

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 109 – 125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Engineering Organization-Based Multiagent Systems

Scott A. DeLoach

Multiagent and Cooperative Robotics Laboratory,
Department of Computing and Information Sciences, Kansas State University,

234 Nichols Hall, Manhattan, Kansas 66506, USA
sdeloach@cis.ksu.edu

http://www.cis.ksu.edu/~sdeloach/

Abstract. In this paper, we examine the Multiagent Systems Engineering
(MaSE) methodology and its applicability to developing organization-based
multiagent systems, which are especially relevant to context aware systems. We
discuss the inherent shortcomings of MaSE and then present our approach to
modeling the concepts required for organizations including goals, roles, agents,
capabilities, and the assignment of agents to roles. Finally, we extend MaSE to
allow it to overcome its inherent shortcomings and capture the organizational
concepts defined in our organization metamodel.

1 Introduction

Recent trends in multiagent systems are toward the explicit design and use of organi-
zations, which allow heterogeneous agents to work together within well-defined roles
to achieve individual and system level goals [8], [19]. When focusing on team goals,
organizations allow agents to work together by using individual agents to perform the
tasks for which they are best suited. When emphasizing an individual agent’s goals,
organizations provide the structure and rules that allow agents to find and carry out
collaborative tasks with other, previously unknown agents, to the mutual benefit of
each agent.

In situations where the nature of the application environment makes teams suscep-
tible to individual failures, these failures can significantly reduce the ability of the
team to accomplish its goal. Unfortunately, most multiagent teams are designed to
work within a limited set of configurations. Even when the team possesses the ability
to accomplish its goal, it may be constrained by its own knowledge of team member’s
capabilities. In most multiagent methodologies, the system designer analyzes the
possible organizational structure and then designs one organization that will suffice
for most anticipated scenarios. Unfortunately, in dynamic applications where the
environment as well as the agents may change, a designer can rarely account for, or
even consider, all possible situations. To overcome these problems, we are investigat-
ing techniques that allow multiagent teams to design their own organization at
runtime [7]. In essence, we propose to provide the team with the organizational
knowledge and let the team define its own organization based on its current context,
goals and team capabilities.

In this paper, we present a proposal to extend the Multiagent Systems Engineering
(MaSE) methodology toward the analysis and design of multiagent organizations. While

110 S.A. DeLoach

MaSE already incorporates many of the required organizational concepts such as goals,
roles, laws, and the relations between these entities, it cannot currently be used to com-
pletely define a multiagent organization. Most importantly, we must extend MaSE with
the notion of capabilities, upon which the definition of roles is based. We also add some
specific relationships between these capabilities and existing MaSE concepts.

The remainder of this paper is organized as follows. First, we present a review of
relevant background research, including a short description of MaSE and its current
weaknesses. Next, we give an overview of our metamodel that describes the elements
in multiagent organizations. Finally, we discuss our extensions to MaSE that support
the development of multiagent organizations and overcome some of its recognized
problems.

2 Background

A recent advance in agent-oriented software engineering has had a significant impact
on multiagent development approaches such as MaSE [6], Gaia [18], and MESSAGE
[12]. This advancement concerns the separation of the agents from the system frame-
work, or organization [19]. Agents play roles within an organization; however, they
are not the organization. The organization defines the social setting in which the agent
must exist. An organization includes a structure as well as rules, which constrain valid
agent behavior and interaction within the organization.

While these advances are recent, there have been some discussions on how to in-
corporate them into existing multiagent systems methodologies. For instance, there is
a proposal to extend the Gaia to incorporate social laws [19] and organizational con-
cepts [18], while others have proposed implementing the organization as a separate
institutional agent [17]. We have even proposed extending MaSE with rules and
environmental entities [4], [5].

More recently, new methodologies and approaches have been proposed for build-
ing highly adaptive multiagent systems including Adelfe, which follows the AMAS
theory [1, 14]. The goal of methods such as Adelfe is to allow designers to build
systems that will produce some unknown functionality. This varies from the ap-
proach presented here as we are attempting to give the system the ability to adapt
while still producing a know function and within certain limitations.

2.1 Multiagent Systems Engineering

MaSE was originally designed to develop general-purpose multiagent systems and
has been used to design systems ranging from computer virus immune systems to
cooperative robotics systems [6], [7]. Each phase is presented below.

Analysis Phase. The goal of the MaSE analysis phase is to define a set of roles that
can be used to achieve the system level goals. This process is captured in three steps:
capturing goals, applying use cases, and refining roles.

• Capturing Goals. The first step is to capture the system goals by extracting them
from the requirements, which is done by Identifying Goals and Structuring Goals.
The purpose of the Identifying Goals is to derive the overall system goal and its

 Engineering Organization-Based Multiagent Systems 111

subgoals. This is done by extracting scenarios from the requirements and then iden-
tifying scenarios goals. After the goals have been identified, the second step, Struc-
turing Goals, categorizes and structures the goals into a goal tree, which results in a
Goal Hierarchy Diagram that represents goals and goal/subgoal relationships.

• Applying Use Cases. In this step, goals are translated into use cases, which capture
the previously identified scenarios with a detailed description and set of sequence
diagrams. These use cases represent desired system behaviors and event sequences.

• Refining Roles. Refining Roles organizes roles into a Role Model, which describes
the roles in the system and the communications between them. Each role is de-
composed into a set of tasks, which are designed to achieve the goals for which the
role is responsible. These tasks are documented using finite state automata-base
Concurrent Task Diagrams. Concurrent tasks consist of a set of states and transi-
tions that represent internal agent reasoning and communications.

Design Phase. The purpose of the design phase is to take roles and tasks and to
convert them into a form more amenable to implementation, namely agents and con-
versations. The MaSE design phase consists of four steps: designing agent classes,
developing conversation, assembling agents and deploying the agents.

• Construction of Agent Classes. The first step in the design phase identifies agent
classes and their conversations and then documents them in Agent Class Diagrams.
The Agent Class Diagram that results from this step is similar to object-oriented class
diagrams with two differences: (1) agent classes are defined by the roles instead of
attributes and methods and (2) relations between agent classes are conversations.

• Constructing Conversations. Once the agent classes and the conversations are iden-
tified, the detailed conversation design is undertaken. Conversations model com-
munications between two agent classes using a pair of finite state automata similar
in form and function to concurrent tasks. Each task usually generates multiple con-
versations, as they require communication with more than one agent class.

• Assembling Agent Classes. Assembling Agent Classes involves defining the
agents’ internal architecture. MaSE does not assume any particular agent architec-
ture and allows a wide variety of existing and new architectures to be used. The ar-
chitecture is defined using components similar to those defined in UML.

• Deployment Design. The final design step is to choose the actual configuration of
the system, which consists of the number and types of agents in the system and the
platforms on which they should be deployed. These decisions are documented in a
Deployment Diagram, which is similar to a UML Deployment Diagram.

2.2 MaSE Weaknesses

While MaSE provides many advantages for building multiagent systems, it is not
perfect. It is based on a strong top-down software engineering mindset, which makes
it difficult to use in some application areas.

1. MaSE fails to provide a mechanism for modeling multiagent system interactions
with the environment. While we examined this topic in [5], it has never been fully
integrated into MaSE.

112 S.A. DeLoach

2. MaSE also tends to produce multiagent systems with a fixed organization. Agents
developed in MaSE tend to play a limited number of roles and have a limited
ability to change those roles, regardless of their individual capabilities. As dis-
cussed above, a multiagent team should be able to design its own organization at
runtime. While MaSE already incorporates many of the required organizational
concepts such as goals, roles and the relations between these entities, it cannot cur-
rently be used to define a true multiagent organization.

3. MaSE also does not allow the integration of sub-teams into a multiagent system.
MaSE multiagent systems are assumed to have only a single layer to which all
agents belong. Adding the notion of sub-teams would allow the decomposition of
multiagent systems and provide for greater levels of abstraction.

4. The MaSE notion of conversations can also be somewhat bothersome, as it tends to
decompose the protocols defined in the analysis phase into small, often extremely
simple pieces. When the original protocol involves more than two agents, it often
results in conversations with only a single message. This makes comprehending
how the individual conversations fit together more difficult.

3 Organization Metamodel

To allow teams of agents to adapt to their environment by determining their own or-
ganization at runtime, we have developed a metamodel that describes the knowledge
required to define an organization [7], [11]. Given this knowledge, we hypothesize that
multiagent teams will be able to organize (and reorganize) themselves to adapt to their
dynamic environments.

requires

 constrains

precedes

subgoal

Organization
GA : set(Goal)

: set(assigned)
oaf() : [0..1]

Policy

Achieves
score : [0..1]

Potential
score : [0..1]

Role
rcf(Agent) : [0..1]

Organizational
Agent

Agent

Capabilities

Capable
score : [0..1]

Possesses
score : [0..1]

Ontology

uses

triggers

Goal
conjunctive : Boolean
disjunctive : Boolean

related coord

Fig. 1. Artificial Organization Metamodel

 Engineering Organization-Based Multiagent Systems 113

From the early days of organization research, organizations have typically been de-
fined as including the concepts of agents who play roles within a structure that defines
the relationships between the various roles [2]. We thus begin the foundation for our
metamodel by defining what is meant by goals (G), roles (R), and agents (A). We also
add four additional entities to our metamodel: capabilities (C), assignments (Φ), poli-
cies (P), and an ontology (Σ). Capabilities are central to the process of determining
which agents can play which roles and how well they can play them, while policies
constrain the assignment of agents to roles thus controlling the allowable states of the
organization. The organization ontology supports agent communication and policy
definition. A UML-based depiction of our organization metamodel is shown in Fig. 1.

3.1 Goals

Every artificial organization is designed with a specific purpose, which defines the
overall function, or goal of the organization. Within our metamodel, each organiza-
tion has a set of goals, G, that it seeks to achieve in support of a single top-level goal
go. We define a goal in its normal way as some desired end state. G is derived by
decomposing go into a tree of subgoals that describe how go can be achieved. Follow-
ing the KAOS goal based requirements modeling approach [16], we allow goals to be
decomposed into a set of non-cyclic subgoals using either AND-refinement or OR-
refinement, which are denoted via conjunctive and disjunctive predicates. Eventually,
go is refined into a set of leaf nodes, denoted by GL, that may be achieved in order to
achieve go. The active goal set, GA (where GA ⊆ GL), is the set of goals that an organi-
zation is trying to achieve at the current time.

Goal g1 precedes goal g2 if g1 must be achieved before g2 can be achieved. Essen-
tially, goal precedence allows the organization to work on one part of the goal tree at
a time, thus reducing the size of GA. The triggers relation is similar to precedes in that
it also restricts goals from being inserted in GA. However, instead of requiring goal
achievement, the triggers relation allows new goals to be inserted into GA when a
specified event occurs.

precedes: G, G → Boolean
triggers: GL, G → Boolean

All goals are unachieved when the organization is initialized. Therefore, the initial
active goal set, GA0, consists of all goals that have no predecessor goals or that do not
require a trigger. However, as goals are achieved or events occur triggering new goal
instances, GA, changes. Essentially, achieved goals are removed from the active goal
set and new goals to be achieved are inserted. New goals must be startable (all their
predecessor goals have been achieved) and, if they are triggered, they must have been
triggered by an active goal. We denote a sequence of active goal sets GA’ as GA’ =
[GA1, GA2, … GAn].

3.2 Roles

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines an entity that is able to achieve a set of goals within the organization. Each role
is responsible for achieving, or helping to achieve or maintain specific system goals.

114 S.A. DeLoach

The achieves function describes how well (in a range of 0 to 1) a particular role
achieves a specific goal.

achieves: R, GL → 0 .. 1

In order to perform a particular role, agents must have a sufficient set of capabili-
ties (which are simply defined as atomic, named entities in our model). Agents pos-
sess capabilities, which may include physical capabilities (sensors or actuators) or
computational capabilities (data access, knowledge, algorithmic, etc.), and roles re-
quire a certain set of capabilities. The set of capabilities required by a particular role
is captured using the requires predicate.

requires: R, C → Boolean

Many times, instead of requiring agents to inherently posses all the required capa-
bilities for a role, we would like to bestow the required capabilities on agents to allow
them to play that role. While this does not generally work well with hardware agents
(robots), with software agents, we are often free to download new algorithms, etc. Our
approach to capabilities does not deny this type of role bestowal; it just requires care
in defining the capabilities types in the model. Thus if an agent has the appropriate
physical capabilities (computational power, communication access, etc.) we can
download the specific algorithms and/or knowledge necessary to carry out a role. In
many of our current multiagent systems, the algorithm is packaged with the role, not
in the individual agents themselves.

To carry out their responsibilities, roles may have to work with other roles within
the organization. We capture the basic notion of two roles being related using a re-
lated predicate, which provides a means of identifying the allowable structure of a
given organization.

3.3 Agents

Our metamodel also includes a set of heterogeneous agents, A, within each organiza-
tion. For our purposes, agents are computational system instances that inhabit a com-
plex dynamic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals. Agents are assigned specific roles in order to achieve
organizational goals. The current set of potential assignments of agents to a role is
captured by the potential function. The range of the potential function indicates how
well an agent can play a role and how well that role can achieve the goal, based on the
achieves and capable scores.

potential: A, R, GL → 0 .. 1

However, the potential function does not indicate that the actual assignment of
agent a to role r to achieve goal g, has been made within the organization. It simply
defines a set of possible assignments. To capture the notion of the actual assignments,
we define an assignment set, Φ, which consists of agent-role-goal tuples, <a,r,g>. If
<a,r,g> ∈ Φ, then agent a has been assigned by the organization to play role r in
order to achieve goal g. As discussed above, however, only agents with the right set
of capabilities may be assigned to a specific role. To capture a given agent’s capabili-
ties, we define a possesses function, which returns a value in the range of 0 to 1

 Engineering Organization-Based Multiagent Systems 115

indicating no (0) capability or excellent (1) capability, which may change with time.
Using the capabilities required by a role and capabilities possessed by an agent, we
can compute the ability of an agent to play a give role, which we capture in the capa-
ble function. Finally, we capture the notion of agents coordinating, to achieve their
goals using the coord predicate.

possesses: A, C → 0 .. 1
capable: A, R → 0 .. 1
coord: A, A → Boolean

Organizational agents (OA) are organizations that function as agents within an-
other organization. Thus, organizational agents possess capabilities, may coordinate
with other agents, and may be assigned to play roles. They represent an extension to
the traditional Agent-Group-Role (AGR) model developed by Ferber [9] and the
meta-model proposed by Odell [13]. Organizational agents allow the definition of a
hierarchy of organizations, which provides both flexibility and scalability.

3.4 Capabilities

Capabilities are key in determining exactly which agents can be assigned to what
roles in the organization. Capabilities are atomic entities used to define the abilities of
agents in relation to roles. Capabilities can capture soft abilities such as the ability to
access resources, communicate, migrate, or computational algorithms. They also
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors.

3.5 Policies

Organization policies are formally specified rules that describe how an organization
may/may not behave in specific situations. In our metamodel, we distinguish between
two specific types of policies: assignment policies (PΦ) and behavioral policies (Pbeh).
Assignment policies deal with constraints that the assignment set, Φ must satisfy such as
“an agent may play one role at a time” or “agents may work on a single goal at a time”.
Behavioral policies define how agents should behave in solving the problem at hand.

3.6 Ontology

The organization ontology defines the entities within the application domain and their
relationships. From these definitions, we extract a set of data types and relationships
that allow agents to communicate about application specific information. These do-
main entities and relationships are also used to help in defining application specific
organization policies. We currently use static UML diagrams to define ontological
concepts similar to the approach in [3].

3.7 Organization Example

An example of a multiagent team developed using our organization metamodel is
shown in Fig. 2. The boxes at the top of the diagram represent goals (A … G), the

116 S.A. DeLoach

circles represent roles (R1 … R5), the pentagons represent capabilities (C1 … C5),
and the rounded rectangles are agents (A1 … A4). The arcs on subgoal links denote
conjunctive subgoals, whereas undecorated links denote disjunctive subgoals. The
arrows between the entities represent the achieves, requires, and possesses func-
tions/relations as defined above. The numbers beside the arrows represent the
function value (e.g., possesses(A1,C1) = 0.5). These achieves values are generally
assigned at design time and do not change. The possesses values, on the other hand,
are computed by the individual agents based on their own internal assessment of their
capabilities. We also assume we have assignment policies that (1) we only assign a
single agent to each goal and (2) only one of the disjunctive goals F or G can be
active at any time.

Fig. 2. Organization Example

Therefore, in this example the top-level goal, A, can be achieved by achieving both
subgoals B and C, which can be achieved by achieving D and E in addition to either F
or G. The achieves relation shows that either of the roles R1 or R2 can be used to
achieve goal D while only role R3 can be used to achieve goal E. However, role R3
can also be used to achieve goal F, which can also be achieved by role R4. The only
role capable of achieving goal G is role R5. The aim is for the organization to assign
agents that can play the appropriate roles to achieve specific goals. Because of the
disjunctive nature of goal C and the ability to use different roles in achieving individ-
ual goals, there is some assignment flexibility built into the system.

Determining which agents should be assigned specific roles in order to achieve
particular goals is based on the capabilities the agents currently possess. For instance,

 Engineering Organization-Based Multiagent Systems 117

Table 1. Capability Function

 R1 R2 R3 R4 R5
A1 0.5 0 0.6 0 0
A2 0 0 0.7 0 0
A3 0 0 0 0.6 0.6
A4 0 0 0 0.5 0

role R1 requires only capability C1 while R3 requires only capability C2. Therefore,
since agent A1 possesses both capabilities C1 and C2, it could be assigned to either
role R1 or R3 in order to achieve goals D, E, or F.

In this example, we thus compute the capable function value for each agent-role
pair as shown in Table 1. For simplicities sake, we average the individual capability
score required for each role. Combining the capable scores with the achieves score,
we can easily compute the organizational capability score, Os, for any set of assign-
ments that might be made. Based on these computations (keeping in mind our as-
signment policies), we can see that the maximum organizational capability score, and
thus the optimal assignments are as follows:

 potential(A1,R1,D) = 0.25
 potential(A2,R3,E) = 0.56
 potential(A3,R5,G) = 0.42
 Os = 1.23

3.8 Exemplar Implementation

Although there is not a single “correct” way to implement our organizational meta-
model, we suggest an example to help cement the concepts. Fig. 3 shows the imple-
mentation approach used in our current projects. Each agent is composed of two
components: an Organizational Reasoning component and an Application Reasoning

Fig. 3. Example Implementation

118 S.A. DeLoach

component. The Organizational Reasoning component is concerned with computing
the current assignment set φ based on the active goal set GA and the feedback received
from the Application Reasoning component in regards to goal achievement, goal
failure, or the occurrence of triggering events.

The Application Reasoning component accepts its assignment and carries out the
tasks necessary to play its assigned roles in pursuit of its assigned goals. The Organ-
izational Reasoning component interacts with the other agent’s Organizational Rea-
soning components to ensure system coherence. Exactly how the coordination is
carried out can vary. We have implemented a variety of centralized and distributed
approaches to this coordination process; the best approach to this coordination process
is domain and application specific. Part of the goal of the architecture presented in
Fig. 3 is to be able to provide “plug-and-play” Organizational Reasoning components
that can be selected based on application criteria.

4 O-MaSE

To avoid designing static multiagent systems, we have extended MaSE to allow de-
signers to design a multiagent organization, which provides a structure within which
the multiagent system may adapt. This extended version of MaSE is called Organiza-
tion-based MaSE (O-MaSE). A preliminary proposal for the O-MaSE methodology is
described below. In general, many of the diagrams used in O-MaSE are variants of
the UML class diagrams and use keywords to denote the difference between goals,
roles, capabilities, agent classes, etc.

Throughout this section, an Information Flow Monitoring System (IFMS) is used
as an example of an organization-based multiagent system. The overall goal of the
IFMS is to keep track of the information producers and consumers along with the
actual flow of information through a dynamically reconfigurable enterprise informa-
tion system. The information producers and consumers use a publish/subscribe
mechanism that allows consumers to find and subscribe to appropriate information
producers. Therefore, the IFMS must keep track of the various information paths
between the producers and consumers as well as monitor the actual data flowing
along those paths. The IFMS provides data in the form of current paths and informa-
tion flow statistics to enterprise system operators who monitor the system for
problems.

4.1 Requirements

Requirements are translated into system level goals, which are documented in the
form of an AND/OR goal tree. Fig. 4 shows the goal tree for the IFMS described
above. Given goal precedence relations, it is possible to design goal structures that
cannot be achieved, thus we would like to provide the assurance that the top-level
goal can be achieved. We have replaced the non-specific MaSE goal tree with a tree
with specific AND/OR decompositions to match the organization metamodel.

 Engineering Organization-Based Multiagent Systems 119

Fig. 4. Goal Hierarchy Diagram

The syntax has also changed in the O-MaSE goal model. We use standard UML
class notation with the keyword «Goal». Each goal may be parameterized, with pa-
rameters annotated as attributes of the goal class. When goals are instantiated, they
are given specific values for these attributes. The aggregation notation is used to de-
note AND refined goals whereas the generalization notation is used to denote OR
refined goals. This notation is somewhat intuitive as AND refined goals require a
composition of its subgoals to be achieved. Subgoals of an OR refined parent goal can
be thought of as alternative ways to achieve the parent goal, or that they can be substi-
tuted in place of the parent goal.

4.2 Analysis

Analysis begins by creating the Organization Model, which defines the organization’s
interactions with external actors. Generally, there is one organization at the top level
(denoted by the «Organization» keyword) and that organization becomes responsible
for the top goal in the goal tree. Each organization can achieve goals and provide
services, which are further refined via activity diagrams (similar to UML activity
diagrams, not included in this paper). The designer can also use sequence diagrams
for describing use cases at the system level, similar to the original version of MaSE.
Each organization may also include sub-organizations to allow for abstraction during
the design process.

While we allow the use of services in O-MaSE to help define the activities that
agents carry out while performing roles, they do not map directly to the organization
metamodel as presented earlier. For the purposes of this paper, we only mention them
for completeness, but do not elaborate on them, as their use in defining organizations
is not required.

An example of an Organization Model is shown in Fig. 5, where there are three ac-
tors making up the system’s environment: the ClientAPI, the ServerAPI, and the
Admin. The arrows connecting the organization to the actors denote protocols that

120 S.A. DeLoach

Fig. 5. Organization Model

Fig. 6. Role Model

define the agent class’s interactions with the environment (these protocols are defined
in detail in the high-level design stage). The relations between the organization and
the goal and service classes (classes denoted by «Goal» and «Service» keywords) are
fixed relation types. An organization provides services while achieving goals. These

 Engineering Organization-Based Multiagent Systems 121

relations may be shown via explicit relations between organizations and goals; how-
ever, the relations may also be embedded in a class as shown in Fig. 6 (where
«achieves» relations are shown embedded within roles).

Next, the organization model is refined into a role model (Fig. 6) that defines the
roles in the organization, the services they provide, and the capabilities required to
play them. Each role is designed to achieve specific goals from the Goal Model and
provide specific activities refined from top-level services in the Organization Model.
Again, the arrows between actors and roles and between two roles indicate protocols
that are fully defined later in the design stage. The Role Model may also include ca-
pabilities (denoted by the «Capability» keyword), which are attached to the roles that
require them by the «requires» keyword.

Fig. 7. Domain Model

At this point, O-MaSE differs from MaSE in that O-MaSE does not require the
analyst to create concurrent task diagrams to describe the behavior of each role.
This task is more appropriately carried out at the low-level design stage. The use of
activities, which are refined via activity diagrams, allow the analyst to specify high-
level behavior without resorting to low-level details required by concurrent task
diagrams.

Throughout the analysis phase, the analyst should also capture and document the
ontology that will be used within the system as part of the Domain Model. We have
explored the integration of domain models into MaSE in [4]. The Domain Model
allows the analyst to model domain entities, their attributes, and their relationships.
Fig. 7 shows a simple example of a domain model using standard UML notation to
show the relationships between two types of Clients: Source and Consumer. Sources
produce InfoObjects while Consumers consume InfoObjects.

4.3 High-Level Design

The first step in the high-level design is for the designer to use the Role Model and
service activity diagrams to define the Agent Class Model as shown in Fig. 8. In the
Agent Class Model, agents classes and lower-level organizations are defined by the
roles played (which determines the goals they can achieve), capabilities possessed
(which determines the roles they can play), or services provided. Fig. 8 shows the use
of both explicit and embedded relations. The «plays» and «provides» keywords in the
agent classes (denoted by the «Agent» keyword) define which roles instances of the
agent class can play as well as the services it can provide. The «possesses» relation
between agent classes and capabilities (denoted by the «Capability» keyword) indi-
cates the capabilities possessed by instances of that class of agent.

122 S.A. DeLoach

Fig. 8. Agent Class Model

refuse

: Initiator : Participant

subscribe (EntityType)

agree

inform (EntityUpdate)

failure

[refused]

[agreed]

[failed]

sd subscribe

alternative

loop () [new data exists]

cancelled

inform (EntityList)

Fig. 9. Protocol Model

 Engineering Organization-Based Multiagent Systems 123

One the Agent Class Model is complete, Protocol Models (Fig. 9) are used to de-
fine the message-passing protocols between agent classes. These Protocol Models
follow the currently proposed AUML protocol diagrams [10], which allow the ability
to show alternative and repetitive message structures.

Fig. 9 captures a subscription protocol where the initiator wants to subscribe to in-
formation published periodically by the participant. After the initial subscribe mes-
sage, the participant may either refuse or agree. If the participant refuses, the protocol
terminates, which is denoted by the X symbol. Assuming the participant agrees, the
participant sends an inform message with the current subscription information. The
protocol then enters a loop where, typically, the participant sends an inform message
with new information. However, the participant may send a failure message or the
initiator a cancelled message, both of which end the protocol.

4.4 Low-Level Design

In low-level design, we define agent behavior using an Agent State Model, which is
based on finite state automata (Fig. 10). The Agent State Model is similar to the

Wait
Check

ok =check(client)

receive(request(start, client, type), clientObserver)

Create
agent = createAgent(ObjectObserver)

[OK] send(agree, clientObserver)

[not OK] send(refuse, clientObserver)

Save
list.addAgent(agent)

[valid(agent)] send(create(client, type), agent)

[not valid(agent)]
 send(failure, clientObserver)

Init
list = new(List)

send(inform(success), clientObserver)

Lookup
agent = list.find(client, type)

receive(request(stop, client, type), clientObserver)

[not valid(agent)] send(failure, clientObserver)

[valid(agent)]
send(request(shutdown), agent);
send(inform(success), clientObserver)

Fig. 10. Agent State Model for AgentManager

124 S.A. DeLoach

original MaSE concurrent task diagrams, as it captures internal behavior and message
passing between multiple agents. They feature an explicit send and receive actions to
denote sending and receiving messages. The remainder of the syntax and semantics is
defined in [6].

5 Conclusions

In this paper, we have discussed the current version of MaSE and some of its short-
comings. With the extension of MaSE to O-MaSE we have dealt with each of these
problems. Specifically, we have provided a mechanism for defining the multiagent
systems interactions with the environment by adding external actors and defining the
interactions protocols between the system and the actors.

Second, we have extended MaSE to capture the organizational concepts identified
in our organization metamodel. New concepts include AND/OR refinement of goals,
integration of capabilities and the ability to model sub-teams, or sub-organizations.
This feature allows designers greater levels of abstractions and directly complements
the notion of organizational agents in our organization metamodel.

Finally, we took the notion of concurrent tasks out of the analysis phase and inte-
grated concurrent tasks with conversations into Agent State Models in the low-level
design phase. We are currently using O-MaSE and our organization metamodel in sev-
eral projects including an adaptive Battlefield Information System [7], cooperative ro-
botic teams [11] and a system to monitor and control a large-scale information system.

We are continuing to evolve O-MaSE to provide a flexible methodology that can
be used to develop both traditional and organization-based systems. A long term goal
is to provide a tailorable methodology that is fully supported by automated tools. We
are currently building a new version of agentTool (aT3) within the Eclipse IDE to
support O-MaSE1. Future plans include code generation for various platforms as well
as integration with the Bogor model checking tool [15] to provide model validation
and performance prediction metrics.

References

1. Bernon, C., Camps, V., Gleizes M.P., Picard G. Engineering Adaptive Multi-Agent
Systems: the ADELFE Methodology. In B. Henderson-Sellers and P. Giorgini (Eds.),
Agent-Oriented Methodologies. Idea Group Pub, June 2005, pp.172-202.

2. Blau, P.M. & Scott, W.R., Formal Organizations, Chandler, San Francisco, CA, 1962,
194-221.

3. Cranefield, S. & Pruvis, M. UML as an Ontology Modelling Language. Proc of the Work-
shop on Intelligent Information Integration, 1999.

4. DeLoach, S. A. Modeling Organizational Rules in the Multiagent Systems Engineering
Methodology. Proc of the 15th Canadian Conference on Artificial Intelligence. 2002.

5. DeLoach, S. A. Analysis and Design of Multiagent Systems Using Hybrid Coordination
Media. Proceedings of Software Engineering in Multiagent Systems (SEMAS 2002).
2002.

1 The current status of O-MaSE and the aT3 project can be found at the Multiagent and Coop-

erative Robotics Laboratory web site (http://macr.cis.ksu.edu/).

 Engineering Organization-Based Multiagent Systems 125

6. DeLoach, S. A., Wood, M. F. and Sparkman, C. H., “Multiagent Systems Engineering”.
The International Journal of Software Engineering and Knowledge Engineering, 11(3), pp.
231-258, June 2001.

7. DeLoach, S.A., & Matson, E. An Organizational Model for Designing Adaptive Multi-
agent Systems. The AAAI-04 Workshop on Agent Organizations: Theory and Practice
(AOTP 2004). 2004.

8. Dignum, V. A Model for Organizational Interaction: Based on Agents, Founded in Logic.
PhD thesis, Utrecht University, 2004.

9. Ferber, J., and Gutknecht, O. A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of Third International Conference on MultiAgent
Systems (ICMAS'98), pages 128-135, IEEE Computer Society, 1998.

10. Huget, M.P., Bauer, B., Odell, J., Levy, R., Turci, P., Cervenka, R., and Zhu, H.
http://www.auml.org/. FIPA Modeling: Interaction Diagrams, Working Draft. 2002.

11. Matson, E., DeLoach, S. Capability in Organization Based Multi-agent Systems, Proceed-
ings of the Intelligent and Computer Systems (IS ’03) Conference, 2003.

12. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable 1.
Initial Methodology. July 2000. EURESCOM Project P907-GI.

13. Odell, J., Nodine, M., Levy, R. A Metamodel for Agents, Roles, and Groups. Agent-
Oriented Software Engineering V, 5th International Workshop, AOSE 2004. 2004.

14. Picard, G. and Gleizes, M.-P. The ADELFE Methodology – Designing Adaptive Coopera-
tive Multi-Agent Systems. In Bergenti, F. and Gleizes, M-P. and Zambonelli, F., editor,
Methodologies and Software Engineering for Agent Systems. Kluwer Publishing, 2004.

15. Robby, Dwyer, M.B., & Hatcliff, J. Bogor: An Extensible and Highly-Modular Model
Checking Framework, Proceedings of the Fourth Joint Meeting of the European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003).

16. van Lamsweerde, A., Darimont, R., Letier, E. Managing conflicts in goal-driven require-
ments engineering. IEEE Transactions on Software Engineering. 24(11), pp 908-926,
1998.

17. Wagner, G. Agent-Oriented Analysis and Design of Organizational Information Systems.
Proceedings of the 4th IEEE International Baltic Workshop on Databases and Information
Systems, May 2000.

18. Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Developing Multiagent Systems:
The Gaia Methodology. In AMC Transactions on Software Engineering Methodology
12(3), 317-370, 2003.

19. Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Organisational Rules as an Abstrac-
tion for the Analysis and Design of Multi-Agent Systems. IJSEKE. 11(3) pp. 303-328,
June 2001.

	Introduction
	Background
	Multiagent Systems Engineering
	MaSE Weaknesses

	Organization Metamodel
	Goals
	Roles
	Agents
	Capabilities
	Policies
	Ontology
	Organization Example
	Exemplar Implementation

	O-MaSE
	Requirements
	Analysis
	High-Level Design
	Low-Level Design

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

