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Abstract. In this paper, we examine the Multiagent Systems Engineering 
(MaSE) methodology and its applicability to developing organization-based 
multiagent systems, which are especially relevant to context aware systems. We 
discuss the inherent shortcomings of MaSE and then present our approach to 
modeling the concepts required for organizations including goals, roles, agents, 
capabilities, and the assignment of agents to roles. Finally, we extend MaSE to 
allow it to overcome its inherent shortcomings and capture the organizational 
concepts defined in our organization metamodel. 

1   Introduction 

Recent trends in multiagent systems are toward the explicit design and use of organi-
zations, which allow heterogeneous agents to work together within well-defined roles 
to achieve individual and system level goals [8], [19]. When focusing on team goals, 
organizations allow agents to work together by using individual agents to perform the 
tasks for which they are best suited. When emphasizing an individual agent’s goals, 
organizations provide the structure and rules that allow agents to find and carry out 
collaborative tasks with other, previously unknown agents, to the mutual benefit of 
each agent. 

In situations where the nature of the application environment makes teams suscep-
tible to individual failures, these failures can significantly reduce the ability of the 
team to accomplish its goal. Unfortunately, most multiagent teams are designed to 
work within a limited set of configurations. Even when the team possesses the ability 
to accomplish its goal, it may be constrained by its own knowledge of team member’s 
capabilities. In most multiagent methodologies, the system designer analyzes the 
possible organizational structure and then designs one organization that will suffice 
for most anticipated scenarios. Unfortunately, in dynamic applications where the 
environment as well as the agents may change, a designer can rarely account for, or 
even consider, all possible situations. To overcome these problems, we are investigat-
ing techniques that allow multiagent teams to design their own organization at  
runtime [7]. In essence, we propose to provide the team with the organizational 
knowledge and let the team define its own organization based on its current context, 
goals and team capabilities. 

In this paper, we present a proposal to extend the Multiagent Systems Engineering 
(MaSE) methodology toward the analysis and design of multiagent organizations. While 
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MaSE already incorporates many of the required organizational concepts such as goals, 
roles, laws, and the relations between these entities, it cannot currently be used to com-
pletely define a multiagent organization. Most importantly, we must extend MaSE with 
the notion of capabilities, upon which the definition of roles is based. We also add some 
specific relationships between these capabilities and existing MaSE concepts. 

The remainder of this paper is organized as follows. First, we present a review of 
relevant background research, including a short description of MaSE and its current 
weaknesses. Next, we give an overview of our metamodel that describes the elements 
in multiagent organizations. Finally, we discuss our extensions to MaSE that support 
the development of multiagent organizations and overcome some of its recognized 
problems. 

2   Background 

A recent advance in agent-oriented software engineering has had a significant impact 
on multiagent development approaches such as MaSE [6], Gaia [18], and MESSAGE 
[12]. This advancement concerns the separation of the agents from the system frame-
work, or organization [19]. Agents play roles within an organization; however, they 
are not the organization. The organization defines the social setting in which the agent 
must exist. An organization includes a structure as well as rules, which constrain valid 
agent behavior and interaction within the organization. 

While these advances are recent, there have been some discussions on how to in-
corporate them into existing multiagent systems methodologies. For instance, there is 
a proposal to extend the Gaia to incorporate social laws [19] and organizational con-
cepts [18], while others have proposed implementing the organization as a separate 
institutional agent [17]. We have even proposed extending MaSE with rules and  
environmental entities [4], [5]. 

More recently, new methodologies and approaches have been proposed for build-
ing highly adaptive multiagent systems including Adelfe, which follows the AMAS 
theory [1, 14].  The goal of methods such as Adelfe is to allow designers to build 
systems that will produce some unknown functionality.  This varies from the ap-
proach presented here as we are attempting to give the system the ability to adapt 
while still producing a know function and within certain limitations. 

2.1   Multiagent Systems Engineering 

MaSE was originally designed to develop general-purpose multiagent systems and 
has been used to design systems ranging from computer virus immune systems to 
cooperative robotics systems [6], [7]. Each phase is presented below. 

Analysis Phase. The goal of the MaSE analysis phase is to define a set of roles that 
can be used to achieve the system level goals. This process is captured in three steps: 
capturing goals, applying use cases, and refining roles. 

• Capturing Goals. The first step is to capture the system goals by extracting them 
from the requirements, which is done by Identifying Goals and Structuring Goals. 
The purpose of the Identifying Goals is to derive the overall system goal and its 
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subgoals. This is done by extracting scenarios from the requirements and then iden-
tifying scenarios goals. After the goals have been identified, the second step, Struc-
turing Goals, categorizes and structures the goals into a goal tree, which results in a 
Goal Hierarchy Diagram that represents goals and goal/subgoal relationships. 

• Applying Use Cases. In this step, goals are translated into use cases, which capture 
the previously identified scenarios with a detailed description and set of sequence 
diagrams. These use cases represent desired system behaviors and event sequences. 

• Refining Roles. Refining Roles organizes roles into a Role Model, which describes 
the roles in the system and the communications between them. Each role is de-
composed into a set of tasks, which are designed to achieve the goals for which the 
role is responsible. These tasks are documented using finite state automata-base 
Concurrent Task Diagrams. Concurrent tasks consist of a set of states and transi-
tions that represent internal agent reasoning and communications. 

Design Phase. The purpose of the design phase is to take roles and tasks and to  
convert them into a form more amenable to implementation, namely agents and con-
versations. The MaSE design phase consists of four steps: designing agent classes, 
developing conversation, assembling agents and deploying the agents. 

• Construction of Agent Classes. The first step in the design phase identifies agent 
classes and their conversations and then documents them in Agent Class Diagrams. 
The Agent Class Diagram that results from this step is similar to object-oriented class 
diagrams with two differences: (1) agent classes are defined by the roles instead of 
attributes and methods and (2) relations between agent classes are conversations. 

• Constructing Conversations. Once the agent classes and the conversations are iden-
tified, the detailed conversation design is undertaken. Conversations model com-
munications between two agent classes using a pair of finite state automata similar 
in form and function to concurrent tasks. Each task usually generates multiple con-
versations, as they require communication with more than one agent class. 

• Assembling Agent Classes. Assembling Agent Classes involves defining the 
agents’ internal architecture. MaSE does not assume any particular agent architec-
ture and allows a wide variety of existing and new architectures to be used. The ar-
chitecture is defined using components similar to those defined in UML. 

• Deployment Design. The final design step is to choose the actual configuration of 
the system, which consists of the number and types of agents in the system and the 
platforms on which they should be deployed. These decisions are documented in a 
Deployment Diagram, which is similar to a UML Deployment Diagram. 

2.2   MaSE Weaknesses 

While MaSE provides many advantages for building multiagent systems, it is not 
perfect. It is based on a strong top-down software engineering mindset, which makes 
it difficult to use in some application areas. 

1. MaSE fails to provide a mechanism for modeling multiagent system interactions 
with the environment. While we examined this topic in [5], it has never been fully 
integrated into MaSE. 
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2. MaSE also tends to produce multiagent systems with a fixed organization. Agents 
developed in MaSE tend to play a limited number of roles and have a limited  
ability to change those roles, regardless of their individual capabilities. As dis-
cussed above, a multiagent team should be able to design its own organization at 
runtime. While MaSE already incorporates many of the required organizational 
concepts such as goals, roles and the relations between these entities, it cannot cur-
rently be used to define a true multiagent organization. 

3. MaSE also does not allow the integration of sub-teams into a multiagent system. 
MaSE multiagent systems are assumed to have only a single layer to which all 
agents belong. Adding the notion of sub-teams would allow the decomposition of 
multiagent systems and provide for greater levels of abstraction. 

4. The MaSE notion of conversations can also be somewhat bothersome, as it tends to 
decompose the protocols defined in the analysis phase into small, often extremely 
simple pieces. When the original protocol involves more than two agents, it often 
results in conversations with only a single message. This makes comprehending 
how the individual conversations fit together more difficult. 

3   Organization Metamodel 

To allow teams of agents to adapt to their environment by determining their own or-
ganization at runtime, we have developed a metamodel that describes the knowledge 
required to define an organization [7], [11]. Given this knowledge, we hypothesize that 
multiagent teams will be able to organize (and reorganize) themselves to adapt to their 
dynamic environments. 
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Fig. 1. Artificial Organization Metamodel 
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From the early days of organization research, organizations have typically been de-
fined as including the concepts of agents who play roles within a structure that defines 
the relationships between the various roles [2]. We thus begin the foundation for our 
metamodel by defining what is meant by goals (G), roles (R), and agents (A). We also 
add four additional entities to our metamodel: capabilities (C), assignments (Φ), poli-
cies (P), and an ontology (Σ). Capabilities are central to the process of determining 
which agents can play which roles and how well they can play them, while policies 
constrain the assignment of agents to roles thus controlling the allowable states of the 
organization. The organization ontology supports agent communication and policy 
definition. A UML-based depiction of our organization metamodel is shown in Fig. 1. 

3.1   Goals 

Every artificial organization is designed with a specific purpose, which defines the 
overall function, or goal of the organization. Within our metamodel, each organiza-
tion has a set of goals, G, that it seeks to achieve in support of a single top-level goal 
go. We define a goal in its normal way as some desired end state. G is derived by 
decomposing go into a tree of subgoals that describe how go can be achieved. Follow-
ing the KAOS goal based requirements modeling approach [16], we allow goals to be 
decomposed into a set of non-cyclic subgoals using either AND-refinement or OR-
refinement, which are denoted via conjunctive and disjunctive predicates. Eventually, 
go is refined into a set of leaf nodes, denoted by GL, that may be achieved in order to 
achieve go. The active goal set, GA (where GA ⊆ GL), is the set of goals that an organi-
zation is trying to achieve at the current time. 

Goal g1 precedes goal g2 if g1 must be achieved before g2 can be achieved. Essen-
tially, goal precedence allows the organization to work on one part of the goal tree at 
a time, thus reducing the size of GA. The triggers relation is similar to precedes in that 
it also restricts goals from being inserted in GA. However, instead of requiring goal 
achievement, the triggers relation allows new goals to be inserted into GA when a 
specified event occurs. 

precedes: G, G → Boolean 
triggers: GL, G → Boolean 

All goals are unachieved when the organization is initialized. Therefore, the initial 
active goal set, GA0, consists of all goals that have no predecessor goals or that do not 
require a trigger. However, as goals are achieved or events occur triggering new goal 
instances, GA, changes. Essentially, achieved goals are removed from the active goal 
set and new goals to be achieved are inserted. New goals must be startable (all their 
predecessor goals have been achieved) and, if they are triggered, they must have been 
triggered by an active goal. We denote a sequence of active goal sets GA’ as GA’ = 
[GA1, GA2, … GAn]. 

3.2   Roles 

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines an entity that is able to achieve a set of goals within the organization. Each role 
is responsible for achieving, or helping to achieve or maintain specific system goals. 
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The achieves function describes how well (in a range of 0 to 1) a particular role 
achieves a specific goal. 

achieves: R, GL → 0 .. 1 

In order to perform a particular role, agents must have a sufficient set of capabili-
ties (which are simply defined as atomic, named entities in our model). Agents pos-
sess capabilities, which may include physical capabilities (sensors or actuators) or 
computational capabilities (data access, knowledge, algorithmic, etc.), and roles re-
quire a certain set of capabilities. The set of capabilities required by a particular role 
is captured using the requires predicate. 

requires: R, C → Boolean 

Many times, instead of requiring agents to inherently posses all the required capa-
bilities for a role, we would like to bestow the required capabilities on agents to allow 
them to play that role. While this does not generally work well with hardware agents 
(robots), with software agents, we are often free to download new algorithms, etc. Our 
approach to capabilities does not deny this type of role bestowal; it just requires care 
in defining the capabilities types in the model. Thus if an agent has the appropriate 
physical capabilities (computational power, communication access, etc.) we can 
download the specific algorithms and/or knowledge necessary to carry out a role. In 
many of our current multiagent systems, the algorithm is packaged with the role, not 
in the individual agents themselves. 

To carry out their responsibilities, roles may have to work with other roles within 
the organization. We capture the basic notion of two roles being related using a re-
lated predicate, which provides a means of identifying the allowable structure of a 
given organization. 

3.3   Agents 

Our metamodel also includes a set of heterogeneous agents, A, within each organiza-
tion. For our purposes, agents are computational system instances that inhabit a com-
plex dynamic environment, sense and act autonomously in this environment, and by 
doing so realize a set of goals. Agents are assigned specific roles in order to achieve 
organizational goals. The current set of potential assignments of agents to a role is 
captured by the potential function. The range of the potential function indicates how 
well an agent can play a role and how well that role can achieve the goal, based on the 
achieves and capable scores. 

potential: A, R, GL → 0 .. 1 

However, the potential function does not indicate that the actual assignment of 
agent a to role r to achieve goal g, has been made within the organization. It simply 
defines a set of possible assignments. To capture the notion of the actual assignments, 
we define an assignment set, Φ, which consists of agent-role-goal tuples, <a,r,g>. If 
<a,r,g> ∈ Φ, then agent a has been assigned by the organization to play role r in 
order to achieve goal g. As discussed above, however, only agents with the right set 
of capabilities may be assigned to a specific role. To capture a given agent’s capabili-
ties, we define a possesses function, which returns a value in the range of 0 to 1  
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indicating no (0) capability or excellent (1) capability, which may change with time. 
Using the capabilities required by a role and capabilities possessed by an agent, we 
can compute the ability of an agent to play a give role, which we capture in the capa-
ble function. Finally, we capture the notion of agents coordinating, to achieve their 
goals using the coord predicate. 

possesses: A, C → 0 .. 1 
capable: A, R → 0 .. 1 
coord: A, A → Boolean 

Organizational agents (OA) are organizations that function as agents within an-
other organization. Thus, organizational agents possess capabilities, may coordinate 
with other agents, and may be assigned to play roles. They represent an extension to 
the traditional Agent-Group-Role (AGR) model developed by Ferber [9] and the 
meta-model proposed by Odell [13]. Organizational agents allow the definition of a 
hierarchy of organizations, which provides both flexibility and scalability. 

3.4   Capabilities 

Capabilities are key in determining exactly which agents can be assigned to what 
roles in the organization. Capabilities are atomic entities used to define the abilities of 
agents in relation to roles. Capabilities can capture soft abilities such as the ability to 
access resources, communicate, migrate, or computational algorithms. They also 
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors. 

3.5   Policies 

Organization policies are formally specified rules that describe how an organization 
may/may not behave in specific situations. In our metamodel, we distinguish between 
two specific types of policies: assignment policies (PΦ) and behavioral policies (Pbeh). 
Assignment policies deal with constraints that the assignment set, Φ must satisfy such as 
“an agent may play one role at a time” or “agents may work on a single goal at a time”. 
Behavioral policies define how agents should behave in solving the problem at hand. 

3.6   Ontology 

The organization ontology defines the entities within the application domain and their 
relationships.  From these definitions, we extract a set of data types and relationships 
that allow agents to communicate about application specific information. These do-
main entities and relationships are also used to help in defining application specific 
organization policies.  We currently use static UML diagrams to define ontological 
concepts similar to the approach in [3]. 

3.7   Organization Example 

An example of a multiagent team developed using our organization metamodel is 
shown in Fig. 2. The boxes at the top of the diagram represent goals (A … G), the 
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circles represent roles (R1 … R5), the pentagons represent capabilities (C1 … C5), 
and the rounded rectangles are agents (A1 … A4). The arcs on subgoal links denote 
conjunctive subgoals, whereas undecorated links denote disjunctive subgoals. The 
arrows between the entities represent the achieves, requires, and possesses func-
tions/relations as defined above. The numbers beside the arrows represent the  
function value (e.g., possesses(A1,C1) = 0.5). These achieves values are generally 
assigned at design time and do not change.  The possesses values, on the other hand, 
are computed by the individual agents based on their own internal assessment of their 
capabilities. We also assume we have assignment policies that (1) we only assign a 
single agent to each goal and (2) only one of the disjunctive goals F or G can be  
active at any time. 

 

Fig. 2. Organization Example 

Therefore, in this example the top-level goal, A, can be achieved by achieving both 
subgoals B and C, which can be achieved by achieving D and E in addition to either F 
or G. The achieves relation shows that either of the roles R1 or R2 can be used to 
achieve goal D while only role R3 can be used to achieve goal E. However, role R3 
can also be used to achieve goal F, which can also be achieved by role R4. The only 
role capable of achieving goal G is role R5. The aim is for the organization to assign 
agents that can play the appropriate roles to achieve specific goals. Because of the 
disjunctive nature of goal C and the ability to use different roles in achieving individ-
ual goals, there is some assignment flexibility built into the system. 

Determining which agents should be assigned specific roles in order to achieve 
particular goals is based on the capabilities the agents currently possess. For instance, 
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Table 1. Capability Function 

 R1 R2 R3 R4 R5 
A1 0.5 0 0.6 0 0 
A2 0 0 0.7 0 0 
A3 0 0 0 0.6 0.6 
A4 0 0 0 0.5 0 

role R1 requires only capability C1 while R3 requires only capability C2. Therefore, 
since agent A1 possesses both capabilities C1 and C2, it could be assigned to either 
role R1 or R3 in order to achieve goals D, E, or F. 

In this example, we thus compute the capable function value for each agent-role 
pair as shown in Table 1. For simplicities sake, we average the individual capability 
score required for each role. Combining the capable scores with the achieves score, 
we can easily compute the organizational capability score, Os, for any set of assign-
ments that might be made. Based on these computations (keeping in mind our as-
signment policies), we can see that the maximum organizational capability score, and 
thus the optimal assignments are as follows: 

 potential(A1,R1,D) = 0.25 
 potential(A2,R3,E) = 0.56 
 potential(A3,R5,G) = 0.42 
 Os = 1.23 

3.8   Exemplar Implementation 

Although there is not a single “correct” way to implement our organizational meta-
model, we suggest an example to help cement the concepts. Fig. 3 shows the imple-
mentation approach used in our current projects. Each agent is composed of two 
components: an Organizational Reasoning component and an Application Reasoning  
 

 

Fig. 3. Example Implementation 
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component. The Organizational Reasoning component is concerned with computing 
the current assignment set φ based on the active goal set GA and the feedback received 
from the Application Reasoning component in regards to goal achievement, goal 
failure, or the occurrence of triggering events. 

The Application Reasoning component accepts its assignment and carries out the 
tasks necessary to play its assigned roles in pursuit of its assigned goals. The Organ-
izational Reasoning component interacts with the other agent’s Organizational Rea-
soning components to ensure system coherence.  Exactly how the coordination is 
carried out can vary.  We have implemented a variety of centralized and distributed 
approaches to this coordination process; the best approach to this coordination process 
is domain and application specific.  Part of the goal of the architecture presented in 
Fig. 3 is to be able to provide “plug-and-play” Organizational Reasoning components 
that can be selected based on application criteria. 

4   O-MaSE 

To avoid designing static multiagent systems, we have extended MaSE to allow de-
signers to design a multiagent organization, which provides a structure within which 
the multiagent system may adapt. This extended version of MaSE is called Organiza-
tion-based MaSE (O-MaSE). A preliminary proposal for the O-MaSE methodology is 
described below. In general, many of the diagrams used in O-MaSE are variants of 
the UML class diagrams and use keywords to denote the difference between goals, 
roles, capabilities, agent classes, etc. 

Throughout this section, an Information Flow Monitoring System (IFMS) is used 
as an example of an organization-based multiagent system. The overall goal of the 
IFMS is to keep track of the information producers and consumers along with the 
actual flow of information through a dynamically reconfigurable enterprise informa-
tion system. The information producers and consumers use a publish/subscribe 
mechanism that allows consumers to find and subscribe to appropriate information 
producers. Therefore, the IFMS must keep track of the various information paths 
between the producers and consumers as well as monitor the actual data flowing 
along those paths. The IFMS provides data in the form of current paths and informa-
tion flow statistics to enterprise system operators who monitor the system for  
problems. 

4.1   Requirements 

Requirements are translated into system level goals, which are documented in the 
form of an AND/OR goal tree. Fig. 4 shows the goal tree for the IFMS described 
above. Given goal precedence relations, it is possible to design goal structures that 
cannot be achieved, thus we would like to provide the assurance that the top-level 
goal can be achieved. We have replaced the non-specific MaSE goal tree with a tree 
with specific AND/OR decompositions to match the organization metamodel. 
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Fig. 4. Goal Hierarchy Diagram 

The syntax has also changed in the O-MaSE goal model. We use standard UML 
class notation with the keyword «Goal». Each goal may be parameterized, with pa-
rameters annotated as attributes of the goal class. When goals are instantiated, they 
are given specific values for these attributes. The aggregation notation is used to de-
note AND refined goals whereas the generalization notation is used to denote OR 
refined goals. This notation is somewhat intuitive as AND refined goals require a 
composition of its subgoals to be achieved. Subgoals of an OR refined parent goal can 
be thought of as alternative ways to achieve the parent goal, or that they can be substi-
tuted in place of the parent goal. 

4.2   Analysis 

Analysis begins by creating the Organization Model, which defines the organization’s 
interactions with external actors. Generally, there is one organization at the top level 
(denoted by the «Organization» keyword) and that organization becomes responsible 
for the top goal in the goal tree. Each organization can achieve goals and provide 
services, which are further refined via activity diagrams (similar to UML activity 
diagrams, not included in this paper). The designer can also use sequence diagrams 
for describing use cases at the system level, similar to the original version of MaSE. 
Each organization may also include sub-organizations to allow for abstraction during 
the design process. 

While we allow the use of services in O-MaSE to help define the activities that 
agents carry out while performing roles, they do not map directly to the organization 
metamodel as presented earlier. For the purposes of this paper, we only mention them 
for completeness, but do not elaborate on them, as their use in defining organizations 
is not required. 

An example of an Organization Model is shown in Fig. 5, where there are three ac-
tors making up the system’s environment: the ClientAPI, the ServerAPI, and the 
Admin. The arrows  connecting  the  organization  to the  actors  denote  protocols  that  
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Fig. 5. Organization Model 

 

Fig. 6. Role Model 

define the agent class’s interactions with the environment (these protocols are defined 
in detail in the high-level design stage). The relations between the organization and 
the goal and service classes (classes denoted by «Goal» and «Service» keywords) are 
fixed relation types. An organization provides services while achieving goals. These 
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relations may be shown via explicit relations between organizations and goals; how-
ever, the relations may also be embedded in a class as shown in Fig. 6 (where 
«achieves» relations are shown embedded within roles). 

Next, the organization model is refined into a role model (Fig. 6) that defines the 
roles in the organization, the services they provide, and the capabilities required to 
play them. Each role is designed to achieve specific goals from the Goal Model and 
provide specific activities refined from top-level services in the Organization Model. 
Again, the arrows between actors and roles and between two roles indicate protocols 
that are fully defined later in the design stage. The Role Model may also include ca-
pabilities (denoted by the «Capability» keyword), which are attached to the roles that 
require them by the «requires» keyword. 

 

Fig. 7. Domain Model 

At this point, O-MaSE differs from MaSE in that O-MaSE does not require the 
analyst to create concurrent task diagrams to describe the behavior of each role. 
This task is more appropriately carried out at the low-level design stage. The use of 
activities, which are refined via activity diagrams, allow the analyst to specify high-
level behavior without resorting to low-level details required by concurrent task 
diagrams. 

Throughout the analysis phase, the analyst should also capture and document the 
ontology that will be used within the system as part of the Domain Model. We have 
explored the integration of domain models into MaSE in [4]. The Domain Model 
allows the analyst to model domain entities, their attributes, and their relationships. 
Fig. 7 shows a simple example of a domain model using standard UML notation to 
show the relationships between two types of Clients: Source and Consumer. Sources 
produce InfoObjects while Consumers consume InfoObjects. 

4.3   High-Level Design 

The first step in the high-level design is for the designer to use the Role Model and 
service activity diagrams to define the Agent Class Model as shown in Fig. 8. In the 
Agent Class Model, agents classes and lower-level organizations are defined by the 
roles played (which determines the goals they can achieve), capabilities possessed 
(which determines the roles they can play), or services provided. Fig. 8 shows the use 
of both explicit and embedded relations. The «plays» and «provides» keywords in the 
agent classes (denoted by the «Agent» keyword) define which roles instances of the 
agent class can play as well as the services it can provide. The «possesses» relation 
between agent classes and capabilities (denoted by the «Capability» keyword) indi-
cates the capabilities possessed by instances of that class of agent. 
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Fig. 8. Agent Class Model 

refuse

: Initiator : Participant

subscribe (EntityType)

agree

inform (EntityUpdate)

failure

[refused]

[agreed]

[failed]
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alternative

loop () [new data exists]

cancelled

inform (EntityList)

 

Fig. 9. Protocol Model 
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One the Agent Class Model is complete, Protocol Models (Fig. 9) are used to de-
fine the message-passing protocols between agent classes. These Protocol Models 
follow the currently proposed AUML protocol diagrams [10], which allow the ability 
to show alternative and repetitive message structures. 

Fig. 9 captures a subscription protocol where the initiator wants to subscribe to in-
formation published periodically by the participant. After the initial subscribe mes-
sage, the participant may either refuse or agree. If the participant refuses, the protocol 
terminates, which is denoted by the X symbol. Assuming the participant agrees, the 
participant sends an inform message with the current subscription information. The 
protocol then enters a loop where, typically, the participant sends an inform message 
with new information. However, the participant may send a failure message or the 
initiator a cancelled message, both of which end the protocol. 

4.4  Low-Level Design 

In low-level design, we define agent behavior using an Agent State Model, which is 
based on finite state automata (Fig. 10). The Agent State Model is similar to the 
 

Wait
Check

ok =check(client)

receive(request(start, client, type), clientObserver)

Create
agent = createAgent(ObjectObserver)

[OK] send(agree, clientObserver)

[not OK] send(refuse, clientObserver)

Save
list.addAgent(agent)

[valid(agent)] send(create(client, type), agent)

[not valid(agent)] 
  send(failure, clientObserver)

Init
list = new(List)

send(inform(success), clientObserver)

Lookup
agent = list.find(client, type)

receive(request(stop, client, type), clientObserver)

[not valid(agent)] send(failure, clientObserver)

[valid(agent)]
send(request(shutdown), agent);
send(inform(success), clientObserver)

 

Fig. 10. Agent State Model for AgentManager 
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original MaSE concurrent task diagrams, as it captures internal behavior and message 
passing between multiple agents. They feature an explicit send and receive actions to 
denote sending and receiving messages. The remainder of the syntax and semantics is 
defined in [6]. 

5   Conclusions 

In this paper, we have discussed the current version of MaSE and some of its short-
comings. With the extension of MaSE to O-MaSE we have dealt with each of these 
problems. Specifically, we have provided a mechanism for defining the multiagent 
systems interactions with the environment by adding external actors and defining the 
interactions protocols between the system and the actors. 

Second, we have extended MaSE to capture the organizational concepts identified 
in our organization metamodel. New concepts include AND/OR refinement of goals, 
integration of capabilities and the ability to model sub-teams, or sub-organizations. 
This feature allows designers greater levels of abstractions and directly complements 
the notion of organizational agents in our organization metamodel. 

Finally, we took the notion of concurrent tasks out of the analysis phase and inte-
grated concurrent tasks with conversations into Agent State Models in the low-level 
design phase. We are currently using O-MaSE and our organization metamodel in sev-
eral projects including an adaptive Battlefield Information System [7], cooperative ro-
botic teams [11] and a system to monitor and control a large-scale information system.  

We are continuing to evolve O-MaSE to provide a flexible methodology that can 
be used to develop both traditional and organization-based systems.  A long term goal 
is to provide a tailorable methodology that is fully supported by automated tools.  We 
are currently building a new version of agentTool (aT3) within the Eclipse IDE to 
support O-MaSE1.  Future plans include code generation for various platforms as well 
as integration with the Bogor model checking tool [15] to provide model validation 
and performance prediction metrics. 
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