+INS seems to give a good trade-off between fitness and size
since, in this case, the average size is almost 2 times smaller than with SC. We
note that an increase of the n parameter has always led to fitness degradation
for the SC operator.

3.3 Application Rates

In what follows, SC stands for SC without TM (n=0), MHC+INS stands for
MHC+INS2.0 and MHC+SC stands for MHC+SC0.1. We have gone to great
3 In a steady state system, the generation concept is somewhat artificial and is used

only for comparison with generational systems. Here, a generation corresponds to a
number of replacement equal to the number of individual in the population, ie 500.

Size Control with Maximum Homologous Crossover 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

Mutation Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 6. Average fitness of best as a func-
tion of the mutation rate on Poly-10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

Xover Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 7. Average fitness of best as a func-
tion of the crossover rate on Poly-10

effort to determine the appropriate setting for each operator studied. Figure 6
depicts the average fitness of the best program found as a function of the mu-
tation rate for the best crossover rate found. In other words, each point of the
plot corresponds, for a given mutation rate, to the best result found among all
crossover rates. All operators demonstrate a similar behavior according to the
mutation rate, except for MHC+INS, which has obtained better performances
without mutation. However, we know that it performs, by construction, at least
2.0 insertions on average per individual. The use of the mutation operator is
critical but with low rates (the optimal is less than 0.4). Let us recall that a
rate of 0.4 corresponds to, on average, 0.4 mutations of each type (insertion,
deletion and substitution) per individual, so to a little more than one change
per individual.

In Figure 7, we have plotted the best results found according to the crossover
rate for a mutation rate set to 0.2. We see that SC obtains its best result with
a small crossover rate but that its performances tend to worsen when too many
recombinations are performed. On the other hand, the performances of MHC,

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

S
iz

e

Xover Rate

SC
MHC

MHC+INS
MHC+SC

Fig. 8. Average size of best as a func-
tion of the crossover rate on Poly-10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e

Generation

SC
MHC

Fig. 9. Evolution of the average size of
best on Poly-10

20 M. Defoin Platel, M. Clergue, and P. Collard

MHC+INS and MHC+SC operators do not vary so much according to the
crossover rate, but with a small tendency to increase for high rates. Figure 8 rep-
resents the average size of the best program found as a function of the crossover
rate for a mutation rate of 0.2. We see that the size of the programs found using
SC, MHC and MHC+INS does not depend on the crossover rate. More precisely,
for SC, the size is limited by the “maximum allowed size” parameter, here 500 in-
structions. Whereas for MHC, the “maximum creation size”, here 50 instructions,
is the major parameter influencing size (see also Figure 9). Finally for MHC+INS,
we see that the insertion of instructions, here 2.0 on average, in each individual
of the population leads to an increase of more than 100 instructions compared to
MHC. It is obvious that in the case of MHC+INS, when no recombination is per-
formed, size control does not work (around 400 instructions) since there is nothing
to compensate the unbalanced mutation setting. Conversely, the MHC+SC oper-
ator finds programs of different sizes according to the crossover rate. This means
that the size of programs does not depend only on the proportion of MHC and SC
(the parameter p) but rather on the number of SC recombinations performed per
generation, which increases with the crossover rate.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

S
iz

e

Fitness

SC
TM n=0.2
TM n=0.5
TM n=0.7
TM n=0.9

MHC
MHC+INS
MHC+SC

Fig. 10. Fitness vs Size Trade-off on Poly-10. Lines connecting points correspond to
Pareto frontiers.

Size Control with Maximum Homologous Crossover 21

3.4 Fitness vs Size Trade-Off

In order to visualize the fitness vs size trade-off, we have plotted, in Figure 10 a
scatter plot of the average fitness and the average size of the best solutions found.
Each point corresponds to one of the setting of the parameters (of both mutation
and crossover rates) tested in this study. Lines connecting points depict the
Pareto frontiers. We can see that the trade-off between size and fitness differs for
the four operators. We see that when SC with n=0 or MHC are used, variations
in the size dimension are very small. On the other hand, frontiers for SC with TM
and for both alternatives of MHC cover larger ranges in the fitness vs size space.
However, excepted for SC with n=0.9 that gives the shorter programs, the size
control methods using MHC report better trade-off than SC with TM. Let us
recall that results presented here do not correspond to a multi-objective approach
since our goal was not to minimize, in words of Pareto optimality, both size and
fitness criteria. We next investigate further the influence of the parameters r and
p on fitness and size for both MHC+INSr and MHC+SCp operators. We have
performed some specific experiments with a mutation rate of 0.2 and a crossover
of 0.80. Figures 11 and 12 show the variations of, respectively, the average fitness
and size of the best program found as a function of r for MHC+INSr. We see that
the insertion of instructions, controlled by r, always leads to an improvement in
fitness but that for r greater than 2.0, no gains can be obtained. The average
size is strongly correlated to the parameter r and all the allowed sizes in the
search space can be reached. Compared to the performances of MHC, using
MHC+INS2.0, we obtain programs around two times more fitter but also two
times bigger (see Table 1 above).

Figures 13 and 14 show the variations of, respectively, the average fitness
and size of the best program found as a function of p for MHC+SCp. We see
an improvement of the fitness, compared to MHC and SC, for all the values
of p. This means that the combination of both MHC and SC performed better

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

r

MHC+INS r
MHC

Fig. 11. Average fitness of best as
a function of r on Poly-10 with
MHC+INSr

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 S

iz
e
 o

f
B

e
s
t

r

MHC+INS r

Fig. 12. Average size of best as a func-
tion of r on Poly-10 with MHC+INSr

22 M. Defoin Platel, M. Clergue, and P. Collard

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 0.20 0.40 0.60 0.80 1.00

A
v
e
ra

g
e
 F

it
n
e
s
s
 o

f
B

e
s
t

p

MHC+SC p
SC

MHC

Fig. 13. Average fitness of best as
a function of p on Poly-10 with
MHC+SCp

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.20 0.40 0.60 0.80 1.00

A
v
e
ra

g
e
 S

iz
e
 o

f
B

e
s
t

p

MHC+SC p

Fig. 14. Average size of best as a func-
tion of p on Poly-10 with MHC+SCp

than when MHC and SC are used separately. However the size of the programs
increases quickly with parameter p and seems to reach the maximum size when
p is greater than 0.5. Moreover, we note a minimum of the fitness curve, when
p is equal to 0.2. This implies that the p parameter must be carefully fixed. In
the size control context, we can define, for the Poly-10 problem, a “region of
interest” of the MHC+SCp operator for p in the range [0,0.2].

4 Conclusion and Perspectives

Contrary to SC, MHC do not induce any specific biases in the distribution of
sizes and so an accurate control of the distribution during evolution is possible
and have to be investigated.

In this paper, two methods for controlling the distribution with MHC are
introduced and tested. The first one, called MHC+INSr, where MHC works in
conjunction with the mutation operator, directly modifies the number of genes in
the population, ie the total amount of available instructions. In the second one,
called MHC+SCp, the MHC works in conjunction with SC to allow the creation
of much bigger programs than the average size in the population. As expected,
we note a significant increase in the average size and in the average fitness of the
solution found. This reinforces our first assumption: to be efficient with MHC,
the size of programs has to be explored as a new dimension of the search space.
Nevertheless, the two methods presented here are static and so require a specific
tuning that may depend on the problem addressed. Hopefully, the first steps in
the study of size control methods, and more generally of MHC behavior, allow
us to believe that dynamic control of the size is possible, according to some
exogenous or endogenous properties.

MHC understanding, thanks to experimental results, is improved. For various
benchmarks, the performance of this operator is equivalent but with an accurate
management of the size. Future work should consist in a study of much more
complex problems and then to real-world applications where an uncontrolled

Size Control with Maximum Homologous Crossover 23

growth of the size of programs is a strong limitation for GP. For this purpose,
the use and design of new dynamic methods for size control with MHC, tak-
ing into account some exogenous or endogenous additional informations, will
undoubtedly be required.

References

[1] L. Altenberg. The evolution of evolvability in genetic programming. In Advances
in Genetic Programming. MIT Press, 1994.

[2] M. Brameier and W. Bhanzhaf. Explicit control of diversity and effective variation
distance in linear genetic programming. In Genetic Programming, Proceedings of
the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 37–49,
Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

[3] W. S. Bruce. The lawnmower problem revisited: Stack-based genetic programming
and automatically defined functions. In Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 52–57, Stanford University, CA, USA,
13-16 1997. Morgan Kaufmann.

[4] R. Crawford-Marks and L. Spector. Size control via size fair genetic operators in
the PushGP genetic programming system. In GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 733–739, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[5] E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promoting
diversity using multi-objective methods. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pages 11–18, San Francisco,
2001. Morgan Kaufmann.

[6] M. Defoin Platel, M. Clergue, and P. Collard. Homolgy gives size control in genetic
porgramming. In Proceedings of the 2003 Congress on Evolutionary Computation
CEC2003, pages 281–288. IEEE Press, 2003.

[7] M. Defoin Platel, M. Clergue, and P. Collard. Maximum homologous crossover
for linear genetic programming. In Genetic Programming, Proceedings of Eu-
roGP’2003, volume 2610 of LNCS, pages 194–203, Essex, 14-16 April 2003.
Springer-Verlag.

[8] W. B. Langdon and R. Poli. Fitness causes bloat. In Second On-line World
Conference on Soft Computing in Engineering Design and Manufacturing, pages
13–22. Springer-Verlag London, 23-27 1997.

[9] S. Luke. Code growth is not caused by introns. In Late Breaking Papers at
the 2000 Genetic and Evolutionary Computation Conference, pages 228–235, Las
Vegas, Nevada, USA, 8 2000.

[10] S. Luke. Modification point depth and genome growth in genetic programming.
Evol. Comput., 11(1):67–106, 2003.

[11] T. Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages 148–153, Or-
lando, Florida, USA, 27-29 1994. IEEE Press.

[12] R. Poli. A simple but theoretically-motivated method to control bloat in genetic
programming. In Genetic Programming, Proceedings of EuroGP’2003, volume
2610 of LNCS, pages 204–214, Essex, 14-16 April 2003. Springer-Verlag.

[13] R. Poli and W. B. Langdon. Genetic programming with one-point crossover.
In Soft Computing in Engineering Design and Manufacturing, pages 180–189.
Springer-Verlag London, 23-27 June 1997.

24 M. Defoin Platel, M. Clergue, and P. Collard

[14] R. Poli and N. F. McPhee. Exact schema theorems for GP with one-point and
standard crossover operating on linear structures and their application to the
study of the evolution of size. In Genetic Programming, Proceedings of Eu-
roGP’2001, volume 2038, pages 126–142. Springer-Verlag, 18-20 2001.

[15] J. E. Rowe and N. F. McPhee. The effects of crossover and mutation operators
on variable length linear structures. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), pages 535–542, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

[16] T. Soule and J.A. Foster. An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines, 3(1):283–309, 2002.

[17] R.E. Keller W. Banzhaf, P. Nordin and F.D. Francone. Genetic Programming -
An Introduction. Morgan Kaufmann, 1998.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 25 – 36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Classification-Rule Pruning Procedure for an Ant
Colony Algorithm

Allen Chan and Alex Freitas

Computing Laboratory, University of Kent,
Canterbury, CT2 7NF, UK

{ac207, A.A.Freitas}@kent.ac.uk

Abstract. This work proposes a new rule pruning procedure for Ant-Miner, an
Ant Colony algorithm that discovers classification rules in the context of data
mining. The performance of Ant-Miner with the new pruning procedure is
evaluated and compared with the performance of the original Ant-Miner across
several datasets. The results show that the new pruning procedure has a mixed
effect on the performance of Ant-Miner. On one hand, overall it tends to
decrease the classification accuracy more often than it improves it. On the other
hand, the new pruning procedure in general leads to the discovery of
classification rules that are considerably shorter, and so simpler (more easily
interpretable by the users) than the rules discovered by the original Ant-Miner.

1 Introduction

Ant-Miner [3] is an Ant Colony algorithm that discovers classification rules in the
context of data mining. The basic goal of data mining is to extract, from data,
knowledge that is not only accurate but also comprehensible to the user [9], [5].
Knowledge comprehensibility is important because in many applications of data
mining the user should validate and interpret discovered knowledge, rather than
blindly trust the result provided by an algorithm. A typical example of an application
where rule comprehensibility is crucial is medical diagnosis, where rules suggesting a
diagnosis for a patient must be interpreted and validated by a medical doctor.

Ant-Miner has been shown to be competitive with a well-known classification
algorithm in [3], in experiments across several datasets. However, those experiments
did not involve datasets with a large number of attributes, where the rule pruning
procedure of Ant-Miner tends to be very time consuming. In order to improve Ant-
Miner’s scalability to data sets with a larger number of attributes, this paper proposes
a faster rule pruning procedure for Ant-Miner. The proposed procedure is essentially a
hybrid pruning procedure. It combines Ant-Miner’s original pruner with a faster
pruning based on the information gain of individual attributes. (See [5] for a review of
information gain in general.) The basic idea is that, if the candidate rule to be pruned
is a long one, instead of applying Ant-Miner’s original pruner the algorithm first
applies the faster information gain-based pruner, as a first step to reduce the rule
length. In terms of computational cost, this first step “comes for free”, since the
required value of the information gain is already computed by another procedure of
Ant-Miner. Once the rule has been so reduced, Ant-Miner’s original pruner – slower
but more effective – can be applied to the rule, further reducing its length.

26 A. Chan and A. Freitas

The proposed hybrid rule pruner is evaluated across several datasets, most of them
with more than 100 attributes. The results are evaluated with respect to the
classification accuracy and the comprehensibility of the discovered rules.

The remainder of this paper is organized as follows. Section 2 reviews the Ant-
Miner algorithm. Section 3 describes the proposed hybrid rule pruner. Section 4
reports the results of computational experiments, and section 5 concludes the paper.

2 The Original Ant-Miner Classification Algorithm

A single ant within a colony is normally seen as a highly unintelligent individual, but
collectively, as a colony, ants exhibit what is known as swarm intelligence. While
ants forage for a food source they deposit on their paths a certain amount of
pheromone, a chemical substance to which other ants are attracted. It turns out that
over time shorter routes between two points (such as the colony’s nest and some food
source) will have more pheromone than longer routes, because in a fixed period of
time there will be more ants completing a shorter path than a longer path. When
selecting between multiple paths, ants will in general be attracted to those paths with
the highest concentration of pheromone. As a result, the ants will in general prefer to
follow the shortest route within a network of paths, which will further increase the
concentration of pheromones in the shortest path, attracting more ants to that path.
Therefore, over time ants will converge and follow the shortest route within a network
of paths. This has been shown by experiments performed by Deneubourg et al. [2].

Dorigo et al, inspired by this interesting behaviour of ant colonies, first developed
Ant Colony Optimization (ACO) to solve difficult combinatorial optimization
problems like the classic travelling salesman problem [1], [8]. This idea was then
taken from solving optimization problems and applied in the field of data mining for
discovering classification rules. The Ant-Miner algorithm, developed by Parpinelli et
al. [3], is an adaptation of the ACO paradigm especially for the classification task of
data mining. The algorithm implements the basic idea of awarding the best attributes
(used by the ants to construct the best rules) with pheromone, which increases the
probability of those attributes being selected by the next ants to construct other rules.
A simple high-level pseudocode of Ant-Miner is shown in Pseudocode 1, adapted
from [7]. A more detailed description of Ant-Miner can be found in [3].

The Ant-Miner algorithm uses a sequential covering approach to discover a list of
classification rules which will cover all or most of all the examples in the training set.
Rules discovered are in the form of: IF <term1> AND … AND <term-n> THEN
<class>. Each term takes the form <attribute=value>, where value belongs to the
domain of the attribute. The training set holds examples that are used for discovering
a list of classification rules. The discovered rule list is empty to start with. Every
iteration of the outer REPEAT-UNTIL loop of Pseudocode 1 discovers one
classification rule and adds it to the list of discovered rules. Each iteration of the inner
REPEAT-UNTIL loop corresponds to the trail of an ant that constructs one candidate
rule. At the end of the inner REPEAT-UNTIL loop, the best rule from the set of rules
constructed by all ants (i.e., in all iterations of the inner REPEAT-UNTIL loop) is
added to the discovered rule list. Examples correctly covered by this rule are removed
from the training set before the next iteration of the outer REPEAT-UNTIL loop
begins to discover the next rule. (An example is correctly covered by a rule if the
example satisfies all conditions of the rule and it has the class predicted by the rule.)

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 27

The first procedure of the inner REPEAT-UNTIL loop consists of incrementally
constructing a candidate rule. This procedure starts with an empty rule and then adds
one term at a time to the current rule. This incremental rule construction will
terminate when one of the following two stopping criteria is met: any term added to
the current rule would make the rule cover a number of examples less than a user
specified threshold, or when all attributes have already been used in the current rule
being generated, so that no other attribute is available. (A rule cannot have two
occurrences of the same attribute, because this would lead to invalid rules such as “IF
<gender = male> AND <gender = female>…”.)

The inner REPEAT-UNTIL loop will terminate when one of two stopping criteria
is met: the number of constructed rules is equal or greater than the maximum number
of ants specified by the user, or the rule constructed by an ant is exactly the same as
the rule constructed by the a certain number of previous ants. The latter criterion is
checked via a convergence test. These stopping criteria are controlled by parameters,
which are discussed in detail in [3]. Finally, the outer REPEAT-UNTIL loop
terminates when the number of examples in the training set becomes lower than a
predefined threshold.

TrainingSet = {all training examples};
DiscoveredRuleList = {} /* initialized with empty list */
REPEAT
 Initialize all trails with the same amount of
 pheromone;
 REPEAT
 An ant incrementally constructs a
 candidate classification rule;
 Prune the just-constructed rule;
 Update the pheromone of all trails;
 UNTIL (stopping criteria)
 Choose the best rule out of all candidate
 rules constructed by all ants;
 Add the best rule to DiscoveredRuleList;
 TrainingSet = TrainingSet – {examples correctly
 covered by best rule};
UNTIL (stopping criteria)

Pseudocode 1. A high-level description of the original Ant-Miner

For the purpose of this paper, the most important part of Ant-Miner is its rule
pruning procedure. This procedure is computationally expensive and it can be
considered the bottleneck of the algorithm with respect to processing time and
scalability to large data sets, as discussed in the next section.

3 Extending Ant-Miner with a Faster Rule Pruning Procedure

3.1 The Motivation for Rule Pruning

Rule pruning is a commonplace data mining technique, used in the vast majority of
rule induction algorithms [5]. Pruning can improve the quality of a rule by removing

28 A. Chan and A. Freitas

irrelevant terms from the rule antecedent. As a result, pruning can improve both the
predictive accuracy and the comprehensibility of the rule.

It should be noted that Ant-Miner, like the majority of rule induction algorithms,
can potentially discover rules with a long rule antecedent (with many terms),
hindering the comprehensibility of the rule. Indeed, rules take the form of IF
<antecedent> THEN <consequent> where the rule antecedent is a conjunction of n
terms, where the value of n can potentially be close to the total number of attributes in
the dataset. This means that a rule can become too long for a user to be able to
interpret it. Hence, there is a preference for shorter, more comprehensible rules.

3.2 Ant-Miner's Original Rule Pruner

Ant-Miner’s original rule pruner takes a freshly generated rule by the current ant and
tries to improve its quality (measured by the rule’s predictive accuracy), by removing
irrelevant terms from the rule antecedent. This is done by iteratively removing one
term at a time while it improves on the rule’s quality. This iterative process stops
when no term removal will further increase the quality of the current rule undergoing
pruning. The entire rule pruning process is described in Pseudocode 2.

Execute_pruning = true;
WHILE (Execute_pruning = true) AND
 (Number of terms in current rule antecedent > 1)
 FOR EACH (term ti in the current rule to be pruned)
 Temporarily remove ti and assign to
 the rule consequent the most frequent class among
 the examples covered by the rule antecedent;
 Evaluate rule quality;
 Reinstate term ti in rule antecedent;
 END FOR
 IF (rule quality was improved w.r.t. original rule’s
 Quality in some iteration of the FOR loop) THEN
 Remove permanently the term whose removal improves
 current rule most;
 ELSE
 Execute_pruning = false;
 END IF-THEN-ELSE
END WHILE

Pseudocode 2. A high-level description of Ant-Miner's original rule pruner

Initial experiments conducted by Parpinelli et al. [3] showed that Ant-Miner
produces rules that have a good predictive accuracy and are relatively short on average.
However, that work also presented an analysis of computational time complexity
showing that rule pruning is the most time consuming part of the algorithm, and that
the time taken by Ant-Miner’s rule pruner is quite sensitive to the number of attributes
in the data being mined. This is due to the fact that the larger the number of attributes
in the data being mined, in general the larger the number of terms in a constructed rule
before pruning, and so the larger the number of iterations in the loops of Pseudocode 2.
In each iteration of the FOR EACH loop a term is temporarily removed and the quality
of the reduced candidate rule has to be computed by formula (1).

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 29

Rule Quality = Sensitivity × Specificity = (TP / (TP+FN)) × (TN / (TN+FP)) (1)

where:

• TP (true positives) is the number of examples that are covered by the rule
and have the same class as predicted by the rule;

• FP (false positives) is the number of examples that are covered by the rule
and have a class different from the class predicted by the rule;

• TN (true negatives) is the number of examples that are not covered by rule
and have a class different from the class predicted by the rule;

• FN (false negatives) is the number of examples that are not covered by the
rule but have the same class as predicted by the rule.

The computation of formula (1) is computationally expensive because it requires
scanning the entire current training set in order to compute the values of TP, FP, TN
and FN. For rules generated with a small number of terms in its antecedent, the
pruning method shown in Pseudocode 2 is relatively quick, as there are not a large
number of terms to temporarily remove and evaluate rule quality. But for rule
antecedents containing a large number of terms, this type of pruning is very
computationally expensive. This is because the WHILE loop of the Pseudocode 2 is
potentially performed a large number of times (in the worse case the number of terms
in the original rule), each iteration of the while loop involves a FOR EACH loop over
all current terms in the rule, and each FOR EACH iteration involves a scan of the
training set.

It should be noted that the computational time taken by Ant-Miner was not a
significant problem in the experiments reported by Parpinelli et al. for the following
reason: those experiments involved datasets where the number of attributes was not
very large. However, in addition to the previously-mentioned theoretical analysis of
the computational time complexity of Ant-Miner identifying the rule pruner as the
bottleneck of the algorithm [3], there is empirical evidence that the computational
time taken by Ant-Miner becomes very long when the data being mined contains a
large number of attributes. This empirical evidence consists of recent experiments
trying to apply Ant-Miner to a large bioinformatics data set containing 33,079
examples and 854 attributes [10]. In that project Ant-Miner turned out to be so slow
that it was not viable to use it to discover classification rules, and a much faster hybrid
ACO/PSO (Particle Swarm Optimization) algorithm was developed and used instead.
To quote [10]: “…the unusually large amount of attributes and classes associated with
this problem mean an extremely large amount of computation time is required [by
Ant-Miner].” Therefore, there is a clear motivation for developing a considerably
faster rule pruning procedure for Ant-Miner and investigate its performance, which is
the focus of the remainder of the paper.

3.3 Proposed Hybrid Rule Pruner for Ant-Miner

After an analysis of Ant Miner’s original rule pruner, the following is a proposal to a
new hybrid rule pruner, combining the original Ant-Miner’s rule pruner with a rule
pruner based on information gain – the latter somewhat inspired by the rule pruner
proposed in [4]. (For a review of information gain in general, see [5].)

30 A. Chan and A. Freitas

INPUT:

a) information gain of all terms individually,
calculated using the entire current training set;
/* previously done by another procedure of Ant Miner */

b) value of r /* user-defined parameter: number of terms
in the current rule which will be given to Ant-Miner’s
original rule pruner */

Reduced_rule = {};
Num_terms_selected = 0;
IF (number of terms in current rule’s antecedent > r)
THEN
 WHILE (Num_terms_selected < r)
 FOR EACH (term ti in current rule’s antecedent)
 Calculate probability of selecting a term ti as:

prob(ti)= InfoGain(ti)
 T i=1(InfoGain(ti))

 /*T = number of terms in the rule antecedent */
 END FOR
 Create roulette wheel for selection and select one
 Term, called selected_term, by spinning the wheel;
 Reduced_rule = Reduced_rule ∪ selected_term;
 Remove selected_term from current rule’s antecedent
 to avoid reselection;
 Num_terms_selected = Num_terms_selected + 1;
 END WHILE
 Assign to the consequent of the Reduced_rule the most
 frequent class among all examples covered by the rule;
 Run Ant-Miner’s original rule pruner on Reduced_rule;
ELSE

 Run Ant-Miner’s original rule pruner on current rule;
END IF-THEN-ELSE

Pseudocode 3. A high-level description of the proposed hybrid rule pruner

First of all, the motivation for this new hybrid rule pruner is to significantly reduce
the computational time taken by Ant-Miner, and hopefully do it without unduly
reducing the accuracy of the discovered rules, by comparison with the original Ant-
Miner. In other words, the basic idea is to combine the effectiveness of the original
Ant-Miner pruner (in terms of maximizing predictive accuracy) with the speed of a
rule pruner based on information gain. This latter is very fast, because it does not
require any scan of the training set, as explained below.

The way this hybrid rule pruner functions is described in Pseudocode 3. The
information gain of each term has already been computed by Ant-Miner – in order to
compute the values of the heuristic function [3], and is re-used in this hybrid
procedure. The parameter r represents the number of terms in the rule antecedent that
will be subject to the original Ant-Miner’s rule pruner.

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 31

As shown in Pseudocode 3, the hybrid pruner selects r terms, out of all the terms in
the current rule, before applying Ant-Miner’s original rule pruner. If the number of
terms in the rule antecedent of a freshly generated rule exceeds the value of r, the rule
first undergoes reduction of the number of terms to the value of parameter r. This
reduction is obtained as follows. For each term within the rule antecedent, the rule
pruner computes a measure of the probability of selecting that term. This probability
measure is based on the pre-computed value of that term’s information gain with
respect to the class attribute. Then the rule pruner selects r number of terms using the
roulette wheel selection technique (commonplace in genetic algorithms), with the
probability of selecting each term proportional to the information gain of that term.
Once r terms have been selected by spinning the roulette wheel r times, the resulting
reduced rule is placed back into Ant-Miner’s original rule pruner.

If the original rule does not contain a number of terms in its rule antecedent
exceeding the value of r parameter, then it gets placed straight into Ant-Miner’s
original rule pruner, with no need to apply the information gain-based pruning.

Intuitively it is difficult to specify an ideal value for parameter r, since the best
value of this parameter tends to be dataset-dependent. Therefore we have conducted
experiments to investigate the influence of different values of this parameter in the
performance of the proposed hybrid rule pruner, as discussed in the next section.

4 Computational Results

4.1 Experimental Setup and Datasets Used in the Experiments

As discussed earlier, the proposed hybrid rule pruner has a parameter, r, which can
have a significant influence in the performance of Ant-Miner. To investigate this
issue, we conducted experiments with different values of r, varying from 3 to 10.
These experiments have two main goals. First, evaluating how sensitive the
performance of Ant-Miner with the hybrid pruner is with respect to different values of
the parameter r. Second, comparing the performance of the hybrid rule pruner with
the performance of the original Ant-Miner’s rule pruner.

The experiments used mainly 5 datasets – as summarised in Table 1, detailing key
statistics (the number of examples, attributes and classes) for each dataset. The Chess
and the House-votes datasets have been taken from the well-known UCI Machine
Learning dataset repository – see [6] for details about these data sets. They have a
small number of attributes, and were included in the experiments as control datasets.
By contrast, the three Web-mining datasets are more challenging, because they have a
considerably larger number of attributes, varying from 159 to 339. In addition, note
that these data sets are very “sparse”, in the sense that the number of examples is even
smaller than the number of attributes. (Such challenging datasets are commonplace in
text/web mining and bioinformatics applications, and therefore it is important to
investigate the performance of Ant-Miner in this kind of very sparse dataset.)

In the Web-mining datasets, each example is a web page, and the goal is to classify
each example into one of three classes: ‘Technology’, ‘Sport’ and ‘Education’. These
classes represent the general subject of the web page. These datasets were harvested
from a small selection of BBC and Yahoo web pages relating to the above named
subjects. All attributes within these datasets are binary, where each attribute denotes
whether or not a given word occurs in a given web page (example). These datasets

32 A. Chan and A. Freitas

have been collected by and previously been experimented with Ant-Miner by Holden
& Freitas [7].

In addition to the above datasets, we also did experiments with 2 bioinformatics
datasets using a single value of r. Both datasets have 1872 examples (proteins) and
the same values of 102 binary predictor attributes. Each attribute indicates whether or
not a protein has a given Prosite pattern. The datasets differ in the class to be
predicted: whether or not a protein is involved in DNA repair (first dataset) or in
DNA damage (second dataset). The creation of these datasets is explained in [11].

Table 1. Summarized details of the 5 main datasets used in the experiments

Dataset No. of examples No. of attributes No. of classes

Chess 3196 36 2

House-votes-84 434 16 2

Web-mining 1 124 159 3

Web-mining 2 124 293 3

Web-mining 3 124 339 3

Ant-Miner takes on several parameters besides the one we have discussed for the
hybrid pruning procedure. The values of all those other parameters were maintained at
their default values, specified in [3].

All the experiments were conducted using a stratified 5-fold cross validation
procedure [5]. In essence, the dataset was partitioned into five folds with each fold
retaining as closely as possible the class distribution of the whole dataset being
mined. Each version of Ant-Miner (with original pruner and with the new hybrid
pruner) is then run 5 times. In these runs, each fold was used four times as the training
set and once as a test set. All results reported in this paper were averaged over the five
iterations of the cross validation procedure.

4.2 Results on Classification Accuracy

Reported in Table 2 are the average classification accuracies on the test set and the
corresponding standard deviations for each value of r in the range of 3 to 10. The
classification accuracy is the number of correctly classified test examples divided by
the total number of test examples. The first line with results in the table shows the
classification accuracy of Ant-Miner using only its original rule pruner. The results
for this original version of Ant-Miner are provided as a comparison to see how well it
performs against the new hybrid rule pruner. For each dataset, the best result (out of
the trials using the hybrid pruner) is highlighted in bold, in order to indicate which
value of r yielded the highest accuracy.

From Table 2, in general there was a considerable variation in the classification
accuracy across different values of the parameter r. The only exception was the
House-votes dataset, where accuracies varied only in the range 93.1–95.4%. In the
Chess dataset, most values of r led to an accuracy higher than the accuracy obtained
with the original Ant-Miner’s rule pruner, although in general the differences are not

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 33

statistically significant (considering the standard deviations). On the other hand, in the
three Web-mining datasets the accuracies obtained with the hybrid rule pruner were
lower than the accuracies obtained with Ant-Miner’s original rule pruner. This drop in
accuracy associated with the use of the hybrid rule pruner in the Web-mining datasets
can be explained as follows.

Table 2. Classification accuracy rate (%) on the test set (5-fold cross validation)

Dataset
Value of r Chess House-votes Web-mining 1 Web-mining 2 Web-mining 3
Original 72.18±9.61 94.23±1.75 68.53±4.29 57.26±7.25 55.90±4.79

3 78.79±7.84 95.38±1.33 50.76±3.57 (-) 44.89±5.95 48.83±1.00 (-)
4 83.77±7.77 94.23±1.75 40.26±4.07 (-) 43.32±6.56 (-) 48.95±5.02
5 74.00±9.80 93.07±1.95 50.86±3.24 (-) 38.55±5.48 (-) 50.4±1.91
6 67.40±8.82 94.23±1.75 49.16±2.81 (-) 43.20±6.58 (-) 52.24±8.17
7 78.75±9.42 94.00±1.61 51.86±4.62 (-) 49.56±6.37 51.87±5.23
8 79.85±7.99 94.23±1.75 51.10±2.37 (-) 44.92±1.78 (-) 50.27±5.67
9 76.91±8.33 94.00±1.69 62.83±3.86 40.06±4.11 (-) 45.84±5.90

10 84.13±8.88 93.53±2.19 53.96±2.39 (-) 55.26±5.92 49.50±6.00

As mentioned earlier, the Web-mining datasets are particularly challenging because
they are very “sparse”. Each of those datasets contains a number of attributes greater
than the number of examples. Recall that the hybrid rule pruner selects r number of
terms, and terms are selected with probability based on their information gain. In very
sparse datasets such as the Web-mining datasets, the values of the information gain of
the attributes are not very “reliable”, since they are prone to overfitting issues. As a
result, the hybrid rule pruner has difficulty in selecting r relevant terms based on the
computed information gain values. Of course, the issue of overfitting also occurs with
the other component of the hybrid rule pruner, i.e., the original Ant-Miner’s rule
pruner. However, the latter is a more direct and more reliable measure of the
relevance (predictive power) of the terms, since it is based on evaluating a candidate
pruned rule as a whole, taking into account term interactions. By contrast, the
heuristic of selecting terms based on the information gain of individual attributes
seems more sensitive to overfitting issues, since the quality of each term is estimated
by ignoring term interactions, i.e., ignoring the actual effect of the term in the current
candidate rule. As a result, in the Web-mining datasets the accuracy obtained with the
hybrid rule pruner is consistently lower than the accuracy obtained with the Ant-
Miner’s original rule pruner; a phenomenon that is not observed in the much less
sparse Chess and House-votes datasets.

In any case, the difference of accuracy between Ant-Miner’s original rule pruner
and the new hybrid rule pruner is not significant in the majority of the cases in Table
2, taking into account the standard deviations. More precisely, in Table 2 the cells
where the accuracy of the hybrid pruner is significantly lower than the accuracy of
Ant-Miner’s original rule pruner – in the sense that the corresponding standard
deviation intervals do not overlap – are marked with the symbol “(-)”. The drop in
accuracy associated with the hybrid pruner was significant in 13 out of the 40 cells
with hybrid pruner results in Table 2. In the other 27 cells the difference in accuracy
is not significant, and as mentioned earlier the hybrid rule pruner even obtains a
somewhat higher accuracy in the majority of the cases for the Chess data set.

34 A. Chan and A. Freitas

We have also applied the hybrid rule pruner with a single value of r, viz. r = 5, to a
couple of bioinformatics datasets with 102 attributes and 1872 examples, as
mentioned in section 4.1, to evaluate the performance of the method in less sparse
datasets. In the DNA repair dataset the hybrid rule pruner obtained a predictive
accuracy of 97.69% ± 0.81%, against the original Ant-Miner’s accuracy of 98.50% ±
0.58%. In the DNA damage dataset the hybrid rule pruner obtained an accuracy of
95.30% ± 4.03%, against the original Ant-Miner’s accuracy of 93.25% ± 3.49%.
Hence, in these datasets the hybrid pruner did not significantly reduce the accuracy.

4.3 Results on Rule Comprehensibility

We now turn to another criterion of performance often used in data mining, namely
the comprehensibility of the discovered rules. We emphasize that rule
comprehensibility is an important performance criterion in the context of data mining
[5], [9] where the goal usually is to discover knowledge that can be interpreted and
validated by human beings, to support intelligent decision making. As usual in the
literature, we measure rule comprehensibility by the average number of terms in the
discovered rules. The basic idea is that in general the shorter a rule is (i.e., the fewer
terms it has in its antecedent), the simpler and more easily interpretable the rule is to
the user. In this spirit, Table 3 reports the average number of terms per discovered
rule when using the original Ant-Miner’s rule pruner and when using the hybrid rule
pruner – again, with values of r varying from 3 to 10. Similarly to Table 2, the
numbers after the symbol “±” are standard deviations. For each dataset, the best result
(i.e., the smallest number of terms per rule) is shown in bold.

Table 3. Average number of terms per discovered rule

Dataset
Value of r Chess House-votes Web-mining 1 Web-mining

2
Web-mining 3

Original 3.35±0.49 0.95±0.05 10.07±0.65 10.02±1.76 7.33±1.52
3 1.50±0.14 0.96±0.07 1.77±0.23 1.32±0.15 1.30±0.24
4 1.85±0.15 0.86±0.06 2.42±0.28 2.00±0.15 2.00±0.15
5 1.97±0.24 1.12±0.12 3.13±0.08 2.30±0.13 2.60±0.24
6 2.07±0.14 0.95±0.05 3.62±0.19 3.20±0.36 3.13±0.27
7 2.62±0.24 1.27±0.17 3.97±0.42 3.38±0.20 3.65±0.49
8 2.22±0.65 0.95±0.05 4.67±0.47 3.77±0.34 4.67±0.27
9 2.48±0.15 1.00±0.08 5.67±0.38 3.80±0.34 3.87±0.54

10 2.51±0.30 0.95±0.05 5.53±0.49 4.33±0.46 4.37±0.38

The only dataset in which the hybrid rule pruner did not significantly lower rule
length, by comparison with Ant-Miner’s original rule pruner, was the House-votes
dataset. In this dataset the original Ant-Miner already obtained a very short average
rule length, close to 1, and so it is perfectly acceptable that this result cannot be
significantly improved. In the other four datasets, the hybrid rule pruner has
significantly lowered the rule length, and so significantly improved rule
comprehensibility, taking into account the standard deviations, for all tested values of
r. The results were particularly good in the Web-mining datasets, as can be seen in
Table 3, where rule length is reduced to less than half the rule length associated with
the original Ant-Miner in most cases.

 A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm 35

As expected, the shortest rule lengths were in general obtained with the smallest
tried value of r, i.e., r = 3. With this value of r, in the Web-mining datasets rule length
is reduced from about 10 or 7 to less than 1.5, a very significant improvement in rule
comprehensibility. In addition, in all datasets but the House-votes one, there is a clear
correlation between the value of r and the average length of the discovered rules. That
is, in four out of the five datasets, in general the larger the value of r the larger the
average rule length, and so the less comprehensible the discovered rules are. This
result can be explained by the fact that the hybrid rule pruner’s component based on
information gain is more “aggressive” than the other component – Ant-Miner’s
original pruner. The latter is more “conservative” in the sense that it will only remove
a term from a candidate rule if that removal improves the rule quality. By contrast, the
pruner based on information gain always reduces the rule to r terms as the first step of
the hybrid pruner, and so the hybrid pruner as a whole tends to produce shorter rules
as the value of r is reduced.

5 Conclusions and Future Work

This work has proposed a new hybrid rule pruner for the Ant-Miner algorithm. The
hybrid pruner combines Ant-Miner’s original pruner with a faster pruning based on
information gain. The basic idea is that, if the candidate rule to be pruned is a long
one, instead of applying Ant-Miner’s original pruner the algorithm first applies the
faster information gain-based pruner, as a first step to reduce the rule length. In terms
of computational cost, this first step “comes for free”, since the required value of the
information gain is already computed by another procedure of Ant-Miner. Once the
rule has been so reduced, Ant-Miner’s original pruner – slower but more effective –
can be applied to the rule, further reducing its length.

Experiments were performed with several data sets, comparing the performance of
the proposed hybrid rule pruner with the performance of Ant-Miner’s original rule
pruner. In general the hybrid pruner significantly reduced the computational time of
Ant-Miner, by comparison with the computational time taken with the original rule
pruner. In the datasets with the largest numbers of attributes (the Web-mining
datasets), in most cases the computational time was significantly reduced, by
comparison with the original Ant-Miner’s computational time. In particular, in the
Web-mining-2 data set, the use of the hybrid rule pruner reduced Ant-Miner’s
computational time to a fraction of the original Ant-Miner’s time in all cases, and this
fraction varied from 11.6% in the best case to 65.0% in the worst case. A larger
computational time reduction is expected in a dataset with a much larger number of
attributes and examples. Concerning the quality of the classification rules discovered
by Ant-Miner with the new hybrid rule pruner, there are three main conclusions.

First, the predictive accuracy of Ant-Miner is quite sensitive to values of a
parameter of the hybrid rule pruner that determines how aggressive the information
gain-based rule pruner is. Hence, when using the hybrid rule pruner in important real-
world problems, it is recommended to carry out experiments optimizing the value of
this parameter for the target dataset. Such parameter optimization is, of course,
normally recommended in the context of data mining in general, where the
performance of the algorithm is typically considerably dependent on the dataset being
mined. Second, with respect to the comprehensibility of the discovered rules, the

36 A. Chan and A. Freitas

hybrid rule pruner in general led to the discovery of rules considerably shorter (and so
more easily interpretable by users) than the rules discovered with the original Ant-
Miner’s rule pruner. Hence, the hybrid rule pruner is particularly recommended in
applications where rule comprehensibility is very important, such as medical
applications – where discovered rules should be carefully interpreted by experts
before they are actually used to diagnose a patient or suggest a medical treatment.
Third, the results suggest that, as long as the main parameter of the hybrid rule pruner
is suitably adjusted for the target data set, it is possible to obtain a good trade-off
between accuracy and comprehensibility. In each of the three web mining data sets –
where accuracy was overall most reduced by using the hybrid rule pruner – the hybrid
rule pruner with its best parameter value obtained a rule set with no significant drop in
accuracy and with a significant gain in comprehensibility. However, to be on the safe
side it is recommended to use Ant-Miner’s original rule pruner whenever possible, in
order to avoid the potential loss of accuracy associated with the hybrid rule pruner.

A future research direction is to develop a more adaptive version of the proposed
hybrid rule pruner, where the value of r is automatically adapted by the algorithm on-
the-fly, rather than being statically determined by the user.

References

[1] M. Dorigo, and L. M. Gambardella, “Ant colonies for the travelling salesman problem”,
BioSystems, 43: 73 – 81, 1997.

[2] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-organizing exploratory
pattern of the argentine ant.”, Journal of Insect Behaviour, 3:159 – 168, 1990.

[3] R.S. Parpinelli, H.S. Lopes and A.A. Freitas, “Data Mining with an Ant Colony
Optimization Algorithm”, IEEE Trans. on Evolutionary Comput., 6(4), Aug 2002, 321-
332

[4] Deborah R. Carvalho and A.A. Freitas, “A hybrid decision tree/genetic algorithm method
for data mining” Information Sciences 163(1-3), pp. 13-35. June 2004.

[5] I. H. Witten and E. Frank, Data Mining – Pratical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann 2000.

[6] UCI Machine Learning Repository (University of California at Irvine) –
http://www.ics.uci.edu/~mlearn/MLSummary.html (visited 14/10/2004)

[7] N.Holden and A.A.Freitas, “Web Page Classification with an Ant Colony Algorithm”
Proc. 2004 Parallel Problem Solving from Nature, LNCS 3242, 1092-1102. Springer,
2004.

[8] M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.
[9] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge

discovery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowledge Discovery
and Data Mining, 1-34. AAAI/MIT, 1996.

[10] N. Holden and A.A. Freitas. “A Hybrid Particle Swarm/Ant Colony Algorithm for the
Classification of Hierarchical Biological Data”. Proc. 2005 IEEE Swarm Intelligence
Symposium, 100-107. IEEE, 2005.

[11] A. Chen. Ant Colony Optimisation for High-Dimensional and Multi-Label Classification
in Data Mining. Master Thesis (in preparation). University of Kent, UK. Sep. 2005.

Swarm-Based Distributed Clustering in
Peer-to-Peer Systems

Gianluigi Folino, Agostino Forestiero, and Giandomenico Spezzano

Institute for High Performance Computing and Networking (ICAR),
Via P. Bucci 41c, I-87036 - Rende (CS), Italy

{folino, forestiero, spezzano}@icar.cnr.it

Abstract. Clustering can be defined as the process of partitioning a
set of patterns into disjoint and homogeneous meaningful groups, called
clusters. Traditional clustering methods require that all data have to be
located at the site where they are analyzed and cannot be applied in the
case of multiple distributed datasets. This paper describes a multi-agent
algorithm for clustering distributed data in a peer-to-peer environment.
The algorithm proposed is based on the biology-inspired paradigm of a
flock of birds. Agents, in this context, are used to discovery clusters us-
ing a density-based approach. Swarm-based algorithms have attractive
features that include adaptation, robustness and a distributed, decen-
tralized nature, making them well-suited for clustering in p2p networks,
in which it is difficult to implement centralized network control. We have
applied this algorithm on synthetic and real world datasets and we have
measured the impact of the flocking search strategy on performance in
terms of accuracy and scalability.

1 Introduction

Clustering algorithms have been applied to a wide range of problems, including
exploratory data analysis, data mining, image segmentation and information
retrieval. In all of these disciplines the common problem is that of grouping
similar objects according to their distance, connectivity, or their relative density
in space [5] [9].

Traditional clustering methods require that all data have to be located at
the site where they are analyzed and cannot be applied where there are mul-
tiple distributed datasets unless all data are transferred in a single node and
then clustered. Today’s large-scale data sets are usually logically and physically
distributed, requiring a distributed approach to mining. Huge amounts of data
are stored in autonomous, geographically distributed sources over networks with
limited bandwidth and large number of computational resources. Such comput-
ing systems include Grid computing platforms, sensor networks and peer-to-peer
(P2P) computing environments. The scale of these systems poses several diffi-
culties, such as the impracticability of global communications and global syn-
chronization, dynamic topology changes of the network, on-the-fly data updates
and the frequent failure and recovery of resources. In last years, many effective

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 37–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 G. Folino, A. Forestiero, and G. Spezzano

and scalable clustering methods have been developed [8] [13] [14] [7] but they
cannot manage with efficiency large-scale distributed clustering problem.

Recently, other data mining paradigms based on biological models [10] [11]
have been introduced to solve the clustering problem. These paradigms are char-
acterized by the interaction of a large number of simple agents that sense and
change their environment locally. Ants’ colonies, flocks of birds, termites, swarms
of bees etc. are agent-based insect models that exhibit a collective intelligent
behavior (swarm intelligence) [1] that may be used to define new distributed
clustering algorithms. In these models, the emergent collective behavior is the
outcome of a process of self-organization, in which insects are engaged through
their repeated actions and interaction with their evolving environment. Intel-
ligent behavior frequently arises through indirect communication between the
agents using the principle of stigmergy [3]. This mechanism is a powerful prin-
ciple of cooperation in insect societies. According to this principle an agent
deposits something in the environment that makes no direct contribution to the
task being undertaken but it is used to influence the subsequent behavior that is
task related. Swarm intelligence (SI) models have many features in common with
Evolutionary Algorithms (EA). Like EA, SI models are population-based. The
system is initialized with a population of individuals (i.e., potential solutions).
These individuals are then manipulated over many iteration steps by mimicking
the social behavior of insects or animals, in an effort to find the optima in the
problem space. Unlike EAs, SI models do not explicitly use evolutionary opera-
tors such as crossover and mutation. A potential solution simply ’flies’ through
the search space by modifying itself according to its past experience and its
relationship with other individuals in the population and the environment.

We believe that this biology-inspired paradigm could serve as a basis for
supporting the design of completely distributed clustering algorithms in large
scale systems with a dynamic environment as P2P systems. The advantages of
SI are twofold. Firstly, it offers intrinsically decentralized algorithms that can
use P2P systems quite easily. Secondly, these algorithms show a high level of
robustness to change by allowing the solution to dynamically adapt itself to
global changes by letting the agents self-adapt to the associated local changes.

In this paper, we present P-SPARROW a novel algorithm which uses the
concepts of a flock of birds that move together in a complex manner with simple
local rules, to cluster spatial data in P2P systems. P-SPARROW assumes that
the objects to be clustered are created and located at local sites. Each local site
situates its own objects in a local 2D cellular space. P-SPARROW clusterizes
data independently on the different local sites by a smart exploratory strat-
egy based on a colored flock of birds combined with a density-based clustering
method. On each cellular space, a set of agents, equipped with a set of attributes,
will be working with the goal to discover local clusters. The flocking algorithm
determines a local model that consists of a set of representative agents (RAs).
Each RA represents a skeletal object in which the cardinality of the neighbor-
hood exceeds some threshold. At intervals, as RAs discover skeletal points, each
node transfers the agents to neighboring nodes. In the receiving nodes, all the

Swarm-Based Distributed Clustering in Peer-to-Peer Systems 39

objects that are in the neighborhood of these agents are considered belonging to
the same cluster. Furthermore, as the clusters are discovered they are merged us-
ing an iterative distributed labeling strategy to generate global labels with which
identify the clusters of all nodes. P-SPARROW has a number of nice properties.
It has the advantages of being easily implementable on distributed systems as
P2P networks and it is robust compared to the failure of individual agents. It
can also be applied to perform efficiently approximate clustering since the points
that are, to each iteration, visited and analyzed by the flock of agents represent
a significant (in ergodic sense) subset of the entire dataset. The subset reduces
the execution time since reduces the space of solutions that a clustering algo-
rithm has to search keeping the accuracy loss as small as possible. P-SPARROW
has no centralized coordinator. Each node acts independently from each other
and intermediate results may be overturned as new data arrives. P-SPARROW
behaves as an anytime algorithm in which the quality of results improves as
computational time increases. Each node maintains an assumption of the cor-
rect result and updates it whenever new skeletal objects are discovered. During
the execution of the algorithm, if the system remains static, then the solution
will quickly converge toward an exact solution. However, in a dynamic system,
where nodes dynamically join or depart and the data changes over time, the
changes are quickly and locally adjusted to, and the solution continues to con-
verge. This property is particularly interesting if continuous data are analyzed.
Furthermore, each node communicates only with its immediate neighbors. Lo-
cality implies that the algorithm is scalable to very large networks. Another
outcome of the algorithm’s locality is that the communication load it produces
is small and decreases with the time. We have implemented P-SPARROW in a
P2P network to investigate the interaction of the parameters that characterize
the algorithm. The remainder of this paper is organized as follows. Section 2 in-
troduces P-SPARROW, presents the principles of the density-based algorithms
and describes the heuristics of the proposed method. Section 3 discusses the
obtained results and Section 4 draws some conclusions.

2 A Flocking Algorithm for Distributed Clustering

In this section we present P-SPARROW a multi-agent distributed clustering
algorithm implemented in a P2P network which combines the stochastic search
of an adaptive flocking with a density-based clustering method and an iterative
self-labeling strategy to generate global labels with which identify the clusters of
all nodes. Since P-SPARROW utilizes the principles of the conventional density-
based algorithms, some of them are described first. After, the algorithm proposed
is described.

2.1 Density-Based Clustering

Density-based clustering methods try to find clusters based on the density of
points in regions. Dense regions that are reachable from each other are merged

40 G. Folino, A. Forestiero, and G. Spezzano

to formed clusters. The key idea is that for each point of a cluster the neigh-
borhood of a given radius has to contain at least a minimum number of points,
i.e. the density in the neighborhood has to exceed some threshold. The shape
of a neighborhood is determined by the choice of a distance function for two
points p and q, denoted by dist(p,q). Density-based clustering methods excel at
finding clusters of arbitrary shape. Examples of density-based clustering meth-
ods include DBSCAN [2] and DBRS [15]. DBSCAN is one of the most popular
density-based spatial clustering algorithms. A complete description of the algo-
rithm and its theoretical basis is presented in the paper by Ester et al. [2]. In the
following we briefly present the main principles of DBSCAN. The algorithm is
based on the idea that all points of a data set can be regrouped into two classes:
clusters and noise. Clusters are defined as a set of dense connected regions with
a given radius (Eps) and containing at least a minimum number (MinPts) of
points. Data are regarded as noise if the number of points contained in a region
falls below a specified threshold. The two parameters, Eps and MinPts, must be
specified by the user and allow to control the density of the cluster that must be
retrieved. The algorithm defines two different kinds of points in a clustering: core
points and non-core points. A core point is a point with at least MinPts number
of points in an Eps-neighborhood of the point. The non-core points in turn are
either border points if they are not core points but they are density-reachable
from another core point or noise points if they are not core points and are not
density-reachable from other points. To find the clusters in a data set, DBSCAN
starts from an arbitrary point and retrieves all points with the same density-
reachable from that point using Eps and MinPts as controlling parameters. A
point p is density reachable from a point q if the two points are connected by
a chain of points such that each point has a minimal number of data points,
including the next point in the chain, within a fixed radius. If the point is a core
point, then the procedure yields a cluster. If the point is on the border, then
DBSCAN goes on to the next point in the database and the point is assigned
to the noise. DBSCAN builds clusters in sequence (that is, one at a time), in
the order in which they are encountered during space traversal. The retrieval of
the density of a cluster is performed by successive spatial queries. Such queries
are supported efficiently by spatial access methods such as R*-trees. DBSCAN
is not suitable for finding approximate clusters in very large datasets. DBSCAN
starts to create and expand a cluster from a randomly picked point. It works
very thoroughly and completely accurately on this cluster until all points in the
cluster have been found. Then another point outside the cluster is randomly
selected and the procedure is repeated. This method is not suited to stopping
early with an approximate identification of clusters.

DBRS modifies DBSCAN introducing an approximate clustering method
which can produce approximate purity density-based clusters with far fewer
region queries. The intuition behind DBRS is that a cluster can be viewed as a
minimal number of core points (called skeletal points) and their neighborhoods.
In a dense cluster, a neighborhood may have far more than MinPts points, but

Swarm-Based Distributed Clustering in Peer-to-Peer Systems 41

examining the neighborhoods of these points in detail is not worthwhile, because
we already know that these points are part of a cluster. If an unclassified point
in a neighbor’s neighborhood should be part of this cluster, we are very likely to
discovery this later when we select it or one of its other unclassified neighbors.

To find cluster, it is sufficient to perform region queries on the skeletal points.
However, identifying skeletal points is NP-complete. Instead, it is possible ran-
domly select sample points, find their neighborhoods, and merge their neighbor-
hoods if they intersect. If enough samples are taken, a close approximation to
the cluster without checking every point can be found. The sample points may
not be the skeletal points, but the number of region queries can be significant
fewer than for DBSCAN for datasets with widely varying densities. Likewise of
DBSCAN also DBRS is a centralized clustering algorithm.

Recently, DBDC a distributed version of DBSCAN algorithm has been pre-
sented in [6]. DBDC uses DBSCAN to make local clustering and determinate a
local model after the local clustering is finished. All information which is com-
prised within the local model, i.e. the representatives and their corresponding
e-ranges, is sent to a global server site, where a global clustering representation
is produced from local representations. Based on this small number of represen-
tatives, the global clustering can be done very efficiently. After having created
a global clustering, the complete global model is sent back to all client sites.
The client sites relabel all objects located on their site independently from each
other. DBDC does not scale-up well since, in a P2P scenario, no centralized
coordinator and limited communications are required.

2.2 The P-SPARROW Clustering Algorithm

As in DBRS, P-SPARROW finds cluster performing region-queries on skeletal
points but it replaces the random search of the skeletal points with a stochastic
multi-agent search that discovers in parallel skeletal points. P-SPARROW is
constituted of two phases: a local phase for the discovery of the skeletal points
on each node and a iterative phase that concerns a global relaxation process in
which nodes exchange cluster labels with nearest neighbors until a fixed point
(i.e. all nodes detect no change in the labels) is reached.

On each peer, P-SPARROW uses a 2D cellular space to situate objects that
must be clustered. In the cellular space, objects have a global position. All objects
are partitioned among the cellular spaces without replication. Each node uses
a flocking algorithm constituted by a fixed number of agents that occupy a
randomly generated position to explore its own cellular space. Each agent moves
around the cellular space testing the neighborhood of each object (point) it
visits in order to verify if the point can be identified as a skeletal point. Then,
P-SPARROW uses a flocking algorithm with an exploring behavior in which
individual members (agents) to first explore the environment searching for goals
whose positions were not know a priori, and then, after the goals are located,
all the flock members should move to the goals. Agents search the goals in
parallel and signal the presence or the lack of significant patterns into the data

42 G. Folino, A. Forestiero, and G. Spezzano

Fig. 1. Computing the direction of a green agent

to other flock members, by changing color. The entire flock then moves towards
the agents (attractors) that have discovered interesting regions to help them,
avoiding the uninteresting areas that are instead marked as obstacles. The color
is assigned to the agents by a function associated with the data analyzed during
the exploration according to the DBSCAN density-based rules with the same
parameters: MinPts, the minimum number of points to form a cluster and Eps,
the maximum distance that the agents can look. In practice, the agent computes
the local density (density) in a circular neighborhood (with a radius determined
by its limited sight, i.e. Eps) and then it chooses the color (and the speed) in
accordance to the following simple rules:

density > MinPts ⇒ mycolor = red (speed = 0)
MinPts

4 < density ≤ MinPts ⇒ mycolor = green (speed = 1)
0 < density ≤ MinPts

4 ⇒ mycolor = yellow (speed = 2)
density = 0 ⇒ mycolor = white (speed = 0)

So red, reveals a high density of interesting patterns in the data, green, a medium
one, yellow, a low one, and white, indicates a total absence of patterns. The
color is used as a communication mechanism among flock members to indicate
them the roadmap to follow. The roadmap is adaptively adjusted as the agents
change their color moving to explore data until they reach the goal. The main
idea behind our approach is to take advantage of the colored agent in order to
explore more accurately the most interesting regions (signaled by the red agents)
and avoid the ones without clusters (signaled by the white agents). Red and white
agents stop moving in order to signal this type of regions to the others, while
green and yellow ones fly to find more dense clusters. Indeed, each flying agent
computes its heading by taking the weighted average of alignment, separation
and cohesion (as illustrated in figure 1).

Green and yellow agents compute their movement observing the positions of
all other agents that are at most at some fixed distance (dist max) from them
and applying the rules of Reynolds’ [12] with the following modifications:

– Alignment and cohesion do not consider yellow agents, since they move in a
not very attractive zone.

Swarm-Based Distributed Clustering in Peer-to-Peer Systems 43

– Cohesion is the resultant of the heading towards the average position of the
green flockmates (centroid), of the attraction towards red agents, and of the
repulsion by white agents.

– A separation distance is maintained from all the agents, whatever their color
is.

Agents will move towards the computed destination with a speed depending from
their color: green agents will move more slowly than yellow agents since they will
explore denser zones of clusters. An agent will speed up to leave an empty or un-
interesting region whereas it will slow down to investigate an interesting region
more carefully. The variable speed introduces an adaptive behavior in the algo-
rithm. In fact, agents adapt their movement and change their behavior (speed) on
the basis of their previous experience represented from the red and white agents.

P-SPARROW assumes that the objects to be clustered are created and located
at local sites. On each node (as described in the pseudocode of figure 2), the set of
red agents determinates the local model of clustering. The local models must be
incrementally combined within the cellular spaces of the neighbors and transferred
to the entire network. To this end, red agents create clone agents. At intervals,
when a fixed number of clone agents is achieved (i.e. a bag of agents has reached
the desired dimension) or a certain number of iterations are performed, each node
sends new clone agents only to a small group of neighbor peers. The number of
messages exchanged is reduced by grouping several agents within one message. In
the receiving nodes, the clone agents will occupy the same correspondent position
in the local cellular spaces and will continue their execution.

Fig. 2. The pseudo-code of P-SPARROW executed on every node

44 G. Folino, A. Forestiero, and G. Spezzano

Temporary labels will be given to red and clone agents and to all the objects
contained in their neighborhood. If any objects have already a label then the label
of the agents is set to the minimum of the two. Subsequently, red and clone agents
will run the merge procedure. Agents, during the merge phase, continuously
update the labels as multiple clusters take shape concurrently. On each node,
changes in the label of the agents will be communicated to the neighboring nodes.
So, the labels are continuously set making a repetitive comparison between the
label of the agents and those of the objects belonging to the neighborhood. This
continues until nothing changes, by which time all the clusters will have been
labeled with the minimum initial label of all the sites containing the data. At
the end all sites are labeled with their ”local representative” labels which are
then globalized (i.e. made unique over the whole system).

During simulations a cage effect, was observed; in fact, some agents could
remain trapped inside regions surrounded by red or white agents and would
have no way to go out, wasting useful resources for the exploration. So, a limit
on their life was imposed to avoid this effect; hence, when their age exceeded
a determined value (maxLife) they were killed and were regenerated in a new
randomly chosen position of the space.

3 Experimental Results

In this section, we want to analyze the goodness of our algorithm in the task
of performing approximate clustering and we want to verify some interesting
properties of our distributed system (i.e. accuracy, scalability, etc..). In our exper-
iments, we used three two-dimensional spatial datasets (showed in 3): two syn-
thetic (called GEORGE and DS1-CURE) and one real (SEQUOIA). GEORGE
consists of 8000 points and it is characterized from a large number of noise
points; DS1-CURE (used in [4]) contains 100000 points in three circles and two
ellipsoids connected by a chain of outliers and random noise scattered in the
entire space; SEQUOIA was composed by 62556 names of landmarks (and their
coordinates), and was extracted from the US Geological Survey’s Geographic
Name Information System.

Fig. 3. The three datasets used in our experiments

Swarm-Based Distributed Clustering in Peer-to-Peer Systems 45

Where not differently specified, we run our algorithm on five peers using 50
agents working until they explore the 2%, 10%, 15% and 30% of the entire data
set. All the experiments were averaged over 20 tries.

3.1 Accuracy

First of all, we want to evaluate the capacity of our algorithm in finding approxi-
mate clusters, exploring only a portion of the entire dataset. Our algorithm uses
the same parameters of DBSCAN. Therefore, if we visited all the points of the
dataset, we would obtain the same results as DBSCAN. Then, in our experiments
we consider as 100% the cluster points found by DBSCAN (note DBSCAN visits
all the points). We want to verify how we come close to this percentage visiting
only a portion of the entire dataset. In figure 4 we can observe the experimen-
tal results. Exploring the 10% of points we are able to individuate more than
50% (and in some cases 70%)of the points of the clusters (with the exception
of the Big-Circle cluster of the DS1-Cure dataset, as it has a really low density
compared to the others) and with the 15% we succeed in discovering more than
70% and even 80% of the points. Next, we want to determine the effect of using
P-SPARROW search strategy as opposed to a random-walk search strategy in
order to identify clusters; so we implemented a version of the algorithm changing
only the phase of search, i.e. replacing the flock strategy with the random-walk
one. Results are illustrated in figure 5 (a) for the SEQUOIA dataset, but the
same considerations are valid for the other two datasets. At the beginning, the
random strategy overcomes P-SPARROW, but, after about 300 visited points,
the flock presents a superior behavior because of the adaptive behavior of the
algorithm that allows agents to learn on their previous experience. An interest-
ing property of our strategy consists in finding more points belonging to clusters

Fig. 4. Number of clusters and number of points for cluster for George, DS1-Cure,
Sequoia (percentage in comparison to the total number of points for cluster) when
P-SPARROW analyse 2%, 10%,15% and 30% of total points, using 5 peers

46 G. Folino, A. Forestiero, and G. Spezzano

Fig. 5. a) Number of core points found for P-SPARROW and Random strategy vs.
total number of visited points for the SEQUOIA dataset. b) Number of noise and
cluster points found for P-SPARROW vs. number of visited points for the SEQUOIA
dataset.

than noise points. In fact, if we observe the figure 5 (b), we can note that until
the 30% of visited points, the algorithm is able to find a large percentage of
cluster points. After this threshold a few new cluster points are discovered and
more noise points are found. So it is not convenient go on searching beyond this
value.

3.2 Scalability

In order to evaluate the performance of our algorithm, we image to have a cer-
tain number of P2P networks, with different configurations. Each configuration
consists of a variable number of nodes, where the data are located. For large
networks, the density of points for cluster for peer necessarily decreases; so we

Fig. 6. Number of points for cluster for Sequoia (percentage in comparison to the total
number of points for cluster) when P-SPARROW analyses 2%, 10%, 15% and 30% of
total points, using 3, 5 and 10 peers

-

Swarm-Based Distributed Clustering in Peer-to-Peer Systems 47

have to choose a different value of the parameter MinPts to keep into account
this aspect. In practice, we choose a value of MinPts inversely proportional to
the number of peers (i.e. if we fix MinPts as 4 on 10 peers, we have to fix as 8 on
5 peers). In figures 6, we show the experimental results concerning the scalability
of the algorithm by varying the number of peers for the SEQUOIA dataset. We
obtained a reduction from 89% to 77%. Note the scalability is quite good for all
datasets, since if we consider the DS1-Cure dataset, exploring only the 15% of
the data points, we are able to find on average more than 70% of the clusters,
also using 10 peers, with a reduction from 87% (3 peers) to 71% (10 peers). This
larger reduction is due to the cluster representing the big circle; in fact, for it, we
have a reduction in accuracy from the 88% with 3 peers to the 42% with 10 peers,
because the low density of this cluster, after the decomposition in ten parts, and
consequentially the number of points on every peer is not sufficiently large to
make the algorithm work with a discrete approximation. Also using the George
dataset (for the 15% case), we had a reduction from 77% to 71% on average, as
the clusters are composed of few points, so the reduction is considerable.

4 Conclusions

This paper describes the P-SPARROW algorithm for distributed clustering of
data in peer-to-peer environments. The algorithm combines a smart exploratory
strategy based on a flock of birds with a density-based strategy to discover clus-
ters of arbitrary shape, size in spatial data. The algorithm has been implemented
in a peer-to-peer system and evaluated using two synthetic datasets and one real
word dataset. Measures of accuracy of the results show that P-SPARROW can
be efficiently applied as a data reduction strategy to perform approximate clus-
tering. Moreover, the adaptive search strategy of P-SPARROW is more efficient
than that of the random-walk search strategy. Finally the algorithm shows a
good scalable behavior.

Acknowledgments

This work has been supported by MIUR programme L.449/97 ”Enabling ITC
distributed complex platforms” and by FIRB strategic project on ”Enabling
Technologies for Information Society, Grid.it(RBNE01KNFP)”.

References

[1] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: From
natural to artificial systems. J. Artificial Societies and Social Simulation, 4(1),
2001.

[2] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proc.
2nd Int. Conf. on Knowledge Discovery and Data Mining, pages 226–231, 1996.

48 G. Folino, A. Forestiero, and G. Spezzano

[3] P.P. Grass. La Reconstruction du nid et les Coordinations Inter-Individuelles chez
Beellicositermes Natalensis et Cubitermes sp. La Thorie de la Stigmergie : Essai
d’interprtation du Comportement des Termites Constructeurs in Insect. Soc. 6.
Morgan Kaufmann, 1959.

[4] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient clustering
algorithm for large databases. In ACM SIGMOD International Conference on
Management of Data, pages 73–84, June 1998.

[5] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques (The
Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann,
September 2000.

[6] Eshref Januzaj Hans-Peter. Towards effective and efficient distributed clustering,
2003.

[7] M. Kamber J. Han and a. K. H. Tung. Spatial Clustering Methods in Data Mining:
A Survey, Geographic Data Mining and Knowledge Discovery. Morgan Kaufmann,
2001.

[8] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clus-
tering using dynamic modeling. IEEE Computer, 32(8):68–75, 1999.

[9] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley, 1990.

[10] Deneubourg J. L., Goss S., Franks N., Sendova-Franks, A. C. Detrain, and L. Chre-
tien. The dynamics of collective sorting robot-like ants and ant-like robots. In
From Animals to Animats: Proc. of the 1st Int. Conf. on Simulation of Adaptive
Behaviour. MIT Press/Bradford Books, 1990.

[11] Nicolas Monmarché, M. Slimane, and Gilles Venturini. On improving clustering
in numerical databases with artificial ants. In ECAL ’99: Proceedings of the 5th
European Conference on Advances in Artificial Life, pages 626–635, London, UK,
1999. Springer-Verlag.

[12] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, pages 25–34, New York, NY, USA, 1987. ACM Press.

[13] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-
based clustering in spatial databases: The algorithm gdbscan and its applications.
Data Min. Knowl. Discov., 2(2):169–194, 1998.

[14] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical information
grid approach to spatial data mining. In VLDB’97, Proceedings of 23rd Interna-
tional Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece,
pages 186–195. Morgan Kaufmann, 1997.

[15] Xin Wang and Howard J. Hamilton. Dbrs: A density-based spatial clustering
method with random sampling. In PAKDD, pages 563–575, 2003.

Simultaneous Optimization of Weights and
Structure of an RBF Neural Network

Virginie Lefort, Carole Knibbe, Guillaume Beslon, and Joël Favrel

INSA-IF/PRISMa, 69621 Villeurbanne CEDEX, France
virginie.lefort@insa-lyon.fr

Abstract. We propose here a new evolutionary algorithm, the RBF-
Gene algorithm, to optimize Radial Basis Function Neural Networks.
Unlike other works on this subject, our algorithm can evolve both the
structure and the numerical parameters of the network: it is able to
evolve the number of neurons and their weights.

The RBF-Gene algorithm’s behavior is shown on a simple toy prob-
lem, the 2D sine wave. Results on a classical benchmark are then pre-
sented. They show that our algorithm is able to fit the data very well
while keeping the structure simple – the solution can be applied generally.

1 Introduction

Radial Basis Function Neural Networks (RBF NN) [1] are widely used in re-
gression and classification tasks. They are often coupled with evolutionary algo-
rithms, especially Genetic Algorithms (GAs) [2, 3, 4]. The GA is used to find the
optimal parameters of the network.

However, in a neural network, all parameters cannot be considered to be
equivalent. In particular, one can distinguish structural parameters from scalar
parameters. The former define the general structure of the network: number of
layers, number of neurons by layer and the topology of the network; they directly
influence the capabilities of the network. The later, namely the neural weights
and bias parameters, define the precise input-output mapping of the network.
The scalar parameters clearly strongly depend on the structural parameters.

A classical GA can easily encode the scalar parameters, as their number is
known once the structure is chosen, and so we would expect it to perform well
in this regard. However, a more sophisticated evolutionary algorithm will be
required to optimize the structural parameters in conjunction with the scalar
parameters.

In this context, we present here a new Genetic Algorithm that can optimize
simultaneously both the structural and scalar parameters of a feed-forward RBF
NN. We have named it the RBF-Gene algorithm.

In the next section, we will briefly present some work on how to optimize an
RBF-NN using Genetic Algorithms. We will then present our algorithm. In the
last section, we will present the results obtained with it and compare with other
published results on some benchmark tests.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 V. Lefort et al.

2 Evolving Neural Networks Using Genetic Algorithms

Radial Basis Function Neural Networks are classical neural models with one
layer of hidden neurons. They are used in classification or regression tasks as
they are universal approximators.

In an RBF NN, the output of the network o is a weighted sum of the output
of H hidden neurons. The transfer function of each neuron is a Gaussian function
g(X):

o(X) =
H∑

j=0

wj .gj(X) =
H∑

j=0

wj .e

−‖X−μj‖2

σ2
j

with X the input vector of the network, μn the vector representing the center
of the Gaussian for the nth hidden neuron and σn its standard deviation.

Implementing an RBF NN is a two-stages process. First, we have to choose
the structure of the network; second, we must find its free parameters. Once the
structure is fixed, the free parameters can be chosen manually, often the case
for the Gaussian parameters; analytically, with high sensitivity to the quality
of the dataset; or by a learning algorithm, generally applied only on the output
weights wij . However the free parameters, and therefore the behavior of the
network, strongly depend on the network’s structure.

In “difficult” cases, with few examples or significant noise, an evolutionary
algorithm (like GAs) is a good solution. GAs can be used to optimize the pa-
rameters of the neurons directly: The structure is fixed at the beginning of the
run and the algorithm finds strong values for the fixed number of parameters.

Goldberg [5] used GAs in this manner as early as 1989. It is easy to use and
is therefore rather popular (e.g. [2].)

In another approach, GAs are used to optimize the structure of the network
[3, 6, 7]. Then another algorithm such as a learning algorithm optimizes the scalar
parameters for each structure. This method is time consuming since for each step
in the structure algorithm we have to perform a complete optimization on the
scalar parameters. Moreover the fitness associated to a specific structure strongly
depends on the optimization algorithm used to compute the weights.

To overcome the limits of these approaches, “integrative” GAs have been
proposed. The idea is to optimize simultaneously the structure and the weights
of the network. The main problem is then the encoding of the chromosome. Two
different solutions exist: the “direct encoding” scheme, where the structure and
the weights are directly encoded in the same string; and the “indirect encoding”
scheme, where the chromosome contains generative instructions used to build
the network.

The direct encoding method was used successfully in several works (e.g.
[4, 8]) with variable-length chromosomes. But the encoding introduces difficulties
in creating offspring from parents1. One solution is to use species, where each

1 Chromosomes are typically made of a structural part and a parameter part. Since
the size of the parameter sequence depends on the values encoded in the structural
sequence, the crossover operator often doesn’t make sense.

Simultaneous Optimization of Weights and Structure of an RBF NN 51

species represent networks with the same structure. Since genetic exchange may
not be possible between species, such an algorithm is closely related to and has
many of the problems of two-phases optimization.

The direct encoding scheme also suffers from the “permutation problem”2

that leads to the failure of the crossover. Some work has been done on this
problem [9] but extra computations on the individuals, such as reordering the
genes on the chromosome or ignoring duplicated genes, are required.

On the other hand, the indirect encoding scheme (see [3] for a review) is based
on generative strategies: It doesn’t directly encode the network but rather how
to construct it from a seed. Generative strategies can be based on a grammar
with a seed and rules or cellular growth, with instructions to add neurons and
edges from one progenitor cell.

At first glance, this scheme seems to be better than direct encoding. However,
much of the work has been done on simplified networks, such as binary weighted
networks. Moreover mutations have counter-intuitive effects in these systems and
the fitness landscape can be much more complicated than in a simple GA.

3 The RBF-Gene Model

In this context, we have developed an evolutionary algorithm based on GAs
whose main goal is to optimize both the structure and the weights of a feed-
forward RBF neural network. Our central idea is to build a chromosome in which
each gene is an atomic entity that can be combined to the others to produce the
phenotype (i.e. the RBF NN.) In order to avoid the difficulties encountered by
generative approach, the product of one particular gene must not depend on the
values of the other ones, nor on their relative positions along the chromosome.

Moreover, in order to avoid the “direct encoding” problem, we need to forbid
any hierarchy between the genes. In other words, the genes encoded onto the
chromosome must be homogeneous, i.e. they all code for the same kind of “basic
block” of the answer.

3.1 Principles

This idea of homogeneous units is partly inspired by molecular biology and par-
ticularly by the encoding of the proteins on the chromosome. In biology, the
translation process is only based on local rules: promoters, terminators, Shine-
Dalgarno sequences, start/stop codons and so on. Consequently, adding, deleting
or changing a gene (i.e. a protein) will have no consequences on the other pro-
teins: The effect will only be visible at the global, phenotypic level. We wanted
to have the same property for our algorithm as we wanted to make structural
changes easy by adding, deleting or removing neurons or connections without
changing the entire chromosome.

2 The same genes are encoded in a different order in two individuals and so the one-point
crossover leads to individuals without a special gene or with two copies of it.

52 V. Lefort et al.

In the RBF-Gene model, our basic block will be a “kernel”: that is a complete
hidden neuron together with all its numeric parameters, namely the mean and
the standard deviation of the Gaussian, and the output weight.

Each kernel will be encoded on the chromosome as a “gene”; so the number
of genes will indicate the number of kernels. In order to allow all the possible
structures, we have to allow a variable number of kernels, i.e. a variable number
of genes encoded onto the chromosome. The simplest way to do it is to have a
variable-length chromosome.

As in biology, our genes will be located on the chromosome using purely
local rules. In particular, we include two special sub-sequences indicating the
beginning and the end of each gene. The chromosome is then a succession of
coding and non-coding sequences of different size and purely local rules are
required to decode it: if a coding sequence appears or disappears elsewhere in
the genome, there will be no influence at all on the present genes. Some work
has been done showing the interest of variable length chromosome and the use
of coding and non-coding sequences, for instance [10, 11, 12].

Since all the kernels are equivalent, the order or the position of the corre-
sponding gene on the chromosome doesn’t matter and the permutation problem
vanishes. Moreover, this property enables us to introduce rearrangements (i.e
large scale mutation operators) that will help avoiding local optima by signifi-
cantly changing the genetic code. Specifically, we will show that the sequence of
copy-and-edit used by natural evolution of genes can be used by the RBF-Gene
algorithm as well.

To create the next generation, we need to compute the fitness of each individ-
ual. This is done in three steps : First, using special sequences, we find the genes
on the chromosome; second, using a genetic code, we extract all the parameters
of the corresponding kernel; third, as we now have all the hidden neurons and
their links, we construct the NN and test it on the dataset.

Once all the individuals are evaluated, we use a standard evolutionary process
to compute the next generation. For the recombination/mutation step, we in-
troduce rearrangement operators that change the structure of the chromosome.
These operators modify the chromosome on a large scale independently of the
nature of the region (coding or non-coding sequence).

3.2 Encoding

In the RBF-Gene algorithm, each gene encodes for the parameters of a hidden
neuron: its mean vector μ and its standard deviation σ. Moreover, it also encodes
for the output links wi. So, if we have n input values and m output weights, we
have n + m + 1 real values to define for each neuron (n for the mean vector, 1
for the standard deviation and m for the output weights).

The simplest way to encode a value onto a chromosome is to use a binary
encoding. So we need a “0” base and a “1” base for each parameter. This gives us
an artificial genetic code: Our chromosome will be a string of characters (A, B,
C. . .) and each parametric value has two characters associated with: one for the
“0” and one for the “1”. As we want a homogeneous chromosome, using purely

Simultaneous Optimization of Weights and Structure of an RBF NN 53

local signals to detect genes, we add two special characters for the start and the
stop3. So our chromosome is a variable length string built with a 2(n+m+1)+2
character alphabet.

Since we have a homogeneous chromosome, there are no special regions on
the chromosome or on the gene. The different characters are mixed together at
random (i.e. the parameters are not encoded sequentially). In order to compute
a parameter, we only have to extract the corresponding characters: thanks to
the genetic code, the mixed character string (the gene) is converted into three
ordered binary strings (one per parameter). Each of them is then transformed
into a numerical value using a Gray code [13].

One of the major advantages of our model is that gene’s length is no longer
fixed: it only depends on the relative position of a start character and the next
stop character. Thus the number of bits per parameter is not fixed at all. This
overcomes a classical drawback of binary encoding in GAs since the precision
of each parameter is able to evolve by simply modifying the length of the gene.
Consequently, the algorithm is able to generate rough solutions at first, with
a small number of kernels or with numeric values of low precision. It can then
progressively refine the input/output mapping by either adding new kernels or
enhancing the precision of existing ones.

Fig. 1. A simple example of the mapping from the chromosome to the neurons. Here
we only have one input value (n = 1) and one output value (m = 1). Thus the genetic
code is composed of 2 + 2(1 + 1 + 1) = 8 letters.

3 Of course, we can find start signals inside a gene or stop signals between genes. In
such a case they are ignored.

54 V. Lefort et al.

The overall translation algorithm can be summarized as:

1. Find the genes using the alphabetic start and stop signals
2. For each gene

(a) Extract each parameter sequence using the “genetic” code translation
(b) Decode each parameter using a variable-length Gray code
(c) Build the associated Gaussian kernel K

3. Construct the neural network
4. Evaluate the individual on the data

A simple example of the first two steps is shown in figure 1.

3.3 Evolution

Our chromosomes are homogeneous: they are a simple string of characters. More-
over the structure of the chromosome is free to evolve without any influence on
the phenotype: a gene can move from one locus to an other or two genes can be
swapped. So the chromosome length can vary and so does the number of genes
and we have more biologically inspired operators available to us than the two
classic ones: point mutation and crossover.

Fig. 2. A schematic view of the different operators

To create the next generation, we use two types of operators: first, the re-
combination operator if needed, and then the mutation operators. The selection
of the fittest is done by a roulette-wheel based on the rank4.

The recombination operator used here is a classic one-point crossover and the
crossing point is chosen randomly. The probability of using it can vary between
0% for clonal reproduction to 100% for sexual recombination.

4 However, the RBF-Gene algorithm can be used with any selection operator without
loss of its properties.

Simultaneous Optimization of Weights and Structure of an RBF NN 55

We have two families of mutation operators (see figure 2):

– Local operators: They modify only one base. As the structure can change, we
can use the traditional switch operator but also the local insertion or deletion.

– Large operators (rearrangements): They modify the global structure either
by translocation, which move one part elsewhere on the chromosome; dupli-
cation, which copy and paste a sequence elsewhere; or large deletion, which
erase a part of the chromosome.

Notice that the local mutation rates are given per base while the rearrange-
ments rates are given per chromosome. Thus, the mutation effect remains con-
stant whatever the genome size: since the “cut and paste” points are chosen
randomly, the average number of bases affected by one rearrangement directly
depends on the genome size [14].

The structure of the chromosome can then change and genes can be added,
deleted or moved along the genome. So, the algorithm can adapt:

– the complexity of the solution by changing the number of genes
– the local precision of each parameter by changing the number of bases

in each individual gene
– the structure of the genetic sequence by changing the order of the genes

or the length of the non-coding sequences. It can be seen as the evolution
of the robustness and the evolvability of the solution: the algorithm can
change the structure in order to resist best to deleterious mutations or to
help evolution to find optima more quickly.

4 Simulations and Results

In order to illustrate the behavior of the algorithm, we will first present results
on a simple toy problem (the 2D sine wave, a R

2 → R problem). Then, we will
present a real regression problem, the Boston dataset (a R

13 → R problem), and
compare our results with other results on the same benchmark5.

4.1 2D Sine Wave: Graphical Results

The 2D sine wave is a straightforward problem which is interesting because the
results can easily be visualized. The goal is to approximate the curve:

y(x) = 0.8sin(
x1

4
)sin(

x2

2
), x1 ∈ [0; 10], x2 ∈ [−5; 5]

This test has been proposed by Orr [17] and we use the same protocol for
our experiment. We generate a training set of 200 patterns sampled at random.
We add a normally-distributed noise with σ = 0.1 and zero mean. The test
set contains 400 noiseless samples arranged as a 20*20 grid covering the input
ranges. The fitness used by the algorithm is the total squared error (SE) on the
5 The algorithm has been tested on other datasets as well [15, 16]: the sin(12x) prob-

lem, a R → R problem or the abalone dataset, a R
9 → R problem.

56 V. Lefort et al.

learning set (the fitness does not depend on the genetic parameters like the size
or the number of genes). The test set, independent from the training set, is used
to evaluate the generality of the solution as we want to fit the 2D sine curve at
all points, not just at the training points.

We have done 5 runs of 5000 generations with the following parameters:

– Population size: 100 individuals of initially 200 random bases
– Local mutation rates: 5e − 4 per base
– Rearrangements rates: 0.05 per genome
– Crossover rate: 0.6 to create an offspring from two parents (and so 0.4 from

one parent)

Figure 3 summarizes some indicators of evolution: the fitness (total squared
error) on the training set and the test set, the size and the number of neurons
at the 5000th generation for the best individual of each run. The training fitness
ranges from 1.7762 to 2.1736, the test fitness from 1.0499 to 1.9613, the size
from 614 characters to 1342 and the number of neurons from 8 to 15. However,
beyond the given results, this problem is of low enough dimension to see the
structure of the proposed solution.

Mean Std. dev.
Learning fitness 1.902 0.156
Test fitness 1.432 0.339
Size 1066.0 276.6
Nb. of neurons 11.2 2.6

Fig. 3. Statistical results and indicators on the 2D Sine Wave problem for the best
individual of each simulation after 5000 generations

The figure 4 shows the original points, the final surface and the different
Gaussian functions. Each function is equivalent to a neuron. The individual
shown is the best individual after 5000 generations.

4.2 The Boston Dataset

In order to be able to compare the performance of the RBF-Gene algorithm
with other models, we have performed experiments on the Boston dataset. This
dataset is a well-known benchmark that can be downloaded on the UCI Machine
Learning Repository [18]. It is a real dataset made by the U.S Census Service
concerning housing in the area of Boston.

There are 13 inputs and 1 output. Since the inputs have different dimension-
ality, we have normalized them before applying the algorithm (mean of 0 and
standard deviation of 1). The output is between 0 and 50 and we have kept it
unchanged in order to compare our results. There are 506 points in the dataset,
and no data is missing.

We have done 25 simulations by set of parameters using different seeds and/or
different partitions of the data (keeping a ratio of 5 learning points for 1 valida-
tion point). The fitness function used by the algorithm is the mean square error

Simultaneous Optimization of Weights and Structure of an RBF NN 57

(a) (b)

(c)

Fig. 4. The target surface and one generated individual after 5000 generations: (a) the
desired curve and the training points; (b) one individual from the last generation; (c)
the different Gaussian functions of the individual. Note that the noise in the data is
partly extracted by the algorithm (kernel nb. 3).

(MSE) on the training set and we compare our results using the MSE on the
validation set. The parameters are the same than in the 2D sine wave, save that
the local mutation rates is 1e − 4 per base here.

58 V. Lefort et al.

Mean Std. dev. Median
Learning fitness 13.41 3.92 13.06
Validation fitness 16.70 4.59 16.60
Nb. of neurons 29.2 39.2 18.0

Fig. 5. Statistical results and indicators on the Boston dataset for the best individual
of each simulation after 5000 generations

Learning fitness Validation fitness Nb. of neurons
Minimum 7.35 10.19 4
Maximum 22.21 27.48 178

Fig. 6. Minimum and maximum values obtained by the best individual of each simu-
lation after 5000 generations

Figure 5 summarizes our results on the dataset. We can compare them with
[19] in which different methods are tested. We see that we have similar results
to the best of the tested methods. However, since Madigan et al. don’t provide
enough statistical information to run a statistical test, we cannot make compar-
ative claims with any certainty. Indeed, we have an average MSE of 16.70± 4.59
(best individual: 10.19) while the results in [19] range from 14.1 for the GBM
two-way method to 25.8 for the Stagewise method.

Figure 6 shows the minimum and maximum value of each of learning fitness,
validation fitness and number of neurons. When the standard deviation on the
number of kernels is more than the mean, it is because we have a highly skewed
distribution. 2 simulations have more than 100 kernels (126 and 178 respectively)
while the other ones all have less than 60 kernels.

Fig. 7. Average fitness and best individual: the learning fitness is in black and the
validation fitness in gray

Simultaneous Optimization of Weights and Structure of an RBF NN 59

Figure 7 shows the evolution of the fitness over the course of the runs (average
fitness and the evolution of the fitnesses for the individual with the best vali-
dation fitness). As we can see, there is no over-learning as the validation fitness
is still decreasing and the gap between the learning fitness and the validation
fitness remains slight.

Moreover, during evolution, the structure of the genome changes and the
number of genes increases progressively from 1 at the first generation to about
30 in the last generation. Of course, while the number of genes increases, so does
the genome size (from 200 bases initially to a median size of about 6000 bases)
but we also observe that the coding proportion (proportion of coding sequences
on the genome) grows from about 20% to 60% without any hard-coded limit to
the genome size.

5 Discussion and Future Works

The preliminary results we have obtained with the RBF-Gene algorithm are very
encouraging. Quantitatively the algorithm performance is quite good. Quali-
tatively, the chromosome structure obviously evolves during the evolutionary
process thus showing a genuine simultaneous evolution of the neural network
structure and the scalar parameters.

However, more work has to be done. We would like to study the influence
of different parameters such as the mutations rates. A better understanding of
the evolution of the genome structure would be quite instructive, especially on
the chromosome size, the individual gene size, and the genes’ order. This work
is in progress; early results suggest that the algorithm is very robust – that is it
gives similar results over a wide range of parameters. We are also studying the
possibility of using a real code instead of the binary Gray code for the parameter
encoding.

References

1. Haykin, S.: Neural Networks - A Comprehensive Foundation. 2nd edn. Prentice
Hall (1999)

2. Blanco, A., Delgado, M., Pegalajar, M.: A real-coded genetic algorithm for training
recurrent neural networks. Neural Networks 14 (2001) 93–105

3. Kuşçu, I., Thornton, C.: Design of artificial neural networks using genetic algo-
rithms: review and prospect. Technical Report 319, Cognitive and Computing
Sciences, University of Sussex, Falmer, Brighton, Sussex, UK (1994)

4. Arotaritei, D., Negoita, M.G.: Optimization of Recurrent NN by GA with Variable
Length Genotype. LNAI (Springer-Verlag) AI 2002 (2002) 681–692

5. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley (1989)

6. MacLeod, C., Maxwell, G.M.: Incremental Evolution in ANNs: Neural Nets which
Grow. Artificial Intelligence Review 16 (2001) 201–224

7. Barrios, D., Manrique, D., Plaza, R.M., Juan, R.: An Algebraic Model for Gener-
ating and Adapting Neural Networks by Means of Optimization Methods. Annals
of Mathematics and Artificial Intelligence 33 (2001) 93–111

60 V. Lefort et al.

8. Cliff, D., Harvey, I., Husbands, P.: Incremental evolution of neural network ar-
chitectures for adaptive behaviour. Technical Report Cognitive Science Research
Paper CSRP256, University of Sussex - School of Cognitive and Computing Sci-
ence, Brighton BN1 9QH, England, UK (1992)

9. Thierens, D.: Non-Redundant Genetic Coding of Neural Networks. In: Interna-
tional Conference on Evolutionary Computation. (1996) 571–575

10. Levenick, J.R.: Inserting introns improves genetic algorithm success rate: Taking
a cue from biology. In Belew, R., Booker, L., eds.: Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, San Mateo, CA, Morgan Kaufman
(1991) 123–127

11. Wu, A.S., Lindsay, R.K.: A survey of intron research in genetics. In Voigt, H.M.,
Ebeling, W., Ingo, R., Hans-Paul, S., eds.: Parallel Problem Solving From Nature
IV. Proceedings of the International Conference on Evolutionary Computation.
Volume 1141., Berlin, Germany, Springer-Verlag (1996) 101–110

12. Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting
more genetics into genetic algorithms. Evolutionary Computation 6 (1998) 387–410

13. Whitley, D.L., Barbulescu, L., Watson, J.P.: Local Search and High Precision Gray
codes: convergence Results and Neighborhoods. (2000)

14. Knibbe, C., Beslon, G., Lefort, V., Chaudier, F., Fayard, J.: Self-adaptation of
Genome Size in Artificial Organisms. In Capcarrere, M.S., al., eds.: Advances in
Artificial Life, Proceedings of the 8th European Conference ECAL 2005. Volume
3630 of Lecture Note in Artificial Life (LNAI)., Springer-Verlag (2005) 423–432

15. Lefort, V., Knibbe, C., Beslon, G., Favrel, J.: The RBF-Gene Model. In: Proceed-
ings of GECCO 04, Late Breaking Papers. (2004)

16. Lefort, V., Knibbe, C., Beslon, G., Favrel, J.: A bio-inspired genetic algorithm
with a self-organizing genome: The RBF-Gene Model. In: Proceedings of GECCO
04. Lecture Notes in Computer Science, Springer-Verlag (2004)

17. Orr, M.J.L., Hallam, J., Takezawa, K., Murray, A.F., Ninomiya, S., Oide, M.,
Leonard, T.: Combining Regression Trees and Radial Basis Function Networks.
International Journal of Neural Systems 10 (2000) 453–465

18. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
19. Madigan, D., Ridgeway, G.: Discussion of ”Least Angle Regression” by Efron et

al. The Annals of Statistics 32 (2004) 465–469

An Exponential Representation in the API
Algorithm for Hidden Markov Models Training

Sébastien Aupetit1, Nicolas Monmarché1, Mohamed Slimane1,
and Pierre Liardet2

1 Université François-Rabelais de Tours, Laboratoire d’Informatique,
Polytech’Tours, 64, Av Jean Portalis, Tours 37200, France

{aupetit, monmarche, slimane}@univ-tours.fr
2 Université de Provence, CMI,

Laboratoire ATP, UMR-CNRS 6632,
39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France

liardet@cmi.univ-mrs.fr

Abstract. In this paper, we show how an efficient ant based algorithm,
called API and initially designed to perform real parameter optimiza-
tion, can be adapted to the difficult problem of Hidden Markov Models
training. To this aim, a transformation of the search space that pre-
serves API’s vectorial moves is introduced. Experiments are conducted
with various temporal series extracted from images.

1 Introduction

The pattern recognition domain involves a wide class of problems which often
require to learn and recognize temporal data. To perform this task, many various
tools are available such as hidden Markov models (HMM). These statistical tools
allow to model almost all temporal data so complex they are. They have been
applied successfully in various research domains like speech or image recognition,
but they suffer of a great disadvantage: the training problem is not completely
solved. Indeed, there are only automatic training procedures that converge to
local optima according to the training criterion. In some cases, local optima can
be used with success while global optimum could achieve better recognition.
That is precisely the question we are concerned in: finding the best or at least a
good optimum for the training task. In the literature, many researches have been
conducted to tackle this problem. Simulated annealing [1], Tabu search [2] and
genetic algorithm [3, 4] have been proposed. These methods are often considered
to be useful to learn HMMs but they have not been extensively benchmarked.
However, those metaheuristics have been constructed to optimize discrete prob-
lems, while HMMs training mainly concerns problems with continuous parame-
ters. So that, we may expect that continuous metaheuristics could provide better
results.

A subfamily of these methods concerns artificial ant-based algorithms. Most
of these algorithms require discrete search spaces and are applied to combinato-
rial problems. Recently, a new ant algorithm has been introduced in [5]: the API

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 61–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 S. Aupetit et al.

algorithm, which is inspired from the foraging behavior of Pachycondyla apicalis
ants. This algorithm is independent, in its general description, of the search
space and consequently can be easily adapted to a continuous search space. Our
goal is to modify the API algorithm in order to apply it to HMMs training task.

This paper is organized as follows: the first part recalls basic definitions
concerning usual hidden Markov models, the second part presents the API algo-
rithm, and the third part is devoted to its adaptation to the training of HMMs.
In the last part, experimental results obtained from image data are presented
and discussed.

2 Hidden Markov Models

HMMs are essentially stochastic finite state automata that extend Markov mod-
els by associating to each state a random output variable which produces the
observed outcomes. They are statistical models designed for learning, recogni-
tion and analysis of temporal data. They are involved in numerous domains. For
instance, they are used intensively for speech recognition and synthesis, and even
in biology. A good review including many references can be found in [6]. Several
kinds of HMMs have been proposed such as multidimensional HMMs with inde-
pendent processes or hierarchical HMMs [7] to tackle specificities of the problem
to solve. In this paper, we only consider first order HMMs in discrete time and
discrete symbols.

Recall that a Markov model is a stochastic process consisting of a set S =
{S1, S2, . . . , SN} of N states and a S-valued Markov chain (qt(·))t≥0 of order 1,
that is to say, for all t ≥ 1 the Markov property

P(qt = st|q1 = s1, . . . , qt−1 = st−1) = P(qt = st|qt−1 = st−1) st ∈ S (1)

holds. A Markov chain is thus defined by a state transition matrix A = (aij)
with 1 ≤ i ≤ N and 1 ≤ j ≤ N where aij is the transition probability P(qt =
Sj |qt−1 = Si). For a stationary model, this probability depends neither on t
nor on states prior to qt. In addition to the stochastic matrix A, initial state
probabilities (πi) are given, where πi is the probability that the chain starts from
the state Si i.e., πi = P(q0 = Si). This model is useful when the current state
is known explicitly. However, in many cases, states Sj are not directly observed
but they emit symbols randomly from a given alphabet V = {V1, V2, . . . , VM}
according to emission probabilities bj(k). Let (ot)t≥1 denote the sequence of
observed random variables. By definition bj(k) = P(ot = Vk|qt = Sj), with
1 ≤ j ≤ N and 1 ≤ k ≤ M . Moreover, the random variables ot are mutually
independent and independent of the qt′ for t �= t′. Finally, an HMM is thus
defined by the triplet λ = (A, B, Π) with B = (bj(k)) and will be denoted by
HMM(λ). For our purpose, the parameter λ will be viewed as a row vector of
row vectors. More explicitly

λ = (A1, . . . , AN , B1, . . . , BN , (π1, . . . , πN)) (2)

An Exponential Representation in the API Algorithm for HMM Training 63

where Ai = (ai1, . . . , aiN) and Bk = (bk(1), . . . , bk(M)) are row vectors respec-
tively in IRN and IRM with non negative entries. Notice that here IRk denotes
the space of k-dimensional real row vectors, equipped with the Euclidean norm
|| · ||2. Hence, λ belongs to the vector space (IRN)N × (IRM)N × IRN identified to
IRN(N+M+1). The set of all possible values of λ is the subset Λ of [0, 1]N(N+M+1)

defined by

N∑
j=1

πj = 1,
N∑

j=1

aij = 1 ,
M∑

j=1

bi(j) = 1 , (1 ≤ i ≤ N) . (3)

For a given λ ∈ Λ, let Pλ be the probability of the underlying probability space
related to HMM(λ), and suppose that the sequence O = (O1, . . . , OT) ∈ V T

is observed through HMM(λ). The likelihood LO(λ) that the model HMM(λ)
generates O is by definition

LO(λ) =
∑

s∈ST

Pλ(O, s) (4)

where Pλ(O, s) is set for Pλ(o1 = O1, . . . , oT = OT , q1 = s1, . . . , qT = sT). From
the independent assumption

Pλ(O, s) = πs1

T−1∏
t=1

ast,st+1

T∏
t=1

bst(Ot) = Pλ(O|s)Pλ((q1, . . . , qT) = s) (5)

is the probability, under HMM(λ), to observe O when the successive hidden
states are s = (s1, . . . , sT). Now, four basic problems arise if we want to apply
HMMs efficiently:

1. Evaluation: given a series of T observations O = (O1, . . . , OT) and a model
HMM(λ) with N hidden states, how to evaluate the likelihood LO(λ)? The
solution is given by the Forward/Backward algorithm [8], which computes
this value in polynomial time, precisely in complexity θ(N2T).

2. Most probable path: the Viterbi algorithm can find the sequence s =
(s1, . . . , sT) of hidden states which have the highest probability of generating
the series O of observations [9]. This algorithm has a complexity θ(N2T).

3. Optimal adaptation: this is the problem of learning a HMM from a series
of observations O. For a given number of hidden states N , how to find a
model λ that maximizes LO(λ)? The Baum-Welch algorithm [10], denoted
BW for short, provides a method that iteratively improves an initial model.
Notice that BW suffers from drawbacks, inherent to gradient-like algorithm:
it may converge to critical points of LO(λ) like local minima or inflection
points. It is also sensitive to the chosen initial model. The complexity of this
algorithm is θ(TN(N + M)).

4. Optimal number of hidden states: how many hidden states N we need
for a given HMM(λ) in order to maximize LO(λ)? This problem is of course
linked to the previous one and remains difficult. Most of learning algorithms,

64 S. Aupetit et al.

like BW, need to have this number fixed. In this work, we consider an arbi-
trary fixed number of hidden states since our problem is only to find optimum
of LO(λ), knowing N .

To explain empirically the difficulty of HMMs training, it is enough to notice
that the likelihood LO(λ) is a polynomial in N(N + M + 1) variables and of
degree ≤ 2T . However, stochastic constraints reduce the search space to the set
Λ, that reduces the number of free parameters to N2 + N(M − 1) − 1. As we
can notice, the likelihood is a high degree polynomial and thus can have several
local optima. This is the reason why it is very difficult to find a global optimum.
The only simple way to find a solution near the global optimum is then to use
metaheuristics.

3 The API Algorithm

3.1 Ant Algorithms

Ants have recently inspired new researches in computer science and many suc-
cessful works deal with combinatorial optimization (see the review in [11]). In
most of cases, a global memory is used to guide the search agents toward promis-
ing solutions. This is achieved in the same way that real ants spread volatile
substances, known as pheromones, on their path leading to food sources. In our
case, artificial pheromones are real values which are used with a positive feed-
back mechanism that reinforce promising solutions. Such a mechanism is often
described as stigmergy [12]. A very successful metaheuristic, called ACO (for
Ant Colony Optimization), have been applied to a large variety of optimization
problems [13] such as, but far from limited to, the Traveling Salesman Problem
[14, 15], the Quadratic Assignment Problem [16],or scheduling problems [17, 18].

Whereas many of ant algorithms have discrete search spaces, a little num-
ber of ant inspired methods can be found where continuous search spaces are
used [19, 20, 21]. But, as we shall see in the following, not all of ant species use
pheromones and so, in opposite to all optimization heuristics cited above, we do
not need to use artificial pheromones to build ant algorithms.

3.2 The Foraging Strategy of Pachycondyla apicalis Ants

Pachycondyla apicalis [22] ants have two main characteristics regarding their
foraging behavior: they memorize explorations of hunting sites around their nest
and they systematically go back to the last site where a prey was found. More-
over the nest is regularly moved and represents a central point from which ants
perform their explorations. When the location of the nest is changed, the ants
are able to perform recruitments: an ant brings one of its colleagues to the new
nest. This behavior is called tandem-running recruitment. Notice that these ants
do not use pheromones to find their path in their natural environment, but they
use visual landmarks instead. Since these ants demonstrate good performances
in their prey research, they furnish a relevant model (called API) to solve opti-
mization problems [23].

An Exponential Representation in the API Algorithm for HMM Training 65

3.3 The API Algorithm for Continuous Search Spaces

The API algorithm is directly inspired by the foraging behavior of Pachycondyla
apicalis ants. We have adapted the natural behavior of these ants to the gen-
eral problem of optimization: a hunting site corresponds to a point in the so-
lution space and an ant performs a prey capture when it succeeds to improve
the value of the evaluation function defined on hunting sites. Hence, more ants
improve their memorized hunting sites, better will be the results. This general
principle can be applied with various search spaces like searching for neural
networks weights or TSP [24] and for example, in [23], the results obtained
by API on standard multimodal functions is compared against random hill
climbing and a genetic algorithm. A previous model of Pachycondyla apicalis
foraging behavior has been proposed in [25] and was focusing on the probabil-
ities that one ant would leave its nest to search preys and about the learning
process involved. However, our model does not take into account this learning
process.

To apply the API algorithm on a search space S, we only need to define two
operators which are random generators:

– Orand(S), which generates a random point in S according to a uniform dis-
tribution. This operator is used to create a new nest location.

– Oexplo(s, Ai), which generates a point s′ in the neighborhood of s according
to the amplitude Ai of the ant ai. This operator is used to create new hunting
sites around the nest N (with Ai = Ai

site and s = N) and to perform an
exploration (with Ai = Ai

local and s = si
j , where si

j is a hunting site of ant
ai). If the new point s′ is a better solution than s then the new hunting
site position becomes s′ (si

j ← s′). This improvement corresponds to a prey
discovery.

Algorithm 1 describes the main principles of API algorithm seeking the global
minimum of a function f . This algorithm is sequential but it can be easily
transformed into a parallel algorithm where each ant is assigned to a different
processor. The search space is Λ (see supra), which is a product of convex subsets,
and we introduce the following parameters:

– m, the number of ants. The Pachycondyla apicalis colonies being small (from
40 to 100 workers) we often use a small number of ants.

– Tmax, the number of iterations of the algorithm. A large value of Tmax gives
more chances to find better solutions.

– Tnest, the number of times one ant leaves its nest to search for a prey in
between two nest moves. Tnest can also be fixed automatically to the value
Tnest = m ∗ 2 × (P i

local + 1) × pi in order to give each ant enough iterations
to explore all the sites in its memory.

– for each ant ai:
• pi, the number of hunting sites memorized by ant ai.
• P i

local, the patience of the ant, i.e. the number of unsuccessful explo-
rations of a hunting site before its deletion of ant’s memory.

66 S. Aupetit et al.

• Ai
site the hunting site creation amplitude.

• Ai
local, the hunting site exploration amplitude.

These two last parameters are relative to the search space size.

—– Algorithm 1. Main API algorithm —–

1: Choose the initial nest location: N ← Orand(S)
2: Initialize each ant’s memory Mi: ∀ i ∈ {1, . . . , m} , Mi = ∅
3: for t = 1 to Tmax do
4: for all ant ai do
5: {Ant ai has less than pi sites in memory ?}
6: if card(Mi) < pi then
7: Create a new site in the neighborhood of N : s ← Oexplo(N , Ai

site)
8: Explore this new site: s′ ← Oexplo(s, Ai

local)
9: if f(s′) < f(s) then

10: s ← s′

11: end if
12: Mi ← Mi ∪ {s}
13: else
14: if the previous exploration performed by ai was successful then
15: Explore the same site s;
16: else
17: Explore a randomly selected site s (among the pi sites in Mi)
18: end if
19: s′ ← Oexplo(s, Ai

local)
20: {successful exploration}
21: if f(s′) < f(s) then
22: Mi ← Mi \ ({s} ∪ {s′})
23: else
24: if ai has explored its site s unsuccessfully more than P i

local consec-
utive times then

25: Mi ← Mi \ {s} {Remove site from ai’s memory}
26: end if
27: end if
28: end if
29: end for
30: if the nest is moved then
31: Change the nest location to the best solution found and Reset ants’

memories
32: end if
33: end for

4 Learning HMMs with API Algorithm

In a previous study, we have experimented the hybridization of API with HMMs
[26] in order to solve continuous optimization problems. HMMs were used to

An Exponential Representation in the API Algorithm for HMM Training 67

generate binary strings and ants were used to improve HMMs. With the present
problem, ants are introduced to perform an exploration of HMMs’ search space
Λ corresponding to the set of all possible HMMs for a fixed number of hidden
states. Nest and locations of hunting sites are support of HMMs and ants perform
moves in this space. The objective is now to maximize the map λ → LO(λ). To
adapt API to HMMs training, we need to introduce a suitable search space
representation.

In the present work, two natural operators Orand(SHMM) and Oexplo(λ, Ai)
are introduced by the way of a new linear representation of HMMs. In order to
define these operators, we first need some definitions and notations.

For a given dimension k, let 1k, denote the column vector in R
k with all

entries equal to 1 and let Ek be the quotient vector space R
k/R·1k. We denote

by ck : R
k → Ek the canonical map and define the so-called regularization map

rk : R
k → R

k by
rk(x)i = xi − max

j=1..k
xj (6)

where rk(x)i represents the i-th component of the vector rk(x). Obviously rk(x)
≡ x (mod R·1k) for all x ∈ R

k. We usually drop the index k if the reference to
the dimension k is obvious. The subset Ωk = r(Rk) is also the set of points in IRk

such that r(x) = x. In fact, Ωk is a cone with vertex 0 (the null vector), which
is the union of the faces of the k-dimensional polyhedron] − ∞, 0]k. The map
r(·) is the projection of IRk onto Ωk, parallel to the vector space R·1. In other
words, r(x) is the unique element in the intersection (x + R·1) ∩ Ωk. Moreover
r is one-to-one on Ωk. Consequently, there exists a bijection γk : Ek → Ωk

(also denoted simply by γ) determined by the relation r = γ ◦ c. We use γ(·)
to carry the vector structure of Ek to the cone Ωk. We obtain a vector space
(Ωk,⊕,�) where the addition law ⊕ and the scalar law � are respectively defined
by x ⊕ y = γ(c(x) + c(y)) (= r(x + y)) and t � x = γ(t · c(x)) (= r(t · x)). One
main interest in introducing the linear space (Ωk,⊕,�) is to be able to define
transformations on Ωk using linear operators.

Straightforward computations lead to the following properties of r:

(i) r ◦ r = r (in particular r(x) = x for any x ∈ Ωk),
(ii) r(r(u) + r(v)) = r(u + v),
(iii) r(t·u) = r(t·r(u)) and r(t·u) = t·r(u) if t ≥ 0,
(iv) r(u + t·1k) = r(u),

where u and v are any vectors in R
k, and t any real number. Let Qk be the set

of probability vectors {x ∈]0, 1]k;
∑k

i=1 xi = 1} and define the maps φk : IRk →
Qk, ψk : Qk → Ωk (or ψ, φ for short) by φ(x)i = exp xi/

∑
1≤j≤k exp xj and

ψ(x)i = log xi − max
j∈{1,...,k}

log xj .

Notice that Λ = (QN)N × (QM)N × QN . Consequently, we introduce the vector
spaces E = (EN)N × (EM)N × EN , Ω = (ΩN)N × (ΩM)N × ΩN and the maps
C : (IRN)N × (IRM)N × IRN → E, Γ : E → Ω, Φ : IRN2

× IRNM × IRN → Λ
and Ψ : Λ → Ω. By definition, C = (cN , . . . cN , cM , . . . , cM , cN) and similarly
for Γ , Φ and Ψ (the letter c being replaced by γ, φ, ψ respectively). In addition,

68 S. Aupetit et al.

let R : (IRN)N × (IRM)N × IRN → Ω be given by (rN , . . . rN , rM , . . . , rM , rN)
and remark that R is one-to-one on Λ with R((IRN)N × (IRM)N × IRN) = Ω.
From these definitions, we also derive that Γ is an isomorphism between E and
Ω verifying R = Γ ◦C. Moreover, Φ(x+y) = φ(x) for any x ∈ IRN(N+M+1) and
y ∈ IR·1N2 × IR·1NM × IR·1N , Φ◦R = Φ and, both Φ◦Ψ = Id|Λ , Ψ ◦Φ|Ω = Id|Ω .
Now, the map Ψ allows to identify the parameter λ = (A, B, Π) (in Λ) defining
HMM(λ) with Ψ(λ) in the vector space Ω (= Ψ(Λ)) and so, the representation
space for HMMs with N hidden states and M symbols is now EHMM = Ω.

We are ready to defined the API’s operators considered in our experiments.
The first one is

Orand(EHMM) = R
(
U
(
[−30, 0[N

2
×[−30, 0[NM×[−30, 0[N

))
(7)

where U(H) returns a uniformly random value in the box H . The next one is
given by

Oexplo(λ, Ai) = Φ
(
Ψ̃(λ) ⊕

(U([0, 1[)Ai

||W ||2
� W

))
(8)

where W = Orand(EHMM) (used independently of the previous one) is now the
direction of the ant’s exploration (we ensure that ||W ||2 > 0) and Ψ̃ is a mod-
ification of Ψ in order to deal with null probabilities. In our case, we choose
Ψ̃ = (ψ̃N2 , ψ̃NM , ψ̃N) such that, for any x ∈ Qk,

ψ̃k(x)i =

⎧⎨
⎩

log xi − max{ max
j∈{1,...,k}

log xj ,−100 } if xi > e−100

−100 − max{ max
j∈{1,...,k}

log xj ,−100 } otherwise. (9)

Notice that, even if null probabilities do not occur in theory, they may appear in
practice during computations, due to the numerical precision of the implemen-
tation.

An easier parameter setting strategy should be to choose ants’ parameters
identical for all ants (homogeneous case), but it is showed in [23] that, for numer-
ical optimization, best results are obtained with heterogeneous ants’ parameters
(heterogeneous API). In order to simplify ants’ parameter settings in this later
case, we introduce the following automatic settings:

– Ai
nest = 15i

m ;
– the amplitude of the local search is set to Ai

local = Ai
nest/10;

– The number of sites memorized by real ants being unknown, we arbitrarily
set the default number of sites memorized by each ant’s memory to pi = 2,
(1 ≤ i ≤ m).

This choice leads to an API algorithm that is more robust for a wider range of
problems. Finally, the classical Baum-Welch algorithm (BW) should be used to
locally improve models built by ants’ explorations. For this goal, BW is applied
at the final step, replacing Oexplo by OexploBW(λ, Ai) = BW(Oexplo(λ, Ai)).

An Exponential Representation in the API Algorithm for HMM Training 69

5 Experimental Study

For our experiments, we have chosen to do two iterations of the Baum-Welch
algorithm. We consider 10 ants (i.e., m = 10), 2 hunting sites (i.e., pi = 2) and
a local patience of 3 (i.e., P i

local = 3). We allow 1000 moves in the search space
so that Tmax = 1000/10 = 100 (each ant can build 100 HMMs) and the nest
patience is 20 (i.e., Tnest = 20).

As testbed, we consider series of observations built from a set of images using
JPEG encoding but details are omitted here: the only important thing to keep
in mind is that those series correspond to a real application of image recognition.
Images are extracted from [27]. The observations have different length (T) and
are encoded by various number of symbols (M). For the training, 11 hidden
states is a quite reasonable value.

To emphasize the interest of the API algorithm for HMMs training, we
compare it with a random search algorithm denoted by Random which consists
in generating randomly 1000 HMMs and returning the best one. The inter-
est of the hybridization with the Baum-Welch algorithm is exhibited by per-
forming a Random+BW algorithm which consists in randomly generating 1000
HMMs, followed by 2 iterations of Baum-Welch algorithm and then returning
the best model. The API algorithm is stated in four versions: two with homoge-
neous parameters, denoted as APIhomo and APIhomo+BW, and two with hetero-
geneous parameters, denoted as APIhete and APIhete+BW. Site amplitudes for

Table 1. Mean performance results in log-likelihood

Image T M Random Random+BW APIhomo APIhomo+BW APIhete APIhete+BW

1 400 16 -1043.75 -776.92 -1053.61 -699.67 -1041.74 -525.78
2 400 16 -1045.88 -776.78 -1063.75 -727.62 -1039.16 -575.60
3 400 16 -1067.61 -916.18 -1075.82 -872.18 -1071.30 -699.42
4 400 16 -1072.06 -927.36 -1075.74 -859.78 -1078.03 -649.35
1 400 32 -1340.36 -1040.92 -1347.66 -967.39 -1347.85 -728.64
2 400 32 -1343.27 -1061.93 -1362.36 -1008.18 -1349.06 -813.94
3 400 32 -1358.32 -1183.37 -1371.11 -1137.57 -1366.94 -939.58
4 400 32 -1357.70 -1191.59 -1372.87 -1132.08 -1364.61 -881.84
1 400 64 -1630.28 -1319.15 -1648.86 -1252.77 -1645.66 -975.68
2 400 64 -1633.48 -1319.21 -1650.49 -1263.06 -1647.22 -1038.66
3 400 64 -1642.02 -1451.16 -1656.34 -1403.15 -1652.02 -1177.02
4 400 64 -1644.36 -1458.69 -1657.52 -1398.58 -1655.37 -1117.29
1 2000 16 -5269.79 -3887.00 -5292.09 -3551.14 -5192.61 -2497.94
2 2000 16 -5259.94 -3926.22 -5314.93 -3700.36 -5283.02 -2911.64
3 2000 16 -5344.28 -4475.89 -5411.76 -4140.47 -5359.73 -3164.02
4 2000 16 -5359.13 -4541.35 -5396.17 -4224.90 -5362.49 -3241.26
1 2000 32 -6708.70 -5324.81 -6748.03 -4999.43 -6783.95 -3642.75
2 2000 32 -6719.60 -5377.93 -6794.59 -5141.07 -6790.99 -4122.03
3 2000 32 -6786.96 -5915.23 -6865.31 -5639.53 -6825.65 -4420.70
4 2000 32 -6802.65 -5988.95 -6844.56 -5715.88 -6837.17 -4472.57

70 S. Aupetit et al.

Table 2. Means cpu time utilization in second

T M Random Random+BW API API+BW

400 16 0.7 3 7 45
400 32 0.7 3 8 49
400 64 0.7 4 10 54
2000 16 1.6 30 32 390
2000 32 1.6 32 33 394

homogeneous versions are Ai
nest = 8.25 and Ai

local = 0.825. These constants
correspond to the averaged values of the corresponding site amplitudes in the
heterogeneous case. For each algorithm and each series of observations, we av-
erage the log-likelihood of best output models obtained with 15 runs.

Results are given in table 1 and 2. We notice that, algorithms which in-
volve Baum-Welch (BW) perform significantly better than the ones without
BW, strengthening the usefulness of the hybridization with BW. Moreover, ta-
ble 2 shows that BW also increases significantly the computing time. When BW
is not used, our experiments point out that the random search performs better
than API algorithms. This behavior seems to be surprising but is in accordance
with the fact that a uniform random search furnishes, in averaged, better results
than a directed search. This is due to the small number of iterations compared
with the search space size. However, notice that the heterogeneous API gives re-
sults which are better or equal than those obtained with the homogeneous API.
Notice that BW algorithm in both versions of API performs significantly better
than Random+BW and the heterogeneous API version performs much better than
the corresponding homogeneous version. Moreover, the parameter settings could
probably be improved. Also, we confirm the tendency observed in [5]: hetero-
geneous parameters improve results especially when the search space dimension
increases. To conclude, we can say that depending of the available computing
time, we can significantly improve the training. For fast training, we can use
Random. For better performance and reasonable computing time, we can use
Random+BW. For optimal training, we can use more computing time and use the
APIhete+BW algorithm.

6 Conclusion

In this paper, we have introduced a new application of the API algorithm for the
training of HMMs involving suitable search space representations. Two kinds of
parameter settings are considered: one is homogeneous, independent of the ants,
and the other one is heterogeneous.

To complete this approach, these algorithms are hybridized with the Baum-
Welch algorithm. Our experiments show that hybridized API algorithms out-
performs a straightforward random search associated to BW and the best
performances are obtained if we choose heterogeneous parameters in the API
algorithm.

An Exponential Representation in the API Algorithm for HMM Training 71

In future works, we plan to study more precisely the effect of parameter
settings and propose to compare such algorithms with other implementations
involving the operator Oexplo(λ, Ai) already used in other metaheuristics.

References

1. Douglas, B.P.: Training of hmm recognizers by simulated annealing. In: Proceed-
ings of ICASSP’85. (1985) 13–16

2. Chen, T.Y., Mei, X.D., Pan, J.S., Sun, S.H.: Optimization of HMM by the
tabu search algorithm. Journal of Information science and engineering 20 (2004)
949–957

3. Slimane, M., Venturini, G., Asselin de Beauville, J.P., Brouard, T., Brandeau,
A.: Optimizing hidden Markov models with a genetic algorithm. In: proceedings
of Artificial Evolution conference. Volume 1063 of Lecture Notes in Computer
Science., Springer Verlag (1996) 384–396

4. Slimane, M., Venturini, G., Asselin de Beauville, J.P., Brouard, T.: Hybrid genetic
learning of hidden markov models for time series prediction. Biomimetic approaches
in management science, Kluwer Academics (1998)

5. Monmarché, N., Venturini, G., Slimane, M.: On how Pachycondyla apicalis ants
suggest a new search algorithm. Future Generation Computer Systems 16 (2000)
937–946

6. Cappé, O.: Ten years of HMM. http://ww.tsi.enst.fr/̃cappe/docs/hmmbib.html
(2001)

7. Fine, S., Singer, Y., Tishby, N.: The Hierarchical Hidden Markov Model: Analysis
and applications. Machine Learning 32 (1998) 41–62

8. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of IEEE 77 (1989) 257–286

9. Forney, G.: The Viterbi algorithm. Proceedings of IEEE 61 (1973) 268–278
10. Baum, L., Petrie, T., Soules, G., Weiss, N.: A maximization technique occuring

in the statistical analysis of probabilistic functions of markov chains. Ann. Math.
Stat. 41 (1970) 164–171

11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

12. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stygmergy. Future
Generation Computer Systems 16 (2000) 851–871

13. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In Corne,
D., Dorigo, M., Glover, F., eds.: New Ideas in Optimisation. McGraw-Hill, London,
UK (1999) 11–32 Also available as Tech.Rep.IRIDIA/99-1, Université Libre de
Bruxelles, Belgium.

14. Dorigo, M., Gambardella, L.: Ant Colony Sytem: A cooperative learning approach
to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Compu-
tation 1 (1997) 53–66

15. Stützle, T., Hoos, H.: MAX − MIN Ant System and local search for the Trav-
eling Salesman Problem. In IEEE, ed.: Proceedings of the fourth International
Conference on Evolutionary Computation (ICEC), IEEE Press (1997) 308–313

16. Stützle, T., Dorigo, M.: ACO algorithms for the Quadratic Assignment Problem. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimisation. McGraw-Hill,
London, UK (1999) 33–50

72 S. Aupetit et al.

17. T’Kindt, V., Monmarché, N., Tercinet, F., Laügt, D.: An Ant Colony Optimization
algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European
Journal of Operational Research 142 (2002) 250–257

18. Ying, K.C., Liao, C.J.: An ant colony system for permutation flow-shop sequencing.
Computers & Operations Research 31 (2004) 791–801

19. Bilchev, G., Parmee, I.: The ant colony metaphor for searching continuons design
spaces. In Fogarty, T., ed.: XX. Volume 993 of Lecture Notes in Computer Science.
Springer Verlag (1995) 24–39

20. Li, S., Liu, Z.: General CAC approach using novel ant algorithm training based
neural network. In: Proceedings of the International Joint Conference on Neural
Networks. Volume 3. (1999) 1885–1888

21. Dréo, J., Siarry, P.: Continuous interacting ant colony algorithm based on dense
heterarchy. Future Generation Computer Systems (2004) In Press.

22. Fresneau, D.: Individual foraging and path fidelity in a ponerine ant. Insectes
Sociaux, Paris 32 (1985) 109–116

23. Monmarché, N., Venturini, G., Slimane, M.: On how Pachycondyla apicalis ants
suggest a new search algorithm. Future Generation Computer Systems 16 (2000)
937–946

24. Monmarché, N.: Algorithmes de fourmis artificielles : applications à la classification
et à l’optimisation. Thèse de doctorat, Laboratoire d’Informatique, Université de
Tours (2000)

25. Deneubourg, J., Goss, S., Pasteels, J., Fresneau, D., Lachaud, J.: Self-organization
mechanisms in ant societies (ii): learning in foraging and division of labor. In
Pasteels, J., Deneubourg, J., eds.: From individual to collective behavior in social
insects, Experientia supplementum. Volume 54. Bikhauser Verlag (1987) 177–196

26. Soukhal, A., Monmarché, N., Laügt, D., Slimane, M.: How hidden markov models
can help artificial ants to optimize. In: Proceedings of the Optimization by Building
and Using Probabilistic Models workshop, Genetic and Evolutionary Computation
Conference. (2001) 226–229

27. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face
identification. In: IEEE workshop on Applications of Computer Vision, Florida
(1994)

Memetic Algorithms for the MinLA Problem�

Eduardo Rodriguez-Tello1, Jin-Kao Hao1, and Jose Torres-Jimenez2

1 LERIA, Université d’Angers,
2 Boulevard Lavoisier, 49045 Angers, France

{ertello, hao}@info.univ-angers.fr
2 Mathematics Department, University of Guerrero,

54 Carlos E. Adame, 39650 Acapulco Guerrero, Mexico
jose.torres.jimenez@acm.org

Abstract. This paper presents a new Memetic Algorithm designed to
compute near optimal solutions for the MinLA problem. It incorporates
a highly specialized crossover operator, a fast MinLA heuristic used to
create the initial population and a local search operator based on a
fine tuned Simulated Annealing algorithm. Its performance is investi-
gated through extensive experimentation over well known benchmarks
and compared with other state-of-the-art algorithms.

Keywords: Memetic Algorithms, Linear Arrangement, Heuristics.

1 Introduction

Evolutionary algorithms (EAs), as general purpose optimization procedures,
have been successfully applied in a broad spectrum of areas in physics, chemistry,
engineering, management science, biology and computer science [22].

It is well recognized that it is essential to incorporate some form of domain
knowledge into EAs to arrive at highly effective search [1,4,10]. There are many
ways to achieve this, for example by the combination of EAs with other efficient
problem-dependent heuristics, or by using encodings and genetic operators that
are tailored to the problem to be solved. Memetic algorithms (MAs) follow such
an approach and have demonstrated recently to be very efficient [3,7,8,12,16,23].
Under different contexts and situations, MAs are also known as hybrid EAs or
genetic local searchers.

In this paper, we are interested in tackling with the use of MAs a well-known
combinatorial optimization problem: the Minimum Linear Arrangement prob-
lem (MinLA). Garey and Johnson have shown that finding the minimum linear
arrangement of a graph is NP-hard and the corresponding decision problem is
NP-complete [9]. MinLA was first stated by Harper [11]. His aim was to design
error-correcting codes with minimal average absolute errors on certain classes

� This work is supported by the CONACyT Mexico, the “Contrat Plan Etat Région”
project COM (2000-2006) as well as the Franco-Mexican Joint Lab in Computer
Science LAFMI (2005-2006).

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 73–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

of graphs. The MinLA problem arises also in other application areas like graph
drawing, VLSI layout, software diagram layout and job scheduling [5].

The MinLA problem can be stated formally as follows. Let G(V, E) be a
finite undirected graph, where V (|V | = n) defines the set of vertices and E ⊆
V × V = {{i, j}|i, j ∈ V } is the set of edges. Given a one-to-one function
ϕ : V → {1..n}, called a linear arrangement, the total edge length for G with
respect to arrangement ϕ is defined according to the equation 1.

LA(G, ϕ) =
∑

(u,v)∈E

|ϕ(u) − ϕ(v)| (1)

Then the MinLA problem consists in finding an arrangement ϕ for a given G so
that LA(G, ϕ) is minimized.

There exist polynomial time exact algorithms for some special cases of MinLA
such as trees, rooted trees, hypercubes, meshes, outerplanar graphs, and others
(see [5] for a detailed survey). However, MinLA is NP-hard for general graphs [9]
and for bipartite graphs [6]. Therefore, there is a need for heuristics to address
this problem in reasonable time. Among the reported algorithms are a) heuristics
especially developed for MinLA, such as the binary balanced decomposition tree
heuristic (DT) [2], the multi-scale algorithm (MS) [14] and the algebraic multi-
grid scheme (AMG) [21]; and b) metaheuristics such as Simulated Annealing
[17, 18, 19] and Genetic Algorithms [20].

This paper aims at developing a powerful Memetic Algorithm (MA) for find-
ing near optimum solutions for the MinLA problem. To achieve this, the new
algorithm, called MAMP (standing for Memetic Algorithm for the MinLA Prob-
lem), incorporates a highly specialized crossover operator, a fast MinLA heuristic
used to create the initial population and a local search operator based on a fine
tuned Simulated Annealing algorithm. The performance of MAMP is assessed
with a set of 21 benchmark instances taken from the literature. The computa-
tional results are reported and compared with previously published ones, showing
that our algorithm is able to improve on some previous best results.

The paper is organized as follows. Section 2 reviews some existing solution
procedures for the MinLA problem. Then, the different components of our MA
are presented in Section 3. Section 4 is dedicated to computational experiments
and comparisons with previous results. The last section summarizes the main
contributions of this research work.

2 Relevant Existing Procedures

Because of the importance of the MinLA problem, much research has been car-
ried out in developing effective heuristics for it. In this section, we give a brief
review of three representative algorithms which were used in our comparisons.

2.1 The SS+SA Heuristic

In 2001 Jordi Petit developed a heuristic for the MinLA problem, called SS+SA
[18,19]. It works as follows: First a global solution is obtained by using Spectral

Memetic Algorithms for the MinLA Problem 75

Sequencing (SS), a method originally proposed by Juvan and Mohar, which
is based on the computation of the Fiedler vector of G [13]. Then the re-
sulting arrangement is iteratively improved using a SA algorithm previously
reported in [17]. It performs local changes based on a special neighborhood dis-
tribution, called FlipN, that tends to favor moves with high probability to be
accepted.

The SS+SA algorithm proposed by Petit starts at an initial temperature
T0 = 10, at each Metropolis round r = 20n3/2 moves are generated. Then
the current temperature is decremented with the relation Tk = αTk−1, with
α = 0.95 until to reach a final temperature Tf = 0.2. The author claims that
these parameters were fixed based on some preliminary experiments.

The author makes a computational comparison of the SS procedure, a SA
algorithm and the combination of both methods (SS+SA). For this comparison
Petit collected a set of 21 benchmark graphs. The test-suite consists of 5 random
graphs, 3 “regular”graphs (a hypercube, a mesh, and a binary tree), 3 graphs
from finite element discretizations, 5 graphs from VLSI designs, and 5 graphs
from graph drawing competitions.

The experiments have shown that for the finite element discretization graphs
SS+SA improves the SS and SA solutions by more than 20%, while reducing the
running time to a 25% of SA. For the rest of the graphs, SS+SA allways improves
the SS solutions and only for two graphs (c5y and gd96a) it is unable to improve
the SA solution. The running times are usually lower for SS+SA than for SA.
The author concludes that the SS+SA heuristic is a valuable improvement over
the SS and SA methods.

2.2 The DT+SA Heuristic

Besides Petit’s work, Bar-Yehuda et al. present in [2] a divide-and-conquer ap-
proach to the MinLA problem. Their idea is to divide the vertices into two
sets, to recursively arrange each set internally at consecutive locations, and fi-
nally to join the two ordered sets, deciding which will be put to the left of the
other.

The computed arrangement is specified by a decomposition tree (DT) that
describes the recursive partitioning of the subproblems. Each vertex of the tree
gives a degree of freedom as to the order in which the two vertex sets are glued
together. Thus, the goal of the algorithm is to decide for each vertex of the
decomposition tree the order of its two children. The authors propose a dynamic
programming algorithm for computing the best possible ordering for a given
decomposition tree.

The set of benchmark instances used in [2] is the same proposed by Petit
in [17, 18, 19]. They applied their algorithm iteratively, starting each iteration
with the result of the previous one. After a few tens of iterations, the algorithm
usually yields results within 5-10% of those obtained by Petit’s SA, but at a
fraction of its running time. They have used these computed arrangements as
an initial solution for the SA reported in [17] and slightly better results were
obtained.

76 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

2.3 The MS Heuristic

In 2002, Koren and Harel present a linear-time algorithm for the MinLA problem,
based on the multi-scale (MS) paradigm [14]. MS techniques transform a high-
dimensional problem in an iterative fashion into subproblems of increasingly
lower dimensions, via a process called coarsening. On the coarsest scale the
problem is solved exactly, following which a refinement process starts, whereby
the solution is progressively projected back into higher and higher dimensions,
updated appropriately at each scale, until the original problem is reproduced
and solved.

The algorithm proposed in [14], starts with a preprocessing stage that ob-
tains, rapidly, a reasonable linear arrangement by using spectral sequencing and
then improves the result by applying a procedure, that they call median itera-
tion, for about 50 sweeps. The median iteration is a randomized algorithm based
on a continuous relaxation of the MinLA problem, where vertices are allowed to
share the same place, or to be placed on non-integral points.

Then, the MS algorithm starts by refining the arrangement locally. The in-
tention of the refinement is not only to minimize the arrangement cost, but also
to improve the quality of the coarsening step that follows. The next step is to
coarsen the graph based on restricting consecutive vertex pairs of the current
arrangement. The problem is then solved in the restricted solution space, by
running all this set of steps (called a V-cycle) recursively on the coarse graph.
Once a good solution is found in the restricted solution space, the algorithm
refines it locally (in the full solution space).

Koren and Harel have also used the set of test instances proposed by Petit.
For each graph in this set, they ran their MS algorithm first with a single V-cycle
and then with ten. They present these results as well as those obtained during
the preprocessing stage (spectral sequencing and median iteration algorithms).
The quality of their results after 10 V-cycle iterations is comparable to that of
Petit’s SA, but the running time is significantly better.

Later in 2004, an improvement to the algorithm proposed by Koren and
Harel was presented in [21]. The main difference between these approaches is
the coarsening scheme. Koren and Harel use strict aggregation, while Safro et
al. use weighted aggregation. In a strict aggregation procedure the nodes of the
graph are blocked into small disjoint subsets, called aggregates. By contrast, in
the weighted aggregation each node can be divided into fractions, and different
fractions belong to different aggregates. Safro et al. have shown experimentally
that their approach can obtain high quality results in linear time for the MinLA
problem and can be considered as one of the best MinLA algorithms known
today.

2.4 The Genetic Hillclimbing Algorithm

In [20] a Genetic Hillclimbing (GH) algorithm is proposed. It represents linear
arrangements as permutations of vertices and operates as follows: An initial pop-
ulation |P | = 100 is created by combining one individual generated with spectral

Memetic Algorithms for the MinLA Problem 77

sequencing, 10% of randomly generated individuals and the rest is generated us-
ing depth-first and breadth-first search algorithms initialized with a randomly
chosen vertex. At each generation 0.5|P | pairs of individuals are randomly se-
lected, then a two point crosssover with unfeasibility repair is applied with 98%
of probability in order to produce two offspring each time. Both resulting off-
spring are compared with their parents. If offspring has better fitness than one of
its parents, then it is inserted in the population else the parent is taken back to
the population and the offspring is eliminated. After that, nlog(n) hillclimbing
steps are applied to each individual of the population. It allows to obtain locally
optimal solutions that will be mutated with probability 15%. The mutation op-
erator consists in applying one random swap. The process is repeated until the
number of 20000 generations is reached or when 100 successive generations do
not produce a better solution.

For his comparisons the author employs the set of benchmark instances pro-
posed by Petit [17,18,19]. Their results show that GH has found slightly better
results for 7 instances (over 21 graphs).

3 A New Memetic Algorithm for MinLA

In this section we present a new Memetic algorithm, called MAMP, for solving
the MinLA problem. Next all the details of its implementation are presented.

3.1 Search Space, Representation and Fitness Function

The search space A for the MinLA problem is composed of all possible arrange-
ments from V to {1, 2, ..., n}. It is easy to see then, that there are n! possible
linear arrangements for a graph with n vertices.

In our MA a linear arrangement ϕ is represented as an array l of n integers,
which is indexed by the vertices and whose i-th value l[i] denotes the label
assigned to the vertex i. The fitness of ϕ is evaluated by using Equation 1.

3.2 The General Procedure

MAMP starts building an initial population P , which is a set of configurations
having a fixed constant size |P | (initPopulation). Then it performs a series of
cycles called generations. At each generation, a predefined number of recombina-
tions (offspring) are executed. In each recombination two configurations a and
b are chosen randomly from the population (selectParents). A recombination
operator is then used to produce an offspring c from a and b (recombineIndivid-
uals). The local search operator (localSearch) is applied to improve c for a fixed
number of iterations L and the improved configuration c is inserted in the popu-
lation. Finally, the population is updated by choosing the best individuals from
the pool of parents and children (UpdatePopulation). This process repeats un-
til a stop condition is verified, usually when a predefined number of generations
(maxGenerations) is reached. Note however, that the algorithm may stop before
reaching maxGenerations, if a better solution is not produced in a predefined
number of successive generations (maxFails).

78 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

3.3 The Initialization Operator

The operator initPopulation(|P |) initiates the population P with |P | configura-
tions. To create a configuration, we use the greedy frontal increase minimization
(FIM) algorithm of McAllister [15], slightly adapted in order to work in a ran-
domized form. The algorithm is based on the following two basic steps: 1) Select a
starting vertex and place it in position 1. 2) For each remaining position 2 through
n, select one of the unplaced vertices for placement in the current position by using
the FIM strategy. It consist in selecting for placement i a vertex that is adjacent
to the fewest vertices in Ui − Fi, where Fi = {u ∈ Ui|v ∈ Pi and (u, v) ∈ E}
denotes the front at placement i, Pi represents the set of i − 1 vertices placed so
far and Ui the set of currently unplaced vertices.

In order to accomplish this, two measures are defined that enable to know how
highly a vertex v ∈ Ui is connected to Pi and to Ui+1. The measures are defined
respectively as follows: tli(v) = |{(u, v) ∈ E|u ∈ Pi}| and tri(v) = d(v) − tli(v),
where d(v) denotes the degree of the vertex v. Both measures are used to define a
new selection factor sfi(v) = tri(v)−tli(v), which is used at the two-step general
strategy described above as follows: For each placement i in step 2, select v ∈ Fi

with minimum sfi(v). This algorithm has a linear time complexity with respect
to the number of edges in the graph. This is possible thanks to the use of efficient
data structures that enable to select a vertex with minimum sfi(v) in constant
time.

Due to the randomness of the greedy algorithm, the configurations in the
initial population are quite different. This point is important for population
based algorithms because a homogeneous population cannot efficiently evolve.

3.4 Selection

Mating selection (selectParents(P)) prior to recombination is performed on a
purely random basis without bias to fitter individuals, while selection for survival
(UpdatePopulation(P)) is done by choosing the best individuals from the pool
of parents and children. It is done by taking care that each phenotype exists
only once in the new population. Thus, replacement in our algorithm is similar
to the (μ, λ) selection scheme used in [16].

3.5 The Recombination Operator

The main idea of the recombination operator (recombineIndividuals(a, b)) is to
generate diversified and potentially promising individuals. To do that, a good
MinLA recombination operator should take into consideration, as much as pos-
sible, the individuals’ semantic.

In this subsection we present a new recombination operator LGX (local greedy
crossover) that is able to preserve certain information contained in both parents,
while some subgraphs are locally improved using a greedy mechanism. The new
LGX operator works in four basic steps:

First, all the labels found at the same vertex in the two parents are assigned
to the corresponding vertex in the offspring. Next, for each labeled vertex in

Memetic Algorithms for the MinLA Problem 79

the offspring a greedy mechanism is applied to find the labels for its adjacent
vertices; this procedure tends to minimize the local MinLA contribution of each
of these subgraphs. Then, for each unlabeled vertex in the offspring we take, if
possible, the label from the same vertex of one of the parents. Finally, the labels
for the remaining vertices are randomly assigned. The functioning of the LGX
operator is presented in Algorithm 1.

recombineIndividuals(a, b)
begin

// The number of assigned labels in the offspring
assigned = copyIdenticLabels(a, b, c);
for each vertex i labeled in c do

assigned += localGreedy(i, c);
end
assigned += completeFromParents(a, b, c);
if assigned < |V | then

completeRandom(c, assigned);
end
return The offspring c;

end

Algorithm 1. The LGX recombination operator

3.6 The Local Search Operator

The purpose of the local search (LS) operator localSearch(c, L) is to improve
a configuration c produced by the recombination operator for a maximum of L
iterations before inserting it into the population. In general, any local search
method can be used. In our implementation, we have decided to use Simulated
Annealing (SA).

In our SA-based LS operator the neighborhood N(ϕ) of an arrangement ϕ is
such that for each ϕ ∈ A, ϕ′ ∈ N(ϕ) if and only if ϕ′ can be obtained by flipping
the labels of any pair of different vertices from ϕ. We call this flipping operation a
move. Besides the apparent simplicity of this neighborhood function, the reasons
to choose it are: the easiness to perform movements and the low effort necessary
to compute incrementally the cost of the new arrangement.

The SA operator starts at an initial temperature T0 = 10, at each Metropolis
round r = 1000 moves are generated. If the cost of the attempted move decreases
then it is accepted. Otherwise, it is accepted with probability P (Δ) = e−Δ/T

where T is the current temperature and Δ is the increase in cost that would
result from that particular move. At the end of each Metropolis round then the
current temperature is decremented by a factor of α = 0.955. The algorithm
stops either if the current temperature reaches Tf = 0.001, or when it reaches
the predefined maximum of L iterations.

The algorithm memorizes and returns the most recent arrangement ϕ∗ among
the best configurations found: after each accepted move, the current configu-
ration ϕ replaces ϕ∗ if LA(G, ϕ) ≤ LA(G, ϕ∗) (and not only if LA(G, ϕ) <
LA(G, ϕ∗)). The rational to return the last best configuration is that we want

80 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

to produce a solution which is as far away as possible from the initial solution
in order to better preserve the diversity in the population.

4 Computational Experiments

In this section, we present a set of experiments accomplished to evaluate the
performance of the MA algorithm presented in Section 3. The algorithms were
coded in C and compiled with gcc using the optimization flag -O3. They were
run sequentially into a cluster of 10 nodes, each having a Xeon bi-CPU at 2 GHz,
1 GB of RAM and Linux. Due to the non-deterministic nature of the algorithms,
20 independent runs were executed for each of the selected benchmark instances.
When averaged results are reported, they are based on these 20 corresponding
runs.

In all the experiments the following parameters were used for MAMP: a)
population size |P | = 40, b) recombinations per generation offspring = 4, c)
maximal number of local search iterations L = 150000, d) maximal number
of generations maxGenerations = 10000 and e) maximal number of successive
failed generations maxFails = 100.

4.1 Benchmark Instances and Comparison Criteria

The test-suite that we have used in the experiments is the same proposed by
Petit [17] and used later in [2, 14, 20, 21]. It consists of six different families
of graphs: Uniform random (randomA* class), geometric random (randomG*
class), graphs with known optima (trees, hypercubes and meshes), finite ele-
ment discretizations (3elt, airfoil1 and whitaker3), VLSI design (c*y class) and
graph drawing competitions (gd* class). All of them have 1000 vertices or more,
except for some instances in the gd* class. These instances are available at:
http://www.lsi.upc.es/˜jpetit/MinLA/Experiments

The criteria used for evaluating the performance of the algorithms are the
same as those used in the literature: the best total edge length found for each
instance and the CPU time in seconds.

4.2 Comparison Between MAMP and GH

The purpose of the first experiment is to compare our memetic algorithm MAMP
with the previous one of [20] (GH). To enable a fair comparison we have obtained
the GH source code1. Then GH and MAMP were compiled and executed in our
hardware and operating system platform 20 times on each benchmark instance.

The parameters for the GH algorithm are those reported in Poranen’s work:
a) population with 100 individuals, b) 50 crossovers per generation, c) 98%
crossover rate, d) 15% mutation rate, e) nlog(n) hillclimbing steps, f) a maximum
of 20000 generations and g) at maximum 100 successive failed generations. We
would like to point out that GH employs a population of 100 individuals, while

1 Available at http://www.cs.uta.fi/˜tp/optgen/index.html

Memetic Algorithms for the MinLA Problem 81

Table 1. Performance comparison between MAMP and GH

GH MAMP
Graph Bc Avg t Bc Avg t ΔC

randomA1 878705 883138.2 4079.2 867535 868480.4 918.7 -11170
randomA2 6557701 6564256.4 24010.2 6533999 6536249 3477.4 -23702
randomA3 14253230 14253230 25629.1 14240067 14240757 5221.2 -13163
randomA4 1735414 1735414 10066.2 1719906 1721070.4 1904.1 -15508
randomG4 153470 153470 1924.6 141538 143855 2097.2 -11932
bintree10 3873 3920.6 413.0 3790 3812.8 984.7 -83
hc10 523776 523776 325.8 523776 523776 1152.4 0
mesh33x33 31968 32127.2 1129.9 31917 31979.8 1177.9 -51
3elt 397305 403654.2 41952.7 362209 364403 5758.9 -35096
airfoil1 300656 300656 74023.7 285429 286986.6 5542.4 -15227
whitaker3 1189831 1189831 9006538.7 1167089 1168140.25 15322.4 -22742
c1y 63063 63440.6 783.9 62333 62383.6 651.5 -730
c2y 80453 81914.2 935.4 79017 80998 672.8 -1436
c3y 129775 130789.4 2092.0 123521 123689.4 731.1 -6254
c4y 118270 119277 2796.8 115144 115406 739.4 -3126
c5y 100877 102054.8 1983.7 96952 97219.4 741.5 -3925
gd95c 506 508.4 2.2 506 506.2 1.5 0
gd96a 105947 108714.6 886.7 96253 96384.8 667.9 -9694
gd96b 1416 1417.2 4.5 1416 1416.2 3.3 0
gd96c 519 519.2 2.0 519 520 1.4 0
gd96d 2406 2413.6 10.9 2391 2392 8.1 -15

Average -8278.8

MAMP has a population size of 40. We have decided to conserve this difference,
apparently unfavorable for MAMP, because in a preliminary experiment we have
tried to reduce the GH population size to 40, but the results produced by GH
were inferior in solution quality.

The results obtained from comparing both algorithms are presented in
Table 1. Column 1 shows the name of the graph. Columns 2 to 7 display the
best cost (Bc), the average cost (Avg) and the average CPU time (t) in seconds
for finding the best solution in each one of the 20 runs of the GH and MAMP
algorithms respectively. Last column presents the difference (ΔC) between the
best cost found by MAMP and the best cost produced by GH.

Table 1 shows clearly that MAMP allows us to obtain better results for many
classes of graphs with less computing time. We can observe an important im-
provement in cost in 17 out of 21 instances. For the rest of the instances the
results of MAMP equal those produced by GH, but always with less computa-
tional effort, thanks to its reduced population size.

4.3 Comparison Between MAMP and the Best Known Results

In the second experiment a performance comparison of our MAMP procedure
with the following heuristics was carried out: SS+SA [18, 19], DT+SA [2],
AMG [21] and GH [20]. Table 2 presents the detailed computational results

82 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

Table 2. Performance comparison between MAMP and several state-of-the-art algo-
rithms

Graph |V | |E| SS+SA DT+SA AMG GH MAMP ΔC

randomA1 1000 4974 869648 884261 888381 878637 867535 -2113
randomA2 1000 24738 6536540 6576912 6596081 6550292 6533999 -2541
randomA3 1000 49820 14310861 14289214 14303980 14246646 14240067 -6579
randomA4 1000 8177 1721490 1747143 1747822 1735691 1719906 -1584
randomG4 1000 8173 150940 146996 140211 142587 141538 1327
bintree10 1023 1022 4069 3762 3696 3807 3790 94
hc10 1024 5120 523776 523776 523776 523776 523776 0
mesh33x33 1089 2112 31929 33531 31729 32040 31917 188
3elt 4720 13722 363686 363204 357329 383286 362209 4880
airfoil1 4253 12289 285597 289217 272931 306005 285429 12498
whitaker3 9800 28989 1169642 1200374 1144476 1203349 1167089 22613
c1y 828 1749 63145 62333 62262 62562 62333 71
c2y 980 2102 79429 79571 78822 79823 79017 195
c3y 1327 2844 123548 127065 123514 125654 123521 7
c4y 1366 2915 116140 115222 115131 117539 115144 13
c5y 1202 2557 97791 96956 96899 98483 96952 53
gd95c 62 144 509 506 506 506 506 0
gd96a 1096 1676 96366 99944 96249 98388 96253 4
gd96b 111 193 1416 1422 1416 1416 1416 0
gd96c 65 125 519 519 519 519 519 0
gd96d 180 228 2393 2409 2391 2391 2391 0

produced by this experiment. The first three columns in the table indicate the
name of the graph, its number of vertices and its number of edges. The rest of
the columns indicate the best total edge length found by each of the compared
heuristics. These results were taken from their corresponding paper. Finally, last
column presents the difference (ΔC) between the best total edge length found
by MAMP and the previous best known solution reported in the literature.

From Table 2, one observes that MAMP is competitive in terms of solution
quality. MAMP is able to improve on 4 previous best known solutions and to
equal these results in 5 instances. For the other instances, MAMP did not reach
the best reported solution, but its results are very close to the best reported (in
average 1.009%). Notice that for some instances the improvement is important;
leading to a significant decrease of the total edge length (ΔC up to −6579).

Even if the results obtained by our memetic algorithm are very competitive
we observe that MAMP, given that it is a memetic algorithm, consumes con-
siderably more computer time than some heuristics for MinLA such as DT [2],
MS [14] and AMG [21].

5 Conclusions

In this paper, a MA designed to compute near optimal solutions for the MinLA
problem was presented. This algorithm, called MAMP, is based on the use of

Memetic Algorithms for the MinLA Problem 83

a greedy vertex-by-vertex algorithm for generating the initial population of the
MA, a fine tuned Simulated Annealing algorithm for finding local optima in the
search space, and a highly specialized crossover operator for efficiently explore
the space of local optima in order to find the global optimum.

The performance of our MAMP algorithm was assessed through extensive
experimentation over a set of well known benchmark instances and compared
with four other state-of-the-art algorithms: SS+SA [18, 19], DT+SA [2], AMG
[21] and GH [20]. The results obtained by MAMP are superior to those presented
by the previous proposed evolutionary approach [20], and permit to improve on
some previous best known solutions.

There are some issues for future research. For example, to investigate the
behavior of MAMP when it is applied to larger instances, like those proposed
by Koren and Harel in [14], in order to study its scalability. Additionally, the
performance of MAMP should be more deeply investigated with other parameter
settings for population size, operator rates and stopping conditions.

Acknowledgments. The authors would like to thank Andrew J. McAllister
who has kindly provided us with his source code. The reviewers of the paper are
greatly acknowledged for their constructive comments.

References

1. T. Bäck, U. Hammel, and H. P. Schwefel. Evolutionary computation: Comments on
the history and current state. IEEE Transactions on Evolutionary Computation,
1(1):3–17, 1997.

2. R. Bar-Yehuda, G. Even, J. Feldman, and S. Naor. Computing an optimal orien-
tation of a balanced decomposition tree for linear arrangement problems. Journal
of Graph Algorithms and Applications, 5(4):1–27, 1996.

3. D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price,
editors. New Ideas in Optimization (Part 4: Memetic Algorithms). McGraw-Hill,
1999.

4. L. Davis. Handbook of Genetic Algorithms. Van Nostrad, New York, 1991.
5. J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM Comput.

Surv., 34(3):313–356, 2002.
6. S. Even and Y. Shiloah. NP-completeness of several arrangement problems. Tech-

nical Report CS0043, Computer Science Department, Technion, Israel Institute of
Technology, Haifa, Israel, January 1975.

7. B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of the 1996 IEEE In-
ternational Conference on Evolutionary Computation, pages 616–621. IEEE Press,
1996.

8. P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3(4):379–397, 1999.

9. M. Garey and D. Johnson. Computers and Intractability: A guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

10. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algo-
rithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages
42–60, London, 1987. Morgan Kaufmann Publishers.

84 E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez

11. L. Harper. Optimal assignment of numbers to vertices. Journal of SIAM,
12(1):131–135, 1964.

12. W. E. Hart, N. Krasnogor, and J. E. Smith, editors. Recent Advances in Memetic
Algorithms and Related Search Technologies. Springer-Verlag, 2004.

13. M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs.
Discrete Applied Mathematics, 36(2):153–168, 1992.

14. Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement prob-
lem. In L. Kucera, editor, Proceedings of 28th Inter. Workshop on Graph-Theoretic
Concepts in Computer Science (WG’02), volume 2573 of LNCS, pages 293–306.
Springer Verlag, 2002.

15. A. J. McAllister. A new heuristic algorithm for the linear arrangement problem.
Technical Report TR-99-126a, Faculty of Computer Science, University of New
Brunswick, 1999.

16. P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms and greedy
operators for graph bi-partitioning. Evolutionary Computation, 8(1):61–91, 2000.

17. J. Petit. Approximation heuristics and benchmarkings for the MinLA problem.
In Alex ’98 – Building Bridges Between Theory and Applications, pages 112–128,
1998.

18. J. Petit. Layout Problems. PhD thesis, Universitat Politécnica de Catalunya, 2001.
19. J. Petit. Combining spectral sequencing and parallel simulated annealing for the

MinLA problem. Parallel Processing Letters, 13(1):71–91, 2003.
20. T. Poranen. A genetic hillclimbing algorithm for the optimal linear arrangement

problem. Technical report, University of Tampere, Finland, June 2002.
21. I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multilevel

weighted edge contractions. Journal of Algorithms, 2004. in press.
22. M. Tomassini. A survey of genetic algorithms. Annual Reviews of Computational

Physics, III:87–118, 1995.
23. X. Yao, F. Wang, K. Padmanabhan, and S. Salcedo-Sanz. Hybrid evolutionary

approaches to terminal assignment in communications networks. In W. E. Hart,
N. Krasnogor, and J. E. Smith, editors, Recent Advances in Memetic Algorithms
and Related Search Technologies, pages 129–160. Springer-Verlag, 2004.

Niching in Evolution Strategies and Its
Application to Laser Pulse Shaping

Ofer M. Shir1, Christian Siedschlag2, Thomas Bäck1,3, and Marc J.J. Vrakking2

1 Leiden Institute of Advanced Computer Science,
Universiteit Leiden, Niels Bohrweg 1,

2333 CA Leiden, The Netherlands
2 FOM-Instituut AMOLF, Kruislaan 407,

1098 SJ Amsterdam, The Netherlands
3 NuTech Solutions, Martin-Schmeisser-Weg 15,

Dortmund 44227, Germany

Abstract. Evolutionary Algorithms (EAs), popular search methods for
optimization problems, are known for successful and fast location of sin-
gle optimal solutions. However, many complex search problems require
the location and maintenance of multiple solutions. Niching methods,
the extension of EAs to address this issue, have been investigated up
to date mainly within the field of Genetic Algorithms (GAs), and their
applications were limited to low-dimensional search problems.

In this paper we present in detail the background for niching meth-
ods within Evolution Strategies (ES), and discuss two ES niching meth-
ods, which have been introduced recently and have been tested only for
theoretical functions. We describe the application of those ES niching
methods to a challenging real-life high-dimensional optimization prob-
lem, namely Femtosecond Laser Pulse Shaping. The methods are shown
to be robust and to achieve satisfying results for the given problem.

1 Introduction

Evolutionary Algorithms (EAs) have the tendency to converge quickly into a
single solution [1], which means that all the individuals of the artificial population
evolve to become nearly identical. Given a problem with multiple solutions, the
traditional evolutionary algorithms will locate a single solution. Niching methods
aim to maintain the diversity of certain properties within the population, and
by that allow parallel convergence within those subpopulations into multiple
good solutions for the given problem. Up to date, niching methods have been
studied mainly within the field of Genetic Algorithms (GAs). The research in
this direction has yielded various successful methods which have been shown
to find multiple solutions efficiently [1]. In the context of real-valued multi-
variable function optimization, Evolution Strategies (ES) are the most commonly
used technique, and some would argue the most natural environment among all
the branches of EAs. This is simply due to their straightforward encoding, as
well as to their successful performance in this domain in comparison to other

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 85–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 O.M. Shir et al.

methods. The higher the dimensionality of the function is, the more obvious
becomes the advantage of ES with respect to GAs. Two ES niching methods have
been proposed only recently [2, 3], and have been applied successfully to high-
dimensional theoretical functions. The purpose of this joint study of Physicists
and Computer Scientists, is to apply those niching methods to an 80-dimensional
real-life optimization problem.

This paper is organized as follows. Section 2 presents the basis for ES-niching,
which is followed by the description of two proposed algorithms. Section 3 de-
scribes the application of the given methods to a real-life Physics optimization
problem, and presents the experimental results which were obtained. In section
4 we draw our conclusions and give a summary of this study.

2 Niching in Evolution Strategies

2.1 The Motivation: ES Diversity

The promotion of diversity in the traditional GA had been originally the main
motivation for the development of niching methods, as was deeply investigated
by Mahfoud [1]. In this section we give a brief review of ES diversity, with respect
to the tools given by Mahfoud, and by that supply the motivation for niching
within ES.

We consider three main effects which cause the standard ES to lose diversity:
selective pressure, operator disruption and random genetic drift.

Selective Pressure. The standard ES [4] has a strictly deterministic, rank-
based approach, to selection. In the two traditional strategies, (μ, λ) and (μ+λ),
an approach of deterministically selecting the best individuals (out of the appro-
priate set - the next generation or the union of the two generations, respectively)
is applied, which intuitively implies high selective pressure. Due to the crucial
role of the selection operator within the evolution process, its impact within the
ES field has been widely investigated. It should be noted that the term selec-
tive pressure is occasionally associated with the ratio λ

μ . Furthermore, Goldberg
and Deb introduced the important concept of takeover time [5], which gives a
quantitative description of selective pressure with respect only to the selection
operator:

Definition 1. The takeover time τ∗ is the minimal number of generations until
repeated application of the selection operator yields a uniform population filled
with copies of the best individual.

The selective pressure has been further investigated by Bäck [6], who analyzed
all the ES selection mechanisms also with respect to takeover times, and showed
that under the traditional values of the standard ES the takeover times for the
two standard selection mechanisms as well as for tournament selection are very
short. This implies high selective pressures.

Niching in Evolution Strategies and Its Application to Laser Pulse Shaping 87

Operator Disruption. In the standard ES the mutation operator typically
has a small effect, which means “staying in the neighbourhood”. In that sense,
the mutation operator can be regarded in the standard ES as an operator with
negligible disruption. The recombination operator has a bigger effect though. In
the standard ES, where discrete and intermediate recombination operators are
in use [4], the disruptive nature is also highly intuitive - modifying a coordinate
of the decision parameters to be optimized, not in a local manner (averaging or
taking a value from a different individual), has the potential to shift the offspring
not in a negligible way.

Random Genetic Drift. Genetic drift is a stochastic process in which the
diversity is lost in finite populations [7]. A distribution of genetic properties is
transferred to the next generation in a limited manner, due to the finite number
of offspring. As a result the distribution will approach an equilibrium distri-
bution. In small populations this process can occur fast and become signifi-
cant. Since small population sizes are used in the standard ES, the effect of
random genetic drift occurs and causes the loss of diversity within the popula-
tion. In multimodal functions, it was shown that the effect of genetic drift in
ES causes a convergence to an equilibrium distribution around a single attrac-
tor [8].

ES Diversity: Conclusions. The standard ES is exposed to several strong
effects which interrupt the formation and maintenance of multiple solutions and
push the evolution process towards a rapid convergence into a single solution.

2.2 ES Dynamic Niching

The ES dynamic niching algorithm [2] was introduced recently as the first nich-
ing method within the Evolution Strategies framework. The inspiration for this
algorithm was given by various niching algorithms of the GAs field, and in par-
ticular by the fitness sharing [9] and crowding [10] concepts, as well as by the
dynamic niche sharing method [11].

The basic idea of the algorithm is to dynamically identify the various fitness-
peaks of every generation that define the niches, classify all the individuals into
those niches, and apply a mating restriction scheme which allows competitive
mating only within the niches (every niche can produce a defined number of
offspring, following a fixed mating resources concept). Additionally, a fixed num-
ber of random individuals is generated independently, in order to take part
in the peak identification of the next generation. Furthermore, the unique se-
lection mechanism replaces individuals from each niche only with individuals
from the same niche - an idea which originates from the crowding method. Fi-
nally, we imitate the niche formation technique of the dynamic niche sharing
method.

Distance Metric. Given that the individual space (the decision parameters
space) is of dimension n , the distance is calculated using the euclidean distance

88 O.M. Shir et al.

in the n-dimensional space. Given the individuals xi = [xi,1, xi,2, . . . , xi,n] and
xj = [xj,1, xj,2, . . . , xj,n] the distance di,j is calculated as:

di,j =

√√√√ n∑
k=1

(xi,k − xj,k)2 (1)

Assumptions. The algorithm holds two assumptions:

1. The expected/desired number of peaks, q, is given or can be estimated.
2. All peaks are at least in distance 2ρ from each other, where ρ is the fixed

radius of every niche.

Although those assumptions could be considered to be rather strong, they are
applicable to many cases, and are also held by most of the GAs’ niching methods.
It is important to remark that the formulas for determining the value of the so-
called niche radius ρ, to be given shortly, depend on q, the number of peaks of
the target function.

The Algorithm. Given a population of individuals, a standard ES mutation
operator is applied as the first step:

x, = x + z (2)

where z is a vector of random variables with a joint-normal distribution:

z ∼ N (0,Σ) : Φ (z) =

√
detΣ
(2π)n · exp

(
−1

2
· zT · Σ · z

)
(3)

A single step size is used per an individual, so our distribution is based on a
covariance matrix proportionate to the identity matrix:

Σ = σ · I (4)

The adaptation of the step size is done according to the traditional standard-ES:

σ, = σ · exp (τ , · N1 (0, 1) + τ · N2 (0, 1)) (5)

where N1(0, 1) and N2(0, 1) denote independent random variables, and τ and τ ,

are the traditional constants taken from Bäck [4].
After evaluating the fitness of the individuals, the fitness-peaks identification

takes place - a greedy approach is applied in identifying the dynamic peaks of
each generation, using the dynamic peak identification algorithm (DPI), which
was introduced by Miller and Shaw [11], with the distance metric given earlier.
The method is given as algorithm 1. By having the estimated niche radius ρ,
it is straightforward to classify all the individuals of the population into those
peaks and populate those niches. At this point the mating phase begins, which
is a closed competitive mating session within every niche. Each niche gets fixed

Niching in Evolution Strategies and Its Application to Laser Pulse Shaping 89

Algorithm 1. Greedy Dynamic Peak Identification (DPI)
input: Pop - array of population members

N - population size
q - number of peaks to identify
ρ - niche radius.

Sort Pop in decreasing fitness order
i := 1
NumPeaks := 0
DPS := ∅ (Dynamic Peak Set)
loop until NumPeaks = q or i = N + 1

if Pop[i] is not within ρ of peak in DPS
DPS := DPS ∪ {Pop[i]}
NumPeaks := NumPeaks + 1

endif
i := i + 1

endloop

output: Dynamic Peak Set

mating resources (number of individuals in the next generation), i.e. indepen-
dent of the fitness value of its peak. In this manner we prevent the best niche
to take over the population’s resources and flood the next generation with its
offspring. This is also meant to prevent a genetic drift into a single distribution.
In particular, a uniform distribution of the resources to q niches is considered:

μ̃ =
μ

q
λ̃ =

λ

q
(6)

meaning that each niche has μ̃ parents and produces λ̃ offspring in every gen-
eration. The selection mechanism in the algorithm can be considered as a com-
bination of the two traditional ES strategies, (μ, λ) and (μ + λ). λ̃ individuals
are produced within every niche in the following way - the first parent is chosen
via tournament selection, where the second parent is the best individual in the
niche which is different than the first parent (this is known as the line breeding
mechanism). In case that the niche contains only one individual, the second par-
ent will be the best individual of another niche (aiming by that to explore the
search space). Given those λ̃ pairs of parents, the standard-ES recombination
operator is applied: intermediate recombination for the strategy parameters and
discrete recombination for the decision parameters [4]. The μ̃ parents of the next
generation are selected as follows: the best η of the λ̃ offspring along with the
best δ = μ̃− η individuals of the current niche (the latter group proceeds to the
next generation without recombination). If the niche does not have δ individuals,
new randomly-generated individuals will be added on that niche’s resources. At
this point, additional ω = μ̃ uniformly distributed random individuals are added
to the whole population, and take part in the next round of the dynamic peak
identification algorithm.

The algorithm is summarized in the pseudo-code given as algorithm 2.

The Niche Radius ρ. The original formula for ρ for phenotypic sharing in
GAs was derived by Deb and Goldberg [5]. By following the trivial analogy and

90 O.M. Shir et al.

Algorithm 2. The ES Dynamic Niching Algorithm: A Generation Loop
Apply Mutation on the population
Evaluate fitness of population and Sort
Compute the Dynamic Peak Set using the DPI (Algo-1)
for every niche i = 1..q produce the next generation:

Generate λ̃ offspring as follows:
Choose 1st parent via Tour-Selec. of the niche
Choose the best indiv. of that niche as the 2nd parent
Apply standard recombination

Select the best η of the λ̃ offspring and the best
μ̃ − η indiv. of the niche to form the next gen.

endfor
Generate additional ω = μ̃ random indiv.,

Join all q niches, to yield the new population

considering the decision parameters as the decoded parameter space of the GA,
the same formula can be applied, using the metric introduced earlier. Given
q, the number of peaks in the solution space, every niche is considered to be
surrounded by an n-dimensional hypersphere with radius ρ which occupies 1

q of
the entire volume of the space. The volume of the hypersphere which contains
the entire space is

V = crn (7)

where c is a constant, given explicitly by:

c =
π

n
2

Γ (n
2 + 1)

, Γ (n) =
∫ ∞

0

xn−1 exp(−x)dx (8)

Given lower and upper boundary values xk,min, xk,max of each coordinate in the
decision parameters space, r is defined as follows:

r =
1
2

√√√√ n∑
k=1

(xk,max − xk,min)2 (9)

If we divide the volume into q parts, we may write

cρn =
1
q
crn (10)

which yields

ρ =
r

n
√

q
(11)

2.3 Dynamic Niching with Covariance Matrix Adaptation ES

The dynamic niching with CMA-ES algorithm was introduced recently [3] as
the successor of the ES dynamic niching algorithm. We provide here a short
introduction of the CMA-ES method, followed by a description of the algorithm.

Niching in Evolution Strategies and Its Application to Laser Pulse Shaping 91

The CMA-ES: A Brief Overview. The covariance matrix adaptation evolu-
tion strategy [12], is a specific variant of ES that has been successful for treating
correlations among object variables. This method tackles the critical element of
Evolution Strategies, the adaptation of the mutation parameters. We shall pro-
vide here only a short description of the principal elements of the (1, λ)-CMA-ES.

The fundamental property of this method is the exploitation of information
obtained from previous successful mutation operations. Given an initial search
point x0, λ offspring are sampled from it by applying the mutation operator.
The best search point out of those λ offspring is chosen to become the parent
of the next generation. The action of the mutation operator for generating new
samples of search points in generation g + 1 is defined as follows:

xg+1 = xg + δ · B · z (12)

where δ is the global step size, which is adaptive with respect to the optimiza-
tion process, and z is a vector of random variables drawn from the multivariate
normal distribution. The matrix B, the crucial element of this process, is com-
posed of the eigenvectors of the covariance matrix with the appropriate scaling
of the eigenvalues - defining the distribution of a sequence of successful mutation
points. It is initialized as the unity matrix and is updated according to cumula-
tive data from the evolution process itself. We omit most of the details and refer
the reader to Hansen and Ostermeier [12].

Dynamic Niching with CMA. The algorithm uses the skeleton of the ES
dynamic niching algorithm but changes the evolutionary core mechanism from
the standard ES to the CMA-ES, and in particular to the (1, λ)-CMA. A brief
description of the algorithm follows.

Given q, the estimated/expected number of peaks, q + 1 “CMA-sets” are
initialized, where a CMA-set as is defined as the collection of all the dynamic
variables of the CMA algorithm which uniquely define the search at a given
point of time. Such dynamic variables are the current search point (the decision
parameters to be optimized), the covariance matrix, the step size, as well as other
auxiliary parameters. At every point in time the algorithm stores exactly q + 1
CMA-sets, which are associated with q+1 search points: q for the peaks and 1 for
the “non-peaks domain”. The (q+1)th CMA-set is associated with an individual
which is randomly re-generated in every generation in order to explore the search
space and produce candidates for niche formation. Until stopping criteria are
met, the following procedure takes place. Each search point generates in every
generation λ samples (offspring) based on its evolving sampling distribution - its
step size as well as the covariance matrix. After the fitness evaluation of the new
λ·(q+1) individuals, the classification into niches of the entire population is done
using the DPI, introduced earlier as algorithm 1. The peaks of the dynamic peak
set, given as output of the DPI, are chosen to become the new search points, and
their CMA-sets are inherited from their parents (which are uniquely defined, due
to the lack of recombination) and updated according to the CMA method. The
dynamic peak set may contain up to q peaks, and in case there are less than q
individuals in that set, the rest of the search points are randomly re-generated.

92 O.M. Shir et al.

Algorithm 3. Dynamic Niching with (1, λ)-CMA-ES: A Single Generation Loop
for all i = 1..q + 1 search points

Generate λ samples based on the CMA distribution of i
endfor
Evaluate Fitness of the population.
Compute the Dynamic Peak Set of the λ · (q + 1) individuals using the DPI
for every given peak of the dynamic-peak-set do:

Set peak as a search point of the next generation
Inherit the CMA-set and update it respectively

endfor
if Ndps =size of dynamic-peak-set < q

Generate q − Ndps new search points, reset CMA-sets
endif
Reset the (q + 1)th search point

In any case, the (q+1)th search point is randomly generated at this stage, as the
representative of the “non-peaks” domain, as explained earlier. This concludes
a single generation loop.

This algorithm holds the same assumptions as the ES dynamic niching algo-
rithm. It uses the same distance metric, as well as the niche radius calculations.
The algorithm is summarized as algorithm 3.

3 The Application: Femtosecond Laser Pulse Shaping

3.1 General

To investigate and, more importantly, to control the motion of atoms or mole-
cules by irradiating them with laser light, one has to provide laser pulses with
durations on the same time scale as the motion of the particles. Recent tech-
nological development has made lasers with pulse lengths on the order of fem-
toseconds (1 fs=10−15s) routinely available. Moreover, the time profile of these
pulses can be shaped to a great extent. By applying a self-learning loop using an
evolutionary mechanism, the interaction between the system under study and
the laser field can be steered, and optimal pulse shapes for a given optimiza-
tion target can be found. In our work, the role of the experimental feedback in
the self-learning loop is played by numerical simulations. The target function
we aimed to optimize was the alignment of an ensemble of molecules after the
interaction with a shaped laser pulse. There is currently a great interest in the
atomic and molecular physics community to align molecules with laser pulses,
since dealing with an aligned sample of molecules simplifies the interpretation of
experimental data. The alignment’s quantity is defined as the expectation value
of the cosine-squared of the angle of the molecular axis with respect to the laser
polarization axis (i.e. success-rate or fitness are given as real values between 0
and 1). To calculate the time-dependent alignment, the Schrödinger’s equation
for the angular degrees of freedom of a model diatomic molecule under the in-
fluence of the shaped laser field is solved. Explicitly, the time-dependent profile
of the pulse in our simulations has been given by

Niching in Evolution Strategies and Its Application to Laser Pulse Shaping 93

f(t) =
∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω, (13)

where A(ω) is a Gaussian window function describing the contribution of dif-
ferent frequencies to the pulse and φ(ω), the phase function, equips these fre-
quencies with different complex phases. Hence, by changing φ(ω), the temporal
structure of f(t) can be altered. In a real life pulse shaping experiment, A(ω) is
fixed and φ(ω) is used to control the shape of the pulses. We have used the same
approach in our numerical simulations, i.e. the search space is in the frequency
domain while the fitness evaluations is performed in the time domain. To this
end, we interpolated φ(ω) at n frequencies ωn; the n values φ(ωn) are our deci-
sion parameters to be optimized. In order to achieve a good trade-off between
high resolution and optimization efficiency, the value of n = 80 turned to be a
good compromise.

3.2 The Application of Niching to the Problem

Aiming to apply niching, we were required to define an appropriate distance
metric. We should note at this point that the function entering the simulation
was actually f2(t), the time-dependent laser intensity. Hence, the outcome of
the calculations was invariant under the transformation φ̃(ω) = φ(ω) + φ0. Fur-
thermore, adding a linear term to the phase function (i.e. φ̃(ω) = φ(ω) + c · ω)
simply shifts the whole pulse with respect to the time origin and therefore has
also no observable effect. This had to be taken into account when defining a dis-
tance metric between two individuals φ(ω) and φ′(ω), as it is clear that using the
straightforward approach would not achieve the goal: due to the fact that φ(ω) is
invariant under the specified transformations, calculating the distance between
two feasible solutions φ(ω), φ̃(ω) would not guarantee that the derived pulses
f(t), f̃(t) respectively will have a different profile. Our proposed solution, con-
cluded from the specified invariance properties, was to calculate the distance in
the second-derivative space of φ(ω). Explicitly, given that the discretization
is to n function values, the distance between φi(ω), φj(ω) is given by:

di,j =

√√√√ n∑
k=1

((
d2φi(ω)

dω2

)
k

−
(

d2φj(ω)
dω2

)
k

)2

(14)

3.3 Experimental Results

Experimental Setup. We provide here a few technical details concerning our
experiments. Every fitness evaluation takes approximately 35 seconds. Taking
this into account, our experimental setup was set to a minimal configuration:

– The CMA-ES based niching method was set to (1, 10) core strategy.
– The parameters of the Standard-ES based method were set to {μ = 5, λ =

10, η = 5, ω = 0}.

In our experiments we have mostly aimed for a fixed number of solutions, q = 3.

94 O.M. Shir et al.

−6 −4 −2 0 2 4 6

x 10
−12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.6836
0.6602
0.6541

Fig. 1. Run A: Pulses in the Time Domain

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

Generations

F
itn

es
s

Niche 1
Niche 2
Niche 3

Fig. 2. Evolution of Run A

−6 −4 −2 0 2 4 6

x 10
−12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.6913
0.6839
0.6658

Fig. 3. Run B: Pulses in the Time Domain

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

Generations

F
itn

es
s

Niche 1
Niche 2
Niche 3

Fig. 4. Evolution of Run B

Results. The fitness gets a real value in the interval [0, 1], subject to maxi-
mization, as was introduced earlier. A random feasible solution gets on average
a value of 0.333 (isotropic 3D space), and the best result known to us up to date
is around 0.7.

The results of our experiments will be discussed at several levels:

1. Our definition of the distance metric for this problem has been proven to
be successful. The obtained pulses in the time domain had indeed different
characteristics, and in particular their shapes differed in a satisfying manner.
Illustrative examples are given in figures 1 and 3.

2. The CMA-ES based niching method has achieved better alignment results
in comparison with the Standard-ES based method: the best niche’s fitness
was always higher with CMA. Moreover, the CMA niching method achieved
the higher result known to us, obtained with any other optimization method
that we have used so far (fitness of 0.7). For both methods, the 2nd and 3rd
niches also obtained good results, usually very close to the result of the best
niche. Plots with typical simulation runs are given as figures 2 and 4.

3. The obtained pulses have interesting profiles from the Physics point of
view. Some of the profiles were obtained for the first time by the niching

Niching in Evolution Strategies and Its Application to Laser Pulse Shaping 95

methods. It seems that the niching pressure, which has been introduced by
the algorithms, is responsible for the generation of those unique pulse pro-
files. It does so by forcing the population to look for several attractors, and in
our case managed to push it to some new attractors which were not obtained
by other optimization methods.

4. Due to the cost of a single fitness evaluation, the number of simulations was
limited, and we do not provide a statistical analysis of the results.

4 Conclusions

We have applied two ES niching methods, which have been tested so far only
on theoretical functions, to a real-life challenging problem, namely Femtosecond
Laser Pulse Shaping. The application was successful at several levels. We have
managed to tackle the problem of defining the distance metric for the niching
algorithms. The simulations themselves yielded highly satisfying results, with
respect to fitness values and to uniqueness. This study has been successful from
the Physics as well as from the Computer Science point of views.

Acknowledgments

This work is part of the research programme of the ’Stichting voor Fundamenteel
Onderzoek de Materie (FOM)’, which is financially supported by the ’Neder-
landse Organisatie voor Wetenschappelijk Onderzoek (NWO)’.

References

[1] Mahfoud, S.: Niching Methods for Genetic Algorithms. PhD thesis, University of
Illinois at Urbana Champaign (1995)

[2] Shir, O.M., Bäck, T.: Niching in evolution strategies. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO-2005, New York,
NY, USA, ACM Press (2005)

[3] Shir, O.M., Bäck, T.: Dynamic niching in evolution strategies with covariance
matrix adaptation. In: Proceedings of the 2005 Congress on Evolutionary Com-
putation CEC-2005, Piscataway, NJ, USA, IEEE Press (2005)

[4] Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University
Press, New York, NY, USA (1996)

[5] Deb, K., Goldberg, D.E.: An investigation of niche and species formation in ge-
netic function optimization. In: Proceedings of the third international conference
on Genetic algorithms, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1989) 42–50

[6] Bäck, T.: Selective pressure in evolutionary algorithms: A characterization of se-
lection mechanisms. In Michalewicz, Z., Schaffer, J.D., Schwefel, H.P., Fogel, D.B.,
Kitano, H., eds.: Proc. First IEEE Conf. Evolutionary Computation (ICEC’94),
Orlando FL. Volume 1., Piscataway, NJ, USA, IEEE Press (1994) 57–62

[7] Kimura, M.: The neutral theory of molecular evolution. Cambridge University
Press, Cambridge (1983)

96 O.M. Shir et al.

[8] Schönemann, L., Emmerich, M., Preuss, M.: On the extiction of sub-populations
on multimodal landscapes. In: Proc. of the Int’l Conf. on Bioinspired optimization
Methods and their Applications, BIOMA 2004, Jožef Stefan Institute, Slovenia
(2004) 31–40

[9] Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA (1992)

[10] Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis (1975)

[11] Miller, B., Shaw, M.: Genetic algorithms with dynamic niche sharing for mul-
timodal function optimization. In: Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation (ICEC’96), New York, NY, USA (1996)

[12] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation 9 (2001) 159–195

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 97 – 106, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Modified Genetic Algorithm for the Beam Angle
Optimization Problem in Intensity-Modulated

Radiotherapy Planning

Yongjie Li1, Dezhong Yao1, Jiancheng Zheng2, and Jonathan Yao2

1 School of Life Science and Technology,
University of Electronic Science and Technology of China,

Chengdu 610054, China
Liyj999@yahoo.com, Dyao@uestc.edu.cn

2 Topslane Inc,
Pleasant Hill, CA 94523, USA

{Zhengjc, Jonathanyao}@topslane.com.cn

Abstract. In this paper, a modified genetic algorithm (GA) is proposed to im-
prove the efficiency of the beam angle optimization (BAO) problem in inten-
sity-modulated radiotherapy (IMRT). Two modifications are made to GA in this
study: (1) a new operation named sorting operation is introduced to sort the
gene in each chromosome before the crossover operation, and (2) expert knowl-
edge about tumor treatment is employed to guide the GA evolution. Two types
of expert knowledge are employed, i.e., beam orientation constraints and beam
configuration templates. The user-defined knowledge is used to reduce the
search space and guide the optimization process. The sorting operation is intro-
duced to inherently improve the evolution performance for the specified ABO
problem. The beam angles are selected using GA, and the intensity maps of the
corresponding beams are optimized using a conjugate gradient (CG) method.
The comparisons of the preliminary optimization results on a clinical prostate
case show that the proposed optimization algorithm can slightly or heavily im-
prove the computation efficiency.

1 Introduction

Intensity-modulated radiotherapy (IMRT) is a powerful technology to potentially
improve the therapeutic ratio by using modulated beams from multiple spatial direc-
tions to irradiate the tumors. The conventional IMRT planning starts with the selec-
tion of suitable beam angles, followed by an optimization of beam intensity maps
using inverse optimization method under the guidance of a objective function [1] [2].
The set of such beam directions should be chosen such that the plan with this beam
combination could produce highly three-dimensionally conformal dose distributions
to the target, while sparing those organ-at-risks (OARs) and normal tissues as much
as possible.

Beam angle selection is an important but also challenging issue for IMRT plan-
ning because of the inherent complexity of the problem, mainly the large search

98 Y. Li et al.

space and the coupling between the beam configuration and the intensity maps of the
beams [3] [4]. A mass of studies have demonstrated that the selection of suitable
beam angles is most valuable for a plan with a small number of beams (<5) [1], and
is also clinically meaningful for plans with large number of beams (>9) in some
complicated cases, where the tumor volume surrounds a critical organ, or is sur-
rounded by multiple critical organs [3] [5].

At present, the selection of beam angles is generally based upon the experience of
the human planner in the clinical practice. Several trial-and-error attempts are nor-
mally needed in order to find a group of acceptable beam angles, mainly because of
the facts that beam directions are case dependant and they are coupled with the inten-
sity profiles of the incident beams, which result in the less straightforwardness for
selection, compared to the conventional conformal radiotherapy (CRT) [3]. To date,
extensive efforts have been made by many researchers to facilitate the technique of
computer-assisted beam angle selection for IMRT planning [3~9]. Though there are
fruitful improvements achieved and the function of computer-aided automatic selec-
tion of beam angles for IMRT planning is provided in some of the newest commercial
treatment planning systems (TPS), it still can not act as a routine planning tool in
clinical practice because of the limitation of the associated intrinsic extensive compu-
tation time.

To further improve the performance of the optimization, two issues are the direc-
tions for the ongoing studies: (1) optimization algorithms themselves, and (2) the
external intervention or guidance to the optimization process. As for the first issue, we
introduce a new operation, named sorting operation, to GA to sort the gene in each
chromosome before the selection operation in order to enhance the quality of the
children after the crossover operation. As for the second issue, we employ the expert
knowledge about tumor treatment accumulated by the oncologists and physicists over
time during their clinical practice to guide the optimization process.

The remainder of the paper is organized as follows. Section 2 describes in details
the modifications to the standard GA, as well as the objective function and the fitness
value defined for the GA-based optimization solution. In Section 3 we give a clinical
prostate tumor case to demonstrate the validity and performance of the proposed algo-
rithm. Finally, some discussion and conclusions and the directions for future works
are briefly presented in Section 4.

2 Materials and Methods

In order to simplify the optimization and decrease the computation burden, the beam
angle selection and the beam intensity map optimization in BAO are normally sepa-
rated into two iterative steps [3] [4] [7]. In this paper, the beam angles are selected
using a modified GA, and the intensity maps of the selected beams are optimized
using a conjugate gradient (CG) method. This section will detailedly describe the
sorting operation and the strategy of combining expert knowledge with GA, as well as
the objective function and the fitness value.

 A Modified Genetic Algorithm for the Beam Angle Optimization Problem 99

2.1 Genetic Algorithm with Sorting Operation

The beams in this study are restricted to the coplanar ones, and the beam angles are
specified according to the International Electrotechnical Commission (IEC) conven-
tion. The search space covering the total 360º gantry rotational angles are discretized
into equally spaced directions with a given angle step, such as 5º or 10º. These dis-
crete angles are called trial beam angles and they compose of the search space of
beam angles of the BAO problem.

In this study, a one-dimensional integer-coding scheme is adopted, in which the
combination of beam angles is represented by a chromosome (an individual) with a
length of user-specified beam number of the plan, and each gene in the chromosome
represents a trial beam angle. For example, the individual parent 1 shown in Fig. 1
demonstrates a five-beam plan with angles of 10°, 80°, 120°, 200° and 250°. The
genes in one chromosome are required to be different with each other, which means
that there should be no two beams with same angles in one treatment plan.

The standard GA consists of three genetic operations: selection, crossover and mu-
tation (Fig. 1). Parent individuals with higher fitness are selected into the next genera-
tion with a higher probability according to a simple strategy of proportional fitness
assignment. To any two randomly selected parent individuals (angle sets), a crossover
operation will be applied according to a specified crossover probability, normally
0.5~0.95. Then a mutation operation to the two children angle sets will be done ac-
cording to a mutation probability, normally 0.001~0.02.

Fig. 1. The coding scheme and the genetic operations of GA for BAO problem

100 Y. Li et al.

In essence, BAO is a combinational optimization problem, in which specified num-
ber of beams are to be selected among a beam candidate pool. That is to say, the
genes (i.e. the beam angles) are order-independent. For example, there is no clinical
difference between the individual (10°, 80°, 120°, 200°, 250°) and (80°, 120°, 10°,
200°, 250°). These two individuals represent a same treatment plan, and mathemati-
cally, they have the equal fitness value (to be described in Section 2.3). The irradia-
tion order of the beams will be clinically determined by the planner. However, the
order of the genes in a chromosome has meaningful impact on the evolution perform-
ance, especially on the crossover operation, which is clearly demonstrated by Fig. 1.
For the parents parent 1 and parent 2, two children (10°, 50°, 70°, 20°, 180°) and
(110°, 240°, 120°, 290°, 250°) would be produced by standard GA (sGA) after the
crossover operation and mutation operation. These two children are not clinically
preferable because the separation between most of the neighboring beams is so small
that it is hard to produce acceptable dose distribution. On the contrary, the modified
GA (mGA) would generate two children (10°, 50°, 110°, 180°, 240°) and (20°, 70°,
120°, 290°, 250°) when a sorting operation is applied to the two parent individuals
before the crossover operation. These two children have higher possibility to produce
superior dose distributions because the beams are approximately uniformly distributed
in the whole 360° gantry angle space. Such strategy has been proved valid by most of
the manual plans designed by those experienced oncologists and physical therapists.
In summary, the introduced sorting operation is used to avoid the beams to be distrib-
uted in a small incidence range, and consequently, to potentially improve the optimi-
zation efficiency.

2.2 Expert Knowledge Guided Genetic Algorithm

There are two types of expert knowledge about individual treatment used in our opti-
mization method, both of which are defined by the planner through a graphical user
interface (GUI): (1) beam orientation constraints, which define the orientation scopes
through which no beam can pass, and (2) one or more groups of beam configuration
templates that are the most possible beam angles suitable to the current treatment site
(each group is a plan containing several beams). The first type of knowledge is used
to define the search space by reducing the defined constraint scopes from the whole
space with 360°, which may largely shorten the optimization time by reducing the
search space. The left of the total 360° are divided into discrete angles with an angle
increment, such as 5° or 10°. The second type of the knowledge is used (1) to initial-
ize some of the individuals in the first generation of GA (the left individuals are ini-
tialized randomly), and (2) to replace the worst individual in each new generation.
The scheme of expert knowledge guided GA is shown in Fig. 2.

It should be pointed out that, no more than a quarter of the total beam configura-
tions (individuals) in the first generation of GA are allowed to be initialized with the
expert templates, in order to avoid that the expert knowledge dominates the GA op-
erations at the beginning of the optimization. If there are plan templates remained
after the initialization operation, they will be used to replace the worst individual in
each new generation, until no template remains.

 A Modified Genetic Algorithm for the Beam Angle Optimization Problem 101

Fig. 2. The scheme of expert knowledge guided GA for beam angle optimization

2.3 Objective Function and Fitness Value

For each new individual (i.e. a new plan), a CG method is employed to optimized the
corresponding beam intensity maps [2] [7], and then the dose distributions calculated
using these optimized intensity maps are used to calculate the fitness value for evalua-
tion of the individual. The optimization aims to minimize the dose difference between
the prescribed and the calculated dose distributions, which can be mathematically
described by the following objective function

)()()(xFxFxF PTVOARobj ⋅+⋅= βα (1)

()
= =

−⋅⋅=
Noar

i

NT

j
jjjOAR

i

pxdwxF
1 1

2)()(δ (2)

()
=

−⋅⋅=
PTVNT

j
jjjPTV pxdwxF

1

2)()(δ (3)

m

Nray

m
jmj xaxd ⋅=

=1

)(
(4)

Where ()
BNxxxx ,,, 21= is the beam set,

BN is the specified number of the beam

in a treatment plan.)(xFobj is the value of objective function of the beam set x ,

)(xFOAR is the part associated with all the OARs, and)(xFPTV is the part associ-

ated with the target. OARN is the total number of the OARs, iNT is the point num-

ber in the ith OARs, PTVNT is the point number in the target, δ = 1 when point dose

102 Y. Li et al.

in the volume breaks the constraints, else δ = 0, jw is the weight of jth point,
jd is

the calculated dose of the jth point in the volume, jp is the prescribed dose of the jth

point in the volume. and are the regularizing factors that balance the importance
between the target and the OARs. All of the selected beams in x are divided into rays
(also called pencil beamlets),

rayN is the total number of the ray.
jma is the dose

deposited to the jth point from the mth ray with a unit weight. mx is the intensity of

the mth ray.
The quality of each individual is evaluated by a fitness value, and the purpose of

optimization is to find the individual (plan) with maximum fitness. The fitness value
is calculated by

)()(max sFobjFsFitness −= , ()
angleNssss ,,, 21= (5)

Where maxF is a rough estimation of the maximum value of the objective function,

which makes sure that all the fitness values are positive, a requirement of the selection

operation. s is a group of angles to be selected, and Nangle is the number of the beam
angles of the plan. Both maxF and)(sFobj are calculated using Eq. (1) ~ (4).

The whole optimization is terminated when no better plan can be found in the speci-
fied number of successive generations of GA, and the individual with the highest
fitness in the last generation will be regarded as the optimal set of beam angles. The
details of beam angle optimization without using expert knowledge can be found in
our previously published paper [7].

3 Results

A clinical case with prostate tumor (planning tumor volume, PTV) shown in Fig. 3 is
optimized using the proposed method. There are four organ-at-risks (OARs) needed
to be considered during the irradiation: rectum, bladder, left and right femur head.
The sizes and relative positions of the volumes change substantially from slice to
slice, and on the most of the slices the contours of the rectum and bladder are over-
lapped with the tumor. Seven 6MV coplanar photon beams are used to irradiate the
tumor.

The selection of parameters in the GA, such as population size, crossover probabil-
ity and mutation probability, is an important issue for the optimization performance of
GA. Though some theoretical studies have been made for the determination of these
parameters [10], all these three parameters are mostly empirically selected in engi-
neering applications [11] [12]. The population size of GA is empirically set to the
double of the total number of angle candidates [11]. For example, if there are five
beams to be selected, the population size can be set to 10 or a little more. As for this
seven-beam plan of the clinical case, the population size is set to 20. The other two
parameters, the crossover probability and mutation probability, are empirically set to
0.9 and 0.01, respectively. These parameters have been experimentally proved

 A Modified Genetic Algorithm for the Beam Angle Optimization Problem 103

suitable for the beam angle optimization problem, though the optimization perform-
ance would be better by fine-tuning of these parameters.

First, the optimization results are compared between the GA with and without the
sorting operation. Then, the results are compared between the optimization with and
without the expert knowledge. For our new method, two beam orientation constraints
are defined ((a) and (b) in Fig. 3), and a plan configuration candidate with beam an-
gles of 0°, 50°, 100°, 150°, 210°, 260° and 310° is defined as an expert knowledge,
shown as the dotted white straight lines in Fig. 3. This plan candidate has become an
informal standard for the prostate case in the clinical IMRT practice in some institu-
tions and oncology centers.

Fig. 3. The clinical prostate case and the dose distribution of the optimized plan. The arcs (a)
and (b) are the two beam orientation constraint. The dotted white straight lines are the angles of
a beam configuration template. The solid black straight lines are the optimized beam angles.

Table 1. The comparison of mean computation time among different algorithm

Algorithms Mean computation time
standard GA (sGA) 45 min 26 sec
sGA + sorting operation 32 min 18 sec
sGA + sorting operation + expert knowledge 27 min 43 sec

For a convincing comparison, all the optimization tasks are run ten times. The op-
timization will be terminated if the generation number is reached to 200, or there is no
better individual found in 20 successive generations.

Just as expected, all the runs find the same optimal beam angles: 10°, 60°, 110°,
155°, 200°, 250° and 300°, shown as the thick black straight lines in Fig. 3. The mean
computation time is listed in Table 1. About 45 min 26 sec are taken by the standard
GA (i.e., neither sorting operation nor external knowledge is used), but the computa-
tion time is reduced to 32 min 18 sec when the sorting operation is applied to GA, and
27 min 43 sec are used when both the sorting operation and the defined knowledge is
incorporated into the optimization progress.

The fitness value versus generation number curves for one run of each algorithm
are shown in Fig. 4. From the figure we can clearly find that, the convergence is
meaningfully obtained by combining the sorting operation into the optimization, and
is further improved by utilizing the expert knowledge.

104 Y. Li et al.

Fig. 4. The fitness value versus generation number curve for different algorithms. The fitness
values are the currently best values among all the individuals.

4 Discussion and Conclusions

In this paper, a modified GA (mGA) was developed for beam angle optimization in
IMRT planning. In mGA, a sorting operation was introduced to avoid the good infor-
mation in chromosomes being destroyed by the crossover operation. The beam angles
are selected with GA guided by the user-defined expert knowledge. For each new
plan selected by GA, the corresponding beam intensity maps are fast optimized using
CG. The calculated dose distributions are used to calculate the fitness value in order
to evaluate the plan. A clinical prostate tumor case is employed to test the perform-
ance of the proposed algorithm. The comparison of the optimization time shows that
the optimization efficiency is improved by the proposed mGA.

One could question that why the full search process does not operate exclusively
on such sorted vectors (individuals). Mutation disturbs the ordering. In fact, the pro-
posed algorithm is equivalent to always using normalized (sorted) individuals.

The optimization of beam angles for IMRT planning is an important but also a dif-
ficult thing because of the extensive computation. Many efforts are needed to be made
before the automatic selection of beam angles becomes a routine tool for IMRT plan-
ning. By fully and easily making use of the plentiful expert knowledge accumulated
by the oncologists and physicists over time, the presented technique is hoped to be
more feasible and practicable for routine IMRT planning. The optimization time will
be slightly or heavily shortened, and the optimized beam angles are better, at least not
worse than that of not utilizing expert knowledge. The degree of the improvement
depends on the quantity and quality of the prior knowledge provided by the planner.

In fact, the value of the crossover operation is still controversial. It maintains the
diversity of the population. On the other hand, however, it brings the risks to destroy
the good information about the solution, which is the partial reason that GA con-
verges relatively slow at the later stage of the optimization process. De Jong et a1
(1997) had noted that crossover might not perform especially well on functions

 A Modified Genetic Algorithm for the Beam Angle Optimization Problem 105

featuring high modality [13]. The proposed sorting operation aims to improve the
convergence, and the limited results show that it works well. It should be emphasized
that the sorting operation is problem-dependent, and perhaps not suitable for other
engineering problems.

The idea and the implementation of GA is simple, however, it is not a piece of cake
for GA to solve a specified engineering optimization problem. Now it is a trend to
explore some novel schemes to incorporate the expert knowledge into the optimization
algorithms. The presented algorithm has just provided a preliminary frame for the
combination of expert knowledge with the GA. We are currently working on the build-
ing of an easily accessed knowledge database and on the more valid scheme for the
guiding of the genetic evolution with plan template. Also, the influence of the quality
and quantity of the expert knowledge on the performance of GA are being studied in-
depth. For example, if some bad knowledge is provided for a specified case, an insight
research is needed to evaluate their influence on the genetic process of GA.

Acknowledgments

This work is supported by a grant from the 973 Project of China (Grant No.
2003CB716106), a grant from NSFC of China (Grant No. 90208003), a grant from
the Doctor Training Fund of the Ministry of Education (MOE) of China, and a grant
from TRAPOYT of China. The work is also partially supported by Topslane Inc. The
authors would like to thank Wenyan Chen and Yu Wu of Topslane for their helpful
discussions and assistance.

References

1. Webb S.: Intensity-modulated Radiation Therapy. Bristol and Philadelphia, Institute of
Physics Publishing (2000)

2. Spirou S. V., Chui C. S.: A gradient inverse planning algorithm with dose-volume con-
straints. Med. Phys. 25 (1998) 321–333

3. Pugachev A., Boyer A. L., Xing L.: Beam orientation optimization in intensity-modulated
radiation treatment planning. Med. Phys. 27 (2000) 1238–1245

4. Hou Q., Wang J., Chen Y., Galvin J. M.: Beam orientation optimization for IMRT by a
hybrid method of genetic algorithm and the simulated dynamics. Med. Phys. 30 (2003)
2360–2376

5. Gaede S., Wong E. and Rasmussen H.: An algorithm for systematic selection of beam di-
rections for IMRT. Med. Phys. 31 (2004) 376–388

6. Djajaputra D., Wu Q., Wu Y. Mohan R.: Algorithm and performance of a clinical IMRT
beam-angle optimization system. Phy. Med. Biol. 48 (2003) 3191–3212

7. Li Y., Yao J., Yao D.: Automatic beam angle selection in IMRT planning using genetic
algorithm. Phy. Med. Biol. 49 (2004) 1915–1932.

8. Souza W. D., Meyer R. R., Shi L.: Selection of beam orientations in intensity-modulated
radiation therapy using single-beam indices and integer programming. Phy. Med. Biol. 49
(2004) 3465–3481

106 Y. Li et al.

9. Wang X., Zhang X., Dong L., Liu H., Wu Q., Mohan R.: Development of methods for
beam angle optimization for IMRT using an accelerated exhaustive search strategy. Int. J.
Radiat. Oncol. Boil. Phys. 60 (2004) 1325–1337

10. Goldberg D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley, Reading, Massachusetts (1989)

11. Yu Y. and Schell M. C.: A genetic algorithm for the optimization prostate implants. Med.
Phys. 23 (1996) 2085–2091

12. Wu X. and Zhu Y.: A mixed-encoding genetic algorithm with beam constraint for confor-
mal radiotherapy treatment planning. Med. Phys. 27 (2000) 2508–2516

13. De Jong K., Potter M. and Spears W.: Using problem generators to explore the effects of
epistasis. Proceedings of the Seventh International Conference on Genetic Algorithms
(1997) 338–345

On a Property Analysis of Representations for
Spanning Tree Problems

Sang-Moon Soak1, David Corne2, and Byung-Ha Ahn1

1 Dept. of Mechatronics, Gwangju Institute of Science and Technology, South Korea
{soakbong, bayhay}@gist.ac.kr

2 Dept. of Computer Science, University of Exeter, Exeter EX4 4QJ, UK
D.W.Corne@exeter.ac.uk

Abstract. This paper investigates on some properties of encodings of
evolutionary algorithms for spanning tree based problems. Although de-
bate continues on how and why evolutionary algorithms work, many
researchers have observed that an EA is likely to perform well when
its encoding and operators exhibit locality, heritability and diversity. To
analyze these properties of various encodings, we use two kinds of analyt-
ical methods; static analysis and dynamic analysis and use the Optimum
Communication Spanning Tree (OCST) problem as a test problem. We
show it through these analysis that the encoding with extremely high lo-
cality and heritability may lose the diversity in population. And we show
that EA using Edge Window Decoder (EWD) has high locality and high
heritability but nevertheless it preserves high diversity for generations.

1 Introduction

For a long time, many researchers have proposed various analytical methods to
reveal the basic principle of encodings in EAs. Manderick et al. [6] used corre-
lation coefficients for the fitness values of solutions before and after operators
are applied. Sendhoff et al. [17] proposed the concept of “causality” to analyze
the locality of EAs. Gottlieb et al. [1],[4],[9] proposed “mutation innovation”,
“crossover innovation” and “crossover loss” to emphasize the importance of lo-
cality and heritability. Merz et.al [7], Reeves et.al [11] and Watson et.al [19] used
the fitness landscape analysis. Besides those, many literatures have dealt with
methods for analyzing the properties of encodings [5],[12],[15]. In this paper, we
concentrate on the analysis of locality, heritability and diversity of encodings
based on Gottlieb et al.’s study and the fitness landscape analysis.

A difficulty of the population-based optimization is that once the search has
narrowed near the previous optimal solution, the diversity in the population may
not be enough for the search to get out of there and proceed towards the new
optimal solution. Especially, if an evolutionary algorithm has very high locality or
very high heritability as well, it may suffer from much serious problem. (Often,
in these cases, diversity preserving mechanisms were used for avoiding these
problems [9],[10].)

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 107–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

108 S.-M. Soak, D. Corne, and B.-H. Ahn

In this paper we show it through empirical tests that locality, heritability
and diversity are in conflict with each other. In other word, if an encoding has
extremely high locality and extremely high heritability, it may lose the diversity
in population after offsprings are created and lead the search toward the nar-
row space (exploitation) because offsprings generated by operators will be very
similar to their parents. Therefore, as generation goes, it will be deprived of the
ability of exploration. But, note that high diversity does not imply the loss of
locality and heritability. However, to obtain a good performance of evolutionary
algorithms the harmony of these properties is needed.

For empirical tests, we compare five encodings, the Prüfer encoding [3],
the network random key encoding (NetKey) [12], the link and node bias en-
coding (LNB) [8], the edge set encoding (Edge Set With Heuristic (ESWH)
and Edge Set Without Heuristic (ESWOH) : ESs) [9] and the edge-window-
decoder encoding (EWD) [18]. These encodings have been applied very success-
fully to spanning tree based problems like optimum communication spanning tree
problem, degree constrained minimum spanning tree problem and quadratic
spanning tree problem. For more details about each encoding, refer to the refer-
ences.

This paper is organized as follows. The optimum communication spanning
tree problem is described in Section 2. Section 3 presents the analysis of encod-
ings. We make some concluding remarks in Section 4.

2 Optimum Communication Spanning Tree Problem:
OCST

We perform an empirical analysis with OCST problem, which is one of the well-
known NP-hard constrained spanning tree problems.

Consider an undirected complete graph G = (V, E) , where V = {1, 2, ..., N}
is the set of N nodes and E = {1, 2, ..., M} is the set of M edges with given
distance (or cost). Generally, the MST is to find the minimal cost spanning tree.
In the case of the OCST, there are also “communication requirements” associated
with each pair of nodes, specified by R(i, j). E.g. these may represent the number
of expected daily telephone calls between two cities. For any spanning tree T
of G, the communication cost between two cities i and j is defined to be the
communications requirement multiplied by the distance between the two cities
on T, and the communication cost of T itself is the total communication cost
summed over all pairs of nodes.

The goal is to construct a spanning tree with minimum communication cost.
That is to find a spanning tree T such that formula (1) is minimized, where
dT (i, j) is the sum of the distance of edges along the route between i and j
on T.

Min [
∑

i,j∈V

R(i, j)dT (i, j)] (1)

On a Property Analysis of Representations for Spanning Tree Problems 109

3 Analysis of Encodings

The properties, locality, heritability and diversity, of an encoding in evolution-
ary algorithms are the core factors for the effective search toward an optimal or
near optimal solution. Though debate still continues on, many researchers have
observed that an EA is likely to perform well when its encoding and operators
exhibit these properties [8],[10]. Therefore, we want to analyze the difference
among various encodings. To analyze this, we use the locality [1],[4], the heri-
tability [5] and the fitness landscape analysis [7],[11],[19].

3.1 Metrics

In order to analyze the properties of an encoding, suitable metrics have to be
defined.

First of all, there are two search spaces in computational space of evolutionary
algorithms; the genotypic search space and the phenotypic search space. Most
of the genetic operators work on the genotypes and the movement of genotypes
on the genotypic search space by the genetic operators results in the change of
corresponding phenotypes on the phenotypic search space. Finally, it makes the
fitness value of corresponding solutions be changed. Therefore, the genotypic
distance have to be defined preferentially. But since the genotypic distance is
dependent on the encoding used, it must have universality.

Since the majority of the research follow the concept of evolutionary biol-
ogy [16] when defining the genotypic distance, the genotypic distance is generally
defined as follow;

– The genotypic distance is the smallest number of individual mutations re-
quired for the inter-conversion of two genotypes.

On the other hand, “the phenotypic distance” and “the fitness distance” are
independent on the encoding used, but they are dependent on the problem used.
So, these two metrics should be defined as the problem.

Next, we define “phenotypic distance (dp)” and “fitness distance (df)” based
on the OCST problem which is used as the test problem in this paper.

– The phenotypic distance is the total number of different edges between two
phenotypes (spanning trees). Therefore, the phenotypic distance is the Ham-
ming distance.

dp(Ti, Tj) =
1
2

∑
u,v∈V

|Ei
uv − Ej

uv| (2)

where Ei
uv is 1 if an edge (u, v) exists in a tree Ti, otherwise 0.

– The fitness distance is the difference between the fitness values of two phe-
notypes (spanning trees).

df (Ti, Tj) = |f(Ti) − f(Tj)| (3)

110 S.-M. Soak, D. Corne, and B.-H. Ahn

3.2 Locality

The locality can be defined as how well neighboring genotypes correspond to
neighboring phenotypes [1], [4], [15]. Therefore, the locality of representation is
high if small changes in the genotype result in small changes in the corresponding
phenotype. In this context, it is appropriate to measure the locality of encod-
ings using the mutation operator instead of the crossover operator, because the
mutation operator is usually responsible for small steps in the phenotypic space,
hence for gradual changes which we want to analysis.

Gottlieb and Eckert [1], [4] introduced the mutation innovation to measuring
the locality. Mutation operators work in the genotype, but their effect can only be
analyzed in the corresponding phenotype, which involves structural information
of candidate solutions. So, the effect of mutation can be measured by the distance
between the involved phenotypes. Therefore, the mutation innovation (MI) is
equal to the phenotypic distance (dp) but, only difference is to be compared
between parent and its mutant.

MI = dp(x, xm) (4)

where x and xm indicate parent and its mutant respectively.
To analyze the locality of each encoding, we generated 1,000 random initial so-

lutions in compliance with the used encoding, applied only a mutation operator to
each encoding and performed the experiment on the selected benchmark instances
(Palmer24 and Berry35U) and random generated instances (N = 10 ∼ 100).

In this experiment, the reciprocal exchange mutation is used for Prüfer,
NetKey and EWD, the random perturbation mutation is used for LNB and
the specialized mutation operator is used for ESs [10]. If two genes with the
identical gene value are selected when the reciprocal exchange mutation is ap-
plied to an encoding, it never generates a different offspring from the parent. So,
in this case two genes with different gene values are selected again.

Table 1 shows the locality comparison among encodings and here a mutation
was applied once to each encoding. In case of ESWH and ESWOH, all solutions
had MI = 1 at all instances. The reason is for their specialized mutation op-
erator; each mutation process changes exactly one edge on the genotype, and
for the genotype and the phenotype are the same; non-redundant encoding. On
the other hand, the others are a kind of redundant encodings except the Prüfer
encoding. So, although a mutation operator is applied to encodings, sometimes
it does not cause the change at the phenotype (the redundancy) or the different
genotypes can be mapped to the same phenotype (the heuristic bias).

P (MI = 0) represents these things. NetKey and LNB show higher frequency
than Prüfer and EWD. It relates to the degree of redundancy and the heuristic
bias of encodings. In case of NetKey, exactly two genes are exchanged by the
mutation (the reciprocal exchange mutation) and it results in the change of
sorting order at exactly two genes. So, if the selected genes are the genes which
are not selected for the previous phenotype, it never makes a difference between
the phenotypes. Therefore, P (MI = 0) will be increased as the size of network is
increased because only N−1 edges among the total edges N(N−1)/2 are selected

On a Property Analysis of Representations for Spanning Tree Problems 111

Table 1. Comparison of locality on Palmer24, Berry35U and random generated In-
stances (Rand10 ∼ 100), based on randomly generating 1,000 genotypes and applying
mutation once to each

Palmer24 Prufer LNB NetKey ESWH ESWOH EWD Berry35U Prufer LNB NetKey ESWH ESWOH EWD
P (MI = 0)(%) 0.00 80.5 80.3 0.00 0.00 4.10 0.00 93.5 87.3 0.00 0.00 0.00
E(MI|MI > 0) 4.49 7.87 1.51 1.00 1.00 2.42 5.08 33.0 1.49 1.00 1.00 11.70

Max(MI) 12 22 2 1 1 7 17 33 3 1 1 18
σ(MI|MI > 0) 2.01 5.67 0.50 0.00 0.00 1.02 2.64 0.00 0.51 0.00 0.00 2.24

Rand10 Rand20
P (MI = 0)(%) 0.00 55.7 61.9 0.00 0.00 70 0.00 56.3 77.7 0.00 0.00 4.7
E(MI|MI > 0) 3.20 2.43 1.43 1.00 1.00 2.10 4.30 3.11 1.45 1.00 1.00 2.39

Max(MI) 6 8 2 1 1 5 10 11 2 1 1 6
σ(MI|MI > 0) 1.12 1.71 0.49 0.00 0.00 0.89 1.65 2.05 0.49 0.00 0.00 0.96

Rand30 Rand40
P (MI = 0)(%) 0.00 61.1 84.0 0.00 0.00 3.90 0.00 64.8 87.2 0.00 0.00 2.60
E(MI|MI > 0) 4.97 4.03 1.60 1.00 1.00 2.48 5.66 4.67 1.56 1.00 1.00 2.58

Max(MI) 14 22 2 1 1 9 19 18 2 1 1 7
σ(MI|MI > 0) 2.39 3.46 0.49 0.00 0.00 1.01 3.19 3.47 0.49 0.00 0.00 1.00

Rand50 Rand60
P (MI = 0)(%) 0.10 64.5 89.7 0.00 0.00 3.80 0.00 66.7 91.6 0.00 0.00 2.80
E(MI|MI > 0) 6.29 4.49 1.51 1.00 1.00 2.59 7.20 5.40 1.57 1.00 1.00 2.65

Max(MI) 21 23 2 1 1 6 27 25 3 1 1 8
σ(MI|MI > 0) 3.87 3.91 0.50 0.00 0.00 0.98 4.86 4.44 0.54 0.00 0.00 1.00

Rand70 Rand80
P (MI = 0)(%) 0.00 68.1 91.0 0.00 0.00 2.40 0.00 70.1 90.1 0.00 0.00 2.80
E(MI|MI > 0) 7.38 5.53 1.58 1.00 1.00 2.63 8.02 5.92 1.48 1.00 1.00 2.65

Max(MI) 31 22 2 1 1 7 29 23 3 1 1 9
σ(MI|MI > 0) 5.56 4.22 0.49 0.00 0.00 1.01 5.94 4.52 0.54 0.00 0.00 1.01

Rand90 Rand100
P (MI = 0)(%) 0.00 71.1 92.2 0.00 0.00 1.70 0.00 69.4 90.5 0.00 0.00 1.50
E(MI|MI > 0) 8.59 5.62 1.46 1.00 1.00 2.71 9.49 6.03 1.45 1.00 1.00 2.69

Max(MI) 36 23 3 1 1 6 38 23 3 1 1 5
σ(MI|MI > 0) 6.88 4.41 0.55 0.00 0.00 1.01 7.99 4.84 0.57 0.00 0.00 0.98

to generate a spanning tree. The test results show that. And LNB has also
the same redundancy as NetKey in terms of the length of the encoding, but in
addition to that it has a strong heuristic bias in the context of having a preference
toward a specific spanning tree [2]. Therefore, mutants over 80% at Palmer 24,
over 93% at Berry35U and over avg. 70% at the random generated instances are
the same as their parents. Especially, in Berry35U instance LNB shows much
higher P (MI = 0) value (93.5%) in comparison to those of the other encodings.
That is for the strong heuristic bias of LNB using Prim’s algorithm for sorting
all edges with the modified cost matrix and for the instance’s data set; all edge
distances are the same (In this case LNB can only generate a star tree [2]). In all
random instances, also LNB and NetKey show relatively higher values than the
others. In case of EWD, even though it is a redundant representation, it has much
lower redundancy comparing to NetKey and LNB. So, it exhibits relatively much
lower probability at P (MI = 0). The ESs and Prüfer show that all offsprings
were different from their parents (P (MI = 0) = 0). As mentioned above, the
reason is that the specialized mutation operator of ESs exactly changes one
edge to a different edge which is not included in the tree and in case of the
Prüfer encoding the mutation exchanges exactly two different genes. So, while
P (MI = 0) was 0%, P (MI = 1) was 100%.

In addition, this table shows three other indicators of locality, E(MI | MI >
0), σ(MI | MI > 0) and Max(MI). E(MI | MI > 0) represents the expected
mutation innovation in the case that some phenotypic property has actually been
affected. So, high values represent low degree of locality. Especially, ESs can be
seen as a very ideal case because single change in genotypes exactly causes 1
distance in phenotype. EWD shows low locality in comparison with NetKey and

112 S.-M. Soak, D. Corne, and B.-H. Ahn

ESs but high locality in comparison with Prüfer and LNB. But, when considering
the redundancy of encodings, it is very difficult to distinguish which encoding
has better locality between EWD and NetKey. In case of σ(MI | MI > 0),
also this table shows the similar results. NetKey, ESs and EWD are much stable
than Prüfer and LNB. In Berry35U, LNB shows E(MI | MI > 0) = 33 and
σ(MI | MI > 0) = 0. The reason is for LNB implies a strong heuristic bias.
And the maximum number of edges modified (Max(MI)) does not exceed 38 at
Prüfer, 33 at LNB, 3 at NetKey, 1 at ESs and 9 at ESW.

In figure. 1, the upper two figures indicate the frequency of solutions with the
identical phenotypic distance (dp) when a mutation is applied to each encoding
once. EWD and Prüfer show that the solutions with various phenotypic distance
are generated by a mutation. That means the exploration ability of EWD and
Prüfer encoding. On the other hand, the other encodings exhibit their exploita-
tion ability.

(a) Palmer24 (b) Berry35U

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Identical PD

F
re

q
u

en
cy

 (
%

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

0

4

8

12

16

20

24

2 10 20 30 40 50 100 200 300 400 500 600 700 800 900 1000

k

E
(M

I
|

M
I

>
 0

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

0

1

2

3

4

5

6

7

2 10 20 30 40 50 100 200 300 400 500 600 700 800 900 1000

k

S
T

D
(M

I
|

M
I

>
 0

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Identical PD

F
re

q
u

en
cy

 (
%

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

0

5

10

15

20

25

30

35

2 10 20 30 40 50 100 200 300 400 500 600 700 800 900 1000

k

E
(M

I
|

M
I

>
 0

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

0

0.5

1

1.5

2

2.5

3

2 10 20 30 40 50 100 200 300 400 500 600 700 800 900 1000

k

S
T

D
(M

I
|

M
I

>
 0

)

CB-TCR Prufer

NetKey LNB

ESWH ESWOH

Fig. 1. The frequency of identical locality and the value of E(MI | MI > 0) and
σ(MI | MI > 0) according to generation. In here, E(MI | MI > 0) and σ(MI | MI >
0) represent values obtained by the phenotypic distance between the original solution
and its mutant generated after k generation (Pm=100).

On a Property Analysis of Representations for Spanning Tree Problems 113

The other figures show the value of E(MI | MI > 0) and σ(MI | MI > 0)
according to generation. E(MI | MI > 0) and σ(MI | MI > 0) represent the
values obtained by the phenotypic distance between the original solution and
its mutant generated after k mutation. As k increases, it shows a significant
difference within 200 generation. NetKey and ESWH exhibit lower mean values
than the other encodings. That indicates high locality of the two encodings. But
NetKey is very unpredictable at Berry35U and ESWH indicates slightly higher
standard deviation values (STD) at Palmer24. On the other hand, even though
LNB shows relatively high mean values and especially at Berry35U instance the
mean values were all 33. As mentioned above, it is for strong bias toward a
specific tree structure - a star tree. Moreover, at Palmer24 LNB is very unstable
and unpredictable. Prüfer exhibits relatively high mean values -low locality- at
both instances but σ(MI | MI > 0) is very predictable at palmer24 instance.

Although ESWH and ESWOH start at the same E(MI | MI > 0) value at
the beginning of generation, the difference between ESWH and ESWOH becomes
large because of the heuristic bias of ESWH. EWD starts slightly high mean
value but finally the mean value becomes very similar to other encodings’ mean
value.

3.3 Heritability

The locality is a feature of the interaction between a coding and mutation oper-
ator. On the other hand, the heritability is a feature of the interaction between a
coding and crossover operator. Julstrom [5] defined the heritability as the num-
ber of edges in the offspring’s spanning tree that appeared in neither parent’s
tree. We define the heritability as a similar way.

– The heritability is the number of edges in the offspring’s spanning tree that
appeared in either parent’s tree.

Table 2. Comparison of Average Heritability based on randomly generating 1,000
genotypes and applying crossover once to each

Heritability Prufer LNB NetKey ESWH ESWOH EWD
Palmer24 15.72 19.08 18.79 23.00 23.00 16.77
Berry35U 22.27 26.63 27.90 34.00 34.00 17.77
Rand10 6.92 7.80 7.67 9.00 9.00 7.46
Rand20 13.24 16.20 15.56 19.00 19.00 15.80
Rand30 19.39 24.11 23.57 29.00 29.00 24.34
Rand40 25.90 32.83 31.72 39.00 39.00 33.27
Rand50 31.60 40.05 39.96 49.00 49.00 41.67
Rand60 37.91 47.71 47.82 59.00 59.00 51.02
Rand70 43.94 57.01 56.17 69.00 69.00 60.04
Rand80 49.96 64.78 64.32 79.00 79.00 67.93
Rand90 55.57 73.46 72.73 89.00 89.00 77.51
Rand100 62.49 81.14 80.81 99.00 99.00 86.17

114 S.-M. Soak, D. Corne, and B.-H. Ahn

dh(Pi, Pj , O) = |(Pi ∪ Pj) ∩ O| (5)

where P and O represent parent and offspring.

Each encoding uses different crossover operators considering which crossover
operator can give better performance for the considering encoding [18]. So, Prüfer
uses two-point crossover, LNB one-point crossover, NetKey uniform crossover,
ESs their specialized crossover and EWD adjacent node crossover.

Table. 2 exhibits the average heritability of each encoding and the high dh

values imply the high heritability.
ESs show very ideal case at all instances because of their specialized crossover

operator. All of the generated offsprings are created by their parents’ edges.
However, they show the highest locality and heritability. In this empirical com-

EWD

0

5

10

15

20

25

0 2 4 6 8 10 12

Mil.Fitness Distance

P
h

e
n

o
ty

p
ic

 D
is

ta
n

c
e

Gen=1

Gen=100

Gen=435

LNB

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Mil.
Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

NetKey

0

5

10

15

20

25

0 5 10 15 20 25

Mil.Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=52

ESWOH

0

5

10

15

20

25

0 5 10 15 20 25

Mil.
Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=34

Prufer

0

5

10

15

20

25

0 5 10 15 20 25

Mil
Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

ESWH

0

5

10

15

20

25

0 5 10 15 20 25

Mil.Fitness Distance

P
h

en
o

ty
p

ic
 D

is
ta

n
ce

Gen=1

Gen=100

Gen=500

Gen=1000

Fig. 2. The fitness landscape. 1,000 solutions are generated using each representation
methods and genetic operators are applied to a representation (Palmer24).

On a Property Analysis of Representations for Spanning Tree Problems 115

parison, EWD exhibits higher heritability than the other encodings except ESs
and Prüfer encoding exhibits the lowest heritability as the locality comparison.

3.4 Diversity

– If various different solutions coexist in population, the representation has
high diversity. Otherwise, it has low diversity.

We analyzed the diversity of encodings at two instances (palmer24 and
berry35U) and in this experiment all genetic operators were applied to encodings
as following [18].

Figure. 2 and figure. 3 show the relation between phenotypic distance and
fitness distance to optimum solution (palmer24) or the best known solution

EWD

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

LNB

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

NetKey

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

ESWH

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

ESWOH

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

Prufer

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fitness Distance

P
h

en
o
ty

p
ic

 D
is

ta
n

ce

Gen=1

Gen=100

Gen=500

Gen=1000

Fig. 3. The fitness landscape. 1,000 solutions are generated using each representation
methods and genetic operators are applied to a representation (Berry35U).

116 S.-M. Soak, D. Corne, and B.-H. Ahn

(berry35U) according to generation. Here, different shape points represent the
distribution of solutions scattered at each generation. Note that EWD keeps pre-
serving the diversity of solution over generations at both instances and has high
diversity in population. On the other hand, the other encodings dramatically
lose the diversity of solution.

We conclude that the reason why the other encodings lose the diversity of
population is for the strong heuristic bias or extremely high locality. If an encod-
ing has extremely high locality, after operators are applied it keeps generating
very similar offsprings or nearly the same offsprings, and finally the population
will be filled by similar offsprings very fast as generation goes. As a result, the
search space which the encoding explores will narrow and then it will become
to lose the balance between “exploration” and “exploitation”. For example, at
the locality comparison NetKey and ESs exhibited higher locality. But, if con-
sidering the diversity distribution, the solutions are distributed in a very limited
space.

Observing the distribution of solutions, we can also estimate the difficulty of
problems. In Palmer24 instance, the solution distribution of each encoding shows
the positive correlation [15] between phenotypic distance and fitness distance. It
means that an algorithm which guides toward solutions with small fitness value
can easily find the optimum solution. On the other hand, in case of Berry35U,
the solution distribution of each encoding shows no correlation between pheno-
typic distance and fitness distance. For example, ESWH and ESWOH use the
specialized initialization operator, which is derived from Kruskal’s algorithm and
the operator prefers to shorter edges. So, the initial solution distributions of ESs
are scattered along x-axis and even though they find solutions with less fitness
distance, the phenotypic distance is still large. As a result, the figure shows that
if an algorithm guides toward a better fitness solution, it may fall into a local
optima, and preserving the diversity of solution can give a help to escape the
local optima.

4 Conclusions

We investigated the locality, heritability and diversity of encodings of evolution-
ary algorithms for spanning tree based problems and performed empirical tests
on the optimum communication spanning tree problem.

Generally, the Prüfer encoding has low locality so that it did not give good
performance in several literatures. We could also confirm low locality and low
heritability of the Prüfer encoding. And it is known that if an encoding has high
locality and high heritability, the evolutionary algorithm will give good perfor-
mance. But, in our experiment, we showed that if an encoding has extremely
high locality and heritability like ESs, it can lose the diversity of population.
So, some researchers used the diversity preservation strategy [9], [10] to avoid
this problem. However, it can be a good strategy. LNB and Netkey showed high
locality and high heritability because of the heuristic bias or the redundancy of
the encoding. But, these encodings also showed a feature of the diversity loss.

On a Property Analysis of Representations for Spanning Tree Problems 117

On the other hand, EWD showed slightly low locality and high heritability and
the highest diversity in all test instances. And EWD showed a feature which it
is independent on the property of problem. That shows EWD can be applied
various spanning tree based problems and may give good performance.

As a result, EWD and ESs seem to be good encodings for the OCST, and
potentially other spanning tree based problems.

References

1. C. Eckert and J. Gottlieb, Direct Representation and Variation Operators for the
Fixed Charge Transportation Problem, PPSN VII, LNCS, vol. 2439, (2002) 77–87.

2. T. Gaube and F. Rothlauf, The Link and Node Biased Encoding Revisited: Bias
and Adjustment of Parameters, EvoWorkshop 2001, LNCS Vol.2037, (2001) 1–10.

3. M. Gen and R. Chen, Genetic Algorithms and Engineering Design, Wiley, (1997).
Also see (for Prüfer encoding):
http://www.ads.tuwien.ac.at/publications/bib/pdf/gottlieb-01.pdf.

4. J. Gottlieb and C. Eckert, A Comparision of Two Representations for the Fixed
Charge Transportation Problem, PPSN VI, LNCS, vol. 1917, (2000) 345–354.

5. B.A. Julstrom, The Blob Code: A Better String Coding of Spanning Trees for Evo-
lutionary Search, in Genetic and Evolutionary Computation Conference Workshop
Program. Morgan Kaufmann, (2001) 256–261.

6. B. Manderick, M. de Weger, and P. Spiessens, The genetic algorithm and the
structure of the fitness landscape, Proceedings of the 4th International Conference
on Genetic Algorithms, (1991) 143–150.

7. P. Merz and B. Freisleben, Fitness Landscapes, Memetic Algorithms, and Greedy
Operators for Graph Bipartitioning, Evolutionary Computation, vol. 8, no. 1,
(2000) 61–91.

8. C.C. Palmer and A. Kershenbaum, An Approach to a Problem in Network Design
Using Genetic Algorithms, Networks, Vol. 26, (1995) 151–163.

9. G.R. Raidl, Empirical Analysis of Locality, Heritability and Heuristic Bias in Evo-
lutionary Algorithms: A Case Study for the Multidimensional Knapsack Problem,
Evolutionary Computation Journal, MIT Press, 13(4), to appear in 2005.

10. G.R. Raidl and B.A. Julstrom : Edge-Sets: An Effective Evolutionary Coding of
Spanning Trees, IEEE Transactions on Evolutionary Computation, 7(3),pp. 225-
239, 2003.

11. C.R. Reeves and T. Yamada, Genetic algorithms, path relinking, and the flowshop
sequencing problem, Evolutionary Computation, vol. 6, pp. 45–60.

12. F. Rothlauf, Locality, Distance Distortion, and Binary Representations of Integers,
Working Papers, July (2003).

13. F. Rothlauf, D.E. Goldberg and A. Heinzl, Network Random Keys - A Tree Net-
work Representation Scheme for Genetic and Evolutionary Algorithms, Evolution-
ary Computation, Vol. 10 (1), (2002) 75–97.

14. F. Rothlauf, J. Gerstacker and A. Heinzl, On the Optimal Communication
Spanning Tree Problem, Working Papers in Information Systems, University of
Mannheim, (2003)

15. F. Rothlauf, On the Locality of Representations, Working Paper in Information
Systems, University of Mannheim, (2003)

16. P. Schuter, Artificial Life and Molecular Evolutionary Biology, In F. Moran et al.
(Eds.), Advances in Artificial Life, Springer, (1995) pp. 3–19.

118 S.-M. Soak, D. Corne, and B.-H. Ahn

17. B. Sendhoff, M. Kreutz and W.V. Seelen, A condition for the genotype-phenotype
mapping: Causalty, Proceedings of the Seventh International Conference on Ge-
netic Algorithms, Morgan Kauffman, 1997.

18. S.M, Soak, D. Corne and B.H. Ahn, The Edge-Window-Decoder Representation
for Tree-Based Problems, submitted to IEEE Transaction on Evolutionary Com-
putation (2004).

19. J.P. Watson, L. Barbulescu, L.D. Whitley and A.E. Howe, “Constrasting
Structured and Random Permutation Flow-Shop Scheduling Problems: Search-
Space Topology and Algorithm Performance,” http://www.cs.colostate.edu/ geni-
tor/Pubs.html.

A Cooperative Multilevel Tabu Search
Algorithm for the Covering Design Problem

Chaoying Dai, (Ben) Pak Ching Li, and Michel Toulouse

Department of Computer Science, University of Manitoba
{chaoying, lipakc, toulouse}@cs.umanitoba.ca

Abstract. This work describes an adaptation of multilevel search to the
covering design problem. The search engine is a tabu search algorithm
which explores several levels of overlapping search spaces of a t−(v, k, λ)
covering design problem. Tabu search finds “good” approximations of
covering designs in each search space. Blocks from those approximate
solutions are transferred to other levels, redefining the corresponding
search spaces. The dynamics of cooperation among levels tends to re-
group good approximate solutions into small search spaces. Tabu search
has been quite effective at finding re-combinations of blocks in small
search spaces which provide successful search directions in larger search
spaces.

Keywords: Multilevel algorithms, Covering design problem, Tabu search
meta-heuristic.

1 Introduction

A t − (v, k, λ) covering design is a pair (X, B), where X is a set of size v, called
points and B is a collection of k-subsets of X , called blocks, such that every
t-subset of X is contained in at least λ blocks of B. Let Cλ(v, k, t) denote the
minimum number of blocks in any t − (v, k, λ) covering design. A t − (v, k, λ)
covering design is optimal if it has Cλ(v, k, t) blocks [12]. The covering design
problem is the problem of determining the value of Cλ(v, k, t). The covering
design problem has applications in lottery design, data compression and error-
trapping decoding [5].

The value Cλ(v, k, t) can be determined using an exact search algorithm.
Unfortunately, such algorithms are ineffective for all but a few set of parameters,
due to the effects of combinatorial explosion. Therefore, search heuristics may
be a viable option for improving upper bounds on Cλ(v, k, t).

In this paper, we introduce a cooperative multilevel search heuristic method
to improve upper bounds on Cλ(v, k, t). Assume we are looking for a t− (v, k, λ)
covering design of b blocks. Let

(
X
k

)
be the set of all k-subsets in X and let S0 =

{S ⊂
(
X
k

)
||S| = b} be the solution space for t − (v, k, λ). Assume S1, S2, . . . , Sl

are subsets of
(
X
k

)
such that Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0 =

(
X
k

)
. Each subset Si

defines a search space Si on t − (v, k, λ) in the same way as S0. A tabu search
algorithm explores independently each search space to seek sets of b blocks that

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 119–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 C. Dai, P.C. Li, and M. Toulouse

cover as many t-subsets as possible. The cooperative multilevel search strat-
egy consists of substituting some blocks of the smallest search spaces by sets
of good blocks discovered by tabu search. This exchange of blocks eventually
brings combinations of good blocks in small search spaces where tabu search is
quite effective finding covering for large number of t-subsets. We have tested our
algorithm on covering design problems with tight gaps between lower and upper
bounds [8, 9]. Those are the most difficult upper bounds to improve. We were
able to find known upper bounds for all the problem instances tested and found
new upper bounds for several of them.

The subsequent sections of this paper are organized as follows. Section 2
provides background information on the covering design problem. In section 3,
we describe the multilevel paradigm. Section 4 summarizes the implementation
of our cooperative multilevel algorithm. Section 5 reports experimental results
and we conclude in Section 6.

2 Background

In this section we provide a short background on covering designs and search
heuristics for covering designs.

2.1 Covering Designs

The study of covering designs began around the end of the 1930’s. Turán (see
[5]) was one of the first researchers to study covering designs. Since then, many
researchers have studied covering designs from various directions. One such direc-
tion is the determination of Cλ(v, k, t) by means of computer programs. Because
the exact value of Cλ(v, k, t) has been computed only for small set of values for
v, k, t and λ, most research on covering designs has focused on determining the
upper and lower bounds for Cλ(v, k, t). In this section, we briefly describe some
important results about the lower bounds and upper bounds for Cλ(v, k, t).

The Schönheim lower bound (Lλ(v, k, t)) [19] provides a lower bound for
Cλ(v, k, t) given by:

Lλ(v, k, t) :=
⌈

v

k

⌈
v − 1
k − 1

. . .

⌈
v − t + 1
k − t + 1

λ

⌉
. . .

⌉⌉
≤ Cλ(v, k, t).

This bound is a very good general lower bound for Cλ(v, k, t). For many values of
v, k, and t where Cλ(v, k, t) is known, Lλ(v, k, t) attains the value Cλ(v, k, t) [13].

In 1963, Erdős and Hanani [7] conjectured that for fixed values of t and k,
where t < k.

lim
v→∞

C1(v, k, t)
(

k
t

)(
v
t

) = 1.

This result was shown to be true in 1985 by Rödl [18], using probabilistic meth-

ods. This result implies that C1(v, k, t) = (1 + o(1))(v
t)

(k
t)

.

A Cooperative Multilevel Tabu Search Algorithm 121

Various techniques have been used to construct covering designs [9]. One of
the earliest constructions involved using finite geometries to construct covering
designs. For example, it has been found that the hyperplanes of the affine geom-
etry AG(t, q) form an optimal (qt, qt−1, t) covering design with qt+1−q

q−1 blocks.
Another common approach is to use recursive techniques for constructing cover-
ing designs. That is, using smaller covering designs to construct larger covering
designs [14]. For example, if S1 is a t − (v − 1, k, λ) covering design and S2 is a
(t − 1)− (v − 1, k − 1, λ) covering design, then a t − (v, k, λ) covering design can
be constructed by taking all blocks from S2 with adding a new point v to all of
these blocks and including all blocks from S1.

Exact search methods have also been used to construct covering designs.
Bate [2] developed a backtracking algorithm to exhaustively search for general-
ized covering designs to determine C1(v, k, t). In 2003, Margot [11] used integer
programming techniques, branch-and-cut and isomorphism rejection to design
an algorithm for computing C1(v, k, t). However, such algorithms are effective
for only a few set of parameters.

2.2 Search Heuristics for Covering Designs

Search heuristic methods are used to search for a t − (v, k, λ) covering design
which is smaller than the best known upper bound for Cλ(v, k, t). These methods
have worked well for small values of v, k, λ [15, 16]. For λ = 1, the covering design
problem can be modeled as a combinatorial optimization problem in

(
v
k

)
Boolean

decision variables, one for each k-subset. A feasible solution is a Boolean vector
where at most b variables are set to 1, where b is the size of the covering design
we are looking for. The cost function optimized by the search heuristic is the
number of t-subsets not covered at least one time by the current solution (a set
B of b blocks). More precisely, let

(
X
t

)
be the set of t-subsets and let covery be

the number of times the t-subset y ∈
(
X
t

)
is covered by the b blocks in B. Let

notcovery = max{0, λ − covery} denote the number of times the b blocks in B
fails to cover the t-subset y. The cost of solution B is given by

cost(B) =
∑

y∈(X
t)

notcovery .

When cost(B) = 0, then all t-subsets are covered at least λ times, meaning we
have discovered a t − (v, k, λ) covering design with b blocks.

A natural mapping function to define neighborhoods for covering design prob-
lems consists of choosing m points among the k points of a block and replace
these by m other points from the v − k points not belonging to this block. Such
a move can replace 1 ≤ m ≤ min(k, v−k) points belonging to a same block. The
neighborhood N (B) of solution B is a subset of S0 such that I ∈ N (B) if I has
b − 1 identical blocks with B and one block which differs by exactly m points.
The size of the neighborhood N (B) is given by |N (B)| = b×

(
k
m

)
×

(
v−k
m

)
. Since

the size of neighborhoods based on swapping points increases rapidly in terms of
m, typical move based heuristics for covering designs are based on neighborhood
where m = 1.

122 C. Dai, P.C. Li, and M. Toulouse

3 The Multilevel Paradigm

Multilevel approaches have first been proposed in the field of numerical ap-
proximation [3]. Based on the original problem domain discretization, coarser
discretizations (levels) are recursively constructed by increasing the grid spac-
ing in comparison with the latest generated grid. In nested iteration, the sim-
plest multilevel scheme [4], starting with the coarser grid, an approximation is
computed and then interpolated on the next grid, which is less coarsened. The
approximation is then refined using an iterative solver. The latest refined ap-
proximation is used as initial point of the relaxation in the original problem
domain discretization. The nested iteration scheme helps improve convergence
in the original domain discretization by providing a good initial point to the
relaxation method. In the V-cycle scheme, a first approximation is computed
on the original grid spacing. The residual error associated to the approximation
is projected on the next coarser grid where the system of linear equations is
solved for this residual error. One V-cycle consists of projections upward from
less coarsened grids toward coarser grids. Then interpolations from coarser grids
toward less coarsened grids refine the approximation. Projections change the
problem definition by solving for a new residual error at each level. They also
help to improve convergence of iterative solvers by focusing on the oscillatory
component of the error function at each level.

The multilevel approach has been adapted recently to combinatorial opti-
mization problems in combination with search algorithms. The basic framework
of multilevel search is the following: Let A denote a given combinatorial op-
timization problem and A0 a problem instance of A. During the coarsening
phase, a succession A1, . . . , Al of increasingly smaller problem instances of A
is generated by reducing the number of decision variables in comparison with
the definition of problem instance A0. During the initial search phase, a fea-
sible solution sl is computed for the smallest problem instance Al. During the
refinement phase, the feasible solution sl is used to interpolate values for the
decision variables of problem instance Al−1. This setting of decision variables in
Al−1 is used as initial solution for a search algorithm which explores the search
space of Al−1. The optimization of the cost function for Al−1 using a search algo-
rithm also improves (refines) the feasible solution sl obtained from the problem
instance Al. The refinement phase consists of interpolating and refining feasible
solutions until the values of the decision variables of s0 can be interpolated from
a feasible solution of problem instance A1. This last interpolation provides for
an initial solution for a search algorithm to optimize the cost function problem
instance A0.

The coarsening phase is critical to multilevel algorithms. It reduces the size
of the problem instance and, more importantly, it determines which regions
of the solution space will be explored during the initial search and refinement
phases. Coarsening strategies were first proposed in the context of applications
of the multilevel paradigm to the graph partitioning problem [1, 10]. These
strategies are based on clustering decision variables. Starting from the origi-
nal graph instance G0 = (V0, E0), pairs of adjacent vertices x, y are selected

A Cooperative Multilevel Tabu Search Algorithm 123

randomly and merged together to become a single vertex xy in the coarsened
graph G1 = (V1, E1). Edge {x, y} ∈ G0 is removed, edges {u, x} or {u, y} in
G0 are replaced by edge {u, xy} in G1. The coarsening of G0 yields a graph G1

where |V1| ≈ |V0
2 | and E1 ⊂ E0.

Let GPP (Gx) be the graph partitioning problem for the graph instance
Gx and Sx the solution space of GPP (Gx). The number of decision variables
in GPP (G1) is about half of GPP (G0). Nonetheless, a feasible solution of
GPP (G1) can be interpolated in the solution space of GPP (G0) by expand-
ing vertex xy ∈ V1 into vertices x, y ∈ V0 and placing x, y in the same partition
as xy. Consequently, S1 ⊂ S0, i.e., any feasible solution to GPP (G1) is also
a feasible solution to GPP (G0). The coarsening phase recursively applies the
above coarsening strategy to the latest coarsened graph and outputs a succes-
sion of increasingly coarsened graph G1, G2, · · · , Gl which satisfy the condition
Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0.

For several combinatorial optimization problems, coarsening by clustering
decision variables is hardly applicable. In [6], the authors proposed a coarsening
strategy by fixing the state of some decision variables. A decision variable is
fixed if its value cannot be changed by the solution process. Let x1, x2, . . . , xn

be the set of decision variables of a problem instance A0. By fixing some deci-
sion variables of A0, a new problem instance A1 is defined where S1 ⊂ S0. Any
solution to A1 can be trivially interpolated in the solution space of A0. Fixing
recursively the state of some decision variables has the effect of coarsening the
original problem instance A0 into problem instances with fewer decision vari-
ables. Furthermore, the strict inclusion condition Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0 is
also satisfied.

In most multilevel algorithms applied to combinatorial optimization prob-
lems, the refinement phase is reminiscent of the nested iteration scheme in multi-
grid approximation. Recently, a multi-cycle refinement phase has been proposed
[6, 17] in the context of parallel cooperative search algorithms. In multi-cycle
refinement, projection operators transformed the problem instance searched at
each level by changing its coarsening. Modification to the coarsening of levels
define new regions of the solution space that can be explored by search heuris-
tics. This allows for a new sequence of interpolations and searches, closing one
cycle. There are several possible variations in the multi-cycle refinement phase,
we propose a new one in this paper.

4 Multilevel Tabu Search Algorithm for the Covering
Design Problem

In this section, we introduce the design of our multilevel algorithm for the cover-
ing design problem. We describe our strategy to coarsen covering design problem
instances as well as the projection operator and re-coarsening strategies applied
to transform subsequently the initial coarsening. Next, we describe the tabu
search algorithm which is used to explore the search space defined by each level
of coarsening. Finally, we describe a variation of the multi-cycle refinement phase
adapted for the covering design problem.

124 C. Dai, P.C. Li, and M. Toulouse

4.1 The Coarsening Phase

Our coarsening procedure defines search spaces (levels) by fixing recursively sub-
sets of decision variables. The decision variables for the covering design problem
correspond to the

(
v
k

)
blocks of a given problem instance. Each block is assigned

exclusively a level during the coarsening phase. An integer array (multilevel)
of dimension

(
v
k

)
expresses this assignment. Entry j of the array takes a value

i in the range 0 to l to indicate that the block j is assigned to level i. At the
initialization, all the

(
v
k

)
blocks are assigned to level 0. Then, through random

selection, blocks assigned to level 0 are re-assigned to level 1. This procedure is
repeated for each level i, re-assigning randomly blocks from level i− 1 to level i.

The number of blocks assigns to each level is decided by the coarsening factor
cf . The value of this coarsening factor is a function of the total number of blocks(

v
k

)
, the number of levels l+1 and |Ll| the number of blocks required at top level

l. It is computed as follows:

cf =

(
v
k

)
− (|Ll| × (l + 1))
(l + 1) × l

2

.

The value cf expresses the difference between the number of blocks assigned to
two adjacent levels i and i + 1. Assume Li represents the set of blocks assigned
to level i. The number of blocks |Li| that must be assigned to level i is given by
the following formula:

|Li| = |Ll| + (l − i) × cf

Therefore, the number of blocks |Ll−1| at level l − 1 is |Ll−1| = |Ll| + cf , the
number of blocks at level l − 2 is |Ll−2| = |Ll| + 2 × cf , etc. The number of
blocks at level 0 is |L0| = |Ll| + (l × cf). The sum of blocks assigned to all the
levels must be

∑l
i=0 |Li| =

(
v
k

)
.

A block is considered to be fixed for level i if it is assigned to a level lower
than i. Therefore, the number of decision variables at level i is Si =

∑l
k=i |Lk|,

the set of blocks assigned to levels greater or equal to i. The search space at
level i is constituted by all the possible combinations of b blocks in the set Si =
Li∪Li+1∪· · ·∪Ll. The search space S0 at level 0 corresponds to all combinations
of b blocks in the set

(
X
k

)
= ∪l

i=0Li. Note that the set of decision variables
Si = Li∪Li+1∪· · ·∪Ll of level i is a strict subset of Si−1 = Li−1∪Li∪· · ·∪Ll of
level i−1. Consequently, the strict inclusion condition Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0

among search spaces is satisfied by this coarsening procedure.

4.2 Projection and Re-coarsening

The projection operator copies from level i to level l the blocks B of the best
covering design approximation at level i. This operator is implemented by re-
assigning blocks in B to level l, as shown in the while loop of Fig. 1.

According to our coarsening procedure, each block in B is assigned to a level
greater or equal to i. Line 1 obtains the current level assignment of block s from

A Cooperative Multilevel Tabu Search Algorithm 125

projection(B)
while (B �= ∅) do

1. s = s ∈ B; B = B \ s; j = multilevel[s];
if (j �= l) then

2. multilevel[s] = l;
3. u = randomly select a free block assigned to level l; multilevel[u] = j;

Fig. 1. The projection procedure

the array multilevel (the array which stores the assignment of each block to a
specific level). Line 2 re-assigns to level l those blocks of B not already assigned
to level l.

Each time a block s is re-assigned by the projection operator from level j to
level l, it removes one block from level j and adds one block to level l. Given the
way levels are defined in our coarsening procedure, assigning a new block s to
level l is equivalent to adding the decision variable s to sets Sj+1, Sj+2, . . . , Sl

such that Sj+1 = Sj+1 ∪ s, Sj+2 = Sj+2 ∪ s, . . . , Sl = Sl ∪ s. The operation of
line 2 is in fact a re-coarsening of levels j + 1 to l, modifying the search space
of all these levels. In order to keep the number of blocks constant at each level,
line 3 re-assigns a block from level l to level j. Line 3 changes the coarsening of
levels j + 1 to l: Sj+1 = Sj+1 \ u, Sj+2 = Sj+2 \ u, . . . , Sl = Sl \ u.

Re-coarsening is designed to re-focus the search space of each level toward
better regions of the solution space. To achieve this purpose, the re-coarsening
of each level is biased by the cost function through the projection of the best
solutions to level l. In order to have a chance to influence the multilevel search,
a block entering the search space of level i through projection must not exit
this level before performing a search of the corresponding level. To enforce this
condition, the blocks of solutions that have been projected to level l must stay
assigned to level l for the duration of a search. The free blocks in line 3 of the
projection procedure are blocks that do not belong to any of the best solutions
recently projected to level l. In this manner, blocks that seem to contribute to
find good solutions are kept at level l. Blocks at level l are re-combined together
by the tabu search procedure or re-combined in the same manner with blocks
from any of the other levels. On the other hand, blocks not belonging to any
of the current best solutions are sent back to a lower level j through the last
operation of line 3, they then become excluded from combining with blocks
belonging to levels j + 1 to l.

4.3 The Tabu Search Procedure

The search space of each level is explored using a tabu search procedure. This
tabu search procedure uses two tabu lists. A first tabu list prohibits moves that
undo swaps of blocks x → y by entering in the tabu list the move y → x.
A second tabu list disallows a block from leaving the current solution B for
a certain number of tabu iterations after entering B. The size of the tabu list
varies randomly in a pre-defined range for each call to the tabu procedure. We
found that variations in the length of the tabu lists is helpful to diversify the

126 C. Dai, P.C. Li, and M. Toulouse

exploration of search spaces when projection fails to re-coarsen some of the
levels. The termination criterion for this tabu search procedure is a pre-defined
number of iterations without improving the best known solution. Our tabu search
procedure is described in Fig. 2.

tabu search(initial solution)
best = initial solution; B = initial solution;
while (termination criterion not satisfied) do

B = V ∈ N (B) ∧ V not tabu; (V is the best solution in the neighborhood of B
and V is not in any of the two tabu lists)

update tabu lists;
if (cost(B) ≤ cost(best)) then

best = B;
return best;

Fig. 2. The tabu search procedure

4.4 The Multi-cycle Refinement Phase

This multilevel algorithm is based on a multi-cycle refinement phase. Refinement
cycles are divided into two categories: interpolation cycles and search cycles.

Interpolation Cycles. Interpolation cycles are initiated at level 0 as described
in Fig. 3. An interpolation operation at level i �= l uses the best solution of level
i+1 to restart the tabu search procedure at level i (line 1). At level l, the search
is restarted from the current best solution at level l (line 3). An interpolation
cycle ends by a restart of the search at level 0 using the current best solution at
level l (line 4). Each time the tabu search procedure has completed the search
initiated from the interpolated solution, the best solution in the search sequence
is projected to level l (lines 2 and 4). In an interpolation cycle, information
move downward through the interpolation operations and upward through the
projection operations performed at levels 0 to l − 1.

Interpolation cycle()
for (i = 0; i ≤ l − 1; i + +) do

1. besti = tabu search(besti+1);
2. projection(besti);

Bl = best solution of level l from the previous cycle;
3. bestl = tabu search(Bl);
4. best0 tmp = tabu search(bestl); projection(best0 tmp);

if (cost(best0 tmp) ≤ cost(best0) then best0 = best0 tmp;

Fig. 3. The interpolation cycle

Search Cycle. Search cycles run a tabu search procedure at each level, starting
at level l toward level 0. Search cycles have a dual purpose. One is to discover
improving solutions once re-coarsening has modified the search space of each level.
The second purpose is to diversify the exploration of the solution space S0.

A Cooperative Multilevel Tabu Search Algorithm 127

During a search cycle, the tabu search procedure at level i starts with the
current best solution at this level. If the search fails to improve the current best
solution, the exploration of the search space is then restricted to blocks in Li, the
blocks assigned to level i (line 3 in Fig. 4). In the search space defined uniquely
by blocks of Li, tabu search cannot access the blocks of the best solutions,
which are assigned to level l. Constrained to blocks in Li, the search usually
enters a sequence of uphill moves where blocks enter B that would not have
been included if all candidate neighbors had been considered. Then, search is
re-opened to the whole search space of level i (line 5). The last search sequence
at level i is initiated from the last solution visited in the restricted search space
(line 6). This is usually a poor solution, consequently, the last search sequence is
a sequence of downhill moves, replacing blocks in B with other blocks improving
the cost of B. The solution that is projected at the end of the search at level
i may or may not have a better cost than the best solution in the previous
cycle. However, because of the uphill and downhill search moves, level i is likely
to project to level l a more diversified set of blocks than if the search has been
performed uniquely in the search space of level i. This speed-up the re-coarsening
of each level, which in turn diversifies the exploration of the solution space S0.

Search cycle()
for (i = l; i ≥ 0; i − −) do

Bi = besti; (besti is the current best solution at level i)
1. search space = any combination of b blocks in Li ∪ Li+1 ∪ · · · ∪ Ll;

besti = tabu search(besti);
2. if (cost(besti) ≥ cost(Bi)) then
3. search space = any combination of b blocks in Li;
4. besti = last solution of tabu search(besti);
5. search space = any combination of b blocks in Li ∪ Li+1 ∪ · · · ∪ Ll;
6. besti = tabu search(besti);

if (i �= l) then projection(besti);

Fig. 4. Search procedure for refinement cycles

The Initial Search Phase. To compute the initial state of the multi-cycle
refinement phase, we run a pre-defined number of p search cycles (the value
of parameter is determined empirically). In the first search cycle, each tabu
search procedure is started from a randomly generated solution. The random
initial solution at level i is computed by selecting b blocks in the set of blocks
Si = Li ∪ Li+1 ∪ · · · ∪ Ll, as described in Fig. 5. Searches in the first cycle from
initial random solutions are likely to generate significant re-coarsenings at all
levels above level 0. The for loop of line 3 launch a sequence of p − 1 search
cycles in order to explore the new search spaces created by the re-coarsenings.

Refinement Phase. The entire multi-cycle refinement sequence is summarized
in Fig. 6. Beyond the initial search phase, the refinement phase is decomposed
into sequences of p cycles: first cycle is an interpolation cycle and it is followed
by p − 1 cycles.

128 C. Dai, P.C. Li, and M. Toulouse

Initialization sequence()
1. for (i = l; i ≤ 0; i − −) do

Bi = ∅;
for (j = 1; j ≤ b; j + +) do

block = a randomly selected block in Si;
Bi = Bi ∪ block;

besti = tabu search(Bi);
2. if (i �= l) then projection(besti);
3. for (j = 2; j ≤ p; j + +) do

Search cycle(j);

Fig. 5. The initial search phase

Multi-cycle refinement phase()
Initialization sequence();
while (not found solution or number of cycles smaller than limit) do

Interpolation cycle();
for (j = 1; j ≤ p − 1; j + +) do

Search cycle()

Fig. 6. Multi-cycle refinement phase

5 Experimentation

Several tests have been performed during the development and validation phases
of this algorithm, we report the results in Table 1 below. The column “t −
(v, k, λ)” describes the parameters of the covering design problem while the
column “# of runs” reports how many time we have run our algorithm on each
problem. A large number of runs (such as 50 for 3-(14,5,1)) indicates that the
corresponding problem has been used as a test problem during the development
phase. The column “b” indicates the size of the covering design we have tested.
All values of b are one block less than the best known upper bounds, except for
some of the problems for which we have been able to improve the best known
upper bounds. (Our tests are based on the best known covering design upper
bounds as published on the web site [8] in Spring 2005). The columns “Cost”
reports, for all runs, the solution with the smallest number of t-subsets not
covered. For example, a cost of 2 indicates the best set of b blocks failed to cover
2 t-subsets. A cost of 0 indicates that we have improved the best known upper
bound. In this case, on the corresponding row under columns b, we report the
previous best known upper bound in () beside our new upper bound.

For runs where new upper bounds have been found, the total number of cycles
executed varies between 7 and 175. For these runs, the range in computational
time varies between 20 minutes to 15 hours on a 500 MHz sequential computer
(many factors impact the computational time requirements of a cycle, among
them the size of the covering design parameters). A run is aborted once 1000
cycles have been executed without discovering a new upper bound. For the tests
reported in Table 1, the computational time requirements vary between 1 hour
up to 168 hours (1 week) for runs that didn’t improve the best known upper

A Cooperative Multilevel Tabu Search Algorithm 129

Table 1. Experimental results

t − (v, k, λ) Cost b # of runs t − (v, k, λ) Cost b # of runs

3-(12,5,1) 2 28 5 3-(13,5,1) 1 33 10
3-(14,5,1) 1 42 50 3-(15,5,1) 2 55 5
3-(16,5,1) 2 64 5 3-(17,6,1) 1 43 50
3-(19,6,1) 5 62 3 3-(20,6,1) 30 71 8
4-(13,6,1) 2 65 5 4-(14,6,1) 8 79 5
4-(15,6,1) 32 116 5 4-(14,7,1) 2 43 5
4-(15,7,1) 7 56 5 4-(16,7,1) 1 75 2
4-(17,7,1) 53 98 3 4-(17,8,1) 4 53 5
4-(16,9,1) 6 25 5 4-(17,10,1) 5 22 5
5-(11,6,1) 6 99 3 5-(12,7,1) 5 58 2
5-(13,8,1) 1 42 8 5-(14,7,1) 10 137 2
5-(14,8,1) 6 54 4 5-(15,8,1) 7 88 8
5-(16,9,1) 0 61(62) 6 5-(16,10,1) 0 36(37) 8
6-(13,8,1) 7 99 2 6-(14,9,1) 0 72(75) 8
6-(15,9,1) 1 99 3 6-(15,10,1) 0 53(55) 7
6-(16,10,1) 4 76 8 6-(16,11,1) 11 43 8
6-(17,12,1) 31 35 8 7-(13,9,1) 7 78 8
7-(14,10,1) 0 56(57) 8 5-(17,10,1) 2 48 7

bound. Finally, in terms of comparison, we have ran extensive tests against
simulated annealing [15] for all the problems reported in Table 1, none was able
to improve the best known upper bound.

6 Conclusion

The general strategy of cooperative multilevel algorithms is to solve several prob-
lems and use the solutions to define a new set of problems. This paper has de-
scribed an exploratory application of this approach to covering designs. Blocks
of successful approximate solutions discovered by a tabu search procedure are
substituted to some blocks of an existing problem description, yielding a new
problem definition. The key observation here is that the new problem defini-
tion hold at its core a successful combination of blocks. By making the problem
small enough such that it holds only successful combination of blocks, we cre-
ate conditions to obtain successful search directions from the re-combinations of
blocks in the smaller problem. Furthermore, under the strict inclusion condition,
blocks of the smaller problem are included in the definition of all the other prob-
lems. This provide for individual blocks to be tested inside good combinations of
blocks, which often provides small increments in the definition of new success-
ful combination of blocks. Overall, this multilevel strategy has already delivered
interesting numerical results and seems to hold the potential to deliver more for
covering designs and other problems in the field of combinatorial designs.

130 C. Dai, P.C. Li, and M. Toulouse

References

1. S.T. Barnard and H.D. Simon. A Fast Multilevel Implementation of Recursive
Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Partice
& Experience, 6(2):111–117, 1994.

2. J.A. Bate. A Generalized Covering Problem. PhD thesis, University of Manitoba,
1978.

3. A. Brandt. Multi-level adaptive solutions to boundary value problems. Mathemat-
ics of Computation, 31:333–390, 1977.

4. W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM,
1999.

5. C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial
Designs. CRC Press, 1996.

6. T.G. Crainic, Y. Li, and M. Toulouse. A Simple Cooperative Multilevel Algorithm
for the Capacitated Multicommodity Network Design. Computer & Operations
Research, Accepted for publication.

7. P. Erdős and H. Hanani. On a limit theorem in combinatorial analysis. Publica-
tiones Mathematicae Debrecen, 10:10–13, 1963.

8. C.J. Gordon. Web site of covering bounds. http://www.ccrwest.org/cover.html.
9. C.J. Gordon, O. Patashnik, and G. Kuperberg. New constructions for covering

designs. Journal of Combinatorial Designs, 3(4):269–284, 1995.
10. B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0. Report

SAND95-2344, Sandia National Laboratories, 1995.
11. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming,

94:207–220, 2003.
12. W. H. Mills and R. C. Mullin. Coverings and packings. In Contemporary De-

sign Theory: A Collection of Surveys, pages 371–399. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 1992.

13. W.H. Mills. Covering designs I: coverings by a small number of subsets. Ars
Combinatoria, 8:199–315, August 1979.

14. K. J. Nurmela. Constructing combinatorial designs by local search. Technical
report, Helsinki University of Technology, November 1993.

15. K. J. Nurmela and P. R. J. Österg̊ard. Constructing covering designs by simulated
annealing. Technical report, Helsinki University of Technology, January 1993.

16. K. J. Nurmela and P. R. J. Österg̊ard. New coverings of t-sets with (t+1)-sets.
Journal of Combinatorial Designs, 7:217–226, 1999.

17. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J.S. Deogun. Multi-
level Cooperative Search for the Circuit/Hypergraph Partitioning Problem. IEEE
Transactions on Computer-Aided Design, 21(6):685–693, 2002.

18. V. Rödl. On a packing and covering problem. European Journal of Combinatorics,
5:69–78, 1985.

19. J. Schönheim. On coverings. Pacific Journal of Mathematics, 14:1405–1411, 1964.

Enhancements of NSGA II and Its Application
to the Vehicle Routing Problem with Route

Balancing

Nicolas Jozefowiez1, Frédéric Semet2, and El-Ghazali Talbi1

1 Université des Sciences et Technologies de Lille,
Laboratoire d’Informatique Fondamentale de Lille,

59655 Villeneuve d’Ascq Cedex, France
{jozef, talbi}@lifl.fr

2 Université de Valenciennes et du Hainaut-Cambrésis, Laboratoire d’Automatique,
de Mécanique et d’Informatique industrielles et Humaines,

59313 Valenciennes Cedex 9, France
frederic.semet@univ-valenciennes.fr

Abstract. In this paper, we address a bi-objective vehicle routing prob-
lem in which the total length of routes is minimized as well as the bal-
ance of routes, i.e. the difference between the maximal route length and
the minimal route length. For this problem, we propose an implementa-
tion of the standard multi-objective evolutionary algorithm NSGA II. To
improve its efficiency, two mechanisms have been added. First, a paral-
lelization of NSGA II by means of an island model is proposed. Second,
an elitist diversification mechanism is adapted to be used with NSGA
II. Our method is tested on standard benchmarks for the vehicle routing
problem. The contribution of the introduced mechanisms is evaluated by
different performance metrics. All the experimentations indicate a strict
improvement of the generated Pareto set.

1 Introduction

This paper investigates the use of two variants of NSGA II to solve a bi-objective
vehicle routing problem. The elementary version of the vehicle routing problem
is the capacitated vehicle routing problem (CVRP). It can be modeled as a
problem on a complete graph where the vertices are associated to a unique
depot and to m customers. Each customer must be served a quantity qi of
goods (i = 1, . . . , m) from the unique depot. To deliver these goods, vehicles are
available. With each vehicle is associated a maximal amount Q of goods it can
transport. A solution of the CVRP is a collection of routes where each customer
is visited only once and the total demand for each route is at most Q. With each
arc (i, j) is associated the distance between vertex i and vertex j. The CVRP
aims to determine a minimal total length solution. It has been proved NP-hard
[1] and solution methods range from exact methods to specific heuristics, and
meta-heuristic approaches [2].

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 131–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 N. Jozefowiez, F. Semet, and E.-G. Talbi

Table 1. Objective values for the best found solutions by Taburoute and by Prins’ GA

Taburoute Prins’ GA
Instance Distance Balance Distance Balance
E51-05e 524.61 20.07 524.61 20.07
E76-10e 835.32 78.10 835.26 91.08
E101-08e 826.14 97.88 826.14 97.88
E151-12c 1031.17 98.24 1031.63 100.34
E200-17c 1311.35 106.70 1300.23 82.31
E121-07c 1042.11 146.67 1042.11 146.67
E101-10c 819.56 93.43 819.56 93.43

Another natural objective to consider in addition to the minimization of
the total length is the balance of the routes. Route balancing can be expressed
in several ways. In [3], the authors balance the time needed for each trip. It
is computed as the sum of the differences between each route length and the
shortest route length. Route balancing is also an objective in [4] which addresses
a three objective multi-period vehicle routing problem. In this paper the balance
is measured by the standard deviation and the load of a route consists in the
number of visited customers. In [5], the minimization of the time spent on a
bus, which has some common points with the route balancing, is considered.
In [6], the authors take into account 8 objectives in the context of a real-life
VRP faced by a Belgian transportation firm. One of them is identical to our
second objective; i.e. the minimization of the difference between the maximal
route length and the minimal route length.

In this paper, we address a variant of the CVRP: the vehicle routing problem
with route balancing (VRPRB). The following two objectives are considered:

1. Minimization of the distance traveled by the vehicles.
2. Minimization of the difference between the longest route length and the

shortest route length.

In Table 1, the seven CVRP benchmarks proposed by Christofides and Eilon [7],
and Christofides and al. [8], are considered. Following the naming scheme used in
Toth and Vigo [2], the name of each instance has the form Ei−jk. E means that
the distance metric is Euclidean. i is the number of vertices including the depot
vertex. j is the number of available vehicles. k is a character which identifies
the paper where the distance data are provided. k = e refers to Christofides
and Eilon [7], k = c to Christofides et al. [8]. For each instance, we report both
objective values associated with the best solutions obtained using Taburoute
[9] and Prins’ GA [10]. These methods, which can be regarded as some of the
best algorithms for the CVRP, do not take into account the route balancing
objective. This clearly appears in Table 1 where the best solutions are of poor
quality regarding the additional objective.

Our solution to generate the Pareto set is based on the standard multi-
objective evolutionary algorithm (MOEA) NSGA II proposed by Deb et al. [11].
Our choice of meta-heuristics is motivated by the difficulty of solving the problem

Enhancements of NSGA II and Its Application to the VRPRB 133

with exact approaches. Since a Pareto set has to be generated, a population based
method like NSGA II seems well-fitted. To improve the results of NSGA II on the
VRPRB, we propose a parallelization of the problem. To obtain well-diversified
approximations of the Pareto set, we have adpated the elitist diversification
mechanism initially proposed in [12, 13] for NSGA II.

The paper is organized as follows. Section 2 presents our implementation of
NSGA II for the VRPRB and its parallelization into an island model. In section
3, we specify the adaptation of the elitist diversification mechanism for NSGA II.
In section 4, we assess the efficiency of the new mechanisms on a set of standard
benchmarks. Conclusions are drawn in section 5.

2 NSGA II for the Vehicle Routing Problem with Route
Balancing

We first describe the general framework of NSGA II in subsection 2.1. Then, the
recombination phase (i.e. STEP 4) is given in the subsection 2.2 since it is the
only step which needs to be adapted for the VRPRB. Finally, an improvement
of NSGA II by means of an island model is proposed in subsection 2.3.

2.1 NSGA II

NSGA II can be described as follows. Its population Rt, where t is the number
of the current generation, is divided into two subpopulations Pt and Qt. The
sizes of Pt and Qt are equal to N and, therefore, the size of Rt is 2N . The
subpopulation Pt corresponds to the parents and Qt to the offspring. The four
main steps of NSGA II are presented below without going into the details of the
mechanisms used such as the ranking and the crowding distance. It is sufficient
to recall that a solution i has two fitnesses according to the current population:
a rank ri which represents its quality in terms of convergence toward the optimal
Pareto set, and a crowding distance di which corresponds to its quality in terms
of diversification. The lower the rank and the crowding distance are, the better
the solution is. For additional details about NSGA II, the reader is refered to [11].
At generation t, the different steps are:

STEP 1. Combine the parent and offspring populations to create Rt = Pt ∪Qt.
Compute the ranks and crowding distances of the solutions in Rt. Sort the
solution according to their ranks in an increasing order. Identify the fronts
Fi, i = 1, . . . , r, where i represents a rank.

STEP 2. Create a new population Pt+1 = ∅. Set i = 1. While |Pt+1|+|Fi| < N ,
do Pt+1 = Pt+1 ∪ Fi and i = i + 1.

STEP 3. Sort the solutions of Fi according to their crowding distance in a de-
creasing order. The (N −|Pt+1|) first solutions of Fi (i.e. the most diversified
solutions) are included to Pt+1.

STEP 4. Create Qt+1 from Pt+1.

The solution provided by NSGA II is the set of solutions not dominated
in the final population R. However, experiments have shown that the size of

134 N. Jozefowiez, F. Semet, and E.-G. Talbi

Algorithm 1. recombination phase(P, Q: POPULATION)
Q ← ∅
for i ← 1, . . . , N do

pa1 ← tournament(P ∪ C)
pa2 ← tournament(P ∪ C)
if rand() < 0.5 then

s ← RBX(pa1, pa2)
else

s ← SPLIT (pa1, pa2)
end if
if rand() < 0.4 then

s ← or opt(s)
end if
2opt local search(s)
Q ← Q ∪ {s}

end for

the potentially Pareto optimal solution set can be very large for the VRPRB.
Therefore, we have added an archive to NSGA II whose only purpose is to save
the potentially Pareto optimal solutions identified during the search. It prevents
such solutions to be lost due to the stochastic behavior of the algorithm and the
limited size of the population.

2.2 The Recombination Phase

The recombination phase is described in Algorithm 1. The tournament operator
is the binary tournament as described by Deb et al.. Two solutions are randomly
selected and the solution with the best rank is kept. To break the tie, the solution
with the greatest crowding distance is selected. The crossover operators are the
route based crossover (RBX) [14] and the SPLIT crossover [12, 13] inspired by
Prins’ genetic algorithm [10]. When a solution is created, a 2-opt local search is
applied on each route in order to avoid artificially balanced solutions [12, 13].

2.3 Parallelization

To improve the results obtained by NSGA II, we have implemented it in an island
model. The model is built as follows: each island corresponds to one instantiation
of NSGA II with its own population. The communication network is a ring, and
therefore each island has two neighbors. One island sends information to its
neighbors regularly in terms of generations. When the generation corresponds
to a communication phase, which is performed instead of recombination (STEP
4). Due to the fact that the communication network is a ring, an island receives
information at the same time it sends information. The computations of a given
island do not begin again until it has received the information from its two
neighbors.

The communication phase runs as follows. An island sends to its two neigh-
bors the N

2 best solutions from its population (i.e. the N
2 first solutions, according

Enhancements of NSGA II and Its Application to the VRPRB 135

Q

P

P

P

Q

Q

Q

P

Fig. 1. Extension of NSGA II into an island model

to the ranking and crowding distance sort, of the population after the selection
phase (STEP 1 to STEP 3). Therefore, an island receives N

2 solutions twice.
These solutions replace those from Qt since they would have been lost in the
case of a standard recombination phase. Figure 1 illustrates the communications
in the case of four islands.

3 Using the Elitist Diversification Mechanism in
NSGA II

In this section, we propose the enhancement of NSGA II by means of a diversifi-
cation mechanism called the elitist diversification mechanism initially proposed
in [12, 13]. First, the mechanism is presented. Then, the general parallel model
is described as well as its use in the case of NSGA II.

3.1 The Elitist Diversification Mechanism

In the elitist diversification, additional archives are considered. They contain
the potentially optimal Pareto solutions (PPS) when one objective is maximized

136 N. Jozefowiez, F. Semet, and E.-G. Talbi

I I
A A A

AAA
0 0 0

1 2

21 nI

n

Fig. 2. The basic co-operative model - the toric structure is not shown in order not to
obfuscate the figure

instead of being minimized. It may be noted that we suppose that every objective
is to be minimized. Let S(A) be the subset of solutions of the decision space found
by an algorithm A, and k the index of the objective function component which
is maximized. To define new archives, the dominance operator ≺k is introduced:

∀y, z ∈ S(A), y ≺k z ⇐⇒(∀i ∈ {1 . . . n} \ {k}, fi(y) ≤ fi(z))
∧ (fk(y) ≥ fk(z))
∧ ((∃i ∈ {1 . . . n} \ {k}, fi(y) < fi(z))

∨ (fk(y) > fk(z)))

Then, we have Ak = {s ∈ S(A)|∀s′ ∈ S(A), s′ �≺k s}, with k = 1, . . . , n, the
archive of PPS associated with the maximization of the kth objective component
instead of the minimization. We denote ≺0 the classical dominance operator i.e.
a solution x is said to dominate a solution y if x is not worse than y on every
objective and there is at least one objective where x is strictly better than y.

Like in the elitism strategy, solutions from the new archives are included into
the population of the MOEA at each generation. The role of these solutions is
to attract the population to unexplored areas, and so to avoid the premature
convergence to a specific area of the objective space. Indeed, using solutions from
these archives ensures that an exploration is done while favorising one objective.
Preliminary experiments point out that the improvement is less important when
all archives are embedded in the same MOEA. This leads us to distribute the
archives among several searches resulting in a co-operative model. In the general
case with n objectives, the co-operative model is composed of n islands denoted
Ik. Each island Ik has two types of archive: A0 and Ak. At each Migrationt

generation, Ik sends its A0 archive to its two neighbors Ik−1 and Ik+1. The
communication topology is toric, therefore k is computed modulo n. This co-
operative model and its communication topology consist in the model described
in Figure 2.

3.2 Parallel Extension of the Elitist Diversification Mechanism

The co-operative model described previously formed the elementary brick of a
more general island model used to favor the convergence and diversification tasks
(see Figure 3). This parallelization is not used in order to speed up the search but
to search a larger part of the solution space in a given time. Since every island
will be executed at the same time, it will take the same computational time as
a single island while the number of solutions created will be multiplied by the

Enhancements of NSGA II and Its Application to the VRPRB 137

I I

III

I I
A A A

A

A

A

A

A A

A

A

A

A

A

A

A

AA
0 0 0

000

0 0 0

1

1 2

m

11

2

21
0

1

n

m
n

n

1

0 0
n

2 n

m
2

21

1
1

I

I

n

Fig. 3. The complete co-operative model - the toric structure is not shown in order
not to obfuscate the figure

number of islands. An island is denoted Ii
j . It means it belongs to the ith brick

and its additional archive is of Aj type. The island Ii
j sends its A0 archive to all

its neighbors: Ii
j−1, Ii

j+1, Ii−1
j , and Ii+1

j . It only communicates its Aj archive to
Ii−1
j and Ii+1

j . Since the communication topology between and within the bricks
is toric, the indexes are computed modulo n.

3.3 Inclusion of the Elitist Diversification Mechanism in NSGA II

The goal is to add the management of the additional archives in NSGA II. It
must be noted that NSGA II initially used no archive and the main population
plays the role of the A0 archive, i.e. it saves the non-dominated solutions found
during the search. Therefore, each island of the parallel model described before
corresponds to one instantiation of NSGA II to which one additional archive has
been added. This archive is used during the recombination phase: k individuals
are chosen among those belonging to the additional archive and form the set Ct.
Then, the recombination phase is the same as the standard one except that the
tournament used to select the parents is modified as follows. Two solutions are
selected randomly in Pt∪Ct. If pa1 or pa2 belongs to Ct, the solution from Ct wins
the tournament. If both solutions belong to Ct, one is chosen randomly. Finally,
if both solutions come from Pt, the standard binary tournament of NSGA II is
applied. The additional archive is updated after each recombination phase ; we
try to include the solutions generated during the phase.

138 N. Jozefowiez, F. Semet, and E.-G. Talbi

The exchange strategy between the islands is the same as the one used in 2.3.
However, since an island has four neighbors in this model, it communicates only
the N

4 best solutions from its population after the selection phase. Therefore,
an island receives four times N

4 solutions which replace those from Qt. However,
there are two special cases. First, in the bi-objective case, an elementary brick
is formed of only two genetic algorithms. Then, an island receives twice the N

4
best solutions from the other genetic algorithm of the brick. It is not relevant
and, in this case, the strategy is modified for the algorithms from a same brick
to exchange N

2 solutions between them. The same difficulty occurs when there
are only two elementary bricks and can be solved in a similar way.

4 Computational Results

4.1 Protocol

NSGA II for the VRPRB, the parallel model pNSGA II, the variant with elitist
diversification NSGAED, and the parallel variant with elitist diversification pNS-
GAED have been coded in C. MPI has been used for the parallel aspect of the im-
plementation. Experiments have been realised on an IBM RS6000/SP equipped
with Power4 1.1 Ghz processors.

Evaluations have been made on the benchmark by Christofides et al. [7] for
the capacitated vehicle routing problem. Each instance has been solved 10 times
by each method.

The parameterization of the methods has been set experimentally. For the
population of NSGA II, N has been fixed to 128. NSGA II and pNSGA II stopped
after 100000 generations while NSGAED and pNSGAED stopped after 50000.
Thus, we insure that each process generates the same number of solutions. For
the elitist diversification, 15 solutions were used from each archive.

As suggested in [15], the S metric [16] was used. S(A) gives the size of the area
dominated by the approximation generated by A. The values of the objectives
were normalized according to the reference point used in the S metric.

4.2 Contribution of the Parallelization

We have tested the contribution of the parallelization scheme when 1, 4, 8, and
16 processors were used. Table 2 reports the mean values and the standard
deviations of the S metric for the different cases. As it can be expected, the
results are improved with the number of processors used. However, the impact
of more than 4 processors is less significant than the difference between the
sequential version and the one with 4 processors. According to the behavior of
the standard deviation, it seems that increasing in the number of processors
contributes to improve the robustness of the method.

The impact of communications on computational times have also been as-
sessed. The average computational times in seconds according to the number of
processors are reported in Table 3. It seems that communication times do not
play a significant role.

Enhancements of NSGA II and Its Application to the VRPRB 139

Table 2. Mean values and standard deviations of the S metric for NSGA II according
to the number of used processors

Instance 1 proc. 4 proc. 8 proc. 16 proc.
E51-05e Mean 0.511232 0.527863 0.527733 0.530235

standard deviation 0.006132 0.001838 0.004329 0.001987
E76-10e Mean 0.414035 0.420253 0.425498 0.426979

standard deviation 0.002988 0.001714 0.002892 0.002052
E101-08e Mean 0.570935 0.576901 0.577431 0.579026

standard deviation 0.001779 0.001638 0.000724 0.000418
E151-12c Mean 0.618357 0.631726 0.634581 0.637956

standard deviation 0.006315 0.001637 0.003460 0.001426
E200-17c Mean 0.607886 0.628112 0.632612 0.639964

standard deviation 0.014343 0.005537 0.008276 0.002474
E121-07c Mean 0.516538 0.526248 0.527154 0.527934

standard deviation 0.007145 0.001480 0.001405 0.000637
E101-10c Mean 0.584904 0.620338 0.627408 0.629321

standard deviation 0.018182 0.004675 0.003061 0.002398

Table 3. Average computation times of NSGA II according to the number of processors

Instance E51-05e E76-10e E101-08e E151-12c E200-17c E121-07c E101-10c
4 proc. 993.4 1453.4 2451.3 4082.1 4996.3 4615.1 2640.1
8 proc. 937.8 1300.8 2406.1 3621.9 4463.7 4791.1 2425.3
16 proc. 1080.7 1329.0 2289.6 3794.5 4677.7 5171.1 2451.6

Table 4. Mean values and standard deviation of the S metric for NSGA II without
and with the elitist diversification mecanism

1 processor 8 processors
Instance NSGA II NSGAED pNSGA II pNSGAED
E51-05e Mean 0.511232 0.521232 0.527733 0.529467

standard deviation 0.006132 0.004139 0.004329 0.001282
E76-10e Mean 0.414035 0.415599 0.425498 0.425809

standard deviation 0.002988 0.003651 0.002892 0.002992
E101-08e Mean 0.570935 0.573612 0.577431 0.577501

standard deviation 0.001779 0.001800 0.000724 0.001430
E151-12c Mean 0.618357 0.619450 0.634581 0.635170

standard deviation 0.006315 0.007012 0.003460 0.003016
E200-17c Mean 0.607886 0.617594 0.632612 0.643165

standard deviation 0.014343 0.006185 0.008276 0.004848
E121-07c Mean 0.516538 0.518553 0.527154 0.527442

standard deviation 0.007145 0.007998 0.001405 0.000478
E101-10c Mean 0.584904 0.602430 0.627408 0.629226

standard deviation 0.018182 0.020408 0.003061 0.003343

140 N. Jozefowiez, F. Semet, and E.-G. Talbi

T
a
b
le

5
.

B
es

t
so

lu
ti
on

s
fo

un
d

fo
r

ea
ch

ob
je

ct
iv

e
w

it
h

th
e

as
so

ci
at

ed
va

lu
es

of
th

e
ot

he
r

ob
je

ct
iv

e
fo

r
th

e
di

ffe
re

nt
im

pl
em

en
ta

ti
on

s
of

N
SG

A
II

N
SG

A
II

N
SG

A
E

D
In

st
an

ce
1

pr
oc

.
4

pr
oc

.
8

pr
oc

.
16

pr
oc

.
1

pr
oc

.
8

pr
oc

.
E

51
-0

5e
52

4.
61

20
.0

7
52

4.
61

20
.0

7
52

4.
61

20
.0

7
52

4.
61

20
.0

7
52

4.
61

20
.0

7
52

4.
61

20
.0

7
0.

51
69

4.
79

0.
17

64
8.

80
0.

23
64

3.
89

0.
18

77
9.

88
0.

48
10

93
.3

1
0.

32
64

5.
29

44
.8

44
.1

46
.5

50
.4

45
.8

47
.6

E
76

-1
0

e
83

5.
32

78
.1

0
84

2.
06

67
.5

5
83

5.
32

78
.1

0
83

5.
32

78
.1

0
83

5.
89

85
.6

0
83

5.
32

78
.1

0
1.

01
12

68
.0

2
1.

10
11

17
.2

9
0.

64
99

7.
97

0.
48

11
53

.2
5

0.
85

11
10

.7
8

0.
33

13
80

.0
1

10
9.

7
12

4.
7

10
8.

8
13

5.
2

11
5.

9
12

7.
00

E
10

1-
08

e
82

7.
39

67
.5

5
82

7.
39

67
.5

5
82

7.
39

67
.5

5
82

7.
39

67
.5

5
82

7.
39

67
.5

5
82

7.
29

67
.5

5
0.

64
15

96
.5

9
0.

09
16

95
.5

5
0.

35
98

4.
76

0.
27

11
32

.2
8

0.
43

11
29

.1
0

0.
10

16
10

.8
6

12
9.

4
16

1.
1

17
5.

6
18

5.
8

13
0.

2
17

1.
9

E
15

1-
12

c
10

47
.0

2
87

.1
0

10
44

.6
9

91
.1

4
10

43
.8

3
77

.8
9

10
32

.9
5

97
.5

7
10

43
.7

1
87

.6
7

10
34

.9
1

10
9.

06
1.

22
22

90
.5

3
0.

56
14

43
.3

1
0.

51
13

82
.2

8
0.

44
15

51
.5

0
0.

66
25

23
.0

0
0.

21
15

23
.9

4
20

4.
1

31
0.

10
33

2.
9

40
8.

5
20

0.
1

32
2.

1
E

20
0-

17
c

13
58

.0
8

68
.7

7
13

49
.4

8
79

.1
4

13
32

.8
2

87
.5

0
13

28
.4

4
96

.6
1

13
53

.1
7

87
.8

4
13

27
.8

9
97

.2
0

3.
04

18
38

.3
2

2.
17

30
06

.2
6

1.
85

19
76

.1
0

0.
86

34
90

.1
4

2.
18

34
36

.4
3

0.
58

37
46

.5
7

20
6.

6
31

6.
4

37
3.

6
47

9.
7

19
2.

1
35

4.
8

E
12

1-
07

c
10

43
.7

8
14

6.
67

10
42

.1
1

14
6.

67
10

42
.1

1
14

6.
67

10
42

.1
1

14
6.

67
10

43
.1

1
14

7.
27

10
42

.1
1

14
6.

67
0.

15
22

58
.2

1
0.

06
23

14
.6

1
0.

06
23

48
.7

4
0.

07
22

96
.4

3
0.

06
22

85
.2

2
0.

07
16

49
.7

6
44

1.
5

84
7.

40
90

3.
1

92
1.

1
45

2.
1

94
3.

2
E

10
1-

10
c

81
9.

56
93

.4
3

81
9.

56
93

.4
3

81
9.

56
93

.4
3

81
9.

56
93

.4
3

81
9.

56
93

.4
3

81
9.

56
94

.4
3

1.
16

20
35

.8
0

0.
77

21
07

.1
4

0.
65

14
25

.4
3

0.
21

13
24

.5
3

1.
10

13
03

.6
7

0.
35

16
64

.8
0

26
9.

1
44

1.
4

48
7.

7
49

9.
6

27
8.

6
49

0.
4

Enhancements of NSGA II and Its Application to the VRPRB 141

4.3 Contribution of the Elitist Diversification Mechanism

We have evaluated the performance of NSGAED, pNSGAED with 8 bricks com-
pared to the performance of NSGA II and pNSGA II with 8 processors. The
mean values and the standard deviation of the S metric are reported in Table 4.

It appears that the elitist diversification is always able to improve the re-
sults of NSGA II when only one processor is used. The improvement is more
important for large instances such as E200-17c. We have also evaluated the con-
tribution when eight processors are used. The contribution is less important on
the smallest instances since the parallelization without the elitist diversification
was already able to improve the results significantly. However, the contribution
is still important on the largest instances.

4.4 Global Efficiency of NSGA II for the Vehicle Routing Problem
with Route Balancing

Optimal Pareto sets are not known for the VRPRB. Therefore, we have compared
the results of our MOEA with the best-known values on the length objective
and with the evident lower bound that is 0 for the balance objective. We have
also reported the number of potentially Pareto optimal solutions in Table 5
as follows: for each entry, the first line corresponds to the best found length
with its associated balance, the second line to the best found balance with its
associated length, and the third line to the average number of solutions in the
approximations. It appears that the elitist diversification is able to improve the
results toward the best-known values for the total length objective. Since the
best balance is very close to 0, we may assume that very well-balanced solutions
are obtained.

5 Conclusions

In this paper, we have described an implementation of NSGA II for a bi-objective
vehicle routing problem, called the vehicle routing problem with route balancing,
where both the minimization of the total length and the balance of the routes,
i.e. the minimization of the difference between the longest route length and the
shortest route length, have to be optimized. Two enhancements of NSGA II have
been proposed. The first one is the parallelization of NSGA II by means of an
island model. The second one is the use of the elitist diversification mechanism,
which aims to improve the diversification in NSGA II. Their contributions were
evaluated on a set of standard benchmarks with standard metrics. The positive
impact of both mechanisms has been observed through computational experi-
ments. Since optimal Pareto sets remain unknown for the problem, the fact that
the values found for the total length objective are close to the best-known ones,
and that the best values for the route balancing objective are quite small tends
to indicate that our generated approximations are of good quality.

142 N. Jozefowiez, F. Semet, and E.-G. Talbi

References

1. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of vehicle routing and scheduling
problem. Networks 11 (1981) 221–227

2. Toth, P., Vigo, D., eds.: The vehicle routing problem. Volume 9 of SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM (2001)

3. Lee, T., Ueng, J.: A study of vehicle routing problems with load-balancing. In-
ternational Journal of Physical Distribution and Logistics Management 29 (1999)
646–658

4. Ribeiro, R., Lourenço, H.R.: A multi-objective model for a multi period distribution
management problem. In: MIC’2001. (2001) 97–102

5. Corberan, A., Fernandez, E., Laguna, M., Marti, R.: Heuristic solutions to the
problem of routing school buses with multiple objectives. Journal of the Opera-
tional Research Society 53 (2002) 427–435

6. El-Sherbeny, N.: Resolution of a vehicle routing problem with multi-objective
simulated annealing method. PhD thesis, Faculté Polytechnique de Mons (2001)

7. Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problem.
Operational Research Quarterly 20 (1969) 309–318

8. Christofides, N., Mingozzi, A., Toth, P., Sandi, C., eds.: 11. In: Combinatorial
Optimization. John Wiley, Chichester (1979)

9. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle
routing problem. Management Science 40 (1994) 1276–1290

10. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research (2004) (Article in Press).

11. Deb, K., Agrawal, S., Pratab, A., Meyunivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Trans-
actions on Evolutionary Computing (2002) 182–197

12. Jozefowiez, N., Semet, F., Talbi, E.G.: Parallel and hybrid models for multi-
objective optimization: Application to the vehicle routing problem. In Guervos,
J.M., et al., eds.: PPSN VII. Volume 2439 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 271–280

13. Jozefowiez, N.: Modélisation et résolution approchées de problèmes de tournées
multi-objectif. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, Uni-
versité des Sciences et Technologies de Lille, Villeneuve d’Ascq, France (2004)

14. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii:
genetic search. INFORMS Journal on Computing 8 8 (1996)

15. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress
on Evolutionary Computation (CEC’2002). Volume 1., IEEE Service Center (2002)
711–726

16. Zitzler, E.: Evolutionary algorithm for multiobjective optimization: Methods and
applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (1999)

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 143 – 154, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Importance of Scalability When Comparing
Dynamic Weighted Aggregation and Pareto Front

Techniques

Grzegorz Drzadzewski and Mark Wineberg

Computing and Information Science, University of Guelph,
Guelph, Ontario, N1G 2W1, Canada
gdrzadze@uoguelph.ca,

wineberg@cis.uoguelph.ca

Abstract. The performance of the Dynamic Weight Aggregation system as
applied to a Genetic Algorithm (DWAGA) and NSGA-II are evaluated and
compared against each other. The algorithms are run on 11 two-objective test
functions, and 2 three-objective test functions to observe the scalability of the
two systems. It is discovered that, while the NSGA-II performs better on most
of the two-objective test functions, the DWAGA can outperform the NSGA-II
on the three-objective problems. We hypothesize that the DWAGA’s archive
helps keep the searching population size down since it does not have to both
search and store the Pareto front simultaneously, thus improving both the
computation time and the quality of the front.

1 Introduction

At the present moment in the field of evolutionary computation there is very little
research being conducted to investigate the behaviour of newly developed work by
researchers other than the original creator. This is a major deficiency in the field. In
most other disciplines of science the important aspect is the repeatability of
experiments and confirmation of results by other independent research teams. In this
paper we are performing an un-bias study reproducing the newly developed Dynamic
Weight Aggregation Evolutionary Strategy (DWAES) algorithm and comparing it to
a popular Pareto front style algorithm (NSGA-II).

There are two main approaches to evolutionary multi-objective optimization:
weighted aggregation approaches and Pareto-based approaches.

The weighted aggregation approaches are easier to implement and understand, as
well as being the first of the Evolutionary Multi-Objective Optimization (EMOO)
algorithms created. However, recently they have been deemed flawed since they only
produce a single solution along the Pareto front, and in many circumstances cannot
find particular solutions along the front, no matter what weightings are used.
Consequently Pareto-based approach has risen in popularity and now dominates the
literature. This group of algorithms work by dividing its population into dominated
and non-dominated solutions [1], where a non-dominated solution is one where no
other solution is better than it across every objective. These groups of algorithms
have often been analysed and compared with each other.

144 G. Drzadzewski and M. Wineberg

Recently, a modification to the simplistic weighted aggregation approach was
proposed: the Dynamic Weight Aggregation (DWA) system [2], [3]. This system,
while based on the weighted aggregation approach, was designed to overcome the two
shortcomings mentioned above1. Experimentation on traditional EMOO problems
seemed to verify the technique. However, the DWA system was never directly
compared to the Pareto based EMOO methods.

In this paper we compare the DWA method as applied to the GA against a Pareto
base EMOO system, the NSGA-II, to see if the DWA produces solutions of as high
quality (as close to the Pareto front and covering the front as evenly).

2 The Two Systems

2.1 Non-dominated Sorting GA

One of the most popular of the Pareto-based approaches is the NSGA-II algorithm,
which is an enhancement of the original non-dominated sorting GA (NSGA) proposed
by Srinivas and Deb in 1994 [4]. The NSGA algorithm first sorts the solutions by
fronts: each subset of the population that is not dominated by any other member of
population is separated from those that are, with this definition recursively applied as
each front is removed from the population. From this sorted population, standard
reproduction techniques are applied using the front levels as fitness.

The NSGA-II uses a new non-dominated sorting approach, which is more efficient
than the original method [5]. The old sorting algorithm used in NSGA has a
complexity of O(mN 3) . The NSGA-II algorithm has improved the performance of the
sort so it now has a complexity of O(mN 2) , where m is the number of objectives and
N is the population size – this improves the execution time significantly. The NSGA-
II also incorporates elitism and has a parameter-less diversity preservation
mechanism.

2.2 The Dynamic Weighted Aggregation Systems

The conventional weighted aggregation (CWA) approach, which is a simple weighted
sum of the different objective fitness values into a single fitness value, while being the
simplest approach to Evolutionary Multi-Objective Optimization (and the first
utilized), has been severely criticized on account of two main weaknesses [1]: First,
the conventional weighted aggregation can provide only one Pareto solution from one
run of optimization. Second, it has been shown that weighted aggregation is unable to
deal with multi-objective optimization problems with a concave Pareto front.

Recently a new dynamic weight aggregation algorithm was proposed with the
claim that it has eliminated the two problems associated with the conventional
approach [2], [3]. The idea behind the algorithm is that “if the weights for the
different objectives are changing during optimization, the optimizer will go through
all points on the Pareto front. If the found non-dominated solutions are archived, the
whole Pareto front can be achieved”[3]. This works for both the convex and concave

1 Similar dynamic weighting techniques have also been used in non-evolutionary search

methods such as Pareto Simulated Annealing [10], and Multi-Objective Tabu Search [11].

 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 145

Pareto fronts. A theory for why the CWA algorithm does not work on concave Pareto
front is provided in [2], which states that the CWA can only converge to a Pareto-
optimal solution if the Pareto solution corresponding to the given weight combination
is stable. Since all points on convex Pareto front are stable CWA has no trouble with
it, but it is unable to reach points on the concave Pareto front. DWA algorithm on the
other hand is able to go through all the points on the concave and convex Pareto front.

Using the CWA approach, a total fitness value for the chromosome is computed
from the multiple fitness functions by performing a weighted sum

f (c) = w1 f1 (c) + w2 f 2 (c) = w1 f1 (c) + (1− w1) f 2 (c) (1)

where w1 and w2 are constant weights (which must sum to 1).
In the DWA, the constant weights are changed to time varying weights, w1(t) and

w2(t), where t is ‘time’ measured in generations. The equations used in [2] for the two
dynamic weights are:

)/2sin()(1 Tttw π= (2)

and

w2 (t) = 1.0− w1(t) (3)

where T is the period, a user defined parameter that controls how rapidly the weights
cycle from 0 to 1 and back again.

In the case of a three objective problem, the weights are computed similarly, except
that now there is rotation about two axes instead of just one and the weights are
determined based on variables α and β.

w1(α) =| sin(2πα) |

w2 (α , β) = (1 − w1(α)) | sin(2πβ) |

w3 (α , β) = 1 − w1(α) − w2 (α , β),

 (4)

where 0 ≤ α, β ≤ π 2 .
Since the fitness function changes from generation to generation, it becomes

important to store good solutions found in each generation. These good solutions are
stored in the archive. A solution is added to the archive if it is not Pareto-dominated
by any member of the archive. If a new solution Pareto-dominates members of the
archive then all the dominated solutions are removed from it while the new solution is
added.

3 Experimental Design

3.1 Algorithms and Parameters

To compare NSGA-II with the DWA system, it is important to isolate the various
features of the two systems. This is both to assure a fair comparison, and to prevent
extraneous factors from obscuring the underlying differences or similarities.
Consequently, we chose to keep the underlying evolutionary algorithms the same for
both systems. This means that all the parameters, with the exception of any system
specific parameters, are set in common.

146 G. Drzadzewski and M. Wineberg

Table 1. Parameter Settings

Common parameter
 2 obj 3 obj 2 obj 3 obj

Population
Generations
Prob. of cross over
Mutation Rate

100
150
0.8
0.1

{600,800}
{900,1200}
0.8
{0.071,0.0625}

Length
Tournament Sel Pres.
Uniform xover prob.
Alphabet Size

10
0.9
0.4
100

{14,16}
.9
.4
100

DWAGA only parameters
 2 obj 3 obj 2 objectives 3 obj
of 90º rotations
Archive Size

2
100

n/a
1000

Gen {150, 250, 600, 900, 2250} n/a

To accomplish this uniformity for comparison we had to choose which
evolutionary algorithm to base the two systems on. The NSGA, as its name implies,
was designed to work on top of a Genetic Algorithm. The DWA, on the other hand,
was originally written for an Evolutionary Strategy system. Since the DWA is just a
modification of the fitness weights, which can be trivially used for either ES or GA,
we chose to implement a Dynamic Weighted Aggregation Genetic Algorithm
(DWAGA) to compare against the NSGA-II system.

3.1.1 Two Objective Problems
The performance of DWAGA was examined using 5 different period values (T). The
values for the period length varied all the way from 200 to 7500 depending on the test
function. It was discovered that DWAGA worked best when the period was set to a
value that makes the number of 90º rotations equal to 2 (using equation 2).

Using 150 generations the DWAGA with a period of 600 will perform one 90º
rotation; a period of 300 will result in two 90º rotations, 200 results in 3 rotations, 150
in 4 rotations, and 120 in 5 rotations.

When testing we discovered that our implementation of the DWAGA was, in
general, faster than the NSGA-II. Therefore the DWAGA could perform more
generations and improve the solutions that it had obtained and still finish at the same
time as the NSGA-II. Consequently we ran DWAGA for a varying number of
generations, making sure that the time equaled that of the NSGA-II.

The details for parameter values used for two objective problems can be found in
table 1.

3.1.2 Three Objective Problems
When dealing with 3 objective problems we have to vary both α and β for the
DWAGA system. Consequently, there are two periods for the 3-objective DWAGA
system, with β cycling through its settings for every setting of α. Instead of
complicating maters with two user-defined parameter both periods are set to be
inversely proportional to the number of generations. Also the DWAGA system only
goes through one 90º rotation for both α and β instead of 180º.

The details for parameter values used for three objective problems can again be
found in table 1. All experiments are repeated 30 times for statistical accuracy.

 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 147

Table 2. Function definitions for two tri-objective functions used in the test suite

F12 F13
2

2
2
11)1(−+= xxf)sin()(5.0 2

2
2
1

2
2

2
11 xxxxf +++=

1)1(2
2

2
12 +++= xxf 15

27

)1(

8

)423(2
21

2
21

2 ++−++−= xxxx
f

2)1(2
2

2
13 ++−= xxf)exp(1.1

1
1 2

2
2

12
2

2
1

3 xx
xx

f −−−
++

=

where 2,2 21 ≤≤− xx where 3,3 21 ≤≤− xx

3.1.3 Test Functions
Since we are reconstructing the experiments of the creators of DWA we are
comparing the NSGA-II algorithm against the DWAGA on the same five test
functions that were used by them in [3], which we similarly label F1 to F5 (three of
them F2, F3 and F5 were also used in [6] and called T1 to T3.

In addition we are using an extra six multi-objective test functions that are used in
test suites [6] and [7]. F6 – F8 corresponds to F3 – F5 as found in [7] and F9 to F11
corresponds to T4 – T6 as found in [6].

We then tried two tri-objective functions to see how the two algorithms scale, see
Table 2 for function definitions.

3.1.4 Performance Measures
The performance of the EMOO systems is evaluated by examining the following
measures as suggested by [8]: the spacing, diversity, coverage and execution time of
the respective systems. Again, all measurement statistics are based on 30 repetitions.

Spacing is a measure of how evenly the solutions are spaced on the Pareto front.
Each distance between neighbouring solutions is compared against the average of the
distance between neighbours. If all solutions are evenly spaced, the measure will read
0, the more non-uniform the distribution along the Pareto front, the higher the
number. The formula for Spacing is:

S = 1
n −1

(di − d)2

i=1

n −1

 (5)

where di is the distance between two neighbouring solutions and d is the average
distance between neighbours.

In the case of three objective problems the Pareto front is a plane instead of a line.
As a result the distance there is measured between a solution and its closest
neighbour.

Diversity is similar to Spacing, but instead of being based on the L2-norm
(associated with the Euclidean distance) it is based on the L1-norm (associated with
the Hamming distance). Also, Diversity is designed to take into account the full range
of the Pareto front. With Spacing, the system could produce solutions that are evenly
spaced but only cover a small section of the Pareto front, yet produce the same result
as a system that evenly covers the entire Pareto front. Diversity compensates for this
effect.

148 G. Drzadzewski and M. Wineberg

Diversity =
d

f
+ d

l
+ | d

i
− d |

i=1

N−1

d
f
+ d

l
+ (N −1)d

 (6)

Here df and dl are the distances between the end points of the found Pareto front and
the (known) extreme solutions of the true Pareto front. N is the size of the solution
set.

In the case of three objective problems the corners of the Pareto front plane are
taken as the extreme solutions.

Coverage of Two Sets: this measure compares the size of the Pareto front from
one of the optimization techniques with the size of the Pareto front formed from the
combined fronts of each of the two techniques.

Coverage_1(α) = #(A ∩C) / #(C) (7)

Coverage_2(α) = #(A ∩C) / #(A) (8)

Coverage_3(α,β) = (#(A ∩C) - #(A∩B∩C))/ #(C) (9)

where A is a Pareto front found by algorithm α, B is a Pareto front found by
algorithm β, and C is a Pareto front formed when combining Pareto fronts A and B.
Coverage_1(α) is the percentage of the combined Pareto front discovered by
algorithm α and Coverage_2(α) is the percentage of the Pareto front discovered by α
that is used in the combined Pareto front. Coverage_3(α,β) is the percentage of the
combined Pareto front discovered by algorithm α that was not discovered by
algorithm β.

Execution time: the time it took on the computer that executed the two algorithms.
Both programs were written in Java and run on AMD Athlon XP 1800, with a CPU
Clock speed of 1150Mhz and with 512MB of RAM DDR of memory.

Through experimentation it was discovered that the coverage-of-two-sets
measurement was the most important measurement; often by itself it was informative
enough to determine which algorithm is better. When the Coverage measurement did
not indicate a clear winner, the diversity measurement was a good way of breaking
the tie and determining the winner. When the diversity measurement did not indicate
a clear winner, the spacing measurement was used to break the tie.

Finally, for statistical accuracy, all experiments have been run 30 times each for
each setting, i.e. all statistics are based on 30 repetitions.

4 Results

4.1 Results When NSGA-II Is Victorious

The Coverage measurements indicate that for all these test functions the combined
Pareto front consists entirely of the solutions found by NSGA-II algorithm (see
Table 3). This clearly shows that DWA is inferior for these test functions. Since the
performance difference on the coverage measurements between these two methods is
so drastic, further measurements on diversity and spacing are not necessary.

 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 149

Table 3. Coverage_1 and Coverage_2 measurements for the NSGA-II and DWAGA algorithms

 Coverage_1(DWA) Coverage_1(NSGA)
 avg std Conf Interval avg std Conf Interval

f2 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f3 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f4 0.1% 0.3% -0.2% 0.3% 99.9% 0.3% 99.7% 100.2%
f5 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f9 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f10 7.7% 19.8% -7.5% 22.9% 92.3% 19.8% 77.1% 107.5%
f11 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%

 Coverage_2(DWA) Coverage_2(NSGA)
 avg std Conf Interval avg std Conf Interval
f2 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f3 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f4 0.1% 0.5% -0.3% 0.5% 100.0% 0.0% 100.0% 100.0%
f5 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
f9 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%

f10 11.2% 27.3% -9.9% 32.2% 97.0% 16.3% 84.5% 109.6%
f11 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 100.0%
avg = average std= standard deviation Conf Interval= Confidence Interval

4.2 Results When NSGA-II Is Challenged on Two Objective Problems

When the DWAGA and NSGA-II algorithms were tested on functions f1, f6, f7, and
f8 it was observed that the NSGA-II was no longer a clear favorite and the DWAGA
even had the superior performance on some test functions.

As the behavior of the algorithms on each of these four test functions is so diverse,
each of the four test functions will be examined in detail one at a time.

4.2.1 F1 Comparison Results
For F1 the combined Pareto front consists half from DWA and half from NSGA-II.
As can be seen from the confidence intervals for coverage in table 4 the NSGA-II
slightly outperforms DWA, but since the difference is this small it is important to also
evaluate Diversity and spacing in order to be sure which algorithm is better. It can be
seen in Table 5 that NSGA-II is better in both spacing and diversity and as a result
NSGA-II should be considered the better performer on F1 (but DWA is very close).

4.2.2 F6 Comparison Results
For F6 the combined Pareto front consists 1/3 from DWA and 2/3 from NSGA-II. As
can be seen from the confidence intervals, the NSGA-II outperforms DWA in
coverage, but it can be seen that DWA also contributes good solutions since 1/3 is a
decent proportion, and so we evaluate diversity and spacing. In the Diversity and
spacing the NSGA-II outperforms DWA. When these 3 measurements are considered
together it is clearly seen that NSGA-II performs better.

150 G. Drzadzewski and M. Wineberg

Table 4. Comparing2 the Coverage_1 and Coverage_2 measurements for the NSGA-II and
DWAGA algorithms

 Coverage_1(DWA) Coverage_1(NSGA)
 avg std Conf Interval avg std Conf Interval

F1 46.9% 3.2% 3.2% 7.3% 53.1% 3.2% 50.6% 55.6%
F6 33.4% 3.5% 3.5% 6.3% 66.6% 3.5% 63.9% 69.4%
F7 69.1% 1.7% 67.8% 70.4% 30.9% 1.7% 29.6% 32.2%
F8 59.0% 21.3% 42.5% 75.4% 41.0% 21.3% 24.6% 57.5%

 Coverage_2(DWA) Coverage_2(NSGA)

 avg std Conf Interval avg std Conf Interval
F1 75.1% 7.3% 69.4% 80.7% 88.9% 3.6% 86.1% 91.7%
F6 44.2% 6.3% 39.3% 49.1% 92.4% 2.2% 90.7% 94.1%
F7 93.8% 2.2% 92.0% 95.5% 54.0% 4.0% 51.0% 57.1%
F8 71.1% 25.3% 51.7% 90.6% 66.2% 34.0% 40.0% 92.5%

Table 5. Comparing3 the Spacing and diversity for the NSGA-II and DWAGA algorithms on
four bi-objective functions

Spacing

Rank
(D)

Rank
(N) s p-value

bonf corr.
p-value Better

Statistically
Significant

f1 45.5 15.5 2.37 4.1E-19 1.9E-17 NSGA Yes
f6 42.0 19.0 3.20 1.4E-09 6.8E-08 NSGA Yes
f7 8.0 45.5 2.44 4.1E-22 2.0E-20 DWA Yes
f8 42.9 17.5 2.64 1.3E-13 6.0E-12 NSGA Yes

Diversity

Rank
(D)

Rank
(N)

Pooled
Std. Dev. p-value

bonf corr
p-value Better

Statistically
Significant

f1 45.5 15.5 2.27 4.1E-19 2.0E-17 NSGA Yes
f6 45.5 15.5 3.20 3.2E-13 1.5E-11 NSGA Yes
f7 25.5 27.5 2.44 4.1E-01 19.6 DWA No
f8 15.8 45.2 2.64 5.3E-16 2.6E-14 DWA Yes

4.2.3 F7 Comparison Results
For F7 the combined Pareto front consists 2/3 from DWA and 1/3 from NSGA-II. As
can be seen from the confidence intervals for Coverage measure, this time the DWA
outperforms NSGA-II. To be certain that DWA is in fact better than NSGA-II we first
looked at Diversity, but since results of this test are inconclusive (the two algorithms
can’t be statistically differentiated based on this test), spacing becomes the
determining factor. Here the results are in DWA favour. Based on these three
measurements one can conclude that DWAGA is the better method for solving F7.

This is an important result for the research in DWA because F7 has a concave
Pareto front. It has been assumed that DWA would have problems with solving this

2 The confidence intervals are formed using the normal parametric approach as the results were

found to be normally distributed when using a normality plot.
3 The results were found to not be normally distributed, so the T test was done on the ranks (a

non-parametric test).

 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 151

type of a function but not only did it solve the problem well but it also outperformed
NSGA-II.

4.2.4 F8 Comparison Results
For F8 the combined Pareto front consists 3/5 from DWA and 2/5 from NSGA-II.
As can be seen from the confidence intervals for Coverage measure it is
inconclusive which algorithm is better. The T-test in Table 6 confirms this. As a
result we look at Diversity of the two methods where DWA outperforms NSGA-II.
So, based on these measurements we conclude that DWAGA performs better than
NSGA-II on F8.

Table 6. T Test4 for looking in more detail if there is an advantage in coverage for DWAGA.
It can be seen that it cannot be determined that DWA has better coverage than NSGA-II.

T Test on NSGA Coverage – DWA Coverage for f8

0.01 Diff(f8) 0.179

No. of Ind. tests 48 pooled std 0.0551

/ 48(see footnote5) 0.00021 -0.053

N 30
conf. interval

0.412

T 4.22 t-score 3.2578

p-value 0.0019

p-value * 48 (see footnote3) 0.0902

4.3 Results When Run on 3 Objective Problems

The Coverage_1 measurements in Table 7 indicate that for functions F12 and F13, the
combined Pareto front consists almost entirely of the solutions found by DWAGA
algorithm while the NSGA-II had found a smaller part of the Pareto front. The
Coverage_2 results indicate that both algorithms find same quality of solutions
because almost all solutions found by each algorithm are used in the combined Pareto
front. The Coverage_3 results indicate that the DWAGA has identified a large
number of solutions that the NSGA-II was unable to find. The DWAGA managed to
find almost all the solutions that NSGA-II identified plus many more. As a result the
DWAGA provided a better and more detailed representation of the Pareto front and
outperformed the NSGA-II.

As can be seen in Table 8, the DWAGA is executing much faster than NSGA-II,
which is a big benefit with the huge search spaces that are associated with multi-
objective problems.
This shows a possible deficiency in the Pareto front style approach. When a search
space gets large, the NSGA seems to have trouble finding many solutions and is
negatively impacted in its performance time. For example by switching from 2
objectives to 3, the Pareto front has changed from a line to a plane. As the number of
objectives increases, the size of the Pareto front increase geometrically in the size.

4 The regular T test was used as the results were found to be normally distributed when using a

normality plot.

152 G. Drzadzewski and M. Wineberg

Table 7. The Coverage_1, Coverage_2, and Coverage_3 measurements for the NSGA-II and
DWAGA algorithms on two tri-objective functions

 Coverage_1(DWA) Coverage_1(NSGA)

 avg std
95% Confidence

Interval
avg std

95% Confidence
Interval

F12 0.9729 0.0029 0.9719 0.9739 0.5203 0.00539 0.5182 0.5223
F13 0.9007 0.0821 0.8713 0.9300 0.7108 0.02205 0.7029 0.7187

 Coverage_2(DWA) Coverage_2(NSGA)

avg std

95% Confidence
Interval

avg std
95% Confidence

Interval
F12 0.9997 0.0005 0.9995 0.9999 0.9791 0.0075 0.9765 0.9818
F13 0.9859 0.0110 0.9820 0.9898 0.9889 0.0044 0.9873 0.9905

 Coverage_3(DWA) Coverage_3(NSGA)

avg std

95% Confidence
Interval

avg std
95% Confidence

Interval

F12 0.4797 0.0054 0.4777 0.4816 0.0271 0.0029 0.0261 0.0281

F13 0.2892 0.0220 0.2813 0.2971 0.0993 0.0821 0.0700 0.1287

Table 8. The algorithm run-time measurements for NSGA-II and DWAGA

 Time (DWA) Time (NSGA)

 avg std
95% Confidence

Interval
avg std

95% Confidence
Interval

F12 333009 151033 278962 387055 612279 5148 610437 614122
F13 442595 92429 409520 475670 4257111 88272 4225523 4288699

Consequently, to find this Pareto front, an algorithm must find a proportionately
greater number of solutions. Since the NSGA-II stores the Pareto front solutions in its
population it requires an geometrically larger population size because once a
population member finds an optimal solution it will keep that solution to the end,
especially with elitism. This causes more and more of the population members to be
used for storing solutions instead of exploring. Eventually near the end of the run
only few population members will remain free to explore. In order to have the
NSGA-II be able to explore a large search space and be able to store solutions that
represent it well, it will require the possession of a very large population. This will
cause the algorithm to run slowly, due to the fact that it has to perform fitness
calculations as well as the time taken sorting this huge population.

This problem does not apply to the DWAGA, which has an archive to store all the
best solutions. It can have a smaller population, which can be used only for the
searching of new solutions and not have to try to maintain all the best solutions. This
allows the algorithm to identify a very large solution space with a relatively small
population. This seems to allow the DWAGA to scale better than NSGA-II for
problems with higher number of objectives.

 The Importance of Scalability When Comparing DWA and Pareto Front Techniques 153

5 Conclusion

In this paper, we compared two EMOO methods against each other: the Non-dominated
Sorting Genetic Algorithm (NSGA-II) and the Dynamic Weighted Aggregation (DWA)
system. To make the comparison fair and to remove an extra factor from the analysis, the
DWA has been layered on top of a GA instead of and ES algorithm that it was originated
for (since the DWA can be easily applied to any EC system). Using various traditional
EMOO measures, such as Coverage, Spacing and Diversity, we determined that the
DWA could handle concave problems as advertised. Furthermore, while most of the bi-
objective functions we tried were better handled by the NSGA-II, when tri-objective
problems were used, the DWAGA outperforms the NSGA-II and runs much faster. We
believe that the cause of the DWAGA’s success at higher number of objectives is due to
its use of an archive, alleviating the need of the storage of the Pareto front (which can
grow exponentially with the number of objectives) within the population itself.

Acknowledgements

The Authors would like to acknowledge the Natural Science and Engineering
Research Council of Canada for support of this research.

References

[1] Coello Coello, C.A.: A Short Tutorial on Evolutionary Multiobjective Optimization. In
Zitzler, E., Deb, K., et. al. (eds.): The First International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001). Springer, Berlin (2001) 21-40

[2] Jin, Y., Okabe, T., Sendhoff., B.: Adapting Weighted Aggregation for Multiobjective
Evolution Strategies. In Zitzler, E., Deb, K., et. al. (eds.): The First International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2001). Springer, Berlin
(2001) 96-110

[3] Jin, Y., Okabe, T., Sendhoff., B.: Dynamic Weighted Aggregation for Evolutionary
Multi-Ojbective Optimization: Why Does It Work and How? In Spector L., et. al. (eds.):
GECCO 2001 - Proceedings of the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann, San Francisco (2001) 1042-1049

[4] Srinivas, N. and Deb, K.: Multi-Objective function optimization using non-dominated
sorting genetic algorithms. Evolutionary Computation, 2(3):221–248 (1995)

[5] Deb, K., Goel, T.: Controlled Elitist Non-dominated Sorting Genetic Algorithms. In
Zitzler, E., Deb, K., et. al. (eds.): The First International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001). Springer, Berlin (2001) 67-81

[6] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolution algorithms:
empirical results. Evolutionary Computation, 8(2):173-195 (2000).

[7] J.D. Knowles and D.W. Corne. Approximating the nondominated front using the Pareto
archived evolution strategies. Evolutionary Computation, 8(2):149-172 (2000).

[8] Ang, K.H., Chong, G., Li, Y.: Preliminary Statement on the Current Progress of Multi-
Objective Evolutionary Algorithm Performance Measurement. In Eberhart R., Fogel,
D.B. (eds.): Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02).
IEEE Press (2002) 1139-1144

154 G. Drzadzewski and M. Wineberg

[9] Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff. Solving Three-objective
Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and
Analysis. In: Proceedings of Genetic and Evolutionary Computation Conference. pp.636,
Chicago, 2003

[10] Czyzak, P., and Jaszkiewicz, A.: Pareto simulated annealing - a metaheuristic technique
for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision
Analysis vol. 7, pp. 34-47 (1998).

[11] Hansen, P.H.: Tabu Search for Multiobjective Optimization: MOTS. Proceedings of the
13th International Conference on Multiple Criteria Decision Making, 1997.

[12] Serafini P.: Simulated annealing for multi objective optimization problems. In Multiple
Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application,
G.H. Tzeng, ed., Springer (1993).

[13] Ulungu, E., Teghem, J., Fortemps, P., and Tuyytens, D.: MOSA Method: A Tool for
Solving Multiobjective Combinatorial Optimization Problems. Journal of Multi-Criteria
Decision Analysis, vol. 8/4, pp. 221-236 (1999).

[14] Joshua Knowles and David Corne: Memetic Algorithms for Multiobjective Optimization:
Issues, Methods and Prospects. 2003

A Backbone-Based Co-evolutionary Heuristic for
Partial MAX-SAT

Mohamed El Bachir Menaï1 and Mohamed Batouche2

1 Laboratoire d’Intelligence Artificielle, Université de Paris8,
2 rue de la liberté, 93526 Saint-Denis, France

menai@ai.univ-paris8.fr
2 Laboratoire LIRE, Département d’Informatique,
Université Mentouri, 25000 Constantine, Algérie

batouche@wissal.dz

Abstract. The concept of backbone variables in the satisfiability prob-
lem has been recently introduced as a problem structure property and
shown to influence its complexity. This suggests that the performance
of stochastic local search algorithms for satisfiability problems can be
improved by using backbone information. The Partial MAX-SAT Prob-
lem (PMSAT) is a variant of MAX-SAT which consists of two CNF
formulas defined over the same variable set. Its solution must satisfy all
clauses of the first formula and as many clauses in the second formula as
possible. This study is concerned with the PMSAT solution in setting a
co-evolutionary stochastic local search algorithm guided by an estimated
backbone variables of the problem. The effectiveness of our algorithm is
examined by computational experiments. Reported results for a number
of PMSAT instances suggest that this approach can outperform state-
of-the-art PMSAT techniques.

1 Introduction

Many problems in artificial intelligence (AI) and operations research (OR) are
optimization problems, where the objective is to find a best assignment to a set
of variables such that a set of constraints are satisfied. Real world problems found
in application areas including scheduling [4] and pattern recognition [12] contain
hard and soft constraints. Hard constraints must be satisfied by any solution,
while soft constraints specify a function to be optimized. Various approaches have
been proposed to represent over-constrained problems. Freuder and Wallace [12]
presented the concept of partial constraint satisfaction, where the objective is to
maximize the total number of satisfied constraints. Borning et al. [7] introduced
the notion of constraint hierarchies, where the distinction between hard and soft
constraints is extended to a multiple level constraint hierarchy.

Boolean satisfiability (SAT) is among the most interesting AI formalisms for
reasoning, planning and learning [23]. The SAT problem asks to decide whether a
given propositional formula, in conjunctive normal form (CNF), has a model. The
maximum satisfiability (MAX-SAT) problem is the optimization version of SAT

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 155–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 M.E.B. Menaï and M. Batouche

which consists to find an assignment maximizing the number of satisfied clauses.
The weighted MAX-SAT is a more general case, where each clause is associated
with a positive weight. The goal is to minimize the sum of weights of violated
clauses. Problems involving hard and soft constraints can be naturally encoded
as weighted MAX-SAT. Each hard constraint can be represented by a weighted
cost which exceeds the sum of the weighted cost of all soft constraints. However, a
solution for a MAX-SAT instance may violate some clauses whose satisfiability is
a necessary condition for the feasibility of the real solution. For example, a MAX-
SAT solution for a university time tabling may contain collisions of different
courses in the same room at the same time, the same lecturer can be scheduled in
different rooms at the same time, and so on. Cha et al. [8] introduced the Partial
MAX-SAT (PMSAT) to formulate independently hard and soft constraints. Hard
constraints are called mandatory clauses; their satisfiability is required for any
PMSAT solution. Other related problems to PMSAT are the DISTANCE-SAT
defined by Bailleux and Marquis [2], and the sub-SAT introduced by Xu et al.
[24]. The DISTANCE-SAT problem asks to check if there is a model of a CNF
formula, that conflicts with an expected configuration on at most a given number
of variables. The sub-SAT is a formulation for relaxed Boolean satisfiability, that
allows violation of a given number of clauses in a CNF formula.

The current research on algorithms used to solve PMSAT is limited. Cha et
al. [8] used a weighting-type stochastic local search to solve PMSAT by repeating
each mandatory clause n times. In this way, the search always prefers a solution
which satisfies all mandatory clauses, regardless of the level of remaining clause
violations. However, this can lead to an important increasing of the total number
of clauses when their number is initially large. They applied various strategies
to escape from local minima such as LWM, RESTART and RESET [8]. LWM
strategy consists to add weights to all unsatisfied clauses, and to continue the
search when a local minimum is reached. RESTART strategy allows the algo-
rithm to restart from a random initial assignment, while RESET consists to reset
the weights given by the algorithm and to continue the search from the current
assignment. In the reported experimental study [8], RESET outperforms LWM
and RESTART on random instances. In [14], a new approach for solving PMSAT
is described. It is based mainly on recycling a model of the mandatory clauses to
satisfy as many clauses in the second formula as possible. The reported results
show the overall superiority of this method in comparison to a weighting-type
local search algorithm. A problem of practical significance in the design of SAT
and MAX-SAT solvers, is how to identify and exploit the problem structure
properties to improve their performance. Some interesting properties which in-
fluence the hardness of a SAT have been identified such as the easy-hard-easy
phase transition [9, 15], and the backbone variables [16], a set of literals which
are true in every model. The backbone of a MAX-SAT instance is the set of
assignments of values to variables which are the same in every possible optimal
solution [20].

The aim of this paper is to integrate a backbone guide moves to a co-
evolutionary stochastic local search algorithm for solving the PMSAT problem.

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 157

In a first phase, both formulas of a PMSAT instance are solved as a single MAX-
SAT instance using a backbone guided co-evolutionary search. In a second phase,
the best assignment found is recycled to satisfy all mandatory clauses using the
estimated backbone. The effectiveness of this algorithm is demonstrated empir-
ically on some PMSAT instances derived from standard SAT instances. In the
reminder of this paper, we explain in more details the proposed method for PM-
SAT and report on results of computational tests in which our algorithm is com-
pared to related approaches. In the next section, we describe a co-evolutionary
method used for MAX-SAT (Bose-Einstein Extremal Optimization). In section
3, we present a brief review of backbone variables and related notions. In section
4, we formalize a new method for PMSAT. In section 5, we report on experi-
mental results. We finally conclude and plan for future work in section 6.

2 Bose-Einstein Extremal Optimization Method for
MAX-SAT

Bose-Einstein Extremal Optimization (BE-EO) [13] is an approximative algo-
rithm for solving the MAX-SAT problem. It is based on an adaptation of Ex-
tremal Optimization (EO) [5] heuristic to MAX-SAT. The search space is
explored according to EO, while starting solutions are sampled using the Bose-
Einstein probability distribution.

Extremal Optimization method is introduced by Boettcher and Percus [5] for
solving hard optimization problems such as the Graph Partitioning. It was moti-
vated by the Bak-Sneppen [3] model of biological evolution which describes the
co-evolutionary process of species. In this model, optimal adaptation emerges
naturally from the dynamics of species by elimination of badly adapted ones.
Species are sites of a lattice and each one has an associated fitness value ranging
from 0 to 1. A fitness represents a time scale at which the species will mutate
to a different species or become extinct. A selection process against the worst
adapted species is applied. At each update, the smallest fitness value is replaced
by a new random one which impacts the fitness values of its neighbors. After a
certain number of steps, a state of optimal adaptation (Self-Organized Critical-
ity) is reached in which all species are intimately connected. When the system is
driven back to a SOC state, any perturbation of this equilibrium involves large
fluctuations in the configuration of fitness values (critical avalanches). The dura-
tion t of these avalanches follows a power-law distribution P (t) ∝ t−τ (τ close to
1). Extremal Optimization method is a conversion of the extremal dynamics of
the Bak-Sneppen model into an approximative algorithm for optimization prob-
lems. The search process is characterized by hill-climbing large fluctuations (i.e.
avalanches in the Bak-Sneppen model) allowing search diversification. It evolves
to a SOC state where sub-optimal solution can be found (almost all species have
optimal fitnesses).

The Bose-Einstein distribution is a quantum distribution function. It de-
scribes the probability distribution of an amount of energy between identical
but indistinguishable particles with integer spin, called bosons (e.g. photons).

158 M.E.B. Menaï and M. Batouche

Szedmak [21] proved that this distribution function can improve the performance
of stochastic local search algorithms for satisfiability problems. He demonstrated
that the mean Hamming distance between a sample of initial solutions and the
optimal solution is reduced when initial solutions are generated using the Bose-
Einstein distribution rather than the uniform one.

Given a MAX-SAT instance of n Boolean variables x1, . . . , xn, and m wei-
ghted clauses (ci, wi)i=1,m. Each clause ci is a disjunction of literals (a variable
xi or its negation ¬xi), and wi ∈ N is its weight. A MAX-SAT instance is a
conjunction of clauses (CNF formula). The fitness λi of a variable xi is defined
as the negation of the fraction of the sum of weights of unsatisfied clauses in
which xi appears, by the total weights of clauses connected to this variable :

λi =
−

∑m
j=1 wj |xi ∈ cj , I(cj) = 0∑m

k=1 wk|xi ∈ ck
(1)

I(cj) = 0 means that the clause cj is unsatisfied. The cost contribution of a
variable xi is defined by −λi. The best solution S found to a MAX-SAT instance
is associated to the minimum of the cost function C(S) = −

∑n
i=1 λi.

The algorithm BE-EO for MAX-SAT is outlined as follows [13].

Algorithm BE-EO/MAX-SAT

1. Randomly generate a solution S according to the Bose-Einstein distribution.
Set Smax ← S.

2. If S satisfies all the clauses of the MAX-SAT instance, return (S : model).
3. Evaluate λi for each variable xi.
4. Rank xi, (i = 1, n) from the worst to the best according to λi. Select a rank

j such that P (j) ∝ j−τ .
5. Flip the truth value of xj in S.
6. If C(S) < C(Smax) then set Smax ← S.
7. If the number of steps does not exceed the given bound, return to step 2.
8. If the number of generated Bose-Einstein initial solutions does not exceed

the given sample size, then randomly generate a solution S according to the
Bose-Einstein distribution. Return to step 2.

9. Return (Smax).

Good performance is reported for BE-EO/MAX-SAT on some specific classes
of weighted and unweighed MAX-SAT instances [13] outperforming WalkSAT
[18] and a tabu search method.

3 Backbone Variables

The backbone of a problem instance is a set of variables having fixed values in all
optimal solutions. These variables are critically constrained as the elimination of
any one of them will exclude any optimal solution. Related notions to backbone
in satisfiability are backdoors [23] and spine [6]. A backdoor is a variable subset
such that if some particular truth values are assigned to these variables, the

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 159

simplified instance is satisfiable and can be solved in polynomial time. Williams et
al. [23] demonstrated that a concrete computational advantage can be obtained
by exploiting backdoors. The spine of a set of clauses is a set of literals which
are false in all models of a subset of satisfiable clauses [20].

Several researches dealing with competitive SAT and MAX-SAT solvers have
made use of backbone variables. Monasson et al. [16] investigated the backbones
of 3-SAT and (2 + p)-SAT, and conjectured that a backbone is an order para-
meter for the decision problems. Other studies [17, 19, 1] have demonstrated
that the size of the backbone is correlated with the hardness of SAT problems.
Slaney and Walsh [20] have studied backbones in optimization and approxi-
mation problems including graph coloring, traveling salesperson problem, num-
ber partitioning and blocks word planning. They showed that backbones are
often an important indicator of hardness in optimization and approximation.
Subsequently, heuristic methods which identify backbone variables, may reduce
problem difficulty and improve performance. Dubois and Dequen [11] proposed a
systematic search method which incorporates estimated backbone variables.
Telelis and Stamatopoulos [22] designed a method for generating initial assign-
ments to an iterated algorithm by sampling heuristically the backbone vari-
ables, and reported good results on some random MAX-SAT instances. Climer
and Zhang [10] developed a technique for identifying backbones and fat vari-
ables (variables which are absent from every optimal solution). They exploited it
for discovering backbone and fat arcs for instances of the asymmetric traveling
salesperson problem (ATSP) and achieved performance improvements. Zhang et
al. [25] improved the performance of the well known WalkSAT procedure [18]
on some instances of SAT and MAX-SAT from SATLIB [27] using structure
information of reached local minima.

4 Backbone-Based Co-evolutionary Heuristic for PMSAT

Given two CNF formulas fA and fB over a set of variables X = {x1, . . . , xn}.
The PMSAT problem P = fA ∧ fB asks to satisfy all the clauses of fA and as
many clauses in fB as possible. The number of satisfied clauses in fB determines
the quality of a solution to P .

We propose a two-phase algorithm for solving P . In a first phase, P is
considered as a MAX-SAT instance and approximated using a variant of the
algorithm BE-EO/MAX-SAT. A backbone variables sampling is integrated to
BE-EO/MAX-SAT to guide the search towards potentially good solutions. If the
best solution found SAB does not satisfy fA, then a second phase is performed
to recycle SAB to a model of fA using the backbone information captured in
the first phase. The backbone sampling may help to improve the performance of
the second phase process, as it encapsulates information about the likelihood of
each variable. However, exact backbone cannot be computed unless all optimal
solutions are known. Hence, only an estimated pseudo-backbone is performed
using information extracted from reached local minima.

160 M.E.B. Menaï and M. Batouche

The pseudo-backbone sampling used in this work is inspired by the sampling
scheme presented in [22]. Let Ω be a set of solutions on X . S(xi) denotes the
truth value of xi in the solution S. A variable frequency of positive occurrences
of xi in all solutions of Ω, is defined by :

pi =
∑

S∈Ω S(xi)
|Ω| (2)

assuming that all local minima are of equal quality. Else a weight cost may be
assigned to each local minimum. Q(S) denotes the contribution of a solution
S, defined as the total number of satisfied clauses in fA and fB. A multiplier
coefficient, equals to |fA|, is added to Q(S) to underline the priority of satisfying
clauses of fA. Let #satfA(S) and #satfB (S) be the number of satisfied clauses
by S in fA and fB, respectively. Q(S) is defined by :

Q(S) = |fA| · #satfA(S) + #satfB (S) (3)

A more reliable definition of pi(i = 1, n) is given by :

pi =
∑

S∈Ω Q(S) · S(xi)∑
S∈Ω Q(S)

(4)

Let Xα denotes the set of variables which appear in the set of clauses α. The
main steps of the algorithm, called BBC-PMSAT, are described as follows.

Algorithm BBC-PMSAT

Phase 1: Solving P = fA ∧ fB as a MAX-SAT instance
(a) Run BE-EO/MAX-SAT on P over X . Initialize Ω with reached local

minima.
(b) Solve P using a variant of BE-EO/MAX-SAT (initial solutions are gen-

erated from Ω using variable frequencies pi (Eqn. 4)).
At a new local minimum S, if Ω holds a solution S∗ such that
Q(S∗) < Q(S) (Eqn. 3), then replace S∗ by S in Ω.

(c) Let SAB be the best solution found after a preset number of steps.
If SAB satisfies fA then return SAB as a solution to P .

Phase 2: Recycling SAB to satisfy fA

(a) Let fA = fA1 ∧ fA2 , where fA1 is satisfied by SAB and XA1 ∩ XA2 = ∅
(simplification).

(b) Solve fA2 over XA2 as a SAT instance using a variant of the BE-EO/SAT
(Phase 1, step (b)). Partial assignments to the variables of XA2 are
generated using variable frequencies pi.

(c) After a preset number of steps, if a model SA2 is found, then update
SAB and return it as a solution to P . Else return that no solution to P
can be found.

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 161

5 Performance Evaluation

Since no public PMSAT instances are available, we generated them using SAT
instances from DIMACS [26] and SATLIB [27] benchmark archives. We consid-
ered four sets of random and structured SAT instances of n variables and m
clauses:

– uuf125-538* (100 random “phase-transition” hard 3-SAT instances of n = 125
and m = 538);

– f* (3 large random “phase-transition” hard 3-SAT instances: f600 (n = 600,
m = 2550), f1000 (n = 1000, m = 4250), f2000(n = 2000, m = 8500);

– par8-* (5 instances of SAT-encoded parity learning problem of n = 350 and
1149 < m < 1171);

– flat* (10 instances of SAT-encoded graph coloring problem of n = 300 and
m = 1117).

All SAT instances are chosen satisfiable in order to guarantee the generation
of solvable PMSAT instances (fA must be satisfiable). Random SAT instances
are “phase-transition” hard (m

n � 4.3 for random 3-SAT instances). Structured
instances par8-* are also among the hardest DIMACS SAT ones. Random in-
stances are generally used to control average problem difficulty by varying the
ratio

(
m
n

)
of clauses to variables, while structured instances are used to mea-

sure the effect of hidden structure on algorithm performance. PMSAT instances
are generated using a partition of each SAT instance into two subsets FA and
FB (representing fA and fB formulas, resp.) such that |FA| = [αm] + 1 and
|FB| = m − |FA|, with 0 < α < 1. The program code is written in C and run
on a computer (Pentium IV 2.9 GHz with 1 GBs of RAM) running Linux. BE-
EO/MAX-SAT is run setting τ = 1.4. All the results are averaged over 10 runs
on each instance with a maximum of 300000 flips allowed per run. The total
number of tries for each run of the algorithm BBC-PMSAT is shared between
both phases of the algorithm. Let r be the first phase run length ratio of the
total run length, #sat the number of solutions to PMSAT instances over 10 runs
(it equals the average number of satisfied fA instances) and v the relative error
of a solution S given by:

v(%) =
(

1 − #satfB (S)
|FB|

)
× 100 (5)

A key question regarding the algorithm BBC-PMSAT is how to evaluate
its performance. The first objective is to determine the effect of the first phase
run length ratio of the total run length. The second objective is to determine
the impact of the pseudo-backbone variables size on the performance. The third
objective is to determine whether or not BBC-PMSAT is competitive with its
variant, called C-PMSAT, which does not integrate pseudo-backbone sampling.
Additionally, BBC-PMSAT is compared to a weighting-type local search algo-
rithm, called WLS, used by Cha et al. [8] with RESET strategy to solve PMSAT

162 M.E.B. Menaï and M. Batouche

r: ratio of run length of Phase 1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

#
s
a
t

0

1

2

3

4

5

6

7

8

9

10

v

(
%
)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

f2000_v (%)

f2000_#sat

par8-4_#sat

par8-4_v(%)

Fig. 1. Average error v (y-axis) and number of solutions #sat (additional y-axis) over
10 runs for instances f2000 and par8-4 (α = 0.3) are plotted against the run length
ratio of phase 1

instances. WLS/RESET solves PMSAT as MAX-SAT instance by repeating each
clause in FA, |FA| times.

Figure 1 presents average #sat and v over 10 runs obtained by BBC-PMSAT
on the instances f2000 and par8-4, varying r from 10% to 100%. We observe
clearly that the greater the value of r, the more the number of solutions #sat
and the error v are reduced. An error v less than 1% is achieved after at least
50% of the total runtime length. However, allowing much more time to the first
phase of the algorithm, means reducing the amount of time allowed to the second
phase. Hence, the number of solutions #sat to PMSAT may decrease. For all

(a)

pb: ratio of pseudo-backbone size to n

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

#
s
a
t

0

1

2

3

4

5

6

7

8

9

10

11

12

uuf* f* flat* par8-*

(b)

pb: ratio of pseudo-backbone size to n

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

v
(
%
)

0,00

0,50

1,00

1,50

uuf*

f*

flat*

par8-*

Fig. 2. (α = 0.3, r = 0.6) (a) Average number of solutions #sat (y-axis) is plotted
against the ratio of the pseudo-backbone size to the number n of variables for each
instance class. (b) Average error v (y-axis) is plotted against the ratio of the pseudo-
backbone sample size to the number n of variables for each instance class.

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 163

the instances, the average best performance in terms of average #sat and v is
obtained with r ranging from 50% to 70%.

Figure 2 shows the number of solutions #sat and the average error v achieved
by BBC-PMSAT on all the instances when varying pb, the ratio of backbone size
to the number of variables n, from 0 to n (α = 0.3, r = 0.6). As illustrated in figure
2.a, the number of solutions #sat is generally increasing with pb. It is constant in
the case of uuf* which may have few backbone variables. For example, setting pb
to 0.5n, the gains achieved by BBC-PMSAT in terms of #sat on the instances
f*, flat* and par8-* are 5.71%, 6.92% and 2.96%, respectively. For pb = n, the
gains achieved on the same instances are 11.42%, 10.38% and 16.66%, respectively.
Figure 2.b shows a fall in the average error v for all the instances: v decreases
rapidly for the instances f*, until pb = 0.5n; v decreases relatively slowly for the
remaining instances. For all the instances, the average best performance, in terms
of quality of a solution (v), is obtained when pb ≥ 0.6n. BBC-PMSAT performs

Table 1. Results of the algorithm BBC-PMSAT (α = 0.3, r = 0.6, pb = 0.7n)

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 10 0 0.374 0.050 3881.9 556.0
f600 9 0.0113 6.092 1.815 28958.2 4623.1
f1000 7 0.0951 19.812 3.152 79575.1 8768.4
f2000 7 0.1135 44.655 3.547 138120.9 9868.5
flat* 2.8 0.0923 3.238 0.185 26926.8 1601.4
par8-1 7 0.0713 5.117 1.350 34877.1 9215.0
par8-2 7 0.1501 5.723 0.702 39681.0 4886.0
par8-3 6 0.1185 4.931 1.050 31657.5 7325.1
par8-4 5 0.1290 4.581 0.900 31917.0 6513.0
par8-5 5 0.1870 7.960 0.841 61275.4 4935.0
Average 6.58 0.0968 10.248 1.359 47687.0 5829.1

Table 2. Results of the algorithm C-PMSAT (α = 0.3, r = 0.6, pb = 0.7n)

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 10 0.0231 0.514 0.200 6162.0 971.3
f600 9 0.0130 10.973 2.532 57457.3 7929.7
f1000 6 1.9150 22.650 1.650 115059.2 7021.6
f2000 6 2.5710 54.458 7.940 189310.3 35641.8
flat* 2.6 0.1504 4.154 1.201 32795.1 5831.0
par8-1 6 0.3511 7.516 0.324 60513.3 1472.1
par8-2 6 0.2510 7.380 0.508 58764.0 2410.5
par8-3 6 0.2315 5.763 1.810 44210.4 8355.0
par8-4 4 0.1712 4.716 0.152 36638.1 790.0
par8-5 5 0.2415 10.550 0.380 71652.1 1582.0
Average 6.06 0.5918 12.867 1.669 67256.1 7200.5

164 M.E.B. Menaï and M. Batouche

Table 3. Results of the algorithm WLS/RESET

Instance #sat v(%) CPU time Flips
Avg Std Avg Std

uuf* 9.8 0.0123 0.845 0.205 8316.4 1485.0
f600 9 0.0130 10.620 2.010 47150.6 18420.0
f1000 6 0.1235 29.271 2.055 136171.0 19040.0
f2000 5 1.5764 60.028 5.601 265124.5 41190.0
flat* 2.1 0.2351 6.068 1.295 43166.3 9147.6
par8-1 4 0.3133 10.408 0.520 79525.1 3290.0
par8-2 4 0.4840 9.120 0.180 70720.0 1123.1
par8-3 3 0.3586 7.151 0.642 53540.2 4058.0
par8-4 1 0.6315 5.154 0.210 39628.0 1620.5
par8-5 4 0.4099 10.250 1.261 73040.2 7850.0
Average 4.79 0.4158 14.891 1.397 81638.2 10722.4

particularly well on the instances par8-* which may have a large backbone size,
making all the variables critically constrained.

Computational results performed by BBC-PMSAT, C-PMSAT and
WLS/RESET are presented in tables 1, 2 and 3, respectively. The first col-
umn lists the benchmarks. Columns 2, 3 show the average number of solutions
#sat and the average error v over 10 runs. Columns 4, 5 show the average CPU
time and its standard deviation. Columns 6, 7 show the average number of flips
and its standard deviation. BBC-PMSAT is tested using α = 0.3, r = 0.6 and
pb = 0.7n. Overall, BBC-PMSAT outperforms C-PMSAT and WLS/RESET on
all the instances. The average gains in number of solutions are 8.58% and 37.36%
w.r.t. C-PMSAT and WLS/RESET, respectively. In term of runtime cost, the
average falls are 20.35% and 31.17% w.r.t. C-PMSAT and WLS/RESET, respec-
tively. In conclusion, our results demonstrate that BBC-PMSAT can find high
quality solution and performs faster than C-PMSAT and WLS/RESET.

6 Conclusion and Future Work

In this work, we introduced a backbone-based co-evolutionary algorithm for PM-
SAT (BBC-PMSAT). This algorithm is based on a co-evolutionary stochastic lo-
cal search method (BE-EO) which has been used successfully for solving a range
of MAX-SAT instances. BBC-PMSAT approximates solutions to PMSAT in two
main phases. In a first phase, PMSAT is solved as a MAX-SAT instance incor-
porating sampled pseudo-backbone variables to guide the search. In a second
phase, the previously found solution is recycled to satisfy all the constrained
clauses using estimated pseudo-backbone. BBC-PMSAT was compared to its
variant without pseudo-backbone sampling (C-PMSAT) and to a weighting-type
stochastic local search algorithm with RESET strategy (WLS/RESET) [8] for
PMSAT. These algorithms were tested on four classes of PMSAT instances gen-
erated from standard SAT instances. The results indicate the effectiveness of
using estimated pseudo-backbone variables. Indeed, BBC-PMSAT outperforms

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT 165

C-PMSAT and WLS/RESET on all the instances in terms of average number of
solutions and average runtime cost. The most significant gains are achieved on
instances which may have large backbone size. The encouraging results obtained
at this early stage, prove the high potential of this method. In future work,
we plan to further investigate how the performance of BBC-PMSAT depends
on the problem features and to continue computational tests on larger PMSAT
instances.

References

[1] Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem
instances. In Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI-00), (2000) 256–261

[2] Bailleux, O., Marquis, P.: DISTANCE-SAT: complexity and algorithms. In Pro-
ceedings of the 16th National Conference on Artificial Intelligence (AAAI-99),
(1999) 642–647

[3] Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model
of evolution. Physical Review Letters, 59, (1993) 381–384

[4] Beck, J.C., Fox, M.S.: A generic framework for constraint-directed search and
scheduling. AI Magazine, 19(4), (1998) 101–130

[5] Boettcher, S., Percus, A.G.: Nature’s way of optimizing. Artificial Intelligence,
119, (2000) 275–286

[6] Bollobas, B., Borgs, C., Chayes, J., Kim, J.H., Wilson, D.B.: The scaling window
of the 2-SAT transition. Random Structures and Algorithms, (2001) 201–256

[7] Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. Lisp and
Symbolic Computation, 5(3), (1992) 223–270

[8] Cha, B., Iwama, K., Kambayashi, Y., Miyasaki, S.: Local search for Partial MAX-
SAT. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97), (1997) 263–265

[9] Cheesman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), 331–337

[10] Climer, S., Zhang, W.: Searching for backbones and fat: a limit-crossing approach
with applications. In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI-02), (2002) 707–712

[11] Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulæ. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI-01), (2001) 248–253

[12] Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence,
58(1), (1992) 21–70

[13] Menaï, M.B., Batouche, M.: Efficient initial solution to extremal optimization al-
gorithm for weighted MAXSAT problem. In Proceedings of the 16th International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems (IEA/AIE-2003), LNAI 2718, Springer, (2003) 592–603

[14] Menaï, M.B.: Solution reuse in Partial MAX-SAT Problem. In Proceedings of
IEEE International Conference on Information Reuse and Integration (IRI-2004),
(2004) 481–486

[15] Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI-92), (1992) 459–465

166 M.E.B. Menaï and M. Batouche

[16] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic ‘Phase Transition’. Nature,
400 (1999) 133–137

[17] Parkes, A.J.: Clustering at the phase transition. In Proceedings of the 14th Na-
tional Conference on Artificial Intelligence (AAAI-97), (1997) 240–245

[18] Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
(1994) 337–343

[19] Singer, J., Gent, I.P., Smaill, A.: Backbone fragility and the local search cost peak.
Journal of Artificial Intelligence Research, 12, (2000), 235–270

[20] Slaney, J., Walsh, T.: Backbones in optimization and approximation. In Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-
01), (2001) 254–259

[21] Szedmak, S.: How to find more efficient initial solutions for searching. RUTCOR
Research Report 49-2001, Rutgers Center for Operations Research, Rutgers Uni-
versity, Piscataway, NJ, USA, (2001)

[22] Telelis, O., Stamatopoulos, P.: Heuristic backbone sampling for maximum satis-
fiability. In Proceedings of the 2nd Hellenic Conference on Artificial Intelligence,
(2002) 129–139

[23] Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), (2003) 1173–1178

[24] Xu, H., Rutenbar, R.A., Sakallah, K.: sub-SAT: A formulation for relaxed boolean
satisfiability with applications in routing. In Proceedings of the International Sym-
posium on Physical Design (ISPD-02), (2002) 182–187

[25] Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum
satisfiability. In Proceedings of the 18th International Joint Conference on Artifi-
cial Intelligence (IJCAI-03), (2003) 1179–1186

[26] http://dimacs.rutgers.edu/Challenges/
[27] http://www.informatik.tudarmstadt.de/AI/SATLIB

Analysing Co-evolution Among Artificial 3D
Creatures

Thomas Miconi and Alastair Channon

University of Birmingham,
Edgbaston B152TT,
Birmingham, UK

t.miconi@cs.bham.ac.uk

Abstract. This paper is concerned with the analysis of coevolutionary
dynamics among 3D artificial creatures, similar to those introduced by
Sims [1]. Coevolution is subject to complex dynamics which are noto-
riously difficult to analyse. We introduce an improved analysis method
based on Master Tournament matrices [2], which we argue is both less
costly to compute and more informative than the original method. Based
on visible features of the resulting graphs, we can identify particular
trends and incidents in the dynamics of coevolution and look for their
causes. Finally, considering that coevolutionary progress is not necessar-
ily identical to global overall progress, we extend this analysis by cross-
validating individuals from different evolutionary runs, which we argue is
more appropriate than single-record analysis method for evaluating the
global performance of individuals.

1 Introduction

Coevolution has been introduced in artificial evolution as an alternative to tra-
ditional evolutionary methods based on fixed, explicitly defined fitness functions
such as the genetic algorithm. The use of coevolutionary methods is based on
the assumption that constant mutual adaptation between evolving individuals
will lead to ever-increasing levels of fitness. This assumption of progress through
mutual adaptation is the basis for arms race hypothesis [3]. Rosin & Belew [4]
summarise the transposition of the “arms race” concept to artificial evolution:

Since the parasites are also evolving with a fitness based on a compe-
tition’s outcome, the success of a host implies failure for its parasites.
When the parasites evolve to overcome this failure, they create new chal-
lenges for the hosts; the continuation of this may lead to an evolutionary
“arms race” (. . .) New parasite types should serve as a drive toward
further innovation, creating ever-greater levels of complexity and perfor-
mance by forcing hosts to respond to a wider range of more challenging
parasite test cases.

The assumption which underlies artificial coevolution, therefore, can be stated
as follows: coevolution is expected to lead to an “arms race” (formally defined as

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 167–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 T. Miconi and A. Channon

a sequence in which newer individuals consistently outperform their ancestors),
which is expected to result in superior individuals. Unfortunately the funda-
mentally local nature of natural selection (based on differential gene propaga-
tion within a given, current environment which is local both in space and time)
means that several problems may hinder this intuitive mechanism.

First, it is well-known that the “arms race” metaphor begs the question of
intransitivity in the global fitness landscape: if an organism A can be said to be
superior to B, and B is superior to C, it is not necessarily the case that A should
always be superior to C. This may lead to the appearance of “cycles” [2] [5] or
“circularities” [6] in the dynamics of evolution.

Moreover, the arms race concept refers to a historical progress, in which
newer individuals outperform ancestral ones against their ancestral opponents:
performance and progress are evaluated against the history of a particular evolu-
tionary trajectory. However, such a progress is not necessarily related to global,
overall progress towards superior individuals in the wider context of the whole
search space. Nolfi & Floreano [2] have shown that these two notions of progress
are not as correlated as it may seem. They performed two coevolutionary ex-
periments based on a predator-prey scenario, with one important difference: in
one run, coevolution occurred in a straightforward manner, by pitting individ-
uals of a given generation against the champion of the previous generation (a
method inspired by Sims [1], which we also use in the present article). In the
other run, however, individuals of a given generation were evaluated not only
against the current opposing champion, but also against the previous champions
of the opponent population, following the “Hall of Fame” technique suggested by
Rosin & Belew [4]. Unsurprisingly, the second type of experiment led to a more
robust arms race, in that newer individuals were significantly better at outper-
forming their own ancestors. However, in some circumstances, when the authors
compared the results of coevolution with a Hall of Fame against “naked” coevo-
lution, they found that individuals evolved using the Hall of Fame were defeated
by individuals evolved without it. While progress had been more straightforward
and unambiguous, it had also been more limited in scope. This difference be-
tween historical progress with regard to a given evolutionary history, and overall
superiority, is an important topic in this article.

2 Monitoring and Analysis of Coevolution

If progress can occur in competitive coevolution, it is important that it be prop-
erly detected. Several types of statistics have been proposed for analysing the
results of coevolutionary processes, with a stress on the identification of progress.

First, Cliff & Miller’s “Current Individual vs. Ancestral Opponents” method
(CIAO) [7] and Nolfi & Floreano’s “Master Tournament” method [2] both pit the
champions of each generation against each other, and displaying the result as a
grid of coloured dots, in such a way that dot (n, m) is coloured if the champion of
generation n in one population defeats the opposing champion of generation m,
and left blank otherwise. CIAO pits the champion of a population at generation

Analysing Co-evolution Among Artificial 3D Creatures 169

Fig. 1. Master Tournament matrices, taken from Nolfi & Floreano [2] in a predator-
prey experiment. Black (resp. white) dots indicate a victory for the champion of the
predator (resp. prey) population. The picture of the left represents an “ideal” situation
of perfect progress, in which each champion is able to defeat all previous opponents.
The picture on the right represents the results of a real experiment.

n against the champions of each previous generation in the opposing population,
thus resulting in a triangle of dots. Master Tournament performs general con-
frontation between all champions of all generations, producing a square matrix
of dots. The Master Tournament square can be seen as the collation of two CIAO
triangles (one for each population) joined along their common hypotenuse, the
diagonal of the square.

These methods have the advantage of providing reasonably complete infor-
mation about an entire evolutionary run. However this completeness comes at a
price. An obvious problem with these methods is their combinatorial complexity.
Since N2 evaluations are needed to obtain a complete table ((N2 − N)/2 in the
single-population case), as soon as N becomes even moderately large, calculat-
ing the figure is a time-consuming process. Of more concern to the analyst is
the fact that the resulting figures are often somewhat obscure: although “ideal”
conditions of progress lead to a very simple figure, these ideal conditions are
rarely met in practice. Real experiments often produce disorderly arrangements
of dots from which it may be difficult to extract any meaning at all.

A more recent technique for observing progress in coevolution has been pro-
posed by Stanley & Miikkulainen under the name of Dominance Tournament [6].
Dominance Tournament was developed for single-population coevolution, but
can be readily extended to multiple populations. In a dominance tournament
analysis, one must keep track of every new individual that defeats all previ-
ously dominant individuals. Dominance is defined recursively: The first dominant
strategy d1 is the champion of the first generation; then, at every generation,
the current champion becomes the new dominant strategy di if it can defeat all
previous dominant strategies dj<i. When two populations coevolve against each
other, the method is adapted by specifying that a new dominant strategy must
be able to defeat all dominant strategies from the other population.

Thus the dominance tournament method concentrates on a sequence of indi-
viduals which are seen as particularly important, due to their recursive superi-
ority relationship. Dominance, in this context, is not synonymous with absolute
superiority: some earlier individuals may be able to defeat the current dominant
strategy. However such individual are seen as “idiosyncratic strategies”, similar
to parasites specialised against a (supposedly superior) host.

170 T. Miconi and A. Channon

Dominance Tournament has the advantage of being much easier to compute
than Master Tournament, since at any time the total number of dominant strate-
gies against which candidates are to be tested is significantly lower than the total
number of generation champions. It is also much easier to analyse, since it can
be represented as a one-dimensional series of ticks along a time-coordinate axis,
each tick corresponding to the appearance of a new dominant strategies. How-
ever, the massive simplification of the statistics eliminates a lot of information,
and it is not clear exactly how precisely the Dominance Tournament captures
the global trajectory of a given run.

Finally, both types of method must be applied to the history of a particular
run: they essentially rely on “single record” analysis. They are useful in study-
ing the trajectory of evolution and the presence (or absence) of coevolutionary
progress. However it would be quite wrong to deduce anything from them about
general progress in the sense of overall superiority over the whole search space.

3 Artificial Creatures

In the following sections we describe our own model for the evolution of artificial
creatures in a physically realistic 3D environment. This model is broadly simi-
lar to the one introduced by Sims [1]. Besides minor technical modification, the
most important difference between our system and Sims’ is that our creatures
are controlled by standard neural networks, based on classical McCulloch & Pitts
neurons with sigmoid or radial activation functions, in contrast to Sims’ creature
which were controlled by functional networks, including arithmetic functions,
tunable oscillators and logic operators (among others) as elementary building
blocks. A complete description of (and justification for) the system can be found
in a previous publication [8].

Morphology: As in Sims’ model, the creatures are branching structures composed
of rigid 3D blocks. The blocks (or “limbs”) are connected to their parent limb
by a hinge joint, except for the first (“root”) limb. The genetic specification of
a creature is given as a tree of nodes. Each of these nodes contain morphologic
and neural information about one limb. Each node is responsible for storing the
description of its limb’s physical connection with its parent node’s limb. The
morphologic information in each genetic node specifies the dimensions of the
limb (width, length and height), the orientation of this limb with regard to its
parent (in the form of two parameters indicating polar angles with the xz and
the xy planes, that is longitude and latitude, in the frame of reference of the par-
ent limb), the direction of movement which may be either vertical or horizontal
(that is aligned either with the y or with the z axis of the limb), and a boolean
flag for reflection which governs symmetric replication along the xz plane of its
parent. A limb also contains neural information, as described in the following
paragraphs.

Creature control and neural organisation: Our creatures are controlled by neural
networks. As in Sims’ model, each limb contains a set of neurons. Genetic infor-

Analysing Co-evolution Among Artificial 3D Creatures 171

Fig. 2. Organisation of a fictional creature pictured in the bottom-right corner. Limb
0 has no sensor (S) or actuator (A). Limb 1 is reflected into two symmetric limbs 1a
and 1b, which share the same morphologic and neural information.

mation about a given neuron specifies the activation function for this neuron,
a threshold/bias parameter θ, and connection information. The activation func-
tion may be either a sigmoid (1

1+exp−(σ+θ)) or the hyperbolic tangent tanh(σ+θ)
where σ is the weighted sum of inputs. The main difference between sigmoid and
tanh is that the first has values in [0, 1] while the latter has values in [−1, 1].
Connection information specifies, for each connection, the source of this con-
nection (that is the neuron whose output is received through this connection)
and a weight value. Neurons can only be connected with other neurons from the
same limb, from adjacent limbs, or from the root limb. Each neuron may receive
a variable number of connections, up to a maximum value (3 in the present
experiments).

Sensor neurons and actuator neurons are handled specially. The first type
of sensor neuron is a proprioceptive neuron, which measures the current angle
formed by the hinge joint to which this neuron’s limb is attached, scaled within
the [−1, 1] range. Two other types of sensors exist, each of them measuring re-
spectively the x and y coordinates of the centre of a specific object (an inert
cube) in the frame of reference of the limb, squashed through the tanh function.
Every limb has exactly one proprioceptor, and may have any number of other
sensors (within the maximum number of neurons for each limb). Actuator neu-
rons command the movement of each limb, that is, its rotation around its joint.
The output of an actuator indicates the desired angular velocity at this joint.
Their inputs are defined similarly as other neurons, but their activation function
is always a scaled hyperbolic tangent of the form tanh(σ+threshold). Each limb
has exactly one actuator.

Expression of the genome: The creatures are constructed according to the in-
formation contained in the genetic nodes. A very simple developmental system
translates the genotype into a corresponding phenotype, and may introduce ad-
ditional complexity if the genetic information dictates it. Our system uses only
one developmental feature, adapted from Sims: bilateral symmetry. In our model,
each genetic node (corresponding to a limb) may possess a “reflection” flag, which
means that when this node is read and the corresponding limb attached to its
parent, a symmetric copy of this limb will also be created. Any further sub-limbs

172 T. Miconi and A. Channon

will similarly be duplicated in a symmetric fashion, which leads to the appear-
ance of bilaterally symmetric branches. Our present design allows for only one
type of symmetry, namely symmetry along the parent’s xz plane. When a given
limb is randomly generated, its reflection flag is set with probability Pref (for
this paper, Pref = 0.1).

Genetic operators: We use three genetic operators, broadly similar to those used
by Sims. Crossover is performed by simply aligning the genetic nodes of both
parents in two rows, then building a new list of genetic nodes by concatenating
the left part of one parent with the right part of the other. Grafting corresponds
to the removal of a branch (that is a limb and all its sub-limbs), and its re-
placement by a branch taken from another individual. Connectivity information
is adapted and maintained: the neurons of the trunk establish the same con-
nections with the new branch as they had with the old one, and similarly the
new branch has the same connection with its new trunk as it had with its pre-
vious trunk. Mutation occurs by sequentially modifying each parameter within
a genome (from limb size to connection weight) with a given probability Pmut,
and also removing a limb and adding a new, randomly generated limb, also with
probability Pmut (in this paper, Pmut = 0.04).

4 Experiments and Results

4.1 The Evolutionary Algorithm

We use the same task as Sims [1]: two creatures compete for control of a single
cube. The cube is placed in the center of the world, and the creatures start on
each side of the cube. After a fixed amount of time has elapsed, distances d1 and
d2 between the centre of the root limb of each competitor and the centre of the
cube are computed. The score of each contestant is the difference between these
distances, d1 − d2 for competitor 1 and d2 − d1 for competitor 2. Lower score
correspond to superior creatures.

The evolutionary algorithm is also similar to Sims’. For every run, creatures
are divided into two populations. At every generation, creatures of each popula-
tion are evaluated against the current champion of the opposing population. The
creature which obtains the best score becomes the new champion of this pop-
ulation. Survival rate is 50%, which means that half the population is replaced
at every generation. Selection of parents occurs by direct tournament selection
based on score. New individuals are created with equal probability by one of
three operations: grafting between the two individuals, crossover between the
two parents, or three successive applications of the mutation operator to one of
the parents. Then the mutation operator is applied to the resulting creature and
produces the final offspring. If the developed phenotype of an offspring creature
contains two intersecting non-adjacent limbs, or too many limbs, the creature is
deemed non viable, and the reproductive operation chosen is repeated as often as
necessary until a viable creature is produced. Each run covers 500 generations.

The system produced a wide variety of behaviours, some of which are illus-
trated in Figure 3. In the top-left frame, one creature catches the cube in a

Analysing Co-evolution Among Artificial 3D Creatures 173

Fig. 3. Creatures evolved from four different runs. See text for details.

pinching motion and draws it towards its trunk limb before its opponent man-
ages to reach it. In the top-right frame, two creatures use different methods to
move toward the cube. In the bottom-left frame, one creature manages to push
its opponent away from the cube, even though the other creature had reach the
cube first. In the bottom-right frame, a two-armed creature is chasing the box
that is being pushed aside by its opponent.

4.2 Coarse-Grained Master Tournament Matrices

To monitor the progress of evolution, we chose to introduce a modified version
of the Master Tournament method. In our case the original method would be
difficult to apply, since computing the whole Master Tournament matrix for
500 generations would be computationally prohibitive. Furthermore, as we men-
tioned in the introduction, Master Tournament grids are often difficult to read
and analyse.

Our method consists in simplifying the Master Tournament by a “coarse-
graining” operation. Instead of performing a full tournament between the cham-
pions of all N generations, we pick a fixed number k of champions and use this
sample to produce a coarse-grain Master Tournament matrix. This means that
we only perform tournaments between champions of generations which are in-
teger multiples of the N/k fraction. In our example, we chose to condense our
500 generations into a 50x50 tournament grid, which means that we need to
select the champions of every tenth generation (roughly) in each population. By
sampling 10% of the generations, computing costs for head to head competitions
are divided by 100.

Like any sampling process, coarse-graining incurs a loss of information. How-
ever, the information which is lost by coarse-graining is essentially short-term,

174 T. Miconi and A. Channon

small-scale information. When analysing the results of a coevolutionary experi-
ment, we are usually interested in long-term trends, especially regarding evolu-
tionary progress Coarse-graining adequately preserves this type of larger-scale
information. In particular, the question of whether or not a given individual
can consistently outperform older ones, which is the crucial aspect of the “arms
race” concept, is not affected by coarse-graining. Moreover, coarse-graining can
actually make a Master Tournament matrix more descriptive by suppressing
spurious, irrelevant information: as we make clear in the following paragraphs,
coarse-grained Master Tournament matrices may exhibit discernible, informative
features which are often difficult to observe in full matrices.

4.3 Reading a Coarse-Grained Master Tournament Matrix

Figure 4-left shows a coarse-grained Master Tournament matrix for a particular
run. Each (m, n) location is marked with a dark square point if the champion
of population 1 generation 10 ∗ m defeats the champion of population 2 at gen-
eration 10 ∗ n, or with a light cross mark otherwise. The y = x line, drawn in a
lighter shade, provides a time axis for the actual run. Points on this line indicate
how the actual run went along, indicating the victorious population at each gen-
eration. On a coarse-grained Master Tournament matrix, vertical patterns are
related to individuals from population 1, while horizontal patterns are related
to individuals from population 2.

A first observation for this run is that the y = x line goes through several re-
gions of different colour. This means that the champions of the two populations
successively outperform each other, an indicator of healthy competition. How-
ever, the particular patterns of this alternation provide a better insight about
the course of evolution in this run.

Identifying similar phenotypes from their competitive profiles: The graph in Fig-
ure 4-left contain many similar lines and columns. In particular, it may be seen
that many columns offer strikingly similar patterns of dark and light marks,
although with appreciable variation. Each column, however, corresponds to the
competitive profile of a champion in population 1: it accounts for its successes

Fig. 4. Coarse-grained Master Tournament matrix for two different runs

Analysing Co-evolution Among Artificial 3D Creatures 175

and failures against every champion of population 2. Two identical columns de-
note two individuals that defeat the same opponents, and are defeated by the
same opponents. It is not too far-fetched to assume that similarity in competitive
profile is linked to similarity in phenotypes.

Similarity is not identity, and much variation can be seen. However there are
at least two columns which offer a significantly different profile to the neigh-
bouring columns, namely columns 31 and 46. These two columns can be said to
represent different types from their neighbours, due to the difference in compet-
itive profiles. In particular they are unique in being able to defeat the opponents
in rows 41-43.

The significance of the high similarity in columns after 12 can be seen as an
indication that, at least in population 1, evolution seems to have settled on a
particular type of creature, which is marginally “fine-tuned” in the later course of
coevolution. This capacity to indicate phenotypical convergence is an interesting
property of coarse-grained Master Tournament matrices.

Evidence of breakdowns in arms race: The arms race concept implies that newer
individuals are consistently able to outperform their ancestors. Breakdowns in
the arms race are associated with a loss of adaptive function, since an ability
(to defeat some individuals that could be defeated by ancestors) has been lost
by the newer individual [9].

Breakdowns or interruptions in arms races are easy to locate on a Master
Tournament matrix. Any dark mark occurring immediately above a light mark,
or any light mark occurring immediately on the right of a dark mark, indicates
such an interruption: it means that a given individual (from population 2 in
the first case, from population 1 in the second case) was unable to defeat an
opponent that could be defeated by its ancestor. Such breakdowns may be very
short events, indicating a prompt recovery. Alternatively they may result in a
long-term loss, or even permanent loss of the capacity to defeat some particular
individuals.

Let us take the example of the first horizontal stripe of lighter marks, at
rows 9-11. These rows correspond to particularly fit individuals which are able
to defeat a large number of opponents (all of them for row 11). In particular, they
have no difficulty defeating the champions of generations 12 to 18 in population
1, as can be seen from the fact that their rows are void of dark marks in the
section between columns 12 and 18.

Yet the same graph shows that, from generation 12 onwards, the first bisec-
tant encounters a series of dark marks, indicating superiority of the champions of
population 1. This indicates that by generation 12, the current champion of pop-
ulation 2 had become unable to defeat individuals that earlier ancestors could
defeat. How did this come to be ? If the champion of population 2 at generation
11 was good enough to defeat all opponents that population 1 would ever come
up with, why was it displaced with one that would prove to be inferior?

Causes for breakdowns in arms races: This alternation between a lighter stripe
and a sudden block of dark marks indicates a dramatic example of a breakdown

176 T. Miconi and A. Channon

in the arms race. In this particular case, the cause can be identified as over-
specialisation. While it is true that the champion of generation 12 in population
2 was potentially able to defeat a large number of opponents, population 2 man-
aged to come up with a new individual which was even better (that is obtained
a lower differential distance to the cube) against the current champion of pop-
ulation 1. Unfortunately this change, while beneficial in the short term, proved
fatal when population 1 managed to evolve a counter-strategy which defeated
this specialised opponent. This allowed the newly evolved type of individual in
population 1 to take the lead, even though previous champions from population
2 would have been able to defeat it.

Figure 4-right shows the results of a different run. This figure exemplifies
several other informative patterns. In particular, let us look at the centre of
the matrix, at row and column 25. At that point, we see that the first bisectant
encounters a kind of wedge, composed of two stripes of dark marks - one vertical,
one horizontal. Can we infer some meaning from this pattern ? The wedge shape
indicates that a successful change in population 1 (indicated by the appearance
of a different competitive profile, leading to a distinct, darker series of columns)
has led to a dramatic breakdown in the arms race on the side of population 2.
The appearance of this new champion in population 1 has upset the hierarchy in
population 2: the previous champion was no longer the best possible candidate
against this new opponent. Confronted with the new, successful champion of
population 1, population 2 has settled on a new champion, which happened to
perform better, or at least less badly, than others against this particular new
opponent (though not well enough to actually defeat it). This new “champion
of fortune”, however, was not particularly well-rounded and performed badly
against a large range of opponents. Innovation in population 1 has caused a
confusion in population 2.

This idea of new individuals breaking down the arms race by upsetting the
hierarchy and voiding previous adaptations in their opponents is not necessarily
linked to wedge-like patterns, but simply to the appearance of a new type of
opposing champions. For example, Figure 4-left contains several dark horizon-
tal lines, apparently isolated. In particular, the individual in row 31 indicates
that this champion suddenly lost much of its ancestors’ aptitudes against op-
posing champions. What is the cause of this loss ? If we track the point at
which this new, poorly performing champion occurs (by locating its intersection
with the first bisectant) and observe the corresponding column, we notice that
the individual from population 1 at column 31 has a subtly different pattern
from its predecessors. The poor performance of population 2 at generation 31
is thus caused by the emergence of a new opponent which upsets the hierar-
chy in population 2 and propels an apparently poor individual to the rank of
“champion”.

These interruptions in the arms race (temporary or long-term) that can be
observed on the coarse-grained Master Tournament matrix are an indication of
the local nature of co-evolution. Because co-evolution is only concerned about
the immediate present, it may directly induce a loss of ability against past or

Analysing Co-evolution Among Artificial 3D Creatures 177

future opponents. This loss may occur spontaneously (as in over-specialisation)
or may be provoked by a change in the opposing population (as in “confusion”).

5 Cross-Validation of Coevolutionary Runs

Master Tournament matrices, however informative, can only describe perfor-
mance within the context of a particular run. This is not necessarily sufficient
to express the general level of performance of an individual in the larger context
of the entire search space. In order to detect whether a given individual may re-
ally be called superior, it is not enough to confront it to the population against
which it evolved. Such a test could be seen as a confusion between the training
set and the test set. Given several evolutionary runs, if we want to obtain a
more global view of each individual’s performance, the most simple method we
can use is simply to test each individual not only against its own opponents,
but also against other populations of other runs. In other words, we expect that
cross-validating individuals from different evolutionary runs would provide more
reliable information about their global efficiency.

Fig. 5. Cross-validation of each individual in each of the four populations shown in
Fig. 4. 13-A and 13-B are population 1 and 2 from the left-hand side matrix, while 3-A
and 3-B are population 1 and 2 from the right-hand side matrix in Fig. 4.

Figure 5 shows, for each champion of all 50 generations in each population,
the number of champions of all other opposing populations that it is able to
defeat. 13-A and 13-B are population 1 and 2 from the left-hand side matrix
in Fig. 4, while 3-A and 3-B are population 1 and 2 from the right-hand side
matrix. This graph is interesting both for its similarities and its difference with
the individual Master Tournament matrices in Figure 4.

Within this larger context, the best performing individuals are the champi-
ons of generations 34 and 36 from population 13-B, with a score coming close
to the maximum 150, meaning that they can defeat almost all other champi-
ons. Looking at the corresponding rows in Fig. 4, we observe that they indeed

178 T. Miconi and A. Channon

obtain ‘clean sheets’ against all their opponents. However, this is also the case
with rows 11 and 28-30, yet these ones obtain a much lower score on the cross-
validation graph. This indicates a difference in performance that could not have
been deduced from Master Tournament (coarse-grained or not) or Dominance
Tournament analysis, nor indeed from any single-record analysis method alone.

Similarly, we see that population 3-A seems to perform rather poorly when
compared to others. Specifically, after generation 10, all champions of population
3-A obtain much lower performance that champions in population 13-A. This is
in contrast with the corresponding Master Tournament matrices, in which it can
be seen that some champions of population 3-A are able to defeat all opposing
champions from population 3-B (columns 25-26 and 33), while no champion in
population 13-A shows such a perfect record. Again, a single-record analysis
could not have detected this apparent superior performance of individuals from
population 13-A.

References

1. Sims, K.: Evolving 3d morphology and behavior by competition. In: ALife IV :
Proc. of the 4th Conference on Artificial Life, MIT Press (1994) 28–39

2. Nolfi, S., Floreano, D.: Coevolving predator and prey robots: Do “arms races” arise
in artificial evolution? Artificial Life 4 (1998) 311–335

3. Dawkins, R., Krebs, J.R.: Arms races between and within species. Procs of the
Royal Society of London, Series B 205 (1979) 489–511

4. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary
Computation 5 (1997) 1–29

5. Watson, R.A., Pollack, J.B.: Coevolutionary dynamics in a minimal substrate. In
Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., eds.: Procs GECCO 2001,
Morgan Kaufmann (2001)

6. Stanley, K.O., Miikkulainen, R.: The dominance tournament method of monitoring
progress in coevolution. In: Procs GECCO 2002 Workshop, Morgan Kaufman (2002)

7. Cliff, D., Miller, G.F.: Tracking the red queen: Measurements of adaptive progress in
co-evolutionary simulations. In: Proceeding of the European Conference on Artificial
Life (ECAL-95). (1995) 200–218

8. Miconi, T., Channon, A.: A virtual creatures model for studies in artificial evolution.
In: Procs of the 2005 IEEE Congress on Evolutionary Computation. (2005)

9. Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution. In
et al, C.P., ed.: Proc. GECCO 2003, Springer (2003)

A Critical View of the Evolutionary Design of
Self-assembling Systems

Natalio Krasnogor1, Graciela Terrazas1, David A. Pelta2, and Gabriela Ochoa3

1 Automated Scheduling, Optimisation and Planning Research Group,
School of Computer Science and Information Technology,

University of Nottingham
{nxk, gzt}@cs.nott.ac.uk

2 Departamento de Ciencias de la Computacion,
ETSI Informatica, Universidad de Granada

dpelta@decsai.ugr.es
3 Departamento de Ciencias de la Computacion,

Universidad Simon Bolivar
gabro@ldc.usb.ve

Abstract. The automated design of systems which self-assemble is a
fundamental cornerstone of nanotechnology. In this paper we review some
work in which we have applied Evolutionary Algorithms (EAs) for the
automated design of systems self-assembly. We will focus in three im-
portant minimalist self-assembly problems and we discuss the difficulties
encountered while applying EAs to these test cases. We also suggest
some promising lines of work that could possibly help overcome current
limitations in the evolutionary design of self-assembling systems.

1 Introduction

Self-assembly is a process that creates complex hierarchical structures through
the statistical exploration of alternative configurations. These processes occur
without external intervention. The specific system that is self-assembled (from a
given set of components) is determined by the way the statistical exploration of
conformations is performed. In turn, the exploration mechanisms are constrained
by the individual components that undergo self-assembly and the conditions
imposed upon them by their local environment. In general, components are au-
tonomous, have no pre-programmed master assembly plan, and can only interact
with their local environment and other components. Self-Assembly is a powerful
autopoietic mechanism whose power, as a reusable engineering concept, lays in
the fact that it is a distributed, not-necessarily synchronous, control mechanism
for the bottom-up manufacture of complex systems. This control mechanism is
distributed across a myriad of elemental components, none of which has either
the storage or the computation capabilities to know and follow a master plan
for the assembly of the intended system. Instead each component has a very
limited behavioral repertoire which tells it what to do under a reduced set of
well defined conditions. Self-Assembly processes are ubiquitous in nature. Under-
standing how nature produces self-assembled systems will represent an enormous

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 179–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 N. Krasnogor et al.

leap forward in our technological capabilities. Although major advances in the
design of systems that exhibit self-assembly properties have been reported in the
literature (e.g. [17, 16]), much less has been said about the automated design of
self-assembly. In [8] the author tackles the problem of automated design of self-
assembly for a very specific class of problems which are amenable to analytical so-
lution. However, it is unrealistic to expect that each and every self-assembly sys-
tem will have properties that make it agreeable to a hand-made design. Instead,
as in many other industrial settings, we will need to resort to computer aided
automated design of components, interaction matrices and assembly skeletons.

The complexity of self-assemble squares under a generalized model of tile
assembly[13] was investigated in [1]. Several interesting results on the intractabil-
ity of certain self-assembly processes were described. Although these papers point
to promises and limitations of specific self-assembly processes it is important to
remark that NP-hardness results have not, in the past, deterred the advance
of other branches of science and engineering. On the contrary, NP-hard prob-
lems are regularly tackled (and solved to industrial standard satisfaction) with
an arsenal of modern algorithmic techniques ranging from integer and linear
programming, lagrangian relaxations to sophisticated metaheuristics like tabu
search[6], simulated annealing[7] and memetic evolutionary algorithms[15].

A principled methodological approach for automated self-assembly design
would be to systematically investigate automated design methods on (tunable)
conceptual, highly idealized problems as it has been done in other domains like
protein folding[4], traveling salesman problem[12], etc. To this end, in [9] we
introduced a family of tunnable problems for self assembly. In this paper we
complement that paper by reviewing some work in which we have applied Evo-
lutionary Algorithms (EAs) for the automated design of systems self-assembly.
We focus in three important minimalist self-assembly problems and we discuss
the difficulties encountered while applying EAs into these problems. In this paper
we also suggest some promising lines of work that could possibly help overcome
current technological limitations.

2 Protein Structure Prediction and Wang Tiles as
Paradigmatic Self-assembly Design Problems

In this section we introduce two problems which are paradigmatic self-assembly
design problems, namely, the design of folding rules in protein structure predic-
tion and the design of Wang tile families for the self-assembly of two-dimensional
shapes.

2.1 Protein Structure Prediction

Proteins are hetero-polymers composed of amino acids. Under physiological con-
ditions proteins fold into a three dimensional native state where they adopt their
biological function. The protein structure prediction problem is concerned with
the determination of the native state from the identity of the amino acids that

A Critical View of the Evolutionary Design of Self-assembling Systems 181

(a) (b)

Fig. 1. HP protein embedded in the square lattice (a) and triangular lattice(b). Black
boxes represent hydrophobic residues, while white boxes represent hydrophilic ones.

constitutes a given protein. That is, protein folding might be regarded as the
self-assembly problem par excellence. The particular simplified model we are
concerned with in this paper is the Hydrophobic-Polar model introduced by K.
Dill[4]. The HP model (and its variants) abstracts the hydrophobic interaction
process in protein folding by reducing the 20 naturally occurring amino acids
into a binary alphabet, thus a protein becomes an hetero-polymer of non-polar
or hydrophobic (H) and polar (P) or hydrophilic amino acids. An n amino acids
protein is represented by sequence s ∈ {H, P}+ with |s| = n. The sequence s is
to be mapped to a lattice, where each residue in s occupies a different lattice
cell and the mapping is required to be self-avoiding. Although simple to state,
this problem remains NP-Hard[3].

The energy potential in the HP model reflects the fact that hydrophobic
amino acids have a propensity to form a hydrophobic core. To capture this
feature of protein structures, the HP model adds a value ε for every pair of
hydrophobes that form a topological contact; a topological contact is formed by
a pair of amino acids that are adjacent on the lattice but not consecutive in s.
After normalization, the interaction energy between two non-polar amino acids
is εH,H = −1 while all other interactions (i.e. HP and PP) are 0. In this model
optimally self-assembled native structures minimize an energy function that is a
simple count of the number of HH contacts in the self-assembled conformation.
Figure 1(a) and (b) shows sequences embedded in the square and the triangular
lattices, with hydrophobic-hydrophobic contacts (HH contacts) highlighted with
dotted lines. The conformation in Figures 1(a) and 1(b) show the embedding of
the same protein instance into two different lattices, which result in energies of
-4 and -6 respectively.

Automated Design of Protein Self-assembly. In this paper we will address
the problem of automatically designing, by means of an evolutionary algorithm,
the rules that are necesary to drive the dynamical process of folding towards
the native state of specific proteins. We will employ two different computational
abstractions to represent these folding rules. The first abstraction we use is that
of a one dimensional uniform, contiguous neighborhood, cellular automata to
simulate the folding process. In this case, the evolutionary algorithm is required
to design the rules that define the cellular automaton, with the intention that
by executing those rules the protein sequence embedded in the automaton will
self-assemble into its native state. In the second computational abstraction we

182 N. Krasnogor et al.

North edge

South edge

West edge East edge

a tile

N

S

W E

N

S

W E

N

S

W E

N

S

W E

N

S

W E t

t_0

t_1

t_2

t_3

(a) (b)

Fig. 2. (a) Schematic representation of a four edged tile. Each edge is distinguished by
the labels North, West, South, East. (b) An example of a five tiles self-assembly.

represent the folding rules by an L-system grammar rather than by the rules
of a cellular automaton. In this case the parallel interpretation of the L-system
grammar drives the self-assembly of the protein structure into its target confor-
mation.

2.2 Wang Tiles Self-assembly

Computation and self-assembly are connected by the theory of tiling, of which
Wang Tiles[14] are a prime example. A Wang tile system is defined by a family
of two dimensional square tiles embedded in the plane. Each side of a tile might
have a specific glue type attached to it. When tiles move around in the plane,
and two of them colide, they will either stay attached or they will separate
and continue their brownian motion as independent entities. Whether they self-
assemble or stay separated depends on the strength and compatibility of the
glue types in their coliding sides. This process is initialized with a specific kinetic
energy associated to the tile set (i.e. temperature). When tiles attach to each
other they form complex shapes and the specific shapes which emerge are said
to be self-assembled. This process can be mathematically described:

Let Σ be the set of symbols used to label the edges associated to each tile.
This set of symbols encodes the “glue” types associated to each edge and includes
the special case λ representing and edge with no glue. The set of tiles is T =
{t|t = (x0, x1, x2, x3)} such that for any k ≤ 3 ∃a, a ∈ Σ, p >= 0 and xk = ap. If
p = 0 then a0 is taken to be equivalent to λ, i.e., the no glue state for a given edge
of the tile. A label ap on an edge xk encodes an “a” glue type with strength p.

We can associate x0, x1, x2 and x3 with the north, west, south and east edges
respectively as shown in figure 2(a). Let also τ be the “temperature” parameter
as in [1]. After coliding, two tiles ti, tj will self-assemble by their edges ei, ej if
the glue types and strengths in those edges are equivalent and the glue strength
larger than the temperature.

Given tiles t, t0, t1, t2, t3 they will self-assemble with t in the center (as shown
in Fig 2(b)) if the glue strength of each attaching edges is bigger than 0 and the
sum of all glue strengths bigger than τ . More precisely, t and ti for 0 ≤ i ≤ 3
will self-assemble if the following conditions hold:

A Critical View of the Evolutionary Design of Self-assembling Systems 183

t = (x0, x1, x2, x3) and ti = (xi0 , xi1 , xi2 , xi3 , 0 <= i <= 3 with x02 = x0, x13 =
x1, x20 = x2, x31 = x3 and |x0| + |x1| + |x2| + |x3| >= τ.

Please note that the conditions on xk above can be succintedly written as xkg =
xk with g = (k + 2)%3 where % stands for the module operation. The reader
must note that the labeling of edges as “north,west,south,east” is only a useful
convention to simplify the exposition.

Automated Design of Wang Tile Families. The third and last automated
design problem we will address is that of the automated design of T (i.e. a
families of Wang tiles), which can self-assemble into a specific two dimensional
shape, which in this paper is a square.

3 Evolutionary Algorithms for the Automated Design of
Protein Self-assembly by Cellular Automata (CA)

Cellular automata have been used as models of physical and biological phe-
nomena such as fluid flow, galaxy formation, earthquakes, biological pattern
formation, etc. and as models of computation (see for example [18]). Briefly a
CA consists of two components. The first one is a lattice of N identical cells,
each of which have a state. Each cell is updated based on its current state and
the state of its neighbors in the lattice. The neighborhood considered depends
on the particular CA. The second component is the transition rules that give
the updated state for each cell as a function of the neighborhood.

We used a CA to model the rules and dynamics which would drive a self-
assembly process towards the native state of a given protein sequence. We had
previously addressed this problem using a circular one-dimensional CA with
only four states (1, 2, 3, 4), each one corresponding with the absolute moves
Up, Down, Left or Right (relative to the position of the previous amino acid in
the sequence) [10]. An example is shown in Figure 3 (a). Allowed rule radii were
1, 2 and 3. The evaluation of an individual involved: running the CA with the
individual’s value (set of rules), getting the final configuration of the automaton
(the folded structure), applying this fold to the protein to obtain the energy
value.

We also performed experiments with an extended set of rules which took
into consideration the specific amino acids the rule was being applied to. This is
shown in Fig 3 (b). To evolve the rule set that defined the CA we used a Genetic
Algorithm. Implementation and parameter details are described in [10].

We have conducted extensive experiments but due to space limitations we
only show the results for 3 instances in Table 1. We recorded the number of
times (out of 10) that the optimum, optimum-1 and optimum-2 conformations
were found.

The results may be analized from two points of view. One is oriented to
answer the question: is it possible to find a set of rules to reach the native state
from this particular unfolded state?. The answer is yes on two of the three cases,
although it is clear that more experimentation should be done.

184 N. Krasnogor et al.

L

L

U

U

U

U

L UL

L

(rule’s detector)

(rule’s effector)

A rule:

Application of the rule above:

t = k

t = k + 1

U L L L L L L L L

U L L L L L L L LL UL

L

H

P

P

H

H

H

H

P

P

H

H

H

H

H

H

P

P

H

H

H

H

H

H

P

P

H P

H

L

L

L

L

L

U

U

L

L

L

L

L

L

L

U

L

L

L

L

U

U

L

L

L

L

L L

U

(rule’s detector)

(rule’s effector)

A rule:

Application of the rule above:

t = k

t = k + 1

(a) (b)

Fig. 3. (a) First approach to CA rule scheme (b) Second approach to CA rule scheme

Table 1. Number of runs in which the GA achieved the stated energy value. The
’Optimum’ column displays the native energy value, while ’Opt’, ’Opt + 1’ and ’Opt
+2’ display the number of runs in which either the optimum energy was achieved or
conformations with energies with a gap of one or two above that value was found.

Sequence Length Optimum Opt Opt + 1 Opt + 2
PHPPHHPPHPPHPPHHPPHP 20 -8 5 5
HHPPHPPHPPHPPHPPHPPHPPHH 24 -9 1 2 5
PPHPPHHPPPPHHPPPPHHPPPPHH 25 -8 1

The other point of view focus on the quality of the search process, and here
the results seems to deteriorate with the size of the instance. For the smaller
one, 50% of the runs, lead to set of rules that allowed to achieve the optimal
configuration. This percentage goes down to 10% in the second instance and in
the third one, just one run allowed to obtain a configuration with energy 6.

One may conclude that: a) in principle, it is indeed possible to find set of
rules for a cellular automaton which instigates the self-assembly of the native
structure; and b) the search procedure should be enhanced.

4 Evolutionary Algorithms for the Automated Design of
Protein Self-assembly by L-Systems

In [5] we introduced an L-systems’ based evolutionary algorithm as the inference
procedure for folded structures under the HP model in 2D lattices. The evolu-
tionary algorithm attempts to find a set of rewriting rules (an L-system) that
captures a target folded structure (which represents the native state for a given
protein) on the selected lattice model.

The simplest class of L-systems, the D0L-systems, is deterministic and con-
text free. We use D0L-systems to drive the self-assembly of the protein sequence.

Given a target structure (input), let say the one shown in Fig. 1(a), the evo-
lutionary algorithm will evolve and L-system L (output) that, once evaluated,
would produce a string (in internal coordinates) which matches the target struc-
ture (in the example, the end-product of the EA would be and L-system whose
termination word is LRRLRRFLRR).

A Critical View of the Evolutionary Design of Self-assembling Systems 185

Table 2. Partial Results of the Automated Evolutionary Design of L-Systems for
Protein Folding. The first column format I

S
denotes the protein sequence I with target

self-assembled structure S, the second column shows the length of the protein sequence
and the third column -following the same format as the first- shows the total number
of runs of the EA and the number of successful runs.

Instance Length Success/Num. Runs

HHHPPHPHPHPPHPHPHPPH
RRF RF RLF RRF LRLRF RR

18 3
40

HHPPHPPHPPHPPHPPHPPHPPHH
RLLF LF F RRF LLF RRLRF F RRF

22 1
50

PPHPPHHPPPPHHPPPPHHPPPPHH
F F RRF F F LLF F F F RRF F F F LLF F

23 1
50

A Genetic algorithm was used to evolve the L-systems which would drive
the self-assembly procees. Full details of the algorithm and experiments can be
found in [5]. Table 2 shows some of the results we obtained evolving L-systems
for the self-assembly of protein structures.

Similarly to the evolutionary design of CA rules for self-assembling, the au-
tomated design of L-systems met with partial success. On the one hand it is
possible to show that the algorithm is capable of finding L-system which will in-
duce the correct self-assembly behaviour. On the other hand however, the process
is painfully slow and requires very many executions of the algorithm to obtain
a successful L-system.

5 Evolutionary Algorithms for the Automated Design of
Wang Tiles Self-assembly

We have applied a Genetic Algorithm to the automated design of the tile sets
T which can self-assemble into a 2D square of 10x10 tiles. The GA used various
parameters for crossover, mutation, population sizes, etc., which will be reported
elsewhere. In order to evaluate an individual (i.e. assess its fitness) we placed
it in a Wang tile self-assembly simulator. As the individual specifies various tile
families, several instances of each family were placed in the simulator. Each tile
was initialy placed on a randomly selected empty lattice position. Then, tiles
move randomly for the duration of the simulation. Once the simulation finished
the fitness function tried to identify (within the lattice) the shape with the
most similarity to the target structure. This was done by a Hamming distance
function defined as H(L, S) = ai, where L was the simulation’s final 2D lattice
configuration and ai is the maximum amount of tiles appearing within a square
region S. The region was slided accross the lattice in order to find the better
match ensuring that the fitness of an individual is equivalent to the minimal
Hamming distance. Figure 4(a) shows a scanning example.

186 N. Krasnogor et al.

(a) (b)

Fig. 4. (a) Scanning a lattice for a 3 × 3 square (b) Self-Assembled rows and columns

With the aim of determining which is the best set of parameters for both the
GA and the Wang tile simulator we run an extensive set of experiments. After
carefully selecting the best parameters the evolutionay algorithm was unable
to evolve suitable tile sets that could self-assemble into the target structure.
However, some intermediate structures were discovered by the algorithm. In this
case, horizontal and vertical tiled strips (shown in Fig. 4(b)) were found.

6 Discussion and Conclusions

In previous sections we briefly sketched the application of evolutionary algo-
rithms, more specifically genetic algorithms, to the automated design of compo-
nents which could self-assemble into specific systems. Two of the showcases dealt
with the design of rules, either for a cellular automaton or of an L-system, which
could drive the process of protein folding (albeit in a very idealized model). In
the third case we applied the GA to the design of tile sets and their glue types in
order that they could self-assemble a target 2-dimensional shape. Although the
application domain, the type of components and dynamic laws governing their
use were different some common lessons could be drawn.

Firstly, in the three showcases large populations with short runs or small
populations with long runs were required. That is, in the three cases studied
the evolutionary design was computationally expensive. This requires a carefull
consideration of the various parameters which define the GA behaviour as well
as those parameters which are specific to the simulators. It may be possible that
a co-evolutionary approach would be benefitial by simultaneously exploring the
design space of system self-assembly and the parameter space of the GA.

Secondly, although in all three cases it was possible to achieve a moderate de-
gree, yet not substantial, of success evolving the desired self-assembling system,
the remarkable common fact is that intermediate self-assembled products -which

A Critical View of the Evolutionary Design of Self-assembling Systems 187

are essential for the formation of the target system- were always discovered. That
is, in L-systems and Cellular Automata we were able to find rules which allowed
for the self-assembly of so called protein’s “secondary structures”. At the same
time, the evolutionary design of Wang tiles was able to discover the equivalent of
secondary structures in the form of self-assembled columns and rows. This com-
mon behaviour across three different domains and with differently customized
evolutionary algorithms suggests an evolutionary divide-and-conquer method-
ology. That is, rather than trying to evolve from scratch the final design for a
self-assembling system, we could instead evolve designs for generalized secondary
structures and used those designs to bootstrap the final design. As an example
consider the evolutionary design of Wang tiles to self-assembling a square. In-
stead of starting from completely random tile families we could seed the GA with
those families known to form columns and rows as these features will certainly
appear in any self-assembled square. Alternatively, in the case of L-systems we
could evolve problem specific knowledge (e.g. specific rules for alpha-helices, beta
sheets, etc) as to accelerate the design process of self-assembling rules for the
whole protein structure.

A third lessons, which we will also be tested in future experiments, is what we
named “intelligent freezing”. During the evolutionary design of self-assembling
systems it was possible to observe that certain critical generalized secondary
structures (CGSS) were formed. Some of the runs that discovered CGSS man-
aged to maintain them long enough as to profit from their discovery. On the other
hand, some runs tampered with the CGSS destroying their essential features. In-
telligent freezing would implement a mechanism to detect CGSS (eg. by tracking
evolutionary activity waves[2]) an will protect these CGSS from being disrupted
by genetic or other mechanisms (i.e. they will be frozen). Another interesting
avenue of research would be to use what has been termed the “Parisian Genetic
Programming” approach [11] as it has been very successful in a not unrelated
inverse design problem.

In conclusion, although the automated design of self-assembling systems is at
its infancy it is possible to achieve a modest degree of success with current evo-
lutionary metaheuristics. On the other hand, as the size and complexity of the
target self-assembling system increases, its likely that more robust and efficient
EA will be needed. We have described three showcases of the application of ge-
netic algorithms for systems self-assembly and we have suggested some promising
avenues for further research.

Acknowledgements

N. Krasnogor would like to acknowledge many useful and enlightening conver-
sations with G. Rozenberg, G. Paun, M. Gheorghe and P. Moriarty. He will also
like to acknowledge the EPSRC (GR/T07534/01, EP/D021847/1) and BBSRC
(BB/C511764/1) funding of his research on artificial intelligence as applied to
bioinformatics and evolutionary chemistry. D. Pelta would like to acknowledge
the funding for project TIC-2002-04242-C03-02.

188 N. Krasnogor et al.

References

[1] L. Adleman, Q. Cheng, A. Goel, M. Huang, D. Kempe, P. Moisset de Espanes,
and P.W.K. Rothemund. Combinatorial optimization problems in self-assembly.
In Proceedings of the Annual ACM Symposium on Theory of Computing(STOC).
ACM Press, 2002.

[2] M.A. Bedau and N.H.Packard. Measurement of evolutionary activity, teleology
and life. In C.G. Langton, C. Taylor, D. Farmer, and S. Rasmussen, editors,
Artificial Life II, volume 98-03-023, pages 431–461. Addison-Wesley, 1992.

[3] B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. In Proceedings of The Second Annual International Con-
ference on Computational Molecular Biology, RECOMB 98, pages 30–39. ACM
Press, 1998.

[4] K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24:1501, 1985.

[5] G. Escuela, G. Ochoa, and N. Krasnogor. Evolving l-systems to capture protein
structure native conformations. In Proceedings of the 8th European Conference
on Genetic Programming (EuroGP 2005), Lecture Notes in Computer Sciences
3447, pp 73-84. Springer-Verlag, Berlin, 2005.

[6] F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Annals
of Operations Research, 41:3–28, 1993.

[7] S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220 no 4598:671–680, 1983.

[8] E. Klavins. Automatic synthesis of controllers for distributed assembly and forma-
tion forming. In Proceedings of the IEEE Conference on Robotics and Automation,
2002.

[9] N. Krasnogor and S. Gustafson. A family of conceptual problems in the automated
design of self-assembly. In Proceedings of the 2nd International Conference on
the Fundations of Nanoscience: Self-Assembled Architecture and Devices, Utah,
Snowbird resort, April 24-29, 2005.

[10] N. Krasnogor, D.A. Pelta, D.H. Marcos, and W.A. Risi. Protein structure predic-
tion as a complex adaptive system. In Proceedings of Frontiers in Evolutionary
Algorithms 1998, 1998.

[11] P.Collet, E.Lutton, F.Raynal, and M.Schoenauer. Polar ifs + parisian genetic
programming = efficient ifs inverse problem solving. Genetic Programming and
Evolvable Machines, 1:339–361, 2000.

[12] G. Reinelt. Tsplib
(http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/tsplib95/tsplib.html).
In mirror site: gopher://softlib.rice.edu/11/softlib/tsplib.

[13] P. Rothemund and E. Winfree. The program-size complexity of self-assembled
squares. In Proceedings of STOC, 2000.

[14] H. Wang. Probing theorems by pattern recognition. Bell Systems Technical Jour-
nal, 40:1–42, 1961.

[15] N. Krasnogor W.E. Hart and J.E. Smith. Recent Advances in Memetic Algorithms.
Studies in Fuzziness and Soft Computing Series - Springer, 2004.

[16] G.M. Whiteside and M. Boncheva. Beyond molecules: Self-assembly of mesoscopic
and macroscopic components. Proceedings of the National Academy of Science
(PNAS), 99(8):4769–4774, 2002.

[17] G.M. Whiteside and B. Grzybowski. Self-assembly at all scales. Science, 295:2418–
2421, 2002.

[18] S. Wolfram. A New Kind of Science. Wolfram Media Inc., 2002.

Algorithmic Self-assembly
by Accretion and by Carving in MGS

Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto

LaMI UMR 8042 CNRS – Université d’Evry, Genopole,
523 place des Terrasses de l’Agora, 91000 Evry, France
{aspicher, michel, giavitto}@lami.univ-evry.fr,

http://mgs.lami.univ-evry.fr

Abstract. We report the use of MGS, a declarative and rule-based lan-
guage, for the modeling of various self-assembly processes. The approach
is illustrated on the fabrication of a fractal pattern, a Sierpinsky triangle,
using two approaches: by accretive growth and by carving. The notion
of topological collections available in MGS enables the easy and concise
modeling of self-assembly processes on various lattice geometries as well
as more arbitrary constructions of multi-dimensional objects.

1 Introduction

Self-assembly is a process that creates incrementally complex hierarchical spatial
structures. Nature presents a lots of examples, ranging from crystallization in
physics to morphogenesis in developmental biology. There is no unified general
theory of self-assembling, nor a unique definition. However, understanding the
principles underlying self-assembly processing will open entire new opportuni-
ties for our technological capabilities. Self-assembled systems can be thought to
be built of basic building elements (molecules, cells, etc.); together these basic
elements exhibit a new, often highly, complex behaviour.

For a computer scientist, self-assembly processes are particularly inspiring
because the dynamic organization of the involved entities emerge from many
decentralized and local interactions that occur concurrently at several time and
space scales. As a matter of fact, they have inspired several new computational
models like amorphous computing [1] or autonomic computing [7].

The emergence of the global structure of self-assembled systems cannot be
deduced from the individual composing elements. To obtain a deeper insight of
these complex systems, simulation models are often the only available option.
However, the modeling and the simulation of self-assembly can be very difficult
to achieve, because of the representation of the underlying space and of the
handling of complex spatial structures build in this space.

1.1 Self-assembly by Accretive Growth and by Carving

A central thema in the research in self-assembly processes is the organizational
principles that can be used to structure a population of basic elements. The
structure is incrementally built and often corresponds to a spatial structure. In
this paper we will focus on the modeling of two kinds of self-assembly.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 189–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

190 A. Spicher, O. Michel, J.-L. Giavitto

Self-Assembly by Accretive Growth. One of the most fundamental kind of self-
assembly is certainly processes where basic elements are united into a structure
during a growth process. A growth process can be described as an iteration
process. In such a process the output of an iteration step is used again as input
for the next iteration step. In a growth process the form of a growing object
in a certain growth stage is also determined by the form of the object in the
preceding growth stage. In each growth stage, new basic entities (e.g., material)
are added to this preceding growth stage.

We use the term accretive growth to qualify a growing process that takes place
on the boundaries of the system. This kind of growth is to oppose to “intercalary
growth” where the growing process is from the inside of the assembly.

Self-Assembly by Carving. Manca et al. have introduced a somewhat unusual
type of computation strategy called computation by carving [9]. The idea is to
generate a (large) set of candidate solutions of a problem, then remove the non-
solutions such that what remains is the set of solutions. This idea to remove
unwanted elements is also present in building shapes by space carving [8], an
algorithm to compute a volume that is consistent with a set of photos of a
3D shape. Transposed in the domain of self-assembly, this leads to the idea to
iteratively remove elements, starting from an initial shape.

1.2 DSL for the Simulation of Self-assembly

As noted above, the simulation of self-assembly can be very difficult to achieve.
In this paper, we advocate the use of a domain specific language (DSL) for the
modeling and the simulation, in an abstract and uniform setting, of accretive
growth and carving.

DSLs are specially tailored programming languages designed for solving prob-
lems in a particular domain. To this end, a DSL provides abstractions and nota-
tions for the domain at hand. DSLs are usually small, and more declarative than
imperative. Moreover, DSLs are more attractive for programming in the dedi-
cated domain than general-purpose languages because of easier programming,
systematic reuse, better productivity and flexibility. Our approach relies on two
dedicated notions:

– dedicated data-structures, called topological collections are used to repre-
sent the space underlying a self-assembly process and/or the self-assembled
system; and

– rewriting rules on topological collection, called transformations, are used to
implement the local evolution rules usually used to specify the self-assembly
process.

These two notions are studied in an experimental programming language called
MGS. MGS is a vehicle used to investigate the notions of topological collections
and transformations and to study their adequacy to the simulation of various
biological and self-assembly processes [6, 4].

Algorithmic Self-assembly by Accretion and by Carving in MGS 191

1.3 Organization of the Paper

The rest of this paper is organized as follows. The next section provides a quick
introduction to MGS. Two kinds of topological collections are sketched: group-
based data fields which are used to define various lattices used in the modeling of
accretive growth, and abstract cellular complexes used to model arbitrary shape
for carving. Section 3 presents three short and well-known examples of growth
by aggregation processes in MGS. Section 4 shows the self-assembly of Sierpinsky
triangles and section 5 build the same shape but using a carving process. The
conclusion reviews some previous, related and future work.

2 A Short MGS Presentation

2.1 Transformations of Topological Collections

In this section, we present the notions needed to understand the MGS coding
of the previous computation processes. MGS is a declarative programming lan-
guage aimed at the representation and manipulation of local transformations of
entities structured by abstract topologies [4]. A set of entities organized by an
abstract topology is called a topological collection. Topological means here that
each collection type defines a neighborhood relation specifying the notions of
locality, path and sub-collection. A path is a finite sequence of elements ei where
ei+1 is a neighbor of ei. A sub-collection B of a collection A is a subset of el-
ements of A defined by some path and inheriting its organization from A. The
global transformation of a topological collection C consists in the parallel appli-
cation of a set of local transformations. A local transformation is specified by a
rewriting rule r that specifies the change of a sub-collection. The application of
a rewrite rule β ⇒ f(β, ...) to a collection A:

1. selects a sub-collection B of A whose elements match the pattern β,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C in place of B into A.

The collection types can range in MGS from totally unstructured with sets and
multisets to more structured with sequences, “group-based data fields” and “ab-
stract cellular complexes”. There are two kinds of patterns that can be used in
a transformation.

Path Patterns. Path patterns match paths in a collection. A path pattern is a
sequence of elements separated by a comma. The path pattern x, y defines a
path of two elements, where y must be a neighbor of x. Arbitrary condition can
be tested using guards inserted in a path pattern: (x / x>0), (y / y>x) matches
two elements x and y such that the value of x is strictly positive and y is a
neighbor of x and the value of y must be greater than the value of x.

Patch Patterns. Patch patterns allow the matching of arbitrary sub-collection.
A patch pattern is specified using a set of clauses. We will present the patch
pattern features we need on section 5.

192 A. Spicher, O. Michel, J.-L. Giavitto

2.2 Group-Based Data Field

Group-based data fields (GBF in short) are used to define topological collections
with uniform neighborhood. A GBF is an extension of the notion of array, where
the elements are indexed by the elements of a group, called the shape of the
GBF [5]. The elements of the group are called the positions of the GBF. For
example:

gbf Grid2 = < north, east >

defines a GBF collection type called Grid2, corresponding to the regular Von
Neuman neighborhood in a classical array (a cell above, below, left or right – not
diagonal). The two names north and east (together with their inverses -north
and -east, always provided in a group structure) refer to the directions that
can be followed to reach the neighbors of an element. These directions are the
generators of the underlying group structure. The right hand side (r.h.s.) of the
GBF definition gives a finite presentation of the group structure.

The list of the generators can be completed by giving equations that con-
straint the displacements in the shape:

gbf Hex2 = < east, north, northeast; east + north = northeast >

defines an hexagonal lattice that tiles the plane, see figure 1. Each cell has six
neighbors (following the three generators and their inverses). The equation east
+ north = northeast specifies that a move following northeast is the same
as a move following the east direction followed by a move following the north
direction.

For convenience, we identify the type of a GBF with the presentation of the
underlying group. A GBF g of type G can be formalized as a partial function
g from the group specified by G to some set of values: g associates a value to
some positions. In other word, the group elements act as indices of a generalized
array. An empty GBF is the everywhere undefined function.

The topology of the collections of type G is easily visualized as the Cayley
graph G of G: each vertex in the Cayley graph is an element of the group G

C

C

C

C

C
C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Fig. 1. Eden’s model on an hexagonal mesh (initial state, and states after 3 and 7
time steps). This shape corresponds to the Cayley graph of Hex2 with the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graphs
share an edge in this representation. An empty cell has an undefined value. Only a part
of the infinite domain is figured.

Algorithmic Self-assembly by Accretion and by Carving in MGS 193

and vertex x and y are linked if there is a generator u in the presentation of G
such that x + u = y. A word (a sum of generators) is a path. Path composition
corresponds to group addition. A closed path (a cycle) is a word equal to e (the
identity of the group). An equation v = w can be rewritten v − w = e and then
corresponds to a cycle in the graph. There are two kinds of cycles in the graph:
the cycles that are present in all Cayley graphs and corresponding to group laws
(intuitively: a backtracking path like east+ north− north− east) and closed
paths specific to the own group equations (e.g.: east− north− east+ north).
The graph connectivity (there is always a path going from P to Q) is equivalent
to say that there is always a solution x to equation P + x = Q.

3 Growth Processes in MGS

Eden’s Process. We start with a simple model of growth sometimes called the
Eden model [3]. The model has been used since the 1960’s as a model for such
things as tumor growth and growth of cities. In this model, a 2D space is par-
titioned in empty or occupied cells (we use the value true for an occupied cell
and left undefined the unoccupied cells). We start with only one occupied cell.
At each step, occupied cells with an empty neighbor are selected, and the cor-
responding empty cell is made occupied.

The Eden’s aggregation process is simply described as the following MGS
global transformation: trans Eden = { x, <undef> => x, true }.

The Growth of a Snowflake. A crystal forms when a liquid is cooled below its
freezing point. Crystals start from a seed and then grow by progressively adding
more molecules to their surface. As an idealization, the molecules of a snowflake
lie on an hexagonal grid and when a piece of ice is added to the snowflake, the
heat released by this process inhibits the addition of ice nearby.

This phenomenon leads to the following cellular automata rule [16]: a black
cell (value 1) represents a place of the crystal filled with ice and a white cell
(value 0) is an empty place. A white cell becomes black if it has exactly one black
neighbor, otherwise it remains white. The corresponding MGS transformation is:

Fig. 2. Formation of a snowflake. The pictured states are the steps at time steps 1, 4,
8, 12, 16, 18, 20 and 23.

194 A. Spicher, O. Michel, J.-L. Giavitto

trans SnowFlake = { 0 as x / 1 == FoldNeighbor[+,0](x) => 1 }

The construct FoldNeighbor is not a function but an operator available only
within a rule: it enables to fold a function on the defined neighbors of an element
matched in the l.h.s. Here, this operator is used to compute the number of
neighbors (the accumulating function is the sum and the initial value is 0). This
transformation acts on a value of type Hex2 and a possible run is illustrated in
figure 2.

Diffusion Limited Aggregation. In a diffusion limited aggregation process, or
DLA [15], a set of particles diffuse randomly on a given spatial domain. Initially
one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. This process leads to a simple lattice gas
automata that could be easily done in MGS using a topological collection and
transformation:

trans dla = {
‘mobile, ‘fixed => ‘fixed, ‘fixed
‘mobile, <undef> => <undef>, ‘mobile

}

We use two symbols ‘mobile and ‘fixed to represent respectively a mobile
and a fixed particle (MGS’s symbols are like Lisp’s atoms). The two rules of the
transformation deal with:

1. the aggregation: the first rule specifies that if a diffusing particle is the
neighbor of a fixed one, then it becomes fixed (at the current position);

2. the diffusion: if a mobile particle is neighbor of an empty place (position),
then it may leave its current position to occupy the empty neighbor (and its
current position is made empty).

Note that the order of the rules is important because, following the rule
application semantics of MGS, the first one has priority over the second. Figure 3
presents the final state of the application of the transformation dla on two
kinds of topological collections: on the left, the neighborhood relationship is
homogeneous and a GBF is used. On the right, the dla transformation is applied

Fig. 3. Example of DLA on two different topologies: an hexagonal mesh and a sphere.
The plain hexagons and facets represent fixed particles. On the sphere, the empty
positions are not drawn. The same transformation is used on the two collections.

Algorithmic Self-assembly by Accretion and by Carving in MGS 195

on a meshed sphere. The elements are the facets, and two facets are neighbors
if they share an edge. For more details, refer to [13].

4 Accretive Growth of Sierpinski Triangles

The Sierpinski triangles (ST from now on) is a fractal described by Sierpinski
in 1915 and appearing in Italian art from the 13th century. It is also called the
Sierpinski gasket or Sierpinski sieve [14]. The ST can be produced by taking
the Pascal’s triangle modulo 2 (see figure 4), or equivalently by iterating the
bidimensional morphism defined on {0, 1} by 0 −→ 0 0

0 0 and 1 −→ 1 0
1 1 . Starting

from 1, we obtain:

1 −→ 1 0
1 1 −→

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

−→

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

−→ . . .

The formula for the binomial coefficient in Pascal’s triangle is: P (0, j) = 1,
P (i, j) = 0 for i > j and P (i, j) = P (i − 1, j − 1) + P (i − 1, j) for the remaining
cases. Considered modulo 2, this formula gives raise to the transformation below
acting on a lattice Grid2:

trans ST1 = { <undef> |south> x |west> y => (x+y)mod 2, x, y }

In this rule, the comma is refined using a GBF generator: a |south> b means
that b is a neighbor of a following the south direction. The transformation must
be iterated on an initial lattice where the position (0, j) are filled with 1 and
positions (i, 0) are filled with 0 for i > 0.

However, this transformation uses arithmetic operators (the + and mod). A
more elementary computation is possible, turning the formula modulo 2 into a
tiling process. Following [11] we consider 4 tiles corresponding to the two boolean

1

1

1

1

3

2

1

0

3

0

0

1

1

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0mod 2

1

north

south

east

west

Fig. 4. Upper line: taking the binomial coefficients modulo 2 produces the shape of the
ST. Lower line: ST can also be produced by iterating the carving of a triangle inside
another triangle.

196 A. Spicher, O. Michel, J.-L. Giavitto

values a cell (i, j) receives from the cells (i − 1, j − 1) and (i − 1, j). This tiling
is easily coded and then simulated in MGS. We use the four 4 symbols ‘T00,
‘T10, ‘T01 and ‘T11 to represents the 4 types of tiles: tile ‘Txy at position (i, j)
means that x is the value of P (i − 1, j) and y is the value of P (i − 1, j − 1). So
the value 0 is represented by either ‘T00 or ‘T11 and the value 1 by ‘T10 or
‘T01. Finally, we use a transformation with 4 rules to specify the placement of
the tiles:

trans ST2 = {
<undef> |south> (‘T00|‘T11) as x |west> (‘T01|‘T10) as y
=> ‘T01, x, y

<undef> |south> (‘T00|‘T11) as x |west> (‘T00|‘T11) as y
=> ‘T11, x, y

... two additional symmetric rules ...
}

The path pattern works as follow: the | operator in a pattern denotes an alterna-
tive: ‘T00 | ‘T11 matches the symbol ‘T00 or the symbol ‘T11; the as construct
is used to bind the value of a pattern fragment to a variable: in (‘T00 | ‘T11)
as x the pattern variable is bound to the actual value matched by the pattern.

5 Carving Sierpinski Triangles

Building a ST by carving is illustrated in figure 4. This process is also easily
coded in MGS using patch patterns on abstract cellular complexes.

An abstract cellular complex is composed of elements of various dimen-
sions (vertices, edges, surfaces, . . .) called topological cells of dimension n or
n-cells [10]. These basic elements are organized following the incidence relation-
ship that relies on the notion of boundary: let c1 and c2 be respectively a n1-cell
and an n2-cell with n1 < n2, c1 is incident to c2 if c1 belongs to the border of c2.
More especially, if n1 = n2 − 1, c1 is called a face of c2, and c2 is a coface of c1.

f
v1

v2v3 e2

e3 e1

(3,0)(−3,0)

(0,4)

5 5

6

12

Fig. 5. On the left is an example of a cellular complex: it is composed of 3 0-cells (v1,
v2, v3), 3 1-cells (e1, e2, e3), and a 2-cell f . The boundary of f is formed by its incident
cells v1, v2, v3, e1, e2 and e3. Especially, the 3 edges are the faces of f , and therefore,
f is the coface of e1, e2 and e3. On the right, data are associated with the topological
cells: positions are associated with vertices, lengths with edges and area with f .

Algorithmic Self-assembly by Accretion and by Carving in MGS 197

This data structure generalizes the idea of graph, that is a complex composed
of 0-cells and 1-cells. As the definition of a GBF collection uses the elements
of a mathematical group as indexes, here n-cells are used as indexes to define
a cellular complex based topological collection. Basically, a value is associated
with each topological cell. This corresponds to the concept of topological chain
in algebraic topology. This notion won’t be detailled in the paper. An example
of such a collection is given on figure 5.

Patch transformations have been created to handle any arbitrary cellular sub-
complex. The main advantage of using these complexes is that we can handle
cells of various dimensions to represent all the elements that compose the ST. In
fact, in the previous representation, the ST were patterns appearing on a matrix
of digits, that is, on a predefined space. Here the concrete geometric structure
of the ST is specified and the building of the ST also builds “its own embeding
space”.

To represent the ST, we use an abstract cellular complex where the value of
a vertex represents the coordinate of an embedding of the ST in the plane.

There are two transformations used to carve the ST. The first one, AV, adds
a vertex in the middle of each edges (see figure 6):

patch AV = {
~v1 < e:[dim = 1] > ~v2
=> ‘v:[dim = 0, cofaces = (‘e1,‘e2),

val = { x=(v1.x+v2.x)/2, y=(v1.y+v2.y)/2, new=true }]
‘e1:[dim = 1, faces = (v1,‘v)]
‘e2:[dim = 1, faces = (v2,‘v)]

}

The keyword patch is used instead of the keyword trans to outline that the
defined transformation uses patch patterns in its rules. In this patch transfor-
mation, v1 and v2 are not consumed (the ˜ qualifier in front of an identifier)
to allow the matching of all the edges incident to a same vertex. Indeed, if an
element is matched by a pattern, it can’t be matched in another one: two subcol-
lections matched by the l.h.s. of some rules of a transformation cannot overlap.
We say that the elements matched by a pattern are consumed. Here, if a vertex
was matched and consumed together with one of its incident edges, no any other
incident edges could be matched by the rule. A clause c1 < c2 means that cell
c1 is incident to cell c2 and of lower dimension. The right hand side of the rule is
a special form used to transform the matched edge e into two edges ‘e1 and ‘e2
incident to a new vertex ‘v. A flag new distinguishes the newly created vertices.

The next step looks for all the hexagons and replaces them with three trian-
gles (see figure 6):

patch RF = {
f:[dim=2, faces = (e1,e2,e3,e4,e5,e6)]
~v1 < ~e1 > ~v2:[? v2.new] < ~e2 >
~v3 < ~e3 > ~v4:[? v4.new] < ~e4 >
~v5 < ~e5 > ~v6:[? v6.new] < ~e6 > ~v1

198 A. Spicher, O. Michel, J.-L. Giavitto

e2

v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

f
v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

‘f2‘f3

‘e46

‘f1

‘e62

‘e24

RFAV

Fig. 6. Carving a triangle. The first transformation AV adds vertex in the middle of an
every edge. The second transformation RV refines the central hexagonal face into three
triangles.

=> ‘e24:[dim=1, faces=(v2,v4)]
‘e46:[dim=1, faces=(v4,v6)]
‘e62:[dim=1, faces=(v6,v2)]
‘f1:[dim=2, faces=(e6,e1,‘e62)]
‘f2:[dim=2, faces=(e2,e3,‘e24)]
‘f3:[dim=2, faces=(e4,e5,‘e46)]

}
In this patch, only the hexagon f is matched and consumed. We select its bound-
ary without consuming it. Note the guards in the specification of the matched
vertices: a flag is used to match only newly created hexagons.

6 Discussion and Conclusion

In this paper we have presented the use of a DSL language for the modeling
and the simulation of two kinds of self-assembly processes: by accretive growth
and by space carving. Despite their specificities, we are convinced that they are
paradigmatic of a full class of self-assembly processes.

Most of the examples described in this paper relie on chemical processes. The
sierpinsky gasket pattern has been really implemented using DNA molecules. Pre-
viously, the process has been designed and simulated using the kinetic Tile Assem-
bling Model (kTAM) [11]. kTAM provides a complete framework for the descrip-
tion of such chemical reactions where a lot of physical parameters (like tempera-
ture, error rates, . . .) are taken into account to allow accurate studies of crystal-
lization processes. The DNA assembly of tridimensional fractal has been proposed
and studied in [2], based on DNA trigonal tiles. Compared to this work, the MGS
modelings presented in this work are much more abstract: the purpose is not to
study the physical implementation using a DNA computing paradigm but to in-
vestigate the shape produced by some families of abstract self-assembly processes.

Obviously, the mechanisms provided by MGS allow the specifications of more
complex and abstract operations, that could be very difficult to implement
using polymerization and depolymerization reactions of kTAM for instance.
These higher level features can be used in the domain of robotics self-assembly.
For instance, [17] presents the elaboration of a self-reproducing machine. This

Algorithmic Self-assembly by Accretion and by Carving in MGS 199

Fig. 7. On top, Sierpinski sponge building process: initial state and steps 1, 2, 3 and
4. At bottom, Menger sponge building process: initial state and steps 1 and 2.

machine is composed of elementary cubic modules. Each module is able to be-
have in different ways: pivoting, connecting or disconnecting with other modules,
transfering data and power to its connected neighbors. The organization and the
complex behaviors of the whole machine could be captured by a MGS modeling
using topological collections and transformations. The modeling in MGS of such
complex self-assembly processes, where we must specify the complex interaction
of a few complex entities, is a part of our current work.

We insist on the expressivity brought by the notions of topological collections
and their transformations. For example, the patch language used in section 5 is
powerful enough to produce Sierpinski and Menger sponge (a generalization of
carving a tetrahedron and a cube in 3D), see figure 7. MGS has also been suc-
cesfully used to model several biological growth processes, like the development
of an epithelial sheet or a neurulation process [12], as well as the flock of birds
or the subdivision of a triangulated surface.

References

[1] Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and
Weiss. Amorphous computing. CACM: Communications of the ACM, 43, 2000.

[2] A. Carbone, C. Mao, P. E. Constantinou, B. Ding, J. Kopatsch, W. B. Sher-
man, and N. C. Seeman. 3D fractal DNA assembly from coding, geometry and
protection. Natural Computing, 3(3):235–252, 2004.

200 A. Spicher, O. Michel, J.-L. Giavitto

[3] M. Eden. In H. P. Yockey, editor, Symposium on Information Theory in Biology,
page 359, New York, 1958. Pergamon Press.

[4] J.-L. Giavitto. Invited talk: Topological collections, transformations and their
application to the modeling and the simulation of dynamical systems. In Rewriting
Technics and Applications (RTA’03), volume LNCS 2706 of LNCS, pages 208 –
233, Valencia, June 2003. Springer.

[5] J.-L. Giavitto and O. Michel. Declarative definition of group indexed data struc-
tures and approximation of their domains. In Proceedings of the 3nd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP-01). ACM Press, Sept. 2001.

[6] J.-L. Giavitto and O. Michel. Modeling the topological organization of cellular
processes. BioSystems, 70(2):149–163, 2003.

[7] P. Horn. Autonomic computing: IBM’s perspective on the state of information
technology. Technical report, IBM Research, Oct. 2001. http://www.research.

ibm.com/autonomic/manifesto/autonomic_computing.pdf.
[8] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. International

Journal of Computer Vision, 38(3):199–218, July 2000.
[9] V. Manca, C. Martin-Vide, and G. Paun. New computing paradigms suggested

by dna computing: computing by carving. Biosystems, 52(1-3):47–54, Oct. 1999.
[10] J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
[11] P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly

of dna sierpinski triangles. PLoS Biol, 2(12):e424, 2004. www.plosbiology.org.
[12] A. Spicher and O. Michel. Declarative modeling of a neurulation-like process.

In Sixth International Workshop on Information Processing in Cells and Tissues
(IPCAT’05), pages 304–317, York, August 2005.

[13] A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the speci-
fication and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume
3305 of LNCS, Amsterdam, October 2004. Springer.

[14] I. Stewart. Four encounters with sierpinski’s gasket. Mathematical Intelligencer,
17:52–64, 1995.

[15] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical
phenomenon. Phys. Rev. Lett., 47:1400–1403, 1981.

[16] S. Wolfram. A new kind of science. Wolfram Media, 2002.
[17] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines.

Nature, 435(7038):163–164, 2005.

Evolutionary Design of a DDPD Model of
Ligation

Mark A. Bedau1,2,3,
, Andrew Buchanan1,2, Gianluca Gazzola1,2,
Martin Hanczyc1,2, Thomas Maeke2,4, John McCaskill2,4,

Irene Poli2,5, and Norman H. Packard1,2

1 Protolife S.r.l., Via della Libertà 12, Marghera, Venezia 30175, Italy
2 European Center for Living Technology, S. Croce 1681, Venezia 30135, Italy

3 Reed College, 3203 SE Woodstock Blvd., Portland OR 97202, USA
4 Biomolecular Information Processing, Ruhr-Universitat Bochum,
c/o IZB Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

5 University of Venice Ca’ Foscari, San Polo 2347, Venezia 30125, Italy
mark@protolife.net

Abstract. Ligation is a form of chemical self-assembly that involves
dynamic formation of strong covalent bonds in the presence of weak as-
sociative forces. We study an extremely simple form of ligation by means
of a dissipative particle dynamics (DPD) model extended to include the
dynamic making and breaking of strong bonds, which we term dynam-
ically bonding dissipative particle dynamics (DDPD). Then we use a
chemical genetic algorithm (CGA) to optimize the model’s parameters
to achieve a limited form of ligation of trimers—a proof of principle for
the evolutionary design of self-assembling chemical systems.

1 Evolutionary Design of Self-assembling Chemical
Systems

Many familiar examples of supramolecular self-assembly—such as micelles and
vesicles—result solely from the dynamics of weak associative forces between
molecules. Such structures contain strong intramolecular covalent bonds that
are relatively fixed during the self-assembly process. Here we consider the self-
assembly of supramolecular structures formed through the dynamics of strong
bond formation in the presence of weak associative forces. Specifically, we focus
on the self-assembly that occurs during monomer to polymer ligation, as part
of the process of complementary templating. During the ligation process, weak
associative forces enable the template to act as a physical catalyst for the con-
struction of the complementary polymer’s strong bonds. We study templating
partly because it is critical in the growth, reproduction, and evolution of all
contemporary biological life, but mainly because it is one of the simplest forms
of molecular self-assembly that involves the dynamics of both strong bonds and

� Corresponding author.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 201–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

202 M.A. Bedau et al.

weak associative forces. In addition this process results in the replication and
transfer of chemical information.

Evolution in nature has created exquisite chemical systems for ligation. All
fundamental processes in the cell such as DNA replication, transcription and
translation are based upon template-directed ligation of monomers. Our goal
here is to create an artificial evolutionary process that designs a chemical system
that achieves a simple analog of ligation. Other kinds of artificial evolutionary
processes have been used for chemical design; in particular, “directed” or “in
vitro” evolution has been used to design molecules with specific desired func-
tionality [1, 2, 3, 4, 5, 6, 7]. But our evolutionary design procedure is different
from directed evolution in two crucial respects. First, rather than evolving a pop-
ulation of molecules (e.g., RNA) for a specific function, we evolve a population
of experimental parameters that describe a complete chemical system or process.
While directed evolution aims to optimize individual functional molecules, our
procedure aims to optimize whole chemical systems or processes containing a
number of chemical species engaged in myriad chemical reactions. Second, di-
rected evolution involves chemical systems that contain molecules encoding the
information that is evolving. By contrast, in our method the information that is
evolving is encoded outside the chemical system (in an experimenter’s lab note-
book or inside a computer). Thus, our method can be applied to design virtually
any kind of chemical system or process.

The work reported here concerns the evolutionary design of a chemical model,
not a real chemical system. However, this is not a limitation of our method. The
same method could be used to design real self-assembling chemical systems, ulti-
mately including quite complex systems like artificial cells that involve the inte-
gration of different chemical systems for containment, metabolism, and genetics
[8]. As it happens, the chemical systems we optimize here are analogous to the
chemical system of non-enzymatic template-directed synthesis [9, 10, 11, 12, 13,
14, 15]. Like template-directed systems of ligation in vivo and in vitro, our system
is supplied with a template molecule and an excess of monomers. It then evolves
so as to optimize the assembly of monomers on the template to produce a ligated
copy of the template. In Section 2 we describe our dynamic-bonding dissipative
particle dynamics (DDPD) chemical model. A description of the chemical ge-
netic algorithm (CGA) used to design chemical systems follows in Section 3. The
results of applying the chemical genetic algorithm to DDPD models that achieve
a simple form of ligation are presented and discussed in Section 4, followed in
Section 5 by a discussion of the proper design of CGAs and their practical lim-
itations. We conclude in Section 6 with a discussion of some different kinds of
dynamics in evolutionary design or “programming” of chemical systems.

2 Dynamic-Bonding Dissipative Particle Dynamics
(DDPD)

Our model of chemical reaction systems is based on the well-studied dissipative
particle dynamics (DPD) framework [16, 17, 18, 19, 20, 21]. The DPD framework

Evolutionary Design of a DDPD Model of Ligation 203

is a mesoscopic system simulator meant to bridge the gap between molecular dy-
namics (MD) models and continuous substance models. The extreme computa-
tional demands of MD models make them appropriate only for simulating small
systems for brief intervals—orders of magnitude smaller than the time and length
scales of interest here. Continuous substance models are inappropriate as models
of molecular scale systems in which the discrete nature of particles impacts the
dynamics of the system.

In DPD, the equations of motion are second order, with explicit conservation
of momentum, in contrast to Langevin or Brownian dynamics. Solvent molecules
may be represented explicitly, but random and dissipative forces are included in
the dynamics to compensate for the dynamical effects of replacing the hard short-
range potentials of MD by softer potentials in DPD simulations. This procedure
allows a major accelaration of the simulation compared with MD.

Our work is based on a DPD implementation of a model of monomers
and polymers in water. Some elements in the model represent bulk water (one
model element representing many molecules). Other elements could represent hy-
drophilic or hydrophobic monomers. In some cases those elements are connected
by explicit bonds, which are represented as springs that freely rotate about
their ends. These complexes explicitly but very abstractly represent the three-
dimensional structure of polymers. For example, amphiphilic molecules can be
created by explicitly bonding a hydrophilic monomer “head” onto a hydrophobic
“tail” (chain of hydrophobic monomers).

All the elements move in a two- or three-dimensional continuous space, ac-
cording to the influences of four forces. A conservative force governs symmetric
pairwise repulsion and attraction of elements. A dissipative force causes the ki-
netic energy of elements to move towards equilibrium with other elements in the
region. A random force imparts kinetic energy to the elements in arbitrary di-
rections. The strength of the random force is calibrated to balance the lessening
of system energy due to the dissipative force, maintaining the temperature of
the system around a more or less fixed point. All of these forces are considered
to operate only within a certain local cutoff radius. The cutoff radius is a main
mechanism for improving model feasibility. Elements which are strongly bonded
to other elements are also influenced by the movement of those elements to which
they are bonded, through the spring that connects them.

The DPD framework supports two distinct types of particle interaction. The
first type of particle interaction is referred to as “strong bonds,” which represent
covalent chemical bonds. All strong bonds in DPD are specified initially, and
subsequently cannot form or break. Strong bonds are modeled by a Hooke’s
law spring. One limitation imposed on the DPD simulations discussed here is
that each element can have at most two strong bonds at a given time. The
second type of particle interaction corresponds to weak forces such as van der
Waals forces or hydrogen bonds. Weak interactions are modeled by the Lenard-
Jones potential, with different parameter values possible for interactions between
different particle types. In contrast to real systems, attractive forces are not
limited to a pair of elements, but may simultaneously occur between a single

204 M.A. Bedau et al.

element and many others. Orientation of individual elements also plays no role,
as DPD elements are completely symmetrical. Thus, the pairing that occurs is
a cooperative phenomenon.

DPD thermodynamic forces can create self-assembled structures held to-
gether with the weak associative forces. For example, a DPD system with am-
phiphiles in water can exhibit a wide variety of the known supramolecular
amphiphilic phases, including monolayers, bilayers, micelles, rods, vesicles, and
bicontinuous cubic structures [19, 22, 23, 24, 25].

We augment the DPD framework by making strong bonds dynamic. This
dynamic-bonding DPD (or DDPD) is a DPD that is augmented with the follow-
ing two rules:

– Bonds form (probability 1) if elements are within the bond-forming radius.
– Bonds break (probability 1) if bonded elements are outside the bond-breaking

radius.

The strong bond strength parameter governs the strength of all strong bonds,
whether or not they were present in the initial conditions. An obvious general-
ization is to allow lower probabilities in the two bonding rules.

Note that the temperature of the system changes when bonds form and break.
However, the momentum in the system is constant, since the changes in the
momentum of individual elements due to bonding events are always symmetrical
with respect to the bonded particles.

Chemical amplification via templating is the basic mechanism of DNA repli-
cation, and also of simpler replicator systems such as von Kiedrowski’s autocat-
alytic replicator system [26] and peptide replicators [27]. Monomers of a given
type may participate in a weak interaction with monomers of a complementary
type, and each may form strong bonds with a monomer of any type if the two are
in the correct proximity and orientation. Given a template polymer made up of
different types of units and a reservoir of free floating monomers, each unit of the
template polymer can associate weakly with a complementary monomer. When
and if the weak forces bring the units into the correct orientation and proximity
with complementary units in the template polymer, strong bonds form between
the monomer units producing a complementary polymer through the process of
ligation.

If the paired complementary polymers are separated by a mechanism such
as duplex melting due to temperature change or protein action, then each poly-
mer may repeat the process, creating more templates and complements. By this
means, the overall number of polymers in the system increases. Although this
process results in the chemical amplification of polymers, the focus of the present
work is simply ligation, and the optimization of parameters that result in the
organization and ligation of monomers into polymers.

To keep the chemical system as simple as possible, we focus solely on the
ligation of two types of monomers into trimers, and we prevent strong bonds from
breaking. Pairs of opposite type units attract each other, while like type units
are unlikely to become associated by weak forces, which is roughly analogous to
complementary base pairing in the context of nucleotides.

Evolutionary Design of a DDPD Model of Ligation 205

We do not report here a complete analysis on catalytic efficiency of the tem-
plating process, with fitting of rate constants and comparison with background
rates. Such analysis will be reported in future work.

3 Chemical Genetic Algorithm (CGA)

We now describe a “chemical genetic algorithm” (CGA) for designing chemical
systems. We use the CGA to optimize the parameters of a DDPD model of
ligation. The CGA could equally well be used to optimize parameters for other
models, or for other chemical systems, or for other systems in general.1

The search space of our CGA is a subset of DDPD parameters. In particular,
our genes are five chemical system parameters: (i) the strength of the attractive
conservative force between complementary particle types, (ii and iii) the strength
of the repulsive conservative force between the two types of like particles, (iv)
the bond-forming radius, and (v) the bond strength. In the context of this paper,
a genome is always a set of these five chemical systems parameters. Complete
details regarding the specific values used can be found in the appendix.

The CGA search procedure starts by measuring the fitness of the genomes
that form the first generation. Then the following loop is repeated until the
experiment ends: The most recently produced instance of the most fit genome
is used to create a subsequent generation of genomes, by mutations of the five
genome parameters. These mutations are governed by a global mutation rate,
which acts within a range and style of variation defined for each parameter.
A candidate mutated genome is included in a subsequent generation only if it
differs from each genome tested in any previous generation. Then the fitness of
each genome in the new generation is measured.

A genome’s fitness is measured by starting the DDPD with the genome’s
parameters and seeding the system with free monomers and template trimers.
No complementary trimers are included initially. The fitness of a genome is
the number of complementary trimers formed after a globally fixed number of
model updates. Many generalizations and modifications of our search algorithm
and fitness function could be explored.

4 Results of Evolutionary Design of a Ligation Model

We used the CGA to design chemical systems for complementary-bonding liga-
tion dozens of times, all with roughly the same results. Figure 1 shows the time

1 It is worth noting that our chemical genetic algorithm differs from another algorithm
devised by H. Suzuki that has been given the same name [28]. Inspired by metabolic
reactions of molecules responsible for the biological translation of genetic informa-
tion, Suzuki’s algorithm is an unusual genetic algorithm that includes analogues of
a cell containing tRNAs, amino acids, and aminoacyl-tRNAs, as well as DNA. Our
CGA, by contrast, is a ordinary genetic algorithm, but one that is applied to the
problem of designing optimal chemical systems.

206 M.A. Bedau et al.

Fig. 1. A time series of the fitness (bold line) and allele values of the most fit chemical
system in each generation of a typical CGA run. This shows the lineage of the most
fit genomes through five-dimensional parameter space, indicating which allele (model
parameter) changes correspond to each fitness increase. Fitness and many model pa-
rameters are scaled to improve visualization. Note that fitness increases overall.

series of the fitness and allele values of the most fit chemical system in a typical
CGA run in this series. The fitness increases over time, in fits and starts (com-
mon with genetic algorithms), and the allele values in the genome of the most
fit system change with each fitness increase.

Figure 2 shows the genealogical tree of each chemical system generated in the
same CGA run. It vividly shows how the operation of the CGA allows only those
measured as most fit to be parents. The top line of the genealogy corresponds
to the lineage of the final optimal genome designed by the CGA.

Figure 3 again shows the maximum fitness in Figure 1, but now superim-
posed with twenty fitness measurements of some of the most fit systems. Each
scatter plot was created by rerunning the DDPD parameters with twenty differ-
ent random initial conditions. As might have been expected, the scatter reveals
significant noise in our fitness measurements.

Figure 3 supports two conclusions. First, the overall increase in average fitness
shows that the CGA is genuinely creating chemical systems with significantly
better fitness. In other words, the CGA works as desired; this holds in general
when we have used the CGA to program ligation systems. Second, increases in
measured fitness do not always correspond to increases in actual fitness, because
of noise in the fitness measurements, e.g., an initial configuration that creates
an unusually large number of complementary trimers.

Evolutionary Design of a DDPD Model of Ligation 207

Fig. 2. A genealogical tree of each chemical system tested by the same CGA run shown
in Figure 1. The generation of each system is indicated on the x axis, and its fitness
on the y axis. Diagonal lines indicate parentage. Note that a parent is often not in the
generation immediately preceding its children. Multiple systems in a given generation
with the same fitness are shown as one point.

Fig. 3. A time series of the fitness of the most fit chemical system in each generation
of the CGA run shown in Figures 1 and 2, overlaid with scatter plots of twenty fitness
evaluations of some of those systems (with some random noise added, to distinguish
identical fitness values). As expected, the fitness of the most fit is sometimes higher
than any of the fitness values in the corresponding 20-value scatter plot, because the
CGA generates many more than 20 trials.

5 Chemical Genetic Algorithm Design

Proper design of a CGA involves confronting trade-offs between the accuracy
of fitness measurements and the evolutionary design time scale. More accurate
measurements are always possible, but they take more time. The number of
different systems that a CGA can evaluate is strongly limited by available time

208 M.A. Bedau et al.

and technology. At the same time, the effectiveness of a CGA is limited by the
accuracy of its fitness measurements.

5.1 Noise in Fitness Measurements

The true fitness of a genome that describes the parameters of a given chemi-
cal system is the system’s propensity to produce templating reactions under a
variety of initial conditions. The fitness function actually used here, however,
is the number of complementary templates formed starting from a single ran-
dom initial configuration. Specific attention is not given to how the complements
were formed, what other chemical species were formed, or how many might form
under different initial conditions. The scatter in Figure 3 shows that this is an
imperfect measure of actual templating propensity. The noisiness of our fitness
measurements strongly depends on the chemical system’s experimental parame-
ters, whether or not they are in the genome.

In general, the noisiness of each fitness function must be measured empiri-
cally. We could do this by applying the fitness function to a single genome in a
variety of contexts, by varying such things as the number of model updates, U ,
used in one fitness measurement, the system size, S, and the initial density of
monomers, M . The noisiness of each point in U ×S×M space could be measured
with a scatter plot.

Any GA, including the CGA, can function properly only given sufficiently
accurate fitness measurements. One could more accurately assess fitness by aver-
aging repeated fitness measurements under different initial conditions, but this
takes substantially more time. To ensure both proper CGA function and optimal
CGA design speed, one should make the minimum number of fitness measure-
ments necessary for the requisite level of significance in measured fitness. This
raises a precise statistical question: How many fitness measurements are required
to get an accurate enough measurement that the CGA can continually find better
model parameters?

Fixing the values of all the simulation parameters and then repeating the
simulation from different random seeds n times, one obtains n values of the
fitness function, X1, . . . , Xn. Clearly, these variables are independent and iden-
tically distributed. The distribution of these variables depends on the details
of the simulation, which depend on the parameters that govern the simulation,
including U , S, and M , as well as the parameters encoded by the genome. As-
sume for the moment that this distribution is roughly approximated by a normal
distribution. Then we could infer the mean value, μ, of the fitness function for
n repetitions by means of standard confidence interval estimation techniques
based on the t-distribution for the pivotal quantity

√
n(x̄−μ)

σ̂ , where x̄ is the sam-
ple mean and σ̂ is the estimate of the standard deviation. This would permit us
to determine a sample size necessary to obtain an arbitrary desired accuracy, A.
For a 95 percent confidence interval we can in fact derive from A = ±tn−1;0.025

σ̂√
n

the smallest sample size that leads to the desired accuracy.
This would permit us to determine a sample size necessary to obtain an

arbitrary desired accuracy in estimated mean fitness, given the parameter values.

Evolutionary Design of a DDPD Model of Ligation 209

Of course, one would have to validate empirically whether the variation in fitness
measurements is well approximated by a normal distribution. If not, through an
analysis of the simulation process, one could derive a better approximation of
this distribution and base the sample size calculation on this approximation.

5.2 Chemical Design Time Scales

The present discussion of time scales for simulation are based on use of a Mac-
intosh Dual 2 GHz PowerPC with no parallelization (single-threaded code). The
algorithm was not particularly optimized, but performs at speeds comparable to
other DPD research codes on benchmark problems.

The running time of a CGA depends on the following numbers (with values
for the present CGA results in parentheses):

– seconds per model update (10−1)
– model updates per fitness evaluation (102 − 103)
– systems evaluated (103 − 105)

Combining these numbers shows that each CGA run takes between 104−107 sec-
onds, that is, between hours and months. This spans the range of experiments
worth and not worth attempting. Furthermore, we saw above that successful
CGA operation might require averaging repeated fitness measurements before es-
timating a chemical system’s actual fitness. Such repeated measurements would
increase the running time of the CGA by an order of magnitude.

Thus, the time feasibility of our CGA designing DDPD parameters critically
depends on the number of model updates required for each fitness evaluation
and the accuracy of the evaluation. For example, the spontaneous self-assembly
of vesicles in the DPD framework typically takes on the order of a week of user
time, so the fitness function for a CGA designing vesicles would probably require
about the same amount of time. Hence, the CGA would take years to evaluate
the fitness of even hundreds of systems—which is clearly beyond the bounds of
human patience.

We conclude by noting that the execution times discussed here may be signif-
icantly improved by hardware and clever coding, as well as DDPD enhancements
that lead to more complex particle interaction primitives. On the other hand,
full simulation of dissociation at thermal equilibrium could increase execution
times.

6 Dynamics of Evolutionary Design of Chemical Systems

One can distinguish three kinds of dynamics involved in the evolutionary design
of chemical systems. First, the DDPD model involves the dynamic of chemical
species. This dynamic takes place in a continuous two- or three-dimensional
space supporting spontaneous self-assembly processes. Bonds form and break;
the concentrations of chemical species rise and fall; new species are created; old
species go extinct. DDPD models achieve these dynamics by the addition of
dynamic strong bonds.

210 M.A. Bedau et al.

The evolutionary design of DDPD parameters sufficient for ligation of trimer
templates is a step toward a second kind of dynamic—evolution of informational
polymers by natural or artificial selection. Modeling the evolution of informa-
tional polymers is a burgeoning field. The focus on the line of work presented
here is a model in which the polymer evolution is produced by catalytic activity
physically embodied in explicit spatial structures—an example of what could be
called “embodied information processing.”

The chemical GA itself is a proof of principle for a third kind of dynamic,
specifically, the evolutionary design of a chemical system with prespecified func-
tional properties. The scheme used here for the evolutionary design of chemical
model parameters for ligation could be used to design model parameters for dif-
ferent self-assembled structures, such as micelles or lamellar sheets. The scheme
could also be used to design the parameters of other kinds of models entirely. If
those models are realistic, then the evolved model parameters could be used to
design real chemical systems. The CGA can also be used to design real chemical
systems directly, such as those that produce some desired kind of self-assembled
structures. Designing a CGA to produce a specific kind of self-assembled system
is a method for “programming” such systems.

Acknowledgments. Thanks to the European Center for Living Technology (ECLT)
for hospitality during the work reported here. Thanks to Rüdi Fuchslin for conver-
sations on DPD development. For comments on the manuscript, thanks to Peter
Dittrich, Jim LaClair, Emily Parke, and Hideaki Suzuki. Thanks also to audiences
at the ECLT in February and March of 2005, and at the Computer Science School
in the University of Nottingham, where MAB presented this work. This work was
funded in part by PACE (Programmable Artificial Cell Evolution), a European
Integrated Project in the EU FP6 IST FET Complex Systems Initiative.

References

[1] Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990) 505–510.

[2] Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind
specific ligands.” Nature 346 (1990) 818–822.

[3] Irvine, D., Tuerk, C., Gold, L.: SELEXION. Systematic evolution of ligands by ex-
ponential enrichment with integrated optimization by non-linear analysis. Journal
of Molecular Biology 222 (1991) 739–61.

[4] Chapman, K.B., Szostak, J.W.: In vitro selection of catalytic RNAs. Current
Opinions in Structural Biology 4 (1994) 618–22.

[5] Rohatgi, R., Bartel, D.P., Szostak, J.W.: Nonenzymatic, template-directed liga-
tion of oligoribonucleotides is highly regioselective for the formation of 3’-5’ phos-
phodiester bonds. Journal of the American Chemical Society 118 (1996) 3340–
3344.

[6] Wright, M., Joyce, G: Continuous in vitro evolution of catalytic function. Science
276 (1997) 614–617.

[7] Joyce, G.: Directed evolution of nucleic acid enzymes. Annual Review of Biochem-
istry 73 (2004) 791–836.

Evolutionary Design of a DDPD Model of Ligation 211

[8] Rasmussen, S., Chen, L., Deamer, D., Krakauer, D., Packard, N, Stadler, P.,
Bedau, M.: Transitions from nonliving to living matter. Science 303 (2004) 963–
965.

[9] Joyce, G.F., Inoue, T., Orgel, L.E.: Non-enzymatic template-directed synthesis
on RNA random copolymers. Poly(C, U) templates. Journal of Molecular Biology
176 (1984) 279–306.

[10] Acevedo, O.L., Orgel, L.E.: Non-enzymatic transcription of an oligodeoxynu-
cleotide 14 residues long. Journal of Molecular Biology 197 (1987) 187–93.

[11] Zielinski, W.S., Orgel,L.E.: Oligoaminonucleoside phosphoramidates. Oligomer-
ization of dimers of 3’-amino-3’-deoxy-nucleotides (GC and CG) in aqueous solu-
tion. Nucleic Acids Research 15 (1987) 1699-1715.

[12] Joyce, G.F., Orgel, L.E.: Non-enzymatic template-directed synthesis on RNA ran-
dom copolymers. Poly(C,A) templates. Journal of Molecular Biology 202 (1988)
677–681.

[13] Hill, A.R. Jr., Orgel, L.E., Wu, T.: The limits of template-directed synthesis with
nucleoside-5’-phosphoro(2-methyl)imidazolides. Origins of Life and Evolution of
the Biosphere 23 (1993) 285–90.

[14] Liu, R., Orgel, L.E.: Enzymatic synthesis of polymers containing nicotinamide
mononucleotide. Nucleic Acids Research 23 (1995) 3742-3749.

[15] Bohler, C., Nielsen, P.E., Orgel, L.E.: Template switching between PNA and RNA
oligonucleotides. Nature 376 (1995) 578–81.

[16] Hoogerbrugge, P., Koelman, J.: Simulating microscopic hydrodynamic phenomena
with dissipative particle dynamics. Europhysics Letters 19 (1992) 155–160.

[17] Groot, R., Warren, P.: Dissipative particle dynamics: bridging the gap between
atomistic and mesoscopic simulations. Journal of Chemical Physics 107 (1997)
4423–4435.

[18] Marsh, C.: Theoretical aspects of dissipative particle dynamics. Ph.D. Thesis,
University of Oxford, 1998.

[19] Shillcock, J., Lipowsky, R.: Equilibrium structure and lateral stress distribution
from dissipative particle dynamics simulations. Journal of Chemical Physics 117
(2002) 5048–5061.

[20] Vattulainen, I., Karttunen, M., Besold, G., Polson, J.: Integration schemes for
dissipative particle dynamics simulations: From softly interacting systems towards
hybrid models. Journal of Chemical Physics 116 (2002) 3967–3979.

[21] Trofimov, S., Nies, E, Michels, M.: Thermodynamic consistency in dissipative
particle dynamics simulations of strongly nonideal liquids and liquid mixtures.
Journal of Chemical Physics 117 (2002) 9383–9394.

[22] Jury, S., Bladon, P., Cates, M., Krishna, S., Hagen, M., Ruddock, N., Warren, P.:
Simulation of amphiphilic mesophases using dissipative particle dynamics. Phys-
ical Chemistry and Chemical Physics 1 (1999) 2051–2056.

[23] Yamamoto, S., Maruyama, Y., Hyodo, S.: Dissipative particle dynamics study
of spontaneous vesicle formation of amphiphilic molecules. Journal of Chemical
Physics 116 (2002) 5842–5849.

[24] Kranenburg, M., Venturoli, M., Smit, B.: Phase behavior and induced interdigi-
tation in bilayers studied with dissipative particle dynamics. Journal of Physical
Chemistry 107 (2003) 11491–11501.

[25] Yamamoto, S., Hyodo, S.: Budding and fission dynamics of two-component vesi-
cles. Journal of Chemical Physics 118 (2003) 7937–7943.

[26] von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angewandte Chemie
International Edition English 25 (1986) 932–935.

212 M.A. Bedau et al.

[27] Tjivikua, T., Ballester, P., Rebek Jr., J.: A self-replicating system. Journal of the
American Chemical Society 112 (1990) 1249–1250.

[28] Suzuki, H., Sawai, H.: Chemical genetic algorithms — Coevolution between codes
and code translation. In Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.), Pro-
ceedings of the Eighth International Conference on Artificial Life (Artificial Life
VIII) (2002) 164–172.

Appendix

The DDPD parameters in the work reported here were as follows: The conser-
vative force between particles i and j was given by an approximation of the
Lennard-Jones potential FC

ij = α(1
ry

ij
− β

rz
ij

), where α is the maximum repulsive
force, β is the factor for the attractive force, rij is the distance between the
particles, and y and z are parameters governing the level of approximation. α
was initially set to 100 and allowed to vary between 1 and 100 for like type
interactions, while β was fixed at 1. For interactions between unlike types α was
fixed at 1 and β allowed to vary between 1 and 100, being initially set to 5. In
interactions with the “water” particle type, both α and β were fixed at 1. For
all particle interactions, y was set to 0 and x to -1.

Every DDPD simulation ran for 500 iterations. The scaling factor for the
dissipative and random forces, σ, was 3. The independent scaling factor for the
random force was 1.73205 (

√
3). The integration interval, dt, was 0.01. The spring

constant governing forces between bonded particles varied between 10 and 400,
being initially set to 100. The minimal energy length for bonds was 0.01. The
system was a 10 by 10 square initialized with 700 “water” particles, 90 free
type-one particles, 180 free type-two particles and 10 chains of two type-one
particles followed by a type-two, 1000 total particles, all randomly placed. The
dynamic bond forming radius was chosen from 0.1 to 0.5 with a starting value of
0.125. Bonds were not dynamically broken, loops were not allowed to form, and
the maximum length for dynamically formed polymers was fixed at 3. Dynamic
bonds were allowed to form only between like particles of type-one or -two, and
between type-one and type-two particles.

In the CGA, each generation had a population of 10 DDPD parameter files
based on the parameter file with the highest fitness to that point, or the more
recent file in case of ties. The five parameters that varied did so each with a
mutation probability of 0.5. If mutated, the dynamic bond forming radius was
chosen at random from ± 10% of the parent parameter. The range for all the
other parameters was half to double the parent value. Crossover was not used.

Population Structure and Artificial Evolution

Arthur M. Farley

Computer and Information Science Department,
University of Oregon, Eugene Oregon 97403, USA

art@cs.uoregon.edu

Abstract. We investigate the effect that population structure has upon
the course of artificial evolution. We represent an arbitrary population
structure by embedding a population of individuals in a graph. Each in-
dividual resides at a vertex of the graph and can only choose a mating
partner from among its neighbors in the graph. Each individual mates
with the selected partner and is replaced by the resultant offspring in the
next generation. We embed populations in a variety of trees and mesh-
structured graphs and observe differences in rates of change of average
fitness and percent polymorphism over successive generations. Results
indicate that populations embedded in sparse random graphs having rel-
atively low diameter yield results similar to those embedded in complete
graphs.

Keywords: genetic algorithm, graphs, population structure, population
dynamics.

1 Introduction

What effect does the structure of a population have upon the course of its evolu-
tion? In an unstructured population, every individual can mate with any other
individual in the population. This is the implicit assumption of a standard ge-
netic algorithm [5] [8]. In such an algorithm, a selection process associates mat-
ing probabilities with all pairs of individuals, which probabilities are based solely
upon the relative fitnesses of the individuals in P . Mating pairs are then selected
according to those probabilities. This selection process is the driving force behind
improvements in average fitness over successive generations of a population.

Population structure is that aspect of the selection process that is indepen-
dent of the fitnesses of individuals. Population structure consists of any a priori
restrictions on the possibility that one individual of a population encounters an-
other for purposes of mating. In human populations, such restrictions may derive
from geographic location, religion, culture, or social class. Here, we consider a ge-
netic algorithm where a priori restrictions are placed upon which individuals can
possibly be selected as mating partners for any given individual. These restric-
tions correspond to the population’s structure. To represent arbitrary population
structures, we locate individuals at vertices of graphs and restrict individuals to
selecting partners only from individuals located at neighboring vertices. We call
the resultant genetic algorithm a graph-embedded genetic algorithm.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 213–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 A.M. Farley

There are several motivations for considering graph-embedded genetic algo-
rithms. One is simply to observe the effects that different population structures
have upon the course of evolution. Island models, wherein subpopulations are
relatively isolated and individuals occasionally migrate, have been a population
structure of interest in the study of both natural and artificial evolution [10].
Another motivation is the development and evaluation of methods for structur-
ing the fine-grained parallelization of genetic algorithms [17]. In such a model,
each processor in a computer network or multiprocessor manages one individual
or several individuals as different processes; processes and processors exchange
fitness values and genetic information as needed with their neighbors. How the
interconnection structure among processors of a computer network or multi-
processor influences the course of the subsequently generated evolution is one
question that is addressed by the research reported here.

1.1 The Model

We consider a generational genetic algorithm acting upon binary haploid indi-
viduals. We represent haploid individuals in terms of a single genotype, being a
sequence of genes, each gene having a value chosen from a set of possible alleles.
Each gene of a binary genotype has two possible alleles, which we represent as
the set {0, 1}. A binary haploid individual holds a single binary genotype inher-
ited from a single parent or created as a recombination of genotypes from two
parents of the previous generation.

A population P consists of a set of |P | indexed individuals P [i], 0 ≤ i ≤ |P |−
1. We represent the structure of a population P by a labeled graph G = (V, E),
where V is a set of vertices and E is a set of edges, each edge between an
unordered pair of vertices (u, v). Each vertex is labeled with a unique integer
0 ≤ i ≤ |V | − 1 and is referred to as V [i]. In a graph-embedded population
P , individual P [i] is located at vertex V [i] of an associated graph G, where
|V | = |P |. If (u, v) is an edge of G, then u and v are said to be neighbors in
G. The degree of a vertex is equal to its number of neighbors. The distance
between a pair of vertices in G is the minimum number of edges on a path
between them. During graph-embedded evolution, individual P [i] can only select
a mating partner from among individuals located at neighbors of V [i] in G. The
probability that P [i] selects an individual located at a non-neighboring vertex
of V [i] is 0.0.

We represent an environment by a binary fitness function mapping a binary
genotype to a real value in the range 0.0 to 1.0. The value returned by a fitness
function indicates an individual’s degree of adaptation to the environment; the
higher the fitness function value, the greater is the degree of adaptation. For
our study, we use one general class of fitness function, Step(genSize, stepSize),
which maintains an arbitrary genotype having genSize genes, called the target.
To determine an individual’s fitness value, we compare its genSize genotype to
the target; stepSize consecutive locations must be equal to the corresponding
target locations to get credit for matching a step. Steps are contiguous and non-
overlapping. As such, there are only genSize/stepSize possible matches. The

Population Structure and Artificial Evolution 215

fitness function returns the percentage of steps that are matched. The Step
family of fitness functions corresponds to relatively simple environments for evo-
lution, as they define unimodal fitness landscapes, i.e., having a single peak
(the target). Increasing the stepSize adds a degree of difficulty for the evolu-
tionary process, which then must accumulate stepSize consecutive values in an
individual before the individual’s fitness improves. This represents a degree of
epistatic interaction between neighboring gene loci [7]. While unimodal, Step fit-
ness functions with stepSize > 1 have local plateaus. These functions have been
called royal road fitness functions, as they were thought to provide a favorable
environment for the success of genetic algorithms [9].

We define a graph-embedded genetic algorithm, as follows:

Graph-Embedded Genetic Algorithm(pSize, gSize, f, gType)

G = Generate-Labeled-Graph(gType, pSize);

P = Generate-Initial-Population(pSize, gSize);

Evaluate(P, f);

until(done())

{P = GenerateNewPopulation(P, G);

Evaluate(P, f);

}

}

We first create a labeled graph G = (V, E) of a particular type gType
with pSize vertices. We consider a range of graph types in our experiments,
to be defined as we discuss particular experiments below. The fixed-size popu-
lation P consists of pSize binary individuals. The process GenerateInitialPopu-
lation(pSize, genSize) creates a random set of pSize binary haploid individuals,
each individual consisting of a single genotype containing gSize alleles; each al-
lele value is selected with equal probability from the set {0, 1}. With P embedded
in G, individual P [i] is located at vertex V [i] of G. We refer to a population P
embedded in a graph G of type gType to be a PgType population.

The function done() returns true if a desired halting condition is met, e.g.,
either some predetermined number of generations have been considered or suc-
cessive generations have not differed significantly. The process GenerateNext-
Population(P, G) creates a new population from an existing population. In our
graph-embedded model of genetic algorithms, this process is as follows:

GenerateNewPopulation(P, N)

{for (0 <= i < pSize)

{partner = SelectEmbeddedPartner(i, G);}

New[i] = Mutate(Recombine(P[i], partner));

}

for (0 <= i < pSize)

{P[i] = New[i];}

}

The process SelectEmbeddedPartner(i,G) is that element of our model where
notions of natural selection and structured populations are captured. We consider

216 A.M. Farley

a form of fitness proportionate selection [8] whereby individual P [j] is selected
to be a partner of P [i] with probability fj/Fp, where fj is the fitness value of
individual j and Fp is the sum of fitness values of all individuals located at
vertices that are neighbors of V [i] in G. Our graph-embedded model is a form
of replacement genetic algorithm, as individual P[i] is replaced by its offspring
in the next generation.

The process Recombine(parent1, parent2), takes a pair of haploid individuals
and creates a new haploid individual as a result of combining alleles of the two
parent’s genotypes. We apply UniformRecombination(parent1, parent2), where
one of the two alleles from the genotypes of the parents is selected with equal
probability at each gene locus. Finally, the genotype of each new individual may
be altered by the process Mutate(p). Each gene location is considered in turn
and is changed to the other allele value according to a given, constant, per locus
mutation probability.

1.2 Measures and Parameters

To observe the effects of population structure on evolution, we consider two
measures of a population at each generation. The first corresponds to a popu-
lation’s level of adaptation to an environment as measured by its average fit-
ness, being the average of all individuals’ fitness function values. We expect
average fitness to be 1/2k for a stepSize of k in a random, initial popula-
tion. The other measure addresses the genetic diversity of a population. Our
diversity measure is percent polymorphic, defined as the percentage of gene loci
with less than 99 percent of their alleles being a single value in a population
[11]. We expect percent polymorphic to be 1.0 in a random, initial popula-
tion.

There are several parameters that will not change throughout the experi-
ments reported here. We have set the population size to be 1000 for all exper-
iments. This is a relatively small, finite population that makes the simulation
experiments feasible, but that is hopefully large enough so that results are not
dominated by small population effects, such as genetic drift [6]. Another fac-
tor not varied is genotype size, i.e., number of loci or genes in a genotype. We
have set the genotype size to be 100, again a compromise between computa-
tional efficiency and genetic diversity. We set the mutation rate to be such that
an average of 5 alleles over the whole population for each generation are mod-
ified by mutation, yielding a per locus mutation probability of 5 ∗ 10−5, given
the population and genotype sizes we have chosen. This rate is in the range of
observed mutation rates in nature [11] and seems to provide good performance
regarding average fitness with the Step fitness function. Our experiments are run
for 2000 generations; each experiment is repeated 20 times to generate average
values and standard deviations. In some cases, we only present results for the
first 1000 generations to highlight the differences observed. We gather values
for the two population measures every 50 generations; thus, we report average
values at each of 41 generation points (i.e., including the initial population at
generation 0).

Population Structure and Artificial Evolution 217

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
ve

ra
ge

 F
itn

es
s

Generation

Standard vs Complete: Average Fitness

Standard.2
Standard.4
Standard.6
Complete.2
Complete.4
Complete.6

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

P
er

ce
nt

P
ol

ym
or

ph
ic

Generation

Standard vs Complete: PercentPolymorhic

Standard.2
Standard.4
Standard.6
Complete.2
Complete.4
Complete.6

Fig. 1. Results under the standard and complete graph models

2 Experiments and Results

2.1 Complete Graphs

The complete graph χn is a graph on n vertices, such that every vertex in χn is
connected to every other vertex by an edge of χn (i.e., every vertex is a neigh-
bor of every other vertex). The complete graph is the most highly connected
graph possible, having n(n − 1)/2 edges. A graph-embedded genetic algorithm
where the graph is complete corresponds to the standard replacement genera-
tional genetic algorithm in an unstructured population. As such, observations
of graph-embedded evolution in population Pcomplete will allow us to compare
the population dynamics generated by the replacement genetic algorithm with
that generated by the standard genetic algorithm. The results for Pcomplete also
provide benchmarks for comparison with the dynamics produced by populations
that are not as well connected, i.e., more highly structured.

Figure 1 presents results for average fitness and percent polymorphic un-
der the two models with stepSize of 2, 4 and 6. Qualitatively, both models
yield similar population dynamics. Closer consideration indicates some interest-
ing differences, however. For stepSizes 2 and 4, the standard algorithm reaches
convergence at near optimal fitness prior to the Pcomplete model. Fitness propor-
tionate selection in the standard model can avoid selection of less fit individuals
as parents, leading to faster convergence of fitness values and faster reductions
in percent polymorphic. A stepSize of 4 results in faster convergence than a
stepSize of 2 due to the initially greater range and variance in fitness values.
With a stepSize of 6, we find evidence of premature convergence by fitness
proportionate selection under the standard model. Average fitness converges at
about 0.94, as genetic diversity is lost prematurely. Under the replacement model
with Pcomplete, convergence is slowed; genetic diversity is maintained for a longer
time, leading to higher average fitness at convergence.

2.2 Trees

We only consider connected population structures, which provide the potential
for genetic information from any individual to impact the offspring of any other

218 A.M. Farley

Fig. 2. Trees with 7 vertices: (a) star, (b) path, (c) CBTree and (d) MBTree

individual after some number of generations. A graph G is connected if and only
if a path exists between any pair of vertices in the graph. Trees are minimally
connected graphs, i.e., if any edge of a tree is removed, the resultant graph is no
longer connected. As such, trees represent the opposite end of the spectrum of
connected graphs from complete graphs. Trees contain no cycles, i.e., paths that
start and end at the same vertex with no repeated edges. A tree of n vertices
has n − 1 edges. A leaf of a tree is a vertex having degree 1.

We can characterize graphs by a number of parameters, including number of
leaves, maximum degree and diameter. The diameter of a graph is equal to the
maximum distance between a pair of vertices in the graph. A path is the tree on
n > 1 vertices having 2 leaves, a maximum degree of 2, and a diameter equal to
n − 1. A star is the tree on n vertices having n − 1 leaves, a maximum degree
of n − 1, and a diameter of 2. Figures 2(a) and 2(b) present the star and path
tree on seven vertices, respectively. A path minimizes the number of leaves and
maximum degree and maximizes diameter, while the star minimizes diameter
and maximizes maximum degree and number of leaves.

Figure 3 presents average fitness and percent polymorphic results for star
and path compared to complete graph embedded populations, with stepSize of
4. In Pstar, every leaf vertex has only the central vertex as possible partner.
This forces in-breeding as evolution proceeds, resulting in loss of most genetic

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

A
ve

ra
ge

 F
itn

es
s

Generation

Path vs Star: Average Fitness

Complete.4
Path.4
Star.4

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

P
er

ce
nt

P
ol

ym
or

ph
ic

Generation

Path vs Star: Percent Polymorphic

Complete.4
Path.4
Star.4

Fig. 3. Results with star and path populations

Population Structure and Artificial Evolution 219

diversity from the population after relatively few generations and convergence
at low average fitness values. In Ppath, percent polymorphic remains relatively
unchanged as genetic information moves slowly through the population. Average
fitness steadily increases, almost linearly, after an initial, rapid increase, exceed-
ing 0.50 after 2000 generations. These results suggest that individuals in different
sections of the path have adapted to different aspects of the target genotype.

Now we consider several interesting classes of trees that fall between these
extremes. A complete binary tree CBTree is a rooted tree, such that every vertex
is either a leaf or is connected to two child vertices. Every vertex other than the
root is connected to a parent vertex, as well. A CBTree has maximum degree
of 3, n/2 leaves, and a diameter of (approximately) 2log2n − 1. To construct
such a tree, we connect vertex labeled i to vertices labeled 2i + 1 and 2i + 2
as children. A minimum broadcast tree MBTree is a rooted tree that can be
defined recursively as either a single, root vertex for n = 1, or two minimum
broadcast subtrees of size n/2 whose root vertices are connected by an edge and
is rooted at one of the two roots of the subtrees, for n > 2. MBTrees are so
named because they allow messages to be broadcast in the minimum log2n time
units from the root under a synchronous, single-port model of communication
[12]. A minimum broadcast tree has maximum degree of log2n, approximately
n/2 leaves, and a diameter of approximately 2log2n − 1. To construct such a
tree for vertices labeled i up to j we connect vertex i to vertex 1 + (i + j/)2
and then recursively construct trees for i up to (i + j)/2 and for 1 + (i + j)/2
up to j. Figure 2(c) and 2(d) show an example of a CBTree and an MBTree,
respectively.

We also consider two classes of random trees. A random tree RanTree will be
a tree created by connecting vertex i to a vertex chosen uniformly at random from
vertices labeled 0 up to i−1. A power law tree PLTree will be a tree created by
connecting each vertex i in turn to a vertex j labeled 0 up to i−1 with connection
probability to j equal to the current degree of j over the sum of current degrees.
This is analogous to fitness proportionate selection in genetic algorithms, where a
vertex’s fitness corresponds to its current degree. Power law trees are so named as
they have been shown to have power law degree distributions [1]. A random tree

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

A
ve

ra
ge

 F
itn

es
s

Generation

Trees: Average Fitness

Complete.4
MBT.4
CBT.4

RanTree.4
PLTree.4

Path.4
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

P
er

ce
nt

 P
ol

ym
or

ph
ic

Generation

Trees: Percent Polymorphic

Complete.4
MBT.4
CBT.4

RanTree.4
PLTree.4

Path.4

Fig. 4. Results with tree-structured populations

220 A.M. Farley

is expected to have lower maximum degree, fewer leaves, and greater diameter in
comparison to a power law tree. Experimental results confirm these expectations.
Generating 100 examples of both types of trees with 1000 vertices, we find that
RanTrees have on average a maximum degree of 11, 500 leaves, and a diameter
of 25, while PLTrees have a maximum degree of 64, 664 leaves, and a diameter
of 18. A RanTree has average parameter values close to those of an MBTree.

Figure 4 presents average fitness and percent polymorphic results for these
trees compared to populations embedded in complete graphs and paths for a
stepSize of 4. Considering results for percent polymorphic first, we see that
power law trees result in the highest rate of loss of diversity, closely followed
by minimum broadcast trees. The complete binary tree, having low maximum
degree, produces the lowest rate of decrease in genetic diversity of the new trees
we consider. These results for trees show a direct relationship between rate of loss
in percent polymorphism and maximum vertex degree. Average fitness results
do not quite follow the opposite pattern. Minimum broadcast trees yield the
greatest increase in average fitness, followed by random trees, which are followed
closely by complete binary trees. Power law trees result in a significantly lower
rate of increase in average fitness, but still well above the rate produced by paths
and stars.

Putting the results for average fitness and percent polymorphic together and
viewing them from an algorithm performance perspective, power law trees seem
not to be favorable population structures for evolution, as they result in a rela-
tively high loss of diversity yet a lower rate of gain in average fitness. Minimum
broadcast trees most closely follow the pattern of complete graphs, yielding the
highest rate of increase in average fitness with an accompanying higher loss of
diversity. Random trees and complete binary trees perform well, providing rel-
atively high rates of gain in average fitness accompanied by comparatively low
rates of loss in diversity. All trees, having minimal connectivity and thus a re-
duced ability to propagate genetic information, yield increases in average fitness
that fall significantly below those produced by evolution in Pcomplete.

2.3 Other Graphs

In this section, we consider a range of graphs having higher average vertex degree
and greater connectivity. The first is the circular lattice graph, CLG4, wherein
each vertex labeled i is connected to 4 other vertices i + 1, i + 2, i − 1 and
i − 1 (label values taken modn, n being the number of vertices). Each vertex of
a CLG4 has degree 4, and the graph has a diameter of about n/4. The CLG4 is
of interest due to its large diameter and relatively high clustering coefficient. A
graph’s clustering coefficient is equal to the percentage of possible connections
between neighbors of a vertex. In the circular lattice, as each vertex has degree
4, there are 6 possible edges between neighbors of which 3 are present, yielding
a clustering coefficient of 0.50. In a random graph wherein all possible edges are
equally likely, the probability of two neighbors having an edge between them is
the same as the probability that any two nodes have an edge between them. For a
random graph with 1000 vertices and 2000 edges, that probability is about 0.004.

Population Structure and Artificial Evolution 221

A number of real-world networks, ranging from co-author and citation rela-
tionships in scientific publications to the power grid and the neural connection
network of C elegans, have been found to have relatively high clustering coeffi-
cients [15]. These networks also have diameters on the order of logn. Networks
with these two properties have been called small world networks. The lattice,
while having a high clustering coefficient, has a diameter on the order of n/4
and is not a small world network. One means of constructing small world net-
works, introduced by Watts and Strogatz [16], is to randomly reconnect a small
percentage of the edges of a circular lattice graph. We investigate populations
embedded in two classes of small world graphs, SWG10 and SWG20, that are
created by randomly reconnecting the other end of 10% and 20% of the edges in
a CLG4, respectively. These small world graphs have average degree of 4, main-
tain a relatively high clustering coefficient, but have a sharply reduced expected
diameter. While the circular lattice graphs have a diameter linearly related to the
number of vertices, small world graphs constructed as above have been shown to
reduce expected diameter to a logarithmic relationship. To take edge redirection
to the extreme, we also consider connecting each vertex i to 2 other vertices
chosen uniformly at random (i.e., redirecting 100% of the lattice edges), calling
such graphs random degree 4 graphs, Ran4Deg. Each vertex of such a graph
has degree at least 2, while the average degree is 4.

One graph structure that has received attention in the genetic algorithm
community is the square grid graph [4] [13], with vertices located in rows and
columns. We consider the 32 x 32 grid GRID32 (having 1024 vertices), each
vertex having 4 neighbors (i.e., up, down, left and right) with boundary vertices
having “wrap-around” edges to the other end of the same row or column. Note
that these graphs have a clustering coefficient of 0.0 as neighbors are not neigh-
bors. The diameter of such a square grid graph in general is approximately the
square-root of n (i.e., the length of one side).

Figures 5 presents results for populations embedded in the above classes of
graphs having average degree 4, comparing these to results for complete graph
and MBTree embedded populations. We see that the circular lattice, with its

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
ve

ra
ge

 F
itn

es
s

Generation

Degree 4 Graphs: Average Fitness

Complete.4
Ran4Deg.4

SmallWorld20.4
Grid32.4

SmallWorld10.4
MBT.4

Lattice.4
0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

P
er

ce
nt

 P
ol

ym
or

ph
ic

Generation

Degree 4 Graphs: Percent Polymorphic

Complete.4
Ran4Deg.4

SmallWorld20.4
Grid32.4

SmallWorld10.4
MBT.4

Lattice.4

Fig. 5. Results with populations having degree four

222 A.M. Farley

maximal diameter for this class of graphs, results in its embedded population
exhibiting the smallest changes in both average fitness and percent polymorphic.
The MBTree, with half the edges but much smaller diameter, improves a pop-
ulation’s ability to increase average fitness. What is most striking in our results
is the change in population dynamics we observe when we turn the lattice into a
small world graph by redirecting 10% of its edge. This reflects the significantly
reduced diameter from the circular lattice that results from this small degree of
redirection. The redirected edges act as “long-distance” edge, providing oppor-
tunity for interaction with other parts of the graph. The results for GRID32
slightly improve upon those of SWG10, in terms of average fitness. This again
reflects the reduced diameter of GRID32 from that of CLG4; depending upon
the labeling scheme in the grid, every row edge or every column edge is “non-
local”. As we redirect even more edges of the CLG4, we see that populations
emdedded in SWG20 and Ran4Deg yield results that move closer to those of
Pcomplete, even though only about 0.004 of the edges found in a complete graph
are used.

What happens as we continue to increase average vertex degree in the popu-
lation structure? We next consider graphs having average vertex degree of log2n,
equal to 10 for our 1000 vertex graphs. Minimal broadcast graphs are graphs
in which synchronous broadcast can be completed under the single-port com-
munication model in the minimum log2n time units in a graph with n vertices.
Each vertex can communicate with at most one other vertex during a time
unit, thereby at most doubling the number of vertices informed of a particular
message. In [3], methods are introduced for creating sparse minimal broadcast
graphs. Here, we consider a recursive method that yields a vertex degree and
diameter of log2n. An MBG graphs is constructed for labels ranging from i to
j, as follows: if j > 1, then each vertex k in the range i to (i + j)/2 is connected
to vertex 1+k− i+(i+ j)/2; we do the same recursively for ranges i to (i+ j)/2
and 1 + (i + j)/2 to j (i.e., until i = j). We start with the full range of labels
from 0 to n−1. We compare the MBG graphs to Ran10Deg graphs, constructed
as were Ran4Deg graphs, by connecting each vertex to 5 other vertices chosen

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
ve

ra
ge

 F
itn

es
s

Generation

Degree 10 Graphs: Average Fitness

Complete.4
Ran10Deg.4

MBG.4
Ran4Deg.4

Ran10SmallWorld10.4
Lattice10.4

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

P
er

ce
nt

 P
ol

ym
or

ph
ic

Generation

Degree 10 Graphs: Percent Polymorphic

Complete.4
Ran10Deg.4

MBG.4
Ran4Deg.4

Ran10SmallWorld10.4
Lattice10.4

Fig. 6. Results with populations having degree ten

Population Structure and Artificial Evolution 223

uniformly. We also consider two other classes of graphs constructed as per the
degree 4 graphs discussed earlier. First is the circular lattice graph of degree
10, CLG10, wherein each vertex is connected to the next five vertices around a
circle. Second is a small world graph of degree 10, RanSmallWorld10, in which
10% of the edges of CLG10 have been redirected randomly.

Figure 6 presents results for these classes of graphs having an average degree
of 10, comparing their dynamics to results for PRanDeg4 and Pcomplete. The
increase in vertex degree does produce further increases in rates of increase of
average fitness and of decrease of genetic diversity. First, we see the large change
in dynamics that results from redirecting 10% of the edges when creating a
small world graph from the circular lattice graph. Much of this change is due
to a reduction in expected diameter. The population dynamics of evolution in
PRanDeg4 closely parallels that observed in PRanSmalWorld10 despite having many
fewer edges. As we saw for trees, average fitness values increase a little more
rapidly in the randomly structured PRanDeg10 than in PMBG, event though the
latter’s structure is optimized for one-port broadcast. Quite striking is the result
that the population dynamics created in PRanDeg10 is nearly equivalent to that
in Pcomplete, even though a RanDeg10 includes only about 0.01 of the edges
found in the complete graph.

3 Conclusion

There has long been interest in the effects of population structure on natural
evolution where populations are embedded in the structure of a physical ecosys-
tem. Isolation of subpopulations has been a primary focus, producing ideas such
as the earlier mentioned island model [18]. Independent subpopulation evolu-
tion is impacted by limited migration of individuals. Given a complex fitness
function having many local maxima, i.e., the real world, subpopulation isolation
can lead to species differentiation and variety. The basic island model could be
approximately represented in our approach by cliques (i.e., complete subgraphs)
with some individuals having a neighbor in another clique. The structure among
cliques could be complete or a path, known as the stepping-stone model repre-
senting linear ecosystems such as a beach. The island model has been explored as
one structure for parallelization of artificial evolutionary algorithms, as well [17].

There has been limited research on the impact of population structure on
artificial evolution. DeJong and Sarma [2] [13] consider individuals embedded in a
two-dimensional grid and vary the size of neighborhoods. They found, consistent
with results reported here, that increasing neighborhood size (i.e., average vertex
degree) and decreasing graph diameter leads to faster growth in average fitness.
Such grids provide diameters that are on the order the square-root of n. Giacobini
et. al. [4] found similar results when sites in the grid asynchronously select mating
pairs from their neighborhoods.

Fine-grained, parallel, graph-embedded genetic algorithms are straightfor-
ward to implement. Each processor sends its resident individual along with its
fitness value to all of its neighbors. After receiving individuals from neighbors,

224 A.M. Farley

each processor selects a mating partner for its resident individual and performs
recombination and mutation to create a new resident individual, and the cycle
starts again. Messages can be stamped with generation numbers for synchro-
nization purposes; time outs can alleviate unnecessary waiting due to failed
connections or processors. Processors could be put in charge of more than one
individual and could send only fitness values initially, sending an individual when
it has been selected as partner by a neighbor, if individual genotype size is an
issue.

We have investigated the effects that a range of population structures have
upon artificial evolution. Population structures are represented as embeddings
in graphs. We found significant differences among the structures, noting that
random graphs of relatively low degree yield population dynamics approximating
those observed in completely connected populations. Such random structures
have relatively small diameters; their arbitrary connections seem to facilitate the
random sharing of genetic material that typifies artificial evolution. The work
reported here represents an initial foray into this research space. Investigating the
interactions between fitness functions, selection mechanisms and various features
of population structure appears to be an interesting area for future research.

References

1. Albert, R. and Barabasi, A.L., ”Statistical mechanics of complex networks”, Re-
view of Modern Physics, 74, (2002), 47-97.

2. De Jong, K.A. and Sarma, J., ”On decentralizing selection algorithms”, in Pro-
ceedings of the Sixth International Conference on Genetic Algorithms (ICGA95),
Morgan Kaufmann, (1995) 17-23.

3. Farley, A.M., ”Minimal broadcast graphs”, Networks, 9, (1979), 313-332.
4. Giacobini, M., Alba, E. and Tomassini, M., ”Selection intensity in asynchronous

cellular evolutionary algorithms”, in Proc. of Genetic and Evolutionary Computing
GECCO 2003, LNCS 2723, Springer-Verlag (2003).

5. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison Wesley, Cambridge,MA. (1989).

6. Hedrick P.W., Genetics of Populations, Jones and Bartlett, Sudbury,MA, (2000).
7. Kauffman, S.A., The Origins of Order, New York: Oxford University Press, (1993).
8. Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, Ma.,

(1996).
9. Mitchell, M., Forrest, S., and Holland, J.H., ”The royal road for genetic algorithms:

Fitness landscapes and GA performance”, in F.J. Varela and P. Bourgine, eds.,
Toward a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, Cambridge, MA : MIT Press, (1992).

10. Maynard Smith, J., The Theory of Evolution, 3rd Edition, New York : Cambridge
Univ. Press, (1993).

11. Maynard Smith, J., Evolutionary Genetics, 2nd Edition, New York : Oxford Uni-
versity Press, (1998).

12. Proskurowski, A., ”Minimum broadcast trees”, IEEE Transactions on Computers,
5(1981), 363-366.

Population Structure and Artificial Evolution 225

13. Sarma J. and De Jong, K.A.,, ”An analysis of local selection algorithms in a spa-
tially structured evolutionary algorithm”, in Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms (ICGA97), Morgan Kaufmann (1997),
181-187.

14. Vose, M. , The Simple Genetic Algorithm: Foundations and Theory, Cambridge,
MA : MIT Press, (1999).

15. Watts, D. Small Worlds: The Dynamics of Networks Between Order and Random-
ness, Princeton, NJ: Princeton Univ. Press, (1999).

16. Watts, D. and Strogatz, S.H., ”Collective dynamics of small-world networks”, Na-
ture, 393 (1998), 440-442.

17. Whitley,D., Rana, S., and Heckendorn, R., ”Exploiting separability in search: The
island model genetic algorithm”, Journal of Computing and Information Technol-
ogy, 7, (1999) 33-47.

18. Wright, S. ”Evolution in Mendelian populations”, Genetics, 16, (1931), 97-159.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 226 – 237, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Outlines of Artificial Life: A Brief History of
Evolutionary Individual Based Models

Stefan Bornhofen and Claude Lattaud

Laboratoire d'Intelligence Artificielle de Paris V,
LIAP5 – CRIP5, Université de Paris V,

45, rue des Saints Pères,
Paris 75006, France

{stefan.bornhofen, claude.lattaud}@math-info.univ-paris5.fr

Abstract. In the research field of Artificial Life, the concepts of emergence
and adaptation form the basis of a class of models which describes reproducing
individuals whose characteristics evolve over time. These models allow to in-
vestigate the laws of evolution, to observe emergent phenomena at individual
and population level, and additionally yield new design techniques for com-
puter animation and robotics industries. This paper presents an introductory
non-exhaustive survey of the constitutive work of the last twenty years. When
examining the history of development of these models, different periods can be
distinguished. Each one incorporated new modeling concepts, however to this
day all the models have failed to exhibit long-lasting, let alone open-ended evo-
lution. A particular look at the richness of dynamics of the modeled environ-
ments reveals that only little attention has been paid to their design, which
could account for the experienced evolutionary barrier.

1 Introduction

Artificial Life, or ALife, is the research field that tries to describe and study natural
life by creating artificial systems that possess some of the properties of life. Its final
aspiration is “understanding life by attempting to abstract the fundamental dynamical
principles underlying biological phenomena, and recreating these dynamics in other
physical media, such as computers, making them accessible to new kinds of experi-
mental manipulation and testing.” [1]. Besides the ambition of enriching the
knowledge about Nature, Alife helps to find new design techniques. As computer
simulations become more and more accurate, game, entertainment and robotics indus-
tries are constantly researching for new ideas to animate artificial characters.

The seminal novelty of ALife lies in its synthetic approach. Whereas traditional re-
search is essentially analytic, breaking down complex systems into basic components,
ALife attempts to construct complex systems from elemental units. The synthetic ap-
proach is based on two concepts, emergence and adaptation. A class of models which
particularly applies these concepts describes reproducing individuals whose character-
istics evolve over time. This paper refers to these models as “Evolutionary Individual
Based Models” (EIBMs).

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 227

Considering the history of EIBMs in chronological order, four periods can be dis-
tinguished. They are thought of as overlapping stages of development in the art of
individual based modeling by progressively incorporating new concepts. The begin-
nings of the first period reach back to the sixties. It comprises the discovery of new
modeling techniques and the implementation of the first individual based models, but
at that time extensive computer simulations were not yet feasible. At the end of the
eighties, the progressing research culminated in the appearance of ALife as a distinct
discipline. With the advent of computational power in the early nineties, allowing
computers to run elaborate ALife systems at a tolerable speed, the second period in-
corporated evolution into individual based models, trying to capture population level
phenomena by simple agents without particular morphologies in one ore two dimen-
sional environments. The third period was marked by the adoption of environments
with physical dynamics and directed the attention towards more elaborate phenotypic
morphologies. Evolution was achieved by modifications of grammar-based genetic
encoding schemes. The current fourth period of artificial embryology, since the end of
the nineties, applies the discoveries of evolutionary developmental biology and mod-
els virtual creatures based on the concept of cell division by genetic regulatory net-
works. To this day, a great variety of extending or complementary research has been
done with respect to each approach, but interestingly no further groundbreaking ad-
vances have been reported. It seems as if every model hits on limits of evolutionary
complexity which prohibits the kickoff for long-lasting creative evolution in artificial
worlds.

This paper serves a double purpose: to structure the history of EIBMs by classify-
ing samples of the most influential works into periods, and to take advantage of this
short survey to particularly review the dynamics, i.e. the rules and forces that produce
motion or affect change within the environments. It will be suggested that the design
of this component lags behind the advances in modeling the evolving individuals.

Section two presents the two important concepts of emergence and adaptation, both
of which are present throughout the paper. Section three describes early EIBMs fea-
turing simple evolving agents. Section four inspects models with physical dynamics
and grammar-based genetic encoding. Embryological models are described in section
five. Section six concludes with the synthesis of all the presented works.

2 ALife Concepts in Modeling

ALife researchers have been inspired by the creation as observed in Nature and de-
veloped the concepts of emergence and adaptation which are opposed to conventional
human design techniques. This section describes the two concepts and their imple-
mentation in modeling.

2.1 Emergence

Models of complex systems, i. e. systems composed of a large number of interacting
elements, are traditionally described by mathematical formulas like differential equa-
tions to manipulate some aggregate state variables of the system as a whole. This
method allows a general and compendious way to analyze the behavior of a system.

228 S. Bornhofen and C. Lattaud

However, as aggregate variables always oblige to deal with mean values, they have
difficulties with heterogeneity in the system, and their high abstraction level often
does not grasp the underlying reasons for the dynamics.

The Alife approach of modeling is “bottom-up engineering”, thinking of complex
systems as collections of distinct objects or individuals rather than continuous values.
Individual based models can include refined representations of the individuals and
their behavior. Emergence describes the phenomenon that simple local interactions
between the entities of the system lead to a complex high level organization.

One of the earliest examples of emergence is Craig Reynolds' individual based
model of boids [2]. Boids are autonomous agents simulating the flocking behavior of
birds. Flocking arises as global behavior from the interaction of very few simple local
rules. Placed into a virtual environment, the boids are programmed to follow three
directives of “steering behavior” (figure 1):

• Separation: to maintain minimum distance from other
boids in the environment

• Alignment: to match velocities with other boids in the
neighborhood.

• Cohesion: to move toward the perceived center of
mass of boids in the neighborhood.

These rules are entirely local, referring only to infor-
mation accessible within a boid's own vicinity. Hence, the
flock that forms is an emergent phenomenon.

Based on this algorithm, the boids can be enriched by
more elaborate behaviors like obstacle avoidance or goal
seeking. Obstacle avoidance allows the boids to fly
through simulated environments while dodging static ob-
jects. Goal seeking behavior causes the flock to follow a
scripted path. The boids render such an impressing real-
ism at simulating flocking as well as other coordinated
motion like fish schools or human crowds that they have
been used in many cinematic animations such as the bat
swarms of the motion picture “Batman Returns” [3].

Separation

Alignment

Cohesion

Fig. 1. Steering behavior

Within Nature, interaction of simple agents can be observed in insect communities
like ants, bees or termites, and their cooperation strategies have inspired researchers
to devise new optimization algorithms based on the concept of emergence [4].

2.2 Adaptation

The second principle of ALife modeling is adaptation, the capability of developing
advantageous traits in response to a changing environment. Adaptation divides into
lifetime learning and evolution which operate on different time scales.

Lifetime learning represents an individual's ability to interact and learn from its envi-
ronment. In contrast, evolution is not defined for individuals, but in the context of entire
populations. Evolution works with genetic information, called genotypes. Through a
process of development, the “mapping function” translates genotypes into phenotypes
which represent the individuals' manifestation within a simulated virtual environment.

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 229

Subsequently, the phenotype is evaluated by a fitness function which determines if the
corresponding genotype is selected for further reproduction (figure 2).

Lifetime learning and evolution are profoundly interwoven. Their interplay leads to
new and insufficiently understood phenomena like the “Baldwin effect” [5] which
denotes that over time learnable traits of the phenotype are potentially assimilated into
the genotype. Hinton and Nowlan clearly demonstrated this effect by a simple evolu-
tionary simulation [6].

One of the most fundamental EIBMs are Richard Dawkins' biomorphs [7]. His
purpose was to demonstrate an evolutionary model on the basis of selection and muta-
tion as proclaimed by Darwin [8], and to point out the feasibility of discovering a
desired genotype inside a huge genetic space. Biomorphs are two dimensional branch-
ing structures used as a graphic representation of a number of simple binary genes,
controling features like depth of recursion, angles of branching and length of lines and
allowing about 500 billion possible combinations. To produce offsprings, biomorphs
use asexual reproduction by copying the parental genes with some probability of ran-
dom mutation.

To evolve a biomorph, the user starts with a display of an initially given parent in-
dividual in the center of the screen and twelve children surrounding it. The user sim-
ply clicks on one of the children or the original parent to select it for survival and
reproduction. Subsequently, the selected biomorph's genes are used to create a new
generation, and the biomorph as well as its children are again displayed. These steps
are repeated, and with every generation the biomorphs “adapt” to the given fitness
function, that is to say, to the taste of the user. In spite of the simplicity of their ge-
netic encoding, the resulting morphologies of biomorphs are surprisingly manifold.
Some biomorphs may look like insects, microorganisms, trees or other familiar ob-
jects (figure 3).

The general concept of biomorphs has been extended into models which simulate
the process of evolution not only based on user selection, but also on agent interac-
tions within a more complex environment [9].

Fig. 2. The evolutionary cycle

Fig. 3. Evolved Biomorphs

3 Simple Agent Approach

Early implementations of EIBMs tried to capture the processes of evolution by mod-
eling simple reproducing individuals acting on a small set of behavioral routines.

230 S. Bornhofen and C. Lattaud

Their level of detail was reduced to a one or two dimensional environmental frame-
work and individuals which lacked almost any morphology, but this is sufficient to
observe ecological interactions between the organisms and the emergence of popula-
tion level phenomena: the limitation of resources introduces a competition between
the reproducers, and they become engaged in a struggle for existence. According to
the principle of the “survival of the fittest”, the organisms either develop successful
strategies or die.

3.1 Tierra

In 1992, Tom Ray modeled evolution by the propagation of self-replicating programs
running on a virtual machine, called Tierra [10]. These programs can be thought of as
digital organisms whose genotype matches the phenotype, and whose physical envi-
ronment consists of energy, i.e. CPU time, and limited space in memory.

An evolutionary run is started by introducing a hand-written ancestor program into
the empty memory. To reproduce, the organism's code is executed. It writes a copy of
itself into newly allocated memory space. Mutations introduce differences in the off-
springs, and competition for memory causes an evolutionary process to begin.

During a run, organisms shrink by decreasing the length of their genotype, as
shorter genes mean less genetic material to be copied more rapidly. Parasites occur,
i.e. organisms that execute instructions of other programs, and even hyper-parasites
develop which utilize instructions from parasites. At the same time, hosts evolve im-
munity to parasitism, forcing their parasites to evolve methods to get around the new
defenses. These observations illustrate the “Red Queen principle” [11] which states
that coevolving populations are due to continuing development in order to maintain
their fitness relative to one another.

Tierra has been used to experimentally examine ecological and evolutionary proc-
esses such as host-parasite density dependent population regulation. Even if Tierra is
modeled in an abstract virtual fashion, it finds many analogies to the real world and
its diverse ecological communities.

3.2 Echo

John Holland's Echo system [12] is a simulator of virtual ecologies which is geared to
more lifelike notions of space and time. It investigates mechanisms which regulate
diversity and information-processing in systems comprised of many interacting adap-
tive agents, or “complex adaptive systems”.

The surrounding environment is made up of a square toroidal lattice of sites which
produces different types of regenerating resources, encoded by a letter. Agents are
located at a site and possess a small set of simple interactions with their environment.
They can relocate to another site, eat the resources and store them. At the same time,
the environment charges a maintenance fee which can be considered as metabolic
cost. An agent also features a small range of predefined inter-agent behaviors which
are fighting, trading and mating. Fighting and trading allow for resource exchange. If
an agent has collected sufficient resources to rewrite its genetic code, it reproduces
asexually or, via mating, sexually.

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 231

This system exhibits emergent phenomena like the formation of agent communi-
ties and trading networks. Echo was used by environmental researchers to show that
explicitly deriving differential equations was not necessarily the most accurate
method for modeling food web complexity [13]. However, due to the high abstraction
level of the Echo model, the degree of fidelity to real systems is uncertain.

3.3 Polyworld

An approach, more faithful to biological systems, was attempted by Larry Yaeger [14].
His virtual ecology, called Polyworld, brings together all the principle components of
real living systems into one artificial system. Polyworld consists of a two dimensional
plane with growing food bits. Just as in Echo, the agents interact, fight and mate, eat the
food and relocate by expressing behavioral primitives. However, an agent's architecture
exhibits more complexity. Its behavior is controlled by a neural network, determined
from its genetic code. During lifetime, a Hebbian algorithm modulates the synaptic
weights, so that the agents are able to learn. Moreover, organisms perceive their world
through a sense of vision from their own point of view.

An evolutionary run is started with the introduction of a random population whose
evolution is guided by a simple external fitness function rewarding the individuals'
activities. If the population is on the verge of dying out, reproduction is regulated by
the system. Evolved populations that exhibit behaviors which allow them to perpetu-
ate their number by reproduction on their own are said to exhibit a “Successful Be-
havior Strategy”.

A variety of species with recognizable behavioral strategies, like fleeing, grazing,
foraging, following, and flocking, evolved from this model. These results met Yae-
ger's primary goal, that is to achieve the emergence of population level behavior from
elementary naturalistic building blocks.

3.4 Discussion

In these early models, the multi-agent architecture of EIBMs is already visible. A
number of evolving agents is placed in a non-evolving framework. The agents ac-
count for the “living” part of the environment, whereas the framework, representing
their outside world, can be considered as the “non-living” part. It comprises the space
where the agents' phenotypes are inserted and potentially holds accessory objects with
simple dynamics, like obstacles or regrowing food bits. Interactions possibly occur
among agents and between agents and the non-living component (figure 4).

Tierra's memory is one dimensional and features no explicit resources at all, so that
space and CPU time are the only constraints for the individuals. Organisms do not
migrate, they are bound to their initial location. Hence, the only significant interaction
between organisms and non-living environment is the allocation of memory for off-
springs. Echo and Polyworld incorporate the notion of food by modeling ingestion of
nearby located resources and subjecting the agents to metabolism. Echo allows the
agents to relocate to a discrete neighboring site. Polyworld features a two dimensional
continuous flat world, in which agents express locomotion commands like “turn” or
“move forward”.

232 S. Bornhofen and C. Lattaud

Fig. 4. Standard architecture of an EIBM

Fig. 5. Sims' evolved creatures for walking

Two major interactions between organisms and non-living environment, i.e. loco-
motion and ingestion have been incorporated, but they are modeled as primitives and
cannot be affected by evolution. The three presented models have proved that a high
level of abstraction allows to grasp various population level phenomena. However,
they yield little results on an individual scale. One of the main obstacles could be the
lack of morphology that limits the agents' degrees of freedom. The models of the fol-
lowing section particularly tackle this problem.

4 The Grammar-Based Approach

Then next generation of EIBMs has been augmented with environments of more
physical accuracy. This improvement allowed a substantial gain of complexity of the
individuals' phenotypes and their interactions with the outside environment. In this
kind of models, a creature's morphology is made up of a number of pre-designed ele-
mental units whose assembly is encoded in the genotype by a grammar-like record
such as a nested graph or L-system [15]. The presented works still used their own
implementations of physical dynamics. However, today a number of available physics
engines relieve researchers of programming this component themselves [16].

4.1 Karl Sim's Block Creatures

In 1994, Karl Sims pioneered a new way of evolving both the morphology and behav-
ior of virtual creatures [17]. Situated in a three dimensional world with realistic phys-
ics, these creatures consist of collections of blocks, linked by flexible joints which are
controlled by neural circuits. Joint angle sensors and touch sensors allow the creatures
to obtain information from their environment. A creature's genotype is written as a
nested directed graph which describes both its morphology and neural control archi-
tecture. This representation provides modularity to the mapping from genotype to
phenotype, and naturally leads to duplication and recursion of body parts.

Sims evolved several locomotion tasks like running and jumping on a flat surface,
or swimming in a virtual marine environment. It turned out that different runs of evo-
lution produced different solutions to the same problem. Some creatures were evoca-
tive of real existing animals like a swimming snake or a walking crab. Others, equally
effective at their tasks, used strange patterns of movement and form (figure 5). In an
extending work [18], Sims studied competitive behavior. In a simple game, two

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 233

opponents had to fight for possession of a cube that was placed halfway between
them. The creatures not only evolved ways of reaching the cube quickly, but also of
fending off their opponents.

4.2 Sexual Swimmers

Sexual Swimmers [19] is an artificial ecosystem which demonstrates the evolution of
morphology and locomotion among a population of stick figures in a virtual two di-
mensional pond. A simple model of physics enables the agents to propel themselves
through simulated water. Swimmers ingest regrowing food bits throughout the pond
and reproduce by mating with other swimmers. As there is no explicit fitness func-
tion, selection is dictated by the swimmers' locomotion skills which allow them to
quickly reach a desired goal, either food or mate. Moreover, the agents have basic
perceptions, and the choice of a mate is influenced by preferences for morphological
traits like color, length of limbs or degree of agitation.

When length is considered attractive, populations with elongated bodies and only
few branching parts emerge. When selecting for color, swimmers of differing colors
rarely mate with each other and population often breaks into distinct coloration
groups. This work shows how the phenomenon of sexual attractiveness affects the
course of evolution in respect of the creatures' body plan as well as locomotion style.

4.3 Framsticks

Framsticks [20] is a three dimensional virtual ecology, i.e. a project modeling crea-
tures seeking food in their environment. Besides energy balls that can be ingested by
the creatures, the outside world is enriched with a non-trivial topology and a water
level. An agent is made up of connected sticks which can be specialized for various
purposes like assimilation, strength, ingestion or sensors (figure 6). A neural brain
computes excitations in neural nets, collects data from the sensors and sends signals
to effectors that bend and rotate the connection points.

The Framsticks project proves that an increased level of complexity can yield the
same results as those obtained in simpler population level simulations, while offering
much more possibilities to investigate individual level behavior. Like in Sims' work, a
number of locomotion techniques evolved from this model. Moreover, a comparison
of different kinds of genotypes was published showing that evolution can be enhanced
by the choice of well-designed genetic encodings [21].

4.4 Discussion

The environments of the presented models are characterized by the adoption of realis-
tic physical dynamics. Ventrella's interest in population level phenomena dictated a
relatively simple two dimensional pond. Three dimensional flat land and marine envi-
ronments were modeled by Karl Sims, and the Framsticks project merged land and
water worlds into various landscapes.

The design of possible interactions between the agents and their outside world still
focuses on ingestion and locomotion. However, whereas ingestion remains to be mod-
eled by behavioral primitives, the articulated morphology of a creature's phenotype

234 S. Bornhofen and C. Lattaud

allows for a new vision of locomotion. The behavioral building block of previous
models is superseded by an emergent result of the agent's morphological activities.

This fact illustrates how, to achieve a given goal, evolution can exploit the dynam-
ics of the environment. In the case of locomotion, evolution discovered that an organ-
ized behavior of the agent's morphological elemental units allows to relocate its
phenotype. Nature offers a wide range of further demonstrations of this principle. For
example, the forces among the molecules of the air lead to properties that allowed to
evolve birds that flap their wings to fly, plants which disperse their seeds with the
wind, or humans who stimulate their vocal cords to communicate.

Fig. 6. Framsticks creature and its physics

Fig. 7. Evolved Blockpushers

5 The Embryogenic Approach

The grammar-based genotype encoding does not mirror the process of a real creature's
biological embryogenesis, since the stage of development corresponding to the mo-
lecular chemistry is systematically skipped. The embryogenic approach, inspired by
evolutionary developmental biology, attempts to evolve the morphology and neural
architecture of virtual agents in a new, biologically more accurate fashion.

The mapping from genotype to phenotype takes place during a developmental
phase. The genotype encodes “functional genes” which express the behavior of a cell
like division, growth or death, and “regulatory genes” which generate substances that
affect the activity of both gene types. The interplay between diffusing genetic infor-
mation of adjoining cells forms a genetic regulatory network which directs the trans-
formation of an agent from a single structural unit or cell into a multi-cellular
organism.

5.1 Eggenberger's Evolved Morphologies

The constitutive work in this field was achieved by Eggenberger [22] who evolved
static morphologies. The environmental framework consists of a discrete three dimen-
sional lattice which constitutes both the diffusion space of various chemicals and the
sites for the individual cells of the organisms' compound morphology. The lattice ad-
ditionally contains substances whose concentration gradients provide a positional
information to the cells.

Eggenberger demonstrated how artificial genetic regulatory networks can be mod-
eled, and that it is possible to evolve artificial multicellular organisms in a way that
they display high degrees of symmetry. Moreover, his work highlights that differential

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 235

gene expression dissociates the complexity of information in the genotype from the
complexity of the evolved phenotype.

5.2 Blockpushers

Taking up the idea of embryogenesis, Bongard and Pfeifer [23] developed a simula-
tion system, called “Artificial Ontogeny”, to evolve both the morphology and neural
control of virtual creatures. Similar to Sims' work, these creatures exist on a flat plane
within a three dimensional environment endowed with physical dynamics.

The ontogenetic process transforms a single structural unit in a continuous manner
into an articulated agent composed of several units: After a unit splits from its parent
unit, the two units are linked by a rigid connector. The new unit is attached to the
rigid connector by a one degree of freedom rotational joint. In a similar manner, some
or all units develop sensors, actuators and internal neural structure (figure 7). In order
to evaluate its fitness, an agent is first grown and then tested against a given fitness
function, that is to push a nearby block as far as possible.

The evolved blockpushers were found to solve the problem, showing that a mini-
mal model of embryogenesis suffices to evolve agents that perform a non-trivial task
in a virtual environment with physical dynamics. According to the authors, the ob-
tained results “point to the high evolvability of the Artificial Ontogeny system” [23].

5.3 Discussion

The models of this section are characterized by a new approach with respect to the
agent's genesis. For this purpose, the environments have been enriched with the ca-
pacity of diffusing substances in order to allow the propagation of gene products. In
addition to the dynamics of realistic physics, the concept of diffusion is another ex-
ample of environmental dynamics that allows emergent phenomena which are, in the
case of embryogenesis, new ways of phenotypic shaping.

However, the quality of diffusion is only exploited during the process of the agents'
developmental phase. Eggenberger abstains from complex physical dynamics as he is
only interested in static phenotypes, whereas Bongard and Pfeifer adopt a physics-
based three dimensional space in order to study morphological activity. Interactions
between full-grown agents and the outside world do not seem to exceed those in the
models of the last section.

The recency of the approach does not allow for final conclusions, but it is ques-
tionable whether further research will considerably surpass the results of grammar-
based encoding schemes, as long as the environment is not endowed with new
properties. Two approaches are suggested in the next section.

6 Synthesis and Conclusion

The study of EIBMs is becoming an increasingly important domain in Artificial Life
research. EIBMs allow to investigate the laws of the evolution of autonomous agents
at individual and population level. They are based on the two concepts of emergence,
as the models are based on individuals, and adaptation, as evolution and possibly life-
time learning allow the individuals to enhance their fitness.

236 S. Bornhofen and C. Lattaud

A short and non-exhaustive survey of influential EIBMs during the past twenty
years has been presented in this paper. The works can be grouped into four periods
which reflect a particular state-of-the-art. Successes have been made with respect to
evolving both population level and individual level phenomena. Virtual ecologies
achieve the formation of simple group behavior such as flocking or trading. As to
evolution of individuals, simple locomotion behaviors can be readily bred.

From the view of creative and long-lasting evolution, it has to be recognized that in
every model evolution ceases after initial progress. After all, current ALife approaches
“do not seem to be as alive as we might hope” [24]. In search of a reason for this phe-
nomenon, the history of EIBMs can teach a lesson: In early models, the main focus was
placed on the emergent relationships between the evolving agents, whereas their outside
world was somewhat considered as an uninteresting framework whose primary function
was the supply of space and, at best, food bits. When the design of the environment
switched to physical models, evolution was given the possibility to exploit dynamics not
only among agents, but also between agents and environment, which resulted in the
emergence of locomotion behaviors. However, after this incisive changeover, most of
the attention returned to the agents. Even in more recent models the outside world re-
mains not much more than an inert vacuum space whose sole purpose is to allow the
agents to express their morphological activities. It stands to reason that if more care was
accorded to the design of the environmental framework, evolution would not fail to dis-
cover ways to make use of its dynamics. This idea is indeed not a new one, since early
pioneers in Artificial Life like John Holland already stated in 1962 that "the study of
adaptation involves the study of both the adaptive systems and its environment" [25].

Starting from the current state-of-the-art, different ways of enriching the envi-
ronment can be considered. As seen in the discussions of sections 4 and 5, the idea of
creatures initiating dynamics in the environment might have been underestimated in
current models. In extension to the embryogenic diffusion space, the environments
could be enriched with several media whose properties can be exploited by evolution.
If the media are able to propagate information, the approach could also provide new
ways of communication among the creatures. Furthermore, since ingestion is still
modeled as a behavioral primitive, a simple chemical model could complement the
physical one and extend the creatures' metabolism to ingestion, digestion and excre-
tion. Phenotypic evolution would occur not only at a functional, but also at a physio-
logical level and affect the creatures' resource management. This approach is based on
the idea that a fundamental criterion for Life is the presence of a metabolism. To be
considered as “alive”, any being, natural or artificial, should convert matter or energy
of the environment into suitable forms for its organism [26].

These few ideas are only suggestions of how to reconsider the significance of all
the components of a model in the research about life-at-it-is and life-as-it-could-be.

References

1. Langton, C.G.: Preface. Artificial Life II, Langton C.G. et al., eds., Volume X of SFI Stud-
ies in the Sciences of Complexity, Addison-Wesley (1992) 13-18

2. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer
Graphics, 21(4) (1987) 25-34

 Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models 237

3. Sipper, M.: An introduction to artificial life, Explorations in Artificial Life (special issue
of AI Expert), Miller Freeman, San Francisco, CA (1995) 4-8

4. Dorigo M., Stuetzle T.: Ant Colony Optimization, MIT Press, 2005
5. Baldwin, J.M.: A New Factor in Evolution. Am. Naturalist 30 (1896) 441-451, 536-553
6. Hinton, G.E., Nowlan, S.J.: How Learning Can Guide Evolution. Complex Systems, Vol.

1 (1987) 495–502
7. Dawkins, R.: The Blind Watchmaker. W.W. Norton, New York (1986)
8. Darwin, C.: On the origin of species. London, John Murray (1859)
9. Métivier M., Lattaud C., Heudin J.C.: A stress based speciation model in LifeDrop, Pro-

ceedings of the 8th Int. Conference on Artificial Life, Sydney, Australia (2002) 121-126
10. Ray, T.S.: An approach to the synthesis of life, Proceedings of Artificial Life II, Langton

C.G. et al., eds., Addison-Wesley (1992) 371-408
11. Van Valen, L.: A New Evolutionary Law, Evolutionary Theory 1 (1973) 1-30
12. Holland, J.H.: The Echo Model, In: Proposal for a Research Program in Adaptive Compu-

tation, Santa Fe Institute (1992)
13. Schmitz, O.J., Booth, G.: Modeling Food Web Complexity: The Consequence of Individ-

ual-based Spatially Explicit Behavioral Ecology on Trophic Interactions, Yale Univ.
(1996)

14. Yaeger, L.: Computational Genetics, Physiology, Metabolism, Neural Systems, Learning,
Vision, and Behavior or PolyWorld: Life in a New Context. Artificial Life III. Ed Lang-
ton, (1994) 263-298

15. Lindenmayer, A.: Mathematical models for cellular interactions in development, Parts I
and II, Journal of Theoretical Biology, Vol. 18 (1968) 280-315

16. Taylor, T., Massey, C.: Recent Developments in the Evolution of Morphologies and Con-
trollers for Physically Simulated Creatures. Artificial Life vol. 7(1) (2001) 77-87

17. Sims, K.: Evolving Virtual Creatures. SIGGRAPH Proceedings, ACM Press (1994) 15-22
18. Sims, K.: Evolving 3D Morphology and Behavior by Competition. Brooks, R. & Maes, P.

(eds.) Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthe-
sis and Simulation of Living Systems, MIT Press (1994) 28-39

19. Ventrella, J.: Sexual Swimmers (Emergent Morphology and Locomotion without a Fitness
Function). From Animals to Animats. MIT Press (1996) 484-493

20. Komosinski, M., Ulatowski, Sz.: Framsticks: Towards a Simulation of a Nature-Like
World, Creatures and Evolution. In: Proceedings of 5th European Conference on Artificial
Life, Springer-Verlag (1999) 261-265

21. Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for simu-
lated 3D agents. In: Artificial Life Journal, 7 (4), MIT Press (2001) 395-418

22. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential
gene expression, European Conference on Artificial Life (1997) 205-213

23. Bongard, J. C., Pfeifer, R.: Repeated Structure and Dissociation of Genotypic and Pheno-
typic Complexity in Artificial Ontogeny, in Spector, L. et al (eds.), Proceedings of
GECCO 2001. San Francisco, CA: Morgan Kaufmann publishers (2001) 829-836

24. Brooks, R.A.: The Relationship Between Matter and Life, Nature, Vol. 409 (2001) 409–
411

25. Holland, J.H.: Outline for a Logical Theory of Adaptive Systems, Journal of the Associa-
tion for Computing Machinery (1962) 297-314

26. Farmer, J.D., Belin, A.: Artificial Life: The Coming Evolution, Proceedings of Artificial
Life II, Langton C.G. et al., eds., Addison-Wesley (1992) 815-840

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 238 – 246, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Enhanced Genetic Algorithm for Protein Structure
Prediction Using the 2D Hydrophobic-Polar Model

Heitor S. Lopes and Marcos P. Scapin

Bioinformatics Lab. (CPGEI), Centro Federal de Educação Tecnológica do Paraná,
Av. 7 de setembro, 3165 – 80230-901 Curitiba, Brazil

hslopes@cpgei.cefetpr.br, mpscapin@cpgei.cefetpr.br

Abstract. This paper presents an enhanced genetic algorithm for the protein
structure prediction problem. A new fitness function, that uses the concept of
radius of gyration, is proposed. Also, a novel operator called partial optimiza-
tion, together with different strategies for performance improvement, are de-
scribed. Tests were done with five different amino acid chains from 20 to 85
residues long and better results were obtained, when compared with those in the
current literature. Results are promising and suggest the suitability of the pro-
posed method for protein structure prediction using the 2D HP model. Further
experiments shall be done with longer amino acid chains as well as with real-
world proteins.

1 Introduction

A protein is a chain of amino acid residues that folds into a specific native 3-
dimensional structure under natural conditions, just after being synthesized in the
ribosome. The task of predicting this 3-D structure is called the protein structure pre-
diction problem (PSP) and its resolution is of great importance for modern molecular
biology.

Exhaustive search of the entire conformational space of a protein is not possible,
even for the small ones. Simplified models, where amino acids are laid on a 2- or 3-
dimensional lattice, have been proposed. Again, such models are feasible only for
small proteins, due to its NP-completeness [1]. Consequently, heuristic optimization
methods seem to be the most reasonable algorithmic choice to solve PSP, and,
amongst them, many evolutionary computation approaches have been proposed [2],
[3], [4], [5], and [6]. In this paper we present an improved genetic algorithm for PSP.
Its most important feature is a new fitness function capable of directing the search
towards good protein conformations. Using a benchmark, results show that our im-
plementation achieves optimal or quasi-optimal solutions for small proteins.

2 2D HP Model

The 2D HP (2-dimensional Hydrophobic-Polar) model was introduced by [7] and it is
the most widely studied discrete model for protein folding in the recent literature. It
models the concept that the major contribution to the free energy of the native

 An Enhanced Genetic Algorithm for Protein Structure Prediction 239

conformation of a protein is due to interactions among hydrophobic residues. They
tend to form a core in the protein structure while surrounded by hydrophilic residues
that interface to the environment.

In the HP model, the 20 standard amino acids are divided into two types, according
to its affinity to water: hydrophobic (H for non-polar) or hydrophilic (P for polar). As
it is a lattice model, the amino acid chain is embedded in a 2- or 3-dimensional square
lattice and the movements of the chain are restricted to angles of 90o. In a legal con-
formation, the adjacent residues in the sequence must be adjacent in the lattice and
each lattice point can be occupied by only one residue.

The free energy of a conformation is inversely proportional to the number of hy-
drophobic non-local bonds (or H–H bond). An H–H bond occurs if two hydrophobic
residues occupy adjacent grid points in the lattice but are not consecutive in the se-
quence. Each such interaction contributes with –1 to the energy value.

3 Implementation

In this section, we describe in details the application of a genetic algorithm (GA) and
the strategies proposed to improve its performance.

3.1 Chromosome Encoding

The dynamics and effectiveness of a GA is strongly influenced by the way solutions
are represented. There are two ways of representing a chain in a lattice: either using
absolute or relative coordinates. In the former, every amino acid uses Cartesian coor-
dinates to define its position in the lattice. In the latter, the definition of an amino acid
position takes into account the position of the previous one, with relative movements.
Based on the results presented by [8], our implementation uses internal coordinates.
Due to the 2-dimensional lattice used, there are only three possible moves, regarding
the previous amino acid of a chain: (R)ight, (L)eft and (F)orward. These moves indi-
cate that the next amino acid of the chain will be folded (together with the remaining
forward chain) 90 degrees to the right, to the left or the chain will be stretched ahead.

Therefore, the GA will have a population of individuals with a single chromosome,
each one representing a complete conformation. The chromosome is composed by a
number of genes corresponding to the number of amino acids in the chain minus one
(the starting amino acid of the chain), and every gene is defined over the alphabet
{R, L, F}.

3.2 Initial Population

In this problem, a constraint to be handled is related to the self-avoidance of a con-
formation, i.e., whether illegal conformations are allowed during evolution or not. If
not, it is necessary a procedure that guarantees the generation of only legal conforma-
tions in the initial population and in the application of the genetic operators. Another
approach, called penalty method, allows the existence of unfeasible conformations
during the evolution, but a penalty is added (to the fitness value of the individual) for
every lattice point at which there is a collision of more than one amino acid. Our im-
plementation uses the penalty method.

240 H.S. Lopes and M.P. Scapin

According to [3], the encoding in relative internal coordinates exhibits the problem
that initial populations (randomly created) tend to have an increasing number of colli-
sions as the length of the protein increases, making the GA waste efforts with illegal
conformations before promising conformations can be found. Based on this statement,
a different strategy was used to create the initial population aiming to minimize the
collisions while generating a larger initial genetic diversity. This strategy divides the
population into two parts that are generated differently. The proportion of each part is
established by a user-defined parameter called PopIniFull. The first part of the popu-
lation is randomly generated, as usual, and this is the part that the percentage of the
PopIniFull parameter indicates. The second part is generated considering each indi-
vidual as totally unfolded and then applying a number of random mutations between 3
and the total number of genes in the chromosome, uniformly distributed. Using this
method, there will be a certain amount of individuals having few mutations that in-
creases the diversity of the initial population and allows that the unfolded parts of the
individuals help the evolution process.

3.3 Fitness Function

To evaluate an individual, it is necessary to translate its genotypical encoding, defined
over the alphabet {R, L, F}, to obtain its Cartesian coordinates. This procedure allows
knowing how the amino acids are disposed in the lattice, and then, the computation of
an objective goodness measure of the conformation. In this work, we propose a new
fitness function composed of three terms, as shown in Equation 1:

PHH RGRGNLBFitness ××= (1)

where NLBH is the number of hydrophobic non-local bonds of the conformation and
RGH and RGP are terms computed using the radius of gyration of the hydrophobic and
hydrophilic residues, respectively, as explained below. The product of all terms in this
equation indicates that all of them should be maximized.

3.3.1 Hydrophobic Non-local Bonds
It is believed that hydrophobic non-local bonds are the main force that drives the pro-
tein folding process. We are considering the problem as the maximization of the num-
ber of H–H bonds thus, for every hydrophobic non-local bond, NLBH is added by 1.
Since we are using a penalty method, NLBH is decreased whenever a collision occurs.
The penalty term, decremented from NLBH, is composed by the number of grid points
which are occupied by more than one residue, multiplied by the penalty weight which,
in turn, is set according to the chain length: the longer the chain, the higher it is.

3.3.2 Radius of Gyration
The original HP model uses only the hydrophobic non-local bonds term to evaluate an
individual but, according to [8], without a modified energy function, there will exist
large plateaus in the energy landscape on which local search cannot find a descent
direction, leading to a random search. This fact was also experienced in our prelimi-
nary implementation and, aiming to avoid this trap and enhance the fitness function,
we propose the use of a new concept, called radius of gyration (RG).

 An Enhanced Genetic Algorithm for Protein Structure Prediction 241

RG of a solid body is the radial distance from a given axis at which the mass of a
body could be concentrated without altering the rotational inertia of the body rela-
tive to that axis [9]. Hopefully, using RG in the fitness function the fitness land-
scape can be changed in such a way that the fitness function rewards more compact
conformations with the same number of H–H bonds, bringing the evaluation closer
to reality.

RG, in the scope of the PSP, indicates how compact a set of amino acids is: the more
compact a conformation, the smaller is its radius of gyration. In this term of the fitness
function, only hydrophobic residues were considered, rewarding the conformations that
have smaller values of radius of gyration. This term is presented in Equation 2:

[]
NH

YyXx
MaxRGRG

NH

i
ii

HH
=

−+−
−= 1

22)()(
,

(2)

where xi and yi are the Cartesian coordinates of the i-th hydrophobic residue, X and
Y are the mean values of all hydrophobic xi and yi, respectively; NH is the number of
hydrophobic residues in the chain; and MaxRGH is the radius of gyration of the amino
acid chain totally unfolded. The second part of Equation 2 represents the radius of
gyration of hydrophobic residues related to the point given by the mean coordinates,
and it is subtracted from MaxRGH in order to maximize RGH.

The term related to the hydrophilic radius of gyration in the fitness function has the
opposite purpose as RGH: it fosters the spreading of hydrophilic residues towards the
edge of the conformation. This term is calculated in the same way as in Equation 2,
except that, in this case, only hydrophilic residues are considered, and it is not sub-
tracted from any other value (as in Equation 2). Using RGH computed before, RGP can
be obtained using Equation 3:

[]

−

≥
=

−
−+−

= =

otherwise
DIFRG

DIFRGif
RG

RG
NP

YyXx

DIFRG

P

H

NP

i
ii

1

1
0 1

)()(
1

22

, (3)

In Equation 3, DIFRG computes the difference between the hydrophilic and the
hydrophobic radii of gyration. A positive difference for DIFRG means that the hydro-
phobic residues are buried inside the conformation, while the hydrophilic ones are
outside. Such situation is desired and in this case, the hydrophilic radius of gyration
has no influence in the fitness function. However, if the opposite is true, meaning that
the hydrophobic residues are more spread than the hydrophilic, which is not desired,
this conformation will be penalized, decreasing its fitness value.

242 H.S. Lopes and M.P. Scapin

3.4 Genetic Operators and Local Improvement Strategies

In GA, genetic operators are used to create new individuals by means of modifying
existing ones. Therefore, it is necessary a method for choosing individuals from the
current population in order to apply the genetic operators. We used the tournament
selection method that randomly selects a number of individuals from the population.
These individuals compete in a tournament and the best one is chosen for the applica-
tion of the operators. The first operator that is applied during the generation of a new
population is the crossover operator. For this problem, this operator plays an impor-
tant role since a piece of structure (conformation) that has been adequately folded can
be of further use in the construction of a complete solution [10]. Two types of cross-
over were implemented: 1- and 2-point crossover and both are applied with the same
probability during the evolution.

Another operator commonly used in GA is mutation. In this work, two different
types of mutation were developed. The first is the simple mutation where each gene is
tested, according to the mutation probability, to verify whether the actual value of the
gene will be changed or not. The second type, called Improved Mutation, works as the
simple mutation except by the fact that after each mutation is applied, the individual is
reevaluated to check if its fitness has increased. In this case, the change is maintained,
otherwise it is discarded. In order to guarantee some diversity during the evolution,
40% of the mutations are simple and 60% are improved mutations.

In our implementation, both crossover and mutation probabilities are not fixed dur-
ing generations. They have an initial and a final value, respectively for the first and
the last generation. The exact probability value in a given generation is a linear inter-
polation of the initial and final values.

A specially devised operator used in this work is named Partial Optimization. The
basic idea of this operator is to randomly select two non-consecutive residues of the
protein and fix their position in the lattice. Then, all the different possibilities of locat-
ing the intermediate residues maintaining the connectivity of the chain are calculated.
The conformation that gives the maximum fitness among all of them is kept. This
operator was inspired in a generalization of the 2-opt heuristics proposed by [11] for
the traveling salesman problem. The number of intermediate residues to be permu-
tated is a user-defined parameter named Partial Optimization size.

In preliminary tests, the GA frequently got trapped in local minima. Thus, it was
necessary to implement a strategy, called Decimation, to make the GA overrides this
situation. After each generation, the fitness of the best individual is checked in order
to verify whether or not it has changed from the previous generation. If not, a counter
is increased by 1. If so, the new best fitness is kept and the counter is reset to 0. When
the non-improvement counter reaches 10, the decimation strategy is applied. The idea
is to eliminate all individuals of the current population, except the best, and generate
again a new population (in the same way explained in section 3.2), including the best
individual previously found. Applying this strategy makes the population to have a
large genetic diversity, hopefully allowing further evolution. A point that needs to be
taken into account is the fact that all the newly generated population probably will
have very low fitness values compared to the best individual previously found. There-
fore, it is necessary to decrease the selective pressure giving more chance to all indi-
viduals to be selected. This is done by decreasing the tourney size in the selection

 An Enhanced Genetic Algorithm for Protein Structure Prediction 243

method at the same time that the probability of applying the Improved Mutation is
increased. This strategy decreases competitiveness between individuals and permits
that all the population becomes, on average, a little better and contributes to the evo-
lution. When this strategy is applied, the non-improvement counter returns to 0 and
the verification of the best fitness change proceeds until the last generation.

4 Computational Experiments and Results

Several experiments were performed with the same instances used in [12], for five
amino acid chains with 20, 36, 48, 64, and 85 residues. Such instances are not real-
world proteins, but a benchmark for which the optimal folding with the 2D HP model
is known. Despite of this, it would be interesting to evaluate our method comparing it
with a similar one, over the same instances. According to [12], the maximum number
of H–H bonds for those instances are: 9, 14, 23, 42, and 52, respectively.

For all the experiments, the parameter set used is shown in Table 1. It was not done
a combinatorial experiment so as to find the most efficient set of parameters within
the possible range. Instead, we conducted some preliminary tests with different com-
binations of parameters using a single instance. The set of parameters that performed
best among the combinations tested was chosen as default. It is worth to note that
possibly another set of parameters could perform better than those used here, but this
investigation is subject of future research.

Table 1. Set of parameters for the genetic algorithm

Parameters Values
Population size 500
Number of Generations 100
PopIniFull 30%
Tourney size 3%
Elitism Yes
Crossover probability (initial / final) 50% / 70%
Mutation probability (initial / final) 5% / 10%
Partial optimization probability 4%
Partial optimization size 7 residues

Table 2. Comparison of results. Numbers in parenthesis indicates how many times the best
score was found in 100 different runs and the bold values indicate the best result for a given
instance.

König and Dandekar [12] Our implementation Chain
length Best solution Mean value Best solution Mean value

20 9 (100×) 9.00 9 (100×) 9.00
36 14 (8×) 12.40 14 (6×) 12.44
48 23 (1×) 18.50 23 (2×) 20.06
64 37 (1×) 29.30 40 (1×) 33.58
85 46 (1×) 40.80 51 (2×) 45.74

244 H.S. Lopes and M.P. Scapin

As mentioned before, the penalty weight was (empirically) set according the length
of the chain: 2, 2.5, 3, 3.5 and 4 for the 20-, 36-, 48-, 64- and 85-residue chains, re-
spectively.

Tests were run 100 times and the individual with the highest number of hydropho-
bic non-local bonds from the last generation was considered the best of the run. The
overall best individual for each instance is shown in Table 2, together with the num-
ber of times this solution was found within 100 runs. The mean number of H–H bonds
of the 100 best individuals was calculated and also presented in that table, together
with the results obtained by [12], for the purpose of comparison. Values in bold
represents the best solutions.

For the 20-residue chain, as the global minimum was always reached, the perform-
ance measure considered was the mean number of energy evaluations needed to find
the global minimum. König and Dandekar’s implementation needed an average of
11824 energy evaluations while ours took 10830.

For the first three chains (namely, 20, 36 and 48 amino acids chains) our results
were very similar to [12]. Both implementations were able to find the global optimum
but, in average our implementation performed better for the 36- and 48-long amino
acid chains. For the 64- and 85-long amino acids chains, our implementation ob-
tained much better results than [12], either considering the best result or the mean
value of energy function. For both instances, our best result was very close to the
optimal solution known (42 and 52 H–H bonds, respectively).

Fig. 1. Best conformations found for the 85-long amino acid chain

In general, our GA got similar results to [12] for the smaller chains and better re-
sults for the longer chains. It is important to consider that a difference of one bond
from a conformation to another indicates a great improvement obtained by the algo-
rithm and jumping from the closest local minimum to the global minimum can be
considered a great achievement. From a solution to another with single bond more, it
can mean a quite different folding.

The two best results found for the 85-residue chain are presented in Fig. 1, where
the black dots are the hydrophobic residues and the white dots, the hydrophilic. The
biggest dot is the beginning of the chain.

 An Enhanced Genetic Algorithm for Protein Structure Prediction 245

5 Conclusions

This paper presented novel strategies for using a genetic algorithm for the protein
structure prediction problem using the 2D HP model. The use of the concept of radius
of gyration in the fitness function took some smoothness to the fitness landscape,
allowing better solutions to be found. Using this fitness function, two conformations
with the same number of H–H bonds can be adequately discriminated. Also, the use
of the partial optimization and improved mutation operators, together with the deci-
mation strategy have enhanced the GA, allowing it to escape from local minima.

Besides the enhancements in the GA, it is important to emphasize the results ob-
tained. While for short chains the results got no significant improvements (compared
with [12]), for the long ones, significant local minima were found, suggesting that
there is room for further improvement with longer chains. This subject shall be ad-
dressed in further experiments.

The two different solutions shown in Fig. 1 emphasize the difficulty of the PSP
problem using a lattice model. The use of this model and the energy function based on
the number of H–H bonds implicitly implicates a (strongly) multimodal fitness land-
scape with many equal-sized plateaus. This fact, by itself, requires efficient search
strategies specially when using evolutionary computation techniques.

Exhaustive experiments aiming to find the best parameter set for the GA were not
performed, even though the results achieved were very promising. Finding such set of
parameters is computationally intensive and care must be taken on its generalization.
Experience suggests that not only the size of the amino acid chain is important, but
also, some implicit characteristic of the folded structure. These research directions
will be explored in the near future.

Overall, results encourage the continuity of the work towards a more complex lat-
tice model, and further tests with the use of real-world protein sequences.

Acknowledgments

Authors would like to thank CNPq for the financial support for H.S.Lopes (grants
305720/04-0 and 402018/03-6) and M.P.Scapin (grant 131355/04-0).

References

1. Berger, B., Leight, T.: Protein Folding in the Hydrophobic-hydrophilic (HP) Model is NP-
Complete. J. Comp. Bio. 5 (1998) 27–40

2. Unger, R., Moult, J.: A Genetic Algorithm for Three Dimensional Protein Folding Simula-
tions. In: Proceedings of the 5th Annual International Conference on Genetic Algorithms
(1993) 581–588

3. Patton, A.L., Punch III, W.F., Goodman, E.D.: A Standard GA Approach to Native Protein
Conformation Prediction. In: Proceedings of the 6th International Conference on Genetic
Algorithms, Morgan Kauffman (1995) 574–581

4. Pedersen, J.T., Moult, J.: Protein Folding Simulations With Genetic Algorithms and a De-
tailed Molecular Description. J. Mol. Biol. 269 (1997) 240–259

246 H.S. Lopes and M.P. Scapin

5. Krasnogor, N., Pelta, D., Lopez, P.E.M., Canal, E.: Genetic Algorithm for the Protein
Folding Problem: a Critical View. In: Proceedings of Engineering of Intelligent Systems
(1998) 353–360

6. Day, R.O., Lamont, G.B., Pachter, R.: Protein Structure Prediction by Applying an Evolu-
tionary Algorithm. In: International Parallel and Distributed Processing Symposium
(2003) 155–162

7. Dill, K.A.: Theory for the Folding and Stability of Globular Proteins. Biochemistry 24
(1985) 1501–1509

8. Krasnogor, N., Hart, W.E., Smith, J., Pelta, D.A.: Protein Structure Prediction with Evolu-
tionary Algorithms. In: Proceedings of the International Genetic and Evolutionary Compu-
tation Conference (1999) 1596–1601

9. Beer, F.P., Johnston, E.R.: Vector Mechanics for Engineers – Statics. New York: McGraw
Hill, 1980

10. Unger, R., Moult, J.: On the Applicability of Genetic Algorithms to Protein Folding. In:
26th Hawaii International Conference on System Sciences, vol. I, IEEE Press (1993) 715–
725

11. Croes, G.A.: A Method for Solving Traveling Salesman Problems. Oper. Res. 5 (1958)
791–812

12. König, R., Dandekar, T.: Improving Genetic Algorithms for Protein Folding Simulations
by Systematic Crossover. BioSystems 50 (1999) 17–25

Incorporating Knowledge of Secondary
Structures in a L-System-Based Encoding

for Protein Folding

Gabriela Ochoa1, Gabi Escuela1, and Natalio Krasnogor2

1 Department of Computer Science, Universidad Simon Bolivar,
Po. Box 89000, Caracas 1080-A, Venezuela

gabro@ldc.usb.ve, gabiescuela@netuno.net.ve
2 School of Computer Science and I.T., University of Nottingham,

NG81BB, Nottingham, UK
Natalio.Krasnogor@nottingham.ac.uk

Abstract. An encoding scheme for protein folding on lattice models,
inspired by parametric L-systems, was proposed. The encoding incorpo-
rates problem domain knowledge in the form of predesigned production
rules that capture commonly known secondary structures: α-helices and
β-sheets. The ability of this encoding to capture protein native con-
formations was tested using an evolutionary algorithm as the inference
procedure for discovering L-systems. Results confirmed the suitability
of the proposed representation. It appears that the occurrence of motifs
and sub-structures is an important component in protein folding, and
these sub-structures may be captured by a grammar-based encoding.
This line of research suggests novel and compact encoding schemes for
protein folding that may have practical implications in solving meaning-
ful problems in biotechnology such as structure prediction and protein
folding.

1 Introduction

Proteins are complex organic compounds made up of amino acids joined by
peptide bonds1; they are essential to the structure and function of all living
beings; and are amongst the most studied molecules in biochemistry. Proteins
fold naturally into unique 3-dimensional structures, known as their native state
or tertiary structure. The biological role of a protein will depend on this 3D
conformation which in turn is determined by its amino acid sequence (also known
as primary structure). Biochemists also distinguish secondary structures which
are highly patterned sub-structures – mainly α-helices and β-sheets – that are
locally defined, so there can be many secondary motifs present in a single protein
(see Figure 1).
1 An amino acid is any molecule that contains both amino and carboxylic acid func-

tional groups. A peptide bond is a chemical bond formed between two molecules
when the carboxyl group of one molecule reacts with the amino group of the other
molecule, releasing a molecule of water.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 247–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 G. Ochoa, G. Escuela, and N. Krasnogor

Fig. 1. A representation of the 3D structure of myoglobin, showing shaded α-helices

Genome projects are producing vast amounts of amino acid sequences, but
understanding the biological role of these proteins will require knowledge of their
structure. The problem of predicting the 3D conformation of a protein from its
linear sequence, is known as the protein structure prediction problem (PSP).
Although, biochemists use empirical techniques (e.g. magnetic resonance, and
X-ray crystallography) on protein crystals in order to infer their conformations,
these methods are costly and time consuming. Computational structure predic-
tion methods will provide valuable information for the large amount of sequences
whose structures will not be determined experimentally. Two classes of compu-
tational methods for the PSP are distinguished [1]. The first (e.g. threading and
comparative modelling) rely on detectable similarities between the modelled se-
quence and known structures. The second class of methods, de novo or ab initio
methods, predict the structure from sequence alone, without relying on similarity
at the fold level between the modelled sequence and any of the known structures.
Several heuristic search methods (e.g. monte-carlo methods, simulated annealing,
and evolutionary algorithms) have been applied for de novo structure prediction
[20, 4, 16, 11]. However, PSP is still an open problem and large instances are
difficult to solve. A possible cause hindering the scaling of these techniques, are
the current direct encodings used (see section 2.1). In the context of EAs ap-
plied to design, it has been argued that a generative or rule-based scheme, that
specifies how to construct the phenotype, as opposed to a direct encoding of the
phenotype; can achieve greater scalability through self-similar and hierarchical
structures [7, 2, 8]. Moreover, a generative encoding would be a more compact
representation of a solution. A first approach to a generative encoding for the
PSP was presented in [6], where non parametric L-systems were evolved to cap-
ture protein tertiary structures. This approach although promising, met only
partial success since the search process was slow and required many executions
of the algorithm to obtain a successful L-system. Here we improved those re-
sults with two extensions: first, we consider parametric L-systems, and secondly,
we incorporate knowledge about secondary structures in the form of predefined
rules.

Previous work on evolving L-systems both for capturing blood vessels on the
eye [9], and the growth process of trees [3], have had to rely on specific knowl-
edge of the problem domain in order to enhance the algorithms’ performance.
This knowledge was, in both cases, incorporated in the form of predesigned

Incorporating Knowledge of Secondary Structures 249

fixed rules. On the other hand, previous studies on protein folding simulations
with evolutionary algorithms, have used knowledge about secondary structure
in order to improve the algorithms’ behavior on large instances [13, 16, 10, 15].
Thus, the evidence gathered from previous research suggests that incorporating
domain knowledge in the form of predesigned rules that capture secondary sub-
structures, would enhance performance. In this paper we test this hypothesis and
compare results with the non parametric L-systems (without knowledge about
secondary structures) suggested in [6].

The next section will describe the model of folding used for the experiments
in this paper, the HP model. This model although simple still captures the
essential properties of protein folding. The currently used encodings for heuris-
tic approaches to PSP in the HP model (which are all direct encodings), are
also described. Thereafter, section 3 describes the formalism of L-systems. The
proposed encoding, and evolutionary algorithm used are described in section
4. Section 5 presents and discusses our results, and finally section 6 offers our
conclusions and hints for future work.

2 The HP Model

A major driving force in determining the tertiary structure of proteins is the
hydrophobic effect. The idea behind this effect is that, energetically, protein
folding is driven by two factors: hydrophobic(or “oily) groups “prefer” to “get
away” from water, and hydrophilic (or polar) groups “prefer” to “dissolve” in
water. Thus, the polypeptide chain folds such that the nonpolar amino acids
are “hidden” within the structure and the polar residues are exposed on the
outer surface. The HP model [5] captures this idea: only two types of monomers
are distinguished: hydrophobic (H), and polar or hydrophilic (P). The set of
valid protein structure conformations is the space of all self-avoiding paths
(on a selected lattice, e.g., square 2D, triangular, cubic, diamond, etc.), with
each amino acid located on a lattice bead. Hydrophobic units that are ad-
jacent in the lattice but non-adjacent in the sequence (also called non-local
H-H contacts) add a constant negative factor (generally =-1) and all other
interactions are ignored. The native state is thought to be the global energy
minimum.

Fig. 2. Native structure in the square 2D lattice for the primary sequence
HPHPPHHPHPPHPHHPPHPH. White boxes corresponds to H , and black to P
amino acids. The arrow indicates the starting point, and the dotted lines the non-local
H-H contacts.

250 G. Ochoa, G. Escuela, and N. Krasnogor

2.1 Problem Encoding

In the HP model, the structures can be represented by Cartesian coordinates,
internal coordinates or distance geometry. We consider here internal coordinates,
which can be absolute or relative. Under the absolute encoding, the structures
are represented by a list of absolute moves. In a 2D square lattice, for example, a
structure is encoded as a string in the alphabet {Up,Down,Left,Right}. When
using relative coordinates, each move is interpreted in terms of the previous one,
like in LOGO turtle graphics; a structure is encoded as a string in the alphabet
{Forward, TurnLeft, TurnRight}. Figure 2, shows the optimal folding of an
example protein, the structure is coded either as RDDLULDLDLUURULURRD

(absolute encoding) or RFRRLLRLRRFRLLRRFR (relative encoding). The
number of non-local H − H contacts is nine. That is, the folding energy is -9.

3 L-Systems

L-systems are a mathematical formalism proposed by the biologist Aristid Lin-
denmayer in 1968 as an axiomatic theory of biological development. More re-
cently, L-systems have found several applications in computer graphics [19, 18].
Two principal areas include generation of fractals and realistic modelling of
plants. Central to L-systems, is the notion of rewriting, where the basic idea
is to define complex objects by successively replacing parts of a simple object
using a set of rewriting rules or productions. The rewriting can be carried out
recursively.

The essential difference between traditional formal language grammars and
L-systems lies in the method of applying productions. In formal languages pro-
ductions are applied sequentially, whereas in L-systems they are applied in par-
allel, replacing simultaneously all letters in a given word. This difference reflects
the biological motivation of L-systems. Productions are intended to capture cell
divisions in multicellular organisms, where many division may occur at the same
time.

A formal definition of L-systems is as follows [18]: Let V denote an alphabet,
V ∗ the set of all words over V , and V + the set of all nonempty words over V . A
L−system is an ordered triplet G = 〈V, ω, P 〉, where V is the alphabet, ω ∈ V + is
a nonempty word called the axiom and P ⊂ V ×V ∗ is a finite set of productions.
If a pair (a, χ) is a production, we write a → χ. The letter a and the word χ
are called the predecessor and sucessor of this production respectively. It is
assumed that for any letter a ∈ V , there is at least one word χ ∈ V ∗ such that
a → χ. If no production is explicitly specified for a given predecessor a ∈ V , we
assume that the identity production a → a belongs to the set of productions P .

The derivation process of an L-system can be formally stated as follows: Let
μ = a1 . . . am be an arbitrary word over V . We will say that the word ν =
χ1 . . . χn ∈ V ∗ is directly derived from (or generated by) μ, and write μ ⇒ ν, if
and only if ai → χi for all i = 1, . . . , m. A word ν is generated by G in a derivation
of length n if there exists a developmental sequence of words μ0, μ1, . . . , μn such
that μ0 = ω, μn = ν and μ0 ⇒ μ1 ⇒ . . . μn.

Incorporating Knowledge of Secondary Structures 251

L-systems can be classified into context-free and context sensitive, according
to whether production rules refer only to an individual symbol, or to a particular
symbol only if it has certain neighborhood. L-systems can be also be determin-
istic or non-deterministic, according to whether there is exactly one production
for each symbol, or there are several, and each is chosen with a certain prob-
ability during each iteration. Finally, L-systems can be parametric if there are
numerical parameters associated with the symbols or productions.

4 Method

4.1 The Proposed Encoding: PFL-System

The encoding proposed is a simplified parametric, context-free L-system. The
alphabet will depend on the lattice and coordinate system used. For the experi-
ments reported here, we selected the square 2D lattice with relative coordinates.
Thus, the terminal symbols are {F, L, R}. Two non-terminal symbols: A and H
are included, they represent the predecessors of two predefined rules that capture
secondary structures. Thus, the l-system’s alphabet is V = {F, R, L, A, H} (see
Table 1). The axiom ω is a nonempty word in V +, each symbol in the axiom
has a parameter associated that determines the number of times it is repeated.
The maximum for these repetition values are displayed in Table 1. These values
were selected empirically for the set of (relatively short) instances studied in this
paper, they are likely to depend on the instances length and complexity. The
two prefixed rules are A = RRLL and H = LLRR, and represent a single coil
of a right-oriented and a left-oriented α-helix respectively (Figure 3). The sec-
ondary structure known as β-sheet is represented in the 2D Square HP model as
a strings of F s, so this substructure is also easily captured by the proposed en-
coding (symbol F with a parameter n > 1) (Figure 3). We termed our encoding
PFL-system, where P stands for parametric, and F for fixed rules.

Table 1. L-system’s symbols and their interpretation

Command Description Max. n Symbol
forward(n) move forward n times 4 F
right(n) move right n times 2 R
left(n) move left n times 2 L

right helix(n) right helix n times 2 A
left helix(n) left helix n times 2 H

Fig. 3. Secondary structures in the 2D HP model: (a) right-oriented α-helix, A =
RRLL; (b)left-oriented α-helix H = LLRR, (c) β-sheet , F n, n 2

252 G. Ochoa, G. Escuela, and N. Krasnogor

4.2 Evolutionary Algorithm

In order to test whether the proposed encoding can capture a target folding in
the 2D HP model, we used an EA as the inference procedure for exploring the
L-system’s space. Given a target structure in direct encoding (internal relative
coordinates) the EA will evolve a generative encoding (L-system) that, once
derived, would match closely the original target. The EA implemented was gen-
erational with linear ranking selection and elitism. As the variation operators, a
recombination and three mutation operators were implemented. A mate selec-
tion strategy [17] (dissasortative mating) was also implemented as a mechanism
for increasing the population genetic diversity. Dissasortative mating was imple-
mented as follows: when selecting two individuals for a crossover, the first parent
was selected as usual. To chose the second parent, a set of s (scan size) individ-
uals were selected using the GA fitness-based selection method. Thereafter, the
similarity between each of these s phenotypes and the first parent was computed,
the phenotype with less similarity was chosen. For the experiments reported here,
Hamming distance was used as the similarity measure, and the scan size s was
set to 5. Two stopping criteria were considered: (i) if an individual arises with
the maximum fitness, that is, its L-system grammar exactly represents the target
folding; or (ii) a preset maximum number of generations is reached. The initial
population, genetic operators, and fitness evaluation are described below.

Initialization. L-systems has two predefined production rules: A and H , and
the axiom is a variable length word ω ∈ V +. A new individual is created by
generating a random axiom of 5 to l symbols; where l is slightly larger (about
5%) than the string length of the target folding. In producing the axioms, the
probability of generating a terminal symbol {F, L, R} is 0.95 whilst that of gen-
erating a non-terminal symbol {A, H} is 0.05. These values were empirically
selected and more exhaustive studies should be performed, since the algorithm
behavior was found to be sensitive to these probabilities. Moreover, the most
effective settings are likely to depend on the particular instance under study.

Mutation. Three mutation operators were implemented: (i) addition, (ii) dele-
tion, and (iii) modification of a single symbol in the axiom of an individual. The
modification operator may alter either a symbol or its associated parameter.
When a mutation is to be performed, 60% of times it will be a modification,
30% an addition, and 10% deletion.

Recombination. Recombination takes two individuals, p1 and p2 as parents
and creates two offspring o1 and o2. Recall that individual’s axioms are of vari-
able length; a single cross point is randomly selected considering the length of
the shorter axiom (lets consider it to be p1). o1 is of the same length as p1
and inherits from it the left sub-sequence (before the cross point); and the right
sub-sequence from p2. o2 is of the same length as p2, and inherits from it the
sub-string before the cross point, then it inherits from p1 all the symbols after
the cross point, finally any remaining symbols to complete the length of o2 are
taken from p2. Thus the proposed crossover has reminiscences with both 1-point

Incorporating Knowledge of Secondary Structures 253

Fig. 4. Example of a crossover operators between two individuals of different lengths

and 2-point crossover. It will be a 1-point crossover if the two parents have the
same length. An example of this operator is detailed in Figure 4.

Derivation and Fitness Function. For computing an individual’s fitness, its
L-system is derived. Phenotypes are directly derived from the axiom, that is,
a single derivation step suffices for producing the phenotype from the genotype
since the production rules are fixed, and contain only terminal symbols. The
derived string will be truncated as soon as the length of the target folding is
reached. This means that the rightmost part of the axiom may be discarded.
The fitness value will be the number of matches between the produced phenotype
and the target folding, that is a generalized Hamming distance. So, the minimum
fitness is 0 and the maximum is the length of the desired folding.

5 Experiments and Results

Two sets of experiments were carried out. The first set compared the performance
of the newly proposed encoding against the D0L-system implemented in [6]. The
same group of proteins instances (see Table 3), and similar EA parameter settings
(see Table 2) were employed for the sake of comparison. These four instances
are available at http://www.cs.nott.ac.uk/˜nxk/hppdb.html; and their foldings
were obtained using MAFRA (Memetic Algorithm FRAmework) [14]. Notice
that these foldings are not necessarily optimal, but are close to the optimal
solution.

The number of successes (runs that produced the target folding exactly) out
of 50 runs, is shown for each encoding (Table 4). Also a summary of the secondary

Table 2. Parameter values used for the experiments

Parameter Value
Max. Number of Generations 2000

Population Size 50
Mutation Rate 0.05

Recombination Rate 1.0
Mating Strategy Disassortative (5)

254 G. Ochoa, G. Escuela, and N. Krasnogor

Table 3. Benchmark protein instances for the 2D HP model. L stands for the folding
length, which is also the maximum attainable fitness of our EA approach.

Name Protein Sequence Target Folding L

Ins18a HPHPPHHPHPPHPHHPPHPH RFRRLLRLRRFRLLRRFR 18
Ins18b HHHPPHPHPHPPHPHPHPPH RRFRFRLFRRFLRLRFRR 18
Ins22 HHPPHPPHPPHPPHPPHPPHPPHH RLLFLFFRRFLLFRRLRFFRRF 22
Ins23 PPHPPHHPPPPHHPPPPHHPPPPHH FFRRFFFLLFFFFRRFFFFLLFF 23

Table 4. Comparing No. of successful runs (runs that produced the target folding
exactly) using both D0L-systems as proposed in [6], and the parametric L-system with
fixed rules (PFL-system) proposed here

Instance Secondary Structures D0L-system PFL-system
Ins18a A, H 5/50 14/50
Ins18b None 3/50 1/50
Ins22 None 1/50 1/50
Ins23 F 3, F 4, F 4 1/50 49/50

structures found by the algorithm is included. Notice that for the instances where
secondary structures were present (Ins18a and Ins23), the new encoding (PFL-
system) produced a significant higher rate of success. Whereas for the other
two instances where there were not α-helices or β-sheets, the performance was
comparable with that of the previously proposed encoding.

In order to have a dynamic view of the two encodings’ performance, the best
fitness (averaged over 50 runs) was plotted for each generation on a selected
instance (Ins18a) (see Figure 5, Left). The best performance over the whole run
is clearly produced by the parametric L-system with fixed rules (PFL-system).

The encoding proposed in [6], was unable to capture the folding of instances
longer than twenty or so amino acids. For example, for an instance of length 34

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

11

12

13

14

15

16

17
Ins18a, Comparing Encodings

Generation

Be
st

 F
itn

es
s

PFL−system
D0L−system

0 200 400 600 800 1000 1200 1400 1600 1800 2000
16

18

20

22

24

26

28

30

32
Ins34c, Usefulness of Crossover

Generation

Be
st

 F
itn

es
s

Crossover (rate = 1.0)
No Crossover

Fig. 5. Best-performance-trace curves. Left: Ins18a with two encodings; D0L-systems
as proposed in [6], and the parametric L-system with fixed rules (PFL-system) proposed
here. Right: Ins34c with and without recombination. The curves show the average of
50 (Ins18a) and 20 (Ins34c) runs.

Incorporating Knowledge of Secondary Structures 255

Table 5. Benchmark protein instances of length 34. L stands for the folding length,
which is also the maximum attainable fitness of our EA approach.

Name Protein Sequence Target Folding L

Ins34a PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP FFLFRRLLRRFFFRRFLLFRLLFRFFLFLLRFRR 34
Ins34b HPHHHHPHHPPHPHHHHPHPPHHPPHHPPHHHHHHH RRFRLLRRLLFLFRRFLFLLRRLLRRLLFLFRRF 34
Ins34c HHHHHHHPHPHHPHPPHHPPHHPPHPHHPHPPHHPH LLFRLRRFRLLRFRRLLRRLLRRFRLLRFRRLLR 34

Table 6. Results for the benchmark instances of length 34 with and without recombi-
nation. The frequencies of obtained maximum fitness values are shown. The maximum
possible fitness is 34 (exact match).

Name Crossover Frequencies of Obtained Fitness Values Average Secondary Structures
Ins34a On 27:1, 28:3, 29:6, 30:5, 31:4, 32:0, 33:1 29.6
Ins34a Off 28:4, 29:5, 30:7, 31:4 29.55 A, F 3

Ins34b On 29:4, 30:5,31:9,32:2 30.45
Ins34b Off 28:2, 29:4, 30:6, 31:4, 32:3, 33:1 30.25 H, A, A
Ins34c On 28:2, 29:4, 30:6, 31:7, 32:0, 33:1, 30.1
Ins34c Off 27:1, 28:5, 29:9, 30:1 ,31:3, 32:1 29.15 H2, A2

(Ins34a), the best fitness statistics obtained after 20 runs were: average = 24.05,
best run = 27.0, worst run = 19.0. In order to asses whether the newly proposed
encoding had better scaling properties; a second group of experiments explored
three instances of length 34 (see Table 5). Ins34a was obtained from the same
source than the shorter instances described above, whereas Ins34b and c, and
their foldings were taken from [21]. The parameter settings for these experiments
are the same as before (see Table 2), but the number of replicas were 20 instead
of 50 Furthermore, runs with and without crossover were carried out in order to
asses the usefulness of this operator in this context.

Results suggest that the PFL-system encoding has better scaling proper-
ties than the previous D0L-system. Although the perfect match (34) was not
found in any run, most runs arrive very close to the solution. Table 6, shows
the frequencies of obtained maximum fitness for each instance with and with-
out crossover. Crossover seems to be helpful to the evolutionary search although

Table 7. Best obtained individual, represented in PFL-system encoding, for each of
the benchmark instances studied

Instance Best Solution (PFL-system Encoding) Encoding Length
Ins18a RFARLR2FRHFR 11
Ins18b R2FRFRLFR2FLRLRFR2 15
Ins22 RL2FLF 2R2FL2FR2LRF 2R2F 15
Ins23 F 2R2F 3L2F 4R2F 4L2F 2 9
Ins34a F 2LFAR2F 3R2FL2FRL2FRF 2LFL2RFR2 21
Ins34b R2FRHL2FLFR2FLFL2A2FLFR2F 19
Ins34c L2F 2R2RFRL2RFR2H2FRLLRFA2 18

256 G. Ochoa, G. Escuela, and N. Krasnogor

the differences are not substantial. Some instances seems to benefit more from
crossover than others.In order to have a dynamic view of the algorithm behav-
ior with and without recombination, Figure 5 (Right) shows best-performance
curves over the whole run for Inst34c. Clearly the recombinant GA outperform
the GA with mutation only.

As a summary of results, the best solutions obtained with the PFL-system,
for all the instances studied, are shown in Table 7. Notice that the inclusion of
parameters helps in having a more compact representation of a folding, also the
occurrence of secondary structures is captured and easily identified with this
representation.

6 Discussion

An encoding scheme for protein folding in the HP model, inspired by paramet-
ric L-systems, was proposed. The encoding also incorporates problem domain
knowledge in the form of predesigned production rules that capture the most
commonly known secondary structures: α-helices and β-sheets. The ability of
this encoding to capture protein native conformations was tested using an EA
as the inference procedure for discovering L-systems. Given a target folding, the
EA explores the space of possible L-systems (genotypes) until identifying one
whose derivation (phenotype) closely matches the target folding.

This newly proposed encoding was found to improve our first attempt of
using L-systems as a generative representation for protein folding [6], where
problem domain knowledge was not incorporated. The suitability of the new en-
coding, however, seems to heavily depend on the particular instance under study.
Instances with high frequencies of α-helices and β-sheets, would have a clear ad-
vantage. Longer proteins and 3D lattices should be addressed. Furthermore, two
somehow opposite but complementary extensions could be suggested. First, in-
corporating other known secondary structures such as β-turns, β-hairpins, etc.,
as prefixed rules. Secondly, enabling the EA to discover their own production
rules, that could be in principle stored and thereafter used in further runs with
new instances. We have evidence on a related bioinformatic problem [12] that
enabling the evolutionary algorithm to systematically and vigorously discover
new “building blocks” (as the ones we described in this paper) can substantially
improve the algorithm performance.

Finally, we believe that this proposed line of research opens up the pos-
sibilities for novel and compact encoding schemes of protein structures, that
have potential implications in solving meaningful biotechnology problems such
as structure prediction and protein folding.

Acknowledgements

Natalio Krasnogor acknowledges EPSRC (GR/T07534/01, EP/D021847/1) and
BBSRC (BB/C511764/1) for funding his research on protein structure predic-
tion, comparison and self-assembly.

Incorporating Knowledge of Secondary Structures 257

References

[1] David Baker and Andrej Sali, Protein structure prediction and structural ge-
nomics, Science 294 (2001), 93–96.

[2] Peter J. Bentley, Exploring component-based representations - the secret of cre-
ativity by evolution?, Fourth International Conference on Adaptive Computing in
Design and Manufacture (ACDM 2000) (I. C. Parmee, ed.), 2000, pp. 161–172.

[3] Luis DaCosta and Jacques-Andre Landry, Generating grammatical plant models
with genetic algorithms, Proceedings of the 7th International Conference on Adap-
tive and Natural ComputiNG Algorithms (ICANNGA, LNCS, Springer Verlag,
2005.

[4] T. Dandekar and P. Argos, Folding the main chain of small proteins with the
genetic algorithm, J. Mol. Biol 236 (1994), 844–861.

[5] Ken A. Dill, Theory for the folding and stability of globular proteins, Biochemistry
24 (1985), 1501.

[6] Gabi Escuela, Gabriela Ochoa, and Natalio Krasnogor, Evolving L-systems to
capture protein structure native conformations, Proceedings of the 8th European
Conference on Genetic Programming, Lecture Notes in Computer Science, vol.
3447, Springer, 2005, pp. 74–84.

[7] L. J. Fogel, P. J. Angeline, and T. Bäck (eds.), Shape representations and evolution
schemes, MIT Press, 1996.

[8] Gregory S. Hornby and Jordan B. Pollack, The advantages of generative gram-
matical encodings for physical design, Proceedings of the 2001 Congress on Evo-
lutionary Computation CEC2001, IEEE Press, 2001, pp. 600–607.

[9] G. Kókai, Z. Tóth, and R. Ványi, Modelling blood vessels of the eye with paramet-
ric L-systems using evolutionary algorithms, Proceedings of the Joint European
Conference on Artificial Intellingence in Medicine and Medical Decision Making
(AIMDM-99) (Berlin), LNAI, vol. 1620, Springer, 1999, pp. 433–442.

[10] Natalio Kranogor, Studies on the theory and design space of memetic algorithms,
Ph.D. thesis, University of the West of England, Bristol, UK, 2002.

[11] N. Krasnogor, B. P. Blackburne, E. K. Burke, and J. D. Hirst, Multimeme algo-
rithms for protein structure prediction, Lecture Notes in Computer Science 2439
(2002), 769–779.

[12] Natalio Krasnogor and Stephen Gustafson, The local searcher as a supplier of
building blocks in self-generating, Workshop Proceedings of the 2003 Genetic and
Evolutionary Computation Conference, GECCO 2003, 2003.

[13] Natalio Krasnogor, D. Pelta, P.E. Martinez-Lopez, P. Mocciola, and E. de la
Canal, Enhanced evolutionary search of foldings using parsed proteins, Proceed-
ings of the Argentinian Operational Research Simposium (S.I.O. 97), 1997.

[14] Natalio Krasnogor and Jim Smith, MAFRA: A java memetic algorithms frame-
work, Data Mining with Evolutionary Algorithms (Alex A. Freitas, William Hart,
Natalio Krasnogor, and Jim Smith, eds.), 2000, pp. 125–131.

[15] Neal Lesh, Michael Mitzenmacher, and Sue Whitesides, A complete and effec-
tive move set for simplified protein folding, Proceedings 7h Annual International
Conference on Research in Computational Molecular Biology (RECMB), 2003.

[16] F. Liang and W. Wong, Evolutionary monte carlo for protein folding simulations,
Journal of Chemical Physics 115 (2001), no. 7, 3374–3380.

[17] Gabriela Ochoa, C. Mädler-Kron, R. Rodriguez, and K. Jaffe, Assortative mating
in genetic algorithms for dynamic problems, Applications of Evolutionary Com-
puting, EvoWorkshops2005, LNCS, vol. 3449, Springer Verlag, 2005, pp. 605–610.

258 G. Ochoa, G. Escuela, and N. Krasnogor

[18] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants, Springer,
New York, 1990.

[19] Alvy R. Smith, Plants, fractals, and formal languages, Computer Graphics 18
(1984), no. 3, 1–10.

[20] I. Unger and J. Moult, Genetic algorithms for protein folding simulations, Journal
of Molecular Biology 1 (1993), no. 231, 75–81.

[21] Berrin Yanikoglu and Burak Erman, Minimum energy configurations of the 2-
dimensional hp-model of proteins by self-organizing networks, Journal of Compu-
tational Biology 9 (2002), no. 4, 613–620.

The Electromagnetism Meta-heuristic Applied
to the Resource-Constrained Project Scheduling

Problem

Dieter Debels1 and Mario Vanhoucke1,2

1 Ghent University, Faculty of Economics and Business Administration,
Hoveniersberg 24, Ghent 9000, Belgium

2 Vlerick Leuven Gent Management School,
Operations & Technology Management Centre, Reep 1,

Ghent 9000, Belgium
{dieter.debels, mario.vanhoucke}@ugent.be

Abstract. Recently, an electromagnetism (EM) heuristic has been in-
troduced by Birbil and Fang (2003) to solve unconstrained optimization
problems. In this paper, we extend the EM methodology to combinatorial
optimization problems and illustrate its effectiveness on the well-known
resource-constrained project scheduling problem (RCPSP). We present
computational experiments on a standard benchmark dataset, compare
the results of the different modifications on the original EM framework
with current state-of-the-art heuristics, and show that the procedure is
capable of producing consistently good results for challenging instances
of the problem under study. We also give directions for future research
in order to further explore the potential of this new technique.

1 Introduction

The problem under study is the well-known resource-constrained project schedul-
ing problem (RCPSP). The RCPSP can be stated as follows. A set of activities
N, numbered from 1 to n (|N | = n), is to be scheduled without pre-emption on
a set R of renewable resource types. Activity i has a deterministic duration di ∈
IN and requires rik ∈ IN units of resource type k, k ∈ R, which has a constant
availability ak throughout the project horizon. We assume that rik ≤ ak for i ∈
N and k ∈ R. The dummy start and end activities 1 and n have zero duration
while the other activities have a non-zero duration. The dummies also have zero
resource usage. A is the set of pairs of activities for which a finish-start prece-
dence relationship with time lag 0 exists. We use Si (Pi) to denote the set of
immediate successors (predecessors) of activity i and S′

i (P ′
i) to refer to the set of

all (immediate and transitive) successors (predecessors) of this activity. We as-
sume graph G(N,A) to be acyclic. A schedule S is defined by an n-vector of start
times s = (s1, ..., sn) which implies an n-vector of finish times e (ei = si + di, ∀ i
∈ N). A schedule is said to be feasible if the precedence and resource constraints
are satisfied. The objective of the RCPSP is to find a feasible schedule such that

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 259–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 D. Debels and M. Vanhoucke

the schedule makespan en is minimized. In this paper we report results for the
application of a recent heuristic technique, electromagnetism (EM) [4]. EM is
an ’evolutionary’ algorithm that was originally developed for the optimization
of unconstrained continuous functions. As we modify the technique to solve the
RCPSP, we show that EM can also be used for combinatorial problems.

2 The Electromagnetism Meta-heuristic

Birbil and Fang [4] propose a so-called electromagnetism optimization heuris-
tic for unconstrained optimization problems, i.e. the minimization of non-linear
functions. These optimization problems with bounded variables can be modeled
as depicted at the left side of Fig. 1. At the right side, we show how the RCPSP
can be reformulated as an unconstrained optimization problem. To obtain a
Euclidean solution space, we opt for a schedule representation in random-key
(RK) format [17]. To transform an RK vector x ∈ IRn into a schedule S = σ(x)
with an associated makespan en(σ(x)), a schedule generation scheme (SGS) is
necessary. We make use of the serial SGS, as it is sometimes impossible to reach
an optimal solution with the parallel SGS [14]. In the remainder of the paper
we assume that a higher RK value corresponds to a lower priority of the activ-
ity. By setting li = 0 and ui = n, we assume that each priority element of an
RK vector is a real value between 1 and n. In order to decrease the solution
space of the search process, we adapt this vector with new lower and upper val-
ues to li = |P ′

i | + 1 and ui = n - |S′
i|. In doing so we increase the likelihood

that the obtained solution corresponds to a precedence-feasible priority struc-
ture where each activity has a lower priority (i.e. a higher RK value) than its
predecessors.

Consider the example project presented in Fig. 2. This project network con-
tains 9 non-dummy activities for which the duration is given above the node
and the resource requirement for the single resource below the node. The corre-
sponding lower and upper values (li and ui) for the RK value of each activity i
are given between brackets. Assume that the resource availability equals 2, then
Fig. 3 depicts two feasible schedules for the example project.

The EM heuristic assumes a multidimensional solution space where each
point x represents a solution. A charge is associated to each point, related to

Fig. 1. Formulation of unconstrained optimization problems

The Electromagnetism Meta-heuristic Applied to the RCPSP 261

Fig. 2. Example project network with 9 non-dummy activities

Fig. 3. Two feasible schedules for the example project

the objective function value f(x) associated with the solution point x. As in
evolutionary algorithms, a population is created in which each solution point
will exert attraction or repulsion on other points, of which the magnitude is
proportional to the product of the charges and inversely proportional to the dis-
tance between the points (Coulomb’s Law). The principle behind the algorithm
is that inferior solution points will prevent a move in their direction by repelling
other solution points in the population, and that attractive points will facilitate
moves in their direction. The generic pseudo-code for the EM algorithm is as
follows:

Algorithm EM
iter :=1
while stop condition not satisfied do

compute−forces
apply−forces
local−search
iter++

endwhile

The function EM contains three subroutines (compute−forces, apply−forces
and local−search), that are iteratively applied as long as the stop condition
is not satisfied. The total force exerted on each point by all other points is
calculated in the function compute−forces and depends on the charge of the
point under consideration as well as on the points exerting the force. The charge

262 D. Debels and M. Vanhoucke

of the kth population point xk is determined by its objective function value f(xk)
in relation to the objective function value f(xbest) of the current best point in the
population. For a minimization problem, the charge qk of point xk is determined
according to eq. 1. In the first term we calculate the value of qk as given by
Birbil and Fang [4], and in the second term we translated the formulation to the
RCPSP context. Note that m represents the population size.

qk = e

(
−D.

(
f(xk)−f(xbest)

)
m
l=1

(
f(xl)−f(xbest)

))
= e

(
−n.

(
en(σ((xk))−en(σ((xbest))

)
m
l=1

(
en(σ((xl))−en(σ((xbest))

))
(1)

The total force exerted on a point by all other points is calculated in a similar
way with Coulomb’s law and is inversely proportional to the distance between the
points and directly proportional to the product of their charges. The set of force
vectors F k(k = 1, . . . , m) exerted on the corresponding point xk is determined as
shown in eq. 2. The point with a relatively good objective function value attracts
the other one, the point with the inferior objective function value repels the other.
In ‖dist(xl, xk)‖ we measure the normalized distance between two points (sched-
ules) xk and xl. The distance equals the sum of the absolute deviations of the
priority values xk and xl of each activity i, i.e. dist(xl, xk) =

∑n
i=1 |xl

i−xk
i |. In or-

der to normalize the distance measure to the interval [0, 1], we set ‖dist(xl, xk)‖=
dist(xl, xk)/distmax with distmax the maximum of all distances between each pair
of points, i.e. distmax = maxl=1,...,m;k=1,...,m dist(xl, xk). Thus, points with a bet-
ter objective function value attract point xk, while points with an inferior objec-
tive function value repel xk.

F k =
m∑

l=1,l =k

⎧⎨
⎩ (xl − xk)

(
ql.qk

‖dist(xl,xk)‖
)

iff(xl) < f(xk)

(xk − xl)
(

ql.qk

‖dist(xl,xk)‖
)

iff(xl) ≥ f(xk)

⎫⎬
⎭ (2)

The movement according to the resulting forces is performed in apply−forces
and is shown in eq. 3. The move is based on the normalized force vector ‖F k‖ =
F k/ maxi=1,...,n(F k

i). Thus, the original force vector F k only identifies the di-
rection of the move. The magnitude of each move is determined by a randomly
selected parameter λ, generated from a uniform distribution from the interval
[0,1] and also by the lower value li and upper value ui for the priority value xk

i

belonging to the ith activity of population element k.

xk
i =

{
xk

i + λ‖F k
i ‖(ui − xk

i) ifF k
i > 0

xk
i + λ‖F k

i ‖(xk
i − li) ifF k

i ≤ 0

}
(3)

After the application of the forces on the population elements, local−search
aims to improve the newly obtained solution points. In the original version [4],
a local search technique that explores the immediate (Euclidian) neighbourhood
of individual points is proposed. However, for the RCPSP it is beneficial to use
the iterative forward/backward scheduling technique [21] as a simple and ef-
fective local search technique. To obtain an improved schedule, the technique
iteratively performs backward and forward passes. A backward pass transforms

The Electromagnetism Meta-heuristic Applied to the RCPSP 263

a left-justified schedule in a right-justified schedule by scheduling the activities
backwards in decreasing order of their finish times. A forward pass transforms a
right-justified schedule in a left-justified schedule by scheduling the activities for-
wards in increasing order of their start times. In doing so, the schedule makespan
of each intermediate schedule is never higher than the makespan of the previous
one.

To the best of our knowledge, the EM philosophy has only been used for
scheduling projects by [7]. However, these authors present a scatter search algo-
rithm for the RCPSP, and seed their algorithm with very basic principles taken
from the electromagnetism philosophy. More precisely, they restrict the use of
the EM philosophy to the description of the hybrid two-point/electromagnetism
crossover operator. However, a closer look to this hybrid crossover reveals that

– Forces are only calculated based on one other population-element. This is
not in line with the basic EM philosophy in which a point exerts a force on
all other points.

– The forces are not related to the distance between solutions. This is in con-
tradiction to the EM philosophy in which the magnitude of the force is
inversely proportional to the distance between points, in order to follow the
law of Coulomb.

In section 3 of the current paper, we present a step-wise adaptation of our EM
algorithm to cope with the RCPSP, following the framework as proposed by [4].

3 Computational Experiments

We have coded the procedure in Visual C++ 6.0 and performed computational
tests on an Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using
the well-known PSPLIB dataset [19]. This set contains the subdatasets J30, J60,
J90 and J120 with problem instances of 30, 60, 90 and 120 activities. In section
3.1, we describe a step-wise adaptation of the algorithm of section 2 in order to
improve the performance. In doing so, we rely on specific characteristics of the
RCPSP. Section 3.2 compares the performance of our EM heuristic with other
state-of-the-art results.

3.1 Using Problem-Specific Characteristics of the RCPSP

Table 1 reports the results for our step-wise improvement scenarios as discussed
in the following subsections, based on a run with 5,000 schedules. The column
labelled ”Basic” reports the results for the basic EM meta-heuristic of section 2.
The following columns report the results for the different modifications on this
basic EM algorithm. More details are given in the following subsections. The rows
labelled ”Avg.Dev.Lb” report the average deviation from the optimal solution
(J30 instances) or from the critical path based lower-bound (J60, J90 and J120
instances). The rows labelled ”Avg.CPU” indicate the average computation time
to solve a problem instance (in seconds). For each adaptation, we have finetuned

264 D. Debels and M. Vanhoucke

Table 1. Results for the step-wise improvement scenarios for the basic EM meta-
heuristic

the algorithm by setting the population size m to an optimal value. These values
are given in the rows ”m”. As an example, the table reveals that the basic version
of the algorithm reports the best results for a population size of 40 for the J30,
J90 and J120 instances and a population size of 30 for the J60 instances. The
rows labelled ”pMUT” are used to display the percentage of mutation, which will
be discussed in section 3.1.2.

3.1.1 Topological-Order Representation or Standardized RK (SRK)
In the RK representation, each solution corresponds to a point in the Euclid-
ian n-space, so that geometric operations can be performed on its components.
Since this is one of the cornerstones of the EM method, we have adopted the
RK representation in our EM-heuristic. However, the RK representation suffers
from the fact that one schedule can have an infinite number of schedule rep-
resentations. To deal with this problem, we propose to use a topological-order
(TO) representation of schedules [30,31]. A TO representation in RK format
of a schedule is any RK vector x for which si < sj implies xi < xj . To in-
corporate the TO condition, we change the RK representation to the so-called
standardized RK (SRK) as suggested by [7]. More precisely, we first rank the
activities according to their start times in the schedule, and then replace their
priority values by the place in the ranking. In doing so, the SRK vector fits
very well into the EM framework, since each vector element will have a value
between li and ui. As an example, the SRK vector for the schedule of Fig. 3(a) is
{1, 2, 4, 5, 7, 5, 9, 8, 2, 9, 11}. Note that the SRK-value for each activity i always
lies between li = |P ′

i | + 1 and ui = n − |S′
i| and that we can only transform an

RK vector x into SRK format π(x) after the schedule generation. The results

The Electromagnetism Meta-heuristic Applied to the RCPSP 265

Table 2. Input data for the example: the start RK vector and the two forces

of the incorporation of the TO representation by using the SRK can be seen
in table 1 by comparing the columns labelled ”Basic” and ”SRK”. The results
show a beneficial effect for the J60, J90 and J120 sets and a negative effect for
the J30 instances.

Although the SRK representation embeds the logic that early scheduled ac-
tivities have a high priority, it also has a major drawback. The execution of a
force on an SRK vector x0 = π(x0) modifies the priority structure of the vec-
tor to an RK-vector x1 which will be transformed by means of the serial SGS
and the local search method to a schedule with a corresponding SRK notation
π(x1). It is, however, possible that the resulting schedule (and consequently, the
resulting SRK notation) is not different from the original one, i.e. π(x0) = π(x1)
while x0 �= x1. This effect might prevent to exploit the advantages of the basic
philosophy of the EM approach, which focuses on a gradual shift to other regions
of the solution space. Due to the transformation from x1 to π(x1), this gradual
shift from x0 to x1 will be cancelled out, having an effect on the next moves of
the meta-heuristic. More precisely, our tests revealed that 79% of the moves, per-
formed on solutions in SRK format, result in a schedule for which π(x0) = π(x1)
for the 30-activity networks. This value decreases to 65% for the J60 instances,
56% for the J90 instances and only 14% for the J120 instances. Thus, the cancel-
out problem is particularly relevant for small problem instances, as the solution
space is too small to escape from a solution point.

Consider the example project of Fig. 2 and the two corresponding schedules
of Fig. 3. The start vector x0 corresponds to the schedule of Fig. 3(a). λ1‖F 1‖
and λ2‖F 2‖ are used to calculate the first and second move and are given in table
2. Table 3 displays the calculations of two moves in a sequence, based on the RK
vectors while table 4 displays the calculations of these moves based on the SRK.
In the first move of table 3, from x0 to x1, the RK-representation changes, but
the corresponding schedule remains unchanged and is equal to the schedule of

Table 3. Illustration of the execution of two moves based on a RK vector

266 D. Debels and M. Vanhoucke

Table 4. Illustration of the execution of two moves based on a SRK vector

Fig. 3(a). After the second move, from x1 to x2, the RK-representation belongs
to the schedule depicted in Fig. 3(b). Table 4, however, cannot escape from the
schedule of Fig. 3(a) since the second move from π(x1) to π(x2) also results in
the same schedule. This is due to the transformation of the RK vector x1 to the
SRK vector π(x1) after a makespan evaluation, which cancels out the gradual
shift of the move from x0 to x1. In the next sub-section, we describe our mutation
approach to overcome this cancel-out problem.

3.1.2 Diversification Using Mutation (MUT)
In order to prevent the population from becoming overly homogeneous, we in-
troduce a basic version of diversification using mutation, by modifying randomly
chosen priority values of the vector x to a value uniformly chosen between
li = |P ′

i | + 1 and ui = n − |S′
i|. This mutation is imposed right after a force

is executed, followed by a makespan evaluation.
In table 1, we use pMUT to denote the percentage of activities that are subject

to this mutation per move. The results reveal that mutation is only beneficial for
the J30 and J60 instances. For the J30 instances, we modify 10% of the priority
values per move, i.e. in each move, three activities receive a new priority value
randomly generated from the interval [li, ui]. The average deviation decreases
from 0.22% to 0.10%. For the J60 instances, mutation is only beneficial to a
small extent (from 11.50% to 11.47% deviation) with a mutation rate of only
1%. For the J90 and J120 instances, mutation has no beneficial effect. These
results confirm that mutation can help to overcome the problem mentioned in
the previous section. Since the use of the SRK notation could possibly cancel
out the gradual shifts in the solution space, diversification using mutation will
be necessary to escape from a particular schedule. This problem was particularly
relevant for the J30 instances and - to a smaller extent - for the J60 instances.

3.1.3 Extended Neighbourhood (NBH)
In the original procedure [4] a parameter λ is generated from a uniform distrib-
ution between 0 and 1, i.e. λ ∈ U(0, 1), in order to move from one schedule to

The Electromagnetism Meta-heuristic Applied to the RCPSP 267

another (see eq. 3). We have extended this method by generating more schedules
out of a schedule by generating more values for λ. To that purpose, we have
divided the interval [0, 1] in equal parts and tested a number of scenarios with
2, 3, 4, 5 and 6 different values for λ and, consequently, up to 6 new schedules
per move. Tests have revealed that improved results can be found for J60, J90
and J120 by generating two new schedules with the following parameter values:
λ1 ∈ U(0.2, 0.6) and λ2 ∈ U(0.6, 1). Afterwards, the algorithm selects the best
schedule to enter the population. Note that moves with λ < 0.2 are excluded
since this often leads to the cancel-out effect described in section 3.1.1.

3.1.4 Exert the Force F on a Sub-schedule (SUB)
Based on the calculated forces and resulting attraction or repulsion, points are
transformed, i.e. moved in the Euclidian space, resulting in a new population.
During each move, forces are exerted on the priority value of each activity. We
generalize this concept by allowing forces to act only in a particular subset
of the dimensions or activities. We randomly select pmin ∈ [1, n − 1] and set
pmax = pmin + τ with τ chosen randomly within [1/4.en(σ(x)), 3/4.en(σ(x))].
Then, we update only the RK values between pmin and pmax (inclusive) ac-
cording to the forces exerted in these dimensions. Note that due to the SRK

Table 5. Comparative computational results

268 D. Debels and M. Vanhoucke

representation, the thus updated activities all start within a particular time in-
terval. The other RK components are not left unchanged, but are updated as
follows. We subtract the constant value n from all RK values lower than pmin,
and add the same constant to all values higher than pmax. Doing this preserves
the priority structure since the activities outside the interval [pmin, pmax] are
unaffected by the forces. Table 1 reveals that this leads to an additional im-
provement for the J60 (from 11.43% to 11.29%), J90 (from 11.05% to 10.89%)
and J120 (from 34.21% to 33.98%) instances.

3.2 Comparison with the State-of-the-Art Heuristics

To be able to compare procedures for the RCPSP, [10] presented a methodol-
ogy in which all procedures can be tested on the PSPLIB datasets by using the
number of generated schedules as a stop condition. Based on the methodology
they also report state-of-the-art results. In [18] an update is given of these re-
sults. In table 5 we compare our algorithm with these results for the datasets
J30, J60 and J120 respectively and for a stop condition of 5,000 schedules. In
”Avg.Dev.Lb” we report the average deviation from the optimal solution for
J30 or from the critical path based lowerbound for J60 and J120. The proce-
dures are ranked according to their performance for the dataset J120. As this
ranking slightly differs from the ranking for J30 and J60, we also provide a
rank order in the column ”Rank”. The table reveals that the EM algorithm per-
forms consistently well over all problem sets. Furthermore, the procedures that
can outperform the EM procedure are hybrid heuristics. Consequently, we be-
lieve that the promising results might contribute to the further development of
electromagnetism, possibly in combination (hybridization) with principles from
other meta-heuristics.

4 Conclusions

This paper reports on results for the application of a new meta-heuristic pro-
cedure for solving combinatorial optimization problems. The procedure is a
population-based method that is developed originally for optimizing uncon-
strained continuous functions based on an analogy with the electromagnetism
theory. We illustrate the effective extension of this electromagnetism meta-
heuristic to the well-known RCPSP.

The computational results show that the procedure produces consistently
good results, compared to the state-of-the-art heuristics in the literature. Fur-
thermore, all procedures that outperform the EM procedure are hybrid heuristics
based on principles borrowed from various meta-heuristic approaches. Hence, we
believe that the incorporation of ideas from EM in hybrid frameworks might con-
tribute to the development of better meta-heuristic techniques. In the future we
want to improve the performance of the EM heuristic for solving combinatorial
problems by adding principles from other meta-heuristic techniques.

The Electromagnetism Meta-heuristic Applied to the RCPSP 269

References

[1] Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in
project scheduling, Annals of Operations Research, 102, 83-109 (2001).

[2] Alcaraz, J., Maroto, C., Ruiz, R.: Improving the performance of genetic algorithms
for the RCOS problems. Proceedings of the Ninth International Workshop on
Project Management and Scheduling, 40-43, Nancy (2004)

[3] Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the
resource-constrained project scheduling problem, Meta-heuristics: Advances and
trends in local search paradigms for optimization, 1-8 (1998).

[4] Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimiza-
tion, Journal of Global Optimization 25 263-282 (2003).

[5] Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version,
European Journal of Operational Research, 149, 268-281 (2003).

[6] Coelho, J., Tavares, L.: Comparative analysis of meta-heuricstics for the resource
constrained project scheduling problem, Technical report, Department of Civil
Engineering, Instituto Superior Tecnico, Portugal (2003).

[7] Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A scatter-search meta-
heuristic for the resource-constrained project scheduling problem, European Jour-
nal of Operational Research, forthcoming.

[8] Hartmann, S.: A competitive genetic algorithm for the resource-constrained
project scheduling, Naval Research Logistics, 45, 733-750 (1998).

[9] Hartmann, S.: A self-adapting genetic algorithm for project scheduling under
resource constraints, Naval Research Logistics, 49, 433-448 (2002).

[10] Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics
for the resource-constrained project scheduling problem, European Journal of Op-
erational Research, 127, 394-407 (2000).

[11] Klein, R.: Project scheduling with time-varying resource constraints. International
Journal of Production Research, 38 (16): 3937-3952 (2000).

[12] Kochetov, Y., and Stolyar, A.: Evolutionary local search with variable neighbour-
hood for the resource constrained project scheduling problem, Proceedings of the
3rd International Workshop of Computer Science and Information Technologies
(2003).

[13] Kolisch, R.: Project scheduling under resource constraints - Efficient heuristics for
several problem classes, Physica (1995).

[14] Kolisch, R.: Serial and parallel resource-constrained project scheduling methods
revisited: theory and computation, European Journal of Operational Research,
43, 23-40 (1996).

[15] Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling
problem, Journal of Operations Management, 14, 179-192 (1996).

[16] Kolisch, R., Drexl, A.: Adaptive search for solving hard project scheduling prob-
lems, Naval Research Logistics, 43, 23-40 (1996).

[17] Kolisch, R., Hartmann, S.; Heuristic algorithms for solving the resource-
constrained project scheduling problem: classification and computational analysis.
In: Weglarz, J. (Ed.), Project Scheduling - Recent Models, Algorithms and Ap-
plications, Kluwer Academic Publishers, Boston, pp. 147-178 (1999).

[18] Kolisch, R., Hartmann, S.: Experimental investigation of Heuristics for resource-
constrained project scheduling: an update, working paper, Technical University
of Munich (2004).

270 D. Debels and M. Vanhoucke

[19] Kolisch, R., Sprecher, A.: PSPLIB - A project scheduling library, European Jour-
nal of Operational Research, 96 205-216 (1997).

[20] Leon V. J., Ramamoorthy, B.: Strength and adaptability of problem-space based
neighbourhoods for resource-constrained scheduling, OR Spektrum, 17, 173-182
(1995).

[21] Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained
project scheduling, European Journal of Operational Research, 56, 370-379 (1992).

[22] Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource
constrained project scheduling, IEEE Transaction on Evolutionary Computation,
6(4), 333-346 (2002).

[23] Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource
constrained project scheduling problem (RCPSP). In: Ribeiro, C.C., Hansen,
P. (Eds.), Essays and Surveys in Meta-heuristics, Kluwer Academic Publishers,
Boston, pp. 557-588 (2002).

[24] Schirmer, A.: Case-based reasoning and improved adaptive search for project
scheduling, Naval Research Logistics, 47, 201-222 (2000).

[25] Sprecher, A.: Scheduling resource-constrained projects competitively at modest
resource requirements, Management Science, 46 710-723 (2000).

[26] Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-
constrained project scheduling, Annals of Operations Research, 102, 65-81 (2001).

[27] Tormos, P., Lova, A.: An efficient multi-pass heuristic for project scheduling with
constrained resources, International Journal of Production Research, 41, 1071-
1086 (2003).

[28] Tormos, P., and Lova, A.: Integrating heuristics for resource constrained project
scheduling: One step forward, Technical report, Department of Statistics and Op-
erations Research, Universidad Politecnica de Valencia (2003).

[29] Valls, V., Quintanilla, S., Ballestin, F.: Resource-constrained project scheduling:
a critical activity reordering heuristic, European Journal of Operational Research,
149, 282-301 (2003).

[30] Valls, V., Ballestin, F., Quintanilla, S.: A population-based approach to the
resource-constrained project scheduling problem, Annals of Operations Research,
131, 305-324 (2004).

[31] Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the
Resource-constrained project scheduling problem with the peak crossover oper-
ator, Eighth International Workshop on Project Management and Scheduling,
368-371 (2002).

[32] Valls, V., Ballestin, F.: Quintanilla, S.: Justification and RCPSP: A technique
that pays, European Journal of Operational Research, Forthcoming.

Applications of Racing Algorithms:
An Industrial Perspective

Sven Becker1, Jens Gottlieb2 and Thomas Stützle3

1 VEGA Informations-Technologien GmbH,
Robert Bosch Str. 7, Darmstadt 64293, Germany

sven.becker@vega.de
2 SAP AG,

Neurottstr. 16, Walldorf 69190, Germany
jens.gottlieb@sap.com

3 Darmstadt University of Technology, Computer Science Department,
Hochschulstr. 10, Darmstadt 64289, Germany

stuetzle@informatik.tu-darmstadt.de

Abstract. Stochastic local search (SLS) methods like evolutionary algorithms,
ant colony optimisation or iterated local search receive an ever increasing atten-
tion for the solution of highly application relevant optimisation problems. Despite
their noteworthy successes, several issues still hinder their even wider spread. One
central issue is the configuration and parameterisation of SLS methods, which is
known to be a time- and personal-intensive process. Recently, several attempts
have been made to automate the tuning of SLS algorithms. One of the most
promising directions is the usage of the racing methodology, which is a statis-
tical method for selecting promising candidate configurations. We present results
of a study on the application of this methodology to the tuning of a complex SLS
method for an industrial vehicle scheduling and routing problem, and compare
the performance of two racing methods.

1 Introduction

Common to many stochastic local search (SLS) methods [1] like evolutionary algo-
rithms [2] and memetic algorithms [3], ant colony optimisation [4], or iterated local
search [5] is their high versatility for the effective solution of complex, real-world opti-
misation tasks. This versatility is due to the many design and parameter choices the gen-
eral SLS methods leave to the implementer. For example, memetic algorithms require
defining appropriate recombination, mutation, and local search operators, choosing the
population size and the selection method, and setting a large number of adjustable pa-
rameters like the probabilities for applying recombination or mutation. It is well known
that the choice of operators and the parameter settings can have a very strong influence
on the final SLS algorithm’s performance. So far, the problem of taking the right design
choices in the development stages of SLS algorithms have mainly been resolved by the
experience of the implementer and the algorithm configuration and parameter tuning
has often been done using a trial–and–error approach. Only recently, this problem has

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 271–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 S. Becker, J. Gottlieb, and T. Stützle

been tackled by (semi-)automatic techniques for deciding on an algorithm’s configura-
tion and parameter settings. These techniques include the usage of experimental design
techniques [6, 7, 8] or racing algorithms [9].

Racing algorithms have been shown to be especially appealing since they can si-
multaneously handle design choices (type of recombination, local search etc.) and the
optimisation of (discretised) parameter settings, and they do not rely on strong assump-
tions on the distribution of the underlying data. Racing algorithms start with a set of
candidate configurations of the algorithm under development and test them on a se-
quence of problem instances. After each test run on a problem instance by all surviving
candidates, those candidate configurations are eliminated, against which enough (sta-
tistical) evidence is given [9]. This procedure is repeated until either a limit on the
available computation time is passed or only one candidate configuration remains. In
[9, 10], one particular racing method, called F-races, was proposed; the F in the name
stems from the usage of the (non-parametric) Friedman-test [11, 12].

So far, the usefulness of racing algorithms and, in particular, F-races has been as-
sessed for the design of SLS algorithms for academic combinatorial optimisation prob-
lems like the travelling salesman problem [9], the quadratic assignment problem [10],
or the university course timetabling problem [13]. F-races have not yet been tested un-
der more realistic, real-life settings. In this article, we evaluate the usefulness of racing
algorithms for the optimisation of design aspects and parameter choices for a com-
plex SLS algorithm for the highly-constrained real-life vehicle scheduling and rout-
ing problem (VSRP). This application differs from the academic examples, because (i)
the involved algorithm has a large number of different operators and parameters, (ii)
the benchmark set comprises a very heterogeneous set of instances that differ strongly
in the constraints involved, the objective function, as well as their size, and (iii) the
benchmark instances require, due to their complexity, rather high computation times
of at least several minutes. These considerations forbid an exhaustive evaluation of all
possible parameter and operator choices and, hence, the racing algorithms are used
to optimise specific aspects of the SLS algorithm. In this real-world environment, we
compare two racing algorithms: the F-race approach and a new straightforward variant
based on removing a predefined portion of the worst candidate configurations after each
iteration.

The paper is structured as follows. Section 2 discusses the underlying ideas of the
racing methodology and Section 3 introduces the vehicle scheduling and routing prob-
lem and shortly describes the algorithm for its solution from a high-level perspective.
We present the benchmark instances and the experimental environment in Section 4.
Our experience with the racing methodology is discussed in detail in Section 5 and we
end with some concluding remarks in Section 6.

2 Racing Methodology

Racing algorithms were first applied to the model selection problem in memory-based
supervised learning [14, 15] and later adapted to the problem of tuning SLS algorithms
by Birattari et al. [9]. Racing algorithms can select in a fully automatic way a configu-
ration for an SLS method from a given set of candidate configurations C.

Applications of Racing Algorithms: An Industrial Perspective 273

A racing algorithm works by sequentially processing a given set of instances I . Let
inst(i) denote the ith instance and let C(i) be the set of candidate configurations at
iteration i. Initially C(1) = C, and then, at iteration i of the race, all candidate con-
figurations in C(i) are run once on instance inst(i). When all results are available, the
candidates in C(i) that are shown to be statistically inferior are eliminated, resulting in
a possibly smaller set C(i + 1). This procedure is iterated until either only one candi-
date remains, a maximum limit on the overall computation time of the racing procedure
expires, or the race is stopped interactively because the further progress is very low.

There are several possibilities for the technical implementation of races. The most
widely explored possibility is given by the F-race, introduced by Birattari et al. [9].
The F-race is based on non-parametric statistical tests using ranking and blocking (a
block corresponds to one instance). In the F-race, after each iteration i the Friedman-
test two-way analysis of variance by ranks [11, 12] is first used to detect whether there
exists sufficient statistical evidence that there is a difference among the outcomes of
C(i) (the corresponding null hypothesis H0 is that all candidate configurations per-
form the same). If H0 is not rejected, all candidates in C(i) pass to C(i + 1). If H0

is rejected, pairwise tests between the best configuration (e.g. the one with the lowest
sum of ranks) and all others are done and significantly worse candidates than the best
one are discarded. For this second test, the Wilcoxon matched-pairs signed-ranks test is
adopted [16]. The only parameter for the F-race is the significance level α for the two
tests.

As an alternative to the F-race, we consider a method that deletes the worst ρ per-
cent of the remaining configurations after each iteration. This approach, which we call
DW-race, is probably the simplest approach for racing and, when compared to F-races,
it has the advantage that its overall computation time is exactly predictable and that
further progress of the race is forced until only one candidate configuration remains.
However, DW-race may (i) eliminate candidates that are not statistically worse than the
current best configuration and, therefore, it is somewhat more error-prone, and (ii) fail
to eliminate configurations against which enough statistical evidence has been gathered.

Overall, a race is a three step procedure, which can be outlined as follows.

1. Select a set of problem instances I on which the SLS method should be tuned.
2. Select a set of candidate configurations C for the SLS algorithm.
3. Run the race and select the best performing candidate configuration.

The first two steps are equally important as the run of the race. Regarding the first
step, the set of instances should be (i) representative of the final set of instances that
will be tackled and (ii) the more instances are available, the better usually is the qual-
ity of the finally selected configuration, because the bias towards specific instances is
reduced with more instances. The set of candidate configurations can be built based
on discrete choices like different possible operators in the SLS algorithm (e.g., local
search operators or mutation operators) and, simultaneously, varying parameter choices.
However, continuous parameters need to be discretised and for this step pre-knowledge
on a reasonable range of parameter settings may be useful. The number of candidate
configurations increases typically exponentially with the number of algorithm choices
under investigation in the application of a race. If choice j has nj possible values,
a total of Πk

j=1nj candidates results, where k is the number of choices to be made

274 S. Becker, J. Gottlieb, and T. Stützle

(for nj = 2, j = 1, . . . k, this would result in 2k candidates). If too many values for the
particular choices are allowed because of a fine-grained discretisation, this may result
in a very large number of candidates. To avoid these problems, races may also be run
with several levels of discretisation or in a hierarchical manner.

3 Vehicle Scheduling and Routing Problems

The vehicle routing problem (VRP) is a classical combinatorial optimisation problem
that is frequently used to study and develop new algorithmic ideas. It considers the de-
livery of goods from a depot to a set of customers, and its goal is to assign customers to
vehicles and to find routes for the vehicles such that total transportation costs are min-
imised and certain constraints like loading capacities or time windows of the customers
are met [17]. Although the VRP forms the core of many real-world applications, e.g. in
transportation management systems, real-world scenarios are typically more complex
since they involve multiple objective functions, many constraints and decisions to be
made. Here, we sketch the most important features of the vehicle scheduling and rout-
ing problem (VSRP), for which an optimisation algorithm is offered in SAP’s supply
chain management solution1, a commercial software that allows to plan and optimise
the whole supply chain, including demand planning, supply network planning, produc-
tion planning, transportation planning and vehicle scheduling.

The VSRP consists of a set of orders, each representing a transportation require-
ment from a source to a destination location. An order is described by its quantity
(volume, weight, etc.), some characteristics (material, frozen or non-frozen, etc.), ma-
terial availability date at the source and required delivery date at the destination, and
a non-delivery penalty that represents an order’s priority. There is a fleet of vehicles,
each having a certain cost structure (duration costs, fixed costs, distance costs, quantity
costs, stop costs) and driving capabilities (speed, reachability between locations). A ve-
hicle may have a fixed start or end location, and a time availability interval, potentially
interrupted by a set of breaks (weekends, legal holidays, etc.). Vehicles may have dif-
ferent loading capacities and limits on travelled distance or number of visited locations,
and some may be incompatible with orders of given characteristics (e.g. frozen goods
require special vehicles). Loading and unloading at locations may require additional
capacitive resources (e.g. docks, workers) that are available only during several time
windows, and goods with certain characteristics must not be shipped together on the
same vehicle (e.g. food and chemicals). There may be hub locations, where orders can
be unloaded by one vehicle and loaded again by another vehicle that brings the goods
to their final destination location.

The goal of the VSRP is to minimise total costs while satisfying all constraints. The
total costs are the weighted sum of different cost terms per vehicle, as indicated above,
and per order (earliness costs, lateness costs, non-delivery costs).

The VSRP generalises the VRP in many aspects, and therefore most algorithmic
techniques specifically tailored to the VRP are not directly applicable. SAP has devel-
oped an SLS algorithm for the VSRP, built on top of several constructive heuristics and
a suite of more than 20 atomic variation operators that focus on specific aspects of a

1 See http://www.sap.com/scm for more details.

Applications of Racing Algorithms: An Industrial Perspective 275

candidate solution: the choice of hubs, the assignment of orders to vehicles, the routing
per vehicle, and the scheduling of activities.

The SLS algorithm is population-based and heavily relies on local optimisation. As
selection pressure is used on the population level and certain random variation steps are
performed, this approach is called evolutionary local search. The population is rather
small, e.g. of size three up to eight, and each individual in the population has a certain
role. These roles represent different search behaviours. One role is called iterated local
search (ILS), another depth-first search (DFS), and another random walk (RW). The
latter role intends to diversify search by frequent random perturbation steps. DFS and
ILS are conceptually similar, but DFS uses a more narrow search when compared to
ILS. Each of the three roles orchestrates the available variation operators sequentially,
with certain operator probabilities that reflect the role. One key difference in the three
roles is the frequency of perturbation moves. Since the key idea of ILS (in general) is
inherent in all roles, the overall SLS algorithm can also be seen as a population-based
iterated local search.

We omit a formal statement of the VSRP and more details about the employed ap-
proach for several reasons: (i) the available space does not allow to give more details,
(ii) it is not SAP’s goal to disclose too many details of its commercial software, and
(iii) our intention in this paper is to study racing algorithms on a real-world problem,
for which neither the formal problem description nor the detailed algorithm is needed.
Therefore, SAP’s optimisation approach for the VSRP is perceived as a black-box al-
gorithm with some parameters that shall be fine-tuned by racing algorithms.

4 Benchmark Instances and Experimental Environment

The VSRP is used by SAP’s customers to model and solve their transportation planning
scenarios. Each customer’s transportation business has special requirements that are
mapped into a certain family of VSRP instances which share structural similarities.
VSRP instances of different customers may differ significantly. In our experiments, we
use a total of 47 real-world instances, taken from several customers. These instances are
representative in the sense that they cover many customers’ scenarios and all instances
differ in one or more aspects from the others.

The instances have different numbers of orders, ranging from 19 to 1101 orders.
The numbers of source locations and destination locations vary between 1 and 19, and
1 and 548, respectively. 23 instances involve time windows for loading and unload-
ing activities, and 6 instances require capacitive resources for loading and unloading.
17 instances involve at least one possible hub, whereas the remaining 30 instances do
not allow indirect shipment via hubs. This heterogeneous benchmark suite contains in-
stances with different objective functions, constraints, and decision variables.

The goal of our racing experiments is not to fine-tune the algorithm’s parameters
for a single customer’s instance family, but to find robust general parameter settings
that work well for all instances, or at least for an easily definable and sufficiently large
subset of instances.

The run time limits of single optimisation runs differ significantly between the
customers. One the one hand, some customers run the optimiser for a few minutes,

276 S. Becker, J. Gottlieb, and T. Stützle

which allows several consecutive optimisation runs being evaluated, possibly manipu-
lated manually, and finally executed by the human transportation planner. On the other
hand, other customers make long optimisation runs over night, which are then processed
by the human planner in the next morning or after the weekend. In our experiments we
chose a run time limit of 10 minutes per single optimisation run, which is acceptable
for most customers and allows reasonable results even for the biggest and most difficult
instances under consideration.

5 Computational Experience

In this section we report our computational experience with the F-race and DW-race.
Given the overall complexity of the SLS algorithm and the high computation times
per instance, we focused on two classes of experiments, (pure) parameter optimisation
and structural optimisation including limited settings of parameters. For both cases, we
study an example that was known to have influence on the performance of the overall
SLS algorithm.

We use a modified racing algorithm that was applied to configure SLS algorithms for
the university course timetabling problem (UCTP) [13]. Basically, one iteration means
running all candidate configurations on all instances from the benchmark set under
consideration. The reason for this choice is the heterogeneity of the benchmark set and
to avoid a result biased by the order in which the instances are considered in the race.

The experiments are performed on 6 PCs with a same configuration (2.6 GHz Pen-
tium IV with 512 MB of RAM). Since these PCs are also used for other purposes and
their availability is not known a priori, distributed computing is used to make best use of
available time slots on these machines. Here, distribution means that a central instance,
the master, running on one PC, is dynamically fed with the optimisation runs speci-
fied by the racing algorithm. On each PC, a client reports availability of the machine
to the master, and the master assigns each required optimisation run to one available
client. Without this grid-like distributed computing environment, a single PC running
exclusively for this project would have required more than 100 days for the experiment
described in Section 5.1.

5.1 Parameter Optimisation: Frequency of Block-Inserts

The optimiser contains many atomic variation moves, one of which is the block insert
operator that assigns several unscheduled orders with identical characteristics and due
dates to a vehicle. This operator is faster than several consecutive single insert opera-
tions for the same orders, but it also causes some solutions being more difficult to obtain.
We are therefore interested in this trade-off and analyse the probability for applying this
operator. In principle, all values in the interval [0, 1] are valid. However, in order to re-
duce the number of alternatives, we discretise this range, yielding the configuration set
C = {0, 0.2, 0.4, 0.6, 0.8, 1} that represents the considered operator probabilities.

Our experience before starting racing experiments was that this operator worked
well on instances involving hubs, but its success on other instances was somehow in-
conclusive. We considered this knowledge by partitioning the set of all instances I into

Applications of Racing Algorithms: An Industrial Perspective 277

Table 1. Results for F-Race, different values of α and instance sets

IH INH I
α

runs days it win runs days it win runs days it win
0.1 204 1.4 2 0.2 810 5.6 6 0 2538 17.6 18 0
0.05 204 1.4 2 0.2 900 6.3 6 0 3478 24.2 26 0
0.02 680 4.7 16 0.2 960 6.7 6 0 3807 26.4 22 {0, 0.2}
0.01 1734 12.0 20 0.2 960 6.7 6 0 4136 28.7 22 {0, 0.2}
0.001 — 1890 13.1 15 0 —

IH and INH , the subsets of instances involving hubs and not involving hubs, respec-
tively. Among the |I| = 47 instances, 17 contain hubs, and 30 none. In order to study
the impact of hubs on the outcome of racing, three configuration problems were inves-
tigated separately: (C, IH), (C, INH), and (C, I).

Results for F-Race. Table 1 shows the results for F-Races with different significance
levels for the statistical tests on the three instance sets. For each experiment, the number
of single optimisation runs, the amount of CPU time measured in days, the number
of iterations in the race, and the winning configuration is given. We performed only
one race for α = 0.001 since the other races on IH and I were already very CPU
intensive for α = 0.01. Races without a clear winner were terminated interactively
after observing that no more progress can be expected; the remaining configurations
are listed as winners in this case.

Some general trends are obvious and intuitive. Firstly, the lower α, the more opti-
misation runs and iterations are needed, because the test is less aggressive in detecting
differences among the configurations. Secondly, all races on IH terminated with the
same result, indicating that the best probability is 0.2; all races on INH determined 0
as the best probability. This confirms our past experience. However, if we consider the
races on I , the probability 0 is the winner for α ∈ {0.1, 0.05}. For lower significance
levels, the racing algorithm does not indicate significant differences between the two re-
maining configurations, which were the winners of the separate races on IH and INH ,
even after many days of computation time.

Figure 1 shows the average ranks (upper part) and p-values of tests (lower part)
during two typical F-races. The average rank of a configuration in an iteration is de-
fined as the average over all ranks of this configuration on all instances and optimi-
sation runs performed so far. The p-value gives the probability of wrongly rejecting
the null hypothesis if in fact it were true; if the p-value is smaller than the signifi-
cance level, the null hypothesis is rejected. On the instance set INH , the configurations
0.8 and 1 are eliminated after the third iteration, and after six iterations the winner is
found by eliminating the other configurations except 0. The F-race on I shows why
it took so many iterations to detect the winning configuration 0: the two best config-
urations are very close together regarding their average ranks, and it took very long
until the difference was proved to be significant. This also indicates why the F-races
on I with lower significance levels had to be stopped interactively. For significance
levels α ∈ {0.02, 0.01}, no significant difference could be found within the allowed
time.

278 S. Becker, J. Gottlieb, and T. Stützle

1

2

3

4

5

6

1 2 3 4 5 6

A
ve

ra
ge

 r
an

k

Iterations

Instance set INH

0
0.2
0.4
0.6
0.8

1

1

2

3

4

5

6

5 10 15 20 25

A
ve

ra
ge

 r
an

k

Iterations

Instance set I

0
0.2
0.4
0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

p-
va

lu
e

Iterations

p-value
significance level α

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

p-
va

lu
e

Iterations

p-value
significance level α

Fig. 1. Average ranks of the configurations (top) and the p-value of the F-test (bottom) during
F-Races with α = 0.05 on INH (left) and I (right)

The more heterogeneous set of instances I makes it more difficult to find the best
configuration. If rather high values are chosen for α, the probability 0 wins, but for
lower significance levels both configurations perform quite well. Perhaps this race is
even unfair, because |INH | = 30 > 17 = |IH |. In order to have a fair instance set, we
performed the following experiment five times. 13 instances from INH are randomly
removed from I , and then F-race with α = 0.05 is run on the resulting instance set
of size 34. In four of the experiments the result was inconclusive, with 0 and 0.2 be-
ing among the final candidates when stopping the race after 50 iterations. The average
number of optimisation runs was 5310, which requires a CPU time of 36.9 days per
experiment. Thus, if both structures (involvement of hub or not) are represented by the
same number of instances, the configuration problem becomes even more difficult.

The above discussion shows that a heterogeneous instance set represents a challenge
for racing algorithms. The main reason is that a mixture of two different classes of
instances, for which different best parameter settings would be obtained, do not lead
to statistically significant differences among the configurations, differently from what
is observed for the two races on the two separated instance sets. The separation of the
instance set into two classes allows to set the investigated parameter by the following
simple rule: if an instance involves hubs, apply the insert block operator with probability
0.2, and do not use the operator otherwise.

Results for DW-Race. Analogously to the F-race, we also examined the results of the
DW-race in dependence of different delete rates and the three instance sets. With a fixed

Applications of Racing Algorithms: An Industrial Perspective 279

Table 2. Results for DW-Race, different delete rates and instance sets

IH INH Irate
runs days it win runs days it win runs days it win

0.15 629 4.4 9 0.2 930 6.5 9 0 1457 10.1 9 0.2
0.1 901 6.3 14 0.2 1410 9.8 14 0 2209 15.3 14 0.2
0.05 1683 11.7 29 0.2 2790 19.4 29 0 4371 30.4 29 0

deletion rate of ρ, one can determine the number of surviving candidates after iteration
i of the race as |C(i + 1)| = #|C| · (1 − ρ)i + 0.5$, if the usual rounding procedure
is used. Using this approach, the results of the DW-race are given in Table 2. If the
instances are separated into the two classes IH and INH , the same configurations as for
the F-race were returned, however, taking in most cases more time than the F-race with
the standard significance level α = 0.05. Surprisingly, for DW-race on set I , the same
winner configuration as in the F-race was returned only by the lowest delete rate. The
reason for this effect is that the two configurations with operator probabilities 0 and 0.2
result in rather similar ranks and are statistically distinguishable only after 26 iterations
in the F-race at the significance level α = 0.05. Hence, in this case the DW-race takes
the (statistically) wrong decision because of forcing too early convergence of the race.

5.2 Structural Optimisation: Shape of the SLS Method

In a second set of racings, we considered the configuration of the overall structure of
the SLS algorithm. As described in Section 3, the SLS algorithm works on a population
of individuals, where each individual belongs to one role of ILS, DFS, and RW. For
a first race, we considered configurations that differed in the number of individuals
for each role and that varied two parameter settings: the number of restart points for
the DFS strategy and the perturbation strength for ILS and RW, respectively. To keep
the computational effort within reasonable limits, in a first trial only 20 different such
configurations were defined and we limited the experiments to the instances in INH .
As before, experiments were run with F-races and DW-races using various settings for
α and deletion rate, respectively.

The results of the F-race and the DW-race are given in Table 3. As can be seen, all
races return the same winner configuration, which uses only one ILS individual and a
perturbation of strength 2. In this experiment, a clear advantage of the F-race appears:
with α = 0.05, after only 3 iterations one single configuration is declared as the win-
ner. In fact, a more careful examination of the progress of the race shows that only

Table 3. Results for F-race and DW-race in the structural optimisation

F-race DW-race
α

runs days it win
rate

runs days it win
0.1 900 6.25 3 (ILS,2) 0.5 925 6.42 4 (ILS,2)
0.05 900 6.25 3 (ILS,2) 0.25 1 725 11.98 8 (ILS,2)
0.01 1 475 10.24 7 (ILS,2) 0.1 3 350 23.26 14 (ILS,2)

280 S. Becker, J. Gottlieb, and T. Stützle

Table 4. Results of F-race and DW-race for additional configurations in the structural optimi-
sation

F-race DW-race
α

runs days it win
rate

runs days it win
0.1 2 250 15.63 21 (ILS,1) 0.5 1 175 8.16 5 (ILS,1)
0.05 2 650 18.40 24 (ILS,1) 0.25 2 275 15.80 10 (ILS,1)
0.02 2 850 19.79 23 {(ILS,2),(ILS,1),(2ILS,2)} 0.1 5 625 39.06 27 (ILS,1)

configurations with at least one ILS individual survive the first iteration; this is consis-
tent with the fact that the winning configuration is the only that consisted purely of one
single ILS individual (that is, the configuration without any DFS and RW individuals).
Since the differences between the configurations are very strong, the F-race is able to
quickly eliminate the poor performing candidate configurations. The DW-race returns
the same winning configuration. However, to return this result in the same computation
time as the F-race, a very high deletion rate of 0.5 is needed; however, as shown also
in the previous example, such a high deletion rate can be quite problematic and lead to
statistically unfounded (or even wrong) decisions.

Based on this initial race, others were run, the results of which we summarize next.

Additional configurations. Additional candidate configurations with only ILS individ-
uals (one or two) and a range of parameter settings for the perturbation strength were
added to the configurations of the first race; the results of this race are summarised
in Table 4. In this new race, for all significance levels, the winning configuration was
ILS,1, that is a configuration with only one ILS individual and perturbation strength
one – this configuration was not considered in the first race. Interestingly, in the F-race
already after the second iteration every algorithm that uses at least one DFS or RW
individual was eliminated, leaving only pure ILS configurations that only differed in
the perturbation strength and the number of ILS individuals. However, the differences
among the various ILS configurations appear to be not too large and, hence, the race still
takes quite a few iterations to remove the other candidates. The very rapid elimination
of many competing configurations also explains the relatively short computation times
for the F-race when taking into account the number of iterations until it was stopped.
To reach a similar computation time limit, for the DW-race a rather high deletion rate
of 0.25 needs to be used.

Convergence limit. In this race, 30 configurations were examined that, in addition to
the population composition of ILS, DFS, and RW individuals, differed mainly in the
number of unsuccessful local search moves examined (convergence limit) before the
local search is stopped and the probability of making a large step for RW individuals.
Similar to the previous two races, here only the three configurations that only used ILS
individuals survived the first iteration of the F-race; DW-race was not run because of its
inferior performance in the previous races. Among the remaining three configurations,
the order of elimination suggested that the smaller the convergence limit is chosen, the
higher is the survival probability.

Applications of Racing Algorithms: An Industrial Perspective 281

Higher computation times. Here, the same configurations as in the race on the conver-
gence limit were examined, but this time the SLS algorithms were run for 30 minutes
instead for 10 minutes. The motivation for this additional race is that the configurations
with a stronger diversification through RW individuals or the intensification through
DFS individuals may profit from the higher computation times. However, as for the
previous race, after the first iteration all candidate configurations that did not make ex-
clusive use of ILS individuals were eliminated. A difference to the previous race was
that the influence of the convergence limit was diminished; for example, for the signifi-
cance level α = 0.05 all ILS configurations that differed only in the convergence limit
remained in the race.

Overall, for the combined structural and parameter optimisation as done here, the
F-race is clearly superior to the DW-race. After only a few iterations, inferior can-
didate configurations are deleted. Interestingly, the previously chosen configuration
of the optimiser was also among those eliminated, indicating that still significantly
better performance may be reached by fine-tuning the overall structure of the SLS
algorithm.

5.3 General Remarks

In addition to the comparison between the F-Race and DW-Race, several issues were
found to be important when running racing algorithms in a real-world environment.
Firstly, the rank-based approach for evaluating configurations is essential, especially
with such a heterogenous instance suite as ours. This is the case because the instances
have quite different ranges of objective function values, their distribution is unknown,
and even may have some anomalies. Secondly, the racing method can be examined,
analysed and modified interactively. Interactive features are appropriate when, for ex-
ample, it becomes obvious that the race should be restarted with additional configura-
tions or to stop the race when further progress appears to be very minor; see also [13]
for the usage of interactive racings. Thirdly, since in our setting each single optimisa-
tion run is rather time-consuming, a true re-start of the race is very costly. Therefore,
we used a database that stores the results of already executed optimisation runs per
instance, configuration, and seed. New trials are only started if there is no correspond-
ing database entry. This saves much time and even allows to run racings on the same
configuration problem, without too much additional CPU costs. Fourthly, by the usage
of survival analysis (e.g. by analysing commonalities among the surviving candidates
like only using ILS individuals), one may generate profiles of the main components re-
sponsible for high quality configurations, which can then allow to refine the algorithm.
Finally, the usage of distributed computing, like grid computing or the architecture we
used here, is essential to speed-up the experiments. The usage of this type of parallel
processing has the advantage that the speed-up of the experiments is essentially linear
with the number of computers available. For realistic settings, where individual trials
of an SLS algorithm on an instance can take several minutes or even longer, and many
configurations are examined, such a parallelisation is essential to keep the overall com-
putation times within manageable limits.

282 S. Becker, J. Gottlieb, and T. Stützle

6 Conclusions

We presented results of an experimental study of racing algorithms on real-world vehi-
cle scheduling and routing problems and a commercial SLS algorithm. This applicaton
of racing differs from previous studies in several aspects: the high computation time per
run, the high complexity of a real-world problem – due to multiple objective functions,
many structurally different constraints and decisions to be made – and the heterogeneity
of the benchmark suite.

While the computation time of a DW-race is predictable accurately, the CPU time
required by a F-race depends on the differences identified in the configurations. If strong
differences in performance are observed for the configurations, F-races tend to quickly
reduce the set of candidates, as done in the structural optimisation task. A further ad-
vantage of F-races is that they are based on sound statistical tests, which may allow to
delete significantly worse configurations early in the race and prevents deleting config-
urations that are not significantly inferior.

One of the most promising results for the usefulness of racing algorithms is that the
best configurations identified in an automatic way in this study improved over the pre-
vious version of the commercial software, at least for the considered instances, despite
the previous efforts to experimentally fine-tune the software. These positive results to-
gether with the increasing availability of cheap computation time, for example, through
small PC clusters or grid computing, will further increase the applicability of auto-
mated techniques for the configuration of algorithms in applications of high industrial
relevance.

References

1. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann, USA (2004)

2. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA
(1996)

3. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, MA,
USA (2002) 105–144

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA, USA (2004)
5. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In Glover, F., Kochenberger,

G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, MA, USA
(2002) 321–353

6. Xu, J., Chiu, S., Glover, F.: Fine-tuning a tabu search algorithm with statistical tests. Inter-
national Transactions in Operational Research 5(4) (1998) 233–244

7. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effec-
tive parameter settings for heuristics. Journal of Heuristics 7(1) (2001) 77–97

8. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental de-
signs and local search. Operations Research (In press)

9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring
metaheuristics. In Langdon, W.B., et al., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), Morgan Kaufmann, USA (2002) 11–18

10. Birattari, M.: The Problem of Tuning Metaheuristics. PhD thesis, IRIDIA, Université Libre
de Bruxelles, Belgium (2004)

Applications of Racing Algorithms: An Industrial Perspective 283

11. Siegel, S., Jr., N.J.C., Castellan, N.J.: Nonparametric Statistics for the Behavioral Sciences.
second edn. McGraw Hill, NewYork, NJ, USA (2000)

12. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. second
edn. Chapman & Hall / CRC, Boca Raton, Florida, USA (2000)

13. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid approach for
the university course timetabling problem. Journal of Scheduling (Submitted)

14. Maron, O., Moore, A.W.: Hoeffding races: Accelerating model selection search for classifi-
cation and function approximation. In Cowan, J.D., Tesauro, G., Alspector, J., eds.: Advances
in Neural Information Processing Systems. Volume 6., Morgan Kaufmann Publishers, Inc.
(1994) 59–66

15. Moore, A.W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In:
International Conference on Machine Learning, Morgan Kaufmann Publishers, Inc. (1994)
190–198

16. Conover, W.J.: Practical Nonparametric Statistics. third edn. John Wiley & Sons, New York,
NY, USA (1999)

17. Toth, P., Vigo, D., eds.: The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2002)

An Immunological Algorithm for
Global Numerical Optimization

Vincenzo Cutello, Giuseppe Narzisi, Giuseppe Nicosia, and Mario Pavone

Department of Mathematics and Computer Science,
University of Catania,

V.le A. Doria 6, Catania 95125, Italy
{vctl, narzisi, nicosia, mpavone}@dmi.unict.it

Abstract. Numerical optimization of given objective functions is a cru-
cial task in many real-life problems. The present article introduces an
immunological algorithm for continuous global optimization problems,
called opt-IA. Several biologically inspired algorithms have been de-
signed during the last few years and have shown to have very good per-
formance on standard test bed for numerical optimization.

In this paper we assess and evaluate the performance of opt-IA, FEP,
IFEP, DIRECT, CEP, PSO, and EO with respect to their general applica-
bility as numerical optimization algorithms. The experimental protocol
has been performed on a suite of 23 widely used benchmarks problems.
The experimental results show that opt-IA is a suitable numerical opti-
mization technique that, in terms of accuracy, generally outperforms the
other algorithms analyzed in this comparative study. The opt-IA is also
shown to be able to solve large-scale problems.

Keywords: Artificial Immune Systems, Clonal Selection Algorithms,
Immune Algorithm, Aging operator, Global Numerical Optimization.

1 The Immunological Algorithm

Clonal Selection Algorithms (CSAs) [1] are a special class of Immune algorithms
(IAs) [1, 2] which are inspired by the Clonal Selection Principle [3] of the human
immune system to produce effective methods for search and optimization. In this
research paper an immune algorithm inspired by the Clonal Selection Principle,
opt-IA [4, 5, 6, 7, 8], is applied to global numerical optimization.

The opt-IA algorithm uses a population of candidate solutions, i.e. points
of the search space (B cell or B cell receptor according to immunological ter-
minology). At each time step t, we have a population P

(t)
d of size d. The initial

population of candidate solutions, time t = 0, is generated uniformly at random
in the relative domains of each function (see table 1) The function Evaluate(P)
computes the fitness function value of each B cell x ∈ P. The implemented IA
uses three immune operators, cloning, hypermutation and aging. The cloning
operator, simply, clones each B cell dup times producing an intermediate popu-
lation P

(clo)
Nc

of size d × dup = Nc.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 284–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Immunological Algorithm for Global Numerical Optimization 285

The hypermutation operator acts on the B cell receptor of P
(clo)
Nc

. The num-
ber of mutations M is determined by mutation potential. Our IA uses an In-
versely Proportional Hypermutation operator, where the number of mutations
is inversely proportional to the fitness value, that is, it decreases as the fitness
function of the current B cell increases. Two different mutation potential are
used, they are defined by the following equations:

α = e(−ρ∗f), α =
(

1
ρ

)
e(−f) (1)

where α represents the mutation rate, and f is the fitness function value normal-
ized in [0, 1]. The number of mutations of a clone with fitness function value f
is equal to #L ∗α$ where L is the length of the clone receptor, that is L = l ×n,
with l being the number of bits used to code each variable and n the dimension
of the function. The first potential mutation was proposed in [10], while the sec-
ond potential mutation was introduced in [11]. Figure 1 shows the pseudo-code
of the proposed Immune Algorithm.

opt-IA(d, dup, ρ, τB , TMAX)
1. FFE ← 0;
2. Nc ← d × dup;
3. t ← 0;

4. P
(t)
d ← Population Initialization(d);

5. Evaluate(P
(t)
d);

6. FFE ← FFE + d;
7. while (FFE < TMAX)do
8. P

(clo)
Nc

← Cloning (P
(t)
d , dup);

9. P
(hyp)
Nc

← Hypermutation(P
(clo)
d

, ρ);

10. Evaluate(P
(hyp)
Nc

);

11. FFE ← FFE + Nc;

12. (aP
(t)
d , aP

(hyp)
Nc

) = Aging(P
(t)
d , P

(hyp)
Nc

, τB);

13. P
(t+1)
d ← (μ + λ)-Selection(aP

(t)
d ,a P

(hyp)
Nc

);

14. t ← t + 1;
15.end while

Fig. 1. Pseudo-code of opt-IA

Aging Operator. By inspecting the pseudo-code of opt-IA, one can see that
an “aging” operator is used. The aging operator eliminates old B cells, in the
populations P

(t)
d and P

(hyp)
Nc

to avoid premature convergence and to increase
diversity in the current population. This operator is the main difference between
our algorithm and the other IAs and Evolutionary Algorithms. The parameter
τB sets the maximum number of generations B cells are allowed to remain in the
population. When a B cell is τB +1 old it is erased from the current population,
no matter what its fitness value is. During the cloning expansion, a cloned B
cell takes the age of its parent. After the hypermutation phase, a cloned B cell
which successfully mutates, will be considered to have age equal to 0. In this
way, new B cells are given an equal opportunity to effectively explore the given
computational landscape. The best B cells which “survived” the aging operator,

286 V. Cutello et al.

are selected from the populations aP
(t)
d and aP

(hyp)
Nc

. In this way, we obtain the

new population P
(t+1)
d , of d B cells, for the next generation t + 1. If d′ < d B

cells survived, the (μ + λ)-Selection operator creates d − d′ new B cells (Birth
phase).

The evolution cycle ends if a maximum number of Fitness Function Evalua-
tions (FFE) is reached.

2 Numerical Optimization

Numerical optimization problems are fundamental for every field of engineering
and science. The task is that of finding global optima of a generic objective
function. However, often, the objective function is difficult to optimize because
of numerous local optima. Moreover, this difficulty increases proportionally with
the problem dimension.

In this paper we consider the following numerical minimization problem:

min(f(x)), Bl ≤ x ≤ Bu (2)

where x = (x1, x2, . . . , xn) is the variable vector in Rn, f(x) denotes the ob-
jective function to minimize and Bl = (Bl1 , Bl2 , . . . , Bln), Bu = (Bu1 , Bu2 , . . . ,
Bun) represent, respectively, the lower and the upper bound of the variables,
such that xi ∈ [Bli , Bui].

We used binary string representation: real values xi are coded using bitstrings
of length l = 32. The mapping from the binary string b =< b1, b2, . . . , bl > into
a real number x consists of two steps:
(i) convert the bitstring b =< b1, b2, . . . , bl > from base 2 to base 10 using the

equation:
∑l

i=1 bi ∗ 2i = x′;
(ii) finding the corresponding real value: x = Bli + x′(Bui

−Bli
)

2l−1 , where Bli and
Bui are the lower and upper bounds of the variables.

Test Functions. We selected twentythree functions from three categories [12].
This relative large set is necessary in order to reduce biases in evaluating algo-
rithms. Table 1 lists the 23 functions and their key properties (for a complete
description of all the functions and the parameters involved see [12]). These
functions can be divided into three categories of different complexities:
– unimodal functions (f1 − f7), which are relatively easy to optimize, but the

difficulty increases as the problem dimension increases;
– multimodal functions (f8 −f13), with many local minima, they represent the

most difficult class of problems for many optimization algorithms;
– multimodal functions which contain only few local optima (f14 − f23).

Some functions possess unique features: f6 is a discontinuous step function hav-
ing a single optimum; f7 is a noisy quartic function involving a uniformly dis-
tributed random variable within [0, 1). Optimizing unimodal functions is not a
major issue, so in this case the convergence rate is of main interest. However,
for multimodal functions the quality of the final results is more important since
it reflects the algorithm’s ability in escaping from local optima.

An Immunological Algorithm for Global Numerical Optimization 287

Table 1. The 23 benchmark functions used in our experimental study; n is the di-
mension of the function; fmin is the minimum value of the function; S ⊆ Rn are the
variable bounds (for a complete description of all the functions and the parameters
involved see [12])

Test function n S fmin

f1(x) = n
i=1 x2

i 30 [−100, 100]n 0
f2(x) = n

i=1 |xi| + n
i=1 |xi| 30 [−10, 10]n 0

f3(x) = n
i=1

i
j=1 xj

2
30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x) = n−1
i=1 [100(xi+1 − x2

i)2 + (xi − 1)2] 30 [−30, 30]n 0
f6(x) = n

i=1 (�xi + 0.5�)2 30 [−100, 100]n 0
f7(x) = n

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) = n
i=1 −xi sin(|xi|) 30 [−500, 500]n −12569.5

f9(x) = n
i=1 [x2

i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp −0.2 1
n

n
i=1 x2

i 30 [−32, 32]n 0

− exp 1
n

n
i=1 cos 2πxi + 20 + e

f11(x) = 1
4000

n
i=1 x2

i − n
i=1 cos

xi√
i

+ 1 30 [−600, 600]n 0

f12(x) = π
n {10 sin2(πy1) 30 [−50, 50]n 0

+ n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+ n
i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4 (xi + 1)

u(xi, a, k, m) =
k(xi − a)m, if xi > a,
0, if −a ≤ xi ≤ a,
k(−xi − a)m, if xi < −a.

f13(x) = 0.1{sin2(3πx1) 30 [−50, 50]n 0

+ n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]

+(xn − 1)[1 + sin2(2πxn)]} + n
i=1 u(xi, 5, 100, 4)

f14(x) = 1
500 + 25

j=1
1

j+ 2
i=1 (xi−aij)6

−1
2 [−65.536, 65.536]n 1

f15(x) = 11
i=1 ai − xi(b

2
i +bix2)

b2
i
+bix3+x4

2

4 [−5, 5]n 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316285

f17(x) = x2 − 5.1
4π2 x2

1 + 5
π x1 − 6

2
2 [−5, 10] × [0, 15] 0.398

+10 1 − 1
8π cos x1 + 10

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 2 [−2, 2]n 3

+6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)

2(18 − 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

f19(x) = − 4
i=1 ci exp − 4

j=1 aij(xj − pij)
2 4 [0, 1]n −3.86

f20(x) = − 4
i=1 ci exp − 6

j=1 aij(xj − pij)
2 6 [0, 1]n −3.32

f21(x) = − 5
i=1 (x − ai)(x − ai)

T + ci

−1
4 [0, 10]n −10.1422

f22(x) = − 7
i=1 (x − ai)(x − ai)

T + ci

−1
4 [0, 10]n −10.3909

f23(x) = − 10
i=1 (x − ai)(x − ai)

T + ci

−1
4 [0, 10]n −10.53

3 Experimental Results

3.1 Experimental Setup

The performance of the proposed IA is assessed by carrying out optimization on
the 23 functions listed in table 1 and comparing results with some well-known
algorithms for global optimization. For each test function 50 independent runs
are performed. At each generation we compute the mean value of the best fit
individuals for all 50 runs in order to plot the evolution curves. Moreover the

288 V. Cutello et al.

Table 2. Parameters used by opt-IA for each function (f1, . . . , f23)

Function α = e(−ρ∗f) α = 1
ρ e(−f)

d dup τB ρ d dup τB ρ
f1 10 2 5 10 10 2 10 150
f2 10 2 10 10 10 2 10 150
f3 20 2 20 10 20 2 10 150
f4 10 2 10 10 20 2 20 150
f5 10 2 10 10 20 2 20 150
f6 20 2 20 10 20 2 50 150
f7 10 2 10 10 20 2 20 150
f8 20 2 20 10 20 2 20 150
f9 20 2 20 10 20 2 5 150
f10 20 2 20 10 10 2 10 150
f11 20 2 20 10 10 2 10 150
f12 20 2 20 10 10 2 10 150
f13 20 2 20 10 20 2 5 150
f14 10 5 5 10 20 2 20 150
f15 20 2 20 10 20 2 20 150
f16 10 2 5 6 10 2 20 100
f17 10 2 15 7 10 2 15 125
f18 10 2 10 8 10 2 15 100
f19 10 2 10 9 10 2 15 100
f20 10 2 10 8 20 2 20 150
f21 10 2 25 6 10 2 10 150
f22 10 2 5 7 10 2 15 125
f23 10 2 5 7 10 2 10 100

standard deviation is used to indicate the consistency of the algorithm. Table 2
summarizes the key parameters setting of opt-IA for each test function and for
each mutation potential used.

There are several algorithms designed for numerical optimization. We start
comparing opt-IA with one of the best evolutionary algorithms for numerical
optimization in literature: Fast Evolutionary Programming (FEP) [12] and his
improved version IFEP. FEP is based on Conventional Evolutionary Program-
ming (CEP [13]) but uses a new mutation operator based on Cauchy random
numbers that helps the algorithm to escape from local optima. The performance
of opt-IA is further compared with some other well-established evolutionary
algorithms such as CEP with three different mutation operators (Gaussian Mu-
tation Operator GMO, Cauchy Mutation Operator CMO and Mean Mutation
Operator MMO) [13], Particle Swarm Optimization (PSO) [14] and Evolution-
ary Optimization (EO) [14]. Moreover comparison is made, when possible, with
a global search algorithm for bound constrained optimization based on Lipschitz
constant estimation, DIRECT [15, 16].

3.2 Comparison with FEP and DIRECT

Unimodal functions (f1 − f7). Unimodal functions are not the most challenging
test problems. There are more efficient algorithms which are specifically designed
to optimize them. The aim in this case is to get a picture of the convergence
rate of the algorithms. In table 3 we report the optimization results obtained
by opt-IA with respect to those obtained by FEP and DIRECT. All results

An Immunological Algorithm for Global Numerical Optimization 289

Table 3. Comparison between FEP, opt-IA and DIRECT on functions f1 − f7

Fun. Tmax Direct FEP opt-IA
α = e(−ρ∗f) α = 1

ρ e(−f)

Min Found Mean Best Mean Best Mean Best
Std Dev Std Dev Std Dev

f1 150, 000 n.a. 5.7 × 10−4 9.23 × 10−12 1.7 × 10−8

1.3 × 10−4 2.44 × 10−11 3.5 × 10−15

f2 200, 000 n.a. 8.1 × 10−3 0.0 7.1 × 10−8

7.7 × 10−4 0.0 0.0

f3 500, 000 n.a. 1.6 × 10−2 0.0 1.9 × 10−10

1.4 × 10−2 0.0 2.63 × 10−10

f4 500, 000 n.a. 0.3 1.0 × 10−2 4.1 × 10−2

0.5 5.3 × 10−3 5.3 × 10−2

f5 2 × 106 27.89 5.06 3.02 28.4
5.87 12.2 0.42

f6 150, 000 n.a. 0.0 0.2 0.0
0.0 0.44 0.0

f7 300, 000 8.9 × 10−3 7.6 × 10−3 3.0 × 10−3 3.9 × 10−3

2.6 × 10−3 1.2 × 10−3 1.3 × 10−3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200 1400

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200 1400

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 50 100 150 200 250 300 350 400

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600 700 800 900 1000

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 6

Fig. 2. Evolution curves of opt-IA algorithm on two unimodal functions (f1, f6) over
50 independent runs Individual curves for each run (left plot), mean performance curve
(right plot)

have been averaged over 50 independent runs. “Mean Best” indicates the mean
best function values found in the last generation, “Std Dev” stands for standard
deviation. Second column shows the maximum number of Fitness Function Eval-
uation allowed (Tmax); we used the same Tmax values proposed by X. Yao, Y. Liu

290 V. Cutello et al.

Table 4. Comparison between FEP, opt-IA and DIRECT on functions f8 − f13

Fun. Tmax Direct FEP opt-IA
α = e(−ρ∗f) α = 1

ρ e(−f)

Min Found Mean Best Mean Best Mean Best
Std Dev Std Dev Std Dev

f8 900, 000 -4093.0. −12554.5 −12508.38 −12568.27
52.6 155.54 0.23

f9 500, 000 n.a. 4.6 × 10−2 19.98 2.66

1.2 × 10−2 7.66 2.39

f10 150, 000 n.a. 1.8 × 10−2 18.98 1.1 × 10−4

2.1 × 10−3 0.35 3.1 × 10−5

f11 200, 000 n.a. 1.6 × 10−2 7.7 × 10−2 4.55 × 10−2

2.2 × 10−2 8.63 × 10−2 4.46 × 10−2

f12 150, 000 0.03 9.2 × 10−6 0.137 3.1 × 10−2

3.6 × 10−6 0.23 5.7 × 10−2

f13 150, 000 0.96 1.6 × 10−4 1.51 3.20

7.3 × 10−5 0.10 0.13

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0 2000 4000 6000 8000 10000 12000

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 8

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0 2000 4000 6000 8000 10000 12000

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 8

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 10

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 10

Fig. 3. Evolution curves of opt-IA algorithm on two multimodal functions with many
local minima (f8, f10) over 50 independent runs. Individual curves for each run (left
plot), mean performance curve (right plot).

and G. Lin in [12]. Better results are highlighted in boldface. As it can be seen,
opt-IA is able to always obtain better results than FEP except for function f3.
For most functions, results for DIRECT are not available because the symmetry
of the function implies that the optimum is in the center of the variable bounds,

An Immunological Algorithm for Global Numerical Optimization 291

Table 5. Comparison between FEP, opt-IA and DIRECT on functions f14 − f23

Fun. Tmax Direct FEP opt-IA
α = e(−ρ∗f) α = 1

ρ e(−f)

Min Found Mean Best Mean Best Mean Best
Std Dev Std Dev Std Dev

f14 10, 000 1.0. 1.22 1.02 1.21

.56 7.1 × 10−2 0.54

f15 400, 000 1.2 × 10−3 5.0 × 10−4 7.1 × 10−4 7.7 × 10−3

3.2 × 10−4 1.3 × 10−4 1.4 × 10−2

f16 10, 000 -1.031 −1.031 −1.03158 −1.02

4.9 × 10−7 1.5 × 10−4 1.1 × 10−2

f17 10, 000 0.398 0.398 0.398 0.450

1.5 × 10−7 2.0 × 10−4 0.21
f18 10, 000 3.01 3.02 3.0 3.0

0.11 0.0 0.0
f19 10, 000 −3.86 −3.86 −3.72 −3.72

1.4 × 10−5 1.1 × 10−4 1.1 × 10−2

f20 20, 000 −3.30 −3.27 −3.31 −3.31
5.9 × 10−2 7.4 × 10−2 5.9 × 10−3

f21 10, 000 −6.84 −5.52 −9.11 −5.36
1.59 1.82 2.20

f22 10, 000 −7.09 −5.52 −9.86 −5.34
2.12 1.88 2.11

f23 10, 000 −7.22 −6.57 −9.96 −6.03
3.14 1.46 2.66

the point from which DIRECT starts the search. Figure 2 shows performance
curves of opt-IA for the two unimodal functions f1 and f6.

Multimodal functions with many local minima (f8 − f13). Function f8 − f13 are
multimodal function with many local minima. The number of local minima in-
creases exponentially as the function dimension increases. The fitness landscape
of these functions is generally very rugged and difficult to optimize. Table 4 sum-
marizes the final results obtained bye opt-IA, FEP and DIRECT. FEP has a
better performance on 4 of 6 test problems. In particular, for functions f9, f12

and f13 FEP perform significantly better than opt-IA, except for function f11

where results are comparable. On the other hand, opt-IA performs significantly
better then FEP on function f8 and f10. By comparing results between opt-IA
and DIRECT, we can see that DIRECT is unable to approach the optimum,
while on functions f12 and f13 DIRECT shows a bit better performance.

Multimodal functions with only a few local minima (f14 − f23). The final results
of opt-IA, FEP and DIRECT on functions f14 − f23 are summarized in table 5.
In this case opt-IA shows a better performance on 6 of the 10 test functions.
Moreover, for for functions f16 and f17, opt-IA is able to obtain the same
optimum results of FEP in terms of mean best values found, but FEP shows
more consistency in terms of standard deviation. Instead for function f15 results
are of the same order. Inspecting all the experimental results (reported in the
previous tables) it is possible to note an overall better performance of opt-IA
algorithm using a minimum population size (d ∈ {10, 20}) while FEP uses a
larger population size greater of an order of magnitude.

292 V. Cutello et al.

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35 40 45 50

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 18

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 18

-12

-10

-8

-6

-4

-2

 0

 50 100 150 200 250

F
un

ct
io

n
V

al
ue

Generation

Individual performance curves for test function 21

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 50 100 150 200 250

F
un

ct
io

n
V

al
ue

Generation

Mean performance curve for test function 21

Fig. 4. Evolution curves of opt-IA algorithm on two multimodal functions with a few
local minima (f18, f21) over 50 independent runs. Individual curves for each run (left
plot), mean performance curve (right plot).

3.3 Comparison with IFEP

The analyses performed in [12] show that Cauchy mutation performs better when
the current search point is far away from the global optimum, while Gaussian
mutation is better when search points are in the neighborhood of the global
optimum. Based on those observations in [12] was proposed a version of FEP
which uses both Cauchy and Gaussian mutations. This improved version was
called IFEP. IFEP differs from FEP only in the step of the creation of the
offsprings: two new offspring are generated instead of one, the first one using
Cauchy mutation and the second one using Gaussian mutation, the better one is
chosen. Table 6 shows the comparison between opt-IA and IFEP on the same
functions used in [12]: unimodal functions f1, f2, multimodal functions f10, f11

with many local minima and multimodal functions f21, f22 with only few local
minima. opt-IA has again a better performance on all the functions except for
function f11 where the results are comparable.

3.4 Comparison with CEP, PSO and EO

Finally, we compare the immune algorithm with some other well-known biolog-
ically inspired algorithms: CEP, PSO and EO. Since the optimization results
obtained with these algorithms are available in literature only for some of the

An Immunological Algorithm for Global Numerical Optimization 293

Table 6. Comparison between opt-IA and IFEP on functions f1, f2, f10, f11, f21, f22

and f23

Function Tmax opt-IA IFEP

f1 150, 000 1.70 × 10−8 4.16 × 10−5

f2 200, 000 7.15 × 10−5 2.44 × 10−2

f10 150, 000 1.11 × 10−4 4.83 × 10−3

f11 200, 000 8.36 × 10−2 4.54 × 10−2

f21 10, 000 −8.29 −6.46
f22 10, 000 −9.59 −7.10
f23 10, 000 −9.96 −7.80

Table 7. Comparison between opt-IA and CEP with three different mutation opera-
tors (GMO,CMO,MMO) in terms of mean best values found

Function Tmax opt-IA CEP
GMO CMO MMO

f1 150, 000 1.70 × 10−8 3.09 × 10−7 3.07 × 10−7 9.81 × 10−7

f2 250, 000 7.15 × 10−5 1.99 × 10−3 5.87 × 10−3 3.23 × 10−3

f3 250, 000 260.12 17.60 5.78 11.80
f4 250, 000 0.001 5.18 0.66 1.88
f5 250, 000 29 86.70 114.0 63.8

f7 250, 000 5.85 × 10−03 12.20 9.42 9.53
f9 250, 000 24.0 120.0 4.73 9.52

f10 150, 000 1.11 × 10−4 9.10 1.3 × 10−3 7.49 × 10−4

f11 250, 000 8.36 × 10−2 2.52 × 10−7 2.2 × 10−6 6.99 × 10−7

Table 8. Performance Comparison among opt-IA, PSO, and EO on functions
f1, f5, f9, f11

Fun. Tmax opt-IA PSO EO
Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

f1 250, 000 1.70 × 10−8 3.5 × 10−15 11.75 1.3208 9.8808 0.9444
f5 250, 000 29.0 0.0 1911.598 374.2935 1610.39 293.5783
f9 250, 000 24.0 7.69 47.1354 1.8782 46.4689 2.4545

f11 250, 000 8.36 × 10−2 4.32 × 10−2 0.4498 0.0566 0.4033 0.0436

23 test functions considered in this work, comparisons will be made accordingly.
Results shown in tables 7 and 8 indicate that while opt-IA maintain a consistent
performance, CEP, PSO and EO appear unable to reach the optima for most
of the listed functions, although they make a considerable computational effort.
An overall better performance of opt-IA is evident.

4 Conclusions

In this paper we have introduced an immune algorithm based on clonal se-
lection principle, called opt-IA, for global numerical optimization. The main
features of opt-IA are the following: cloning operator, inversely proportional
hypermutation operator, and aging operator. The cloning operator explores the
neighborhood of each point of the search space. The inversely proportional

294 V. Cutello et al.

hypermutation perturbs each candidate solution inversely proportional to its
fitness function value. Finally, the aging operator eliminates the oldest candi-
date solutions from the current population in order to introduce diversity and
to avoid local minima during the evolutionary search process. We tested opt-
IA on 23 well-known benchmark problems. The experimental studies show that
the clonal selection algorithm is an effective numerical optimization algorithm
in terms of solution quality. The results show that opt-IA is significant better
than the seven tested evolutionary algorithms and one well-known deterministic
algorithm (DIRECT).

As future works we plan to perform a deeper statistical analysis of the ob-
tained experimental results and to compare opt-IA with the BCA algorithm [17],
Evolution Strategies and Differential Evolution [18].

References

[1] Nicosia G.: “Immune Algorithms for Optimization and Protein Structure Predic-
tion”, Ph.D. Thesis, University of Catania, Italy, December 2004.

[2] De Castro L. N., Timmis J., “Artificial Immune Systems: A New Computational
Intelligence Paradigm” London, UK: Springer-Verlag, (2002).

[3] Cutello V., Nicosia G.: “The Clonal Selection Principle for in silico and in vitro
Computing”, in Recent Developments in Biologically Inspired Computing, L. N.
de Castro and F. J. Von Zuben, Eds., (2004).

[4] Cutello V., Nicosia G., and Pavone M.: “Exploring the capability of immune
algorithms: A characterization of hypermutation operators” in Proc. of the Third
Int. Conf. on Artificial Immune Systems (ICARIS’04), pp. 263–276 (2004).

[5] Nicosia G., Cutello V., Pavone M.: “An Immune Algorithm with Hyper-
Macromutations for the Dill’s 2D Hydrophobic-Hydrophilic Model”, Congress on
Evolutionary Computation, CEC 2004, IEEE Press, vol. 1, pp. 1074-1080, (2004).

[6] Cutello V., Morelli G., Nicosia G., and Pavone M.; “Immune Algorithms with
Aging operators for the String Folding Problem and the Protein Folding Prob-
lem,” in Proc. of the Fifth Europ. Conf. on Comp. in Combinatorial Optimization
(EVOCOP’05), LNCS, vol. 3448, pp. 80-90 (2005).

[7] Nicosia G., Cutello V., Pavone M.: “A Hybrid Immune Algorithm with Informa-
tion Gain for the Graph Coloring Problem”, Genetic and Evolutionary Computa-
tion Conference, GECCO 2003, vol. 2723, pp. 171-182.

[8] Nicosia G., Cutello V., Bentley P. J., Timmis J., “Artificial Immune Systems”,
Third International Conference, ICARIS 2004, Catania, Italy, September 13-16,
Springer (2004).

[9] Goldberg D.E.: “The Design of Innovation: Lessons from and for Competent Ge-
netic Algorithms”, Kluwer Academic Publisher, vol 7, pp. Boston, (2002).

[10] De Castro L.N., Von Zuben F.J.: “Learning and optimization using the clonal
selection principle”. IEEE Trans. on Evolutionary Computation, vol 6, no 3, pp.
239-251, (2002).

[11] De Castro L. N., Timmis J.,: “An Artificial Immune Network for Multimodal
Function Optimization”, CEC’02, Proceeding of IEEE Congress on Evolutionary
Computation, IEEE Press, (2002).

[12] Yao X., Liu Y. and Lin G.M.: “Evolutionary programming made faster”, IEEE
Trans. on Evolutionary Computation,vol 3, pp. 82-102, (1999).

An Immunological Algorithm for Global Numerical Optimization 295

[13] Chellapilla, K.: “Combining mutation operators in evolutionary programming,”
IEEE Trans. Evol. Comput., vol. 2, pp. 91-96, (1998).

[14] Angeline, P. J.: “Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences”, in Proc. Evolutionary Programming VII,
V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds., pp. 601-610,
(1998).

[15] Jones, D. R., Perttunen, C. D. and Stuckman, B. E.: “Lipschitzian optimization
without the lipschitz constant.” J. of Optimization Theory and Application, vol.
79, pp. 157-181, (1993).

[16] Finkel, D. E.: “DIRECT Optimization Algorithm User Guide.”
Technical Report, CRSC N.C. State University, March 2003.
(ftp://ftp.ncsu.edu/pub/ncsu/crsc/pdf/crsc-tr03-11.pdf).

[17] Timmis J. and Kelsey J.: “Immune Inspired Somatic Contiguous Hypermutation
for Function Optimisation”, Genetic and Evolutionary Computation Conference,
GECCO 2003, Springer vol. 2723, pp. 207-218.

[18] Vesterstrom, J. and Thomsen R.: “A Comparative Study of Differential Evolu-
tion, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical
Benchmark Problems”, Congress on Evolutionary Computation, CEC 2004, IEEE
Press, vol. 2, pp. 1980-1987, (2004).

Algorithms (X, sigma, eta): Quasi-random Mutations
for Evolution Strategies

Anne Auger3, Mohammed Jebalia1, and Olivier Teytaud1,2

1 Equipe TAO - INRIA Futurs, LRI, Bât. 490, Université Paris-Sud, Orsay Cedex 91405, France
2 Artelys, 12 rue du 4 septembre, Paris 75002, France

www.artelys.com
3 CoLab, ETH Zentrum CAB F 84, 8092 Zürich, Switzerland

Abstract. Randomization is an efficient tool for global optimization. We here
define a method which keeps :

– the order 0 of evolutionary algorithms (no gradient) ;
– the stochastic aspect of evolutionary algorithms ;
– the efficiency of so-called "low-dispersion" points ;

and which ensures under mild assumptions global convergence with linear con-
vergence rate. We use i) sampling on a ball instead of Gaussian sampling (in
a way inspired by trust regions), ii) an original rule for step-size adaptation ;
iii) quasi-monte-carlo sampling (low dispersion points) instead of Monte-Carlo
sampling. We prove in this framework linear convergence rates i) for global op-
timization and not only local optimization ; ii) under very mild assumptions on
the regularity of the function (existence of derivatives is not required). Though
the main scope of this paper is theoretical, numerical experiments are made to
backup the mathematical results.

1 Introduction

Evolutionary algorithms (EAs) are zeroth-order stochastic optimization methods some-
how inspired by the Darwinian theory of biological evolution: emergence of new
species is the result of the interaction between natural selection and blind variations.
Among the class of Evolutionary Algorithms, Evolution Strategies (ES) [12, 17] are
the most popular algorithms for solving continuous optimization problems, i.e. for op-
timizing real-valued function f defined on a subset of R

dim for some dimension dim.
The common feature of EAs is to evolve a set of points of the search space: at each
iteration, some points of the search space are randomly sampled, then evaluated (the f
value of the points is computed) and last, some of them are selected. Those three steps
are repeated until a stopping criterion is met.

Since the invention of ESs in the mid-sixties, researches to improve the perfor-
mances of ESs focused on the so-called mutation operator [12, 17, 8]. This operator
consists in sampling a gaussian random variable with a given step-size σ and a given
covariance matrix C. The main issue has been the adaptation of the step-size parame-
ter σ and of the covariance matrix C. The first step in this direction is the well-known
one-fifth rule [12] based on the rate of successful mutations. Then Rechenberg [12]
and Schwefel [17] proposed to self-adapt the parameters of the mutation operator, by

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 296–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 297

mutating the step-size as well (this being usually achieved by multiplying the step-size
by a log-normal random variable). For this technique, the so-called mutative step-size
adaptation, a step size is associated to every individual in the population. This step-
size undergoes variations and is used to mutate the object parameters of the individual.
The individual is selected with its step-size and therefore the step-sizes automatically
adapted. Intuitively unadapted step-sizes can not give successively good individuals.

In this paper, we use a similar concept for adapting the scale of the sampling at
each generation but use a uniform sampling in a ball instead of the standard Gaussian
distribution. The motivation is that with a ball we have a trust region-effect ([7]), i.e.
the local operator can be trusted in this ball. Note that though this is not classical in
the evolutionary computation community, Rudolph [15] already introduced –mainly
for theoretical purposes– sampling of the unit ball instead of a Gaussian sampling.
We also make use of a deterministic sampling, or quasi random sampling, where we
moreover minimize the dispersion of the quasi-random points [11, 20]. Quasi-random
numbers have already proved to be successful in many areas one of which is the field
of Monte Carlo methods allowing to speed up the convergence of those methods [5, 11]
but as far as we know low-dispersion points are new for the evolutionary computation
community.

On a theoretical point of view, many papers deal with asymptotic properties of evo-
lutionary algorithms [13, 14] or their finite time convergence in discrete cases [3], but
convergence rates are only given under strong assumption (unimodal functions and/or
very convex functions and/or very smooth functions and/or only local convergence)
[15, 4, 6, 17, 2, 16, 1]. In this paper we investigate the convergence of the new algo-
rithm considered and we prove its convergence with order one.

The paper is organized as follows: Section 2 presents our algorithm, Section 3
presents the theoretical results and Section 4 investigates numerically the theoretical
results; Section 5 comments the results obtained and concludes.

2 Definitions and Properties

In this section we introduce the algorithm considered in this paper. As for the self-
adaptive Evolution Strategies (SA-ES), a step-size is associated to each individual,
moreover for reasons that will become clear in the sequel one individual is a triplet
(x, σ, η) and not only (x, σ) as for the SA-ES. To create new points, the so-called de-
scent operator is applied. It consists in choosing the best point among N neighbors of x
(where the scale of the neighborhood is given by σ) and updating σ with η (see below).
At each generation, new individuals are also randomly sampled. Finally individuals
created from both sides are submitted to selection. After giving some definitions, we
formally describe the descent operator and the algorithm:

General Definitions. We consider the minimization of a real valued objective function
f defined on X a subset of the real space R

dim. We assume that the minimum of f is
reached on X and denote f∗ = minx∈X f(x) ∈ R. Therefore f := X → [f∗,∞[.
Let opt denote the set of optima, i.e. opt = {x ∈ X/f(x) = f∗}. Let x ∈ R

dim be a
vector of R

dim and r a positive real number. We will denote B(x, r) the closed ball of
center x and radius r. For a set E embedded in X we will denote E the complementary

298 A. Auger, M. Jebalia, and O. Teytaud

of X in E ⊂ X . |E| will denote the cardinal of E. The Euclidean distance on R
dim

will be denoted d(., .), i.e. let (x, y) ∈ R
dim × R

dim, d(x, y) =
√∑dim

i=1 (xi − yi)2.

Exploitation operator "descent". Let B be a set of N points of the unit ball, B =
{B1, . . . , BN}, we define descent as descent(x, σ, η) = (x + σB
, ησ, η) where � =
argminj∈[[1,N]] f(x + σBj) (any of the optimal in case of equality).

Algorithm. The algorithm we investigate in the sequel is an evolutionary algorithm
where a population Pn, where n is the iteration or generation index, is evolved. Each
individual of the population is a triplet (x, σ, η) ∈ R

dim × R
+ × R

+.

1. Sampling of N points B = {B1, . . . , BN} included in B(0, 1).
2. Sampling of the initial population P0 of (x, σ, η)
3. For n varying from 0 à +∞

(a) Creation of P a
n+1, empty population.

(b) Descent step: for each (x, σ, η) ∈ Pn, add descent(x, σ, η) in P a
n+1 ; the

population at the end of this step is P b
n+1. 1

(c) Random sampling step: Random sampling of new individuals (x, σ, η) (see
the Assumption subsection for the details), P b′

n+1, the new population is
P c

n+1 = P b
n+1 ∪ P b′

n+1
(d) Selection step: Selection of the best |Pn| element of P c

n+1, the population so
generated is Pn+1.

(e) Increase N by 1 and regenerate B, if at least one local descent is interrupted.

Local descent: We call local descent a sequence of successive points ((x1,
σ1, η1), . . . , (xn, σn, ηn)) generated at Step 3b, i.e. For i > 1 (xi, σi, ηi) =
descent(xi−1, σi−1, ηi−1). Interrupted local descent: We will say that a local descent
is interrupted if for some i (xi, σi, ηi) is removed by the selection step.

Dispersion of B: We note Δ(B) (or Δ for short) the dispersion of B defined as Δ(B) =
supx∈B(0,1) infy∈B ‖ x − y ‖ .

3 Results

The convergence of the algorithm previously defined is analyzed in this Section.

3.1 Assumptions

We consider V = f−1([f∗, f∗+s[) for a given s, and assume that V is a neighborhood
of opt = f−1(f∗).

Assumption A. 1. We require that Step 1 and 3e ensure that 0 ∈ B, that Δ is non-
increasing in N and that Δ → 0 as N → ∞. For example, we might assume that
each new B generated minimizes Δ(B) under the constraint 0 ∈ B.

2. We forbid η ≥ 1 or η ≤ 0; in all cases η ∈]0, 1[.
3. The generation method (Step c) must generate 3-uples (x, σ, η) in an i.i.d man-

ner ; the number of generated 3-tuples is upper bounded by a given constant G,
and the density is lower bounded by c > 0 and upper bounded by d < ∞ on

1 At the end of this step, we have |P b
n+1| = |Pn|.

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 299

V ×]0, 2 sup(a,b)∈V ×V ‖ a − b ‖ [×]0, 1[, and x, σ and η are independent. More-
over, we generate at each Step c at least one point (which can be removed in the
selection step).

4. We keep, at Step d, the |Pn| best elements for the fitness. This selection depends
on x only (not on σ and η) : in particular, |Pn+1| = |Pn| and ∀(x, σx, ηx) ∈
P d

n+1, ∀(y, σy, ηy) ∈ P c
n+1 \ P d

n+1 f(x) ≤ f(y).
5. We assume that if x ∈ V , the following holds :

f∗ + α′d(x, opt)β ≤ f(x) ≤ f∗ + αd(x, opt)β

with β > 0 and 0 < α′ ≤ α.
6. For ε > 0 sufficiently small, the probability of generating (by random generation

at Step 3c) an optimal point within ε is lower bounded by KεC and upper bounded
by K ′εC for some C, K, K ′ > 0 (consequence of Assumption A.5 and Assump-
tion A.3), i.e. KεC ≤ P (f(x) ≤ f∗ + ε) ≤ K ′εC .

Comments: Assumption A.5 implies that f is Hölder and anti-Hölder [10, 18] for every
isolated point of opt. See also [19, 9] for works where fractal quantities are related to
the analysis carried out.

The fact that the coefficient β is the same on the left-hand and on the right-hand
side in Assumption A.5 is, for us, the strongest assumption. Assumption A.4 can be
removed, with some technical modifications of the proof.

3.2 Preliminary Results

We prove that if Δ(B) is sufficiently small in front of the constants of the problem and
of ηn, and if the optimum is inside the initial ball, then linear convergence occurs.

Lemma 1 (Linear descent). If xn ∈ V and opt ∩ B(xn, σn) �= ∅ and

ηn ≥ β

√
(
α

α′)Δ(B)

then d(descentk(xn, σn, ηn), opt) ≤ ηk
nσn

PROOF: By induction, we show that all (ck, rk, εk) = descentk(xn, σn, ηn) are in V
(by definition of V = f−1([f∗, f∗ + s[)). By induction also, B(ck, rk) ∩ opt is non-
empty (thanks to Assumption A.5). As the radius of the ball is upper-bounded by σnηk

n,
the result follows. %&

We now prove the following Lemma:

Lemma 2. Let (xk, σk, η) = descentk(x, σ, η), then either P 1 or P 2 (but not both
simultaneously) holds:

P 1. for k sufficiently large, f(xk) ≤ f∗ + α(σηk/(1 − η))β ,
P 2. f(xk) is lower bounded by a constant > f∗.

300 A. Auger, M. Jebalia, and O. Teytaud

Interpretation: Some sequences converge quickly to the optimum and some sequences
are lower bounded. There is no sequence converging slowly or sequence whose succes-
sive fitness accumulate around the optimum without converging to it.

PROOF: Assume that f(xk) → f∗. As σk = σηk , for any p > 0 we have

d(xk, xk+p) ≤ σηk(1 + η + . . . + ηp−1)

= σηk (1 − ηp)
(1 − η)

≤ σηk

(1 − η)
.

Then (xk)k∈N is a Cauchy sequence which therefore converges. Let x∞ be its limit,
from the previous equation, the following holds

d(xk, x∞) ≤ σηk/(1 − η).

Only two situations can occur
Either f(xk) → f∗ and consequently for k sufficiently large, xk ∈ V . With As-

sumption A.5 we have

f(xk) ≤ f∗ + α(σηk/(1 − η))β

which is the property P 1..
Either f(xk) does not converge to f∗ but as f(xk) decreases it is lower bounded by

a value > f∗ which is the property P 2. %&

Satisfactory individual: The 3-uple (x, σ, η) is said satisfactory if the property P 1.
defined in Lemma 2 holds.

Lemma 3. Let (ni)i∈N be the subsequence of the index generation n ∈ N such that
there exists an individual (x(i), σ(i), η(i)) in P c

n generated at Step c and selected at
Step d.

In other words, (ni)i∈N is the increasing enumeration of the set of n such that some
point is generated at epoch n and selected ; (x(i), σ(i), η(i)) is the element among these
points with the minimum value of f(.).

When (x(i), σ(i), η(i)) is not unique, we choose it arbitrarily among possible points
minimizing f(x(i)).

Assume that there are infinitely many interrupted local descent (which is equivalent
to the fact that there are infinitely many i such that ni is well defined). Then, for a given
C, P ((x(i), σ(i), η(i)) satisfactory and non-interrupted) ≥ C > 0 infinitely often.

Interpretation: Lemma 3 states that if infinitely many new local descent occur, then
infinitely many of these new descents have a lower bounded probability of being unin-
terrupted. Lemma 3 will be used in the main Theorem to get a contradiction : if infinitely
many new descents are started, by Lemma 3 (almost surely) infinitely many of them are
non-interrupted, so there are more and more non-interrupted sequences, so, as the pop-
ulation is bounded after a finite time there is no more room for a new descent (see the
Theorem for more details).

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 301

PROOF:

1. Assume that ni is well defined for all i ∈ N. Note that this implies that Δ decreases
to 0 (by Assumption A.1).

2. Note wn the worst fitness among P b
n. By construction wn is non-increasing. As it

is lower-bounded, it converges.
3. Let us show that it almost surely converges to f∗. The proof is as follows :

– Assume, in order to get a contradiction, that wn is lower bounded by some
f∗ + ε where ε = 1/2k for some integer k > 0.

– Then with Assumption A. 6, infinitely many new points (generated in steps 2c)
are generated with fitness < f∗ + ε.

– The number of points in P b
n with fitness ≥ f∗ + ε is decreased of one at each

generation of points with fitness < f∗ + ε. As this occurs infinitely often,
after a finite time (almost surely), wn must decrease below f∗ + ε. This is true
for any ε = 1/2k with probability 1; by countable intersection, it is true with
probability 1 for all ε = 1/2k.

– Therefore wn decreases to f∗ + ε.
4. Note that f(x(i)) ≤ wni (because if f(x(i)) ≥ wni then by construction, x(i)

would not be selected). Therefore, the fitness of x(i) converges to f∗.
5. Let us show that the event

{(x(i), σ(i), η(i)) satisfactory and η(i) ≤ 0.9}

occurs with probability at least 1 − D for some D < 1 if i is sufficiently large.
– The event {(x(i), σ(i), η(i)) satisfactory and η(i) ≤ 0.9} in particular holds

if the assumptions of Lemma 1 and η ≤ 0.9 are verified. This is the case
whenever σ ≥ d(opt, V) and 0.9 ≥ η ≥ Δ β

√
α/α′ and if f(x) < f∗ +

α′d(opt, V)β .
– The latter inequality holds if i is sufficiently large, as f(x(i)) converges to f∗.
– Other inequalities occur independently with probability lower bounded by a

constant > 0, provided that Δ is sufficiently small.
– The probability of these three inequalities simultaneously is lower-bounded by

a positive constant 1 − D (D < 1), provided that Δ is sufficiently small. Δ
goes to 0 (point 1 above) and therefore Δ is sufficiently small if i is sufficiently
large.

6. Note E′
i the event that σ ≥ d(opt, V) and 0.9 ≥ η ≥ Δ β

√
α/α′ and f(x) <

f∗ + α′d(opt, V)β . We have shown above that P (¬E′
i) ≥ 1 − D.

7. Note Ei the event {(x(i), σ(i), η(i)) verifies E′
i and is never interrupted } in the

sense that its successive sons generated in Step b are never eliminated in Step d.
8. By Lemma 2, if E′

i occurs, then the kth iterate of the local descent (from
(x(i), σ(i), η(i))) has fitness bounded above by αC(σ(i)η

k
(i)/(1 − η(i)))β .

9. Therefore, conditionally to E′
i, the probability of interruption of the kth iterate is

upper bounded by K ′αC(σ(i)η
k
(i)/(1 − η(i)))βC .

10. So P (¬Ei|E′
i) is upper bounded by the

∑∞
k=0 K ′αC(σ(i)η

k
(i)/(1 − η(i)))βC .

11. Now, recall that P (¬Ei) = P (¬Ei|E′
i)P (E′

i) + P (¬E′
i) (as Ei implies E′

i), and
therefore P (¬Ei) ≤ P (¬Ei|E′

i) + P (¬E′
i).

302 A. Auger, M. Jebalia, and O. Teytaud

12. Then, combining points 11, 10 and 6 above, P (¬Ei) ≤ 1 − D +∑∞
k=0 K ′αC(σ(i)η

k
(i)/(1 − η(i)))βC .

13. σ having a density lower-bounded by a constant > 0 in the neighbourhood of 0,
P (Ei) is infinitely often larger than a given W > 0 (for example, W = 1 − D/2).

Hence the expected result : Ei, having probability ≥ W > 0 for any i (conditionally to
the past and current epochs of the algorithm), occurs almost surely infinitely often. %&

3.3 Almost Sure Convergence with Order One

We now investigate the global convergence properties of our algorithm. The delicate
part is that it is not enough to have the fact that after a finite number of iterations we are
close to the optimum and therefore convergence holds. Indeed, there is always a risk that
a local descent is interrupted. Therefore we are going to formalize in the proof below the
fact that with probability 1, under minimal assumptions, there is a non-interrupted local
descent that converges linearly. We emphasize the fact that this proof could be applied
for other operators as well. The only requirement is to have enough fast convergence
for the local operator. The heart of the proof can be outlined as follows:

– any non-satisfactory local descent will be interrupted (consequence of Lemma 2
and of Assumption A.6) by a new local descent; each new local descent has a
probability lower bounded by a constant > 0 of being satisfactory ; so, there are
infinitely many satisfactory local descent (this is Step 1 of the proof below) as
long as none of them is satisfactory and non-interrupted ; so we always have a
satisfactory local descent among the future populations ;

– these local descents have a probability of being interrupted which decreases so
quickly (by Lemma 3), that after some time they are no more interrupted (this is
the Step 2 of the proof) ;

– hence, the convergence is linear (Step 3) and moreover N is bounded (Step 3).

The detailed proof comes after the Theorem:

Theorem 1. We have almost sure convergence at least linear of the error to the optimal
error, i.e. inf(x,σ,η)∈Pn

(f(x) − f∗) ≤ A/Bn for some A > 0 and B > 1. Moreover,
N is almost surely bounded.

PROOF:
Step 1: Let us show that with probability 1, there exists infinitely many values of n
such that there exists (x, σ, η) satisfactory in P d

n .
Let us make the hypothesis H1 (to get a contradiction), that for any n > n0, there

is no (x, σ, η) in P d
n such that f(descentk(x, σ, η)) → f∗ for k → ∞ (independently

of any interruption ; we consider the theoretical sequence of descentk(.) as k → ∞).
Moreover, let us assume (one again in order to get a contradiction), the hypothesis

H2: there exists n1 such that for any n > n1, the Step c of generation of points does not
provide any point better than the worst point resulting from Step b.

Then, if n > n1, P d
n = {descentn−n1(x, σ, η)|(x, σ, η) ∈ P d

n1
} ; moreover, N , B

and Δ become constant. The f(descentn−n1(x, σ, η)) are lower bounded by a given
f∗ + ε, for a given ε > 0. This is proved by the application of:

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 303

– H1 (which states that none of the local descents converges) and
– Lemma 2 (which states that if local descents do not converge to f∗ then they are

lower bounded).

to the finit set of local descents from P d
n1

.
Then for each n, at Step 3c, the probability of generating a new point (xn, σn, ηn)

better than the local descents is lower bounded by some P∗, where P∗ is provided by
Assumption A.6.

So, such a generation necessarily occurs, with probability 1.
So, we have a contradiction with H2. So, under hypothesis H1, H2 does not hold,

infinitely often, a new point (x, σ, η) generated at Step c is added to P d
n .

We have assumed H1, and proved that H2 does not hold. Let us now look for a
contradiction, so that we can prove that H1 does not hold.

N increases for each n such that the followings holds : "a point generated at Step c
is integrated to P d

n". As this occurs infinitely often (as H2 is false), Δ → 0.
Consider the probability Π = P ((x, σ, η) satisfactory|s) of generating (x, σ, η)

satisfactory ;

Π ≥ P (x ∈ V |s)︸ ︷︷ ︸
Π1

×P (σ ≥ supz∈V d(z, opt)|s)︸ ︷︷ ︸
Π2

×P (η ≥ β
√

α/α′Δ(B)|s)︸ ︷︷ ︸
Π3

where P (E|s) is the probability of an event E conditionnally to the fact that the point
(x, σ, η) coming from the generation Step c is selected and is the best selected point.

Π1 is asymptotically lower bounded by a constant > 0 (and indeed converges to 1),
Π2 is lower bounded by a positive constant thanks to Assumption A.3, and Π3 is lower
bounded by a positive constant when Δ is sufficiently small, what occurs as Δ → 0.

The probability of getting a (x, σ, η) satisfactory and non-interrupted is thus lower-
bounded for each step n during which a new point is generated at Step c. Consequently
this event occurs necessarily for infinitely many values of n, with probability 1.

So with probability 1, we have contradiction with hypothesis H1. So we can claim
that there exists infinitely many values of n such that there exists some (x, σ, η) in P d

n

such that descentk(x, σ, η) → opt if k → ∞.

Step 2: Let us show that finitely many points (x, σ, η) generated in (c) are selected
in (d).

Note (x(i), σ(i), η(i)) the sequence of 3-uples generated at Step c and selected in P d
n

(not removed by the selection step) and satisfactory (ie, are in the first case of Lemma
2) and are the best (from the point of view of the fitness) among the (x, σ, η) generated
in Step c and incorporated in Pn,d.

Let us do, in order to get a contradiction, the hypothesis that this sequence is infinite
(which is equivalent to assuming that there are infinitely many 3-uples generated in
Step c selected in Step d).

Then, for i large enough P ((x(i), σ(i), η(i)) verifies Lemma 1 and is not interrupted)
is infinitely often lower bounded by a positive constant (Lemma 3).

So, this occurs, almost surely, infinitely often. As the number of non-interrupted
local descents is bounded above by the population size, there is contradiction.

304 A. Auger, M. Jebalia, and O. Teytaud

Conclusion: By Step 1, we know that with probability 1, infinitely many 3-uples
(x, σ, η) satisfactory are in some P d

n . By Step 2, we know that these 3-uples can only a
finite number of times come from random generations (as only a finite number of points
can come from Step c and be included to P d

n). So, finitely many local descents are inter-
rupted (each interruption is the integration in (d) of a point coming from Step c). So after
a finite time, no more local descent is interrupted; N is now constant (and so, does not
go to infinity) and the satisfactory local descent (whose existence is almost sure thanks
to Step 1) goes to the optimum, with linear convergence thanks to Lemma 2. %&

4 Practical Experiments

We have experimented our method on different simple objective functions fLp(x) =
p
√∑

xp
i satisfying the assumptions we made for the convergence. Figure below shows

the linear convergence of the method. We observe the changes of convergence rates
due to the changes of η associated to the best point in the population and the increases
of N leading to a N -points quasi-random sampling. The choice of B for a given
value of N has been performed by optimizing the disrepancy of the points. This part
of the procedure is time-consuming when N increases. Note that such sets of points
in the ball could of course be evaluated off line. Very efficient and fast algorithms
exists for quasi-monte-carlo generation in the sense of standard discrepancy, but as

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0

dim. 2, random set

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0

low dispersion, dim. 2

 0

 0.2

 0.4

 0.6

 0.8

 1

-35 -30 -25 -20 -15 -10 -5 0

dim. 5, random set

 0

 0.2

 0.4

 0.6

 0.8

 1

-35 -30 -25 -20 -15 -10 -5 0

low dispersion, dim. 5

 0

 0.2

 0.4

 0.6

 0.8

 1

-12 -10 -8 -6 -4 -2 0

dim. 6, random set

 0

 0.2

 0.4

 0.6

 0.8

 1

-12 -10 -8 -6 -4 -2 0

low dispersion, dim. 6

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 -40 -30 -20 -10 0

dim. 9, random set

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 -40 -30 -20 -10 0

low dispersion, dim. 9

Fig. 1. Histogram of the distribution of log(fL5) after 500 × (d/3)2 fitness-evaluations for the
dimension indicated at the top of the graphs. For each couple of graph, on the left with low-
dispersion points resulting from gradient-based optimization on Δ(B); on the right, with random
points.

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 305

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0-5 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0-5 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0-5 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
00

-2
50

-2
00

-1
50

-1
00-5
0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3

-2
.5-2

-1
.5-1

-0
.5 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

-3

-2
.5-2

-1
.5-1

-0
.5 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3

-2
.5-2

-1
.5-1

-0
.5 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-1
40

-1
20

-1
00-8

0

-6
0

-4
0

-2
0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

-1
40

-1
20

-1
00-8

0

-6
0

-4
0

-2
0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-1
40

-1
20

-1
00-8

0

-6
0

-4
0

-2
0 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-3
00

-2
50

-2
00

-1
50

-1
00-5

0 0

 0
 1

00
0

 2
00

0
 3

00
0

 4
00

0
 5

00
0

 6
00

0

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

-2
00

-1
50

-1
00-5

0 0

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

 1
60

00
 1

80
00

lo
g(

fit
ne

ss
)

in
cr

ea
si

ng
 Q

M
C

ch
an

gi
ng

 e
ta

Fig. 2. Fitness value in logarithmic scale vs number of generations for fLp (x) = p xp
i with

respectively from left to right, p = 1, 3, 5. First column dim = 2, second column dim = 5 and
third column dim = 10. Due to numerical precisions, log(fLp) can be equal to −∞. A cross
indicates when a new η is chosen. A circle indicates when N is increased by 1. The random
generation for x is uniform on [−1, 1]d, η is uniform on [0, 1], 10σ is the absolute value of a
standard Gaussian, the population size is 5, the number of random generations at Step 3c is 25
and N is initialized to 1. A cross indicates when a new η is chosen. A circle indicates when N is
increased by 1. It may be observed that N quickly stabilizes.

306 A. Auger, M. Jebalia, and O. Teytaud

far as we know no equivalent algorithms exist for the optimization of Δ. Interestingly,
experiments with random sampling once per increase of N leads to similar results
(note that the result about linear convergence remains theoretically true) but the case
with one new sampling at each 3c step leads to much worse results. This suggests that
quasi-random mutations (at least, stabilizing the random part by keeping the same B
until N increases) are not only of theoretical interest (for proving our results of linear
convergence on a very large family of fitness functions) but also of practical interest.
Note that on the other hand, we need random points for the almost sure convergence
and we did not proceed to any quasi-randomization of this random part - in this work
globalization remains the work of random.

These results are naive results coming from an Octave implementation. A more op-
timized implementation, based on EO classes in C++, is in progress. First in dimension
2, for norm Lp with p = 1, p = 3, p = 5 ; "increasing QMC" denotes epochs at which
N ← N + 1.

Figure 1 presents the histogram of the distribution of log(fL5) after 500 × (d/3)2

fitness-evaluations.

5 Discussions - Conclusions

We have designed a new algorithm using a representation (x, σ, η) instead of (x, σ).
This algorithm takes into account different areas of applied mathematics: i) quasi-
random points (low-dispersion points, [11]); ii) trust-regions ([7]); iii) adaptive step-size
coming from evolution strategies [12, 17]; iv) random diversification of the population
for global optimization. A very important remark is that as for classical ES, the algo-
rithm considered here only use the information given by the fitness through the ranking
of individuals. Therefore everything is invariant with respect to monotonic transforma-
tion of the fitness. In particular all the results holds for x → g(f(x)) where f satisfies
the assumptions required for our Theorems and g is a strictly increasing function. This
implies notably that convexity is not required for the convergence.

Compared to state-of-the art theoretical results for convergence of adaptive evolu-
tion strategies [1], our assumptions are here weaker. Indeed in [1] asymptotic linear
convergence is proved for any x → g(f(x)) where g is monotonic and f is the sphere
function. The main points here are i) use of (x, σ, η) instead of (x, σ) ; ii) generation of
points on a close ball, instead of Gaussian sampling, so that this algorithm can ensure
(under some conditions which are asymptotically satisfied with probability 1) that the
fact that the optimum lies in B(x, σ) is preserved from parents to children ; iii) use of
quasi-random sequences ensuring that Δ goes to 0 as N → ∞.

Experiments confirm the theoretical study but are very preliminary. In fact, we im-
plemented the precise Algorithm, where each generation at Step 3c has to be generated
independently with the same distribution at each epoch, whereas intuition suggests that
better heuristics for new generations should dramatically reduce the time before reach-
ing linear convergence; such implementations, and the corresponding proofs are yet to
be done. Note that even in dimension 10, our very simple implementation, thanks to
linear convergence, could reach the limit of the machine precision. These results are
not at all results due to multiple attempts and empirical calibration of the parameters;

Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies 307

we simply implemented the algorithm in a naive manner, without any heuristic added;
our results are the most immediate consequences of theory above.

Acknowledgments. The authors would like to thank Evelyne Lutton and Jacques Lévy
Véhel for pointing out the Hölder property assumption made in this work.

References

[1] A. Auger. Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible markov
chains. Theoretical Computer Science, 334(1-3):35–69, 2005.

[2] H.-G. Beyer. The Theory of Evolution Strategies. Springer, Heidelberg, 2001.
[3] R. Cerf. An asymptotic theory of genetic algorithms. In J.-M. Alliot, E. Lutton, E. Ronald,

M. Schoenauer, and D. Snyers, editors, Artificial Evolution, volume 1063 of LNCS, pages
37–53. Springer Verlag, 1996.

[4] S. Droste, T. Jansen, , and I. Wegener. On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science, 276:51–81, 2002.

[5] K. Fang and Y. Wang. Number-Theoretic Methods in Statistics. London: Chapman and
Hall, 1994.

[6] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for binary mutations.
Evolutionary Computation, 7(2):167–203, 1999.

[7] S. Goldfeld, R. Quandt, and H. Trotter. Maximization by quadratic hill climbing. Econo-
metrica, vol. 34, no. 3, p. 541, 1966.

[8] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation, 9(2):159–195, 2001.

[9] Y. Landrin-Schweitzer and E. Lutton. Perturbation theory for eas: towards an estimation of
convergence speed. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo,
and H.-P. Schwefel, editors, PPSN VI. Springer Verlag, 2000.

[10] Y. Meyer. Wavelets, Vibrations and Scaling. CRM Monograph Series. American Mathe-
matical Society, 1997.

[11] H. Niedereiter. Random Number Generation and Quasi-Monte Carlo Methods. Philadel-
phia: SIAM, 1992.

[12] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.

[13] G. Rudolph. Convergence analysis of canonical genetic algorithm. IEEE Transactions on
Neural Networks, 5(1):96–101, 1994.

[14] G. Rudolph. Convergence of non-elitist strategies. In Z. Michalewicz, J. D. Schaffer, H.-P.
Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the First IEEE International
Conference on Evolutionary Computation, pages 63–66. IEEE Press, 1994.

[15] G. Rudolph. How mutation and selection solve long path problems in polynomial expected
time. Evolutionary Computation, 4(2):195–205, Summer 1996.

[16] G. Rudolph. Convergence rates of evolutionary algorithms for a class of convex objective
functions. Control and Cybernetics, 26(3):375–390, 1997.

[17] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-
York, 1981. 1995 – 2nd edition.

[18] C. Tricot. Curves and Fractal Dimension. Springer Verlag, January 1995. ISBN:
0387940952.

[19] J. L. Vehel and E. Lutton. Holder functions and deception of genetic algorithms. IEEE
transactions on Evolutionary computing, 2(2), 1998.

[20] S. Yakowitz, P. L’Ecuyer, and F. Vazquez-Abad. Global stochastic optimization with low-
dispersion point sets, 2000.

Author Index

Ahn, Byung-Ha 107
Auger, Anne 296
Aupetit, Sébastien 61

Bäck, Thomas 85
Batouche, Mohamed 155
Becker, Sven 271
Bedau, Mark A. 201
Beslon, Guillaume 49
Bornhofen, Stefan 226
Buchanan, Andrew 201

Chan, Allen 25
Channon, Alastair 167
Clergue, Manuel 13
Collard, Philippe 13
Corne, David 107
Cutello, Vincenzo 284

Dai, Chaoying 119
Debels, Dieter 259
Defoin Platel, Michael 13
Drzadzewski, Grzegorz 143

Escuela, Gabi 247

Farley, Arthur M. 213
Favrel, Joël 49
Folino, Gianluigi 37
Fonlupt, Cyril 1
Forestiero, Agostino 37
Freitas, Alex 25

Gazzola, Gianluca 201
Giavitto, Jean-Louis 189
Gottlieb, Jens 271

Hanczyc, Martin 201
Hao, Jin-Kao 73

Jebalia, Mohammed 296
Jozefowiez, Nicolas 131

Knibbe, Carole 49
Krasnogor, Natalio 179, 247

Lattaud, Claude 226
Lefort, Virginie 49
Li, Pak Ching 119
Li, Yongjie 97
Liardet, Pierre 61
Lopes, Heitor S. 238

Maeke, Thomas 201
Mahler, Sébastien 1
McCaskill, John 201
Menäı, Mohamed El Bachir 155
Michel, Olivier 189
Miconi, Thomas 167
Monmarché, Nicolas 61

Narzisi, Giuseppe 284
Nicosia, Giuseppe 284

Ochoa, Gabriela 179, 247

Packard, Norman H. 201
Pavone, Mario 284
Pelta, David A. 179
Poli, Irene 201

Robilliard, Denis 1
Rodriguez-Tello, Eduardo 73

Scapin, Marcos P. 238
Semet, Frédéric 131
Shir, Ofer M. 85
Siedschlag, Christian 85
Slimane, Mohamed 61
Soak, Sang-Moon 107
Spezzano, Giandomenico 37
Spicher, Antoine 189
Stützle, Thomas 271

Talbi, El-Ghazali 131
Terrazas, Graciela 179
Teytaud, Olivier 296
Torres-Jimenez, Jose 73
Toulouse, Michel 119

310 Author Index

Vanhoucke, Mario 259
Verhaghe, Dominique 1
Vrakking, Marc J.J. 85

Wineberg, Mark 143

Yao, Dezhong 97
Yao, Jonathan 97

Zheng, Jiancheng 97

	Frontmatter
	Genetic Programming
	Santa Fe Trail Hazards
	Size Control with Maximum Homologous Crossover

	Machine Learning
	A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm
	Swarm-Based Distributed Clustering in Peer-to-Peer Systems
	Simultaneous Optimization of Weights and Structure of an RBF Neural Network
	An Exponential Representation in the API Algorithm for Hidden Markov Models Training

	Applications
	Memetic Algorithms for the MinLA Problem
	Niching in Evolution Strategies and Its Application to Laser Pulse Shaping
	A Modified Genetic Algorithm for the Beam Angle Optimization Problem in Intensity-Modulated Radiotherapy Planning

	Combinatorial Optimization
	On a Property Analysis of Representations for Spanning Tree Problems
	A Cooperative Multilevel Tabu Search Algorithm for the Covering Design Problem
	Enhancements of NSGA II and Its Application to the Vehicle Routing Problem with Route Balancing
	The Importance of Scalability When Comparing Dynamic Weighted Aggregation and Pareto Front Techniques

	Co-evolution
	A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT
	Analysing Co-evolution Among Artificial 3D Creatures

	Self-assembling
	A Critical View of the Evolutionary Design of Self-assembling Systems
	Algorithmic Self-assembly by Accretion and by Carving in {\sf MGS}
	Evolutionary Design of a DDPD Model of Ligation

	Artificial Life and Bioinformatics
	Population Structure and Artificial Evolution
	Outlines of Artificial Life: A Brief History of Evolutionary Individual Based Models
	An Enhanced Genetic Algorithm for Protein Structure Prediction Using the 2D Hydrophobic-Polar Model
	Incorporating Knowledge of Secondary Structures in a L-System-Based Encoding for Protein Folding

	Advances
	The Electromagnetism Meta-heuristic Applied to the Resource-Constrained Project Scheduling Problem
	Applications of Racing Algorithms: An Industrial Perspective
	An Immunological Algorithm for Global Numerical Optimization
	Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

