

Lecture Notes in Computer Science 3914
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alessandro Garcia Ricardo Choren
Carlos Lucena Paolo Giorgini
Tom Holvoet Alexander Romanovsky (Eds.)

Software Engineering for
Multi-Agent Systems IV

Research Issues
and Practical Applications

13

Volume Editors

Alessandro Garcia
Lancaster University, Computing Department, InfoLab 21, Lancaster, LA1 4WA, UK
E-mail: a.garcia@lancaster.ac.uk

Ricardo Choren
SE/8, IME, Praça General Tibúrcio 80, Urca 22290-170, Rio de Janeiro/RJ, Brazil
E-mail: choren@de9.ime.eb.br

Carlos Lucena
Pontifical Catholic University of Rio de Janeiro, Computer Science Department
Rio de Janeiro, RJ - 22453-900, Brazil
E-mail: lucena@inf.puc-rio.br

Paolo Giorgini
University of Trento, Department of Information and Communication Technology
Via Sommarive, 14, 38050 Povo (Trento), Italy
E-mail: paolo.giorgini@dit.unitn.it

Tom Holvoet
K.U. Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
E-mail: Tom.Holvoet@cs.kuleuven.be

Alexander Romanovsky
University of Newcastle, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: alexander.romanovsky@ncl.ac.uk

Library of Congress Control Number: 2006923375

CR Subject Classification (1998): D.2, I.2.11, C.2.4, D.1.3, H.3.5

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-33580-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33580-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11738817 06/3142 5 4 3 2 1 0

Foreword

With the integration of computing and communication into the very fabric of our
social, economic, and personal existence, the manner in which we think about
and build software has become the subject of intense intellectual, scientific, and
engineering reexamination. New computing paradigms have been proposed and
new software architectures are being examined. The study of multi-agent sys-
tems (MAS) is one important movement energized by a growing awareness that
application development may need to follow radically new paths. Fundamentally,
MAS denotes a new software specification and design paradigm. Moreover, when
viewed in the context of large-scale deployment, it emerges as the embodiment
of the quintessential concerns facing the software engineering community today.
As computing and communication permeates the essential aspects of the societal
infrastructure, software must become more nimble, slimmer, more natural, and
more discrete. Software must integrate itself in an organic way into the activities
it serves and the resources it exploits.

Technological changes and their societal implications clearly impacted the
evolution of MAS research. The starting point was the wired network that facil-
itated the development of distributed applications for which MAS appeared to
offer a novel design strategy. The introduction of base stations and wireless com-
munication (with devices that move along the fringe of the wired network and
can disconnect unexpectedly for extended periods of time) highlighted the impor-
tance of disconnected interactions, highly decoupled computing, and migration
across the wireless link. MAS proved to be particularly well suited to respond
to the requirements of the new environment; for example, it seems natural for a
disconnected host to rely on an agent migrated to the wired network to carry out
work on its behalf. The advance of ad hoc networks offered still new opportunities
and also new challenges for MAS research. Structuring applications as communi-
ties of agents that can float over a physically mobile infrastructure is clearly an
intellectually exiting possibility to consider, but finding applications that match
well to this environment remains a contentious point among researches and prac-
titioners. Finally, MAS made its presence felt even in the newly emerging field of
sensor networks. The flexibility of the basic MAS paradigm is indeed remarkable
and all indicators point to its continuing evolution towards enabling applica-
tion developers to achieve increasingly more effective utilization of the deployed
computing and communications infrastructures.

The most visible MAS contributions can be attributed to successful ab-
straction and conceptualization efforts that demonstrate the expressive power
of the various embodiments of the basic paradigm across multiple technological
substrates. However, only the combination of exciting conceptual frameworks
with analytical power, design methodology, and engineering practice will lead
to achieving a truly high impact on the society at large. These concerns should
be formative elements for the MAS research agenda. Interestingly enough, the

VI Foreword

content of this volume matches well with this perspective on the field. Papers on
context awareness, coordination, and modeling continue to focus on strengthen-
ing and deepening our understanding of conceptual frameworks having both sci-
entific and practical significance. Papers addressing requirements, architecture,
and dependability capture methodological and engineering concerns. Analysis
alone receives somewhat more limited coverage in this volume.

MAS research is well positioned in terms of technical coverage of the field and
promises to lead to the deployment of nimble and responsive user-centered appli-
cations. However, the community needs to recognize that in today’s environment
the marketplace has a greater than ever voice in determining research relevance
and impact. This is not due to the evolving patterns of research funding, but
due to the high degree of integration of computing and communication into the
workings of a modern society. Acknowledging this should lead to the emergence
of a research paradigm that focuses on the creative integration of conceptual,
engineering, and application concerns in the shaping of the next generation of
MAS. I view this volume as an important step along this path.

December 2005 Gruia-Catalin Roman
Washington University in Saint Louis

Preface

Software is becoming present in every aspect of our lives, pushing us inevitably
towards a world of autonomous distributed systems. The agent-oriented paradigm
holds great promise for responding to the new realities of large-scale distributed
systems. It is strongly rooted in the theories underlying multi-agent systems
(MASs) and, as a result, offers appropriate software engineering abstractions
and mechanisms to address issues such as context-awareness, openness, coor-
dination, ubiquity, mobility, adaptation, and cooperation among heterogeneous
and autonomous parties. Not surprisingly, multi-agent software development is
one of the most rapidly growing areas of research in academia and software
industry.

Nevertheless, the complexity associated with software agents and MASs is
considerable, posing new challenges to software engineering community. Without
adequate development techniques and methods, MASs will not be sufficiently
dependable, trustworthy and extensible, thus making their wide adoption by
the industry more difficult. Commercial success of MAS applications requires
scalable solutions based on well-understood software engineering approaches that
ensure effective deployment and enable reuse.

A large MAS is complex in many ways. When a set of agents interact over
open heterogeneous environments, several problems emerge. For example, ope-
ness requires appropriate abstractions and mechanisms for supporting context-
awareness. In addition, it makes their coordination and management challenging
and increases the probability of exceptional situations, security holes and unex-
pected global effects. Moreover, as users and software engineers delegate more
autonomy to their MASs and put more trust in their results, new concerns arise
in real-life applications. Yet many of the existing agent-oriented solutions are
far from ideal; in practice, systems are often built in an ad-hoc manner, are
error-prone, not scalable, not dynamic, and not generally applicable to large-
scale environments. If agent-based applications are to be successful, software
engineering approaches will be needed to enable scalable deployment.

The main motivation for producing this book is the Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS) workshop series, which focuses on
bringing together software engineering practitioners and researchers to discuss
the several issues arising when MASs are used to engineer complex systems.
SELMAS 20051 was the fourth edition of the workshop, organized in association
with the 27th International Conference on Software Engineering (ICSE), held in
Saint Louis, USA, in May 2005. The theme of this particular workshop edition
was “Software Everywhere—Context-Aware Agents.” To produce the book based
on this workshop edition, we decided to extend the workshop coverage, and to

1 Garcia, A. el al.: Software Engineering for Large-Scale Multi-Agent Systems - SEL-
MAS 2005 (Workshop Report). ACM Software Engineering Notes, Vol. 30, N. 4,
July 2005.

VIII Preface

invite several of the workshop participants to write chapters for books based on
their original position papers, as well as several other leading researchers in the
area to prepare additional chapters. Thus, this book is a continuation of a series
of three previous ones2−4.

This book brings together a collection of 15 papers addressing a wide range
of issues in software engineering of MASs, reflecting the importance of agent
properties in today’s software systems. The papers in this book describe re-
cent developments in specific issues and practical experience. At the end of each
chapter, the reader will find a list of relevant references for further reading. The
papers in this book are grouped into five sections: Context-Awareness, Coor-
dination, Dependability, Modelling, and Requirements and Software Architec-
ture. The first section is especially dedicated to the SELMAS 2005 theme. The
other sections contain high-quality contributions on other important comple-
mentary concerns in MAS development. We believe that this carefully prepared
volume, describing the most recent developments in the field of software engi-
neering for MASs, will be of particular value to all readers interested in these key
topics.

With a comprehensive selection of case studies and software engineering so-
lutions for MASs applications, this book provides a valuable resource for a wide
audience of readers. The main target readers for this book are researchers and
practitioners who want to keep up with the progress of software engineering of
MASs, individuals keen to understand the interplay between agents and other
software development paradigms, and those interested in experimental results
from MAS applications. Software engineers involved in particular aspects of
MASs as a part of their work may find it interesting to learn about applica-
tion of software engineering approaches in building real systems. Some chapters
in the book discuss the transitions involving different MAS development phases,
such as requirements, architecture specifications, and implementation. One key
contribution of this volume is the description of the latest approaches to reason-
ing about complex MASs. We are confident that this book will be of consider-
able use to the software engineering community by providing many original and
distinct views on such an important interdisciplinary topic, and by contribut-
ing to a better understanding and cross-fertilization among individuals in this
research area. Our thanks go to all our authors, whose work made this book
possible. Many of them also helped during the reviewing process. We would also
like to express our gratitude to the members of the Evaluation Committee who
were generous with their time and effort when reviewing the submitted papers.
We specially thank all people involved—authors, workshop participants, and
2 Garcia, A., Lucena, C., Castro, J., Zambonelli, F., Omicini, A. (eds.): Software

Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603, Springer-Verlag,
April 2003.

3 Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P. (eds.): Software
Engineering for Multi-Agent Systems II. LNCS, vol. 2940, Springer-Verlag, February
2004.

4 Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.): Software Engineering
for Multi-Agent Systems III. LNCS, vol. 3390, Springer-Verlag, February 2005.

Preface IX

reviewers—for making this book series and the SELMAS workshop editions a
high-quality scientific joint project.

December 2005 Alessandro Garcia (Lancaster University, UK)
Ricardo Choren (IME-Rio, Brazil)
Carlos Lucena (PUC-Rio, Brazil)

Paolo Giorgini (University of Trento, Italy)
Tom Holvoet (K. U. Leuven, Belgium)

Alexander Romanovsky (University of Newcastle, UK)

Organization

Evaluation and Program Committee

N. Alechina (University of Nottingham, UK)
E. Alonso (City University London, UK)
R. Ashri (University of Southampton, UK)
B. Bauer (Universität Augsburg, Germany)
C. Bernon (IRIT, France)
M. Brian Blake (Georgetown University, USA)
P. Bresciani (IRST, Italy)
J-P. Briot (Université Paris VI, France)
G. Cabri (Università di Modena e Reggio Emilia, Italy)
J. Castro (UFPE, Brazil)
M. Cossentino (ICAR-CNR, Italy)
S. Cost (University of Maryland Baltimore County, USA)
J. Debenham (University of Technology - Sydney, Australia)
J. Dix (University of Manchester, UK)
C. A. Fernández (Universidad Politécnica de Madrid, Spain)
M. Fredriksson (Blekinge Institute of Tech., Sweden)
C. Ghidini (ITC-irst, Italy)
M-P. Gleizes (IRIT, France)
Z. Guessoum (Université Paris VI, France)
B. Henderson-Sellers (U. of Technology - Sydney, Australia)
K. Henricksen (University of Queensland, Australia)
J. Indulska (University of Queensland, Australia)
C. Jonker (Vrije Universiteit Amsterdam, The Netherlands)
M. Kolp (Université Catholique de Louvain, Belgium)
J. C. Maldonado (USP - So Carlos, Brazil)
V. Mascardi (Università di Genova, Italy)
H. Mouratidis (University of East London, UK)
J. Odell (Agentis Software, USA)
E. Oliveira (Universidade do Porto, Portugal)
A. Omicini (Università di Bologna, Italy)
S. Ossowski (Universidad Rey Juan Carlos, Spain)
L. Penserini (ITC-irst, Italy)
G. Rossi (Universidad Nacional de La Plata, Argentina)
A. G. Serrano (Universidad Politécnica de Madrid, Spain)
J. M. Serrano (Universidad Rey Juan Carlos, Spain)
O. Shehory (IBM Research Center in Haifa, Israel)
J. Shepherdson (British Telecommunications plc., UK)
A. von Staa (PUC-Rio, Brazil)
M. Stal (Siemens AG, Germany)

XII Organization

W. Truszkowski (NASA, USA)
M. Weiss (Carleton University, Canada)
D. Weyns (Katholieke Universiteit Leuven, Belgium)
M. Winikoff (RMIT University, Australia)
F. Zambonelli (Università di Modena e Reggio Emilia, Italy)
A. Zisman (City University London, UK)

Table of Contents

Context-Awareness and Coordination

Policy-Driven Configuration and Management of Agent Based
Distributed Systems

Anand R. Tripathi, Devdatta Kulkarni, Tanvir Ahmed 1

Views: Middleware Abstractions for Context-Aware Applications in
MANETs

Kurt Schelfthout, Tom Holvoet, Yolande Berbers 17

An Adaptive Distributed Layout for Multi-agent Applications
Koenraad Mertens, Tom Holvoet, Yolande Berbers 35

Self-organizing Approaches for Large-Scale Spray Multiagent Systems
Marco Mamei, Franco Zambonelli . 53

Coordination Artifacts as First-Class Abstractions for MAS
Engineering: State of the Research

Andrea Omicini, Alessandro Ricci, Mirko Viroli 71

Modeling

Analysis and Design of Physical and Social Contexts in Multi-agent
Systems

Florian Klein, Holger Giese . 91

Engineering Organization-Based Multiagent Systems
Scott A. DeLoach . 109

Developing and Evaluating a Generic Metamodel for MAS Work
Products

Ghassan Beydoun, César Gonzalez-Perez, Brian Henderson-Sellers,
G. Low . 126

Agent Roles, Qua Individuals and the Counting Problem
Giancarlo Guizzardi . 143

Requirements and Software Architecture

A Product-Line Approach to Promote Asset Reuse in Multi-agent
Systems

Josh Dehlinger, Robyn R. Lutz . 161

XIV Table of Contents

Characterization and Evaluation of Multi-agent System Architectural
Styles

Paul Davidsson, Stefan Johansson, Mikael Svahnberg 179

Improving Flexibility and Robustness in Agent
Interactions: Extending Prometheus with Hermes

Christopher Cheong, Michael Winikoff . 189

Patterns for Modelling Agent Systems with Tropos
Haralambos Mouratidis, Michael Weiss . 207

Dependability

On the Use of Formal Specifications as Part of Running Programs
Giovanna Di Marzo Serugendo . 224

Adaptive Replication of Large-Scale Multi-agent Systems – Towards a
Fault-Tolerant Multi-agent Platform

Zahia Guessoum, Nora Faci, Jean-Pierre Briot 238

Author Index . 255

Policy-Driven Configuration and Management
of Agent Based Distributed Systems�

Anand R. Tripathi, Devdatta Kulkarni, and Tanvir Ahmed

Department of Computer Science,
University of Minnesota, Minneapolis, MN 55455, USA

{tripathi, dkulk, tahmed}@cs.umn.edu

Abstract. In this paper, we demonstrate a policy-driven approach for
building and managing large scale agent based systems. We identify dif-
ferent classes of policies for agent based component integration. We also
identify the system services and mechanisms that are required for policy-
driven integration of components and their management. Policies are de-
rived from the application level requirements and are used in dynamic
configuration of agent based systems. Through case studies of two ap-
plications we demonstrate the utility of the policy-driven component
integration approach in distributed agent systems.

1 Introduction

Building and managing large distributed component systems is becoming an
increasingly challenging task. Continuous intervention by system administrators
is generally limited in large-scale distributed environments. System support is
needed for reconfiguration and reorganization when systems evolve with the
addition of new components.

Component based approaches for structuring distributed systems have suf-
ficiently matured and are widely used today [1]. New challenges in using the
component technology are concerned with building systems using dynamic inte-
gration of active components such as agents [2]. Policy-driven approaches have
been used previously for managing distributed systems [3]. In this paper we pro-
pose a policy-driven approach for building distributed agent systems. We identify
the policy classes and the essential services required in building distributed agent
systems.

Policies are derived from an application’s functional and non-functional re-
quirements. The functional requirements of an application may require certain
components to be present on an agent or certain agents to coordinate towards
some common goals. The non-functional requirements of an application may
state that all the agents and components should be monitored for failures. In the
policy-driven integration approach, the agent composition and the inter-agent
interactions are driven by the policies which are derived from the high level re-
quirements. The policies act as a glue in creating a dynamic configuration of
� This work was supported by National Science Foundation grants 0087514 and

0411961.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A.R. Tripathi, D. Kulkarni, and T. Ahmed

the system in order to satisfy the functional and non-functional requirements.
Since the application requirements are realized through a set of policies hence it
is important to monitor events indicating policy violations (policy-events) and
perform policy-actions to ensure that the requirements are not violated. Such an
event and an action pair forms a rule. These rules are derived from the policies
and form the basic mechanism for building policy-driven systems.

An agent is an active object encapsulating other components and is con-
sidered as a first-class component. It serves as an execution environment with
security privileges; representing some principal in the environment. Moreover,
an agent may be capable of migrating in the network. In this paper we use the
term component to refer to objects that are contained in an agent; these objects
may be active or passive. This agent model is supported through the Ajanta
mobile agent programming framework [4, 5].

In policy-driven distributed agent systems, there are intra-agent policies for
component integration, inter-agent policies for agent-to-agent interactions, and
policies to ensure system robustness. Based on these policies, rules are derived
for dynamic integration of agents and components in the system.

Agent based distributed computing models provide an ideal foundation for
policy-driven component integration. Agents are autonomous entities that can
encapsulate and enforce local policies. Autonomous agents are capable of learning
and adapting to the new or modified global policies that dictate the interactions
among distributed agents. Mechanisms of self-configuration, self-monitoring and
recovery can be built using agent’s capabilities.

In this paper we identify policy classes and present essential services and
mechanisms for building distributed agent systems. We use two case study ex-
amples to elaborate on this policy classification. One of these systems is targeted
towards network monitoring using mobile agents [6] and the other is targeted
towards building secure distributed collaborative applications from their high-
level specifications [7, 8, 9]. Both these systems are based on the Ajanta mobile
agent programming framework.

These two applications lie at the opposite end of the spectrum of building
policy-driven distributed agent systems. Network monitoring represents the class
of systems that are open and evolving. Such systems do not have any limit on
the number of agents present in the domain. There can be spontaneous arrival
or departure of agents in the domain. Network monitoring system is targeted
towards large domains where hosts, agents, or components may get added or
removed over a period of time. Network monitoring policies are related to the
configuration, monitoring, and failure-recovery of agents and components in the
domain. On the other hand the specification driven secure distributed collabora-
tion framework is used for synthesizing collaborative application by integrating a
set of agents and components having specific collaboration and security require-
ments. Only a fixed set of agents can participate in the collaboration. External
agents cannot join the collaboration spontaneously after the collaboration envi-
ronment has been instantiated. In this way the secure distributed collaboration
system represents a closed agent system.

Policy-Driven Configuration and Management 3

Section 2 discusses the central concepts of the policy framework. We discuss
the policy classification and the core set of services and mechanisms required for
building policy-driven agent based systems in that section. In Section 3 we use
the two representative applications (network monitoring, and secure distributed
collaboration) to elaborate on the policy framework and show its utility in devel-
oping real systems. In Section 4 we compare the policies in network monitoring
and distributed collaboration systems and conclude in Section 6.

2 Policy Framework for Agents in Distributed
Environments

Figure 1 shows an agent immersed in the environment and interacting with other
agents and services in the environment. Associated with each agent are two kinds
of attributes: intrinsic and extrinsic. Intrinsic attributes of an agent are deter-
mined by the application level requirements. These include agent’s functional role,
components present in the agent, and the associated component policies. An agent
acquires extrinsic attributes when it enters an environment. These are determined
by both application and domain level requirements. The extrinsic attributes of an
agent include the external context information for the agent, information about
other agents of specific attributes present in the environment, and agent interac-
tion policies related to other agents in the domain. Other components may also
need to be deployed on the agent, depending on the extrinsic attributes.

Policies related to intra-agent components and inter-agent interactions deter-
mine the behavior of the agent. These policies depend upon the functional and

Extrinsic Attributes

Policies

Policies

Components

Interaction
Policies

Agent

Policy Enforcing Environment

Agent

Agent Based Distributed Computing Environment

Functional, Non−functional and Domain Requirements (System level policies)

Naming/Authentication
Service

Agent Interaction Interface

Intrinsic Attributes

Components

Role

Agent

Agent

Agent

Agent

Context

Infrastructure Services

Discovery
Service Service

Configuration

Failure Monitoring Service

Fig. 1. Agent immersed in the environment

4 A.R. Tripathi, D. Kulkarni, and T. Ahmed

non-functional requirements of an application and the domain specific require-
ments of the application domain. Below we present policies classes for building
distributed agent systems.

2.1 Policy Classification

Related to any software application there are three kinds of requirements: func-
tional requirements, non-functional requirements, and domain requirements [10].
Functional requirements capture the application’s essential functionality and ser-
vices it should provide. Non-functional requirements capture aspects of security,
performance, and fault-tolerance of the application which are orthogonal to the
application’s core functionality. Domain requirements address the restrictions
imposed on the application by the domain of usage of the application.

We use system level policies to represent the above three kinds of applica-
tion requirements. These policies include functional requirements such as which
agents or components should be installed for the required functionality, how
many instances of various agents are required and agent-to-host mappings. These
policies also include non-functional requirements such as failure monitoring and
timely recovery of agents in the system. In order to satisfy system level policies,
we refine them into agent interaction policies and component integration policies.

– Agent Interaction Policies: These policies determine the set of agents with
whom an agent with a given set of attributes should communicate and inter-
act with in some specific ways. Policies may also enforce certain constraints
on these interactions based on security requirements. For example, an agent
may be restricted to communicate only with the agents residing in a specific
domain or owned by some designated set of users. The interaction relation-
ships among agents, as determined by policies, are dynamic in nature as
agent attributes and functionalities may change with time.

– Component Integration Policies: These policies are related to the components
deployed within an agent. Constraints on component behavior or relation-
ship between different components deployed within an agent are captured by
these policies. They also include the list of local and remote events that will
invoke the component, access to any system resources required by the com-
ponent, and co-location of other components for proper functioning. These
policies also relate to other component attributes such as what state of the
component should be checkpointed, how often checkpoints should be taken,
and if the component gets deleted then which other local and remote com-
ponents should be informed about this. These policies can be defined at the
component design time or can also be modified dynamically later.

2.2 Services for Policy Enforcement in Agent Based Distributed
Systems

We have identified above different policy classes for realizing the application level
requirements in distributed agent systems. In such an approach it is important
to monitor policy violations and perform policy reinforcement actions to ensure

Policy-Driven Configuration and Management 5

Enforcement
Configuration

Control
MechanismsConditions

Enforcement
Policy

Actions

Policy

Monitoring
Policies

Monitoring Control

Policy
Events

Configuration Database and Policies

Configuration Service

 Agent Computing Environment

Failure
Monitoring
Service

Agent
Discovery
Service

Fig. 2. Policy Driven Configuration Management

that the application requirements are not violated at any time. System level
services and mechanisms are required for performing such policy monitoring and
configuration control activities. In our framework these actions are performed
by the following services: agent discovery service, failure monitoring service, and
configuration service. Figure 2 shows these essential services and the interactions
between them.

– Agent Discovery Service: This service is required for integrating new agents
in the system. Its function is to detect the presence of new agents and notify
the configuration service. In some architectures, the agents may first dis-
cover the configuration service and then inform the discovery service of their
presence.

– Failure Monitoring Service: This service performs the failure monitoring of
agents, components and other services present in the domain. It generates
failure events corresponding to the failure of an entity and sends these events
to the configuration service.

– Configuration Service:As new agents and components are deployed in such
an environment, they need to self-configure according to the system policies.
Similarly, when a component is removed from the system due to failures,
or administrative reasons, or operational conditions (such as mobility of
devices), appropriate reconfiguration actions are needed to be executed to
preserve the invariants implied by the system policies. Configuration service
has the knowledge of the global configuration policies and is able to take
suitable actions when configuration change events are detected. The config-
uration service knows the “configuration change events” (policy-events) that
are considered critical for policy enforcement, and it instructs agent discovery
service and failure monitoring service about its interest in the detection of
such events. These services detect such policy-events in the system and notify
the configuration service of such changes. The configuration service is respon-
sible for evaluating policies and enforcing them when critical changes occur.

The configuration service consists of a configuration database and the pol-
icy enforcement engine. Various agent related queries can be performed on this

6 A.R. Tripathi, D. Kulkarni, and T. Ahmed

database. Examples of such queries are, finding all agents having a particular
attribute, and finding an agent having certain set of attributes. This database
can also store the initial configuration information for different types of agents
in the system. This can be used to restart a failed agent. For example, it may list
the set of components that must be installed on an agent at the time of restart
and any specific initialization that needs to be performed for such components. In
our approach, an important design principle is to require each agent to perform
its own recovery after it has been restarted, so the configuration service is rarely
involved in maintaining any information about an agent’s local state. Similarly,
components within an agent should be designed to reconstruct their execution
state, through checkpoints or other mechanisms such as soft-state [11, 12].

The configuration service receives configuration change events when the agent
discovery service informs it of the addition of new agents/components in the
system, or the failure monitoring service informs it of any agent failures or
departures. On detecting agent arrival, the configuration service has to inform
the arriving agent of the system level policies that determine its functionalities
and interaction relationships with the existing agents. Some new components
may also need to be integrated in the agent according to the system level policies.
On detecting the failure of an agent, the configuration service may try to restart
the failed agent on the same or a different host. Existing agents may need to
be informed of the agent restart so that they can setup appropriate interaction
relationships with the restarted agent.

On receiving event notifications from the agent discovery service and the
failure monitoring service, the configuration service performs the following func-
tions. It identifies the policies that depend on the change events and identifies
the agents that are affected by those policies. It also executes the actions re-
quired for enforcing the policies. In some applications, the policy enforcement
actions may need to be performed cooperatively by a set of distributed agents
in the environment. In such cases, the configuration service notifies all those
agents. These actions ensure that the resulting system state conforms to the
requirements and constraints implied by the policies.

As shown in Figure 2, the above functions of the configuration service are
performed by three kinds of entities namely policy enforcement conditions, pol-
icy actions, and configuration control mechanisms. Policy enforcement conditions
identify the conditions under which a policy event should trigger policy actions.
A policy action determines the set of agents and components that are affected
by a given event according to the policies. It also determines which new agents
and components need to be created and installed in the system, and how the
interaction relationships among the agents in the system needs to be altered.
For this, it may query the configuration database. Finally, it invokes the appro-
priate configuration control mechanisms to realize the necessary changes in the
configuration.

Agents, and the components contained in them, may also explicitly reg-
ister with the configuration service their interests in certain specific kinds of
configuration change events based on their local policies. This requires the

Policy-Driven Configuration and Management 7

configuration service to maintain such events of interest, called call-back in-
formation, for existing agents. This call-back information is also stored in the
configuration database.

3 Case Studies

In this section we provide two case studies demonstrating the utility of the policy
framework for agent based distributed environments.

3.1 Network Monitoring System

Konark [6] is a network monitoring system which monitors hosts in a network for
various kinds of events. In this system, mobile agents are launched to monitor
each host in the environment. Each agent contains components, termed detec-
tors, to detect events in the environment. New detectors can be added to an
agent remotely. Examples of events in this system include user logins, program
executions on a host, file modifications, and network traffic patterns related to
intrusions.

Agents can subscribe to events from other agents to detect compound events
based on correlation of events from distributed sources. This is supported through
the event subscription/notification mechanisms provided by Konark. The
subscription/notification model for communication among agents is implemented
using the underlying Ajanta agent communication model based on RMI. The ex-
ecution of a detector in an agent can be triggered by events generated in the same
agent or other agents in the environment. Other researchers have also developed
similar event based systems for monitoring distributed systems [13, 14]. In our
approach we use event detection and handling as a building block for policy man-
agement functions. The list of local or remote events that can trigger a detector
form a triggering relation among detectors. It is termed trigger dependency. This
makes Konark useful for correlating events occurring at different locations in a
network system. Events are also stored in databases for long-term correlations.

We illustrate the usefulness of the policy framework of Section 2 by showing
its utility through three example requirements of network monitoring. The first
two requirements are application level functional requirements, while the third
requirement is system robustness requirement. For each high level requirement,
we identify the policies and corresponding policy events and policy actions.

Requirement 1: One of the application level requirements in the monitoring
system is to detect abnormally high number of root login activities (success-
ful/unsuccessful attempts) in the entire domain in a specified period of time.
Following policies and rules are derived from this requirement.

1. (System level Policy 1): All agents in the system should contain the login
detector.
– Policy-Event: Arrival of a new agent in the domain.
– Policy-Action: Install login detector in that agent.

8 A.R. Tripathi, D. Kulkarni, and T. Ahmed

2. (System level Policy 2): At least one agent should be present in the system
to perform root login correlation across the entire domain.
– Policy-Event: Failure of root login correlator agent.
– Policy-Action: Install root login correlation component on another agent.

3. (Agent Interaction Policy): All the agents should send locally detected root
login events to the correlator agent.
– Policy-Event 1: Arrival of a new agent in the domain.
– Policy-Action 1: Establish event subscription/notification relationship

between the newly arrived agent and the correlator agent.

– Policy-Event 2: New root login correlator agent is created.
– Policy-Action 2: Change the event notification policy for all the agents

such that they start reporting the root login events to the new correlator
agent.

4. (Component Integration Policy): All the components required for root login
detection should be present on an agent. The component integration policies
for the root login detector at each host are shown in Figure 3. A periodic
timer event triggers the execution of the Syslog Event detector. This detector
generates events based on new log entries in the system log files. A Syslog
Event triggers executions of the Connection Event detector, which filters and
generates any login related events. This event triggers detectors for specific
kinds of login, such as SSH, Telnet, and Rlogin. These detectors are filters
which check if a given connection event belongs to a specific class. Any of
these events, both local and remotely generated, trigger the RootLogin detec-
tor whose function is to determine if the login corresponds to the superuser.
A trigger dependency marked only as local implies that the triggering event
detector must be co-located in the same agent with the triggered detector.
Similarly, a dependency marked only as remote implies that the triggering

Connection Event Detector

SSH Detector Rlogin Detector

local

local

Local or remote

local local local

Local or remote Local or remote

Syslog Event Detector

Telnet Detector

RootLogin Detector

Timer

Fig. 3. Component Trigger Dependency: Root Login Event Trigger Dependency

Policy-Driven Configuration and Management 9

event detector must be in an agent different from the one containing the
triggered detector.
– Policy-Event: Failure of a required component within an agent.
– Policy-Action: Deploy the failed component on the agent.

Requirement 2: Network traffic should be continuously monitored for traffic
using protocols and ports listed in the alerts posted in the known attack vec-
tors on the CERT web site (http://www. us-cert.gov/channels/techalerts.rdf).
Following policies and rules are derived from this requirement.

1. (System level Policy 1): There should be a monitoring agent in the system
that should continuously monitor the CERT web site.
– Policy-Event: The agent responsible for monitoring the CERT web site

fails.
– Policy-Action: Another agent should be started to perform the monitor-

ing of the CERT web site.
2. (System level Policy 2): There should be at least one agent monitoring the

network traffic for vulnerable port numbers appearing in the alerts posted
on the CERT web site.
– Policy-Event : Traffic monitoring agent fails.
– Policy-Action : Restart the monitoring agent.

Requirement 3: All the agents in the system should be monitored for failures.
Each agent should contain a heartbeat monitor component and should send
AgentAlive events to the AgentFailure monitoring agent. Following policies and
rules are derived from the above requirement.

1. (System level Policy 1): All agents should be deployed with heartbeat mon-
itoring component
– Policy-Event: Arrival of a new agent in the domain.
– Policy-Action: Deploy heartbeat monitoring component on the agent.

2. (System level Policy 2): There should be at least one agent that performs
failure monitoring functionality for all other agents in the domain.
– Policy-Event: The agent responsible for failure monitoring of other agents

fails.
– Policy-Action: Designate another agent for performing failure monitoring

of other agents in the domain.
3. (Agent Interaction Policy): All agents should send heartbeat messages to the

failure monitoring agent.
– Policy-Event 1: Arrival of a new agent.
– Policy-Action 1: Establish the appropriate event subscription/notifica-

tion relationship between the new agent and the heartbeat monitoring
agent.

– Policy-Event 2: Restarting of the failure monitoring agent.
– Policy-Action 2: Establish the event subscription/notification relation-

ship between the restarted failure monitoring agent and all other agents.

10 A.R. Tripathi, D. Kulkarni, and T. Ahmed

We have tested configurations consisting of up to 1000 agents in our network
test bed. It takes less than five minutes (4 minutes and 17 seconds) to perform
a policy-driven configuration of the network monitoring application consisting
of 1000 agents. System configuration time grows linearly with an increase in the
number of agents. Each arriving agent needs to be configured according to the
system level policies. In our current setup, a special agent performs the functions
of the configuration service. With an increase in the number of agent arrivals, the
load on this configuration agent also increases thus increasing the time required
for system configuration.

3.2 Secure Distributed Collaboration System

Secure distributed collaboration framework [8] supports construction of secure
collaborative activities from their high level specifications. Figure 4 shows the
steps involved in creating the collaboration environment. The specification of
an activity defines a set of roles and a shared object space in which collaborat-
ing users perform their tasks. Policies related to activities, roles, user context
and objects are derived from the collaboration specification. The middleware
contains generic manager agents for activity, role, and object management. The
derived policies are given to the respective manager agents to realize a partic-
ular collaboration environment. The specification model supports expression of
the desired policies for coordination and dynamic security. Users participate in
a collaboration through roles by executing operations (tasks) associated with
the roles. A user’s membership in a role represents a set of privileges, and these
privileges are dynamically constrained by associating event-based preconditions
with the role operations.

Manager agents communicate and interact with each other according to the
policies derived from the activity’s specification. The various different kinds of
policies given to the agents in a collaboration environment are related to activity

Manager

Activity Role
Manager
Agent Agent

Object
Manager

Agent

Runtime Collaboration Environment

Activity
Policy

Modules

Role
Policy

Modules

Object

Modules
Policy

Collaboration Specification

Fig. 4. Collaboration Environment Creation Process

Policy-Driven Configuration and Management 11

1. Activity Meeting {
2. ActivationConstraint
3. currentTime > 8.00 am & currentTime < 6.00 pm
4. Object room
5. Object projector
6. Object presentation
7. Role Accountant {
8. Operation DisplayFinancialData
9. Precondition
10. #(Chairperson.ApprovePresentation) = 1
11. & room.isPresent(thisUser)
12. & room.isPresent(member(Chairperson))
13. Action projector.display(data)
14. }
15. Role Chairperson {
16. AdmissionConstraint
17. #(members(thisRole)) < 1
18. Operation ApprovePresentation
19. Action presentation.approve()
20. }
21. }

Fig. 5. Context aware collaboration activity specification

and role instantiation, role admission/activation, operation preconditions, and
object access control. Policy-events are related to activities, roles, operations
and services. Examples of events include instantiation of an activity, invocation
of role operation, and admission/removal of a user from a role. The details of
this model can be found in [8].

Figure 5 shows an example specification of a meeting activity. The activity
declares three objects (room, projector and presentation) and two roles (Accoun-
tant and Chairperson). A role provides operations through which role members
can access objects. Role operations can have preconditions. A precondition is a
boolean condition involving two types of events: cardinality based events and
query events. Cardinality events are related to the count of role operation invo-
cations and query events are related to the boolean queries over the objects. The
operator # is used to obtain the role operation invocation count. An activity can
have ActivationConstraint for restricting the instantiation of the activity and a
role can have AdmissionConstraint restricting the admission to the role.

The specification in Figure 5 captures the following collaboration require-
ments.

1. The activity should be instantiated between 8.00 am and 6.00 pm (lines 2-3)
2. User in the Accountant role is allowed to invoke the DisplayFinancialData

operation only if the Chairperson role has executed the ApprovePresentation
operation and the members of the Accountant role and the Chairperson role
are present in the room (lines 8-13).

3. Only one member is allowed to be present in the Chairperson role (lines
15-17).

12 A.R. Tripathi, D. Kulkarni, and T. Ahmed

These coordination and security requirements are enforced through the following
set of policies. Requirement 1 restricts the instantiation of activity only within
the allowed time. This policy is enforced at the Activity Manager. In this model,
events are used to represent operation invocation by role members and any object
related queries. As part of requirement 2, the Accountant role manager subscribes
to the ApprovePresentation operation event from the Chairperson role manager
and user presence events from the room object. Such events are conveyed to the
appropriate subscribers on their occurrence. These form the agent interaction
policies. For satisfying requirement 3, the role manager corresponding to the
Chairperson role monitors user presence in the role. This policy is enforced by
the Chairperson role manager component and involves no interaction with any
other entity. This is the component integration policy for this example.

All these policies are derived from the specification of the collaborative ac-
tivity an example of which is shown in Figure 5. In order to change the policies
one has to write a new specification. Writing a new specification results in the
creation of a new collaboration environment. It is not possible to change the
policies once the collaboration environment is realized.

3.3 Policy Derivation

In the policy-driven agent based component integration approach presented here,
identification of the policy-events forms an important step in the approach. In
case of Konark based network monitoring, the policy-events and policy-actions
are derived manually from the high level requirements. Policies in Konark are
expressed as event handlers that are executed when policy-events occur. In case
of distributed collaboration system, the policy-events are expressed as precon-
ditions for activity instantiation, role admission and role operation invocation
in the XML framework. The policies for a particular collaborative application
are also verified for correctness and consistency using SPIN based model check-
ing [15]. In our future work we will explore the specification of Konark’s network
monitoring policies through some policy specification language or through an
XML specification framework similar to our framework for collaboration sys-
tem. This will allow expression of policies in a more convenient fashion and also
verification of policies for their correctness.

4 Discussion

Both the network monitoring system and the distributed collaboration system
have been implemented. Details of the design and implementation can be found
in [6] and [8], respectively. Both these systems extend the Ajanta programming
model with application specific policies. The policy-driven paradigm provides
flexibility in building the inter-agent interactions and dynamically extending
the functionality of the agents in both these systems. In fact, policies give the
agents the necessary autonomy in performing their tasks and managing their
relationships with other agents and components in the system.

Policy-Driven Configuration and Management 13

The nature of policies and the degree of agent autonomy differs between
the two systems. Network monitoring is an example of open agent environment
which can evolve over time with new agent arrivals, agent departures, and agent
failures. In network monitoring system there are policies for configuration man-
agement of each detector within an agent, inter-agent communication and agent
fail-over and restart. Agents have autonomy in deciding to whom they can report
events, the rate at which events could be reported, restarting of a failed detector
and maintaining event subscription and notification relationships.

On the other hand, the specification driven collaborative application con-
struction framework is used for synthesizing new collaborative applications and
is a closed agent system. The policies in the distributed collaboration system
deal with event based security and coordination requirements between the par-
ticipating role agents in collaborative applications. The enforcement of security
and coordination constraints for a collaborative application requires that agents
be supplied with strict guidelines about event generation and notification, lim-
iting their dynamism as compared to the network monitoring system.

Policies help in specifying suitable tradeoffs for scalability of the network
monitoring system at an expense of latency in detection of events of interest
in the domain. For example, policies can be used to limit the reporting rate
of successful root login events generated at a node to the correlator node with
a possible delay in detecting whether the number of root login attempts in the
domain is above a system defined threshold. The failure monitoring of the agents
is also policy-driven wherein an agent can designate its monitoring peers and
keep on sending regular AgentAlive events to them.

5 Related Work

The advantages of agent based architectures for building large scale software
system are discussed in [16]. The application of agent based designs for building
complex control systems are elaborated in [17] with specific concerns for diag-
nosis and repair functions needed in such systems to ensure robust operations.
In [18] a three level model of organizational rules, organizational structures and
organizational patterns is developed to address management aspects in open
multi-agent environments. Policy-driven approach for building distributed agent
systems presented here, reflects similar kinds of notions with specific focus on
inter-agent interactions and intra-agent component integration.

IETF has been active in the standardization of the terminology [19] and
the specification of policy information model [20] for network monitoring. IETF
defines the following policy classes: motivational policies (related to identifying
whether policy goals are accomplished or not), configuration policies, installation
policies, error and event policies, usage policies, security policies, and service po-
lices. This policy classification arises from the requirement of having declarative
policy specification, a deliberate design decision by the IETF Policy Framework
WG. The agent interaction policies and component integration policies defined
in this paper are of procedural nature providing a binding of the application

14 A.R. Tripathi, D. Kulkarni, and T. Ahmed

level requirements on to the agents in the domain. Policies are represented as
condition-action pairs in the IETF model. In our model, policy conditions are
represented as policy-events and policy actions are performed by event handlers.
This is also similar to the approach of constraint preservation through the ECA
(event, condition and action) model in active databases [21].

Other researchers have considered usage of policies in building agent sys-
tems [22]. In their approach policies related to roles, agent authorizations, and
agent obligations are represented through Ponder policy language and are
enforced through agent based middleware. Their policies are able to capture
requirements of an open multi-agent system such as an agent based network
management system. In our model, an agent’s access control policies can be
realized by constraining its interactions with other agents through the agent
interaction policies based on the agent’s role, authorizations, and obligations.
Moreover, our policy framework is able to support diverse applications such as
network monitoring and secure distributed collaboration.

The use of policies and their enforcement is the central concept in our ap-
proach for building autonomic system architectures. Similar concepts have been
proposed in the past by others in the context of law governed systems [23] and
normative multi-agent systems [24, 25]. Law based management of open multi-
agent distributed systems has been studied in [26]. Policies can be viewed as a
form of laws or norms. Similar to normative systems an agent’s policies in our
framework are based on the agent’s context such as other agents present in the
domain. The social pressure for enforcing norms in normative multi-agent sys-
tems is similar to our notion of policy enforcement in which policies are enforced
based on the occurrence of policy events. In our work we demonstrate the utility
of these concepts in a practical framework. Moreover, we identify the core set of
services and mechanisms that are required for policy enforcement in autonomic
configuration and management.

6 Conclusion

The design principle of separating policies from mechanisms has been known to
system designers for a long time. The difficult part is to identify the policies
and build mechanisms that can implement different kinds of policies. In this
paper we have studied the application of this principle for building agent based
distributed systems. We defined the policy classes and identified essential services
for building distributed agent systems. Through two representative case studies
we demonstrated the utility of this approach.

References

1. Szyperski, C.: Component Software Beyond Object-Oriented Programming.
Addison-Wesley ACM Press (1998)

2. Tripathi, A.: Challenges Designing Next Generation Middleware Systems. Com-
munications of the ACM 45 (2002) 39–42

Policy-Driven Configuration and Management 15

3. Sloman, M.: Policy Driven Management for Distributed Systems. Plenum Press
Journal of Network and Systems Management 2 (1994)

4. Karnik, N., Tripathi, A.: Security in the Ajanta Mobile Agent System. Software
Practice and Experience 31 (2001) 301–329

5. Tripathi, A., Karnik, N., Vora, M., Ahmed, T., Singh, R.: Mobile Agent Program-
ming in Ajanta. In: Proceedings of the 19th International Conference on Distributed
Computing Systems. (1999) 190–197

6. Tripathi, A.R., Koka, M., Karanth, S., Pathak, A., Ahmed, T.: Secure Multi-Agent
Coordination in a Network Monitoring System. In: Software Engineering for Large-
Scale Multi-Agent Systems, 2002 (SELMAS 2002), Springer, LNCS 2603. (2003)
251– 266

7. Tripathi, A., Ahmed, T., Kumar, R., Jaman, S.: Design of a Policy-Driven
Middleware for Secure Distributed Collaboration. In: Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS). (2002)
393 – 400

8. Tripathi, A., Ahmed, T., Kumar, R.: Specification of Secure Distributed Collab-
oration Systems. In: IEEE International Symposium on Autonomous Distributed
Systems (ISADS). (2003) 149–156

9. Tripathi, A., Kulkarni, D., Ahmed, T.: A Specification Model for Context-Based
Collaborative Applications. Elsevier Journal on Pervasive and Mobile Computing
1 (2005) 21 – 42

10. Sommerville, I.: Software Engineering 6th Edition. Pearson Education Asia (2002)
11. Clark, D.D.: The design philosophy of the DARPA internet protocols. In: SIG-

COMM, Stanford, CA, ACM (1988) 106–114
12. Candea, G., Cutler, J., Fox, A.: Improving Availability with Recursive Micro-

Reboots: A Soft-State System Case Study. Performance Evaluation Journal 56
(2004)

13. Rowanhill, J.C., Varner, P.E., Knight, J.C.: Efficient hierarchic management for
reconfiguration of networked information systems. In: International Conference on
Dependable Systems and Networks (DSN’04). (2004)

14. Mansouri-Samani, M., Sloman, M.: Monitoring Distributed Systems. IEEE Net-
work (1993) 20–30

15. Ahmed, T., Tripathi, A.R.: Static Verification of Security Requirements in Role
Based CSCW Systems. In: Proceedings of 8th ACM Symposium on Access Control
Models and Technologies (SACMAT 2003), New York, ACM (2003) 196–203

16. Jennings, N.R.: An Agent-Based Approach for Building Complex Software Sys-
tems. Communications of the ACM (2001) 35–41

17. Jennings, N.R., Bussman, S.: Agent-based control systems: Why are they suited to
engineering complex systems? IEEE Control Systems Magazine 23 (2003) 61–73

18. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational Abstractions for
the Analysis and Design of Multi-Agent Systems. In: Agent Oriented Software
Engineering. (2001)

19. IETF: Terminology for Policy-Based Management. In: RFC 3198. (2001)
20. IETF: Policy Core Information Model – Version 1 Specification. In: RFC 3060.

(2001)
21. Ceri, S., Widom, J.: Deriving production rules for constraint maintenance. In:

Proceedings of the sixteenth international conference on Very large databases, San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1990) 566–577

22. Corradi, A., Dulay, N., Montanari, R., Stefanelli, C.: Policy-Driven Management
of Agent Systems. In: Workshop on Policies for Distributed Systems and Networks
(POLICY 2001). (2001) 214–229

16 A.R. Tripathi, D. Kulkarni, and T. Ahmed

23. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogeneous Distributed Systems. ACM Transactions on
Software Engineering and Methodology (TOSEM) 9 (2000) 273 – 305

24. Lopez, F., Luck, M., d’Inverno, M.: A normative framework for agent-based sys-
tems. In: 1st International Symposium on Normative Multiagent Systems (Nor-
MAS2005). (2005)

25. Jones, A., Sergot, M.: The characterisation of law and computer systems: The
normative systems perspective. In: J.J.Ch. Meyer and R.J. Wieringa (eds.): Deontic
Logic in Computer Science: Normative System Specification. John Wiley and Sons,
Chicester. (1993) 275–307

26. Minsky, N.H., Murata, T.: On Manageability and Robustness of Open Multi-Agent
Systems. In Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P., eds.:
Proceedings of Computer Security, Dependability and Assurance LNCS, No. 2940,
Springer-Verlag (2004) 189–206

Views: Middleware Abstractions for Context-Aware
Applications in MANETs

Kurt Schelfthout, Tom Holvoet, and Yolande Berbers

K.U. Leuven - DistriNet - AgentWise taskforce,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{Kurt.Schelfthout, Tom.Holvoet, Yolande.Berbers}@cs.kuleuven.be

Abstract. Programming applications for highly dynamic environments such as
mobile ad hoc networks (MANETs) is complex, since the working context of
applications changes continuously. This paper presents “views” as abstractions
for representing and maintaining context information, tailored to applications in
MANETs. An application agent can define a view by declaratively describing the
context information it is interested in. A supporting middleware platform, called
ObjectPlaces, ensures that the information represented by a view continuously re-
flects the agent’s context information, despite the dynamic situation in a MANET.
We elaborate on the distributed protocol that ObjectPlaces uses to maintain the
information of views, and give an evaluation of the protocol’s correctness and
overhead.

1 Introduction

Given the increasing pervasiveness of networks due to the advent of wireless communi-
cation, the next generation of distributed systems presumes little network infrastructure,
and is comprised of computing devices (nodes) that can be carried around, or are placed
on moving vehicles. Mobile computing nodes connected in such an ad hoc way form a
mobile ad hoc network (MANET) [1].

An application developed for MANETs necessarily consists of distributed agents
that need to communicate among each other to achieve a common goal. Given the dy-
namics of a MANET, this communication between application agents is complex: the
nodes on which these agents live are mobile, and can disappear from a conversation at
any time. Dealing with this complexity at the application level is hard, so an applica-
tion developer benefits greatly from a coordination middleware that offers high level
mechanisms to manage communication among agents.

ObjectPlaces is a coordination middleware that supports a first order abstraction of
an agent’s context. For our purposes, an agent’s context is the aggregate of all available
information on currently reachable nodes in the MANET [2]. An agent’s context thus
changes because (1) information on a reachable node is changed, or (2) the set of reach-
able nodes changes. In ObjectPlaces, an agent can gather context by defining a view. A
view is built by the middleware based on a declarative specification that describes “how
far” over the network the view reaches, and in what information the viewing agent is
interested.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 17–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 K. Schelfthout, T. Holvoet, and Y. Berbers

The most important property of a view is that it is an actively maintained structure,
that changes as the agent’s context changes. The agent can listen for new context events,
e.g. the arrival of a new node carrying interesting information. A motivating example
for such an active notion of context occurred in a real world application, wherein we are
currently applying the ObjectPlaces middleware. In this application, automatic guided
vehicles (AGVs) in a warehouse coordinate to transport goods [3]. AGVs communi-
cate to avoid collisions (among other things); an AGV thus needs to be notified actively
when another vehicle enters in a possible collision range. Other examples are rescue
workers that want to be notified of incoming and leaving ambulances, battlefield sce-
narios where soldiers want to be notified of incoming transports, etc. If the middleware
does not support an active context representation, the application programmer is forced
to program such a representation using polling.

In the following section, we describe the ObjectPlaces middleware in more detail.
Then we discuss its relation to existing coordination middleware. In Sect. 4 we describe
a protocol to maintain a view in a MANET. Then, the ObjectPlaces middleware and
specifically the notion of a view is evaluated analytically and empirically in Sect. 5.
Finally, we conclude.

2 Views on Objectplaces

In ObjectPlaces, each agent can maintain “viewable data” in a local collection of ob-
jects called an objectplace1. The objects in an objectplace represent information that is
of interest to other agents, and so contribute to the overall context information available.
Other agents can gather copies of objects from objectplaces on nodes in their neighbor-
hood using a view. In other words, context information is made available by putting it
in a local objectplace, and can be gathered by building a view. Agents can coordinate
by influencing each other’s context, much like what happens in everyday traffic: when
a car driver is going to take a right turn, he or she turns on the turning indicator. Other
drivers can see this “context change”, and react appropriately.

First we describe how an agent can manipulate its local objectplace, then views are
described in more detail. The section is concluded with a discussion of ObjectPlaces in
relation to existing work.

2.1 Manipulating an Objectplace

An objectplace by itself is basically a tuplespace variant: an objectplace is a set of ob-
jects that can be manipulated by operations such as put, read and take. Contrary to
existing tuplespace approaches however, an objectplace has a fundamentally asynchro-
nous interface: operations return control to the client immediately (an agent that uses
the middleware is called a client of the middleware), and results are returned as they are
available via a callback. This is important in order to allow views to be built efficiently
and conveniently, see Sect. 3.

1 “ObjectPlaces” - the middleware - is written in plural and with two capitals, “objectplace” -
the software entity - is written without capitals.

Views: Middleware Abstractions for Context-Aware Applications 19

For clarity, we have made two simplifications. First, although an objectplace can
be manipulated remotely, for this paper the reader can assume that an objectplace is
only locally accessible. Views, discussed in the next section, provide a way for clients
to observe the contents of remote objectplaces. Second, although a client can create
objectplaces at will, we assume that the middleware offers exactly one objectplace on
each node.

Similar to tuplespaces, in order to read or take objects from an objectplace,
clients indicate what objects they want to read by means of a template. A template
is a function from the set of objects to a boolean value. Every object for which the
template function returns true matches with the template.

The operations on an objectplace are the following:

put(Set, Callback) puts the given set of objects in the objectplace. Returns true to the
callback if all objects were successfully added.

take(ObjectTmplt, Callback) removes the objects matching with the template from
the objectplace and returns them to the callback.

watch(ObjectTmplt, EventTmplt, Lease, Callback) observes the content of the ob-
jectplace. Returns copies of objects matching the object template to the callback
(the objectplace is not changed). The event template is used to indicate in what
events on the matching object the client is interested in. Event template and lease
are described in detail shortly.

A watch operation’s event template can match with three possible events: is
Present, isPut or isTaken. If the event template matches with isPresent, the
objectplace returns copies of all matching objects it currently contains to the callback,
and returns the empty set if there are no matches (this is important for so-called test-
for-absence operations, where the client needs to know there are no matching objects).
If isPresent is the only event with which the event template matches, the watch
operation is finished. However, when the event template also matches with isPut or
isTaken, the objectplace must return copies of matching objects that are either put
in or taken from the objectplace. In order to do so, the operation is registered by the
objectplace, and when an appropriate event occurs on an object matched by the ob-
ject template, the client is notified. An event template that matches with isPresent
and isPut for example, first returns copies of objects currently contained in the ob-
jectplace. When new matching objects are put in the objectplace, copies of these are
returned in a subsequent call to the callback. Objects returned to the callback are also an-
notated with the event that occurred on the object, so the client can distinguish
between events.

To unregister watch operations that are waiting for an event, a watch can be
provided with a Lease object. A client calls the discard operation on the Lease
to unregister the corresponding watch operation. The same lease can be given as an
argument to more than one watch; in that case, upon discard all these operations are
unregistered atomically.

2.2 Views

A view is a local collection of objects, reflecting the contents of multiple objectplaces
on reachable nodes in the network based on a declarative specification. This collection

20 K. Schelfthout, T. Holvoet, and Y. Berbers

is continuously updated by the middleware, both with respect to changing contents of
the objectplaces in the view, as with respect to changes in the network topology. A view
thus represents the context of the viewing agent.

To build a view, a client specifies:

A distance metric and a bound determines “how far” over the network the client’s
view will reach. An example is a hop count-metric with a bound of three: the view
will span objectplaces reachable in a maximum of three hops from the node where
the view is issued.

An object template constrains what objects will be included in the view.

Given these parameters, the ObjectPlaces middleware searches the network for
nodes satisfying the constraints (using the protocol described in Sect. 4). On these
nodes’ objectplaces, a watch operation with the given object template is executed.
The watch’s event template matches with all possible events. The results of all these
watch operations, which are events indicating the presence, arrival or removal of objects
in an objectplace, are sent to the node issuing the view. This allows the viewing node
to keep the view up to date with respect to changes in the content of the participating
objectplaces. Changes in the network are handled by managing the watch registrations
on the nodes in the view. When it is detected that a node moves out of the view, the
view’s watch on the objectplace of that node is unregistered, and the viewing node is
notified; when a node moves into the view, a watch on its objectplace is registered and
consequently the viewing node is notified as well, see Fig. 1. How this detection is done
is discussed in Sect. 4. A view is actively maintained in this way until it is released by
the client. Any client on any node can build a view, and clients can specify as many
views as they want. Each client can have its own set of views to observe the context that
it is interested in.

(a) (b) (c)

Fig. 1. Circles denote nodes, ovals denote objectplaces, and the rectangle denotes a view. The
other shapes represent data objects. (a) A viewing node declares a new view. The circle denotes
the bound on the distance metric and so the nodes from which the middleware will gather data for
this particular view. (b) The middleware has gathered the appropriate data, and the view is built.
(c) A new node enters the zone, so the view is updated with the new data object that the node
carries in its objectplace.

Views: Middleware Abstractions for Context-Aware Applications 21

A client can not only specify constraints on the content of the view based on its
interests, the content can also be represented in a client specific way (e.g. as a sorted
collection). In its raw form, a view is built out of the events generated by the watch op-
erations on the participating nodes, as well as events generated by the middleware when
a node leaves or joins the view. Users of the middleware can program their own rep-
resentation using these raw events. For example, we have provided an implementation
of a view as a collection, supporting a collection interface common in object-oriented
API’s (i.e. java.util.Collection in Java). This allows sorting and iterating over
the collection for example. The collection is updated as watch events are generated,
e.g. when an isPut is received, the corresponding objects are added to the collection.
Usually, a view is described as such a collection in this paper, since it is the most com-
mon usage pattern. Other representations of a view can be an accumulation to a single
value, e.g. the average of an attribute of the objects in the view, or translating objects in
the view to objects the agent understands, to deal with heterogeneous agents. Both the
contents and the representation of a view can thus be customized.

As an example, suppose a car arriving at an intersection wants to know the posi-
tions of other cars, since the car has to give way from the right. It builds a view on
all cars within 50 meters (distance metric and bound), containing position and car id
objects (object template). The car chooses a sorted list as representation, closest car
first. A traffic monitor nearby also builds a view on nearby cars, and car id objects, but
accumulates the car id’s in a counter for traffic information purposes. In both cases, the
content of the view is partly the same (car id’s), but the representation is different (a
sorted list, vs. a count of the unique id’s).

In conclusion, a view is a powerful abstraction that can be put to good use for
coordination, since it is an active representation of a agent’s context. A view takes the
heterogeneous nature of a MANET into account, because both the contents and
the representation of a view can be tailored to each client’s wishes.

3 Discussion and Related Work

The ObjectPlaces middleware can be seen as a hybrid between two well known ap-
proaches for coordination: publish/subscribe systems and tuplespaces. In order to char-
acterize the difference between publish/subscribe (P/S) and tuplespaces (TS) systems
for MANETs, we first define some terminology. The coordination middleware imposes
two forms of coupling on its clients: space coupling and time coupling. Clients are
considered to be coupled in space if the knowledge they have about each other’s loca-
tion during communication is high. For example, request/reply communication is highly
coupled in space: both sender and receiver need to know where the other is (e.g. address
and port number).

Clients are considered coupled in time if they need to be up at the same time in
order to receive or send a message. Request/reply communication is again highly cou-
pled in time: if one of the communicating parties is disconnected, the message cannot
be delivered. Coupling in time is related to failure semantics of message delivery: the
longer the receiver can be disconnected from the sender while the message can still
be received, or in other words, the higher the persistence of a message, the higher time
uncoupling a certain coordination model provides.

22 K. Schelfthout, T. Holvoet, and Y. Berbers

For MANETs, the middleware must be able to uncouple clients as much as possible,
both in space - due to the dynamic nature, it is impossible to predict with whom to
interact - and in time - nodes may join and leave the network dynamically.

Another way to contrast coordination middleware is whether a certain sender can
push messages to a receiver (i.e. notify him) and if a receiver can pull messages from
the sender (i.e. polling). Generally, both forms should be possible: if there is only
information-push, unnecessary messages may be sent to receivers who are not inter-
ested; if there is only information-pull, there could be wasted bandwidth due to
unnecessary polling by the receiver.

Now, publish/subscribe systems and tuplespace systems are described, and evalu-
ated for MANET applications with respect to the characteristics mentioned above. Also,
existing coordination models for MANETs are discussed and compared to the Object-
Places middleware.

In a publish/subscribe (P/S) system (e.g. [4,5]), publishers send notifications of
state changes to a list of subscribers. Subscribers are not known in advance but let the
P/S middleware know of their interest in certain events through the use of subscriptions.
The P/S middleware handles the delivery of notifications to the right subscribers.

P/S systems are uncoupled in space: a publisher publishes events, not knowing with
whom it communicates; a subscriber is handed some event in which it is interested,
equally unaware of the originator of the message. Senders can push information to re-
ceivers, so that receivers only get notified when necessary. P/S systems are coupled in
time: both publisher and subscriber need to be active at the same time in order to trans-
mit an event. This is especially a problem in ad hoc networks since new nodes arrive in
the network regularly. Previous events were not delivered to these newcomers, which
either leads to a slower startup time (waiting until the publisher changes state and sends
an event), or a regular publication of events by the publisher especially for possible
newcomers. These events are unnecessary since the publisher has not changed state.

This problem is implicitly addressed in various work in P/S systems. For example,
[6] describes that, due to the appearance and reappearance of hosts, there is a phase im-
mediately after reconnection in which a mobile subscriber needs to subscribe to events
and wait until some events get fired until it can reassess the current state of the network.
Buffers and virtual clients are introduced to subscribe to past events and events in fu-
ture locations respectively. Generally, the problem of time coupling is handled through
buffers which are assumed to be reliable and fixed, e.g. [7] [8] [9]. Such an infrastruc-
ture is however not available in MANETs.

STEAM [10] is a P/S middleware for MANETs where subscribers can not only filter
events on their content and subject, but also on location. STEAM defines proximities
that are areas around a certain publisher, where subscribers can listen to events from
that publisher. Publishers need to send events periodically to account for possible newly
arrived subscribers.

ObjectPlaces can be seen as a P/S variant: a view is a subscription to events on
objectplaces in the vicinity of a client. Clients ”publish events” by manipulating objects
in their local objectplace, which triggers watch operations of views that are observing
that objectplace. The resulting events are then delivered to viewing clients. However, the
problem of disconnection and reconnection is solved elegantly in ObjectPlaces, since a

Views: Middleware Abstractions for Context-Aware Applications 23

message is always stored in an objectplace. Newly arrived clients can thus be brought
up to date immediately by querying neighboring objectplaces using a view. At the same
time, the view subscribes to events on the objectplace, and so keeps the viewing client
up to date in the future as well. The objectplaces thus act as a buffer in which clients
can store observable state. Senders are relieved of having to send events periodically.

Tuplespaces (TS) systems, with Linda [11] as a first incarnation, provide a shared
collection of data, called tuples, and a set of operations (read, write, take) on the collec-
tion to manipulate the data. Throughout the years, Linda has spawned many variants,
e.g. [12] [13].

Because Linda’s synchronous, polling model did not provide some essential prim-
itives for distributed programming (where asynchronous interaction is more efficient
and convenient), several variants were created that add asynchronous primitives, e.g.
[14][12][13]. Modern implementations thus acknowledge the information-pull problem
by providing extra primitives that allow an event-based style of interaction with the tu-
plespace. An objectplace expands on this idea by making all operations fundamentally
event-driven and asynchronous. This greatly simplifies the maintenance of a view. It
also allows the maintenance to be done efficiently, since network messages are only
sent if there was a change. No costly polling is necessary.

TS provide time uncoupling: sender and receiver do not need to be active at the
same time since the tuplespace stores their messages until removed. Concerning space
coupling, although sender and receiver do not need to know each other, they do have
to know in which tuplespace their interaction will occur. No system that we know of
tries to implement a globally shared tuplespace in a distributed system (this would be
impractical since any query would have to search the complete network), so interaction
is confined to a certain tuplespace on a certain host the client has to know about be-
forehand. Tuplespace interaction entails more space coupling between clients than P/S
systems: TS only provide identity uncoupling. Space coupling is especially a problem
in MANETs, since it is a priori unknown with which nodes a client will interact.

Work in tuplespace variants for MANETs has acknowledged these problems. Lime
[15] is a middleware for mobile agents and mobile hosts that attaches a personal tu-
plespace to each agent in the application, and shares these tuplespaces transparently
when two agents are on the same or on connected hosts. In ObjectPlaces, views provide
better control: an agent can select exactly in which information on which hosts it is
interested. Moreover, several agents can have different views, each tailored to its own
wishes.

The LIME middleware was extended fairly recently in EgoSpaces [2]. In EgoSpaces,
clients can (similarly as in ObjectPlaces) build a view over the locally available net-
work, based on a distance metric. We see two improvements made in ObjectPlaces.
First, EgoSpaces’ view is always represented as a tuplespace (supporting primitives
like in, inp, . . .). In ObjectPlaces, the representation of the view can be tailored to the
client’s wishes (e.g. a sorted collection), thus providing better support for heterogeneous
agents. Second, an EgoSpaces view is mainly used as a one-shot query: generally, the
view is not maintained actively. While it is possible to register reactions on a view in
EgoSpaces, these can react ”only” to incoming tuples [16]. It is unclear how an agent
can be notified of a tuple leaving it’s view (except by polling), a necessary precondition

24 K. Schelfthout, T. Holvoet, and Y. Berbers

for building an up to date client-side representation such as in ObjectPlaces. Also, a
quite elaborate construction has to be set up to maintain an active view in EgoSpaces
[16]. ObjectPlaces provides lightweight active views that are actively maintained by
default (a “one-shot view” is a special case of the views described in this paper).

TOTA [17] (Tuples On The Air) is a middleware that provides applications with
the notion of a self-maintaining distributed tuple. Each node in the network hosts a
tuplespace. A distributed tuple is propagated to nearby nodes, and can be changed with
each propagation according to an application-specific rule (e.g. counting the number of
hops from the root). This tuple is then maintained by the middleware as the network
changes. In a way, TOTA does exactly the reverse of ObjectPlaces: instead of gathering
objects from neighboring nodes, TOTA spreads objects (or tuples) to neighboring nodes.
An important difference with ObjectPlaces is that a view is specific for every client,
while a distributed tuple is the same for all observers. In other words, while in TOTA
the ”sender” of a message (the agent that adds a distributed tuple) determines both who
it reaches and what the content is, in ObjectPlaces the ”receivers” of a message (the
clients that build a view) can determine both content and representation. We believe
this makes ObjectPlaces better suited to deal with heterogeneous application domains.

In conclusion, ObjectPlaces takes the best of both P/S and TS systems, and so
overcomes the difficulties of both approaches for MANETs. An objectplace, by of-
fering asynchronous operations, acts as a generator of events, which get transported
to interested clients through views. However, a view also gathers the current content
of objectplaces, so clients building a view are immediately up to date. Clients of the
ObjectPlaces middleware are thus uncoupled in time (a local objectplace acts as a
buffer), uncoupled in space (building a view requires no information about agents
participating in the view), offers an information-pull mechanism (a view gathers in-
formation from neighboring objecplaces), and an information-push mechanism (ma-
nipulating a local objectplace, which triggers an event on watching views). In addition,
the representation of a view can be tailored to the application agent’s wishes, and a view
is actively maintained by the middleware automatically.

A final note about ontology. ObjectPlaces neither restricts nor supports the defin-
ition of the contents of the exchanged objects. Making sure that different agents on
different nodes can understand the objects exchanged through views is the responsi-
bility of some higher abstraction layer, or the application. For a generic approach for
defining a common ontology in a tuplespace-like scenario we refer to [18].

4 View Protocol

The construction of a view in a MANET requires a distributed protocol that is able to
find and maintain a set of reachable nodes in the network given a bound on a distance
metric. This means that the protocol should be able to: (1) notify the viewing node when
a node enters or leaves the view (2) register and deregister watch operations on nodes
entering and leaving the view respectively; (3) route the events generated by the watch
operations to the node where the view was defined. Existing ad hoc routing protocols
(for an overview, we refer to [1]) are not adequate because they can only provide a fixed
“distance metric” (usually hop count). Since the distance metric used for building the

Views: Middleware Abstractions for Context-Aware Applications 25

view is application specific and determined at runtime, we need a protocol that does
fit our requirements. This protocol can be viewed as an alternative to the one proposed
in [2].

We assume from the underlying network layer that: (1) a single-hop broadcast is
available that broadcasts a message to all nodes within communication reach, repre-
sented by the function broadcast (message); (2) a reliable single-hop unicast that
sends a message to a designated node within communication reach, represented by the
function unicast(message, idreceiver). We can reasonably expect these functions to
be built based on data link standards such as IEEE802.11 [19].

Algorithm 1. The view protocol
Process Root:
on timeout tbr

1: removeOutdated(participants,fp.tbr)
2: broadcast(dist msg(idview, 0, idroot))

on receive content message c
3: updateT ime(participants, timestamp(c), c.idsender)
4: updateV iew(participants, c.events)
5:

Process Participant:
on timeout tbr

6: removeOutdated(neighbors, fn.tbr)
7: idparent = findParent(neighbors)
8: dcurrent = calculateDistance(neighbors, idparent)
9: if dcurrent ≤ bound then

10: broadcast(dist msg(idview, dcurrent, idparticipant))
11: events = objplace.watch(object template, allEvents, cb)
12: unicast(cont msg(idview, events, idparticipant), idparent)
13: else
14: alive = false
15: stop timer
on receive distance message d
16: updateT ime(neighbors, timestamp(d), d.idsender)
17: updateDistance(neighbors, d.distance, d.idsender)
18: alive = true
19: start timer
on receive content message c
20: if alive then
21: unicast(c, idparent)

The data structures necessary for the protocol are depicted in Table 1, while the
protocol is depicted as Algorithm 1. The protocol builds and maintains a shortest path
spanning tree, starting on the node with the client issuing the view, called the root. This
tree determines which nodes are included in the view - these are called the participants
in the view. In the text and in Algorithm 1 the protocol is described as if there is only
one view - this is only for expository purposes. In reality this protocol is executed for
every view in which a node participates. That is why with each message a unique view

26 K. Schelfthout, T. Holvoet, and Y. Berbers

Table 1. Contents of data structures and communication messages

Root Participant Distance msg Content msg
idview idview idview idview

participants = {(idparticipant, neighbors = {(idneighbor , idsender idsender

timestamp,{object})} timestamp,distance)} distance {event}
distance metric, bound idparent, dcurrent

object template distance metric, bound
object template

id, idview is transmitted. The data structures in Table 1 are also for one single view, and
are duplicated for every view in which a node participates.

The length of a path is determined by the distance metric, which is a parameter of
the protocol. This allows building a shortest path based on hop count, but also on any
other distance metric such as physical distance, or bandwidth. The only constraint on
the distance metric is that it should increase monotonically the further it gets propa-
gated from the root, to ensure that the distance does not grow out of bounds as it gets
propagated in a loop. Such a metric can always be chosen, by including a hop count
with any other metric the client chooses (e.g. physical distance) [2].

The view building process starts when a client issues a view. The node on which
this client is located is responsible for building and maintaining it, and is the root for
that view. The root first builds a unique id for the view, consisting of its own id and
a sequence number that is unique on each node. Two activities now occur in parallel:
the building and maintaining of the shortest path spanning tree, and the building and
maintaining of the contents of the view. The contents of the view is maintained at the
root and consists of a list of participants and the objects each participant’s objectplace
currently contains.

The spanning tree. To build and maintain the spanning tree, the root and all participants
regularly broadcast distance messages. This allows participants to determine what their
distance is from the root (dcurrent), given the view’s distance metric. The root starts the
tree-building process by broadcasting a distance message with the id of the new view,
its own id and a distance of zero (line 2). Nodes that receive a distance message check
whether they are participants in the view. To this end, each participant maintains a list
of its neighbors - nodes from which it has recently received a distance message. Upon
receipt of a distance message, the participant records the time the distance message
was received from that neighbor (function updateT ime, l. 16), and the distance that
neighbor broadcasted (function updateDistance, l.17). The participant sets the alive
variable to indicate it should check whether it is in a view, and starts a timer (if the
participant already was in the view, these have no effect).

After every broadcast period, given by tbr, a participant recalculates its distance
from the root based on its list of neighbors. First, neighbors for which the timestamp of
the distance message that was last received is older than a given timeout, are removed
(using removeOutdated, l.6). This timeout is given as a neighbor freshness factor fn

that is multiplied with tbr to determine the actual timeout. The participant then de-
termines the neighbor that is closest to the root using findParent (l.7). Based on its

Views: Middleware Abstractions for Context-Aware Applications 27

parent’s distance, it calculates its own distance from the root dcurrent using the distance
metric (l.8). If it is within the bound, it broadcasts a distance message itself (l.10), and
repeats the process every tbr time to account for changes in the tree. Otherwise, it goes
to sleep, waiting for new distance messages to come in that might change the situation
(l.14-15). The end result of this protocol is that each node regularly checks whether or
not is in the view, and knows a parent in the tree which is the closest to the root of all
its neighbors.

The contents of the view. Each node that is in the view, determines the objects it
contributes to the view by executing a watch operation on its local objectplace. The
resulting events of this watch are transported to the root using content messages. The
events variable is the set of buffered events at the participant that have not been sent to
the root yet (we are stretching notation in line 11, since these events are actually sent
to callback cb). A node that receives such a content message from one of its children
forwards it to its parent, so that it reaches the root (l.21). The root maintains a list of
participants of the view. For each content message it receives, it updates the objects
that participant contributes to the view (using updateV iew, l.4). It also records the
reception timestamp of each content message (l.3), and removes those participants it
hasn’t heard from for fp.tbr time, where fp is the freshness of the participants (l.1).
This means that participants must periodically send a content message to the root, even
when there are no events to be returned (events = {}) to ensure that the root does not
consider them out of the view (l.12).

This protocol tolerates mobility of any node and disappearance of participants. New
nodes are discovered by the periodic broadcasting of the distance messages. Nodes that
should be removed from view are detected because they discover for themselves that
they don’t have any more neighbors, or their distance has gone out of bounds. Changes
in the spanning tree are similarly detected through exchange of distance messages.

Using the spanning tree to deliver events. When sending content messages, the span-
ning tree is actually used as a multi-hop routing tree to the root. Although the shortest
path from participant to root may not always be known, at least some path exists (pos-
sibly temporarily containing cycles) and events are delivered as long as every node on
the path forwards the content message to its parent.

However, in the case where a node that received an event goes down before for-
warding the event, the event is lost. To compensate for this loss, one can choose to use
a reliable link protocol from node to root, such as the alternating 1-bit protocol. Each
event received by the root would then have to be acknowledged before the node can send
another event. Although this makes the protocol reliable, it also induces additional over-
head. One possible solution is to use unreliable best-effort event delivery, which may be
tolerable for some applications where the view may be slightly incorrect or out of date.
Regularly, the view may be “flushed” and current state from all nodes is sent again.

Propagation of other parameters. The parameters of the view, such as the distance
metric, also need to be sent from the root to the participants. This was not discussed,
but is done in a straightforward way: whenever a node receives a distance message with
an idview it does not know, it requests the relevant view parameters from the sender

28 K. Schelfthout, T. Holvoet, and Y. Berbers

of the distance message. When the node determines it is not in the view, it may delete
this information - or decide to keep it for a while longer because it might become a
participant in the view later. We do not elaborate further.

5 Evaluation

The following parameters influence the correctness and the performance of the view: (1)
the broadcast period tbr , (2) the freshness for neighbors fn, and (3) the freshness for
participants fp. Instead of letting the application designer choose these experimentally,
we mathematically derive bounds on these parameters, supporting the designer in mak-
ing the right trade-offs.

The view protocol is influenced by uncontrollable factors concerning the dynamics
of MANETs. In order to keep the presentation clear, we focus on the dynamics of the
network only - in other words we assume for the rest of this section that the contents
of the objectplaces stays the same. We focus on this problem because this is where any
problems and bad assumptions will be revealed. Specifically, we take into account the
number of nodes on a given area and the speed of these nodes. The speed influences
how busy the protocol will be updating changes, and the concentration determines con-
nectivity, or the number of nodes in the view.

We study how accurately the protocol can represent the perfect view, which is ob-
tained by “stopping time” and comparing the view the protocol built at that time with
how the view should look, given the current position and connectivity of the nodes.
There are two kinds of errors: false exclusions, objects that are not in the view but
should be; and false inclusions, objects that should not be in the view but are. Then,
we look at overhead induced by distance messages, and describe some results from
simulations.

5.1 False Exclusions

A false exclusion occurs when a node enters the view, while the view didn’t notice
the new arrival yet. The critical parameter to minimize this kind of false exclusion is
the broadcast period. When this period is short enough, a new node entering the view
receives a distance message from a neighbor early, and the view updates fast. Suppose
nodes have communication range r, and relative speed vr, and we want to detect a node
when it has traveled at most distance l into communication range of any participant. The
worst case scenario occurs when an undetected node moves straight at another in the
view. In this case, the maximum broadcast period to ensure that a node is detected is:

tbr ≤ r − l

vr

with no transmission delay and no message loss.
Supposing a message can get lost with probability ploss, then the minimum broad-

cast period to ensure that a node is detected at a distance l with minimum probability
pdetect is:

tbr ≤ r − l

n.vr

Views: Middleware Abstractions for Context-Aware Applications 29

with n the number of resends until a probability of receiving a message pdetect is
reached. From the inequality pdetect ≥ 1 − pn

loss it follows that

n ≥ log(1 − pdetect)
log ploss

To incorporate message delays, these bounds should be tighter: one should subtract the
message delay from a node to its neighbor and subtract the delay to send the contents
from the new participant to the root.

Another kinds of false exclusion occurs when the root removes a participant while
it should not, because a content message did not reach the root in time. We write the
duration it takes to send a message i as td,i (from the start of sending to the end of
receiving), the time of reception of message i as trec,i and the freshness of a participant
as fp. For each two consecutive content messages 1 and 2 it should be true at the root
that trec,2 ≤ trec,1 + fp.tbr , otherwise a participant is removed in error. After some
calculation, this becomes: td,2 − td,1 ≤ (fp − 1).tbr . This inequality gives a lower
bound for both the freshness and the broadcast period. The inequality shows that the
bound is dependent on the difference between two delays only. This means that if the
delay increases fairly slowly, the protocol adapts to this increase. Only when the delay
suddenly increases with a value of (fp − 1).tbr does a false exclusion result. In other
words, the broadcast period and the freshness determine the robustness of the protocol
to message delays and congestion.

The upper and lower bound described above show the tradeoff between accuracy
and performance. The smaller the broadcast period, the more accurate and respon-
sive the view becomes. However, sending more messages affects the performance, and
causes congestion. Choosing a small broadcast period and freshness also causes errors
in the view by decreasing the protocol’s tolerance for delays. The bounds given ac-
curately characterize the trade-off to make and so support the designer in his or her
decisions.

5.2 False Inclusion

False inclusion occurs when a node moves out of range or out of distance of the view,
while the view still contains the node’s contents. Two parameters influence this: the
broadcast period tbr and the freshness of the participants fp. Two scenarios exist.

In the first scenario, a node that is in the view moves out of communication range.
The time it takes to detect this is maximum fp.tbr+td, where td is the total transmission
delay to successfully send a content message from the node to the root.

In the second scenario, the node is within communication range but for some reason
the network changes and the node is out of the view (i.e. it’s distance becomes greater
than the bound on the view distance). The node is still within communication range
with other nodes in the view. The total time it takes to remove this node from the view
is tbr + td + fp.tbr , so a broadcast period longer than the first scenario since it is only
after this time that the node’s parent broadcasts a new distance, so the node realizes that
its distance from the root has changed.

Concluding, in order to minimize errors, the broadcast period and the freshness
should be as low as possible. However, as was shown in the previous section, this makes
the protocol more brittle. A similar trade-off must thus be made.

30 K. Schelfthout, T. Holvoet, and Y. Berbers

5.3 Overhead

The overhead incurred by the protocol is caused by the periodical broadcasting of dis-
tance messages. Content messages are the actual objects that are transferred, and thus
represent the useful content of the communication channel. How many bandwidth is
taken up by content messages is entirely up to the application: an application that builds
far-reaching views on large objects that are changed frequently obviously consumes
more bandwidth than a close-by view on small objects. Consequently, we focus our
attention on the overhead incurred by distance messages.

An upper bound for the number of distance messages broadcast dm on a shared
communication channel with v views, each of them spanning maximum n nodes is:

dm = v.n.
1
tbr

Given that a distance message consists of three 4 byte long data structures (see Table 1:
two integers and an IP address), the bandwidth taken up by distance messages can be
calculated.

As an example, suppose a 1 Mb/s (IEEE802.11 offers bandwidth between 1 and
11 Mb/s) wireless channel should accommodate 50 views, each spanning 10 nodes,
where each node broadcasts a distance message twice per second. This uses 96Kb/s
on the channel, representing about 10% of the channel’s capacity. For a relatively low
bandwidth channel with many quickly updating views, we feel this overhead is accept-
able. Furthermore, as is shown in the next section, actual overhead is lower (the above
formula provides an upper bound, since the number of nodes in a view varies).

5.4 Simulations

The goal of the simulations is to evaluate whether a MANET is able to sustain a view-
like concept. Instead of focussing on achieving a detailed simulation that conforms
to reality as much as possible, we instead opted for a more straightforward approach
that exposes the reasons behind problems more easily, while still reflecting the most
important realities in a MANET.

In the simulations, N nodes move around randomly on a rectangular area of size
l.w, with a constant speed v. Each node has a predefined transmission range r. A re-
ceiver node within that range can receive messages from the sending node. Sending
and receiving messages takes time, resp. tsend and trec. Nodes move a distance every
second. All other activities occur instantly. Of the nodes moving around, one root node
tries to build a view with a distance metric that increases one unit with each hop, and
a bound denoted by d (in other words, we want the content of all objectplaces within
d hops). All nodes have an objectplace which contains exactly one object. This never
changes - we focus again on the dynamism of the network, not of the objectplaces’
content. All results are obtained by doing 10 runs for tsim minutes each with identical
parameters, and then averaging the results. The parameters are summarized in table 2.

First, the influence of the speed and concentration of the nodes on the number of
errors in the view is studied, fixing d = 3. In Fig. 2(a) we see the total number
of seconds a view is wrong versus the number of nodes on the given area, for different

Views: Middleware Abstractions for Context-Aware Applications 31

Table 2. Simulation parameters

l.w size of area 100.100m2

tsim duration of the simulation 30 minutes
r transmission range of the nodes 20m
N number of nodes variable
v node speed variable
d range of the view in hops variable
tsend, trec duration of send and receive 50ms

(a) (b)

(c)

Fig. 2. (a) False exclusions vs speed, (b) False inclusions vs speed, (c) False exclusion for different
broadcast periods and freshness, with fp = 2.fn

speeds, due to false exclusions and false inclusions. The speed does not influence the
error significantly, but the concentration does. This is as expected, because the broad-
cast period was set to 500ms, which gives the view plenty of time to update given the
range of speeds we are looking at. However, we see that the number of views that are
wrong due to false exclusions is very high with higher concentration of nodes. The
reason for this is congestion: too many nodes in the view mean that content messages
are not reaching the root in time, which causes the root to remove participants in error.
This is due to the fact that fp = 1, which is the most unforgiving value possible (see
Sect. 5.1).

32 K. Schelfthout, T. Holvoet, and Y. Berbers

To find a good trade-off, we fixed v = 0.5m
s , d = 3 and N = 25, a scenario that

gave quite some errors in the previous tests. We also set fp = 2.fn, because as the
content messages are multi-hop, they are more susceptible to delay. As can be seen in
Fig. 2(c), the combination of freshness and broadcast period influences the correctness
of the view greatly. Good values for this particular scenario seem to be tbr = 2000ms
and fn = 1, or alternatively tbr = 1000ms and fn = 2.5. As was shown in the
analysis, a shorter broadcast period and smaller freshness do not increase the accuracy
of the view: on the contrary, they cause congestion which does more harm than good.
The improvement obtained by choosing a higher broadcast period alone is remarkable,
and stresses the importance of this parameter.

So far, we have looked at the total number of seconds a view is wrong, and have
been able to reduce this time from 100% to about 16% of the total duration. Although
these numbers don’t look very promising, the criteria for marking a view as wrong are
harsh: if only one object is missing, or should be missing but is included, the whole
view is “wrong”. However, such a view may still be accurate enough to be used for
practical purposes.

In order to know how wrong the view actually is, we measured the total duration a
node is falsely in- or excluded, and the average size of the view measured in the number
of nodes included per second, for the same runs as the previous experiment. We found
that the number of nodes in the view was on average 8 nodes (averaged over time). The
number of falsely excluded nodes per second is 3.50. The protocol manages to build the
perfect view 84% of the time, and gathers contents from 70% of the content it should
gather the rest of the time. Similar results are obtained for false inclusions, where the
problem was less severe to begin with.

We also measured the message overhead in the simulations. Similarly as in Sect. 5.3,
we measure the bandwidth used by distance messages. For these experiments, tbr was
set to 500ms, and fp = fn = 1. The speed of the nodes does not have any influence on
the overhead (which it shouldn’t, since nodes broadcast at a constant pace irrespective
of their speed). The number of nodes, however, does: in Table 3, the overhead in bps
(bits per second) is shown, and the percentage of the bandwidth this would use on a
shared channel of 1Mbps. As can be seen, the overhead is 0,2% at the highest. This is
again for only one view; for multiple views, the numbers can simply be multiplied by
the number of views, since without optimizations each view sends out its own distance
messages. Also note that the overhead % is pessimistic, since it assumes that all nodes
send on the same shared channel, while in reality, due to sending range restrictions, two
far-away nodes can be sending simultaneously without interference. For the example
given in Sect. 5.3, 10 nodes with 50 views and tbr equal to 500 ms, the overhead on a
1Mbps second is thus 0.05%×50=2.5%, significantly lower than the worst case of 10%.

The results are workable for applications where network infrastructure is not avail-
able (e.g. search and rescue scenarios) or where a best effort approach is tolerable

Table 3. Overhead of distance messages

Number of Nodes 5 10 15 20 25 30
Overhead bps 343 512 771 1169 1645 1985
Overhead % 0.03% 0.05% 0.08% 0.12% 0.16% 0.20%

Views: Middleware Abstractions for Context-Aware Applications 33

(e.g. calling a cab via a PDA). The ObjectPlaces middleware was implemented in Java.
An implementation in Java Micro Edition should pose no significant challenges. Also,
the communication overhead induced is certainly acceptable. We believe that there are
no objections to use ObjectPlaces on a wide range of resource constrained devices, to
support a wide range of applications that need to be context-aware.

However, the described protocol is but one way of supporting a view; in the auto-
matic guided vehicle application discussed in the introduction, we are actually using
a wireless network with access points in order to improve the reliability of commu-
nication. Collision avoidance is an application in which a best effort approach is not
adequate. The concepts ObjectPlaces offers remain the same and retain their strengths
for mobile applications; only the underlying implementation differs.

6 Conclusion

This paper discussed a middleware system for MANETs that provides a powerful ab-
straction of context to the application. In ObjectPlaces, agents coordinate by building
a view on information made available by remote agents in the network. The view is
actively maintained, and is client-specific both in contents and in representation. We
presented a distributed protocol that maintains such a view in a MANET, and showed
acceptable performance results, mainly focussing on the accuracy of the view. While
for the construction of a view we necessarily take a best-effort approach, it was shown
that good insight in the working of the protocol helps performance.

An interesting direction for future work is to provide to the application using the
view an indication of how good the view represents reality at this point in time - in other
words, estimate the accuracy of the view and show this to the application. This estimate
can for example be based on a node’s location and a known probability distribution
of the nodes in space, or can be learned through experience. This is useful where the
accuracy of the view is important. If nodes know the view is probably wrong, they can
move more slowly or change the broadcast frequency in order to increase the accuracy.

References

1. Royer, E., Toh, C.K.: A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications (1999)

2. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mobile com-
puting. In: Proceedings of 24th International Conference on Software Engineering. (2002)
363–373

3. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-
portation systems. In: Proceedings of AAMAS 2005 - Industry Track, Utrecht, The Nether-
lands (2005)

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event
notification service. ACM Trans. on Computer Systems 19 (2001) 332–383

5. Segall, B., Arnold, D.: Elvin has left the building: A publish/subscribe notification service
with quenching. In: AUUG 97. (1997)

6. Cilia, M., Fiege, L., Haul, C., Zeidler, A., Buchmann, A.P.: Looking into the past: enhancing
mobile publish/subscribe middleware. In: Proceedings of the 2nd international workshop on
Distributed event-based systems. (2003)

34 K. Schelfthout, T. Holvoet, and Y. Berbers

7. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in content-based
publish/subscribe middleware. In: Proceedings of the ACM/IFIP/USENIX International
Middleware Conference. (2003)

8. Cugola, G., Jacobsen, H.A.: Using publish/subscribe middleware for mobile systems. ACM
SIGMOBILE Mobile Computing and Communications Rev. 6 (2002) 25 – 33

9. Sun Microsystems, Inc.: Java message service spec. 1.1 (2002)
10. Meier, R., Cahill, V.: Exploiting proximity in event-based middleware for collaborative mo-

bile applications. In: Proceedings of the 4th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS’03), Springer-Verlag Heidelberg, Germany
(2003)

11. Carriero, N., Gelernter, D., Leichter, J.: Distributed data structures in linda. In: Proc. 13th
ACM Symposium on Principles of Programming Languages. (1986)

12. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination architecture for
mobile agents. IEEE Internet Computing 4 (2000) 26–35

13. Sun Microsystems, Inc.: The javaspaces v1.2.1 spec. (2002)
14. Rowstron, A.: Using asynchronous tuple space access primitives (bonita primitives) for

process coordination. In Garlan, D., Mtayer, D.L., eds.: LNCS 1282: Coordination Lan-
guages and Models (Coordination’97), Springer-Verlag (1997) 426–429

15. Murphy, A., Picco, G.P., Roman, G.C.: Lime: a middleware for physical and logi-
cal mobility. In: Proc. of the 21th International Conference on Distributed Computing
Systems (ICDCS-21). (2001)

16. Julien, C., Roman, G.: Active coordination in ad hoc networks. In: Proceedings of the 6th
International Conference on Coordination Models and Languages. (2004)

17. Mamei, M., Zambonelli, F.: Self-maintained distributed tuples for field-based coordination
in dynamic networks. In: The 19th Symposium on Applied Computing (SAC 04). (2004)

18. Blake, M.: Agent-based communication for distributed workflow management using jini
technologies. International Journal on Artificial Intelligence Tools 12 (2003) 81–99

19. IEEE Computer Society LAN MAN Standards Committee: Wireless lan medium access
control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-1997 (1997)

An Adaptive Distributed Layout for Multi-agent
Applications

Koenraad Mertens, Tom Holvoet, and Yolande Berbers

AgentWise, Distrinet, Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

Koenraad.Mertens@cs.kuleuven.be, Tom.Holvoet@cs.kuleuven.be,
Yolande.Berbers@cs.kuleuven.be

Abstract. A multiagent application consists of an environment and a number of
agents. The environment contains information that the agents use and manipulate
to do their work. When a multiagent system is decentralized over a number of
different hosts (i.e. more than one execution platform is used), the environment
has to be decentralized as well. The distributed layout of the environment can
influence the performance of agents and of the system.

In this paper we discuss when a distributed system can dynamically change
its distribution layout. Our focus is on a distributed environment in which mobile
agents move around and are aware of the distributed nature of the system.

Changes to the layout of the distribution are not only triggered by the agents
(like other, application-specific actions), but they can also be triggered by external
events and the environment itself. A layer of meta-agents monitors those triggers.
It has the ability to pro-actively change the distribution layout over the different
hosts when this improves the behavior and efficiency of the application.

Using a specific application (solving distributed constraint satisfaction prob-
lems) as an example, we indicate the usefulness of changes to the distribution
layout and how they can be incorporated easily into a multiagent application de-
sign. It turns out that for some problems, the improvement in efficiency can be
more than 30%.

1 Introduction

Multiagent systems consist of an environment and a number of agents that are situ-
ated in that environment [1]. Because in many multiagent systems, interaction between
agents [2] (one of the means to reach a goal in multiagent systems) is done through or
with a dependency on the environment [3,4], the environment is an important aspect
of the design of the application. Nevertheless it is only recently that more attention is
devoted to the environment [5,6,7].

In multiagent systems, the term ‘environment’ can be used for two different
software concepts:

– The execution environment: This refers to the platform used to execute the system,
e.g. a Java VM or the Windows operating system.

– Theapplicationenvironment:Thisreferstotheenvironmentinwhichtheagentsreside,
e.g. a grid structure when the agents are players in a strategy game or a graph structure
when the agents are fire trucks and police cars in the RoboCupRescue project.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 35–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 K. Mertens, T. Holvoet, and Y. Berbers

These software concepts should not be confused with the physical setting in which the
application is executed, although they can have a similar topology. In a peer-to-peer
application, the execution environment, the application environment, and the physical
setting consists of a network of connected nodes. In this paper, we focus on the appli-
cation environment. For the remainder of this paper, we refer to it as ‘environment’. To
indicate the execution environment, we use the term ‘execution platform’.

When a multiagent system is decentralized, the environment has to be decentral-
ized as well: a multiagent system where the environment is located on one host and the
agents are distributed over a number of hosts is not really decentralized, but rather a
client-server approach. The distribution layout of the environment defines how the var-
ious parts of the environment are scattered over the available hosts. This becomes an
important issue that influences the behavior and efficiency of the system. In decentral-
ized systems, it should be possible to change the distribution layout of the environment
in order to guide the behavior, or increase the efficiency of the system. One of the ba-
sic ideas in software engineering is to assign responsibilities to entities that have the
required information to fulfill it (Information Expert pattern, [8]). In the case of a mul-
tiagent system, the agents and the environment collect information, so they should be
responsible for detecting when and how the environment should be changed.

In this paper we list which circumstances can trigger changes in the distribution
layout of the environment. Because the reactions to those circumstances are highly ap-
plication dependent, we apply our findings to a specific application: a decentralized
multiagent system to solve distributed constraint problems. Using this application we
show how dynamic changes can be incorporated in an existing application design, with-
out disrupting the existing functionality. We describe a selection of the results that show
the usefulness of dynamic adaptation of the decentralized environment. Although not
all problems are equally suited to benefit from an adapting environment layout, our tests
suggest that many practical applications do.

The structure of this paper is as follows: first we define the concept of ”distribution
layout of an environment” in Sect. 2. The circumstances that can trigger a dynamic
change to the environment and the changes that can be requested are listed in Sect. 3.
Section 4 gives a short overview of the CSAA framework: this is the case we discuss in
Sect. 5 to illustrate the need for dynamic adaptability of the layout of the environment.
The relation of our work to existing work is described in Sect. 6. The results of this case
are discussed in Sect. 7. In Sect. 8 we finish with our conclusions.

2 Distribution Layout of the Environment

The centralized version of running a multiagent system is shown in Fig. 1. There is
one execution platform, running on a single processor. The environment and the agents
interact with each other and are executed on top of the execution platform.

When a multiagent system is decentralized, more than one execution platform is
used (Fig. 2). In order to use these execution platforms, the environment has to be
decentralized as well. When doing so, the environment is split in two parts:

Logical environment: The part of the environment that interacts with the agents. In a
decentralized setting, there can either be one big logical environment (a transparent

An Adaptive Distributed Layout for Multi-agent Applications 37

Fig. 1. Architecture of a centralized multi-agent system. The agents interact with the environment
(solid arrows). Both agents and environment are executed (dotted arrows) on top of an execution
platform (e.g. a Java VM) which runs on one single processor.

(a) (b)

Fig. 2. Architecture of a decentralized multi-agent system. The agents interact with the logical
environment. This can be (a) one logical environment for the whole application, or (b) a logical
environment that is split up so the agents can be aware of the distributed nature of the application.
The logical environment interacts with the different parts of the physical environment, which is
always split up. The agents and environment are all executed on top of the execution platform
that is located on the same processor as they are themselves.

layer, so the agents are not aware of the distributed nature of the system) or multiple
small logical environments, one on each host (so the agents can be aware of the
distributed nature, if their capabilities allow it).

Physical environment: The part of the environment that interacts with the execution
platform. This is always split in different parts on each host because it represents
the way the information is stored in the decentralized system.

The agents interact with the logical environment and are executed on top of the execu-
tion platform of the processor they are located on.

38 K. Mertens, T. Holvoet, and Y. Berbers

With respect to their knowledge of the decentralized system, there are two ways
agents in such a system can behave:

1. The agents are unaware of the distribution. When agents move around in their log-
ical environment, it is possible that they are moved from one host to another, but
they are not aware of it (either because they do not have the capability or because
the logical environment provides one big representation of the problem nature to
them). The agents do not adjust their behavior when the application is ported from
a centralized to a decentralized system.
An example of this category is a distributed version of the traveling salesman prob-
lem, solved by a swarm of agents [9]. Each agent walks around in the graph struc-
ture, provided by the environment. Whether or not an agent goes from one host
to another is not important for that agent. Each agent walks the path it wants to
walk, it is the environment that makes sure an agent is moved to another host (and
thus another execution platform) if necessary. When some subset of the nodes in
the graph could be better grouped on the same host (because agents make a lot of
moves inside that subset), it is up to the environment to group them.

2. The agents are aware of the distribution. When an agent moves from one host to
another, it knows it has done so: the environment is presented as a number of sep-
arate logical environments to the agents. Each agent is also aware of the layout of
the distribution and the consequences of distribution (e.g. cost of communication to
other hosts, processor load,. . .) and can take those consequences into account when
deciding which action to take.
A distributed computation intensive multiagent system, such as solving a complex
differential equation, is an example of this category: each agent is located on a
different host and each agent is responsible for calculating a piece of the equation
(in this case the equation serves as the environment). Agents need information from
other agents (neighboring parts of the equation), but as this information has to be
fetched over a network link, accessing it is slower than accessing local information.
As performance is important, each agent gets as much information as possible from
its own host, minimizing the (slow) use of the network link.

3 Adaptation of the Environment Layout

The goal of our system is to change the distribution layout of the logical environment.
There are two categories of events that can trigger such a change: external and internal
events. In this section, we first discuss those events in more detail. Next we introduce
a layer of meta-agents that will perform the changes. Finally we give an overview of
types of changes that can be necessary.

3.1 Events That Trigger a Change

The events that trigger a change can be divided into two categories: external and internal
events. External events are directly brought into the system by the user or a separate
system. Internal events are produced by entities inside the system. There are two types
of entities that can gather information that justifies a change in the distribution layout:
the agents and the environment.

An Adaptive Distributed Layout for Multi-agent Applications 39

1. External events: brought into the system when the execution platform changes (e.g.
a new host is added when solving an equation) or a change in the problem situa-
tion is introduced (e.g. an extra city is added when solving the traveling salesman
problem).

2. Internal events:
– Events produced by agents: happens when an agent detects that a change in

the layout of the logical environment would increase its performance (e.g. if
some agent in the equation solving application makes intensive use of the in-
formation present on another host it can request to be transferred to that host or
that the data is transferred to his own host). The agents are only able to detect
performance increases for themselves, they are unable to judge if this would
also increase the efficiency of the application as a whole. This type of events
is only possible when the agents are aware of the decentralized nature of the
application.

– Events produced by the environment: happens when the environment detects
that there is some performance bottleneck in the overall distribution layout of
the system (e.g. one host in the distributed computation has a much higher
load than another host, which could be solved by rearranging the parts to be
calculated).

The agents and the different parts of the logical environment have only a partial view of
the system. This implies that they are unable to judge if a change would have a positive
global effect. Therefore, the events that are produced by the agents and the environment
will not necessarily cause a change to happen. The events are stored as influences in the
system. A separate entity monitors those influences and decides which action has to be
taken. the layer of meta-agents we use to do this is discussed in Sect. 3.2.

This is very similar to the application-specific actions that are done by agents:
they only send influences to the environment, they do not actually perform the actions
[10,11]. When two agents request a conflicting action at the same time, only one or
even none of them can be carried out, that is up to the environment to decide (e.g. two
different agents request to kick a ball at the same time, in two different directions: the
resulting action will be a combination of both requests). In the same manner, several
influences requesting a change in the distribution layout can contradict each other. In
that case, it is up to the meta-agents to decide which change to perform.

3.2 A Layer of Meta-agents

The environment itself is not a proactive entity in the system: it reacts to inputs and
performs ongoing tasks such as pheromone evaporation, but it does not take itself the
initiative to start new actions. Because of this non-proactive nature, the environment
itself can not be responsible for interpreting the influences and changing the distribution
layout. Additionally, in the applications we focus on, adjusting the distribution layout is
a separate concern: it should not interfere with the correct behavior of the system, only
with the performance. For that reason, we created an additional layer of meta-agents,
whose sole purpose is to monitor the influences and adjust the distribution layout. For
each part of the logical environment, one meta-agent is created. This is illustrated in
Fig. 3.

40 K. Mertens, T. Holvoet, and Y. Berbers

Fig. 3. Architecture of a decentralized multi-agent system with a layer of meta-agents, responsible
for adjusting the distribution layout. The logical environment consists of different parts (one for
each host). In each part of the logical environment a number of agents (Ax) are located. The
distribution layout is managed by a layer of meta-agents (MAx, one meta-agent per part of the
logical environment).

A meta-agent has a limited view of the environment. By interacting with the other
meta-agents and with the part of the logical environment it is associated with, each
meta-agent is able to make decisions that have a global impact. However, the meta-
agents can only exchange meta-information: they can indicate what kind of information
on a remote host is required by another host, but they should not exchange the informa-
tion itself. The intent of the meta-agents is not to solve the application problem, but to
adjust the environment so that the regular agents can solve the problem more efficiently.

3.3 Types of Requests for Changes

There are three ways in which the distribution layout of the logical environment can be
changed:

1. A new part is created.
2. An existing part is removed.
3. An existing part is moved from its host to another host.

The first two types of changes are always triggered by external events: they must be
carried out immediately because they influence the correctness of the application. The
thirth type of change is mostly triggered by internal events.

Internal events are generated by either the agents or the different parts of the logical
environment. They create the influence that requests that a part the the logical envi-
ronment has to be moved from one host to another host. The most explicit manner to
request such a move, it to state the three items involved in the move:

1. The part that has to be moved,
2. The host on which that part is currently located and
3. The host to which the part has to moved.

An Adaptive Distributed Layout for Multi-agent Applications 41

Since the agents and the different parts of the logical environment only have a local
and thus limited view of the system, they do not have the ability to decide if a proposed
change has a positive impact on the system as a whole. Therefore, the influences that are
produced by multiple entities are gathered by the layer of meta-agents and they decide
which changes to the distribution layout are made. When all move-influences are fully
specified , it becomes very difficult for the meta-agents to combine the different influ-
ences. The meta-agents have more options for combining the influences if the moves
are specified less strictly, i.e. when only one or two out of the three items are specified,
or when some items themselves are specified less strictly. Some examples are:

– Only the host from which a part has to moved is specified. The meta-agents can
choose which part has to be moved, and where to move it to. This can be used
when one host has a high workload.

– Only the destination host is specified. This can be used when one host has a low
workload. The meta-agents can choose to move one big part of a highly loaded
host, or different small parts from multiple host.

– Two parts of the logical environment are specified that have to be placed on the
same host. The meta-agents can choose on which host these parts have to be placed.
This can either be one of their present hosts, or even a third host.

– A part of the logical environment and an agent or a group of agents are specified
that have to be placed on the same host. Again, the meta-agents can freely choose
the destination host.

Which requests are possible depends on the application, but in general, less strictly
specified influences result in more freedom and a better combination by the meta-agents.

In Sect. 5 we give further examples of the different circumstances for and types of
adaptation. The examples are extracted from a specific application: solving of constraint
satisfaction problems using a distributed swarm algorithm. The next section describes
in short how this application works.

4 CSAA Framework

The constraint satisfaction ant algorithm (CSAA) provides a general framework for
solving constraint satisfaction problems (CSPs) using a swarm algorithm. CSPs are
converted to a graph. This graph is used as the environment for a multiagent swarm
application. Using an approach that is based on ant colony optimization (ACO) [12] a
solution is searched.1

4.1 Centralized Framework

In Fig. 4 a graph is constructed for a small CSP problem with 3 variables (A ∈ {4, 5, 6};
B ∈ {2, 3}; C ∈ {2, 3}) and 2 constraints: (A = B + C; B > C). Each
variable is converted to a main node (nodes A, B and C on Fig. 4(a)). From each main
node, there are as many edges as there are other main nodes, each leading to a child
node (from main node A to child nodes AB and AC in Fig. 4(b)). From each

1 An implementation in Java of the CSAA framework can be found at http://
www.cs.kuleuven.be/˜koenraad

42 K. Mertens, T. Holvoet, and Y. Berbers

A B

C

(a)

A B

C

AB

AC

(b)

A B

BC

C

AB

BA

CBAC

CA

(c)

Fig. 4. Construction of a graph for a problem with 3 variables: A ∈ {4, 5, 6}; B ∈ {2, 3};
C ∈ {2, 3} and 2 constraints: A = B + C; B > C. (a) Each main node represents a variable.
(b) Going to the next main node is a two-step process: first the selection edge is chosen, then the
value for the current variable (A has 3 possible values: there are 3 value edges from AB to B).
(c) The complete graph for the problem. A reference to A = B + C is stored in A, B and C, a
reference to B > C in B and C.

child node, there are as many edges as there are values for the variable of the previ-
ous main node. These edges all lead to the same main node (in Fig. 4(b) there are 3
edges from AB to B because the domain of variable A contains 3 values). The edges
going from a main node to a child node are called selection edges because they select
which main node will be visited next; the edges going from a child node to a main node
are called value edges because they determine a value for a variable.

The layout of the graph imposes a few restrictions on the kind of CSPs that can be
solved: each possible value has to be represented by an edge, so values must be discrete
and finite in number. The total number of nodes is n + n(n − 1), with n the number
of variables. This makes that very big problems can not be solved by this centralized
framework: the number of nodes would be too large to fit into the memory of a com-
puter. A distributed version of the framework (see Sect. 4.2) or a modified version of
the centralized framework can bypass this restriction.

The multiagent system that is used to solve the CSP is organized as a swarm of
agents. Each agent of the swarm moves around in the graph, constructing a solution
while doing so. In each main node, a suited selection edge has to be chosen (each
main node can only be visited once by the same agent); in each child node, a suited
value edge has to be chosen (values have to comply with previous chosen value: the
constraints of the CSP determine which values are suited and which are not). On each
edge a feedback value (in the form of synthetic pheromones) is stored that influences
the selection process. A more detailed description of the behavior of the agents and the
pheromones can be found in [13].

4.2 Distributed Framework

In [14] a distributed version of the CSAA framework was presented. The agents in the
system are aware of the distribution and adjust their behavior to this knowledge. The
set of variables in the problem is split up in as many parts as there are hosts and each

An Adaptive Distributed Layout for Multi-agent Applications 43

E

EF

F

DE

ED

FEDF

D

FD

Host II

G H

HI

I

GH

HG

IHGI

IG

Host III

A

C

AB

BA

CBAC

CA

B

BC

Host I

Fig. 5. Distributed graph for the CSAA. A copy of a constraint involving A and D is stored both
on host I and host II. A constraint involving only variables A, B and C is stored only on host I.

part is assigned to one host. Each host builds its own logical environment, holding only
variables associated with the variables the host is responsible for. The constraints are
also distributed over the hosts. Each hosts gets a copy of all constraints the variables
it is responsible for are involved in. If a constraint concerns several variables that are
located on different hosts, multiple copies of that constraint are kept: one on each host
that has such a variable.

The agents that try to solve the CSP jump from host to host. They must have visited
all main nodes on a host before going to a next host. The hosts can be arranged in a
loop, making the order in which each agent visits all hosts fixed. A second option is
not to determine an order between the hosts, so each agent can choose for itself the
order in which it will visit all hosts. A layout for a simple distributed problem with nine
variables and six hosts is displayed in Fig. 5.

The goal of the CSAA framework is flexibility. This requires the environment to
be flexible: it must be possible to add new variables or constraints and to delete others.
Because the environment has knowledge about the work load on the hosts, one of the
responsibilities of the environment is an equal distribution of the work load. When
the environment detects that the workload is ill balanced, it suggests changes to the
layout. Agents can also suggest a reorganization to the environment layout, when some
variables can be grouped together to be able to process them more efficiently. Which
variables this are can only be determined by the agents. The three types of circumstances
that call for a change in the environments distribution layout that were introduced in
Sect. 3 are present in this application, as well as several of the changes that can be
requested. They are discussed more thouroughly in the next section.

5 The CSAA Framework as a Use-Case for Environmental
Adaptation

Different types of changes to the distribution layout can be requested and there are
different types of circumstances that call for a change. In Sect. 5.1 we give examples of

44 K. Mertens, T. Holvoet, and Y. Berbers

those circumstances and requests in the context of the CSAA framework, in Sect. 5.2
we explain how the environment is able to handle those requests when it is distributed
itself. The main purpose is to illustrate the opportunities that changes to the environment
layout can offer and to show how multiagent techniques can be used to incorporate this
functionality into an existing application design.

5.1 Different Types of Requests for Change

Changes Because of External Events. There are several external events that can trig-
ger a change in the environments distribution layout. The most obvious are adding or
removing variables, values, constraints or hosts. Others include a change in the host ca-
pabilities or the failure of a connection between two hosts. Whenever such an external
event happens the environment must adapt.

When a variable, value of constraint is deleted, the change to the distribution layout
is rather trivial: the according part of the graph structure simply has to be removed.
When an extra variable value or constraint is added, some extra edges and connections
have to be added. Adding or removing such components could cause the work load to
be ill distributed, but this will be handled automatically (see Sect. 5.1). When an extra
variable is added, the environment has to decide which host to assign it to. The simplest
option is to assign it to the host that has the lowest work load and let the agents decide
if some other host is more suited with respect to the constraints that exist between the
new variable and existing variables. A similar approach can be taken when a new host
is added: the environment removes some variables from each host and assigns these
variables to the new host. The agents are then responsible for rearranging the variables
for efficiency.

All changes that are requested because of external events, must be carried out im-
mediately: a correct solution for the problem can not be found without those requested
changes (with the exception of a new host that is added). For changes that are requested
by agents or by the environment, explained in the following paragraphs, this is not the
case. They can be postponed because they do not influence the correctness of the solu-
tion, but only the efficiency of the algorithm.

Changes Requested by the Agents. Agents are responsible for assigning values to
variables and checking the constraints of the problem. When an agent has already as-
signed values to a number of variables, it can sometimes happen that a next variable can
not be assigned a value. E.g. variables A, B and C have already been assigned a value.
There exists a constraint between variables A, B and D. Because of the chosen values
for A and B, every possible value for D violates the constraint.

When this happens, all value assignments between the assignment of the first vari-
able in that constraint and the present variable were a waste of effort. In the example:
the value that was chosen for C did not help in determining that no value for D could
be found. To prevent this from happening in the future, all variables that are involved
in the constraint should be assigned a value around the same time. In our examples this
means that variables A, B and D should be placed on the same host.

In this type of change request it does not matter which of the variables are moved
to another host, or which host they are moved to: as long as the variables end up at the
same host, the efficiency of the system will be increased. It is even possible that other

An Adaptive Distributed Layout for Multi-agent Applications 45

variables get moved as well (because of load balancing requirements). The request does
not have to be carried out immediately: it does not influence the correct behavior of the
application, it only affects the efficiency of the application.

When two agents are running, and they both request a conflicting change at the same
time, at least one of the requests can not be fulfilled. Furthermore, when solving highly
constrained problems, executing all requests could mean that all variables are trans-
ferred to the same host (which, in a decentralized setting is obviously not the desired
behavior). How this and other conflicts that can arise from multiple change requests are
handled is explained in Sect. 5.2.

Changes Requested by the Environment. The environment is responsible for group-
ing associated variables on the same host (the distribution layout) and providing a com-
munication infrastructure for the agents. The distribution layout is closely related to the
work load on each host. A change in work load can be caused by a change in distribution
layout or because one of the hosts suddenly has to do more calculations (e.g. because
the agents on that host gradually choose other values that require more calculations). In
the CSAA framework the distribution of the workload is measured by comparing the
period of time an agent needs to process all variables on the different hosts. The duration
of this period needs to be the same to avoid bottlenecks. Differences in work load cause
the environment to request a change in the distribution layout. As with the requests by
agents, changing the distribution layout does not influence the correct behavior of the
application and so the changes do not have to be carried out immediately.

5.2 Handling Requests for Change in a Distributed Setting

Because the agents only interact with their logical environment, they can only send re-
quests for changes to the distribution layout to that logical environment. The logical
environment itself also produces requests for change. Therefore, we store all informa-
tion about these requests in the logical environment.

The layer of meta-agents that was introduced in Sect. 3.2 is responsible for adapting
the distribution layout of the system. It takes as input external events and the information
stored in the logical environment. Based on that information, it decides when and how
the distribution layout must be changed.

The next paragraphs give two examples of how the meta-agents interpret the
requests for changes to the distribution layout.

Transferring Data on Request of Agents. When an agent detects that a variable can
not be assigned a value, it sends feedback to the environment. The agent indicates in
its feedback which host contained the most restrictive variables that prohibited a value
assignment. The environment stores this feedback in the node that is associated with
the variable. This information is encoded under the form of pheromones (artificial imi-
tations of the biological chemicals that e.g. ants use, [15]). For each host in the system,
there is a different type of pheromone.

When a meta-agent detects that one type of pheromone for a node exceeds a certain
threshold, the variable that is associated with that node is transferred to the correspond-
ing host. Using a threshold mechanism prevents all variables to be transferred at the
same time. In combination with workload balancing (described in the next paragraph)

46 K. Mertens, T. Holvoet, and Y. Berbers

it prevents that all variables are transferred to one and the same host: because variables
are only transferred gradually, the load balancing process has the necessary time to
redistribute the variables that are present on crowded hosts.

Balancing Workload. When agents are transferred from one part of the logical en-
vironment to another, they are first stored in a buffer at the receiving part. When the
meta-agent that is associated with this part of the logical environment detects that the
number of agents in the buffer becomes too high, one of the variables in the logical
environment is transferred to another part of the logical environment. Which variable
gets transferred depends on the host it gets transferred to. There are two possibilities:

1. When the order of the hosts is fixed, a variable gets transferred to the part of the
logical environment that is located on the previous host. The workload of that pre-
vious host will certainly be lower: the previous host was able to fill the buffer of its
successor, which means more agents were processed at the same time.

2. When the order of the hosts is not fixed, a variable gets transferred to the host with
the lowest number of agents in its buffer. To avoid an election process between the
hosts each time a variable has to be transferred, each part of the logical environment
remembers the buffersize of each other part each time an agent is transferred to that
part.

The variable that is transferred is the variable whose associated node has the highest
pheromone level for the host to be transferred to.

One of the drawbacks that can arise when using both a dynamic transfer of the
variables and workload balancing is that variables can be transferred back and forth
between hosts. To prevent oscillations in the transfer of variables, the threshold in the
meta-agents are adjusted by the workload balancing process. Each time this process
transfers a variable away from a host, the threshold that is needed for other variables to
be transferred to that host increases.

6 Related Work

Research in the domain of resource allocation and load balancing has been active for
a long time. In the last decade, research has shifted from centralized [16] and pseudo-
decentralized approaches (client-server approaches, like [17]) to completely decentral-
ized approaches. In these decentralized approaches, multi-agent systems are a natural
choice for coordinating the systems resources. Both intelligent agents [18], and in recent
years swarms of reactive agents [19,20,21] have proven to be efficient. The approach
that is described in this paper is no new approach, but merely an instantiation of existing
techniques.

According to the general model for load balancing schemes that is presented in [22]
each load balancing scheme can be decomposed into four main criteria:

1. The triggering policy
2. The selection policy
3. The communication and domain policy
4. The matching policy

An Adaptive Distributed Layout for Multi-agent Applications 47

As described in Sect. 5.2 the agents leave information on each host about the nodes that
should be transferred by preference and which host they should be transferred to. This
information is stored as pheromones in the logical environment. The meta-agent layer
is responsible for the distribution layout and load balancing and uses the information
in the pheromones to determine the triggering (pheromone level exceeds threshold, in
combination with buffer size), selection (node with the highest pheromone level) and
matching policy (preferred host to transfer to). As it is implemented now, no extra
communication between meta-agents is needed to determine when and where to
redistribute nodes.

The advantage of this approach is that information is accumulated by the entities
that are most suited to do so. The task of the agents is to search for a solution, which
involves moving from host to host and taking into consideration dependencies between
nodes. They are best suited to gather the information about these dependencies. The
logical environment, which consists of collections of associated variables, is best suited
to indicate when a host is overloaded or underloaded.

The distribution layout of the system is a separate concern and a non-functional
requirement: it does not influence the correctness of the system. Therefore, the adapta-
tion of the distribution layout is done by a layer of meta-agents: the meta-agents can be
changed to implement another load-balancing algorithm without changing the correct-
ness of the system. Using a meta-level for non-functional requirements is a well-known
technique [23,24] also.

7 Results

The features of the adaptive environment, described in Sect. 5, were implemented and
integrated into the existing CSAA framework. We tested this modified framework on a
number of graph coloring problems, represented as partial constraint satisfaction prob-
lems. Based on the results, we distinguish between two classes of problems: completely
connected graph coloring problems and partially connected graph coloring problems. In
this section we give and discuss the results of one completely connected and two partially
connected problems2. The difference between the different classes of problems allows
us to define whether the use of the adaptive features is opportune for a given problem.

Figures 6, 7 and 8 are averaged anytime curves. An averaged anytime curve illus-
trates how the average of the best solutions that are found improves as time (given by

2 All problems had hard as well as soft constraints. For each pair of variables and colors, 10
problems were created, each with a different number of hard constraints. The percentage of
hard constraints ranged from 3% (easy problems) to 30% (more difficult problems) of all edges.
The penalties for the soft constraints were chosen randomly between 1 and 50. Every problem
was solved 10 times, so the figures display averages for 100 runs. We used a distribution layout
of three heterogeneous hosts (ranging from an AMD 1600+ to a Pentium IV 2.6GHz). Initially
the variables were randomly distributed on the hosts.

The completely connected problem that is reported on in this paper had an edge (constraint)
between each pair of variables. For the partially connected problems, the probability of an
edge between two variables was 0.5. The completely connected problem and the first partially
connected problem had 11 variables and 3 colors, the second partially connected problem had
15 variables and 5 colors.

48 K. Mertens, T. Holvoet, and Y. Berbers

1e+03 1e+04 1e+05 1e+06

Checks

20
0

25
0

30
0

35
0

S
ol

ut
io

n
Without self-adapting application environment

With self-adapting application environment

Fig. 6. Progress results of the CSAA framework without an adapting environment (solid line) and
with such an environment (dashed line) on a completely connected graph coloring problem with
11 nodes and 3 colors. Executed on three heterogeneous hosts.

1e+03 1e+04 1e+05

Checks0
20

40
60

80

S
ol

ut
io

n

Without self-adapting application environment

With self-adapting application environment

Fig. 7. Progress results of the CSAA framework without an adapting environment (solid line) and
with such an environment (dashed line) on a partially connected graph coloring problem with 11
nodes and 3 colors. Executed on three heterogeneous hosts.

the number of constraint checks) proceeds. Each curve starts as a thin line. This means
not all 100 runs have found a solution yet: the shown value is the average best solution
for the runs that have already found a solution. Once the curve becomes a thick line, all
runs have found a solution.

All three figures compare the results of the CSAA framework without an adaptive
environment to the results of the CSAA framework with such an environment.

7.1 Completely Connected Problems

In the first type of graph coloring problems, each node is connected by an edge to each
other node. The results that were obtained for problems with 11 variables and 3 colors
are depicted in Fig. 6.

There is not a big difference in the results of the CSAA framework with and without
an adaptive environment. The results with such an environment reach a first solution

An Adaptive Distributed Layout for Multi-agent Applications 49

1e+04 1e+05 1e+06

Checks0
20

40
60

S
ol

ut
io

n
Without self-adapting application environment

With self-adapting application environment

Fig. 8. Progress results of the CSAA framework without an adapting environment (solid line) and
with such an environment (dashed line) on a partially connected graph coloring problem with 15
nodes and 5 colors. Executed on three heterogeneous hosts.

a little bit faster for the easier problems (the thin dashed line starts sooner than the
thin solid line), but for more difficult problems (the beginning of the thick lines), the
difference is hardly noticeable. The quality of the solutions is very comparable, both
during the solving process as at the end of the process.

7.2 Partially Connected Problems

In the second type of graph coloring problems, the probability for two nodes to be con-
nected by an edge (or constraint) was only 0.5, reducing the number of edges by 50%.
The results that were obtained for problems with 11 variables and 3 colors are depicted
in Fig. 7. The results for the problems with 15 nodes and 5 colors are depicted in Fig. 8.

In contrast with the results of the fully connected problems, there is a noticeable
difference when partially connected problems are solved using the CSAA framework
with or without an adaptive environment. The intermediate results of the framework
using the adaptive environment are better: as well for the easier problems as for the
harder problems, a solution is found approximately 30% to 40% faster. The quality
of those intermediate solutions is better also: for the problem with 11 variables of
Figure 7, an average best solution that is within 30% of the final solution is found
after approximately 3000 checks when using an adaptive environment. That is less than
half the amount of checks than when such an environment is not used (approximately
7000 checks needed).

The final solutions for both versions are approximately the same. Altough in Fig. 8,
the last displayed solutions of both versions are not exactly the same yet, we expect
them to reach the same value if the algorithms are allowed to run longer.

7.3 Observations

A first thing we can conclude when we look at the results, is that the final solution
that is found by the CSAA framework remains unchanged whether it uses an adaptive
environment or not. Because the adaptations of the environment layout (moving vari-
ables from one host to another) are only concerned with the efficiency of the algorithm

50 K. Mertens, T. Holvoet, and Y. Berbers

(balancing workload and a more efficient use of the heuristics), this is an outcome that
could be expected.

A second conclusion is that not all problems are equally suited for the use of
an adaptive environment. When solving graph coloring problems that consist of a
completely connected graph, there is no effect in using the proposed adaptations. The
workload on the hosts will probably benefit from an adaptive environment, but the adap-
tations will have no effect on the effectiveness of the heuristics.

When a partially connected graph coloring problem is solved, the heuristics can be
made more efficient by adapting the environment: in most partially connected graphs,
there are some highly connected subgraphs. Putting those subgraphs on the same host
will result in better heuristics and a faster convergence to the final solution.

8 Conclusions

In this paper we presented a number of circumstances that cause the dynamic adaptation
of the environment layout. A layer of meta-agents reacts upon triggers from the agents,
the environment or external triggers to change the distribution layout of the system.

To illustrate the different types of circumstances and requests, we used a distrib-
uted swarm algorithm for constraint satisfaction solving, the CSAA framework. In this
framework, requests are done using standard swarm algorithm techniques: artificial
pheromones. Our illustration shows the opportunities that dynamic adaptation of the
environment layout offers and how existing mechanisms can be used to implement this
into the context of a decentralized multiagent system.

Not all problems are equally suited for the adaptive enhancements. When solving
highly connected problems, there is no efficiency gain. The reason for this is the lack
of structure in the problem description: the adaptations to the environment layout try
to group parts of the environment that are highly related, but when all elements of the
environment are equally related, these attempts do not succeed and they do not result in
any efficiency gain.

However, a fully connected graph is an artificial problem: most practical problems
do have some structure in them. It is not always easy for a human to determine which
parts of the problem belong together, so a manual decomposition is not feasible. When
using an dynamic environment, this task can be done by the system itself. The results
of solving partially connected graphs – an improvement in efficiency of more than 30%
– prove that the efficiency of the system can be enhanced by this approach.

Finally, while we demonstrated the use of an dynamic environment for solving con-
straint problems, other application domains could also benefit from it. The efficiency of
all applications where some distributed coordination or computation takes place, ben-
efits from a reduced use of the networking infrastructure and could be enhanced by a
dynamic environment.

Acknowledgements

This work has been funded by the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

An Adaptive Distributed Layout for Multi-agent Applications 51

References

1. Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Har-
low: Addison Wesley Longman (1999)

2. Parunak, H.V.D., Brueckner, S., Fleischer, M., Odell, J.: Co-x: Defining what agents do
together. In: Proceedings of the AAMAS 2002 Workshop on Teamwork and Coalition
Formation. (2002) 62–69

3. Chialvo, D.R., Millonas, M.M.: How Swarms Build Cognitive Maps. In Steels, L., ed.: The
Biology and Technology of Intelligent Autonomous Agents. Volume 144. Nato ASI Series
(1995) 439–450

4. Huhns, M.N., Stephens, L.M.: Multiagent systems and societies of agents. In Weiss, G., ed.:
Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT
Press, Cambridge, MA, USA (1999) 79–120

5. Omicini, A.: Soda: societies and infrastructures in the analysis and design of agent-based
systems. In: First international workshop, AOSE 2000 on Agent-oriented software engineer-
ing, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (2001) 185–193

6. Parunak, H.V.D., Brueckner, S., Sauter, J., Matthews, R.S.: Distinguishing environmental and
agent dynamics: A case study in abstraction and alternate modeling technologies. Lecture
Notes in Computer Science 1972 (2001) 19–33

7. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent
systems, state-of-the-art and research challenges. Lecture Notes in Artificial Intelligence
3374 (2005)

8. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

9. Stützle, T., Dorigo, M.: ACO Algorithms for the Traveling Salesman Problem. In Miettinen,
K., Makela, M., Neittaanmaki, P., Periaux, J., eds.: Evolutionary Algorithms in Engineering
and Computer Science. Wiley (1999) 163–183

10. Ferber, J., Müller, J.P.: Influences and Reaction: A Model of Situated Multiagent Systems.
In: Proceedings of the Second International Conference on Multi-agent Systems, AAAI Press
(1996) 72–79

11. Weyns, D., Holvoet, T.: Formal Model for Situated Multi-Agent Systems. Formal Ap-
proaches for Multi-agent Systems. Special Issue of Fundamenta Informaticae 63 (2004) 125–
158

12. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In Corne, D.,
Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London (1999)
11–32

13. Mertens, K., Holvoet, T.: CSAA; a Constraint Satisfaction Ant Algorithm Framework. In:
Proceedings of the Sixth International Conference on Adaptive Computing in Design and
Manufacture (ACDM’04), Springer-Verlag (2004) 285–294

14. Mertens, K., Holvoet, T.: CSAA; a Distributed Ant Algorithm Framework for Constraint
Satisfaction. In: Proceedings of the 17th International FLAIRS Conference, AAAI Press
(2004) 764–769

15. Grasse, P.: La reconstruction du nid et les coordinations inter-individuelles chez bellicoster-
mes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d’interpretation des termites
constructeurs. Insect Societies 6 (1959) 41–83

16. Ross, K.W., Yao, D.D.: Optimal load balancing and scheduling in a distributed computer
system. J. ACM 38 (1991) 676–689

17. SETI@Home: http://setiathome.ssl.berkeley.edu/ (1996-1999)
18. Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intelligent agents.

Future Generation Computer Systems, Special Issue on Intelligent Grid Environment: Prin-
ciples and Applications (2005) 135–149

52 K. Mertens, T. Holvoet, and Y. Berbers

19. Schoonderwoerd, R., Holland, O., Bruten, J.: Ant-like agents for load balancing in telecom-
munications networks. In: AGENTS ’97: Proceedings of the first international conference
on Autonomous agents, New York, NY, USA, ACM Press (1997) 209–216

20. Montresor, A., Meling, H., Babaoğlu, Ö.: Messor: Load-Balancing through a Swarm of
Autonomous Agents. In: Proceedings of the International Workshop on Agents and Peer-to-
Peer Computing in conjunction with AAMAS 2002, Bologna, Italy (2002)

21. Cao, J.: Self-organizing agents for grid load balancing. In: GRID ’04: Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04), Washington, DC,
USA, IEEE Computer Society (2004) 388–395

22. Fonlupt, C., Marquet, P., Dekeyser, J.L.: Analysis of synchronous dynamic load balancing al-
gorithms. In D’Hollander, E.H., Joubert, G.R., Peters, F.J., Trystram, D., eds.: Parallel Com-
puting: State-of-the-Art and Perspectives, Proceedings of the Conference ParCo’95, 19-22
September 1995, Ghent, Belgium. Volume 11., Amsterdam, Elsevier, North-Holland (1996)
455–462

23. Robben, B.: Language Technology and Metalevel Architectures for Distributed Objects. Phd,
Department of Computer Science, K.U.Leuven, Leuven, Belgium (1999)

24. Maes, P.: Concepts and experiments in computational reflection. In: Proceedings of OOP-
SLA’87. Volume 22. (1987) 147–155

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 53 – 70, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Self-organizing Approaches for Large-Scale Spray
Multiagent Systems

Marco Mamei and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia, Italy

{mamei.marco, franco.zambonelli}@unimo.it

Abstract. Large-scale multiagent systems will be the key software technology
driving several future application scenarios. We envision a future in which
clouds of microcomputers can be sprayed in an environment to provide, by
spontaneously networking with each other, an endlessly range of futuristic
applications. Beside this vision, similar kind of large-scale “spray” multiagent
systems will be employed in several other scenarios ranging from ad-hoc
networks of embedded and mobile devices to worldwide distributed computing.
All of these scenarios present strong commonalities from the application
development point of view, and new approaches and methodologies will be
likely to apply, to some extent, to all of them. In particular, we argue that the
issues related to the design and development of such spray multiagent systems
call for novel approaches exploiting self-organization as first-class tools. With
this regard, we survey a number of research projects around the world trying to
apply self-organization to large-scale multiagent systems. Finally, we attempt at
defining a rough research agenda that – in the long run – should integrate these
ideas to develop a general and more assessed methodology for large-scale spray
multiagent systems crosscutting several application domains.

1 Introduction

Large-scale multiagent systems will be the key software technology driving next
generation distributed computing systems. As the size and dynamism of computer
networks grow, autonomous and decentralized approaches (i.e. multiagent systems) to
develop applications will be the only viable solutions to handle the arising
complexity.

Today, the size and the dynamism of distributed service- and data-oriented activities
on the Internet, to be sustainable, requires peer-to-peer multiagent approaches to inte-
raction and data exchange [28, 31], as well as decentralized and autonomous
approaches to system management and configuration [15].

In the near future, computer-based systems will be embedded in all our everyday
objects and in our everyday environments. These systems will be typically com-
munication enabled, and capable of coordinating with each other in the context of
complex mobile distributed applications [17, 25, 27]. Also in this case, large-scale
multiagent systems will be fundamental to handle the dynamism of the scenario.

54 M. Mamei and F. Zambonelli

Looking a bit further, it is not hard to envision a future in which network of micro
computers will be literally sold as spray cans, to be sprayed in an environment or on
specific artifacts to enrich them with functionalities that, as of today, may appear
futuristic and visionary [20, 36]. The number of potential applications of the scenario
is endless, ranging from smart and invisible clothes, intelligent interactive
environments, self-assembly materials and self-repairing artifacts.

Besides the different physical scale of the components involved and of their
interactions (from micro-computers interacting within networks extending across a
few meters, to Internet hosts interacting at a world-wide scale), all of these types of
spray multiagent system networks raise similar challenges as far as development and
deployment of applications is involved, calling for radically novel approaches to
distributed systems development and management.

On the one hand, to avoid the unaffordable efforts related to the placement,
configuration, and maintenance of such systems, there is the need of approaches
enabling of deploying components without any a priori layout effort, and letting
components to self-organize their application activities and self-retune their overall
behavior depending on specific contingencies (e.g., localized faults and
environmental changes) [15]. On the other hand, the autonomous and decentralized
nature of the activities in such scenarios, together with the possibly unpredictable
dynamics of the operating environments, is likely to make those systems exhibit
unexpected, "emergent" behaviors - as recent observations in several types of
decentralized networks (i.e., the Internet, the Web, as well as Gnutella) suggest.
Therefore, there is also need for methodologies to predict and control the emergence
of such behaviors and, when possible, offensively exploit them for the achievement of
complex distributed tasks [4, 24, 37].

This paper aims at exploring the above issues and will be organized as follow:
Section 2 details our vision about spray multiagent systems, starting from the micro-
scale (i.e., literally spray-able computers), to the medium scale (smart artifacts and
MANETs), up to the macro-scale (wide-area networks), and presents the key
challenges to program such systems. From Section 3 to Section 6, we present four
distinct approaches relying on self-organization to deal with such challenges. In
particular, Section 3 will present a direct engineering approach to self-organization.
Section 4 will present a reverse engineering approach. Section 5 will present a mixed
approach in which directly engineered mechanism try to control reverse engineered
behaviors (direct over reverse engineering). Section 6 presents another mixed
approach in which reverse engineered mechanism combine directly engineered
behaviors (reverse over direct engineering). Finally, Section 7 concludes the paper by
attempting to define a roadmap of activities in the area of spray multiagent systems.

2 Spray Multiagent Systems and Application

The concept of spray multiagent systems will soon pervade the ICT scenarios at every
scale and at every level. In the following we will briefly survey our idea of future
computer-based systems from the micro-scale (literally spray computer systems), to
the medium-scale (handheld and wearable computers) to the global scale (Internet and
Web computing). Moreover we introduce key challenges in programming spray
multiagent systems application.

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 55

2.1 Application Scenarios

The Micro Scale. As proved in the context of the Smart Dust project at Berkeley [3],
it is already possible to produce fully-fledged computer-based systems of a few cm3,
and even much smaller ones will be produced in the next few years. Such computers,
which can be enriched with communication capabilities (radio or optical), local
sensing (e.g., optical, thermal, or inertial) and local effecting (e.g., optical and
mechanical) capabilities, are the basic ingredients of our spray multiagent systems
vision. Spray computers systems, as we imagine them, are clouds of sub-millimeter-
scale microcomputers, to be deployed in an environment or onto specific artifacts via
a spraying or a painting process. Once deployed, such components will spontaneously
network with each other and will coordinate their actions (i.e., local sensing and
effecting) to provide specific “smart” functionalities. We imagine it will be possible,
say in 2020, to go to the local store and there buy, for a few euros, a “pipe repairing”
spray, made up of a cloud of MEMS microcomputers capable of navigating in a
pipeline, recognizing the presence of holes, and self-assembling with each other so as
perfectly repair the pipe. Similarly, we could imagine a spray to transform our
everyday desk into an active one, capable of recognizing the positions and
characteristics of objects placed on it and letting them meaningfully interact.

Another peculiar application we envision is the “spray of invisibility” (described in
[36]): a spray of micro devices capable of receiving and re-transmitting light
emissions in a directional way, and capable of interacting with each other via short-
range wireless communications. When an object is covered by a layer of such spray,
the emissions of the devices make external observers perceive exactly the same light
configurations that they would have perceived if there were nothing in between. In
fact sensors on the rear side of the object can receive such configurations and, via
distributed coordination, can communicate them to emitters on the observer’s side to
be retransmitted. Other types of application one could envision include any type of
self-assembly artifact [20, 34], there included thing like Terminator T-1000, the nano-
swarms of Michael Crichton’s novel “Prey” [9], and MEMS-based artificial immune
systems and drugs [10].

Whatever the applications one envision, the key characteristics that will distinguish
spray multiagent systems applications from traditional distributed computing systems
are not – as one could at first think – the scale at which processes take place. After all
the fact that an agent is executed on a micro device rather than on a high-end
computer does not change it basic nature. Instead, what we think strongly distinguish
spray multiagent systems are the facts that:

• Agent activities take place in a network whose structure derives from an
almost random deployment process (as a spraying process is), and that is
likely to change over time with unpredictable dynamics (due to environmental
contingencies, failure of components, or simply mobility);

• The number of (hardware and, consequently, software) agents involved in a
distributed application is dramatically high and hardly controllable. It is
neither possible to enforce a strict configuration of software components nor
to control their behavior during execution at a fine-grained level.

56 M. Mamei and F. Zambonelli

Both the above characteristics compulsory call for execution models in which
applications are made capable of self-configuring and self-tuning their activities in a
spontaneous and unsupervised way, adapting to whatever network structure and
surviving network dynamics.

The Medium Scale. On a different scale, spray multiagent systems well apply to the
emerging scenarios of ubiquitous and pervasive computing, as enabled by handheld,
wearable, and embedded, networked computing systems. We already typically carry on
two or three computers (i.e., a cell phone, a laptop, and possibly a PDA). Also, our
houses are already populated by a variety of microprocessor based furniture (e.g. TVs,
phones, etc.). However, at the moment, the networking capabilities of these computer-
based systems are under-exploited. On the contrary, very soon, the world around us will
be densely populated by personal-area networks (e.g., the ensemble of Bluetooth
enabled interacting computer-based devices we could carry on or we could find in our
cars), local ad-hoc networks of handheld computers (e.g., networks of interacting PDAs
carried by a team that have to directly interact and coordinate with each other in an open
space), and furniture networks (e.g., Web-enabled fridges and ovens able to interact
with each other and effectively support our cooking activities in a coordinated way).

What we want to emphasize here is that the above types of networks, although
being formed by different types of computer-based devices (let’s say, medium-end
computers) and at different physical scales than literally spray multiagent systems,
shares with them the same issues as far as the development and management of
distributed multiagent applications is concerned. In fact:

• Most of these networks will be wireless, with structures dynamically varying
depending on the relatives positions of devices, all of which intrinsically
mobile (the persons in an ad-hoc network can move around in an environment
and the position of home furniture can changed on needs) and characterized
by the dynamic arrival dismissing of nodes (a PDA running out of power or a
new home furniture being bought).

• Even if technically possible, it is simply not commercially and economically
viable to consider deploying applications that would require explicit
configuration and explicit tuning to meet the amorphous and dynamic nature
of the networks in which applications will be expected to operate.

Also in these cases, new approaches are needed to develop applications in such
open and dynamic scenarios.

The Global Scale. Also in the case of macro-scale networks made up of high-end
computer systems, i.e., the Internet and the Web, the dramatic growth of these
networks and of the information and traffic to be managed, together with the
increasing request for ubiquitous connectivity and the peculiar structures exhibited by
such networks [1, 29], have recently raised researchers’ attention to the need of novel
approaches to distributed systems management. From our perspective, these scenarios
are in fact the first actually deployed systems that can be assimilated to a spray
multiagent system.

Traditional approaches to management, requiring human configuration efforts and
supervision, fall short when the number of nodes in the network (or the number of

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 57

interrelated services and links in the Web) grows in a fully decentralized way, and
when the presence of the nodes in a network is of an intrinsically ephemeral nature, as
it is the case of laptops and, with regard to the Web, of several non-commercial data
and services.

In a number of application scenarios, the need to access data and services
according to a variety of patterns and independently of the availability/location of
specific servers and of the dynamics of the network have suggested the adoption of
P2P approaches [28, 29]. In P2P computing, instead of promoting a strict control over
the execution of software components and of their interactions (an almost impossible
task given the dynamism of the scenario), the idea is to promote and support adaptive
self-organization and maintenance of a structured network of logical relationships
among components (i.e., an overlay network), to abstract from the physical “sprayed”
nature of the actual network and survive events such the arrival of new nodes or the
dismissing of some nodes.

Overlay networks are currently the most widely investigated approach to
distributed application development and management in worldwide computing, and
are leveraging a variety of useful applications facilitating access to (and coordination
over) a variety of world-wide distributed data and services. Although self-organizing
overlay networks – as they are studied today – are not necessarily the only and best
approach, the attention towards them is the body of evidence of the need – also in this
scenario – for new self-organizing approaches to distributed application development.

As a final note, we emphasize that, although the micro, medium, and global scale
currently represent almost separated worlds, this will not be the case in the near
future. All the above systems will probably be in the near future part of a mega
decentralized network, including traditional Internet nodes, smart computer-enriched
objects and furniture, networks of embedded and dispersed micro-sensors. For
instance, the IPv6 addressing scheme will make it possibly to assign an Internet
address to every cubic millimeter in the earth surface [12], thus opening the
possibility for each and every computer-based component to become part of a single
worldwide network.

2.2 Programming Spray Multiagent Systems

Programming a spray multiagent system means to engineer a coherent and useful
behavior from the cooperation of an immense number of unreliable parts interconnected
in unknown, irregular, and time-varying ways. This translates in devising algorithms
and control methodologies to let the sprayed computing devices self-organize their
interaction patterns and their activities: devices have to start working together without
the presence of any a-priori global supervisor or centralized controller.

The basic low-level mechanisms upon which to rely to enable self-organization
appear quite well-understood and are basically the same whatever the scale, whether
that of sensor networks or that of wide-area P2P computing. Among the others:
dynamic discovery of potential communication partners and of available services via
broadcasting; localization and navigation in some sorts of spatial environment,
whether physical (as in sensor networks) or computational (as in P2P systems).

What is still missing is an assessed understanding of how to design, develop, and
manage, self-organizing applications for these kinds of systems, leading to some

58 M. Mamei and F. Zambonelli

general purpose methodologies and programming environments. The main conceptual
difficulty being that, while standard programming enables a direct-engineered control
only on agents’ local activities, a variety of diverse application goals have to be
achieved at a global scale. Identifying some general and abstract solution to enable
the design and development – via a proper programming of self-organizing activities
– of specific global application goals, would have a dramatic impact in all sketched
scenarios (micro, medium and global scale). In this paper, without having solutions at
hand, we survey a number of research efforts in this direction and try to identify some
key directions to investigate. In the following sections, we are going to classify the
self-organizing mechanisms being studied in the following way:

In section 3, we will present direct engineering approaches to self-organization.
These approaches aim at designing for scratch the activities of each agent, so that the
whole multiagent system behaves as desired. This is the most conservative approach,
and it can be reduced to some extend to “standard” decentralized application
development (e.g. peer-to-peer software).

In section 4, we will present reverse engineering approaches to self-organization.
Here, the idea is to take a system (e.g. biological) that already exhibit some global
behavior similar to the one we want to achieve. Then, try to reverse engineering its
behavior and apply the result to a computation problem. This is basically the approach
promoted by the swarm intelligence research community [5].

In section 5, we present a mixed approach (direct over reverse engineering) in
which directly engineered mechanism try to control reverse engineered behaviors.
The idea is to encourage the rise of only those behaviors that are useful to the
application at hand.

In section 6, we present the complementary mixed approach (reverse over direct
engineering) in which reverse engineered mechanism try to combine directly
engineered behaviors for the sake of realizing the whole application.

In each section, we will first present a general overview of the approach. Then we
survey a number of research projects trying to apply such ideas. Finally, we discuss
the merits and shortcomings of the approach.

3 Direct Engineering of Self Organization

3.1 Overview

Direct engineering approaches to self-organization basically aims at defining
distributed algorithms that, starting from a few basic mechanisms (e.g., broadcast and
localization), and exploiting local interactions and local computations, can provably
lead a system to a final coherent global state. Unlike traditional distributed
algorithms, self-organizing algorithms disregard micro-level issues such as ordering
of events, process synchronization, and structure of the underlying networks (issues
for which no possibility of control is assumed). Rather, they focus on the fact that the
algorithm will eventually converge despite micro-level contingencies and that it will
keep the system in the stable state despite perturbations (e.g., changes in the network
structure).

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 59

3.2 Research Projects

Micro Scale. Most of the researches in the area of micro-scale spray multiagent
systems are performed in the context of the “sensor networks” research community
[10]. There, the key issues being investigated relate to the identification of effective
algorithms and tools to perform distributed monitoring activities by a cloud of
distributed sensors in a physical environment (tracing the position and movement of
an object, determining the occurrence of specific conditions, reporting sensed data
back in an efficient way). These researches are indeed providing good insights on the
theme of self-organization and are leading to some very interesting results.
Techniques for self-localization, self-synchronization of activities, adaptive data
distribution, all of which of primary importance for any type of spray multiagent
systems, have been widely investigated [10, 21].

A typical example of a direct engineering approach to self-organization is
distributed self-localization [21]. There, a number of randomly distributed particles
can determine their geographical position starting from a few “beacon” particles
(possibly self-determined via leader election and acting as reference frame) and
recursively applying a local triangulation mechanism to determine their position with
regard to close particles, until a global coherent positioning of all particles in the
reference frame is reached. This is a good example for our idea of direct-engineered
self-organization. The system self-organizes in that the agents act autonomously
without the supervision of any external monitor or controller. However, the algorithm
they follow is directly engineered so that they can achieve a final stable configuration.

Medium Scale Direct. Coming to the medium scale, as far as we can see most of the
researches are focusing either on routing algorithms for mobile ad-hoc networks [7]
or on the definition of effective user-level ubiquitous environments [30]. Researches
on routing algorithms for mobile networks share several common issues with
researches on algorithms for data distribution on sensor networks. Routing in mobile
ad-hoc networks, can be considered as a multiagent application where agents need to
coordinate with each other to forward each other packets, so as to enable long range,
multi-hop communication. Again, in our opinion, these algorithms can be considered
as self-organizing, in that agents act autonomously without any central director.

Researches on ubiquitous computing environments mostly focus on achieving
dynamic interoperability of existing application-level components and of smart-
artifact and pervasive computing devices. For instance, the Gaia system developed at
PARC [30], defines an architecture based on “active” interaction spaces, as a
reification of a specific real-world environment (e.g., a meeting room), where pre-
existing (and pre-programmed) devices and user-level software components can
dynamically enter, leave and autonomously interoperate with each other according to
specific patterns specified as part of the active environment.

Global Scale Direct Engineering. As far as the global scale is involved, most
research on adaptive and unsupervised computing focus on the key idea of self-
organizing overlay networks for P2P computing, which can be considered as a typical
example of a direct engineering approach to self-organization.

In P2P computing, an overlay network of peers is built over the physical network
and, in that networks, peers act cooperatively to search specific data and services. In

60 M. Mamei and F. Zambonelli

first generation P2P systems (e.g., Gnutella [29]), the overlay network is totally
unstructured, being built by having peers randomly connect to a limited number of
other peers. Therefore, in these networks, the only effective way to search for
information is message flooding. More recent proposals [28, 31] suggest structuring
the network of acquaintances into specific regular “spatial shapes”, e.g., a ring or an
N-dimensional torus. When a peer connects to the networks, it occupies a portion of
that spatial space, and connects with those other peers that are neighbors accordingly
to the occupied position of space. Then, data and services are allocated in specific
positions in the network (i.e., by those peers occupying that position) depending on
their content/description (as can be provided by a function hashing the content into
specific coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to
effectively navigate in the network to reach the required data/services.

3.3 Pro and Cons

Direct engineering approaches to self-organization have the great advantage of
enabling engineers to achieve “by design” a specific robust self-organized behavior.
Engineers, following standard methodologies, can design distributed algorithms to
control distributed components to let them behave as specified by the application.

Unfortunately, such approaches are effective only for a limited number of
application needs. In fact, when the applications to be realized become more
articulated, the complexity of the distributed algorithms involved may become
overwhelming.

For instance, extending P2P overlay-algorithms to highly mobile networks that can
be partitioned (because of node mobility), merged and whose topology is likely to
change quickly can become an overwhelming task from a direct engineering
perspective.

4 Reverse Engineering of Self-organized Behaviors

4.1 Overview

Reverse engineering approaches to self-organization aims at achieving complex
coordinated behaviors by recreating in spray multiagent systems (and by adapting to
specific application needs) the conditions to make some complex coordinated
behaviors observed in other systems and in nature emerge in the computational spray
multiagent system. In these cases, due to the complexity of the phenomena involved,
engineers have no direct control on the evolution of the system, nor they can
somehow prove that the system will behave as needed. Simply, they can be
reasonably (i.e., probabilistically) confident that the global evolution of the system
will eventually lead to the desired globally coordinated behavior.

Simulations will be the workhorse of reverse engineering approaches. Simulations
of spray multiagent systems will not only provide a framework on which to test the
functionalities of a systems once developed, but they will be an integral part of
the design and development process. Since the behavior of the components and of
their interactions can hardly be modeled and predicted “on paper”, simulations appear

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 61

to be the only tool with which to have feedback on how a system will actually work.
In other words, in reverse engineering approaches, the modeling phase consists in
verifying via simulations the correctness of an idealized model suitable, but not
necessarily close, to the target scenario (this model can be for example a biological or
social model), then to refine the model and the simulations (that also realize a
prototype implementation of the model) to rend both enough similar to the actual
scenario to be taken in consideration as a candidate solution.

In the past few years, several approaches to self-organization relying on the reverse
engineering of diverse natural phenomena have been proposed in different areas and
have shown their effectiveness in achieving difficult global coordination tasks. For
instance, the phenomena of ant foraging [2, 18] and gossiping [6] turn out to be useful
to discover path to information and diffuse information in networks of spray
multiagent systems.

4.2 Research Projects

Micro Scale. Some recent works on pattern formation for cooperative mobile robots
[26, 35] try to reverse engineer natural phenomena such as chemical diffusion and
embryogenesis activities to drive the movements of a swarm of tiny mobile robots
(particles). In these works mobile robots connect with each other in an ad-hoc
network to coordinate their movements. The main reversed abstractions, being
researched, are those of chemical-gradients diffusion and local density estimation.
These abstractions can be used by the robots to coordinate their movements. In
particular, gradients can drive robots to reach specific locations [26, 35]. Density can
be used to create diffusion-like processes, where robots tend to stay as far as possible
from each other [35]. Both these two abstractions can be reverse-engineered in terms
of distributed data structures (e.g., field-like hop-increasing structures and gradients
of density pressures) over the ad-hoc network defined by robot themselves. Despite
some promising results, up to now, the cited works focused on very simple motion
strategies and computational particles – not much different from cellular automata
cells.

Medium Scale. In [23] a reverse-engineered pheromone-based approach to co-
ordinate Unmanned Airspace Vehicles (UAVs) has been proposed. UAVs coordinate
with each other by accessing a shared data space and leaving there pheromone-based
data structures. In more detail, the shared data-space resembles the environment
where UAVs are operating (it provides a digital representation of the battlefield).
UAVs access the data-space on the basis of their physical-location that is mapped into
a specific position in the data-space. On the basis of this mechanism, UAVs are able
to spread and access digital pheromones in the data-space that mirrors their physical
environment.

This enables UAVs to coordinate on the basis of stigmergy [5]. In particular, by
reverse engineering social insects behavior (that use pheromones to coordinate), UAV
are able to perform sophisticated motion coordination task ranging from moving in
formation, surround a target and avoid tracked enemies. This approach has been
concretely implemented in a real-world scenario with great result. However, the
techniques employed are very special purpose and it is difficult to extrapolate general
lessons to be widely applied outside the motion coordination domain.

62 M. Mamei and F. Zambonelli

Global Scale. Several recent works in the area of Internet routing and distributed
interactions are rooted on reverse engineering ideas coming from biology – i.e. ant
foraging [2, 5, 6], or physics – i.e. potential fields [17]. As an example of this class of
approaches (based on artificial ants), Anthill [2] support the design and development
of adaptive peer-to-peer applications by relying on distributed mobile components
(“ants”) that can travel and can indirectly interact and cooperate with each other by
leaving and retrieving bunches of information (to act as synthetic pheromones) in the
visited hosts. The key objective of anthill is to build robust and adaptive networks of
peer-to-peer services by exploiting the capabilities of ants to re-organize their activity
patterns accordingly to the changes in the network structure. These works are very
promising, but a general methodology to let such reverse-abstractions widely
applicable in the general context of Internet-based application, is still far from close.

4.3 Pro and Cons

Reverse engineering approaches to self-organization have several advantages. First, it
is possible to rely on results from other disciplines to explore a variety of complex
coordination phenomena to be exploited in spray multiagent systems systems.
Second, once the basic mechanisms underlying a self-organized behavior are
understood and properly reproduced via simulation, programming an actual system to
exhibit such behavior is dramatically simple, and it reduces to programming typically
simple local rules and local interactions. In addition, the resulting system is
intrinsically robust and adaptive, the result is typically robust and adaptive.

Unfortunately, reverse-engineering approaches incur in two main potential
drawbacks.

First, generally speaking, reverse engineering approaches represent solutions
looking for a problem1. Such approaches, in fact, start by reverse engineering a
natural or social phenomenon (e.g. ants foraging) to devise a suitable spray-computer
algorithm. Then, they look for problems (e.g. network routing) that can be solved by
adopting the discovered algorithm. Although for a lot of algorithms it is rather easy to
find suitable application domains, it can be difficult to find an already existing
solution to the problem at hand.

Second, the complex evolution of the system may cause several potential final
states to be reached by a system, each of which potentially stable, without the
possibility of predicting which ones will be actually reached after the self-
organization process. In some cases, all of these states may be equivalent from the
application viewpoint (e.g., in ant foraging, what matters is that a reasonably short
path to food/information is reached, no matter what the path actually is). Also, in
these cases, the presence of multi stable states may be also advantageous, because this
ensure that the system, even if strongly perturbed (e.g., due to network or
environmental dynamics), will be able to soon re-organize its activity into another
stable state. However, in several other cases, the designer may wish that its system
self-organizes to a specific global states, not to any one.

1 It is rather ironic that “solution looking for a problem” often sounds as a synonym for useless

approach, in the research community. In fact, it is actually rather common as a business
model. A company that finds a clever way to do something, then looks for problems (i.e. a
market share) to sell that solution.

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 63

Both these two problems could be solved by mixing together direct and reverse
engineering approaches. The introduction of direct engineered control could enable to
better design the activity of the system so as to better encode a specified application
task. Moreover, when the evolution of a system can lead to several final global states,
and only a limited set of these are useful to the specific application purposes, the
problem arise on how to control/direct the evolution of the system so as to ensure that
it will self-organize as desired.

Realizing such kind of mixed approach presents a number of challenges. On the
one hand, introducing some sorts of direct engineered control should be done without
undermining the basic advantages of the reverse engineering approach, i.e., its
capability to promote the spontaneous formation of complex and robust patterns of
activity with little design and coding efforts. On the other hand, for such a mixed
approach to be possible, it is necessary that both direct algorithms and reversed self-
organizing mechanism are modeled and coded with the same set of basic abstractions.
In the next two sections we are going to survey some recent researches that aim to
that direction.

5 The Control of Self-organizing Behaviors (Direct over Reverse
Engineering)

5.1 Overview

The main idea of this approach is the use of direct engineered mechanisms to control
reverse engineered self-organizing behaviors. Specifically, it is based on these two
key points:

• Use reverse engineering approaches to find low-level mechanism and
interaction primitives that are robust and flexible

• Use direct engineering to weave together several low-level mechanisms to
achieve a desired application.

The core idea of this proposal is to compensate the lack of control typical of
reverse approaches by superimposing a directly engineered control layer. At the same
time, the lack of flexibility and scalability of most direct engineered solutions is
compensated by the low level reverse engineered mechanisms that tend to be robust
and flexible.

5.2 Research Projects

Micro Scale. The Amorphous Computing project at MIT focuses on the problem of
identifying suitable models for programming applications over amorphous networks
of computational particles [20]. The particles constituting an amorphous computer
have the capabilities of locally propagating sorts of computational fields in the
network, and to locally sense and react to such fields (the field abstraction has been
reverse-engineered from the biological concept of morphogen gradients). By having
particles sense and re-propagate these fields, coordinated patterns of activities emerge
in the system independently of the structure of the network. Moreover, the
Amorphous computing project has defined a simple yet effective language for

64 M. Mamei and F. Zambonelli

programming particles on the basis of computational fields. On this base, it has been
shown how it is possible to exploit such a language to let the particles (directly) self-
organize a coordinate systems and self-determine their position in it, and to have a
variety of global patterns getting (directly) organized in a system from local
interactions. What the project has still not addressed are the problems related to
mobile and ephemeral particles: the network is considered static, and the relative
position of particles is considered fixed. In addition, the project focused only on the
formation of spatial patterns, completely disregarding other application scenarios.

Other sources of examples, come from recent proposals to control the motion of a
modular robot. A modular robot is a collection of simple autonomous actuators with
few degrees of freedom connected with each other. A distributed control algorithm is
executed by all the actuators that coordinate to let the robot assume a global coherent
shape or a global coherent motion pattern (i.e. gait). In [32] a mixed (direct-reverse)
approach like the one discussed in this section has been proposed. At the bottom-level,
reverse engineering has been applied to find a flexible and robust communication
mechanism to let the robots interact. Such mechanism has been reverse-engineered
form the biological concept of hormones. In abstract terms, a hormone is a message
that triggers different actions at different subsystems and yet leaves the execution and
coordination of these actions to the local subsystems. For example, when a human
experiences sudden fear, a hormone released by the brain causes different actions, e.g.,
the mouth opens and the legs jump. Reverse engineering a hormone consists in
modeling it by means of a type of message with specific properties [32]. At the top-
level, direct engineering has been applied to combine several hormones together with
robots reactions to actually implement gait control mechanisms.

Medium Scale. The reverse-engineered idea of fields (or morphogen gradients) have
been applied to medium-scale pervasive-computing scenario in the context of the
TOTA (Tuples On The Air) middleware [16]. TOTA relies on spatially distributed
tuples, implementing the concept of field, for both supporting adaptive and uncoupled
interactions between agents, and context-awareness. Agents can inject these tuples in
the network, to make available some kind of contextual information and to interact
with other agents. Tuples are propagated by the middleware, on the basis of
application specific patterns, defining sorts of “computational fields”, and their
intended shape is maintained despite network dynamics, such as topological
reconfigurations. Agents can locally “sense” these fields and can rely on them for
both acquiring contextual information and carrying on distributed self-organizing
coordination activities. The TOTA programming model enable to specify and control
(via direct engineering) the behavior of tuples and agents.
The TOTA model is effective in realizing applications centered on “spatial”
coordination, where the goal is to coordinate the activities of components in the space
– either physical or network-based (e.g. motion coordination, self-assembly, network
routing, etc.). However, the generality of this approach in supporting the design and
development of a variety of applications and their power in supporting very large-
scale applications for highly dynamic networks is still to be proved.

Global Scale. To the best of our knowledge, very few works tries to control
self-organizing behaviors in global-scale computing. Swarm-Linda [18] is an ant-
inspired system to realize distributed tuple spaces over the Internet. At the low-level a

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 65

reverse-engineered swarm of ant-agents performs a foraging-kind of algorithm to
create routes to quickly access tuples in the distributed tuple space. At the top-level,
tuples are accessed by means of the directly engineered Linda operations. Like in
other ant-foraging-inspired systems, the basic drawback of this approach is in the fact
that it is very special purpose. Bridging the gap between these (successful) examples
and a methodology is far from simple.

5.3 Pro and Cons

This kind of approach has a number of advantages. In particular it allows to actually
design a distributed application and eventually prove its correctness. At the same
time, the application can be grounded on reverse-engineered abstractions that can deal
with most of the low-level complexity assuring flexibility and robustness. For
example, the hormone-based control mechanism described above is designed to
achieve a specific motion gait. It is flexible and robust, since the hormones on which
it is grounded can tolerate local malfunctions, propagation delays, etc. [32].

The main drawback of this approach is that general-purpose methodologies to
weave together low-level reverse-engineered behaviors to create an application are
still unknown. Up to know only few and special purpose approaches have been
proposed.

6 Self-composition of Designed Tasks (Reverse over Direct
Engineering)

6.1 Overview

This kind of mixed approach is complementary to the previous one. It uses reverse
engineered self-organizing behaviors to weave together direct-engineered primitive
applications. This is the realm of genetic-algorithms and learning-kind of approaches:
direct-engineered primitive applications are combined by means of a genetic or
learning based mechanism to achieve complex applications [13, 14].

Specifically, this approach is based on these two key points:

• Use direct engineering approaches to find low-level mechanisms and
primitive solutions to the problem at hand.

• Use reverse engineering approaches like genetic-algorithms and learning to
combine, evolve and optimize directly engineered mechanism so as obtain a
complete solution with good performance.

Complementary to the previous approach, this proposal tries to adopt, well defined,
directly engineered mechanism to deal with to deal with the application fundamental
tasks. Then it uses reverse engineering approaches to overcome the complexity
required by the application.

6.2 Research Projects

Micro Scale. One of the major problems in sensor networks is how to make sense of
low-level sensor readings to infer some property on the environment being monitored.

66 M. Mamei and F. Zambonelli

Usually, sensors periodically transmit collected data to a central processing unit, that
collects and elaborate all the data, and tries to infer what is happening in the
environment. This kind of centralized architecture has several drawbacks (single-
point-of-failure, high-cost in transmitting data to the central processing unit,
scalability, etc.). New ideas are arising to make such computations distributed across
the whole sensor network. In particular, some recent works [8, 33] are combining
directly engineered approaches to data collection and data fusion, with reverse-
engineered approaches to learning and data-clustering (neural networks, etc.). More in
detail, low-level directly-engineered mechanism are combined together by means of
high-level reverse-engineering mechanism that enable the network to learn and
classify autonomously what is happening. These works achieved very significant
result, by greatly reducing the programming effort to manage a sensor network.
However, they mainly focused on very simple learning behaviors, and complex
applications have still to be tackled.

Medium Scale. In [25] a peculiar system to tack people movements is presented. The
system is based on a PDA coupled with a GPS device carried on by a user. The PDA
on the basis of GPS reading is able to track the user and to infer if the user is moving
by foot or it is in a vehicle (using inferred speed measure). At the low-level, this
system uses directly-engineered mechanism to store and average GPS readings over
time. At the high-level, it uses a reverse-engineered learning approach to let the system
infer from low-level GSP reading high-level information (location and vehicle).

The same approach has been applied in other works [27] to track and infer more
general user activities.

This system, although simple and special purpose, shows how reverse-engineered
approaches at the top-level can greatly save programming effort. However, it is not
easy to generalize it let is suitable to general application domains.

Global Scale. One of the best examples of this class of approaches is represented by
Internet search (meta)engines based on genetic algorithms [19, 22]. These are
applications that allow a user to find information over the Web in a more efficient
way. The key idea is to let the application build a personalized user profile so as to
better discriminate between relevant and irrelevant documents. These kind of systems
are basically build in two main parts [19, 22]: direct engineering is applied at the low-
level to encode information retrieval agents on the basis of the user profile. Here
direct algorithms for text processing and ranking are applied. Reverse engineering is
applied in terms of a genetic algorithm at the top-level to create new information
retrieval agents. In particular, such agents are created by replicating (with genetic
operations – such as mutation and crossover) top-performing existing agents, so as to
iteratively increase the system performances.

Other examples come from some works related to the ADELFE methodology [11].
The ADELFE methodology proposes to design directly (with standard tools like
UML) low-level agent behaviors. Top-level agent coordination patterns are instead
autonomously derived from reverse-engineered evolutionary techniques. Such
methodology has been applied to a number of scenarios. In [11] it has been applied to
a global-computing scenario where agents are in charge of managing a work-flow
application. In these context, low-level processes are modeled in terms of directly
engineered agents, that have been explicitly programmed with the underlying business

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 67

logic. Top-level workflow is instead processed by means of a reversed evolutionary
computing mechanism. Again, the main drawback of this approach is that it is very
difficult to extend and apply the evolutionary-based algorithm to complex problems.

6.3 Pro and Cons

The main advantage of this approach is that it greatly reduce the programming effort.
Once the basic mechanisms to realize the application have been found, the reverse-
engineering part (e.g. genetic algorithms) handles the rest finding a suitable solution.
However, with this regard, it is of course fundamental that the reverse engineered
recombination does not disrupt the direct algorithms.

The main drawback of this approach is that it leads to something like a black-box
solution: eventual problems in the final outcome are difficult to be traced out and
slight customizations in the final application are likely to need a complete rework.

Besides these examples, the general problem of combining self-organizing
behaviors and engineering approaches in a complex self-organizing system – which,
to the authors’ opinions, will represent one of the key challenges for the whole
research area of multiagent systems – is still open and widely uninvestigated.

The urge for appropriate control models and for a uniform approach to direct and
reverse engineering of self-organization appears even more compulsory when
considering another factor: in several cases, even simple systems engineered with a
direct approach may – due to simplifications in their modeling – exhibit unexpected
self-organizing behaviors. Although sometimes such unexpected behaviors may be
irrelevant or even useful for them to be offensively exploited (consider, e.g.,
the emergence of scaling in complex networks, and the advantages it carries to
the robustness of the network [1]), sometimes they may be damaging and introduce the
need to defend from them by proper forms of control.

7 Concluding Remarks and Research Agenda

In the paper we presented four distinct approaches to take advantage of self-
organization to deal with the challenges posed by large-scale multiagent systems. In
our opinion, each of the presented approaches has merits and drawbacks and much
further work will be required to develop a general framework that combines all of
them meaningfully.

To conclude, we sketch a rough research agenda for what we believe are the key
challenges to be faced in the area of self-organization for the design, development,
and control, of spray multiagent system applications.

First, we think that researches should rely on a deeper understanding of the global
behavior of spatially distributed systems of autonomous and interacting components,
in any area. This could be used to exploit self-organization principles both offensively
(i.e., to use them so as to achieve in a simple way globally coordinated behaviors) and
defensively (i.e., to prevent the potential emergence of possibly dangerous self-
organizing behaviors). Both cases may require the study of mechanisms and tools to
somehow direct and engineering such systems in a decentralized way, so as to enforce
some sorts of control over these systems despite the impossibility of controlling them

68 M. Mamei and F. Zambonelli

in their full. As previously anticipated, some recent approaches already take
inspiration from phenomena of self-organization in real-world systems to defines
adaptive and reliable solutions to specific contingent problems (e.g., ant-inspired
algorithms and coordination based on computational fields). Currently underestimated
phenomena occurring in other types of spatially distributed systems of autonomous
components (e.g., macro-ecology patterns of population distribution and biodiversity,
physics of granular media, emergence of synchronization, morphogenesis) are worth
to be explored too. Also, more simulation work to possibly predict what types of
behaviors the emergent scenarios of spray multiagent systems will exhibit will be
compulsory.

Once the above understanding will be quite assessed, we think there will be need to
define a general purpose programming model for designing and deploying
applications in such dynamic networks of spray multiagent systems, together with the
development of associated middleware infrastructure and tools. One very ambitious
objective could be for such a model to enable people to program, deploy, and control
self-organizing and adaptive distributed applications (exploiting both direct and
reverse engineering approaches) with a minimal background knowledge – the same as
a undergraduate students can currently develop excellent distributed Web-based Java
applications – and independently of the specific application scenario, sensor networks
rather than wide-area distributed applications – the same as an undergraduate student
can easily and with minimal efforts adapt its applications for execution on both a
Linux workstation and a Cellular phone. The definition of such a model will clearly
require the identification of a minimal set of abstractions enabling the modeling of
salient characteristics of spray multiagent systems and their operational environments.
In our opinion, approaches based on computational fields [16, 35] are very promising
to this purpose, by enabling to uniformly model a wide variety of distributed self-
organizing behaviors (both with direct and reverse engineering) and to effectively
model also ant-inspired approaches [18]. However, this opinion is still to be verified.

Eventually, all the above researches will definitely increase our understanding on
the potentials of spray multiagent systems at any scale, and will likely cause a range
of new application areas to come to the fore. For instance, systems such as worldwide
file sharing and artifacts like the cloak of invisibility could have simply never been
conceived a few years ago. The new software and hardware technology will call also
for visionary application-oriented thinkers, to unfold in full the newly achieved
application potentials.

References

[1] R. Albert, H. Jeong, A. Barabasi, “Error and Attack Tolerance of Complex Networks”,
Nature, 406:378-382, 2000.

[2] O. Babaoglu, H. Meling, A. Montresor, “Anthill: A Framework for the Development of
Agent-Based Peer-to-Peer Systems”, International Conference on Distributed Computing
Systems, Vienna (A), 2002.

[3] A. A. Berlin, K. J. Gabriel, “Distributed MEMS: New Challenges for Computation”,
IEEE Computing in Science and Engineering, 4(1):12-16, 1997.

 Self-organizing Approaches for Large-Scale Spray Multiagent Systems 69

[4] C. Bernon, M.P. Gleizes, S. Peyruqueou, G. Picard, “ADELFE: a Methodology for
Adaptive Multi-Agent Systems Engineering”, 3rd International Workshop Engineering
Societies in the Agents World, LNAI No. 2577, 2002.

[5] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence”, Oxford University Press,
1999.

[6] D. Braginsky, D. Estrin, “Rumor Routing Algorithm For Sensor Networks”, 1ST
Workshop on Sensor Networks and Applications (WSNA), 2002.

[7] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, “A Perfomance Comparison of Multi-
Hop Wireless Ad Hoc Network Routing Protocols”, ACM/IEEE Conference on Mobile
Computing and Networking, ACM Press, Dallas (TX), 1998.

[8] E. Catterall, K. Van Laerhoven, M. Strohbach, “Self-Organization in Ad-Hoc Sensor
Networks: An Empirical Study”. In Proc. Of Artificial Life VIII, Sydney, Australia. MIT
Press, 2002.

[9] M. Crichton, “Prey: a Novel”, HarperCollins, 2002.
[10] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with

Pervasive Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.
[11] George J.P., Edmonds B. Glize P., Making self-organizing adaptive multi-agent systems

work. To appear in Methodologies and Software Engineering for Agent Systems,
Kluwer, 2004.

[12] T. Imielinski, S. Goel, “Dataspace - querying and monitoring deeply networked
collections in physical space”, IEEE Personal Communications Magazine, pp. 4-9 2000.

[13] C. Jacob, “Illustrating Evolutionary Computation with Mathematica”, Morgan Kauffman
Publisher, San Francisco, 2001.

[14] J. Kennedy, R. Eberhart, “Swarm Intelligence”, Morgan Kauffman Publisher, San
Francisco, 2001.

[15] J. Kephart, D. M. Chess, "The Vision of Autonomic Computing", IEEE Computer,
36(1):41-50, 2003.

[16] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing Applications
with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing and
Communications, Orlando (FL), 2004.

[17] M. Mamei, F. Zambonelli, L. Leonardi, “Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination”. IEEE Pervasive Computing, 3(2):52-60.

[18] R. Menezes, R. Tolksdorf, “SwarmLinda: a New Approach to Scalable Linda Systems
based on Swarms“, 16th ACM Symposium on Applied Computing, Melbourne (FL),
2003.

[19] A. Moukas, P. Maes, “Amalthaea: An Evolving Multi-Agent Information Filtering and
Discovery System for the WWW”, Journal of Autonomous Agents and Multi-Agent
Systems", 1(1):59-88, 1998.

[20] R. Nagpal, A. Kondacs, C. Chang, “Programming Methodology for Biologically-Inspired
Self-Assembling Systems”, AAAI Spring Symposium on Computational Synthesis, 2003.

[21] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from Local
Information on an Ad Hoc Sensor Network”, in Information Processing in Sensor
Networks, LNCS No. 2643, Springer Verlag, 2003.

[22] Z. Nick, P. Themis, “Web Search Using a Genetic Algorithm”, IEEE Internet Computing,
5(3):18-26, 2001.

[23] V. Parunak, S. Brueckner, J. Sauter, “Digital Pheromones for Coordination of Unmanned
Vehicles”, Workshop on Environments for Multi-agent Systems (E4MAS), LNAI 3374,
Springer Verlag, 2004.

70 M. Mamei and F. Zambonelli

[24] V. Parunak, S. Bruekner, J. Sauter, "ERIM’s Approach to Fine-Grained Agents",
NASA/JPL Workshop on Radical Agent Concepts, Greenbelt (MD), Jan. 2002.

[25] D. Patterson, L. Liao, D. Fox, H. Kautz, "Inferring high-level behavior from low-level
sensors",UBICOMP, Seattle, Washington, USA, 2003.

[26] D. Payton, M. Daily, R. Estowski, M. Howard, C. Lee, “Pheromone Robotics”,
Autonoumous Robots, Kluwer Academic Publishers, 11(3):319-324, 2001.

[27] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox, H. Kautz, D. Hahnel,
"Inferring Activities from Interactions with Objects", IEEE Pervasive Computing,
3(4):50-57, 2004

[28] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, "A Scalable Content-Addressable
Network", ACM SIGCOMM Conference 2001, 2001.

[29] M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 6(1):50-57, 2002.

[30] M. Roman et al., “ Gaia : A Middleware Infrastructure for Active Spaces”, IEEE
Pervasive Computing, 1(4):74-83, 2002.

[31] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object Location and Routing
for Large-Scale Peer-to-Peer Systems”, 18th ACM Conference on Middleware,
Heidelberg (D), 2001.

[32] W. Shen, B. Salemi, P. Will, “Hormone-Inspired Adaptive Communication for Self-
Reconfigurable Robots”, IEEE Transaction on Robotics and Automation, 18(5):1-12,
2002.

[33] S. Simic, “A Learning-Theory Approach to Sensor Network”, IEEE Pervasive Com-
puting 2(4):44-49, 2003.

[34] K. Stoy, R. Nagpal, “Self-Reconfiguration Using Directed Growth”, 7th International
Symposium on Distributed Autonomous Robotic Systems, Toulouse (F), 2004.

[35] M. Vasirani, M. Mamei, F. Zambonelli, “Morphogenesis of Cooperative Mobile Robots
with Minimal Capabilities”, presented at the 1st European Workshop on Multiagent
Systems, Oxford (UK), 2003.

[36] F. Zambonelli, M. Mamei, “The Cloak of Invisibility: Challenges and Applications”,
IEEE Pervasive Computing, 1(4):62-70, 2002.

[37] F. Zambonelli, M. Mamei, A. Roli, “What Can Cellular Automata Tell Us About the
Behaviour of Large Multi-Agent Systems?”, in Software Engineering for Large Scale
Agent Systems, LNCS No. 2603, April 2003.

Coordination Artifacts as First-Class Abstractions
for MAS Engineering: State of the Research

Andrea Omicini, Alessandro Ricci, and Mirko Viroli

DEIS, Alma Mater Studiorum – Università di Bologna a Cesena
via Venezia 52, 47023 Cesena, Italy

{andrea.omicini, a.ricci, mirko.viroli}@unibo.it

Abstract. According to social / psychological theories like Activity Theory (AT),
artifacts plays a fundamental role in the context of human organisations for sup-
porting cooperative work and, more generally, complex collaboration activities.
Artifacts are either physical or cognitive tools that are shared and exploited by
the collectivity of individuals for achieving individual as well as global objec-
tives. The conceptual framework of artifacts for MAS is meant to bring the same
sort of approach to multiagent systems (MAS).

In particular, coordination artifacts are the entities used to shape the agent en-
vironment so as to fruitfully enable, promote and govern cooperative and social
activities of agent ensembles. Thus, coordination artifacts also capture and extend
the notion of coordination medium as coming from the distributed system and
DAI fields, by generalising over abstractions like blackboards, tuple spaces
and channels.

In this paper we account for the current state of the research on coordination
artifacts. First we discuss the background from AT to artifact for MAS, then we
summarise the model for the coordination artifact abstraction, and the state-of-
the-art of the research on models, methods and technologies currently available
for engineering MAS application with coordination artifacts.

1 Introduction

The need to achieve a coherent systemic behaviour in MASs and agent societies has
led to more articulated approaches than those based on direct interaction and explicit
communication. Environment-based coordination and, more generally, mediated inter-
action frameworks and infrastructures based on forms of coordination / cooperation
without direct communication (see [1] for a recent survey) are among the most promis-
ing lines of research in the MAS field. Even outside MAS and CS, mediated interaction
and environment-based coordination are highly debated issues in those research fields
where collaborative and cooperative activities are studied in complex social contexts.
Notable examples are CSCW and HCI [2], which recently focused on cognitive and
social theories explicitly taking into account the role of environment in coordination—
such as Distributed Cognition [3] and Activity Theory (AT) [4]. There, one of the most
relevant issues is to understand what makes a good place for actors to work together out
of an environment: re-formulated in MAS terms, the question is how to design the agent
environment to suitably support social activities of a (possibly open) agent society.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 71–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 A. Omicini, A. Ricci, and M. Viroli

Adopting AT as a conceptual framework for MAS social activities has led to the
recognition that agents are not the only abstractions to build MASs. Artifacts are also
necessary to enable and constrain agent actions, to mediate their interactions with other
agents and with the environment, and more generally to improve their ability to achieve
their individual and social goals [5]. More specifically, coordination artifacts are so-
cial artifacts shared by agents in a MAS, which are meant to enable and govern the
interaction among agents, and between agents and their environment. Along this line,
coordination artifacts represent a straightfroward generalisation of the notion of coor-
dination medium as coming from fields like coordination models and languages and
distributed AI—including abstractions like tuple spaces, channels, blackboards and the
alike.

In this paper, we try to summarise the many results of our research on coordination
artifacts and their role in the engineering of MASs (multiagent systems), and provide
a comprehensive view of its many aspects and consequences, from MAS technologies
and infrastructure to agent-oriented software engineering (AOSE) methodologies.

2 Artifacts: The Theoretical Background

2.1 Activity Theory as a Conceptual Frameworks

Activity Theory (AT), also defined Cultural-Historical Activity Theory (CHAT), is a
social psychological theory born in the context of Soviet Psychology from the work of
Lev Vygotsky (1926–62), rooted in the dialectic materialism of Marx and Engels [6].
Originated as a part of the attempt to produce a Marxist Psychology, AT has been de-
veloped and evolved in the Soviet Union by Vygotsky’s students—Alexey Leontiev in
particular—for the first half of the 20th century. Then, in the second half it spread also
outside Soviet Union, first in Scandinavia and in Germany and then—at the end of the
1990s—in the United States. Nowadays it is widely applied also in the context of com-
puter science related fields, such as Computer Supported Cooperative Work (CSCW)
and Human Computer Interaction (HCI) (see [4] for a survey).

Broadly speaking, AT is a very general framework for conceptualising human
activities—how people learn, how society evolves—based on the concept of human
activity as the fundamental unit of analysis. The approach was developed in contrast
to the purely-cognitive approaches that were dominating the first years of the 20th
century: according to them, human individual and social activities could be analysed
and understood by merely focussing on the internal (mentalistic) representation of the
individuals—in other words, based only on the individual information-processing ca-
pabilities. By contrast, the basic inspiration principle of AT is the principle of unity and
inseparability of consciousness (human mind) and activity: human mind comes to exist,
develops, and can only be understood within the context of a meaningful, goal-oriented,
and socially determined interaction between human beings and their material environ-
ment. Interesting enough, this more or less sounds like the human-organisational ver-
sion of the notion of situated intelligence by Brooks [7], where intelligence cannot be
thought and conceived out of context, and interaction with the environment is proposed
as the main source for intelligent behaviour of artificial systems.

Coordination Artifacts as First-Class Abstractions for MAS Engineering 73

In fact, a fundamental aspect for AT is the interaction between the individuals and
the environment where they live, in other words their context. After an initial focus on
the activity of the individuals, AT research evolved toward the study of human collec-
tive work and social activities, then faced issues such as coordination and organisation
of activities in human society. In the context of MASs, the investigation of AT is of
particular relevance because it remarks the fundamental role of the environment in the
development of complex systems, and suggests how to shape the environment to make
it favourable to the development of collaborative activities.

According to AT, any activity carried on by one or more components of a systems—
individually or cooperatively—cannot be conceived or understood without considering
the tools or artifacts mediating the actions and interactions of the components. Arti-
facts on the one side mediate the interaction between individual components and their
environment (including the other components), on the other side embody the part of
the environment that can be designed and controlled to support components’ activi-
ties. Moreover, as an observable part of the environment, artifacts can be monitored
along with the development of the activities to evaluate overall system performance and
keep track of system history. In other words, mediating artifacts become first-class en-
tities for both the analysis and synthesis of individual as well as cooperative working
activities inside complex systems. Such a vision can be found also as a main aspect
in Distributed Cognition [3], a branch of cognitive science which proposes that hu-
man cognition and knowledge representations, rather than being soley confined to the
boundaries of an individual, is distributed across individuals, tools and artifacts in the
environment.

The complexity of activities of the social systems accounted for by AT and Dis-
tributed Cognition can be found nowadays in MASs. This is why we consider such
conceptual frameworks as fundamental for the analysis and synthesis of social activ-
ities inside MAS, and in particular of the artifacts mediating such activities [8]. Ex-
amples range from coordination abstractions such as tuple centres [9], to pheromone
infrastructure [10] in the context of stigmergy coordination, to the Institution abstrac-
tion in electronic-institution approaches [11], to cite some.

2.2 Goals of Agents and Use of Artifacts

Other contributions to the artifact theoretical background come from cognitive sciences.
In fact, by considering the conceptual framework described in [12], agents can be gener-
ally conceived as goal-governed or goal-oriented system. Goal-governed systems refer
to the strong notion of agency, i.e. agents with some forms of cognitive capabilities,
which make it possible to explicitly represent their goals, driving the selection of agent
actions. Goal-oriented systems refer to the weak notion of agency, i.e. agents whose
behaviour is directly designed and programmed to achieve some goal, which is not
explicitly represented. In both goal-governed and goal-oriented systems, goals are in-
ternal. External goals instead refer to goals which typically belong of the social context
or environment where the agents are situated. External goals are sorts of regulatory
states which condition agent behaviour: a goal-governed system follows external goals
by adjusting internal ones.

74 A. Omicini, A. Ricci, and M. Viroli

This basic picture is then completed by systems or parts of a system which are
not goal-oriented, but function-oriented, i.e. explicitly designed to provide some kind
of functionality and that can be suitably exploited or used by goal-oriented systems to
support their activities. Keeping the same nomenclature as appears in human science
theories—Activity Theory and Distributed Cognition in particular—we refer such en-
tities as artifacts. We define the artifact abstraction in MAS as a computational de-
vice populating agents’ environment, designed to provide some kind of function or
service, to be used by agents —either individually or collectively— to perform their
activities. Contrary to agents, artifacts are not characterised by internal goals or by
an autonomous behaviour, but in terms of a function1, and its exploitation by agents
through artifact use. If agents are often characterised by the intentional stance, ar-
tifacts are characterised by the design stance. It’s worth noting that the concept of
destination is related but not identical the concept of function: it is an external goal
which can be attached to an object or an artifact by users, in the act of using it.
Then an artifact can be used according to a destination which is different from its
function.

Artifacts can represent either the resources or objects that are directly the objective
of agent activities, or the tools that are used as a medium to achieve such objectives.
An example for the first case is a database or a knowledge repository in general, used
to store and retrieve information. A simple example for the second case is given by a
blackboard, used by agents as a tool to communicate and coordinate. Actually, this is
an example of coordination artifact, focus of next sections.

As remarked for artifacts in human societies [12], an interesting distinction holds
between use and use value, which concerns agents / artifacts relationships: there, use
value corresponds to the evaluation of artifact characteristics and function, in order to
select it for a (future) use. The distinction corresponds to two different kinds of ex-
ternal goals attached to an artifact: (i) the use-value goal, according to which the arti-
fact should allow user agents to achieve their objective—such an external goal drives
the agent selection of the artifact; (ii) the use goal, which directly corresponds to the
agent internal goal, which guides the actual usage of the artifact. From the agent view-
point, when an artifact is selected and used it has then a use-value goal which somehow
matches its internal goal.

By extending the above considerations, the classical tool-using / tool-making dis-
tinction from anthropology [13] can be articulated along three main distinct aspects,
which characterise the relationship between agents and artifacts:

– use
– selection
– construction and manipulation

While the first two aspects are clearly related to use and use value, respectively, the
third is the obvious rational consequence of a failure in the artifact selection process, or
in the use of a selected artifact. Then, a new, different artifact should be constructed, or
obtained by manipulation of an existing one.

1 The term “function” here refers to a functionality embodied by an artifact, and should not
be confused with the same term as used e.g. in mathematics or in programming languages.

Coordination Artifacts as First-Class Abstractions for MAS Engineering 75

2.3 Cognitive Use of Artifacts

Artifacts are available for agent use. So when intelligent agents are concerned, artifacts
should be available for cognitive use.

The strict relationship between intelligence and use of tools and artifacts is largely
debated by anthropologists, psychologists and cognitive scientists in general [14]. In the
field of robotics, this has led to the proposal of a “Tooling Test for Intelligence”, aimed
at evaluating intelligence in terms of the ability to exploit tools [15]. In the MAS field,
the same sorts of considerations have inspired the Agens Faber approach, based on the
idea that agent intelligence should not be considered as separated by the agent ability to
perceive and affect the environment—and so, that agent intelligence is strictly related
to the artifacts that enable, mediate and govern any agent (intelligent) activity [16].

One of the key issues here and in the Agens Faber approach is how artifacts can be
effectively exploited to improve agents’ ability to achieve individual as well as social
goals. The main questions to be answered are then: How should agents reason to use
artifacts in the best way, making their life simpler and their action more effective? How
can agents reason to select artifacts to use? How can agents reason to construct or adapt
artifact behaviour in order to fit their goals?

On the one hand, the simplest case concerns agents directly programmed to use spe-
cific artifacts, with usage protocols directly defined by the programmer either as part of
the procedural knowledge / plans of the agent for goal-governed systems, or as part of
agent behaviour in goal-oriented system. In spite of its simplicity, this case can bring
several advantages for MAS engineers, exploiting separation of concerns for program-
ming simpler agents, by charging some burden upon specifically-designed artifacts. On
the other hand, the intuition is that in the case of fully-open systems, the capability of
the artifact to describe itself, its function, interface, structure and behaviour could be the
key for building open MASs where intelligent agents dynamically look for and select
artifacts to use, and then exploit them for their own goals.

At a first glance, it seems possible to frame the agent ability to use artifacts in a
hierarchy, according to five different cognitive levels at which the agent can use an
artifact:

unaware use — at this level, both agents and agent designers exploit artifacts without
being aware of it: the artifact is used implicitly, since it is not denoted explicitly.
In other words, the representation of agent actions never refers explicitly to the
execution of operation on some kind of artifacts.

embedded / programmed use — at this level, agents use some artifacts according to
what has been explicitly programmed by the designer: so, the artifact selection
is explicitly made by the designer, and the knowledge about its use is implicitly
encoded by the designer in the agent. In the case of cognitive agents, for instance,
agent designers can specify usage protocols directly as part of the agent plan. From
the agent viewpoint, there is no need to understand explicitly artifact operating
instructions or function: the only requirement is that the agent model adopted could
be expressive enough to model in some way the execution of external actions and
the perception of external events.

cognitive use — at this level, the agent designer directly embeds in the agent knowl-
edge about what artifacts to use, but how to exploit the artifacts is dynamically

76 A. Omicini, A. Ricci, and M. Viroli

discovered by the agent, reading the operating instructions. Artifact selection is still
a designer affair, while how to use it is delegated to the agent rational capabilities.
So, generally speaking the agent must be able to discover the artifact function, and
the way to use it and to make it fit the agent goals. An obvious way to enable agent
discovery is to make artifact explicitly represent their function, interface, structure
and behaviour.

cognitive selection and use — at this level, agents autonomously select artifacts to
use, understand how to make them work, and then use them: as a result, both arti-
fact selection and use are in the hands of the agents. It is worth noting that such a
selection process could also concern sets of cooperative agents, for instance inter-
ested in using a coordination artifact for their social activities.

construction and manipulation — at this level, agents are lifted up to the role of de-
signers of artifacts. Here, agents are supposed to understand how artifacts work,
and how to adapt their behaviour (or to build new ones from scratch) in order to
devise out a better course of actions toward the agent goals. For its complexity, this
level more often concerns humans: however, not-so-complex agents can be adopted
to change artifact behaviour according to some schema explicitly pre-defined by the
agent designers.

To enable such scenarios, proper models, theories and then supporting frameworks and
infrastructures are needed, making artifacts first-class entities from design to runtime.

2.4 A Basic Model of Artifacts in MAS

By focussing on the essence and purposes of the artifact abstraction in MAS, a basic
abstract model has been identified [17], useful in particular to enable its rational ex-
ploitation by intelligent agents [18]. According to such a model, an artifact for MAS
possibly exposes (i) a usage interface, (ii) operating instructions, and (iii) a function
description. On the one hand, this view of artifacts provides us with a powerful key for
the interpretation of the properties and features of existing non-agent MAS abstractions,
which can be then catalogued and compared based on some common criteria. On the
other hand, it is also meant to foster the conceptual grounding for a principled method-
ology for the engineering of MAS environment, where artifacts play the role of the core
abstractions.

Usage Interface — One of the core differences between artifacts and agents, as com-
putational entities populating a MAS, lays in the concept of operation, which is
the means by which an artifact provides for a service or function. An agent exe-
cutes an action over an artifact by invoking an artifact operation. Execution possi-
bly terminates with an operation completion, typically representing the outcome of
the invocation, which the agent comes to be aware of in terms of perception. The
set of operations provided by an artifact defines what is called its usage interface,
which (intentionally) resembles interfaces of services, components or objects—in
the object-oriented acceptation of the term.

In MASs, this interaction schema is peculiar to artifacts, and makes them in-
trinsically different from agents. While an agent has no interface, acts and senses
the environment, encapsulates its control, and brings about its goals proactively

Coordination Artifacts as First-Class Abstractions for MAS Engineering 77

and autonomously, an artifact has instead a usage interface, is used by agents (and
never the opposite), is driven by their control, and automatises a specific service in
a predictable way without the blessing of autonomy. Hence, owning an interface
strongly clearly differentiates agents and artifacts, and is therefore to be used by
the MAS engineer as a basic discriminative property between them.

Operating Instructions — Coupled with a usage interface, an artifact could provide
agents with operating instructions. Operating instructions are a description of the
procedure an agent has to follow to meaningfully interact with an artifact over time.
In other words, they are a description of the possible usage protocols, i.e. sequences
of operations that can be invoked on the artifact, in order to exploit its function.
Besides a syntactic information, they can embed also some kind of semantic infor-
mation that rational agents can eventually understand and exploit in their reasoning
processes, to enable and promote the cognitive use of the artifact.

So artifacts being conceptually similar to devices used by humans, operation
instructions play a role similar to a manual, which a human reads to know how to
use the device on a step-by-step basis, and depending on the expected outcomes
he/she needs to achieve. For instance, a digital camera provides buttons and panels
(representing its usage interface), and therefore comes with a manual describing
how to use them—e.g. which sequence of buttons are to be pushed to suitably
configure the camera resolution.

Function Description — Finally, an artifact could be characterised by a function de-
scription (or service description). This is a description of the functionality provided
by the artifact, which agents can use essentially for artifact selection. In fact, dif-
ferently from operating instructions, which describes how to exploit an artifact,
function description describes what to obtain from an artifact. Clearly, function de-
scription is an abstraction over the actual implementation of the artifact: it hides
inessential details over the implementation of the service while highlighting key
functional (input/output) aspects of it, to be used by agents for artifact selection.
For instance, when modelling a sensor wrapper as an artifact, we may easily think
of the operations for sensor activation and inspection as described via usage inter-
face and operations instructions, while the information about the sensory function
itself being conveyed through function description of the sensor wrapper.

Defining a suitable formal description of function description and operating instructions
is the first step toward the definition of formal theories about the rational selection
and use of artifacts by intelligent agents, impacting on their reasoning (deliberation,
planning) activities. First investigations about this aspect—focussing in particular on
operating instructions—can be found in [18].

3 Coordination Artifacts

Coordination artifacts are artifacts designed to provide some kind of coordination func-
tionalities, and so exhibiting a coordinating behaviour. As a special case of artifacts
for MAS, coordination artifacts are of particular interest in the context of agent so-
cieties, where they are usually exploited to achieve or maintain a global behaviour

78 A. Omicini, A. Ricci, and M. Viroli

which is coherent with the society’s social goal [17,19]. As such, a coordination ar-
tifact is an essential abstraction for building social activities, in that it is crucial both
for enabling and mediating agent interaction, and for governing the social activities by
ruling the space of agent interaction. Examples range from artifacts for concurrency
management—such as semaphores, synchronisers, barriers, etc.—, to artifacts for com-
munication management—such as blackboards, event services—, up to artifacts with
articulated behaviours, such as workflow engines or auction engines.

So, coordination artifacts generalise the common notion of coordination medium as
coming from the field of coordination models and languages [20]: simply put, coordina-
tion artifacts are the artifacts for MAS encapsulating the activity of MAS coordination.
As such, they are the main tool for engineering the space of agent interaction, taking
care of issues like concurrency, synchronisation, sharing of resources, and the like.

3.1 Basic Properties of Coordination Artifacts

Among the specific properties characterising coordination artifacts as artifacts with spe-
cific coordination functionality, we can list the following:

Focus on interaction management — Coordination artifacts are specialised in automat-
ing coordination activities. For this purpose, they typically adopt a computational
model suitable for effective and efficient interaction management, whose semantics
can be easily expressed with concurrency frameworks, such as process algebras or
Petri nets.

Encapsulating coordination — Coordination artifacts encapsulate a coordination ser-
vice, allowing user agents to abstract from how the service is implemented [21].
As such, a coordination artifact is perceived as an individual entity, but it can be
actually distributed on different nodes of the MAS infrastructure, depending on
its specific model and implementation. Encapsulation is the key to achieve reuse
of coordination. MAS engineers can create and exploit handbooks or catalogues of
coordination artifacts, embodying the solutions to general coordination problems in
organisations, analogously to an handbook of organisation / coordination processes
[22]. Finally, a coordination artifact provides a certain quality of coordination, in
particular in terms of the scalability with respect to the dimensions identified by
Durfee in [23], which are related to performance, robustness, reliability, and so on.
The description of such dimensions is important to identify the range of applicabil-
ity of the artifact in the engineering of agent societies.

Changing coordination activities at run-time — Coordination artifacts are meant to
support coordination in open agent systems, characterised by unpredictable events
and dynamism. For this purpose, they have to support a specific form of artifact mal-
leability: they should allow their coordinating behaviour to be adapted and changed
dynamically. Changes of the coordination activities can in principle be made either
(i) by engineers (humans) willing to sustain the MAS behaviour, or (ii) by agents
responsible of managing the coordination artifact, with the goal of flexibly facing
possible coordination breakdowns or improving the coordination service provided.

Observing and controlling the coordination activities — A coordination artifact
typically supports different level of artifact inspectability: (i) inspectability of its
operating instructions and coordinating behaviour specification, aimed at letting

Coordination Artifacts as First-Class Abstractions for MAS Engineering 79

user agents to be aware of how to use it or what coordination service it provides; (ii)
inspectability of its dynamic state and coordinating behaviour, aimed at supporting
the testing and diagnosing (debugging) stages for the engineers and agents respon-
sible of its management. Controllability is also fundamental for runtime manage-
ment of a coordination artifact, by making it possible to freeze its working cycle, to
trace it supporting step-by-step execution while watching its state, to restart it, and
so on. So, from an operational viewpoint, a coordination artifact can be understood
as a sort of virtual machine of coordination, executing some form of coordination
specification, fully inspectable and controllable by artifact administrators [9].

Summing up, coordination artifacts are conceived to be engineering abstractions used
for designing, building and supporting at runtime coordination in agent societies, suit-
ably instrumenting their dynamic working environment. Also, they can be useful to sup-
port forms of scientific investigation of collective behaviours, since they encapsulate,
enforce and possibly make inspectable and modifiable the(coordination) laws regulating
the behaviour of agent societies. As mediating entities, coordination artifacts typically
reify and manage agent communication events; accordingly, they can be used to trace
and log the overall interaction behaviour of the agent societies exploiting them. Thus,
they can also act as kinds of social memory, which can then be inspected for possible
scientific analysis about global behaviours.

3.2 Engineering Social Activities with Coordination Artifacts

The introduction of coordination artifacts impacts on the methodology adopted for en-
gineering social activities in agent societies. Taking inspiration from Activity Theory,
we can identify three different stages characterising any social activities supported by
coordination artifact (see Fig. 1):

Co-construction — In this stage, society engineers understand and reason about the
social objectives of the society, and define a model of the social tasks required to
achieve them. This implies understanding the shape of the agent interaction space,
by also identifying the dependencies that need to be managed (dependency detec-
tion is a fundamental aspect of coordination, according to the theory of coordination
[24] and to cognitive theories of agent societies [25]).

Co-operation — In this stage, society engineers—and possibly intelligent agents—
design and build the coordination artifacts according to the objective identified in
the previous stage (co-construction). This implies understanding how to manage the
dependencies previously identified, and defining a coordinating behaviour useful
for that purpose. A model of coordination artifact must be chosen, according to its
ability of embedding and enacting such a coordinating behaviour.

Co-ordination — In this stage, coordination artifacts are exploited, supporting the
execution of the social activity. Here, the focus is on the efficient execution and
automation of the coordination activities.

A parallel can be drawn between the three collaborative stages listed above (and de-
picted in Fig. 1) and the engineering stages as typically found in (agent-oriented) soft-
ware engineering methodologies, i.e., analysis, design, development and deployment /
runtime. Generally speaking, individual and social tasks are identified and described

80 A. Omicini, A. Ricci, and M. Viroli

Fig. 1. Levels of a social activities

in the analysis and design stages of such methodologies. Each individual task is typi-
cally associated with one specific competence of the system. Each agent in the system
is assigned to one or more individual tasks, and assumes full responsibility for their
correct and timely completion. From an organisational perspective, this corresponds to
assigning each agent a specific role in the organisation. Conversely, social tasks rep-
resent the global responsibilities of the agent system. In order to carry out such tasks,
several possibly heterogeneous competences usually need to be combined. The design
of social tasks leads to the identification of global social laws that have to be respected
/ enforced by the society of agents, to enable the society itself to function properly and
in accordance with the expected global behaviour.

Given this picture, it is possible to identify a correspondence between the analysis
stage (where individual and social tasks are identified) and the co-construction level,
where the social objectives of the activities are shaped. Then, the identification of the
social laws required to achieve the social tasks can be seen as a first step in the co-
operation level. This level roughly corresponds to the design and development stages
of the engineering process: coordination artifacts are the abstractions making it pos-
sible to design and develop social tasks. At the co-operation level such artifacts are
designed and developed to embody and enact—as governing abstractions provided by
the infrastructure—the social laws and norms previously identified. Finally, the deploy-
ment and execution stages correspond to the co-ordination level, when the coordination
artifacts are instantiated and exploited.

The dynamism among the levels, compared here to the engineering stages of a sys-
tem, promote a new approach to the engineering of MASs that has been called on-
line engineering: coordination artifacts can be analysed, tested, debugged, manipulated,
adapted, and re-designed dynamically at runtime—and whole MASs along with them.
In order to support online-engineering methodologies, at least two aspects are essen-
tial: first, working with abstractions featuring suitable properties such as inspectability,
controllability and malleability, which are necessary for their online analysis and syn-
thesis; second, designing and building infrastructures that support services enabling,
access and exploitation (co-ordination stage), and tools for their inspection, control,
adaptation (co-operation stage).

Coordination Artifacts as First-Class Abstractions for MAS Engineering 81

4 Infrastructures as Providers of Coordination Artifacts

4.1 Keeping Abstractions Alive: The Role of Infrastructures

As virtual machines of coordination, coordination artifacts are more typically provided
at the MAS infrastructure level rather than at the MAS application level. According to
that, infrastructures should provide MAS with suitable artifacts, but also with the ser-
vices for their access and use, effectively supporting the co-operation and co-ordination
levels and the reflection / reification transitions (see Fig. 1). Services may range from
artifacts creation and discovery to inspection and dynamic forgeability of their state and
coordinating behaviour.

Given their role of rulers of agent interaction, coordination artifacts can be seen as
fundamental abstractions for governing infrastructures [26], i.e. infrastructure providing
flexible and robust abstractions to model and shape the agent interaction space, in accor-
dance with the social and normative objectives of systems. As illustrated for instance by
the SODA methodology [27], coordination abstractions provided by a MAS infrastruc-
ture should represent the runtime embodiment of the same analysis / design abstractions
used since the early stages of the MAS engineering process. Keeping abstractions alive
along the whole engineering process is in fact essential to support advanced practices
like online engineering: there is no viable way to evolve a system online when the
design abstractions are no longer in place in the runtime. Here, then, infrastructures
play a key role: they should provide MAS engineers with the same coordination arti-
fact abstractions used in the analysis / design phases, as well as the tools to for their
off-line / online development, deployment, monitoring and debugging.

Infrastructures also represent an effective approach to the general issue of formal-
isability of complex systems, which may come from either pragmatical or theoreti-
cal problems. By their very nature, infrastructures intrinsically encapsulate key por-
tions of systems—often in charge of the critical system behaviour. In the context of
MASs, governing infrastructure encapsulate agent interaction and coordination through
coordination artifacts. As a result, providing well-specified infrastructures, and in
particular formally-defined coordination artifacts, promotes the discovery and proof of
critical system properties. Most notably, a system property can be assessed at design-
time through the formal definition of some design abstraction. Then, by ensuring com-
pliance of the corresponding run-time abstraction provided by the infrastructure, such a
property can be enforced at execution time and be automatically verified for any system
based on the infrastructure.

4.2 The TuCSoN Coordination Infrastructure

As a concrete example of a model / infrastructure bringing some of the main prin-
ciples that characterise the coordination artifact framework, here we consider the
TuCSoN coordination infrastructure for MASs [28]2. TuCSoN enables agent inter-
action and coordination by means of tuple centres, working as a sort of coordination ar-
tifacts. Technically, TuCSoN tuple centres are programmable tuple spaces—reactive,

2 The TuCSoN technology can be downloaded at TuCSoN website http://
tucson.sourceforge.net

82 A. Omicini, A. Ricci, and M. Viroli

Fig. 2. A logical view of TuCSoN infrastructure

logic-based blackboards that agents associatively access by writing, reading, and con-
suming logic tuples (ordered collections of heterogeneous information chunks rep-
resented as first-order logic atoms) via simple communication operations (out, rd,
in, inp, rdp) [9]. While the behaviour of a tuple space in response to communica-
tion events is fixed, the behaviour of a tuple centre can be tailored to the appli-
cation needs by defining a set of specification tuples expressed in the ReSpecT
language, which define how a tuple centre should react to incoming / outgoing com-
munication events. So, unlike tuple spaces, tuple centres can be programmed with
reactions so as to encapsulate coordination laws directly in the coordination media.
From the topology point of view, tuple centres are collected in infrastructure nodes,
distributed over the network, organised into articulated domains (see Fig. 2 for a logical
view).

So, tuple centres can be conceived as general-purpose coordination artifacts, which
can be dynamically inspected and forged (programmed, tuned) to entail a specific co-
ordinating behaviour. Generally speaking, tuple centres exhibit the properties that char-
acterise coordination artifacts: they provide different levels of inspectability—both the
communication and the coordination state can be inspected at runtime—, different lev-
els of malleability and controllability—both by changing dynamically their coordinat-
ing behaviour and by controlling its execution by means of suitable infrastructure tools
[29]. Also, we can identify the basic elements that characterise the abstract model of
coordination artifacts: the usage interface is composed by the basic coordination primi-
tives plus the primitives to inspect and change tuple centre behaviour. The coordinating
behaviour specification is given by the ReSpecT specification. The notion of operating
instructions is not directly supported in tuple centres, even if the ReSpecT specifica-
tion tuples implicitly contain a description of how to exploit the tuple centre in order to
obtain the coordinating service.

4.3 Examples of Coordination Artifacts in TuCSoN

Coordination artifacts can be considered as units of reuse for engineering cooperative
working environments: as agents encapsulate skills and competences concerning the
execution of some task, the achievement of some goal or the solution of some problem,
coordination artifacts encapsulate strategies, knowledge and experiences for construct-
ing and ruling social activities.

Coordination Artifacts as First-Class Abstractions for MAS Engineering 83

In the following we describe some types of coordination artifacts commonly used
in the engineering of systems, implemented on top of TuCSoN. The properties of in-
spectability, controllability and malleability of tuple centres should be considered in the
background of all the examples: they are the key to conceive scenarios where the coop-
erative working environment can be analysed and improved at runtime, by inspecting
and adapting the coordinating behaviour of its coordination artifacts.

Coordination artifacts for communication. A common form of coordination artifacts
is used to provide communication services, enabling the exchange of information among
agents in open and dynamic contexts which require a certain level of uncoupling among
the participants. In particular, coordination artifacts can be adopted to support commu-
nication even if participants do know each other (identity uncoplying), if they are not
simultaneously taking part to the interaction (temporal uncoupling), if they do not belong
to the same spatial context or they ignore their mutual position (spatial uncoupling).

mailbox

msg(X)

SENDER

RECEIVER

reaction(out(msg(X),...)
reaction(inp(last_msg(M),...)
...

SENDER

msg(Y)

SENDER
msg(Z)

last_msg(M)

msg(1,X)

msg(3,Z)

msg(2,Y)

num_messages(3)

first_msg_index(0)

last_msg_index(3)

reaction(out(msg(M)),(
in r(msg(M)),
in r(num messages(N)), N1 is N + 1, out r(num messages(N1)),
in r(last msg index(I)), I1 is I + 1, out r(last msg index(I1)),
out r(msg(I1,M)))).

reaction(inp(last msg(M)),(pre,
in r(first msg index(I)), rd r(last msg index(N)), I < N,
I1 is I + 1, out r(first msg index(I1)),
in r(msg(I1,M)), out r(last msg(M)))).

reaction(inp(last msg(M)),(post, success,
in r(num messages(N)),N1 is N - 1,out r(num messages(N1)))).

Fig. 3. Mailbox tuple centre (Top) and its coordinating behaviour in ReSpecT (Bottom)

84 A. Omicini, A. Ricci, and M. Viroli

A mailbox for instance can be adopted as an artifact supporting temporal and spatial
uncoupling among multiple senders and typically a single receiver, with some kind of
policy – e.g. FIFO – for storing and accessing the messages. Fig. 3 shows a tuple cen-
tre – called mailbox – instrumented to provide the services of a mailbox. The usage
interface accounts for an operation to insert new messages (by inserting a msg tuple),
to retrieve last message (by retrieving the tuple last msg), and to read the number
of messages available (by reading the tuple num messages). The tuple centre is pro-
grammed so as to realise a FIFO policy for managing messages: the ReSpecT specifi-
cation defining tuple centre behaviour (shown in Fig. 3) basically indexes the messages
as soon as they are inserted in the mailbox, keeping track of the index of the first and
last message, and then using it to get last one on request. This policy could be adapted
dynamically according to the need, for instance adopting a strategy based on priorities
or establishing a maximum number of messages which can be stored in the mailbox.

Blackboards are another kind of well-known coordination artifacts, as shared spaces
of evolving knowledge where participants insert and access / retrieve information as-
sociatively. With respect to the original model developed in the context of DAI [30],
here control is distributed and encapsulated within agents, while the blackboard can
be programmed to have a reactive behaviour to manipulate knowledge according to
social rules shared and acknowledged by the agents. Tuple centres directly map the
notion of blackboard: the coordination primitives are meta-predicates to insert, inspect
and retrieve knowledge in terms of logic tuples, forming a theory of communication.
ReSpecT specification tuples represent the reactive rules which manipulate the theory
of communication as a theory of coordination.

Coordination artifacts for knowledge mediation. Coordination artifacts can be ex-
ploited to entail automated forms of knowledge mediation for managing heterogeneity
in open environments. As an example, we consider a tuple centre mediating the inter-
action between agents providing some services or information, and agents looking for
such services or related. As an abstract case, we suppose that an agent A needs to know
information pq(X,Y). According to some social knowledge – which is unknown to
agent A – the information can be constructed by aggregating knowledge represented by
tuple p(X) and q(Y), provided by other agents working as knowledge sources. The
tuple centre can be suitably programmed then to act as knowledge mediator, applying
the rules to construct the information pq from p and q:

reaction(rdp(pq(X,Y)), (
pre, rd_r(p(X)), rd_r(q(Y)), out_r(pq(X,Y)))).

reaction(rdp(pq(X,Y)), (
post, in_r(pq(X,Y)))).

Whenever a request for reading information pq is executed, the information is con-
structed dynamically by reading the content of the tuples p and q and inserted as a new
pq tuple in the tuple set to satisfy the request. The request fails if the information cannot
be constructed, because of the absence of p or q.

Coordination artifacts for resource sharing. Resource and task sharing are among
the most common coordination problems in distributed and concurent systems. A
working environment can be instrumented with coordination artifacts (tuple centres)

Coordination Artifacts as First-Class Abstractions for MAS Engineering 85

designed and programmed to provide some form of access policy in task or resource
access, embodying mechanisms and synchronisation strategies well-known in concur-
rent systems, such as semaphores, synchronisation barries, monitors, etc.

As a simple example, we consider here a tuple centre used to act as a semaphore.
The P operation provided by a semaphore used to request and obtain access to the
resource can be realised by means on an in(sem) operation, i.e. retrieving a tuple
sem from the tuple centre; dually, the V operation used to manifest the release of the
resource can be realised by inserting back the tuple in the tuple set, by means of an
out(sem). To obtain the coordinating behaviour of a semaphore it is not necessary
to program the tuple centre, since the basic form of synchronisation directly provided
by the in and out coordination primitives is sufficient for the purpose. Programming the
tuple centre would instead be needed to obtain a more articulated and robust solution,
for instance allowing multiple agents to acquire the semaphore simultaneously.

Coordination artifacts for workflow management. Workflow management concerns
the automated integration and coordination of heterogeneous and independent activities
involved in the same global business process. Among the others it includes activity
scheduling and synchronisation, information and control flow management, exception
management, and so on. Currently, in the context of service-oriented architectures – in
particular Web Services – workflow management is also called orchestration [31].

Typically, special purpose languages – XPDL, BPEL are examples – can be used
to define the workflow specification; their specification is executed by the workflow
engine, the core component of Workflow Management Systems. A workflow engine –
also called orchestration engine – can be framed here as a general purpose coordination

scheduler

task_result(taskA,X)

task_result(taskB,Y)

AGENT A

(in charge of task A)

AGENT B

(in charge of task B)

AGENT C

(in charge
of task C)

task_todo(taskC,
 args(X,Y))

reaction(out(task_result(taskA,X),(
 in_r(task_result(taskA,X)),
 in_r(task_result(taskB,Y)),
 out_r(task_todo(taskC,args(X,Y))))).

reaction(out(task_result(taskB,Y),(
 in_r(task_result(taskB,Y)),
 in_r(task_result(taskA,X)),
 out_r(task_todo(taskC,args(X,Y))))).

Fig. 4. Scheduler tuple centre

86 A. Omicini, A. Ricci, and M. Viroli

artifact, which is dynamically programmed to enact a coordinating behaviour according
to the workflow specification.

In the context of MASs, a tuple centre then can be programmed to provide the
services from a simple task scheduler up to a full-fledged general purpose workflow
engine. As an example, here we consider the realisation of a simple scheduler of three
activities – A, B and C – coordinated according a join pattern: task C can only start
when both tasks A and B have been completed. Tasks are executed by independent
agents, typically unaware of the global workflow and focussed on the achievement of
their specific job. The tuple centre scheduler shown in Fig. 4 is an example of a
coordination artifact providing such a scheduling service. The operation of the usage
interface can be:

– in(task todo(+TaskName,-TaskInfo)), for taking in charge the execu-
tion of a task. The presence of a tuple task todo manifests the fact that a specific
task has to be done, according to current workflow.

– out(task result(+TaskName,+TaskResult)), for communicating the
result of the execution of a task, signaling its completion.

In the example, TaskName can be taskA, taskB or taskC. The operating instruc-
tions of this coordination artifact to be followed by agents in charge of task execu-
tion would consist first in getting information about task, then in providing the result.
Fig. 4 shows also the ReSpecT specification realising the scheduling behaviour: basi-
cally, a suitable task todo tuple is automatically generated in the tuple set as soon as
the results of the execution of both tasks A and B are available.

In [32] the architecture of a workflow management system based on TuCSoN is
described, with tuple centres used as general purpose workflow engines.

5 Related Work

The coordination artifact framework discussed in this paper has been mostly inspired
on the one side directly by Activity Theory studies, and on the other side by the re-
search work developed in the context of coordination models, languages and architec-
tures, developed mainly in the field of concurrent systems [20]. In particular the notion
of coordination artifact is strictly related to the programmable coordination medium
abstraction defined in [33], on which the tuple centre model is based. According to
the frequently adopted meta-model described in [34], a coordination model can be
described by identifying the coordinables—the entities participating to coordination
activities—, and the coordination media—the entities enabling and managing agent
communication according to some coordination laws defining the semantics of the co-
ordination activities. Programmable coordination media extend the basic notion of coor-
dination medium by making its behaviour programmable with some specific language,
so as to flexibly specify the coordination rules according to the need. So, program-
mable coordination media share some properties which characterise coordination arti-
facts, such as encapsulation of coordination and malleability of the behaviour. Instead,
differently from programmable coordination media and coordination media in general,
coordination artifacts do not manage necessarily communication among agents, but—
more generally—interactions caused by the execution of operations provided by the

Coordination Artifacts as First-Class Abstractions for MAS Engineering 87

usage interface. Also, the coordination artifact framework introduces some structural
properties—such as operating instructions—which are new with respect to the classic
coordination meta-model, and which are indeed important in the context of open agent
societies.

The design and exploitation of cooperative working environment and related in-
frastructures for supporting coordination activities are central themes in the context of
CSCW [2]. Here, the expressiveness and effectiveness of coordination through mech-
anisms mediating human interaction have been clearly remarked, and related models,
languages and infrastructures have been developed [35,36]. Coordination artifacts fea-
ture some of the basic properties of coordinative artifacts defined in such contexts [2]—
in particular the properties concerning malleability and linkability—, contextualising
and extending them for the MAS context. Operating instructions, for instance, are part
of the extension.

Finally, the coordination artifact framework can be exploited as an analytical tool
for describing existing coordination approaches based on some form of mediated in-
teraction and environment-based coordination. For instance, the environment provided
by the pheromone infrastructure in [10] supporting stigmergy coordination can be in-
terpreted as a coordination artifact exploited by ants to coordinate: as such, it provides
operations for depositing and sensing pheromones, and the coordinating behaviour is
given by the environmental laws ruling the diffusion, aggregation and evaporation of
pheromones. Also some coordination and organisation approaches developed in the
context of intelligent / cognitive agents can be framed in terms of artifacts. A main ex-
ample is is given by electronic institutions ([11] is an example), where agent societies
live upon an infrastructure (middleware) which governs agent interaction according to
the norms established for the specific organisation, representing both organisation and
coordination rules. The institution then can be framed as a kind of shared artifact, char-
acterised by an interface with operations that agents use to communicate, and providing
a normative function on the overall set of agents.

6 Conclusion and Future Work

Along with agents, artifacts constitute the basic building blocks both for MAS analysis
and modelling, and for MAS development and actual construction—i.e., real first-class
abstractions available to engineers throughout MAS design and development process,
down to run-time. Artifacts are objects explicitly designed to provide some function,
which guides their use. Typically, artifacts take the form of objects or tools that agents
share and use to support their activities, and to achieve their (individual and social) ob-
jectives. By adopting a cognitive perspective over systems [37], agents are the entities
of a system that are characterised by some goals to be pursued, whereas artifacts are the
entities that are not intrinsically characterised by a goal (they are not goal-oriented). In-
stead, artifacts are characterised by the concept of use, where an agent using an artifact
for its own goals implicitly (and temporarily) associates an external goal to the artifact
itself. So, agents and artifacts can be assumed as the two fundamental abstractions re-
quired to model and shape the structure of MASs: a MAS is made by agents speaking
with other agents and using artifacts in order to achieve their goals.

88 A. Omicini, A. Ricci, and M. Viroli

Coordination artifacts are a case of particular interest in the context of agent soci-
eties, where they are usually exploited to achieve or maintain a global behaviour which
is coherent with the society’s social goal [17,19]. As such, a coordination artifact is an
essential abstraction for building social activities, in that it is crucial both for enabling
and mediating agent interaction, and for governing the social activities by ruling the
space of agent interaction.

In this paper, we summarised the main lines of the research about coordination
artifacts, by trying to provide the reader with a coherent perspective of a number of
different views and related results. Many developments still lay before us: to list just
some, the full formalisation of the artifact model, the complete definition of an AOSE
(agent-oriented software engineering) methodology exploiting the artifact abstraction
—first investigations about this point can be found in [38]—, the construction of a
well-structured and comprehensive taxonomy working both as a criterion for artifact
classification and as a foundation for a well-principled methodology, the precise char-
acterisation of the specific notion and role of coordination artifact, the development of
an infrastructure fully exploiting the power of coordination artifacts. Along these lines,
we expect MAS models and technologies to progress to a great extent in the next years.

References

1. Weyns, D., Parunak, H.V.D., Michel, F., eds.: Environments for MultiAgent Systems. Vol-
ume 3374 of LNAI. Springer-Verlag (2005) 1st International Workshop (E4MAS 2004),
New York, NY, USA, 19 July 2004. Revised Selected Papers.

2. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foundation of
CSCW systems design. International Journal of Computer Supported Cooperative Work
(CSCW) 5 (1996) 155–200

3. Kirsh, D.: Distributed cognition, coordination and environment design. In: European con-
ference on Cognitive Science. (1999) 1–11

4. Nardi, B.A., ed.: Context and Consciousness: Activity Theory and Human-Computer Inter-
action. MIT Press (1996)

5. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In Bordini, R.P., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A., eds.: 3rd International Workshop “Programming
Multi-Agent Systems” (PROMAS 2005), AAMAS 2005, Utrecht, The Netherlands (2005)
163–178

6. Vygotsky, L.S.: Mind and Society. Harvard University Press (1978)
7. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47 (1991) 139–159
8. Ricci, A., Omicini, A., Denti, E.: Activity Theory as a framework for MAS coordination. In

Petta, P., Tolksdorf, R., Zambonelli, F., eds.: Engineering Societies in the Agents World III.
Volume 2577 of LNCS. Springer-Verlag (2003) 96–110 3rd International Workshop (ESAW
2002), Madrid, Spain, 16–17 September 2002. Revised Papers.

9. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41 (2001) 277–294

10. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for coordination
of unmanned vehicles. In: 1st International Joint Conference on Autonomous Agents and
Multiagent Systems AAMAS’02, ACM Press (2002) 449–450

11. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based mid-
dleware for electronic institutions. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M.,
eds.: 3rd international Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004). Volume 1. New York, USA, ACM (2004) 236–243

Coordination Artifacts as First-Class Abstractions for MAS Engineering 89

12. Conte, R., Castelfranchi, C., eds.: Cognitive and Social Action. University College London
(1995)

13. Gibson, K.R., Ingold, T., eds.: Tools, Language & Cognition in Human Evolution. Cam-
bridge University Press (1993)

14. Hewes, G.W.: A history of speculation on the relation between tools and languages. [13]
20–31

15. Wood, A.B., Horton, T.E., Amant, R.S.: Effective tool use in a habile agent. In Bass, E.J.,
ed.: 2005 IEEE Systems and Information Engineering Design Symposium (SEADS 2005),
Charlottesville, VA, USA, IEEE (2005) 75–81

16. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artifacts for MAS.
Electronic Notes in Theoretical Computer Sciences (2005) 1st International Workshop “Co-
ordination and Organization” (CoOrg 2005), COORDINATION 2005, Namur, Belgium,
22 April 2005. Proceedings.

17. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In Jennings, N.R., Sierra, C., So-
nenberg, L., Tambe, M., eds.: 3rd international Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004). Volume 1. New York, NY, USA, ACM (2004)
286–293

18. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction. In Jen-
nings, N.R., Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1. New York,
USA, ACM (2004) 286–293

19. Ricci, A., Viroli, M., Omicini, A.: Environment-based coordination through coordination ar-
tifacts. In Weyns, D., Parunak, H.V.D., Michel, F., eds.: Environments for Multi-Agent Sys-
tems. Volume 3374 of LNAI. Springer (2005) 190–214 1st International Workshop (E4MAS
2004), New York, NY, USA, July 2004, Revised Selected Papers.

20. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Advances in Computers
46 (1998) 329–400

21. Viroli, M., Omicini, A.: Coordination as a service: Ontological and formal foundation. Elec-
tronic Notes in Theoretical Computer Science 68 (2003) 457–482 1st International Workshop
“Foundations of Coordination Languages and Software Architecture” (FOCLASA 2002),
Brno, Czech Republic, 24 August 2002. Proceedings.

22. Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J.,
Osborn, C.S., Bernstein, A., Herman, G., Klein, M., O’Donnell, E.: Tools for inventing
organizations: Toward a handbook of organizational processes. Management Science 45
(1999) 425–443

23. Durfee, E.H.: Scaling up agent coordination strategies. IEEE Computer 34 (2001)
24. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing

Surveys 26 (1994) 87–119
25. Conte, R., Castelfranchi, C.: Cognitive and Social Action. University College London (1995)
26. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineering of

agent systems. In Klusch, M., Bergamaschi, S., Edwards, P., Petta, P., eds.: Intelligent Infor-
mation Agents: An AgentLink Perspective. Volume 2586 of LNAI: State-of-the-Art Survey.
Springer (2003) 179–202

27. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented Software Engineering.
Volume 1957 of LNCS., Springer (2001) 185–193

28. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Au-
tonomous Agents and Multi-Agent Systems 2 (1999) 251–269

90 A. Omicini, A. Ricci, and M. Viroli

29. Denti, E., Omicini, A., Ricci, A.: Coordination tools for MAS development and deployment.
Applied Artificial Intelligence 16 (2002) 721–752 Special Issue: Engineering Agent Systems
– Best of “From Agent Theory to Agent Implementation (AT2AI-3)”.

30. Corkill, D.D.: Blackboard systems. Journal of AI Expert 9 (1991) 40–47
31. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36 (2003) 46–52
32. Ricci, A., Omicini, A., Denti, E.: Virtual enterprises and workflow management as agent

coordination issues. International Journal of Cooperative Information Systems 11 (2002)
355–380 Cooperative Information Agents: Best Papers of CIA 2001.

33. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In Garlan, D.,
Le Métayer, D., eds.: Coordination Languages and Models – Proceedings of the 2nd Inter-
national Conference (COORDINATION’97). Volume 1282 of LNCS. Berlin (D), Springer-
Verlag (1997) 274–288

34. Ciancarini, P.: Coordination models and languages as software integrators. ACM Computing
Surveys 28 (1996) 300–302

35. Cortes, M.: A coordination language for building collaborative applications. International
Journal of Computer Supported Cooperative Work (CSCW) 9 (2000) 5–31

36. Agostini, A., De Michelis, G., Grasso, M.A.: Rethinking CSCW systems: The architecture of
MILANO. In Hughes, J.A., Prinz, W., Rodden, T., Schmidt, K., eds.: 5th European Confer-
ence on Computer Supported Cooperative Work (ECSCW’97), Kluwer Academic Publishers
(1997) 33–48

37. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press Limited, University
College London, Gower Street, London, UK (1995)

38. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems. In: 6th Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE 2005), AAMAS 2005,
Utrecht, The Netherlands (2005)

Analysis and Design of Physical and Social Contexts
in Multi-agent Systems�

Florian Klein�� and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

fklein@upb.de, hg@upb.de

Abstract. The multi-agent paradigm promises to provide systems with the abil-
ity to adapt to changing external contexts. In this paper, we propose an approach
for the model-driven design of context-aware multi-agent systems. We provide a
classification for differentiating between different aspects of context and present
a specification technique for modeling these aspects. We finally discuss the dif-
ficult transition from general requirements to implemented solution and propose
some techniques.

1 Introduction

As embedded systems and the programs running on them become more and more ubiq-
uitous, the multi-agent paradigm is steadily gaining importance as a powerful approach
to designing flexible solutions for real-world problems. Multi-agent systems (MAS)
shift the primary focus from solving sophisticated, highly structured problems to less
structured problems in complex environments, i.e. are oriented towards a more practical
kind of intelligence. Interaction between agents and between agents and their surround-
ings, rather than the agents’ internal processes, is what predominantly drives multi-agent
system analysis or design. Hence derives one of the major promises of the multi-
agent paradigm, the ability to adapt to changing external conditions and interface with
a wide variety of agents in open and highly heterogeneous systems. On the flip side,
this means that properly handling context – in a nutshell, with whom and in which way
to interact – is one of the most important challenges in engineering multi-agent systems
facing developers today.

Context is often equated with location, especially in the mobile computing field.
Consequently, many approaches are concerned with providing location transparency
and/or ad hoc interaction with other agents or devices that are physically close to an
agent [1]. This is often achieved by means of some sort of middleware providing an ab-
straction from the physical environment and location-transparent services, e.g., a shared
tuple space [2] or some more sophisticated form of synchronized virtual environment

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 91–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 F. Klein and H. Giese

[3]. The focus is generally on practical and implementation-level problems, as location
as a concept seems fairly straight-forward.

However, context in a broader sense is a more complex concept, as it can cover any-
thing that affects the scope, shape and meaning of an agent’s interactions. Schmidt et al.
stress that context ’is more than location’ [4] and propose human factors (user, social
environment, task) and physical environment (conditions, infrastructure, location) as
relevant aspects. We conjecture that dealing with such aspects conceptually, i.e., prop-
erly differentiating them and explicitly representing them when modeling a system, is
essential for the development of complex embedded multi-agent systems. We therefore
propose a meta model that captures various aspects of context and their relationships,
which provides us with a unifying framework for analysing and modeling these aspects
and exploiting the relationships between them. The elements of this meta model are
presented in the following section, drawing on a number of real-world examples for
illustration and motivation.

A recent survey classifying and comparing approaches to context modeling [5]
evaluates them with respect to formality and their ability to deal with distribution, am-
biguity, perturbations, and existing environments. The survey identifies the ontology-
based and the object-oriented categories as the most suitable. For specifying multi-
agent systems based on our meta-model, we use a UML-based, i.e. fundamentally
object-oriented, notation with proprietary extensions that allows us to model both struc-
tural and behavioral aspects. What differentiates our specification technique from other
approaches [6,7,8,9] is that all diagrams have operational semantics that allow their
interpreted execution and enable code generation, whereas many of the conceptual di-
agrams used for expressing social dependencies and types of sequence diagrams used
for protocol specifications by those approaches require human intervention for interpre-
tation and disambiguation when implementing the specification. Section 3 presents the
specification technique in more detail.

A fundamental problem when dealing with context is the gap between the speci-
fication of desirable properties of a system, which are often expressed from a global,
objective perspective, and the specification of agent behavior, which is necessarily con-
nected to the agent’s subjective context. In Section 4, we discuss this transition from
analysis (problem domain, requirements) to design (agent specification). We argue how
the semantics of our specification facilitate this transition and, being operational, allow
us to generate and validate prototypes of (even early) designs. We also present concrete
approaches to handling different types of context and strategies for their distributed
realization in Section 5.

We close with an outlook on future work.

2 Classifying Context

Formalizations of the concept of context have long been studied in AI research. [10]
compares the two dominant formal theories of context, Propositional Logic of Context
[11] and Local Models Semantics [12]. While these provide important insights on the
epistemological aspects and theoretical limitations of context, they have gained, as [13]
notes, little practical relevance for the design of multi-agent systems. In the vein of [4],
various more pragmatic context classification schemas have been proposed (see [14]

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 93

for a survey), often geared towards a specific aspect like human interaction or tied to a
particular middleware or implementation technique.

We see the added value of our meta model in the ability to pragmatically describe
context at various levels in a consistent way, with operational semantics. Our model is
characterized by the fundamental distinction between Physical and Conceptual entities.
Whereas the former exist in their own right and may be observed by agents, the lat-
ter are derived by convention, based on observations. This grounding differentiates our
metamodel from others that distinguish between physical/metaphysical contexts, e.g.
[15]. Ultimately, we are primarily interested in enabling a layered approach to model-
ing, the Conceptual Layer being the place to deal with knowledge or social level [16]
characterizations.

While this is intuitive for embedded systems with physical components, it does
not appear to be applicable to software in a meaningful way, as software is, in itself,
completely based on conventions. This, however, depends on the selected level of ab-
straction: from an agent’s perspective, sensors and effectors operate in a direct fashion,
and objects, files, messages, or other agents are observable entities in their own right.
We believe the distinction to be helpful as it provides a way to define complex social
constructs grounded in concrete entities. Our complete model covers many aspects of
multi-agent systems, though we restrict our presentation to those parts that are directly
relevant for understanding and handling contexts.

2.1 The Physical Layer

On the Physical Layer, context is concrete. We differentiate between a general notion,
describing the agent’s surroundings, and the specific instance situation facing an agent
within those surroundings.

Environment. An agent’s Environment is the system inside which it exists, and with
which it interacts using its Sensors and Effectors. Setting system boundaries is a somewhat
arbitrary modeling decision depending on the desired level of abstraction. The size of the
Environment should be minimally sufficient for modeling all of an agent’s interactions and
observations. For a software agent, the agent platform it runs on would be a good starting
point. An intrinsic feature of Environments is that they are themselves embedded in and
usually connected to other Environments. For a mobile information agent migrating to a
different agent platform, the respective operating systems and the network infrastructure
become relevant Environments, if only in transit. Likewise, when analyzing possible faults
in an agent system, the Environment hierarchy should probably be extended to include the
hardware it runs on. Even in the physical world, the exact boundaries remain arbitrary
- a Mars rover’s most relevant Environment is (part of) the surface of planet Mars, but
when communications with ground control are considered, one might want to include
large parts of the solar system, if only at a very abstract level of detail.

While the environment used to be seen as a kind of passive backdrop for the agents’
behavior, its importance for agent coordination, e.g., through stygmergy or by provid-
ing distributed services, is currently gaining attention (cf. [17]). This makes explicitly
modeling them essential, even more so if agents are not specific to a particular Envi-
ronment but expected to migrate between and perform well in different Environments.

94 F. Klein and H. Giese

Even though the requirements regarding environment models are very heterogeneous,
we therefore propose three aspects that we consider essential in any description tech-
nique for specifying Environments: modeling Entities, Processes and Services.

Entities represent the elements of the Environment that agents can perceive and
influence. An Agent is thus a special kind of Entity. Entities and their relationships can be
modeled by any kind of domain model or ontology description. The first step towards
context-awareness on this level is to provide a model that an agent can understand or
at least implicitly use. While for embedded systems the outside world can potentially
serve as its own model, pure software agents need to be explicitly compatible with the
target platform’s concepts or at least be able to map them to corresponding internal
representations. E.g. [13] calls attention to this problem and proposes an algorithm
that allows agents to acquire knowledge about their environment using fuzzy learning
techniques. [18] discusses the transformation of terminological context expressed by
formal ontologies.

Processes basically describe change not caused by Agents, especially the rules and
laws governing the Environment’s behavior. Examples include gravity on Earth or Mars
and an agent platform scheduling execution, retrieving an Agent from persistent stor-
age, or crashing. Processes can also be used to model the mechanical behavior of En-
tities that are no Agents. While these behavioral aspects could be subsumed under the
ontology concept, consistently communicating them between heterogeneous agents is
notoriously difficult.

This leads to Services, which could be seen as a sort of low level abstraction placed
on top of Entities and Processes. Services are provided through Processes or Entities
(called Facilities) by the Environment. They may include generation (creation / retrieval)
of agents, execution (scheduling / resources), life cycle management, discovery (di-
rectory services), communication infrastructure (message transport, (virtual) shared
spaces), persistence, migration, security (authentication / integrity) and interfaces to
other environments. Services are the domain of standards, be it de facto standards like
Java or dedicated efforts like the FIPA.

While homogenization is a pragmatic approach to this problem, the ultimate goal of
ubiquitous, networked agent systems seems to require heterogeneous systems offering
standardized service descriptions, e.g. extending techniques already used in conjunc-
tion with web services. Artifacts [19,20] could be seen as a generic approach to the
conceptual modeling and description of Facilities. For the developer, context-awareness
at this level basically comes down to understanding the nature and structure of one’s
surroundings and ensuring technical interoperability.

Interactional Context. The Agent’s Interactional Context is what is at the heart of
‘context-aware’ behavior. It consists of the Perceptive Context, the set of Entities the
Agent can currently sense with its Sensors, and the Effective Context, the set of Entities
it can directly affect with its Effectors. The relationship established by the Interactional
Context is clearly neither symmetric nor transitive. We do not elaborate on the inverse
relationship, i.e. who can sense or affect an Agent, as it is less relevant and difficult to
operationalize (while an avatar in a shooter game has a vital interest both in knowing
whom it can see and shoot and who can see and shoot it, the latter question is im-
possible to answer conclusively). The Interactional Context is determined by an Agent’s

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 95

Sensors and Effectors and the Environment: In a physical setting, the Environment acts on
the Sensors’ and Effectors’ effectiveness and thus implicitly sets the context; in a soft-
ware system, the Interactional Context is explicitly created by publishing information,
providing interfaces and setting permissions.

An Agent’s Interactional Context represents a collection of the partitions on an Envi-
ronment’s Entities for the different Sensors and Effectors. Here, context-awareness corre-
sponds to situation-awareness, i.e. the ability to grasp and reason about specific instance
situations, which probably comes closest to the common understanding of ‘context’.
The Interactional Context is very important for an agent’s behavioral decisions because,
on the one hand, it defines which interactions are at all possible, e.g. which commu-
nication partners or resources are available, and, on the other hand, it often suggests
which actions might be required. Intelligent behavior in a real world scenario is closely
connected to adapting to the current Interactional Context, reacting appropriately or even
proactively anticipating it. Using a cooperative adaptive automotive lighting system that
achieves optimal illumination while avoiding headlight glare, two oncoming cars enter
each others Interactional Context as soon as they come in range of their wireless link.
Informing each other of their presence, they can prepare to shade the appropriate area
of their adaptive headlights as soon as the other car enters the effective context of the
headlights, i.e. its driver could be blinded by the glare. Obviously, being able to focus
on ‘local’ interactions can also greatly simplify designing and verifying agent behavior.
This is not limited to agents in the physical world: The Interactional Context introduces
a generalized concept of locality into a system’s description that is helpful when trying
to structure and modularize the design.

2.2 The Conceptual Layer

On the Conceptual Layer, we again distinguish a general notion of social structures ex-
isting in a system and an agent’s specific membership in these structures.

Social Environment. The social environment is primarily concerned with organiza-
tional structure [21]. In [22,23], we introduced Communities as a flexible way to describe
such structures by means of groups of agents sharing a common set of rules, possibly in
a quite informal or ad-hoc fashion. Communities define Roles, prohibit, allow, or require
certain behaviors and introduce conventions for interpreting observable behavior. This
last aspect, the idea of Norms for deriving Conceptual from Physical entities, is central
for dealing with the higher level aspects of MAS. The Conceptual Layer is an abstraction
created to structure complex interactions and allow a more intuitive understanding – it
is not concerned with the way these concepts are ultimately implemented, nor does
the use of social metaphors imply any assumptions with respect to the agents’ cogni-
tive capabilities. We therefore do not model an agent’s beliefs or intentions – which
would presume a specific type of implementation – but merely its Professed Intentions
(or Beliefs), i.e., what other agents can imply about an agent’s ‘state of mind’ from their
observations, based on said Norms.

Languages are Norms for interpreting specific observations, i.e. ascribing Professed
Intentions to messages. Meaningful communication is thus only possible within the same
Community, i.e., between agents sharing the same frame of reference. The types of Com-
munities that exist in an Environment thus limit the possible interactions and exchanges.

96 F. Klein and H. Giese

An Agent’s Social Environment is therefore defined by the composition of Commu-
nity Types that exist in its current Environment – in fact, we have proposed using Com-
munities as architectural views for modeling non-orthogonal concerns [22]. An Agent
moving to an auction platform would e.g. encounter a Community Type specifying the
rules of conduct and a single persistent Community containing all trading agents, and
a type for ad hoc Communities containing the participants of individual auctions. Once
again, a central problem is interoperability: support for the relevant rule sets needs to be
designed into the agents, or there needs to be a generic mechanism for communicating
a standardized description to agents migrating into the environment.

Social Context. Social Context provides a very powerful notion of context, dealing
with dynamic social dependencies. It is, first of all, set by the Communities of which
an agent is a member, and the Roles it plays in them. Based on the Norms of these
Communities, Agents can then enter into a web of relationships with other agents by
performing actions that are associated with Professed Intentions. An Agent may send a
message or make a change in the Environment that is interpreted as a promise to follow
a certain course of action (commissive), a command issued to another agent (directive),
a permission to perform a certain action (permissive) or the simple profession that the
agent holds a certain fact to be true (assertive). These Professed Intentions can then be
used in rules to control the behavior of the Agent itself or other Agents, e.g., that an agent
may only use a controlled resource if the controller agent has issued a permission, or
that the debtor’s commitment to pay the winning bid in an auction is only fulfilled once
the creditor has asserted receipt of the payment. In short, Social Context is about what
an agent may expect of others and what others expect of it.

The ability to dynamically assume Roles, as proposed by [24], or even dynami-
cally join and quit Communities provides an important abstraction for modeling adaptive
agent behavior. It is realized using the same mechanism based on Norms as above, e.g.,
two agents reaching the same intersection might form a ‘right-of-way’-community, de-
cide who gets to first based on its rules, pass the intersection, and break up the commu-
nity again. Likewise, an Agent could commit to a Role in reaction to certain perceptions,
which would correspond to the concept of situated commitment [25].

The Social Context is thus shaped by observations, which in turn depend on the In-
teractional Context, i.e. what an Agent can actually sense. However, an Agent’s Social
Context is not limited to the confines of its current Interactional Context. As opposed
to the Physical Layer, conceptual relationships often are transitive, which allows Agents
to leverage their Social Context in order to extend their Interactional Context. For exam-
ple, robotic vehicles in a warehouse could only possess sensors for accurately detecting
their own position, i.e. each position sensor’s Interactional Context only contain the vehi-
cle itself. For locating other vehicles, they rely on the community of agents in the same
warehouse. By committing to the execution of a publication pattern that mandates send-
ing continuous updates about the agent’s position over a wireless link, the agents can
suddenly ‘sense’ all other members of the community (if only with a certain latency).

Nonetheless, one should never forget that Social Context is grounded in and thus
dependent on the Physical Layer. In the above example, if the position sensor or the
sensor/effector pair implementing the wireless link break, the transportation agent will
break its commitment, a contingency that needs to be anticipated and handled by the

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 97

community. There are therefore two challenges with respect to Social Context: One is
analyzing it at runtime and exploiting its potential, an application-specific problem that
allows for any amount of creativity on the part of the designer; the other one is prop-
erly operationalizing it at the implementation (Physical) level, a more clearly defined
problem that can be tackled by suitable design techniques as discussed below.

3 Specifying Context

We now present the notation we use for specifying the various types of context de-
scribed above. We use the control of autonomous (robotic) agents (see Figure 1) coop-
eratively handling the storing and shipping of goods in a warehouse as our example.
Inside warehouses on a pier, cargo is stored on shelves. Forklifts can load Cargo into
Shelves and onto Carriers, which move it into and out of the warehouses. Virtual Ship-
ment Manager agents that can move between servers in the warehouses are responsible
for accomplishing tasks, which consist of storing or retrieving a certain set of cargo
items. Agents within the same warehouse can communicate using a wireless LAN.

Fig. 1. The Agents of the application example and a cargo item

Our notation is based on standard UML 2.0. Note that we employ the UML as a
formal specification language with precise semantics: Prominently using story patterns
[26], an extended type of UML collaboration diagram that allows specifying pre- and
postconditions expressed as instance graphs, the open source UML CASE tool Fujaba1

is able to generate executable programs from graphical specifications. By adding a
UML profile introducing the appropriate stereotypes, we strive to provide a precise
but accessible description of a multi-agent system’s physical and social structure that is
grounded in established modeling techniques from the software engineering domain.

Our use of the UML parallels the application of notations that offer themselves for
specific modeling purposes by several other approaches (see [6] for a survey), e.g. in
the use of class diagrams for ontology modeling, object diagrams to describe system
states and state charts for control structures [7], or a component-based model of agent
interactions [8].

3.1 Physical Layer

Environment. The key element for the description of the Environment is the Entity
model, which we describe using UML class diagrams. This model serves as the

1 www.fujaba.de

98 F. Klein and H. Giese

011101011101100110

1100100100100001101001110111110
111001010101010001101000001101
0101111110111
1110100010100011101101010111101
1101111101011110110011011001001
0000011011000010101111101111010
0011101011101100110111010001010
1101100110101000111010111011001
0101011110111100100100100001101
101100100101111001010101010001
1101111010101001010111111011111

<<entity>> LogicalObject
__

- identifier : URI

<<entity>> PhysicalObject
__

- id : String
- position : Cell

<<environment>> Pier

<<environment>> Warehouse

<<agent>> Forklift

<<agent>> Carrier

<<environment>> Server

<<entity>> Shelf

<<entity>> Task

<<agent>> ShipmentManager

<<facility>> WLAN

<<entity>> Cargo

Fig. 2. Overview of key elements of the environment

foundation for the discussion of further concepts such as events or behaviors. Figure 2
gives an impression of the key elements of the system and their basic properties by
means of a partial class diagram containing only selected associations. The pier is logi-
cally divided into a grid of discrete cells in order to simplify reasoning about positions.2

Based on this model, the Environment’s Processes can be defined by means of story
patterns. Inertial movement of physical objects is implemented as a Process; agents
only have Effectors for de- and accelerating. Figure 3 (a) shows a carrier moving from
one cell to another.

It also illustrates how story patterns specify graph transformations. The transfor-
mation rule consists of two instance graphs, the left-hand side (LHS), which is the
precondition, and the right-hand side (RHS), which is the postcondition. The LHS is
matched against the system’s instance graph at runtime. If an occurrence is identified,
it is transformed to correspond to the RHS by creating, modifying and removing the
appropriate elements. To achieve a more compact syntax, the LHS and the RHS are
collapsed into a single graph: unmarked elements are unaffected by the transformation
and are part of both the LHS and RHS. Elements marked with �destroy� are part of
the LHS, but not anymore present in the RHS. Elements marked with �create� do not
exist in the LHS and are created when applying the pattern.

2 Sparse, graph-like UML rules and difference equations provide a limited way of describing a
system’s mechanics that is, however, sufficient for many applications. Differential equations
and the underlying more complex numerics that are required for more accurate physical mod-
eling can be included, but require specific approaches.

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 99

b) Two carrier robots collide

<<agent>>
cr : Carrier

<<entity>>
ca : Cell

<<entity>>
cb : Cell

<<entity>>
cc : Cell

<<agent>>
crb : Carrier

<<agent>>
cra: Carrier

<<create>>
inside

<<destroy>>
inside

adjacent

inside inside

a) A carrier robot moves from a cell to an adjacent cell

Fig. 3. Processes and conditions can be defined by story patterns

The Entity model also allows reasoning about relevant system properties. Instance
situations that correspond to hazardous events we would like to preclude, e.g. collisions,
can be specified using story patterns without side effects. As each logical cell can only
accommodate one carrier at a time, two carriers that occupy the same cell have collided.
This is expressed by the diagram in Figure 3 (b).

We also need to model the Services offered by the Environment, i.e., the Entities
(Facilities) through which they are provided and the Processes describing their function-
ality. The corresponding classes and story patterns can be reused between systems with
similar infrastructure.

In our example, the most important service is the wireless network provided through
an access point that serves as the corresponding Facility. Besides, there are higher level
services that e.g. provide the robots with knowledge about the warehouse layout or
mobility to the Shipment Management agents. As the example system is closed and
homogeneous, we can use the environment specification to design support for this par-
ticular Environment directly into the agents and do not need to provide mechanisms for
communicating it at runtime, a problem in its own right.

Interactional Context. We also need to describe the agents’ potential interactions with
their environment. [27] models contexts by selecting specific subsets of a class struc-
ture. We proceed in a similar fashion, but use subsets induced by the agents’ Sensors
and Effectors. These agent-specific views on the Entity model are described using the
stereotype �context�. Figure 4 defines how a carrier agent can sense other physical
objects by means of sonar if they are in range. The story pattern adds a concrete Phys-
icalObject to the Carrier’s Perceptive Context. Accessible attributes are marked read.
Read marks can be annotated with the accuracy and delay of the measurements and
the update frequency the corresponding Sensor provides. For example, agents can get a
much more precise reading on their own position than on other agents, using sonar. Sim-
ilar annotations specify valid ranges and limitations on changes to modifiable attributes
made by Effectors.

<<entity>>

- position : Cell {read}

po : PhysicalObject
__

<<sensor>>
crs : Sonar

- range : double

<<agent>>

- position : Cell

cr : Carrier
__

has

|| po.position - cr.position ||
< crs.range

<<create>>
<<context>>

Fig. 4. Definition of a Sensor’s Perceptive Context

100 F. Klein and H. Giese

<<entity>>
cg : Cargo

<<entity>>
sh : Shelf

<<agent>>
cr : Carrier

<<agent>>
fkl : Forklift

<<effector>>
fk : Fork

<<context>> <<context>> <<context>>

has

<<create>>
located on

<<destroy>>
located on

Fig. 5. Applying an Effector to Entities in the Effective Context

Story patterns that describe the actual application of an Effector (or Sensor) can
than explicitly reference the �context� relation between the Effector and an Entity, as
the Effector is of course restricted to interacting with Entities from its Effective Context.
Figure 5 defines how a Forklift moves a Cargo item from a Shelf onto a Carrier using
its Fork-Effector. In this case, the (previously specified) �context� relation implies that
Forklift, Carrier, and Cargo are in adjacent cells.

3.2 Conceptual Layer

Social Environment. In the Conceptual Layer, we consider the purpose of the system,
i.e. transporting tasks, and other functional (e.g. avoiding collisions) and non-functional
(e.g. efficiency, reliability, and fault tolerance) requirements.

Depending on the nature of the requirements, we use different techniques to specify
Community Types dealing with them. Safety-critical aspects like collision avoidance are
handled by specialized Community Types expressed using an extended real-time variant
of UML 2.0. They are modeled as coordination patterns that enable a scalable com-
positional technique for the automated verification of safety properties.3 The approach
supports modeling complex behaviors through adding layers of refining patterns to a
verified design. Aspects that are rather concerned with efficiency, such as the allocation
of transportation tasks, are modeled with rules expressed as story patterns to allow for
greater flexibility. The Social Environment of the warehousing system prominently fea-
tures two types of Communities: the safety-critical LocalCoordination Community Type
for coordinating robot movements and the Task Execution Community Type for allocat-
ing and carrying out tasks.

Collision avoidance implemented in the Physical Layer would leave the vehicles
without a way of reliably predicting behavior and entirely dependent on what limited
information they can obtain from their Interactional Context. Even barring sensor fail-
ure, the limited perception of the Agents makes intelligently anticipating and avoiding
hazards difficult. By designing a solution in the Conceptual Layer, we can partially over-
come these limitations. Using a Community Type that requires the shuttles to commit to
the continuous publication of their position and using cooperative and proactive colli-
sion avoidance strategies, we enable much more intelligent movement patterns. As the

3 A detailed description of our verification technique and an extensive review of related work
concerning the modeling of real-time systems and compositional verification can be found
in [28].

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 101

wireless network’s range is limited to the respective warehouse, one persistent Commu-
nity exists per warehouse and wireless base station. This is actually a desirable situation,
as a centralized solution would not scale well in terms of bandwidth and memory con-
sumption, important factors for embedded systems.

The Task Execution Community Type simply specifies rules of conduct for agreeing
to take on and completing a task. A temporary Community implementing it is dynami-
cally created whenever a Shipement Manager starts working on a new task. We provide
more details in conjunction with the discussion of Social Context.

Social Context. The specified Communities and Community Types shape the Social En-
vironment. To compute the actual Social Context, we need to be able to specify rules for
membership, assuming roles and professing intentions, each of which are expressed as
story patterns in terms of Entities.

Each access point is the defining member of a LocalCoordination Community. When
a carrier enters the range of the access point, it becomes a member of the corresponding
Community (see Figure 6 (a)). Besides the �member� relation, joining the Community
implicitly adds a Commitment to adhere to its Community Type to the agent’s Professed
Intentions.

<<facility>>
ap : WLAN

<<agent>>
cr : Carrier

<<coordination pattern>>
pub : PublicationPattern

<<facility>>
ap : WLAN

<<agent>>
cr : Carrier

<<community>>
ac : LocalCoordination

<<context>>

<<role>>
Distributor

<<role>>
Publisher

<<member>>
<<create>>

<<member>>

<<context>>

Fig. 6. Membership and required behavior in a Community

The Community Type specifies structural invariants in the form of compulsory roles
triggered by sets of associated preconditions. In the example, every vehicle agent is
required to act as a Publisher in the Publication pattern that ensures that all participants
are kept informed about each other’s position. Using the information guaranteed by the
Publication pattern as a bootstrap, it is then possible to implement complex routing
and collision avoidance schemes by means of additional patterns that make use of the
information about vehicle positions guaranteed to be available. The instantiation of the
pattern is again triggered by a story pattern describing instance situations at the Entity
level, provided in Figure 6 (b). A maximum acceptable delay for the instantiation of the
pattern can also be supplied.

For the non-critical task allocation, we use rule-based behavioral specifications. In
Figure 7, we specify how a Carrier – that is cooperating with a ShipmentManager
in order to complete a Task and is therefore member of the corresponding ad-hoc
Community – announces its schedule and thus makes an implied commitment to it. The
story pattern in the ScheduledTransport Commitment explicitly describes an observable
instance situation at the Entity level that the agent will strive to bring about.

102 F. Klein and H. Giese

<<agent>>
cr : Carrier

<<member>>

<<agent>>
sm : ShipmentManager

<<community>>
tc : TaskExecution

<<member>>

msg : SchedulingMessage

<<commitment>>
st : ScheduledTransport

__

sends

receives

<<intention>>

<<entity>>
cg : Cargo

<<entity>>
dst : Shelf

located on

<<create>>

Fig. 7. An agent commits to the execution of a schedule

<<agent>>
cr : Carrier

<<commitment>>
sta : ScheduledTransport

<<intention>> <<intention>> <<commitment>>
stb : ScheduledTransport

Fig. 8. An agent professing conflicting commitments

In analogy to the hazardous events we specified in the Physical Layer, we can also
specify undesirable constellations in the Conceptual Layer using the same techniques.
The story pattern in Figure 8 describes a conflict caused by concurrent Commitments to
two different schedules.

4 Analysing and Designing Context

4.1 Analysis

The layered nature of our approach suggests beginning analysis in the Physical Layer.
Especially when designing embedded systems, the hardware already determines much
of the Physical Layer, whereas the Conceptual Layer is less constrained and leaves more
room for creativity. Thus, (the object-oriented) analysis starts with the Entity model
and then moves on to Processes and whichever Services may already be offered by
the system. We also identify potential Agents, their Sensors and Effectors. As, in an
embedded system, the Agents’ capabilities and Interactional Contexts are already fixed
by the laws of physics, modeling these aspects correctly is essential.

As the second step of the analysis phase, we turn to modeling system requirements,
from a global perspective. Even though we focus on modeling the operational goals and
dependencies here, it seems feasible to carry out the initial analysis using a notation
incorporating soft goals and dependencies (e.g. [9]). For requirements that need to be
formally verified, it is, however, desirable to express them as story patterns in terms of
the elements of the analysis model.

During analysis, the proposed categories, on the one hand, provide a structured way
of looking at the system and, on the other hand, encourage thinking in terms of observ-
able behavior, which will make implementing and especially validating the system later
easier.

4.2 Iterative Design

In order to decompose and operationalize the requirements, the first design step is to
identify Community Types providing separate architectural views and charge each of

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 103

them with fulfilling specific requirements [22]. Depending on the nature of these re-
quirements, we then specify a solution using the appropriate formalism, as discussed
above. As the Community Types break down and structure the requirements, it should
often be possible to reuse a solution for a similar problem. In the literature, specific
answers for certain types of systems and contexts have been proposed. In the context of
social laws [29], much work has been done to identify behavioral restrictions that are
both effective and feasible. Law-governed interaction [30] is an approach that is based
on designing social laws into the middleware that agents have to use to interact with a
system. In this way, the Interactional Context is restricted to socially acceptable actions.
Other approaches (e.g. [31]) introduce an authority that penalizes undesired behavior,
thereby making social behavior the rational choice. [32] use model checking to verify
the effectiveness of social laws. In [33], they tackle the question whether an agent’s
knowledge is sufficient to fulfill its commitments by extending their model to include
epistemological aspects.

As our specification technique builds on existing software engineering techniques,
we can apply our existing model checking techniques to a solution. We can formally
verify whether the rules of an individual Community Type are sufficient for ensuring
certain formal requirements, e.g. safety properties. We have formally verified several
examples using this approach, among them an intersection management scheme and
control structures for autonomous tracked vehicles.

At this stage, it is also possible to generate prototypes from the specification. Simu-
lating the Physical Environment based on the analysis model, we can execute a prototyp-
ical implementation of the specification of the Community Types. Using our unrestricted
access to the simulated environment, we explicitly keep track of instantiated Communi-
ties, compute Interactional Contexts, determine membership in Communities, and assign
Professed Intentions to behavior. The agents themselves, which are not specified yet
at this time, are emulated by randomly picking from the required or, if no Community
currently requires specific behavior, enabled behaviors for the agent. Here, the princi-
ple of grounding abstract concepts in implemented, observable entities and observable
agent behavior allows us to test our specification at this early stage. Obviously, non-
deterministic execution is not sufficient to decide whether an implementation fulfilling
the specification exists, but it can already establish that a sufficiently narrow specifica-
tion, e.g. a set of concrete traffic laws, can guarantee its requirements even for adver-
sarial implementations. We have used this technique on a system containing 60 agents
to validate the rules that controlled their movements.

5 Realization

A correct realization of an agent needs to commit to all required behavioral invariants
and respect all constraints imposed by the agent’s current Social Context. Locally, each
Community correctly implements a subset of the system’s requirements, while the struc-
ture of the Social Environment should ensure a proper composition. As the Community
Type specifications are expressed in terms of observable agent behavior, the transition
from the social to the agent level is basically straight-forward. However, as the different
aspects do not need to be orthogonal, the rules of different Cultures might be in conflict,

104 F. Klein and H. Giese

depending on the specific Social Context. It is the agents’ responsibility to resolve such
conflicts and consistently manage their Social Context.

Also, the assumptions about the Agents’ Interactional Context need to hold at the
implementation level, i.e. they need to be able to perceive and achieve what the spec-
ification requires of them. This may make adding Sensors and Effectors or, preferably,
infrastructure (by means of Services) necessary. We will discuss some strategies below.

5.1 Centralized Realization

As discussed above, the operational semantics of our model and our specifications fa-
cilitate the realization of prototypes. As many aspects of the specification are expressed
as story patterns, it is possible to directly implement these aspects by running graph
matching algorithms that try to match the specification against the instance graph rep-
resenting the system state at runtime. In this manner, required behavior or forbidden
instance situations can be identified by a generic mechanism. If the Physical Layer is
virtual, i.e. simulated, we run an Process for each agent that determines its Interactional
Context. Another Process manages Community instantiation and decides membership.
Each Community is explicitly represented in the system and monitors its own constraints.

The transparency that such an explicit instantiation of the analysis and design model
offers is very appealing when designing the agents’ internal structures, as it gives the
developer direct insights into the agents’ contexts and reactions. However, a centralized
implementation is in contradiction to the very nature of multi-agent systems and may
not scale well to large systems.

Still, it is an attractive idea is to keep a centralized prototype of the Community Type
specifications around while designing a distributed solution on the agent level. Running
both versions in parallel – on top of the simulated environment – not only enables
the detection of observable behavior that violates the requirements, but also allows the
identification of the discrepancies between the actual context and an agent’s perception
of it that have caused the violation. This is similar to the debugging support presented
in [34], where the agents’ behavior is validated against Petri Net specifications, but
additionally factors in an agent’s context and perception of the system.

5.2 Distributed Realization

The actual embedded systems force a transition to a distributed realization, as no sim-
ulated environment providing a global perspective exists. Generally, an agent can only
be expected to react to events that are – directly or through social mediation – within
its Interactional Context. A distributed model for realizing the specified interactions will
have to take this into account, both with respect to physical and social contexts. Obvi-
ously, the idealized assumptions that the agents have direct access to an explicit repre-
sentation of their physical and social environment and that pattern roles are triggered
instantaneously and simultaneously for all involved agents have to be dropped. Below,
we suggest strategies for compensating this.

Strategies for Context Access. At the most basic level, agents require access to ele-
mentary knowledge that allows them to understand their Environment and interact with
it. The Environment needs to provide Services to this respect that are established on top

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 105

of known infrastructure, e.g. look-up services [35] that enable clients to search a net-
work for a specific service. In the example, the instantiation rules for LocalCoordination
Communities depend on knowledge about the vehicles current position.

Once agents have access to all relevant parts of the physical environment, we need
to create an internal representation of the agents’ resulting knowledge about its physical
context. By mirroring the Entity model, we obtain an object structure for matching the
membership rule of the LocalCoordination Communities.

This Explicit Context Model strategy suffers from the overhead required to repre-
sent the whole known physical environment as specified by the Entity model. Often, a
stripped down model of the agent’s context that uses a simplified structure and repre-
sents only elements that are relevant for the agent’s decisions is sufficient. We refer to
this strategy as the Specialized Context Model strategy. In our example, many patterns
concerning physical location, membership and pattern instantiation can be interpreted
using the same reduced context model.

As mentioned above, the routing mechanism depends on the publication pattern,
which extends the context information available to an agent with the other agents’ po-
sition and velocity data. The publication pattern in turn only depends on data that is
locally available to an agent and some implied knowledge about the system’s topology.
Such bootstrapping allows us to realize instantiation rules for patterns or communities
which require additional information which is not directly available in the Interactional
Context of the agents. We call extending the physical context model of an agent in this
manner the Context Bootstrapping strategy.

Strategies for Role Instantiation. To ensure that the local and concurrent instantiation
of the pattern roles in each agent works, we have to extend the initialization phase of
the pattern. The protocols employed within the patterns have to be able to compensate
time differences introduced by delayed instantiation within bounds of the specified time
frame (e.g. 0-40 ms for the Publication pattern). Notably in case of bootstrapping via
other patterns, this time frame will often be reduced by the time spent gathering all
required information. We refer to this step as the Asynchronous Instantiation strategy.

Moreover, the pattern behavior must take into account that the instantiation of other
pattern roles or opening a communication channel might fail. This is achieved by ei-
ther the Fail-Safe Role Instantiation or Fail-Operational Role Instantiation strategy. If the
Publication pattern fails for any reason, all vehicles in the affected warehouse could
be required to simply stop in order to reach a fail-safe state. A fail-operational strategy
would be to switch to a different sensor, i.e. sonar (which is used outside the range
of the wireless network anyway), and keep working a lower speeds until the pattern is
successfully established.

6 Conclusion and Future Work

We have presented both a pragmatic classification of different types of context in multi-
agent systems and techniques for analysis and design using this classification. The oper-
ational semantics of our model facilitate the generation of centralized prototypes, which
can then be used for validating distributed implementations.

Building a framework for the prototyping of large multi-agent systems is currently
the objective of a large student project. We have already begun to extensively use

106 F. Klein and H. Giese

and evaluate different techniques for the explicit and distributed handling of context
and hope to develop additional realization strategies to compile a more comprehensive
catalogue. The small examples we have implemented and verified already suggest that
the meta model is indeed of practical value in designing and understanding a system,
which we hope to fully evaluate by implementing the above warehouse scenario on a
large scale.

We also intend to continue working on the questions raised in Section 4. We believe
there to be great potential for automated synthesis and formal verification of correct
individual implementations of a social level specification.

References

1. Sen, R., Roman, G.C.: Context-sensitive binding - flexible programming using transparent
context management. Technical Report WUCSE-03-72, Washington University, Department
of Computer Science, St. Louis, Missouri (2005) To appear in the journal Synthese.

2. Julien, C., Payton, J., Roman, G.C.: Adaptive access control in coordination-based mobile
agent systems. In Choren, R., Garcia, A., Lucena, C., Romanovsky, A., eds.: Software En-
gineering for Multi-Agent Systems III. Volume 3390 of Lecture Notes in Computer Science
(LNCS)., Springer Verlag (2005) 254–271

3. Schelfthout, K., Holvoet, T.: Objectplaces: An environment for situated multi-agent systems.
In: 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), New York, NY, USA, ACM Press (2004) 1500–1501

4. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Computers
& Graphics 23 (1999) 893–901

5. Linnhoff-Popien, C., Strang, T.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management (UbiComp 2004), Nottingham, England.
(2004)

6. Bauer, B., Mller, J.P.: Using uml in the context of agent-oriented software engineering: State
of the art. In: Agent-Oriented Software Engineering IV. Volume 2935 of Lecture Notes in
Computer Science (LNCS). Springer Verlag (2003) 1–24

7. Kinny, D., Georgeff, M.: Modelling and Design of Multi-Agent Systems. In: Proceedings of
Agent Theories, Architectures, and Languages (ATAL) 96. (1996)

8. Bauer, B., Odell, J.: Uml 2.0 and agents: how to build agent-based systems with the new uml
standard. Engineering Applications of Artificial Intelligence 18 (2005) 141–157

9. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multia-
gent Systems (2003)

10. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. AI 155 (2004) 41–67
11. Buvač, S., Buvač, V., Mason, I.: Metamathematics of contexts. Fundamenta Mathematicae

23 (1995) Available from http://www-formal.stanford.edu/buvac.
12. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning =

locality + compatibility. Artificial Intelligence 127 (2001) 221–259
13. Edmonds, B.: Learning and exploiting context in agents. In: Proceedings of the first inter-

national joint conference on Autonomous agents and multiagent systems, ACM Press (2002)
1231–1238

14. Kaenampornpan, M., O’Neill, E.: Modelling context: An activity theory approach. In: Proc.
of the Second European Symposium on Ambient Intelligence (EUSAI 2004). Volume 3295
of Lecture Notes in Computer Science (LNCS)., Eindhoven, The Netherlands, November
8-11, 2004, Springer Verlag (2004) 367–375

Analysis and Design of Physical and Social Contexts in Multi-agent Systems 107

15. Benerecetti, M., Bouquet, P., Bonifacio, M.: Distributed context-aware systems. Human-
Computer Interaction 16 (2001) 213–228

16. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117 (2000)
277–296

17. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent
systems state-of-the-art and research challenges. In Weyns, D., Parunak, H.V.D., Michel, F.,
eds.: Environment for multi-agent systems: first international workshop, 2004, New York,
NY. Volume 3374 of Lecture Notes in Computer Science. (2004) 1–47

18. Wache, H., Stuckenschmidt, H.: Practical context transformation for information system
interoperability. In Akman, V., Bouquet, P., Thomason, R., Young, R., eds.: Modeling and
Using Context: CONTEXT 2001, Dundee, UK. Volume 2116 of Lecture Notes in Computer
Science (LNCS)., Springer Verlag (2001) 367–380

19. Viroli, M., Omicini, A., Ricci, A.: Engineering MAS Environment with Artifacts. In Weyns,
D., Parunak, V., Michel, F., eds.: Proceedings of the Second International Workshop on En-
vironments for MAS at AAMAS 2005, Utrecht, The Netherlands. (2005)

20. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination Artifacts:
Environment-based coordination for intelligent agents. In Jennings, N., Sierra, C., Sonen-
berg, L., Tambe, M., eds.: 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), New York, NY, USA, ACM Press (2004) 286–293

21. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multi-agent systems. In: Proceedings of the 3rd International Conference on Multi Agent
Systems (ICMAS98), Paris , France. (1998) 128–135

22. Klein, F., Giese, H.: Separation of concerns for mechatronic multi-agent systems through
dynamic communities. In Choren, R., Garcia, A., Lucena, C., Romanovsky, A., eds.: Soft-
ware Engineering for Multi-Agent Systems III. Volume 3390 of Lecture Notes in Computer
Science (LNCS). Springer Verlag (2005) 272–289

23. Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-Agent System Design
for Safety-Critical Self-Optimizing Mechatronic Systems with UML. In: OOPSLA 2003 -
Second Workshop on Agent-Oriented Methodologies, Anaheim, CA, USA. (2003)

24. Kendall, E.A.: Role models – patterns of agent system analysis and design. BT Technology
Journal 17 (1999) 46 – 57

25. Weyns, D., Steegmans, E., Holvoet, T.: Integrating free-flow architectures with role models
based on statecharts. In: Software Engineering for Multi-Agent Systems III: Research Issues
and Practical Applications. Volume 3390 of Lecture Notes in Computer Science (LNCS).,
Springer Verlag (2005) 104–120

26. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels, G., Rozenberg, G., eds.:
Proc. of the 6th International Workshop on Theory and Application of Graph Transformation
(TAGT), Paderborn, Germany. LNCS 1764, Springer (1998)

27. Felfernig, A., Jannach, D., Zanker, M.: Contextual diagrams as structuring mechanisms for
designing configuration knowledge bases in uml. In Evans, A., Kent, S., Selic, B., eds.:
UML’2000 - The Third International Conference on The Unified Modeling Language, York,
UK. Volume 1939 of Lecture Notes in Computer Science., Springer Verlag (2000) 240ff

28. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the compositional verifi-
cation of real-time uml designs. In: Proc. of the European Software Engineering Conference
(ESEC/FSE), Helsinki, Finland, ACM Press (2003)

29. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial agent
societies. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-
92), San Diego, CA. (1992)

108 F. Klein and H. Giese

30. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and control mech-
anism for heterogeneous distributed systems. ACM Transactions on Software Engineering
and Methodology (TOSEM) (2000)

31. Boella, G., Torre, L.V.D.: Enforceable Social Laws. In Dignum, F., Dignum, V., Koenig,
S., Kraus, S., Singh, M.P., Wooldridge, M., eds.: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Utrecht, The
Netherlands, ACM Press (2005) 682–689

32. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time: Effective-
ness, feasibility, and synthesis. Technical Report Technical Report ULCS-04-017, University
of Liverpool (2005) To appear in the journal Synthese.

33. van der Hoek, W., Roberts, M., Wooldridge, M.: Knowledge and Social Laws. In Dignum,
F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M., eds.: Proceedings of
the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Utrecht, The Netherlands, ACM Press (2005) 674–681

34. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the prometheus
methodology. Engineering Applications of Artificial Intelligence 18 (2005) 173–190

35. Waldo, J.: The Jini architecture for network-centric computing. Communications of the
ACM 42 (1999) 76–82

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 109 – 125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Engineering Organization-Based Multiagent Systems

Scott A. DeLoach

Multiagent and Cooperative Robotics Laboratory,
Department of Computing and Information Sciences, Kansas State University,

234 Nichols Hall, Manhattan, Kansas 66506, USA
sdeloach@cis.ksu.edu

http://www.cis.ksu.edu/~sdeloach/

Abstract. In this paper, we examine the Multiagent Systems Engineering
(MaSE) methodology and its applicability to developing organization-based
multiagent systems, which are especially relevant to context aware systems. We
discuss the inherent shortcomings of MaSE and then present our approach to
modeling the concepts required for organizations including goals, roles, agents,
capabilities, and the assignment of agents to roles. Finally, we extend MaSE to
allow it to overcome its inherent shortcomings and capture the organizational
concepts defined in our organization metamodel.

1 Introduction

Recent trends in multiagent systems are toward the explicit design and use of organi-
zations, which allow heterogeneous agents to work together within well-defined roles
to achieve individual and system level goals [8], [19]. When focusing on team goals,
organizations allow agents to work together by using individual agents to perform the
tasks for which they are best suited. When emphasizing an individual agent’s goals,
organizations provide the structure and rules that allow agents to find and carry out
collaborative tasks with other, previously unknown agents, to the mutual benefit of
each agent.

In situations where the nature of the application environment makes teams suscep-
tible to individual failures, these failures can significantly reduce the ability of the
team to accomplish its goal. Unfortunately, most multiagent teams are designed to
work within a limited set of configurations. Even when the team possesses the ability
to accomplish its goal, it may be constrained by its own knowledge of team member’s
capabilities. In most multiagent methodologies, the system designer analyzes the
possible organizational structure and then designs one organization that will suffice
for most anticipated scenarios. Unfortunately, in dynamic applications where the
environment as well as the agents may change, a designer can rarely account for, or
even consider, all possible situations. To overcome these problems, we are investigat-
ing techniques that allow multiagent teams to design their own organization at
runtime [7]. In essence, we propose to provide the team with the organizational
knowledge and let the team define its own organization based on its current context,
goals and team capabilities.

In this paper, we present a proposal to extend the Multiagent Systems Engineering
(MaSE) methodology toward the analysis and design of multiagent organizations. While

110 S.A. DeLoach

MaSE already incorporates many of the required organizational concepts such as goals,
roles, laws, and the relations between these entities, it cannot currently be used to com-
pletely define a multiagent organization. Most importantly, we must extend MaSE with
the notion of capabilities, upon which the definition of roles is based. We also add some
specific relationships between these capabilities and existing MaSE concepts.

The remainder of this paper is organized as follows. First, we present a review of
relevant background research, including a short description of MaSE and its current
weaknesses. Next, we give an overview of our metamodel that describes the elements
in multiagent organizations. Finally, we discuss our extensions to MaSE that support
the development of multiagent organizations and overcome some of its recognized
problems.

2 Background

A recent advance in agent-oriented software engineering has had a significant impact
on multiagent development approaches such as MaSE [6], Gaia [18], and MESSAGE
[12]. This advancement concerns the separation of the agents from the system frame-
work, or organization [19]. Agents play roles within an organization; however, they
are not the organization. The organization defines the social setting in which the agent
must exist. An organization includes a structure as well as rules, which constrain valid
agent behavior and interaction within the organization.

While these advances are recent, there have been some discussions on how to in-
corporate them into existing multiagent systems methodologies. For instance, there is
a proposal to extend the Gaia to incorporate social laws [19] and organizational con-
cepts [18], while others have proposed implementing the organization as a separate
institutional agent [17]. We have even proposed extending MaSE with rules and
environmental entities [4], [5].

More recently, new methodologies and approaches have been proposed for build-
ing highly adaptive multiagent systems including Adelfe, which follows the AMAS
theory [1, 14]. The goal of methods such as Adelfe is to allow designers to build
systems that will produce some unknown functionality. This varies from the ap-
proach presented here as we are attempting to give the system the ability to adapt
while still producing a know function and within certain limitations.

2.1 Multiagent Systems Engineering

MaSE was originally designed to develop general-purpose multiagent systems and
has been used to design systems ranging from computer virus immune systems to
cooperative robotics systems [6], [7]. Each phase is presented below.

Analysis Phase. The goal of the MaSE analysis phase is to define a set of roles that
can be used to achieve the system level goals. This process is captured in three steps:
capturing goals, applying use cases, and refining roles.

• Capturing Goals. The first step is to capture the system goals by extracting them
from the requirements, which is done by Identifying Goals and Structuring Goals.
The purpose of the Identifying Goals is to derive the overall system goal and its

 Engineering Organization-Based Multiagent Systems 111

subgoals. This is done by extracting scenarios from the requirements and then iden-
tifying scenarios goals. After the goals have been identified, the second step, Struc-
turing Goals, categorizes and structures the goals into a goal tree, which results in a
Goal Hierarchy Diagram that represents goals and goal/subgoal relationships.

• Applying Use Cases. In this step, goals are translated into use cases, which capture
the previously identified scenarios with a detailed description and set of sequence
diagrams. These use cases represent desired system behaviors and event sequences.

• Refining Roles. Refining Roles organizes roles into a Role Model, which describes
the roles in the system and the communications between them. Each role is de-
composed into a set of tasks, which are designed to achieve the goals for which the
role is responsible. These tasks are documented using finite state automata-base
Concurrent Task Diagrams. Concurrent tasks consist of a set of states and transi-
tions that represent internal agent reasoning and communications.

Design Phase. The purpose of the design phase is to take roles and tasks and to
convert them into a form more amenable to implementation, namely agents and con-
versations. The MaSE design phase consists of four steps: designing agent classes,
developing conversation, assembling agents and deploying the agents.

• Construction of Agent Classes. The first step in the design phase identifies agent
classes and their conversations and then documents them in Agent Class Diagrams.
The Agent Class Diagram that results from this step is similar to object-oriented class
diagrams with two differences: (1) agent classes are defined by the roles instead of
attributes and methods and (2) relations between agent classes are conversations.

• Constructing Conversations. Once the agent classes and the conversations are iden-
tified, the detailed conversation design is undertaken. Conversations model com-
munications between two agent classes using a pair of finite state automata similar
in form and function to concurrent tasks. Each task usually generates multiple con-
versations, as they require communication with more than one agent class.

• Assembling Agent Classes. Assembling Agent Classes involves defining the
agents’ internal architecture. MaSE does not assume any particular agent architec-
ture and allows a wide variety of existing and new architectures to be used. The ar-
chitecture is defined using components similar to those defined in UML.

• Deployment Design. The final design step is to choose the actual configuration of
the system, which consists of the number and types of agents in the system and the
platforms on which they should be deployed. These decisions are documented in a
Deployment Diagram, which is similar to a UML Deployment Diagram.

2.2 MaSE Weaknesses

While MaSE provides many advantages for building multiagent systems, it is not
perfect. It is based on a strong top-down software engineering mindset, which makes
it difficult to use in some application areas.

1. MaSE fails to provide a mechanism for modeling multiagent system interactions
with the environment. While we examined this topic in [5], it has never been fully
integrated into MaSE.

112 S.A. DeLoach

2. MaSE also tends to produce multiagent systems with a fixed organization. Agents
developed in MaSE tend to play a limited number of roles and have a limited
ability to change those roles, regardless of their individual capabilities. As dis-
cussed above, a multiagent team should be able to design its own organization at
runtime. While MaSE already incorporates many of the required organizational
concepts such as goals, roles and the relations between these entities, it cannot cur-
rently be used to define a true multiagent organization.

3. MaSE also does not allow the integration of sub-teams into a multiagent system.
MaSE multiagent systems are assumed to have only a single layer to which all
agents belong. Adding the notion of sub-teams would allow the decomposition of
multiagent systems and provide for greater levels of abstraction.

4. The MaSE notion of conversations can also be somewhat bothersome, as it tends to
decompose the protocols defined in the analysis phase into small, often extremely
simple pieces. When the original protocol involves more than two agents, it often
results in conversations with only a single message. This makes comprehending
how the individual conversations fit together more difficult.

3 Organization Metamodel

To allow teams of agents to adapt to their environment by determining their own or-
ganization at runtime, we have developed a metamodel that describes the knowledge
required to define an organization [7], [11]. Given this knowledge, we hypothesize that
multiagent teams will be able to organize (and reorganize) themselves to adapt to their
dynamic environments.

requires

 constrains

precedes

subgoal

Organization
GA : set(Goal)

: set(assigned)
oaf() : [0..1]

Policy

Achieves
score : [0..1]

Potential
score : [0..1]

Role
rcf(Agent) : [0..1]

Organizational
Agent

Agent

Capabilities

Capable
score : [0..1]

Possesses
score : [0..1]

Ontology

uses

triggers

Goal
conjunctive : Boolean
disjunctive : Boolean

related coord

Fig. 1. Artificial Organization Metamodel

 Engineering Organization-Based Multiagent Systems 113

From the early days of organization research, organizations have typically been de-
fined as including the concepts of agents who play roles within a structure that defines
the relationships between the various roles [2]. We thus begin the foundation for our
metamodel by defining what is meant by goals (G), roles (R), and agents (A). We also
add four additional entities to our metamodel: capabilities (C), assignments (Φ), poli-
cies (P), and an ontology (Σ). Capabilities are central to the process of determining
which agents can play which roles and how well they can play them, while policies
constrain the assignment of agents to roles thus controlling the allowable states of the
organization. The organization ontology supports agent communication and policy
definition. A UML-based depiction of our organization metamodel is shown in Fig. 1.

3.1 Goals

Every artificial organization is designed with a specific purpose, which defines the
overall function, or goal of the organization. Within our metamodel, each organiza-
tion has a set of goals, G, that it seeks to achieve in support of a single top-level goal
go. We define a goal in its normal way as some desired end state. G is derived by
decomposing go into a tree of subgoals that describe how go can be achieved. Follow-
ing the KAOS goal based requirements modeling approach [16], we allow goals to be
decomposed into a set of non-cyclic subgoals using either AND-refinement or OR-
refinement, which are denoted via conjunctive and disjunctive predicates. Eventually,
go is refined into a set of leaf nodes, denoted by GL, that may be achieved in order to
achieve go. The active goal set, GA (where GA ⊆ GL), is the set of goals that an organi-
zation is trying to achieve at the current time.

Goal g1 precedes goal g2 if g1 must be achieved before g2 can be achieved. Essen-
tially, goal precedence allows the organization to work on one part of the goal tree at
a time, thus reducing the size of GA. The triggers relation is similar to precedes in that
it also restricts goals from being inserted in GA. However, instead of requiring goal
achievement, the triggers relation allows new goals to be inserted into GA when a
specified event occurs.

precedes: G, G → Boolean
triggers: GL, G → Boolean

All goals are unachieved when the organization is initialized. Therefore, the initial
active goal set, GA0, consists of all goals that have no predecessor goals or that do not
require a trigger. However, as goals are achieved or events occur triggering new goal
instances, GA, changes. Essentially, achieved goals are removed from the active goal
set and new goals to be achieved are inserted. New goals must be startable (all their
predecessor goals have been achieved) and, if they are triggered, they must have been
triggered by an active goal. We denote a sequence of active goal sets GA’ as GA’ =
[GA1, GA2, … GAn].

3.2 Roles

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines an entity that is able to achieve a set of goals within the organization. Each role
is responsible for achieving, or helping to achieve or maintain specific system goals.

114 S.A. DeLoach

The achieves function describes how well (in a range of 0 to 1) a particular role
achieves a specific goal.

achieves: R, GL → 0 .. 1

In order to perform a particular role, agents must have a sufficient set of capabili-
ties (which are simply defined as atomic, named entities in our model). Agents pos-
sess capabilities, which may include physical capabilities (sensors or actuators) or
computational capabilities (data access, knowledge, algorithmic, etc.), and roles re-
quire a certain set of capabilities. The set of capabilities required by a particular role
is captured using the requires predicate.

requires: R, C → Boolean

Many times, instead of requiring agents to inherently posses all the required capa-
bilities for a role, we would like to bestow the required capabilities on agents to allow
them to play that role. While this does not generally work well with hardware agents
(robots), with software agents, we are often free to download new algorithms, etc. Our
approach to capabilities does not deny this type of role bestowal; it just requires care
in defining the capabilities types in the model. Thus if an agent has the appropriate
physical capabilities (computational power, communication access, etc.) we can
download the specific algorithms and/or knowledge necessary to carry out a role. In
many of our current multiagent systems, the algorithm is packaged with the role, not
in the individual agents themselves.

To carry out their responsibilities, roles may have to work with other roles within
the organization. We capture the basic notion of two roles being related using a re-
lated predicate, which provides a means of identifying the allowable structure of a
given organization.

3.3 Agents

Our metamodel also includes a set of heterogeneous agents, A, within each organiza-
tion. For our purposes, agents are computational system instances that inhabit a com-
plex dynamic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals. Agents are assigned specific roles in order to achieve
organizational goals. The current set of potential assignments of agents to a role is
captured by the potential function. The range of the potential function indicates how
well an agent can play a role and how well that role can achieve the goal, based on the
achieves and capable scores.

potential: A, R, GL → 0 .. 1

However, the potential function does not indicate that the actual assignment of
agent a to role r to achieve goal g, has been made within the organization. It simply
defines a set of possible assignments. To capture the notion of the actual assignments,
we define an assignment set, Φ, which consists of agent-role-goal tuples, <a,r,g>. If
<a,r,g> ∈ Φ, then agent a has been assigned by the organization to play role r in
order to achieve goal g. As discussed above, however, only agents with the right set
of capabilities may be assigned to a specific role. To capture a given agent’s capabili-
ties, we define a possesses function, which returns a value in the range of 0 to 1

 Engineering Organization-Based Multiagent Systems 115

indicating no (0) capability or excellent (1) capability, which may change with time.
Using the capabilities required by a role and capabilities possessed by an agent, we
can compute the ability of an agent to play a give role, which we capture in the capa-
ble function. Finally, we capture the notion of agents coordinating, to achieve their
goals using the coord predicate.

possesses: A, C → 0 .. 1
capable: A, R → 0 .. 1
coord: A, A → Boolean

Organizational agents (OA) are organizations that function as agents within an-
other organization. Thus, organizational agents possess capabilities, may coordinate
with other agents, and may be assigned to play roles. They represent an extension to
the traditional Agent-Group-Role (AGR) model developed by Ferber [9] and the
meta-model proposed by Odell [13]. Organizational agents allow the definition of a
hierarchy of organizations, which provides both flexibility and scalability.

3.4 Capabilities

Capabilities are key in determining exactly which agents can be assigned to what
roles in the organization. Capabilities are atomic entities used to define the abilities of
agents in relation to roles. Capabilities can capture soft abilities such as the ability to
access resources, communicate, migrate, or computational algorithms. They also
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors.

3.5 Policies

Organization policies are formally specified rules that describe how an organization
may/may not behave in specific situations. In our metamodel, we distinguish between
two specific types of policies: assignment policies (PΦ) and behavioral policies (Pbeh).
Assignment policies deal with constraints that the assignment set, Φ must satisfy such as
“an agent may play one role at a time” or “agents may work on a single goal at a time”.
Behavioral policies define how agents should behave in solving the problem at hand.

3.6 Ontology

The organization ontology defines the entities within the application domain and their
relationships. From these definitions, we extract a set of data types and relationships
that allow agents to communicate about application specific information. These do-
main entities and relationships are also used to help in defining application specific
organization policies. We currently use static UML diagrams to define ontological
concepts similar to the approach in [3].

3.7 Organization Example

An example of a multiagent team developed using our organization metamodel is
shown in Fig. 2. The boxes at the top of the diagram represent goals (A … G), the

116 S.A. DeLoach

circles represent roles (R1 … R5), the pentagons represent capabilities (C1 … C5),
and the rounded rectangles are agents (A1 … A4). The arcs on subgoal links denote
conjunctive subgoals, whereas undecorated links denote disjunctive subgoals. The
arrows between the entities represent the achieves, requires, and possesses func-
tions/relations as defined above. The numbers beside the arrows represent the
function value (e.g., possesses(A1,C1) = 0.5). These achieves values are generally
assigned at design time and do not change. The possesses values, on the other hand,
are computed by the individual agents based on their own internal assessment of their
capabilities. We also assume we have assignment policies that (1) we only assign a
single agent to each goal and (2) only one of the disjunctive goals F or G can be
active at any time.

Fig. 2. Organization Example

Therefore, in this example the top-level goal, A, can be achieved by achieving both
subgoals B and C, which can be achieved by achieving D and E in addition to either F
or G. The achieves relation shows that either of the roles R1 or R2 can be used to
achieve goal D while only role R3 can be used to achieve goal E. However, role R3
can also be used to achieve goal F, which can also be achieved by role R4. The only
role capable of achieving goal G is role R5. The aim is for the organization to assign
agents that can play the appropriate roles to achieve specific goals. Because of the
disjunctive nature of goal C and the ability to use different roles in achieving individ-
ual goals, there is some assignment flexibility built into the system.

Determining which agents should be assigned specific roles in order to achieve
particular goals is based on the capabilities the agents currently possess. For instance,

 Engineering Organization-Based Multiagent Systems 117

Table 1. Capability Function

 R1 R2 R3 R4 R5
A1 0.5 0 0.6 0 0
A2 0 0 0.7 0 0
A3 0 0 0 0.6 0.6
A4 0 0 0 0.5 0

role R1 requires only capability C1 while R3 requires only capability C2. Therefore,
since agent A1 possesses both capabilities C1 and C2, it could be assigned to either
role R1 or R3 in order to achieve goals D, E, or F.

In this example, we thus compute the capable function value for each agent-role
pair as shown in Table 1. For simplicities sake, we average the individual capability
score required for each role. Combining the capable scores with the achieves score,
we can easily compute the organizational capability score, Os, for any set of assign-
ments that might be made. Based on these computations (keeping in mind our as-
signment policies), we can see that the maximum organizational capability score, and
thus the optimal assignments are as follows:

 potential(A1,R1,D) = 0.25
 potential(A2,R3,E) = 0.56
 potential(A3,R5,G) = 0.42
 Os = 1.23

3.8 Exemplar Implementation

Although there is not a single “correct” way to implement our organizational meta-
model, we suggest an example to help cement the concepts. Fig. 3 shows the imple-
mentation approach used in our current projects. Each agent is composed of two
components: an Organizational Reasoning component and an Application Reasoning

Fig. 3. Example Implementation

118 S.A. DeLoach

component. The Organizational Reasoning component is concerned with computing
the current assignment set φ based on the active goal set GA and the feedback received
from the Application Reasoning component in regards to goal achievement, goal
failure, or the occurrence of triggering events.

The Application Reasoning component accepts its assignment and carries out the
tasks necessary to play its assigned roles in pursuit of its assigned goals. The Organ-
izational Reasoning component interacts with the other agent’s Organizational Rea-
soning components to ensure system coherence. Exactly how the coordination is
carried out can vary. We have implemented a variety of centralized and distributed
approaches to this coordination process; the best approach to this coordination process
is domain and application specific. Part of the goal of the architecture presented in
Fig. 3 is to be able to provide “plug-and-play” Organizational Reasoning components
that can be selected based on application criteria.

4 O-MaSE

To avoid designing static multiagent systems, we have extended MaSE to allow de-
signers to design a multiagent organization, which provides a structure within which
the multiagent system may adapt. This extended version of MaSE is called Organiza-
tion-based MaSE (O-MaSE). A preliminary proposal for the O-MaSE methodology is
described below. In general, many of the diagrams used in O-MaSE are variants of
the UML class diagrams and use keywords to denote the difference between goals,
roles, capabilities, agent classes, etc.

Throughout this section, an Information Flow Monitoring System (IFMS) is used
as an example of an organization-based multiagent system. The overall goal of the
IFMS is to keep track of the information producers and consumers along with the
actual flow of information through a dynamically reconfigurable enterprise informa-
tion system. The information producers and consumers use a publish/subscribe
mechanism that allows consumers to find and subscribe to appropriate information
producers. Therefore, the IFMS must keep track of the various information paths
between the producers and consumers as well as monitor the actual data flowing
along those paths. The IFMS provides data in the form of current paths and informa-
tion flow statistics to enterprise system operators who monitor the system for
problems.

4.1 Requirements

Requirements are translated into system level goals, which are documented in the
form of an AND/OR goal tree. Fig. 4 shows the goal tree for the IFMS described
above. Given goal precedence relations, it is possible to design goal structures that
cannot be achieved, thus we would like to provide the assurance that the top-level
goal can be achieved. We have replaced the non-specific MaSE goal tree with a tree
with specific AND/OR decompositions to match the organization metamodel.

 Engineering Organization-Based Multiagent Systems 119

Fig. 4. Goal Hierarchy Diagram

The syntax has also changed in the O-MaSE goal model. We use standard UML
class notation with the keyword «Goal». Each goal may be parameterized, with pa-
rameters annotated as attributes of the goal class. When goals are instantiated, they
are given specific values for these attributes. The aggregation notation is used to de-
note AND refined goals whereas the generalization notation is used to denote OR
refined goals. This notation is somewhat intuitive as AND refined goals require a
composition of its subgoals to be achieved. Subgoals of an OR refined parent goal can
be thought of as alternative ways to achieve the parent goal, or that they can be substi-
tuted in place of the parent goal.

4.2 Analysis

Analysis begins by creating the Organization Model, which defines the organization’s
interactions with external actors. Generally, there is one organization at the top level
(denoted by the «Organization» keyword) and that organization becomes responsible
for the top goal in the goal tree. Each organization can achieve goals and provide
services, which are further refined via activity diagrams (similar to UML activity
diagrams, not included in this paper). The designer can also use sequence diagrams
for describing use cases at the system level, similar to the original version of MaSE.
Each organization may also include sub-organizations to allow for abstraction during
the design process.

While we allow the use of services in O-MaSE to help define the activities that
agents carry out while performing roles, they do not map directly to the organization
metamodel as presented earlier. For the purposes of this paper, we only mention them
for completeness, but do not elaborate on them, as their use in defining organizations
is not required.

An example of an Organization Model is shown in Fig. 5, where there are three ac-
tors making up the system’s environment: the ClientAPI, the ServerAPI, and the
Admin. The arrows connecting the organization to the actors denote protocols that

120 S.A. DeLoach

Fig. 5. Organization Model

Fig. 6. Role Model

define the agent class’s interactions with the environment (these protocols are defined
in detail in the high-level design stage). The relations between the organization and
the goal and service classes (classes denoted by «Goal» and «Service» keywords) are
fixed relation types. An organization provides services while achieving goals. These

 Engineering Organization-Based Multiagent Systems 121

relations may be shown via explicit relations between organizations and goals; how-
ever, the relations may also be embedded in a class as shown in Fig. 6 (where
«achieves» relations are shown embedded within roles).

Next, the organization model is refined into a role model (Fig. 6) that defines the
roles in the organization, the services they provide, and the capabilities required to
play them. Each role is designed to achieve specific goals from the Goal Model and
provide specific activities refined from top-level services in the Organization Model.
Again, the arrows between actors and roles and between two roles indicate protocols
that are fully defined later in the design stage. The Role Model may also include ca-
pabilities (denoted by the «Capability» keyword), which are attached to the roles that
require them by the «requires» keyword.

Fig. 7. Domain Model

At this point, O-MaSE differs from MaSE in that O-MaSE does not require the
analyst to create concurrent task diagrams to describe the behavior of each role.
This task is more appropriately carried out at the low-level design stage. The use of
activities, which are refined via activity diagrams, allow the analyst to specify high-
level behavior without resorting to low-level details required by concurrent task
diagrams.

Throughout the analysis phase, the analyst should also capture and document the
ontology that will be used within the system as part of the Domain Model. We have
explored the integration of domain models into MaSE in [4]. The Domain Model
allows the analyst to model domain entities, their attributes, and their relationships.
Fig. 7 shows a simple example of a domain model using standard UML notation to
show the relationships between two types of Clients: Source and Consumer. Sources
produce InfoObjects while Consumers consume InfoObjects.

4.3 High-Level Design

The first step in the high-level design is for the designer to use the Role Model and
service activity diagrams to define the Agent Class Model as shown in Fig. 8. In the
Agent Class Model, agents classes and lower-level organizations are defined by the
roles played (which determines the goals they can achieve), capabilities possessed
(which determines the roles they can play), or services provided. Fig. 8 shows the use
of both explicit and embedded relations. The «plays» and «provides» keywords in the
agent classes (denoted by the «Agent» keyword) define which roles instances of the
agent class can play as well as the services it can provide. The «possesses» relation
between agent classes and capabilities (denoted by the «Capability» keyword) indi-
cates the capabilities possessed by instances of that class of agent.

122 S.A. DeLoach

Fig. 8. Agent Class Model

refuse

: Initiator : Participant

subscribe (EntityType)

agree

inform (EntityUpdate)

failure

[refused]

[agreed]

[failed]

sd subscribe

alternative

loop () [new data exists]

cancelled

inform (EntityList)

Fig. 9. Protocol Model

 Engineering Organization-Based Multiagent Systems 123

One the Agent Class Model is complete, Protocol Models (Fig. 9) are used to de-
fine the message-passing protocols between agent classes. These Protocol Models
follow the currently proposed AUML protocol diagrams [10], which allow the ability
to show alternative and repetitive message structures.

Fig. 9 captures a subscription protocol where the initiator wants to subscribe to in-
formation published periodically by the participant. After the initial subscribe mes-
sage, the participant may either refuse or agree. If the participant refuses, the protocol
terminates, which is denoted by the X symbol. Assuming the participant agrees, the
participant sends an inform message with the current subscription information. The
protocol then enters a loop where, typically, the participant sends an inform message
with new information. However, the participant may send a failure message or the
initiator a cancelled message, both of which end the protocol.

4.4 Low-Level Design

In low-level design, we define agent behavior using an Agent State Model, which is
based on finite state automata (Fig. 10). The Agent State Model is similar to the

Wait
Check

ok =check(client)

receive(request(start, client, type), clientObserver)

Create
agent = createAgent(ObjectObserver)

[OK] send(agree, clientObserver)

[not OK] send(refuse, clientObserver)

Save
list.addAgent(agent)

[valid(agent)] send(create(client, type), agent)

[not valid(agent)]
 send(failure, clientObserver)

Init
list = new(List)

send(inform(success), clientObserver)

Lookup
agent = list.find(client, type)

receive(request(stop, client, type), clientObserver)

[not valid(agent)] send(failure, clientObserver)

[valid(agent)]
send(request(shutdown), agent);
send(inform(success), clientObserver)

Fig. 10. Agent State Model for AgentManager

124 S.A. DeLoach

original MaSE concurrent task diagrams, as it captures internal behavior and message
passing between multiple agents. They feature an explicit send and receive actions to
denote sending and receiving messages. The remainder of the syntax and semantics is
defined in [6].

5 Conclusions

In this paper, we have discussed the current version of MaSE and some of its short-
comings. With the extension of MaSE to O-MaSE we have dealt with each of these
problems. Specifically, we have provided a mechanism for defining the multiagent
systems interactions with the environment by adding external actors and defining the
interactions protocols between the system and the actors.

Second, we have extended MaSE to capture the organizational concepts identified
in our organization metamodel. New concepts include AND/OR refinement of goals,
integration of capabilities and the ability to model sub-teams, or sub-organizations.
This feature allows designers greater levels of abstractions and directly complements
the notion of organizational agents in our organization metamodel.

Finally, we took the notion of concurrent tasks out of the analysis phase and inte-
grated concurrent tasks with conversations into Agent State Models in the low-level
design phase. We are currently using O-MaSE and our organization metamodel in sev-
eral projects including an adaptive Battlefield Information System [7], cooperative ro-
botic teams [11] and a system to monitor and control a large-scale information system.

We are continuing to evolve O-MaSE to provide a flexible methodology that can
be used to develop both traditional and organization-based systems. A long term goal
is to provide a tailorable methodology that is fully supported by automated tools. We
are currently building a new version of agentTool (aT3) within the Eclipse IDE to
support O-MaSE1. Future plans include code generation for various platforms as well
as integration with the Bogor model checking tool [15] to provide model validation
and performance prediction metrics.

References

1. Bernon, C., Camps, V., Gleizes M.P., Picard G. Engineering Adaptive Multi-Agent
Systems: the ADELFE Methodology. In B. Henderson-Sellers and P. Giorgini (Eds.),
Agent-Oriented Methodologies. Idea Group Pub, June 2005, pp.172-202.

2. Blau, P.M. & Scott, W.R., Formal Organizations, Chandler, San Francisco, CA, 1962,
194-221.

3. Cranefield, S. & Pruvis, M. UML as an Ontology Modelling Language. Proc of the Work-
shop on Intelligent Information Integration, 1999.

4. DeLoach, S. A. Modeling Organizational Rules in the Multiagent Systems Engineering
Methodology. Proc of the 15th Canadian Conference on Artificial Intelligence. 2002.

5. DeLoach, S. A. Analysis and Design of Multiagent Systems Using Hybrid Coordination
Media. Proceedings of Software Engineering in Multiagent Systems (SEMAS 2002).
2002.

1 The current status of O-MaSE and the aT3 project can be found at the Multiagent and Coop-

erative Robotics Laboratory web site (http://macr.cis.ksu.edu/).

 Engineering Organization-Based Multiagent Systems 125

6. DeLoach, S. A., Wood, M. F. and Sparkman, C. H., “Multiagent Systems Engineering”.
The International Journal of Software Engineering and Knowledge Engineering, 11(3), pp.
231-258, June 2001.

7. DeLoach, S.A., & Matson, E. An Organizational Model for Designing Adaptive Multi-
agent Systems. The AAAI-04 Workshop on Agent Organizations: Theory and Practice
(AOTP 2004). 2004.

8. Dignum, V. A Model for Organizational Interaction: Based on Agents, Founded in Logic.
PhD thesis, Utrecht University, 2004.

9. Ferber, J., and Gutknecht, O. A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of Third International Conference on MultiAgent
Systems (ICMAS'98), pages 128-135, IEEE Computer Society, 1998.

10. Huget, M.P., Bauer, B., Odell, J., Levy, R., Turci, P., Cervenka, R., and Zhu, H.
http://www.auml.org/. FIPA Modeling: Interaction Diagrams, Working Draft. 2002.

11. Matson, E., DeLoach, S. Capability in Organization Based Multi-agent Systems, Proceed-
ings of the Intelligent and Computer Systems (IS ’03) Conference, 2003.

12. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable 1.
Initial Methodology. July 2000. EURESCOM Project P907-GI.

13. Odell, J., Nodine, M., Levy, R. A Metamodel for Agents, Roles, and Groups. Agent-
Oriented Software Engineering V, 5th International Workshop, AOSE 2004. 2004.

14. Picard, G. and Gleizes, M.-P. The ADELFE Methodology – Designing Adaptive Coopera-
tive Multi-Agent Systems. In Bergenti, F. and Gleizes, M-P. and Zambonelli, F., editor,
Methodologies and Software Engineering for Agent Systems. Kluwer Publishing, 2004.

15. Robby, Dwyer, M.B., & Hatcliff, J. Bogor: An Extensible and Highly-Modular Model
Checking Framework, Proceedings of the Fourth Joint Meeting of the European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003).

16. van Lamsweerde, A., Darimont, R., Letier, E. Managing conflicts in goal-driven require-
ments engineering. IEEE Transactions on Software Engineering. 24(11), pp 908-926,
1998.

17. Wagner, G. Agent-Oriented Analysis and Design of Organizational Information Systems.
Proceedings of the 4th IEEE International Baltic Workshop on Databases and Information
Systems, May 2000.

18. Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Developing Multiagent Systems:
The Gaia Methodology. In AMC Transactions on Software Engineering Methodology
12(3), 317-370, 2003.

19. Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Organisational Rules as an Abstrac-
tion for the Analysis and Design of Multi-Agent Systems. IJSEKE. 11(3) pp. 303-328,
June 2001.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 126 – 142, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Developing and Evaluating a Generic Metamodel
for MAS Work Products

Ghassan Beydoun1,2, César Gonzalez-Perez1,2, Brian Henderson-Sellers2, and G. Low1

1 School of Information Systems, Technology and Management,
University of New South Wales, Sydney, Australia

{g.beydoun, g.low}@unsw.edu.au
2 Faculty of Information Technology, University of Technology of Sydney, Sydney, Australia

{brian, cesargon}@it.uts.edu.au

Abstract. MAS development requires an appropriate methodology. Rather than
seek a single, ideal methodology, we investigate the applicability of method
engineering, which focuses on project-specific methodology construction from
existing method fragments and provides an appealing approach to organize, ap-
propriately access and effectively harness the software engineering knowledge
of MAS methodologies. In this context, we introduce a generic metamodel to
serve as a representational infrastructure to unify the work product component
of MAS methodologies. The resultant metamodel does not focus on any class of
MAS, nor does it impose any restrictions on the format of the system require-
ments; rather, it is an abstraction of how the work product elements in any MAS
are structured and behave both at design time and run-time. Furthermore, in
this paper we validate this representational infrastructure by analysing two well-
known existing MAS metamodels. We sketch how they can be seen as subtypes
of our generic metamodel, providing early evidence to support the use of our
metamodel towards the construction of situated MAS methodologies.

1 Introduction

There is an increasing software engineering interest in the use of multi-agent systems
(MAS), a new class of distributed parallel software applications, that have already
proved effective in the core tasks of automating management of information within
businesses (e.g. computer network management applications [23]), building computa-
tional models of human societies to study emergent behaviour [14, 17, 34] and build-
ing cooperative distributed problem solving [22, 24]. The building blocks of a MAS
are intelligent, autonomous and situated software entities: agents. The agent, the con-
cept of agency and the full range of MAS abstractions offer the promise of making
software systems easier to embed within our daily lives as suggested in [10].

In order to develop a MAS, some appropriate methodological approach is needed.
Indeed, a significant number of such MAS methodologies already exist [20]. Notable
examples are Gaia [36], Adelfe [2], Prometheus [28], PASSI [8]. However, since it is
generally agreed [7, 18] that no single methodology is sufficient, regardless as to how
well thought out it might be, any one of these individual methodologies will, by
definition, have limited applicability e.g. to a specific domain or a specific type of
software application.

 Developing and Evaluating a Generic Metamodel for MAS Work Products 127

We argue in this paper that attempting to simply combine existing methodologies
into one large, high quality methodology, as suggested in e.g. [1] will prove to be
impossible, because the sets of assumptions underlying each methodology are likely
to be inconsistent and irreconcilable. We propose instead using method1 engineering
[5, 26] to empower software developers to create methodologies from existing
(method) fragments (i.e. self-contained components). Method engineering approaches
have been successful in object-oriented development due to widely accepted model-
ling languages and constructs of OO software systems and development processes
[19, 21, 30]. For method engineering to be equally successful in the context of MASs,
a suitable representation of any potential agent-oriented methodology is required. The
goal of such representation is to capture knowledge about methodologies. This in-
cludes concepts (plus their properties) related to products of the software development
process, as well as concepts and their properties related to the software development
process itself. These collections of concepts are often known respectively as product
metamodel and process metamodel [30].

In this paper, we present a generic product metamodel2 for any MAS methodol-
ogy. In this context, “product metamodel” is synonymous with “modelling language
specification”. Our generic metamodel comprises the abstract syntax and semantics of
such a modelling language. It does not make any assumptions about the kinds of MAS
that it describes. It only makes assumptions about what are the essential properties of
an agent. Our metamodel is the first to focus on conceptual and ontological underpin-
nings rather than being constrained for use in a single methodological approach.
Moreover, in this paper, we reinforce our case for method engineering in the context
of MAS development by validating our generic metamodel against two well known
and applied MAS metamodels: TAO [32] and Islander3 [13]. We sketch how our
metamodel can generate both of them. This constitutes early evidence that our method
engineering proposal for MAS development is plausible.

The rest of this paper is organised as follows: In Section 2, we justify our method
engineering endeavour and describe our metamodel and its synthesis. In Section 3,
we present a comparative analysis of this metamodel and two prominent (although not
explicit) metamodels: those of Islander [13] and TAO [32]. We indicate that these two
metamodels can be viewed as particular refinements of our metamodel. In Section 4,
we conclude with a description of future work.

2 Generic MAS Metamodelling

Edmonds et al. [10] rightly point out that we do not currently know all possible fea-
tures of any MAS. They compare the science of MAS to the science of zoology,
where we have a lot to discover about how the internals of a MAS change dynami-
cally, and how this alters the overall behaviour of the system. They use this to formu-
late a theoretical argument against the possibility of having a one-size-fits-all
methodology. In this section, we point to other current limitations in pursuing an

1 Both terms, method and methodology are considered synonymous in this paper.
2 Henceforth, we use the term “metamodel” and “product metamodel” interchangeably.
3 Islander is a specification language. We compare our metamodel to its underlying model.

128 G. Beydoun et al.

all-encompassing methodology, advocating the alternative context-dependent method
engineering approach.

Methodologists often do not make it explicit (for instance, in terms of a meta-
model or an ontology) what their assumptions are about the software development
process, developers’ behaviour and the intended software products – assumptions that
may even be contradictory between pairs of methodologies. Quite the opposite, they
mostly remain implicit in the intermediate products, process steps and relationships
between constructs of the methodology. Indeed, the methodology may be intended as
a set of steps to be followed rigorously. Furthermore, a methodology remains con-
strained by its inherent process and modelling assumptions as to what kinds of MAS
can be developed. For instance, a methodology that assumes agents to be cooperative
(for adaptive systems) e.g. Adelfe [2] cannot be readily combined with any methodol-
ogy that assumes agents to be competitive, as is the case in many market simulation
applications [17] or negotiating agents in an e-market [11]. Thus, combining method-
ologies as they are turns out to be very difficult in the absence of explicit metamodels.

In [1], combining metamodels of three methodologies led to a cumbersomely large
model with little overlap. This suggests a missing intermediate layer of representation
that unifies the different concepts from the three metamodels. Instead of attempting to
combine metamodels, we propose factoring out common constructs for any MAS into
a unifying metamodel of all methodologies (here just focussing on the work product
aspects). Such a metamodel will clearly be more generic than any particular, method-
ology-specific metamodel. Its creation is presented in the next section.

2.1 Procedure to Create a Generic, Work Product Metamodel for MAS

We start with a high level representation of what MASs look like and, from this, rep-
resent their generic common features. If strong assumptions are required to develop a
MAS feature (e.g. mediation policies between negotiating agents), then such a feature
is methodology-specific and therefore its representation is left to the methodology
itself. Our metamodel is a consensual picture of what a MAS looks like. It is devel-
oped by surveying a range of methodologies as well as systems. We identify common
concepts that developers often use and methodologists agree upon. Since our resultant
metamodel is intended to be widely applicable, without any constraining pre-
requisites, it will be able to generate most methodologies (we anticipate).

Our metamodel creation starts with what an agent is, and we extend this to how a
MAS is distinguished from other software systems. At the system level, we do not
make any assumptions about agents beyond their essential properties: autonomy,
situatedness and interactivity. Any other non-definitional agent characteristic, visible
at the system level, suggests a methodology-specific feature. For instance, adaptivity,
sociability and proactivity are non-definitional properties of agents; some agents do
not have them. For example, Adelfe’s [2] adaptive system design requires learning
agents, hence some concepts in Adelfe’s metamodel are too specific to be included in
our generic metamodel. At the same time, in developing our metamodel, we aim to
cover as many features of a MAS as possible. We consider a wide range of MASs and
we focus on what behavioural characteristics agents exhibit in this varying range.
With regard to internal agent design, we ensure that any agent behaviour and internals
can be described by our metamodel. Thus, any methodology (e.g. Adelfe which as-
sumes adaptive agents) can be successfully generated using this metamodel.

 Developing and Evaluating a Generic Metamodel for MAS Work Products 129

In formulating this new metamodel, we ensure consistency, at the same time aim-
ing to maximise coverage (including as many MAS concepts as possible) and general-
ity (wide acceptance and familiarity to methodologists). To ensure consistency, cov-
erage and generality are occasionally sacrificed. In some cases, coverage and general-
ity are opposing and trade-off decisions are made. To construct our generic meta-
model, we first decide on the set of concepts to be used, describing entities in any
MAS and the relationships amongst them. Towards this, four initial steps are taken
(iteratively):

Step 1: We decide on the set of general concepts relevant to any MAS and its model.
Some problem-specific concepts are omitted. For example, terms specific to robots
(e.g. actuators) or to single-agent systems are not included. Literature from the fol-
lowing areas are all relevant: agent software engineering e.g. [4, 8, 27, 33], AI e.g.
[25, 31, 35], distributed AI [9, 14] and cognitive science e.g. [29].

Step 2: We decide on definitions worth considering. Choice of a definition from a
particular source depends on how explicit the source is in providing the definition. In
addition, wide acceptance of the definition is taken into account. This way, the set of
adopted concepts is grounded in what other people in the agent community think.

Step 3: We reconcile differences between definitions where possible, giving hybrid
definitions. Otherwise, choices are made based on consistency with earlier choices,
i.e. where contradictory use of concepts between two or more sources occurs, we opt
for the more coherent usage with the rest of the set of chosen concepts. For example,
‘Task’ is defined as set of behaviours by [29], and as ‘behaviour but with the signifi-
cance of atomic part of the overall agent behaviour’ in [15]. Our suggested definition
is “specification of a piece of behaviour that the MAS can perform”.

Step 4: We designate chosen concepts into two sets: run-time concepts and design-
time concepts. Each set has two scopes: system-related or agent internals related
scope. This makes it easier to identify relationships between the chosen concepts
according to its set and its scope.

The results of our efforts in steps 1 to 4 are shown in Tables 1 and 2. It should be
noted that the concept of environment statement is both a design-time and run-time
concept. It is a unit of environment description, which is used by system designers.
Environment statements may also be used by the agents themselves at run-time.

Steps 1 to 4 above do not depend on any single software development methodol-
ogy. The metamodel is not expected to be large enough to express a method to the
same level of detail as the method itself. Rather, this proposed new metamodel,
named FAML (FAME4 Agent-oriented Modelling Language) provides a complete set
of concepts that describe all models to be included in any methodology, but not nec-
essarily providing all required details for every methodology; some details being left
to each individual methodology.

The FAML metamodel is expected to be complete as far as describing internal
structure of single agents is concerned (according to our three definitional properties
of agents). However, not all concepts in the metamodel have to be used by a given

4 FAME is the project name under which FAML has been developed.

130 G. Beydoun et al.

Table 1. Design-time concepts and their definitions

Term Definition
Action Specification Specification of an action, including any precondi-

tions and postconditions.
Agent Definition Specification of the initial state of an agent just

after it is created.
Convention Rule that specifies an arrangement of events

expected to occur in a given environment.
Environment Statement A statement about the environment.
Facet Action Specifica-
tion

Specification of a facet action in terms of the facet
definition it will change and the new value it will
write to the facet.

Facet Definition Specification of the structure of a given facet,
including its name, data type and access mode.

Functional Requirement Requirement that provides added value to the
users of the system.

Message Action Specifi-
cation

Specification of a message action in terms of the
message schema and parameters to use.

Message Schema Specification of the structure and semantics of a
given kind of messages that can occur within the
system.

Non-Functional Re-
quirement

Requirement about any limits, constraints or im-
positions on the system to be built.

Ontology Structural model of the application domain of a
given system.

Ontology Aggregation Whole/part relationship between two ontology
concepts.

Ontology Concept Concept included in a given ontology.
Ontology Relationship Relationship between ontology concepts.
Ontology Specialisation Supertype/subtype relationship between two or

more ontology concepts.
Performance Measure Mechanism to measure how successful the system

is at any point in time.
Plan Specification An organised collection of action specifications.
Requirement Feature that a system must implement.
Role Specification of a behavioural pattern expected from

some agents in a given system.
System Final product of a software development project.
Task Specification of a piece of behaviour that the system

can perform.

methodology. For example, if a given methodology is geared towards a simulation
MAS composed of reactive agents, then concepts such Intention and Plan would not
be needed. Such an omission for a specific situational method is well supported by the
optional (0..1) cardinalities seen in the metamodel diagrams below.

In connecting all filtered and synthesized concepts into one coherent metamodel,
we omit all relations that are specific to some kinds of agents e.g. we do not include

 Developing and Evaluating a Generic Metamodel for MAS Work Products 131

Table 2. Run-time concepts and their definitions

Term Definition
Action Fundamental unit of agent behaviour.
Agent A highly autonomous, situated, directed and rational entity.
Belief An environment statement held by an agent and deemed as true in

a certain timeframe.
Desire An environment statement held by an agent, which represents a

state deemed as good in a certain timeframe.

Environment The world in which an agent is situated.
Environment
History

The sequence of events that have occurred between the environ-
ment start-up and the present instant.

Environment
Statement

A statement about the environment.

Event Occurrence of something that changes the environment history.
Facet Scalar property of the environment that is expected by the agents

contained in it.
Facet Action Action that results in the change of a given facet.
Facet Event Event that happens when the value of a facet changes.
Goal Ultimate desire.
Intention A committed desire.
Message Unit of communication between agents, which conforms to a spe-

cific message schema.
Message Action Action that results in a message being sent.
Message Event Event that happens when a message is sent.
Obligation Behaviour expected from an agent at some future time.
Plan An organised collection of actions.

learning features of adaptive agents. We also ensure that the set of terms is self-
contained, that is, concepts may only depend on each other in this set. We include
only relations and concepts that apply to a general kind of agents (autonomous, situ-
ated and interactive). Some issues are left to the methodology or the developers, e.g.
how plans are generated and discarded, how beliefs are updated and main-
tained/shared, verification and validation of the system.

2.2 The Proposed Generic Metamodel

The FAML metamodel has two layers: design-time and runtime layers. Each layer
may have two scopes: a system-related or agent-related scope. We present the meta-
model in four different diagrams (Figure 1-4) to clearly group classes into four areas
of concern: design-time system-related, runtime system-related (environment), de-
sign time agent-internals and run-time agent-internals classes.

Figure 1 shows the classes of the metamodel that are directly related to the descrip-
tion of a MAS, i.e. design-time system-related classes.

Design-time system-related classes (Figure 1) are concerned with features that can
only be perceived by looking at the whole system at design time:

• Roles, relationships between roles, relationship with message schemata.
• Tasks, and their relationships with roles.

132 G. Beydoun et al.

System Ontology

+Name

OntologyConcept

OntologyRelationship

1

0..*

1

0..*
+Description

Requirement

FunctionalRequirement

NonFunctionalRequirement

+Name

Role

1

0..*

+Description

Task

1

0..*

+Responsible 1

*

 ResponsibleFor

+Collaborator

*

*

 CollaboratesIn

*

*

DerivedFrom

+Parent

0..1

+Child 0..*
1 1

+Description

PerformanceMeasure

1

0..*

*

*

 Relates

*

*
 DerivedFrom

+Name
+ParameterSpecs

MessageSchema

1

0..*

*
*

CanUse

+InitialState

AgentDefinition

0..1

+Common 1

0..1

+Particular1

+Name

Role

+SubType0..1

+SuperType

0..*

SpecialisesFrom

0..*

0..*

IsIncompatibleWith

+Name
+DataType
+CanBeSensed
+CanBeChanged
+InitialValue

FacetDefinition

1

0..*

*

*

CanSense

*

*

CanChange

+Specification

Convention

1

0..*

OntologyAggregation

OntologySpecialisation

Fig. 1. System-related design-time classes. [The diamond notation indicates a generic whole-
part relationship].

• Agent definitions and relationships with roles.
• Use of ontologies to define domain application semantics.
• Environment access points and relationship with roles.

Figure 2 shows the classes related to the environment in which agents “live”, that is,
run-time environment-related classes. Run-time environment-related classes are con-
cerned with MAS features that exist only at runtime in the environment:

• Environment history of totally ordered instantaneous events, showing
the message log and the events.

• Events of different kinds.
• System access points and relationships with events.
• Relationships amongst agent definitions and the above constructs.

 Developing and Evaluating a Generic Metamodel for MAS Work Products 133

Environment

+Value

Facet

1

0..*

System

* 1

ImplementedBy

+Name
+DataType
+CanBeSensed
+CanBeChanged
+InitialValue

FacetDefin ition

Agent

1

1 InitialisedFrom

1

0..*

+InitialState

AgentDefin ition

0..*

1..*

InitialisedFrom

EnvironmentHisto ry

+Timestamp

Event 1

11

0..*
{ordered}

+ChangeSource
+OldValue
+NewValue

FacetEvent

+FromAgent
+ToAgents
+Parameters

MessageEvent

0..*

1

RefersTo

+Name
+ParameterSpecs

MessageSchema

0..*

1

IsOfType

Fig. 2. Run-time, environment-related classes

+InitialState

AgentDefinit ion

PlanSpecification

1..*

0..*

1..*

0..*

+PreCondition
+PostCondition

ActionSpecification

+NewValue

FacetAction
Specification

+Parameters

MessageAction
Specification

+Name
+DataType
+CanBeSensed
+CanBeChanged
+InitialValue

FacetDefinit ion

0..*

1

Changes

+Name
+ParameterSpecs

MessageSchema

0..*

1

SendsMessageOf

Fig. 3. Agen+t-internals design-time classes

134 G. Beydoun et al.

Figure 3 shows the classes related to the agent internals at design time. These include:

• Plan specification (if any).
• Action specification which can be a facet action or a message action

specification.
• How action specification relates to facet definitions and message sche-

mata.

Finally, Figure 4 shows the classes related to agent internals at run-time. These
classes can only be perceived by considering the internals of agents at run-time:

• Plans and actions.
• Relationships between actions, messages and message schemata.
• Desires and beliefs.
• Intentions.
• Relationships between each of the above and the environment.

In the next section, we compare and contrast each of the above classes of our meta-
model with the metamodels of two well known MAS descriptors: Islander [12, 13]
and TAO [32, 33]. We will argue that all modelling components of TAO and Islander
can indeed be seen as particular subtypes refining some classes in FAML.

Agent

+Specification

EnvironmentStatement

Actio n

Belief

+IsGoal

Desire

1

*

1 *

In tention

1

* *

1

Of

MessageActio n

+ Parameters

Message

Plan

1

*1

*

*

*

ResultsIn

*

+Sender

1
F rom

*

+Recipient *

To

+Name
+ParameterSpecs

MessageSch ema

*

+Template

1

IsAnInstanceOf

FacetAction

+Value

F acet

*

+Target

1

Changes

Ag en t

+Name

Role

* *

Plays

+Specification

Obligation

1

*

Plan Specification

1

*

GeneratedF rom

+NewValue

FacetAction
Specification

*

1

GeneratedFrom
+Parameters

MessageAction
Specification

*

1

GeneratedFrom

Fig. 4. Agent-internals run-time classes

 Developing and Evaluating a Generic Metamodel for MAS Work Products 135

3 Comparative Study of Our Metamodel

Multi Agent Systems modelling languages e.g. [6, 13, 32] allow software analysts to
specify the structure and key features of the behaviour of the target system. Metamod-
els underlying such languages are product metamodels with similar scope to FAML.
They do not include process-oriented concepts – in contrast to many AO methodolo-
gies, such as Gaia and Tropos, which focus on the process aspects at the expense of
any product metamodel. MAS-ML [32] and Islander [11] are MAS modelling lan-
guages. In this section, we have chosen the TAO metamodel (underlying MAS-ML)
and the metamodel underlying Islander as benchmarks to assess completeness of the
FAML metamodel. Both metamodels are well documented and explained in [32, 33]
and [12, 13] respectively. In addition, they both have been successfully applied in
designing and building actual MASs. We compare the coverage of our generic
metamodel with each. In the case of any clear overlap, we assess the rigour of the
description in the given metamodel with the FAML metamodel.

3.1 Refinement of Islander from the FAML Metamodel

Islander is a specification language targeting a particular class of MASs: electronic
institutions. Hence, its underlying metamodel focuses on MASs with a large number
of external agents that enter the system with their own plans and desires. Interactions
amongst external agents are assumed to be mediated by internal agents that follow
institutional policies rather than plans of their own. In other words, internal agents in
Islander are reactive. In the case when plans (and internal constructs such as beliefs,
learning mechanisms, intentions) are required, programming outside the specification
of Islander would be required. Hence, classes related to agent internals in our meta-
model are not refined at all in Islander. Using Islander, a MAS is described as a for-
mal specification consisting of three components: a dialogical framework, which
describes the set of roles and the format of messages exchanged (i.e. the communica-
tion language between agents within the institution); a set of scenes, which describe
possible states of different activities taken by groups of agents; and a performative
structure, which establishes how different activities (scenes) relate to each other in the
broader context of the institution [12, 13]. An example of a high level specification of
an e-market MAS, negotiation_space, modelling mediated negotiation between buyers
and sellers, looks as follows in Islander:

define-institution negotiation_space as
dialogic-framework = negotiation_space_df
performative-structure = negotiation_scenes

 norms = ()

At the system level, Islander refines our notions of roles and their relationships,
IsIcompatibleWith and SpecialisesFrom (Figure 1), in its dialogical framework. How-
ever, it does not have our notion of Facet that specifies what things an agent can
change in the environment, nor actions associated with the change. Islander assumes
that the only action an agent can execute is sending a message to another agent. It
implicitly associates messages with roles, within the intra-scene specification (task
specification).

136 G. Beydoun et al.

Islander’s notion of Scene refines our notion of Task. It describes an activity in an
e-institution that may involve a number of agents. Islander also refines our hierarchi-
cal decomposition of tasks and the associated child-parent relation between tasks (see
Figure 1): intra-scene activities are decomposed into scene states. Transition between
states is conditioned by messages exchanged and by scene constraints. This detailed
refinement is beyond the scope of our metamodel and is an Islander-specific feature
i.e. an example of a methodology-specific extension that the method engineer is re-
sponsible for. At our level of abstraction, a coarse Islander refinement of our task
decomposition would only include identifying scenes and their states, together with
all relevant roles.

In Islander, some inter- and intra-scene activities are conditioned by institutional
norms and constraints. These refine our notion of Convention, which explicitly de-
scribes static restrictions on agent behaviour. However, we do not anticipate a high
level refinement to distinguish between task-specific constraints and institutional
constraints (norms) as Islander does. We again view these as Islander-specific. Given
the scope of Islander, specifying electronic institutions, this is not unexpected.

Table 3. Islander refinement of FAML

FAML Construct Corresponding Islander Refinement
Message Message
Roles Roles
Task Scene
Task hierarchy Scene states
Convention Norms, Constraints
Ontology (domain struc-
ture)

Ontology (messages structures)

Non-functional require-
ments

#agent per scene, synchronization of agents

Obligation Obligations (of activities within a scene).
Environment History Stacks of messages (a stack of messages exists

for each scene).
Environment Implicit in the collection of interactions available

to all agents within the system, and determined
by external agents leaving or entering scenes.

Agent definition Implicit in: sub-task allocation to agents, mes-
sage specification assignment and constraints,
and association between messages and roles
within scenes.

Facet Event External agents entering or exiting a scene

Using Islander assumptions, the only activities taken by agents are receiving and
sending messages. Indeed, the lowest level description of all activities generated
within an institution can be expressed as a sequence of messages. The ontology speci-
fication in Islander describes the structures of messages exchanged about a domain.
This view of ontology is a refinement of our more general view, where an ontology
describes domain constructs and their relationships. Islander’s view again highlights

 Developing and Evaluating a Generic Metamodel for MAS Work Products 137

its assumptions about what kind of a MAS it models: electronic institutions revolving
around controlled communication between agents. Agents do not have the power to
change the institution, they only exchange messages.

Islander specifies the number of agents in each scene, and the synchronisation of
agents as they move between scenes. These are the only instances of non-functional
requirements we find in Islander. In our metamodel, we leave all details of non-
functional requirements to the refining method.

Our notion of an explicit Agent Definition is not directly refined in Islander. In-
stead, Islander focuses on restricting the behaviour of external agents to the sending
and receiving of messages applicable to the task and context in which the agent is
interacting. The specification in Islander is a description of messages exchanged be-
tween agents, and constraints regarding which agent sends which message and when,
all according to the role of the agent and their state in the e-Institution. This indirectly
defines what agents can do and is a substitute of a refinement of our notion of Agent
Definition. That is, Agent Definition is indirectly available through detailed specifica-
tion of each scene, through allocation of sub-tasks (or scene states) within a scene.

Our notion of Convention is also indirectly refined in Islander in dispersed details
of the specification of sub-tasks within a scene (a transition between two states in a
scene is restricted by conventions and message schemata).

Finally, with respect our run-time concepts: Islander refines our notion of Obliga-
tion, Islander obligations are generated as a result of activities within a scene. Our
notion of Environment is indirectly refined through the collection of interactions
available to all agents within the system. In particular, the interactions environment in
Islander is determined by external agents that may leave or enter the system at any
time. This refines our notion of Facet Event. Our notion of Environment History is
refined in Islander through a collection of stacks of messages. One stack of messages
exists for each scene (task) being executed by the system.

3.2 Refinement of TAO from the FAML Metamodel

TAO (Taming Agents and Objects) [33] is the metamodel underlying an extension to
UML, to accommodate agent-oriented development, called MAS-ML (figure 5). The
TAO metamodel retains object-oriented design concepts. In the following analysis,
we are concerned only with the agent-oriented features of TAO. We analyse TAO
metamodel units to show how they refine our metamodel. We choose TAO since it is
another product metamodel. It focuses on structural aspects of MASs [33].

TAO’s refinement of our Functional Requirement centres on the notion of Organi-
sation. Every TAO organisation is tightly coupled with an owner agent which has an
ownership relation with the organisation (see Figure 5). Large goals are decomposed
and allocated to agent roles controlled by the owner agent. Thus the notion of organi-
sation is a container of refinements of our three notions of Task, Role and Agent Defi-
nition. These three notions are respectively refined within TAO organisations as fol-
lows: Responsibility, Role and its Owning Agent. TAO refines hierarchical relations
between tasks as hierarchical relations between organisations. This, in turn, introduces
hierarchical associations between roles. This is a TAO-specific refinement that is a
direct consequence of the tight coupling of tasks, roles and agent definitions.

138 G. Beydoun et al.

Fig. 5. TAO metamodel showing MAS-ML abstractions and relationships5

TAO’s notion of Organisation is more specific than Task Analysis, in that it as-
sumes that organizing agents into cooperative and hierarchical groups is inherent to
any MAS. Whilst cooperation between agents is a very useful and a common assump-
tion, it is not a generic and inherent feature of all MASs. For example, it renders TAO
impractical to competitive agents in many market simulation MASs. To maintain
genericity of our metamodel, we do not assume that agent grouping is a methodology-
dependent feature. It is unclear to us whether or not identifying agent groups in the
early stages of system analysis would assist in moving to the next architectural phase
more effectively

For every modelled system in TAO, there is a Main Organisation. This is an in-
stance of our System construct (Figure 1). TAO bridges modelling the internals of
agents to the functional requirements through the definition of the owner agent cou-
pled with each organisation, which includes beliefs and plans that can be used to allo-
cate roles and to control the entities involved in the goal of the organisation (Task).
The owner agent may allocate some of these to agents that assume roles that are part
of the organisation. Organisations have axioms that must be followed. This refines our
notion of Convention.

TAO has three notions to specify agent behaviour: Rights, Duties and Protocols.
These respectively refine the following three notions from our metamodel: Action,
Obligation and Message Schema. TAO’s protocols distinguish between sent and re-
ceived messages for each role. TAO does not represent how plans are generated or
dumped (this is left to the developers).

TAO’s Environment notion refines the FAML Environment construct. It provides
the habitat for executing agents. However, TAO is not explicit in making a distinction
between messages exchanged between agents and agents changing certain features of

5 http://www.les.inf.puc-rio.br/mastools/masml_masmltool.html

 Developing and Evaluating a Generic Metamodel for MAS Work Products 139

the environment. This seems to be taken care of by the object-oriented features of the
environment (in TAO, objects as well as agents may inhabit an environment (see
Figure 5)). For instance, in the example of the online bookstore [32], objects are used
to describe books being bought and sold (and the trading environment is changed
consequently).

4 Discussion, Summary and Future Work

We have argued that it is possible to refine our metamodel to obtain both the meta-
model underlying Islander and TAO. To strengthen our argument, in this section, we
compare the two refinements of our metamodel. We highlight key features of each of
TAO and Islander and sketch possible extensions to both; then we conclude with an
overview of future work.

4.1 Discussion on Our Comparative Study

Our metamodel is explicit in some notions, whereas both Islander and TAO are im-
plicit. Examples are Facet, Facet Event and Convention. Both emphasise task analysis
and allocation of sub-tasks to agent roles. Islander does this with Scenes. TAO uses
Organisations to represent the allocation of a task to a group of agents. TAO Organi-
sation internals make it explicit which agent roles are responsible for which sub-tasks.
This is dispersed in Islander’s state description of scenes.

TAO is more comprehensive (in coverage) than Islander’s metamodel. Hence,
there are more concepts of our metamodel that are not refined in Islander in compari-
son with those not refined in TAO. Particularly, this is the case for specifying inter-
nals of planning agents.

Islander-specific features include a detailed modelling framework for specifying
tasks. They are called scenes, decomposed into states, with transition between these
states being conditioned by agent messages. Islander is richer than TAO in runtime
concepts: it specifies synchronisation requirements between scenes and it also refines
our Environment History. Neither feature exists in TAO. The later version of TAO
[33] includes new dynamic features but Environment History is not one of them.

Changing the structure of the system dynamically, that is system evolution, is not
explicitly accommodated in our metamodel, neither for TAO nor Islander. However,
we see the importance of this for future systems. Towards this, our current metamodel
would entail new (dynamic) relationships amongst roles and between roles, as well as
dynamic constructs such as Environment History.

A way to evolve roles, involving monitoring message flows and using the Envi-
ronment History, is described in [3]. Both TAO and Islander need enhancing to
accommodate such an evolutionary MAS. In TAO, monitoring of messages and cor-
responding roles is easier because it has centralized associations between messages
and roles. However, TAO needs the addition of Environment History, which Islander
already possesses. Islander could benefit from a centralized association between roles
and message schemata. TAO can use conditional boundaries of the organisation to
implement evolutionary changes, combined with loosened authority of the organisa-
tion over roles of their agents. Islander could also include an ontology revision
mechanism for its message specification.

140 G. Beydoun et al.

4.2 Summary and Future Work

In this paper, we have provided a first step towards context-dependent method
engineering for MAS development: a process-independent metamodel for an agent-
oriented modelling language to describe software components of any MAS. It
captures problem-independent concepts and attributes involved in MAS requirement
description and system design at various levels of details.

The focus on the capturing of MAS features led us to a generic metamodel that is
methodology independent. At the system level it can capture any problem independ-
ent concept, to a high level of abstraction. At the same time, our generic FAML meta-
model is highly useable. It describes detailed product knowledge at the agent level
and is enriched with constructs to represent the behaviour of agents within any MAS.
It can represent properties of any type of agent.

This paper provides, as well, preliminary evidence for the expressive power of our
language constructed as a formalised synthesis of the implicit modelling approaches
found in a number of existing agent-oriented methodologies. We have shown how the
FAML metamodel can be refined to express metamodels underlying known MAS
descriptors: MAS-ML (representing TAO) and Islander. The current work shown in
this paper does not, however, totally validate our metamodel for its use towards MAS
method engineering. Towards this, we plan to validate it against underlying meta-
models of a number of other prominent methodologies, including Gaia [36] and Tro-
pos [16]. We also plan to further identify and exemplify its individual elements in the
analysis of an actual P2P retrieval MAS application.

Beyond the metamodel validation, the next step of our work is to create a com-
plementary generic process metamodel and to situate the presented agent-oriented
modelling language within a full method engineering framework. The FAML model-
ling language will be stored in a repository as a collection of method fragments,
which will be subsequently linked to other method fragments describing potential
activities, tasks, techniques (i.e. process aspects), teams and roles (i.e. people aspects).
Thus, a complete methodological framework will be provided, able to support the
generation of complete, custom-made agent-oriented methodologies using the tenets
of method engineering.

Acknowledgement

This is contribution number 05/12 of the Centre for Object Technology Applications
and Research. The work is supported by the Australian Research Council under
Discovery grant number: DP0451213.

References

1. C. Bernon, M. Cossentino, M. Gleizes, P. Turci and F. Zambonelli: A Study of some
Multi-Agent Meta-Models, in AOSE04. 2004. New York.

2. C. Bernon, M.-P. Gleizes, S. Peyruqueou and G. Picard: ADELFE, a Methodology for
Adaptive Multi-Agent Systems Engineering, in Engineering Societies in the Agents World.
2002. Spain.

 Developing and Evaluating a Generic Metamodel for MAS Work Products 141

3. G. Beydoun, J. Debenham and A. Hoffmann: Using Messaging Structure to Evolve Agents
Roles, in Intelligent Agents and Multi-Agent Systems VII, M. Barley and N. Kasabov, Edi-
tors. 2005, Springer: Australia. p. 18-30.

4. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos: A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming, in Agents2001.
2001. Montreal: ACM.

5. S. Brinkkemper: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, 1996. 38(4): p. 275-280.

6. R. Choren and C. Lucena: Modeling multi-agent systems with ANote. Software and Sys-
tems Modelling, 2005. 4: p. 199-208, doi 10.1007/s10271-004-0065-y.

7. A. Cockburn: Selecting a project's methodology. IEEE Software, 2000. 17(4): p. 64-71.
8. M. Cossentino and C. Potts: A CASE tool supported methodology for the design of

multi-agent systems, in International Conference on Software Engineering Research and
Practice (SERP'02). 2002. Las Vegas (NV), USA.

9. E. Durfee and V. Lesser: Negotiating task decomposition and allocation using partial
global planning., in Distributed Artificial Intelligence, L. Gasser and M. Huhns, Editors.
1989, Morgan Kaufmann: San Francisco. p. 229-244.

10. B. Edmonds and J. Bryson: The Insufficiency of Formal Design Methods - the necessity of
an experimental approach, in AAMAS04. 2004. New York: ACM.

11. M. Esteva: Electronic Institutions: From Specification To Development, in AI Research
Insitute. 2003, UAB - Universitat Autonòma de Barcelona: Barcelona.

12. M. Esteva: Electronic Institutions: From Specification To Development (PhD thesis), in AI
Research Insitute. 2003, UAB - Universitat Autonòma de Barcelona.

13. M. Esteva, D.d.l. Cruz and C. Sierra: ISLANDER: an electronic institutions editor, in
International Conference on Autonomous Agents & Multiagent Systems (AAMAS02).
2002. Italy: ACM.

14. J. Ferber and A. Drogoul: Using Reactive Multi-Agent Systems in Simulation and Prob-
lem Solving, in Distributed AI: Theory and Praxis, L. Avouris, Editor. 1992, Kluwer:
Brussels.

15. FIPA: Methodology Glossary - FIPAMG. 2003.
16. F. Giunchiglia, J. Mylopoulos and A. Perini: The Tropos Software Development Method-

ology: Processes, Models and Diagrams, in Agent-Oriented Software Engineering III:
Third International Workshop, AOSE 2002, F. Giunchiglia, J. Odell, and G. Weiß, Editors.
2003, Springer. p. 162-173.

17. Z. Guessoum, L. Rejeb and R. Durand: Using Adaptive Multi-Agent Systems to Simulate
Economic Models, in AAMAS04. 2004. New York: ACM.

18. B. Henderson-Sellers: Method engineering for OO systems development. Comm. ACM,
2003. 46(10): p. 73-78.

19. B. Henderson-Sellers, J. Bohling and T. Rout: Creating the OOSPICE Model Architecture
- a Case of Reuse. Software Process Improvement and Practice, 2004. 8(1): p. 41-49.

20. B. Henderson-Sellers and P. Giorgini, eds.: Agent-Oriented Methodologies. 2005, Idea
Group: Hershey, USA.

21. B. Henderson-Sellers, A. Simons and H. Younessi: The OPEN Toolbox of Techniques. The
OPEN Series. 1998, Harlow (Essex), UK: Addison-Wesley Longman.

22. T. Hogg and C. Williams: Solving the Really Hard Problems with Cooperative Search, in
11th National Conference on Artificial Intelligence. 1993. Washington, DC, USA: MIT
Press.

23. E. Horlait: Mobile Agents for Telecommunication Applications (Innovative Technology
Series: Information Systems and Networks). 2004, Portland: Kogan Page.

142 G. Beydoun et al.

24. L. Hunsberger and B.J. Grosz: A combinatorial auction for collaborative planning, in 4th
International Conference on Multi-Agent Systems (ICMAS-00). 2000.

25. G.F. Luger: AI: Structures and Strategies for Complex Problem Solving. 2002: Addison
Wesley.

26. J. Martin and J. Odell: Object-Oriented Methods: A Foundation. 1995, Englewood Cliffs,
NJ: Prentice-Hall.

27. J. Odell, M. Nodine and R. Levy: A Metamodel for Agents, Roles, and Groups, in AOSE
2004, J. Odell and e. al., Editors. 2005, Springer: Berlin. p. 78-92.

28. L. Padgham and M. Winikoff: Developing Intelligent Agent Systems. A Practical Guide.
Vol. 1. 2004, Chichester: J. Wiley & Sons. 225.

29. R. Pfeifer and C. Sheier: Understanding Intelligence. 2001: MIT Press.
30. J. Ralyté and C. Rolland: An Assembly Process Model for Method Engineering, in 13th

Conference on Advanced Information Systems Engineering (CAiSE). 2001. Berlin:
Springer.

31. S. Russell and P. Norvig: Artificial Intelligence, A modern Approach, the intelligent agent
book. 2003: Prentice Hall.

32. V. Silva, R. Choren and C. Lucena: Using the MAS-ML to Model a Multi-Agent System,
in Software Engineering for Multi-Agent Systems (SELMAS2003). 2003. Springer.

33. V. Silva and C. Lucena: From a Conceptual Framework for Agents and Objects to a
Multi-Agent System Modeling Language. Autonomous Agents and Multi-Agent Systems,
2004. 8: p. 1-45.

34. G. Tidhar, C. Heinze, S. Goss, G. Murray, D. Appla and I. Lloyd: Using Intelligent Agents
in Military Simulation or " Using Agents Intelligently", in 11th Conference on Innovative
Applications of AI.. 1999. Orlando,Florida: MIT Press.

35. M. Wooldridge: Reasoning About Rational Agents. 2000: MIT Press.
36. M. Wooldridge, N.R. Jennings and D. Kinny: The Gaia Methodology for Agent-Oriented

Analysis and Design, in Autonomous Agents and Multi-Agent Systems. 2000. The Netherlands:
Kluwer Academic Publishers.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 143 – 160, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agent Roles, Qua Individuals and the Counting Problem

Giancarlo Guizzardi

Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy
guizzardi@loa-cnr.it

Abstract. Despite the relevance of the concept of role for conceptual modeling
and agent-orientation, there is still in the literature a lack of consensus on the
meaning of this notion and how it should be incorporated in existing conceptual
modeling languages and frameworks. In this paper, we offer a contribution to
this problem by employing a well-founded reference ontology (UFO) to analyze
and reconcile two competing notions of role existing in the conceptual modeling
literature. Moreover, a modeling solution based on this ontology is proposed,
which incorporates the benefit of the two approaches analyzed.

1 Introduction

Roles represent a fundamental notion for our conceptualization of reality. This notion
has received much attention both in philosophical investigation [20,32] and in the
conceptual modeling literature [2,31,34]. In particular, in the sub-area of conceptual
modeling concerned with agent-oriented conceptual modeling, the concept of role is
considered of fundamental relevance [5,25,26].

In a comprehensive study on this topic, Friedrich Steimman [31] defends that the
role concept naturally complements those of object and relationship, standing on the
same level of importance. However, Steimann also recognizes that “the role concept,
although equally fundamental, has long not received the widespread attention it de-
served”, and that “although there appears to be a general awareness that roles are
an important modelling concept, until now no consensus has been reached as to how
roles should be represented or integrated into the established modeling frameworks”
[ibid., p.84]. The last statement can be verified by inspecting the diversity and in-
compatibility of the several conceptualizations of roles currently co-existing in the
literature [2,18,31,34].

Recently, not only has the interest in roles grown continuously, but also has the in-
terest in finding a common ground on which the different notions of role can be
judged and reconciled [20,22]. In this paper, we employ the foundational ontology
developed in [11,12] to provide real-world semantics, and to harmonize two compet-
ing notions of role present in the conceptual modeling literature.

In section 2 we present the theoretical background of the work presented here, i.e.,
the foundational ontology which is employed in the rest of the paper. A discussion
on the categories of this ontology is continued in section 3, in which we formally define
the notion of role that is adopted in our ontological framework. In section 4, we discuss
a second notion of role that deviates from most of the proposals in the literature. This
second notion of role has been initially proposed in [34] to address a philosophical

144 G. Guizzardi

problem known as The Counting Problem but it has been later adopted by other mod-
eling approaches. In section 5, by using the foundational ontology presented in
section 2, we manage to provide an ontological interpretation for both notions of role
discussed. Moreover, we propose a conceptual modeling solution based on this ontol-
ogy that is able to harmonize these two competing notions of role while maintaining
the benefits of the two approaches. Section 6 concludes the article by presenting
some final considerations.

2 Background: The Unified Foundational Ontology (UFO-A)

In this section, we present a fragment of a philosophically and cognitively well-founded
reference ontology (foundational ontology) that has been developed in [11,12]. In par-
ticular, in [12], this ontology is named UFO (Unified Foundational Ontology) and is
presented in three compliance sets. Here, we focus on the first of these sets (UFO-A),
which is an ontology of endurants. As demonstrated in [12], this ontology comprise a
number of core ontological categories that can be extended to provide a foundation for
Agent Modeling Concepts (UFO-C). In the sequel, we restrict ourselves to a fragment
of UFO-A, depicted in Figure 1 (see aforementioned references for details).

In what follows, we offer a formal characterization of some of the notions dis-
cussed by using a language of quantified modal logics with identity. The domain of
quantification adopted is that of possibilia, which includes all possible entities inde-
pendent of their actual existence. Therefore we shall quantify over a constant domain
in all possible worlds. Moreover, all worlds are equally accessible. As a result we
have the simplest language of quantified modal logics (QS5) with identity [9].
Finally, all formulas described are assumed to hold necessarily.

Entity

Universal Individual

Substantial Moment

Quality Relator

Monadic Universal Relation

Substantial Universal Quality Universal Relator Universal Formal Relation Material Relation

Existential DependencyKind

Role characterization Mediation

Phase QuaIndividual

QuaIndividualUniversal

Fig. 1. Excerpt of the Foundational ontology UFO-A

A fundamental distinction in this ontology is between the categories of Individual and
Universal. Individuals are entities that exist in reality possessing a unique identity.
Universals, conversely, are space-time independent pattern of features, which can be
realized in a number of different individuals. The core of this ontology exemplifies
the so-called Aristotelian ontological square comprising the category pairs Substan-
tial-Substantial Universal, Moment-Moment Universal. From a metaphysical point
of view, this choice allows for the construction of a parsimonious ontology, based on
the primitive and formally defined notion of existential dependence [11]:

 Agent Roles, Qua Individuals and the Counting Problem 145

Definition 1 (existential dependence). Let the predicate ε denote existence. We have
that an individual x is existentially dependent on another individual y (symbolized as
ed(x,y)) iff, as a matter of necessity, y must exist whenever x exists, or formally (1).
ed(x,y) =def (ε(x) → ε(y)).

2.1 Moments

The word Moment is derived from the german Momente in the writings of E. Husserl
and it denotes, in general terms, what is sometimes named trope, abstract particular,
individual accident, or property instance [21]. In the scope of this work, the term
bears no relation to the notion of time instant in ordinary parlance. The origin of the
notion of moment lies in the theory of individual accidents developed by Aristotle.
According to him, an accident is an individualized property, event or process that is
not a part of the essence of a thing. We here use the term “moment” in a more general
sense and do not distinguish a priori between essential and inessential moments.

As pointed out by [28], there is solid evidence for moments in the literature. On
one hand, in the analysis of the content of perception, moments are the immediate ob-
jects of everyday perception. On the other hand, the idea of moments as truthmakers
underlies a standard event-based approach to natural language semantics.

The notion of moment employed here comprises: (a) Intrinsic Moments or Qualities:
an individualized (objectified) color, temperature, or weight, a symptom, a skill, a be-
lief, an intention, an electric charge; (b) Relational Moments or Relators: a kiss, a
handshake, a covalent bond, a medical treatment, but also social objects such as a
flight connection, a purchase order and a commitment or claim [12].

An important feature that characterizes all moments is that they can only exist in
other individuals (in the way in which, for example, electrical charge can exist only in
some conductor). To put it more technically, we say that moments are existentially
dependent on other individuals. Existential dependence can also be used to diff-
erentiate intrinsic and relational moments: qualities are dependent of one single
individual; relators depend on a plurality of individuals.

A special type of existential dependence relation that holds between a moment x
and the individual y of which x depends is the relation of inherence (i). Thus, for an
individual x to be a moment of another individual y, the relation i(x,y) must hold
between the two. For example, inherence glues your smile to your face, or the charge
in a specific conductor to the conductor itself. We formally characterize a moment as
an individual that inheres in (and, hence, is existentially dependent upon) another
individual:

Definition 2 (Moment). (2). Moment(x) =def Individual(x) ∧ ∃y i(x,y) •

In our framework, we adopt the so-called non-migration (or non-transferability)
principle. This means that it is not possible for a moment m to inhere in two different
individuals a and b: (3). ∀x,y,z (Moment(x) ∧ i(x,y) ∧ i(x,z) → y = z)

This characteristic of moments seems at first counterintuitive. For example, if we
have two particulars a (a red apple) and b (a red car), and two moments r1 (particular
redness of a) and r2 (particular redness of b), we consider r1 and r2 to be different

146 G. Guizzardi

individuals, although perhaps qualitatively indistinguishable. What does it mean then
to say that a and b have the same color? Due to (3), sameness here cannot refer to
strict (numerical) identity, but only to a qualitative one (i.e., equivalence in a certain
respect). In conformance with DOLCE [21], we distinguish between the color of a
particular apple (its quality) and its ‘value’ (e.g., a particular shade of red). The latter
is named quale, and describes a projection of an individual quality into a certain con-
ceptual space [11].

The unique individual y that a moment x inheres in is termed the bearer of x and is
defined as follows:

Definition 3 (Bearer of a Moment)1: (4). β(x) =def ιy i(x,y) •

Finally, the bearer of a moment can itself be another moment. An example of moment
inhering in another moment is the individualized time extension, or the graveness of a
particular symptom. The infinite regress in the inherence chain is prevented by the
fact that there are individuals that cannot inhere in other individuals, namely,
substantials.

2.2 Substantial

Substantials are individuals that posses (direct) spatial-temporal qualities and that are
founded on matter. Examples of Substances include ordinary objects of everyday ex-
perience such as an individual person, a dog, a house, a hammer, a car, Alan Turing
and The Rolling Stones but also the so-called Fiat Objects such as the North-Sea and
its proper-parts, postal districts and a non-smoking area of a restaurant. In contrast
with moments, substantials do not inhere in anything and, as a consequence, they en-
joy a higher degree of independence. We define the category of substantials as fol-
lows:

Definition 4 (Substantial). A substantial is an individual that does not inhere in an-
other individual, i.e., which is not a moment. Formally, (5). Substantial(x) =def Indi-
vidual(x) ∧ ¬Moment(x)

As we have previously stated, substantials enjoy a higher degree of independence
when compared to moments. Can we make a stronger statement? Can we say that
substantials are existentially independent from all other individuals? If we take the
notion of existential dependence that we have given in definition 1, the answer is no.
Since, there are certainly pairs (x,y) where x is a substantial that satisfy ed(x,y). For
example, if y is any of the essential moments of x (the particular DNA of a person).
Moreover, even if both x and y are substantials, ed(x,y) can be satisfied. Take for
example a substantial and any of its essential parts (e.g., a car and its chassis as an es-
sential part). Or, alternatively, a substantial x and another object y of which x is an
inseparable part (e.g., a brain and person of which this brain is an inseparable part).
The notions of essential and inseparable parts are discussed in depth in [11].

1 The iota operator (ι) used in a formula such as ιxϕ was defined by B. Russel and implies both

the existence and the uniqueness of an individual x satisfying predicate ϕ.

 Agent Roles, Qua Individuals and the Counting Problem 147

However, suppose that x and y are two substantials that are disjoint from each
other, i.e., they are neither part of each other nor they share a common part. The sym-
bols and < below represent disjointness and proper parthood2, respectively:

(6). (x y) =def ¬(x < y) ∧ ¬(y < x) ∧ ¬(∃z (z < x) ∧ (z < y)).

Then, in this case, we can say that x and y are necessarily independent from each
other (symbolized as indep):

(7). indep(x,y) =def ¬ed(x,y) ∧ ¬ed(y,x)
(8). ∀x,y Substantial(x) ∧ Substantial(y) ∧ (x y) → indep(x,y)

For example, a person depends on her brain, and a car depends on its chassis.
However, a person (car) does not dependent on any other substantial that is disjoint
from her (it). Notice that formula (8) also excludes the case of mutual existential
dependence between substantials that share a common essential part (e.g., two rooms
that share a wall as a mutual essential part).

2.3 Relations, Relators and Qua Individuals

Relations are entities that glue together other entities. In the philosophical literature,
two broad categories of relations are typically considered, namely, material and for-
mal relations [14,29]. Formal relations hold between two or more entities directly,
without any further intervening individual. Examples of formal relations include exis-
tential dependence (ed), inherence (i), part-of (<), subset-of, instantiation, among
many others not discussed here [11,21].

Material relations, conversely, have material structure on their own and include
examples such as working at, being enrolled at, and being connected to. Whilst a
formal relation such as the one between Paul and his knowledge x of Greek holds di-
rectly and as soon as Paul and x exist, for a material relation of being treated in be-
tween Paul and the medical unit MU1 to exist, another entity must exist which medi-
ates Paul and MU1. We name these entities relators. Relators are individuals with the
power of connecting entities. For example, a medical treatment connects a patient
with a medical unit; an enrollment connects a student with an educational institution;
a covalent bond connects two atoms. The notion of relator (relational moment) is sup-
ported by several works in the philosophical literature [14,28,29] and, the position ad-
vocated here is that they play an important role in answering questions of the sort:
what does it mean to say that John is married to Mary? Why is it true to say that Bill
works for Company X but not for Company Y?

An important notion for the characterization of relators (and, hence, for the charac-
terization of material relations) is the notion of foundation. Foundation can be seen as
a type of historical dependence [8], in the way that, for instance, an instance of being
kissed is founded on an individual kiss, or an instance of being punched by is founded
on an individual punch, an instance of being connected to between airports is founded
on a particular flight connection.

2 Formally, an individual x is a proper part of an individual y iff x is part of y and x is not iden-

tical to y, i.e., (x < y) =def (x ≤ y) ∧ ¬(x = y).

148 G. Guizzardi

Suppose that John is married to Mary. In this case, we can assume that there is an
individual relator (relational moment) m1 of type marriage that mediates John and
Mary. The foundation of this relator can be, for instance, a wedding event or the sign-
ing of a social contract between the involved parties. In other words, for instance, a
certain event e1 in which John and Mary participate can create an individual marriage
m1 which existentially depends on John and Mary and which mediates them. The
event e1 in this case is the foundation of relator m1 and, m1 is the so-called truthmaker
of the propositions “John is married to Mary”.

Now, let us elaborate on the nature of the relator m1. There are many qualities that
John acquires by virtue of being married to Mary. For example, imagine all the legal
responsibilities that John has in the context of this relation. These newly acquired
properties are intrinsic moments of John which, therefore, inhere and are existentially
dependent on him. However, these moments also depend on the existence of Mary.
We name this type of qualities externally dependent qualities, i.e., externally depend-
ent qualities are intrinsic moments that inhere in a single individual but that are exis-
tentially dependent on (possibly a multitude of) other individuals.

Definition 5 (Externally Dependent Quality). A quality x is externally dependent iff
it is existentially dependent of an individual which is independent of its bearer.
Fornally, (9). ExtDepQuality(x) =def Quality(x) ∧ ∃y indep(y,β(x)) ∧ ed(x,y).

In the case of a material externally dependent moment x there is always an individual
external to its bearer (i.e., which is not one of its parts or intrinsic moments), which is
the foundation of x. Again, in the given example, we can think of a certain event e1
(wedding event or signing of social contract) in which both John and Mary participate
and which founds the existence of these externally dependent moments inhering in
John. Now, we can define an individual that bears all externally dependent qualities of
John that share the same external dependencies and the same foundation. We term
this particular a qua individual [22]. Qua individuals are, thus, treated here as a spe-
cial type of complex externally dependent qualities. In this case, the complex quality
inhering in John that bears all responsibilities that John acquires by virtue of a given
wedding event can be named John-qua-husband.

To continue with the same example, we can think about another qua individual
Mary-qua-wife which is a complex moment bearing all responsibilities that Mary
acquires by virtue of the same foundation and that albeit inhering in Mary are also ex-
istentially dependent on John. The qua individuals John-qua-husband and Mary-qua-
wife are existentially dependent on each other. Now, we can define an aggregate m1

composed of these two qua individuals that share the same foundation, i.e., (John-
qua-husband < m1) and (Mary-qua-wife < m1). In this example, m1 is exactly the in-
stance of the relational property marriage that mediates John and Mary and that
makes true propositions such as “John is married to Mary”, “Mary is married to
John”, “John is the husband of Mary”, and “Mary is the wife of John”.

In this example, a particular instance of the relational property marriage (i.e., a par-
ticular marriage relator) is the sum of all instantiated responsibilities that the involved
parties acquire by virtue of a common foundation. In general, a relator can be defined
as the aggregation of a number of qua individuals that share the same foundation. A
relator is said to mediate (or connect) the relata of a material relation. Formally we
have that: let x, y and z be three distinct individuals such that (a) x is a relator; (b) z is

 Agent Roles, Qua Individuals and the Counting Problem 149

a qua individual and z is part of x; (c) z inheres in y. In this case, we say that x
mediates y, symbolized by m(x,y), and the following holds:

(10). ∀x,y m(x,y) → relator(x) ∧ Individual(y)
(11). ∀x Relator(x) → ∀y (m(x,y) ↔ (∃z quaIndividual(z) ∧ (z < x) ∧ i(z,y)))

Additionally, we require that a relator mediates at least two distinct individuals, i.e.,

(12). ∀x Relator(x) → ∃y,w (y ≠ w ∧ m(x,y) ∧ m(x,w)).

Again, using the example above, we say that the particular relator marriage m1 medi-
ates the substantials John and Mary and, for this reason, we can say that John and
Mary are married to each other.

Finally, in the theory present here, qua individuals are always inessential moments.
In other words, if a qua individual q inheres in a substantial x then it does so contin-
gently, i.e., only in certain situations. To see that this must be the case, suppose the
contrary. By definition 5, a qua individual q that inheres in x is also existentially de-
pendent on a individual y which is independent from x, i.e., ed(q,y) and ¬ed(x,y).
However, if q is a essential to x then we have that ed(x,q). Now, since existential de-
pendency is a transitive relation, with ed(x,q) and ed(q,y) we have that ed(x,y), which
is a contradiction. Hence, we have that qua individuals cannot inhere in its bearer
necessarily.

2.4 Universals

A Substantial Universal is a universal whose instances are substances (e.g., the uni-
versal Person or the universal Apple). A Quality Universal is a universal whose in-
stances are individual qualities (e.g., the objectified color of this apple is an instance of
the universal color, a particular headache is an instance of the universal Symptom), and
a Relator Universal is one whose instances are individual relational moments (e.g., the
particular enrollment connecting John and a certain University is an instance of the
universal Enrollment). Both quality and relator universals are moment universals.

In general, conceptual specifications (such as UML class diagrams and ER specifi-
cations) represent conceptualizations only at the type level, i.e., only universals and
relations among universals are typically represented. Thus, we define the formal rela-
tions of Characterization and Mediation as the counterparts at the type level of the
relations inheres in and mediates, respectively. In these definitions, the symbol ::
represents the formal relation of instantiation.

Definition 6 (Characterization). A universal U is characterized by a moment univer-
sal M iff every instance of U bears an instance of M. Formally, (13). charac(U,M)
=def Universal(U) ∧ MomentUniversal(M) ∧∀x (x::U → ∃y y::M ∧ i(y,x))

Definition 7 (Mediation). The mediation relation holds between a universal U and a
relator universal UR iff every instance of U is mediated by (m) an instance of UR. For-
mally, (14). mediation(U,UR) =def Universal(U) ∧ RelatorUniversal(UR) ∧ ∀x (x::U
→ ∃r r::UR ∧ m(r,x))

150 G. Guizzardi

Figure 2 below exemplifies the ontological categories discussed in this section. It de-
picts the substantial universals Person, Patient and Medical Unit, the quality universal
Symptom, the relator universal Treatment. Moreover, it represents the quality univer-
sal Duration which characterizes the quality universal Symptom, and the correspond-
ing formal relations connecting these entities. As argued in [11], a complex quality
universal such as Symptom in figure 2 is the ontological counterpart of the concept of
Weak entity types in EER diagrams.

In this figure and in the remainder of this article we use a UML class stereotype
«quality» and «relator» to represent quality and relator universals. Additionally, we
use the UML association stereotypes «characterization» and «mediation» to represent
the respective formal relations. The classes stereotyped as «kind» and «role» repre-
sent substantial universals and will be discussed in the next section. These stereotyped
constructs belong to an ontologically well-founded UML profile defined in [11] for
the purpose of conceptual modeling and ontology representation. For UML extension
mechanisms and, in particular, stereotypes, we refer to [24].

In the conceptual models represented in this article, we only represent as UML as-
sociations the stereotyped existential dependence formal relations discussed above,
i.e., characterization and mediation. Material relations are represented by explicitly
representing their founding relators. As discussed in depth in [11], this approach in-
troduces many benefits to conceptual modeling when compared to the traditional
modeling of relational properties as associations.

«role»
Patient

«relator»
Treatment

1..*1..* «mediation»1..*1 «mediation»

d:Duration

«quality»
Symptom

1..*

1

«characterization»
«kind»
Person

«kind»
MedicalUnit

Fig. 2. Conceptual model exemplifying some of the ontological categories discussed

3 Roles as Substantial Universals

In [23], cognitive psychologist John Macnamara investigates the role of substantial
universals in cognition and provides a comprehensive theory for explaining the proc-
ess that a child undergoes when learning proper names and common nouns. He pro-
poses the following example: suppose a little boy (Tom), who is about to learn the
meaning of a proper name for his puppy. When presented to the word “Spot”, Tom
has to decide what it refers to. A demonstrative such as “that” will not suffice to de-
terminate the bearer of the proper name. How to decide that “that”, which changes all
its perceptual properties is still Spot? In other words, which changes can Spot suffer
and still be the same? As Macnamara (among others) shows, answers to these ques-
tions are only possible if Spot is taken to be a proper name for an individual that in-
stantiates a special type of substantial universal, namely, one that supplies a principle
through which we can judge whether two individuals are the same, i.e., a principle of
identity. The principles of identity supplied by these universals are essential to judge
the validity of all identity statements. For example, if for an instance of the universal

 Agent Roles, Qua Individuals and the Counting Problem 151

Statue loosing a piece will not alter the identity of the object, the same does not hold
for an instance of Lump of Clay.

Let us take another example. Consider a statement such as “Exactly five X were in
the kitchen last night”. This statement is only determinate (i.e., has a determinate
truth value) if X stands for a universal that supplies a principle through which we can
individuate and, thus, count individuals, i.e., a principle of individuation. To verify
this, we can substitute X in the sentence above by the universals Thing, Object or Red.
A request to “count the red in this room” cannot receive a definite answer: Should a
red shirt be counted as one or should the shirt, the two sleeves, and two pockets be
counted separately so that we have five reds? The problem in this case is not that one
would not know how to finish the counting but that one would not know how to start,
since arbitrarily many subparts of a red thing are still red.

In summary, a sentence such as “The X which is the same as Y” is only be determi-
nate if X and Y can supply a principle of identity for its instances, and a sentence such
as “Exactly five X” is only determinate if X can supply a principle of individuation
and counting. Substantial Universals such as Person, Car, Dog, Student that carry a
principle of identity, individuation and counting for its instances are named Sortal
Universals. In contrast, universals such as Thing, Red, Tall, Heavy are named Char-
acterizing Universals, since they only attribute properties to (characterize) individuals
which have already being individuated by sortal-supplied principles. The distinction
between sortal and characterizing universals is reflected in natural language in the dis-
tinction between common nouns and other general terms (e.g., adjectives, verbs), re-
spectively. Notice that only the substitution of X and Y in the sentences above by
common nouns will render sentences which are grammatical. For a fuller formal the-
ory of substantial universals that propose further distinction among both sortal and
characterizing universals one should refer to [10,11].

The statement that the identity of an individual can only be traced in connection
with a Sortal Universal, which provides a principle of individuation and identity to the
particulars it collects amounts to one of the best-supported theories in the philosophy
of language [13,19,23,32]. The position advocated in this article affirms an equivalent
stance for a theory of conceptual modeling. We defend that every substantial individ-
ual in a conceptual model of the domain must be an instance of a conceptual modeling
type representing a sortal universal.

As argued by Kripke [16], a proper name such as Spot or Mick Jagger are rigid
designators, i.e. they refer to the same individual in all possible situations, factual or
counterfactual. For instance, the proper name Mick Jagger refers to the same individ-
ual both now (when he is the lead singer of Rolling Stones and a sexagenarian) and in
the past (when he was the boy Mike Philip living in Kent, England). Moreover, it
refers to the same individual in counterfactual situations such as the one in which he
decided to continue in the London School of Economics and has never pursued a mu-
sical career. For this reason, a proper name must be typed by a sortal that applies to its
instances necessarily, i.e., in all possible situations. In this case, the sortal Person is
the sortal that defines the validity of the claim that Mick Jagger is the same as Mike
Philip or, in other words, that Mike Philip persists through changes in height, weight,
age, appearance, etc., as the same individual.

Once more, person can only be the sortal that supports the proper name Mick Jag-
ger in all possible situations because it applies necessarily to the individual referred
by the proper name, i.e., instances of Person cannot cease to be so without ceasing to

152 G. Guizzardi

exist. This meta-property of universals is named Modal Constancy [13] or rigidity
[10] and can be formally characterized as in the formula schema below:

Definition 9 (Rigidity). A universal U is rigid if for every instance x of U, x is neces-
sarily (in the modal sense) an instance of U. In other words, if x instantiates U in a
given world w, then x must instantiate U in every possible world w’: (15). (∀x x::U
→ (x::U)).

In summary, since principles of identity apply to individuals in all possible situations,
we have that only rigid sortals can supply principles of identities for their instances.
A rigid sortal universal that supplies a principle of identity for its instances is named
here a Kind. Examples of sortal universals that apply to their instances only contin-
gently (i.e., possibly only in certain situations) include universals such as Boy and
Adult Man, but also Student, Employee, Caterpillar and Butterfly, Philosopher,
Writer, Alive and Deceased. Sortals that possibly apply to an individual only during a
certain phase of its existence are named phased-sortals. Contrary to kinds, phased-
sortals are anti-rigid universals:

Definition 10 (Anti-rigidity). A universal U is anti-rigid if for every instance x of U,
x is possibly (in the modal sense) not an instance of U. In other words, if x instantiates
U in a given world w, then there is a possible world w’ in which x does not instantiate
U: (16). (∀x x::U → (¬x::U)).

Being anti-rigid, phased-sortals cannot supply a principle of identity for their in-
stances. However, since they are sortals, they must carry a principle of identity, which
they inherit from a Kind. Therefore, we have that every phase-sortal PS must be a
subtype of Kind such that PS inherits the principle of identity supplied by K. In other
words, every instance of PS is necessarily a K and, thus, obeys the principle of iden-
tity supplied by K. For example, for an individual John instance of Student, we can
easily imagine John moving in and out of the Student type, while being the same in-
dividual, i.e. without loosing his identity. This is because the principle of identity that
applies to instances of Student and, in particular, that can be applied to John, is the
one which is supplied by kind Person of which the phase-sortal Student is a subtype.

If PS is a phased-sortal and K is the substance sortal specialized by PS, there is a
specialization condition ϕ such that x is an instance of PS iff x is an instance of K that
satisfies ϕ [32]. A further clarification on the different types of specialization condi-
tions allows us to distinguish between two different types of phased-sortals which are
of great importance to the practice of conceptual modeling, namely, phases and roles.

Phases (also named states in [2]) constitute possible stages in the history of a sub-
stance sortal. Examples include: (a) Alive and Deceased: as possible stages of a Per-
son; (b) Catterpillar and Butterfly of a Lepidopteran; (c) Town and Metropolis of a
City; (d) Boy, Male Teenager and Adult Male of a Male Person. Universals repre-
senting phases constitute a partition of the kind they specialize. For example, if
‹Alive, Deceased› is a phase-partition of the kind Person then for every world w,
every Person x is either an instance of Alive or of Deceased but not of both. More-
over, if x is an instance of Alive in world w then there is a world w’ such that x is not
an instance of Alive in w’, which then implies that x is an instance of Deceased in w’.

 Agent Roles, Qua Individuals and the Counting Problem 153

 Contrary to phases, Roles do not necessarily form a partition of kinds. Moreover,
they differ from phases with respect to the specialization condition ϕ. For a phase Ph,
ϕ represents a condition that depends solely on intrinsic properties of Ph. For in-
stance, one might say that if Mick Jagger is a Living Person then he is a Person who
has the property of being alive or, if Spot is a Puppy then it is a Dog who has the
property of being less than one year old. For a role Rl, conversely, ϕ depends on ex-
trinsic (relational) properties of Rl. For example, one might say that if John is a Stu-
dent then John is a Person who is enrolled in some educational institution, if Peter is a
Customer then Peter is a Person who buys a Product x from a Supplier y, or if Mary is
a Patient than she is a Person who is treated in a certain medical unit. In other words,
an entity plays a role in a certain context, demarcated by its relation with other enti-
ties. This meta-property of Roles is named Relational Dependence and can be for-
mally characterized as follows [10,11]:

Definition 11 (Relational Dependence). A universal U is relationally dependent on
another universal W via relation R iff for every instance x of U there is an instance y
of W such that x and y are related via R: (17). (∀x x::U → ∃y y::W ∧ R(x,y)).

In figure 1 we show the refinements in the category of substantial universals proposed
in this section. Thus, the material Roles employed both in conceptual modeling and
natural language (e.g., Student, Customer, Supplier, Husband, Patient) are defined
here as anti-rigid and relationally dependent substantial sortals.

4 Roles as Qua Individual Universals

In [34], Wieringa and colleagues discuss the need for elaborating on the distinctions
among the types of universals used in conceptual modeling and propose three type
categories: static classes, dynamic classes and roles. The first two of these correspond
to our categories of kinds and phases, respectively. However, differently from our
proposal, in their approach a role universal is not a phased-sortal. Conversely, their
roles are rigid universals whose instances are said to be played by instances of ordi-
nary (static and dynamic) types. The played by relation (also termed inheritance by
delegation by the authors) between a role r and an object o implies that r is existen-
tially dependent on o. This means that r can only be played by o, and that r can only
exist when played by o. However, in contrast, o can possibly be associated via the
play by relation to many instances of the role class (and to many different role
classes). Moreover, role universals are responsible for supplying a principle of iden-
tity for its instances, which is different from the one supplied by the universals instan-
tiated by their players. Figure 3 depicts an example of an ordinary and a role universal
according to Wieringa et al.

Person

1 *
stID
averageGrade

Student

Fig. 3. Example of Role and Role Player Universals

154 G. Guizzardi

 An inspection of the role literature shows, however, that most authors conceive role
universals in a way which is akin to the notion proposed in section 3, i.e., as substan-
tial universals. This includes authors both in philosophy [32] and in conceptual
modeling in computer science [2,7,15,31]. Moreover, several authors share the view
sponsored in section 3 that the identity of a role instance is supplied by a (kind) uni-
versal subsuming the role type that it instantiates [1,17,27]. Finally, there are authors
that explicitly share both views [10,31]. In fact, in an extensive study about the topic
of roles in the conceptual modeling literature, Steimann [31] deems the approach of
Wieringa and colleagues to be a singular case in which the identity of role instances is
not supplied by a universal subsuming the role type they instantiate.

The motivation for such a view proposed by Wieringa and colleagues lies in a phi-
losophical problem known as The Counting Problem [13]. Consider the following ar-
gument:

KLM served four thousand passengers in 2004
Every passenger is a person
Ergo, KLM served four thousand persons in 2004

Thus, as Wieringa et al. write [34]: “if we count persons, we may count 1000, but if
we count passengers, we may count 4000. The reason for this difference is that if we
count things we must identify those things, so that we can say which things are the
same and which are different. But in order to identify them, we must classify them.”
In other words, the counting problem is that, by following the premises in the argu-
ment above, one can derive a mistaken conclusion.

Although, we appreciate and share the view of connecting counting with identity
and identity with classification, we do not agree with the conclusion the authors draw
from this example, namely, that since person and passenger do not share a principle of
counting then they must not share a principle of identity either. Since, a principle of
identity can only be supplied by a rigid universal, this must be the foundation of the
authors’ conclusion that a role universal therefore must be a rigid universal.

Why do we think the conclusions made by the authors are not warranted? To start
with, in line with [32], we defend that the counting problem is actually a fallacy. Take
the argument posed by its defenders: “The person that boarded flight KL124 on April
22nd, 2004 is a different passenger from the person who boarded flight KL256 on No-
vember 19th, 2004, but the two passengers are the same person”. We do not agree that
it can be correctly said that the two passengers are the same person, or, alternatively,
that a single person is distinct passengers (at different times), if we are truthful to our
commonsense use of the common noun passenger. However, let us suppose that this is
the case, i.e., that person and passenger obey different principles of identity. In this
situation, the second premise of the argument is no longer valid, i.e., one cannot say
anymore that every passenger is a person in a reading in which the copula “is” is in-
terpreted as a relation of identity. This is because, due to the so-called Leibniz Rule of
Identity [32], the identity relation holds necessarily if it holds at all. Moreover, since
identity is an equivalence relation, we would have that

“passenger x on flight KL124” is (necessarily) identical to person y
“passenger z on flight KL256” is (necessarily) identical to person y
Ergo, “passenger x on flight KL124” is (necessarily) identical to “passenger z on
flight KL256”

 Agent Roles, Qua Individuals and the Counting Problem 155

This conclusion contradicts the initial premise that the two passengers were different.
Therefore, if we have the second premise interpreted in the strong reading, one must
conclude that passenger carries the same principle of identity as person and, hence,
that “passenger x on flight KL124” and “passenger z on flight KL256” are indeed
numerically the same. In this case, though, the first premise ceases to be true, i.e., one
can no longer say that “KLM served four thousand passengers in 2004”. We must
conclude then that the second premise should have a weaker reading in which the
copula does no represent a relation of identity but one of coincidence [21]. But, if this
interpretation is taken the whole argument is clearly invalid, since the conclusion can-
not be expected to follow from the premises.

In summary, the conclusion that different principles of identity must be supplied by
role types and the types instantiated by their players cannot follow from this argu-
ment. However, despite disagreeing with the conclusions, we think there is an impor-
tant truth highlighted by the argument of Wieringa and colleagues. If not instances of
passengers, what does one count when stating that “KLM served four thousand pas-
sengers in 2004”? Let us analyze the concept of role proposed by Wieringa et al [34]:

1. a role universal is a rigid classifier;
2. role instances are (one-sidely) existentially dependent of a unique object,

which is said to play the role;
3. objects play these roles only contingently, i.e., the play relation is only a

contingent relation for the player. As a consequence, ceasing to play the role
does not alter the identity of the player object.

A recent work that has a concept of role similar to the one of Wieringa et al [34] is the
one of Frank Loebe [18]. However, Loebe’s roles are not only existentially dependent
on their players, but they also depend on the existence of another entity (distinct from
their players), in the way, for instance, that being a student depends on the existence
of an education institution, or being a husband depends on the existence of a wife, be-
ing an employee depends on the existence of an employer, etc. This feature of roles is
recognized in our analysis in section 3. In fact, it is generally accepted in the literature
that roles only exist in a certain context, or in the scope of a certain relation
[2,4,6,10,20,30,31]. Thus, Loebe’s notion of role agrees with that of Wieringa et al. in
the points (1), (2) and (3) above, but it also characterizes role instances as existen-
tially dependent on each other.

It should be clear by now that the concept of role in Wieringa et al [34] and Loebe
is equivalent to our notion of qua individual discussed in section 3. We can interpret
their play by relation as a sort of inherence. Both relations represent a one-side mo-
nadic existential dependence relation. Thus we can say that, like their notion of role,
our qua individuals are: instances of a rigid classifier (1); one-side existentially
dependent on objects, which are related to their “players” via a contingent sort of ex-
istential dependence relation (2)(3). Furthermore, a qua individual is a complex of ex-
ternally dependent qualities (e.g., in figure 3, student id, average grade3), which, by
definition, depends also on the existence of another object extrinsic to its bearer

3 To see that, for example, having a particular student id is an externally dependent moment, the reader

should imagine a person that is registered in different departments of a university, having a different stu-
dent id for each department.

156 G. Guizzardi

(player). Thus, as in Loebe’s concept of role, asides from the inherence (play) rela-
tionship with its bearer (player), our qua individuals stand in parthood relationship
with a unique relator in the scope of a material relation. Since relators consist of at
least two distinct qua individuals (formula 12), we conclude that the qua individuals
composing a relator are existentially dependent on each other.

5 Harmonizing the Two Notions

Now, how can we relate the notion of role as a qua individual discussed in section 4
with the one proposed in section 3? Let us revisit the example depicted in figure 3
above. To start with, a point that can be argued against this model is the representa-
tion of optional cardinality constraints. In fact, since no restriction is defined for the
kind subsuming a role classifier, optional cardinalities must be represented in both
Wieringa’s and Loebe’s approaches. As argued, for instance, in [33], from an
ontological standpoint, there is no such a thing as an optional property and, hence, the
representation of optional cardinality leads to unsound models, with undesirable
consequences in terms of clarity. Moreover, as empirically demonstrated in [3], con-
ceptual models without optional properties lead to better performance in problem-
solving tasks that require a deeper-level understanding of the represented domain. To
put it simply, not all persons bear a student moment, but only those persons that, for
example, are enrolled in an educational institution. We can then define a restriction of
the universal Person, whose instances are exactly those individuals that bear a student
moment, i.e., that are enrolled in an educational institution (see figure 4).

«role»
? stID

averageGrade

«quality»
Student

1 1..*

«characterization»

Person

Fig. 4. A Role universal, its subsuming kind and an exemplification relation to a qua individual
universal

Now, the universal stereotyped as «role» in figure 4 is exactly what we mean by a role
in section 3 and it is the one idea of role that accurately corresponds to the common-
sense use of roles in ordinary language. For this reason, we propose to use the role
name for the role universal and to create a new name for the qua individual universal
(see figure 5). Notice that the general term Student (Passenger, Employee, etc.) in
natural language belongs to the grammatical category of count nouns as it is usually
the case of substantial sortals, not to the category of adjectives4 as it is usually the

4 Etymologically the English word noun comes from the latin word substantivus, meaning expressing sub-

stance. The original form is still preserved in latin languages such as Portuguese (substantivo) and Italian
(sostantivo), as well as in the English word substantive, which is a less familiar synonym for noun.
Conversely, one of the meanings of adjective in English is “not standing by itself, dependent” (see, for
example, www.m-w.com).

 Agent Roles, Qua Individuals and the Counting Problem 157

«role»
Student stID

averageGrade

«quality»
PersonQuaStudent

1 1..*

«characterization»

Person

Fig. 5. A Role universal, its subsuming kind and an exemplification relation to a qua individual
universal (revised version)

case with substantial characterizing universals corresponding to determinate moment
universals (Red, Tall, Heavy).
 Although an improvement of figure 4, figure 5 is still incomplete in the sense that it
does not express the additional dependence relation that a qua individual has with
other objects external to its bearer. This problem is solved in figure 6, in which
relators (as aggregates of qua individuals) are represented explicitly and in which the
externally dependent moments of a qua individual are represented as resultant
moments5 of the relator. In this figure, the associations between Student and
Enrolment and between Education Institution and Enrolment stand for formal
relations of mediation.

«role»
Student stID

averageGrade

«relator»
Enrollment

1 1..*

«mediation»

«kind»
Person

«kind»
Education Institution

11..* «mediation»

Fig. 6. A Role universal, its subsuming kind and an associated Relator universal

Now, let us return to the “counting problem” previously discussed:
500 students graduated from the University of Twente in 2004
Every student is a person
Ergo, 500 persons graduated from the University of Twente in 2004

In this argument, if the first premise is true than the word student refers to the mode
Person qua student. The counting of these entities in a given situation is equal to the
cardinality of the extension of the PersonQuaStudent universal in figure 5 (i.e.,
#ext(PersonQuaStudent)) or the cardinality of the extension of the Enrollment universal
in figure 6 (i.e., #ext(Enrollment)), since there is always a 1-1 correspondence between
relators and their composing qua individuals. However, if this interpretation for student
is assumed, the second premise is simply false, since the relation between a student and
a person would be one of inherence, not one of identity. Alternatively, if the word stu-
dent is interpreted (in the more natural way) as in figure 5, then the counting of students
is equal to the cardinality of the extension of the Student universal in this figure (i.e.,
#ext(Student)). Though, in this case, premise one is not necessarily true.

5 Resultant properties of an object are properties that a whole inherits from one of its parts.

158 G. Guizzardi

In both cases, the alleged “counting problem” disappears. Nonetheless, with the
model of figure 6 we are still able to represent for both kinds of entities (roles and qua
individuals) and their respective counting in an unambiguous manner. Additionally,
this solution is able to make explicit and harmonize the two diverse senses of Role
which have been used in the conceptual modeling literature.

Finally, we can refine the characteristic or relational dependence defined for roles
in section 3 by explicitly relating the two notions of role discussed in this article.
Roles, as substance sortals, are always defined in the context of material relations
[11]. Thus, the relation R in definition 11 can be further analyzed as being derived
from a certain relator universal UR [11]. Consequently, we can state that a role univer-
sal as a substantial sortal (in the first sense of section 3) is always characterized by a
qua individual universal (role in the second sense of section 4):

(18). ∀x Role(x) → ∃y QuaIndividualUniversal(y) ∧ charac(x,y)

Or alternatively, we can state that a role universal (as a substantial sortal) bears al-
ways a mediation relation to a relator universal.

(19). ∀x Role(x) → ∃y RelatorUniversal(y) ∧ mediation(x,y)

As a consequence of formula (19), we have that, in the UML profile employed in fig-
ures 2 and 6, a UML class stereotyped as «role» must always be connected to an asso-
ciation end of a «mediation» relation [11].

6 Final Considerations

The development of a philosophically well-founded upper level ontology is an important
step towards the definition of real-world semantics for conceptual modeling and agent-
oriented concepts. In this article, we focus on the concept of Role. Despite its fundamental
relevance to conceptual modeling and, in particular, to agent-orientation, there is still a
lack of consensus on the meaning of this category and on how it should be incorporated in
the metamodels of existing conceptual modeling languages.

In this paper, we use a fragment of the Unified Foundation Ontology (UFO) proposed
in [11,12] to analyze two competing notions of role existing in the conceptual modeling
literature. In particular, we consider the notion of role offered by Wieringa et al. in [34],
which proposes the complete separation of roles and kind taxonomies, therefore, devi-
ating from most of the approaches in the literature.

The proposal of Wieringa et al. is motivated by a philosophical problem known as
The Counting Problem. As we demonstrate in this article, this problem is actually fal-
lacious and, thus, the separation of role and kind taxonomies cannot be argued for on
this basis. Nonetheless, there is an important truth highlighted by their argument
which is generally neglected in most conceptual modeling approaches, namely, that in
different situations one might want to count “role instances” in different senses.

By relying of the ontological category of qua individual discussed in this article,
we manage to provide an ontological interpretation for the notion of roles proposed by
Wieringa and colleagues. Moreover, we manage to harmonize it with the more com-
mon view of roles taken in the literature, and the one which more naturally represents

 Agent Roles, Qua Individuals and the Counting Problem 159

the commonsense use of roles in ordinary language, namely, the conception of roles
as relationally dependent and anti-rigid substantial universals.

Finally, by explicitly representing roles as both substantial universals and qua indi-
vidual universals, we can account in an unambiguous way for the alternative senses of
counting “role instances” previously mentioned.

Acknowledgements. The author would like to thank Gerd Wagner, Luis Ferreira
Pires, Marten van Sinderen, Nicola Guarino, Renata Guizzardi and Roberta Ferrario
for fruitful discussions and for providing valuable input to the issues of this article.

References

1. Albano, A.; Bergamini, R.; Ghelli, G.; Orsini, R. (1993): An object data model with roles,
in: R. Agrawal, S. Baker, D. Bell (Eds.), Proceedings of the 19th International Conference
on Very Large Databases, Morgan Kaufmann, Dublin, pp. 39-51.

2. Bock, C.; Odell, J. (1998): A More Complete Model of Relations and their Implementa-
tion: Roles. Journal of OO Programming, May, 1998, 51–54.

3. Bodart, F., Patel, A., Sim, M., Weber, R. (2001): Should Optional Properties Be Used in
Conceptual Modelling? A Theory and Three Empirical Tests, Information Systems
Research, Vol.12, No. 4, December, pp.384-405.

4. Chu, W.W.; Zhang, G. (1997): Associations and roles in object-oriented modeling, in:
D.W. Embley, R.C. Goldstein (Eds.), Proceedings of the 16th International Conference on
Conceptual Modeling: ER'97, Springer, Berlin, pp. 257-270.

5. Dignum, V. (2003): A model for organizational interaction: based on agents, founded in
logic, PhD Thesis, University of Utrecht, The Netherlands.

6. Elmasri, R; Weeldreyer, J.A.; Hevner, A.R. (1985): The Category Concept: An Extension
to the Entity-Relationship Model, International Journal on Data and Knowledge Engineer-
ing, 1(1):75-116.

7. Essink, L.J.B.; Erhart, W.J. (1991): Object modelling and system dynamics in the concep-
tualization stages of information systems development, in: F. van Assche, B. Moulin, C.
Rolland (Eds.), Proceedings of the IFIP TC8/WG8.1. Working Conference on the Object
Oriented Approach in Information Systems, North-Holland, Amsterdam, pp. 89-116.

8. Ferrario, R.; Oltramari, A. (2004): Towards a Computational Ontology of the Mind, Pro-
ceedings of the 3rd International Conference on Formal Ontology in Information Systems
(FOIS), Torino, Italy.

9. Fitting, M., Mendelsohn, R.L. (1998): First-Order Modal Logic, Synthese Library Studies
in Epistemology Logic, Methodology, and Philosophy of Science, Volume 277, Kluwer
Academic Publishers.

10. Guarino, N.; Welty, C. (2004): An Overview of OntoClean, in S. Staab, R. Studer (eds.),
Handbook on Ontologies, Springer Verlag, pp. 151-159.

11. Guizzardi, G. (2005): Ontological Foundations for Structural Conceptual Models, PhD
Thesis, University of Twente, The Netherlands.

12. Guizzardi, G.; Wagner, G. (2005): Towards Ontological Foundations for Agent Modeling
Concepts using UFO, Lecture Notes on Artificial Intelligence (LNAI) 3508, Springer-
Verlag.

13. Gupta, A. (1980): The Logic of Common Nouns: an investigation in quantified modal
logic, Yale University Press, New Haven, 1980.

160 G. Guizzardi

14. Heller, B., Herre, H. (2004): Ontological Categories in GOL. Axiomathes 14: 71-90,
Kluwer Academic Publishers.

15. Jungclaus, R.; Saake, G.; Hartmann, T.; Sernadas, C. (1991): Object-Oriented Speci-
fication of Information Systems: The TROLL Language, Informatik Berichte 91-04 TU
Braunschweig, Braunschweig.

16. Kripke, S. (1982): Naming and Necessity, Harvard University Press.
17. Kristensen, B.B. (1995): Object-oriented modeling with roles, in: J. Murphy, B. Stone

(Eds.), OOIS '95: Proceedings of the International Conference on Object-Oriented Infor-
mation Systems, Dublin, Springer, 1996, pp. 57-71.

18. Loebe, F. (2003): An Analysis of Roles, Master thesis in Computer Science, University of
Leipzig, Germany.

19. Lowe, E.J. (2001): The possibility of Metaphysics: Substance, Identity and Time, Oxford
University Press.

20. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.
(2004): Social Roles and their Descriptions, in D. Dubois, C. Welty, M.A. Williams (eds.), 9th
Intl. Conf. on the Principles of Knowledge Representation and Reasoning, Whistler, Canada.

21. Masolo, C.; Borgo, S.; Gangemi, A.; Guarino, N.; Oltramari, A. (2003): Ontology Library,
WonderWeb Deliverible D18.

22. Masolo, C.; Guizzardi, G.; Vieu, L.; Bottazzi, E.; Ferrario, R. (2005): Relational Roles and
Qua Individuals, AAAI Fall Symposium on Roles, an Interdisciplinary Perspective,
Virginia, USA.

23. McNamara, J. (1994): Logic and Cognition. In McNamara, J.; Reyes, G. (eds.), The Logi-
cal Foundations of Cognition, Vancouver Studies in Cognitive Science, Vol. 4.

24. Object Management Group, (2003): UML 2.0 Infrastructure Specification, Doc.# ptc/03-
09-15, Sep.

25. Odell, J.; Nodine, M.; Levy, R. (2005): A Metamodel for Agents, Roles, and Groups,
Agent-Oriented Software Engineering (AOSE) IV, James Odell, P. Giorgini, Jörg Müller,
eds., Lecture Notes on Computer Science volume (forthcoming), Springer, Berlin.

26. Odell, J.; Parunak, H.V.D; Fleischer, M. (2003): The Role of Roles in Designing Effective
Agent Organizations, Software Engineering for Large-Scale Multi-Agent Systems, Garcia,
A.; Lucena, C.; Zambonelli, F.; Omicini, A.; Castro, J. (eds.), LNCS 2603, Springer, Ber-
lin, pp 27-28.

27. Richardson, J.; Schwartz, P. (1991): Aspects: Extending objects to support multiple, inde-
pendent roles, in: J. Cli.ord, R. King (Eds.), Proceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, SIGMOD Record ACM Press, vol. 20,
no. 2, pp. 298-307.

28. Schneider, L. (2002): Formalised Elementary Formal Ontology, ISIB-CNR Technical
Report 03/2002, [online: http://www.loa-cnr.it/Publications.html].

29. Smith, B.; Mulligan, K (1986): A Relational Theory of the Act, Topoi (5/2), 115-30.
30. Sowa, J.F. (1984): Conceptual Structures: Information Processing in Mind and Machine,

Addison-Wesley, New York.
31. Steimann, F. (2000): On the representation of roles in object-oriented and conceptual

modeling. Data & Knowledge Engineering 35:1, 83–106.
32. van Leeuwen, J. (1991): Individuals and sortal concepts : an essay in logical descriptive

metaphysics, PhD Thesis, Univ. of Amsterdam.
33. Weber, R. (1997): Ontological Foundations of Information Systems, Coopers & Lybrand,

Melbourne, Australia.
34. Wieringa, R.J. de Jonge, W., Spruit, P.A. (1995): Using dynamic classes and role classes

to model object migration. Theory & Practice of Object Systems, 1(1), 61-83.

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 161 – 178, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Product-Line Approach to Promote Asset Reuse
in Multi-agent Systems

Josh Dehlinger1 and Robyn R. Lutz1,2

1 Department of Computer Science, Iowa State University, 226 Atanasoff Hall,
Ames, Iowa 50011, USA

dehlinge@cs.iastate.edu
http://www.cs.iastate.edu/~dehlinge

2 Jet Propulsion Laboratory / Caltech
rlutz@cs.iastate.edu

http://www.cs.iastate.edu/~rlutz

Abstract. Software reuse technologies have been a driving force in
significantly reducing both the time and cost of software specification,
development, maintenance and evolution. However, the dynamic nature of
highly autonomous agents in distributed systems is difficult to specify with
existing requirements analysis and specification techniques. This paper offers
an approach for open, agent-based distributed software systems to capture
requirements specifications in such a way that they can be easily reused during
the initial requirements phase as well as later if the software needs to be
updated. The contribution of this paper is to provide a reusable requirements
specification pattern to capture the dynamically changing design configurations
of agents and reuse them for future similar systems. This is achieved by
adopting a product-line approach for agent-based software engineering. We
motivate and illustrate this work through a specific application, a phased
deployment of an agent-based, distributed microsatellite constellation.

1 Introduction

Software reuse technologies have been a driving force in significantly reducing both
the time and cost of software requirements specification, development, maintenance
and evolution. Industry's continuous demand for shorter software development cycles
and lower software costs encourages software development methodologies to exploit
software reuse principles whenever possible.

Agent-oriented, software-based approaches have provided powerful and natural
high-level abstractions in which software developers can understand, model and
develop complex, distributed systems [5]. Yet, the realization of agent-oriented
software development partially depends upon whether agent-based software systems
can achieve reductions in development time and cost similar to other reuse-conscious
software development methods such as object-oriented design, service-oriented
architectures and component based systems.

In recent years, several agent-oriented software engineering (AOSE)
methodologies have been proposed for various agent-based application domains. The
Gaia methodology [28], in particular, offers a comprehensive analysis and design

162 J. Dehlinger and R.R. Lutz

framework based on organizational abstractions by supplying schemas, models and
diagrams to capture the requirements of an agent-based software system.

However, Gaia has two limitations. First, although Gaia provides a mechanism to
allow the role of an agent to change dynamically, it is unclear how to document agent
requirements specifications during the analysis and design phases when an agent must
be updated to include new functionality. Second, the Gaia methodology fails to
provide a mechanism by which the requirements specification templates developed
during the analysis phase can be reused to be incorporated into the current system or
to build a new, similar but slightly different system.

This paper offers an approach for open, agent-based distributed software systems
to capture requirements specifications that can be easily reused during the initial
requirements phase as well as later if the software needs to be updated. Our approach
uses a product-line perspective to promote reuse in agent-based, software systems
early in the development lifecycle so that software assets can be reused in the
development lifecycle and during system evolution. We define a product-line asset as
a software engineering output (including, but not limited to, architecture, reusable
software components, domain models, requirements statements, documentation and
specifications, and test cases) that forms, along with other product-line assets, the core
for the development of a software product line [8]. We define system evolution as
either the updating of an existing agent(s) in a deployed system or the inclusion of
additional agents in the system.

The contribution of this paper is to provide a requirements specification pattern to
capture the dynamically changing design configurations of agents and reuse the
requirement specifications for future similar systems. This is achieved by adopting a
product-line approach into AOSE. Requirements specifications reuse is the ability to
easily use previously defined requirements specifications from an earlier system and
apply them to a new, slightly different system.

The integration of product-line concepts into AOSE expands the techniques and
tools available to developers of multi-agent systems. For example, software safety
analysis tools [10, 18] and techniques [10, 12, 16] have been developed by the authors
to assure developers that the reuse of requirements specifications is safe and will not
compromise the system via incompatible features interacting in such a way as to
cause unsafe conditions. We motivate and illustrate this work through a specific
application, a phased deployment of an agent-based, distributed microsatellite
constellation [19, 22]. A constellation is a group of semi- or fully autonomous
satellites working together to fulfill complex mission objectives such as monitoring
ocean levels or the spread of wildfires.

The remainder of the paper is organized as follows. Section 2 reviews related
research in AOSE, product-line software engineering and a microsatellite application.
Section 3 presents our approach to define the requirements specification of an agent-
based, distributed system using the case study. Section 4 provides step-by-step
guidance for documenting the requirements specifications of a distributed, multi-
agent-based system using the requirements specification pattern presented in this
work in a product-line-like way. Section 5 describes how to use the requirements
specification detailed in Section 4 for reuse during system changes and updates.
Finally, Section 6 provides concluding remarks and future research directions.

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 163

2 Related Work

This work is based on two different areas of software engineering: agent-oriented
software engineering (AOSE) and software product-line engineering. This section
discusses background information and related work in each of these areas as well as
the application we use to illustrate our approach in this work.

2.1 Agent-Oriented Software Engineering

Agent-oriented software engineering (AOSE) [26] methodologies surfaced in the late-
90's to provide tools and techniques for abstracting, modeling, analyzing and
designing agent-based software systems early in the development lifecycle [21].
Different methodologies, such as Gaia [4, 27, 28], Tropos [2] and MaSE [11] for
example, use different abstractions and models for agent-oriented software
development. Although Tropos and MaSE are not the focus of this paper, an
investigation of integrating a product-line approach into these AOSE methodologies
is planned future work.

From its onset, one of the goals of AOSE has been to provide methodologies for
reusing and maintaining agent-based software systems [23]. In spite of this goal,
AOSE methodologies have failed to adequately capture the reuse potential, since
many of the developed methodologies center on the development of specific software
applications [13]. A few attempts, including [13] and [14], have been proposed for
reuse in an agent-oriented development environment. However, in each case, reuse is
positioned in the later stages of design and development. In [13], the Multi-Agent
Application Engineering (MaAE) work exploits reuse during the design phase of a
multi-agent software system. Likewise, [14] utilizes reuse principles from component-
based development to reuse components from a previously developed agent-based
component repository. The work described here differs from previous work in that we
present an approach to capture the reuse potential of distributed, agent-based software
systems in the requirements analysis and specification stage.

As in Gaia, our approach follows an early requirements engineering phase that
focuses on analyzing the "characteristics to be exhibited and the goals to be achieved
by the system-to-be" [27]. Our approach utilizes the output produced from the
requirements engineering phase which may include goals and sub-goals, detailed
requirements and partial requirements specifications [24].

2.2 Product-Line Engineering

We follow Northrop et al. in defining a software product line as a set of software-
intensive systems sharing a common, managed set of features that satisfy the specific
needs of a particular market segment or mission [17]. The common, managed set of
features shared by all members of a product line is called its commonalities. For
example, a commonality of a planner role for a microsatellite would be that it should
be able to know (i.e., read) its current position. The members of a particular product
line may differ from each other via a set of allowed variabilities. In our application, an
important variability is the level of intelligence of the agent or member. For example,
a particular intelligence level of a planner role for a microsatellite would be that it has

164 J. Dehlinger and R.R. Lutz

the ability to command other microsatellites to move to another position. Additional
examples of commonalities and variabilities are given in Figure 2. The benefits of the
product-line approach come from the reuse of the commonalities in developing a
new product-line member [20]. We define a member as a single instance or system
of the product line. In the application used in this work, a member is a single
microsatellite within the constellation.

Weiss and Lai defined the Family-Oriented Abstraction, Specification and
Translation (FAST) software engineering model to analyze and design software
product lines [25]. This model employs a two-phase software engineering approach:
the domain engineering phase and the application engineering phase. The domain
engineering phase defines the product line requirements specifications and design.
The second phase, the application engineering phase, reuses these product-line assets
(i.e., the product line requirement specifications and design) to develop the
requirements and design of new product-line members.

Product-line requirements are often specified through a Commonality and
Variability Analysis (CVA) [1, 25]. The CVA, developed during the domain
engineering phase of FAST, provides a comprehensive definition of the product line
requirements including the commonalities (i.e., requirements of the entire product
line) and the variabilities (i.e., specific features not contained in every member of the
product line) of the product line.

In this paper we use product-line techniques to transfer agent roles in the Gaia
methodology into reusable assets. We demonstrate how requirements detailed in a
CVA can be easily mapped into the Role Schema and the Role Variation Point
Schema of the Gaia analysis phase using a product-line approach. Doing so helps link
the requirements specification patterns for defining roles within the Gaia
methodology to earlier requirements engineering assets. Our approach maintains
consistency with the widely published Gaia methodology [28] of AOSE as well as the
FAST methodology [25] of software product-line engineering.

2.3 Application

We illustrate how our approach can be used by applying it to portions of an agent-
based implementation of a constellation, loosely based on the requirements for the
TechSat21 (Technology Satellite of the 21st Century) [19]. TechSat21 was a proposed
mission, originally scheduled to launch in January 2006 but cancelled in late 2003
with much of the software reused on a subsequent mission [6]. It was designed to
explore the benefits of a distributed, cooperative approach to satellites employing
agents [7, 22]. TechSat21 is a constellation (i.e., cluster) of context-aware
microsatellites (weighing less than 100 kilograms). New microsatellites will be
deployed to the constellation in multiple, planned phases with the new microsatellites
potentially having additional capabilities not found in previously deployed
microsatellites while sacrificing functionality found in other microsatellites [7, 22].
For example, after the initial cluster of microsatellites is deployed, some additional
microsatellites may be deployed with extra functionality for the Cluster Allocation
Planner role that the initially deployed microsatellites will lack.

Within the constellation, each microsatellite must know its context in order to meet
certain functional or non-functional requirements placed upon the constellation. For

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 165

example, a context-based, functional requirement placed upon the constellation is to
perform earth science (i.e., taking sensor readings, photographs, etc.). Thus, each
microsatellite needs to know its context in relation to Earth. A context-based, non-
functional requirement placed upon TechSat21 microsatellites is that each
microsatellite must know its position in relation to others to avoid collisions.
Similarly, microsatellites within the constellation must cooperate to meet mission
requirements.

Schetter, Campbell and Surka have investigated several possible agent-based,
organizational architectures for the TechSat21 constellation. They evaluated each
agent-based, organizational architecture through a simulation tool to derive a multi-
agent architecture that would offer good support for fault tolerance and upgradeability
[19]. Separately, Chien et al. have similarly proposed a high degree of agent
autonomy for a constellation of satellites. In their work, they demonstrate how
continuous planning, model-based mode identification and reconfiguration and other
artificial intelligence technologies can be used in a hybrid, multi-layer control
architecture to facilitate a virtual spacecraft agent [7]. We partially use the agent
specifications for the TechSat21 microsatellite constellation detailed in [7] and [19]
for the requirements specification presented here as well as the notion of an agent
possibly having different levels of intelligence described in [19].

3 Approach

To illustrate the adaptation of a product-line approach to multi-agent system
development, we use the agent-based implementation of the microsatellite
constellation (i.e., distributed system) detailed in [19]. Like them, we define an agent
as a major onboard subsystem of a microsatellite or the microsatellite itself [9, 19].

3.1 Adopting Product-Line Concepts into the Gaia Methodology

The work presented here ties some of the analysis steps performed in Gaia to earlier
requirements engineering outputs. Gaia, however, does not explicitly handle the
requirements capturing and modeling of early requirements engineering. To address
this, we link the Commonality and Variability Analysis (CVA) [1], performed within
the domain engineering phase of the Family-Oriented Abstraction, Specification and
Translation (FAST) product-line methodology (detailed in Section 2.2) [25] to the
analysis and design of roles in a distributed, multi-agent system. Doing so, we are
able to use a product-line-like approach to specify the requirements of a distributed,
multi-agent system where differing intelligence is a design consideration. Note that
the use of a CVA is not necessary. Developers may utilize other requirements
modeling techniques such as goal-oriented [3] or feature-oriented [15] approaches.
We discuss the advantages of using a CVA over these approaches in Section 4.1.

We first give an overview of how we integrate product-line concepts into multi-
agent system development in order to build reusable patterns. Our approach, shown
in Figure 1, partially encompasses three phases of multi-agent system development.
Figure 1 illustrates how we incorporate elements of our approach into pieces of the
Gaia methodology. The requirements collection and documentation phase, a part of
FAST's domain engineering phase [25], partitions the requirements for the proposed

166 J. Dehlinger and R.R. Lutz

Fig. 1. An overview of the software engineering assets used in our Gaia-based product-line
approach during requirements documentation, analysis and design and detailed design phases

system into commonalities and variabilities in the CVA. The analysis and design
phase, equivalent to FAST's domain engineering phase [28] and loosely
corresponding to Gaia's Preliminary Role Model and Role Model steps [30], entails
documenting a role's requirements specifications within both the Role Schema and the
Role Variation Point Schema. The Role Schema provides a description of the role and
defines the variation points possible, described below, for the role. For each variation
point, a Role Variation Point Schema details the requirement specifications for a role
at a specific intelligence level.

We claim that the Role Schema and Role Variation Point Schema fall into the
analysis and design phase, rather than solely the analysis phase, since the de-
termination of variation points may influence, or be influenced by, the organizational
architecture chosen (a product of the design phase in Gaia) for the multi-agent system
being developed. For example, the decision to use an active/passive or master/slave
type of variation point indicates that the architecture will display a top-down or a
central coordination scheme. On the other hand, the intelligence-based design
described below allows for a distributed or fully distributed coordination scheme. This
process is described in Section 4.

In the detailed design phase of our approach, we first instantiate a role for a
specific member of the distributed, multi-agent system by selecting the variation
points (i.e., intelligence levels) it is capable in the Role Deployment Schema. It is in
this phase that we are able to take advantage of the reuse principles inherent in the

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 167

FAST product-line methodology's application engineering phase [25]. Secondly, we
define an agent using an Agent Model by declaring which roles, along with their
variation points, it is responsible for fulfilling. We provide a full description of how
the product-line concepts utilized in the analysis and design phase are taken
advantage of to exploit the reuse potential in the detailed design phase in Section 5.

As in the Gaia methodology [27], we define the requirements specification of an
agent's role, documented in the Role Variation Point Schema, in terms of the
following characteristics: protocols, activities, permissions and responsibilities.
Protocols define the way agents interact. Activities are the computations associated
with the role that can be executed without interacting with other agents. Permissions
are the information resource rights a role has to read, change and generate resources.
Responsibilities define the functionality of a role and are divided into liveness
properties and safety properties. Liveness properties refer to the "state of affairs that
an agent must bring about, given certain environmental conditions" [27]. Safety
properties refer to that subset of the non-functional requirements that the agent must
maintain throughout the duration of the agent's life to prevent and handle hazards.

3.2 Using Variation Points in Multi-agent Systems

Product-line engineering uses variation points to capture the allowed differences
amongst members belonging to the same family. We define the variation points for a
specific role as the differing protocols, activities, permissions and responsibilities
available to that role. Variation points typically stem from the grouping of the
variabilities defined in the Commonality and Variability Analysis (CVA) documented
as part of the output of the requirements engineering phase.

An important way to classify variation points for a satellite constellation is
intelligence levels. In this work, we focus on these variation points. Here, we adopt
the notion of variation points to model a multi-agent system as a product line. The
variation point notion is important because it aids in capturing the different
arrangements of agents and promotes reuse. For example, TechSat21 roles [19],
ordered in terms of increasing intelligence levels, I4 through I1, display the following
variation points:

• I4: receive/execute commands
• I3: local planning and receive/execute commands
• I2: local planning, interaction, partial cluster-knowledge and receive/execute

commands
• I1: cluster-level planning, interaction, full cluster-knowledge and receive/execute

commands

Thus, as a role is promoted to a higher intelligence level (from I3 to I2, for
example) the configuration of the agent dynamically changes by incorporating
additional protocols, activities, permissions and/or responsibilities. The reverse occurs
when a role is demoted from a higher intelligence level to a lower intelligence level
(from I2 to I3, for example). Using this construct, our notion of an agent has one or
more roles where each role may have one or more variation points.

The variation points will initially be fixed upon deployment based upon the
software and hardware facilities available as well as the role's goal. At deployment a

168 J. Dehlinger and R.R. Lutz

default intelligence level for each role is set. During execution, a role may change its
variation point (i.e., intelligence level) based upon its internal state, commands from
external sources or the environment. Alternatively, within a distributed, agent-based
system, it is not likely that the same set of intelligence levels will be included in any
given role throughout the entire distributed system [19]. Thus, from a product-line
engineering perspective, we can view the set of roles containing different
role/variation point combinations as a product line. The set of roles and dynamic
variation points an agent contains is its configuration.

The variation points in the constellation will not be universal to all agent-based,
distributed systems. Variation points are particular to each application and, indeed,
particular to each role. For example, other variation points could include active,
passive; hot-spare, cold-spare; etc. For every variation point identified, we associate a
binding time which defines the time at which the variation point could be assumed by
a role. Potential binding times include specification-time, configuration-time and run-
time. In the case of the constellation, the binding time for all the variation points
described here is at run-time. The actual decision as to which features to group
together and how to classify each variation point (e.g., I1, I2, etc., versus hot-spare,
warm-spare, cold-spare) is likely domain and/or application specific and is not
covered in this work. Rather, we assume that domain experts group the variabilities
listed into variation points so that they can be used during the analysis phase of Gaia.

Variation points are added with the Gaia characteristics of a role [27]. This allows
us to leverage a product-line-like perspective to maximize reuse among software
products that share a great many similarities amongst each other and differ by only a
few variations. For example, it might be the case that all the microsatellites in a
constellation responsible for monitoring volcano eruptions will be very similar while
other microsatellites in the same constellation responsible for capturing Earth
atmosphere pictures will greatly differ from the previously mentioned microsatellites
but will be similar amongst each other.

Identifying the variation points to which a role may dynamically switch allows us
to classify at which variation points the protocols, activities, permissions and/or
responsibilities are introduced to the role. Partitioning the requirements specifications
(i.e., the protocols, activities, permissions and responsibilities) of an agent in this
manner will allow us to reuse the requirement specifications for future systems. Thus,
future agents within a domain such as Earth-orbiting microsatellites can more readily
utilize assets that have been specified in such a way. These future systems employ
roles comprising some of the variation points previously defined as well as new
capabilities not found in any of the previous systems. Section 5 gives a more complete
description of how requirements specifications can be reused.

Lastly, we here introduce identification numbers to all schemas for traceability,
organization and management purposes. The schemas serve as a requirements
specification pattern in which requirements can be defined and documented.

4 Documenting the Requirements Specifications Using a
Product-Line Approach

This section describes the documentation of requirements, analysis and design, and
the detailed design phases, illustrated in Figure 1, incorporating a product-line

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 169

approach into multi-agent system development. For each phase, we describe the
documentation process and how each document will later contribute to the ease of
reuse, discussed in Section 5.

4.1 Requirements Documentation Phase

In the development of a software product line, requirements are collected and then
documented in a Commonality and Variability Analysis (CVA) [1, 25]. Using the
CVA, requirements can be further refined and detailed requirements can be derived
during the analysis and design phases so that requirements specifications can be
documented. An excerpt of a CVA detailing the commonality and variability
requirements for the constellation is shown in Figure 2.

A developed and documented CVA during the requirements collection phase may
give developers an insight into what roles might be appropriate for the multi-agent
system to be developed. In terms of multi-agent system development, a CVA may
assist in the identification of possible roles since it partitions those requirements that
will be found in every future instantiation of a particular role from those requirements
that will only be found in some instantiations of a particular role. That is, only the
commonality should be investigated for potential agent roles since the variability can
be thought of as features that will not be found in every role.

Commonalities

C1. An agent capable of performing cluster allocation planning shall be able to
receive/execute commands from other known members of the constellation at all times
(i.e., during times of degraded system functionality).

C2. An agent capable of performing cluster allocation planning shall be able to know its
current position and velocity increment.

C3. An agent capable of performing cluster allocation planning shall be able to change its
current position and velocity increment.

C4. An agent capable of performing cluster allocation planning shall be able to move to a
new position.

Variabilities

V1. An agent capable of performing cluster allocation planning may be able to have partial
cluster knowledge.

V2. An agent capable of performing cluster allocation planning may be able to have full
cluster knowledge.

V3. An agent capable of performing cluster allocation planning may be able to receive and
accept change in velocity bids from other members during cluster reconfiguration.

V4. An agent capable of performing cluster allocation planning may be able to issue a request
to members of the cluster for change in velocity bids.

V5. An agent capable of performing cluster allocation planning may be able to issue a move
to new position message to members of the cluster during cluster reconfiguration.

V6. An agent capable of performing cluster allocation planning may be able to receive a
velocity increment calculation from other members of the cluster.

V7. An agent capable of performing cluster allocation planning may be responsible to
optimize the fuel use of all members of the cluster.

Fig. 2. A sample Commonality and Variability Analysis of the requirements for the Cluster
Allocation Planner role

170 J. Dehlinger and R.R. Lutz

The actual identification of appropriate roles for a multi-agent system is not
discussed here. Gaia proposes to identify roles through an inspection of the problem
(via the division of a system into organizations and sub-organizations) [28]. Rather,
we only claim that documenting a multi-agent system's requirements in a CVA may
aid in confirming the role definition and help in the preliminary role model(s).
The variabilities of the CVA will help define the variation points of the product-line,
multi-agent system. Partitioning the variabilities into similar groups (e.g., by similar
required intelligence level) provides the initial requirements for the variation points of
a system. For example, from Figure 2 we can assign variabilities V1, V3 and V4 as
belonging to intelligence level I2 since each indicates that it would at least require the
intelligence level of I2 to occur.

Alternative approaches to the CVA in documenting product-line requirements and
performing variability analysis include the goal-oriented [3] or the feature-oriented
[15] approach. Alternatively, the use of domain or application expertise may also
suffice in this process. This work exclusively used the CVA as the medium for
variability documentation and analysis because of our use of the FAST methodology
(in which a CVA is exclusively utilized to document and analyze variabilities). In
terms of reuse, CVA is superior to either goal-oriented or feature-oriented approaches
since it clearly defines those requirements that will be found in every member of a
product line (i.e., commonalities) and those requirements that will only be found in a
subset of the members of a product line (i.e., variabilities).

4.2 Analysis and Design Phase

Requirements specifications are documented in two schemas. The Role Schema,
shown in Figure 3, defines a role and the variation points that the role can assume
during its lifetime (e.g., whether it only implements the assignments it receives or it
can also assign positions). The Role Variation Point Schema, shown in Figure 4,
captures the requirements of a role variation point's capabilities. Both schemas are
slightly modified adaptations of Gaia's Role Schema [28]. The Role Schema and the
Role Variation Point Schema are both needed to capture the different levels of
intelligence possible in a role throughout a large, distributed, multi-agent system.

Role Schema: Cluster Allocation Planner Schema ID: F32

 Description:
 Assigns a new cluster configuration by assigning new microsatellite posi-

 tions within the cluster. This is done to equalize fuel use across the cluster.
 Variation Points:
 I4: receive/execute commands [F32-I4]
 I3: local planning and receive/execute commands [F32-I3]
 I2: local planning, interaction, partial cluster-knowledge and receive /
 execute commands [F32-I2]
 I1: cluster-level planning, interaction, full cluster-knowledge and
 receive/execute commands [F32-I1]
 Binding Times:
 All binding time for the variation points are at run-time.

Fig. 3. Sample Role Schema for the Cluster Allocation Planner role of TechSat21

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 171

Role Schema: Cluster Allocation Planner Schema ID: F32-I1

 Variation Point: I1

 Description:
 Assigns a new cluster configuration by assigning new microsatellite posi-

 tions within the cluster. This is done to equalize fuel use across the cluster.
 With the I1 intelligence level, it is able to send cluster assignments to other
 microsatellites (i.e., spacecraft level agents) in order to arrange a new clus-
 ter configuration. This may occur when a new microsatellite is added or in
 the case of a failure of a microsatellite.

 Protocols and Activities:
 CalculateDeltaV, UpdateClusterInformation, MoveNewPos, DeOrbit,
 AssignCluster, AcceptDeltaVBids, RequestDeltaVBids,
 SendMoveNewPosMsg, SendDeOrbitMsg
 Permissions:
 Reads -
 position // current microsatellite position

 velocityIncrement // current microsatellite velocity increment
 supplied microsatelliteID // microsatellite identification number
 supplied velocityIncrment // microsatellite velocity increment

 Changes -
 position // current microsatellite position

 velocityIncrement // current microsatellite velocity increment
 Generates -
 newPositionList // new position list to assign to the
 // microsatellites within the cluster
 Responsibilities:
 Liveness -
 Optimize the fuel use across the cluster.
 Safety -
 Prevent microsatellite collisions during a new cluster configuration.

Fig. 4. Sample Role Variation Point Schema for the I1 variation point of the Cluster Allocation
Planner role of the Cluster Configuration

During the initial development of a distributed system (the product-line domain
engineering phase of the Family-Oriented Abstraction, Specification and Translation
(FAST) product-line methodology [25]), the focus must be primarily on identifying
the overall requirement specifications of the system. It is later (during the product-line
application engineering phase of FAST) that actual members of the distributed system
can be instantiated with some or all of the requirements established earlier. We
consider those initial requirement specifications in the Role Schema and the Role
Variation Point Schema.

To capture the requirement specifications and document them in the two schemas,
we use the following procedure:

1. Identify the roles within the system. Each role will constitute a new Role Schema
to be created.

2. For each role, provide the role's name, a unique identification and a brief
description of the role in the appropriate fields of the Role Schema. We partly
follow the naming and numbering scheme from [19] for the Cluster Allocation
Planner role depicted in Figure 3.

172 J. Dehlinger and R.R. Lutz

3. For each role, identify and define the differing intelligence levels that the role can
adopt during all envisioned execution scenarios of the system. These differing
intelligence levels will represent the variation points that the role can adopt. For
each variation point, fill in the Variation Points section of the Role Schema by
including the name, a brief description of the variation point and a reference
identification number to the Role Variation Point Schema that gives the detailed
requirements of the variation point (see Step 4a).

4. For each identified variation point (Step 3), create a new Role Variation Point
Schema. For each Role Variation Point Schema:
a. Document the name of the role to which the variation point corresponds as well

as the name of the variation points in the appropriate sections of the Role
Variation Point Schema. Indicate the variation point identification tag
(corresponding to the variation point identification in Step 3) in the appropriate
field in the Role Variation Point Schema.

b. Identify the protocols, activities, permissions and responsibilities that are
particular to only that variation point. That is, define the protocols, activities,
permissions and responsibilities that are not found in any of the lower
intelligence level variation points.

c. Document and define the identified protocols, activities, permissions and
responsibilities in the appropriate sections of the Role Variation Point. (Note, in
accordance with the Gaia conventions, activities are distinguished from
protocols by being underlined).

These steps result in a set of Role Schemas that have an associated set of Role
Variation Point Schemas. Additionally, these steps conform to the domain
engineering phase of product-line development [25]. Figure 3 illustrates a Role
Schema example, and Figure 4 gives an example of a Role Variation Point Schema,
both derived from the TechSat21 agent specifications given in [19].

4.3 Detailed Design Phase

Upon completion of the initial requirements analysis and development of an agent-
based, distributed system, it will be necessary to utilize the derived requirements
specifications to instantiate a number of members of the distributed system. During
this initial deployment of distributed members, it is not necessary that all members be
equipped with equal capabilities, intelligence or functionality. Since the prior steps
have specified all the possible variation points of the roles in the schemas, we
instantiate a new member (i.e., agent) to be added to the distributed system by
specifying each new member to be deployed in the Role Deployment Schema. An
example is shown in Figure 5.

Thus, the process is as follows:

1. Identify the roles that will constitute the member to be deployed.
2. For each role identified, create a new Role Deployment Schema and:

a. Provide the role's name, unique system(s) identification and a brief description
of the role specific to this deployment in the appropriate fields of the Role
Deployment Schema. The system(s) unique identification, to be placed in the

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 173

System ID field, identifies the specific member(s) of the distributed system to be
deployed that has the role configuration described in the particular Role
Deployment Schema. For example, if members 2,3, 8-10 are to employ the
Cluster Allocation Planning Agent in which only variation points I3 and I4 are
possible, we denote this in the System(s) ID field of the Role Deployment
Schema, shown in Figure 5, as 2,3, 8-10. This avoids repetitive manual overhead
when designing new members to be deployed in the distributed system.

b. Identify all possible variation points that the role can assume during its lifetime.
The set of possible variation points was previously established when the original
Role Schema was developed for the particular role.

c. Identify the variation points in which the role will be deployed and specify it in
the Role Deployment Schema. This variation point represents the default
intelligence level at which the agent will most commonly operate during normal
operations.

These steps produce a (set of) completed Role Deployment Schemas describing how
different members of the distributed system to be deployed are instantiated.

Role Deployment Schema: Cluster Allocation Planner System(s) ID: 2,3, 8-10

 Description: A microsatellite member of the TechSat21 constellation that lacks the
 intelligence to globally assign new positions to other microsatellites within the
 cluster during a reconfiguration caused by a new microsatellite joining the
 cluster or a failure in one of the microsatellites. The sacrifice of this capability
 was chosen in favor of accommodating additional science instrumentation and
 software not found in microsatellites that allow I1 and I2 Cluster Allocation
 Planning Agent intelligence levels.

 Variation Points:

 I4: receive/execute commands [F32-I4]
 I3: local planning and receive/execute commands [F32-I3]

Fig. 5. Sample Role Deployment Schema for the Cluster Allocation Planner role of the Cluster
Configuration agent of a member of TechSat21

Fig. 6. A sample Agent Model for the Cluster Configuration Agent for a member of TechSat21

We illustrate how an Agent Model, expanded from the Agent Model of Gaia [4],
can be derived in Figure 6. The Agent Model graphically illustrates the assignment of
roles to agents as well as variation points to roles. The cardinality relationship
between agent and role is indicated and all possible variation points are listed for each

174 J. Dehlinger and R.R. Lutz

role. At runtime, the designer annotates the actual cardinality and the specific possible
variation points of an agent instance.

These steps conform to the application engineering phase of FAST [25] and produce
the documentation shown in the detailed design phase shown in Figure 1. Documenting
the requirements specifications in such a way allows easy reuse when instantiating
actual systems. We detail how the documentation created in this section can easily be
reused during both initial development and system evolution in the next section.

5 Multi-agent Requirements Specification Reuse

Requirements specification reuse is using previously defined requirements
specifications from an earlier system and applying them to a new, slightly different
system. Increasing the amount of requirements specification reuse for any given
product will reduce the production time and cost of the software system [8].

Requirements specification reuse for agent-based, distributed systems is simplified
in our approach by our use of variation points to handle the variabilities in similar
software systems. Our approach takes advantage of how the requirement
specifications for an agent's role were partitioned and documented in the Role Schema
and Role Variation Point Schema based on their variation points. This section
describes how the requirements specifications documentation detailed in Section 4
can be reused during the initial deployment of a distributed system as well as during
system evolution. We define system evolution as the updating of an existing
member(s) of a deployed system or the addition of new members to the system.

5.1 Requirements Specification Reuse During Initial Development

The members of a distributed system often will be heterogeneous in their functional
capabilities yet mostly similar in structure. For example, some microsatellites of the
constellation may have additional scientific imaging software while others may have
additional cluster planning and reconfiguration software. Heterogeneity may also
arise when resources (such as weight limits, memory size, etc.) are limited and
different members of a distributed system must assume different roles. In the case of
agent-based, distributed systems, members also may be heterogeneous in terms of
their intelligence levels. For example, depending on the level of coordination
(centralized, distributed or fully distributed, for example) among agents, not all agents
must support roles at the highest level of intelligence. That is, not all agents may be
capable of having full cluster-knowledge and/or being capable of making cluster-level
decisions. For this reason, initially deployed members of a distributed system will
likely contain a role that differs amongst other members in terms of which
intelligence levels (i.e., variation points) it is capable of assuming. Several members
of the distributed system will have the same role but at different levels of intelligence.

Requirements specification reuse can be exploited during the initial development
and deployment of the members of a distributed system using the Role Deployment
Schema, illustrated in Figure 5. Rather than repeatedly defining the requirements of a
role for any given agent, the Role Deployment Schema allows us to define the
intelligence levels it can assume. This reuse is possible because the requirements
specifications for each of the levels of intelligence were documented in the Role

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 175

Variation Point Schemas, and because the agents of a distributed system will be
similar. Thus, to document a particular role for several different heterogeneous
members of a distributed system we must only indicate which variation points (i.e.,
previously defined intelligence levels) it can assume and give the reference number(s)
to the Role Variation Point Schemas. After assigning variation points to an instance of
a role and a role to an instance of an agent, an Agent Model can be used to illustrate
an actual instance of an agent. We provide an example Agent Model in Figure 6.

5.2 Requirements Specification Reuse During System Evolution

Change is inevitable. Hardware failures or altered mission goals in a deployed
distributed system typically necessitate software updates to one or more members. For
example, a satellite of the constellation may have a malfunctioning planning and
control module that could motivate operators to update that particular satellite's
software to erase it and replace it with updated mission planning software.
Alternatively, technology or mission goals after the initial deployment of a distributed
system routinely evolve in such a way that future deployments of members joining the
distributed system will require additional functionality (i.e., new features requiring
new requirements). In the case of the satellite constellations, designers envision that
new microsatellites will be deployed in multiple, planned phases [7, 22]. The new
microsatellites will likely contain additional features not found in previously deployed
microsatellites. Examples of the types of evolution the constellation may undergo
include improved sensors, new scientific software, new communication devices, etc.

When the system evolves, new members may include additional functionality not
previously defined in the requirements specifications. The requirements specification
pattern detailed in Section 4 is extensible in that it can accommodate this kind of
system evolution by being able to include a new set of requirements while still
reusing the previously documented requirements.

If the system evolution is an update of a member of the distributed system where
the update includes functionality previously defined in the requirements specifications
(Role Schema and Role Variation Point Schema), it suffices to modify the Role
Deployment Schema and, possibly, the Agent Model to reflect the update.

The addition of a new role within the distributed, agent-based system was
described in Section 4.2. Briefly, we create a new Role Schema and a Role Variation
Point Schema just as during the initial development of a multi-agent system.
Following the creation of a Role Schema and a set of Role Variation Point Schemas,
the process for the detailed design phase, outlined in Section 4.3, is used to instantiate
a new agent with the new role.

The addition of a new variation point to an existing role, however, requires a
modification to existing Role Schema documentation as well as the creation of a new
Role Variation Point Schema. For example, the need to add a fifth intelligence level
to an existing role would require such modification. For a new intelligence level
desired for a particular role in future deployments of members of a distributed system,
the following process suffices:

1. Create a new Role Variation Point Schema for the new intelligence level (i.e.,
variation point) giving the role's name, variation point's name and a unique
variation point identifier in the appropriate fields.

176 J. Dehlinger and R.R. Lutz

2. Document the variation point indicating how the new variation point differs from
previously defined variation points in the Description section.

3. Identify the protocols, activities, permissions and responsibilities that are particular
to only that variation point. That is, define the protocols, activities, permissions and
responsibilities that are not found in any of the lower intelligence level variation
points and that are not found in any other variation points.

4. Document and define the identified protocols, activities, permissions and
responsibilities in the appropriate sections of the Role Variation Point.

5. Update the Role Schema to which the new variation point corresponds, and add the
new variation point, along with a description and schema reference identification,
to the Variation Points section.

These steps will produce a new variation point for a role and the accompanying Role
Variation Point Schema for future versions of members of the system.

6 Concluding Remarks

This paper incorporates a product-line approach into an agent-oriented software
engineering methodology to support the reuse of the derived requirements
specifications of an agent-based, distributed system. The requirements specification
templates are constructed in such a way that varying dynamic software configure-
ations of an agent are supported. The benefit is that the agent's configurations can
then be reused during initial system development and during periods of system
changes and updates. This can significantly reduce the software development time
and cost.
 To allow for the integration of product-line concepts into the Gaia methodology,
we modified some of Gaia's schemas to better suit the concepts of software product-
line engineering. In this paper we describe how a Role Schema, a Role Variation
Point Schema, a Role Deployment Schema and an Agent Model can be created using
a product-line approach. Using this approach assists in capturing the shifting
configurations of agents/roles during the requirements analysis, design, detailed
design and specification phases. Specifically, we describe how requirements
specifications reuse can be achieved during initial system development, during
periods of system changes and updates and during the addition of new members with
previously defined functionality to a deployed, heterogeneous, distributed system.
 Although this work was specifically intended for use in distributed multi-agent
systems, this work may also be useful for distributed systems that are not necessarily
agent-based such as sensor networks, grid-computing applications and peer-to-peer
applications. Planned future work includes an application of this approach to a multi-
agent system under development to evaluate the scalability of this approach.

Acknowledgements

This research was supported by the National Science Foundation under grants
0204139 and 0205588, and by the Iowa Space Grant Consortium.

 A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems 177

References

1. Ardis, M. A. and Weiss, D. M., "Defining Families: The Commonality Analysis", Proc.
19th Int’l Conf. on Software Engineering, pp. 649-650, 1997.

2. Bresciani, P., Giorgini, P., Guinchiglia, F. and Perini, A., "TROPOS: An Agent-Oriented
Software Development Methodology", Journal of Autonomous Agents and Multi-Agent
Systems, 8(1):203-236, 2004.

3. Castro, J., Kolp, M. and Myopoulos, J. "Towards Requirements-Driven Information
Systems Engineering: The Tropos Project" Information Systems 27(6):365-389, 2002.

4. Cernuzzi, L., Juan, T., Sterling, L. and Zambonelli, F., "The Gaia Methodology: Basic
Concepts and Extensions", Methodologies and Software Engineering for Agent Systems.The
Agent-Oriented Software Engineering Handbook Series: Multiagent Systems, Artificial
Societies, and Simulated Organizations, 11:69-88, 2004.

5. Chan, K. and Sterling, L., "Specifying Roles within Agent-Oriented Software
Engineering", Proc. 10th Asia-Pacific Software Engineering Conf., pp. 390-395, 2003.

6. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davies, A.,
Mandl, D., Frye, S., Trout, B., D’Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet,
A. and Christina, S., "Lessons Learned from Autonomous Sciencecraft Experiment", Proc.
Autonomous Agents and Multi-Agent Systems Conf., 2005.

7. Chien, S., Sherwood, R., Rabideau, G., Castano, R., Davies, A., Burl, M., Knight, R.,
Stough, T., Roden, J., Zetocha, P., Wainwright, R., Klupar, P., Van Gaasbeck, J.,
Cappelaere, P. and Oswald, D., "The Techsat-21 Autonomous Space Science Agent",
Proc. 1st Int’l Conf. on Autonomous Agents, pp. 570-577, 2002.

8. Clements, P. and Northrop, L., Software Product Lines: Practices and Patterns, Addison-
Wesley, Reading, MA, 2002.

9. Das, S., Krikorian, R. and Truszkowski, W., "Distributed Planning and Scheduling for
Enhancing Spacecraft Autonomy", Proc. 3rd Conf. on Autonomous Agents, pp. 422-423,
1999.

10. Dehlinger, J. and Lutz, R. R., "PLFaultCAT: A Product-Line Software Fault Tree Analysis
Tool", The Automated Software Engineering Journal, to appear.

11. DeLoach, S. A., "The MaSE Methodology", Methodologies and Software Engineering for
Agent Systems-The Agent-Oriented Software Engineering Handbook Series: Multiagent
Systems, Artificial Societies, and Simulated Organizations, 11:107-125, 2004.

12. Feng, Q and Lutz, R. R., "Bi-Directional Safety Analysis of Product Lines", Journal of
Systems and Software, to appear.

13. Girardi, R., "Reuse in Agent-based Application Development", Proc. 1st Int’l Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, 2002.

14. Hara, H., Fujita, S. and Sugawara, K., "Reusable Software Components Based on an
Agent Model", Proc. Workshop on Parallel and Distributed Systems, 2000.

15. Kang, K. C., Kim, S., Lee, J. and Lee, K., "Feature-Oriented Engineering of PBX Software
for Adaptability and Reusability", Software Practice and Experience, 29(10):167-177,
1999.

16. Lutz, R. R., “Extending the Product Family Approach to Support Safe Reuse,” Journal of
Systems and Software, 53(3):207-217, 2000.

17. Northrop, L., "A Framework for Product Line Practice", Software Engineering Institute,
http://www.sei.cmu.edu/productlines/framework.html, (current November 2005).

18. Padmanabhan, P. and Lutz, R. R., "Tool-Supported Verification of Product Line
Requirements", The Automated Software Engineering Journal, 12(4):447-465, 2005.

19. Schetter, T., Campbell, M. and Surka, D., "Multiple Agent-Based Autonomy for Satellite
Constellations", Proc. 2nd Int’l Symposium on Agent Systems and Applications, 2000.

20. Sommerville, I., Software Engineering, Addison-Wesley, Reading, MA, 2004.

178 J. Dehlinger and R.R. Lutz

21. Sutandiyo, W., Chhetri, M. B., Krishnaswamy, S. and Loke, S. W., "Experiences with
Software Engineering of Mobile Agent Applications", Proc. 2004 Australian Software
Engineering Conf., pp. 339-349, 2004.

22. "TechSat21 - Space Missions Using Satellite Clusters", Space Vehicles Factsheets,
http://www.cs.afrl.af.mil/ Factsheets/techsat21.html, (current February 2005).

23. Tveit, A., "A Survey of Agent-Oriented Software Engineering", NTNU Computer Science
Graduate Student Conf., 2001.

24. United States Department of Defense, "Draft DoD Software Technology Strategy", Office
of the Director, Defense Research & Engineering, DRAFT: December 1991.

25. Weiss, D. M. and Lai, C. T. R., Software Product-Line Engineering, Addison-Wesley,
Reading, MA, 1999.

26. Wooldridge, M. and Jennings, N. R., "Agent Theories, Architectures and Languages: A
Survey", Workshop on Agent Theories, Architecture and Languages, pp. 1-32, 1995.

27. Wooldridge, M., Jennings, N. R. and Kinny, D., "The Gaia Methodology for Agent-
Oriented Analysis and Design", Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.

28. Zambonelli, F., Jennings, N. R. and Wooldridge, M., "Developing Multiagent Systems:
The Gaia Methodology", ACM Transactions on Software Engineering and Methodology,
12(3):317-370, 2003.

Characterization and Evaluation of Multi-agent System
Architectural Styles

Paul Davidsson, Stefan Johansson, and Mikael Svahnberg

Department of Systems and Software Engineering,
Blekinge Institute of Technology,

Soft Center, 372 25 Ronneby, Sweden
{pdv, sja, msv}@bth.se

Abstract. We argue that it is useful to study classes of Multi-Agent System
(MAS) architectures, corresponding to architectural styles in addition to particular
architectures. In this work we focus on a particular abstraction level where MAS

architectural styles are characterized according to properties, such as, the type
of control used (from fully centralized to fully distributed), and the type of co-
ordination used. Different architectural styles support different quality attributes
to different extent. When choosing architectural style for a given application do-
main, we argue that it is important to evaluate the them according to the quality
attributes relevant to that application. The architectural style that provides the
most appropriate balance between these attributes should then be selected. As a
case study we investigate the problem of dynamic and distributed resource allo-
cation and compare six MAS architectural styles that can be used to handle this
task. We also illustrate the use of the Analytic Hierarchy Process, which is a ba-
sic approach to select the most suitable alternative from a number of alternatives
evaluated with respect to several criteria, for selecting the architectural style that
balance the trade-off between the relevant quality attributes in the best way.

1 Introduction

Much effort has been spent on suggesting and implementing new architectures of Multi-
Agent Systems (MAS). However, less work has been done in studying how these archi-
tectures may be characterized and evaluated in a more general way. Typically, a (group
of) researcher(s) invents a new architecture and applies it to a particular domain and
concludes that it seems to be appropriate for this domain, without drawing any gen-
eral conclusions. We believe that this area has now reached the level of maturity when
it is appropriate to compare and evaluate MAS architectures on a more abstract level.
In this paper, we show how the concept of architectural styles can be used to achieve
this. We will also illustrate how to choose the proper architectural style by taking into
account several quality attributes and weighting them according to the requirements of
the application at hand.

Of course, there is no single MAS architectural style that is the most suitable for all
applications. On the other hand, to find out whether one architecture performs better
than another for a particular application is usually of limited scientific interest. (Al-
though this information may be very useful to solve that particular problem.) Instead,

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 179–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 P. Davidsson, S. Johansson, and M. Svahnberg

we suggest the study of more general problem domains corresponding to sets of appli-
cations with common characteristics. In this paper we will as a case study investigate
the problem of selecting a MAS architectural style for dynamic and distributed resource
allocation.

The rest of the paper is structured as follows. In Section 2 we will discuss Architec-
tural styles followed by a case study in Section 3. Section 4 discusses the method and
finally in Section 5 we draw a few conclusions and suggest some future directions of
research.

2 Architectural Styles

As mentioned earlier, we argue that it is useful to study classes of MAS architectures,
corresponding to architectural styles [18] in addition to particular architectures. These
may describe abstractions of software entities of varying abstraction levels such as en-
terprise architectures, system architectures, subsystem architectures, or the architecture
within a particular component, and may involve several views of the architecture to
capture all relevant aspects cf. Kruchten [13].

In this work we focus on a particular abstraction level and characterize MAS archi-
tectural styles according to two properties: the type of control used (from fully central-
ized via hierarchical to fully distributed), and the type of coordination (synchronous vs.
asynchronous). The degree of synchronization is a way of characterizing the coordina-
tion in terms of how the execution of the agents interrelate with each other. We may
have agents that are highly sophisticated, but who only interact at special slots in time,
and thus have a high degree of synchronization. There are also systems in which the
agents may interact continuously, independently of when other agents interact, which
we will refer to as asynchronous. As well as having an intermediate level of central-
ization, we may study architectural styles that exhibit properties in between being fully
synchronous and totally asynchronous. However, we limit this work to {synchronous,
asynchronous}×{centralized, hierarchical, distributed} architectural styles.

It should be noted that the terminology varies between different sources. Shaw &
Garlan [18] introduced the concept of architectural styles. In their work, an architec-
tural style consists of components, connectors, and constraints, and defines a family
of systems with a specific pattern of structural composition. This encompassed higher
level architectural styles such as client-server, pipes and filters, repositories/blackboard,
and layered, but also lower levels such as object-oriented, dataflow, and event-based.
Buschmann et al [5] presents a taxonomy containing, among others, pipes and filters,
blackboard, and layered, and presents these as architectural patterns. We can thus in-
terpret architectural patterns to be a subset of Shaw & Garlan’s architectural styles.
Bosch [4] uses the term architectural style in the same way as Shaw & Garlan, but also
uses the term architectural pattern to denote a lower level solution that can be merged
with an architectural style, such as concurrency, persistence, distribution, and graphical
user interface. In this article we use the term architectural style in the same meaning
as Shaw & Garlan [18]. In other words, we see an architectural style as an abstraction
over a family of systems. Thus, an architectural style is used as a starting point when
creating a concrete architecture for a particular MAS system.

Characterization and Evaluation of Multi-agent System Architectural Styles 181

3 Case Study

We will now illustrate the use of our method by going through a case study, starting
with a description of the domain and the chosen quality attributes. We then present the
six MAS architectural styles1 and their qualitative as well as quantitative evaluations.

3.1 Domain

Since agent technology has shown to be successful for dynamic and distributed resource
allocation, e.g. power load management [22], cellular phone bandwidth allocation [3],
and transportation systems management [9,21], we have chosen this domain for our
architectural style comparison. Basically, the problem concerns allocation of resources
between a number of customers, given a number of providers. Both the providers and
the customers may reside at different geographical locations, hence the distributed as-
pect of the problem. The dynamics of the problem lie in that the needs of the customers,
as well as the amount of resources made available by the providers, vary over time. The
needs and available resources not only vary on an individual level, but also the to-
tal needs and available resources within the system may vary over time. We will here
assume that the resources cannot be buffered, i.e., they have to be consumed immedi-
ately, and that the cost of communication (and transportation of resources) between any
customer-provider pair is equal.

3.2 Quality Attributes

It is possible to evaluate MAS architectural styles with respect to several different quality
attributes [7]. Some of these attributes are domain independent and some are specific
for each set of applications, e.g., performance-related attributes. We have identified the
following important performance-related attributes to dynamic and distributed resource
allocation:

– Reactivity: How fast are resources re-allocated when there are changes in demand?
– Load balancing: How evenly is the load balanced between the resource providers?
– Fairness: Are the customers treated equally?
– Utilization of resources: Are the available resources utilized as much as is possible?
– Responsiveness: How long does it take for the customers to get response to an

individual request?
– Communication overhead: How much extra communication is needed for the re-

source allocation?

In addition, there are a number of more general software architecture quality factors
[14] that could be addressed,2

1 {synchronous, asynchronous}×{centralized, hierarchical, distributed}.
2 In further addition to these attributes, there are of course a number of attributes that are not

mentioned here but that are of interest to include in the specific evaluation of the specific
case. The method as such does of course not exclude any quality attributes. It is up to the
architectural style evaluator to set the specific attributes when applying the method.

182 P. Davidsson, S. Johansson, and M. Svahnberg

– Robustness: How vulnerable is the system to node or link failures?
– Modifiability: How easy is it to change the system after it is implemented (and often

deployed)?
– Scalability: How good is the system at handling large numbers of users (providers

and customers)?

It is impossible to find a MAS architectural style that is optimal with respect to all
the attributes relevant for a certain application. Instead, there is typically a trade-off
between these attributes and different architectures balance this trade-off in various
ways. Different applications, on the other hand, often require different balancing of this
trade-off. Thus, in order to choose the right architecture for a particular application,
knowledge about relevant attributes and how different MAS architectural styles support
them is essential.

3.3 Candidate MAS Architectural Styles

There are many ways of characterizing the space of possible MAS architectures, e.g., the
topology of the system, the degree of mobility and dynamics of the communications, the
degree of distribution of control, and the degree of synchronization of interaction. We
have chosen to focus the two last properties and will discuss and compare the following
six potential MAS architectural styles for dynamic and distributed resource allocation:

– centralized synchronous architectures,
– centralized asynchronous architectures,
– hierarchical synchronous architectures,
– hierarchical asynchronous architectures,
– distributed synchronous architectures, and
– distributed asynchronous architectures.

3.4 Qualitative Evaluation

We will now briefly discuss how the architectural style may influence the quality at-
tributes identified above.

– Reactivity should be promoted by asynchronous architectures since there is no need
to await any synchronization event before i) an agent can notify other agents about
changes in demand and ii) other agents can take the appropriate actions to adapt to
these changes.

– Load balancing should be favored, or at least not disfavored, by centralized control
since it is possible to take advantage of the global view of the state of the system,
e.g., the current load at the providers and the current demand of the customers.

– Similarly should fairness be easier to achieve for architectures with centralized
control since they have information about the global state of the system.

– The ability to utilize the resources seems to be favored by centralized, asynchronous
solutions which improve the fairness (and thus the utilization) in near-overload situ-
ations, and may have better reactivity (which leads to better utilization of resources
in highly dynamic domains).

Characterization and Evaluation of Multi-agent System Architectural Styles 183

– Also, it is not clear from a strictly theoretical analysis if there is any correlation
between responsiveness and the architecture properties.

– Communication overhead can be measured either by the number of messages sent,
or by the bandwidth required for the allocation. Synchronous architectures tend
to concentrate the message sending to short time intervals, and thus requiring a
large bandwidth, whereas asynchronous architectures tend to be better at utilizing
a given bandwidth over the time. Also, communication in distributed architectures
has a tendency to be more local than in centralized architecture, using smaller parts
of the network.

– In a distributed system, the reallocation may function partially even though some
agents have failed, although the probability of failures in one of these controler
nodes is higher than the probability of failure in the single node of the centralized
solution. At this level of abstraction, it is hard to see that the robustness is clearly
favored by any of the two properties.

– The modifiability, to add or remove a provider or customer, may be slightly better
in centralized architectures since changes may only be necessary in one part of the
system. However, this attribute seems to be more dependent on other architectural
style properties not considered in this evaluation.

– Scalability seems to be better supported by distributed architectures than central-
ized architectures. Firstly, the computational load for the resource allocation is di-
vided between a number of computers, and secondly, the risk for communication
bottlenecks is smaller.

It is important to note that this analysis can only say something about the poten-
tial of a particular architectural style. Thus, there is no guarantee that an implemented
instantiation of a architectural style actually realizes the potential even though some
support for the claims above may be found in previous work where we simulated four
instantiations of the architectural styles mentioned [10] which were later evaluated us-
ing AHP [8].

3.5 Quantitative Evaluation

Typically, an architecture constitutes a balance between different quality attributes, just
as different applications may require a specific balance or trade-off between quality at-
tributes. Hence, to select the most suitable architectural style for a particular application
knowledge about relevant attributes and how different MAS architectural styles support
them is essential. We will now show how the trade-off between quality attributes can be
quantified.

The Analytic Hierarchy Process (AHP) [16,17] is a multi-criteria decision support
method from Management Science [1] that has previously been successfully tried and
used in software engineering settings similar to the use in this article (e.g. [11,12,19,20]).
One of the cornerstones in AHP is to evaluate a set of alternatives based on a particular
blend of criteria, i.e. considering a specific trade-off situation. The AHP can quantify
subjective assessments through a process of pair-wise comparisons or use measured
data e.g. from a simulation.

The following steps are identified in our method:

184 P. Davidsson, S. Johansson, and M. Svahnberg

Table 1. Priorities of the various properties in the case of a restricted communication (Pc) and
limited resources (Pu)

Property React. Load Bal. Fairness Utiliz. Respons. Com. OH Robustness Modifi. Scala.

Priority Pc 0.10 0.05 0.10 0.05 0.10 0.30 0.10 0.10 0.10

Priority Pu 0.10 0.20 0.10 0.20 0.10 0.00 0.10 0.10 0.10

– The first step in AHP is to set up a hierarchy of the criteria that are being evalu-
ated. This means that one criterion can be broken down into several sub-criteria,
and the evaluation of the different alternatives is done by weighing in all levels of
this decision support hierarchy. In our case, the top-level goal is Most Appropriate
Architectural Style. Under this root node in the hierarchy the different evaluation
criteria are listed, in our case Reactivity, Load Balancing, Fairness, Utilization of
Resources, Responsiveness, Communication Overhead, Robustness, Modifiability,
and Scalability. For some of these criteria a further specialization may be neces-
sary, e.g., the expected load of the target system. In that case, sub-criteria should be
added as children in the hierarchy.

– For a particular application, the criteria are then prioritized in accordance with how
important they are for that application. This prioritization is done for all levels in the
hierarchy, and can be done using e.g. the pair-wise comparison process provided in
the AHP method or by means of any other prioritization method. For future use, we
also at this stage make sure that the priorities on a particular level in the decision
tree are normalized so that they sum up to one. If the quality attributes are not
independent, care may be taken when setting the weights of the dependent attributes
so that their interaction does not lead to unexpected effects in the evaluation.

As an illustration, we provide two examples of priorities for the different quality
attributes shown in Table 1. These two cases corresponds to one situation where
the (potential) system bottleneck lies in the communication network (Pc) and one
where the resources are the limiting factor (Pu). In the first situation it is important
to keep communication overhead at a low level, whereas in the second situation it
is not. Instead, utilization of the resources and load balancing are prioritized.

We include the two different priorities in order to show how changes in priorities
may change the results. It should be noted that these are examples of priorities and
as such they are of course of limited interest in a general meaning. The actual
priorities should be set for the specific system considered. They can be derived in a
multitude of ways (for a comparison of different prioritization techniques, see e.g.
[12]), including AHP, and the 100-point method.

– For each of the leaf nodes in the decision support hierarchy we compare each of the
candidate architectural styles with the other candidates. This can be done by using
a pair-wise comparison process or by providing tangible data. In this study, we use
the subjective judgments that are presented in Table 2.

– The obtained normalized values for the candidate architectural styles are then multi-
plied with the normalized priorities for each level in the decision support hierarchy.

Characterization and Evaluation of Multi-agent System Architectural Styles 185

Table 2. The score of each of the properties of the six architectural styles

Synchronous Asynchronous

Centralized Hierarchical Distributed Centralized Hierarchical Distributed

Reactivity 0.033 0.033 0.033 0.300 0.300 0.300

Load Balancing 0.300 0.150 0.050 0.300 0.150 0.050

Fairness 0.300 0.150 0.050 0.300 0.150 0.050

Util. of resources 0.167 0.167 0.167 0.167 0.167 0.167

Responsiveness 0.167 0.167 0.167 0.167 0.167 0.167

Com. overhead 0.080 0.120 0.200 0.120 0.180 0.300

Robustness 0.050 0.150 0.300 0.050 0.150 0.300

Modifiability 0.300 0.150 0.050 0.300 0.150 0.050

Scalability 0.050 0.150 0.300 0.050 0.150 0.300

– Lastly, the results of these multiplications are summed for each candidate archi-
tectural style. These sums represent the suitability of each alternative in relation to
the other alternatives. It is not absolute numbers but a ratio compared to the other
alternatives that is obtained.

Thus, using the data described above, we are now able to instrument the AHP

decision support hierarchy with the evaluations of the architectural styles for each
of the criteria. For each of the two cases we take the product of the priorities
of the quality attributes, and multiply this with the corresponding value for each
candidate architectural style. The result of this is then summed for each candi-
date architectural style, and presented in Table 3. As can be seen, in the first case
Pc, with restricted communication abilities, the distributed asynchronous architec-
tural style is the most suitable, followed by the other two asynchronous styles.
In the second case Pu, with restricted computing resources, the centralized archi-
tectural styles seems to be the best choice and the asynchronous version the first
option.

4 Discussion

Naturally, there are limitations to the suggested evaluation method.
Firstly, it only evaluates the potential of different architectural styles. A good im-

plementation may achieve this potential, and a bad implementation may not reach the
potential at all. When developing a software system, the potential of the chosen ar-
chitecture is one important influence of the resulting system, but there are others. For
example, familiarity with a particular architectural style, development organization, and
coding standards may also influence the final result.

186 P. Davidsson, S. Johansson, and M. Svahnberg

Table 3. Results of the AHP given the two priorities Pc and Pu

Pc Pu

Distributed asynchronous 0.218 Centralized asynchronous 0.210

Hierarchical asynchronous 0.177 Centralized synchronous 0.183

Centralized asynchronous 0.176 Hierarchical asynchronous 0.170

Distributed synchronous 0.161 Distributed asynchronous 0.160

Centralized synchronous 0.137 Hierarchical synchronous 0.143

Hierarchical synchronous 0.132 Distributed synchronous 0.133

Secondly, which architecture candidate the evaluation framework proposes is highly
dependent on the priorities of the quality attributes and the way we choose to define
them. Hence, care must be taken when prioritizing the needs of the system so that the
priorities are in fact truly representing the needs for the target system.

Thirdly, the quantitative suggestion that the framework produces should be seen as
one input among many to the decision process. Other inputs may include e.g. previous
experiences or intuition.

As the studies that can be performed on MAS architectural styles are mostly of a the-
oretical nature, they often need to be supplemented with empirical studies using instan-
tiations of these styles in concrete domains. In a previous study [8], we investigated the
problem of load balancing and overload control of Intelligent Networks, a dynamic and
distributed resource allocation problem. Four concrete MAS architectures were instanti-
ated corresponding to four different architectural styles (centralized synchronous, cen-
tralized asynchronous, hierarchical synchronous, and distributed asynchronous). Met-
rics were defined for six different quality attributes (Reactivity, Load balancing, Fair-
ness, Utilization of resources, Responsiveness, and Communication overhead). The in-
stantiations were studied in simulation experiments and measurements of the metrics
were recorded. The measurements where then used as raw data for the AHP in a sim-
ilar way as the subjective judgments were used in this article. Moreover, this work
concerning architectural styles and their implementation may be seen as an early at-
tempt to construct a domain-specific system of patterns as is discussed in Chapter 5 of
Buschmann et al. [5].

It can of course be questioned if this is a purely objective method. In one way that is
an important discussion, however somewhat irrelevant since the method itself does not
define the quality attributes. Instead the method should be seen as a structured tool that
may be used by the system designer to choose an appropriate architectural style based
on his/her definitions and weights of the quality attributes. In fact, the suggested method
isolates and makes explicit the subjective parts of the evaluation, i.e., the priorities and
the scores, and separates them from the objective parts, i.e., the AHP calculations.

Finally, the work presented in this paper can be viewed in the perspective of a more
general evaluation framework, wich can be described in terms of the following three-
dimensional space:

Characterization and Evaluation of Multi-agent System Architectural Styles 187

– the set of possible applications,
– the set of possible MAS architectures, and
– the set of quality attributes.

The suggested approach is to investigate substantial parts of this space rather than just
single points. We believe that this approach, besides of enabling a more systematic
investigation of the space, will lead to a deeper understanding of MASs and their appli-
cations, which, in turn, will contribute to reach the long-term goal of obtaining general
design principles of MASs. We argue that this work will contribute to bridge the current
gap between theory and application of MAS.

5 Conclusions and Future Work

Architectural styles have received considerable attention in the software engineering
community during the past 10 years (cf. ref. [2,5,4,18]) because of the way that they
capture previous experiences and extract the essentials of different architectural design
solutions. One important issue that is mentioned e.g. by Buschmann et al. [5] is the
need for building pattern languages, i.e. a collection of architectural styles, for different
domains in addition to identifying generic architectural styles that can be used over
a number of domains. In this article we have outlined a path forward in identifying
essentials of MAS architectures for different application domains, i.e. MAS architectural
styles. We also described a way of evaluating such styles according multiple criteria
for different applications and situations. The method was applied to the problem of
dynamic and distributed resource allocation where six different MAS architectural styles
were evaluated according to nine different quality attributes in two different situations
(priorities between the attributes).

The results of the case study are, not very surprisingly, that different architectural
styles excel in different situations. The choice of MAS architectural style for a particular
application should hence be based on a trade-off between the involved quality attributes
that is optimal for that application. We believe that if the systematic approach suggested
here is widely adopted, such choices can be more informed than is currently the prac-
tice.

Our plans for future work include:

– Further development of the concept of architectural styles for characterizing multi-
agent systems.

– Further experimental validation in dynamic distribution resource allocation do-
mains.

– Investigate the applicability of the suggested evaluation method in other domains.
– Investigating to what extent the implementations of the individual agents influence

system performance.
– Compare the approach to other methods of selecting architectural styles, e.g. Qual-

itative evaluation [6] and ELECTRE [15].

Acknowledgements

The authors would like to thank Blekinge Institute of Technology and the Swedish
Knowledge Foundation for funding this work.

188 P. Davidsson, S. Johansson, and M. Svahnberg

References

1. D. R. Anderson, D. J. Sweeney, and T. A. Williams. An Introduction to Management Science:
Quantitative Approaches to Decision Making. South Western College Publishing, Cincinnati
Ohio, 2000.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley
Publishing Co., Reading MA, 1998.

3. E. Bodanese and L. Cuthbert. An intelligent channel allocation scheme for mobile networks:
An application of agent technology. In Proceedings of the 2nd International Conference on
Intelligent Agent Technology, pages 322–333. World Scientific Press, 2001.

4. J. Bosch. Design & Use of Software Architectures - Adopting and Evolving a Product Line
Approach. Addison-Wesley, Harlow UK, 2000.

5. F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, and M. Stahl. Pattern-Oriented Software
Architecture - A System of Patterns. John Wiley, Chichester UK, 1996.

6. L. Chung, K. Cooper, and A. Yi. Developing adaptable software architectures using design
patterns: an nfr approach. Comput. Stand. Interfaces, 25(3):253–260, 2003.

7. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures. Addison Wesley,
2002.

8. P. Davidsson, S. Johansson, and M. Svahnberg. Characterization and evaluation of multi-
agent system architectural styles. In Software Engineering for Multi-Agent Systems IV, Lec-
ture Notes in Computer Science. Springer Verlag, 2006. To appear.

9. J. Himoff, P. Skobelev, and M. Wooldridge. Magenta technology: Multi-agent systems for
industrial logistics. In Proceedings of Autonomous Agents and Multi Agent Systems, volume
Industry Track, pages 60–66. ACM press, 2005.

10. S. Johansson, P. Davidsson, and M. Kristell. Four architectures for dynamic resource alloca-
tion. In A. Karmouch, T. Magedanz, and J. Delgado, editors, Mobile Agents for Telecommu-
nication Applications, volume 2521 of LNAI, pages 239–248. Springer Verlag, 2002.

11. J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements. IEEE Soft-
ware, 14(5):67–74, 1997.

12. J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for prioritizing software
requirements. Information and Software Technology, 39(14-15):938–947, 1998.

13. P. Kruchten. The 4+1 view model of architecture. IEEE Software, pages 42–50, July 1995.
14. J. McCall. Encyclopedia of Software Engineering, chapter Quality Factors, pages 959–969.

John Wiley & Sons Inc., 1994.
15. J. C. McPhail and D. Deugo. Deciding on a pattern. In IEA/AIE ’01: Proceedings of the 14th

International conference on Industrial and engineering applications of artificial intelligence
and expert systems, pages 901–910, London, UK, 2001. Springer-Verlag.

16. T. L. Saaty. The Analytic Hierarchy Process. McGraw Hill, Inc., New York NY, 1980.
17. T. L. Saaty and L. G. Vargas. Models, Methods, Concepts & Applications of the Analytic

Hierarchy Process. Kluwer Academic Publisher, Dordrecht the Netherlands, 2001.
18. M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emergin Discipline.

Prentice Hall, Upper Saddle River NJ, 1996.
19. M. Shepperd, S. Barker, and M. Aylett. The analytic hierarchy process and almost dataless

prediction. In R. J. Kuster, A. Cowderoy, F. Heemstra, and E. P. van Veenendaal, editors,
Project Control for Software Quality - Proceedings of ESCOM-SCOPE 99, Maastricht the
Netherlands, 1999. Shaker Publishing BV.

20. M. Svahnberg. An industrial study on building consensus around software architectures and
quality attributes. Journal of Information and Software Technology, 46(12):805–818, 2004.

21. D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentralized control of E’GV trans-
portation systems. In Proceedings of Autonomous Agents and Multi Agent Systems, volume
Industry Track, pages 67–74. ACM press, 2005.

22. F. Ygge. Market-Oriented Programming and its Application to Power Load Management.
PhD thesis, Lund University, Sweden, 1998.

Improving Flexibility and Robustness in Agent
Interactions: Extending Prometheus with Hermes

Christopher Cheong and Michael Winikoff

RMIT University, Melbourne, Australia
{chris, winikoff}@cs.rmit.edu.au

Abstract. A crucial part of multi-agent system design is the design of agent in-
teractions. Traditional approaches to designing agent interaction use interaction
protocols, which focus on defining legal sequences of messages. Such approaches
do not naturally exhibit flexibility and robustness, and are not a good match for
intelligent software agents which are autonomous, proactive, flexible and robust.
The Hermes approach to designing agent interaction uses interaction goals, ac-
tions, and a number of failure recovery mechanisms to give a design methodology
which is a good fit with intelligent software agents. However, the Hermes ap-
proach only covers part of the design process. In this paper we integrate Hermes
with the Prometheus methodology, thus providing a complete methodology for
designing multi-agent systems where interaction design is goal-oriented, yield-
ing flexible and robust interactions.

1 Introduction

Since intelligent agents are social entities, a crucial part of multi-agent system design
is the design of interactions between agents. Typical approaches to designing agent
interactions, such as AUML [1], which is used in agent-oriented design methodologies
such as Prometheus [2], Gaia [3], and Tropos [4], define interactions in terms of legal
message sequences. These message-centric approaches to interaction design restrict the
autonomy of intelligent agents as the agents are forced to follow them mechanistically.

The agents which partake in these interactions are goal-oriented entities, in which
autonomy and proactivity are key concepts. Agents are able to deliberate about their
goals, that is, determine which goal to achieve and how to achieve it. As such, there is
a mismatch between the agents and their interactions.

Intelligent agents are flexible and robust. Similarly, it is desirable for the interactions
between agents to also be flexible and robust, and to exploit beneficial characteristics
of intelligent agents. Alternative approaches to message-centric protocols, such as the
goal-oriented interactions of Hermes [5,6], are required to achieve this.

The main idea behind goal-oriented interactions is that agents partake in interac-
tions because they have certain goals in common to achieve and thus the interaction
is mutually beneficial. The main inspiration of such interactions is the way intelligent
agents are structured and defined (i.e. in terms of goals and the plans which achieve
them). Therefore, the interaction is modelled in terms of interaction goals (IGs), tem-
poral constraints and actions. The IGs are common goals that the interacting agents

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 189–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

190 C. Cheong and M. Winikoff

want to achieve, whilst the temporal constraints allow for temporal ordering and depen-
dencies between IGs. The agents are guided through the interaction by the IGs, which
are organised in a hierarchy (with temporal constraints), and actions are used to achieve
the IGs.

Unlike message-centric protocols, the message sequences are neither prescribed nor
are they the focus of the interaction. Rather, the sequences emerge as interacting agents
decide which IGs to achieve and which actions to use to achieve these IGs. As such,
the focus is on the interaction goals and the exchanged messages are by-products of
the interaction. The combination of goal-oriented interactions and intelligent agents is
a more natural fit than the combination of message-centric protocols and intelligent
agents.

However, the Hermes approach only addresses the design of interactions. In order
to obtain a complete methodology for designing agent systems we integrate Hermes
with the Prometheus methodology, thus providing a complete methodology for design-
ing multi-agent systems where interaction design is goal-oriented, yielding flexible and
robust interactions. We also refine the Hermes methodology and present a more detailed
process for deriving action maps than previously described [5].

Section 2 provides the required background, whilst in section 3 we explain the inte-
grated process and provide a partial example design on a case study. Section 4 concludes
our paper.

2 Background

2.1 Hermes

The Hermes methodology is a goal-oriented approach to agent interactions which cov-
ers design and implementation. In this section the design aspects are briefly covered.
For a more detailed explanation of the design process refer to [5]. The implementation
process is not explained in this paper (see [6] for details).

Figure 1 provides an overview of the Hermes methodology. The first two steps in-
volve determining which agents are to participate in the interaction (i.e. which roles
they will undertake) and what they have to achieve in the interaction (i.e.interaction
goals). The interaction goals (IGs) are goals of the interaction that are common to the
agents involved in the interaction. Once IGs have been identified, they are structured
into an Interaction Goal Hierarchy (IGH), and temporal constraints are added.

Compound IGs, that is IGs that have sub-IGs, such as Order Book and Retrieve De-
tails (refer to Figure 6), are achieved when their own sub-IGs are achieved. Atomic IGs,
such as Retrieve Credit Card Details from Figure 6 are achieved by agents executing ap-
propriate actions: discrete steps that single agents take towards achieving an IG. These
action flows are organised into action maps 1. Therefore, each atomic IG should have a
corresponding action map. Once defined, the action maps are then improved iteratively.

The last two steps of the Hermes design process require identification of messages
and formally defining their structures. Messages are needed between actions that occur

1 Action maps dictate the flow of actions between agents involved in an interaction. More details
on action maps can be found in Section 3.4.

Improving Flexibility and Robustness in Agent Interactions 191

2.
Interaction Goal

 Hierarchy

1.
Role and

Interaction Goal
Identification

3.
Action

Identification

4.
Action

Sequences

5.
Message

Identification

6.
Message

Definitions

Key
Final Design Artefact

Intermediate Design Artefact

Derives/Feedback

Crosscheck

Fig. 1. Hermes Overview Diagram

in different roles that have a causality arrow in between them. For example, in Figure 7
the Delivery Manager will need to send a message to the Stock Manager after the Log
Outgoing Delivery action to trigger the Log Books Outgoing action. Although Hermes
provides guidelines for identifying messages, it does not provide any guidelines for
developing message format. The interaction designer is free to use KQML, FIPA, SOAP
or message types provided by a particular agent platform.

2.2 Prometheus

Prometheus is an agent-oriented software engineering methodology that aims to be
practical and usable by software developers and undergraduate students, not only by
agent researchers and postgraduate students. Its distinguishing features include that it is
complete (from system specification to implementation with some work on debugging
[7]), is described in considerable detail (see [2]), supports the development of agents
that use goals and plans to deliver flexible behaviour, and has tool support [8].

For the purposes of this paper we do not attempt to describe the entire methodology,
instead we focus on the inputs to the interaction design part of the methodology.

Prometheus’ system specification phase (see Figure 2) defines system goals using
a goal overview diagram that shows all of the goals and the goal-subgoal relation-
ships. The system specification phase also uses scenarios. Each scenario is an example

192 C. Cheong and M. Winikoff

Actions, percepts

Scenarios

Interaction

diagrams

Initial

Functionality

descriptors

Agent

descriptors

Capability

descriptors

Plan

descriptors

Data

descriptions

Event

descriptors

System

Overview

Agent

Overview

Capability

overview

Data

coupling
agent

acquaintance
shared

data

messages

Protocols

D
e
ta
il
e
d

D
e
ta
il
e
d
d
e
s
ig
n

d
e
s
ig
n

A
rc
h
it
e
c
tu
ra
l

A
rc
h
it
e
c
tu
ra
l
d
e
s
ig
n

d
e
s
ig
n
S
y
s
te
m

S
y
s
te
m

s
p
e
c
if
ic
a
ti
o
n

s
p
e
c
if
ic
a
ti
o
n

System goals

Process

final design

artefact

intermediate

design artefact

crosscheck

derives

KeyKey

Fig. 2. Prometheus Overview Diagram

sequence of events illustrating desired system functionality. Scenarios are captured us-
ing a structured form (see Figure 5) which includes a sequence of steps. Each step is
either a Goal, a Percept (incoming information from the environment), or an Action2.

Goals are used as the basis for identifying functionalities: specific chunks of behav-
iour formed by grouping related goals. Based on considerations including data coupling,
these functionalities are grouped to form agent types.

The interaction design part of Prometheus is fairly conventional. It begins by tak-
ing individual scenarios and creating corresponding interaction diagrams where in-
stead of showing steps associated with functionalities, messages between agents are
shown. These interaction diagrams are then generalised into interaction protocols (us-
ing AUML) which capture all possible sequences of messages.

3 Integrating Hermes and Prometheus

3.1 Overview

Since Hermes is specifically for interaction design, the obvious approach to integrating
the two methodologies is to replace the typical Prometheus interaction design process
with Hermes. This replacement leads to alterations to inputs needed for the interaction
design process. These alterations are shown in Figure 3, which is an overview of the in-
tegrated methodology (the changed artefacts are shaded, and additional lines and arrows
are shown in bold).

The major difference between Prometheus and Hermes interaction design is that the
latter is goal-oriented. Therefore, a crucial alteration is to ensure that the design of the
interaction goal hierarchy (the first Hermes artefact) is derived from both scenarios and
system goals.

2 Other step types are sub-scenario and “other”.

Improving Flexibility and Robustness in Agent Interactions 193

Actions, percepts

Scenarios
Initial

Functionality

descriptors

Agent

descriptors

System

Overview

Data

coupling

agent

acquaintance

shared

data

messages

Action Maps

DetailedDetailed designdesign

A
rc
h
it
e
c
tu
ra
l

A
rc
h
it
e
c
tu
ra
l
d
e
s
ig
n

d
e
s
ig
n

S
y
s
te
m

S
y
s
te
m

s
p
e
c
if
ic
a
ti
o
n

s
p
e
c
if
ic
a
ti
o
n

System goals final design

artefact

intermediate

design artefact

crosscheck

derives

KeyKey

IG Hierarchy

ASD(*)

(*) ASD = Action Sequence Diagram

Fig. 3. Integrated Overview Diagram

Additionally, Hermes requires information about roles and data stores involved in
the interactions3. Obviously, roles and data stores are integral parts of interactions as
the former are necessary to determine inter-agent communication paths and the latter to
determine the transmission of required data from agent to agent. From the Prometheus
process, this information can be obtained from agent types, which summarises each type
of agent in the system, including the functionalities and data stores they each possess.
These details are used in the design of the action maps.

The end of the Hermes process results in a number of artefacts which are to be re-
integrated with Prometheus. Note that the action maps are closer to process diagrams,
i.e. it is easier to go from action maps to process diagrams than it is to go from AUML
interaction protocols to process diagrams. This is due to the fact that process diagrams
contain only internal agent processes and action maps contain both inter-agent com-
munications and internal agent processes, whereas AUML interaction protocols only
contain inter-agent communications.

3.2 The Amalgamated Design Process

Figure 4 summarises the steps involved in interaction design in the integrated method-
ology. The first five steps are taken directly from the usual Prometheus process. Before
step 6 an assessment is made of whether it is worthwhile to use Hermes, and if not,
then steps 6-11 are replaced with the existing Prometheus methodology. This decision
is made based on the complexity of the interaction and likelihood of failures. For exam-
ple, if it is a simple query and response scenario between two agents, it would not be
worthwhile to use Hermes to design the interaction.

3 Figure 3 omits links from the shared data and agent descriptors to the action maps and IG
hierarchy respectively.

194 C. Cheong and M. Winikoff

1. System Description
2. Develop System Goals
3. Identify Functionalities by grouping goals
4. Develop Scenarios
5. Determine agent types by grouping functionalities
6. Identify Hermes Roles and Interaction Goals
7. Develop Interaction Goal Hierarchy (section 3.3)
8. Develop Action Maps (section 3.4)
9. Develop Action Sequence Diagrams

10. Identify Messages
11. Develop System Overview Diagram (Prometheus)
12. Proceed with rest of Prometheus process

Before step 6 an assessment is made of whether it is worthwhile to use Hermes. If not, then
replace steps 6-11 with the existing Prometheus methodology.

Fig. 4. Steps in Interaction Design

The identification of roles is usually straightforward as they are usually Prometheus
agent types or roles that a particular Prometheus agent type assumes in an interaction.
For example, in an e-commerce system, there may be two agent types, Merchant and
Customer. In this case, it is quite obvious that Merchant and Customer are the roles
involved in the interactions as they are aptly named after their roles. There are some
designs in which agent types are not named after roles and will need to assume roles in
their dealings with other agent types. For example, in an academic conference system,
there may exist an agent type, Academic Agent, which may undertake a number of
different roles, such as Reviewer, Chairperson and Author. In such circumstances, it is
best to use the role as opposed to the agent type in the interactions.

The interaction goals are usually determined by analysing (i.e. grouping, abstract-
ing and decomposing) the goals in the given scenario. Designing interaction goal hier-
archies and action maps is detailed in sections 3.3 and 3.4 respectively.

The remainder of the goal-oriented interaction design (steps 9 and 10) follows the
typical Hermes procedure. The action sequence diagrams are derived from the action
maps, the action messages are derived from the action sequence diagrams and messages
are described in (Prometheus) message descriptors. As these are unchanged from the
original Hermes methodology, they are not discussed in this paper.

The messages obtained from the Hermes process are re-integrated into Prometheus.
Hermes interactions are shown on the system overview diagram in the same way that
protocols were previously represented. This simply represents that there is a goal-
oriented interaction between those agents and the Hermes design artefacts can be
referred to for more details. The messages produced as part of the Hermes design
process are formally defined in message descriptors. Also, the IGs from the interaction
goal hierarchy and the actions from the action maps are added to the agent overview
diagrams4.

4 Both IGs and Hermes actions are mapped to plans: The former to coordination plans and the
latter to achievement plans [6].

Improving Flexibility and Robustness in Agent Interactions 195

Name: Order Book
Description: An order is received from the WWW page interface (goal Place Order).

Information is obtained in order to place the order and the order is placed.
Trigger: Goal: Place Order
Steps:
Step Type Name Role Data

1 Goal Obtain delivery options Delivery handling . . .
2 Goal Calculate delivery time Delivery handling . . .

estimates
3 Goal Present information Online interaction . . .
4 Percept User input Online interaction . . .
5 Goal Obtain credit card details Purchasing . . .
6 Percept User input Online interaction . . .
7 Action Bank Transaction Purchasing . . .
8 Percept Bank transaction response Purchasing . . .
9 Goal Arrange Delivery Delivery handling . . .
10 Action Place delivery request Delivery handling uses: customer order record
11 Goal Log outgoing delivery Delivery handling produces: Customer Orders
12 Goal Log books outgoing Stock management uses: Customer order record

produces: Stock DB
13 Goal Update customer record Profile monitor produces: Customer DB
14 Action Send email Customer contact uses: Customer DB
Variation: Book is not currently available. Include information with delivery options.

Replace steps 7–12 with steps to add the order to an orders pending file.

Fig. 5. Order Book Scenario (From [2, p. 164])

The subsequent sections explain how the interaction goal hierarchy and its action
maps are developed. In these sections we will use an example from the book store
described in [2]. In particular, we will develop an interaction around ordering a book,
based on the Order book scenario [2, p. 146] which is reproduced (in abridged form) in
Figure 5. In addition to the scenario, we also need to know which agent types have been
defined, and for each agent type what functionalities and data it contains. The book
store example defines the following agent types:

– Sales Assistant: comprising the functionalities of Book finding, Welcoming, Pur-
chasing, and Online interaction.

– Customer Relations: comprising the functionalities Profile monitor and Customer
contact and the Customer DB database.

– Delivery Manager: comprising the functionalities Delivery handling and Lost goods
management and the databases Customer orders and Delivery problems. This agent
type also has access to external databases of couriers and postal areas.

– Stock Manager: comprising the functionalities of Stock management, Competition
management, Price setting, and Catalogue management; and the databases Pending
orders, Books DB, Stock orders and Stock DB.

196 C. Cheong and M. Winikoff

3.3 Interaction Goal Hierarchy

To create the interaction goal hierarchy (IGH) we must first determine the overall intent
of the scenario. Given the scenario in Figure 5, it is obvious that the overall intent is
order book (as the scenario is aptly named). Thus, the top-most interaction goal (IG)
is named Order Book and it is appropriately placed at the apex of the IGH (refer to
Figure 6).

Order Book

Retrieve
Details

Process
Order

Retrieve
Delivery
Choice

Retrieve
Credit Card

Details

Process
Bank

Transaction

Arrange
Delivery

Interaction
Goal

Temporal
Dependency

Decomposition

Fig. 6. Interaction Goal Hierarchy

We now further analyse the scenario to elicit other interaction goals. This can be
done by abstracting or grouping related steps from the scenario, by decomposing sce-
nario steps, or by mapping system goals.

System goals can be mapped to either interaction goals or Hermes actions; which
artefact it maps to depends on the specific system goal and its properties. Typically,
high-level system goals (abstract or easily decomposable into sub-goals) or those that
involve more than one agent (e.g. Purchase, a goal that requires Customer and Merchant
agents to achieve it) map to interaction goals. Low-level system goals (concrete or not
easily decomposable into sub-goals) or system goals that involve only a single agent
(e.g. SendConfirmationEmail) are usually mapped to Hermes actions.

In deriving IGs from scenarios it is more common to abstract or group existing
steps than to decompose scenario steps. For example, from the scenario it appears that
steps 1–4 are related: they gather, present and obtain information about delivery details.
Thus, an IG, Retrieve Delivery Choice is created. Similarly, steps 5 and 6 are related;
they gather, present and obtain information about credit card details. Thus, a Retrieve
Credit Card Details IG, which represents scenario steps 5 and 6, is created.

Since the two IGs are very similar they can be further abstracted to a single IG,
Retrieve Details. Thus, the Retrieve Details IG is composed of two sub-IGs, Retrieve
Delivery Choice and Retrieve Credit Card Details. The scenario suggests that Retrieve
Delivery Choice (i.e. steps 1–4) is completed before Retrieve Credit Card Details (i.e.
steps 5 and 6). As this is a sensible suggestion (payment details are usually retrieved at
the end, just before the delivery of the product), we have elected to keep this sequence.
As such, we place a temporal dependency between the Retrieve Delivery Choice and

Improving Flexibility and Robustness in Agent Interactions 197

Retrieve Credit Card Details IGs. The Retrieve Details IG and its sub-IGs are added as
a sub-IG to Order Book (refer to Figure 6) in the IGH.

Scenario steps 7 and 8 are abstracted into an IG, Process Bank Transaction, as they
are related to performing transactions with the bank. Steps 9–14 are grouped into an IG,
Arrange Delivery, as they deal with organising delivery of the book to the purchaser.
Both Process Bank Transaction and Arrange Delivery are then grouped into an IG,
Process Order. Again, the scenario steps suggest that Process Bank Transaction occurs
before Arrange Delivery and, once more, we have chosen to retain this sequence. Thus,
a temporal dependency is placed between Process Bank Transaction and Arrange De-
livery. Process Order is then added to the IGH under the Order Book IG. As Retrieve
Details should be achieved before Process Order is attempted (this is also implied in
the scenario), we also place a temporal dependency between the two.

The resulting IGH (refer to Figure 6) is, in terms of temporal dependencies, a
strongly constrained design. In order to successfully complete the Order Book inter-
action, the following atomic goals must be achieved in sequence: (1) Retrieve Deliv-
ery Choice, (2) Retrieve Credit Card Details, (3) Process Bank Transaction, and (4)
Arrange Delivery.

In fact, since Prometheus scenarios are defined as a (strongly ordered) sequence of
steps, any action map that takes this into account will be strongly constrained. There-
fore, part of the process of moving from scenarios to interaction design, be it using the
Hermes process or the existing Prometheus process, is to consider which of the temporal
constraints implied by the scenario should be retained, and which temporal constraints
should be weakened.

When developing the IGH it is important to consider all scenarios, as well as the
variations of these scenarios. In some cases in order to accommodate all scenarios and
scenario variations the IGH may need to be refined.

3.4 Action Maps

Action maps are used to determine how an atomic IG (i.e. leaf-node goal from the
IGH) can be achieved. Thus, there is usually one action map per atomic IG. In a full
interaction design for our case study four action maps would be created, however, due
to space limitations, we only present the development of the action map for the Arrange
Delivery IG.

The process in which action maps are designed is an iterative one. For ease of ex-
planation, we describe the action map design as a four-step process, however, we do not
intend that these four steps be followed rigidly. For example, the designer is free to skip
steps if they are not deemed relevant, or to use as many iterations over these steps as are
deemed necessary. The four steps, which are discussed below, are:

1. Develop initial action maps by transcribing scenario steps and assigning them to
the appropriate agent

2. Add data to the action map and consider data flow issues
3. Extend action map to cover scenario variations
4. Extend action map to deal with failures

198 C. Cheong and M. Winikoff

Step 1: Initial Action Maps. In this first step, the relevant steps of the scenario are
transcribed onto action maps. Scenario steps that are goals correspond to goals of a
single agent, and are mapped to actions in action maps. Scenario steps that are actions
map (obviously) to actions. For example, step 10 of the scenario is the action Place
delivery request which is mapped to the Hermes action of the same name. Scenario
steps that are percepts also (less obviously) map to actions. In Prometheus, percepts
are incoming information from the environment. When translated to Hermes, percepts
are perceived as actions that somehow gain the required information in the interaction.
Typically, this means that percepts are mapped to actions that either wait for incoming
information (e.g. wait for an agent to send it information or for a belief to change) or
retrieve the information themselves (e.g. read a file or access a database).

Designing the initial action map for the Arrange Delivery IG (scenario steps 9–14)
involves placing five steps (10–14, 9 is omitted as it is achieved by steps 10–14) into
the action map. It is best to follow the scenario steps as closely as possible. However,
it is likely that some slight deviations from the scenarios will be necessary. Deviations
include changing the ordering of some of the actions or creating new actions to clarify
certain parts of the action maps.

The action maps have the roles placed as headings of the swim lanes, so the de-
signer needs to ensure that actions are placed in the correct swim lane. With our case
study, the roles involved in the interaction are simply the agent type identified in the
earlier (Prometheus) steps of design. Determining the correct swim lane is a matter of
assigning steps to the agent type that has been formed out of the corresponding func-
tionality. For example, step 10 in the scenario, Place delivery request, is associated with
the Delivery handling functionality which is part of the Delivery Manager agent type.
Thus, this action is placed in the Delivery Manager swim lane.

It is also important to select the correct action type for each action. In some cases,
the action types will need to be revised during other iterations of the design. An expla-
nation of the different action types (independent, caused and final caused) follows.

An independent action is an action which can start without being triggered by an-
other action, that is, it is not necessarily triggered by another action, but may be trig-
gered by another action. Typically, independent actions are used as entry points into
action maps. An independent action is denoted as a rectangle with dashed borders. For
example, since Place Delivery Request (refer to Figure 7) is the first action to be exe-
cuted, it is defined as an independent action.

A caused action is denoted by a rectangle and can only be triggered by another ac-
tion. For example, Log Outgoing Delivery in Figure 7 only occurs after Place Delivery
Requested is executed.

A final caused action, denoted by a rectangle with bold borders, is a caused action
which terminates the IG for a particular role. For example, Send Email is the final action
for the Customer Relations in Figure 7.

Once the actions have been placed, causality arrows are added between the actions
to identify the flow of actions (based on, but not restricted to, the scenario sequence).
After adding the causality arrows, the designer is free to make any alterations as some-
times the flow process will need to be different to the scenario.

The result of this first step is the action map in Figure 7.

Improving Flexibility and Robustness in Agent Interactions 199

Sales Assistant

Arrange Delivery (Initial without data stores)

Customer Relations Delivery Manager Stock Manager

Place Delivery
Request

Log Outgoing
Delivery

Log Books
Outgoing

Update
Customer Records

Send Email

Contains
Customer Orders record

required by Stock Manager

Independent
Action

Caused
Action

Final Caused
Action

Action
Causality

Note
Indicator

Key

Fig. 7. Initial Action Map without Data Stores: Arrange Delivery

Sales Assistant

Arrange Delivery (Initial with data stores)

Customer Relations Delivery Manager Stock Manager

Place Delivery
Request

Log Outgoing
Delivery Log Books

Outgoing

Update
Customer Records

Send Email

Customer
Orders

Stock DB

Customer DB
Contains

Customer Orders record
required by Stock Manager

Independent
Action

Caused
Action

Final Caused
Action

Action
Causality

Note
Indicator

Key

Data
Store

Data
Flow

Fig. 8. Initial Action Map with Data Stores: Arrange Delivery

Step 2: Data Flow. This step focuses on incorporating data stores into the action maps
and ensuring that all the data each agent requires are accessible. Firstly, we add the data
stores onto the action maps. Data stores usually belong to specific agents (as defined in
the agent groupings summarised earlier) and should be placed in the correct swim lanes
in the action maps. It is not necessary to display every data store an agent contains,
only the data stores that are used in the action map should be displayed. For example,
in scenario step 10, Place Delivery Request, the Delivery Handling role requires data
from Customer Orders. As the Place Delivery Request step is represented by the Place

200 C. Cheong and M. Winikoff

Delivery Request action on the Arrange Delivery action map (Figure 8), the Customer
Orders data store is added to the Delivery Manager agent’s swim lane (since the data
store belongs to that role).

Once the data stores have been added, it is necessary to ensure correct data flow
between actions, which are depicted by dotted directed lines. In the case of the Place
Delivery Request action, as it reads from the Customer Orders data store, the data flows
from the data stores to it. If the action was writing to a data store, the data flow would be
from the action to the data store, as with the Log Books Outgoing action and the Stock
DB data store on on Figure 8.

It is not sufficient to simply add data stores and ensure that actions which read
and write have direct access to the data stores. The designer must ensure that actions
will have access to required data even if the data belongs to a data store in a different
agent. This may mean that required data are read from a data store and passed through
a number of different actions to reach a particular action that requires the data. For
example, in scenario step 12, Log Books Outgoing, the Stock Manager (Prometheus)
role requires data from the Customer Orders data store (which belongs to the Delivery
Manager role). Thus, in the action map, the designer must ensure that the Log Books
Outgoing action has access to the data store. In Figure 8, this is done and noted along the
causality arrow that flows between the actions Log Outgoing Delivery and Log Books
Outgoing.

The result of this second step is the action map in Figure 8.

Step 3: Incorporating Scenario Variations. Adding scenario variations provides al-
ternative paths to successfully complete the interaction goal. As a result, this improves
the flexibility and robustness of the interaction. There are no set guidelines for adding
scenario variations into action maps as the variations will vary greatly depending on
the domain, the agents involved and the actual interaction. In some cases, extending
the interaction to cover scenario variations will require changes to the interaction goal
hierarchy (IGH) if the variation affects more than a single IG. However, in the case of
the Order Book scenario the variation only affects a single IG, and can be incorporated
into the Arrange Delivery IG, and hence only the action map needs to be changed, and
not the IGH.

In the case of the Order Book scenario, the variation states that if the book ordered
is not available, replace steps 7–12 with steps to add a pending order. This can be
incorporated into the action map by having two ways in which the Arrange Delivery
IG can be achieved: (1) when the ordered book is available, the delivery order is placed
and processed (as depicted in Figure 8), and (2) when the ordered book is unavailable,
a pending order is created. Once the book is available, the pending order is filled and
the delivery is processed.

Note that in our interaction, the availability of the ordered book is not explicitly
queried; it is assumed to be part of the delivery options. In order to improve clarity
we decide to make querying for book availability explicit. We do this by adding two
new actions at the start of the action map: Check Book Availability and Check Stock
(refer to Figure 9). These two actions are used to determine how to arrange the delivery.
Check Book Availability is used to query Stock Manager about the availability of the
ordered book. Check Stock is the action in Stock Manager that replies to the query. If

Improving Flexibility and Robustness in Agent Interactions 201

Sales Assistant

Arrange Delivery (with Scenario Variation)

Customer Relations Delivery Manager Stock Manager

Place Delivery
Request

Log Outgoing
Delivery Log Books

Outgoing

Update
Customer Records

Send Email

Customer
Orders

Stock DB

Customer DB

Contains
Customer Orders record

required by Stock Manager

Book
available

Book not
available

Add Pending
Order Order Book

Process Newly
Received Stock

Fill Pending
Order

Pending order
exists

Pending order
doest not exist

Terminate
Successfully

Check Book
Availability

Check
Stock

Independent
Action

Caused
Action

Final Caused
Action

Action
Causality

Note
Indicator

Key

Data
Store

Data
Flow

Fig. 9. Action Map: Arrange Delivery (with scenario variation)

the ordered book is available, the delivery order is placed and processed. If the ordered
book is not available, the Add Pending Order action is used to order the book (from the
publishing firm). Once the book comes in (from the publishing firm), Process Newly
Received Stock is triggered, the pending order is filled and the delivery is processed.

The result of this third step is the action map in Figure 9.

Step 4: Adding Failure Tolerance. This step of the action maps focuses on failures
in the interaction and how to handle them and is of crucial importance as failure han-
dling is what gives the action maps, and thus Hermes, the majority of their flexibility

Table 1. Possible Failures and Remedial Actions for Arrange Delivery

Action Possible Failures Remedial Actions

Order Book Book out of print Suggest alternative title or edition
Place Delivery Request Invalid address Get details from user and validate
Send Email Email bounces Use different medium to contact user

(e.g. send mail via post)

202 C. Cheong and M. Winikoff

and robustness. This iteration has three sub-steps: Failure Identification, Adding Action
Retries and Adding Rollbacks.

In the first sub-step, Failure Identification, action maps are analysed to determine
where possible failures can occur. In general, think about each action on the action maps
and determine whether it can fail or not. If it can fail then determine what different types

Sales Assistant

Arrange Delivery (Final)

Customer Relations Delivery Manager Stock Manager

Place Delivery
Request

Log Outgoing
Delivery Log Books

Outgoing

Update
Customer Records

Send Email

Customer
Orders

Stock DB

Customer DB

Contains
Customer Orders record

required by Stock Manager

Book
available

Book not
available

Add Pending
Order Order Book

Process Newly
Received Stock

Fill Pending
Order

Pending order
exists

Pending order
doest not exist

Check Book
Availability

Check
Stock

Get User
Address

Valid
Address

Invalid
Address

Address

Terminate
Interaction

Send By
Post

Email
bounces

Terminate IG
Successfully

Email
successful

Process Book
Out Of Print

Message

No valid
addresses

Suggest
Alternative

or Similar Title

User does
not like

suggested title

Rollback to
Process Bank
Transaction

User wishes to
purchase

suggested title

Independent
Action

Caused
Action

Final Caused
Action

Action
Causality

Note
Indicator

Key

Data
Store

Data
Flow

Fig. 10. Final Action Map: Arrange Delivery

Improving Flexibility and Robustness in Agent Interactions 203

of failures can result from each of the actions. Once the failures have been identified,
determine ways in which they can be addressed.

For each action map we summarise in a table the possible failures and what remedial
actions can be taken to recover from the failure. For example (see Table 1), the Order
Book action can fail if the book is out of print, and in this case one, way of dealing with
the failure is to suggest alternative titles or editions to the shopper.

To further enhance flexibility and robustness, the designer can also analyse each
action and determine different ways in which they can succeed (i.e. alternative success
paths). However, this was not carried out in this case study.

The remaining two sub-steps deal with handling the identified failures by incorpo-
rating the remedial actions into the design using respectively action retries and roll-
backs.

In the Adding Action Retries sub-step, the action maps are updated with action
retries to incorporate remedial actions. For example, it has been identified that the Order
Book action could fail if a book is out of print, and the suggested remedial action for
this is to suggest an alternative title. In Figure 10, this is achieved by the Process Book
Out Of Print Message action which leads to the Suggest Alternative or Similar Title
action.

Adding action retries can create loops between actions, and it is important to ensure
that there are no unintended endless loops. For example, in Figure 10, there is a loop
between Place Delivery Request and Get User Address. The intention is that the user is
re-prompted for an address every time invalid addresses are encountered. However, an
additional action, Terminate Interaction, has been provided in the case the user cannot
or does not wish to enter an address and would like to exit the interaction at that point.

In the Adding Rollbacks sub-step the action map is extended with rollbacks. In this
case study none of the identified remedial actions involved rolling back to a previous
stage, so no changes are made in this sub-step.

The result of this fourth step is the action map in Figure 10. Although the action map
appears fairly complex, it provides flexible and robust interaction, including dealing
with the failure cases summarised in Table 1. The action map in Figure 10 and the
IGH in Figure 6 were developed by following the sequence of steps that comprise the
amalgamated methodology.

4 Conclusion

There are a number of other approaches to agent interactions which, like Hermes, fo-
cus on providing more flexible and robust interactions. These approaches include those
based on social commitments [9,10,11,12], Kumar et al.’s Landmark-based approach
[13,14], and Hutchison and Winikoff’s goal-plan approach [15].

The work of Yolum and Singh [9,10] defines a social commitment as an agree-
ment between two agents in which one agent is responsible for bringing about a certain
condition. Flores and Kremer [11,12] have a slightly different definition of social com-
mitments in that an agent is responsible for performing certain actions as opposed to
bringing about certain conditions. To progress through commitment-based interactions,
agents acquire, manipulate and discharge commitments. Both these approaches support
complex agent interactions, however, the design aspects are not well defined. Given a

204 C. Cheong and M. Winikoff

particular interaction, it is difficult to determine what commitments are required for the
design of the interaction.

The work of Kumar et al. is focused on landmarks, which can be thought of as
states of affairs. Their work argue that the states of affairs are more important than the
actions that bring about the states of affairs. That is, the states that are brought about by
communicative acts are more important that the communicative acts themselves. In this
regard, landmark-based interactions are about navigating through landmarks to reach a
desired final state. This work relies heavily on expertise in modal and temporal logics.

In Hutchison and Winikoff’s work [15], protocols are defined in terms of goals and
plans, and can be seen as predecessor to the Hermes methodology; its design process is
not detailed and it does not provide a mapping from design to implementation.

None of the aforementioned studies, which aim to provide increased flexibility and
robustness in agent interactions, have been integrated with full agent system design
methodologies. For such work to be practical, integration with full agent system design
methodologies is important.

The authors are not aware of any such integration. The closest work to integrating
more flexible and robust agent interaction design with full agent system design method-
ologies is in methodologies in which agent interactions are treated as first class entities.
On such example is SODA [16]. However, although SODA deals with inter-agent de-
sign and regards interactions as first class entities, it has a different aim to the enhanced
methodology we have presented.

There are two main differences between SODA and the integrated Hermes and
Prometheus methodology. Firstly, SODA is for the analysis and design of Internet-based
systems whilst the integrated Hermes and Prometheus methodology is for general pur-
pose agent system design (i.e. not specifically for Internet-based systems). Secondly,
and most importantly, the SODA interaction design appears to be message-centric as
the design process is focused on resources and on information passing.

We have shown how the Prometheus methodology can be modified by replacing its
current interaction design process with the Hermes methodology. We have also refined
the Hermes methodology and presented a more detailed process for developing action
maps than has previously been published. The enhanced methodology provides a guided
iterative process for the design of agent interactions. Since the design artefacts produced
are pure Hermes artefacts, they can be mapped to an implementation on goal-based
agent platforms as explained in [6].

One of the main advantages of the amalgamation is the flexibility and robustness
of the interactions, which is a direct result of merging Hermes with Prometheus. Fur-
thermore, since Hermes is goal-oriented, it is more congruent with the agent paradigm.
Additionally, the Hermes design process explicitly considers possible failures and how
they can be recovered from, which tends to lead to more robust interactions. Prelimi-
nary results from a brief comparison of AUML and Hermes have shown that AUML,
which focuses on alternative message sequences, cannot easily identify some types of
failures which are easily identifiable by the Hermes process.

One disadvantage of Hermes is that it is time-consuming and, depending on the
design and the particular interaction, is likely to result in a greater number of design
artefacts than the AUML approach. However, the result provides for greater flexibility

Improving Flexibility and Robustness in Agent Interactions 205

and robustness, and is more compatible with intelligent software agents that are proac-
tive and autonomous. It should be noted that we do not propose that all interactions be
designed using the Hermes process: as discussed in section 3.2, the decision whether
to use Hermes or Prometheus to design a given interaction should be made explicitly
based on the complexity of the interaction, the need for flexibility, and the extent to
which failure may arise.

A key piece of future work that we have begun is an evaluation of the ease-of-
use and effectiveness of the Hermes methodology. This comparison involves having a
number of designers design an interaction using either the original Prometheus process
(using the AUML notation) or the process presented in this paper. We will then compare
the designs produced in terms of the range of interaction sequences supported (flexibil-
ity) and the types of failure that can be recovered from (robustness).

Another area of future work is tool support for the amalgamated methodology. Tool
support is important for the amalgamated methodology to be practical, and as such
we intend to develop such tool support. We currently have developed a prototype tool
using UMLet5 for the aforementioned evaluation. Future tool support development may
involve building upon the existing Prometheus Design Tool (PDT) [8].

Acknowledgements

We would like to acknowledge the support of Agent Oriented Software Pty. Ltd. and of
the Australian Research Council (ARC) under grant LP0453486.

References

1. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In:
Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering
(AOSE). (2004)

2. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons (2004) ISBN 0-470-86120-7.

3. Jennings, N., Kinny, D., Wooldridge, M., Zambonelli, F.: The Gaia methodology. In
Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering
for Agent Systems. Kluwer Academic Publishing (New York) (2004)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8 (2004) 203–236

5. Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions. In: Proceed-
ings of the 6th International Workshop on Agent-Oriented Software Engineering (AOSE-
2005). (2005)

6. Cheong, C., Winikoff, M.: Hermes: Implementing goal-oriented agent interactions. In:
Proceedings of the Third international Workshop on Programming Multi-Agent Systems
(ProMAS). (2005)

7. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the Prometheus
methodology. Engineering Applications of Artificial Intelligence 18 (2005) 173–190 Special
issue on Agent-oriented Software Development.

5 http://qse.ifs.tuwien.ac.at/ auer/umlet/

206 C. Cheong and M. Winikoff

8. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development using the
Prometheus methodology. In: Proceedings of the First International Workshop on Integration
of Software Engineering and Agent Technology (ISEAT). (2005)

9. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Computational Logic in Multi-Agent Systems 42 (2004) 227–253

10. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). (2002) 527–534

11. Flores, R.A., Kremer, R.C.: A pragmatic approach to build conversation protocols using
social commitments. In: Autonomous Agents and Multi-Agent Systems (AAMAS). (2004)
1242–1243

12. Flores, R.A., Kremer, R.C.: A principled modular approach to construct flexible conversation
protocols. In Tawfik, A., Goodwin, S., eds.: Advances in Artificial Intelligence, Springer-
Verlag, LNCS 3060 (2004) 1–15

13. Kumar, S., Huber, M.J., Cohen, P.R.: Representing and executing protocols as joint ac-
tions. In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, ACM Press (2002) 543 – 550

14. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in STAPLE.
In: Proceedings of the First International Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2002), ACM Press (2002) 567–568

15. Hutchison, J., Winikoff, M.: Flexibility and Robustness in Agent Interaction Protocols. In:
Workshop on Challenges in Open Agent Systems at the First International Joint Conference
on Autonomous Agents and Multi-Agents Systems. (2002)

16. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In: Proceedings of the 1st International Workshop on Agent-Oriented Software
Engineering (AOSE-2000). (2000) 185–193

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 207 – 223, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Patterns for Modelling Agent Systems with Tropos

Haralambos Mouratidis1 and Michael Weiss2

1 School of Computing and Technology,
University of East London, England
h.mouratidis@uel.ac.uk

2 Department of Computer Science, Carleton University,
Ottawa, Canada

 weiss@scs.carleton.ca

Abstract. Tropos is an agent-oriented development methodology based on
knowledge-level concepts (such as actor, goal, and the dependency between ac-
tors) with a particular focus on requirements analysis. This paper presents a pat-
tern language for guiding developers, especially those without previous Tropos
experience, through the various design challenges faced when using Tropos.
The patterns format allows us to motivate the modelling constructs, justify each
of the development stages, and address specific modelling problems. These pat-
terns are inter-linked in such a way that developers can navigate from higher-
level to lower-level patterns as they apply the Tropos methodology. The paper
has two goals: to motivate the use of agent-oriented methodologies such as
Tropos to a wider set of developers, and to provide guidance for the different
development activities of the Tropos methodology. Specifically, we focus on
the development stages, models, and diagrams of Tropos. The patterns in this
paper cover the early and late requirements analysis stages.

1 Introduction

The design of open systems, whose architecture evolves, which need to operate
robustly, and to adapt to changing computational resources in their environment has
renewed the interest in agent-oriented approaches. Such systems require higher-
level abstractions of software than object-oriented methodologies can provide.
These are concepts at the knowledge level rather than at the software level. The
construct of a knowledge-level as introduced by [12] allows software to embed
notions of goal-orientedness and intentionality, and provides a bridge between the
complex social, human-oriented environments in which the software operates, and
objects.

Tropos has been proposed as a comprehensive methodology for all phases of
agent-oriented software development [3]. It is based on intentional and social
concepts such as actor, goal, and the dependency between actors, and is, therefore,
particularly suitable for modelling and reasoning about the needs of multiple stake-
holders. Distinguishing it from other agent-oriented modelling approaches, Tropos is
characterised by three key aspects [13,5,8,1]:

208 H. Mouratidis and M. Weiss

1. Tropos deals with all phases of system development (requirements analysis, sys-
tem design, and implementation), adopting a uniform and homogeneous way based
on the notion of agents and all the related mentalistic notions, such as actors, goals,
tasks, resources, and intentional dependencies.

2. Tropos pays particular attention to early requirements, emphasising the need to
understand not only what organisational goals are required, but also how and why
the intended system would meet these organisational goals. This allows for a more
refined analysis of system dependencies, leading to a better treatment not only of
the system’s functional requirements, but also of its non-functional requirements
such as security, reliability, and performance [13].

3. Tropos is based on the idea of building a model of the system that is incrementally
refined and extended from a conceptual level to executable artefacts by means of a
sequence of transformational steps at the goal, softgoal and actor level [1,2]. Such
transformations allow developers to move towards the final complete model by
progressively introducing more structure and details.

Much work has already been undertaken in the Tropos project. However, the fol-
lowing key challenges still need to be answered to allow the effective and wide-
spread use of Tropos: (1) what modelling constructs should be used at which stage of
the development process; (2) what amount of detail should be provided in a model;
(3) how should the models be mapped between different stages.

We believe that patterns provide an invaluable tool to provide answers to these
challenges. Patterns have been successfully used to capture and communicate estab-
lished knowledge in a domain. They document solutions together with the reasons for
applying them and the trade-offs made in the process. Besides architectural and
design patterns, process and organizational patterns have been documented in the
patterns literature. Patterns are therefore suitable for describing both process and
modelling aspects of a development methodology. For example, Evitts [5] documents
patterns for applying the Unified Modeling Language (UML).

Patterns have also been used in relation to the Tropos project to document domain-
specific recurring solutions. Fuxman et al. [7], have proposed a set of social patterns
and organizational styles. Similarly, Kolp et al [9] have proposed a set of organiza-
tional patterns for early requirements analysis using the Tropos methodology. In addi-
tion, in our own previous work [10] have defined a security pattern language that can
be employed as part of a security-aware development process based on Tropos.

However, we are not aware of work that introduces the Tropos approach itself in
the form of a pattern language. The existence of such a language is important for two
main reasons: (1) it will provide a guideline through the various design challenges
faced by developers when employing Tropos; and (2) it will motivate the use of
agent-oriented methodologies such as Tropos to a wider set of developers and re-
searchers, moving agent oriented software engineering outside the borders of the
agent community. We see our work as a stepping stone towards this objective.

The goal of this paper is to present an initial pattern language to guide developers
through the process of using Tropos. It is worth noting that our aim is not to provide a
language for experienced users of the Tropos methodology, looking for an overview
of architectural patterns; but rather to provide a language that will communicate the

 Patterns for Modelling Agent Systems with Tropos 209

core modelling activities of the Tropos methodology to developers who are not famil-
iar with it, and therefore make the methodology usable by a larger audience.

The paper focuses on the early phases of Tropos development, namely the early
and late requirements analysis stages. The rest of the paper is structured as follows.
Section 2 presents an overview of key Tropos concepts and development stages. The
patterns themselves are described in Section 3. The section also introduces the case
study used as a running example in the description of the patterns. Conclusions and
venues for future work are presented in Section 4.

2 Overview of Tropos Concepts and Stages

The Tropos methodology is based on the i* modelling framework [15], which uses
the concepts of actor, goal, and social dependency for defining the obligations of
actors (dependees) to other actors (dependers). In Tropos a multiagent system and
its environment are viewed as a set of actors, which depend on other actors to help
them fulfil their goals. In particular, an actor represents an entity that has intention-
ality and strategic goals within the multiagent system, or within its organisational
setting. A (hard) goal represents a condition in the world that an actor would like to
achieve.

In Tropos, the concept of a hard goal (or simply goal, hereafter) is differentiated
from the concept of a softgoal. A softgoal is used to capture non-functional require-
ments of the system, and unlike a (hard) goal, it does not have clear criteria for
deciding whether it is satisfied or not, and, therefore, it is subject to interpretation.
Moreover, in Tropos, a task1 represents, at an abstract level, a particular way of doing
something, a particular course of action. A resource presents a physical or informa-
tional entity that one of the actors requires. A dependency link between two actors
indicates that one actor depends on the other to achieve some goal, execute a task, or
deliver a resource. The depending actor is called the depender, and the actor depended
upon the dependee. The type of dependency (goal, task, resource) describes the nature
of the agreement (called dependum) between the dependee and depender.

The Tropos methodology covers five main software development stages:

1. During early requirements analysis, developers are concerned with understanding
a problem by studying an existing organisational setting. This involves the identifi-
cation of the domain stakeholders, and modelling them as social actors. The output
of this phase is an organisational model, which includes relevant actors, their goals,
and their respective dependencies.

2. During late requirements analysis, the system-to-be is introduced as another actor,
and specified within its operational environment, together with relevant functions
and qualities. The output of this stage is a revised model which includes the
system, any relevant actors, and their respective dependencies.

3. During architectural design, the system’s global architecture is defined in terms of
additional system actors, interconnected via data and control dependencies. The
final output of this stage is a set of software agents corresponding to the actors of
the system, each characterised by its specific capabilities.

1 Also known in Tropos as plan [1-3].

210 H. Mouratidis and M. Weiss

4. During detailed design, each architectural component is defined in further detail in
terms of inputs, outputs, control, and other aspects such as security.

5. During the implementation, the actual implementation of the system components
takes place according to the specification produced during detailed design. It is
worth mentioning that Tropos (similar to other agent-oriented methodologies) does
not force the use of an agent platform as the implementation technology.

3 Tropos Pattern Language

This section describes the patterns for modelling agent systems with Tropos2. The
actual description of the patterns is preceded by a discussion of the design considera-
tions that affect the use of Tropos in general, and thus underlie every pattern in one
way or other. This is followed by a roadmap that shows the relationships between the
patterns and suggests a way of using the patterns, and by the pattern template that we
will follow in our description of the patterns. Finally, we describe the running exam-
ple we will use in the description of each pattern to illustrate its application.

A note on formatting: each pattern has its own heading in bold face. The pattern
description follows as a table with entries according to the pattern template. The de-
scription is followed by (excerpts of) the application of the pattern to the running
example. When one pattern refers to another pattern, the pattern name is italicised.
Our patterns have been derived from various case studies [3,4,5,10,15,16] and model-
ling projects, which use the i* framework and the Tropos methodology.

Basic forces
A set of basic forces push and pull the solutions in different directions for all patterns
in the pattern language. Each pattern is a trade-off among those forces, as well as
forces specific to the pattern. For example, the level of refinement is typically
bounded by the amount of detail that can be processed by the developer at any given
stage. A pattern will make an appropriate balance between these forces.

The basic forces underlying the use of Tropos are:

— A model is built of the system-to-be which is incrementally refined and
extended from a conceptual level to executable artifacts.

— Too much detail can be confusing. This is the basic force underlying stepwise
refinement, and limiting the amount of detail at each stage.

— Actors cannot achieve all of their goals on their own. This is the basic force
motivating the need to model actor dependencies.

— To complete the model, all goals need to be refined to tasks, resources, or
softgoals. This is the basic force underlying the analysis of actor internals.

2 Since the introduction of the original i* and Tropos concepts and modelling activities, various

researchers have extended these in more than one ways. However, many of these extensions
are not proven in practice and since patterns produce proven solution to a recurring problem,
our language focuses on the core modelling activities of the original i*/Tropos.

 Patterns for Modelling Agent Systems with Tropos 211

— New actors might be introduced at any point during the development process.
This is the basic motivating for iterating through the development stages.

— The same concepts (actor, goal, etc.) are used to model early requirements, late
requirements, as well as architectural design, and detailed design.

Pattern Roadmap
Fig. 1 shows the patterns and their relationships in a pattern roadmap. The arrows
indicate the suggested order in which the patterns should be applied. The labels on the
arrows summarize the rationale for consulting the next pattern, or set of patterns. For
example, the link between Define Actors and Refine Actor Goals is labeled more
details of actors to indicate that Refine Actor Goals should be applied after Define
Actors for the purpose of adding more details to the actors. Note that repeated applica-
tion of patterns, as part of an iterative process, is not shown in the roadmap.

Fig. 1. Roadmap to the pattern language

As shown, modelling a system in Tropos starts with the development activities,
models, and diagrams described in Define Actors. This pattern is concerned with
modelling the system environment in terms of actors. Then the focus shifts towards
individual actors in Refine Actor Goals. This refinement process involves three types
of refinement as described in Means-End Analysis, Contribution Analysis, and
AND/OR Decomposition. The resulting model is a goal hierarchy for each actor. Dur-
ing refinement, dependencies between actors will be discovered, and added as sug-
gested by Ask for Help. New actors may be added to the system as a result, and to
make the model consistent, existing models need to be revisited as described in Refine
Model. Once the refinement of the environment actors is complete, the system-to-be

212 H. Mouratidis and M. Weiss

is added as an actor on its own, as suggested by System-to-Be. As stated, the actual
development process is iterative and will follow these patterns repeatedly, while
applying the patterns in the sequence suggested by the roadmap.

Pattern Template
Although there are a number of different templates used for describing patterns, it is
generally agreed that the following are mandatory parts of a pattern [14]:

Name: A good pattern name should be short and precise. But it also needs to convey
the essence of the pattern so it can be remembered by that name.
Context: A description of a situation when the pattern would apply. However, in and
by itself the context does not provide the only determining factor as to the situations
in which the pattern should be applied. Every pattern also has a number of forces that
need to be balanced before applying the pattern.
Problem: A precise statement of the problem to be solved. A good problem for a
pattern is one that software engineers will ask themselves often
Forces: A description of items that influence the decision as to when to apply the
pattern in a context. Forces can be thought of as pushing or pulling the problem
towards different solutions, or that indicating trade-offs that may be made [Cop96].
Solution: A description of the solution in the context that balances the forces.
Consequences: A list of the consequences of applying the pattern. How does the
pattern resolve the forces, and are any new problems introduced by this pattern.
Known uses: A list of known applications of the pattern, proving that the pattern
does, indeed, describe a proven solution to a recurring problem.

We have extended this template by one entry:

Stages: It is very important for the applicability of our language to determine in
which stages of the development the pattern is applicable.

Case Study
To better illustrate the usability and applicability of our pattern language, we use
an online auction system as a running example in the description of the patterns. In
particular, we assume an English auction mechanism, according to which an auc-
tioneer seeks to find the market price of a good by proposing a price below that of
the supposed market value and then gradually raising the price. Each time the price
is announced, the auctioneer waits to see if any buyers will signal their willingness
to pay the proposed price. As soon as one buyer signals that he agrees to a price,
the auctioneer issues a new call for bids at a higher price. The auction ends when
no more buyers are prepared to pay the proposed price. If the last price accepted by
a buyer equals or exceeds the auctioneer’s reserve price, then the item is sold to
that buyer. If the last accepted price is less than the reserve price, the item is not
sold.

 Patterns for Modelling Agent Systems with Tropos 213

Define Actors

Context You are modelling the environment of the system-to-be.
Stages Early Requirements
Problem How to model the system environment?
Forces — All stakeholders should be able to understand the model.

— The developer should be able to define the functional as well
as the social dimension of the environment.

Solution Model the system’s environment in terms of its stakeholders.
Identify the stakeholders and model them as social actors. Elicit
the goals of each stakeholder and make them the root goals of the
corresponding actor. Use an actor diagram to graphically represent
the stakeholders along with their root goals. Roles (functions) that
stakeholders can play may also be modeled as actors.

Consequences The stakeholders and their intentions are identified and represented
by actors who have some root goals. This provides developers with
a high-level representation of the environment in which the sys-
tem-to-be will be situated. However, a more detailed description
of each of the actors is required as discussed in Refine Actor Goals.

Known Uses eSAP case study [10]
Tropos tool [3]
eCultural case study [4]

In the running example, we identify three main actors, an Auctioneer, a Buyer and a
Seller. These are external actors that will be involved in the execution of the auction
system. The main goal of the Auctioneer is to Facilitate Auction, the main goal of the
Buyer is to Buy Item, and the main goal of the Seller is to Sell Item. Using standard
Tropos notation, the actor diagram in Fig. 2 models the actors along with their root
goals. Actors are represented by circles. Goals are shown as rounded rectangles. Root
goals are specified by attaching them to their actors. In the text, we set off the names
of model elements by putting them into a sans serif font, as we have done above.

Fig. 2. Applying Define Actors to the example

This pattern describes the initial step to help developers understand the context in
which the system-to-be must operate. It avoids exposing developers to too much
detail by focusing their attention on just stakeholders and their root goals. This helps
avoid that a developer will design a system that does not reflect the goals and interests

214 H. Mouratidis and M. Weiss

of those stakeholders. It also supports the needs of the common situation, in which
developers are faced with redesigning an existing system using agents. By uncovering
the root goals of the stakeholders that will use the intended system, developers can
also think about new, alternative ways of achieving those goals.

Refine Actor Goals

Context You have identified actors, and assigned high-level root goals.
Each of these actors, and goals needs to be further analysed.

Stages Early Requirements, Late Requirements
Problem How can actors and their goals be analysed in detail?
Forces — Too much detail can be confusing.

— New goals/tasks/resources might be discovered.
Solution Refine goals from the perspective of its respective actor. For this

reason, goal diagrams are used. For each of the goals of an actor
a hierarchy (consisting of new goals, softgoals, and tasks) is
built. Goals lower on the hierarchy are more specific and moti-
vated by higher-level goals in the hierarchy. Moreover, multiple
alternative ways of achieving a goal can also be modelled.

Consequences The root goal of the actor is further analysed, and new goals are
identified. One of the following three patterns should be used in
order to generate the goal hierarchy, and to identify new goals:
Means-End Analysis, Contribution Analysis, or AND/OR Decom-
position. However, if an actor cannot achieve a subgoal resulting
from the refinement on its own, you need to use Ask for Help.

Known Uses eCultural case study [4]
eSAP case study [10]
Media Shop case study [5]

Returning to our case study, let us consider the Buy Item root goal of the Buyer actor.
The problem is that the current definition of the Buyer actor is at too high a level and
doesn’t provide developers with a realistic definition of the actor. Therefore, as it was
identified in Refine Actor Goals, the solution to this problem is to refine the root goal
from the perspective of the actor. For instance, buyers know that in order to buy an
item, they should identify the item and also pay for the item. Moreover, the Buyer
actor most likely wishes to buy in a fast and convenient way, and without exceeding
their budget. By applying Refine Actor Goal, we are able to further refine the actor’s
root goal. But how can we represent these new goals in a hierarchy that will help
developers generate even more goals, tasks, and softgoals, as well as to consider al-
ternatives? According to the proposed pattern language, developers can use Means-
End Analysis, Contribution Analysis, and AND/OR Decomposition.

This pattern provides a context for three more specific patterns describing the dif-
ferent refinement approaches available in Tropos. Part of the difficulty in using Tro-
pos effectively is to understand which kind of refinement to use with what kind of
intentional elements (goals, tasks, resources). Typically, one would first use Means-
End Analysis to discover subgoals representing means to achieve the root goals of an
actor. These subgoals subsequently become subject of refinement themselves, until

 Patterns for Modelling Agent Systems with Tropos 215

they have been refined to a satisfactory level, typically into tasks or resources. Con-
tribution Analysis can then be used to identify interdependencies between goals, and
to document trade-offs between alternative means to achieve an end. Finally,
AND/OR Decomposition allows developers to bring goal refinement to a closure, that
is, to map high-level goals to particular ways (tasks, resources) of achieving them.

Means-End Analysis

Context You need to further analyse the goals of the actor.
Stages Early Requirements, Late Requirements
Problem How can goals /tasks be refined in a systematic manner?
Forces — Goals need to be refined to tasks, resources, or softgoals.

Otherwise the model is incomplete.
— A goal can be satisfied by a subgoal, and/or a task, and/or a

resource, or a combination of several of these.
Solution For each higher-level goal (end), identify lower-level goals,

tasks, or resources as possible means for satisfying the goal.
Consequences When all goals have been dealt with to the satisfaction of the

actors that want to achieve them, refinement is complete.
Known Uses eSAP System [10]

Meeting Scheduling [15]
eCultural project [4]
Buyer-driven e-commerce system [16]

For instance, we identify through Means-End Analysis that to achieve the Buy Item
goal the Buyer actor needs to Identify Item and also Pay for it, as shown in Fig. 3. In
the Tropos notation, the means to achieve a goal (end) are represented by links in the
direction of the end with an open arrow head. This diagram says that Identify Item and
Pay for it are both means for achieving the higher-level Buy Item goal. Means-End
Analysis may be applied recursively to the newly discovered goals. This type of
analysis helps with the discovery of subgoals, which still need to be either refined into
particular ways of achieving them, or delegated to other agents using Ask for Help.

Fig. 3. Applying Means-End Analysis to the example

However, the application of Refine Actor Goals will also result in the identification
of several softgoals (such as Within Budget, Fast, or Convenient). A softgoal does not
have clear criteria for deciding whether it is satisfied or not and, therefore, it is subject
to interpretation. For example, “fast” for one buyer might mean within two hours,

216 H. Mouratidis and M. Weiss

whereas for someone else it could be within five hours. Such softgoals contribute to
the satisfaction of a goal and represent qualities related to the goal. As a result, they
cannot guarantee the goal, and they can only contribute (positively or negatively)
towards its satisfaction. For this reason, a Contribution Analysis is employed.

Contribution Analysis

Context You need to identify new goals to contribute to existing goals.
Stages Early Requirements, Late Requirements
Problem How can you identify new goals to contribute to existing goals?
Forces — Newly identified goals may contribute either positively or

negatively to existing goals.
— There can be multiple, competing ways of achieving a goal,

each resulting in different trade-offs.
Solution Identify goals that can contribute positively or negatively to

reach the goal being analyzed.
Consequences Contribution analysis can be thought of as a special case of

means-end analysis in which means are goals or softgoals.
Goals/softgoals are identified that can contribute either positively
or negatively to the achievement of the goal being analyzed.

Known uses IP management model [16]
Insurance claim modelling [15]
eSAP system [10]

The application of the Contribution Analysis pattern to the example results in the
model in Fig. 4, in which each of the softgoals contributes positively to the root goal
of the Buyer actor. Fast, Convenient, Within Budget are softgoals that cannot be
achieved in an absolute sense, but whose achievement is subject to interpretation. In
the Tropos notation, softgoals are represented as curly shapes (clouds). Contributions
are shown as arrows with labels indicating their strength (for example, + or -). It is
important to understand that Contribution Analysis can be performed in a downwards,
as well as a upwards manner. In the downward direction, contribution links capture
refinements of higher-level to lower-level goals, and contributions upwards.

Fig. 4. Applying Contribution Analysis to the example

However, as the hierarchy is generated, some goals/tasks can be achieved in more
than one way. In other words, there are alternative means to satisfy a task or goal. In
our example, multiple application of Means-End Analysis results in the identification

 Patterns for Modelling Agent Systems with Tropos 217

of the task Get Item Description of the Buyer actor as shown in Fig. 5. However, there
are alternative ways of satisfying this task, such as getting the description of the item
before the auction, or getting the description during the auction. So a new problem is
raised how we can model such alternative satisfactions. For solving this problem, the
language includes the AND/OR Decomposition pattern.

AND/OR Decomposition

Context You have identified all the high-level goals and tasks for an actor.
Stages Early Requirements, Late Requirements
Problem How can you break down a goal/task into simpler more specific

goals/tasks?
Forces — Too much detail can be confusing.

— There can be multiple ways of achieving a goal.
— Only goals and tasks can be decomposed.

Solution Break down the component into smaller, more precise components.
Two different techniques can be used to perform this. AND/OR
decomposition allows developers to consider alternatives when
decomposing the goals/tasks of an actor into sub-goals/sub-tasks.
Whereas AND decomposition means that all the sub-goals/sub-
tasks must be achieved for the root goal/task to be achieved, OR
decomposition means that the achievement of one of the sub-
goals/sub-tasks leads to the achievement of the root goal/task.

Consequences When all goals have been dealt with to the satisfaction of the actors
that want to achieve them, refinement is complete. Alternative
ways of satisfying a goal derived using OR decomposition can be
compared in terms of their impact using Contribution Analysis.

Known uses IP management model [16]
Buyer-driven e-commerce system [16]
eCultural project [4]
eSAP system [10]

The application of the pattern to the refinement of the Get Item Description task is
shown in Fig. 5. In the Tropos notation, a decomposition is shown as a link with a bar
crossing the link near the decomposed goal/task. As shown, Get Item Description is
decomposed into the subtasks Before Auction and During Auction.

A common difficulty in applying Tropos is to know when to use means-end analy-
sis vs. task decomposition. Strictly speaking, ends in means-end analysis must be
(hard) goals, and means are either other goals, tasks, or resources. A goal always
indicates that there are several possible ways (means) of satisfying it. Task decompo-
sition, on the other hand, is, strictly, a way of expressing a mapping from larger, less
specific goals/tasks to smaller, more precise subgoals/subtasks. Technically, goal
decomposition is just shorthand for achieving the goal via some intermediary task
using means-end analysis, and subsequently decomposing the task into goals.

The total effect of applying the various ways to Refine Actor Goals is shown in
Fig. 6. This diagram shows the goal hierarchy for the Buyer actor inside a dashed
circle representing the actor internals. In addition to the above, it includes one other

218 H. Mouratidis and M. Weiss

Fig. 5. Applying AND/OR Decomposition to the example

Fig. 6. Summary of applying Refine Actor Goals to the example

example of AND/OR Decomposition (different ways to Check Item Quality), and one
other example of Contribution Analysis (refinement of Pay for Item).

The same analysis can be performed for all the actors. However, an important issue
at this point of the development is the existence of some goals, softgoals and/or tasks
that an actor cannot achieve on their own. Let us consider the Buyer actor. Our analysis

 Patterns for Modelling Agent Systems with Tropos 219

so far has resulted in various goals, soft goals and tasks such as the Get Item Descrip-
tion and Pay Item. However, it is rather obvious that the Buyer cannot achieve these
two on its own. In such situations, we are using the Ask for Help pattern.

Ask for Help

Context An actor cannot achieve a goal/task by itself.
Stages Early requirements, Late Requirements
Problem How can actors satisfy goals for which they don’t have the means?
Forces — Actors cannot achieve all of their goals/tasks on their own.

— As subgoals are generated, you will find goals that an actor
cannot achieve at all or not as well as another actor.

— New actors might be introduced that can achieve these goals.
Solution Delegate such subgoals to other actors, and add dependency links

between them and the actor. For each dependency link, the actor
becomes the depender, the other actor the dependee, and the goal
the dependum. The same solution can be used for tasks/resources.

Consequences For each subgoal, the responsibility for achieving it is assigned to
the actor itself, or delegated to another actor, while adding a de-
pendency link. Sometimes this requires the introduction of new
actors to which the actor delegates goals/tasks. By depending on the
dependee for the dependum, the depender is able to achieve goals
that it is otherwise unable to achieve on their own, or not as easily
or not as well. On the other hand, the depender becomes vulnerable,
since if the dependee fails to deliver the dependum, the depender is
affected in their aim to achieve their goals. New goals, plans and
resources are identified. Therefore, further refinement of these
newly introduced entities might be required. When a new actor is
introduced as part of goal delegation, also apply Refine Model.

Known uses Health Care configuration modelling [15]
eSAP system [10]
Meeting scheduling [15]
eCultural project [4]
IP management model [16]

To get the item description the Buyer depends on an Auction House, whereas to pay
for the item the Buyer depends on the Seller to provide him with payment options.
Therefore goal dependencies are introduced between the Buyer, Auction House and
Seller actors to indicate that the Buyer depends on these two actors to achieve the Item
Description and the Payment Option goals as shown in Fig. 7. Similarly, new depend-
encies are introduced from Seller and Auction House to Buyer. In the Tropos notation,
dependencies are represented by links with a –D– symbol. One link is between the
depender and the dependum, the other between the dependum and the dependee.

Although not shown in Fig. 7, dependencies can also be between goals, tasks, or
resources (of different actors). In the example, we could show the internal goals of the
Buyer actor, including the Get Item Description task as shown in Fig. 6. The Item
Description dependency between Buyer and Auction House, can then also be modelled

220 H. Mouratidis and M. Weiss

Fig. 7. Applying Ask for Help to the example

as a dependency between the Get Item Description task and Auction House. A key
insight provided by the Ask for Help pattern is that goal refinement is tightly coupled
to the discovery of actor dependencies. While in some cases we may determine a
dependency in a top-down manner (that is, we model the dependency between two
actors, before we have modelled their internals), we will often add new dependencies
as a result of refining the goals of at least one of the actors in a dependency.

However, when Ask for Help, as is the case here, results in the introduction of a
new actor, the existing models need to be revisited to make sure that no dependencies
between the new actor (that is, Auction House) and the existing actors are missing. For
this reason the Refine Models pattern is added on the pattern language.

Refine Models

Context New actors are introduced to the model.
Stages Early Requirements
Problem How can we refine existing models?
Forces — The actor and goal models produced should be consistent.
Solution Revisit the existing models, and add new dependencies between

the existing actors and the new actors as appropriate.
Consequences Refining the dependencies and the social relationships of the ac-

tors, leads to a more precise definition of the why of the system
functionalities, and as a last result, helps to verify how the final
implementation matches the real needs [13]. When you are satis-
fied with the level of the analysis of the system’s environment, you
can start modelling the system itself as described in System-to-Be.

Known uses eSAP system [10]
Health care configuration modelling [15]
Insurance claim modelling [15]

 Patterns for Modelling Agent Systems with Tropos 221

Fig. 8. Applying Refine Model to the example

The refinement of the case study is shown in Fig. 8.
As shown, new dependencies have been identified between the Auction House and

the rest of the actors. Applying Ask for Help only resulted in the addition of depend-
encies involving the Buyer, but there are also new dependencies involving the Auc-
tioneer, as well as the Seller.

When the developers are satisfied with the level of the analysis of the actors, and,
therefore, the model of the system’s environment, the next problem is to integrate the
system-to-be within the existing analysis. Only at this point, when applying the Sys-
tem-to-Be pattern, we start modelling the actual system, and its internals.

System-to-Be

Context The Early Requirements analysis is complete.
Stages Late Requirements
Problem How can you model the system-to-be.
Forces - The System-to-Be claims responsibility for some of the goals

of the existing actors.
- The actor and goal models produced should be consistent.

Solution Model the system-to-be as an actor, which has a number of de-
pendencies with the actors identified during the early requirements
stage. These dependencies indicate the obligations of the system
towards its environment, and therefore define the system’s func-
tional and non-functional requirements.

Consequences Some of the dependencies between the existing actors can be
delegated to the newly introduced system actor.

Known uses eSAP system [10]
eCultural project [4]
Buyer-driven e-commerce system [16]

222 H. Mouratidis and M. Weiss

The main goal of the system-to-be is to provide online auctions. This is a goal that the
Auction House cannot achieve without an online system. Moreover, the introduction
of the system means that some goals will be delegated to the system. As a result of
applying System-to-Be, new dependencies are identified, or obligations are delegated,
respectively, as shown in Fig. 9. As an example of the delegation of obligations con-
sider the Item Description goal, which is now the responsibility of the Online System.
Auction House has delegated this obligation to the Online System. This pattern cap-
tures an important goal of the Tropos methodology, which is to emphasise the need to
understand what organisational goals are required. Before the system itself is de-
signed, developers need to understand the context in which the system will operate.
This is a realization of the interdependency of the system and its environment, that is,
the system exists to meet the expectations of its stakeholders.

Fig. 9. Applying System-to-Be to the example

4 Conclusion

In this chapter we have introduced the Tropos approach in the form of a pattern lan-
guage. The existence of such a language is important since it will provide a guideline
through the various design challenges faced by developers when employing Tropos,
especially those who do not have prior experience with the methodology. The
proposed language satisfies multiple needs related to the Tropos methodology:

• It motivates the various modelling constructs (for example, what are the benefits
of modelling the goals of the stakeholders affected by the system?).

• It justifies each of the stages (for example, why should developers model the
environment first, and only then the system?).

• It addresses various specific problems (for example, how to select actors?).

As stated in the introduction, this work is not finished. Rather, our pattern language
is an initial step towards a language that covers all Tropos development activities. In

 Patterns for Modelling Agent Systems with Tropos 223

particular, our pattern language only consists of patterns covering the core modelling
activities of the early and late requirement stages of the Tropos methodology.

Future work will involve the extension of the language with patterns derived from
the other development stages as well as architectural patterns and styles. In addition,
we are planning to introduce to our language patterns that provide guidance to spe-
cific modelling challenges, such as deciding whether to model an actor as a role or
position, and the introduction of domain-specific patterns, such as security patterns.

References

1. Brescani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J., Modelling Early
Requirements in Tropos: A Transformation-Based Approach, Agent-Oriented Software
Engineering, LNCS 2222, 151-168, Springer, 2002.

2. Brescani, P., and Giorgini, P., The TROPOS Analysis Process as Graph Transformation
System, OOPSLA Workshop on Agent-Oriented Methodologies, 2002.

3. Bresciani, P., Sannicolo, F., Requirements Analysis in Tropos: a Self-Referencing Exam-
ple, Agent Technology, Infrastructures and Applications for e-Services: NODe 2002
Agent-Related Workshops, LNCS 2592, 21-35, Springer, 2003.

4. Brescani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J., Tropos: An
Agent-Oriented Software Development Methodology, Journal on Autonomous Agents and
Multi-Agent Systems, 8, 203-236, Kluwer, 2004.

5. Castro, J., Kolp, M., and Mylopoulos, J., Towards Requirements-Driven Information Sys-
tems Engineering: The Tropos Project, Information Systems, 27, 365-89, 2002.

6. Evitts, P.. A UML Pattern Language, Macmillan, 2000.
7. Fuxman, A., Giorgini, P., Kolp, M., and Mylopoulos, J., Information systems as social

structures, Formal Ontology in Information Systems, 10-21, ACM, 2001.
8. Giunchiglia, F., Mylopoulos, J., and Perini, A., The Tropos Software Development Meth-

odology: Process, Models, and Diagrams, Agent-Oriented Software Engineering, LNCS
2222, 162-173, Springer, 2002.

9. Kolp, M., Giorgini, P., and Mylopoulos, J., Organizational Patterns for Early Require-
ments Analysis, Conference on Advanced Information Systems Engineering, LNCS 2861,
617-632, Springer, 2003.

10. Mouratidis, H., A Security Oriented Approach in the Development of Multiagent Systems:
Applied to the Management of the Health and Social Care Needs of Older People in Eng-
land, PhD Dissertation, University of Sheffield, June 2004.

11. Mouratidis, H., Weiss, M., and Giorgini, P., Security Patterns Meet Agent Oriented Soft-
ware Engineering: A Complementary Solution for Developing Secure Information Sys-
tems, Conceptual Modeling, LNCS 3716, 225-240, Springer, 2005.

12. Newell, A., The Knowledge Level, Artificial Intelligence, 18:87-127, Elsevier, 1982.
13. Perini, A., Brescani, P., Giorgini, P., and Mylopoulos, J., A Knowledge Level Software

Engineering Methodology for Agent Oriented Programming, Autonomous Agents, 648-
655, ACM, 2001.

14. Weiss, M., Pattern Driven Design of Agent Systems: Approach and Case Study, Conference
on Advanced Information Systems Engineering, LNCS 2681, 711-723, Springer, 2003.

15. Yu, E., Modelling Strategic Relationships for Process Reengineering, PhD Thesis, Univer-
sity of Toronto, Department of Computer Science, 1995.

16. Yu, E., Liu, L., Li, Y., Modelling Strategic Actor Relationships to Support Intellectual
Property Management, Conceptual Modelling, LNCS 2242, 164-178, Springer, 2001.

On the Use of Formal Specifications as Part
of Running Programs

Giovanna Di Marzo Serugendo

University of Geneva (CUI),
Department of Information Systems,

24, rue Gnral-Dufour, 1211 Geneva 4 Switzerland
Giovanna.Dimarzo@cui.unige.ch

Abstract. Issues related to large scale systems made of autonomous
components encompass interoperability among independently developed
software and adaptability to changing environmental conditions. Formal
specifications are traditionally used at design time for software engineer-
ing tasks. However, recently, several attempts of using formal specifica-
tions at run-time have been realised that let envisage a future use of
formal specifications at run-time that will enhance interoperability and
adaptability of autonomous components.

This paper intends to highlight the potentialities of the use of formal
specifications at run-time as a support for the correct execution of such
components. This paper reviews and discusses the use of formal specifica-
tions at run-time from different perspectives: software engineering, run-
time code evolution, adaptive middleware, trust and security, or business
applications. It highlights the potentialities of the use of formal speci-
fications at run-time as a support for interoperability and adaptability
of interacting autonomous components. It identifies as well application
domains and open issues related to the combination of specifications and
code in the framework of large scale systems.

1 Introduction

Formal methods are traditionally used at design time as a tool for defining
systems, for analysis tasks, and for model checking.

However, current and future applications’ needs are different than those of
traditional software. Indeed, computing paradigms such as ubiquitous, perva-
sive computing, or service-oriented computing imply the use of a large number
of autonomous components, services or agents interacting at run-time, possi-
bly with decentralised control, independently developed, and acting on behalf
of self-interested users. Off-line verification in these cases is impossible or of
limited utility. Therefore, several works have emerged that combine the use
of formal methods and programming languages at run-time, in order to ben-
efit of some functional and quality assurances at run-time. This paper reviews
(non-exhaustively) some of these works: from traditional ones allowing exception
handling, to more recent ones supporting interactions among independently de-
veloped components. Even though this area of research is rather young and not

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 224–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Use of Formal Specifications as Part of Running Programs 225

yet mature enough for direct and efficient application into actual systems, this
paper advocates that there is a large potential of interest and benefit of using
formal methods at run-time, essentially due to run-time reasoning and decou-
pling of code from specification. Focus is given on large scale systems made of
autonomous interacting components.

Section 2 briefly reviews different domains where formal methods are used
at run-time and for different purposes. Section 3 describes the potential interest
of having simultaneously formal specifications and executable code. Section 4
lists several domains where formal specifications at run-time may prove useful.
Section 5 identifies several issues related to the use of formal methods at run-
time. Finally, section 6 mentions some advantages and drawbacks of the use of
formal methods as part of running programs.

2 Current and Emergent Practice

2.1 Design by Contract

The most popular and probably the earliest work using formal specifications
inside programs is the ”Design by Contract” paradigm of Meyer [24,25]. The
idea is to attach to each function or routine of the program a list of pre- and
post-conditions. Pre- and post-conditions are assertions or logical conditions that
have to hold at the entry, respectively at the output of the corresponding routine.
In addition to pre- and post-conditions applying to specific routines, invariants
applying to a class as a whole, i.e. which have to hold for all instances of a class,
can also be defined.

The ”Design by Contract” paradigm serves different purposes. At design-
time, it is used for testing, debugging and for quality assurance of the related
software. The program runs are checked against the pre- post-conditions and the
invariants. At run-time, it is used for exception handling. Exceptions occur when
a routine cannot fulfil its contract: post-condition or invariant are violated, a
called sub-routine fails, or the underlying hardware or operating system indicates
an abnormal condition. Exceptions are handled by exception handlers whose
goal is to restore the objects in a state where the invariants hold. If they cannot,
the routine fails and throws an exception to its caller. The Eiffel programming
language [23] has built-in features supporting the Design by Contract paradigm.

Trusted Components. Built on the notion of Design by Contract, the initia-
tive of Trusted Components launched by Meyer et al. [27,26] aims at providing
software components equipped with ”specified and guaranteed quality proper-
ties”. This notion covers both assessing properties of existing components and
producing proofs of correctness of some properties (specified by the contract) for
newly developed components.

2.2 Proof-Carrying Code (PCC)

With similar goals to the above notion of Trusted Components, but intended for
run-time decisions instead of design time implementations, the Proof-Carrying

226 G. Di Marzo Serugendo

Code mechanism [29,28] allows a host system to determine if it is safe to execute
a newly received untrusted binary program. The program comes with a proof
that it validates some safety properties agreed in advance. The code producer
creates such a proof, the code consumer (e.g. the host system that has to execute
it) then simply checks that the proof is valid given the received binary program.

More precisely, a safety policy is specified in advance by the consumer, and
expresses the conditions under which the consumer considers the program execu-
tion to be safe. The safety policy is made of: safety rules specifying operations and
their pre-conditions; and interface calling conventions describing post-conditions
and invariants that the code must establish. It is expressed with first-order pred-
icate logic. The code producer performs a verification that the code she intends
to furnish respects the safety policy, and provides a proof of the successful veri-
fication, realised through theorem proving. On receipt of the code, the consumer
validates the proof received along with the code, through proof checking.

2.3 Run-Time Verification

Run-time verification encompasses both the use of lightweight formal methods
at run-time to complement traditional methods for proving programs correctness
at design-time, and the use of formal techniques for dynamic program monitor-
ing [16,17,32].

Dynamic monitoring usually consists in executing the program and checking
whether it conforms to a requirement specification. The most popular languages
for expressing such specifications are either temporal logics, or state machines.
Among the different proposals made in this field, we can mention [4], who provide
a specification method for expressing the semantics (not only the syntax) of
components’ interfaces. The program runs concurrently with its specification
and deviations from the expected specified behaviour reveals incorrectness in the
program. This technique is realised without any instrumentation of the program.
The interesting point here is that the component’s interface specification not
only describes the signature but it specifies the component’s behaviour. This
technique uses executable specifications written with the Abstract State Machine
Language (AsmL), and the COM infrastructure for monitoring the execution of
a component and checking the behavioural equivalence of the component and
the concurrently executing specification.

An interesting verification tool for the logic-based alternative is provided
by [10] for Java programs. In this approach, the programmer specifies Linear-
Time Temporal Logic (LTL) formulae directly in the code under the form of
metadata annotations. These annotations are compiled into Java bytecode as
attributes; they are thus available together with the program, and subsequently
used by verification tools. Another runtime verification system for Java
programs, the Java PathExplorer, requiring instrumentation of the code, is pro-
vided by [18]. This tool monitors Java programs execution traces by check-
ing them against a provided requirement specification written with Maude, a
specification and verification system allowing implementation of rewriting logic.
The instrumentation of the code serves to insert additional bytecode that send

On the Use of Formal Specifications as Part of Running Programs 227

relevant events to an observer. The observer, which may reside on another ma-
chine, actually checks the event trace against the provided specification.

The commercial tool Temporal Rover [14] allows to insert LTL temporal
assertions into a Java program under the form of comments. The Temporal Rover
tool generates a new program file where these assertions are implemented, so that
the validation of the temporal properties is executed as part of the program.

In an attempt to provide a kind of unifying logic encompassing the different
proposals, [5] propose the temporal finite trace monitoring logic Eagle and its
Java implementation.

2.4 Ontologies

An ontology for a given domain is a description of some shared concepts and re-
lationships among these concepts. Ontology usually defines a set of keywords for
expressing the concepts, and for expressing the relationships among them. How-
ever, expressivity of ontology may vary from very large vocabularies to complete
formal theories [15].

Ontologies are currently used as an interoperability tool for knowledge man-
agement in business applications, for autonomous agents, and for semantic Web
services.

Meta-Ontologies. Meta-ontologies are algebra allowing definition of type theo-
ries, operations, and axioms. From that perspective, category theory [19], higher-
order logics that define terms, operators, axioms, and provable or checkable
theorems are meta-ontologies.

2.5 Trust-Based Management Systems

Trust management systems deal with security policies, credentials and trust
relationships (e.g., issuers of credentials). Most trust-based management systems
combine higher-order logic with a proof brought by a requester that is checked
at run-time. Those systems are essentially based on delegation, and serve to
authenticate and give access control to a requester [34]. Usually the requester
brings the proof that a trusted third entity asserts that it is trustable or it
can be granted access. Those systems have been designed for static systems,
where an untrusted client performs some access control request to some trusted
server [2,6]. Similar systems for open distributed environment have also been
realised, for instance [22] proposes a delegation logic including negative evidence,
and delegation depth, as well as a proof of compliance for both parties involved
in an interaction. The PolicyMaker system is a decentralised trust management
systems [3] based on proof checking of credentials allowing entities to locally
decide whether or not to accept credentials (without relying to a centralised
certifying authority).

More recently, an operational model for trust-based access control in highly
dynamic environment has been defined by [11]. Interacting parties maintain trust
values about each other. These trust values are updated dynamically depending
on positive or negative behaviour of the corresponding principal. This schema
allows trust to evolve with time as a result of evidence, and allows to adapt the
behaviour of principals consequently.

228 G. Di Marzo Serugendo

2.6 Smart Labels/Smart Tags

Smart tagging systems are already being deployed for carrying or disseminating
data in the fields of healthcare, environment, and user’s entertainment. For in-
stance, in the framework of data dissemination among fixed nodes, [8] propose
a delivery mechanism, based on the local exchange of data through smart tags
carried by mobile users. Mobile users or mobile devices do not directly exchange
smart-tags; they only disseminate data to fixed nodes when they are physically
close to each other. Data information vehicled, by smart tags, is expressed as
triples indicating the node being the source of the information, the information
value, and a time indication corresponding to the information generation. Smart
tags maintain, store, and update these information for all visited nodes. A Blue-
tooth implementation of these Smart Tags has been realised in the framework
of a vending machine [7]. In smart tagging systems, data remain structurally
simple, and understandable by human beings, and does not actually serve as a
basis for autonomous local decisions.

2.7 Self-configuring Systems

In the field of self-configuring systems, [9] propose a model based on a service-
oriented middleware able to perform dynamic binding of components (or ser-
vices) based on behavioural specifications and on contextually non-functional
requirements. The selection and binding of the component is performed at run-
time and is based on the adequacy of its functional description to the user’s re-
quirements. Once a component is selected, the underlying infrastructure allocates
the resources necessary for the component to execute, based on the component’s
non-functional requirements. Several components can be composed together (se-
quentially, conditionally, or in parallel) based on an execution sequence specified
by the user under the form of a dependency graph.

The component’s functional description is expressed in IOPE format: Input,
Output, Pre-condition and Effects. Input and Output serve to describe the pa-
rameters types of the interface, while pre-condition and effects are similar to
pre-condition and post-conditions of the Design by contract paradigm.

Self-configuration is obtained through adaptation to changing user’s require-
ments and changing environmental/contextual information, which is realised
thanks to the decoupling of code from those requirements and information.

This is an ongoing work: the formal language to express the IOPE information
and the implementation of the middleware are under way.

2.8 Specification-Carrying Code

Specification-Carrying Software. The notion of specification-carrying software is
being investigate since several years [31,1]. This idea has been proposed initially
for software engineering concerns, essentially for ensuring correct composition of
software and realising correct evolution of software. Algebraic specifications and
categorical diagrams are used for expressing the functionality, while co-algebraic
transition systems are used to define the operational behaviour of components.

On the Use of Formal Specifications as Part of Running Programs 229

The visions of this team include as well run-time generation of code from the
specifications.

Alternatively, [30] propose a version where the behaviour of a component is
not fully specified in all its operational details, but sufficiently in order to be used
for correct self-assembly of software at run-time. Indeed, moving from the tradi-
tional use of formal methods for testing and debugging, this approach intends to
replace traditional APIs with full formal specifications, understood and checked
at run-time by the different components or services involved in a computation.
The specification becomes the primary element and the basis for communica-
tion and interaction. This approach is currently supported by a service-oriented
middleware architecture implemented in Java, supporting specifications written
either as regular expressions or in Prolog. Components offering services publish
their specification, while components requesting services submit specification re-
quests. The middleware then checks services specifications with service requests
and seamlessly binds the service provider and the service consumer.

This approach has been applied to run-time code evolution [30] and as a
potential solution to autonomic computing [13].

2.9 B2B Interoperability

At a larger scale, the Web-Pilarcos middleware [21] allows independently de-
veloped business applications to interoperate. The business applications are
grouped into what the authors call a ”eCommunity” whose structure is defined
by roles and interactions between the roles. A business application is assigned a
given role if it fulfils the corresponding conformance rules. A Business Network
Model (BNM) semantically describes the collaboration rules requested by each
partner and defines the structure of the eCommunity. A eCommunity contract,
expressed as an XML-schema, comprises the BNM as well as additional informa-
tion related to the format of messages, functional and non-functional (trust, QoS,
security) aspects of the different services. The Web-Pilarcos middleware sup-
ports eCommunities by providing discovery of services, eCommunity’s contract
management and monitoring. It checks interoperability of the different business
applications, their adherence to the BNM, and maintains interoperability at the
collaboration, semantic and technical levels. The Web-Pilarcos approach goes
beyond traditional unified virtual enterprise systems for B2B, where all business
applications have to share the same interoperability model.

2.10 Summary

We can see from the different paradigms and approaches discussed above, that
the range of use of formal methods at run-time varies greatly. We will compare
them from the point of view of dynamic interactions of components at run-time.

The use of design by contract at run-time is currently limited to exception
handling. Both parties of the contract have to share it in advance. For trusted
components, proof of properties are based on contracts, however they do not
serve interoperability purposes.

230 G. Di Marzo Serugendo

Proof-Carrying code is useful for checking safety properties, agreed in ad-
vance. Usually these properties are low-level properties; they do not express
functional or non-functional requirements. The code consumer needs to know
the kind of program it receives. However, as advocated by [12], proofs are not the
ultimate solution, since even if a proof has been positively checked, a component
may nevertheless fail due to changing environmental conditions (particularly in
highly volatile environment). Therefore, a more adaptable schema, as one based
on evolving trust, can be more efficient.

Run-time verification is essentially meant for checking deviations of the pro-
gram execution from its expected execution. In addition, dynamic monitoring of
program usually reveals only errors (as traditional model checking) but cannot
guarantee that the program is correct in all cases, but only in the particular
traces that have been checked against the specification.

Moving from purely software engineering concerns to interacting components
or agents, ontologies serve interoperability purposes. They are based on a com-
mon shared domain of concepts. They act as a powerful tool for independently
developed software provided there is a common ontology.

At a more dynamic level, trust-based management systems allow the different
interacting components to take security decisions based on the evolving trust
values.

Self-configuring systems, specification-carrying code are attempts to replace
traditional well-agreed (in advance) APIs with formal specifications understood
at run-time by some middleware infrastructure. This avoids the need of having
shared ontologies, or agreed contracts, thus allowing a high-degree of interaction
among heterogeneously designed components.

Following the same ideas, but a larger level of granularity, B2B middle-
ware for interoperable business applications, are addressing similar concerns:
allowing interaction and run-time evolution of independently developed business
applications.

As a summary, we can observe that there is a shift from pure software engi-
neering concerns to new communication paradigms for distributed systems based
on formal specifications. In addition, we can observe that in the above described
approaches, the more the specification is decoupled from the code, the more they
apply to coarse grain components, and the more they allow dynamic interactions
among the components.

3 Potential Interest

The potential interest, we foresee of the use of formal specifications at run-time,
resides essentially in the semantic interoperability and adaptability possibilities
they offer for large scale systems made of autonomous independent components.
The potentiality resides in the one hand on the run-time reasoning that can
be performed on the specification, and on the other hand on the decoupling of
concerns between the code and the specification information.

On the Use of Formal Specifications as Part of Running Programs 231

3.1 Semantic Interoperability

Formal specifications allow going far beyond interface descriptions or shared
keywords or concepts. Ideally, they allow: run-time understanding of the func-
tionality of the components they represent (useful for self-assembly of compo-
nents), on-the-fly deduction of component’s properties, as well as compositions
of properties on which to base composition of components for obtaining new
functionalities (useful for automating the composition of components).

Design by contract, and similarly proof-carrying code techniques, allow a lim-
ited form of semantic interoperability: pre- and post-conditions allow run-time
checking of expected properties, but APIs must be shared among the different
components. Run-time verification tools essentially serve dynamic monitoring
purposes (i.e., checking deviations from a requirement’s specification), and there-
fore have a limited utility for supporting dynamic interaction among unknown
components.

Ontology-based systems provide a semantic interoperability based on the
sharing of common concepts, essentially keywords. Smart-tags provide an in-
frastructure for disseminating and handling tags at run-time among autonomous
components. The tag is the support for interactions, however the type of tags
remains limited to numerical or textual values, and do not benefit yet from richer
descriptions based on formal specifications.

The most advanced techniques for realising semantic interoperability are
those based on service-oriented computing, such as self-configuring systems
(Subsection 2.7), specification-carrying code or B2B interoperability techniques
(Subsection 2.9). An underlying middleware handles the decoupling of functional
and non-functional formal specifications from services codes; of roles description
from business applications. The middleware seamlessly retrieves corresponding
services and applications based on the specified descriptions.

3.2 Adaptability

In addition to functional adaptability, captured by the above notion of semantic
interoperability, formal methods may prove useful for satisfying non-functional
requirements at run-time, particularly for systems evolving in changing environ-
ments, and needing to constantly adapt themselves.

Dependability. Covering several issues, from exception handling, to resilience to
unexpected environmental conditions, dependability canbe dealtwith formal spec-
ifications. Indeed, as already mentioned, the design by contract favours exception
handling at the level of classes. At a coarser level of granularity, non-functional
requirements such as QoS, constraints, CPU requirements expressed as formal
specifications may serve to guide the component’s execution in order to main-
tain the component’s requirement level of functionality. In the techniques reviewed
above, Design by Contract, proof-carrying code, and run-time verification tech-
niques allow to detect violations of expected conditions or properties, and support
exception handling. More advanced techniques, such as those based on service-
oriented techniques provide resilience to unexpected environmental conditions.

232 G. Di Marzo Serugendo

Uncertainty. Independently designed and developed components necessarily in-
teract with unknown software, and necessarily deal with uncertainty in both the
peer components and their environment. Proof-carrying code techniques allow
executing a code only if a proof of correctness has been furnished for well speci-
fied agreed properties. Trust-based systems help components in taking run-time
decisions related to both peers’ or executing environment’s behaviour. Those
decisions are based on observations and experience. Specification-carrying code
supports interaction with unknown software based on formal specifications only,
and not on agreed APIs.

Security Issues. In a world where a high number of components have to interact
together, do not know each other in advance, cannot fully or durably rely on
peers, hosts or servers, a dynamic trust-based management system allows entities
to take decisions on the basis of recent, own or shared, experiences. Such a
framework allows run-time and autonomous adaptation of entities to insecure
situations.

Run-time Code Evolution. Software that cannot be stopped nevertheless needs to
be updated. Service-oriented computing combined with formal specifications of
component’s requirements and functionality provide a powerful tool for offering
a 24/7 service while performing code changes.

Run-time policies. Individual components or whole workflow processes may de-
fine run-time policies or protocols related to: security, mode of operation, con-
straints, etc. Decoupling policies from the code, and having the policies expressed
as formal specifications allows reasoning about the policies, on-the-fly under-
standing and checking of those policies, and more importantly allows run-time
modification of the policies. For instance, in eSociety applications, such as eGov-
ernment services, software is submitted to laws changes. Any change in the law,
affects the way services have to work. For large software as those we can find
in public administration, changing the software code to be compliant with the
new laws, while still offering the service to the citizens, may become an impossi-
ble task. However, if policies are specified independently of the underlying code
which is simply assembled so as to adhere to the policy given a user’s require-
ment, a change in the law turns out to be a change in the corresponding policy,
without any modification of the code. Service-oriented computing techniques
such as self-configuring systems, specification-carrying code or the Web-Pilarcos
middleware are among the techniques that better support the application of
run-time policies through the decoupling of code and specifications provided as
a built-in feature.

4 Applications Domains

Application domains that most likely will benefit the most from approaches
based on the use of formal specifications at run-time are those made of a
large number of autonomous components or devices, evolving in dynamic

On the Use of Formal Specifications as Part of Running Programs 233

environments, and under uncertainty conditions. Among the techniques described
in this paper, service-oriented computing techniques directly support these re-
quirements, since the different components are independently equipped with all
the necessary information (described through a formal specification) to interact
with unknown software.

4.1 Ambient Intelligence

Ambient intelligence scenarios envisage devices and software agents, running
in devices, that organise themselves for the wellness of their respective users:
software agents interoperate and share knowledge or experiences, they gather
information (e.g., road traffic), they automatically pay amount of money from
e-purses, they customise rooms lights and temperature, requests for references,
or build user profiles.

These applications are supported by an unobtrusive and invisible technology,
which is able to take decisions, and initiatives, make proposals to the user, and
negotiate. In addition, in order to fully support human beings without overload-
ing them with requests and information, the underlying technology (devices, and
agents) needs advanced means of communication for: understanding each other,
gather and share knowledge, information and experience among each other, en-
sure their own security (data integrity, confidentiality, authentication, access
control), and resources management. In distributed and decentralised environ-
ments, as those in which ambient intelligence systems will evolve, interoperable
policies are closely linked with authorisation policies, or resource management.

Entities evolving in ambient intelligence systems will need to deal with dif-
ferent kinds of information. They are autonomous and not always able to rely
on a central control entity dictating its behaviour. Therefore they must be pro-
vided with means for understanding and adapting their behaviour to changing
situations and environment. Such a technology needs an infrastructure enabling
agents’ mutual understanding, and knowledge sharing for handling interoperabil-
ity, security support, and resource management. Formal specifications provide
an interoperability basis for ambient intelligence systems founded on semantic
information exchange.

4.2 Autonomic Computing

There is currently a growing interest in biologically inspired systems, not only
from researchers but also from industry. Recent interest by IBM, as part of
their Autonomic Computing [20] program, and by Microsoft, as part of the
Dynamic Systems Initiative, indicates the importance of self-organisation and
self-adaptation for managing distributed resources. Formal specifications pro-
vide solutions addressing self-management of autonomic components. Indeed,
coupled with the corresponding infrastructure, they enhance self-protection by
checking proofs of access control or interoperable compatibility, or to refuse or
accept an interaction with a component that appears to be faulty or malicious.
Based on a provided or collected user profile (expressed as a theory), compo-
nents can self-configure to customise their appearance or behaviour to the user.

234 G. Di Marzo Serugendo

Self-optimisation and self-healing are made possible by observation, experiences,
and recommendations that allow, for instance, components to optimise the use
of a pool of printers, or to alert users that faulty printers should be restarted,
or refilled with paper or toner.

4.3 Services

On the one hand Web services represent a first step towards software services
composition through the Web. On the other hand, efforts towards automating
Web tasks have lead to the Semantic Web research works. Combined together,
Semantic Web services are under investigation for allowing automating service
composition on the Internet. Current Semantic Web services architectures rely
on ontology for realising these automation tasks and on specific repositories.
Replacing ontologies with more powerful formal specifications could allow any
individual user to publish its own service on the Web (described through the
specification) in a similar way as today Web pages are published, and any other
system or user to use it (maybe anonymously) on the basis of required properties
matching the ones of the published service. This would give rise to what could
be called ”Google-like” services, where instead of searching data, the user or the
underlying software system searches for a particular service on the Web through
a “Google-like” service browser.

5 Issues

We have identified the following issues related to the use of formal specifications
at run-time.

Content. Functional description encompasses interfaces, signatures, contracts,
operational behaviour. Non-functional descriptions encompass a larger range of
information from QoS to constraints, to policies, to protocols, etc. The richer
the information, the more powerful interactions can be envisaged, but the more
power consuming the computation becomes.

Languages. From the above described approaches, we can observe that languages
for expressing the information vary from simple keywords, to more structured
ontologies, to algebraic specification, to different kinds of logics (temporal logics,
descriptive logics, higher-order logics, etc.), and even to category theory. Here
again the more expressive the language, the more powerful the management of
the specifications can be, but the more difficult the corresponding automated
tools are. In addition, there is no consensus yet or any emerging formal specifi-
cation language allowing powerful reasoning with a reasonable need for specifi-
cation processing power.

Specification Checker/Theorem Proving. In addition to the language for express-
ing the specification, it is necessary to have run-time efficient tools for processing
them, either specification checkers or theorem provers.

Run-Time Infrastructure. Finally, it is necessary to define a run-time infrastruc-
ture supporting both the processing of formal specifications and the corresponding

On the Use of Formal Specifications as Part of Running Programs 235

code execution. From the above described approaches, solutions seem to come
from service-oriented architectures allowing varying degree of granularity for
components (from classes to business applications), as well as a decoupled
processing of the corresponding specifications (functional descriptions, policies,
protocols, etc).

6 Advantages/Drawbacks

Formal specifications and automated reasoning solve interoperability problems:
there is no need for compatible interfaces or exact declarations and queries.
Specifications may express as well non-functional properties, (re)configuration
policies, and interaction protocols allow tackling issues related to dynamic large
scale systems such as adaptability to uncertain environments.

Formal specifications at run-time provide several advantages for run-time ex-
ecution of decentralised autonomous software in general, for ambient intelligence
scenarios and for autonomic computing systems. Among them we can cite inter-
action and interoperability with unknown entities, seamless integration of new
entities and functionalities, possible combination of services, robustness against
errors or failures.

However, there is a need for additional mechanisms and automated tools for
checking the adequacy of a code with its published specification, for discover-
ing errors, and propagating information about erroneous code, for correlating
information and detecting malicious attacks.

In addition, the use of formal methods at run-time is currently slowed down
because the tools (specification checkers or theorem provers) for dealing with
formal methods are not efficient enough for a run-time computation of a program,
or not enough automated (they still need human assistance). However, research
in this field is advancing and we can foresee some advances in the use of formal
methods at run-time.

7 Conclusion

This paper has reviewed different works from different domains and driven by dif-
ferent concerns, but with a common ”conviction” that formal specification can be
helpful if used at run-time: for designing correct software, for guiding executable
software, for composing services and middleware services, as a powerful tool for
autonomic computing, etc. Focus has been given on interactions among indepen-
dently developed autonomous components. Current service-oriented computing
techniques based on a middleware supporting a decoupling of code from speci-
fications, describing functional, non-functional, or contextual information, seem
the more promising for realising future efficient systems. As advocated as well
by [33] in the context of middleware services, formal semantics and reasoning
will most likely be the key to ensure the interactive management of resources
and services, of large-scale interactive systems, all systems that are naturally
exposed to dynamic changing conditions.

236 G. Di Marzo Serugendo

The different attempts at using specifications at run-time described in this
paper show an increased interest in this field from different communities. This
area of research is rather young; consequently there is currently no satisfying
efficient solution. Tools dealing with formal specifications are becoming more
powerful; this lets presuppose that the efficient processing of formal specifications
at run-time will soon become possible.

Acknowledgements

This work is supported by Swiss NSF grant 200020-105476/1.

References

1. M. Anlauff, D. Pavlovic, and D. R. Smith. Composition and refinement of evolv-
ing specifications. In Proceedings of Workshop on Evolutionary Formal Software
Development, 2002.

2. A. W. Appel and E. W. Felten. Proof-carrying authentication. In 6th ACM
Conference on Computer and Communications Security, 1999.

3. M. Balze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In IEEE
Conference on Security and Privacy, 1996.

4. M. Barnett and W. Schulte. Spying on components: A runtime verification tech-
nique. In Workshop on Specification and Verification of Component-Based Systems,
2001.

5. H. Barringer, A. Goldberg, K. Havelund, , and K. Sen. Rule-based runtime ver-
ification. In B. Steffen and G. Levi, editors, Verification, Model Checking, and
Abstract Interpretation: 5th International Conference, VMCAI 2004, volume 2937
of LNCS, pages 44–57. Springer-Verlag, 2004.

6. L. Bauer, M. A. Schneider, and E. W. Felten. A proof-carrying authorization sys-
tem. Technical Report TR-638-01, Princeton University Computer Science, 2001.

7. A. Beaufour. Using Bluetooth-based Smart-Tags for Data Dissemination. In
Pervasive Computing 2002, 2002.

8. A. Beaufour, M. Leopold, and P. Bonnet. Smart-tag based data dissemination.
In ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA’02), 2002.

9. U. Bellur and N. Narendra. Towards a Programming Model and Middleware
Architecture for Self-Configuring Systems. In The First International Conference
on Communication Systems Software and Middleware, 2006.

10. E. Bodden. A Lightweight LTL Runtime Verification Tool for Java. In J. Vlissides
and D. Schmidt, editors, OOPSLA Companion, pages 306–307, 2004.

11. V. Cahill and al. Using trust for secure collaboration in uncertain environments.
IEEE Pervasive Computing Magazine, special issue Dealing with Uncertainty,
2(3):52–61, 2003.

12. G. Di Marzo Serugendo and M. Deriaz. A social semantic infrastructure for
decentralised systems based on specification-carrying code and trust. In D. Hales
and B. Edmonds, editors, Socially-Inspired Computing, 2005.

13. G. Di Marzo Serugendo and M. Deriaz. Specification-Carrying Code for Self-
Managed Systems. In International Workshop on Self-Managed Systems &
Services, 2005.

On the Use of Formal Specifications as Part of Running Programs 237

14. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323–330. Springer-Verlag,
2000.

15. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, 1998.

16. K. Havelund and G. Rosu, editors. Proceedings of The Run-Time Verification
Workshop (RV’01). Electronic Notes in Theoretical Computer Science 55 (2).
Elsevier Science B. V., 2001.

17. K. Havelund and G. Rosu, editors. Proceedings of The Run-Time Verification
Workshop (RV’02). Electronic Notes in Theoretical Computer Science 70(4).
Elsevier Science B. V., 2002.

18. K. Havelund and G. Rosu. An overview of the runtime verification tool java
pathexplorer. Formal Methods in System Design, 24(2):189–215, 2004.

19. M. Johnson and C. N. G. Dampney. On Category Theory as a (meta) Ontology for
Information Systems Research. In International Conference On Formal Ontology
In Information Systems (FOIS’01), 2001.

20. J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, January 2003.

21. L. Kutvonen, T. Ruokolainen, J. Metso, and J. Haataja. Interoperability middle-
ware for federated enterprise applications in Web-Pilarcos. In D. Konstantas, J.-P.
Bourrires, M. Lonard, and N. Boudjlida, editors, Interoperability of Enterprise
Software and Applications, pages 185–196, 2005.

22. N. Li, J. Feigenbaum, and B. N. Grosof. A logic-based knowledge representation
for authorization with delegation. In 12th IEEE Computer Security Foundations
Workshop, 1999.

23. B. Meyer. Eiffel: The Language. Prentice Hall, 1991.
24. B. Meyer. Applying ”Design by Contract”. IEEE Computer, 25(10):40–51, 1992.
25. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,

1997.
26. B. Meyer. The grand challenge of trusted components. In ICSE, pages 660–667.

IEEE, 2003.
27. B. Meyer, C. Mingins, and H. Schmidt. Providing trusted components to the

industry. IEEE Computer, 31(5):104–105, 1998.
28. G. Necula. Proof-carrying code. In The 24th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL’97), pages 106–119, 1997.
29. G. Necula and P. Lee. Proof-carrying code. Technical Report CMU-CS-96-165,

School of Computer Science, Carnegie Mellon University, September 1996.
30. M. Oriol and G. Di Marzo Serugendo. A disconnected service architecture for

unanticipated run-time evolution of code. IEE Proceedings-Software, Special Issue
on Unanticipated Software Evolution, 2004.

31. D. Pavlovic. Towards semantics of self-adaptive software. In Self-Adaptive
Software: First International Workshop, volume 1936 of LNCS, pages 50–65.
Springer-Verlag, 2000.

32. O. Sokolsky and M. Viswanathan, editors. Proceedings of The Run-Time Verifi-
cation Workshop (RV’03). Electronic Notes in Theoretical Computer Science 89
(2). Elsevier Science B. V., 2003.

33. N. Venkatasubramanian. Safe ”Composability” of Middleware Services. Commu-
nications of the ACM, 45(6):49–52, June 2002.

34. S. Weeks. Understanding trust management systems. In 2001 IEEE Symposium
on Security and Privacy, 2001.

Adaptive Replication of Large-Scale Multi-agent
Systems – Towards a Fault-Tolerant

Multi-agent Platform

Zahia Guessoum1,2, Nora Faci2, and Jean-Pierre Briot1

1 LIP6, Université Pierre et Marie Curie (Paris 6),
8 rue du Capitaine Scott, 75015 Paris, France

Zahia.Guessoum@lip6.fr, Jean-Pierre.Briot@lip6.fr
2 MODECO-CReSTIC - IUT de Reims,

51687 Reims Cedex 2, France
faci@leri.univ-reims.fr

Abstract. In order to construct and deploy large-scale multi-agent sys-
tems, we must address one of the fundamental issues of distributed sys-
tems, the possibility of partial failures. This means that fault-tolerance is
an inevitable issue for large-scale multi-agent systems. In this paper, we
discuss the issues and propose an approach for supporting fault-tolerance
of multi-agent systems. The starting idea is the application of replication
strategies to agents, the most critical agents being replicated to prevent
failures. As criticality of agents may evolve during the course of compu-
tation and problem solving, and as resources are bounded, we need to
dynamically and automatically adapt the number of replicas of agents,
in order to maximize their reliability and availability. We will describe
our approach and related mechanisms for evaluating the criticality of a
given agent (based on application-level semantic information, e.g. inter-
dependences, and also system-level statistical information, e.g., commu-
nication load) and for deciding what strategy to apply (e.g., active or
passive replication) and how to parameterize it (e.g., number of repli-
cas). We also will report on experiments conducted with our prototype
architecture (named DimaX).

1 Introduction

The possibility of partial failures is a fundamental characteristic of distributed
applications. The fault-tolerance research community has developed solutions
(algorithms and architectures), mostly based on the concept of replication, and
notably applied to data bases. But, these techniques are almost always applied
explicitly and statically, at design time. In such approaches, this is the respon-
sibility of the designer of the application to identify explicitly which critical
servers should be made robust and also to decide which strategies (active or
passive replication. . .) and their configurations (how many replicas, their place-
ment. . .).

A. Garcia et al. (Eds.): SELMAS 2005, LNCS 3914, pp. 238–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Replication of Large-Scale Multi-agent Systems 239

New cooperative applications, e.g., air traffic control, cooperative work, and
e-commerce, are much more dynamic and large scale. Such cooperative appli-
cations are now increasingly designed as a set of autonomous and interactive
entities, named agents, that interact and coordinate (multi-agent system). In
such applications, the roles and relative importance of the agents can greatly
vary during the course of computation, of interaction and of cooperation, the
agents being able to change roles, strategies. Also, new agents may also join or
leave the application (open system). It is thus very difficult, or even impossible,
to identify in advance the most critical software components of the application.
Furthermore, criticality can vary over run time.

In addition, such applications may be large scale. And the fact that the
underlying distributed system is large scale makes it unstable by nature, at least
in currently deployed technologies. This increases the needs for mechanisms for
adaptive fiabilisation (improving robustness) of the application.

Our approach is consequently to give the capacity to the multi-agent system
itself to dynamically identify the most critical agents and to decide which fia-
bilisation strategies to apply to them. This is analog to load balancing but for
fiabilisation. In other words, we would like to automatically and dynamically
apply fiabilisation (mostly through replication mechanisms) where (to which
agents) and when they are most needed. To guide the adaptive fiabilisation,
we intend to use various levels of information, system level, like communication
load, and application/agent level, like roles or plans.

This paper is organized as follows: Section 2 presents the related work and
Section 3 introduces our multi-agent monitoring architecture. Sections 4 and 5
introduce a dynamic and adaptive control mechanism of replication. Section 6
presents the DimaX platform that we developed to implement this solution and
the realized experiments.

2 Related Work

Several approaches address the multi-faced problem of fault tolerance in multi-
agent systems. These approaches can be classified in two main categories: correc-
tive (e.g., [10],[5]) and preventive (e.g., [12],[11],[14]). The preventive approach
deals with the ability to continue to deliver services when faults occur. In the cor-
rective approach, the process consists of fault diagnostic and repair. Moreover,
several works address the difficulties of making reliable mobile agents, that are
more exposed to security problems [1] such as intrusion detection. This category
is beyond the scope of this paper.

Kaminka et al. [12] introduce a monitoring approach in order to detect and
recover faults. They use models of relations between mental states of agents.
They adopt a procedural plan-recognition based approach to identify the incon-
sistencies. However, the adaptation is only structural, the relation models may
change but the contents of plans are static. Their main hypothesis is that any
failure comes from incompleteness of beliefs. This monitoring approach relies
on agent knowledge. The design of such multi-agent systems is very complex.
Moreover, the agent behavior cannot be adaptive and the system cannot be open.

240 Z. Guessoum, N. Faci, and J.-P. Briot

Horling et al. [11] present a distributed system of diagnosis. The faults can
directly or indirectly be observed in the form of symptoms by using a fault model.
The diagnosis process modifies the relations between tasks, in order to avoid
inefficiencies. The adaptation is only structural because they do not consider
the internal structure of tasks. The different diagnosis subsystems perform local
updates on the task model. However, performance is optimized locally but not
globally.

The work of Malone et al. [14] on coordination relies on a characterization of
the dependencies between activities in terms of goals and resources. These de-
pendencies represent situations of conflict, and the different coordination mech-
anisms represent the solutions to manage them. The main contribution of this
approach is the proposed taxonomy of these dependencies. The authors offer a
framework of coordination study, that provides the basic stone to build a moni-
toring approach. However, this monitoring approach has not yet been developed.
This work has been reused by Klein et al. [16] to detect exceptions in multi-agent
systems.

These corrective approaches present useful solutions to the problem of mon-
itoring in multi-agent systems. However, the monitoring component is often
centralized and its design relies on the agents’ knowledge [19].

The fault-tolerance research community has developed preventive solutions
(algorithms and architectures), mostly based on the concept of replication, and
notably applied to data bases. Replication of data and/or computation is thus
an effective way to achieve fault tolerance in distributed systems. A replicated
software component is defined as a software component that possesses a repre-
sentation on two or more hosts [6].

Many toolkits (e.g., [6] and [18]) include replication facilities to build reliable
applications. However, most of them are not quite suitable for implementing
large-scale, adaptive replication mechanisms. For example, although the strategy
can be modified in the course of the computation, no indication is given as to
which new strategy ought to be applied; moreover, such a change must have
been devised by the application developer before runtime. Besides, as each group
structure is left to be designed by the user, the task of designing a large-scale
software appears tremendously complex.

S. Hagg introduces sentinels to protect the agents from some undesirable
states [10]. Sentinels represent the control structure of a multi-agent system.
They need to build models of each agent and monitor communications in order
to react to faults. Each sentinel is associated by the designer to one functionality
of the multi-agent system. This sentinel handles the different agents that interact
to achieve the functionality. The analysis of its beliefs on the other agents enables
the sentinel to detect a fault when it occurs. Adding sentinels to multi-agent
systems seems to be a good approach. However the sentinels themselves represent
failure points for the multi-agent system. Moreover, the problem solving agents
themselves participate in the fault-tolerance process.

A. Fedoruk and R. Deters [5] propose to use proxies to make transparent the
use of agent replication, i.e. enabling the replicas of an agent to act as a same

Adaptive Replication of Large-Scale Multi-agent Systems 241

entity regarding the other agents. The proxy manages the state of the replicas.
All the external and internal communications of the group are redirected to the
proxy. However this increases the workload of the proxy, which is a quasi central
entity. To make it reliable, they propose to build a hierarchy of proxies for each
group of replicas. They point out the specific problems of read/write consis-
tency, resource locking also discussed in [23]. This approach lacks flexibility and
reusability in particular concerning the replication control. The experiments have
been done with FIPA-OS, which does not provide any replication mechanism.
The replication is therefore realized by the designer before run time.

The work by Kraus et al. [13] proposes a solution for deciding allocation of
extra resources (replicas) for agents. They proceed by reformulating the problem
in two successive operational research problems (knapsack and then bin packing).
Their approach and results are very interesting but they are based on too many
restrictive hypothesis to be made adaptive.

In the next section, we will introduce our monitoring multi-agent architecture,
which allows to control automatically and dynamically the agent replication.

3 Monitoring Multi-agent Architecture

The deployment of large-scale multi-agent systems that must operate continu-
ously faces several problems:

– the existing multi-agent architectures are often not well scalable [2],
– failures affect often a subset of the agents,
– the environment is often dynamic and the number of resources is limited.

One of the prime motivation behind the proposed monitoring multi-agent archi-
tecture is to improve the robustness of large-scale distributed multi-agent systems
in dynamic environments and with limited number of resources. Monitoring con-
sists thus in acquiring necessary information to dynamically and automatically ap-
ply replication to agents when it is most needed. This information may be based on
standard measurements (communication load, processing time...) or multi-agent
characteristics such as the roles of agents [8] or their interdependences.

3.1 Interdependence Graph

In a multi-agent system, each agent is defined as an autonomous entity. However,
the agents do not always have all the required competencies or resources and thus
depend on other agents to provide them. Interdependence graphs [3] [21] [22] were
introduced to describe the interdependences of these agents. These graphs are
defined by the designer before the execution of the multi-agent system. However,
complex multi-agent systems are characterized by emergent structures [20], that
thus cannot be statically defined by the designer.

In our architecture, a multi-agent system is therefore represented by a graph
that reflects an emergent organizational structure. This structure can be
interpreted to define each agent criticality.

242 Z. Guessoum, N. Faci, and J.-P. Briot

N6

N1

N2
N3

N5

N8

N9

N7

N4

0.3
0.6

0.2

0.5

0.2
0.7

0.1 0.3

0.5

0.7

0.40.7

0.7

0.5

0.4
0.5

Fig. 1. Example of interdependence graph

For each domain agent1, we associate a node. The set of nodes (see
Figure 1), named interdependence graph, is represented by a labelled oriented
graph (N, L, W). N is the set of nodes of the graph, L is the set of arcs and W
the set of labels.

N = {Ni}i=1,n (1)

L = {Li,j}i=1,n,j=1,n (2)

W = {Wi,j}i=1,n,j=1,n (3)

Li,j is the link between the nodes Ni and Nj and Wi,j is a real number
that labels Li,j . Wi,j reflects the importance of the interdependence between the
associated agents (Agenti and Agentj).

A node is thus related to a set of other nodes that may include all the nodes
of a system. This set is not static: it can be modified when a new domain agent
is added, or when an agent disappears, or when an agent starts interacting with
another agent.

Our hypothesis is that the criticality of an agent relies on the interdepen-
dences of other agents on this agent. So, the agent Agenti is critical if the weights
wjij=1,n are important. In this case, the failure of Agenti may be propagated
to the agent Agentj . It thus affects a subset of agents that form a connex com-
ponent in the interdependence graph.

The interdependence graph is initialized by the designer. It is then dynam-
ically adapted by the system itself. The proposed adaptation algorithms of the
interdependence graph are described in Section 4. These adaptation algorithms
are used by the monitoring agents that are described in the following section.
1 In the following, we will name domain agents, agents from the application domain. In

the following section, we will introduce other types of agents, named monitoring
agents, to monitor them.

Adaptive Replication of Large-Scale Multi-agent Systems 243

3.2 Multi-agent Architecture

In most existing multi-agent architectures, a monitoring mechanism is central-
ized. The acquired information is typically used off-line to explain and to improve
the system’s behavior. Moreover, the considered application domains typically
only involve a small number of agents and a priori well-known organizational
structures.

These centralized monitoring architectures are not suited for large-scale and
complex systems where the observed information needs to be analyzed in real-
time to adapt the multi-agent system to the evolution of its environment.

We thus propose to distribute the observation mechanism to improve its
efficiency and robustness. This distributed mechanism relies on a reactive-agent
organization. These agents have several roles:

– Observe the domain agents and their interactions,
– Build global information,
– Update the interdependence graph,
– Use the interdependence to define the agent criticality,
– Use the agent criticality to manage the resources.

These roles are assigned to two kinds of agents: domain agent monitors (named
agent-monitors) and host-monitors (named host-monitors). An agent-monitor is
associated to each domain agent and a host-monitor is associated to each host
(see Figure 2).

 M
on

it
or

in
g

L
ev

el
 A

pp
lic

at
io

n
L

ev
el

Domain Agent1

Domain Agent2

Domain Agent3

Domain Agent4

 SendMessage

Event

Control

Agent_Monitor1 Agent_Monitor3

Agent_Monitor2
Host_Monitor i Host_Monitor j

Agent_Monitor4

Domain Agent5

Agent_Monitor5

Fig. 2. Multi-agent architecture, domain agents are the agents of the application

An agent-monitor is thus associated to each agent of the application (named
domain agent) and a host-monitor is associated to each host. These monitoring
agents (agent-monitors and host-monitors) are hierarchically organized. Each
agent-monitor communicates only with one host-monitor. Host-monitors ex-
change their local information to build global information (global number of
messages, global exchanged quantity of information,).

244 Z. Guessoum, N. Faci, and J.-P. Briot

After each interval of time Δt, the host-monitor sends the collected events
and data to the corresponding agent-monitors. An agent-monitor has then the
following behavior (see algorithm 1):

Algorithm 1. Agent-Monitor Behavior
1: Read the messages received from the host-monitor,
2: Update the local data and interdependences,
3: Compute the domain-agent criticality,
4: Determine the number of its replicas,
5: Inform the associated host-monitor of local changes that are important.

When the criticality of the domain agent is significantly modified, the agent-
monitor notifies its host-monitor. The latter informs the other host-monitors to
update global information. In turn, agent-monitors are informed by their host-
monitors when global information changes significantly. Algorithm 2 describes
the behavior of host-monitors.

Algorithm 2. Host-Monitor Behavior
1: Read messages received from the agent-monitors,
2: Update local statistics that define aggregation of the host-monitors parameters,
3: Send the new parameters to the agent monitors of the local host,
4: Send to the other host monitors the observed parameters that have significantly

changed.

4 Adaptation Algorithms

Several parameters may be used to define the interdependences between agents
such as communication load, executed tasks, roles of agents or their goals. An
adaptation algorithm gives an outline of the adaptation mechanism of the inter-
dependence graph. This adaptation relies on local information (communication
load, cpu time ...) and on global information, which is defined as an aggregation
of the local information of the various agents and hosts. The adaptation algo-
rithm is thus used by each agent-monitor to manage the associated node of the
interdependence graph (see Section 3.1).

Let us consider an interval of time Δt. The agent-monitors are activated
each Δt. At each step, an agent-monitor executes an adaptation algorithm (see
the two following subsections). However, the domain agents act continuously
according to their goals and the evolution of their environment.

These algorithms are automatically used by each agent-monitor to update its
interdependences with the set of agents. This set includes agents that commu-
nicate with it. Our hypothesis is that if an Agenti does not communicate with
Agentj then then Agenti does not depend on Agentj.

In this section, we propose two algorithms to compute the interdependence
between two agents. The first one considers only the number of messages ex-
changed by agents and the second one deals with speech acts (performatives).

Adaptive Replication of Large-Scale Multi-agent Systems 245

The first algorithm (see Algorithm 3) relies on the global number of sent
messages NbM(Δt), which is calculated by the host-monitor as follows:

NbM(Δt) =
∑

i=1,n

∑

j=1,n ı �=j

NbMi,j(Δt) (4)

where NbMi,j(Δt) is the number of messages received by agenti from agentj
during the interval of time Δt.

Algorithm 3. Basic adaptation of the interdependences
1: for each j different of i do
2: Update the weights by using the following rule:

Wi,j(t + Δt) = Wi,j(t) + NbMi,j(Δt)/NbM(Δt) (5)

3: end for

Algorithm 3 is very simple, thus the cost of monitoring is very low. Con-
sequently, it is useful for applications where the semantics of messages is not
required. However, several applications rely on semantics of messages. So, we
propose a new algorithm that deals with performatives. This algorithm is de-
scribed in the following section.

The second algorithm (see Algorithm 4) relies on the semantics proposed by
FIPA and the influence of the reception of a message on the receiver. Based on
the work of Colombetti and Verdicchio [4], we propose the following six classes
of performatives:

– class 1 =request, request-whenever, query-if, query-ref, subscribe
– class 2 = inform, inform-done, inform-ref
– class 3 = cfp, propose
– class 4 = reject-proposal, refuse, cancel
– class 5 = accept-proposal, agree
– class 6 = not-understood, failure.

To represent the influence of a message on its receiver, we use a graduation of
the interval of possible variations [0, 1], where:

– 0 corresponds to no influence,
– 1 corresponds to the maximum influence.

Table 1. Symbolic values of the six classes

Classes Symbolic Value
classes 4, 6 Low

classes 2, 3, 5 medium
class 1 high

246 Z. Guessoum, N. Faci, and J.-P. Briot

We propose then to represent influences by symbolic values such as low, medium,
high, that correspond respectively to the intervals: [0, 0.35],]0.30, 0.65] and]0.60, 1].
The average value of each symbolic value is the median of its interval. It is used
to define the weight of a message.

Table 1 gives the symbolic values of the six classes.
Let us consider:

– ΔW : an aggregation of the variations of Wi,j , as defined below:

ΔW (t) =
∑

i=1,n

∑

j=1,n ı �=j

ΔWi,j(Δt) (6)

– Si,j : the set of messages received by Agenti from Agentj.

The weight of a message is defined by the median of the interval corresponding
to the fuzzy value of its performative.

Algorithm 4. Performative-based adaptation of the interdependences
1: for each j different from i do
2: Update Wi,j by using the following rule:

Wi,j(t + Δt) = Wi,j(t) +
m∈Si,j

weight(m)/ΔW (t) (7)

3: end for

Algorithm 4 cost seems higher than that of the first Algorithm 3. However,
the semantics of messages is very useful when dealing with interdependences in
some application domains such as e-commerce.

5 Agent Criticality

The analysis of events and measures (system data and interaction events) pro-
vides two kinds of information: the interdependence and the degree of activity
of each agent. To evaluate the degree of the agent activity, we use system data
that are collected at the system level. We are considering two kinds of measures:
CPU time and communication load. We are currently evaluating the significance
of these measures as indicators of agent activity, to be useful to estimate agent
criticality.

For an agent Agenti and a given time interval Δt, these measures provide:

– The used time of CPU (cpi),
– The communication load (cli).

cpi and cli may be then used to measure the agent degree of activity awi as
follows:

awi(t) = (d1 ∗ cpi/Δt + d2 ∗ cli/CL)/(d1 + d2) (8)

where:

Adaptive Replication of Large-Scale Multi-agent Systems 247

– CL is the global communication load,
– d1 and d2 are weights introduced by the user.

The estimation of the criticality of the agent Agenti is computed as follows:

wi(t) = (a1 ∗ aggregation(Wij,j=1,m) + a2 ∗ awi(t))/(a1 + a2) (9)

Where a1 and a2 are the weights given to the two kinds of parameters (in-
terdependences and degree of activity). They are introduced by the designer.

Note that in our experiment (see Section 6), we do not consider the activity.
So, a1 = 1 and a2 = 0.

For each Agent Ai, its estimated criticality wi is used to compute the number
of its replicas and decide where to replicate the agents (see our SELMAS’2005
paper [9] for the resources management problem).

6 Implementation and Experiments

This section gives an overview of the realized platform (named DimaX) that
implements our adaptive replication mechanism. It then describes the example
that we use for the experiments and give some results.

6.1 Overview of DimaX

DIMA [7] and DarX [15] [2] have been integrated to build a fault-tolerant multi-
agent platform (named DimaX). DimaX provides multi-agent systems with sev-
eral services such as distribution, replication, and naming service [15]. In order
to benefit from fault tolerance mechanisms, the agent behavior is wrapped in a
task of the DarX framework (see Figure 3). Moreover, for a dynamic control of
replication, the monitoring architecture has been introduced. Figure 3 gives an
overview of DimaX.

We consider a distributed system consisting of a finite set of agents Ai =
{A1, A2,. . . , An} that are spread through a network. These agents communicate
only by sending and receiving messages.

DarX provides global naming. Each agent has a global name that is inde-
pendent of the current location of its replicas. The underlying system allows to
handle the agent’s execution and communication.

The failure of a machine or a connection often involves the failure of the
associated DarX server. However, in our solution the fault tolerance protocols
are agent-dependent, and not place-dependent, i.e. the mechanisms built for
providing the continuity of the computation are integrated in the replication
groups, and not in the servers. For instance, the monitoring agents are built as
active components associated to the domain agents.

Moreover, DarX provides a fault-detection mechanism. A machine crash -
server failure2 - is handled in three steps within every replication group:

2 In this work, we consider fail-silent (crash) model of faults.

248 Z. Guessoum, N. Faci, and J.-P. Briot

Failure Detection(FD)

Naming/Localisation

Replication

Adaptive

Replication
Control

Observation

Agents

DARX

DIMA

Fig. 3. Overview of DimaX

– detection of an eventual failure within the group,
– evaluation of the context: new criticality, leader failure, ...
– recovery: If the missing replica was the group leader, a new one is elected and

an agent monitor is automatically activated. In the other case, it depends
on the evaluation; a new follower/backup may or may not be instantiated.

Obviously, if a leader without any follower/backup fails, then it is not recovered.
This derives from the original assumptions we made: the criticality of an agent
evolves during the computation, and there are phases when an agent do not need
to be fault-tolerant [15].

To validate DimaX, we realized several series of experiments. The first series
evaluates the performances of the proposed multi-agent architecture and the
proposed adaptation algorithms. The second one evaluates the robustness of the
multi-agent systems that are based on the proposed monitoring architecture.

The following sections describe our example and the experiments.

Note: The experiments presented in this section were carried out on twenty
machines with Intel(R) Pentium(R) 4 CPU at 2 GHz and 526 Mb of RAM.

6.2 Example

In our experiments, we consider the example of a distributed multi-agent system
that helps at scheduling meetings. Each user has a personal assistant agent that
manages his/her calendar. This agent interacts with:

– the user to receive his meeting requests and associated information (a title,
a description, possible dates, participants, priority, etc.),

– the other agents of the system to schedule a meeting.

Adaptive Replication of Large-Scale Multi-agent Systems 249

If the assistant agent of one important participant (initiator or prime participant)
in a meeting fails (e.g., its machine crashes), this may disorganize the whole
process. As the application is very dynamic - new meeting negotiations start
and finish dynamically and simultaneously - decision for replication should be
done automatically and dynamically.

6.3 Performances

The proposed monitoring multi-agent architecture is very useful to implement
the proposed adaptive replication mechanism. However, the monitoring cost does
not seem insignificant. So, our first series of experiments measures the monitor-
ing cost in the proposed architecture. We consider, a multi-agent system with
n distributed agents that execute the same scenario (a fixed set of meetings to
schedule). We realized several experiments with various number of agents. For
each n (100, 150, ..., 300), we considered m meetings (20, 40, ..., 80) and we real-
ized two kinds of measures (with and without monitoring). We used 20 machines
for each experiment and we repeated each experiment 10 times. We considered
three cases: 1) a multi-agent system without monitoring, 2) a multi-agent sys-
tem with monitoring based on Algorithm 1, and 3) a multi-agent system with
monitoring based on Algorithm 2.

Figure 4 shows the average global execution time for these three different moni-
toring solutions. We found that monitoring cost is almost a constant function. The
monitoring activity does not increase when the number of agents (domain agents
and associated monitoring agents) increase.That can be explained by the proposed
optimization within the multi-agent architecture, such as the hierarchical organi-
zation of monitoring agents and the communication between the agent-monitors

 40000

 45000

 50000

 55000

 60000

 65000

 70000

250200150100

E
xe

cu
tio

n
T

im
e

Number of Agents

WITHOUT MONIT
WITH MONIT (Algo 1)
WITH MONIT (Algo 2)

Fig. 4. Fault-Tolerant Multi-Agent Systems Costs

250 Z. Guessoum, N. Faci, and J.-P. Briot

Table 2. Monitoring Cost and Comparison of the two Algorithms

Number of Monitoring Monitoring Difference
Agens Cost of Algorithm 1 Cost of Algorithm 2
100 3025 3635 610
150 3094 3945 851
200 3089 4227 1138
250 3130 4387 1257

and host-monitors. These agents are organized hierarchically. For instance, to
build the global information (global communication load ...), the host-monitors
communicate only if the local information changes. Moreover, the host-monitors
exchange local information only when there is an important change. Therefore, the
number of communications between these agents is optimized.

6.4 Robustness

For this second series of experiments, we use a failure simulator. This simulator
chooses randomly an agent and stops its thread. If the killed agent is critical then
the multi-agent application fails. We considered a multi-agent system with 200
agents distributed on 10 machines. We run each experiment 10 minutes and we
introduce 100 faults. We repeated several times the experiment with a variable
number of extra resources Rm. Here, Rm defines the number of extra replicas
that can be used by the whole multi-agent system. This experiment measures
the rate of succeeded simulations SR, which is defined as follows:

SR =
NSS

TNS
(10)

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20

R
at

e
of

 S
uc

ce
ed

ed
 S

im
ul

at
io

ns

Number of Replicas
ALGO 1 ALGO 2 RAND

Fig. 5. Rate of succeeded simulations for each number of replicas with the two Algo-
rithms

Adaptive Replication of Large-Scale Multi-agent Systems 251

where NSS is the number of simulations that did not fail and TNS is the total
number of simulations. Let us remind that a simulation fails when the fault
simulator stops a critical agent that has not been replicated.

We considered three cases: 1) the replication is random, 2) the replication is
based on algorithm 1 and 3) the replication is based on algorithm 2.

Figure 5 shows the success rate SR as a function of the number of extra
replicas. It compares the two algorithms. It shows that algorithm 2 gives the best
results for the considered application. Meanwhile the two algorithms require a
number of extra resources that is at least equal to the number of critical agents.

Moreover Figure 5 compares the two algorithms with a random replication.
In this case the agents criticality is defined randomly. We thus show that our
algorithms for adaptive replication are more accurate than random replication.

6.5 Discussion

In the example, the monitoring cost of the second algorithm is more important
than the cost of the first one. The difference corresponds to the cost of the
message analysis. However, multi-agent systems using the second algorithm are
more robust. Indeed, in our application the content of messages is important.
This is not the case for some application domains such as network management
where all the messages have the same weight. In this kind of application it is
recommended to use the first algorithm to reduce the monitoring cost.

It is thus useful to study classes of application domains for each algorithm.
The results of this study can be then used to help the designer to choose the
most suited algorithm for his/her application.

7 Conclusion

This paper presented a new approach to make large-scale multi-agent systems
reliable. This approach is based on the concepts of interdependence, where an
agent criticality is estimated through its interdependences with other agents.
The agent criticality is then used to replicate agents in order to maximize their
reliability and availability based on available resources and their costs.

We thus proposed a generic architecture to extend an already built where an
agent criticality is estimated through its interdependences multi-agent system
with a basic adaptation mechanism to dynamically and automatically update the
replication strategy. To make concrete this architecture, we have implemented
a fault-tolerant multi-agent platform (named DimaX). DimaX is the result of
an integration of the DIMA multi-agent platform [7] and the DarX replication
framework [2].

The obtained results are interesting and promising. However, more exper-
iments with a large-scale real-life applications and several local area networks
(e.g. the one of our two teams : LIP6 and CReSTIC) are needed to validate the
proposed approach and to analyze the proposed algorithms. Moreover, the pro-
posed classification of performatives needs to be evaluated and compared with
other classifications and different weights.

252 Z. Guessoum, N. Faci, and J.-P. Briot

Finally, we are working on a methodology based on the Model Driven Ar-
chitecture [17] to facilitate the design of fault-tolerant multi-agent systems and
their implementation with DimaX.

Acknowledgment

The authors would like to thank the members of Fault-Tolerant Multi-agent
System project of the LIP6 for their many useful suggestions regarding fault-
tolerant multi-agent systems.

References

1. F.M. Assis-Silva and R. Popescu-Zeletin. An approach for providing mobile agent
fault tolerance. In Second International Workshop on Mobile Agents, number 1477
in LNCS. Springer-Verlag, 1998.

2. M. Bertier, O. Marin, and P. Sens. Implementation and performance evaluation
of an adaptable failure detector. In the International Conference on Dependable
Systems and Networks, Washington, USA, 2002.

3. C. Castelfranchi. Decentralized AI, chapter Dependence relations in multi-agent
systems. Elsevier, 1992.

4. Marco Colombetti and Mario Verdicchio. An analysis of agent speech acts as
institutional actions. In AAMAS’2002, pages 1157–1164, 2002.

5. A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
AAMAS’2002, pages 373–744, Bologna, Italy, 2002.

6. R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons from designing and imple-
menting GARF. In Object-Based Parallel and Distributed Computation, number
791 in LNCS, pages 238–256, 1995.

7. Z. Guessoum and J.-P. Briot. From active objects to autonomous agents. IEEE
Concurrency, 7(3):68–76, 1999.

8. Z. Guessoum, J.-P. Briot, O. Marin, A. Hamel, and P. Sens. Software Engineering
for Large-Scale Multi-Agent Systems, chapter Dynamic and Adaptative Replication
for Large-Scale Reliable Multi-Agent Systems, pages 182–198. Number 2603 in
LNCS. April 2003.

9. Z. Guessoum, N. Faci, and J.-P. Briot. Adaptive replication of large-scale multi-
agent systems - towards a fault-tolerant multi-agent platform. In Proceedings of the
ICSE’05 Fourth International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS’05), Saint Louis, U.S.A., may 2005. ACM.

10. S. Hagg. A sentinel approach to fault handling in multi-agent systems. In C. Zhang
and D. Lukose, editors, Multi-Agent Systems, Methodologies and Applications,
number 1286 in LNCS, pages 190–195, 1997.

11. B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational
structures. In 5th International Conference on Autonomous Agents, pages 529–536,
Montreal, 2001. ACM Press.

12. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams by overhear-
ing: A multi-agent plan-recognition approach. Journal of Intelligence Artificial
Research, 17:83–135, 2002.

13. S. Kraus, V.S. Subrahmanian, and N. Cihan Tacs. Probabilistically survivable
MASs. In IJCAI’03, pages 789–795, 2003.

Adaptive Replication of Large-Scale Multi-agent Systems 253

14. T. W. Malone and K. Crowston. The interdisciplanary study of coordination. ACM
Computing Surveys, 26(1):87–119, March 1994.

15. O. Marin, M. Bertier, and P. Sens. DARX - a framework for the fault-tolerant
support of agent software. In 14th International Symposium on Software Reliability
Engineering (ISSRE’2003), pages 406–417, Denver, Colorado, USA, 2003. IEEE.

16. M.Klein, J.A. Rodriguez-Aguilar, and C.Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: The case
of agent death. Journal of autonomous Agents and Multi-Agent Systems, 7(1-
2):179–189, 2003.

17. OMG TC Document ormsc/2001 07-01. Model driven architecture (mda). Tech-
nical report, OMG, 2001.

18. R. Van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication
system. Communications of the ACM, 39(4):76–83, 1996.

19. N. Roos, A.t. Teije, and C. Witteveen. A protocol for multi-agent diagnosis with
spatially distributed knowledge. In ACM, editor, First Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMAS03),
AAMAS’03, pages 655–661, July 2003.

20. J. S. Sichman and R. Conte. Multi-agent dependence by dependence graphs. In
AAMAS’2002, pages 483–490, Bologna, Italy, 2002. ACM.

21. J. S. Sichman, R. Conte, and Y. Demazeau. Reasoning about others using depen-
dence networks. In Actes de Incontro del gruppo AI*IA di interesse speciale sul
inteligenza artificiale distribuita, Roma, Italia, 1993.

22. J. S. Sichman, R. Conte, and Y. Demazeau. A social reasoning mechanism based
on dependence networks. In Proceedings of ECAI’94 - European Conference on
Artificial Intelligence, Amsterdam, The Netherlands, August 1994.

23. L. Silva, V. Batista, and J. Silva. Fault-tolerant execution of mobile agents. In
International Conference on Dependable Systems and Networks, pages 135–143,
2000.

Author Index

Ahmed, Tanvir 1

Berbers, Yolande 17, 35
Beydoun, Ghassan 126
Briot, Jean-Pierre 238

Cheong, Christopher 189

Davidsson, Paul 179
Dehlinger, Josh 161
DeLoach, Scott A. 109
Di Marzo Serugendo, Giovanna 224

Faci, Nora 238

Giese, Holger 91
Gonzalez-Perez, César 126
Guessoum, Zahia 238
Guizzardi, Giancarlo 143

Henderson-Sellers, Brian 126
Holvoet, Tom 17, 35

Johansson, Stefan 179

Klein, Florian 91
Kulkarni, Devdatta 1

Low, G. 126
Lutz, Robyn R. 161

Mamei, Marco 53
Mertens, Koenraad 35
Mouratidis, Haralambos 207

Omicini, Andrea 71

Ricci, Alessandro 71

Schelfthout, Kurt 17
Svahnberg, Mikael 179

Tripathi, Anand R. 1

Viroli, Mirko 71

Weiss, Michael 207
Winikoff, Michael 189

Zambonelli, Franco 53

	Frontmatter
	Context-Awareness and Coordination
	Policy-Driven Configuration and Management of Agent Based Distributed Systems
	Views: Middleware Abstractions for Context-Aware Applications in MANETs
	An Adaptive Distributed Layout for Multi-agent Applications
	Self-organizing Approaches for Large-Scale Spray Multiagent Systems
	Coordination Artifacts as First-Class Abstractions for MAS Engineering: State of the Research

	Modeling
	Analysis and Design of Physical and Social Contexts in Multi-agent Systems
	Engineering Organization-Based Multiagent Systems
	Developing and Evaluating a Generic Metamodel for MAS Work Products
	Agent Roles, Qua Individuals and {\itshape the Counting Problem}

	Requirements and Software Architecture
	A Product-Line Approach to Promote Asset Reuse in Multi-agent Systems
	Characterization and Evaluation of Multi-agent System Architectural Styles
	Improving Flexibility and Robustness in Agent Interactions: Extending Prometheus with Hermes
	Patterns for Modelling Agent Systems with Tropos

	Dependability
	On the Use of Formal Specifications as Part of Running Programs
	Adaptive Replication of Large-Scale Multi-agent Systems -- Towards a Fault-Tolerant Multi-agent Platform

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

