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Abstract. Rank aggregation is a pervading operation in IR technology. We  
hypothesize that the performance of score-based aggregation may be affected 
by artificial, usually meaningless deviations consistently occurring in the input 
score distributions, which distort the combined result when the individual biases 
differ from each other. We propose a score-based rank aggregation model 
where the source scores are normalized to a common distribution before being 
combined. Early experiments on available data from several TREC collections 
are shown to support our proposal. 

1   Introduction 

Rank aggregation is a pervading operation in IR technology [6]. To name a few  
examples, rank aggregation takes place in the combination of multiple criteria for 
document/query similarity assessment in most search engines; in merging the outputs 
of different engines for meta-search; in the combination of query-based and prefer-
ence-based relevance for personalized search [1]; or even in the combination of pref-
erences from multiple users for collaborative retrieval [5]. Both rank-based and 
score-based aggregation techniques have been explored in prior research on this 
topic [7]. We hypothesize that that the performance of score-based aggregation may 
be affected by artificial, usually meaningless deviations consistently occurring in the 
input score distributions, which do not affect the performance of each ranking tech-
nique separately, but distort the combined result when the individual biases differ 
from each other, and therefore it should be possible to improve the results by undo-
ing these deviations. 

In order to devise a general method to merge the output of several ranking tech-
niques, no a-priori assumption on the interpretation of the scores values should be 
made. The values may correspond to a degree of relevance, probability of relevance, 
odds of relevance, user preference, or other interpretations in a variety of retrieval 
models, often undergoing further mathematical transformations (scaling, dampening, 
logs, etc.) for practical purposes. However, in order to combine the scores, the values 
should be first made comparable across input systems [2], which usually involves a 
normalization step [6]. In this poster we propose an aggregation model where the 
source scores are normalized to a common ideal score distribution, and then merged 
by a linear combination. Early experiments on available data from several TREC 
collections are shown to support our proposal. 
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2   Score Normalization 

In prior work, normalization typically consists of linear transformations [3], and other 
relatively straightforward, yet effective methods, such as normalizing the sum of 
scores (rather than the max) of each input system to 1, or shifting the mean of values 
to 0 and scaling the variance to 1 [6]. But none of these strategies takes into account 
the detailed distribution of the scorings, and is thus sensitive to “noise” score biases. 

A work where the score distribution is taken into account is that of Manmatha et al 
[4], who analyze the probabilistic behavior of search engines, in order to derive a better 
combination of their outputs. They observe that the scoring values have an exponential 
distribution for the set of non-relevant documents, and a Gaussian distribution for the 
set of relevant ones. According to this, a score s output by a given engine for a docu-
ment d is normalized to P (d is relevant | score(d) = s), which is computed by applying 
Bayes’ rule, and approximating the probabilities by a mixture of an exponential and a 
Gaussian distribution, using the Expectation Maximization method. 

Starting from Manmatha’s analysis of typical score distributions, we propose an al-
ternative approach, where input scores are mapped to an optimal score distribution 
(OSD), which we define as the distribution of an ideal scoring function that matches the 
ranking by actual relevance. Of course this is a difficult concept to define, let alone to 
obtain, but we claim that an acceptable approximation can provide good results.  

Our method works as follows. Let Ω be the universe of information objects to be 
ranked, and R the set of rank lists to be combined. Each rank source τ∈R can be 

represented as a bijection 
τ

+
τ Ωτ : Ω → N  for some Ωτ ⊂ Ω, where for each x∈Ωτ, τ(x) 

is the position of x in the ranking returned by τ. For each τ∈R, we shall denote by     

sτ : Ω → R the scoring function associated to τ, where we take sτ(x) = 0 if x∉Ωτ. Our 

approach consists of two phases. The first one is performed offline, as follows: 

1. For each ranked list τ∈R, compute the cumulative score distribution Fτ of the 
values sτ returned by the ranking system that outputs τ. This can be 
approximated by running a significant number of calls to each system with 
different random inputs (e.g. queries and documents). 

2. Build a strictly increasing OSD F  : [0,1] → [0,1]. This step is discussed 
below. 

In the second phase, which takes place at query-time, the outputs of the rank sources 
are normalized and merged: 

3. Normalization: For each x ∈ Ω and τ∈R, map the score of each rank source to 

the OSD: ( ) ( ) ( )1F Fs x s x s x−
τ τ τ τ→ = . 

4. Combination: merge the normalized scores, e.g. by a linear combination or 
some other score-based technique. 

The idea of step 3 is illustrated in figure 1. The normalization respects the order of 
each rank list (except in intervals where Fτ is constant, i.e. where by definition it is 
unlikely that any score value should fall), since 1F F−

τ  is monotonically  
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Fig. 1. Mapping scores to a common distribution 

non-decreasing. The resulting scores 1F Fs s−
τ τ τ=  range in [0,1], and their distribu-

tion is F  for all τ∈R, thus undoing potential distributional biases, as intended.  

The choice of F  as an appropriate OSD, in step 2 above, is critical to our method. 
Our proposed approach consists of computing the average distribution of several good 
scoring systems, as a rough approximation to an actual relevance distribution. This can 
be obtained empirically on a statistically significant sample of scoring systems (the ones 
to be merged, or different ones) and input values. In this estimation, the scores of each 
system are first linearly normalized to [0,1] by a variation of the standard normalization 
technique [3], where rather than taking the min and max scores of a single ranked list, 
all the scores collected from the system over several runs are included.  

3   Evaluation and Results 

We have tested our techniques in four different test collections from the TREC Web 
Results, namely TREC8, TREC9, TREC9L, and TREC2001. For the comparative 
evaluation we have tried our technique with two reference combination functions after 
the normalization step, to which we will refer as: a) DCombSUM, where the fused 

score is computed as ( ) ( )s x s xτ
τ∈

=∑R
R

, i.e. our score normalization step is fol-

lowed by the so-called CombSUM method [6]; and b) DCombMNZ, where sR(x) = 

( ) ( )h ,x s xτ
τ∈
∑
R

R , and h(x,R) = ( ){ }| 0s xττ∈ >R  is the number of engines that 

return x, a technique named as CombMNZ in prior work [6]. 
We have compared these functions with other ones where the same combination 

step is used, but a different normalization method is applied. As a benchmark for 
comparison, we have taken the results published in [7], which we label as SComb-
SUM (CombSUM with standard score normalization), RCombSUM (CombSUM with 
Rank-sim normalization), and SCombMNZ (CombMNZ with standard score normali-
zation). Table 1 shows the average results over the four collections. It can be seen that 
both DCombSUM and DCombMNZ are globally better that the other techniques. 
Although we only show the averaged results, this behavior is consistent over the four 
collections. DCombMNZ is only surpassed on average by SCombMNZ in TREC 
2001, while the performance of DCombSUM, which could be thought of as a non-
tuned version of our algorithm, performs slightly below DCombMNZ, but still glob-
ally better than any other of the benchmarks taken from [7]. 
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Table 1. Average precision for 10 trials of the combination of 2 to 12 rank lists. The results are 
averaged over the four TREC collections. 

 2 4 6 8 10 12 Avg 
SCombSUM 0.2598 0.2886 0.3084 0.3172 0.3204 0.3241 0.3031 
RCombSUM 0.2567 0.2884 0.2847 0.2877 0.2971 0.2994 0.2857 
SCombMNZ 0.2599 0.2884 0.3058 0.3176 0.3156 0.3231 0.3017 
DCombSUM 0.2614 0.2942 0.3096 0.3184 0.3237 0.3268 0.3057 
DCombMNZ 0.2637 0.2979 0.3090 0.3194 0.3228 0.3268 0.3066 

5   Further Work 

The possibilities for the continuation of this work are manifold. Studying score dis-
tributions is a research topic by itself. For instance, we foresee that a finer, more 
specialized analysis of score distributions could be achieved by identifying and sepa-
rating certain conditions on which the distribution may depend, such as properties of 
the queries (e.g. query length), the search space, the result set, or other domain-
specific factors. Also, we are currently exploring techniques where the coefficients 
in the linear combination are a function of application-specific variables of the rank-
ing system, such as the uncertainty in the rankings [1].  
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