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Preface

These proceedings contain the refereed papers and posters presented at the 28th

Annual European Conference on Information Retrieval (ECIR 2006), which was
held at Imperial College London in South Kensington between April 10 and 12,
2006. ECIR is the annual conference of the British Computer Society’s Infor-
mation Retrieval Specialist Group. The event started its life as a colloquium in
1978 and was held in the UK each year until 1998, when the event took place
in Grenoble, France. Since then the venue has alternated between the UK and
Continental Europe. In the last decade ECIR has grown to become the major
European forum for the discussion of research in the field of information retrieval.

ECIR 2006 received 177 paper and 73 poster submissions, largely from the
UK (18%) and Continental Europe (50%), but we had many sub- missions from
further afield including America (7%), Asia (21%), Middle East and Africa (2%),
and Australasia (2%). In total 37 papers and 28 posters were accepted, and
two papers were converted to posters. All contributions were reviewed by at
least three reviewers in a double anonymous process and then ranked during a
Programme Committee meeting with respect to scientific quality and originality.
It is a good and healthy sign for information retrieval in general, and ECIR in
particular, that the submission rate has more than doubled over the past three
years. The downside, of course, is that many high-quality submissions had to be
rejected owing to a limited capacity of the conference.

ECIR has always been popular with research students and established re-
searchers alike, and this year 73% of the accepted papers and 66% of the ac-
cepted posters turned out to have a research student as their main author. The
67 accepted publications span a wide range of cutting-edge themes ranging from
formal models (5) over document & query representation and text understand-
ing (5), design and evaluation (8), topic identification and news retrieval (3),
user interests and workspaces (5), clustering and classification (8), refinement
and feedback (4), performance and peer-to-peer networks (4), Web search (3),
structure/XML (6), multimedia (8), cross-language retrieval (6) to genomic in-
formation retrieval (2).

We are greatly indebted to the reviewers who spent a great deal of their time
giving useful feedback, ensuring the high quality and standard of the selected
publications and adhering to rather tight deadlines. We thank the Prize Com-
mittee for identifying the very best publications. Thanks go to our platinum
sponsors EPSRC, European Information Retrieval Specialist Group of CEPIS,
Google, and GCHQ; our golden sponsors Microsoft Research Cambridge, Yahoo
Research Barcelona, Sharp Laboratories of Europe, Apriorie, and Lemur Con-
sulting; and our silver sponsors the Multimedia Knowledge Management Net-
work, Imperial College London, Queen Mary, University of London, and Elsevier.
Together, the sponsors provided a significant amount of money that, amongst
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other things, helped more than 40 students to attend the conference. We are
immensely grateful to David Hawking, who agreed to come all the way from
Canberra, Australia, to give the keynote talk on Enterprise Search. Last, not
least, we thank our universities Imperial College London, City University and
Queen Mary, University of London, and the countless local helpers at each place
who ensured the smooth organization of ECIR 2006.

February 2006 Mounia Lalmas
Andrew MacFarlane

Stefan Rüger
Anastasios Tombros
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Mounia Lalmas, Stefan Rüger, Theodora Tsikrika,
Alexei Yavlinsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Enterprise Search — The New Frontier?
David Hawking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Formal Models

Frequentist and Bayesian Approach to Information Retrieval
Giambattista Amati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Using Proportional Transportation Distances for Measuring Document
Similarity

Xiaojun Wan, Jianwu Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A User-Item Relevance Model for Log-Based Collaborative Filtering
Jun Wang, Arjen P. de Vries, Marcel J.T. Reinders . . . . . . . . . . . . . . . . 37

Document and Query Representation and Text
Understanding

Generating Search Term Variants for Text Collections with Historic
Spellings

Andrea Ernst-Gerlach, Norbert Fuhr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Efficient Phrase Querying with Common Phrase Index
Matthew Chang, Chung Keung Poon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Document Length Normalization Using Effective Level of Term
Frequency in Large Collections

Soheila Karbasi, Mohand Boughanem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Design and Evaluation

Beyond the Web: Retrieval in Social Information Spaces
Sebastian Marius Kirsch, Melanie Gnasa, Armin B. Cremers . . . . . . . . 84

Evaluating Web Search Result Summaries
Shao Fen Liang, Siobhan Devlin, John Tait . . . . . . . . . . . . . . . . . . . . . . . 96



XIV Table of Contents

Measuring the Complexity of a Collection of Documents
Vishwa Vinay, Ingemar J. Cox, Natasa Milic-Frayling,
Ken Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Topic Identification and News Retrieval

Sentence Retrieval with LSI and Topic Identification
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Simón C. Smith, M. Andrea Rodŕıguez . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Clustering and Classification

Mobile Clustering Engine
Claudio Carpineto, Andrea Della Pietra, Stefano Mizzaro,
Giovanni Romano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Improving Quality of Search Results Clustering with Approximate
Matrix Factorisations

Stanislaw Osinski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Adapting the Naive Bayes Classifier to Rank Procedural Texts
Ling Yin, Richard Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Refinement and Feedback

The Effects of Relevance Feedback Quality and Quantity in Interactive
Relevance Feedback: A Simulation Based on User Modeling

Heikki Keskustalo, Kalervo Järvelin, Ari Pirkola . . . . . . . . . . . . . . . . . . . 191

Using Query Profiles for Clarification
Henning Rode, Djoerd Hiemstra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Lexical Entailment for Information Retrieval
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Abstract. This paper summarises the scientific work presented at the
28th European Conference on Information Retrieval and demonstrates
that the field has not only significantly progressed over the last year
but has also continued to make inroads into areas such as Genomics,
Multimedia, Peer-to-Peer and XML retrieval.

Introduction. Information Retrieval is certainly one of those thriving research
fields that — despite being relatively old and established — still generates an
enormous amount of new interest: the last decade has not only seen eminently
successful commercial applications that survived the dot-com bubble but also
new challenges such as the hidden and visible Web, enterprise repositories, dig-
ital libraries, multimedia, semi-structured documents and new theoretical ap-
proaches. It appears that, now more than ever, new and diversified approaches
are necessary to stem the tide of information that engulfs us in all shapes and
forms. Document collections that increase in size, vary in type and prompt dif-
ferent user needs have driven the information retrieval community to revisit es-
tablished formal models and create new ones; to look at appropriate document
& query representation and increase automated text understanding; to rethink
experimental design and evaluation; to improve topic identification and news
retrieval; to research user interests and workspaces; to develop specific cluster-
ing and classification approaches; to work on query refinement and feedback; to
increase performance and design peer-to-peer networks; to contribute to Web
search approaches; to create novel XML query approaches; to shift paradigms
for multimedia retrieval; to refine methods in cross-language retrieval; and to
establish more methods for the new field of genomic Information Retrieval. All
this proves that Information Retrieval as a research field continues to push the
boundaries of the scientific state of the art and proceeds to positively change the
way we all browse, search, select, assess and evaluate, ie, ultimately access and
use information.

Formal Models. Amati [1] introduces three hypergeometric models, namely
KL, DLH and DLLH, using the Divergence from Randomnesss approach, and
compares these models to other relevant models of Information Retrieval. Ex-
periments show that these models have an excellent performance with small and
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very large collections. Azzopardi and Losada [2] present an efficient implemen-
tation of the multiple-Bernoulli language model, which makes it comparable in
speed to traditional term matching algorithms. Fernández et al. [3] argue that
the performance of score-based aggregation is affected by artificial deviations
consistently occurring in the input score distributions. They propose to rectify
this by normalising the scores to a common distribution before combination.
Wan and Yang [4] propose a novel document similarity measure based on the
Proportional Transportation Distance. They show, using the TDT-3 data, that
this measure improves on the previously proposed similarity measure based on
optimal matching by allowing many-to-many matching between subtopics of
documents. Wang et al. [5] propose a probabilistic user-item relevance model
to re-formulate the problem of implicit acquisition of user preferences for log-
based collaborative filtering to perform recommendations. They show that the
approach provides a better recommendation performance on a music play-list
data set.

Document & Query Representation and Text Understanding. Chang
and Poon [6] propose a common phrase index as an efficient index structure to
support phrase queries in a very large text database. The structure is an exten-
sion of previous index structures for phrases and achieves better query efficiency
with negligible extra storage cost. Ernst-Gerlach and Fuhr [7] describe a new
approach for retrieval in texts with non-standard spelling, which is important
for historic texts in English or German. The approach is based on a new algo-
rithm for generating search term variants in ancient orthography and is shown to
outperform competing methods. Karbasi and Boughanem [8] develop a method
to assess the potential role of the term frequency-inverse document frequency
measures commonly used in text retrieval systems. They identify a novel factor,
which is shown to be significant for retrieving relevant documents, especially in
large collections.

Kane et al. [9] use a machine learning approach for classifying document read-
ability based on a simple set of features that attempt to measure the syntactic
complexity of text. Meyer zu Eissen and Stein [10] propose a novel plagiarism
detection method that identifies potentially plagiarised passages by analysing a
single document with respect to variations in writing style; they also identify
new features for the quantification of style aspects for this purpose.

Design and Evaluation. Clough et al. [11] argue that, within the framework
of geographic information retrieval, spatial relevance should be considered inde-
pendently from thematic relevance. They suggest that spatial relevance requires
greater assessor effort and more localised geographic knowledge than judging
thematic relevance. Demartini and Mizzaro [12] classify 44 different information
retrieval evaluation metrics according to the notions of document relevance and
of retrieval. Kirsch et al. [13] research whether the inclusion of information about
a user’s social environment and his or her position in the social network of his or
her peers leads to an improvement in search effectiveness. Liang et al. [14] present
a new metric for measuring summary quality based on representativeness and
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judgeability. They argue that the elements that make up an evaluation method-
ology are interdependent, and the way in which they are combined is critical to
its effectiveness. Della Mea et al. [15] carry out a number of text retrieval experi-
ments using the Average Distance Measure and show that it is highly correlated
with traditional effectiveness metrics. Mooney et al. [16] carry out a physiological
user study that shows that users exhibit galvanic skin response when watching
movies engaging in interactive tasks. They examine how these data might be
exploited for indexing of data for search and within the search process itself.
Vinay et al. [17] investigate the problem of some text collections being more
difficult to search or more complex to organise into topics than others. Using
the Cox-Lewis statistic to measure this complexity, they demonstrate that this
analysis is useful in text retrieval. Wen et al. [18] investigate the effect of topic
familiarity on users’ relevance judgements and find that users employ different
relevance criteria when searching on less familiar topics.

Topic Identification and News Retrieval. Parapar and Barreiro [19] present
two sentence retrieval methods, Latent Semantic Indexing retrieval and a topic
identification method based on Singular Value Decomposition. Experiments on
the TREC novelty track data show these techniques as valid alternative ap-
proaches to other more ad-hoc methods devised for this task. Smith and
Rodŕıguez [20] present an algorithm for topic detection that considers the tem-
poral evolution of news and the structure of Web documents, the result of which
is used for searching and navigating in an online news source. Yao et al. [21]
present a novel method to identify important news in the Web environment that
consists of diversified online news sites. Their method uses a tripartite graph
to capture the facts that a piece of important news generally occupies a visu-
ally significant place in some homepage of a news site and that important news
events will be reported by many news sites.

User Interests and Workspaces. Bogers and van den Bosch [22] present a
novel method of re-ranking search results within closed-community search envi-
ronments; it utilises information related to topical expertise of workgroup mem-
bers. Boydell and Smyth [23] describe how snippet-text and title similarities can
be used to promote documents without selection history in collaborative retrieval
environments. Freschi et al. [24] propose a technique for filtering obfuscated spam
e-mail using approximate pattern matching performed on the original message
and on its phonetic transcription. Tamine-Lechani and Boughanem [25] present
a retrieval model based on influence diagrams to incorporate long-term interests
of the users into the retrieval process. Vildjiounaite and Kyllönen [26] deploy
a Support Vector Machine classifier to learn how to associate user information
needs with the contents of their electronic calendar to facilitate proactive infor-
mation collection and presentation.

Clustering and Classification. Bouma and de Rijke [27] investigate the im-
pact on classification accuracy of broadness and narrowness of categories in terms
of their distance to the root of a hierarchically organised thesaurus. Carpineto
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et al. [28] present Credino, a clustering engine for PDAs based on the theory
of concept lattices that can help overcome some specific challenges posed by
small-screen, narrow-band devices. Chakraborti et al. [29] adapt Latent Seman-
tic Indexing for document classification by treating class labels as additional
terms. Ke et al. [30] present an improved procedure for automatically categoris-
ing e-mails into user-defined folders that have few example messages. Naughton
et al. [31] cluster text spans in a news article that refer to the same event and
exploit the order in which events are described for better clustering. Osinski [32]
shows how approximate matrix factorisations can be used to organise document
summaries returned by a search engine into meaningful thematic categories. San-
Juan and Ibekwe-SanJuan [33] present a new method for clustering multi-word
terms based on general lexico-syntactic relations that does not require prior do-
main knowledge or the existence of a training set. Yin and Power [34] present a
machine-learning approach for ranking Web documents according to the propor-
tion of procedural text they contain, where “procedural text” refers to ordered
lists of steps, which are very common in some instructional genres such as online
manuals.

Refinement and Feedback. Clinchant et al. [35] investigate various lexical
entailment models in information retrieval, using the language modelling frame-
work. They show that lexical entailment potentially provides a significant boost
in performance, similar to pseudo-relevance feedback, but at a lower computa-
tional cost. Keskustalo et al. [36] define a user model, which helps to quantify
some interaction decisions involved in simulated relevance feedback. They use
the model to construct several simulated relevance feedback scenarios in a labo-
ratory setting. Rode and Hiemstra [37] propose a new kind of relevance feedback
that shows how so-called query profiles can be employed for disambiguation and
clarification. Yamout et al. [38] demonstrate a new relevance feedback technique
which propagates relevance information of individual documents to unlabelled
documents within a given neighbourhood.

Performance and Peer-to-Peer Networks. Büttcher and Clarke [39] present
a hybrid approach in which long posting lists are updated in-place, while short
lists are updated using a merge strategy. Experimental results show that bet-
ter indexing performance is obtained with this hybrid approach than either
method (in-place, merge-based) alone. Kohlschütter et al. [40] introduce a two-
dimensional Web model and adapt the PageRank algorithm to efficiently com-
pute an exact rank vector of Web pages, which even for large-scale Web graphs,
requires only a few minutes and iteration steps. Nottelmann and Fuhr [41] in-
vestigate different building blocks of peer-to-peer architectures, among them the
decision-theoretic framework, CORI, hierarchical networks, distributed hash ta-
bles and HyperCubes. Siersdorfer and Sizov [42] describe an efficient method
to construct reliable machine learning applications in peer-to-peer networks by
building ensemble-based meta methods.
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Web Search. Joho and Jose [43] carry out a comparative evaluation of textual
and visual forms of document summaries as an additional document surrogate
in the search result presentation. Mishne and de Rijke [44] present an analysis
of a large blog search engine query log, exploring a number of angles such as
query intent, query topics, and user sessions, and show that blog searches have
different intents than general Web searches. Song et al. [45] suggest the use of the
location of query terms occurring in a URL for measuring how well a Web page
is matched with a user’s information need in Web search. This is done through
an estimate of URL hit types, i.e. the prior probability of being a good answer
given the type of query term hits in the URL.

Structure/XML. Caracciolo and de Rijke [46] examine multiple query-
independent ways of segmenting texts into coherent chunks that can be
returned in response to a query. They show this approach to be a viable so-
lution for providing a “go-read-here” functionality. Cornacchia and de Vries [47]
use array comprehensions as a novel way to bridge the gap between databases
and information retrieval. Schenkel and Theobald [48] present a framework that
expands a keyword query into a full-fledged content-and-structure query for rel-
evance feedback in XML retrieval. Extensive experiments on INEX benchmark
show the feasibility of the approach. Van Zwol et al. [49] present a visual query
formulation technique for structured document retrieval that aims at reducing
the complexity of the query formulation process and required knowledge of the
underlying document structure for the user, while maintaining full expression
power, as offered by the NEXI query language for XML retrieval. Vittaut and
Gallinari [50] use a model trained to optimise a ranking loss criterion to im-
prove the performance of a baseline structured document retrieval system. The
model uses a learning ranking algorithm that operates on scores computed from
document elements and from their local structural context. Wang and Rölleke
[51] investigate a new, parameter free, ranking method for structured documents
based on context-specific inverse document frequency.

Multimedia. Chen et al. [52] consider episodic memory, based on time and
location, for system design in image retrieval. Their user studies show that the
browser that clusters images based on time and location data combined was
significantly better than four other more standard browsers. Demuth et al. [53]
propose an efficient motion retrieval system based on the query-by-example par-
adigm. This system employs qualitative, geometric similarity measures, which
allows for intuitive and interactive browsing in a purely content-based fashion
without relying on textual annotations. Gurrin et al. [54] investigate the use of
relevance feedback in a text-based video retrieval setting and identify an optimal
number of terms for composing new queries based on feedback data. Schedl et al.
[55] investigate approaches for album cover retrieval that use image search func-
tions of popular search engines and complement them with content analysis.
Smeaton et al. [56] investigate a novel, object-based modality for video retrieval,
where objects appearing in the video are segmented from their background and
are used for retrieval based on their low-level visual features. Urban and Jose [57]
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propose a novel image retrieval system that incorporates a workspace where users
can organise their search results. A task-oriented and user-centred experiment
shows that the proposed approach leads to a more effective and enjoyable search
experience. Wilkins et al. [58] automatically determine visual feature weights for
content-based image retrieval using a subset of top query results. Zhang et al. [59]
propose decision fusion and hierarchical classifier approaches to combine short
and long term audio features for detecting game highlights in TV tennis videos.

Cross-Language Retrieval. Alberair and Sanderson [60] study how morpho-
logical variants of Arabic queries affect retrieval accuracy. Awadallah and Rauber
[61] introduce novel techniques for generating answer choices in a multiple choice
question answering setting and evaluate it on English and Arabic question an-
swering data. Hoenkamp and van Dijk [62] use the analogy of fingerprinting as
employed in forensics to investigate whether Latent Semantic Analysis, and the
hyperspace analog to language are directed towards meaning, and this across
languages. Koolen et al. [63] propose a cross-language approach to historic doc-
ument retrieval. In particular, they investigate the automatic construction of
translation resources for historic languages and the retrieval of historic docu-
ments using cross-language information retrieval techniques. Whittaker et al.
[64] describe how their statistical pattern classification approach can be used
for the rapid development of a Question Answering system in a new language.
Zhang et al. [65] present a system that automatically collects high quality paral-
lel bilingual corpora from the Web. The proposed system use multiple features
to identify parallel texts via a k-nearest-neighbour classifier.

Genomic Information Retrieval. Bernstein and Cameron [66] present an ap-
proach based on document fingerprinting for identifying highly similar sequences
in large genomic collections. Their approach is shown to use a modest amount
of memory and to execute in a time roughly proportional to the size of the col-
lection. Zhou et al. [67] focused on addressing the synonym and polysemy issue
within the language model framework. A comparative experiment on the TREC
2004 Genomics Track data shows that significant improvements are obtained by
incorporating concept-based indexing into a basic language model for this task.
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The advent of the current generation of Web search engines around 1998 chal-
lenged the relevance of academic information retrieval research – established
evaluation methodologies didn’t scale and nor did they reflect the diverse pur-
poses to which search engines are now put. Academic ranking algorithms of the
time almost completely ignored the features which underpin modern web search:
query-independent evidence and evidence external to the document. Unlike their
commercial counterparts, academic researchers have for years been unable to ac-
cess Web scale collections and their corresponding link graphs and search logs.

For all the impressive achievements of the Web search companies, great search
challenges remain. Nowhere is this more so than behind the organisational fire-
wall, where employees cry out for effective search tools to permit them to find
what they need among huge accumulations of text data, heterogeneous both in
type and in format, and subject to security and privacy restrictions. Worldwide,
there are almost certainly hundreds of thousands of organisations whose elec-
tronic text holdings are larger than (but very different from!) the TREC ad hoc
corpus. Do we as an academic community know anything about the character of
these collections? Do we know how employees search? What they search for? How
they judge the value of what is retrieved? Do we have effective algorithms which
can deliver results tailored to the context of their search? Enterprise search is
at a more manageable scale than the Web, but nonetheless presents formidable
problems for academic researchers. Can academic researchers overcome them, or
will the field be left to commercial companies?

The talk will outline the nature of the enterprise search domain, review the
current state of research in the area, present some research results, highlight
some non-standard applications of search, discuss evaluation methodologies and
pose challenges.
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Abstract. We introduce the hypergeometric models KL, DLH and DLLH using
the DFR approach, and we compare these models to other relevant models of IR.
The hypergeometric models are based on the probability of observing two pro-
babilities: the relative within-document term frequency and the entire collection
term frequency. Hypergeometric models are parameter-free models of IR. Expe-
riments show that these models have an excellent performance with small and
very large collections. We provide their foundations from the same IR probabi-
lity space of language modelling (LM). We finally discuss the difference between
DFR and LM. Briefly, DFR is a frequentist (Type I), or combinatorial approach,
whilst language models use a Bayesian (Type II) approach for mixing the two
probabilities, being thus inherently parametric in its nature.

1 Introduction

In a problem of statistical inference, the distribution generating the empirical data have
a mathematical form and contains certain parameters, such as mean, variance or other
characteristics with unknown values. In Information Retrieval (IR), statistical inference
is a very complex type of inference since it involves stratified textual data and different
populations, different types of information tasks and information needs, and more im-
portantly a relevance relation is defined over the set of documents. Models for IR may
therefore contain parameters whose estimation is based on relevance data.

Language Modelling (LM) [5, 7, 14] is an example of application of statistical infe-
rence to IR. According to the language modelling approach to IR [19, 6, 15] a document
is a sample of the population, and language model computes the probability that a query
is generated by a document. In LM we may use either the mixing or the compounding
of two probability distributions, the first distribution models the document, the second
one models the collection. The combination of these two probability distributions has
the effect of smoothing the raw likelihood of occurrence of a term in a document. The
statistical combination, whether it is of mixing or compounding type, contains a para-
meter. In general the value of this parameter is determined by a set of training data made
up of a set of topics together with the complete set of relevance values made by some
assessors. It is a matter of fact that the optimal value of this parameter varies according
to the size, the content of the collection, as well as to the length of the queries, and thus
performance may significantly change from collection to collection, and for different
query-lengths.

Although DFR baseline models were originally motivated by providing parameter-
free models for IR [4], recent developments of the DFR approach have shown that a re-
finement of the term frequency normalization component (also known as the document

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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length normalization problem) may improve the performance of DFR models [2, 12].
A parameter c was introduced to define how “large” is the standard document length
in the collection. Term-frequencies are then resized according to the standard length.
In general the standard length is the average document length in the collection, and in
such a case c is set to 1.

Since LM and the most general form of the DFR models use a parameter, the exis-
tence of a highly performing model of IR, easy to implement and completely free from
parameters, is still an open problem. The introduction of new parameter-free models
must however perform consistently well on small and very large collections, and with
different query lengths.

The present investigation on parameter free models for IR thus is important from
both theoretical and pragmatical perspectives. The main result of this paper is the de-
finition of very simple but highly performing models of IR that make only use of the
textual data and not of the relevance data.

There are other two well known parameter-free models of IR: the vector space mo-
del [23, 25, 24, 20] and Ponte and Croft’s model [19]. Except Ponte and Croft’s model,
we here show that language modelling is inherently Bayesian, and it is thus based on
parameter smoothing techniques.

Our analysis will start with two foundational views: frequentist and Bayesian. We
revisit the information retrieval inference problem assuming these alternative positi-
ons. With the aim of producing a parameter free model for IR in mind, we finally
provide a document-query matching function based on the information theoretic de-
finition of divergence given by the hypergeometric distribution. Also, we experimen-
tally compare the frequentist approach to language modelling, BM25 and to other DFR
models.

2 The Metaphor of the Urn Models for IR Models

We assume that IR is modeled by a set of urns or recipients. Sampling consists in
the experiment of drawing balls of different colours V (the vocabulary or the index)
from these urns. In the urn paradigm the population of balls represent all tokens of the
collection, and the colours are simply the terms listed in the index. Each urn (document)
has a prior probability to be selected P(d), and the balls (tokens) of the same colour
(term) have a prior probability P(t) to be drawn. A document is thus regarded as a
sample of the population. In the DFR approach the matching function between a query-
term and a document is the probability of extracting a number tf (term frequency) balls
of the same colour out of l(d) trials (document length).

An alternative approach is used by Language Modelling. It computes the probability
of the query-term in the document by smoothing the maximum likelihood

estimate (MLE) of the term-frequency in the document, p̂ =
tf

l(d)
, with the relative term-

frequency in the collection, P(t) =
TF

TFC
, where tf is the within-document frequency,

l(d) the document length, TF is the number of tokens of that term in the collection and
TFC is the overall number of tokens in the collection. Smoothing can be obtained by
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either mixing these two probabilities, or extracting the MLE from the compounding of
the multinomial distribution with a prior distribution, for example Dirichlet’s Priors.

Let us see in details similarities and differences of these two approaches.

2.1 Types of Urns

We may classify IR models according to the way we interpret the stratification of the
population [10]. We can imagine an ordinary sampling experiment as the selection of
balls from a single urn, in general with replacement and shuffling. This is called a Type
I model. We may select before a urn at a random, and then make an experiment as
described by a Type I model. The urn selection generates a Type II model. Type III
model is similarly defined. Translating this hierarchy to IR, we may say

– IR model of Type I. One single urn, where the urn can be either a document or a
collection.

– IR model of Type II. We have several urns, which represent either a set of docu-
ments or a set of collections.

– IR model of Type III. Different urns containg other urns (set of sets of docu-
ments/collections).

Before we construct the frequentist (non-Bayesian) model, we would like to quote
Good’s argument on the choice of Type I or Type II model for probability estima-
tion [10, page 5-11]:

[...] The Bayesian will wish to ascribe different weights to different
initial (or Type II) distributions. [...] Just as the non-Bayesian finds it expe-
dient to construct mathematical models of Type I probability distributions in
which he tries to minimize the number of parameters, the Bayesian will do the
same, but with both the Type I and Type II probability distributions. This leads
to Type II problems of estimation and significance.

If the Type II probability distribution is unknown, like with the Dirichlet priors in LM,
then the Bayesian methodology necessarily leads to the parameter estimation problem.

2.2 IR Model of Type I: The Document as a Sample of the Collection

The natural choice for generating a language model of a document is the binomial
process. The document is a finite binary sequence of Bernoulli trials whose outcome can
be either a success, that is an occurrence of the term, or a failure, that is an occurrence
of a different term. To be more precise, we also assume that the finite binary sequence
is random, that is any trial is statistically independent from its preceding trials. In a
Bernoulli process the probability of a given sequence is

P(tf|d, p) = ptf · (1-p)l(d)−tf

where p is the probability of occurrence of the term.

There are

(
l(d)
tf

)
of exchangeable sequences (in IR they are also called a bag of

words), therefore the probability is given by the binomial
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P(tf|d, p) =
(

l(d)
tf

)
ptf · (1-p)l(d)−tf (1)

The best value for the parameter p in the binomial is unknown. We note that the

likelihood P(tf|d, p) is maximised when
dP(tf|d, p)

dp
= 0 which is equivalent to set p to

the maximum likelihood estimate MLE of the term in the document:

p̂ =
tf

l(d)
(MLE) (2)

When the prior p is unknown, then the MLE is a good estimate for p. However we
know that the prior probability of occurrence of the term t is the relative term-frequency
in the collection:

P(t) =
TF

TFC
(3)

But, what does happen if we substitute the prior P(t) for p in Equation 1?
Let us then substitute P(t) for p in Equation 1. For each document d the prior, P(t)

of Equation 3, will be fixed, whilst p̂ of Equation 2 will vary. We have seen that the
probability in Equation 1 is maximised with documents d for which p̂ goes towards the

value P(t) =
TF

TFC
. That is, the maximum likelihood estimator coincides with the prior

P(t) when the sample is selected randomly, or better, when the tokens of the term in the
document occur randomly. In summary, when the document is little informative, the
MLE p̂ of a term in the document approaches the prior P(t). For non informative terms,
we may say that they occur randomly. There are words which always fit to this ran-
dom behaviour. These are the functional words, and they are also called non-specialty
words [11]. Usually these words are kept in a list of non-informative words, that con-
stitute the so called stop list.

But, documents are not built randomly, and thus documents cannot be regarded as
they were random samples of the population of the collection. Frequencies of words
are biased by some content or semantics. The more a document model diverges from
a random behaviour, the more informative it is. In such a case, if the MLE p̂ of a term
and its prior P(t) diverge, the binomial probability diminishes, and the term conveys
information. We may assume that the divergence given by the binomial can be used as a
measure of the significance of the term (the smaller the binomial , the more significant
the term). The mechanism of the DFR models, but also of the 2-Poisson and BM25
models (see a formal derivation of the BM25 from a DFR model [4]), encompasses
explicitly such a divergence measure. Then, following our intuition on the divergence
from randomness, it would be very natural to use the probability

P(tf|d) =
(

l(d)
tf

)
P(t)tf (1 − P(t))l(d)−tf (4)

to define a measure of divergence of the probabilities p̂ and P(t)1.

1 The same formula is used for query expansion by merging top-ranked documents into a single
sample.
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Document ranking is thus obtained by ordering the documents which minimize Equa-
tion 4. As we already observed Equation 4 is maximised when the MLE is equal to P(t),
and in such a case the term distributes randomly (non informative terms), but Equation 4
is minimised when the two probabilities p̂ and P(t) diverge (informative terms). In other
words the probability of Equation 4 is inversely related to a measure of informativeness
of the term. We may soon regard Equation 4 as primitive. However, we want to derive
Equation 4 by using aType I model. Doing this we see that the DFR approach is thus
frequentist, since it comes from a Type I model, and in contraposition we see that LM
employes a Bayesian Type II model. Never the less, both LM and DFR share the same
basic probabilistic space. Let us explore these aspects in details.

3 Type I Model: The Hypergeometric Model

We said that a DFR model assumes a high divergence between MLEs and prior probabi-
lities as a measure of a high informativeness of the term. In other words P(tf|d, p = P(t))
of Equation 4 and information content are inversely related. We need a function which
is additive on independent events (terms), and the logarithmic function is the only func-
tion which satisfies such a condition:

Inf(tf||d) = − log2 P(tf|d, p = P(t))

We now want to show Equation 4 with a direct derivation from a frequentist approach.
The frequentist approach to IR yields the system of probabilities using the paradigm
of the occupancy numbers, or with a less sophisticated terminology, transforming the
IR inference problem into a combinatorial form. A well known combinatorial problem
is the following: in a population of TFC balls there are TF red balls. What is the pro-
bability that in a sample of cardinality l(d) there is exactly a number tf of red balls?

There are

(
TF
tf

)
ways to choose a red ball, and there are

(
TFC − TF
l(d) − tf

)
to choose a

ball of different colour. All possible configurations are

(
TFC
l(d)

)
. Therefore the proba-

bility is

P(tf|d) =

(
TF
tf

)
·
(

TFC − TF
l(d) − tf

)
(

TFC
l(d)

) (5)

The probability distribution of Equation 5 is called the hypergeometric distribution.
An equivalent formula can be obtained by swapping l(d) with TF:

P(tf|d) =

(
l(d)
tf

)
·
(

TFC − l(d)
TF − tf

)
(

TFC
TF

)
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A limit theorem for the hypergeometric distribution is (see [9, page 59]):(
l(d)
tf

)(
P(t) − tf

TFC

)tf (
1 − P(t) − l(d) − tf

TFC

)l(d)−tf

< P(tf|d) <(
l(d)
tf

)
P(t)tf (1 − P(t))l(d)−tf

(
1 − l(d)

TFC

)−l(d)

where P(t) is the frequency
TF

TFC
of the term in the collection. Therefore, the binomial

distribution of Equation 4

B(l(d), tf, P(t)) =
(

l(d)
tf

)
P(t)tf (1 − P(t))l(d)−tf

is obtained as a limiting form of the hypergeometric distribution when the population

TFC is very large and the size of the sample is very small, that is when both
l(d)
TFC

∼ 0

and
tf

TFC
∼ 0. Thus, we have formally derived the Equation 4:

Inf(tf||d) = − log2 P(tf|d, p = P(t)) = − log2 B(l(d), tf, P(t))

= − log2

[(
l(d)
tf

)
P(t)tf (1 − P(t))l(d)−tf

]
We need to simplify relation 4 to have a workable model of IR. To obtain this, we
start with a very useful relation that relates the binomial distribution to the informa-
tion theoretic divergence D of φ from ψ (also called the symmetric Kullback-Leibler
divergence):

D(φ, ψ) = φ · log2
φ

ψ
+ (1 − φ) · log2

(1 − φ)
(1 − ψ)

(6)

Renyi [21] indeed proves the following relation:

B (l(d), tf, P(t)) ∼ 2−l(d)·D
(
p̂, P(t)

)
(2π · tf(1 − p̂))

1
2

(7)

where p̂ is the MLE of the probability of the term in the document d of Equation 2. We

may delete the contribution of (1 − p̂) · log2
(1 − p̂)

(1 − P(t))
in Equation 7 because it is very

small. Using the asymmetric Kullback-Leibler divergence

KL(p̂||P(t)) = p̂ · log2

(
p̂

P(t)

)
we can further simplify the information content:

Inf(tf||d) ∼ l(d) · D (p̂, P(t)) + 0.5 log2 (2π · tf · (1 − p̂))
∼ l(d) · KL(p̂||P(t)) + 0.5 log2 (2π · tf · (1 − p̂))

∼ tf · log2

(
p̂

P(t)

)
+ 0.5 log2 (2π · tf · (1 − p̂))
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3.1 DLH and DLLH: Parameter-Free Models of IR

To obtain the matching function we use the average amount of information of the term.

Instead of using the raw average information carried by a term, that is Inf(tf||d)
tf , we use

the cross-entropy function. With cross-entropy the average information is a smoothed
with the Laplace normalization L [4]. The Laplace smoothing is similar to Robertson
and Walker’s normalization used for the family of BM models [22]. Briefly, we derive
the model DLH (DFR model based on the Hypergeometric distribution and the Laplace
normalization) as:

weight =
Inf(tf||d)

tf + 1
=

− log2 B(l(d), tf, P(t))
tf + 1

=

=
tf · log2

(
p̂

P(t)

)
+ 0.5 · log2 (2π · tf · (1 − p̂))

tf + 1

(DLH) (8)

Instead of the average information we may also use the product of two information
contents:2

weight = log2

(
1+

1
tf

)
·
(

tf · log2

(
p̂

P(t)

)
+ 0.5 · log2 (2π · tf · (1 − p̂))

)
(DLLH)

(9)
Since the first addendum of Equation 8 is related to the asymmetric Kullback-Leibler

divergence as follows:

l(d) · KL(p̂||P(t)) = tf · log2

(
p̂

P(t)

)
This suggest to use a further simplified parameter-free model of IR, called KL:

weight =
l(d) · KL(p̂||P(t))

tf + 1
=

tf
tf + 1

· log2

(
p̂

P(t)

)
(KL) (10)

where p̂ is the MLE as defined in Equation 2 and P(t) is the prior given by Equation 3.
The use of KL divergence is also used in LM [26, 15]. The query expansion weigh-
ting function as used in language modeling approach is obtained by minimizing the
KL-divergence between the document language model and the feedback set of returned
documents.

2 Now, p̂ = tf
l(d) and P(t) = TF

TFC, and also TFC = N · avg length, where N is the num-

ber of documents in the collection and avg length is the average length. Thus the ratio
p̂

P(t) =
(

tf
l(d)

)
\
(

TF
N·avg length

)
contains very small probability factors. In the implementa-

tion these small factors might lead to errors. We suggest to associate the statistics contained in
the formula differently, to avoid the appearance of very small numbers, as follows:

log2

(
p̂

P(t)

)
= log2

((
tf · avg length

l(d)

)
·
(

N

TF

))
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4 Type II Model: Language Models

Let us take again the binomial distribution of Equation 1 as the likelihood probabi-
lity with parameter p unknown. Bayes’ Theorem compounds the likelihood distribution
with Type II priors P(p|d) over the document collection. The Dirichlet distribution can
be used to assign the priors. In such a case, the compound generates the generalised
hypergeometric distribution:

P(d|tf) =

(
l(d)
tf

)
ptf · (1-p)l(d)−tf · P(p|d)∫ 1

0

(
l(d)
tf

)
P(tf|d, p) · P(p|d)dp

(11)

Dirichlet priors has a set of parameters A1, . . . , AV > 0, one parameter for each
term ti of the vocabulary of size V . The term-frequencies obviously satisfy the condition
tf1 + . . . + tfV = l(d). The Dirichlet priors are:

P(p1, . . . , pV |d, A1, . . . , AV ) =
Γ (A)

Γ (A1) · · ·Γ (AV )
pA1−1
1 · · · pAV −1

V

A =
V∑

i=1

Ai and
V∑

i=1

pi = 1

The a posteriori probability distribution after conditionalizing on the Type II distri-
bution P(p1, . . . , pV |d, A1, . . . , AV ) takes the same form of Equation 4, that is:

P(d|tf1, . . . , tfV , A1, . . . , AV ) =

=
Γ (A + l(d))

Γ (A1 + tf1) · · ·Γ (AV + tfV )
ptf1+A1−1
1 · · · ptfV +AV −1

V

Setting At = μ · P(t) with μ an unkown parameter, the MLE of the compound of the
likelihood with probability P as defined by Equation 11 or 4 is:

p̂LM =
tf + μ · P(t)

l(d) + μ

Using additivity on independent events of the logarithmic function, we have:

p(Q|μ, d) ∝ 1
|Q|

|Q|∑
i=1

log2

(
tfi

μP(ti)
+ 1
)

− log2(l(d) + μ) ( LM ).

5 Comparison of the Frequentist with the Bayesian Approach

We have seen that the frequentist approach defines a parameter-free model of IR, while
the Bayesian approach leads to the construction of a parameter based model of IR. The
main difference between the two approaches are
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Table 1. Short queries (Title) of the Robust Track of TREC 2004 (250 queries)

Model MAP R Prec. Prec. at 5 Prec. at 10
DLLH 0.2483 0.2887 0.4651 0.4281
DLH 0.2438 0.2858 0.4843 0.4373
KL 0.2343 0.2765 0.4763 0.4289

Ponte & Croft 0.2383 0.2847 0.4297 0.3972
LM (μ = 600) 0.2519 0.2939 0.4803 0.4313

BM25 (b=0.75, k=1.2) 0.2418 0.2858 0.4731 0.4273
PL2 (c=6) 0.2563 0.2979 0.4876 0.4430

1. DFR approach computes the probability of observing two probabilities, while LM
smoothes the MLE of a term in the document.

2. DFR approach weights terms according to the improbability of observing the MLE
of a term in the document given the prior, and it is based on information theoretic
notions, such as amount of information and uncertainty. LM instead weights the
probability of observing the term in a document given a prior distribution.

3. In DFR approach there are no non-zero probabilities, that is when a term does
not occur in a document it does not contribute at all to the document score. On
the contrary, a term that does not appear in a document plays an important role in
LM approach. This requires extra computational costs either in terms of additional
index or retrieval structures.

4. The basic DFR models (such as Formulas 10, 8 and 9) can be used as they are
for query expansion. A parameter free model of query expansion can be also de-
fined [3]. Also Kullback-Leibler divergence based techniques for query expan-
sion [8, 26], as it was here shown, are approximations of the hypergeometric model
and the binomial model.

5. With DFR approach we can combine LM with DFR models or BM25 into a single
model, with the advantage of not having non-zero probabilities [1, 13].

6. On the other hand, Bayesian approach is flexible and easy to be applied with a stra-
tified population and in presence of other parameters, while frequentist approach
requires a major attention to model complex combinatorial problems.

Table 2. Short queries (Title) with DFR Query Expansion of Robust Track 2004 (250 queries)
with 40 most informative terms from 8 topmost-retrieved documents

Model MAP R Prec. Prec. at 5 Prec. at 10
DLLH 0.3052 0.3303 0.5012 0.4538
DLH 0.2912 0.3181 0.4980 0.4514
KL 0.2821 0.3096 0.4948 0.4462

LM (μ=400) 0.2968 0.3245 0.4867 0.4562
BM25 (b= 0.75, k=1.2) 0.2950 0.3182 0.4956 0.4482

PL2 (c=6) 0.2984 0.3253 0.5052 0.4622
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Table 3. Title and DFR Query Expansion (QE) - Terabyte Track 2004 (GOV2). In order to make
a comparison with DLH, we here display the best baseline run. It is relative to the same system
that obtained the best TREC run, but using query expansion and single keyword approach only.

Model MAP
DLH 0.277

best TREC 0.284
baseline (with QE) of the best TREC 0.253

6 Experiments

We used two test collections of TREC (Text REtrieval Conference). The first collection
is from disks 4 and 5 of TREC minus the CR collection and consists of about 2 Gbytes
of data, with 528,107 documents and 91,088,037 pointers. The second collection is the
terabyte collection GOV2 and consists of about 426 GB Gbytes of data, with about 25
million documents. We used 250 queries (queries 300-450 and 600-700) of the Robust
(ad hoc) track of TREC 2004 with the 2GB collection. These queries are ad hoc topics
used i since TREC 7. We used also 50 topics of the Terabyte track of TREC 2004. The
optimal performance value of c of the DFR models depends on either the query-length
(short or long, with or without query expansion) or the collection. The length of the
query with query expansion can be regarded short in the case of the Terabyte collection
because only 10 additional terms were added to the topics, while it must be considered
long in the case of the 2GB collection, because 40 additional terms were added to the
topics. We have compared the new models KL, DLH and DLLH with BM25, LM, Ponte
and Croft’s parameter free model of LM , and the Poisson model PL2, that was shown
to have an excellent performance in both .GOV and the terabyte collection GOV2 at the
TREC conference [17, 18]. We have used a default value c = 6 for PL2. On the other
hand, we have used different optimal values of μ for the model LM. The same query
expansion techniques as described in [3] has been applied to all models.

7 Discussion of the Results and Conclusions

We have derived from the frequentist approach of IR some very simple document-
ranking models which we have shown to perform very well with two different col-
lection sizes (a collection of 2 GB and a collection of 426 GB). These models are free
from parameters and can be used with any collection without tuning parameters. The
problem of parameter tuning is instead important in the language modelling approach.
Zhai and Lafferty report [27] that an inadequate smoothing may hurt the performance
more heavily in the case of long and verbose queries. Also, the optimal value of the
LM parameter μ tends to be larger for long queries than for short queries. They observe
that smoothing plays a more important role for long queries than for short queries. They
also observe that Dirichlet prior performs worse on long queries than title queries on
the web collection. In particular, for each subcollection contained in the 2GB collection
the optimal value of μ varies from 500 to 4000 for the short queries and from 2000 to
5000 for the long queries. They conclude that the optimal value of μ depends both on
the collection and the verbosity of the query.
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The hypergeometric models have very good performance. In particular, they have
the best MAP for short queries with query expansion on the 2GB collection. As for
the Terabyte collection, they have better performance than the best TREC run that uses
query expansion and single keyword approach, and a close performance to the best run,
which however uses additional document and term structures.
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Abstract. A novel document similarity measure based on the Proportional 
Transportation Distance (PTD) is proposed in this paper. The proposed measure 
improves on the previously proposed similarity measure based on optimal 
matching by allowing many-to-many matching between subtopics of docu-
ments. After documents are decomposed into sets of subtopics, the Proportional 
Transportation Distance is employed to evaluate the similarity between sets of 
subtopics for two documents by solving a transportation problem.   Experiments 
on TDT-3 data demonstrate its good ability for measuring document similarity 
and also its high robustness, i.e. it does not rely on the underlying document de-
composition algorithm largely as the optimal matching based measure. 

1   Introduction 

Measuring pairwise document similarity is critical to various text applications, such as 
document clustering, document filtering, and nearest neighbor search. Most text applica-
tions aim to measure document similarity by how much information (content)  
the documents share. LinP

 
P[11] clarifies the intuitions about similarity as follows: The 

similarity between documents A and B is positively related to their commonality and 
negatively related to the differences between them. The commonality and difference 
between documents are measured based on the co-occurrences of words or phrases in 
the documents. If two documents share more words/phrases while keep less different 
words/phrases, the documents are more similar. Most popular similarity measures, such 
as the Cosine measure, the Dice measure, the Jaccard measure, the Overlap measure  
[3, 18] and the information-theoretic measure [2], all observe the above intuitions.  

However, the above similarity measures do not take into account the document 
structure, e.g. the subtopic T

1
T structure, thus losing the information of word distribution 

over the document structure. Wan and PengP

 
P[19] propose an optimal matching based 

similarity measure to take into account the subtopic structures of documents, with  
the TextTiling algorithm to decompose the documents and the optimal matching  
technique to match the subtopics and get the overall similarity value. However, the 
optimal matching based measure is limited by allowing only one-to-one matching 
between subtopics. In reality, the one-to-one matching between subtopics is not the 
same as human’s cognition. From human’s perspective, any two subtopics are more 
or less similar, thus can be matched more or less. In other words, one subtopic in a 
                                                           
T

1
T  In this paper, a subtopic is represented by a coherent block of text, either contiguous or  
incontiguous. 
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document should be allowed to be matched to more than one subtopic in the other 
document with different weights, and thus the many-to-many matching is allowed 
between the subtopics of two documents.  

In this study we propose a novel measure based on the Proportional Transportation 
Distance (PTD) to evaluate document similarity by allowing many-to-many matching 
between subtopics. First, documents are decomposed into sets of subtopics, each 
subtopic being represented by a contiguous or incontiguous block of text, and then  
the Proportional Transportation Distance is employed to evaluate the similarity  
between two sets of subtopics for two documents by solving a transportation problem. 
Experiments evaluate the performance of a number of popular similarity measures 
and results show the PTD-based measure outperforms all other similarity measures, 
including the optimal matching based measure. We also explore the sentence cluster-
ing algorithm for document decomposition in addition to the TextTiling algorithm, 
and the experimental results show that the PTD-based measure has a stably high  
performance with either the sentence clustering algorithm or the TextTiling algorithm 
for document decomposition, while the optimal matching based measure performs 
poorly with the sentence clustering algorithm. In other words, the proposed  
PTD-based measure does not rely largely on the document decomposition algorithm, 
while the optimal matching based method relies largely on the TextTiling composi-
tion algorithm. 

The rest of this paper is organized as follows: Section 2 reviews the popular simi-
larity measures, including the Cosine measure, the information theoretic measure, the 
optimal matching based measure and the measures derived from popular retrieval 
functions. In Section 3, we propose the new similarity measure based on the Propor-
tional Transportation Distance. Experiments and results are described in Section 4. 
Section 5 gives our conclusions and future work. 

2   Popular Similarity Measures  

2.1   The Cosine Measure  

The Cosine measure is the most popular measure for document similarity based on 
vector space model (VSM). The vector space model creates a space in which docu-
ments are represented by vectors. For a fixed collection of documents, an  
m-dimensional vector is generated for each document from sets of terms with associ-
ated weights, where m is the number of unique terms in the document collection. 
Then, a vector similarity function is used to compute the similarity between vectors. 

In VSM, weights associated with the terms are calculated based on term frequency 
tfBd,tB and inverse document frequency idfBtB. The similarity sim(a,b), between two docu-
ments a and b, can be defined as the normalized inner product of the two vectors 
a
r

and b
r

: 
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where t represents a term. a b gets the common words between a and b. Document 
weight wBd,t BisB Bcomputed by tfBd, B  idfBtB. 
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2.2   The Information Theoretic Measure 

Aslam and Frost [2] extend the concept that the assessment of pairwise object similar-
ity can be approached in an axiomatic manner using information theory and delevop 
an information-theoretic measure for pairwise document similarity as follows: 

+
⋅

=
t t,bt t,a
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sim-IT )t(logp)t(logp
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ππ
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In the above equation, the probability )t(π  is simply the fraction of corpus docu-

ments containing term . For each document and term , let p Bd,t Bbe the fractional 

occurrence of term in document ; thus, =
t t,d 1p  for all . Two (normalized) 

documents and share min  pBa,tB  pBb,tB amount of term in “common,” while they 

contain p Ba,tB and p Bb,tB amount of term individually.  

2.3   The Optimal Matching Based Measure 

A similarity measure taking into account the subtopic structure is proposed by Wan 
and Peng [19]. Given two documents X and Y, the TextTiling algorithm [7] is adopted 
to get their subtopic structures. The subtopic structures are represented by the se-
quences of TextTiles X={x B1B,x B2B,…,x BnB} and Y={y B1B,y B2B,…y Bm B}, respectively, where x BiBB B repre-
sents a subtopic (TextTile) in document X and y BjB represents a subtopic (TextTile) in 
document Y. Then a bipartite graph G={X, Y, E} is built for the documents X and Y. A 
weight wBijB is assigned to every edge e BijB, B Bmeasuring the similarity between x Bi Band y Bj Bwith 
the Cosine measure B. B Lastly the Kuhn-Munkres algorithm [20] is applied to acquire the 
total value of the optimal matching in the graph. In order to balance the effect of the 
lengths of different documents, the total value is normalized as follows: 

),length(b)(length(a)

,b)optmatch(a
(a,b)sim

minOM =  (3) 

where optmatch(d B1 B,d B2B) represents the total value of the optimal matching for d B1B and d B2 B. 
length(d) represents the count of text segments in document d and  min(a,b) returns 
the minimal value of a and b. The normalized value is taken as the final similarity 
between the two documents. 

The TextTiling algorithm will be described in detail later. The optimal matching 
(OM) is a classical problem in graph theory.  A matching M of the bipartite graph G is 
a subset of the edges with the property that no two edges of M share the same node. 
OM is basically an extension of maximum matching (MM) and aims to find the 
matching M that has the largest total weight. According to its definition, the optimal 
matching allows only one-to-one matching between subtopics in the documents. 

2.4   Measures Derived from Retrieval Models 

2.4.1   The BM25 Measure 
The BM25 measure [13, 14] is one of the most popular retrieval models in a probabil-
istic framework and is widely used in the Okapi system. In this study, we use the 
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BM25 model to compute the similarity value between documents by using one docu-
ment as the query. Given the query document q, the similarity score for the document 
d is defined as follows: 
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where t represents a unique term; N is the number of documents in the collection; n Bt Bis 
the B Bnumber of documents in which term t exists; fBq,t Bis the frequency of term t in q; fBd,t 

Bis the frequency of term t in d; dlfBdB is the sum of term frequencies in d; avedlf is the 
average of dlfBd B in the collection; K=2.0, b=0.8 are constants.  

Note that given two documents a and b, the similarity value computed with this 
measure when a is taken as the query would be different from the similarity value 
when b is taken as the query. In the experiments, the query documents are selected 
beforehand, and so we can apply this measure directly, so do the following Pivoit-
edVSM measure and language model measure. 

2.4.2   The Vector Space Model with Pivoted Document Length Normalization 
The vector space model with pivoted document length normalization [17] is also a 
popular retrieval model and is used in the Smart system [16]. In this study, we use this 
retrieval model to compute the similarity value between documents by using one 
document as the query. Given the query document q, the similarity score for the 
document d is defined as follows: 
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where t represents a unique term; fBq,t Bis the frequency of term t in q; fBd,t Bis the frequency 
of term t in d; idfBtB is the inverse document frequency of term t; dlfBdB is the sum of term 
frequencies in d (or the document length of d); dlb BdB is the number of unique terms in 
d; avefBd Bis the average of term frequencies in d (i.e., “dlfBd B/dlb BdB”); avedlb is the average 
of dlb BdB in the collection; S=0.2 is a constant. 

2.4.3   The Language Model Measure 
The language model measure [5, 22] adopts a probabilistic framework and it inter-
prets the relevance between a document and a query as the probability of generating 
the query from the document. We use the frequently used the Dirichlet prior smooth-

ing method for the unigram document model dθ . Given the query document q, the 

similarity score for the document d is defined as follows: 
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where fBd,t Bis the frequency of term t in d; dlfBdB is the sum of term frequencies in d (or the 

document length of d); )dlf/(dlf dd μλ += , and )C|t(PMLE  is the maximum 
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likelihood estimate of the probability of term t in collection C. μ  is a parameter and 

is usually set to be multiples of the average document length. 

3   The Proposed PTD-Based Measure 

The proposed measure circumvents the problem of the optimal matching based meas-
ure by employing the Proportional Transportation Distance to allow many-to-many 
matching between subtopics, thus benefiting the evaluation of document similarity 
based on subtopic structure.  

Similarly, the framework of the proposed PTD-based measure is composed of the 
following two steps: 1) Decompose documents into sets of subtopics; 2) Evaluate 
document similarity based on the subtopic sets. 

In the first step, different algorithms can be adopted to decompose documents, such 
as the TextTiling algorithm and the sentence clustering algorithm. In the second step, 
the proposed measure formalizes the problem as a transportation problem and adopts 
the Proportional Transportation Distance to solve this problem, while the previous 
optimal matching based measure formalizes the problem as an optimal matching 
problem and adopts the Kuhn-Munkres algorithm to solve this problem.  

3.1   Document Decomposition 

3.1.1   TextTiling 
A document usually has a discourse structure and the structure can be characterized as 
a sequence of subtopical discussions that occur in the context of a few main topic 
discussions. For example, a news text about China-US relationship, whose main topic 
is the good bilateral relationship between China and the United States, can be de-
scribed as consisting of the following subdiscussions (numbers indicate paragraph 
numbers): 

1 Intro-the establishment of China-US relationships 
2-3 The officers exchange visits   
4-5 The culture exchange between the two countries 
6-7 The booming trade between the two countries 
8 Outlook and summary 

Texttiling is a technique for automatically subdividing text into multi-paragraph 
units that represent subtopics. 

The algorithm of TextTiling detects subtopic boundaries by analyzing patterns of 
lexical connectivity and word distribution. The main idea is that terms that describe a 
subtopic will co-occur locally, and a switch to a new subtopic will be signaled by the 
ending of co-occurrence of one set of terms and the beginning of the co-occurrence of 
a different set of terms. The algorithm has the following three steps:  

1) Tokenization: The input text is divided into individual lexical units, i.e. pseu-
dosentences of a predefined size; 

2) Lexical score determination: All pairs of adjacent lexical units are compared and 
assigned a similarity value;  

3) Boudary identification:  The resulting sequence of similarity values is graphed 
and smoothed, and then is examined for peaks and valleys. The subtopic boundaries 
are assumed to occur at the largest valleys in the graph. 
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For TextTiling, subtopic discussions are assumed to occur within the scope of one 
or more overarching main topics, which span the length of the text. Since the seg-
ments are adjacent and non-overlapping, they are called TextTiles.  

The computational complexity is approximately linear with the document length, 
and more efficient implementations are available, such as Kaufmann’s work [10] and 
JTextTile [4]. 

3.1.2   Sentence Clustering 
The clustering algorithm is often used to automatically discover the subtopics in a set 
of documents and group the documents by those subtopics. Similarly, the clustering 
technique can be taken to automatically discover the subtopics in a set of sentences of 
a document and group the sentences by those subtopics, such as Zha’s work [21]. In 
this study, we employ the hierarchical agglomerative clustering algorithm to group 
sentences in a document and get the subtopic structure. Note that the sentences within 
one of the resultant subtopics might not be consecutive, while the sentences within 
one of those subtopics produced by the TextTiling algorithm are consecutive. 

The algorithm is as follows: initially, each sentence is an individual cluster; then 
we iteratively merge two sentences with the largest similarity value to form a new 
cluster until this similarity value is below a pre-set merging threshold. The merging 
threshold can be determined through cross-validation. We employ the widely used 
average-link method to compute the similarity between two clusters as follows: 
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where sBiB, sBjB are sentences in cluster c B1B and cluster c B2 Brespectively, and m is the number 
of sentences in cluster c B1B and n is the number of sentences in cluster c B2 B. 

Finally, the sentences in a cluster represent a subtopic. 
The computational complexity of the clustering algorithm is O(n P

3
P), where n is the 

number of sentences in a document. 

3.1.3   The PTD-Based Measure 
Giannopoulos and Veltkamp [6] propose the Proportional Transportation Distance 
(PTD) in order to get a similarity measure based on weight transportation such that 
the surplus of weight between two point sets in taken into account and the triangle 
inequality still holds. The PTD evaluates dissimilarity between two weighted point 
sets where a distance measure between single points, which we call the Tground dis-
tance T is given. The PTD “lifts” this distance from individual points to full sets.  

In our context, the point sets are the subtopic sets for documents, and a weighted 
graph is constructed to model the similarity between two documents, and then PTD is 
employed to compute the minimum cost of the weighted graph as the similarity value 
between two documents. The problem is formalized as follows: 

Given two document A and B, a weighted graph G is constructed as follows: 

Let )},(),...,,(),,{( 221a1 amamaaa wtwtwtA = as the weighted point set of 

document A, ait  represents a subtopic in document A and its weight aiw  is the total 

number of the words in the sentences within the subtopic ait .  
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Let )},(),...,,(),,{( 2211 bnbnbbbb wtwtwtB = as the weighted point set of docu-

ment B, bjt  represents a subtopic in document B and its weight bjw  is the total num-

ber of the words in the sentences within the subtopic bjt .  

Let }{ ijdD =  as the distance matrix where ijd is the distance between subtopics 

ait and bjt . In our case, ijd  is computed by 1-sBijB, where sBij Bis the Cosine similarity 

between the two blocks of texts for subtopics ait  and bjt . 

Let G={A, B, D} as a weighted graph constructed by A, B and D. 
BAV U= is the vertex set while }{ ijdD =  is the edge set. WBA B, WBB B  are the 

total weights of A, B respectively. 
In the weighted graph G, the set of all feasible flows ξ  = [fBijB] from A to B is de-

fined by the following constraints:  

0≥ijf    mi ≤≤1  nj ≤≤1  (8) 

ai

n

j
ij wf =

=1

     mi ≤≤1  (9) 

B

A

1 W

Wbj
m

i
ij

w
f =

=

    nj ≤≤1  (10) 

= =

=
m

i

n

j
ijf

1 1
AW  (11) 

Constraint (8) allows moving words from A to B and not vice versa. Constraint (9) 
and (11) force all of A’s weight to move to the positions of points in B. Constraint 
(10) ensures that this is done in a way that preserves the old percentages of weight  
in B.  

The PTD(A,B) is given by:  
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1 1
F

W

min

),(PTD = =
∈
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ijij df

BA
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. (12) 

Finally, the similarity between documents A and B is defined as: 

),(PTD1),(PTD BABASim −= . (13) 

Sim BPTD B(A,B) is normalized in the range of [0,1]. The higher the value of Sim BPTD B(A,B) , 
the more similar the documents A and B. 

The PTD is in fact a modification of the Earth Mover’s Distance (EMD) [15] and 
has all properties of the EMD for equal total weight sets.  For example, it naturally 
extends the notion of a similarity distance between subtopics to that of a similarity 
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distance between subtopic sets, or documents by allowing for many-to-many matches 
among subtopics according to their similarity. 

The PTD is calculated by first dividing, for both point sets, every point’s weight by 
its point set’s total weight, and then calculating the EMD for the resulting point sets. 
Efficient algorithms for the transportation problem are available, which are important 
to compute EMD efficiently. We used the transportation simplex method [8], a 
streamlined simplex algorithm that exploits the special structure of the transportation 
problem. A theoretical analysis of the computational complexity of the transportation 
simplex is hard, since it is based on the simplex algorithm which can have, in general, 
an exponential worst case. However, in our context, the performance is improved by 
the fact that the size of the vertex set in the graph is small. Other efficient methods to 
solve the transportation problem have been developed, such as interior-point algo-
rithms [9] which have polynomial time complexity.  

4   Experiments 

4.1   Experimental Setup 

In order to evaluate the performance for the similarity measures, we use a number of 
documents as queries and retrieve similar documents from a document corpus based 
on different similarity measures. Then the returned list of 200 documents is compared 
with the ground truth list. The higher the document is in the ranked list, the more 
similar it is with the query document.   

As a Java implementation of the TextTiling algorithm, the JTextTile with the rec-
ommended parameter settings is used to segment texts into contiguous topic seg-
ments. For the sentence clustering algorithm, we explore different merging thresholds. 

To perform the experiments, a ground truth data set is required. As in previous 
work [19], we build the ground truth data set from the TDT-3 corpus, which has been 
used for evaluation of the task of topic detection and tracking [1] in 1999 and 2000. 
TDT-3 corpus is annotated by Linguistic Data Consortium (LDC) from 8 English 
sources and 3 Mandarin sources for the period of October through December 1998. 
120 topics are defined and about 9000 stories are annotated over these topics with an 
“on-topic” table presenting all stories explicitly marked as relevant to a given topic.  

According to the specification of TDT, the on-topic stories within the same topic 
are similar and relevant. After removing the stories written in Chinese, we use 40 
topics and more than 2500 stories as a test set, while the others are used as a training 
set. Sentence tokenization is firstly applied to all documents. The stop word list in 
Smart is employed in order to remove stop words. Then we use Porter’s stemmer [12] 
to remove common morphological and inflectional endings from English words. The 
TextTiling algorithm and the sentence clustering algorithm are adopted to decompose 
documents respectively. The total stories are considered as the document collection 
for search, and for each topic we simulate a search as follows: The first document 
within the topic is considered as the query document and all the other documents 
within the same topic are the relevant (similar) documents, while all the documents 
within other topics are considered irrelevant (dissimilar) to the query document. Then 
the system compares the query document with all documents in the document collec-
tion with one of the similarity measures, returning a ranked list of 200 documents. 
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The higher the document is in the ranked list, the more similar it is with the query 
document.   

As in TRECT

2
T experiments, we use the average precisions (P) at top N results, i.e. 

P@5 and P@10, and the non-interpolated mean average precision (MAP) to measure 
the performance. Note that the number of documents within each topic is different 
and some topics contain even less than 5 documents, so its corresponding precisions 
may be low. But these circumstances do not affect the comparison of the performance 
for different measures. 

4.2   Experimental Results 

4.2.1   Similarity Measure Comparison 
The results of MAP, P@10 and P@20 for different similarity measures are shown 
and compared in Figure 1. For the PTD-based measure and the OM-based measure, 
the performance is dependent on the document decomposition algorithm, so we plot 
the highest precisions they achieve based on the TextTling algorithm. We mainly 
concern about the MAP value. The upper bounds are the ideal values under the as-
sumption that all the relevant (similar) documents are retrieved and ranked higher 
than those irrelevant (dissimilar) documents in the ranked list. If the number of rele-
vant documents for a query document is smaller than 5 or 10, the P@5 or P@10 for 
this query will never reach 100%. There are a few such queries in the TDT3 corpus, 
so the average p@5 or P@10 (i.e. the upper bounds of P@5 or P@10) will not reach 
100%.  

 

Fig. 1. Performance comparison for different similarity measures 

Seen from Figure 1, the PTD-based measure outperforms all other similarity meas-
ures on MAP and P@5, including the optimal matching based measure. Other obser-
vations are similar to those in previous work [5], e.g. the measures derived from the 
popular retrieval functions perform poorly because the full document query differ 

                                                           
T

2
T http://trec.nist.gov 
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from the short query in that the full document contains more redundant and 
ambiguous information and even greater noise effects; the Cosine measure has a high 
performance for evaluating document similarity. 

4.2.2   Performance Comparison for Document Decomposition Algorithms 
Both the proposed PTD-based measure and the OM-based measure rely on the sub-
topic sets, which can be produced by either the TexTiling algorithm or the sentence 
clustering algorithm described earlier. Figures 2, 3 and 4 show the MAP, P@5, P@10 
results for the PTD-based measure and the OM-based measure with different docu-
ment decomposition algorithms, respectively. The TextTiling algorithm and the sen-
tence clustering algorithm with different merging similarity thresholds are compared 
in the figures. For example, “cluster(0.01)” refers to the sentence clustering algorithm 
with the merging similarity threshold set to 0.01.  

 

Fig. 2. MAP comparison for different document decomposition algorithms 

 

Fig. 3. P@5 comparison for different document decomposition algorithms 
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Fig. 4. P@10 comparison for different document decomposition algorithms 

We can see from Figures 2, 3 and 4 that with the sentence clustering algorithm for 
document decomposition, the PTD-based measure performs much better than the 
OM-based measure, though both measures have better performance with  
the TextTiling algorithm than that with the sentence clustering algorithm. Moreover, 
the PTD-based measure has a stably high performance for different document decom-
position algorithms, while the OM-based measure relies largely on the TextTiling 
algorithm for document decomposition. In other words, the PTD-based measure is 
much more robust than the OM-based measure. 

5   Conclusions 

In this paper, a novel measure based on the Proportional Transportation Distance 
(PTD) is proposed to evaluate document similarity by allowing many-to-many match-
ing between subtopics. The proposed measure overcomes the problem in the existing 
optimal matching based measure that only one-to-one matching is allowed between 
subtopics. We also explore different algorithms to decompose documents.  Experi-
mental results show the high performance and robustness of the PTD-based measure.  

In future work, we will apply the proposed measure to evaluate the semi-structured 
document similarity. Other tasks, such as document clustering will also be explored 
based on the proposed measure. 
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Abstract. Implicit acquisition of user preferences makes log-based col-
laborative filtering favorable in practice to accomplish recommendations.
In this paper, we follow a formal approach in text retrieval to re-formulate
the problem. Based on the classic probability ranking principle, we pro-
pose a probabilistic user-item relevance model. Under this formal model,
we show that user-based and item-based approaches are only two differ-
ent factorizations with different independence assumptions. Moreover,
we show that smoothing is an important aspect to estimate the param-
eters of the models due to data sparsity. By adding linear interpolation
smoothing, the proposed model gives a probabilistic justification of us-
ing TF×IDF-like item ranking in collaborative filtering. Besides giving
the insight understanding of the problem of collaborative filtering, we
also show experiments in which the proposed method provides a better
recommendation performance on a music play-list data set.

1 Introduction

Generally, a collaborative filtering algorithm uses a collection of user profiles
to identify interesting “information” for these users. A particular user gets a
recommendation based on the user profiles of other, similar users. User profiles
are commonly obtained by explicitly asking users to rate the items. Collaborative
filtering has often been formulated as a self-contained problem, apart from the
classic information retrieval problem (i.e. ad hoc text retrieval). Research started
with heuristic implementations of “Word of Mouth” (e.g. user-based approaches
[1]), and moved to item-based approaches [17], and, more recently, various model-
based approaches have been introduced ([8, 13]).

Previous research ([3]) has shown that users are very unlikely to provide an
explicit rating. Asking the user to rate items is annoying and should be avoided
when possible. Alternatively, user profiles can also be obtained by implicitly ob-
serving user interactions with the system. For instance, music play-list indicates
the music taste of a user, and web query logs could indicate the interest of a
user for certain web sites. The implicit acquisition of user preferences makes

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 37–48, 2006.
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the so-called “log-based” collaborative filtering more favorable in practice (see
Section 2).

Therefore, this paper focuses on log-based collaborative filtering. We identify
a close relationship between log-based collaborative filtering and text informa-
tion retrieval. We build a user-item relevance model to re-formulate collabora-
tive filtering under the classic probability ranking principle. Given our user-item
relevance models, we also introduce a linear interpolation smoothing into col-
laborative filtering. We show that the smoothing is important to estimate the
model parameters correctly due to the data sparsity. Similar to the situation in
text retrieval, the user-item relevance model provides a probabilistic justification
of using TF×IDF like item weighting in collaborative filtering.

2 Background

2.1 Rating-Based Collaborative Filtering

The preference information about items can either be based on ratings (explicit
interest functions) or log-archives (implicit interest functions). Their differences
lead, to our view, to two different ways to approach collaborative filtering: rating-
based and log-based. Rating-based collaborative filtering is based on user profiles
that contain rated items. The majority of the literature addresses rating-based
collaborative filtering, which has been studied in depth ([13]). Different rating-
based approaches are often classified as memory-based or model-based. In the
memory-based approach, all rating examples are stored as-is into memory (in
contrast to learning an abstraction). In the prediction phase, similar users or
items are sorted based on the memorized ratings. Based on the ratings of these
similar users or items, a recommendation for the query user can be generated.
Examples of memory-based collaborative filtering include item correlation-based
methods ([17]), user clustering ([20]) and locally weighted regression ([1]). The
advantage of the memory-based methods over their model-based alternatives is
that they have less parameters to be tuned, while the disadvantage is that the
approach cannot deal with data sparsity in a principled manner.

In the model-based approach, training examples are used to generate a model
that is able to predict the ratings for items that a query user has not rated
before. Examples include decision trees ([1]), latent class models ([8]), and fac-
tor models ([2]). The ‘compact’ models in these methods could solve the data
sparsity problem to a certain extent. However, the requirement of tuning an
often significant number of parameters or hidden variables has prevented these
methods from practical usage.

Recently, to overcome the drawbacks of these approaches to collaborative
filtering, researchers have started to combine both memory-based and model-
based approaches ([14, 19]).

2.2 Log-Based Collaborative Filtering

Implicit interest functions usually generate binary-valued preferences. That is a
one indicates as a “file is downloaded”, or a “web-site is visited”. Few log-based
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collaborative filtering approaches that deal with such data have been developed
thus far. Two examples are the item-based Top-N collaborative filtering approach
([4, 10]) and Amazon’s item-based collaborative filtering ([12]).

The following characteristics make log-based collaborative filtering more sim-
ilar to the problem of text retrieval than the rating-based approaches:

– Log-based user profiles, e.g., play-lists, are usually binary-valued. Usually,
one means ‘relevance’ or ‘likeness’, and zero indicates ‘non-relevance’ or ‘non-
likeness’. Moreover, in most of the situations, non-relevance and non-likeness
are hardly observed. This is similar to the concept of ‘relevance’ in text
retrieval.

– The goal for rating-based collaborative filtering is to predict the rating of
users, while the goal for the log-based algorithms is to rank the items to
the user in order of decreasing relevance. As a result, evaluation is different.
In rating-based collaborative filtering, the mean square error (MSE) of the
predicted rating is used, while in log-based collaborative filtering, recall and
precision are employed.

Therefore, this paper proposes to apply the probabilistic framework developed
for text retrieval to log-based collaborative filtering. We consider the following
formal setting. The information that has to be filtered, e.g., images, movies
or audio files, is represented as a set of items. We introduce discrete random
variables U∈ {u1, ..., uK} and I∈ {i1, ..., iM} to represent a user and an item
in the collection, respectively. K is the number of users while M is the number
of items in the collection. Let Luk

denote a user profile list for user uk ∈ U .
Luk

is a set of items that user uk has previously shown interest in. Luk
(im) = 1

(or im ∈ Luk
) indicates that item im ∈ I, is in the list while Luk

(im) = 0 (or
Im /∈ Luk

) otherwise. The number of items in the list is denoted as |Luk
|.

The purpose of log-based collaborative filtering is to rank the relevance of a
target item to a user. This could be represented by the retrieval status value
(RSV) of a target item towards a user, denoted as: RSVuk

(im). Heuristic im-
plementations of ‘Word of Mouth’ introduced in [4, 6] give the following basic
item-based and user-based approaches to calculate the RSV when we consider
the binary case:

User-based : RSVuk
(im) =

∑
Top-N similar ub

sU (uk, ub)Lub
(im)

Item-based : RSVuk
(im) =

∑
∀ib:ib∈Luk

sI(ib, im)
(1)

where sI and sU are the two similarity measures between two items and two
users, respectively. The two commonly used similarity measures are the Pearson
Correlation and the Cosine similarity ([1]). Alternatively, frequency counting
has been used as a basis for similarity measures in ([4, 10]). To suppress the
influence of items that are being purchased frequently, they have introduced a
TF×IDF-like weighting (similarity) function:
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sI(ib, im) =
c(ib, im)/c(im)

c(ib)α
(2)

where c(ib, im) =
K∑

k=1
Luk

(im) ∩ Luk
(Ib)) is the number of user profiles in which

both items ib and im exist (i.e., items they co-occur); and c(i) is the number of
user profiles containing item i. α is a tuning parameter.

3 A User-Item Relevance Model

In log-based collaborative filtering, users want to know which items fit their
interests best. This section adopts the probabilistic relevance model proposed in
text retrieval domain ([11, 15]) to measure the relevance between user interests
and items. We intend to answer the following basic question:

– What is the probability that this item is relevant to this user, given his or
her profile.

To answer this question, we first define the sample space of relevance: ΦR. It
has two values: ‘relevant’ r and ‘non-relevant’ r̄. Let R be a random variable
over the sample space ΦR. Likewise, let U be a discrete random variable over
the sample space of user id ’s: ΦU = {u1, ..., uK} and let I be a random variable
over the sample space of item id ’s: ΦI = {i1, ..., iM}, where K is the number of
users and M the number of items in the collection. In other words, U refers to
the user identifiers and I refers to the item identifiers.

We then denote P as a probability function on the joint sample space ΦU ×
ΦI × ΦR. In a probability framework, we can answer the above basic question
by estimating the probability of relevance P (R = r|U, I). The relevance rank
of items in the collection ΦI for a given user U = uk (i.e. retrieval status value
(RSV) of a given target item toward a user) can be formulated as the odds of
the relevance:

RSVuk
(im) =

log P (r|uk, im)
log P (r̄|uk, im)

(3)

For simplicity, R = r, R = r̄, U = uk, and I = im are denoted as r, r̄, uk, and
im, respectively.

Hence, the evidence for the relevance of an item towards a user is based
on both the positive evidence (indicating the relevance) as well as the negative
evidence (indicating the non-relevance). Once we know, for a given user, the RSV
of each item I in the collection (excluding the items that the user has already
expressed interest in), we sort these items in decreasing order. The highest ranked
items are recommended to the user.

In order to estimate the conditional probabilities in Eq. 3, i.e. the relevance
and non-relevance between the user and the item, we need to factorize the
equation along the item or the user dimension. We propose to consider both
item-based generation (i.e., using items as features to represent the user) and
user-based generation (i.e., treating users as features to represent an item). Since
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the two generative models are very similar to each other, for readability, the re-
mainder of the paper presents our results using the item-based generation model;
the analogous model based on user-based generation is given in Appendix A.

3.1 Item-Based Generation

By factorizing P (•|uk, im) with P (uk|im,•)P (•|im)
P (uk|im) , the following log-odds ratio

can be obtained from Eq. (3):

RSVuk
(im) = log

P (r|im, uk)
P (r̄|im, uk)

= log
P (uk|im, r)
P (uk|im, r̄)

+ log
P (im|r)P (r)
P (im|r̄)P (r̄)

(4)

Without explicit evidence for non-relevance, and following the language modelling
approach to information retrieval ([11]), we now assume that: 1) independence
between uk and ik in the non-relevance case (r̄), i.e., P (uk, |im, r̄) = P (uk|r̄);
and, 2) equal priors for both uk and im, given that the item is non-relevant. Then
the two non-relevance terms can be removed and the RSV becomes:

RSVuk
(im) = log P (uk|im, r) + log P (im|r) (5)

Note that the two negative terms in Eq. (4) can always be added to the model,
when the negative evidences are captured.

To estimate the conditional probability P (uk|im, r) in Eq. (5), consider the
following: Instead of placing users in the sample space of user id’s, we can also
use the set of items that the user likes (Luk

) to represent the user (uk). This
step is similar to using a ‘bag-of-words’ representation of queries or documents
in the text retrieval domain ([16]). This implies: P (uk|im, r) = P (Luk

|im, r). We
call these representing items as query items. Note that, different with the target
item im, the query items do not need to be ranked since the user has already
expressed interest in them.

Further, we assume that the items in the user profile list Luk
(query items)

are conditionally independent from each other. Although this naive Bayes as-
sumption does not hold in many real situations, it has been empirically shown
to be a competitive approach (e.g., in text classification ([5, 18]). Under this
assumption, Eq. (5) becomes:

RSVuk
(im) = log P (Luk

|im, r) + log P (im|r)
=

∑
∀ib:ib∈Luk

log P (ib|im, r) + log P (im|r) (6)

The conditional probability P (ib|im, r) corresponds to the relevance of an item
ib, given that another item im is relevant. This probability can be estimated by
counting the number of user profiles that contain both items ib and im, divided
by the total number of user profiles in which im exists (see also, [10]):

Pml(ib|im, r) =
P (ib, im|r)
P (im|r) =

c(ib, im)
c(im)

(7)
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3.2 Probability Estimation and Smoothing

Using the frequency count in Eq. (7) to estimate the above probability corre-
sponds to using its maximum likelihood estimator. However, many item-to-item
co-occurrence counts will be zero, due to the sparseness of the user-item matrix.
Therefore, we apply a smoothing technique to adjust the maximum likelihood
estimation ([18]).

In information retrieval ([21]), most smoothing methods apply two different
distributions: one for the words that occur in the document, and one for the
words that do not. Here, we also adopt this formulation. To estimate P (ib|im, r),
we use Ps(ib|im, r), when c(ib, im) > 0, while when c(ib, im) = 0 (i.e., ib and
im do not co-occur in any of the user profiles), we assume the probability is
proportional to the general frequency of ib for the whole user profile set. That is
P (ib|im, r) = αimP (ib|r), where αim depends on item im. Then, the conditional
probability between a user and an item can be formulated as follows:

log P (uk|im, r) = log P (Luk
|im, r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

log Ps(ib|im, r) +
∑

∀ib:ib∈Luk
∩c(ib,im)=0

log αimP (ib|r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

log
Ps(ib|im, r)
αimP (ib|r) +

∑
∀ib:ib∈Luk

log αimP (ib|r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

log
Ps(ib|im, r)
αimP (ib|r) + |Luk

| log αim +
∑

∀ib:ib∈Luk

log P (ib|r)

(8)

Since the last term is independent from the target item im, it can be dropped
when we calculate the RSV of item im. Combining Eq. (6) and Eq. (8), we obtain
the following:

RSVuk
(im)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

log
Ps(ib|im, r)
αimP (ib|r) + |Luk

| log αim + log P (im|r) (9)

Eq. (9) gives a generative ranking formula. Next, we consider a special case: a
linear interpolation smoothing.

The Linear Interpolation Smoothing. A linear interpolation smoothing can
be defined as a linear interpolation between the maximum likelihood estimation
and background model. To use it, if we define:

Ps(ib|im, r) = (1 − λ)Pml(ib|im, r) + λP (ib|r)
αim = λ

(10)

where Pml(ib|im, r) is the maximum likelihood estimation as given in Eq. (7).
The item prior probability P (ib|r) is used as background model. Furthermore,
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the parameter λ ∈ [0, 1] is a parameter that balances the maximum likelihood
estimation and background model (a larger λ means more smoothing). Usually,
the best value for λ is found from a training data. The linear interpolation
smoothing leads to the following RSV:

RSVuk
(im)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

log(1 +
(1 − λ)Pml(ib|im, r)

λP (ib|r) ) + log P (im|r). (11)

3.3 Discussion

IDF. The usage of TF×IDF-like ranking shown in Eq. 2 was studied in [4] and
has been shown to have the best performance. However, [4] does not provide the
justification about the usage of the inverse item frequency (1/P (ib|r)) by proba-
bility theory. By considering the log-based collaborative filtering probabilistically
and proposing the linear interpolation smoothing, our user-item relevance model
in Eq. 11 provides a probabilistic justification. Our ranking formula can directly
be interpreted as TF×IDF-like ranking, since:

Pml(ib|im, r) ∝ c(ib, im)/c(im) and P (ib|r) ∝ c(ib) (12)

Also, Eq. 11 allows a very intuitive understanding of the statistical ranking
mechanisms that play a role in log-based collaborative filtering:

– The relevance rank of a target item im is the sum of both its popularity
(prior probability P (im|r)) and its co-occurrence (first term in Eq. 11) with
the items (ib) in the profile list of the target user. The co-occurrence is
higher if more user expresses interest in target item (im) as well as item ib.
However, the co-occurrence should be suppressed more when the popularity
of the item in the profile of the target user (P (ib|r)) is higher.

– When λ approaches 0, smoothing from the background model is minimal. It
emphasizes the co-occurrence count, and the model reduces to the traditional
item-based approach ([12]). When the λ approaches 1, the model is more
smooth, emphasizing the background model. When the parameter equals 1,
the ranking becomes equivalent to coordination level matching ([7]), which
is simply counting the number of times for which c(ib, im) > 0.

Two Representations. Traditionally, collaborative filtering makes a distinc-
tion between user-based and item-based approaches. Our probabilistic user-item
relevance model, derived with an information retrieval view on collaborative
filtering, demonstrates that the user-based (Eq. 16) and item-based (Eq. 11)
models are equivalent from the probabilistic point of view, since they have ac-
tually been derived from the same generative relevance model (Eq. 3). The only
difference in derivation corresponds to the choice of independence assumptions,
leading to the two different factorizations.

Consequently, this formula gives a much better understanding of the under-
lying statistical assumptions that are made in these two approaches. In the
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user-based approach, a target item is assumed to be judged or rated indepen-
dently (see the Appendix A) while in the item-based approach, a target user is
assumed to independently judge or rate each query item. Besides the differences
in the number of users (K) and the number of items (M), we believe that these
underlying assumptions are the major factors to influence the performances of
these two approaches in practice.

4 Experiments

The standard data set used in the evaluation of collaborative filtering algorithms
(MovieLens) is rating-based, which is not suitable for testing our method using
log-based user profiles. The user logs we used were collected from the Audioscrob-
bler1 community. The audioscrobbler data set is collected from the play-lists of
the users in the community by using a plug-in in the users’ media players (for
instance, Winamp, iTunes, XMMS etc). Plug-ins send the title (song name and
artist name) of every song users play to the Audioscrobbler server, which updates
the user’s musical profile with the new song. That is, when a user plays a song in
a certain time, this transaction is recorded as a form of {userID, itemID, t} tuple
in the database.

For computational reasons, we randomly sampled the data set to limit the
number of users to 428 users and the number of items to 516. The sparsity
(percentage of zero values in the user-item matrix) is 96.86% .

For cross-validation, we randomly divided this data set into a training set
(80% of the users) and a test set (20% of the users). Results are obtains by
averaging 5 different runs (sampling of training/test set). The training set was
used to estimate the model. The test set was used for evaluating the accuracy of
the recommendations on the new users, whose user profiles are not in the training
set. For each test user, 50% of the items of a test user were put into the user
profile list. The other 50% of the items were used to test the recommendations.
By doing so, the number of items in the user profiles reflects the distribution in
the overall data set.

The effectiveness of the log-based collaborative filtering experiments can be
measured using the precision and recall of the recommendations. Precision mea-
sures the proportion of recommended items that are ground truth items (only
partially known, by the half of the user profiles). The recall measures the pro-
portion of the ground truth items that are recommended. Note that the items in
the profiles of the test user represent only a fraction of the items that the user
truly liked. Therefore, the measured precision underestimates the true precision
([9]). In the case of making recommendations, precision seems more important
than recall. However, to analyze the behavior of our method, we report both
metrics on our experimental results.

We first studied the behavior of the linear interpolation smoothing. For this,
we plotted the average precision and recall rate for the different values of the
smoothing parameter λ. This is shown in Fig. 1.
1 Audioscrobbler is found at http://www.audioscrobbler.com/
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Fig. 1. Performance of the linear interpolation smoothing

Fig. 1 (a) and (b) show that both precision and recall drop when λ reaches
its extreme values zero and one. The precision is sensitive to λ, especially the
early precision (when only a small number of items are recommended). Recall
is less sensitive to the actual value of this parameter, having its optimum at a
wide range of values. Effectiveness tends to be higher on both metrics when λ
is large; when λ is approximately 0.9, the precision seems optimal. An optimal
range of λ near one can be explained by the sparsity of user profiles, causing
the prior probability P (ib|r) to be much smaller than the conditional probability
Pml(ib|im, r). The background model is therefore only emphasized for values of
λ closer to one. In combination with the experimental results that we obtained,
this suggests that smoothing the co-occurrence probabilities with the background
model (prior probability P (ib|r)) improves recommendation performance.

Next, we compared our user-item relevance model to other log-based collab-
orative filtering approaches. Our goal here is to see, using our user-item rele-
vance model, whether the smoothing and inverse item frequency should improve
recommendation performance with respect to the other methods. For this, we
focused on the item-based generation (denoted as UIR-Item). We set λ to the
optimal value 0.9. We compared our results to those obtained with the Top-N -
suggest recommendation engine, a well-known log-based collaborative filtering
implementation ([10]).2 This engine implements a variety of log-based recom-
mendation algorithms. We compared our own results to both the item-based
TF×IDF-like version (denoted as ITEM-TFIDF) as well the user-based cosine
similarity method (denoted as User-CosSim), setting the parameters to the opti-
mal ones according to the user manual. Additionally, for item-based approaches,
we also used other similarity measures: the commonly used cosine similarity
(denoted as Item-CosSim) and Pearson correlation (denoted as Item-CorSim).
Results are shown in Table 1. For the precision, our user-item relevance model
with the item-based generation (UIR-Item) outperforms other log-based collabo-
rative filtering approaches for all four different number of returned items. Overall,

2 http://www-users.cs.umn.edu/˜ karypis/suggest/
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Table 1. Comparison of Recommendation Performance

Top-1 Item Top-10 Item Top-20 Item Top-40 Item
UIR-Item 0.62 0.52 0.44 0.35
Item-TFIDF 0.55 0.47 0.40 0.31
Item-CosSim 0.56 0.46 0.38 0.31
Item-CorSim 0.50 0.38 0.33 0.27
User-CosSim 0.55 0.42 0.34 0.27

(a) Precision

Top-1 Item Top-10 Item Top-20 Item Top-40 Item
UIR-Item 0.02 0.15 0.25 0.40
Item-TFIDF 0.02 0.15 0.26 0.41
Item-CosSim 0.02 0.13 0.22 0.35
Item-CorSim 0.01 0.11 0.19 0.31
User-CosSim 0.02 0.15 0.25 0.39

(b) Recall

TF×IDF-like ranking ranks second. The obtained experimental results demon-
strate that smoothing contributes to a better recommendation precision in the
two ways also found by [21]. On the one hand, smoothing compensates for missing
data in the user-item matrix, and on the other hand, it plays the role of inverse
item frequency to emphasize the weight of the items with the best discriminative
power. With respect to recall, all four algorithms perform almost identically. This
is consistent to our first experiment that recommendation precision is sensitive
to the smoothing parameters while the recommendation recall is not.

5 Conclusions

This paper identified a close relationship between log-based collaborative filter-
ing and the methods developed for text information retrieval. We have built a
user-item relevance model to re-formulate the collaborative filtering problem un-
der the classic probability ranking principle. Using this probabilistic framework
of user-item relevance models, we introduced a linear interpolation smoothing
in collaborative filtering. We showed that smoothing is an important aspect to
estimate models due to the data sparsity. Similar to the situation in text re-
trieval, the user-item relevance model provides a probabilistic justification of
using TF×IDF-like item weighting in collaborative filtering.

Our further research aims to introduce relevance feedback into collaborative
filtering. One of the powerful characteristics of linear interpolation smoothing is
that we can vary smoothing parameter: λ → λ(ib) for the different items ib in the
user profile. It can then be treated as the importance of the query item. In the
beginning, all the items in the user profile are treated equally. From relevance
feedback, the importance value for different query items can be updated by using
EM algorithm ([7]).
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A User-Based Generation

By factorizing P (•|uk, im) with P (im|uk, •)P (•|uk)/P (im|uk), the following log-
odds ratio can be obtained from Eq. 3 :

RSVuk
(im) = log

P (r|im, uk)
P (r̄|im, uk)

= log
P (im|uk, r)
P (im|uk, r̄)

+ log
P (uk|r)P (r)
P (uk|r̄)P (r̄)

∝ log
P (im|uk, r)
P (im|uk, r̄)

(13)

When the non-relevance evidence is absent, and following the language model
([11]), we now assume equal priors for im in the non-relevant case. Then, the
non-relevance term can be removed and the RSV becomes:

RSVuk
(im) = log P (im|uk, r) (14)

Instead of using the item list to represent the user, we use each user’s judgment
as a feature to represent an item. For this, we introduce a list Lim for each item
im, where m = {1, ..., M}. This list enumerates the users who have expressed
interest in the item im. Lim(uk) = 1 (or uk ∈ Lim) denotes that user uk is in
the list, while Lim(uk) = 0 (or uk /∈ Lim) otherwise. The number of users in the
list corresponds to |Lim |.

Replacing im with Lim , after we assume each user’s judgment to a particular
item is independent, we have:

RSVuk
(im) = log P (im|uk, r) =

∑
∀ub:ub∈Lim

log P (ub|uk, r) (15)

Similar to the item-based generation, when we use linear interpolation smoothing
to estimate P (ub|uk, r), we obtain the final ranking formula:

RSVuk
(im) =

∑
∀ub:ub∈Lim

log P (ub|uk, r)

∝
∑

∀ub:ub∈Lim∩c(ub,uk)>0

log(1 +
(1 − λ)Pml(ub|uk, r)

λP (ub|r) ) + |Lim | log λ
(16)

where λ ∈ [0, 1] is the smoothing parameter.
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Abstract. In this paper, we describe a new approach for retrieval in texts with
non-standard spelling, which is important for historic texts in English or German.
For this purpose, we present a new algorithm for generating search term variants
in ancient orthography. By applying a spell checker on a corpus of historic texts,
we generate a list of candidate terms for which the contemporary spellings have
to be assigned manually. Then our algorithm produces a set of probabilistic rules.
These probabilities can be considered for ranking in the retrieval stage. An exper-
imental comparison shows that our approach outperforms competing methods.

1 Introduction

In 2005, we have seen a number of initiatives addressing the problem of digitising books
and making them available on the Internet, following earlier less ambitious projects like
e. g. project Gutenberg1. The US search engine Google proclaimed an effort to digitise
15 million books. Some months later, the Open Content Alliance2 was formed by sev-
eral companies, research institutes and universities from the US. Since these initiatives
are focusing on books in English only — and mainly as a reaction to the Google digi-
tisation initiative — the European Union plans to create a European digital library in
order to preserve the culture of the European countries. This library should include texts
from the traditional European libraries and make them available on the Internet. So far,
19 European libraries have signed the corresponding manifest [6]. There have been al-
ready several digitisation projects in the past, but only a small fraction of the library
content is digitised so far. With a European digital library project, the collections that
are available in the Internet could be growing exponentially.

In contrast to countries with institutions defining spelling standards (e.g. Spain,
France), English3 and German [11] spelling was not stable over several centuries. En-
glish spelling was more or less fixed around 1800. In contrast, German spelling was not
standardised until 1901/1902. Before that date, there was the rule ‘write as you speak’
(phonological principle of spelling) [8]. Because of the various dialects and the varia-
tions over time, German spelling before 1900 was highly time- and region-dependent.
But even for languages like French where the orthography has been standardised, early
spelling variants are occurring [2]. Furthermore, the predominant part of the 6,000

1 http://www.gutenberg.org/
2 http://www.opencontentalliance.org/
3 http://en.wikipedia.org/wiki/English_spelling, access 20 January 2005 11:05.
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contemporary spoken languages never became official languages and thus, they have
never been standardised at all [15].

The non-standard spelling produces problems when searching in the historic parts
of digital libraries. Most users will enter search terms in their contemporary language
which differs from the historic language used in the documents. In order to solve this
problem, our project deals with the research and development of a search engine where
the user can formulate queries in contemporary language for searching in documents
with an old spelling that is possibly unknown to the user. For this purpose, we are
developing transformation rules for generating historic spellings from a given word.

More specifically, our project aims at the following goals:

– The development of time- and location-specific rule sets. The revision of rules from
the text basis and from statistical analyses should be possible.

– The development of new distance measures for spelling variants on the basis of a
modified Levenshtein similarity measure.

– Application of the search engine in other German digitisation projects (e.g. the
Nietzsche project [1]).

The search engine under development is based on the probabilistic information re-
trieval engine PIRE [9] and will create a platform that supports the interactive, iterative
development of new rules.

The paper has the following structure. In Section 2, we give a brief survey over
related work. Section 3 discusses approaches for the search in text collections with
non-standard spelling, and outlines our work. The core of our approach is presented in
Section 4, where we specify the generation of rules for transforming words into their
ancient spellings. Our approach is evaluated in Section 5, and the last section concludes
the paper and gives an outlook on future work.

2 Related Work

Rayson et.al. [14] describe a project for dealing with historic spellings of English. They
developed a variant detector for English texts from the 16th-19th century. A major dif-
ference to our work consists in the fact that German is a highly inflected language, in
contrast to English. Thus approaches developed for English can hardly be applied for
German.

Previous digitisation projects for the German language (e.g the Bayrische Staats-
bibliothek4) employed standard search engines. Some of them are thesaurus-based (in
combination with manual indexing), but they do not offer specific support for search-
ing in historic texts. Other approaches use dictionaries for this purpose. However, this
approach covers only the words contained in the dictionary. Furthermore, the time and
effort for the manual construction of the word entries is rather high.

We want to overcome this disadvantage with a rule-based approach, in order to be
able to cover the complete vocabulary (and thus increase recall). On the other hand, the
rules to be developed should be sufficiently precise, for distinguishing between spelling
variants of the search term and other words.

4 http://www.bsb-muenchen.de/mdz/



Generating Search Term Variants for Text Collections with Historic Spellings 51

The topic addressed in this paper is related to problem of approximate name match-
ing [10]. There names with an incorrect spelling have to be found in a list of names.
However, the major difference between the two problems consists in the fact that names
usually differ only in their spelling, but not in their pronunciation. In contrast, words
from historic texts may also differ in their pronunciation, mainly due to regional dialects
[15]. These differences can also have effects on the spelling (see section 1).

The problem studied here is also somewhat related to cross-language information
retrieval [12], since in both cases mappings between words are considered. However,
our problem can be solved by means of mappings at the grapheme level, while only
dictionary-based approaches are suitable for cross-language information retrieval.

3 Searching in Text Collections with Non-standard Spelling

There are two possible approaches for searching in texts with spelling variants:

1. Stemming at indexing time: This standard information retrieval method requires the
set of stemming rules to be known at indexing time. In the case of spelling variants,
also rules for the standardisation of the different spellings are necessary. However,
the German language is a highly inflected language. Rule-based stemming for con-
temporary German requires rather complex rule sets, so it would be very difficult
to find the inflection rules which map the ancient spelling onto the associated con-
temporary radical. In our case, no rule set for spelling standardisation exists (and,
due to the time- and region-dependence, will probably never become available).

2. Generation of search term variants at retrieval time: For this query expansion again
rules for inflections and derivations of words as well as for handling spelling vari-
ants are required, but this time in the opposite direction, i.e. we need a mapping

search term → contemporary inflections (or derivations) → spelling variants

This approach is more flexible, as new rule sets can easily be adopted.

Indeed, the first approach would be a lot faster than the second one, because the time-
sensitive processing of the transformation happens once when a new collection gets
indexed. However, we assume that rule sets for spelling variations will not be fixed for
quite a long time and so only the second approach gives us the necessary flexibility.

In the latter approach, we first have to deal with morphological variations, before
we can start constructing the rules for spelling variants. For this purpose, we are using
a contemporary dictionary5 containing the full word forms [13]. Thus, when the user
enters a search term (in its basic word form), the dictionary yields all inflected forms.
This way, we can focus on the second mapping, i.e. the generation of spelling variants
of the inflected forms.

By comparing the inflected forms of the dictionary with the word list of our corpus
(or using a spell checker), we are getting a list of candidate words in non-standard
spelling (some words also may not be contained in the dictionary, though). On the other
hand, this method will not be able to detect homographs (ancient spelling that matches

5 http://wortschatz.uni-leipzig.de/
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a different contemporary word); this issue will be addressed at a later stage of our
project. This way, we get a list of candidate words from our corpus. Then, we have to
check manually if the words are really in a non-standard spelling, and have to assign
the equivalent words in the contemporary standard spelling. After that, we can focus on
the second step — the building of new rules.

Even though the studied language is German we also found examples for English
[14] where our approach could be employed. E. g. always — alwaies (y −→ ie), sudden
— suddain (e −→ ai), and publicly — publikely (c −→ ke).

In the following we list some example rules developed manually for the 19th century
German (Table 1).

Table 1. Example rules for German

Contemp. spelling 19th century rules

wiedergaben widergaben wieder −→ wider (1)
ie −→ i

akzeptieren acceptieren kz −→ cc (2)
k −→ c ∧ z −→ c

überall ueberall ü −→ ue (3)
seht sehet t −→ et (4)

The first example shows two rules at different levels of specialisation. The first
rule transforms a prefix whereas the second one only transforms an allograph (see
section 5.2). The next example also offers two possibilities. In this case the transfor-
mation can consist of one rule or the concatenation of two rules. However it becomes
apparent that the precision of the first rule would be much higher than that of the second
rule. The third case shows a very common rule for umlauts. The last example contains
a very general rule, but it could reach a higher precision if the rule is connected with
context information (in this case the end of the word). So not only the transformation
itself is important, but also the associated position.

Even though our approach requires a substantial manual effort at the beginning, we
expect that only little additional work is required later when the collection is growing
continually — due to the fact that we are working at the grapheme level.

4 Generation of Transformation Rules

As described above, our rule generation method starts with a training sample of his-
toric texts, on which we run a spell checker for contemporary German6. For all words
marked as incorrect spelling, the contemporary word form has to be assigned manually;
furthermore, we determine cf the number of occurrences of each historic word form.
Thus, we have a set H of triplets (a,h,cf ) (contemporary word form a, full word form
h, collection frequency cf ).

6 We are not using the contemporary dictionary for this purpose, since it contains a large number
of spelling errors, due to the fact that it was built automatically from large volumes of Web
pages.
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In the following, we denote a character string a also as a sequence a0 . . .an. Further-
more, if n = 0, then a0 . . .an denotes the empty string ε, and a|b denotes the concatena-
tion of strings (for convenience, we don’t distinguish between characters and strings of
length 1 here). The definitions apply accordingly for a character string h. Furthermore,
we assume that each word form has a leading and a trailing blank. For lists we use the
Prolog-like notation [l1, . . . , lk], and we also use the notation [h|t] for splitting a list into
head h and tail t.

For generating transformation rules, we use the set H containing the contemporary
words and their historic spellings. First, we compare the two words and determine so-
called ‘rule cores’, i.e. the necessary transformations. In a second step, we generate
rule candidates that also consider context information from the word a. Finally, in the
third step, we select the useful rules by pruning the candidate set. For describing the
different steps, we are specifying the functions involved — the corresponding algo-
rithms offer various possibilities for optimisations, which are still under development
(a straightforward implementation could be achieved by using Prolog or a function-
oriented programming language).

4.1 Generate Rule Cores

For the rule cores, we determine the necessary transformations and also identify the
corresponding contexts. First, we define a function rcg1(), which creates a mixed list of
transformations and contexts when being called with two words and an empty string as
initial value. For example, for a=‘ unnütz ’ and b=‘ unnuts ’, rcg(a,b,’ ’) would yield
p= [‘ unn’,(‘ü’,‘u’),‘t’,(‘z’,‘s’),‘ ’].

rcg1(a0 . . .an,h1 . . .hm, p) =⎧⎪⎪⎨⎪⎪⎩
[p] , if n = m = 0
rcg1(a2 . . .an,h2 . . .hm, p|a1 , if a1 = h1

[p,(a1 . . .a j,h1 . . .hl)|rcg1(a j . . .an,hl . . .hm,ε)]
so that a j+1 = hl+1 and j + m is minimum , if a1 	= h1

Given such a list L, we now generate the rule cores, i.e. the transformations with the
left and right contexts, by means of the following recursive function:

rcg(L) ={
/0 , if |L| = 1
rcg(L′)∪{(l, t,r)} with L = [l,t,r|R] and L′ = [r|R] , otherwise

For our example from above, we would get the following 2-element set of rule cores:
{(‘ unn’,(‘ü’,‘u’),‘t’), (‘t’,(‘z’,‘s’),‘ ’).

4.2 Generate Rule Candidates

For each rule core, we want to generate a set of rule candidates, by successively adding
left and right context to the left-hand side of a transformation rule. Besides considering
the exact characters occurring in the context, we also regard abstractions to the two
character classes vowels and consonants denoted by V and C, respectively. In addition,



54 A. Ernst-Gerlach and N. Fuhr

B denotes a blank. Thus, the left context of a transformation has the general syntax
B?[C/V]*[‘a’..‘z’]* 7, and the right context follows the grammar [‘a’..‘z’]*[C/V]*B?.

For each element (l,(s,d),r) from our list of rule cores, we call the function
rg(l,r,(ε,s,ε,d)) which is defined as follows:

rg(l,r,t) = rgcl(l,r, t)∪ rgcr(l,r, t)∪ rge(l,r,t)
rge(l,r,t) = rgl(l,r,t)∪ rgr(l,r,t)∪{r}

rgcl(l1 . . . ln,r1 . . .rm,( f ,s,b,d)) ={
rg(l1 . . . ln−1,r1 . . . rm,(ln| f ,s,b,d)) , if n > 0
/0 , otherwise

rgcr(l1 . . . ln,r1 . . .rm,( f ,s,b,d)) ={
rg(l1 . . . ln,r2 . . . rm,( f ,s,b|r1,d)) , if m > 0
/0 , otherwise

rgl(l1 . . . ln,r1 . . . rm,( f ,s,b,d)) ={
rge(l1 . . . ln−1,r1 . . . rm,(cc(ln)| f ,s,b,d)) , if n > 0
/0 , otherwise

rgr(l1 . . . ln,r1 . . .rm,( f ,s,b,d)) ={
rge(l1 . . . ln,r2 . . . rm,(| f ,s,b|cc(r1),d)) , if m > 0
/0 , otherwise

Here rgcl() and rgcr() generate rules containing literal characters, whereas rge() pro-
duces rules with the generalisations mentioned above. rgl() generalises the next charac-
ter of the left context, and rgr() the next character on the right. In practical applications,
we further restrict the number of candidate rules generated by these functions by defin-
ing a maximum length for the left and right context to be considered.

For our example from above, the following candidate rules are generated (among
others: (ε,ü,ε,u), (n,ü,ε,u), (ε,ü,t,u), (n,ü,t,u) (C,ü,ε,u), (ε,ü,C,u), (C,ü,C,u).

Given these candidate rules for a contemporary word a and its historic form h, we
generate a tuple (a,h,cf ,( f ,s,b,d)) for each candidate rule; in addition, cf denotes the
collection frequency of h. The set of these tuples for all our triplets from H forms the
set of training instances E .

4.3 Rule Set Pruning

The generation of the final transformation rules can be regarded as a classification task,
where we have to distinguish between ‘correct’ and ‘incorrect’ rules. The set E of in-
stances ei = (ai,hi,c fi,( fi,si,bi,di)) ∈ E with the rule candidates contains the positive
examples. The negative examples consists of the words a in E where a rule can be
applied, but has not been generated 8.

7 According to the notation of regular expressions, ? denotes an occurrence once or not at all
and * denotes an occurrence zero or more times.

8 This is only an approximation, but a proper set of negative examples would require a huge
manual effort.
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For deriving a good set of transformation rules, we have developed an extension of
the PRISM algorithm developed in data mining [4]. PRISM assumes that we have a set
of instances to be classified into a set of classes (in our case: correct/incorrect rules).
Instances are described by a fixed set of attributes with values from a nominal scale. For
each class C, the algorithm tries to find a set of high-precision rules for identifying the
instances belonging to C.

For each class C
Initialise E to the instance set
While E contains instances in C
Create a rule R with an empty left-hand side that predicts C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A=v to the left-hand side of R
Select A and v to maximise the accuracy p/t

(break ties by choosing the condition with the largest p)
Add A=v to R

Remove the instances covered by R from E

Unfortunately, we cannot apply PRISM directly, for two major reasons:

1. We are not aiming at perfect rules, since this would result in rules which are specific
for each contemporary word form — and thus, hardly any words not seen before
would be covered by these rules (i.e. we would get a high precision, but very low
recall).

2. Instead of a set of attributes with fixed sets of nominal values, we have a possibly
infinite set of left-hand sides of rules. For this reason, we are generating rule candi-
dates from examples, whereas PRISM generates rules independent from examples
and then tests their quality. In PRISM, adding a condition to a rule results in a more
specific rule. In our case, we also have generalisation/specialisation relationships
between rule antecedents, which we can exploit for directing the search.

Based on these considerations, we have developed the rule pruning algorithm that
takes the candidate set E and outputs a final set F of rules. (Similar algorithms have been
proposed for text categorisation, see e. g. [5], but they do not consider the specialisation
hierarchy on rule conditions.) As additional parameters, two cutoff values have to be
specified for this algorithm: qmin denotes the minimum number (of tokens) of correct
applications of a rule, and pmin is the minimum precision of rules to be considered.

Let us assume that we have a Boolean function match(r,a) which tests if the word
a satisfies the right-hand side of rule r. Based on this function, the most expensive step
in our algorithm is the search for all word forms where match() yields true. In order
to speed up this process, we first sort the instances by the rule itself; thus, we have
to perform the search only once for each rule (and not once per instance). Due to the
regular structure of our rules, we can use an access structure like a PAT array [7] for
determining all matching word forms.

In the following qi denotes the number of positive occurrences of rule r and pi de-
notes the precision of rule r.
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For each training instance ei, let

Ei = {r|r ∈ E ∧ r = (a,h,c f ,( fi,si,bi,di))}
mi = ∑

e j∈E∧match(ei,a j)
c f j

qi = ∑
e j∈Ei

c f j

pi =
qi

mi

Remove all instances ei from E where pi < pmin ∨qi < qmin.
Let F = /0.

while E 	= /0 do

1. from the instances with the highest p values, select those with the highest q values
and among those, choose one for which there is no instance in E with a more
general rule. Let ei denote this instance.

2. F = F ∪ (ei, pi).
3. remove all instances from E where ei applies: let

D = {e j|e j ∈ E ∧ e j = (a j,h j,c f j,( f j,s j,b j,d j))∧
∃ek ∈ E ∧ ek = (a j,h j,c fk,( fi,si,bi,dk))

Then set E := E −D.

od.

4.4 Rule Application

Given the set of probabilistic rules as described above, they can be applied in our search
engine. For a contemporary word a, we want to generate all historic spellings. Thus, for
any element (ri, pi) ∈ F , if match(ri,a), ri is applied to a, thus yielding the word ai. This
way we are generating a set of historic spellings for a single word a, by application of
single rules. Obviously, these word forms are not all equally precise. Therefore, these
words should be assigned weights which reflect the precision of the rules they resulted
from [17].

Our retrieval engine considers the precision of rules in the following way:
For a spelling variant w generated from a search term t, we interpret p as the prob-

ability p = P(t → w) that t implies w. Since our search engine is based on retrieval
as uncertain inference, these probabilities can be easily incorporated into the retrieval
process (e.g. in the simple case of binary indexing and single-term queries, p would be
the weight of a document containing w).

5 Evaluation

For evaluation, we compared our new approach with two other methods developed be-
fore. Here we first describe the alternative methods, and then we present the experimen-
tal results.



Generating Search Term Variants for Text Collections with Historic Spellings 57

5.1 Manually-Built Rules

In [11], the manual construction of two rule sets for 19th century German texts is de-
scribed. For the first rule set, each rule can only be applied at most once at a specific
position in a word (e. g. ä −→ e). In contrast, the rules from the second rule set (e. g. aa
−→ a) can be applied an arbitrary number of times. Due to the fact that spelling vari-
ants often occur because of differences in pronunciation, a part of the rules have been
developed by comparing pronunciations. Other rules have been developed by literature
research. For each word in question, these rules are applied onto the contemporary and
the historic word form. If the results of the transformations are equal, this means that a
historic spelling variant has been found.

5.2 Variant Graph

The approach presented in [2] is similar to phonetic name matching. For each graphem,
the appropriate allographs are generated. For example, the grapheme f has the allo-
graphs {u,v, f , f f , p f}. Given the set of allographs for each graphem, a variant graph
can be build for each input word in contemporary spelling. For each grapheme in the
input word this graph contains the corresponding allographs; each path in the graph
produces one variant spelling. As an example, Figure 1 shows the variant graph for the
word ‘Himmel’ (sky).

Fig. 1. The variant graph for ‘himmel’

5.3 Experiments

For a comparative evaluation of the different approaches, we used documents from the
Nietzsche collection and other smaller collections containing texts from the 19th cen-
tury. The manually build rule set had been developed only based on the Nietzsche col-
lection while the rule set for the other two approaches had been developed for the whole
test collection. Our small collection contains 64290 word tokens, with 11326 different
words (types). After feeding the types into the spell checker, followed by manual check-
ing of the marked words, we were left with 717 different words in historic spellings.

Since our new approach requires a training sample, we split the available data such
that two thirds of the instances were used as training sample, and the remaining third as
test sample.

The recall and precision values are based on collection frequency of the retrieved full
word forms. The results of applying the three approaches to the test sample are shown
in Table 2.
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Table 2. Recall and precision figures of the three approaches

Approach Precision Recall
Manual rules 0.53 0.09
Variant graph 0.48 0.69
Automatic rules 0.45 0.88

The manually developed rules from [11] perform poorly, as they achieve a precision
of 0.53, but only a recall of 0.09. In addition to the low quality, a major disadvantage
of the manual rules is the intellectual effort for their development. Thus, this approach
does not seem to be suitable for supporting retrieval of texts in historic spelling, because
we did not even get an expected high precision for the available rules.

With the variant graph, we reach a similar precision, but a recall level of 0.69.
Roughly speaking, this approach misses one out of three words in historic spelling; this
is not a satisfying result - even though only a fraction of all words occur in non-standard
spelling. Another drawback of the variant graph method is the large number of spelling
variants generated (e. g. 18 in Figure 1), which increases retrieval times substantially.

The automatic generated rules reach a precision of 0.45 and a recall of 0.88. In
comparison to the other two approaches, precision is slightly inferior. On the other
hand, the recall is 28 % better as that of the variant graph method.

With the automatically generated rules, it is also simple to look at the precision
values for single rules. These precision values are based on the collection frequency
of full word forms and the false positives the rules are used for. Table 3 shows some
frequently used rules with their corresponding precision values.

We generated a first rule set with the parameters pmin = 0.0 and qmin = 1. By ap-
plying higher thresholds values pmin in our rule pruning algorithm, we can increase the
precision on the test sample. Table 4 shows the corresponding results. A reasonable
threshold seems to be 0.4, because recall decreases only slightly from 0.88 to 0.86,
while precision decreases from 0.45 to 0.77 and is consequently superior to the preci-
sion values of the other two approaches.

Table 3. Frequently used rules

Rules Context Frequency Precision Examples

t −→ th 116 0.67 Einteilung - Eintheilung
ä −→ ae post: C 42 0.98 Ämter - Aemter
s −→ ß 35 0.62 aus - auß
k −→ c 32 0.8 Kollegien - Collegien
ü −→ ue 20 0.69 Übertragung - Uebertragung
ä −→ ai 18 1.0 souverän - souverain

Table 4. Recall and Precision for different threshold values pmin

pmin 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall 0.88 0.87 0.87 0.87 0.86 0.73 0.73 0.69 0.65 0.63 0.29
Precision 0.45 0.65 0.65 0.75 0.77 0.93 0.94 0.96 0.98 0.99 1.00
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Overall, these results the implementation of our new approach show that automati-
cally generated rules outperform previous methods, and that we are on the right track
to achieve a high quality in the generation of historic spellings.

6 Conclusion and Future Work

In this paper, we have discussed the problem of retrieval in historic texts with non-
standard spelling. We have shown that due to the large variations in historic spellings,
the standard stemming approach cannot be applied. Instead, historic variants of the
search terms have to be generated. By using a contemporary dictionary containing the
inflected word forms, we first map the search term onto its inflected forms, and then
generate the corresponding historic variants. For this purpose, we have described a ma-
chine learning method for generating appropriate transformation rules. Since the rules
have probabilistic weights, these weights can be considered in retrieval for weighting
the documents matched by search terms generated through weighted rules.

So far, we have only a first version of our algorithm. As an obvious extension of the
basic algorithm, we should consider better parameter estimation methods for estimating
the precision of rules with a small number of positive examples. The manual analysis
of the errors on the test set has shown that a large number of errors is caused by a few
words. Thus, these words should be considered as exceptions in the rules — so the rule
generation algorithm should be modified accordingly.

For an application of our approach to large corpora, we are also working on the de-
velopment of an interactive tool for rule generation. Instead of assessing a large number
of ‘misspelled’ words before starting rule generation, the interactive tool would start
with a few assessed examples only, generate rule candidates and then ask the user for
judging about (a representative sample of) other words where these rules apply.

So far, our method has been applied to German texts only. However, by exchanging
the linguistic resources (i.e. the dictionary containing the full word forms) it can be
easily applied to other languages.

The module for generating historic variants of search terms will be integrated in a
probabilistic engine for the retrieval of historic texts. Only through retrieval experiments
with historic collections, we can assess the ultimate quality of the new method presented
here.
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Abstract. In this paper, we propose a common phrase index as an ef-
ficient index structure to support phrase queries in a very large text
database. Our structure is an extension of previous index structures for
phrases and achieves better query efficiency with negligible extra storage
cost. In our experimental evaluation, a common phrase index has 5%
and 20% improvement in query time for the overall and large queries
(queries of long phrases) respectively over an auxiliary nextword index.
Moreover, it uses only 1% extra storage cost. Compared with an inverted
index, our improvement is 40% and 72% for the overall and large queries
respectively.

1 Introduction

In this information age, search engine acts as an efficient tool for seeking in-
formation from a vast heap of online texts. By providing an ad hoc query, we
can immediately get a set of texts from gigabytes text database. As the Internet
is growing at an extremely fast pace, the number of hosts available increased
more than 130 folds (from 1.3 to 171 millions1) in the last decade. Hence, search
engines should be able to evaluate queries efficiently and effectively. In other
words, the systems should resolve queries quickly and also provide accurately
what the users want [13]. In order to improve the effectiveness of searching, con-
sidering phrases in searching and indexing seems to be an interesting idea for
the following reasons:

– Phrases come closer than individual words or their stems to express struc-
tured concepts.

– Phrases have a smaller degree of ambiguity than their constituent words.
That is, while two words are both ambiguous, the combination is not, since
each of its two constituent words creates a context for the unambiguous
interpretation of the other.

– By using phrases as index terms, a document that contains a phrase would
be ranked higher than a document that just contains its constituent words
in unrelated contexts.
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Grants Council of the Hong Kong Special Administrative Region, China [Project
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1 Source: Internet Software Consortium (http://www.isc.org/).
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Previous research works on phrase recognition and automatic phrase forma-
tion [6, 7, 8] resulted in improved retrieval effectiveness. Also, an amalgamated
hierarchical browsing and hierarchical thesaurus browsing can be used to dis-
play the result set of documents in a more effective way than simply listing the
results [11].

To efficiently resolve a query with gigabytes of online texts, an efficient way of
indexing is essential. A conventional and practical way of indexing is the inverted
index [17]. For each term in the index, there are a list of postings with document
identification numbers, within-document frequencies and offsets at which the
term appears. To resolve a query, we can simply combine the lists attached to
each of the query terms to get the results. It is straightforward to intersect the
lists with the consideration of the offsets of the terms to produce the result set for
a phrase query. However, for evaluating common words, the process of merging is
slow due to the long list of postings retrieved. Even if we use pruning techniques
like frequency-sorted indexing and impact-sorted indexing so that we need not
retrieve the whole postings list of a term [1, 2, 5, 12], the number of retrieved
highest-scored postings of a common word can still reach several megabytes.
Also, these early termination heruistics do not retain the complete set of result
documents.

Nextword index provides a fast alternative for resolving phrase queries, phrase
browsing, and phrase completion [15]. Unlike an inverted index, it has a list of
nextwords and positions following each distinct word. The set of first words is
known as the vocabulary or firstword. The words following the firstwords are
called nextwords. The major drawback of using nextword index is its large space
consumption which is around 60% of the size of the indexed data. With careful
optimization techniques [3], the size of a nextword index file can be reduced to
49% of the indexed data. An auxiliary nextword index proposed by Bahle et. al
[4] further reduces the space overhead to only 10% of the size of the inverted
index file.

In this paper, we propose a new indexing structure which we call common
phrase index. Building on the ideas of the inverted index and auxiliary nextword
index, it divides the vocabulary into two sets: rare words and common words.
We attach a list of postings to each of the rare words as in an inverted index. For
the common words, it differs from the nextword index structure in that it has a
collection of trees such that each root-to-leaf path represents a phrase starting
from a common word and ending in a terminal word. Moreover, postings lists
are only attached to the leaf nodes of the tree. This combination of structures
breaks down the original inverted lists of terms and provides useful additional
information for evaluating phrases efficiently from a large text database. Similar
to our index, Moffat and Zobel [10] proposed that inverted lists can be broken
into groups by introducing synchronization points. However, our index applied
the concept of phrase and hence has the following advantages over it. First, it
supports fast phrase query evluation. Also, it breaks only some inverted lists
but provides significant improvement in efficiency. Last, it is not required to
determine the number of document pointers in a group.
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In our experiments, we implemented a prototype system to compare an in-
verted index, auxiliary nextword index, and common phrase index against a set
of benchmark documents and query logs. Our results show that common phrase
index speeds up the overall efficiency and large-sized query evaluation by 5% and
20% respectively. Both the inverted index and nextword index have a significant
increase in the query time as the size of query increases. In contrast, common
phrase index shows only a slight increase in query time as the query size in-
creases. Also, the storage usage is just increased by about 1% of the auxiliary
nextword index.

The rest of this paper is organized as follows. Section 2 and 3 describe the in-
verted index, nextword index, and auxiliary nextword index. Section 4 introduces
our common phrase index and its interesting characteristics. Section 5 explains
our experiment setup and presents our results. Section 6 is our conclusion and
future work.

2 Inverted Indexes

Inverted index, or inverted file structure, is the most commonly used index struc-
ture for database management and information retrieval systems [9]. An inverted
index is a two-level structure. The upper level is all the index terms for the col-
lection. For text database, the index terms are usually the words occurring in
the text, and all words are included. The lower level is a set of postings lists, one
per index term. Following the notation of Zobel and Moffat [16], each posting is
a triple of the form:

< d, fd,t, [o1, ..., ofd,t
] >

where d is the identifier of a document containing term t, the frequency of t in d
is fd,t, and the o values are the positions in d at which t is observed. To evaluate
a query, each query term is used to fetch a postings list via the vocabulary
search. For instance, suppose we have the following four documents associated
with their contents:

Document 1 {Computer Science}
Document 2 {Computer Engineering}
Document 3 {Search Engine}
Document 4 {Computer Science: Search Engine}.

Then, the postings lists of “computer” and “science” are:

<computer, 3, <1, 1, [1]>, <2, 1, [1]>, <4, 1, [1]>>
<science, 2, <1, 1, [2]>, <4, 1, [2]>>.

It indicates that document 1, 2, and 4 have one occurrence of “computer” each
at the position 1 of the documents. The term “science” exists at position 2 of
both document 1 and 4. To resolve a phrase query “Computer Science”, we
first retrieve the corresponding postings list of each query term and then we
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sort the lists according to the value ft in ascending order. Finally we intersect
the lists one by one from the rarest to the most common term with a temporary
structure. When intersecting the sorted lists, we have to consider the proximity.
The query terms “Computer” and “Science” have a position difference of one.
Hence, for each intersect operation, we first see if there is any document identifier
present in both structures. For each matched document, we check if the offsets of
them are having a position difference of one. So, the results of the phrase query
“Computer Science” are document 1 and 4.

3 Nextword Indexes and Auxiliary Nextword Indexes

Inverted index is not efficient for evaluating query with common terms since
the three most common words account for about 4% of the size of the whole
index file [4] and retrieving such long postings list can suffer a long operation
time. Hence, nextword index [15] is proposed to construct an index by recording
additional index for supporting fast evaluation of phrase queries.

A nextword index is a three-level structure. The highest level is of the dis-
tinct index terms in the collection, which we call firstwords. At the middle level,
for each firstword there is a collection of nextwords, which are the words ob-
served to follow that firstword in the indexed text. At the lowest level, for
each nextword there is a postings list of the positions at which that firstword-
nextword pair occur. Using the same example we employed in Section 2, the
postings lists of all firstword-nextword pairs of the nextword index are shown
below:

<computer_science, 2, <1, 1, [1]>, <4, 1, [1]>>
<computer_engineering, 1, <2, 1, [1]>>
<science_search, 1, <4, 1, [2]>>
<search_engine, 2, <3, 1, [1]>, <4, 1, [3]>>.

To pose a phrase query “Computer Science”, nextword index just needs to fetch
a single list of postings instead of retrieving two long lists of postings and per-
forming intersection. This speeds up the evaluation of a phrase query. The ap-
plications of nextword index can be found in [15]. However, the size of index is
large. Bahle et. al [4] observe the weakness of resolving phrase query by using an
inverted index and the enormous size overhead of a nextword index and hence
proposed auxiliary nextword index. The main idea of the auxiliary nextword
index is that only the top-frequency words are to be indexed with nextwords.
For example, using the same sample documents as Section 2 and assuming that
“computer” is the only high-frequency or common word, all firstword-nextword
pairs of the auxiliary nextword index are as:

<computer_science, 2, <1, 1, [1]>, <4, 1, [1]>>
<computer_engineering, 1, <2, 1, [1]>>.
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To resolve a query, the steps are similar to an inverted index. However, the
auxiliary nextword index first contends with the common words of query terms,
and then the rest. Experimental result in [4] shows that having the three most
common terms as firstwords consumes just 10% of space of the inverted index.
Therefore, a huge amount of space is saved compared with nextword index. The
ideal size of phrase query for an auxiliary nextword index is two because only
one fetching is required. However, in the query log of Excite dating 1997 and
1999, queries of size two occupied only 35.28%. For queries of size one, which
accounts for 25.36%, no index can be more efficient than an inverted index. For
the remaining 39.36% of queries, a nextword index has to perform at least two
fetchings and one intersection. We will show that a common phrase index can
further improve the efficiency for query size larger than two.

4 Common Phrase Indexes

The main difference between a common phrase index and an auxiliary nextword
index is that the additional index terms are not fix-sized firstword-nextword pairs
but variable-sized common phrases. For each common phrase, there is a postings
list of the positions at which that common phrase occur.

4.1 Common Phrases

We define common phrase as a sequence of two or more contiguous words that
starts with a common word and ends in a terminal word.

We define common words as those words having the highest frequencies in
a set of queries. Thus our notion of common word is sensitive to the query
workload. For concreteness, we take the Excite query log dating 1997 and 1999
as reference. We first count the frequency of each distinct word of the query
logs. The highest-frequency words are known as common words and the others
are called rare words.

Terminal words are words which are likely to be the end of a phrase. We
observe that in an auxiliary nextword index, some of the indexed pairs (e.g.
“in all”, “in new”, “in the”) can actually be expanded in order to achieve fur-
ther efficiency improvement. These firstword-nextword pairs do not end in a
significant or terminal word (to be defined). We have investigated the 2.1 mil-
lion queries in the query logs of the Excite dating 1997 and 1999. In the logs,
we count the frequency of each function (or part-of-speech) of the last word of
all queries by submitting the words to Merriam-Webster OnLine and retrieving
the corresponding functions, see Table 1. If a word has more than one func-
tion, we take the most popular function of the word. Note that, the function
Others includes misspellings and proper nouns. In the table, we observe that
prepositions, adverbs, conjunctions, definite articles, indefinite articles, and pro-
nouns occupy only 0.408% of all last words of the queries. That is, a query
often contains a phrase with last word having other kinds of function. Thus,
we define the terminal word of our common phrase as any word whose function
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Table 1. Function Frequency of Query Last Word

Function Frequency Percentage
adjective 62482 2.938%

preposition 1556 0.073%
adverb 5116 0.241%

conjunction 209 0.010%
definite article 79 0.004%

indefinite article 15 0.001%
verb 126252 5.936%
noun 1050804 49.410%

pronoun 1686 0.079%
others 878512 41.308%

<......>, <.......>, <.......>, ....R1

<......>, <.......>, <.......>, ....R2

<......>, <.......>, <.......>, ....
Common
Phrases

W2

Rare

Words

T3

C1 <......>, <.......>, <.......>, ....

W1 T1

C2 <......>, <.......>, <.......>, ....

<......>, <.......>, <.......>, ....T2

<......>, <.......>, <.......>, ....

Fig. 1. Common Phrase Index Structure

is not a preposition, adverb, conjunction, definite article, indefinite article, or
pronoun.

The structure of common phrase index is illustrated in Figure 1, where the
C’s are common words, R’s are rare words, T ’s are terminal words, and W ’s
are the others. The concept of common phrase index can be easily illustrated
by using a simple example to compare the structure of auxiliary nextword in-
dex and common phrase index. For instance, suppose we have the following
documents:

Document 1 {Students of the same year}
Document 2 {Computer and applications}
Document 3 {Usage of the Search Engine}.

For the sake of brevity, we omit all the postings lists of the rare words. Then,
the auxiliary nextword index for the documents contains:
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<and_applications, 1, <2, 1, [2]>>
<computer_and, 1, <2, 1, [1]>>
<of_the, 2, <1, 1, [2]>, <3, 1, [2]>>
<the_same, 1, <1, 1, [3]>>
<the_search, 1, <3, 1, [3]>>

while the common phrase index for the documents contains:

<and_applications, 1, <2, 1, [2]>>
<computer_and_applications, 1, <2, 1, [1]>>
<of_the_same_year, 1, <1, 1, [2]>>
<of_the_search, 1, <3, 1, [2]>>
<the_same_year, 1, <1, 1, [3]>>
<the_search, 1, <3, 1, [3]>>.

The number of contiguous words in an auxiliary nextword index is capped at
two while that in a common phrase index is not limited. The size of a common
phrase stops growing when it encounters a terminal word. In the above example,
the postings list of the firstword-nextword pair “of the” in the nextword index is
broken down into “of the same year” and “of the search” in the common phrase
index. By issuing a query “computer and applications”, auxiliary nextword index
has to perform two fetchings and one intersection while the common phrase index
has to perform just a single fetching.

Note that by using common phrase index, high efficiency in phrase evaluation
can be sustained even if the query size is large. Our experiments in Section 5
show that improvement of common phrase index enlarges when the query size
increases. The further breakdown of the postings lists in common phrase index
supports high efficiency with low additional storage overhead comparing with
auxiliary nextword index.

4.2 Query Evaluation

To evaluate a query with common phrase index, we perform the following steps:

1. Identify the first common word of the query.
2. Expand the common word to a common phrase by adding the succeeding

words of it until a terminal word or end of query is reached. If the common
phrase is found, fetch the postings list to a temporary structure. Then mark
all the words of the common phrase as covered.

3. Find the next common word from the query terms that are not yet covered.
4. Repeat Step 2 and intersect the fetched postings list with the temporary

structure until all common words are covered.
5. For all the words not yet covered, which must be rare words, fetch the as-

sociated postings list and intersect with the postings list in the temporary
structure.

4.3 Dynamic Nature of Common and Rare Words

Our experiments use a set of common words that is “ideal” for a certain set of
queries. In reality, the set of highest-frequency words in query log keeps changing.
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We have studied a report that analysed an Excite query log of 16 September 1997
[14] which listed the top 75 terms that are occurring more than 1110 times in
the 531,416 unique queries. The top 8 terms with more than 5000 times each in
unique queries are the words likely to have high-frequency at anytime, they are
“and”, “of”, “sex”, “free”, “the”, “nude”, “pictures”, and “in”. These terms have
80778 or 15.2% of the total occurrences of the top 75 terms. However, some terms
ranked in the top 75 are not that stable especially for those having less than 2000
times each in unique queries. They are popular for querying at a certain period of
time because of some incidences. For example, the terms “princess” and “diana”
which are having 1461 and 1885 times respectively in 1997 because many people
are in memory of Diana, Princess of Wales. The high-frequency word “diana” is
ranked at 31st in 1997 but it falls to 315th when we take both 1997 and 1999
Excite query log into consideration. The term “princess” is ranked from 45th in
1997 and dropped to 362nd in both 1997 and 1999.

Our observation suggests that common phrase index should be dynamically
changing according to the high-frequency terms at that time. Basically, common
phrase index is a combination of an inverted index and additional indexes of
common phrases. By using this combination, it is easy for updating the index
file. The system has to keep the frequency of each query term. For each word
newly falling into the set of common words, we break down the corresponding
postings list into several lists indexed by common phrases. In contrast, for each
word that is newly excluded from the set of common words, we can union the
lists of common phrases into one list.

5 Experiments

In our experiment, we implemented a prototype system to evaluate phrase
queries for comparing the efficiency and total size of inverted index, auxiliary
nextword index, and common phrase index. We used a database system, MySQL,
to store all the postings lists, vocabularies, and dictionary. All experiments were
run on an Intel 3 GHz Pentium 4-based server with 2 Gb of memory, running
Linux operating system under light load.

We used a set of benchmark documents and query logs in our experiments.
For test documents, we used the .Gov web research collection from TREC. This
collection is especially for Information Retrieval systems in a Web context and
large-scale information retrieval systems design and evaluation. It was collected
in early 2002 and contains about 1.25 million .gov web pages with a total size of
about 18.1 Gbytes. For test queries, we used the query logs provided by Excite
dating to 1997 and 1999. These are the same query logs used by Bahle et. al [4].
There are 2.1 million queries in the query logs (including duplicates).

We did the following preprocessing to each document. First of all, any format-
ting information such as HTML or XML tags are removed from the document.
Special characters are replaced by blanks and all upper-case letters are changed
to lower-case. After these, a document becomes a sequence of words separated
by blanks. We then constructed the postings lists for each kind of indexing and
stored them in database.
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In our experiments, we first focus on comparison in efficiency between auxil-
iary nextword index and common phrase index. We tried designating different
number of words as common words in the vocabulary for both indexes, see
Table 2. For each size of the set of common words, we show the overall efficiency
and also break down the results according to the query size in order to pinpoint
where improvements are made. For all the different sizes of the set of common
words we have tested, we have about 4% improvement in the overall efficiency.
For queries of size one and two, the common phrase index does not have any

Table 2. Efficiency in average milliseconds of Auxiliary Nextword Index (ANI) and
Common Phrase Index (CPI) with 10, 20, and 255 common words. (Δ = ANI −CPI)

Query Size ANI(10) CPI(10) Δ
ANI(10) ANI(20) CPI(20) Δ

ANI(20) ANI(255) CPI(255) Δ
ANI(255)

Overall 367.47 352.30 4.13% 359.34 341.72 4.90% 247.77 237.55 4.12%
1 79.99 79.98 0.01% 80.05 79.66 0.49% 77.36 76.88 0.62%
2 302.49 302.42 0.02% 300.69 299.60 0.36% 243.04 241.44 0.66%
3 452.96 448.21 1.04% 445.90 438.91 1.57% 322.16 311.65 3.26%
4 643.85 619.25 3.82% 625.79 596.87 4.62% 383.80 362.47 5.56%
5 708.75 642.19 9.39% 680.87 608.02 10.70% 375.01 335.58 10.52%

≥ 6 980.00 804.69 17.89% 921.68 729.56 20.85% 397.77 331.88 16.56%

Table 3. Efficiency in average milliseconds of Inverted Index (II), Auxilary Nextword
Index (ANI) and Common Phrase Index (CPI) with 255 common words

Query Size II ANI(255) CPI(255) II−ANI(255)
II

II−CPI(255)
II

Overall 401.80 247.77 237.55 38.33% 40.88%
1 79.97 77.36 76.88 3.26% 3.86%
2 307.57 243.04 241.44 20.98% 21.50%
3 488.34 322.16 311.65 34.03% 36.18%
4 701.48 383.80 362.47 45.28% 48.33%
5 857.19 375.01 335.58 56.25% 60.85%

≥ 6 1223.12 397.77 331.88 67.48% 72.87%

Table 4. Size of Inverted Index (II), Auxilary Nextword Index (ANI) and Common
Phrase Index (CPI) with 10, 20, and 255 common words

Index(Common words) Index Size (Gb) CPI(x)−ANI(x)
ANI(x)

index(x)−II
II

II 23.08 - -
ANI(10) 25.67 - 11.24%
ANI(20) 26.56 - 15.08%
ANI(255) 26.86 - 16.38%
CPI(10) 25.96 1.13% 12.50%
CPI(20) 26.94 1.44% 16.73%
CPI(255) 27.28 1.59% 18.22%
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improvement as we have expected because it can at most extract phrases of the
same length as in auxiliary nextword index. Note that, the improvement rate in-
creases when the size of query increases. Common phrase index can even achieve
more than 16% improvement when the query size is larger than or equal to six.
We also compare the efficiency between the inverted index, auxiliary nextword
index, and common phrase index, see Table 3. Again, we observe that common
phrase index has a better improvement rate (the rightmost two columns) than
auxiliary nextword index.

The total index sizes of different indexings are shown in Table 4. As can be
seen, total index size of the common phrase index is just larger than that of the
auxiliary nextword index by about 1.5%. It is a negligible trade-off for higher
efficiency in query evaluation.

6 Conclusion

We have proposed a novel extension of auxiliary nextword index. Phrase queries
on large text databases can be supported by using common phrase index. In this
approach, all words in the text document are indexed the same as inverted index;
in addition, the most common words are indexed via common phrase. Unlike the
inverted index and auxiliary nextword index where the size of an index term is
fixed (one word for an inverted index and two words for an auxiliary nextword
index), common phrase index has variable-sized index term. These variable-sized
index terms further break down the postings lists and support the fastest phrase
query evaluation among inverted index and auxiliary nextword index. Having effi-
ciency improvement especially for query size larger than or equal to three, the to-
tal size of it is just larger than that of an auxiliary nextword index by about 1.5%.

Our experimental results show that we can implement common phrase index
for evaluating phrase queries with no significant storage overhead. The only
additional requirement is having a dictionary for checking of terminal words.
However, the dictionary is rather static. Therefore, it can be used for a long
period of time after we built it once.

In our future work, we will also implement and experiment a version of our
index that can adjust its structure according to the dynamic nature of common
words. Since the performance of a common phrase index is highly related to the
chosen common words, it requires the index to be updated after a certain period
of time. We expect that our system will further improve the efficiency with the
dynamic update nature implemented.
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Abstract. The effectiveness of the information retrieval systems is largely 
dependent on term-weighting. Most current term-weighting approaches involve 
the use of term frequency normalization. We develop here a method to assess 
the potential role of the term frequency-inverse document frequency measures 
that are commonly used in text retrieval systems. Since automatic information 
retrieval systems have to deal with documents of varying sizes and terms of 
varying frequencies, we carried out preliminary tests to evaluate the effect of 
term-weighing items on the retrieval performance. With regard to the 
preliminary tests, we identify a novel factor (effective level of term frequency) 
that represents the document content based on its length and maximum term-
frequency. This factor is used to find the maximum main terms within the 
documents and an appropriate subset of documents containing the query terms. 
We show that, all document terms need not be considered for ranking a 
document with respect to a query. Regarding the result of the experiments, the 
effective level of term frequency (EL) is a significant factor in retrieving 
relevant documents, especially in large collections. Experiments were under-
taken on TREC collections to evaluate the effectiveness of our proposal. 

1   Introduction 

As the volume of information increases, automatic and effective information retrieval 
methods become essential to deal with the growth of information. By far, many stud-
ies show that most information is text based and high retrieval performance is closely 
related to the use of appropriate term-weighting scheme [1]. Term weighting has been 
introduced to fit exhaustivity and specificity of the search, where the exhaustivity is 
related to recall and specificity to precision [2]. 

One of the most commonly used term weighting schemes is tf-idf model that is 
based on two basic principles:  

– For a given term in a document, the more a term is frequent, the more likely the 
term is relevant to the document 

– For a given term, the more the term occurs throughout all documents, the less 
likely the term discriminates between documents [3]. 

There are numerous variants of tf-idf weighting and selecting an appropriate scheme 
requires considering some constraints for study a new collection, especially large 
collections. The previous works show in spite of the fact that the number of index 
terms does not increase proportionally with collection size, the terms discrimination 
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problem is amplified in the large collections. Therefore the effectiveness of tf-idf 
measures needs to be revised with the increasing the collection size due to term het-
erogeneity.  

In this paper, we investigate a basic existing weighting scheme to propose a new 
term-weighting approach supporting the tf-idf model. First, we present the factorial 
analysis of the weighting scheme. Next, we evaluate the impact of the document 
length on the different factor of this scheme. Based on our observations, we present a 
novel factor for document length normalization (effective level of term frequency) 
which is used to find the maximum main terms within the documents. We verify the 
impact of this factor on the large TREC collections.  

The remainder of the paper is organized as follows. We present a simple overview 
of term significance and term weight normalization in Section 2. In Section 3, we 
describe our method for document length normalization in details. The retrieval 
model and test collections are described in Section 4. In Section 5, the evaluation of 
the new method and experimental results are presented. Finally, we discuss our find-
ings and results in Section 6. 

2   Models for Term Weight Normalization 

The definition of term (the indexing unit), is very critical in the information retrieval 
field. Index terms can be used as meta-information that describes documents, and as 
key that helps for seeking information. Automatic document indexing removes the 
non significant terms (function terms) from the documents, so the documents will 
only be represented by content bearing terms [1]. This indexing can be based on term 
frequency, where terms that have both high and low frequency within a document are 
considered to be function terms [2].  

Using the term frequency for indexing is one of the main issues in text retrieval 
domain which is stated by Luhn [4]. It is well known that term frequency is largely 
dependent on the document length (i.e. the number of tokens in a document) and 
needs to be normalized using a technique called term frequency normalization [5]. 
There are various normalized formulas such as “Okapi BM25” [6], “Lnu” [7], “dtu” 
[8], “Pivoted normalization” [9] that are used for the various IR models. Two 
important reasons for term frequency normalization are: 

– The same term usually occurs repeatedly in long documents 
– A long document has usually a large size of vocabulary [3]. 

3   Effective Level of Term Frequency 

The main idea of the novel factor for document length normalization (effective level 
of term frequency) comes from observation of techniques embedded in any normali-
zation method. Most of the common normalization methods, such as maximum term 
frequency, pivoted normalization, byte length normalization use the document length 
factor. In addition these methods involve the use of tuned parameters which have an 
important impact on the effectiveness of the IR systems [10]. Document length nor-
malization is considered one of the more often studies in the text retrieval researches. 
Fang et al. present a set of basic constraints that correspond to the major well-known 
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IR heuristics, especially tf-idf weighting and document length normalization tech-
niques [11]. Singhal et al. show the retrieval effectiveness is improved when a nor-
malization scheme retrieves documents of all lengths with similar chances as their 
likelihood of relevance [9].  

In our approach, we characterize a traditional retrieval function based on tf-idf 
measures by introducing an efficient constraint. The goal is to determine the impor-
tance degree of a query term within each document and collection by ranking terms 
based on term frequency.  

We define an effective level factor, noted EL(d) , as a percentage (X%) of ranked 
terms based on term frequency  in document d and  ( )tdd ,o  the importance degree (the 

rank) of term t within document d according to its frequency. 
 

Example: Let us consider a document d1={t1, t2, t3, t4, t5, t6}, with terms having  the 
following frequency, noted f (d,t):         

f(d1, t1)= 6,  f(d1, t2)= 1,  f(d1, t3)= 8, f(d1, t4)= 5,  f(d1, t5)= 1,  f(d1, t6)= 3. 

The terms are ranked in decreasing order of their frequency in the document.                  

( )31,tddo  = 1,  ( )11,tddo  = 2,  ( )41,tddo  = 3,  ( )61,tddo  = 4,  ( )21,tddo  = 5,  ( )51,tddo  = 5. 

If the terms t3, t1 and t4 are considered as important in d1 the EL(d1) will be 50%.   

Note: the lower ( )tdd ,o  is, the higher the importance of term t within document d is. 

The value of EL factor regulates the interaction between frequency and importance 
degree of a term in the documents. This means that, a document is more relevant for a 
query term if this term is one of the important terms within the document. Based on 
this constraint, we must find the optimum value of EL which improves the retrieval 
efficiency. In Section 5, we apply this constraint to our retrieval function in two 
phases.   In the first phase, we obtain the retrieval results for a set of 50 queries with 
the original retrieval function (see equation 2). Next, we repeat this experiment ten 
times by applying the EL factor to this function. Each time, we select X% of the 
documents’ terms as important terms and we will not consider other terms for re-
trieval. In first time: we will consider just 5% of the document’s terms by ranking 
terms based on term frequency, in second time: we will select 10% of the terms 
within documents as important terms and etc. In the second phase, we consider that 
X% of the document’s terms are more important than the others and they will get too 
over-weighted. Based on this hypothesis, we will compare the results of experiments 
with the initial results.   

4   Experimental Framework 

4.1   Utilized Retrieval Model 

We used Mercure model (an information retrieval system based on spreading activa-
tion process) [12]. Mercure is implemented a vector space model. The document 
terms are weighted using a kind of tf-idf measure inspired by OKAPI [13] and 
SMART term weighting.  The weights of term-document are expressed by:  
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 - dlj: length of document dj   
 - l : average document length  
 - h1, h2, h3, h4 and h5: constant parameters.  
 In our experiments the constant parameters were set to 0.1, 0.8, 0.2, 0.7 and 1 

respectively and the query terms are weighted according to their frequency within 
the query. 

4.2   Test Collections  

These experiments were undertaken on  GOV1 (A crawl of .gov Web sites from early 
2002) [14] and WT10G (A subset of the Web from TREC 2001) [15] of the TREC 
test collections. The details of these collections are shown in Table 1.  

 
Table 1. Details of the test collections 

Collection GOV1 WT10G 
#  Documents1 1,034,442 1,691,808 
#  Terms 1,679,541 3,024,452 
#  Queries 50 50 
Avg. Words per Document 250 267 
Avg. Single Words per Document 143.5 156.1 
Collection Size 2 18.1 GB 10 GB 

Table 2. Summary statistics for used query setsCollection 

Collection Topic set Topic field Min Max length Avg 
GOV1 551 - 600 Title & 

Description
2 11 6 

WT10G 501 - 550 Title & 
Description 

1 9 4 

The GOV1 collection has less documents than WT10G but has a much larger aver-
age document size (15k vs 7k). TREC topic sets (551- 600 for GOV1 and 501-550 for 

                                                           
1 Number of indexed documents by Mercure. 
2 The collections have been compressed.  
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WT10G) and their corresponding relevance judgments are used in our experiments. Test 
queries are created using the Title and Description fields of these topic sets. The statisti-
cal information of the query sets is presented in Table 2. For each query, the first 
20 documents retrieved by the system are returned. These experiments have been per-
formed with no relevance feedback and no query expansion. 

5   Experiments, Results and Discussion 

5.1   Effect of Term-Weighting Items 

We carried out preliminary tests to know the effect of term-weighing items in our 
retrieval model. We chose three factors: A (term frequency), B (inverse document 
frequency), C (normalized document length) and analysed the performance of the 
retrieval model with various factor combinations. Table 3 shows the precisions ob-
tained with only tf, factor and its effectiveness. Table 4 illustrates the retrieval preci-
sions obtained by combination of tf and the other factors for two collections. The 
following functions with various factor combinations have been used in this section. 
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In Table 4, the notation “tf & idf & length” indicates the use of original function (2).  
Based on this analysis and its results, we notice that normalized document length is 

the most important factor and idf is the least important factor for two collections. In 
addition, Fig. 2 clearly depict that the effect of length factor will be more important in 
combination with idf factor for two test collections. 

In reality, the importance of document length normalization is a recurring theme in 
IR and full-text retrieval necessitates a revision of document length normalization 
[16], especially in large collections. Following the above experiments, we tried to 
study more profoundly the effect of length factor. In Section 5.2, we will argue the 
impact of document length on term frequency and importance degree of term for two 
test collections.  

Table 3. Retrieval precisions obtained with only tf factor  

GOV1 WT10G
Factor tf Factor tf
P@5     0.0286 P@5        0.0440
P@10 0.0245 P@10 0.0500
P@15  0.0224 P@15 0.0487
P@20  0.0173 P@20 0.0490
Avg Precision 0.0227 Avg Precision 0.0474
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Table 4. Retrieval precisions obtained with various factor combinations 

GOV1  WT10G 
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length 
P@5          0.0449 0.1878 0.2286  P@5 0.0640 0.2000 0.2960 

P@10 0.0388 0.1612 0.1755  P@10 0.0700 0.1900 0.3000 
P@15  0.0360 0.1497 0.1581  P@15 0.0653 0.1793 0.2683 

P@20  0.0327 0.1367 0.1490  P@20 0.0560 0.1750 0.2590 

Avg Precision 0.0376 0.1588 0.1770  Avg Precision 0.0628 0.1855 0.2800 

 (change) 0.0149 0.1361 0.1543   (change) 0.0154 0.1381 0.2326 
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Fig. 2. Interaction between factor B (Idf) and factor C (Length) for two collections  (level 0: 
leaving out the factor, level 1: using the factor)  

5.2    Document Length Analysis 

The overall aim of the present section is to investigate the relationships between 
document length and the other factors of our retrieval function in the test collections. 
Since the collections contain the documents of varying lengths, we analysed the 
document length normalization technique which is used by retrieval function 2. In this 
function, all of the documents are retrieved with similar conditions as their likelihood 
of relevance. On the other hand, normalized document length decreases the retrieval 
chances of long documents in preference over shorter documents [16]. 

We analysed the impact of the length factor on the retrieval effectiveness and its 
impact on the other factors with calculating their correlation coefficients. Therefore, 
we chose a set of ten terms at random from each collection. We computed the 
correlation coefficients between different factors (term frequency, document length 
and importance degree) in the documents that contain these terms. Table 5 shows 
some characteristics of ten chosen terms and the computed correlation coefficients for 
two collections. The following notations are used in Table 5. 
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• N-Doc: number of documents containing the chosen term 

• R1: correlation coefficient between term frequency tf and document length⏐d⏐  

• R2: correlation coefficient between term frequency tf and importance degree ( )tdd ,o  

• R3: correlation coefficient between document length⏐d⏐and importance degree ( )tdd ,o  

Looking at Table 5, we notice that there is not high correlation between tf and 
document length factors. The maximum correlation coefficient between tf and 
document length factors is 0.24 for GOV1collection and 0.17 for WT10G collection. 
This means that the relationship between two factors is weak. Afterwards, we verified 
the correlation coefficient between tf and ( )tdd ,o  which is presented by R2. The small 

values of R2 (between -0.11 and -0.27 for GOV1 collection; between -0.03 and -0.13 
for WT10G collection) show a low correlation between tf and ( )tdd ,o . Consequently, 

the high frequency of a term is not a good reason to estimate that this term is located 
in a long document. Also, the high value of tf cannot present a high importance degree 
of term. Indeed, using document length factor for term frequency normalization 
penalizes the term weights of a long document in according with its length. But, the 
retrieval chances of small documents containing the low frequency terms will be 
increased.  

Next, we verified the correlation between document length and importance degree 
of term in the documents containing ten chosen terms. The R3 values present this 
correlation. These values show that the correlation between document length and 
importance degree of term is higher than the correlation between document length and 
term frequency. Therefore, the influence of ( )tdd ,o  can be verified for discrimination 

the documents’ terms.  

Table 5. Correlation coefficients between various factors in the documents containing the 
chosen terms 

GOV1  WT10G 

Term N-
Doc 

R1 R2 R3  Term N-Doc R1 R2 R3 

Bilingu 2418 0.1876 -0.1766 0.6933  Biograph 4762 0.1746 -0.0859 0.7817 

Boll 740 0.0451 -0.2746 0.7177  Booker 1143 0.1659 -0.1261 0.6191 

Diabet 8759 0.0948 -0.1996 0.6204  Camel 2348 0.0123 -0.1058 0.8940 

Eradic 3081 0.1176 -0.2406 0.7372  Humid 4573 0.1080 -0.1119 0.6726 

Farmer 13802 0.1841 -0.2093 0.6223  Invent 9069 0.1456 -0.0990 0.7407 

Golf 4587 0.1220 -0.1106 0.7454  Pheromone 239 0.0941 -0.1220 0.5744 

Mother 10801 0.1596 -0.2376 0.6650  Referenc 8036 0.1437 -0.0262 0.7647 

Resort 5677 0.0699 -0.2209 0.7909  Scar 8163 0.0651 -0.0581 0.7732 

Tornado 6460 0.2404 -0.1689 0.5855  Solar 9440 0.1023 -0.0955 0.5970 

Visa 7345 0.1123 -0.2014 0.6985  Steroid 2140 0.0314 -0.0670 0.7452 

In conclusion, we can say as the length of a document grows, the importance 
degrees of the terms within this document decrease (as noted in Section 3, the 
lower ( )tdd ,o  is, the higher the importance of term t in document d is and inversely). 
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In the other word, all of the terms within a long document are not good indicators  
for document content and we should consider more significant terms for retrieval. We 
suggest that it will be useful to determine how many of document terms  
are significant and they should be relied upon more than the other terms in the 
retrieval process. In the next section, we continue to verify this analysis using the  
EL factor.  

5.3   Analysis of the Effective Level of Term Frequency (EL) 

In this study, our experiments focused on verifying the effectiveness of our hypothesis 
described in Section 3, and specifying the characteristics of test collections. Based on 
the previous analyses, we used the importance degree of term as a novel factor for 
document length normalization. We applied the EL factor to the retrieval function 2 in 
two phases. 

5.3.1   Phase One 
We obtained the retrieval results for a set of 50 queries (the queries sets are presented 
in Section 4.2), with considering X% of the documents’ terms as important terms and 
we didn’t consider the other terms of documents for retrieval. We repeated this ex-
periment ten times with various values of X (i.e. on each time the number of consid-
ered terms for retrieving is changed). The new term-document weighting function 
using EL factor is as follows: 
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with: 

- ( )ij tdd ,o  : the importance degree of term ti within document dj 

- EL(dj) : X% of ranked terms based on term frequency in document dj  (X: 5, 10, 
20,…, 90) 

 

- R (tij) :    if   ( )ij tdd ,o  <= EL(dj)   then    R(tij) = 1                                                             (4) 

                                                        else     R(tij) = 0.   
 
The obtained results in this phase and that obtained with original function are listed 

in Table 6.  
For GOV1 collection, the values of P@5, exact precision and average precision are 

higher than those obtained by function 2 when EL has been set to 10%. In addition, 
the average precisions obtained in all of the ten experiments (10 cases) are higher than 
initial average precision. 

For WT10G collection the 10%, 20% and 30% of ranked terms achieve the higher 
values for P@5 compared to function 2 but the average precisions are decreased. 
Following these observations, we reviewed the characteristic of WT10G collection.  
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We noticed that there are more than 3,000,000 indexed terms in WT10G collection 
but the number of indexed terms in GOV1 collection is smaller. Moreover, in WT10G 
collection, the number of terms with tf=1 is more than that is in GOV1 collection.  

To verify the general applicability of effective level of term frequency (EL factor), 
we tested it again using a different scheme of the constraint 4. 

Table 6. Precisions obtained with function 2 and function 3 (phase one) 

  GOV1 WT10G 

Retrieval Function EL(%) P@5 
Exact 

Precision 
Average 
Precision P@5 

Exact 
Precision 

Average 
Precision 

Initial Function (2) ----- 0.2286 0.1227 0.1770 0.2960 0.1006 0.2800 

5 (%) 0.2245 0.1282 0.1892 0.2840 0.0847 0.2476 

10 (%) 0.2367 0.1358 0.1919 0.3040 0.0804 0.2550 

20 (%) 0.2327 0.1353 0.1903 0.3120 0.0808 0.2695 

30 (%) 0.2204 0.1295 0.1835 0.3120 0.0915 0.2793 

40 (%) 0.2204 0.1228 0.1846 0.2800 0.0901 0.2727 

50 (%) 0.2286 0.1191 0.1827 0.2840 0.0901 0.2758 

60 (%) 0.2245 0.1187 0.1806 0.2840 0.0901 0.2764 

70 (%) 0.2245 0.1187 0.1806 0.2840 0.0901 0.2761 

80 (%) 0.2245 0.1187 0.1806 0.2840 0.0901 0.2758 

 
 
 
 

Function 3 

90 (%) 0.2245 0.1187 0.1806 0.2840 0.0901 0.2758 

5.3.2   Phase Two 
The obtained results from phase one show that the EL factor with preceding constraint 
does not achieve important improvements on WT10G. After verifying the indexed 
terms in WT10G collection, we observed that the document terms are very heteroge-
neous and the majority of terms are low frequency. In consequence, most of the low 
frequency terms are important and they should be considered for retrieving. Hence, 
we changed the constraint 4 to the following constraint: 

 

-R (tij) :     if   ( )ij tdd ,o  <= EL(dj)     then    R(tij) = 2                                                           (5) 

                                                         else     R(tij) = 1.   
 
This constraint means that we consider all of the documents’ terms for retrieving 

but certain terms (identified by EL) are weighted twice as much as other terms. Like 
as previous phase, we applied this constraint to the initial function ten times (In first 
time EL=5%, in second time EL=10% and etc.). After comparing the obtained 
precisions, we noticed that in the second case (i.e. when the weights of 10% of ranked 
terms are doubled), the values of P@5, exact precision and average precision are 
higher than the others. Moreover the obtained precisions are higher than the results of 
function 2. For instance, the improvement of the average precision is +17.63% for 
GOV1 collection.  

The obtained results from second case and those obtained by function 2 are listed 
in Table 7 and their Recall-Precision curves are presented in Fig. 3. As a result, the 
EL factor with constraint 5 improves the retrieval results in a large and heteroge- 
neous collection such as WT10G. Finally, higher precisions explain that our proposed  
 



  Document Length Normalization Using EL of Term Frequency 

 

81 

GOV1 collection

recall points

p
re

ci
si

o
n

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,2 0,4 0,6 0,8 1,0

 Function 3 

Initial Function 

WT10G collection

recall points

p
re

ci
si

o
n

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,2 0,4 0,6 0,8 1,0

 Function 3 

 Initial Function   

 

Fig. 3. Recall / Precision curves on GOV1 and WT10G (phase two, EL=10%)  

Table 7. Precisions obtained with function 2 and function 3 (phase two, EL=10%) 

 GOV1 WT10G 
Retrieval 
Function P@5  

Exact  
Precision 

MAP 
P@5 

Exact  
Precision 

MAP 

Initial Function (2) 0.2286 0.1227 0.1770 0.2960 0.1006 0.2800 
Function 3 0.2653 0.1373 0.2082 0.3160 0.1126 0.2905 
Improvement + 16.05 % + 11.90 % +17.63 % + 6.76 % + 11.93 % +3.75 % 

technique performs well in two collections and we can say the EL factor is an 
effective factor for document lengths normalization. 

6   Conclusion 

The web information and data collections grow continuously and user’s requests in 
information retrieval systems will be more special. Therefore, the new techniques and 
researches are necessary to deal with the explosive growth of information. It is well 
known that tf-idf weighting scheme is still one of the most plausible approaches to the 
text retrieval model. However, the heterogeneity becomes more important in large 
text collections and term discrimination problem is amplified in these collections. 
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In present paper we have described a new approach to document length 
normalization scheme called effective level of term frequency with identifying a 
novel factor (EL). By investigating a basic scheme of tf-idf weighting and measuring 
the effect of its items we proposed our new method, which can be used in large 
collections. We tested the new scheme using two large web collections and evaluated 
its retrieval performance. According to experimental results, we found that document 
length has a strong effect on the retrieval effectiveness. Furthermore, we applied our 
novel factor (EL) to Mercure IR system. In our approach, all document terms need not 
be used for ranking a document with respect to a query and it is not necessary to 
consider all of the documents containing the query terms. This method has shown its 
successful applicability and EL is a significant factor to retrieve relevant documents. 
In general this method increases the performance of the information retrieval systems 
and improves the query run-time, by considering just the important terms and 
identifying an appropriate data subset. In the future, we will verify the performance of 
EL factor by extended experiments and we will specify the optimal conditions for 
utilizing this factor in terabyte data collections.   
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Abstract. We research whether the inclusion of information about an
information user’s social environment and his position in the social net-
work of his peers leads to an improval in search effectiveness.

Traditional information retrieval methods fail to address the fact that
information production and consumption are social activities. We amelio-
rate this problem by extending the domain model of information retrieval
to include social networks.

We describe a technique for information retrieval in such an enviro-
ment and evaluate it in comparison to vector space retrieval.

1 Introduction

In the late 1990s, the field of information retrieval rose to meet new challenges
posed by the ubiquitous nature of the world wide web: Information retrieval in
an environment where individual documents are not characterized only by their
content, but also by their relationship to other documents. By the means of hy-
perlinks, a web author can express associations with other authors’ documents
that may reside anywhere on the web. Successful techniques for this task are
primarily characterized by their reliance on the spectral properties of the web
graph. Prime examples are the PageRank algorithm [1] and the hits [2] algo-
rithm, both of which represent first-order approximations of matrices derived
from the web graph: The adjacency matrix in the case of PageRank, and the
bibliographic and co-citation coupling matrices in the case of hits. At the core
of both algorithms is an acknowledgement of the democratic and social nature of
the web: A human author’s act of including a hyperlink to another page is an act
of social interaction. A hyperlink expresses an endorsement of the page that is
linked to. The sum of all hyperlinks is used to determine the relative importance
of all pages – as a sum of judgements made by humans. This idea revolutionized
the the field of web retrieval and shaped the nature of web retrieval systems for
years to come.

However, the nature of the web has changed since the inception of spectral
retrieval techniques. Whereas previously, web pages were crafted as individual
documents, nowadays many web pages amount to nothing more than user in-
terfaces: interfaces to an underlying database, an underlying information space
that is made accessible via the web. Many of these information spaces model so-
cial relationships between their participants in a much more direct manner than
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one could glean from analyzing the surface hyperlink structure of the interface.
A logical next step is directly analyzing the social structure of the information
space. This social structure may then be used for the purpose of information
retrieval. This paper presents an attempt to leverage social networks for infor-
mation retrieval, in environments that do not follow the usual presumptions
made in web retrieval.

The rest of this paper is structured as follows: Sect. 2 lists related work.
Sect. 3 describes social software on the web. Sect. 4 gives an extended information
retrieval models which includes social relations, and explains a retrieval technique
based on this model. Sect. 5 presents the evaluation of this technique. Sect. 6
concludes the paper.

2 Related Work

Google was one of the first web search engines to incorporate analysis of the web
graph into its ranking algorithms. The PageRank algorithm [1] was a novelty
among search engines at the time and was quickly singled out among independent
observers as the main factor for its success. The impact of PageRank on the
quality of Google’s search results is not known; as is common for a web search
engine, the innards of its scoring algorithm are kept secret. Evidence for the
importance of PageRank in web retrieval is still scarce: According to [3], only
11 of 74 submitted runs at the trec-2004 ‘Web’ track used PageRank, and only
one of the top systems used it.

ReferralWeb [4, 5] is a system for mining social relations from the web and ex-
ploring social networks. The authors describe it as ‘combining of social networks
and collaborative filtering’; its focus is extracting a social network from web
pages, finding experts for a topic and linking the searcher to the expert by a
path in the social network. ReferralWeb differs from other social networking ap-
plications because it extracts social links from publicly available information on
the web; it does not require the user to sign up with a service and explicitly name
his colleagues and collaborators. A formal evaluation of ReferralWeb’s effective-
ness, as compared to other information retrieval systems, was not conducted to
our knowledge.

i-spy [6] is an experimental meta search engine developed at University College,
Dublin, Ireland. i-spy implements collaborative ranking, borrowing ideas from
collaborative filtering: It aggregates relevance judgements from a community of
people and uses them in later searches for the same keywords to boost pages
which are known to be good. Users are required to join a specific community
before executing a query; one user can only be part of one community at a time,
requiring the user to change the community as the subject matter of his search
changes. i-spy does not facilitate the formation of a community. It does not use
information about the social relations between its users, and does not facilitate
the formation of such relations.
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iskodor is a prototype system developed at University of Bonn aiming to com-
bine three aspects of user-centred information retrieval: personalization, collab-
oration and socialization. These principles form three pillars of a new web search
paradigm called ‘congenial web search’ [7]. The framework supports a common
representation of documents, queries, and relationships, which form individual
context information of a user’s search interest. The prototype employs a peer-to-
peer architecture in order to share explicit feedback with other users. The user’s
faith in the service is strengthened, as he himself controls which information is
stored and disseminated about him. Whereas personalized and collaborative as-
pects are already implemented in the prototype, research presented in this paper
forms the basis of the social aspect of the system.

3 Social Software and the Web

One of the earliest applications of computer networks were electronic mailing
lists and discussion groups. Precursors of the internet, for example bitnet and
Usenet, already supported interaction and discussion among groups of users.
Interaction between a large number of users is supported on these system at a
negligible cost. Recently, the focus of social software has shifted from dedicated
platforms to the web; popular examples include the following:

Wikis are a form of collaborative authoring environment that is characterized
by the fact that every user can add, edit, and delete content at will. The first
wiki was WikiWikiWeb, launched by Ward Cunningham in 1995 as a supplement
to the Portland Pattern Repository, a web site about software design patterns.
A number of software packages and similar projects followed; the largest wiki
is purported to be Wikipedia, an online encyclopedia that employs the wiki
principles. The quality of published content varies wildly; some wikis contain
nothing more than a few quickly written ideas, others, like Wikipedia, aim for
publication-quality content.

Blogs are an internet phenomenon originating in the late 1990s: Websites that
continually publish new articles on their front page, written by one individual
or a group of people. Blog entries can be tied to their author; linking between
entries is supported in the form of comments or so-called ‘trackback links’, in
which the author of another blog refers in his entry to the original entry. Blogs
can take many forms, for example personal blogs, topical blogs or corporate
blogs. Another typical feature is the so-called ‘blogroll’: A list of other blogs
the author reads regularly. This may be used to determine social links between
authors, but it is not universally adopted.

Social networking platforms like Friendster, orkut or openBC are dedicated web
applications for the formation of social networks. Users have the ability to name
their friends among the users explicitly and advertise them on a special page.
Finding paths between two users in the social network is often supported, as are
group discussions.



Beyond the Web: Retrieval in Social Information Spaces 87

We call these systems ‘social information spaces’ [8] or ’social software’. The
social interactions between users of these systems are hidden beneath the web
front-end in databases, and thus are not directly accessible to web search en-
gines. The resulting social network can be seen as the ‘deep structure of the
web’. Efforts of the Semantic Web initiative [9] aim to provide this information
in machine-readable form, for example with the Dublin Core standard [10] for
document metadata or the ‘Friend of a Friend’ standard [11] for expressing the
relations between individuals.

With the increasing use of social software, social ties and the structure of
the social network become tractable. In such a setting, incorporation of social
networks into information retrieval processes is a desirable feature.

4 Models and Techniques for Social Retrieval

Social information retrieval systems are distinguished from other types of ir
systems by the incorporation of information about social networks and relation-
ships into the information retrieval process. This feature necessitates an extended
model for information retrieval, as well as new techniques that make use of social
information.

4.1 Domain Model for Social IR

The traditional models for information retrieval concern themselves with doc-
uments, queries, and their relations to each other: A document is relevant to
a query, a document references other documents, a query is similar to other
queries. Likewise, social network analysis models individuals and their relations
with each other. Information retrieval systems traditionally do not model indi-
viduals, neither in their role as users of the system, nor as authors of the retrieved
documents, and social networks do not incorporate retrievable content.

Social ir combines the models of information retrieval and social networks
with each other. By incorporating individuals into the model, we gain a greater
insight into their role in the information retrieval and production process (Fig. 1).
New associations between the entities become apparent: Individuals appear in
their role as information producers or information consumers, queries relate to
an individual’s information needs, or describe a topic about which an individual
possesses knowledge.

A social ir system is characterized by the presence of all three types of entities:
documents, queries, and individuals. Most systems will only use a subset of
the possible associations between the entities, depending on the domain of the
system. Modeling the relations between individuals is mandatory for a social ir
system; all other types of associations are optional, as long as all three entities
have an association with at least one other.

This characterization of a social ir system raises the question of suitable do-
mains for such a system. The world wide web in its current state is evidently not
a suitable domain: It lacks reliable authorship information, as well as information
about social relations between authors. The increasing use of machine-readable
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metadata – for example in the aforementioned Dublin Core and ‘Friend of a
Friend’ standards – gives hope that this will change in the long run. An attempt
at mining social relations from the web is described in [4, 5].

Subsets of the web provide more suitable domains. The entirety of blog sites
on the web (often called ‘blogosphere’) is one such domain: Blog entries can
usually be associated with an author, and via comments or so-called trackback
links, communication between blog authors can be ascertained, leading to a
social network. Such information is usually not available in machine-readable
format and has to be extracted using information extraction techniques. Some
blogging services, for example LiveJournal [12], already provide it in machine-
readable form. Wikis are also an environment that allows to ascertain authorship
of a document, usually via the revision history. Interaction between users can be
determined by co-authorship, or by discussions on dedicated talk pages; however,
this information is often not portable between different wikis. Direct access to
the underlying database often makes extraction of this information much easier.

For application of social ir to other domains, availability of the required in-
formation needs to be determined beforehand. Specialized techniques may have
to be employed in order to extract it. We do however surmise that similar char-
acteristics govern the structure of all social information spaces, and that similar
techniques are applicable.

Traditional information retrieval techniques which are based solely on
analysing document content, while very successful in many contexts, fail badly
when the information need is underspecified, and when a large number of relevant
documents exist. In this sense, social ir can be understood as a formalization
of search techniques we commonly use to assess the quality of information – by
looking at the author’s standing in his community.

We use an associative network as the underlying representation. An associa-
tive network is a graph of information items, with unlabeled, weighted, directed
or undirected edges (‘associations’) between nodes. In agreement with the do-
main model, we use three kinds of nodes: for individuals, documents, and queries.
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Definition 1. For a set of individuals I, a set of documents D, and a set of
queries Q the domain is represented by a weighted, directed graph G = (V, E),
where V = I�D�Q and E ⊆ V ×V . A weight matrix C ∈ IR|V |×|V |

≥0 contains the
weight of the edges. For edges between individuals e ∈ I × I, the weight function
expresses the strength of a social relationship between two individuals.

We use this domain for retrieval of documents from keyword queries. This task
is the most common task in information retrieval, which ensures comparability
with other systems. Systems that store associations between users and queries,
or between queries and documents, are mostly found in the experimental field
of personalized and collaborative retrieval; they have not found their way into
the mainstream of ir yet.

4.2 Techniques for Social IR

The domain model presented in the last section is able to accomodate many
aspects of social information retrieval. We concentrate on retrieval of docu-
ments from keyword queries in an environment where authorship information
is available.

A central idea is that the authority of an author can be inferred from his
position in the social network, and that this authority measure can be applied
to the documents he authored. Whether a document is relevant to a query can
be determined using conventional ir techniques. A social ir system for this task
is therefore composed of two parts: An authority measure for individuals in the
social network, and a relevance measure for documents as regards queries. Both
measures are combined to provide an improved ranking of documents.

In our experiments, we evaluate the use of PageRank as an authority mea-
sure for graphs. PageRank [1] is one of the most well-known algorithms for link
analysis. In web retrieval, the PageRank algorithm is usually formulated based
on a random surfer model: A user starts on a random web page and follows one
outlink of this page at random and repeats this process on every page he reaches.
Assuming that the link graph consists of a single strongly connected component
(ie. there is a path from every page to every other page), the random surfer will
eventually visit every page in the web graph. One may consider this sequence of
pages as a Markov chain and compute the stationary probability of the random
surfer being on a given page at any time. The stationary probability may be
computed using linear algebra methods: Let A be the adjacency matrix of the
web graph G. Let M be a row-normalized version of A, that is (M)ij = (A)ij∑

k(A)ik
.

Then the PageRank vector r is the maximal eigenvector of(
ε

|V |1 + (1 − ε)M
)�

,

provided that G is ergodic [13]. ε is the ‘bias’: The probability that the random
surfer will teleport to a random page instead of following an outlink.

In order to get an idea of the application of PageRank to a social network, it
is instructive to compute the PageRank scores for a well-known social network.
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Table 1. PageRank scores for the coauthorship network of the sigir corpus. Scores
are normalized and are computed with a teleportation probability of ε = 0.3.

rank name PageRank

1. Bruce W. Croft 7.929
2. Clement T. Yu 4.716
3. James P. Callan 4.092
4. Norbert Fuhr 3.731
5. Susan T. Dumais 3.731
6. Mark Sanderson 3.601
7. Nicholas J. Belkin 3.518
8. Vijay V. Raghavan 3.303
9. James Allan 3.200

10. Jan O. Pedersen 3.135

We computed PageRank scores for a coauthorship network extracted from 25
years of sigir proceedings (from 1978–2003); the ten highest-ranking authors
are listed in Tab. 1.

In social ir, we apply the PageRank algorithm to the social network, ie. the
graph G[I]. We compute a PageRank score ri for every node i in the social
network. We ignore the fact that several disconnected components may exist
in the social network: Since they are small compared to the giant component,
they can be expected to contribute little to the document set, which means that
documents produced by individuals not in the giant component will only be
relevant for very few of the expected queries. We use a bias of ε = 0.3, further
ameliorating the problem.

The score ri is then assigned to the documents:

∀d ∈ D∀i ∈ I : (i, d) ∈ E ⇒ rd = ri

If a document has more than one author, one has the option of either accumulat-
ing the PageRank scores (rd =

∑
(i,d)∈E ri), or of chosing either the maximum,

minimum, or average of the PageRank scores of the authors. If the edges be-
tween nodes for individuals and document nodes are non-uniform in weight, one
can also incorporate this weight information when transferring PageRank scores
from authors to documents.

As a relevance measure for documents as regards a query, we employ a mod-
ified vector-space model. For a query q, the text retrieval component produces
a set of relevant document Dq ⊂ D as well as a score rel(q, d) for every docu-
ment. The inclusion of rd does not affect the result set Dq; it only influences the
ranking of the documents, enabling the user to find relevant documents more
quickly.

There are several models for combining PageRank with a text retrieval system.
The simplest method is to sort the documents d ∈ Dq by their PageRank score,
and present those with the highest rd to the user first. However, this method
only works when a high precision of the result set is ensured [1].
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A very simple method of combining PageRank and relevance scores is

rd · rel(q, d) .

For our purposes, this method has the advantage of not having tunable pa-
rameters, and being invariant to normalization. We choose this method for our
experiments.

5 Evaluation

We evaluate the techniques in a known-item retrieval setting and compare them
to the baseline technique using the metrics average rank and inverse average
inverse rank (iair). A known-item retrieval setting reduces the amount of manual
labour required and allows a semi-automatic selection of items. By comparing
with a baseline technique on the same index, we eliminate external factors that
may account for differences in performance; this allows us to gauge the impact
of social retrieval techniques on retrieval performance. We use a modified vector-
space model as the baseline.

5.1 Setting

For evaluation, we use a mailing list archive from the years 2000–2005; the
archive contains 44108 messages written from 1834 different email addresses. For
evaluation, two different subsets of the corpus are used, one containing messages
from 2000–2005, and one from 2004. We construct a full-text index from the
message body, after removing quoted parts.

In addition to the full-text index, an associative network is constructed from
the messages:

– An author node is constructed for each email address. No effort is made to
reconcile different email addresses of one person.

– Every message is linked to its author, and every author is linked to his
messages.

– Authors are linked to each other based on how often they respond to one
another’s messages.

The extracted social network displays characteristics typical for social net-
works: It exhibits a high degree of clustering and short average shortest path
lengths, making it a ‘small-world network’ [14]. 70% of all authors are part of a
giant weak component, and the degree distribution follows a power law.

5.2 Choosing Query Terms

For choosing appropriate query terms for known-item retrieval, the following
strategy is used: From the subject lines of email messages, frequent bi- and tri-
grams are extracted. Subject lines are a good indicator of user information needs,
as many threads on a mailing list start with a question, and the question is usu-
ally summarized in the subject. Bi- and trigrams are especially apt candidates,
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because ‘real-world’ queries have been found to average between two and three
words [15].

Selecting n-grams by frequency alone is suboptimal, as some frequent n-grams
correlate highly with the author of the containing messages. In order to remove
these n-grams, the mutual information of the occurence of a specific n-gram
in the subject line and the author of the messages is determined. A desirable
n-gram for use as a query phrase therefore has a low mutual information with
the author, and a high document frequency at the same time. We sort n-grams
by mutual information divided by the frequency and use the n-grams with the
lowest score for evaluation:

score(n−gram) =
I(n−gram, author)

df(n−gram)

For each of the ten queries, one message is chosen as the ‘known item’, the
objective of this search: Only messages from 2004 are considered as relevant, and
only those messages are assessed that actually contain the sequence of query
terms in the subject line. The criteria for relevance are selected to mimic a
searcher looking for an item he has seen before.

The items to be retrieved are chosen by an expert in the subject matter, and
by a complete novice. Using two different relevance assessments allows us to
evaluate whether a social ir system caters more to novice users who desire more
general results of high quality, but know next to nothing about the authors, or
expert users who may have more specific interests, and can judge a person’s
authority within the community without assistance of the social ir system.

5.3 Results

Results of the evaluation are summarized in Tab. 2. For items chosen by an
expert searcher, the combination of PageRank and the vector-space model per-
forms better than the vector-space model alone for four of ten queries on the
2004 corpus; in one case, the result is a draw. While the average rank of the
found documents increases for PageRank search, the inverse average inverse rank
decreases: The average rank increases by 21.7%± 2.4, but the inverse average
inverse rank decreases by 6.2%± 0.5. This means that some documents are found
considerably later than with vector-space search, but for those documents in the
earlier parts of the result list, PageRank combined with vector space performs
better. This effect is even more pronounced on the 2000–2005 corpus, where
the average rank increases by 69.9%± 2.3, but the inverse average inverse rank
decreases by 24.6%± 0.5. On the 2000–2005 corpus, the combination performs
better for six out of ten queries.

For the novice searcher, results are less pronounced. On the smaller corpus
from 2004, both the average rank and inverse average inverse rank decrease
(average rank by 13.1%± 1.5, iair by 1.5%± 0.3), whereas on the larger corpus,
the average rank is unchanged, but the iair increases sharply (by 58.4%± 0.4.)
On the smaller corpus, PageRank times vector space performs better for five out
of ten queries, with one draw; for the larger corpus, it performs better for four
out of ten queries, also with one draw.
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Table 2. Known-item retrieval on mailing list data. Columns labelled ‘VS’ contain
ranks from vector-space search, columns labelled ‘PR×VS’ contain ranks scored by
pagerank times vector space score. Rows ‘rank change’ and ‘iair change’ contain the
change compared to the baseline method ‘VS’ in percent.

method: VS PR×VS VS PR×VS
searcher: expert expert novice novice

on messages from 2004:
rank: 14.75 ± 0.25 17.95 ± 0.05 17.5 ± 0.3 15.2 ± 0

rank change [%]: +21.7 ± 2.4 −13.1 ± 1.5
iair: 7.548 ± 0.032 7.082 ± 0.010 4.670 ± 0.013 4.599 ± 0

iair change [%]: −6.2 ± 0.5 −1.5 ± 0.3

on messages from 2000–2005:
rank: 24.4 ± 0.3 41.45 ± 0.05 39.35 ± 0.35 39.6 ± 0

rank change [%]: +69.9 ± 2.3 +0.6 ± 0.9
iair: 8.787 ± 0.040 6.697 ± 0.012 4.962 ± 0.013 7.86 ± 0

iair change [%]: −24.6 ± 0.5 +58.4 ± 0.4

This mirrors the results from [1], who report that ‘the benefits of PageRank
are the greatest for underspecified queries’ and that ‘for more specific searches
where recall is more important, the traditional information retrieval scores and
the PageRank should be combined.’ The very nature of the known-item retrieval
task places an emphasis on recall, since the objective is finding one specific
document instead of just one of several that satisfy the information need.

6 Conclusion

We research how to integrate social networks in the information retrieval process
and whether this integration leads to a performance improvement. Several ap-
plications of the internet are identified as social media, for example wikis, blogs,
or mailing lists.

We propose a model for social information retrieval, which integrates the
domains of social network analysis and information retrieval. Meaningful associ-
ations become apparent which are not part of the traditional models. We define
social information retrieval as a retrieval process which includes a well-defined
subset of the constituents of the social ir model.

We apply graph-based techniques to social networks, using them outside
their traditional domains within information retrieval, namely web retrieval. We
thereby extend the state of the art in graph-based retrieval techniques.

The commonly cited benefits of social software, for example improved com-
munication among group members or emergence of communities, is important
but intangible. We aim to derive tangible benefits from the application of so-
cial networks, namely improved retrieval performance – by providing retrieval
techniques which are tailored to the emerging field of social software. We believe
that these tangible benefits will accelerate the adoption of social software.
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The main limitation of social ir follows from its domain model: it is only
applicable where a social network is present in the domain, or can be derived.
Furthermore, the quality of the social network is crucial. Limitations of other
graph-based retrieval methods also apply to social information retrieval. Com-
monly cited limitations of PageRank are that its benefits are greatest for under-
specified queries with many relevant results.

Evaluation of the prototype system was performed using non-standardized
corpora and evaluation scenarios. For comparing the prototype system with cur-
rent and future information retrieval systems, standardized corpora and evalua-
tion scenarios must be constructed. Standardized scenarios also permit to tune
the system for a particular retrieval task.

We chose not to base our evaluation on a web-based social information space,
because of the associated problems of scale, and the difficulties in extracting
suitable information. Instead, we use a mailing-list archive as an example of a
social information space which lends itself readily to evaluation. The expected
transferability of our results to other information spaces needs to be ascertained
in further experiments.

An important next step is the integration of social ir in the iskodor proto-
type developed at University of Bonn, in order to implement the third pillar of
the congenial web search paradigm [7].

We conclude that social network analysis is an important tool for information
retrieval.
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Abstract. The aim of our research is to produce and assess short summaries to 
aid users’ relevance judgements, for example for a search engine result page. In 
this paper we present our new metric for measuring summary quality based on 
representativeness and judgeability, and compare the summary quality of our 
system to that of Google. We discuss the basis for constructing our evaluation 
methodology in contrast to previous relevant open evaluations, arguing that the 
elements which make up an evaluation methodology: the tasks, data and 
metrics, are interdependent and the way in which they are combined is critical 
to the effectiveness of the methodology. The paper discusses the relationship 
between these three factors as implemented in our own work, as well as in 
SUMMAC/MUC/DUC. 

1   Introduction 

Interest in the difficult topic of evaluation of automatic summarisation has been long 
standing [3]. The difficulties exist because evaluation procedures may depend on 
many variables such as intended purpose of the summaries, maximum acceptable 
length, type of texts being summarised and objective of the evaluation: in other words 
the data, task and metrics under consideration.  Any changes in these variables can 
affect the outcome of the evaluation.    

In this research, we have constructed a new methodology for evaluating web search 
result summaries. We consider that the manner of construction affects the whole 
evaluation process because of the interdependence of data, task and metrics. The 
metrics we employ are representativeness and judgeability, and we combine these 
measures to arrive at a third metric: summary quality. The related work of Berger and 
Mittal [2] states that query relevant summaries should include fidelity and relevance. 
It is important to note, however, that while our notion of representativeness equates to 
fidelity, we do not measure relevance but rather the user’s ability to judge relevance 
or irrelevance.  

Methods of evaluating automatic summarisation systems can be broadly classified 
into two types: intrinsic and extrinsic [1] [10].  Intrinsic evaluation assesses the quality 
of a summary per se, examining aspects such as coherence, readability, grammatica-
lity, and fidelity. It does not consider the purpose of the system. Extrinsic evaluation, 
on the other hand, examines the quality of a system’s output in relation to its purpose. 
So, for example if a summariser’s purpose is to aid a user in making judgements about 
the summaries’ usefulness then that is what is measured and this in turn can be the 
subject of intrinsic and extrinsic evaluation [12]. In the case of our system, our 
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representativeness score provides an intrinsic measurement of a summary’s fidelity to 
an original source document, while the users’ ability to judge relevance provides an 
extrinsic view of the system’s fitness for purpose. Together these two factors determine 
our overarching extrinsic evaluation of the system’s quality.       

As it has proven especially difficult to find system based metrics for summarisation 
which genuinely reflect users’ perceptions of search engine effectiveness, we decided 
to incorporate human judgement into our evaluation methodology and used Google to 
generate comparative baseline summaries. The paper examines how this decision 
affected the subsequent choice of data and metrics.  

2   Relation to Earlier Work 

The inter-relationship of the three factors pertinent to evaluation methodology 
construction: data, task and metrics, is key to our work and has also been apparent in 
recent related literature. 

Of the early literature on automatic summarisation evaluation, the 1991 Message 
Understanding Conference (MUC-3) is important for its inclusion of evaluation 
methodology. The MUC-3 task was to extract data about terrorist incidents from 
newswire articles. These articles were analysed to create a standard template, which 
contained 18 slots for participant systems to fill in.  Answer keys were generated by 
humans for scoring purposes [4]. Finally, recall, precision, overgeneration and fallout 
were used as evaluation metrics [5].    

In 1998, the U.S. government completed the first large-scale, developer-indepen-
dent evaluation of automatic text summarisation systems: TIPSTER SUMMAC [13]. 
Three tasks were set in SUMMAC: 1. An ad hoc task to summarise a document as a 
topic description in for subjects to make relevance judgements; 2. A categorisation 
task: could subjects correctly categorise texts on the basis of the summary; 3. A 
question answering task which measured whether the summaries contained the 
answers to questions. News stories from newspaper sources were selected as data. 
The evaluation metrics of task 1 and 2 were based on precision, recall and Fscore. 
Task 3 was measured according to Answer Recall Average [9].  

The Document Understanding Conference (DUC)1 originated in 2001 and focuses 
on automatic summarisation. In 2004, the DUC competition had five tasks: 1. Very 
short single document summaries; 2. Short multi-document summaries; 3. Very short 
cross-lingual single-document summaries; 4. Short cross-lingual multi-document 
summaries, and 5. Short summaries focused by questions. Data used in Tasks 1 and 2 
was English Newswire, in 3 and 4 Arabic document clusters and in 5 TREC English 
document clusters. These five tasks were evaluated using the ROUGE metric [8]. 

Most recent studies have focussed on news articles, perhaps driven by the available 
test data. MUC-3 restricted the data to terrorist stories from nine countries. The nar-
row range of documents allowed standard summary templates to be used, and the 
recall and precision metrics to be used to measure the match between system 
generated summaries and a human produced gold standard answer keys. SUMMAC, 
while still dealing only with news stories, dealt with more genres than MUC-3, 

                                                           
1  Document Understanding Conference. http://www-nlpir.nist.gov/projects/duc/guidelines/ 

2004.html 
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making a template approach infeasible. Consequently using answer keys as the met-
hod of evaluation was not possible. The change in data collection led to SUMMAC 
setting different summarisation tasks and evaluation metrics. This varied approach 
was continued in DUC 2004 and DUC 2005.  

In addition to the theoretical concerns behind this experimental methodology, 
namely the consideration of intrinsic and extrinsic motivation, we also took into 
account practical issues, so that rather than limiting the data to domain or genre 
independent data as did SUMMAC/MUC/DUC, we chose to use unrestricted English 
web pages. In this way we avoided the artificiality of the former tasks as well as word 
overlap issues. Of course the problem with using human based evaluations is that they 
are expensive in terms of time and sometimes in terms of the requirement for human 
expertise also.  But while evaluations such as SUMMAC/MUC/DUC employ human 
expertise for producing the reference summaries, our methodology does not incur 
such an outlay as we simply require the human user to make a judgement. 

3   Evaluation Method 

The evaluation methodology was developed as part of a project to identify ways of 
improving internet search engine effectiveness from a searcher’s point of view, and in 
particular to improve their ability to judge the relevance of pages by more effective 
presentation of search results, namely the presented page summaries. Our discussion 
focuses on the evaluation of our new summarisation algorithm, called Query Terms 
Order (QTO) [7], but the conclusions are generalisable.  

We wished to answer two initial questions from our experimental evaluation:  
1. How well do our summaries represent their corresponding page contents 
(Representa-tiveness)? 2. To what extent do the summaries help users judge the 
relevance of the original web page (Judgeability)?   Having answered these questions 
we wished to determine a third aspect of the summaries: the Quality. 

3.1   Data 

The data for the task in hand was summaries of English language web documents. 
Summary length was set at a standardised 160 characters as this number is an average 
length derived from 1,000 Google returned summaries.  We assume summary length 
is related to speed of relevance judgement but we are not investigating that here. We 
decided to work with TREC queries as they have standard descriptions of what 
constitutes a relevant page, which we hoped would help improve the constancy of 
inter subject relevance judgements [14]. Twelve TREC92 web track queries were 
selected and numbered Q1 to Q12.  We arrived at this number because should the 
number be too small then we may not be able to get a significant result, while too 
large a figure might affect the quality of the test result. Twelve was deemed 
manageable in terms of how much a user could process without becoming tired of the 
tasks. The actual queries chosen were those from which both QTO and Google could 
produce useful summary data without producing error pages.  Both Google and the 
QTO system produced 10 summaries from each of the twelve queries.   

                                                           
2 Text TEtrieval Conference (TREC). http://trec.nist.gov/ 
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3.2   Task 

Having produced single short summaries for each page in the result set, our task was 
to evaluate them using the following criteria: the degree to which the summary 
represented its original page (Representativeness), and the degree to which a user is 
able to judge a summary relevant to the input query (Judgeability). Furthermore, we 
wished to derive a measure of Summary Quality by averaging Representativeness and 
Judgeability. We designed a user experiment to gather this data, and this is discussed 
below. 

Subjects. To do a blind test between the baseline (ie. Google) and QTO systems, we 
required two groups of people, five in each, who fulfilled the following requirements. 
They should be: 

− mature; 
− native English speakers in order to reduce the difficulty of understanding 

summaries as much as possible; 
− regular search engine users so that they all had an equal familiarity with search 

engine results; 
− in a close range of English language proficiency (i.e. PhD students in a university 

computing school). 

The sex of the participants was not considered relevant. 

Test Sheets. The test was paper based in order to avoid possible confounding effects 
from the computer user interface. Two test sheets were required for the following 
tests: 

− Representativeness 
Subjects were presented with each summary on a separate single A4 sheet, followed 
by a five point table: 1 (very unrepresentative) to 5 (very representative). The actual 
web page was printed on each following sheet.  Subjects were asked to read the 
summary, check the actual web page on the following sheet then select 1 to 5 from the 
table according to their judgement of the representativeness of the summary. 
− Judgeability 
Ten summaries were printed on a single sheet, and each of them was followed by 
three check boxes denoting Relevant, Irrelevant and Unknown for the subject’s 
judgement. On the top of the sheet the related query and its narrative from TREC was 
printed. Subjects were asked to read each summary and check the related query then 
select a judgement of Relevant, Irrelevant or Unknown on the summary judgeability 
test sheets.  

Test Procedure. The whole test was performed in four days: days 1 and 2 forming 
cycle 1 for Q1 to Q6, and days 3 and 4 forming cycle 2 for Q7 to Q12. Ten subjects 
were split equally into groups A and B. The Representativeness task was done in the 
first day, and the Judgeability task in the second day of each cycle. On each day, 
group A took the Google system and group B took QTO in the morning and they 
swapped their systems in the afternoon (see Table 1).   
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Table 1. Task timetable 

 Morning Afternoon  

Day 1 (Q1-Q6) 
( Representativeness ) 

A  --  Google 
B  -- QTO 

A  -- QTO 
B  -- Google 

Day 2 (Q1-Q6) 
( Judgeability ) 

A  --  Google 
B  -- QTO 

A  -- QTO 
B  -- Google 

Day 3  (Q7-Q12) 
( Representativeness ) 

A  --  Google 
B  -- QTO 

A  -- QTO 
B  -- Google 

Day 4 (Q7-Q12) 
( Judgeability ) 

A  --  Google 
B  -- QTO 

A  -- QTO 
B  -- Google 

 
Although each query in the Judgeability test took 5 minutes, the Representativeness 
test lasted 20 minutes. This was the justification for splitting the test into morning and 
afternoon sessions in order to ensure the maximum testing time did not exceed two 
hours. We used blind testing so that the subjects did not know which system they 
were assessing, and the test had no time restriction so that subjects did not feel 
pressured. 

3.3   Metrics 

The calculations used to determine the representativeness, judgeability and quality of 
the summaries are discussed below. 

Representativeness Score. The formula (1) is used to calculate the summary repre-
sentativeness score of each query and focuses on finding each subject’s reaction to the 
summaries.  The consistency of a subject while they are making the judgements is 
difficult to determine [6].  Therefore the variable of consistency is not taken into 
account in the formula. 

R = nS
n

n 5/)(
1

:  10 ≤< R . (1) 

Where R represents the mean value among subjects’ summary representativeness 
scores and is normalised to between 0 and 1, Sn represents each summary’s 
representativeness score determined by a subject, n represents the number of retrieved 
links and the number 5 is used to normalise the result to between 0 to 1 because each 
representativeness score can be marked from 1 to 5.  

Judgeability Score. The summary judgeability score is calculated according to the 
number of Unknown summaries. The more Unknown summaries the lower the 
summary judgeability score is. 

J =
Tj

UjTj −
: 10 ≤≤ J . (2) 
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Where J  represents each subject’s judgeability score, and the value of J is between 0 
and 1, Tj represents the total number of judgements (including Relevant, Irrelevant 
and Unknown) and Uj represents the number of Unknown judgements. 

Summary Quality Score. High representativeness or judgeability alone will not 
always mean positive searcher perception.  We need to balance both scores from 
representativeness and judgeability in order to arrive a fair summary quality score. 

This is also the reason for setting both R  and J  to between 0 and 1. Therefore, the 
summary’s quality-SQ is averaged as formula (3) by the sum of formula (1) and 
formula (2). 

SQ =( R + J )/2. (3) 

4   Results 

The Representativeness task results for both the QTO and Google systems are shown 
in Table 2. Each cell’s entry represents a query’s representativeness score, which is 
summed up from 10 subjects’ representativeness judgements. Each subject’s 
representativeness score is calculated according to Formula (1) which is not discussed 
in detail here. 

Table 3 shows the judgements made by 10 subjects against each query. There is a 
total of 100 judgements from 10 subjects each being one of Relevant, Irrelevant and 
Unknown.  Each judgement of Relevant, Irrelevant and Unknown is equally counted 
as 1. For example, the 100 judgements of Query1 from the 10 subjects are 43 of  
 

Table 2. Representativeness task results 

  QTO GOOGLE

Q1 7.21 5.48

Q2 8.07 5.77

Q3 8.53 6.54

Q4 5.52 4.28

Q5 6.35 4.21

Q6 6.39 5.09

Q7 5.92 4.43

Q8 5.73 4.56

Q9 6.98 4.88

Q10 7.00 5.11

Q11 7.28 5.34

Q12 8.12 5.37

TOTAL 83.10 61.06



102 S.F. Liang, S. Devlin, and J. Tait 

 

Table 3. Subjects’ judgements of judgeability task 

  QTO GOOGLE 

  R IR UN R IR UN 

Q1 43 32 25 19 36 45 

Q2 44 41 15 18 44 36 

Q3 64 23 13 35 23 42 

Q4 39 47 14 29 25 46 

Q5 36 40 24 24 24 52 

Q6 48 35 17 29 30 41 

Q7 50 27 23 22 23 55 

Q8 43 45 12 26 30 44 

Q9 50 35 15 29 28 43 

Q10 59 28 13 26 36 38 

Q11 72 22 8 29 25 46 

Q12 69 21 10 32 33 35 

TOTAL 617 396 189 318 357 523 

Table 4. Both systems’ summary quality results 

  QTO GOOGLE 

  
Represent-
ativeness 

Judge-
ability 

Summary 
Quality 

Represent-
ativeness 

Judge-
ability 

Summary 
Quality 

Q1 0.72 0.75 0.74 0.55 0.55 0.55 

Q2 0.81 0.85 0.83 0.58 0.62 0.60 

Q3 0.85 0.87 0.86 0.65 0.58 0.62 

Q4 0.55 0.86 0.71 0.43 0.54 0.48 

Q5 0.64 0.76 0.70 0.42 0.48 0.45 

Q6 0.64 0.83 0.73 0.51 0.59 0.55 

Q7 0.59 0.77 0.68 0.44 0.45 0.45 

Q8 0.57 0.88 0.73 0.46 0.56 0.51 

Q9 0.70 0.85 0.77 0.49 0.57 0.53 

Q10 0.70 0.87 0.79 0.51 0.62 0.57 

Q11 0.73 0.94 0.83 0.53 0.54 0.54 

Q12 0.81 0.90 0.86 0.54 0.65 0.59 

Mean 0.69 0.84 0.77 0.51 0.56 0.54 



 Evaluating Web Search Result Summaries 103 

 

Relevant, 32 of Irrelevant and 25 of Unknown for the QTO system.   QTO produced a 
total of 617, 396 and 189, Google produced 318, 357 and 523 Relevant, Irrelevant and 
Unknown judgements respectively. 

Table 4 shows the summary quality results of the QTO and Google systems, where 
R represents the Representativeness score, J represents the Judgeability score and SQ 
represents the Summary Quality score. We used the data from Table 2 to convert the 
values in columns J by applying Formula (2). The values in R are also converted by 
using data in Table 1 and divided by 10 subjects. Finally, the values in SQ columns 
are derived from Formula (3). Both QTO’s Representativeness and Judgeability 
scores are higher than Google’s, therefore the Summary Quality score of the QTO 
system is demonstrably higher than Google’s. 

5   Discussion 

Figures 1 and 2 provide a comparison between QTO and Google of representativeness 
and judgeability scores respectively. Clearly the curve for QTO is above the curve for 
Google in both figures, which means that QTO’s summaries are more representative 
and more easily judged than Google’s. 

Figure 3 shows QTO and Google’s summary quality.  Evidently QTO produced 
approximately 20% better summary quality than Google in our experiment. To 
determine if the result is significant we used a paired-samples t-test analysis [11] to 
compare representativeness, judgeability and summary quality respectively and 
obtained significant results in each case (df=11 p<0.05). We also determined that the 
correlation of the Representativeness results is .894, of the Judgeability results is.567, 
and of the Summary Quality is .880, therefore they are significant.  We suggest that 
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Fig. 1. Representativeness result 
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Judgeability Result
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Fig. 2. Judgeability result 

Summary Quality Result
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Fig. 3. Summary quality results 

this high correlation indicates a predictability in QTO’s summary quality performance 
over that of Google. 

Figure 4 shows all our test results. Q_Judgeability, Q_Representativeness and 
Q_Quality represent the judgeability, representativeness and summary quality results 
of the QTO system respectively. G_Judgeability, G_Representativeness and 
G_Quality represent the results obtained for Google. The three curves of the QTO 
system have higher scores than those for Google. 
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Two Systems' Comparison by Subjects
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Fig. 4. Summary quality comparison by subjects 

6   Conclusion 

Automatic Summarisation evaluation is problematic due to the variety of factors that 
can be considered in any methodology and the interplay between these factors. In this 
paper we have discussed the factors that we believe influence the construction of an 
automatic summarisation evaluation methodology and referred to three salient works 
in the literature: namely SUMMAC, MUC and DUC. We have also presented our 
own evaluation methodology, which considers our end purpose i.e. why we are 
interested in producing summaries, the data we chose to use in response to the task, 
and the metric we have developed for evaluation purposes. 

The experimental set up is the key point of this paper. Our evaluation methodology 
is not only task oriented but is also affected by end user considerations, namely: what 
is the system’s role and who is it aimed at? The exponential rise in the numbers of 
people spending increasing amounts of time searching for information means that the 
problem ceases to be one just of the system efficiency and instead becomes one of 
enhancing the user experience. Therefore, real users’ involvement is essential to 
ensure our summariser will help to reduce the people’s search time. Also, by using 
real users in the evaluation procedure makes the test more realistic.   Although we 
realise that encapsulating human judgement is expensive and time consuming, users’ 
perception cannot be ignored.   

The fact that we chose real users for our extrinsic evaluation purpose influenced 
the data we used because we wished to avoid personal bias influencing the evaluation, 
hence we used TREC9 web track queries.  Moreover our metric then had to account 
for both representativeness and judgeability as independent measures and as a 
combined score of summary quality. Thus, while the order in which an evaluation 
methodology can be constructed is variable, it is not possible to ignore the impact that 
task, data and metric have on each other. 

Q_=QTO 
G_=GOOGLE
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Abstract. Some text collections are more difficult to search or more complex to 
organize into topics than others. What properties of the data characterize this 
complexity? We use a variation of the Cox-Lewis statistic to measure the 
natural tendency of a set of points to fall into clusters. We compute this quantity 
for document collections that are represented as a set of term vectors. We 
consider applications of the Cox-Lewis statistic in three scenarios: comparing 
clusterability of different text collections using the same representation, 
comparing different representations of the same text collection, and predicting 
the query performance based on the clusterability of the query results set. Our 
experimental results show a correlation between the observed effectiveness and 
this statistic, thereby demonstrating the utility of such data analysis in text 
retrieval. 

1   Introduction 

In information retrieval (IR) it is often observed that the same set of design choices 
for data processing provides different effectiveness on different text collections. 
While some of the variation in performance can be attributed to user factors, there are 
algorithmic aspects that can be investigated in isolation from the user. Logically, we 
would expect the size of a data collection, the number of terms used in the 
representation of documents, the average number of relevant documents per query, 
the diversity amongst documents, and other related properties to affect retrieval 
performance. To the authors’ knowledge, no systematic study has been conducted to 
evaluate the contribution of these factors to the effectiveness of retrieval techniques.  

Ideally, we would like to be able to analyse a text collection in order to predict how 
well a particular algorithm will perform against it. While it appears reasonable to 
assume that the distribution of data points, i.e., document vectors, will affect 
performance, it has proven very difficult to identify a measure of this distribution that 
correlates with performance of a given algorithm. Amongst different properties that 
characterise the structure of a dataset, we concentrate on the clusterability of the set of 
points. This measure reflects the presence or absence of natural groups in the data and 
is closely tied with the choice of representation (the document feature set and feature 
weighting scheme) as well as the similarity metric used. 

For measuring clusterability of text documents, a quantity based on the Cox-Lewis 
statistic is suggested (originally proposed in [1] and not related to one of the current 
authors). The use of this quantity is illustrated for three purposes. In Section 3 we 
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compare four different datasets and estimate their relative complexities.  In Section 4 
we use this statistic to compare two different representations of the same dataset, 
traditional tf-idf weighting and an entropy weighting described in [2]. We then apply 
Latent Semantic Indexing to these two representations and examine the retrieval 
performance before and after LSI by comparing the mean average precisions (MAP) 
of the corresponding retrieved sets. Experimental results show a correlation between 
the Cox-Lewis measure and the MAP results. Finally, in Section 5 we apply the Cox-
Lewis statistic to predict the search performance for a given query based on the 
clusterability of the retrieved document set. We verify that the Cox-Lewis statistic of 
the query result set correlates with the average precision, calculated based on the 
query relevance judgments. While, in fact, our experiments focus on correlating the 
relative query rankings that result from the Cox-Lewis statistic and the average 
precision, respectively, the result has a much broader application. In particular, for 
any given query it enables us to predict, whether the query would be harder or easier 
than another query for which we may already have performance statistics based on the 
relevance judgments. We conclude with a summary of our results in Section 6. 

2   Background 

The main inspiration behind the work of this paper is provided in [3]. Section 4.6 of 
this book, entitled “Clustering tendency”, examines the validity of the blind use of 
clustering algorithms on data. Most algorithms will create clusters regardless of the 
presence of natural clusters in the data. In order to make an informed decision as to 
whether or not to commit computing resources to data clustering, it is essential to 
estimate the predisposition of the data to coalesce into groups. Of course, a posterior 
analysis could be used to establish the quality of the clustering. However, it is 
interesting to ask whether the computational effort of applying the clustering 
algorithm would be justified at all. For that we would like to devise a measure of a 
data’s clustering tendency. As we show in Sections 3, 4, and 5, such a measure exists 
and can be used with some success to predict the complexity of text collections and, 
explain the performance of methods that rely on structure in the data set.  

Though it is difficult to define what it means for a data collection to be “easy” for 
processing, a uniformly distributed random set of points is likely to qualify as being 
difficult because of lack of structure that a suitably defined algorithm can take 
advantage of. An estimation of the uniformity of a set of points may therefore give an 
indication of “difficulty” for some tasks and this is the hypothesis we work on. We 
begin by reviewing a few measures aimed at characterizing the uniformity in the 
given data.   

In application areas with very large dimensionalities, such as vector space 
representation of data in text retrieval, certain metrics may cause all data points to 
become almost equidistant from each other [4]. When the histogram of pairwise 
distances is plotted, a complex dataset is defined as one where there is a narrow and 
high peak with very light tails. Based on this intuition and some theoretical 
justification, Chavez and Navarro [5] propose the quantity ρ = μ2 / 2σ2  as the 
intrinsic dimensionality of a set of points. Here, μ is the mean inter-point distance and 
σ is the variance of the histogram of distances. When points are widely separated 
(which is one side-effect of increased dimensionality), the mean distance between 
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points increases. Furthermore, since every point is approximately at the same distance 
from every other, the variance is low. Such a dataset, with large mean and low 
variance for inter-point distances, has a large intrinsic dimensionality and implies 
uniformity that may present difficulties for applications which rely upon structure in 
the data representations.  

There are a few problems with the direct application of intrinsic dimensionality to 
text retrieval. The term-document matrix representing a text collection is very sparse, 
i.e., contains an extremely small fraction of non-zero entries since each document may 
contain only a small subset of terms from the term space of the collection. Due to the 
sparsity of individual document vectors, the mean inter-document similarity, as 
measured by the inner (dot) product of vectors, is almost always equal to 0, implying 
that most document vectors are orthogonal to each other in the high dimensional space. 
Moreover, the use of the inner product as a distance/similarity measure means that we 
are not in a metric space (the triangle inequality law does not necessarily hold). One 
way of converting the inner product similarity measure (with an upper bound of 1 for 
vectors normalized to be of unit length) into a distance function is by taking  
1-simiarlity. A similarity value that is almost always 0 would lead to an average 
distance close to 1 (see Table 1). A value of the intrinsic dimensionality calculated 
from such data would therefore not account for the possible structure in the set of 
points. Chavez and Navarro’s measure might be more appropriate in situations where 
the data has lower sparsity and thus leads to non-zero values for inter-point distances. 

Epter et al in [6] discuss the problem of measuring the clustering tendency of a 
given set of points. The authors suggest a visual method of examining the histogram of 
pairwise distances, the presence of multiple peaks in the histogram would indicate the 
presence of clusters. However, as we have just seen, this is likely to be ineffective in 
the text retrieval scenario because of minimal variance in inter-document similarity. 

Another algorithm to measure the uniformity of a dataset is proposed in [7]. The 
authors begin with the null hypothesis that the given set of M points does not come 
from a multidimensional uniform distribution. N additional points are sampled from 
such a uniform distribution and are combined with the given set of M points. A 
minimal spanning tree (MST)1 over the set of (M+N) points is then constructed. The 
number of links between the data points and the artificially generated points in the 
final tree is an estimate of the uniformity of the dataset – the larger the number of 
links, the more evidence to reject the null hypothesis. However, to build an MST 
requires the computation of a complete weighted graph whose nodes represent the 
points and the weights for the edges correspond to distances. In our case, the points 
would be documents, and the complexity of the algorithm would be O(N2), where N 
is the number of documents. This might be prohibitive for large collections.  

Most relevant to our situation is [8]. The statistic recommended by the authors is a 
measurement of the density of the term-document matrix (i.e. the percentage of non-
zero entries). The authors indicate that a higher density corresponds to highercluster-
ability. While the sparsity/density is most definitely a factor, the exact nature  
of this dependence is not indicated. Further, the paper only deals with a binary 
representation and is therefore not suitable for comparing different representations of 
                                                           
1  A minimal spanning tree can be defined as the sub-graph (more specifically, a sub-tree) of a 

given weighted undirected graph such that all the vertices are connected and the sum of the 
weights of the edges is the minimum.  
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documents. We wish to highlight the role of the geometry of the set of points, which 
would not only depend on the binary presence/absence of the features, but also on the 
weights associated with the features used in the representation. 

Data analysis of this sort is usually performed as part of a larger application, most 
natural of which is clustering. In this paper, we look at query performance prediction – a 
problem that has recently received significant attention – and consider the influence 
of the clusterability of the retrieved set for a query in a given data representation. 
Properties of each query and its constituent terms are used to provide a prediction of 
the relative ranking amongst queries. The most successful results to date have been 
reported in [9] which defines a method of learning this prediction based on the 
agreement between the results to a query and each of its sub-queries.  

We are interested in text retrieval, and converting a collection of documents to a set 
of points would involve the choice of a specific representation. Each such choice will 
lead to a dataset with different characteristics. The aim of our research is to define a 
property of these datasets that correlates with retrieval effectiveness, thereby 
providing us with a guideline for making the design choices. 

3   Measuring the Clusterability of a Document Collection 

In this section we define the statistic that we use to characterize the clusterability of 
data points and provide details of its calculation. The statistic is based on the Cox- 
Lewis measure, defined in [1]. Its multidimensional equivalent is given in [10]. For 
each of a number of randomly sampled points, we calculate the distance between the 
randomly generated point and its closest point within the dataset (called a ‘marked 
point’). Then, we determine the distance between the marked point and its nearest 
neighbor within the given data. The ratio of these two distances, averaged over a 
number of samples, is the Cox-Lewis statistic. 

A rigorous treatment of the calculation of this statistic requires the definition of a 
spatial point process which models the generation of the data and also provides a null  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Effect of a wrongly chosen sampling window 

   (a) Unrestricted sampling window      (b) Sampling window restricted to [0, 1] 
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Fig. 2. Algorithm for the estimation procedure 

hypothesis. Points can be sampled from this distribution to serve as pseudo data points. 
For the Cox-Lewis test, these points are used as the initial random points. The statistical 
significance of the value (after appropriate normalization) is then estimated. While 
generative models have been proposed for text documents [11], estimating the parameters 
of these models involves considerable computation. If we assume that two or more 
document collections share the same generative model, then it is possible to provide a 
basis for a relative comparison between the datasets that does not require normalization. 

As has been noted in previous literature [3], the definition of a ‘sampling window’ 
from which a random point is generated is a critical factor for the Cox-Lewis statistic. 
Since we are trying to measure a property that is internal to the data, the generation of 
the random points needs to be done with care. In particular, we must sample data 
points from within a window of appropriate size. The effect of a wrongly chosen 
sampling window is illustrated in Figure 1. 

In both cases, a set of 100 points were picked uniformly at random in the interval 
[0, 1] in 2 dimensions – these are illustrated as crosses in the figures and represent the 
dataset whose complexity we are attempting to measure. In case (a), the reference 
random point is chosen from an unrestricted sampling window (a circle in the top 
right hand corner) whereas in case (b), we impose a sampling window of [0, 1] in 
both dimensions. In the first figure, as seen from the reference point, the data would 
(wrongly) appear clustered. The presence of points all around the reference point in 
the second case would indicate randomness. 

 

Calculate the minimum and maximum along each dimension 
For every dimension j 
{ 
   Calculate min_j representing the minimum along dimension j across all points  
   Calculate max_j representing the maximum along dimension j across all points 
} 
 
Picking a random point 
For a randomly chosen point i in the collection 
{ 
    For all dimensions j 
   { 
       If (i, j) != 0 
  Replace (i, j) by a randomly chosen value between max_j and min_j 
    } 
} 
    
Calculating the statistic 
Find the point p with similarity srand that is closest to the random point 
Find p’s nearest neighbor with similarity snn to p 
Calculate R = srand / snn 

Average R over a series of random points 
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Given a document collection as a set of points in a vector space, we define the size 

of the sampling window by calculating the minimum and maximum for the vector 
component along each axis. This defines a hyper-rectangle. We pick a point by 
sampling values uniformly between the maximum and minimum along each 
dimension. In order to maintain the dependence on sparsity, we pick a point from 
within the dataset and replace its non-zero elements by randomly chosen values as 
described above. This provides all the details of our estimation algorithm which is 
described in Figure 2. 

Figure 3 gives a visual illustration of the intuition behind this method. Figure (a) 
shows 50 points sampled from each of two Gaussians and figure (b) shows 100 points 
sampled from a uniform distribution. When the data contains inherent clusters, the 
distance drand between the randomly sampled point and its closest neighbor in the 
dataset is likely to be much larger than the distance dnn between the marked point and 
its nearest neighbor. In other words, on average the similarity srand is much smaller 
than snn, leading to a small ratio for srand/snn. On the other hand, data with no structure 
will have a larger average ratio srand/snn and thus a larger Cox-Lewis statistic. 

In our experiments we examine document sets using the vector space 
representation and retrieval (VSM). For calculating the Cox-Lewis statistics we define 
the multidimensional sampling window as above. Similar analysis can be performed 
using other IR models. For example, in the language model, the sampling origin could 
be obtained from the language model of the collection and the randomness statistic 
can be calculated by the use of an appropriate similarity metric. 

Rather than provide an interpretation of the absolute value of the Cox-Lewis 
statistic for a given dataset, we use it as a basis for comparison of two or more 
datasets. The details of the experiments are provided in the following sections. As an 
illustration, we show in Table 1, the modified Cox-Lewis statistic and the intrinsic 
dimensionality statistics for four standard IR collections. These are the Financial 
Times collection (FT), the Congressional Record files (CR), the set of documents 

Fig. 3. Behaviour of the Cox-Lewis statistic on clustered and random data 

(a) Sampled from two Gaussians (b) Uniformly sampled 
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from the Foreign Broadcast Information Service (FB) and the Los Angeles Times 
material (LA) – all subsets of TREC disks 4 & 5.  

All four datasets were indexed using the set of terms obtained after the removal of 
standard stopwords and application of the Porter stemmer and applying the tf-idf 
termweighting. The distance dij between two documents i and j was calculated as  
1-similarity, the dot product of unit document vectors being the similarity measure. 
The values for the Cox-Lewis statistic and the intrinsic dimensionality were both 
calculated from a random sample of 10% of documents in each dataset. 

Table 1. Characteristics of the four IR collections considered 

 
 

Number of 
documents 

 

Number of 
unique terms 

(dimensionality) 

Mean 
inter-

document 
distance 

(μ) 

Variance of 
pairwise 
distance 

computations
(σ2) 

Intrinsic 
Dimensiona

lity 
ρ = μ2 / 2σ2 

Cox-
Lewis 

Statistic 

FB 130471 231574 0.999966 0.000008 61498.01 0.90789 

CR 27922 166718 0.999869 0.000053 9387.21 3.91217 

FT 210158 223468 0.999968 0.000007 75167.38 1.21419 

LA 131896 187425 0.999978 0.000005 95537.22 1.29629 

From Table 1 one observes the characteristics of the obtained data distributions in 
terms of the Cox-Lewis and intrinsic dimensionality. Columns 4 through 6 provide the 
mean, variance and intrinsic dimensionality as defined by Chavez and Navarro [5]. 
Based on this statistic, the four datasets are arranged in the order CR < FB < FT < LA in 
terms of increasing complexity as defined in [5]. However, as we can see from Columns 
4 and 5, most documents are at a uniform distance of close to 1 from each other.  

The Cox-Lewis statistic provides information about the clusterability of the data 
representations and clearly singles out the CR database as being more uniform in data 
distribution, with the value 3.9. We note that this coincides with the experimental 
evidence in TREC that CR data set has been most challenging for the retrieval 
systems from the retrieval performance point of view.  

In our objective to find the means for characterizing clusterability of data sets, we 
aim at computationally efficient methods. The method should aid and supplement 
current practices, such as clustering, and thus be simpler than the most basic 
clustering algorithms themselves. Adopting a method that requires more sophisticated 
and involved calculations would therefore counter our aims. Positive results for our 
elementary procedure lend encouragement towards the use of such methods. 

4   Studying the Effect of Representation on the Effectiveness of 
LSI 

Given a text collection, there are many ways of converting it to its digital form 
depending on the choice of the retrieval model (e.g. vector space model, probabilistic 
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model, language modeling, etc). Within the same model, there could be differences 
based on design choices, e.g. constants in the Okapi weighting scheme, the smoothing 
method in the language model, etc. Further, the choice of a similarity metric dictates 
the inter-document relationships. In this section, we consider the vector space model 
and examine the effect of the choice of weighting scheme (referred to here as 
“representation”) on the success of Latent Semantic Indexing.  

Latent Semantic Indexing (LSI) is a technique based in linear algebra that uses a 
low rank approximation of the original term-document matrix [12]. This is done by 
taking the Single Value Decomposition (SVD) of the matrix, which allows the 
arrangement of the space to reflect the major associative patterns in the data, and 
ignore the smaller, less important influences.  

Though the success of LSI in text retrieval is unquestionable, the reasons for its 
improved performance have not been properly understood. Papadimitriou et al make 
an attempt towards this end by proving a theorem which is a weak form of the 
following logical statement - “LSI performs well if the corpus is a reasonably focused 
collection of meaningfully correlated documents” [13]. Amongst two representations 
of a given corpus, we would therefore expect LSI to perform better with the 
representation that better encapsulates the meaningful correlations between the 
documents. Since LSI can be seen as an unsupervised clustering algorithm, we 
hypothesize that the correlation amongst the documents in a corpus can be equated to 
the clustering tendency of this collection and that LSI would perform better using the 
representation that has a larger presence of natural groupings. 

In [2], Dumais describes the following weighting scheme for use with LSI. The 
term j in document i was given the weight  
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gj being the global frequency of term j, tij the frequency of term j in document i and N 
is the number of documents in the collection. This weighting is referred to as 
“entropy” here. For comparison purposes, we consider a standard variant of the 
traditional tf-idf weighting given by: 

)/log(*)/( jiijij gNltw =  

where tij, gj and N are as before and li is the length of document i. The documents are 
then normalized for length. 

4.1   Experiments 

We compare the two representations for two datasets – the CRAN and the MED  
collections – to estimate the potential benefits of LSI on the retrieval effectiveness. 
Each dataset comes with a set of queries which were issued against the set of 
documents before and after reduction by LSI (the dimensionality of the reduced space 
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was 300). The dot product was used for scoring the documents with respect to the 
query. The mean average precision (MAP) was calculated in each case, the percentage 
change in the MAP gives us the improvement due to LSI. The results are provided in 
the following table. 

Table 2. Comparing representations and their effect on LSI performance 

Cox-Lewis      
Statistic 

% increase in MAP 
after LSI  

 

Number of 
documents 

 

Number of 
terms tf-idf entropy tf-idf entropy 

CRAN 1400 7234 1.112 0.668 -1.47 41.36 

MED 1033 10178 0.916 0.735 -2.95 14.19 

The last two columns of Table 2 indicate the improvement (degradation) in 
performance of using LSI given the two representations, tf-idf and entropy. We see 
that for the tf-idf case, the retrieval performance as measured by MAP actually 
degrades when LSI is applied. In contrast, there is a significant performance 
improvement when LSI is applied to the entropy representation. Interestingly, we 
observed that for both the datasets, the entropy representation has a lower value for 
the Cox-Lewis statistic (i.e. higher clustering tendency) than the corresponding value 
for the tf-idf scheme. This is in accordance with our intuition that the success of LSI 
is dependant on the choice of a representation that is more clusterable. 

5   Predicting Query Performance 

The task of any IR system is to satisfy a user’s information need, as expressed in the 
form of a query, by providing a list of possible answers. It is almost inevitable that 
there will be queries which are difficult to answer by the system. Identifying such 
queries is extremely important in order to ensure adequate performance levels across 
queries. Difficult queries may need to be handled with extra care. The first task, 
however, is characterizing such queries before presenting the results to the user.   

TREC has recognized the issue of ‘difficult’ queries and in 2003 established the 
Robust Track. A subset of older TREC queries and some new ones were used as the 
set of topics for this task. 50 queries from TREC 6-8 were chosen based on the fact 
that they had low average precision across participants but also had outliers in  
the form of participants who did perform well on this topic. This made the definition 
of the difficulty level of these queries dependant on the performance of systems of 
earlier years.  

In this section, we demonstrate how the Cox-Lewis statistic can be used to 
characterize the ‘difficulty’ of the query by analyzing the clusterability of the query 
result set. We show a high correlation between the Cox-Lewis statistics and the 
average precision performance of the query.  

We indexed TREC disks 4 & 5 by eliminating stopwords, applying Porter 
stemming, and using the tf-idf weighting scheme. For topics 301-450 and 601-700 we 
retrieved 100 top ranked documents using the inner dot product and calculated the 
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average (non-interpolated) precision for each query based on the available relevance 
judgments.  

From [14], we adopt the notion of the query-dependant extension to the  
dot-product to calculate the Cox-Lewis statistics for each query result set. It is the 
measure used to determine the closest point to the sampling origin and identify the 
nearest neighbor of this marked point. Amongst the alternatives suggested by 
Tombros and van Rijsbergen [14], we used “M1” where the final similarity between 
two documents is a product of their inner product and the query-dependant 
component: 

= =

=

= =

==
N

k

N

k
kk

N

k
kk

N

k

N

k
jkik

N

k
jkik

ji

qc

qc

dd

dd
qddSim

1 1

22

1

1 1

22

1 *)|,(
 

where di and dj are the two documents, q is the query and c is the vector of terms 
common to both di and dj with weights ck being the average of dik and djk. We now 
associate the retrieved set of each query with a value of the Cox-Lewis statistic. 

According to the cluster hypothesis [15], documents that are relevant to a given 
query are likely to be similar to each other. By evaluating the clustering tendency of a 
query result set, we measure the degree of randomness in the retrieved set. We rank 
the query result sets based on the Cox-Lewis statistic – the lower the value of the 
statistic, the larger the tendency for this set of results to cluster. We expect that 
queries whose result sets are more clusterable are those for which the retrieval system 
performed well, according to the user relevance judgment and the corresponding 
average precision. We compare this predicted ranking of queries with the ranking 
based on the corresponding average precision. 

5.1   Experiments 

Ordering based on the Cox-Lewis statistic provides us with a prediction of the 
retrieval performance over the given set of queries. The Kendall τ coefficient between 
this and the actual ranking of queries based on the average precision was found to be 
0.349. If we use a simple dot product rather than query-specific dot product for Cox-
Lewis calculation, the Kendall τ coefficient is slightly lower at 0.324.   

As discussed in [16], the value of the Kendall τ metric alone is not sufficient. We 
measure the change in the MAP scores while eliminating successively increasing 
numbers of poorly performing topics. First, we take the predicted ranking of query 
performance and calculate the MAP over the whole set of topics. We then drop the 
topic which we expect to have performed worst, i.e., the topic with the largest Cox-
Lewis statistic over the top 100 ranked documents, and calculate the MAP for the set 
of remaining topics. It should be expected that the MAP after removing the topic with 
the least average precision would be slightly higher than the MAP of the entire set. 
This procedure is continued by iteratively removing more and more queries. The 
procedure is repeated to generate a second curve, this time considering the actual 
ranking. The difference between the two curves (of changing MAP) that result from 
removing the worst performing topic at each step, provides information about the 
utility of the performance predicting method. As can be seen from figure 4, the two 
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curves follow each other closely, indicating that the Cox-Lewis statistic was effective 
in distinguishing the poorly performing queries from the well performing ones. The 
value of the correlation coefficient also compares favorably to all but one other query 
difficulty prediction method found in the literature [9]. 

D iffe re n c e  b e tw ee n  p red ic ted  a n d  ac tu a l ran k in g  o f q u erie s  
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Fig. 4. Using the Cox-Lewis statistic to predict query performance using the Query-sensitive 
similarity measure. The two curves in the figure follow each other closely. 

6   Conclusions 

In this paper, we illustrated the need and the benefit of measuring the clustering 
tendency in a given set of points, as higher degrees of randomness in data typically 
implies a higher complexity from the processing point of view.  We proposed the use 
of a statistic based on the Cox-Lewis measure to estimate the clustering tendency of a 
given data set. We used this statistic to compare four different subsets of the TREC 
collection, each of varying size and dimensionality.  We concluded that the set of 
documents comprising the Congressional Record files would be most irresponsive to 
statistical algorithms due to its lower clusterability. 

We use the same method to compare the effect of two distinct data representation 
schemes of the same data set on the retrieval performance, facilitated by LSI. The 
data representation that uses the entropy-based term weighting was found to have a 
lower complexity, i.e., it is characterized by a presence of more natural groupings 
than the tf-idf based representation. This was substantiated by the comparatively 
better retrieval performance when LSI was applied to the representation with the 
entropy-based weighting scheme. 

Lastly, we addressed the question of predicting query performance. We showed 
that the clusterability of the top 100 results of a set of TREC topics is a good indicator 
of the query performance. More precisely, a relatively lower clustering tendency for 
the retrieved set indicates a query whose retrieval was ineffective. We found that the 
Cox-Lewis statistic performed favorably when predicting the ranking of the queries 
that results from their respective average precision measures.  
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Though the Cox-Lewis statistic proved useful, there are many open questions about 
the relationship between the complexity of the data representation and various other 
data properties, such as the number of data points (documents), the number of 
dimensions (terms), the degree of sparsity, etc. Understanding the exact nature of 
possible dependencies between the complexity and these factors would lead to better 
practices and more effective methods. This objective is therefore of great importance 
and will be the subject of our future work. 
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Abstract. This paper presents two sentence retrieval methods. We
adopt the task definition done in the TREC Novelty Track: sentence
retrieval consists in the extraction of the relevant sentences for a query
from a set of relevant documents for that query. We have compared
the performance of the Latent Semantic Indexing (LSI) retrieval model
against the performance of a topic identification method, also based on
Singular Value Decomposition (SVD) but with a different sentence selec-
tion method. We used the TREC Novelty Track collections from years
2002 and 2003 for the evaluation. The results of our experiments show
that these techniques, particularly sentence retrieval based on topic iden-
tification, are valid alternative approaches to other more ad-hoc methods
devised for this task.

1 Introduction and Motivation

In this work we understand the task of sentence retrieval in the way defined in
the TREC Novelty Track. The Novelty Track was introduced for the first time in
the TREC 2002 conference [1] and is composed of two main tasks. The first one is
sentence retrieval: starting with a set of relevant documents for a query (topic in
the TREC terminology), the system must extract from those documents the rel-
evant sentences for that topic, removing the ones that do not contain significant
information or that are related to different topics. The second task starts from
the sentences retrieved in the first task or from the relevant sentences selected by
human assessors. Taking in account this set, the system must retrieve only the
novel sentences, i.e., sentences that contain new information with respect to the
previous sentences in the set. In this paper we have focused only in the first task.

Among the applications of sentence retrieval we find query-biased text sum-
marization and the presentation to the users of the most relevant sentences of the
documents retrieved in a results list [2]. Furthermore, the novelty task would re-
move the redundant information in the extracted sentences. Another application
could be the construction of question answering systems because query relevant
sentences can be useful to obtain the user’s query.

The research done for the Novelty Track can be divided in two groups. Some
systems try to adapt classical document retrieval techniques to sentence re-
trieval with a different definition of the parameters of interest. For example,
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the classical vector space model can be adapted with a new definition of term
frequency, inverse document frequency and document length. On the contrary,
some participants work with techniques specifically developed for related tasks
like summarization or passage retrieval. Anyway, every retrieval model based on
matching of query and sentence terms will have difficulties with the short length
of sentences. For this reason most systems use pseudo-relevance feedback [3] and
query and/or document expansion [4].

Despite of the research effort done, the effectiveness in the sentence retrieval
task still can be improved. Our idea was to test Latent Semantic Indexing (LSI)
because it had not been used before in this task and because it can lead to more
general and less ad-hoc solutions and because only a small set of documents has
to be analyzed in this task. Therefore, we expect effective and efficient solutions.

LSI [5, 6] is a retrieval model based on dimensionality reduction. An initial
space of terms and documents is reduced to represent concepts instead of terms.
With this transformation LSI claims to remove the noise produced for the vari-
ability in the use of terms, extracting the underlying semantic concepts in a
document collection. Most retrieval models are based on the number of query
and document matching terms with different weighting schemes. Therefore, for
the sentence retrieval task, LSI can be appropriate because the query-sentence
similarity measure is not obtained in the initial space of terms and sentences. In
the TREC Novelty sentence retrieval task researchers are given a set of relevant
documents for each query. This homogeneous set can facilitate the extraction
of the latent semantic structure. LSI can be more effective than query expan-
sion since this strategy introduces noise in the queries trying to increase term
matching, and the expansion based on co-occurrence is going to be more difficult
in the case of the sentences. Meanwhile LSI reduces the noise at the cost of a
possible lost of information in the final reduced space. To achieve a good balance
between noise filtering and information loss, the selection of the dimensions in
the reduced space is crucial.

In this paper we also present another retrieval strategy based on topic
identification. This strategy was devised starting from the Gong and Liu [7]
summarization method. It uses Singular Value Decomposition (SVD) and topic
identification for developing a generic summarization method for single docu-
ments. This process consists of two steps. First, the main topics of a document
are identified from the SVD of the document text. Next, a sentence is selected
for each main topic and added to the summary. In our case we need to produce
a query-relevant set of sentences from a set of relevant documents for the query.
Instead of identifying the main topics of a single document, we first identify the
main topics of the query. In this last usage a topic is an aspect of the query and a
query can be about several topics. Please note that in some sections we will use
topic with the meaning of ”TREC topic”. Hereinafter the context is enough to
distinguish between the two meanings of the word topic. The sentence selection
process is also different. In the case of a generic summary of a single document,
we intend to maximize the coverage of the document’s main content by selecting
one sentence for each main topic. On the other hand, to address the sentence
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retrieval task, it is necessary to maximize the number of relevant sentences re-
trieved for each topic of the query. After the identification of the query topics,
we retrieve the set of relevant sentences for the topics.

We advance here that sentence retrieval based on topic identification outper-
forms the method based on LSI retrieval. In addition, it is competitive compared
with other more specific techniques.

The rest of the paper is organized as follows. In the next section we introduce
the LSI model and explain the alternative retrieval method proposed for sentence
retrieval. In section 3 the experimental setting is presented. In section 4 we show
and analyze the results. In section 5 different considerations and future research
lines are introduced. The paper ends with the conclusions section.

2 LSI and Topic Identification

2.1 LSI: Model

The LSI model [5, 6] is an extension of the the vector space model for information
retrieval based on a dimensionality reduction technique. LSI claims to capture
the latent semantic structure in the documents and represent them in function
of basic concepts and ideas instead of terms. This allows us to deal with the
polysemy and synonymy problems.

The first stage in LSI is the Singular Value Decomposition (SVD) in which
a matrix of terms by documents, obtained from the document collection, is
decomposed into three matrices and then truncated to a reduced space. In our
case we have a matrix A of terms by sentences (instead of documents) in which
the value of cell ij is associated with the apparitions of term i in sentence j
weighted with local and global weights. This matrix can be decomposed in the
following way:

At×s = Tt×rΣr×rS
t
r×s (1)

where,
t: number of terms
s: number of sentences
r: rank of A
T: matrix of left singular vectors
S: matrix of right singular vectors
Σ: diagonal matrix of singular values

The Σ matrix is a diagonal matrix of singular values in decreasing order; the
singular values are the positive square roots of the eigenvalues of the matrix
A × At, where At is the transposed matrix of A. Each singular value represents
a dimension of the space, dimensions with higher singular values are more im-
portant in this space. The rows of the T matrix are the term vectors and the
rows of the Ss×r are the sentence vectors. To avoid the noise in term usage and
to capture the latent structure in a document collection the SVD is truncated
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to a reduced number of dimensions k. With this truncation, the k higher sin-
gular values are kept with the correspondent dimensions in the Tt×k and Ss×k

matrices:
Ât×s = Tt×kΣk×kSt

k×s (2)

where Â is the closest matrix of rank k to A in terms of ‖ . ‖2 and ‖ . ‖F norms.
In the sentence matrix Ss×k each sentence vector has k components. The usual
interpretation of this transformation is that each component now represents a
concept extracted from some relationship between terms and sentences in the
original space.

In this point it is worth to revisit the example given in one of the pioneer
LSI works. In the example presented in [5], after a truncated SVD with k = 2 of
an original space of 18 terms and 14 documents, it is clear that the documents
pertaining to a certain topic are clustered above the x-axis which is associated
with the first dimension of the final reduced space, while documents pertaining
to another topic are clustered near the lower y-axis which is associated with the
second dimension of the final reduced space.

2.2 Retrieval in LSI

Once we have this decomposition and truncation for an information retrieval
system we must do the same transformation with the queries that arrive to the
system. We need to project the queries to the same reduced space using the
following formula:

q̂ = qtTt×kΣ−1
k×k (3)

With this transformation the query vector q̂ is just like a pseudo-sentence
vector that can be compared with the rows of Ss×k in a retrieval task. Actually,
in order to make this comparison the rows of Ss×k and q̂ are scaled multiply-
ing them by Σ. Note that this scaling only produces a stretched version of the
reduced space Ss×k giving more importance to the dimensions with higher sin-
gular values. Finally, query and sentences can be compared using the cosine or
dot product. If the similarity measure is larger than a threshold thrLSI then the
sentence is considered relevant.

2.3 Retrieval Based on Topic Identification

First we will give a brief description of the method and then we will provide a
pseudo-code style description. Our intuition here is that a sentence contains a
very low number of different concepts or topics, i.e., in most cases a sentence is
only about one or two things. Considering that in the reduced space each dimen-
sion represents a concept, we can consider only a few dimensions of the sentence
vector to determine its relevance. We considered that the most important topics
in a query are those associated with the largest magnitude components, because
they are the most discriminative in the space. So we take these dimensions as the
representatives of the query and we select the sentences with the largest values
for those dimensions.



Sentence Retrieval with LSI and Topic Identification 123

In this method the query q̂ and the sentences, rows of matrix Ss×k, are not
scaled with Σ because this method is specifically devised for operating in the
reduced space. The retrieval algorithm uses the Ss×k matrix and the projected
query q̂ as follows:

1. For a projected query q̂ = (q̂1, q̂2, . . . , q̂k) the n components with the largest
absolute values are chosen.

2. Let q̂i be any of the selected components of q̂ obtained in the previous step.
Let Si = (s1i, s2i, . . . , ssi) be the column i of matrix Ss×k. Each element sji

represents the weight of the component i in the sentence j (row j of Ss×k).
Let thrTI be a positive threshold.
For each q̂i selected in 1:

For each j:1..s:
If q̂i and sji are positive and sji > thrTI the sentence j is selected.
If q̂i and sji are negative and |sji| > thrTI the sentence j is selected.

3. The union of sentences obtained in the previous step is returned.

Let us remark that in the inner loop of step 2 we only select those sentences
that have components with values larger than the threshold and the same sign
than the query component because we suppose that queries and sentences per-
taining to a certain topic must be located in the same side of the axis associated
to that dimension. It is possible to find an optimal number of retrieved sentences
by changing the value of the threshold thrTI introduced in the algorithm.

Now we emphasize the differences with the algorithm exposed in [7] where
the goal is to produce a generic summary of a document. First, in the algorithm
presented here the goal is to obtain the set of relevant sentences to a query.
Second, in [7] the first step obtains the singular values associated with the main
concepts of a single document; in our algorithm the main concepts in the query
are obtained in the first step. Third, in [7] for each important singular value,
a sentence is selected trying to maximize the coverage of the document’s main
content; in the problem addressed in this paper we must cover the query topics
but for each query topic we must retrieve not only a representative sentence but
the set of relevant sentences.

The evaluation of the sentence retrieval task in the TREC Novelty track is set-
based. The method for retrieval of sentences based on LSI described in section 2.1
produces a ranking. Therefore, it was necessary to define a similarity threshold
to obtain a set. The method based on topic identification directly produces a set.
For other tasks the algorithm based on topic identification could be modified to
produce a ranking.

3 Experimental Settings

We used the collections of the TREC Novelty Track from years 2002 and 2003
for the evaluation of the two retrieval methods.

The 2002 collection consists of 49 topics selected from the ad-hoc task of
TREC in the range from 300 to 450 [1]. For these topics a set of 25 relevant
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documents was provided. In fact, 25 is the upper limit, as for some topics the
number of documents is lower. There are two relevance judgments for the relevant
sentences in this track corresponding to the minimum and maximum assessor.
The minimum assessor, the one with the lower number of relevant sentences, was
taken as the official for this task. The average percentage of relevant sentences
is very low, 2.54%.

The 2003 collection consists of 50 topics specifically created for the 2003 track
[8]. Two kinds of topics were created: events, for news articles, and opinions for
articles about controversial subjects. For each topic, 25 relevant documents were
selected from the AQUAINT collection, composed of articles from New York
Times News Service, Associated Press and Xinhua News Service. The authors of
the topics, primary assessors, made the relevance judgments of their own topics
and a secondary group of assessors provided a second set of judgments. The
percentage of relevant sentences from the primary assessors, that was taken as
the official for this task, was much higher than in 2002, 41.13%.

In both collections the sentences are previously identified in the documents
and tagged separately to allow a quick processing of the documents. This sepa-
ration is based in the points of the original text so the division in sentences is
not part of the difficulties of the task.

We tested different stemmers; the best results were obtained with the Krovetz
stemmer. The stop words were removed. All the experiments presented in the
next section used the Krovetz stemmer and the same stop list.

In this task the relevant sentences only can be found in the set of 25 documents
associated with each TREC topic. For this reason, the matrix A of equation (1)
was generated independently for each set of relevant documents associated with
each TREC topic in both methods. This indexing scenario represents a real
situation in which a standard IR system retrieves the top-ranked documents
and these documents are analyzed to retrieve relevant sentences.

Retrieval was done with the programs provided by the LSI software package
of Telcordia Technologies [9]. We used this software with the SVDLIBC [10]
library to perform the SVD transformation.

The evaluation measures are the set-based precision, set-based recall, and the
F measure for each topic and the average for the 50 topics. The metric taken as
reference was the F measure given by the formula:

F =
2 × Precision × Recall

Precision + Recall
(4)

This measure gives the same importance to precision and recall, so the goal
of retrieval is a good trade-off between precision and recall.

4 Results

Different weighting schemes provided by the LSI software package of Telcordia
were tested for local and global weights. For the local weights the best weight
was the binary one. Anyway, if the log or raw term frequency option is used, the
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difference in the result obtained is small, since the information of the number of
times a term appears in a sentence is usually not so important. The global weight
idf2, which is the square of the logarithmic idf, also allows the best results in
both methods and collections. For the LSI method the similarity measure chosen
for the two collections was the dot product.

In figure 1 the best experiments for the 2002 collections with both methods
are shown. For the 2002 collection the first method results were bad. The best
results were obtained using 20 factors (k = 20) in the truncation of the SVD,
although there are similar results with k varying in the range from 15 to 25.
With the dot product as the similarity measure we determined the value of
the threshold THRLSI that produces the best F value. The higher F value
was 0.06 with THRLSI in the range between 38 and 50. The F value is very
low compared with the best runs submitted to the TREC track. Moreover, the
groups participating in the track had only four topics for training while we used
the full set of relevance judgments to adjust the used parameters. In fact, a
random retrieval of sentences produces an F value of 0.04, so we can say that
the LSI method is not able to work properly in this collection.

In the same collection the topic identification method improves substantially
the performance. The best range for the number of factors is the same than in the
LSI method, with the best value for k = 15. We used the same weighting scheme.
The used threshold type is different: a minimun value for all of the components
was fixed and only sentences with absolute values higher than that threshold were
retrieved. The best results are obtained when the similarity threshold THRTI

has a value of 0.05 and the parameter n for the number of query components has
a value of 1. In all experiments an increment in the number of query components
produced a small decrement in the performance. The best F obtained was 0.141
which supposes a big improvement with respect to the LSI results. But these
results still do not reach the ones obtained by the best runs submitted to the
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track with an F value around 0.23. The F obtained with the second human
judgments (maximum assessor) is 0.371.

In the evaluation of the two methods we only established the values of
k,THRLSI,THRTI and n mentioned above to obtain the best results. Most
systems participating in the TREC Novelty track applied specific techniques
to improve performance: specific analysis of the queries or documents to be
used in query or document expansion, query expansion with linguistic resources,
pseudo-relevance feedback techniques, features extraction from the TREC topics
or document clustering before sentence retrieval. For these reasons, it is difficult
to compare our results with the results obtained for the runs submitted to the
TREC tracks. The participants did not have the relevance judgments to find the
best paremeters. Actually, in the 2002 track four training topics were provided.
These topics were used for some participants to determine, for example, the per-
centage of sentences that should be retrieved. In the 2003 track no training topics
were provided. However, since participants in the competition were allowed to
send five runs, we presented here the comparison with the best results of TREC.
Besides that, we presented the comparison of our results with the results of the
secondary assessor, therefore this comparison gives an idea of the behavior of
our methods with respect to a human performing the task.

The results of the LSI method with the 2003 collection were good. Parameter
tuning has to be different for this collection so different experiments were re-
peated again to determine the best parameters. The optimal number of factors
turned out to be k = 5. The reason of this could be that the 2003 collection
is a bit smaller or more homogeneous than the 2002 collection. With the same
weighting scheme and similarity measure, the value of the threshold thrLSI that
achieves the best results is also different, in this case because the relevance judg-
ments are very different and the percentage of relevant sentences is higher. As
expected, the value of the threshold is lower than in the case of the 2002 collec-
tion and the range for the best results is between 16 and 20.

The best F with k = 5 factors and a threshold thrLSI of 16 is 0.593. This
value is similar to those submitted for the best runs participating in the track.
Indeed, the F value of the secondary assessor is 0.58. Our value is better in this
case because our recall is very high 0.90, while the recall of the human assessor is
0.67. In terms of precision we obtain 0.5 while the human obtains 0.69. Results
with better precision are obtained increasing the threshold value. With these
increased values the F value decreases because the recall decreases faster than
the precision increases. For example, for a value of thrLSI = 50, a recall of 0.62
similar to the human is obtained, but the precision has a value of 0.55 and the
F value is 0.533. It is a good F value close to the human assessor F value and
more similar in the trade-off precision/recall.

Although the difference is not so large as in the 2002 collection, the topic
identification method also performs better than LSI for the 2003 collection. The
optimal number of factors is the same that for the LSI method (k = 5). Compared
with the topic identification algorithm in the 2002 collection the threshold thrTI

is also lower. The highest F value is 0.640 and it is obtained with thrTI = 0.02.



Sentence Retrieval with LSI and Topic Identification 127

 0.45

 0.475

 0.5

 0.525

 0.55

 0.575

 0.6

 0.625

 0.65

 5  10  15  20  25  30

F
 m

ea
su

re

Number of factors

 LSI 2003 thrLSI = 16
TI 2003 n = 1 thrTI = 0.02
TI 2003 n = 1 thrTI = 0.03

Fig. 2. F measure for the best runs in function of the number of factors (k), 2003
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This value is even better than the value provided by the secondary assessor
and than the best runs submitted to the track, but it is obtained with a high
recall (0.89) and a precision of 0.58; with thrTI = 0.03 we obtain a recall of
0.73 (the secondary assessor obtains 0.67) and a precision of 0.62 (the secondary
assessor obtains 0.69) and an F value of 0.603 which is still higher than the
human assessor that obtains a 0.58. In figure 2 the changes of the best results
in function of k for the 2003 collection with both methods are shown.

In both collections, after selecting the best k, the topic identification method
performs better than the LSI method. This is especially important in the 2002
collection where LSI simply does not work. An important fact is that in both
methods the optimal number of factors is the same for the same collection. But,
in the case of the topic identification method, the variation in the number of
factors has a major influence in the performance of the system while in the LSI
method the influence of the number of factors is quite soft. This variation can
be seen in figures 1 and 2 but especially in the graphic from the 2003 collection
where the performance of topic identification is lower than LSI for k > 20. So a
previous statistical analysis to determine what number of factors is the best for
a concrete collection will be more important in the topic identification than in
the LSI algorithm.

5 Discussion and Future Work

In [11] different experiments with real relevance feedback and LSI were made.
These experiments in several small collections achieved a big improvement in
performance. For example, the use of the first relevant document retrieved as
the new query is enough to improve the results in all the collections tested. We
think that the use of pseudo-relevance feedback techniques can also improve the
performance of LSI and, therefore, of our topic identification method in sentence
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retrieval. In fact, the best precision values obtained in the topic identification
experiments can help to make the pseudo-relevance feedback more effective in
this method.

The results presented here reinforce the hypothesis that each dimension in
the reduced space of the truncated SVD represents a topic of the original doc-
uments. The algorithm proposed in [7] starts from the hypothesis that a pat-
tern in the word usage in the original document space can be associated with
a topic. LSI claims that it captures the variability in the word usage, reduc-
ing terms with similar usage pattern to the same dimension in the reduced
space. If these associated terms represent a topic we can use each dimension in
the reduced space as the representative of a concept in a document collection.
Starting from these ideas Gong & Liu devised the algorithm for generic text
summarization.

Following that research line, in our LSI sentence retrieval method each sin-
gular value is supposed to represent the importance of those topics, therefore
the highest singular values represent the most important topics in the indexed
text. In our topic identification approach the retrieval is not directly driven by
the singular values. We projected the query in the truncated SVD space and
the retrieval of relevant sentences is driven by the most important query com-
ponents in this reduce space. Therefore, the good results of the method support
the hypothesis that the algorithm finds query topics and can retrieve sentences
about these topics.

The topic identification method always gets the best result using only one
component of the query (n = 1). The main reason is that the best results are
obtained with a small number of factors. Probably most queries are very focused
in a single theme, so the use of one component can be the optimal. We made
an individual query analysis, maintaining the same number of factors, and we
observed that for some queries better results can be obtained for n > 1. This is
an expected result because some queries can be about different related themes,
in this case the selection of the same number of components as main themes is
better. Obviously, this opens a research line whose goal is to produce a topic
identification method in which the n parameter could be established for each
individual query. In fact this research line is related with some recent work
in predicting query performance [12] [13]. In these works the objective is to
predict the query difficulty. Weighting functions or query expansion parameters
can be changed depending upon the prediction of query difficulty. In our case
we are interested in prediction of query topicality but we believe that some of
the predictors of query difficulty can be useful for query topicality. It is also
interesting to mention another recent work analyzing the reasons of the failure
of queries in different systems [14]: in many cases the query failure comes from
the difficulty in determining the query topicality.

As we introduced in the first section, the sentence retrieval task can be seen
like a type of summarization. Although the evaluated methods are presented
to perform a query-relevant retrieval, they could be adapted to perform generic
summaries using, for example, the full document to summarize instead of the
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query. If the summarization requires text modification, sentence retrieval can
be simply the first step of the process, previous to the generation of a new
summary.

Another application of sentence retrieval is the presentation of retrieval re-
sults. The traditional presentation strategies of web search engines usually in-
clude the title, the URL and the terms of the search in the context in which they
appear. Some experiments with users [2] examined the effects of the presenta-
tion of relevant sentences instead of the documents surrogates. The main goal
of using top-ranking sentences is the presentation of content to the users, en-
couraging users interaction and reducing the number of decisions that the users
take to decide the relevance of a document an read it. Indeed, experiments of
implicit feedback were developed changing the order of the sentences presented
in function of the information extracted implicitly from the user. The experi-
ence of the users was positive with respect to these experiments, so the task of
sentence retrieval has promising applications.

The novelty collections from the years 2002 and 2003 are very different. Due
to the variability in the results obtained and the shifting of the parameters
optimized to get these results we plan to repeat the evaluation for the 2004
Novelty track [15] collection. In the 2004 collection the major change is the
inclusion of irrelevant documents into the documents sets associated with each
topic, actually the irrelevant documents are close matches to the relevant ones,
and not random irrelevant documents. After the evaluation with this collection
we plan to research about the stability of these techniques given the variability
in the input data.

6 Conclusions

Two methods were tested for the task of sentence retrieval. The LSI-based
method had not been used before in sentence retrieval. The results of this method
are very different for the two collections employed in the evaluation. For the
2002 TREC Novelty track collection the method has a performance only slightly
better than a random retrieval, while in the 2003 TREC Novelty track col-
lection the performance is competitive with the best systems tested with this
collection.

The second method used is a new method based on topic identification. This
method obtains better results than the previous one in the two evaluated collec-
tions. In the 2002 collection the performance is not as good as the performance
of the best systems participating in the track. For the 2003 collection the results
are among the best participant systems and the second human assessor, at least
in terms of the F measure.

Most groups participating in the TREC Novelty track used techniques like
query expansion or relevance feedback to address the difficulty of matching query
and sentence terms. We have proposed two generic methods with a formal back-
ground getting good results and still being able to improve the performance.
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Abstract. Reading news is one of the most popular activities when people surf 
the internet.  As too many news sources provide independent news information 
and each has its own preference, detecting unbiased important news might be 
very useful for users to keep up to date with what are happening in the world.  
In this paper we present a novel method to identify important news in web envi-
ronment which consists of diversified online news sites.  We observe that a 
piece of important news generally occupies visually significant place in some 
homepage of a news site and import news event will be reported by many news 
sites. To explore these two properties, we model the relationship between 
homepages, news and latent events by a tripartite graph, and present an algo-
rithm to identify important news in this model.  Based on this algorithm, we 
implement a system TOPSTORY to dynamically generate homepages for users 
to browse important news reports.  Our experimental study indicates the effec-
tiveness of proposed approach. 

1   Introduction 

A survey conducted by Cerberian in May 2004 shows that news is one of the favorites 
for Internet users [1].  Specifically, 56% users rank “NEWS Sites” as one of the top 5 
places they visit when surfing the Internet.  The proliferation of many independent 
online news sources has created a sharp increase in news information channels avail-
able to us.  What we are confronted with is the prohibitively huge amount of news 
information coming at us from multiple news sources.  As us news readers are con-
cerned, the important and latest news events can actually capture users’ interest.  Thus 
one key problem is to identify those pieces of news that report important events.  We 
call this kind of news important news.  However, not all the important news has the 
similar importance, how to rank them according to their importance becomes a key 
issue in IR field.  In this paper, we mainly discuss the problem of detecting and rank-
ing these publicly recognized important news, with no respect to user’s personal in-
terest preference. 

It is not easy to distinguish important news, since each news source has its own 
preference in reporting events.  But generally speaking, the following two properties 
can be utilized for identifying and ranking important news: 



132 J. Yao et al. 

1.  Important news usually occupies a visually significant place in the homepage. 
(Such as headline news); 

2.  Important news is usually reported by various news sources. 

In this paper, we present a method to detect those pieces of news that possess these 
two properties. The visual significance of news in a homepage can be deemed as the 
recommendation strength to the news by the homepage. We notice that some home-
pages regularly recommend important news with proper strength, but others may have 
obvious local preference. We denote the term credibility to describe the extent to 
which we can believe a homepage’s recommendation. Credibility of homepages and 
importance of news pages exhibit a mutual reinforcement relationship, which is simi-
lar to that between hub pages and authoritative pages in a hyperlinked environment 
[7]. Similarly, importance of news and importance of events also exhibit such a mu-
tual reinforcement relationship. We model the relationship between homepages, news 
and events into a tripartite graph and present an algorithm to identify important news 
by seeking the equilibrium of those two mutual reinforcement relationships in this 
graph. 

Related work can be classified into two categories.  The first is important story de-
tection that is mainly studied within the topic detection and tracking (TDT) commu-
nity [4][5][6]. TDT tries to detect important stories from broadcast news.  Our work 
differs from them in the way that we consider this problem in the web environment 
where more independent information sources are available.  Another kind of related 
work is web object relationship mining, which has drawn widespread interest [8]. 
Especially, it has shown that taking the web as a graph has yielded valuable insight 
into various web algorithms [1][7].  Our work focuses on web news stories and our 
method is partially motivated by web relationship graphically modeling and mining. 

The organization of this paper is as follows. In Section 2, we study the relationship 
between homepages, news and events and model it by a tripartite graph. In Section 3 
we present the algorithm to identify the importance of news by exploiting two kinds 
of information in independent manner and combined manner respectively. In  
Section 4 we give an overview of the system TOPSTORY that implements our algo-
rithm. Experiments are discussed in Section 5. Finally, we summarize our contribu-
tions and conclude in Section 6.   

2   Observation and Formulation of Web News 

To identify important news that follows the aforementioned properties, we investigate 
two kinds of information from homepages and news pages respectively. 

News homepages not only provide a set of links to news pages, they also work as 
visual portals for users to read news. They are delicately designed to help user acquire 
information quickly. Examples include headline news, top story recommendation, etc. 
One of the most general forms is that all pieces of news are presented by homepages 
with different visual strength. The most important piece of news is often put in the top 
place, accompanied by some image or abstract text, while each of those less important 
ones is just a short sentence with a hyperlink. From another point of view, the visual 
layout of each homepage reflects its editor’s viewpoint on important news at that time. 
Such kind of information is quite helpful to identify important news.   
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Each news article generally has a title, an abstract and the content etc. Thus we can 
compare the content of two news pages and estimate whether they are reporting the 
same event. Furthermore, from the corpus of multiple news sources, we may estimate 
how many pieces of news are reporting the same event. 

2.1   Observations 

Homepages vary in credibility. Each site generally contains two kinds of homepages: 
portal page and category pages. A portal page often summarizes important news from 
different classes, while each category page focuses on one kind of news, such as 
world, business, sports and entertainment etc.  The headline news in a category page 
is possibly important only within the corresponding class. So generally speaking, 
portal pages are likely to be more credible within a site.  Besides, homepages of pres-
tigious sites are averagely more creditable than those of non-famous sites. The later 
generally has obvious local preference. Credibility of homepages and importance of 
news exhibit a mutually reinforcing relationship as follows: 

Observation 1:  Homepage and News 

 News presented by more creditable homepages with stronger visual strength is 
more likely to be important. 

 More creditable homepages are expected to recommend important news more 
reliably. 

 

All pieces of news are driven by the similar sets of events taking place in the world.  
Here we take the definition of event from topic detection and tracking community [4].   

Definition: Event 

Something that happens at a specific time and place. E.g. a specific election, accident, 
crime or natural disaster.   

The importance of news and importance of events also exhibit a mutually reinforce-
ment relationship. 

Observation 2:  News and Events 

 Important events are likely to be reported by more pieces of news. 
 A piece of news that reports an important event is important. 

2.2   Tripartite Graph Model of Web News Relationship 

We take a tripartite graph to model the aforementioned information and exploit our 
observations.  There are three objects here: homepages, news and events.  The graph 
is a five-tuple { , , , , }G F N E Q P= , where 1{ }mF F F= L , 1{ }nN N N= L , 1{ }dE E E= L  

are three sets of vertices corresponding to homepages, news pages and events respec-
tively. Q  is defined as an m n× matrix such that ijQ  represents the recommendation 

strength of jN  by iF . We assume that the maximum recommendation strength equals 

for all homepages. Correspondingly, Q  is normalized along rows so that ,max
j

i∀ 1ijQ = . 

P  is an n d×  matrix such that jkP  is the probability that jN  is reporting  
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Fig. 1. A Tripartite Graph Model of Homepages, News Pages and Events 
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3   Importance Propagation Model 

Based on observation 1 and 2, we identify the credibility of homepages, importance of 
news by finding equilibriums in those relationships.  It can be done by an iterative 
algorithm.  

We first investigate these two kinds of relationships in independent manner.  By 
further analysis, we find they are mutually beneficial.  It is more advantageous to 
combine them and find a certain type of equilibrium in the two-level mutual rein-
forcement relationship. 

3.1   Homepage Voting Model 

Corresponding to observation 1, we can define the following operations: ( TQ  is the 
transpose of Q ) 

fn Tw Q w← ×  (1) 

q

f nw K Q w← × ×  (2) 

Here qK  is a diagonal matrix and 2( , ) 1/q ij
j

K i i Q= .  The multiplier qK  is necessary 

because the credibility of a homepage should not be biased by the number of piece of 

news it presents.  Therefore when nw  is given, we estimate fw  as the following: 
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2

n
ij j

jf
i

ij
j

Q w
w

Q
=  

These two operations are the basic means by which fw  and nw  reinforce one an-

other. The equilibrium values for the weights can be reached by repeating (1) and (2) 
alternatively. Thus fw  converges to *fw , which is the unit principal eigenvector of 

T
qK Q Q× × . And nw  converges to *nw , which is the unit principal eigenvector of 
T

qQ K Q× ×  and is proportional to *T fQ w× . 

It is based on the standard result of linear algebra that if M  is a symmetric n n×  
matrix, and v  is a vector not orthogonal to the principal eigenvector, then the unit 
vector in the direction of kM v  converges to the principal eigenvector of M  as  
k  increases without bound. An assumption here is that the principal eigenvalue of M  
is strictly greater than any other ones.  But related analysis in this paper is not affected 
in any substantial way even if this assumption does not hold. 

Define T
qB Q K Q= × × . We note that 

1

m

ij li lj l
l

B Q Q K
=

= × × .So if two pieces of news 

coexist in some homepage, their importance weights reinforce one another.  The rein-
force strength is proportional to the recommendation strength of both pieces of news 
by that homepage.   

3.2   Cross-Site Similarity Model 

Corresponding to the observation 2, we define the following operations: 
n ew P w← ×  (3) 

e T nw P w← ×  (4) 

The mathematical analysis of this process is totally same with that of the homepage 
model. Here we use *nw  to denote the unit principal eigenvector of TP P× . 

Define TA P P= × . We note that 
1

d

ij il jl
l

A P P
=

= × . So ijA  is exactly the probability 

that iN  and jN  are reporting the same events. We can approximate ijA  by comparing 

the document similarity between these two pieces of news. The details are discussed 
in Section 4.2. Here we assume ijA  is available without knowing P . Thus we can 

reach *nw  without an explicit value of E  and P . 

3.3   Hybrid Model 

Both the homepage recommendation strength and multiple news similarity can help to 
identify news importance, however, the above two models have their shortcom-ings 
respectively. Improvement to the overall performance can be expected when combin-
ing them, to let them making up to each other. Here we investigate a simple  
combination rule: 
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fn n Tw A w A Q w← × ← × ×  (5) 

q

f nw K Q w← × ×  (6) 

Similarly we can repeat the above two steps alternatively to reach an equilibrium 
point. Here *fw  is the principal eigenvector of T

qK Q A Q× × × , and *nw  is the princi-

pal eigenvector of T
qA Q K Q× × × . The procedure to approximate the equilibrium 

values is in Figure 2. Generally k  = 20 is sufficient to make it converge. 

 

Fig. 2. Importance and Credibility Rank Algorithm 

The tripartite graph is expected to be connected as a whole. Intuitively speaking, 
the sets of news pages from different sites are related via the same event set they 
report, the sets of news pages for different events are also related because they coexist 
in the same set of homepages. The exception is that all events reported by a set of 
homepages are not reported by any other homepage. It is quite impossible in reality 
and we ignore this kind of case. 

Since the tripartite graph is connected and all edges are associated with positive 
values, we note that *fw and *nw  have positive values in all coordinates. It means we 
can compare the importance of any two pieces of news. However, this is not the case 
for neither homepage model nor similarity model. 

4   TOPSTORY System 

We implement a system to verify our algorithm: TOPSTORY (See Figure 3). This 
system monitors a set of news sources and crawls their homepages and linked news 
pages in a certain frequency. By our algorithm, each piece of news gets a ranking 
score. We also implement a simple clusterer so that related news can be clustered into 
events. And these events are ranked by the most important news within them. 

Iterate ( , ,Q A k ) 
Q : a frontpage-to-news matrix 
A : a news-to-news matrix 
k : the iteration count 

Let z  denote the vector (1,1, ,1) mR∈L . 
Set 0

nw z= . 
For 1,2, ,i k= L  

1
n T n
i q iw A Q K Q w −= × × × × . 

Normalize n
iw  

End for 
Set f f

k q nw K Q w= × × . 
Normalize f

kw  
Normalize n

kw  
Return ( ,n f

k kw w ) 
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The system interacts with users in two ways. 1) It periodically detects latest impor-
tant news and automatically generates homepage for users to browse. 2) It can be 
driven by users’ queries, that is, it can dynamically detect important news during any 
given time period and generates corresponding homepage with top important events.  

 

Fig. 3. An Overview of TOPSTORY System 

4.1   Recommendation Strength in Homepage by Visual Importance 

Each homepage is tracked by a set of snapshot pages 1 2{ , , }t tS S L . Here snapshot tS  

denotes the homepage at a specific time t. Each snapshot presents a set of news with 
different visual strength. We use a vision-based page segmentation algorithm (VIPS) 
[3] to analyze snapshot’s content structure (See Figure 4). 

 

Fig. 4. A Snapshot of Homepage 

Figure 4 is an example of the result, where each framed red rectangle is a block of a 
piece of news.  The visual strength of a block is decided by its size, position and 
whether it contains an image.  We estimate it by: 

( , ) / (1 / )

0.5* ( ?1: 0)

q S N BlockSize MaxBlockSize top PageHeight

ContainImage

= + −
+

 (7) 

where ( , )q S N  is the visual strength of news N  in S ; BlockSize is the block’s size; 
top is its top position; ContainImage indicates whether it contains an image; Max-
BlockSize denotes the maximum size of all blocks in S ; PageHeight is the total 
height of the snapshot page. 

2nd - level news

3rd - level news 

Headline News
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The visual strength of a piece of news may evolve with time. We need to summa-
rize these snapshots to have a global view that how the homepage recommends it. The 
summarization rule is actually determined by user’s interest needs. If a user wants to 
browse important events during a week, all snapshots in this week are equal. In an-
other case the user’s interest decays with time, the latest snapshots should be more 
important than the older ones. Therefore we associate weights to snapshots according 
to their corresponding time. A sigmoid function is used to represent the decaying 
effect of user interest. 

0( )

1 , for the first case
( ) 1

, for the second case
1

t

a t t

w S

e −

=
+

 

For each piece of news, its voting strength from a homepage is represented by a 
weighted combination of the visual strength it occupies at each snapshot.  

( ) * ( , )

( , )
( )

t

t

t t
S

t
S

w S q S N

q F N
w S

=  

where ( )tw S  is the weight of snapshot S at time t.  ( , )q F N  is further normalized so 

that the maximum recommendation strength by each homepage equals 1.   

4.2   News Document Similarity Measure 

We use the Vector-Space Model (VSM) to represent each piece of news and compute 
their similarity by cosine similarity measure. For each piece of news, we distinguish 
two kinds of terms: name entities and general feature words.  Name entities involve: 
Name, Organization, Location, Time, etc. 

We consider three aspects to weight each word: 

1. Traditional TF-IDF scheme. 
2. Font information. Those with bold and bigger size font are of bigger weights. 
3. Name entities are more relevant to the reported event. 

We compute the weight of each term e  in a news page N  as the follows:  

* ( ) , if e is a feature word

( , )
* ( ) *5 , if e is a name entity

e N
w N and w e

e N
w N and w e

idf f w

w N e
idf f w

∈ =

∈ =

=  

where ( )Nf w  denotes the font weight of each occurrence of w in N . 

5   Experimental Results 

In this section, we first explain how we collect data and set up the ground truth. Then 
a set of experiments were conducted to investigate our algorithms and evaluate the 
TOPSTORY system. 
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5.1   Data Sets Description 

We monitor 8 online news sites for a week. All homepages are crawled in the fre-
quency of ten minutes. We are especially interested in world news because it is popular 
and comparable among all sites.  Statistics of crawled data are shown in Table 1.   

Table 1. Statistics of Experimental Data 

News Sites Homepage Num News Page Num World News Num 

BBC 7 1262 348 

CNN 8 331 133 

CBC 5 498 258 

NEWSDAY 6 922 336 

CBSNEWS 5 197 50 

YAHOO 8 1219 365 

ABCNEWS 7 2601 463 

REUTERS 6 624 289 

It is quite difficult to give an importance value for each piece of news. The key 
problem is that users can only evaluate importance for each event instead of each 
piece of news. So it is necessary to associate each piece of news into some event for 
comparing our methods to the ground truth from users. We utilize a fixed clustering 
algorithm to deal with this task. We define three importance levels and their corre-
sponding weight values. (See Table 2) 

Table 2. Importance Label 

Importance Level Weight 

Very important 10 

Important 5 

Normal 0 

 
We asked 5 users to label these clustered events. For each event, the average value 

is taken as its importance value.  

5.2   Experiment Results 

We conduct two experiments to compare the performance of the three proposed mod-
els. We hope to investigate the effect of information from homepages and news pages 
respectively and to see the effect of their combination as well. 
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5.2.1   Scope – Average Importance 
We take a strategy like scope-precision, to evaluate the performance of the three mod-
els in TOPSTORY respectively.  Here the scope is the number of top important events 
returned.  Precision is the average importance value of these top events.  We also 
define the ideal case for comparison.  It represents the best performance we can ex-
pect from the user labelings.  Figure 5 illustrates the result. 
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Fig. 5. Scope - Average Importance 

The hybrid model outperforms both the similarity model and the homepage model 
remarkably.  For the similarity model, some normal events contently similar to impor-
tant events are wrongly identified as important, which degrades the final performance.  
For the homepage model, only one site determines its performance since the credibil-
ity converges to one site.  Thus any less important news published on the homepage 
of this site will harm the scope – average importance. 

5.2.2   Time Delay 
Another criterion to evaluate their performance is time delay for reporting events.  
Given one event, its time delay is defined as the period from the earliest time when 
one piece of related news appears to the time we can identify it as important news.  
We hope the time delay should be as short as possible so that the system can report 
important news to users as soon as possible. 

We randomly select a set of events from those that can be identified as important 
by all the three models.  These events are listed as follows.  The left column is the 
earliest time that our crawler found a piece of news corresponding to the event.  The 
right column is a brief description of the events. 

 

2005-01-02 14:44:39 Car bomb attack kills 19 Iraqis 
2005-01-03 02:45:02 Peru rebels surrend 
2005-01-02 23:39:46 Powell warns of more Iraq attacks 
2005-01-04 06:53:55 Governor of Baghdad assassinated 
2005-01-06 11:03:08 Nelson Mandela's eldest son dies 
2005-01-05 05:35:40 Aid plea for 'tsunami generation' 
2005-01-06 06:36:10 Jordan rallies support for Iraq poll 
2005-01-02 14:36:06 Peter Molyneux has been made an OBE. 
2005-01-03 14:47:06 Uzbeks promise smelter clean-up 
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Fig. 6. Time Delay 

The delays are illustrated in Figure 6. The average delays for three models are 1.0, 
6.7 and 2.6 respectively (in hour).  The time delay by the homepage model is very 
small because a piece of important news occupies significant importance as soon as it 
appears.  While the similarity model requires a significant time delay and can hardly 
identify important events in the first time.  It is because in this model an event can be 
identified as important only after many sites have reported it.  The hybrid model is 
quite close to the homepage model for most cases.   

6   Conclusion and Future Work  

In this paper, we propose a method to identify and to rank important news in web 
environment.  We investigate visual layout information in homepages and content 
similarity information in news pages.  The relationship between homepages, events 
and news pages is modeled by a tripartite graph.  Then we present an eigenvector-
based algorithm to find the importance equilibrium in this graph.  Based on this  
algorithm, we implement a system TOPSTORY to help users to read important news 
easily.  Experiments show the whole framework is effective.  We investigate these 
two kinds of information respectively by two different models.  It turns out that they 
are mutually beneficial.  The hybrid model can identify important news better.  

Based on this work, there are three future directions worth further exploring.  First, 
we have used the information of visual strength of blocks in homepages to identify 
news importance.  The information in the web environment is much richer.  How to 
dig out other kinds of information and exploit them for our task is an interesting prob-
lem.  Second, we take the eigenvector-based method in this paper, but the power of 
such heuristics is not fully understood at an analytical level.  One direction would be 
to consider it in a random graphic model.  Finally, as the goal is to help users to 
browse important news rather than news events, the performance of event detection 
and clustering is also critical and need further study.   
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Abstract. The growing amount of online news posted on the WWW
demands new algorithms that support topic detection, search, and nav-
igation of news documents. This work presents an algorithm for topic
detection that considers the temporal evolution of news and the struc-
ture of web documents. Then, it uses the results of the topic detection
algorithm for searching and navigating in an online news source. An
experimental evaluation with a collection of online news in Spanish indi-
cates the advantages of incorporating the temporal aspect and structure
of documents in the topic detection of news. In addition, topic-based
clusters are well suited for guiding the search and navigation of news.

1 Introduction

The growing amount of online news posted on the WWW demands new algo-
rithms that support topic detection, search, and navigation of news documents.
This work explores the content of documents, the temporal evolution of news,
and the structure of news documents to define an algorithm that creates topic-
based clusters of documents (i.e., topic detection) and that uses these clusters
for searching and navigating online news.

In this work, manifestations of events are seen as news. The proposed al-
gorithm assigns news to previously detected or new events, a strategy called
single-link clustering [16]. Basis for this work are the results from the TDT re-
search initiative [13] that investigates new events in a stream of broadcast news
stories. We consider a modification of the single-link topic detection algorithm
(UMASS TDT2) that handles news as events in time [12]. Like the UMASS
TDT2, the proposed algorithm assigns news to only one topic, which can also
be extended to multiple topics. Such algorithm produces clusters of connected
news that are then used for searching and navigating documents.

In the area of information systems, the concept of information navigation
has been associated with visualization of retrieval results [11] [17] and with
information access in an information space [10] [5]. This work uses a topic-based
cluster as a semantic structure of connected news that can be used in a navigation
process. In particular, this work has the following specific contributions:

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 143–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– It implements an algorithm for Topic Detection of online news that modi-
fies a previous algorithm (UMASS TDT2) by incorporating the structure of
documents.

– It evaluates the proposed algorithm with respect to UMASS TDT 2 in a
domain of news in Spanish.

– It presents a strategy for supporting the search and navigation of news. This
strategy considers a cluster structure of connected news that embeds the
temporal order and similarity in a stream of news.

The organization of the paper is as follows. Section 2 provides a review of re-
lated work concerning topic detection and navigation systems. Section 3 presents
our algorithm for topic detection (CHILE TDT), which is compared to the
UMASS TDT2 algorithm. Section 4 describes the use of clusters as a semantic
structure for searching and navigation. Conclusions and further research issues
are discussed in Section 5.

2 Related Work

Many advances on topic detection and tracking in online news sources are de-
rived from the Topic Detection and Tracking (TDT) reseach initiative sponsored
by DARPA [13]. Since its beginning in 1996, this research initiative has produced
serveral important results. Most approaches to TDT use some sort of clustering
strategy, such as single-link clustering or hierarchical group-average clustering
[16]. The TDT developments started with the application of traditional clus-
tering algorithm for topics detection [15]. Then, systems considered that topic
detection and tracking of news are inherently related to the data flow in time
[12]. Lately, methods considered that clusters of news may overlap; that is, a
document may belong to different topics [2]. In addition, other studies have pro-
posed algorithms that show improvements when using keyword based analysis of
text documents; example of such studies are: relevance models for topic detection
and tracking [15] and event tracking on domain dependency [6].

TDT2 proposes to incorporate the temporal dimension for clustering news
documents with a single-link topic detection algorithm (UMASS TDT2) [12].
In this proposal the content of documents are represented as queries. If a new
document triggers an existing query (i.e., the similarity between the document
and the query exceeds the query’s threshold), the document is considered to
discuss the same topics (event) than the query; otherwise, it becomes a new
event. This query’s threshold is penalized by the temporal distance between the
query and the new document.

A more recent work explores time and space with ontological information in
the topic detection of online news [8]. This work uses semantic classes for loca-
tions, proper names, temporal expressions and general terms. Instead of repre-
senting news as a single document vector, this approach uses four vectors that
reside in different spaces: spatial location, proper names, temporal dimension
and general terms. It requires to extract terms with a grammar-based parser, a
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geographical ontology, and an automata for temporal expression pattern recog-
nition. In this sense, this work goes beyond the simple syntactic analysis or
keyword-based clustering strategy of information retrieval. An important effort
goes to the grammar parsing, temporal analysis, and geographic association, but,
unfortunately, no evaluation was found with respect to previous studies neither
a complete description of the algorithm for its implementation and evaluation.

A topic-based cluster of news represents a collection of thematically related
documents. Faced with a large collection of documents, the problem becomes
to select and access the document to start with. A general idea for solving this
problem is to use overviews of the information that guide users from general to
more specific topics [3]. Implementations of this idea attempt to display overview
information derived from the automatically extraction of most common themes
in a collection. In many cases, these themes are associated with the centroids of
clusters that group documents based on the similarity to one another. An inno-
vative approach for clustering web documents uses web-snippet, which clusters
the fragments of web pages that are returned by a search engine and summarizes
the context of searched keywords [9] [5].

3 Topic Detection

3.1 Algorithm

This work models topics of news as events that occur in time. News has a tem-
poral order. News that arrives at time instant tj may be thematically related to
previously arrived news at time ti, with ti ≤ tj . Essentially, the topic detection
algorithm includes the same steps as the single-link algorithm described in [12]:

– News documents define queries represented by using the n−most frequent
terms (50 terms in our case) in a document query after eliminating stop-
words.

– An initial threshold for a query is defined by comparing the query with
respect to the document from where it was created (Equation 4).

– When a new document arrives, it is compared to previous queries (docu-
ments) (Equation 3) and linked to the query for which the similarity value
between the document and the query most exceeds the query’s threshold
(Equation 4). In case a news document cannot be associated with any query,
it is considered as the first document of a new cluster.

– The threshold of queries are adjusted by considering the arrival time of new
documents.

The derived function of similarity takes as basic elements the terms in the
documents, which are typically used in information retrieval systems to represent
text documents. Each term in a document has a weight, which is determined by
the number of occurrences in the document and in the set of documents. In
particular, the weight of a term k in a query qi is defined by wqi,k

(Equation 1),
and the weight of a term k in a new arriving document di is defined by wdi,k

(Equation 2).
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wqi,k
= tfqi,k

=
tdi,k

tdi,k
+ 0.5 + 1.5 · dldi

avg dl

(1)

wdi,k
= tfdi,k

· idfdi,k
= tfdi,k

·
log(C+0.5

dfk
)

log(C + 1)
(2)

where

tdi,k
: frequency of the term in a document

dldi : size of the document
C : number of documents in the corpus

avg dl : average number of terms in a document
dfk : number of documents that contain the term k

After eliminating stop-words, terms in a text document are separated in three
sets: (1) terms in the title (2) terms extracted from a syntactic analysis of doc-
uments and (3) terms in the body of the news (general terms). The syntactic
analysis of documents extracts all uppercase words in the body of the document,
composite words in uppercase, and words between semicolon or parenthesis. By
separating different components of the documents, the system aims to handle
their relative importance in characterizing the information content.

A document dj is compared to a query qi with the Equation 3. In this def-
inition, we assume that the comparison between a new arriving document and
a query cannot exceed the similarity between a query and the document from
which it was created.

sim(qi, dj) =

θ

N∑
k=1

wT
qi,k

· wT
dj,k

+ γ

N∑
k=1

wS
qi,k

· wS
dj,k

+ δ

N∑
k=1

wB
qi,k

· wB
dj,k∑N

k=1 wT
qi,k

+
∑N

k=1 wS
qi,k

+
∑N

k=1 wB
qi,k

(3)

where

qi,k : term k in the query i

dj,k : term k in the document j

T, S, B : terms in the title, extracted from the syntactic analysis, and in the
body of the document, respectively

θ, γ, δ : weights optimized with the training set

The threshold of a query represents the minimum possible value of similar-
ity between a document and a query to consider the document to belong to
the same topic of the query (Equation 4). The initial threshold is defined by a
comparison between the query and the document from which it is created. As
the temporal difference between a query and a document increases, the initial
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threshold also increases, making it more difficult that the document belongs to
the same topic.

threshold(qi, dj) = belief(qi, di) + β ∗ (datej − datei) (4)

belief(qi, dj) =

N∑
k=1

wT
qi,k

∗ wT
dj,k

+
N∑

k=1

wS
qi,k

∗ wS
dj,k

+
N∑

k=1

wB
qi,k

∗ wB
dj,k∑N

k=1 wT
qi,k

+
∑N

k=1 wS
qi,k

+
∑N

k=1 wB
qi,k

Time in this equation penalizes the similarity by the time distance in days
between the query and the document. This penalization reflects the behavior of
news stream where the frequency of related news tends to concentrate at the
beginning of an event and decrease with the time [12]. This temporal behavior
refers to the time when the news were posted, and not to the temporal content
in the text of news, which requires a natural language processing and may not
follow the same behavior used in this model. The weight of the time distance in
Equation 4 (β) is determined by an optimization process over a set of training
news.

Like for the temporal dimension, we initially explored the idea of using the
spatial dimension of news by taking the geographic distance between news’ pub-
lications. The analysis of news document shows, however, that there is a high
geographic concentration of news that makes it inappropriate to consider geo-
graphic locations as data capable of distinguishing topics. From the total number
of analyzed news of a Chilean site of online news, over 40% of them are related
to the Chilean capital (Santiago) and, among Chilean news, more than 80% of
their geographic associations are related to Santiago. This high concentration
of news is due to the fact that documents were taken from online news services
with bias to report news about one specific country (Chile).

Despite the high geographic concentration of news, we did a preliminary eval-
uation that considers the geographic association of news as a particular compo-
nent of the similarity between document and query, such as we did with time
in Equation 3, but the results were negative. Therefore, we have excluded this
component from the model and from the results of the experimental evaluations.

3.2 Experimental Evaluation

The experimental evaluation of the topic detection algorithm uses a set of 60,000
news obtained from a Chilean web site of online news [4] between March 2003 and
October 2004. Within this time period of data collection, 30 topics were selected,
and each document of this collection was manually classified into one of the 30
topics or into a null-topic (i.e., a non identified event). Each of the selected
topics was characterized with a title, a description of the starting event, an id
of the initial event, a summary, and principles of interpretation. The selected
topics vary in the length of the time interval they were relevant and the number
of documents that appeared during this time interval (Table 1). In particular,
topics cover time intervals from 8 days to one year and from 6 to 530 documents.
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Table 1. A subset of the judged events in the dataset

Topic Time interval # documents
0 Caso MOP-GATE 01/02/03-10/29/04 244
1 Caso Inverlink 02/03/03-10/29/04 191
2 TLC entre Chile y Estados Unidos 03/24/03-04/20/04 89
3 Votación de Chile en la ONU acerca de Cuba 04/10/03-05/05/03 11
4 Nelson Mery Acusado de violaciones a DDHH 04/16/03-09/25/04 71
5 Chile campeón Mundial de Tenis 2003 05/16/03-09/24/03 14
6 Publicación deudores crédito fiscal 06/26/03-09/24/03 12
7 Desafuero de Pinochet caso Berŕıos 07/11/03-10/27/04 121
8 Royalty a la gran Mineŕıa 07/22/03-09/13/04 122
9 Presos poĺıticos en huelga de hambre 07/26/03-10/28/03 69
10 Incendios en Portugal 08/03/03-08/12/03 6
11 Caso Spinak 10/06/03-10/27/04 531
12 Asalto a consulado Argentino en Punta Arenas 11/09/03-02/10/04 22
13 Caso Matute Johns 02/13/04-05/28/04 46
14 Env́ıo de tropas Chilenas a Hait́ı 03/02/04-09/21/04 50
15 Atentados en Espanã del 11 de Marzo 03/11/04-10/30/04 170

From the 60,000 documents, three different corpus were randomly created:

– Auxiliar Corpus. It consists of 1,500 documents used in the calculation of tf
and idf .

– Training corpus. it consists of 2,000 documents randomly selected.
– Evaluation corpus. It consists of 15,000 documents; 2,200 documents belong-

ing to one of the identified topics and 12,800 documents randomly selected
from the other 57,800 documents of the corpus (i.e., from all documents
minus the 2,200 documents already selected).

A preprocessing of documents identified stop-words. Stop-words were not only
prepositions or articles, but also all words whose high occurrence within the
whole corpus makes them less significant for characterizing the topics of news.
Examples of such words are noticia (news), páıs (country), and internacional
(international).

To evaluate the performance of the algorithm, we calculated cases of miss
and false alarm. Miss is the number of documents that are not, but should be,
associated with a topic. False alarm is the number of documents that are wrongly
associated with a topic. A cost function relates both measures by a weighted sum
of the probabilities of miss (Pmiss) and false alarm (Pfalse) (Equation 5) [1].
Like TDT2, we define costmiss = 0.02 and costfalse = 0.98, giving more weight
to assigning wrong documents to a cluster.

cost = costfalse ∗ Pmiss + costmiss ∗ Pfalse (5)

The evaluation compares the results of our algorithm ( CHILE TDT) with the
original algorithm in [12] (UMASS TDT2). For both algorithms, the experiment
runs different settings with the goal of optimizing the cost function. The optimal
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Table 2. Optimal settings and final cost values

System θ β γ δ Pmiss Pfalse Cost

UMASS TDT2 0.0767 0.0034 0.243 0.002 0.007
CHILE TDT 14.8 0.05 12.6 13.4 0.202 0.002 0.006

settings with the training corpus and the final cost evaluation are presented in
Table 2.

The values of the parameters for the CHILE TDT algorithm indicates that
terms in the title are more relevant than terms in the text of documents. The
final values indicate a small advantage of CHILE TDT due to a less number of
miss.

4 Navigation and Search

The characteristics of the topic-based clusters derived from the previous algo-
rithm are used for navigating and searching among online news. The idea is that
clusters provide means for finding related news based on users’ queries with finer
granularity.

The structure of clusters derived from the TDT algorithm is a hierarchical
structure, starting with the first temporal document in the cluster. Time is im-
plicit in the hierarchy, where up level news are earlier than bottom level news.
Each news document within a cluster, with the exception of the starting docu-
ment, is associated with the previous and most similar document. We represent
such cluster as an acyclic, directed and weighted graph.

4.1 Navigation

A simple strategy to support the navigation in the information space defined by
a cluster is to highlight nodes in the cluster with a strong thematic association,
or inversely, to highlight nodes that are less connected to other nodes of the
cluster. In this way, users may decide to access only nodes strongly connected
or to look for different information contained in the same cluster. A basic ap-
proach to determining a strong association between news is to define a threshold
that allows a binary classification between associations (strong or weak associa-
tions) based on the similarity value obtained from the topic detection algorithm.
This threshold may be defined/modified by the users, but also may be initially
proposed by the system.

This work proposes a threshold based on the percentage of false alarm de-
tected in the evaluation process, which differs from the probability of false alarm
used in Equation 5. The idea is to determine the number of nodes equivalent
to the percentage of false alarm with the lowest association similarity, having
that news belonging to the set of wrong assignments should have less association
similarity. For example, if the percentage of false alarm for the system is 30%
and we have a cluster with 100 news, the thirty news with the lowest association



150 S.C. Smith and M.A. Rodŕıguez

similarity are considered to have weak association, and the threshold is defined
by the thirtieth lowest similarity value.

With a threshold for the classification between weak and strong associations,
the classification process in the clusters is as follows. Starting from the root, if the
association similarity between a child node and its corresponding parent node is
larger than the threshold, the nodes are considered strongly associated with a
same highlighting color. If the association similarity is less than the threshold,
in contrast, the color of the child node will be set different to the parent node.

As an example, Figure 1 shows the original cluster and the cluster with
further refinement that refer to the ”Chile Campeón Mundial de Tenis 2003”
(topic id 5, Table 1). In this figure, there are 4 changes of color that indicate
weak associations of news. If we consider the path in the graph after the weak
association, we have 6 different news that are separated from the main topic
of the cluster. Based on the manual classification of news, this cluster obtained
from the topic detection algorithm has 9 cases of false alarm, which include the
6 news graphically separated from the main topic of the cluster. Thus, three
cases of false alarm (30% of cases of false alarm) were undetected by using the
proposed threshold.

In our online implementation of the system, graphs, initially specified in
Graph Description Language (GDL) [7], were translated into a Scalable Vec-
tor Graph (SVG) [14] format and visualized in a browser (Figure 2). In addi-
tion to the refinement by weak and strong associations, in this visualization the

Fig. 1. Graph representation with highlighting similarity association for query ”Chile
Campeón Mundial de Tenis 2003”
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Fig. 2. Online implementation of the system using the SVG format

levels in the graph are associated with the temporal evolution of news, such that
news that appear at the same level are concurrent. Other functionalities of the
interface show the content of news as users move around the graph. We do not
include a full description of the interface due to space constraints.

4.2 Search

In a search process, user queries and documents are compared for similarity. If
no indexing of documents exists, the system has to do an exhaustive comparison
with all documents. In this work, clusters of news provide a basic organization
of documents such that it is possible to filter clusters that are not similar to the
query. Even more, since clusters associate documents based not only by keyword
occurrences, but also temporal proximity, it may be possible to find thematically
relevant documents that, otherwise, would be excluded from the answer with a
traditional model of information retrieval.

The strategy for retrieving news documents from topic-based clusters is as
follows. A user query is compared with each cluster based on a common repre-
sentation. If the value of similarity is positive, and all terms in the query appear
in the representation of the cluster, the cluster is selected for a second compari-
son between the query and each document in the cluster. The system ranks the
clusters and documents such that it returns the cluster with highest similarity
and, within this cluster, the documents with highest similarity values. In case
that the query includes a condition expressed by a time interval, time interval
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Table 3. Most similar clusters and document in these clusters for a search with key-
words “matute johns”

Cluster ID Similarity Document Similarity Number of
of cluster in cluster of document documents

3090 0.286 138604 0.378 45
730 0.228 108452 0.430 3
447 0.208 105314 0.323 3
3769 0.202 146719 0.269 2
883 0.21 110321 0.214 1
3607 0.186 144766 0.287 1
3983 0.184 148938 0.333 1
3317 0.179 140882 0.152 1

of selected clusters, and then, of selected documents, must overlap the query’s
time interval.

A vector representation is applied to queries, clusters, and documents. The
terms in the query are weighted by the same schema of the vector model. The
terms in the news documents are weighted by the same schema of the topic
detection algorithm. The representation of each cluster uses all terms in the
documents of the cluster weighted by the tf*idf schema of the vector model,
but with respect to the clusters. Thus, the occurrence of terms in the cluster
is the number of times the term appears in the documents of the cluster. The
size of the cluster is the total number of different terms in the cluster. Like in
the topic detection algorithm, the values of idf are taken from the auxiliary
corpus.

As an example of a search, Table 3 shows the results of the search with a
query expressed by the following keywords: matute johns. This table indicates
the clusters with highest similarity values and, within these clusters, the docu-
ment with the highest similarity value. In addition, the fifth column indicates
the number of documents in the the cluster. As additional information, the com-
parison with the manual classification of the topic ”caso matute johns” (topic
id 13) indicates that the cluster 3090 has 4 cases of false alarm and 5 cases of
miss, the latter belonging to the other clusters in the table.

As the Table 3 shows, the similarity values of the clusters may be low, since
they are determined by considering all terms that are present in the documents
of a cluster. Although the first cluster has the most similar value with respect to
the query, the second cluster contains the document with the highest similarity
value. When comparing the search over the clusters with respect to a search
with the traditional vector model, the cluster with the highest similarity value
gives 86% of the best ranked document obtained from the vector model. The
other 14% of documents obtained from the vector model are found within the
other selected clusters of the cluster-based search. When considering all found
news in the selected clusters, the cluster-based search gives more results than
the vector model, including cases of documents that were associated with the
topic, but with a lower weight for the query’s keywords. Indeed, we obtained
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17% of relevant news found by the cluster-based search that were not detected
by the vector model.

5 Conclusions and Future Work

This work has presented a new topic detection algorithm for online news sources
that includes text content, structure of documents and temporal content of news
documents. The experimental results with the algorithm in a Spanish source of
online news indicates a favorable improvement over a previous topic detection
algorithm (UMASS TDT2). In addition to the topic detection algorithm, the
work explored the use of this algorithm for search and navigation of news. It
presents a graph-based navigation system that highlights the temporal and sim-
ilarity association between news.

As future work, we expect to complete the implementation by handling up-
dates of news in a online source. This is necessary if we expect to have good
performance and avoid to compare arriving documents with all previous docu-
ments. Likewise, we expect to introduce indexing data structures that improve
the search process. Within the context of future research, we want to explore
the use of natural language techniques for analyzing explicit, implicit and vague
temporal reference in the content of news documents. A broad domain of news
with respect to geographic content would indicate whether or not the spatial
content of news documents allows us to distinguish topics. Finally, we are ex-
ploring different strategies for navigating within a cluster such that a user could
select, based on the information contribution of documents, what documents
need to access.
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Abstract. Although mobile information retrieval is seen as the next
frontier of the search market, the rendering of results on mobile devices
is still unsatisfactory. We present Credino, a clustering engine for PDAs
based on the theory of concept lattices that can help overcome some
specific challenges posed by small-screen, narrow-band devices. Credino
is probably the first clustering engine for mobile devices freely available
for testing on the Web. An experimental evaluation, besides confirming
that finding information is more difficult on a PDA than on a desktop
computer, suggests that mobile clustering engine is more effective than
mobile search engine.

1 Introduction

The diffusion of high performance mobile phones and PDAs, together with the
increasing willingness of mobile users to turn to their portable devices to find
web content, products and services, are creating a new market (e.g., [10, 11]).
However, mobile search must still face a number of technical limitations present
in such devices, such as small screen, limited user input functionalities, and
high cost connection. The result is that Information Retrieval (IR) by means
of commercial search engines such as Google (http://mobile.google.com/) may
become a tedious, long, and expensive process for mobile users.

In this paper we tackle the problem of mobile IR using a clustering engine
approach, which consists of grouping the results obtained in response to a query
into a hierarchy of labeled clusters. This approach is well known, especially due
to the popularity of Vivisimo, which won the “best meta-search engine award”
assigned by SearchEngineWatch.com from 2001 to 2003. The advantages of the
cluster hierarchy can be summarized as follows: it makes for shortcuts to the
documents of interest, it displays potentially good terms for query refinement,
and it provides a higher level view of the topic, which is particularly useful
for unknown domains. An additional benefit is that it helps disambiguating
polysemous queries.

It is arguable that the features of a clustering engine approach appear even
more suitable for mobile IR, where a minimization of user actions (such as
scrolling and typing), device resources, and the amount of data to be down-
loaded are primary concerns. Furthermore, such features seem to nicely comply
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with the recent changes in search behaviour, as observed in some recent user
studies. For instance, according to [11], mobile users are more likely to enter
shorter queries, less likely to scroll past the first few search results, both less
able and less willing to access graphics-heavy web content. Despite such good
potentials, however, the application of clustering engines to small mobile devices
has not received much attention so far.

The first main objective of this paper is to help fill this gap. We build on
CREDO, a clustering engine based on the theory of concept lattices described
in [4, 5]. CREDO was developed for a desktop computer and does not scale to
a small mobile device. We study which requirements must be met to extend
desktop clustering engine to mobile search engine and then present Credino
(small CREDO, in Italian), a version of the CREDO system for PDAs. Credino
takes the cluster hierarchy produced in response to a query by CREDO and
displays the cluster hierarchy on a PDA, handling the subsequent interaction
with the user. Credino is available for testing at http://credino.dimi.uniud.it/.
To the best of our knowledge, it is the first system of this kind on the Internet.

As a clustering engine offers a complementary view to the list of results re-
turned by current search engines, it is interesting to compare the retrieval per-
formance of the two approaches. Very few studies are available which do this
for a desktop computer (one notable exception being [8]), let alone for mobile
search. On the other hand, it is also useful to evaluate whether mobile IR is
indeed less effective than desktop IR, in particular when using a search engine.
This is one of the main hypotheses that motivate our research, although there
is a lack of empirical observations.

The second main objective of this paper is to offer some insights into these
somewhat overlooked issues. We compare the retrieval performance of CREDO
and Credino to that of a conventional search engine on the respective device,
through an experimental study involving external subjects searching a set of
topics using the two retrieval methods on both devices. Our results suggest that
mobile clustering engine can be faster and more accurate than mobile search
engine, while confirming that mobile IR is less effective than desktop IR.

The rest of the paper is organized as follows. We begin by giving some back-
ground on concept lattices and CREDO, followed by a description of Credino.
After discussing some related work, we turn to the experimental part, describ-
ing goals, design, and findings. Finally, the paper offers some conclusions and
directions for future work.

2 Background: The Concept Lattice of Web Results

Our approach is based on concept data analysis, which combines a strong math-
ematical background with a set of efficient manipulation algorithms [4]. Here we
recapitulate its main characteristics for IR applications.

In essence, any collection of documents described by a set of terms can be
turned into a set of concepts, where each concept is formed by a subset of terms
(the concept intent) and a subset of documents (the concept extent). The intent
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and extent of any concept are such that the intent contains all terms shared by
the documents in the extent, and the extent contains all documents that share
the terms in the intent.

More formally, consider a binary relation I between a set of documents D and
a set of terms T . We write dIt to mean that the document d has the term t. For
a set X ⊆ T of terms and a set Y ⊆ D of documents, we define:

X ′ = {d ∈ D | dIt ∀t ∈ X} and Y ′ = {t ∈ T | dIt ∀d ∈ Y }.
A concept of (D, T, I) is a pair (X, Y ) where

X ⊆ T, Y ⊆ D, X ′ = Y, and Y ′ = X.

The set of concepts can be ordered by the standard set inclusion relation
applied to the intent and extent that form each concept, i.e,

(X1, Y1) ≤ (X2, Y2), if X1 ⊇ X2 (which is equivalent to Y1 ⊆ Y2),

with the resulting lattice yielding a subconcept/superconcept relation. The bot-
tom concept is defined by the set of all terms and contains no documents, the top
concept contains all documents and is defined by their common terms (possibly
none). As an illustration, Figure 1 shows a very simple bibliographic collection
consisting of four documents (1, 2, 3, 4) described by four terms (a, b, c, d),
with the corresponding concept lattice.

The document lattice (i.e., the concept lattice built from the given document-
term relation) can thus be seen as a particular form of hierarchical conceptual
clustering. Thanks to its mathematical properties, it supports various tasks of
text analysis based on inter-document similarity, including query refinement,
browsing retrieval, document ranking, and text mining [4]. Most relevant to this
paper, this approach has been implemented in the CREDO clustering engine to
organize and explore web retrieval results. Here we give a brief overview of the
system, which is best described in [5].

1 2 3 4
a x x x
b x x
c x x
d x x x

Fig. 1. The concept lattice of a simple collection
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CREDO forwards a user query to an external Web engine and collects the
first 100 results. Then it extracts a set of terms for each result and builds the
corresponding concept lattice, the levels of which are displayed on demand using
a simple hierarchical representation. In order to keep the number of top concepts
small, the first level of the lattice is built using a narrower set of terms than those
used to build the lower levels. CREDO can be tested at http://credo.fub.it.

3 Credino

Using a clustering engine approach for mobile search poses additional require-
ments compared to those which must be met in a desktop search. There are two
main reasons why CREDO, like other clustering engines developed for a desktop
computer, cannot be used on a PDA.

The first general requirement concerns usability and accessibility issues. Sim-
ply reproducing the frame-based CREDO interface would lead to a virtually
unusable interface on a small screen, with an unacceptable amount of scrolling.
In particular, users would be required to scroll horizontally, which is a very
tedious way to see an entire CREDO screen.

A second constraint comes from bandwidth considerations. As the current im-
plementation of CREDO is based on computing the whole hierarchy and sending
out the results of all possible cluster selections at once, it is suitable for medium
or broadband internet connections. By contrast, mobile devices connection to the
Web usually has a low bandwidth (like GPRS) and is not free, the billing de-
pending on the amount of data transmitted. Therefore it is important to choose,
for Credino, an architecture that minimizes the amount of data transmitted to
the mobile device.

The bandwidth constraint suggests to rely on an intermediate server (hence-
forth Credino server) to minimize both the amount of data sent to the mobile
device and the load on the CREDO server (see Figure 2). The Credino server
connects on one side to user’s PDA and connects on the other side to (a slightly
modified version of) the CREDO search engine.

Credino receives user’s commands (query execution, cluster expansion, clus-
ter contraction, visualization of the content of a cluster, visualization of a Web
page) from a PDA. In some cases (e.g., for a query execution command),
Credino forwards the command to the CREDO server, which processes it and
returns the result as an XML data structure. The result of a query, consisting
of clusters and documents, is then locally stored by Credino. Thus, in some

Fig. 2. Overall Credino architecture
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(a) (b)

(c) (d)

Fig. 3. Credino’s home page with the query “tiger” (a); Credino’s clusters for “tiger”
(b) and (c), with the cluster “software” expanded; snippets of the documents associated
with the path: tiger > software > mac os 10.4 (d)

cases, Credino can directly execute user’s commands without connecting again
to CREDO; i.e., after a query, Credino can deal with all subsequent user actions
until the next query is issued or the visualization of a web page is requested.
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To complete the description of Credino, we present some snapshots of its
user interface. Figure 3(a) shows Credino’s home page with the query “tiger”.
Figure 3(b) and (c) show the first-level clusters displayed by Credino in re-
sponse to the query “tiger”. Like most of the words on the Web, “tiger” has
multiple meanings; the clusters, in addition to refer to the animal, highlight
several other meanings, including the golf champion (“woods”), the computer
operating system (“mac os”), the race car (“racing”), the Boy Scouts of Amer-
ica (“cub”), etc. Note that the query box is at the bottom of the page, to save
space for the first results. The user can expand a cluster into its sub-clusters by
clicking on the “+” icon. In Figure 3(b) the cluster “software” is expanded into
“mac os 10.4” and “other”.

The user may also see the snippets of the documents contained in a cluster by
clicking on the cluster name or on the icon on the right. Figure 3(d) shows the
snippets of the documents associated with the selected sub-cluster. To provide
information to users as to where they are located within the hierarchy, we use
the breadcrumb trail metaphor; i.e., a sequence of clusters from the root to
the current page. Path breadcrumb trails are dynamically displayed during the
interaction between the user and the system, as shown in Figure 3(d) for the
path: tiger > software > mac os 10.4.

4 Related Work

4.1 Clustering Engines

Over the last few years, clustering engines have proved a viable alternative to
conventional search engines. Following the popularity of Vivisimo, a bunch of
commercial systems implement Web-snippet clustering: Mooter, Copernic, iBoo-
gie, Kartoo, and Clusty, among others. This issue has also gained attention in the
academic research field, although there are comparatively few implemented pro-
totypes available on line (including CIIRarchies [13], SnakeT [8], and CREDO).
Even major search engines such as Google and Yahoo! have recently shown a
strong interest in this technology.

Most clustering engines employ a two-step procedure. Cluster labels are first
generated by extracting short sequences of words (not necessarily contiguous)
from the snippets, and then a cluster hierarchy is built with or from such la-
bels. The systems differ in the choice of the lexical method used to extract the
labels and in the algorithm for hierarchy construction. CREDO uses strict single-
word indexing; however, it can easily produce multiple-word labels, reflecting the
causal (or deterministic) associations between words in the given query context.
For instance, for the query “tiger” (see Figure 3), CREDO returns some multiple-
word concepts such as “mac os” and “galactic element recorder”, reflecting the
fact that, in the limited context represented by the results of “tiger”, “mac”
always co-occurs with “os”, and “galactic” with “element” and “recorder”.

A clustering engine based on concept lattices (this applies to both CREDO
and Credino) presents some advantages over other clustering engines, which
are more heuristic in nature, due to its reliance on a mathematical theory:
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1) The clusters can be better justified, whereas the use of similarity metrics
and heuristic decisions may result in the omission of clusters that are as plausible
as those generated, or in a failure to include valuable clusters that are relatively
rare. Figure 3, for instance, shows that even clusters formed by very few docu-
ments may easily appear at the top levels of the lattice. This can be useful to
find unknown or less popular meanings of the given query; e.g., for the query
“tiger”, the concepts “tiger-cub” (related to the Boy Scouts of America), and
“tiger-galactic element recorder” (related to a NASA program). Such meanings
would probably go undetected by other clustering engines.

2) Cluster labeling is integrated with cluster formation, because a concept
intent is univocally determined by a concept extent and viceversa. By contrast,
cluster formation and cluster labeling are usually treated separately, thus imply-
ing that it may be difficult to find a good description for a given set of documents,
or, symmetrically, a set of documents that fit a certain description.

3) The structure is a lattice instead of a tree, which facilitates recovery from
bad decisions while exploring the hierarchy and can better adapt to the user. For
instance, the document about the Mac OS Tiger software can be reached through
two paths: tiger - mac os - software or tiger - software - mac os. Neither path is
better than the other, but one may better fit a particular user’s paradigm or need.

4.2 Search and Mobile Devices

Searching from small mobile devices has received quite a lot of attention, with
dedicated publications and workshops in the main IR and human-computer in-
teraction (see, e.g., [6, 7]). One of the central issues is the notion of search con-
text, with its various forms: personalization and location are currently being
exploited in a number of research and commercial efforts to filter and narrow
retrieval results (see, e.g., [9]).

Other approaches have focussed on finding faster and more accurate decisions
about the utility of the retrieved documents, using for instance keyphrases ex-
tracted from documents [15], summarization of Web pages and HTML forms [3],
and related queries [12]. In [2], it is advocated that clustering helps to present
information in a more dense and effective way on small devices, with a pilot
study demonstrating small-screen access to a digital library system.

Speaking of mobile search, data organization and data visualization are obvi-
ously strictly interconnected. The use of specific data visualization schemes for
small screens is discussed in [14], along with a set of guidelines to facilitate ori-
entation and navigation, such as preferring vertical scrolling over page-to-page
navigation and horizontal scrolling.

5 Experimental Evaluation

We have designed a comprehensive experiment aimed to evaluate how the choice
of retrieval method (clustering engine or search engine) and device (PDA or
desktop computer) affects retrieval performance. In particular, the main goals of
our experiment are: (i) comparing the retrieval performance of clustering engine
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and search engine on both a PDA and a desktop computer, (ii) comparing the
retrieval performance of PDA and desktop computer using both a clustering
engine and a search engine approach.

We used 4 systems in the evaluation: 1) Credino (PDA-Clustering), 2)
CREDO (Desktop-Clustering), 3) a mobile search engine obtained from
Credino by switching off its clustering module (PDA-Search), 4) a desktop
search engine obtained from CREDO by switching off its clustering module
(Desktop-Search). We note by Δ followed by the initials of the two methods
(devices) and the initial of one device (method) the differences in performance.
For instance, ΔCSD is the “Difference between Clustering and Search engine on
Desktop computer”. Figure 4 shows the scenario.

We tested 48 subjects in the experiment. They were computer science students
or young faculty members at the University of Udine. As none of them was aware
of CREDO and Credino systems before the experiment, and more than 90%
of them were not users of any clustering engine, they were trained.

We used the four following topics, which represent various types of web
searches (e.g., navigational, transactional, and informational) and are charac-
terized by different levels of term ambiguity and difficulty:

Fig. 4. The 4 systems tested in the experiment, and the 4 “Δs”
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T1. “Your task is to find the Web site of the worldwide institution regulating
the chess game”.

T2. “Imagine you are a tourist going to visit Potenza.1 You are interested in
finding information about available accommodations, in particular you want
to book a hotel room online”.

T3. “You have to find a friend of yours which is on holidays in South Italy. You
cannot reach him by phone, and you only know that he is in a place called
‘Canasta’ (and you do not know if it is a hotel, camping, village, etc.).”

T4. “Imagine that you have to find information concerning some athletes in the
Boxing world. You are looking for an English-language web site that would
allow you to search by name, weight, nationality, etc.”.

It is well known that evaluating the effectiveness of interactive IR systems is
a difficult task, for which there are no standard metrics available [1]. We took
into account the two main aspects of the overall retrieval performance, namely,
success and speed. Success represents the degree to which the goal has been
accomplished and was measured using a four-point rating scale. Speed was com-
puted as an inverse function of the time taken to complete the task, normalized
by a task’s maximum admissible execution time. A single numeric effectiveness
value was then used by taking their product, i.e.:

Performance = Success ∗ Speed (1)

In our experimental setting there are two independent variables (device and
method) and one dependent variable (the retrieval performance on the set of
topics). The 48 subjects were randomly split into two groups with 24 subjects,
each group being assigned to one device only (i.e., desktop computer or PDA),
and each subject in either group used the two methods (clustering and search)
to perform all four finding tasks. To minimize learning effects, each subject
performed each task once, using one method for half of the topics and the other
method for the second half of the topics. Furthermore, we varied the order of
the two methods over the topic set.

We now turn to the results. In Table 1 we show the values of Performance
(Equation 1) obtained for each topic by each retrieval method and device, nor-
malized from 0 to 100 and averaged over the subgroup of subjects who performed
the relative tasks. The subjects were in general able to successfully complete their
tasks except for topic 4, where a substantial number of failures was observed
(success = 0) and lower values of performance were thus achieved.

In Figure 5(a) we show the values of ΔCSP and ΔCSD averaged over the
topic set. The figure shows that the clustering engine approach, on average,
performed better than the search engine approach on both devices, with the
difference being statistically significant for ΔCSP (the non-parametric Mann-
Whitney U test 1-tail gives p = 0.016).

A topic by topic analysis (Figure 5(b)) shows that while ΔCSP was always
positive, ΔCSD presented considerable variations. Thus, at least in the case of
1 Potenza is an Italian city.
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Table 1. Performance by method and device on individual topics

T1 T2 T3 T4
PDA-Clustering 67.60 62.28 51.68 32.47
PDA-Search 54.77 49.94 41.91 27.57
Desktop-Clustering 63.49 65.77 61.16 37.66
Desktop-Search 65.73 53.25 42.15 46.14

(a) (b)

(c) (d)

Fig. 5. Mean retrieval performance of clustering versus search for each device (a);
Values of ΔCSP and ΔCSD on individual topics (b); Mean retrieval performance of
PDA versus desktop computer for each retrieval methods (c); Values of ΔPDS and
ΔPDC on individual topics (d)

desktop computer, the result depends on the specific topic being considered.
This behavior is now analyzed more in depth. Topics 2 and 3 were characterized
by some ambiguity and very useful clusters, so clustering was better than plain
search both on PDA and desktop computer. For topics 1 and 4, the clusters
produced by the system were pretty good, which explains the good performance
of clustering on PDA. On the other hand, we found that, for topics 1 and 4,
the subjects searching with search engine were able to detect good snippets and
come up with effective query refinement strategies, whereas on the PDA device
the screen size limitations and the typing constraints might have prevented them
to do so in a fast and effective manner.
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Figures 5(c) and 5(d) are the duals of Figures 5(a) and 5(b), obtained by
swapping the roles of methods and devices. Figure 5(c) shows that the perfor-
mance of PDA was on average lower than that of desktop computer across both
retrieval methods, with the difference being statistically significant for ΔPDS

(p < .05). Figure 5(d) shows that ΔPDS was negative for all topics and that
ΔPDC was always negative except for topic 1. The fact that on topic 1 clus-
tering engine on PDA was better than clustering engine on desktop computer
may seem somewhat surprising. As the cluster hierarchy produced for topic 1
was fine (see comment above), one possible explanation for the disappointing
performance of desktop computer is that the presence of the snippets distracted
the user away from the clustered results.

Overall, these findings represent an indication that (a) mobile clustering en-
gine outperforms mobile search engine, whereas desktop clustering engine is not
necessarily better than desktop search engine, and (b) mobile IR is worse than
desktop IR, although it can be occasionally better for the clustering method.

6 Conclusions and Future Work

We showed that mobile clustering engine is not only feasible, as demonstrated by
the system Credino, but also effective. We found that the retrieval performance
of mobile clustering engine, while remaining in general inferior to that of desktop
clustering engine, was better than mobile search engine.

Of course, more experiments are needed to support these findings. It is in-
teresting to see what happens as we choose a larger set of more typical queries,
referring to broader or better known domains. One possibility is to experiment
with the test collection made available by [8], although it is not easy to evaluate
the retrieval performance of a hierarchical clustering engine in a precision/recall
style. Also, it would be useful to experimentally compare CREDO and Credino
to some of the other few clustering engines that have been proposed, although
a mobile version of the latter systems is not available at the moment.

Credino can be technically improved. We plan to re-implement the mobile
device client as a complete application, to further reduce the amount of data
transmitted to the mobile device and to improve the usability of the system by
reducing the response time of the interface. Another direction for future work is
to develop a version of Credino for cellular smart phones.
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Abstract. In this paper we show how approximate matrix factorisa-
tions can be used to organise document summaries returned by a search
engine into meaningful thematic categories. We compare four different
factorisations (SVD, NMF, LNMF and K-Means/Concept Decomposi-
tion) with respect to topic separation capability, outlier detection and
label quality. We also compare our approach with two other cluster-
ing algorithms: Suffix Tree Clustering (STC) and Tolerance Rough Set
Clustering (TRC). For our experiments we use the standard merge-then-
cluster approach based on the Open Directory Project web catalogue as
a source of human-clustered document summaries.

1 Introduction

Internet search engines have become an indispensable tool for people looking
for information on the web. The majority of publicly available search engines
adopt the so-called query-list paradigm, whereby in response to a user’s query
the search engine returns a linear list of short document summaries (snippets).

Despite its great popularity, the query-list approach has several deficiencies. If
a query is too general, without a clear summary of different topics covered by the
results, the users may have to go through a large number of irrelevant documents
in order to identify the ones they were looking for. Moreover, especially in case of
ill-defined queries, small groups of interesting but low-ranked outlier documents
may remain unnoticed by most users.

One alternative to ranked lists is search results clustering. In this setting,
in response to a query “london”, for example, the user would be presented with
search results divided into such topics as “London Hotels”, “Weather Forecasts”,
“Olympic Games” or “London Ontario Canada”. Users looking for information
on a particular subject would be able to identify the documents of interest much
quicker, while those who need a general overview of all related topics would get
a concise summary of each of them.

Search results clustering involves a class of algorithms called post-retrieval
document clustering algorithms [1]. A successful search results clustering algo-
rithm must first of all identify the major and outlier topics dealt with in the
results based only on the short document snippets returned by the search engine
(most users are unwilling to wait for the full documents to download). Secondly,
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in order to help the users to identify the results of interest more quickly, the al-
gorithm must label the clusters in a meaningful, concise and unambiguous way.
Finally, the clustering algorithm must group the results fully automatically and
must not introduce a noticeable delay to the query processing.

Many approaches to search results clustering have been proposed, includ-
ing Suffix Tree Clustering (STC) [2], Semantic On-line Hierarchical Clustering
(SHOC) [3], Tolerance Rough Set Clustering (TRC) [4], and DisCover [5]. With
their respective advantages such as speed and scalability, all these algorithms
share one important shortcoming: none of them explicitly addresses the prob-
lem of cluster description quality. This, unfortunately, leads these algorithms
to knowing that certain documents should form a group and at the same time
being unable to concisely explain to the user what the group’s documents have
in common.

Based on our previous experiences with search results clustering [6], we pro-
posed an algorithm called Lingo [7] in which special emphasis was placed on the
quality of cluster labels. The main idea behind the algorithm was to reverse the
usual order of the clustering process: Lingo first identified meaningful cluster
labels using the Singular Value Decomposition (SVD) factorisation, and only
then assigned documents to these labels to form proper clusters. For this reason
this algorithm could be considered as an example of a description-comes-first
approach. Although SVD performed fairly well as part of Lingo in our experi-
ments [8], it had certain limitations in the context of the description-comes-first
approach. For this reason, we sought to verify how alternative matrix factorisa-
tions, known from e.g. image processing, would perform in place of SVD.

The aim of this paper is to compare how different matrix factorisations per-
form as parts of a description-comes-first search results clustering algorithm. We
compare the factorisations with respect to major topic identification capability,
outlier detection and cluster labels quality. We evaluate four factorisation algo-
rithms: Singular Value Decomposition (SVD), Non-negative Matrix factorisation
(NMF) [9], Local Non-negative Matrix Factorisation (LNMF) [10] and Concept
Decomposition (CD) [11]. To further verify the viability the description-comes-
first approach, we compare Lingo with two other algorithms designed specifi-
cally for clustering of search results: Suffix Tree Clustering (STC) and Tolerance
Rough Set Clustering (TRC). We perform our experiments using data drawn
from a large human-edited directory of web page summaries called Open Direc-
tory Project1.

2 Related Work

The idea of search results clustering was first introduced in the Scatter/Gather
system [12], which was based on a variant of the classic K-Means algorithm.
Scatter/Gather was followed by Suffix Tree Clustering (STC) [13], in which snip-
pets sharing the same sequence of words were grouped together. The Semantic

1 http://dmoz.org
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On-Line Hierarchical Clustering (SHOC) [3] algorithm used Singular Value De-
composition to group search results in the Chinese language according to the
latent semantic relationships between the snippets. Yet another algorithm called
DisCover [5] clustered search results in such a way as to maximise the coverage
and distinctiveness of the clusters. Finally, there exist algorithms that use ma-
trix factorisation techniques, such as Non-negative Matrix Factorisation [14], for
clustering full text documents.

3 Background Information

3.1 Lingo: Description-Comes-First Clustering

In this section we provide a brief description of the Lingo algorithm, placing
emphasis on its relation to matrix factorisation. For an in-depth formalised de-
scription and an illustrative example we refer the Reader to [8] or [7].

The distinctive characteristic of Lingo is that it first identifies meaningful
cluster labels and only then assigns search results to these labels to build proper
clusters. The algorithm consists of five phases. Phase one is preprocessing of the
input snippets, which includes tokenization, stemming and stop-word marking.
Phase two identifies words and sequences of words frequently appearing in the
input snippets. In phase three, a matrix factorization is used to induce cluster
labels. In phase four snippets are assigned to each of these labels to form proper
clusters. The assignment is based on the Vector Space Model (VSM) [15] and the
cosine similarity between vectors representing the label and the snippets. Finally,
phase five is postprocessing, which includes cluster merging and pruning.

In the context of this paper, phase three – cluster label induction – requires
most attention. This phase relies on the Vector Space Model [15] and a term-
document matrix A having t rows, where t is the number of distinct words found
in the input snippets, and d columns, where d is the number of input snippets.
Each element aij of A numerically represents the relationship between word i
and snippet j. Methods for calculating aij are commonly referred to as term
weighting schemes, refer to [15] for an overview. The key component in label
induction is an approximate matrix factorisation, which is used to produce a
low-dimensional basis for the column space of the term-document matrix.

The motivation behind using the low-dimensional basis for label discovery is
the following. In linear algebra, base vectors of a linear space can be linearly
combined to create any other vector belonging that space. In many cases, base
vectors can have interpretations that are directly related to the semantics of the
linear space they span. For example, in [9] an approximate matrix factorisation
called Non-negative Matrix Factorisation (NMF) applied to human face images
was shown to be able to produce base vectors corresponding to different parts of
a human face. It is further argued in [16] that low-dimensional base vectors can
discover the latent structures present in the input data. Following this intuition,
we believe that in the search results clustering setting each of the base vectors
should carry some broader idea (distinct topic) referred to in the input collection
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of snippets. Therefore, in Lingo, each vector of the low-dimensional basis gives
rise to one cluster label.

Unfortunately, base vectors in their original numerical form are useless as
human-readable cluster descriptors. To deal with this problem, we use the fact
that base vectors obtained from a matrix factorisation are vectors in the original
term space of the term-document matrix. Moreover, frequent word sequences
or even single words appearing in the input snippets can also be expressed as
vectors in the same vector space. Thus, the well-known measures of similarity
between vectors, such as the cosine similarity [15], can be used to determine
which frequent word sequence or single word best approximates the dominant
verbal meaning of a base vector. Bases produced by particular factorisation
methods can have specific properties, discussed below, which can have an impact
on the effectiveness of the label induction phase as a whole.

3.2 Matrix Factorisations

To introduce the general concept of matrix factorisation, let us denote a set
of d t-dimensional data vectors as columns of a t × d matrix A.2 The task of
factorisation, or decomposition, of matrix A is to break it into a product of
two matrices U and V so that A ≈ UV T , the sizes of the U and V matrices
being t × k and d × k, respectively. Columns of the U matrix can be thought of
as base vectors of the new low-dimensional linear space, and rows of V as the
corresponding coefficients that enable to approximately reconstruct the original
data.

Singular Value Decomposition. Singular Value Decomposition (SVD) breaks
a t × d matrix A into three matrices U , Σ and V such that A = UΣV T . U is a
t× t orthogonal matrix whose column vectors are called the left singular vectors
of A, V is a d × d orthogonal matrix whose column vectors are termed the right
singular vectors of A, and Σ is a t×d diagonal matrix having the singular values
of A ordered decreasingly. Columns of U form an orthogonal basis for the column
space of A. Lingo uses columns of the U matrix to induce cluster labels.

In the context of search results clustering, an important feature of SVD is that
the U matrix is orthogonal, which should lead to a high level of diversity among
the induced cluster labels. On the other hand, to achieve the orthogonality,
some components of the SVD-derived base vectors may have to be negative.
This makes such components hard to interpret in terms of their verbal meaning.
Moreover, although in practice the cosine distance measure seems to work well
in the SVD-based cluster label induction phase, interpretation of the similarity
between sequences of words and base vectors would be more straightforward if
the latter contained only non-negative values.

Non-negative Matrix Factorisation. The Non-negative Matrix Factorisation
(NMF) was introduced in [9] as a means of finding part-based representation of
2 In the related literature the numbers of rows and columns are usually denoted by m

and n, respectively. In this paper, however, we have decided to adopt a convention
that directly relates to a term-document matrix having t rows and d columns.
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human face images. More formally, given k as the desired size of the basis, NMF
decomposes a t× d non-negative matrix A into two nonnegative matrices U and
V such that A ≈ UV T , the sizes of U and V being t×k and d×k, respectively. An
important property of NMF is that by imposing the non-negativity constraints
it allows only additive, and not subtractive, combinations of base vectors. Lingo
will use columns of the U matrix as base vectors for discovering cluster labels.

The non-negativity of the base vectors enables us to interpret the verbal
meaning of such vectors in an intuitive way, i.e. the greater value of a component
in the vector, the more significant the corresponding term is in explaining its
meaning. This also makes the interpretation of the cosine similarity between
sequences of words and base vectors less ambiguous. On the other hand, the
non-negativity of the NMF-derived basis is achieved at the cost of the base
vectors not being orthogonal, which may cause some of the NMF-induced cluster
labels to be more similar to each other than desired. In this paper we tested
two slightly different variants of NMF described in [16]: NMF with Euclidean
distance minimisation (NMF-ED) and NMF with Kullback-Leibler divergence
minimisation (NMF-KL).

Local Non-negative Matrix Factorisation. Local Non-negative Matrix Fac-
torisation (LNMF) is a variation of NMF introduced in [10] that imposes three
additional constraints on the U and V matrices, which aim to expose the local
features of the examples defined in the A matrix. The constraints are: maximum
sparsity in V (V should contain as many zero elements as possible), maximum
expressiveness of U (retain only those elements of U that carry most information
about the original A matrix) and maximum orthogonality of U . Lingo will use
columns of the U matrix to discover prospective cluster labels.

Being a variant of NMF, Local Non-negative Matrix Factorisation inherits all
its advantages, including the non-negativity of base vectors. Additionally, the
fact that LNMF promotes sparseness of the base vectors should result in less
ambiguous matching between these vectors and frequent phrases. The special
emphasis on the orthogonality of U is also desirable as it guarantees high diver-
sity among candidate cluster labels. A possible disadvantage of LNMF in the
context of search results clustering is its slow convergence [10].

Concept Decomposition. Concept Decomposition (CD) [11] is a factorisation
method based on the Spherical K-Means clustering algorithm. For a t × d ma-
trix A and given k, Concept Decomposition generates a t × k matrix U and a
d × k matrix V such that A ≈ UV T . In the CD factorisation, each column of
the U matrix directly corresponds to one centroid obtained from the K-Means
algorithm. For cluster label induction Lingo will use the U matrix.

Because K-Means is based around averaged centroids of groups of documents,
it should be able to successfully detect major themes in the input snippets.
However, it may prove less efficient in identifying topics represented by relatively
small groups of documents.

There also exists a class of decomposition techniques based on random projec-
tions [17]. Even though these decompositions fairly well preserve distances and
similarities between vectors, they are of little use in our approach. The reason
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is that they rely on randomly generated base vectors, which will directly lead to
random labels being induced.

4 Experimental Setup

The primary aim of our experiment was to compare how four different matrix
factorisations perform as parts of a description-comes-first search result cluster-
ing algorithm. We divided our tests into three parts: topic separation experiment,
outlier detection experiment and subjective cluster label quality judgments. The
aim of the topic separation experiment was to test the algorithms’ ability to
identify major topics dealt with in the input snippets. The outlier detection ex-
periment aimed at verifying whether the algorithms can highlight a small topic
that is clearly different from the rest of the test set. Finally, we subjectively
analysed the properties of cluster labels produced by the algorithms.

4.1 Merge-Then-Cluster Approach Using Open Directory Project

We performed our experiments using data drawn from the Open Directory
Project, which is a large human-edited hierarchical directory of the Web. Each
branch of the ODP hierarchy, called a category, corresponds to some distinct
topic (e.g. “Assembler Programming” or “Stamp Collecting”) and contains links
to Internet resources dealing with that topic. Every link in ODP is accompa-
nied by a short (25–30 words) description, which in our setting emulates the
contextual snippet returned by a search engine.

To implement the merge-then-cluster evaluation, we created 77 data sets, each
of which contained a mixture of documents originating from 2 to 8 manually se-
lected ODP categories. In 63 data sets, which were used in the topic separation
experiment, each category was represented by an equal number of documents.
The remaining 14 data sets, created for the outlier detection experiment, con-
tained equal numbers of documents from 4 closely related ODP categories (major
categories) plus documents from 1 or 2 categories dealing with a totally different
subject (outlier categories). The numbers of documents representing the outlier
categories varied from 100% to 10% of the number of documents representing
one major category in that test set. In Table 1 we present an example outlier
detection data set containing documents from one outlier category of size 30%.
During the experiment, we fed all 77 data sets to the clustering algorithms and
compared the contents of the automatically generated clusters with the reference
categories defined in ODP.

Reliability of the merge-then-cluster approach largely depends on the way
the correspondence between the automatically generated clusters and the orig-
inal reference groups is measured. The similarity between two sets of clusters
can be expressed as a single numerical value using e.g. mutual-information mea-
sures [18]. One drawback of such measures is that a smallest difference between
the automatically generated clusters and the reference groups will be treated
as the algorithm’s mistake, even if the algorithm made a different but equally
justified choice (e.g. split a large reference group into sub-groups).
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Table 1. An example outlier detection test set (four major and one outlier topic)

ODP CatId Category path Document count
429194 Computers/Internet/Abuse/Spam/Tracking 28
397702 Computers/Internet/Protocols/SNMP/RFCs 28
791675 Computers/Internet/Searching/.../Google/Web APIs 28
5347 Computers/Internet/Chat/IRC/Channels/DALnet 29

783404 Science/Chemistry/Elements/Zinc (outlier) 11

To alleviate this problem, we have decided to use alternative measures: Cluster
Contamination, Topic Coverage and Snippet Coverage. Due to the limited length
of this paper we can only afford an informal description of these measures, we
refer the reader to [8] and [19] for formalised definitions.

4.2 Clustering Quality Measures

Let us define the Cluster Contamination (CC) measure to be the number of
pairs of documents found in the same cluster K but originating from different
reference groups divided by the maximum potential number of such pairs in K.
According to this definition, a cluster is pure if it contains documents belonging
to only one reference group. Noteworthy is the fact that a cluster that consists of
only a subset of some reference group is still pure. The contamination measure of
pure clusters is 0. If a cluster contains documents from more than one reference
group, its contamination measure falls within the 0..1 range. Finally, in the
worst case, a cluster consisting of an equally distributed mixture of snippets
representing different reference groups will be called contaminated and will have
the CC measure equal to 1.

A simple example of a situation where the Cluster Contamination measure
alone fails is when for a large number of reference groups the clustering algorithm
generates clusters containing documents from only one reference group. In this
case Cluster Contamination of all these clusters will be 0, and the algorithm will
not get penalized for not detecting topics corresponding the remaining reference
groups. To avoid such situations we have decided to introduce a complementary
measure called Topic Coverage (TC). TC equal to 1 means that all reference
groups have at least one corresponding cluster generated by the algorithm. Topic
Coverage equal to 0 means that none of the clusters corresponds to any of the
reference groups. Clearly, Topic Coverage promotes algorithms that can create
clusters representing both major and outlier topics found in the input set. In
our opinion, such behaviour is perfectly reasonable, as it helps the users to find
the documents of interest more quickly, even if they come from a small outlier
topic.

As clustering algorithms may omit some input snippets or put them in a
group of unclustered documents, it is important to define the Snippet Coverage
(SC) measure, which is the percentage of snippets that have been assigned to at
least one cluster.
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5 Experiment Results

5.1 Topic Separation Experiment

Figure 1(a) presents average3 Topic Coverage, Cluster Contamination and Snip-
pet Coverage for variants of Lingo employing different matrix factorisation algo-
rithms. The NMF-like factorisations provide significantly4 better average topic
and snippet coverage, the difference between the NMF-like algorithms them-
selves being statistically insignificant. Interesting is the much higher value of
cluster contamination in case of the LNMF algorithm compared to the other
NMF-like factorisations. We explain this phenomenon when we analyse cluster
labels generated by all the algorithms.
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Fig. 1. Topic coverage, snippet coverage and cluster contamination measures in the
topic separation experiment

Figure 1(b) shows how Lingo (NMF-ED) compares with two other search re-
sults clustering algorithms that do not follow the description-comes-first
paradigm: Suffix Tree Clustering (STC) [13] and Tolerance Rough Set Clustering
(TRC) [4]. Compared to TRC and STC Lingo achieves significantly better topic
and snippet coverage. TRC produces slightly purer clusters, but the difference is
not statistically significant. The above results prove that the description-comes-
first approach to search results clustering is a viable alternative to the existing
algorithms.

5.2 Outlier Detection Experiment

Table 2(a) summarises the number of outliers detected by variants of Lingo
using different matrix factorisations. Interestingly, the base line K-Means-based
factorisation did not manage to reveal any of the outliers, neither in the one-
outlier data set nor in the two-outlier one. This may be because K-Means tends
3 For full results, please refer to [19].
4 Due to the fact that our data does not follow Gaussian distribution, differences

marked hereafter as statistically significant have been tested using the Mann-
Whitney non-parametric two-group comparison test at the significance level of 0.001.
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Table 2. Numbers of detected outliers in the outlier detection experiment. For each
matrix factorisation and each clustering algorithm we provide the numbers of detected
outliers for data sets containing one and two outliers.

1 2 1 2 1 2 1 2 1 2

100% 1 2 1 2 1 2 1 1 0 0

50% 1 2 1 1 1 1 1 1 0 0

40% 1 2 1 2 1 2 0 0 0 0

30% 1 1 1 1 1 1 0 1 0 0

20% 1 2 1 2 1 2 1 1 0 0

15% 1 1 0 1 0 1 1 2 0 0

10% 1 0 1 0 1 0 1 1 0 0

SVD K-Means

Detected outliers
Outlier 

size
NMF-ED NMF-KL LNMF

(a) Matrix factorisation comparison

1 2 1 2 1 2

100% 1 2 1 1 1 0

50% 1 2 0 1 0 0

40% 1 2 0 2 0 0

30% 1 1 0 1 0 0

20% 1 2 0 0 0 0

15% 1 1 0 0 0 0

10% 1 0 0 0 0 0

STC

Detected outliers
Outlier 

size
Lingo TRC

(b) Clustering algorithms
comparison

to locate its centroids in most dense areas of the input snippet space, which is
usually not where the outliers lie. All NMF-like methods performed equally well,
slightly better than SVD. SVD, however, was the only algorithm do discover one
of the two smallest 10% outliers.

In Table 2(b) we show how Lingo (NMF-ED) compared with the Suffix Tree
Clustering (STC) and Tolerance Rough Set Clustering (TRC) algorithms in the
outlier detection task. Clearly, Lingo proves superior to the other two algorithms
in this task for both one- and two-outlier data sets. This demonstrates the NMF’s
ability to discover not only the collection’s major topics but also the not-so-well
represented themes.

5.3 Subjective Label Quality Judgements

Figure 2 shows the labels of clusters produced by Lingo with different matrix fac-
torisations for a data set containing documents from four ODP topics: Assembler
Programming, Oncology, Collecting Stamps and Earthquakes. In the author’s
opinion, the majority of cluster labels, especially those placed at top positions
on the cluster lists, are well-formed readable noun phrases (e.g. “Earthquake
Prediction”, “Oncology Conference”, “Stamp Collecting”, “Assembly Language
Programming”). One interesting phenomenon is that two very similar labels
appeared in the NMF-ED results: “Assembly” and “Assembler Programming”.
The reason for this is that the English stemmer we used did not recognise the
words assembly and assembler as having the same stem.

A more careful analysis of the cluster labels created by the LNMF version of
Lingo can reveal why this algorithm produces significantly more contaminated
clusters (compare Figure 1(a)). The key observation here is that LNMF aims
to generate highly sparse and localised base vectors, i.e. having as few non-
zero elements as possible. This results in a high number of one-word candidate
labels, such as “University”, “Engineering”, “World” or “Network”, which in
turn contributes to the high cluster contamination.

While cluster labels produced by the K-Means decomposition are generally
readable and informative, they only cover the major topics of the test set, which
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NMF-ED

Earthquake Prediction (21)
Oncology Conference (19)
Stamp Collecting (23)
Cancer Care (16)
Web Sites (11)
Assembly (11)
Assembler Programming (8)
University (10)
New York (9)
Geological Survey (3)
Technology (2)
(Other Topics) (23)

NMF-KL

Earthquake Prediction (21)
Stamp News (22)
Oncology Conference (19)
Cancer Care (16)
Assembly (11)
University (10)
Resource Site (8)
s Philatelic (5)
Stamps (3)
Exhibiting (2)
(Singletons) (1)
(Other Topics) (29)

LNMF

Stamp Collecting (23)
Earthquake Prediction (21)
Oncology Conference (19)
Cancer Care (16)
Assembly (11)
Resource Site (8)
New Approach (9)
University (10)
Assembly Language Programming (6)
Assembler (7)
s Philatelic (5)
Engineering (5)
World (4)
Geological Survey (3)
Network (3)
(Other Topics) (20)

K-Means

Earthquake Prediction (21)
Programming Site (10)
Stamp Collecting (23)
Assembly (11)
(Other Topics) (61)

SVD

Web Sites (11)
Stamp Collecting (23)
Cancer Care (16)
Assembler (7)
Seismic Cataloges (5)
Oncology Conference (19)
Collecting (7)
Information (6)
Stamps (3)
(Other Topics) (45)

Fig. 2. Matrix factorisation comparison: cluster labels

Lingo NMF-ED

Search Engines (18)
Regular Graphs (13)
DIY Audio (14)
Independent Film (14)
Book Reviews (11)
Software Sites (19)
Senior Health (11)
Fitness Association (10)
Vacuum Tube (7)
Sample Chapters (5)
Current and Past Projects (6)
Color Theorem (4)
National Institute on Aging (5)
(Other Topics) (57)

Suffix Tree Clustering (STC)

search, software (26)
includes (28)
information (20)
site (18)
book (16)
resource (14)
article (11)
film (11)
projects (10)
offered (10)
free (10)
online (10)
seniors (9)
tube (9)
audio (8)

Tollerance Rough Set (TRC)

Search (30)
Software Search (21)
Tube (17)
Graph (11)
Books (16)
Senior (11)
Downloadable Software Directories (3)
Notes (1)
Film (19)
Other (65)

Fig. 3. Clustering algorithm comparison: cluster labels

further confirms poor performance of K-Means decomposition in the outlier de-
tection test.

In Figure 3 we show cluster labels generated by Lingo, STC and TRC for a
data set containing six ODP categories: Book Previews, Search Engines, Fitness,
Do-It-Yourself, Graph Theory and Independent Filmmaking. Compared to STC
and TRC Lingo seems to produce labels that are slightly more specific and
probably easier to interpret, compare: “Search Engines” (Lingo) vs. “Search”
(TRC), “Vacuum Tube” (Lingo) vs. “Tube” (STC and TRC) or “Independent
Film” (Lingo) vs. “Film” (STC and TRC). Also, for this particular data set
Lingo managed to avoid generating too general or meaningless labels such as
“free”, “online”, “site”, “includes”, “information” (STC) or “Notes” (TRC).

6 Conclusions and Further Work

In this paper we have shown how a matrix factorisation can be used as part of
a description-comes-first approach to search results clustering. We tested four
factorisation algorithms (NMF, LNMF, SVD and K-Means/Concept Decompo-
sition) with respect to topic separation, outlier detection and label quality. We
also compared our approach with two other algorithms not based on matrix
decompositions: Suffix Tree Clustering and Tolerance Rough Set Clustering.

Our experiments revealed that the Non-negative Matrix Factorisations
significantly outperform both SVD and Concept Decomposition with respect
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to topic and snippet coverage, while maintaining almost the same level of
cluster contamination. The reason for this is that, in contrast to SVD, NMF
produces non-negative base vectors which can be better matched with the fre-
quent phrases found in the input snippets. Another important observation is
that due to high sparsity of base vectors, Local Non-negative Matrix Factori-
sation generates cluster labels that are shorter and more general compared to
the other NMF methods. For this reason, contrary to our initial expectations,
LNMF performed much worse with respect to average cluster contamination,
and thus in the present form is not the best choice factorisation algorithm for
Lingo. Finally, the description-comes-first approach to search results clustering
implemented by Lingo significantly outperformed both STC and TRC in topic
separation and outlier detection tests.

We feel that future experiments should investigate more complex matrix fac-
torisations, such as [20]. It is also very interesting how our algorithm would per-
form for the full-text test collections such as REUTERS-21578 or OHSUMED.
Such experiments would require efficient implementations of the factorisations
taking advantage of e.g. the high sparsity of the term-document matrix or using
subsampling.
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Abstract. This paper presents a machine-learning approach for ranking web 
documents according to the proportion of procedural text they contain. By ‘pro-
cedural text’ we refer to ordered lists of steps, which are very common in some 
instructional genres such as online manuals. Our initial training corpus is built 
up by applying some simple heuristics to select documents from a large collec-
tion and contains only a few documents with a large proportion of procedural 
texts. We adapt the Naive Bayes classifier to better fit this less than ideal train-
ing corpus. This adapted model is compared with several other classifiers in 
ranking procedural texts using different sets of features and is shown to perform 
well when only highly distinctive features are used. 

1   Introduction 

How-To questions constitute a large proportion of questions on the Web. Many  
how-to questions inquire about the procedure for achieving a specific goal. For such 
questions, typical information retrieval (IR) methods, based on key word matching, 
are better suited to detecting the content of the goal (e.g., installing a Windows XP 
server) than the general nature of the desired information (i.e., procedural, a series of 
steps for achieving this goal). 

We suggest dividing the process of retrieving relevant documents for such  
questions into two stages: (1) use typical IR approaches for retrieving documents that 
are relevant to the specific goal; (2) use a text categorization approach to re-rank the 
retrieved documents according to the proportion of procedural text they contain. By 
‘procedural text’ we refer to ordered lists of steps, which are very common in some 
instructional genres such as online manuals. This paper focuses on the second stage; 
the issue of integrating the text categorizer into a two-stage document retrieval system 
is addressed in [13]. 

Text categorization techniques are widely adopted to filter a document source  
according to a specific information need. In particular, extensive studies have been 
done on automatically filtering news releases. For instance, Stricker et al. [8] experi-
ment on several news resources including the Financial Times, Los Angeles Times, 
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etc. They present a method for automatically generating for each topic “discriminant 
terms” [8] that are used as features to train a neural network classifier. In such studies, 
the specification of the information need is based on the topic of a document; much 
work has also been done on categorizing documents by focusing on the stylistic as-
pect (e.g., genre classification and authorship attribution). For instance, Santini [5] 
uses POS trigrams to categorize a subset of the BNC corpus into ten genres: four  
spoken genres (conversation, interview, public debate and planned speech) and six 
written genres (academic prose, advert, biography, instructional, popular lore and  
reportage). Despite the large amount of work done on text categorization, only a few 
studies have addressed the problem of automatically identifying procedural texts; 
these include [9], which uses word n-grams to classify (as procedural or non-
procedural) list passages extracted using HTML tags. Our approach, instead, applies 
to whole documents, the aim being to measure the degree of procedurality — i.e., the 
amount of procedural text they contain. 

Sebastiani [7] provides a detailed review of many machine-learning models for 
automatic text categorization. The Naive Bayes classifier, although shown to perform 
poorly in some comparative studies of classification models [11, 12], is commonly-
used in text categorization. In this paper, we adapt the Naive Bayes classifier to better 
fit our less than ideal training corpus, which is built up by applying some simple heu-
ristics to select documents from a large collection and only contains a few documents 
with a high proportion of procedural texts. We compare the performance of this 
model with several other state-of-the-art classification models when combined with 
different sets of features. 

The features that are used to represent the documents, the training corpus and the 
adapted Naive Bayes classification model are presented in section 2, 3 and 4 respec-
tively. Section 5 presents a few experiments on ranking document procedurality using 
different classification models and reports the results. Section 6 gives a detailed 
analysis of the experiment results and provides some tentative suggestions with regard 
to the characteristics of different classification models. A complementary experiment 
is also presented in section 6 for testing the suggestions. Section 7 provides a short 
summary and some future work. 

2   Feature Selection and Document Representation 

2.1   Linguistic Features and Cue Phrases 

We targeted six procedural elements: actions, times, sequences, conditionals, precon-
ditions, and purposes. These elements can be recognized using linguistic features or 
cue phrases. For example, an action is often conveyed by an imperative; a precondi-
tion can be expressed by the cue phrase ‘only if’. We used Connexor’s syntax ana-
lyzer1 to preprocess documents and extracted all the syntactic and morphological tags 
excluding a few repetitive ones (34 surface syntactic tags and 34 morphological tags). 
We also handcrafted a list of relevant cue phrases (44), which were extracted from a 
document by using the Flex tool for pattern matching. Some sample cue phrases and 
the matching patterns are shown in Table 1. 
                                                           
1 http://www.connexor.com/ 
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Table 1. Sample cue phrases and matching patterns 

Procedural Element Cue Phrase Pattern 
     Precondition ‘only if’  [Oo]nly[[:space:]]if[[:space:]] 

Purpose ‘so that’  [sS]o[[:space:]]that[[:space:]] 
Condition ‘as long as’  ([Aa]s) [[:space:]]long[[:space:]]as[[:space:]] 
Sequence ‘first’  [fF]irst [[:space:][:punct:]] 
Time ‘now’ [nN]ow[[:space:][:punct:]] 

2.2   Modeling Inter-sentential Feature Cooccurrence 

Some cue phrases are ambiguous and therefore cannot reliably suggest a procedural 
element. For example, the cue phrase ‘first’ can be used to represent a ranking order, 
a spatial relationship as well as a sequential order. However, it is more likely to repre-
sent a sequential order among actions if there is also an imperative in the same sen-
tence. Indeed, sentences that contain both an ordinal number and an imperative are 
very frequent in procedural texts. We compared between the procedural training set 
and the non-procedural training set to extract distinctive feature cooccurrence patterns 
(limited to 2 features). Two schemas were used. 

Chi-square was applied to measure the significance of the correlation between 
whether a sentence contains a particular feature cooccurrence pattern and whether it is 
in a procedural document. Table 2 is the contingency table for a cooccurrence pattern, 
where ppro, npro, pnon and nnon stand for the total number of sentences of each category. 

Table 2. The 2*2 contingency table for a feature cooccurrence pattern 

 In procedural 
documents 

In non-procedural 
documents 

Contain the pattern ppro pnon 

Do not contain the pattern npro nnon 

 
Chi-square favors patterns that occur frequently. There are patterns that do not oc-

cur in every procedural document, but if they do occur, there is a high probability that 
the document is procedural. Such a pattern might have a low frequency of occurrence 
in the corpus and therefore cannot generate a significant chi-square value. To detect 
such patterns, another schema we used is the ratio between the number of sentences 
that contain a particular pattern in the procedural set (ppro) and in the non-procedural 
set (pnon), normalized by the size of the two sets (spro and snon), i.e.,  

pronon

nonpro

sp

sp
pR

×
×

=)(  .  (1) 

Two ordered lists were acquired by applying the two schemas to rank the feature 
cooccurrence patterns. We cut the two lists at certain thresholds (which were decided 
empirically) and acquired two sets of top ranked patterns. Those patterns that were in-
cluded in both sets were chosen as distinctive patterns. 
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2.3   Document Representation 

Each document was represented as a feature vector { }Nxxxd ,...,, 21= , where ix  

represents the proportion of sentences in the document that contains a particular fea-
ture. We compared the effectiveness of using individual features ( ix  refers to either a 

single linguistic feature or a cue phrase) and of using feature cooccurrence patterns 
( ix  refers to a feature cooccurrence pattern).  

3   Corpus Preparation 

Pagewise2 provides a list of subject-matter domains, ranging from household issues to 
arts and entertainment. We downloaded 1536 documents from this website (referred 
to hereafter as the Pagewise collection). We then used some simple heuristics to select 
documents from this set to build the initial training corpus. Specifically, to build the 
procedural set we chose documents with titles containing key phrases ‘how to’ and 
‘how can I’ (209 documents); to build the non-procedural set, we chose documents 
which did not include these phrases in their titles, and which also had no phrases like 
‘procedure’ and ‘recipe’ within the body of the text (208 documents). 

Samples drawn randomly from the procedural set (25) and the non-procedural set 
(28) were submitted to two human judges, who assigned procedurality scores from 1 
(meaning no procedural text at all) to 5 (meaning over 90% procedural text). The 
Kendall tau-b agreement between the two rankings is 0.821. Overall, the average 
scores for the procedural and non-procedural samples were 3.15 and 1.38. We used 
these 53 sample documents as part of the test set and the document remaining as the 
initial training set (184 procedural and 180 non-procedural). 

This initial training corpus is far from ideal: first, it is small in size; a more serious 
problem is that many positive training examples do not contain a major proportion of 
procedural texts. In our experiments, we used this initial training set to bootstrap a 
larger training set. Details will be described in section 5. 

4   Learning Method 

As mentioned in section 1, we adapted the Naive Bayes classifier to better fit our 
suboptimal training corpus. Before describing the details of the adaptation, we first 
talk about another problem we came across while experimenting with the Naive 
Bayes classifier. 

We used the Naive Bayes classifier from the Weka-3-4 package [10]. Some pre-
liminary experiments showed that most documents were scored as either extremely 
procedural (i.e., the score is 1) or not procedural at all (i.e., the score is 0). Such scor-
ing result does not enable us to rank the documents. We analyzed and modified the 
Naive Bayes classifier to solve the problem. Details are described as follows. 

The Naive Bayes classifier scores the degree of procedurality using the probability 

that a document falls into the procedural category—i.e., ( )jdproceduralCp |= . Us-

ing the Bayes’ theorem, the probability can be calculated as shown in 

                                                           
2 Refer to http://www.essortment.com 
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( ) ( ) ( )
( )

( ) ( )
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|  , (2) 

where c can represent any particular category (e.g., procedural) 3. 
Assuming that any two coordinates in the document feature vector 

{ }Nxxxd ,...,, 21=  are conditionally independent, we can then simplify the calculation 

by using 

( ) ( )∏ ====
i

iij cCxXpcCdp ||  , (3) 

where ( )cCxXp ii == |  represents the probability of randomly picking up a docu-

ment in category c of which the feature iX  has value ix . The same simplification ap-

plies to ( )cCdp j ¬=| . 

Multiplying all the ( )cCxXp ii == |  together often yields an extremely small 

value that is difficult to represent in a computer; this is why the final procedurality 
score is either 1 or 0. To tackle this problem, we calculated the procedurality score by 

( )
( )

( ) ( )
( ) ( )¬=¬=

===
¬=

=
cCdpcCp

cCdpcCp

dcCp

dcCp

j

j

j

j

|

|
log

|
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log   (4) 

( )( ) ( )( ) ( )( ) ( )( )¬==−==+¬=−==
i

ii
i

ii cCxXpcCxXpcCpcCp |log|logloglog  . (5) 

The above modification will be referred to hereafter as the first adaptation. It is 
worth to point out that the ranking order of any two documents remains the same 
when replacing (2) by (5). 

As we can see from the above formulas, the Naive Bayes classifier scores a docu-
ment according to whether it is a typical member of its set (i.e., ( )cCxXp ii == | ) as 

well as how much it contrasts with members of other set (i.e., ( )cCxXp ii ¬== |
1 ). 

Specifically, the Naive Bayes classifier delivered in the Weka-3-4 package assumes 
that each feature follows a normal distribution and estimates ( )cCxXp ii == |  by  

( )
( )

2

2

2

2

1
| σ

μ

σπ

=
−

===
x

ii ecCxXp  , (6) 

where μ  and σ are estimated from the training data. In figure 1, the solid curve and 
the dotted curve show the probability density functions estimated from the non-
procedural training set and the procedural training set respectively. 

As mentioned in section 3, the procedural documents in our initial training corpus 
have a low average procedurality score, which means many of them do not contain a 
large proportion of procedural elements. Since most of the features used represent 
some procedural elements, we suppose the actual population of procedural documents  
 

                                                           
3  Note that formula (2), (3) and (6) are either extracted from [3] or inferred from the Java code 

in the Weka-3-4 package. 
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Fig. 1. An illustration of the problems in using the Naive Bayes classification algorithm 

should have a higher mean value on such features compared to the procedural training 
set (as shown in Figure 1). In this case, point a, which obviously has a higher score 
than point b when using a training set that are representative of the actual population, 
is probably scored lower than b when using our training set.  

Although the procedural training examples are not representative of the actual 
population of procedural documents, they are useful in indicating the difference  
between procedural documents and non-procedural documents. For example, we can 
infer from Figure 1 that feature iX  is associated positively with the degree of proce-

durality (since the positive training set has a higher mean value on this feature than 
the negative training set). However, the Naive Bayes classifier does not focus on 
modeling the difference between the two different classes. Therefore, point c, al-
though larger than point d, is probably scored lower than d. We adjusted the formula 
to model the difference between the two different classes. Specifically, we replaced 

( )cCxXp ii == |  in (5) by 

¬===
¬=<===≥

¬=>===≤
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where )|( cCXmean i =  refers to the mean value of feature iX  of the documents in 

category c . ( )cCxXp ii ¬== |  in (5) was replaced by a formula similar to (7), the 

only difference being that every c  in (7) is changed to be c¬ . 
The new scoring curves are shown in figure 2. This way the score of a document is 

determined by the ratio of the probability of a document with a lower feature value 
being in the procedural class (represented by dotted curve) and the probability of a 
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Fig. 2. An illustration of the Adapted Naive Bayes classification algorithm 

document with a higher feature value being in the non-procedural class (represented 
by the solid curve). If feature iX  is associated negatively with the degree of proce-

durality (i.e., cCXmeancCXmean ii ¬=<= |()|( ), then the word ‘lower’ and 

‘higher’ in the last sentence should be reversed. 
The new model will be referred to hereafter as the Adapted Naive Bayes classifier. 

It is worth to point out that, after the above modification, (5) is no longer equivalent 
to (4). This means, the core of the Naive Bayes classification approach — i.e., view-
ing the “categorization status value” in terms of the probability that a document falls 
within a category [7] is changed.  

5   Experiments 

Our training and testing corpora were from two sources: the Pagewise collection and 
the SPIRIT collection. The SPIRIT collection contains a terabyte of HTML that are 
crawled from the web starting from an initial seed set of a few thousands universities 
and other educational organizations [1]. 

Our test set contained 103 documents, including the 53 documents that were  
sampled and then separated from the initial training corpus, another 30 documents 
randomly chosen from the Pagewise collection and 20 documents chosen from the 
SPIRIT collection. We asked two human subjects to score the procedurality for these 
documents, following the same instruction described in section 3. The correlation co-
efficient (Kendall tau-b) between the two rankings is 0.725, which is the upper bound 
of the performance of the classifiers. 

As mentioned before, the initial training corpus was used to bootstrap a larger 
training set. To do so, we first extracted 441 distinctive feature cooccurrence patterns  
based on the initial training corpus. These patterns were used to build document  
vectors to train an Adapted Naive Bayes classifier. We applied the classifier to  
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rank the remaining documents from the Pagewise collection (the whole set excluding 
83 documents that were added into the test set) and 500 web documents from the 
SPIRIT collection. 378 top ranked documents were selected to construct the positive 
training set and 608 lowest ranked documents were used to construct the negative 
training set. A random sampling of the procedural documents in this bootstrapped set 
suggests that their average procedurality score is slightly higher than those in the  
initial training set. 

The bootstrapped training corpus was then used to reselect distinctive feature 
cooccurrence patterns and to train different classifiers. We compared the Adapted  
Naive Bayes classifier with the Naive Bayes classifier4 and three other classifiers,  
including Maximum Entropy (ME)5, Alternating Decision Tree (ADTree) [2] and 
Linear Regression [10]. 

 

Fig. 3. Ranking results using individual features: 1 refers to Adapted Naive Bayes, 2 refers to 
Naive Bayes, 3 refers to ME, 4 refers to ADTree and 5 refers to Linear Regression 

Table 3. Ranking results using individual features 

Ranking Method Agreement with 
Subject 1 

Agreement with 
Subject 2 

Average 
 

Adapted Naive Bayes 0.270841 0.367515 0.319178 
Naive Bayes 0.381921 0.464577 0.423249 

Maximum Entropy 0.446283 0.510926 0.478605 
Alternating Decision Tree 0.371988 0.463966 0.417977 

Linear Regression 0.497395 0.551597 0.524496 

 
Figure 3 and Table 3 show the kendall-tau b coefficients between human subjects’ 

ranking results and the trained classifiers’ ranking results on the test set when using 
individual features (112). Figure 4 and Table 4 show the kendall-tau b coefficients 
when using feature cooccurrence patterns (813). 

                                                           
4  As mentioned in section 4, we cannot rank the documents based on the scoring result of the 

Naive Bayes classifier from the Weka-3-4 package. We therefore used the model acquired af-
ter the first adaptation instead. 

5  Refer to http://homepages.inf.ed.ac.uk/s0450736/maxent.html 
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Fig. 4. Ranking results using feature cooccurrence patterns: 1 refers to Adapted Naive Bayes, 2 
refers to Naive Bayes, 3 refers to ME, 4 refers to ADTree and 5 refers to Linear Regression 

Table 4. Ranking results using feature cooccurrence patterns 

Ranking Method Agreement with 
Subject 1 

Agreement with 
Subject 2 

Average 
 

Adapted Naive Bayes 0.420423 0.513336 0.466880 
Naive Bayes 0.420866 0.475514 0.44819 

Maximum Entropy 0.414184 0.455482 0.434833 
Alternating Decision Tree 0.358095 0.422987 0.390541 

Linear Regression 0.190609 0.279472 0.235041 

 
As we can see from the figures, when using individual features, Linear Regression 

achieved the best result, Adapted Naive Bayes performed the worst, Naive Bayes, 
Maximum Entropy and Alternating Decision Tree were in the middle; interestingly, 
when using feature cooccurrence patterns, the order almost reversed, i.e., Adapted 
Naive Bayes performed the best and Linear Regression the worst. Comparing the  
results of using individual features and feature cooccurrence patterns, only Adapted 
Naive Bayes and Naive Bayes performed better when using feature cooccurrence  
patterns, all the other classifiers performed better when using individual features.  

6   Discussion 

The experiment results showed that two Naive Bayes classifiers fitted better with  
feature cooccurrence patterns while ME, ADTree and Linear Regression fitted better 
with individual features. In contrast to feature cooccurrence patterns, each of which is 
chosen as being very distinctive, individual features may contain many irrelevant fea-
tures since all the morphological and syntactical taggers that the Connexor’s Syntax 
Analyzer provides are included. This does not make much difference for ADTree and 
Linear Regression since they both have a feature selection process that can filter  
irrelevant features. However, the Adapted Naive Bayes classifier does not have such  
a function and it treats every feature as extremely distinctive. The Naive Bayes classi-
fier and the ME classification model, although they do not have an explicit feature  
selection process, can estimate the degree of distinctiveness of each feature based on 
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the training data. The above difference between the Naive Bayes classifier and the 
Adapted Naive Bayes classifier can be seen by comparing the scoring results at point 
d in Figure 1 (Naive Bayes classifier) and Figure 2 (Adapted Naive Bayes classifier). 

To verify the above explanation with regard to why the Adapted Naive Bayes  
classifier performed poorly when using individual features, we applied the feature  
selection algorithms described in section 2.2 to select distinctive individual features 
(42 features were selected) and tested the classifiers again. Results are shown in  
Figure 5 and Table 5. 

 

Fig. 5. Ranking results using selected individual features: 1 refers to Adapted Naive Bayes, 2 
refers to Naive Bayes, 3 refers to ME, 4 refers to ADTree and 5 refers to Linear Regression   

Table 5. Ranking results using selected individual features 

Ranking method Agreement with 
Subject 1 

Agreement with
Subject 2 

Average 
 

Adapted Naive Bayes 0.362007 0.458198 0.410103 
Naive Bayes 0.332798 0.411717 0.372258 

Maximum Entropy 0.380151 0.471868 0.426010 
Alternating Decision Tree 0.371988 0.463966 0.417977 

Linear Regression 0.476054 0.542832 0.509443 

 
Compared to using all the individual features, the performance of Adapted Naive 

Bayes was greatly improved when only using a few selected ones; ADTree performed 
the same; but ME and Linear Regression performed slightly worse. This does support 
our thinking that the Adapted Naive Bayes classifier presumes every feature is ex-
tremely distinctive and therefore only distinctive features should be used with it. 

Another important difference between feature cooccurrence patterns and individual 
features consists in their numbers. Because the number of feature cooccurrence  
patterns is huge, it is difficult for ADTree and Linear Regression to generalize and to 
select relevant features. This can be a reason why these two models performed poorly 
when using feature cooccurrence patterns. 

As it was addressed in section 2.2, individual features are ambiguous and we  
expected modeling feature inter-sentential cooccurrence helps in disambiguate. How-
ever, this thinking is not supported by the results of the experiments. We believe this 
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is because that most documents used in the experiments are from the Pagewise collec-
tion, which have a rather uniform style and ambiguities are greatly decreased. 

7   Summary and Future Work 

In this paper, we have presented an Adapted Naive Bayes classifier for ranking pro-
cedural documents and have compared it with several other classifiers when com-
bined with different sets of features. We have shown that the Adapted Naive Bayes 
classifier performs well when only highly distinctive features are used and is better 
than many other classifiers when the number of relevant features is huge. Thinking 
individual features are ambiguous, we chose to use inter-sentential feature cooccur-
rence patterns instead. However, the result of the experiment did not show that the 
system gains better results by using feature cooccurrence patterns rather than using 
individual features. We believe this is because that most of the documents in our 
training and testing corpora have a rather homogenous style. As a future work we plan 
to test the Adapted Naive Bayes classifier and the method for modeling inter-
sentential feature cooccurrence in a much broader context. 
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The Effects of Relevance Feedback Quality and Quantity 
in Interactive Relevance Feedback: A Simulation Based 

on User Modeling 

Heikki Keskustalo, Kalervo Järvelin, and Ari Pirkola 

Department of Information Studies, FIN-33014 University of Tampere, Finland 

Abstract. Experiments on the effectiveness of relevance feedback with real us-
ers are time-consuming and expensive. This makes simulation for rapid testing 
desirable. We define a user model, which helps to quantify some interaction de-
cisions involved in simulated relevance feedback.  First, the relevance criterion 
defines the relevance threshold of the user to accept documents as relevant to 
his/her needs.  Second, the browsing effort refers to the patience of the user to 
browse through the initial list of retrieved documents in order to give feedback.  
Third, the feedback effort refers to the effort and ability of the user to collect 
feedback documents. We use the model to construct several simulated relevance 
feedback scenarios in a laboratory setting.  Using TREC data providing graded 
relevance assessments, we study the effect of the quality and quantity of the 
feedback documents on the effectiveness of the relevance feedback and com-
pare this to the pseudo-relevance feedback.  Our results indicate that one can 
compensate large amounts of relevant but low quality feedback by small 
amounts of highly relevant feedback. 

1   Introduction 

Selection of good search keys is crucial for successful text retrieval, yet users of infor-
mation systems often find it difficult to find the best expressions for their information 
needs [3, 4, 11].  On the other hand, although users may have difficulties in expressing 
exactly their information needs, they are often able to identify useful information when 
they see it.  This fact leads to the notion of relevance feedback (RF).  In RF, the users 
mark documents as relevant to their needs and present this information to the system.  
This information can be used for automatically modifying better queries [8, 9].   

Actually, users of information systems might best be served by systems that  
retrieve especially highly relevant documents [6, 15].  The results of a user study  
[14] indicate that the users are also able to identify highly relevant documents.   
Moreover, the textual characteristics of the documents at various relevance levels 
differ: [13] showed that in highly relevant documents a larger number of aspects of 
the request was discussed, and a larger set of unique expressions was used.  These 
observations lead to our research questions: How effective is RF when we consider 
various levels of relevance in evaluation phase?  How is the quality and quantity  
of the feedback documents related to the effectiveness?  From the point in view of 
creating RF interfaces, we should learn what kind of evidence we should try to collect 
from the searchers. In this paper, we shall explore these questions through user  
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simulation in a laboratory setting.  We use a test collection, a subset of TREC collec-
tion providing graded relevance assessments of documents for 41 topics [12].  The 
graded assessments are scaled from 0 (non-relevant) to 3 (highly relevant). We shall 
simulate the quantity of RF by the number of documents in the initial result marked as 
feedback by the user, and the quality by the relevance threshold set by the user.  As an 
additional research question we ask whether the simulated relevance feedback may 
successfully compete with pseudo-relevance feedback (PRF), and if so, by what effort 
in terms of the amount and quality of the user feedback?  We evaluate all cases using 
non-interpolated average precision (MAP) at three different relevance thresholds. 

Our laboratory simulation provides a rapid means of exploring the limits of user 
feedback without laborious experiments with real users.  For example, one may find 
out, as we will also report, what kind of user RF effort is most effective and how it 
compares with the PRF. One needs to verify these findings in real world situations. 
However, this may be done more efficiently when one has better insight into what to 
test. 

The rest of the paper is organized as follows. In Section 2 we explain our experi-
mental methodology – user modeling for simulations, the test collection, the retrieval 
system and the test runs. Section 3 presents our findings, Section 4 discusses the main 
result and Section 5 presents the conclusions. 

2   Methods 

2.1   User Modeling for Relevance Feedback Simulation  

Pseudo relevance feedback is a highly parameterized process.  For example, the num-
ber of documents used in the feedback, the methods for selecting and weighting the 
feedback keys, and the number of the feedback keys extracted may be varied.  

Human relevance feedback has similar characteristics when one considers, as we 
do, user feedback based on document level judgments.  The number of top documents 
the user is willing to examine varies.  The user has also many methods for selecting 
and weighting the feedback keys.  The number of feedback documents that the user 
actually selects may vary.  In addition, importantly, the user may tolerate irrelevance, 
require relevance, or ignore marginal relevance to different degrees in the feedback 
documents. This is a characteristic of human feedback that escapes automatic meth-
ods of PRF.  It might also provide a qualitatively better basis for RF, which leads to 
outperforming automatic PRF if the user is willing to provide the effort.  

Since users vary greatly, we developed a simple user model to grab the parameters 
above. We use three concepts for modeling: 

• requirement of document relevance (stringent, regular or liberal): relevance 
threshold R 

• willingness to browse (patient/impatient): window size B 
• willingness to provide feedback (eager/reserved): feedback set size F 

The requirement of document relevance, R, is an important dimension since many 
users may want to focus on highly relevant documents only [6, 15]. Users can also 
identify them while marginal documents easily escape the user’s attention [14]. We 
model the relevance threshold dimension by possible values of graded relevance  
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R ∈ {0,1,2,3}. In other words, R = 3 indicates that the user is capable and willing to 
recognize and accept only highly relevant documents for RF, whereas R = 1 indicates 
that the user liberally accepts even marginal documents for RF. As a special case, R = 
0 models the case where all the documents considered are accepted, i.e., PRF (blind 
feedback).  

The willingness to browse, B, models the user’s capability and willingness to 
browse through the ranked retrieval result. The user’s willingness to study retrieved 
sets is limited (futility point) [1]. We model the browsing dimension by the number of 
documents considered (window size B).  For example, B = 1 indicates that the user is 
impatient and only willing to consider the first document and gives up after that, 
whereas B = 30 indicates a patient user willing to examine a long list of retrieval re-
sults. In the present study we shall only consider a limited set of values for B, i.e., B ∈ 
{1, 5, 10, 30}. 

The willingness to provide feedback, F ( ≤ B) models the user’s willingness to 
mark documents as relevant. We separate this dimension from the previous one since 
even if the user is willing to browse through a long list, she may give up after finding 
the first or first few relevant documents.  In this paper we examine only positive RF. 
This dimension is essential since, as [2] argues, users may be reluctant to provide 
feedback, and on the other hand the amount of feedback may be critical to success. 
We model the willingness to provide feedback by the maximum number of docu-
ments the user is willing to mark as relevant F.  As an example, F = 1 indicates that 
the user is reserved and only willing to consider the first relevant document encoun-
tered as feedback and gives up marking after that, whereas F ≥ 10 indicates an eager 
user willing to provide lots of feedback.  In the present study we shall only consider a 
limited set of values for F, i.e. F ∈ {1, 5, 10, 30} while F ≤ B. 

User model is a triplet M = <R, B, F> which defines a three-dimensional space of 
user characteristics. Each triplet with specified values is a point in the space modeling 
a distinct type of user (a user scenario) or RF interaction.  It is obvious that some 
regions of the space are more interesting than others.  However, in general, relations 
between the more distant areas are of interest, e.g., can one compensate low quality 
feedback by giving it in large amounts. Moreover, how much user’s effort, and what 
kind, is needed to outperform pseudo-relevance feedback, i.e., which scenarios < R, B, 
F > (R > 0) provide better effectiveness than <0, B’, F’ > ? (In PRF R=0 and B’ =F’.) 

2.2   The Test Collection  

In this study the reassessed TREC documents from [12] are used including altogether 
41 topics from TREC 7 and TREC 8 ad hoc tracks. The non-binary relevance judg-
ments were obtained by re-judging documents judged relevant by NIST assessors 
together with about 5% of irrelevant documents for each topic.  The selection of top-
ics was based on the size of recall bases, i.e., each topic should have more than 30 
relevant documents but the size of the pool to be reassessed should not exceed 200 
documents (for details, see [5, 12]). The relevance judgment in the reassessment proc-
ess was based on topicality.  The new assessments were done on a four-point scale:  
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• (0) Irrelevant document - the document does not contain any information about 
the topic. 

• (1) Marginally relevant document - the document only points to the topic and 
does not contain more or other information than the topic description. 

• (2) Fairly relevant document - the document contains more information than the 
topic description but the presentation is not exhaustive. In case of multi-faceted 
topic, only some of the sub-themes or viewpoints are covered. 

• (3) Highly relevant document - the document discusses the themes of the topic 
exhaustively. In case of a multi-faceted topic, all or most sub-themes or view-
points are covered. 

Altogether 6122 documents were reassessed (Table 1).  Almost all of the originally 
irrelevant documents were also assessed irrelevant in reassessment (93.9%). Of the 
TREC relevant documents about 76% were judged relevant at some level and 24% 
irrelevant. This seems to indicate that the re-assessors have been somewhat stricter 
than the original judges. Among the relevant documents one half were marginal, a 
third fairly relevant, and a sixth highly relevant [5].  

Table 1. The distribution of relevance assessments in the test collection (41 topics) 

Relevance 
Level 

Total Number 
of Documents 

% % of Relevant Avg number 
per Topic 

Rel = 0 3719 62.1 .. .. 
Rel = 1 1197 18.6 49.8 29.2 
Rel = 2 812 12.8 33.8 19.8 
Rel = 3 394 6.6 16.4 9.6 
Total 6122 100.0 100.0 58.6 

 
In the recall base there were on the average 29 documents of relevance level 1 per 

each topic, 20 documents at relevance level 2, and 10 documents at relevance level 3 
per topic.  In other words, on the there were on the average 59 relevant documents of 
some relevance level per each topic (Table 1). 

The document collection contained 528155 documents organized under the re-
trieval system InQuery (see below). The database index is constructed by lemmatizing 
the document words (using ENGTWOL morphological analyzer by Lingsoft, Inc.).  

2.3   The Retrieval System InQuery and the Feedback Key Extraction 

The InQuery system was chosen for the test, because it has a flexible query language 
and it has shown good performance in several tests (see, e.g., [4]). InQuery is based 
on Bayesian inference networks. All keys are attached with a belief value, which is 
approximated by the following tf.idf modification: 
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where  tfij = the frequency of the key i in the document j 
dlj = the length of document j (as the number of keys) 
adl = average document length in the collection 
N = collection size (as the number of documents) 
dfi = number of documents containing key i. 

The InQuery query language provides a large set of operators to specify relations 
between search keys. In the present paper we only need the typical probabilistic op-
erator #sum and the synonym operator #syn. The probabilistic interpretations for these 
operators are given below: 

Psum(Q1, Q2, ..., Qn) = (p1+p2+ ... +pn )/ n (2) 

where P denotes probability, Qi is either a key or an InQuery expression, and  pi,  

i = 1...n, is the belief value of Qi. 

The probability for operands connected by SYN operator is calculated by modify-
ing the tf.idf function as follows: 
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where tfij = the frequency of the key i in the document j 
S = the set of search keys within the SYN operator 
dlj = the length of document j (as the number of keys) 
adl = average document length in the collection 
N = collection size (as the number of documents) 
dfS = number of documents containing at least on key of the set S. 

Our initial queries are based on the TREC topic wording, excluding the stop list 
words, and have the structure #sum(#syn(key1, key2, …), #syn(…, keyn) ,…). The 
synonym structures are due to lemmatizing topic words. Some of them are ambigu-
ous, and for a given word all its interpreted lemmas are included in one synonym set.  
The extracted expansion keys form a sum structure #sum(keye1, keye2, …) and the 
revised feedback query has the structure #sum(#sum(#syn(key1, key2, …), #syn(…, 
keyn) ,…) #sum(keye1, keye2, …)). 

Expansion keys were extracted from the feedback documents using the RATF 
weighting scheme [7].  The scheme computes relative average term frequency values 
for the keys of documents, as follows: 

RATF(k) = (cfk / dfk) * 103 / ln(dfk + SP)p (4) 

cfk = the collection frequency of the key k 

dfk = the document frequency of the key k 

SP = a collection dependent scaling parameter 
p = the power parameter 

The scheme gives high values for the keys whose average term frequency (i.e., 
cf/df) is high and df low. The scaling parameter SP is used to down weight rare words. 
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For SP and p we used the values of SP = 3000 and p = 3.  These values are based on a 
previous study using different topic sets but a corresponding database [7]. 

In the expansion key extraction, from each feedback document a word list contain-
ing the 50 best keys was extracted by the ranked order of their descending RATF 
values. When more than one document was given as feedback, the RATF key lists for 
each document were united followed by the extraction of 30 best keys (keys shared by 
the greatest number of word lists). 

2.4   Experimental Set-Up 

The overall experimental set-up consists of the following steps: 

1. For each TREC topic (N=41) the title and description fields are processed and 
automatically formulated into the initial query. 

2. Each initial query is run in the test collection and the initial result set (the top 50 
documents for each topic) is retrieved. 

3. By using the user scenario <R, B, F> together with the recall base, the set of 
feedback documents (defined uniquely by each user scenario) is extracted auto-
matically from the initial result set.  

4. The expansion keys are extracted from the set of feedback documents (among 
the relevant documents from the initial run). RATF weighting scheme is used 
here. The 30 best expansion keys are extracted and formed into a #sum –clause.  
This clause is combined with the initial query to form the feedback query. 

5. Each feedback query is run in the test collection and the final result (document 
set) is retrieved. 

6. Both the initial result and the final results are analyzed for their mean average 
precision (MAP), applying three different evaluation criteria: stringent, regular 
and liberal.  The same evaluation criteria were also used for conceptualizing  
the feedback requirements as highly relevant (Rel =3), at least fairly relevant 
(Rel ≥ 2), or at least marginally relevant (Rel  ≥ 1) documents, respectively. 

The initial queries were formed automatically by excluding stop words, lemmatiz-
ing the content-bearing words and applying fuzzy matching from the database index 
in case of words which could not be lemmatized (two best matches were selected).  
Lemmatization leads to synonym sets of one or more components.  These are com-
bined by the #sum –operator into the initial query. 

The evaluation of retrieval effects of RF methods when real users are involved has 
some special requirements. Admitting that users may be lazy to browse, an evaluation 
measure based on DCV (document cut-off values) or discounted cumulated gain [6] 
might be preferred over MAP.  If only a small evaluation window is used, one may 
argue that only the unseen documents should be shown at the RF phase and the 
evaluation should not reward re-ranking of the feedback documents among the final 
document set [10]. This could be achieved by keeping the documents identified as 
relevant (within the browsing and feedback scope) “frozen” to their initial ranks. On 
the other hand, because there are no intermediate results seen by the user in the PRF, 
it is not possible to make an entirely fair comparison between the simulated user RF 
and the PRF case.  In PRF, MAP or precision at 10 % recall are typical effectiveness 
measures.   



 The Effects of RF Quality and Quantity in Interactive Relevance Feedback 197 

 

In the present paper, we compare the user RF and PRF and want to find out how 
various user feedback scenarios are related to search effectiveness. We measure this 
by using MAP at various relevance thresholds. An inherent problem with using MAP 
this way is that the RF documents may be re-retrieved by the feedback query (al-
though not necessarily) but with a better ranking, especially when the recall bases are 
small.  On the other hand, we may think of a user situation where the user is collect-
ing relevant documents at the end of the process and has not yet really read initial 
feedback documents.  In this situation, re-retrieving the relevant documents is not 
problematic, as the user is simply interested in the quality of the final search result.  In 
later studies, we shall apply DCV based measures and take specifically into account 
the role and effect of the feedback documents among the final result set considering 
the user view point differently.  

3   Findings 

3.1   Effect of User Scenario on the Amount of Feedback 

The first obvious question is what is the relationship of user’s relevance criteria and 
effort to the quantity and quality of relevance feedback available? In order to answer 
to that question, we first study the effect of selecting a specific user scenario to the 
number of feedback documents available (the third column in Tables 2-4), to the 
cases of no feedback (fourth column), to the maximum number of feedback docu-
ments available (fifth column), and to the actual window size used before the brows-
ing window limit is reached (the last column). Table 2 presents the stringent user 
case, that is, the user accepts only highly relevant documents as feedback documents 
(R = 3) while we vary the values of the two effort thresholds (B and F). 

We can see that on the average, in case of stringent feedback threshold, the number 
of RF documents is very low even if both the browsing effort and the feedback effort 
thresholds are high (30).  With a relatively small effort, e.g., B=10 and F=5, only 1.1 
feedback documents on the average could be collected.  Also, the number of topics 
 

Table 2. Stringent user (R = 3): the effect of user effort on the availability of RF. All feedback 
documents are highly relevant. 

Browsing 
Effort B 

Feedback 
Effort F 

Average No  
of RF Docs 
Available 

No of Topics 
with 

no RF Docs 

Max No of RF 
Docs 

per Topic 

Average Search 
Length 

30 30 2.3 11 11 30.0 
30 10 2.2 11 10 29.6 
30 5 1.9 11 5 27.4 
30 1 0.7 11 1 15.0 
10 10 1.2 21 8 10.0 
10 5 1.1 21 5 9.9 
10 1 0.5 21 1 6.7 
5 5 0.8 23 4 5.0 
5 1 0.4 23 1 3.9 
1 1 0.3 29 1 1.0 
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with an empty feedback set increases as B decreases.  Yet for some topics a high 
number of feedback documents can be found even with low effort thresholds.  For 
example, if browsing and feedback effort are set 5, for some topic 4 highly relevant 
threshold documents can be found. As one might expect, there is a weak connection 
between the relative sizes of B and F and the average window size actually used. As it 
is difficult to find enough highly relevant documents to fill up the size of F, in many 
instances the average search length is actually close to B.  For example, with B = 30 
and F = 10, the average search length is 29.6 – nearly the whole window of B=30.   

Table 3 presents the case of a regular user accepting both fairly and highly relevant 
documents as feedback. 

Compared to the previous table, in Table 3 the average number of RF documents 
reaches clearly higher values. Also, the number of topics with an empty RF set is much 
smaller here. It is still difficult to find enough highly or fairly relevant documents to  
 

Table 3. Regular user (R = 2): the effect of user effort on the availability of RF. All feedback 
documents are at least fairly relevant. 

Browsing 
Effort B 

Feedback 
Effort F 

Average No of 
RF Docs Avail-

able 

No of Topics 
with 

no RF Docs 

Max No of RF 
Docs 

per Topic 

Average Search 
Length 

30 30 6.3 4 21 30.0 
30 10 5.5 4 10 27.6 
30 5 3.9 4 5 21.6 
30 1 0.9 4 1 7.3 
10 10 3.2 8 10 10.0 
10 5 2.6 8 5 9.3 
10 1 0.8 8 1 4.4 
5 5 1.8 11 5 5.0 
5 1 0.7 11 1 3.1 
1 1 0.6 18 1 1.0 

 
Table 4. Liberal user (R = 1): the effect of user effort on the availability of RF. All feedback 
documents are at least marginally relevant. 

Browsing 
Effort B 

Feedback 
Effort F 

Average No of 
RF Docs Avail-

able 

No of Topics 
with 

no RF Docs 

Max No of RF 
Docs 

per Topic 

Average Search 
Length 

30 30 9.4 3 26 30.0 
30 10 7.2 3 10 25.2 
30 5 4.4 3 5 15.6 
30 1 0.9 3 1 5.3 
10 10 4.2 4 10 10.0 
10 5 3.4 4 5 9.1 
10 1 0.9 4 1 3.4 
5 5 2.4 5 5 5.0 
5 1 0.9 5 1 2.7 
1 1 0.7 12 1 1.0 
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fill up the size F, so in many instances the average search length is also actually very 
close to B. By selecting a regular threshold instead of the stringent threshold, more 
feedback documents become available within a selected threshold, but the price of 
this is that their quality varies more than in case of using a stringent threshold. 

Table 4 presents the case where the user accepts even the marginally relevant 
documents (relevance level 1) as feedback documents. 

Now the number of feedback documents is rather high (almost 10) when both the 
browsing effort and the feedback effort thresholds are set high (30). However, in this 
case the user could expect that many of the feedback documents are actually of low 
quality. On the other hand, there are clearly more feedback documents available. The 
relationship between the quantity and the quality of the feedback cannot be solved by 
looking at the quantity of the feedback data available only.  Therefore, next we pro-
ceed on testing what happens to the retrieval effectiveness when various user scenar-
ios are used. 

3.2   Effect of User Scenario on Feedback Effectiveness 

In this section, we study the effect of the quality and the quantity of the relevance 
feedback to the effectiveness of RF.  The results using the stringent relevance evalua-
tion threshold are presented in Table 5. 

The baseline MAP figure 20.2 % corresponds to the search result for the 41 initial 
queries measured by stringent criteria. The differences with respect to the baseline are 
percentage units, not percentages. In case of every user feedback scenario the changes 
were positive with respect to baseline MAP.  It seems that on the average, the 
searcher can expect good feedback results even pointing only one feedback document 
as long as it is highly relevant. This is shown in Table 5 as an improvement of  
 

Table 5. Average precision of user feedback scenarios.  Stringent relevance threshold is used in 
evaluation - baseline MAP = 20.2 %. 

  MAP by Recognition of Relevance R, % 

Browsing 

effort B 

Feedback 
effort F 

R = 3 

  

Diff. to  

baseline 
(% units) 

R = 2 

  

Diff. to  

baseline 
(% units) 

R = 1 

  

Diff. to  

baseline 
(% units) 

30 30 37.5 +17.3 27.1 +6.9 24.9 +4.7 
30 10 37.5 +17.3 27.1 +6.9 24.9 +4.7 
30 5 36.9 +16.7 27.5 +7.3 23.9 +3.7 
30 1 31.7 +11.5 23.3 +3.1 22.6 +2.4 
10 10 28.9 +8.7 24.7 +4.5 22.9 +2.7 
10 5 28.6 +8.4 23.9 +3.7 23.5 +3.3 
10 1 27.1 +6.9 22.7 +2.5 22.2 +2.0 
5 5 25.9 +5.7 23.0 +2.8 22.9 +2.7 
5 1 24.5 +4.3 22.7 +2.5 22.2 +2.0 
1 1 20.8 +0.6 21.6 +1.4 22.0 +1.8 
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+11.5% units in case of a user scenario M = <3, 30, 1>. Notice, however, that if the 
relevance threshold for the feedback document is lower, such an improvement does 
not take place, even though we know that there are many feedback documents avail-
able (Tables 3 - 4). The improvement in average precision is only +3.1 % units in case 
of user scenario <2, 30, 1> (the 6th column) even though the relevance feedback 
document may be highly relevant occasionally. This fact is probably due to the differ-
ences in the terminological properties of the documents at various relevance levels. 
Interestingly, the user strategy of a hard working user (B = F = 30) who collects lots 
of feedback documents using a liberal RF threshold (R = 1, 7th and 8th columns) is not 
as successful (+4.7 %-units). It seems to be essential that the user keeps the RF 
threshold high. As we can see from Table 5, the scenarios <3, 30, 30>, <3, 30, 10>, 
and <3, 30, 5> give by far the best of all results (improvements of +16.7 to +17.3 % 
units), while the scenarios <2, 30, 30>, <2, 30, 10>, <2, 30, 5> fall behind (improve-
ments of +6.9 to +7.3 % units). Of course, for the scenario <3, 30, 30> there are sel-
dom RF documents available even close to F=30 in the window B=30. In conclusion, 
considering the relevance feedback quality, the quality of the input matters. 

The results of the feedback effectiveness using the regular relevance evaluation 
threshold are presented in Table 6. 

Table 6. Average precision of user feedback scenarios.  Regular relevance threshold is used in 
evaluation - baseline MAP = 22.7. 

  MAP by Recognition of Relevance R, % 

Browsing 
effort B 

Feedback 
effort F 

R = 3 
  

Diff. to  
baseline 

(% units) 

R = 2 
  

Diff. to  
baseline 

(% units) 

R = 1 
  

Diff. to  
baseline 

(% units) 

30 30 30.8 +8.1 34.7 +12.0 32.0 +9.3 
30 10 30.8 +8.1 34.8 +12.1 31.9 +9.2 
30 5 30.9 +8.2 33.7 +11.0 30.4 +7.7 
30 1 27.6 +4.9 27.7 +5.0 26.6 +3.9 
10 10 26.7 +4.0 30.8 +8.1 30.0 +7.3 
10 5 26.4 +3.7 30.4 +7.7 29.2 +6.5 
10 1 25.0 +2.3 27.0 +4.3 26.2 +3.5 
5 5 24.9 +2.2 27.6 +4.9 27.4 +4.7 
5 1 24.2 +1.5 26.5 +3.8 26.1 +3.4 
1 1 23.7 +1.0 24.9 +2.2 25.3 +2.6 

 
In Table 6 the baseline MAP of 22.7 % corresponds to the search result for the 41 

initial queries measured by regular criteria. Also here, in every user feedback scenario 
the changes were positive with respect to baseline. An essential trend compared to the 
previous table seems to be that here the differences are smaller between the user sce-
narios having different threshold for accepting feedback documents. The scenarios 
<2, 30, 30>, <2, 30, 10>, and <2, 30, 5> give the best results (improvements of +11.0 
% units to +12.1 % units).   
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Table 7 presents the effectiveness figures when a liberal evaluation threshold is 
used. The baseline MAP figure 20.7 % corresponds to the search result for the 41 ini-
tial queries measured by liberal criteria. The trend noticed previously in Tables 5 and 6 
is accentuated here: now the difference is very small between the user scenarios having 
different threshold for accepting feedback documents.  If the final result set is evalu-
ated by using a liberal threshold (Table 7), the results do not grow better by using a 
high threshold in selecting the RF documents. The situation is completely different if 
the final result set is evaluated by using a stringent threshold (Table 5) – in that case 
the user clearly should keep also high threshold in selecting the feedback documents.  

Table 7. Average precision of user feedback scenarios.  Liberal relevance threshold is used in 
evaluation - baseline MAP = 20.7 %. 

  MAP by Recognition of Relevance R, % 

Browsing 

effort B 

Feedback 
effort F 

R = 3 

  

Diff. to  

baseline 
(% units) 

R = 2 

  

Diff. to  

baseline 
(% units) 

R = 1 

  

Diff. to  

baseline 
(% units) 

30 30 26.5 +5.8 29.5 +8.8 30.2 +9.5 
30 10 26.5 +5.8 29.4 +8.7 30.1 +9.4 
30 5 26.6 +5.9 28.6 +7.9 28.7 +8.0 
30 1 24.4 +3.7 24.2 +3.5 24.0 +3.3 
10 10 23.9 +3.2 26.7 +6.0 27.5 +6.8 
10 5 23.7 +3.0 26.4 +5.7 26.9 +6.2 
10 1 22.6 +1.9 23.6 +2.9 23.7 +3.0 
5 5 22.8 +2.1 25.0 +4.3 26.0 +5.3 
5 1 22.1 +1.4 23.3 +2.6 23.5 +2.8 
1 1 21.6 +0.9 22.5 +1.8 22.9 +2.2 

3.3   Comparison to PRF 

We also tested the effectiveness of PRF by extracting terms from the top B documents 
(B ∈ {1, 5, 10, 30}) and added them to the initial query as in RF (see Section 2.4). 
These results are presented in Table 8. 

Table 8. Average precision of PRF scenarios evaluated by stringent, regular and liberal 
relevance thresholds 

PRF Set Size PRF MAP 
(%) 

Stringent 

Diff. to 
baseline 
(% units) 

PRF MAP 
(%) 

Regular 

Diff. to 
baseline 
(% units) 

PRF MAP 
(%) 

Liberal 

Diff. to 
baseline 
(% units) 

30 19.8 -0.4 25.1 +2.4 24.2 +3.5 
10 19.5 -0.7 25.8 +3.1 24.5 +3.8 
5 21.2 +1.0 25.8 +3.1 24.1 +3.4 
1 22.0 +1.8 25.3 +2.6 22.8 +2.1 
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In Table 8, columns 2 to 3, we can see that our PRF method hardly improves the 
baseline results when stringent relevance threshold is used in evaluation. The im-
provements are small (at best only +1.8 % units) compared to the great improvements 
gained in the best user RF scenarios (+17.3 % units at scenario <3,30,10>) (Table 5). 

The columns 4 to 5 show that PRF improves the baseline results slightly when the 
regular relevance threshold is used in evaluation. The best improvement is +3.1 % 
units compared to the baseline when the top 5 documents are used in pseudo-
relevance feedback. This improvement is modest compared to the improvement in the 
best user RF scenarios (+12.1 % units using scenario <2,30,10>) (Table 6). 

In columns 6 to 7, we can see that the same trend continues also when the liberal 
relevance threshold is used in evaluation. The improvements here are closer to the 
improvements of the user RF scenarios evaluated at the liberal relevance threshold, 
although the very best user RF scenario improvement of 9.5 % units is gained using 
scenario <1,30,30>. Here we can see that as the quality of the user RF sinks, it ap-
proaches PRF, and the effects become similar.  

4   Discussion 

Our original research questions were as follows: 

1. How effective is RF when we consider various levels of relevance in evalua-
tion? 

2. How is the quality and quantity of the feedback documents related to the effec-
tiveness? 

3. Can the simulated relevance feedback successfully compete with pseudo-
relevance feedback (PRF), and if so, by what effort in terms of the amount and 
quality of the user feedback? 

For the first and the second research questions, our results indicate that RF can be 
effective at all three evaluation levels.  When the stringent evaluation criterion for the 
final results is used (Table 5), if the user keeps also the feedback threshold high, as in 
scenario <3, 30, 30> the MAP of RF run improves from 20.2 % (baseline) to 37.5 %. 
However, if the user lowers the feedback threshold (user scenario <1, 30, 30>) the 
MAP of the RF run improves only from 20.2 % to 24.9 %.   Also, the case of a single 
“pearl” feedback document (user scenario <3, 30, 1>) outperformed the case of sev-
eral “mixed” documents (user scenario <1, 30, 5>); MAP values are 31.7 % and 23.9 
%, respectively.  Thus it seems that one cannot compensate even a small amount of 
high quality feedback by giving lots of low quality feedback if the stringent criterion 
is applied in the evaluation phase.   

On the other hand, if the final evaluation criterion is liberal, the opposite happens 
(Table 7).  For example, the RF scenario <3, 30, 30> performs worse (MAP = 26.5 
%) than the scenario <1, 30, 30> (MAP = 30.2 %).   

For the third research question, our PRF method improved the search results evalu-
ated by any relevance level, but it was not very competitive with the best RF user 
scenarios when the stringent evaluation criterion was used.   However, if the liberal 
evaluation criterion was used, PRF was close to the best RF user scenarios. 
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5   Conclusions 

In real usage situations, the users of information systems would often be best served 
by enabling them to find the very best documents instead of collecting also marginally 
relevant documents.  As the users are also able to identify highly relevant documents, 
it is natural to consider developing relevance feedback methods concentrating on 
finding especially the highly relevant documents.   In this paper, we explore the ef-
fects of the quality and quantity of the relevance feedback documents to the effective-
ness of the feedback measured at various relevance levels.   

First we developed a simple user model which makes it possible to quantify three 
interaction decisions involved in relevance feedback: (1) the relevance criterion 
(threshold to accept documents used as the feedback), (2) the browsing effort, and (3) 
the feedback effort of the user.   We measured the effectiveness of the final retrieved 
set after the RF by simulating the user behavior in a laboratory setting based on vari-
ous user scenarios (three different relevance thresholds, ten different combinations of 
browsing and feedback efforts) and compared these RF methods to the pseudo-
relevance feedback.   

The best RF scenarios clearly outperformed all PRF scenarios, although PRF also 
improved the initial retrieval.  When the stringent threshold was used in evaluation, 
the best user scenario clearly outperformed PRF, but instead, when a liberal evalua-
tion threshold was used, the performance of the user scenarios in RF was close to the 
PRF results.  This hints to the possibility that using binary relevance with a low rele-
vance threshold hides meaningful variation caused by documents which actually be-
long to various relevance levels, as both marginally, regularly and highly relevant 
documents are seen as similar. 
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Abstract. The following paper proposes a new kind of relevance feed-
back. It shows how so-called query profiles can be employed for disam-
biguation and clarification.

Query profiles provide useful summarized previews on the retrieved an-
swers to a given query. They outline ambiguity in the query and when
combined with appropriate means of interactivity allow the user to eas-
ily adapt the final ranking. Statistical analysis of the profiles even enables
the retrieval system to automatically suggest search restrictions or prefer-
ences. The paper shows a preliminary experimental study of the proposed
feedback methods within the setting of TREC’s interactive HARD track.

1 Introduction

When information retrieval left the library setting, where a user ideally could
discuss her/his information need with a search specialist at the help-desk, many
ideas came up how to imitate such interactive search scenario within retrieval
systems. Belkin, among others, broadly sketches the system’s tasks and require-
ments for interactive information seeking [1]. We do not want to further roll up
the history of interactive information retrieval here, but to remind briefly its
main aims.

In order to formulate clear queries, resulting in a set of useful, relevant an-
swers, the user of a standard information retrieval system needs knowledge about
the collection, its index, the query language and last but not least a good mental
model of the searched object. Since it is unrealistic to expect such knowledge
from an non-expert user, the system can assist the search process in a dialogue
like manner. Two main branches of interactive methods try to bridge the gap
between a vague information need and a precise query formulation:

Relevance Feedback helps the user refining the query without requiring sophisti-
cated usage of the system’s query language. Query terms are added or reweighted
automatically by using the relevant examples selected by the user [2,3]. The ex-
amples shown to the user for judgement can either be documents, sentences
out of those documents or even a loosely bundle of terms representing a clus-
ter of documents. Experiments within TREC’s interactive HARD track showed
many variants of such techniques [4, 5]. By presenting example answers to the
user, relevance feedback can also refine the user’s mental image of the searched
object.

Browsing techniques, on the other hand, provide an overview on the existing doc-
ument collection and its categorization (see e.g. the Open Directory Project [6]),

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 205–216, 2006.
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or visualize the relation among documents [7]. The user can restrict the search to
certain categories. This can also be regarded as a query refinement strategy. It is
especially helpful, when the selected categorical restriction cannot be expressed
easily by a few query terms.

The query clarification technique, we are proposing in this paper, belongs
mainly to the first type, the relevance feedback methods. However, it combines
the approach with summarization and overview techniques from the browsing
domain. This way it tries not only to assist formulating the query, but also pro-
vides information about the collection in a query specific preview, the so-called
query profile. Following an idea of Diaz and Jones [8] to predict the precision of
queries by using their temporal profiles, we analyzed the application of differ-
ent query profiles as an instrument of relevance feedback. The main aim of the
profiles is to detect and visualize query ambiguity and to ask the user for clarifi-
cation if necessary. We hope to enable the user to give better feedback by showing
him/her this summarized information about the expected query outcome.

The paper is structured as follows: After a short look on two related ap-
proaches, we start in Sec. 2 by giving a definition of query profiles and explain
how they can be generated. Sec. 3 discusses their application for query classi-
fication. Sec. 4 shows a possible score computation and combination to make
use of the user feedback for an improved final ranking. We further present a
preliminary experimental study of our relevance feedback technique and finish
with conclusions about the achieved results.

1.1 Related Approaches

In order to distinguish our approach from similar ones, we finish this introduc-
tion by looking at two comparable methods. The first one is a search interface
based on clustering suggested by Palmer et al. [9]1. It summarizes results aim-
ing at query disambiguation, but instead of using predefined categories as we
will suggest for our topical profiles, it groups the documents using a not speci-
fied clustering algorithm. Whereas the clustering technique shows more topical
adaptiveness, our static categories ensure always a useful grouping.

Another search interface proposed by Sieg et al. [10] assists the user directly
in the query formulation process. The system compares the initial query with a
static topic hierarchy and presents the best matching categories to the user for
selecting preferences. The chosen categories are then used for query expansion. In
contrast, our query profiles are not based on the few given query terms directly
but on the results of an initial search. This way, we get a larger base for suggesting
appropriate categories and we involve the collection in the query refinement
process.

The mentioned approaches exclusively consider the topical dimension of the
query. We will further discuss the usage and combination of query profiles on
other document dimensions, in this case temporal query profiles.

1 The one-page paper briefly explains the concept also known from the Clusty web
search engine (http://clusty.com) coming from the same authors.
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2 Query-Profiles

Looking from the systems perspective, the set of relevant answers to a given
query is the set of the top ranked documents. This set can unfortunately differ
by far from the set of documents relevant to the user. The basic idea of query
profiles is to summarize information about the system’s answer set in a suitable
way to make such differences obvious.

Definition 1. A query profile is the distribution of the top X ranked documents
in the result set along a certain property dimension, like time, topic, location,
or genre. E.g. a temporal query profile shows the result distribution along the
time dimension, a topical profile along the dimension of predefined topics the
documents belong to.

The underlying assumption of the profile analysis is that clear queries result
either in a profile with one distinctive peak or show little variance in case the
property dimension is not important for the query. In contrast, we expect am-
biguous queries to have query profiles with more than one distinctive peak.

Whereas the general ideas stay the same for all kinds of query profiles, there
are several domain specific issues to consider. We will thus take a closer look
on generating temporal and topical profiles, the two types used in the later
experimental study.

2.1 Generating Temporal Profiles

Having a date-tagged corpus, a basic temporal profile for a given query is simple
to compute. We treat the 100 top ranked documents Dj from the baseline run
as the set of relevant answers and aggregate a histogram with monthly time
steps Hi:

Hi = |{Dj|month(Dj) = i}| . (1)

The decision for the granularity of one month is based on the overall time span
of the corpus and the timeliness of news events. Other granularities, however,
could be considered as well.

As a next step, we performed a time normalization on the profile. Knowing
that the corpus articles are not evenly distributed over the total time span, the
time profile should display the relative monthly frequency of articles relevant
to the given topic rather than absolute numbers. Therefore, the frequency of
each monthly partition Hi is divided by the total number of corpus articles
Ci originating from month i. In order to avoid exceptional small numbers, the
averaged monthly corpus frequency avg(C) is used as a constant factor:

H∗
i =

Hi

Ci
∗ avg(C) . (2)

Furthermore, we performed moving average smoothing on the histogram, a
technique used for trend analysis on time series data [11]. It replaces the monthly
frequencies of the profile by the average frequencies of a small time window
around the particular month. We used here a window size of 3 months:
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H∗∗
i =

H∗
i−1 + H∗

i + H∗
i+1

3
. (3)

The graph in Fig. 1 shows an example of a resulting temporal profile. There
are two reasons for using such a smoothing technique. First, the time-line the
search topic is discussed in the news will often overlap with our casual monthly
partitioning. Second, although we want to spot peaks in the profile, we are not
interested in identifying a high number of splintered bursts. If two smaller peaks
are lying in a near timely neighborhood they should be recognized as one.

Finally, we want to determine the number, bounds, and the importance of
peaks in the temporal profile. Diaz and Jones [8] tried several techniques for
this purpose and decided to employ the so-called burst model from Kleinberg
[12]. It assumes a hidden state machine behind the random events of emitting
the specific word in certain frequencies. The assumed machine changes over
time between its norm and peak state, corresponding to phases with normal
and high emission of the word respectively. The aim is then to find the un-
known state sequence with the highest probability to cause the observed random
events of the time profile. Kleinberg employs for this task the Viterbi algorithm.
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Fig. 1. Temporal Profile of Topic 363: Trans-
portation Tunnel Disasters

We have used for the gener-
ation of temporal profiles a two
state automaton A2

1.5 with a very
low value for γ ≈ 0.022. The con-
siderably different setting of pa-
rameters compared to Kleinberg’s
experiments can be explained by
the fact that we analyzed pro-
files of word frequencies which are
already averaged on the level of
months. Hence bursts will remain
smaller and less distinctive.

When we also want to com-
pute a measure for the impor-
tance of the found peaks Pj , the
corresponding frequency values of
the temporal profile can simply be
summed up. A further division by the average of such frequency sums avg(P )
leads to a value for peak intensity better comparable among different temporal
profiles:

Pj =
∑

i∈ range(Pj)

H∗∗
i , intensity(Pj) =

Pj

avg(P )
. (4)

2.2 Generating Topical Profiles

Generating topical profiles faces different issues than the ones explained for the
temporal dimension. First and most important, the corpus is not topic-tagged.
2 See [12] for a detailed description of the automaton and its parameters.
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A topic classification is therefore required. Secondly, the topical dimension is
not continuous but divided in a discrete set of previously defined concepts. In
principle, topics could have a hierarchical relation but there won’t be any natural
definition of an order. So the identification of peak bounds as in the temporal
dimension ceases to apply here.

For topic classification we need to build abstract models for all different con-
cepts, the classification should take into account. Language models can be ap-
plied as classifiers for this purpose. In order to demonstrate the idea, we used
models built on a different training corpus to distinguish 12 different topical con-
cepts similar to the main sections of common newspapers, like politics or sports.
A more detailed description about the construction of these language models
can be found in [13].
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Fig. 2. Subject Profile of Topic 363: Transporta-
tion Tunnel Disasters

The required text classification
for computing a topical profile dif-
fers slightly from the typical cate-
gorization task (described in [14]).
We do not need to assign binary
labels whether a document be-
longs to a certain category or not.
A similarity measure showing to
which extend an article belongs to
a given category is already suffi-
cient. Hence, the task falls back
to the known domain of rank-
ing a set of documents given a
query. In fact, an abstract lan-
guage model describing a topical
concept is nothing but an exceptional long query. We used in the experiments
the NLLR measure (described in a later section) which is also applied to com-
pute a score for the initial query. Only the smoothing factor λ is set smaller
in this case. Firstly, because the exceptional query length makes smoothing less
important, and secondly, to increase differences between the models.

In order to speed up the computation of topical profiles as well as the later
ranking procedure the score computation is performed off-line. For each classifier
in the set of topical concepts a score vector is maintained, holding the individual
scores for all documents within the collection. An example topical profile is
displayed in Fig. 2.

After the classification task is done, topical profiles can be computed in the
following way. Similar to temporal profiles explained previously, the set of the
100 top ranked documents given the query is determined. The score for a specific
topic category Ti is then defined by the sum of all document scores from D for
this category. The intensity value, as introduced in the last section, is computed
accordingly:

Ti =
∑
Dj

NLLR(Ti|Dj) , intensity(Ti) =
Ti

avg(T )
. (5)
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3 The Clarification Interface

After generating and analyzing the query profiles, we discuss in this section how
the gained information can be presented to the user for query clarification. The
user interface thereby has to fulfill two functions:

– It needs to present all necessary information to the user that allows her/him
to take a decision.

– It should provide simple but powerful means to adapt the query in the in-
tended way.

The second point needs further explanation. Not all search topics are easy to
express by a few query terms. Although several articles contain the same key-
words, their specific view on the topic or genre might not match the type of
documents the user had in mind. If we allow the user to refine the query not
only by further keywords but by selecting preferences to more abstract concepts
or to restrict the search space to a certain location or time, the problem of ex-
pressing an information need accurately can be overcome. However, confronting
a user in an advanced search interface with all possible combinations of restric-
tions and preferences to an in general unlimited number of concepts, dates, or
locations, would overextend the searcher. Maybe he/she does not even know the
correct query meta-data, e.g. the date or location of the event he/she is look-
ing for. Query profiles can help here, since they allow to automatically find the
most important meta-data concepts given the initial query terms. This way it is
possible to provide the user with the necessary information to set preferences or
restrictions and to limit the search dialog to the most interesting options.

Compared to the profiles shown in the last section (Fig. 1 and Fig. 2) a user
does not need to see the whole spectrum of the profile. Instead it seems sufficient
to cut out the most relevant part of it, which means the highest temporal or
topical peaks. For the experiments, we just displayed the 5 top ranked topics,
but all identified temporal peaks. In practice their number never exceeds 4. In
order to demonstrate the usefulness of the profile information and to explain why
we restrict the output to the top ranked parts of the profiles, let us distinguish
three possible cases:

1. In case the initial query was clearly formulated, the user gets a positive
confirmation by seeing the expected topic or time partition on top of the
ranked profile list, succeeded by close related ones. The absence of non-
matching topics will be enough information for the user here. He/she does
not need to see a long list of minor ranking topics.

2. In case the query was ambiguous also unwanted topics or time partitions will
populate the top of the ranked query profiles. In order to get an unambiguous
output, it is now important to refine the query in a way that it excludes
most of the unwanted answers, but keeps the relevant ones. Again, the end
of the ranked profile list is less interesting, since the topics there are already
efficiently excluded by the query.
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3. In case the user does not even find the relevant topics or time partitions
among the top part of the query profile, it won’t help to just refine the
query. Either the query needs to be reformulated entirely or the corpus does
not include the documents the user is searching for.

The second case is the most interesting one since it requests appropriate query
refinement strategies. Whereas a time restriction based on the profile can be
expressed relatively easy, it is in general difficult for a user to find on his own
additional keywords that allow to distinguish between the wanted and unwanted
topics of the profiles. However, the system has already abstract classifiers at hand
to perform such filtering. The simplest way to refine the query is thus to express
preferences directly on the profile itself. For this reason we made our query
profiles interactive by adding prefer and dislike buttons to the topic profiles and
restrict to fields to the temporal profiles, refining the query in the obvious way.
Their exact influence on the final ranking is discussed in the next section.

Fig. 3. Experimental Clarification Form of Topic 363: Transportation Tunnel Disasters

3.1 Automatic Preselection

We also looked, whether it is possible to make an automatic suggestion of an
appropriate selection in the profiles. Obviously, the most high ranked topics or
temporal peaks are good candidates, especially if they distinctively stand off
from the lower ranked ones. The intensity measure defined in the last section
explicitly addresses these characteristics. Using an intensity threshold, we can
preselect all topics and temporal peaks above3. These values have been shown
3 In the experiments an intensity threshold of 1.2 was used for the topical profiles,

respectively 1.5 for the temporal profiles.
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high enough to assure the selection of only distinctive peaks of the profile. An
example clarification form with preselected items is shown in Fig. 3.

Automatic preselection is especially helpful in the first of the three scenarios
above where the query is unambiguous. In such a case user feedback is not neces-
sary and the query refinement could be performed as a sort of “blind feedback”
procedure to sharpen the topical or temporal focus.

4 Retrieval Model and Score Combination

In this section we show a possible score computation and combination taking
into account the initial query as well as the preferences and restrictions stated
in the query refinement process. The focus lies thereby on the issues of score
normalization and combination. We have chosen a language modeling approach,
however, in principle the proposed feedback technique could also be used in the
setting of other retrieval models.

In particular, we employed the NLLR, the length-normalized logarithmic like-
lihood ratio [15], as a score function:

NLLR(Q|D) =
∑
t∈Q

P (t|Q) ∗ log
(

(1 − λ)P (t|D) + λP (t|C)
λP (t|C)

)
. (6)

The additional factor λ below the fraction does not harm the ranking but ensures
that documents having none of the query terms get a zero score.

The NLLR is able to compare query terms and documents as well as entire
language models. Due to the normalization it produces comparable scores inde-
pendent of the size of the query. Therefore it can be used for a document ranking
given either a query or a topical language model. The factor λ determines the de-
gree of smoothing with the background collection model. Since smoothing plays
an important role for short queries, whereas it dilutes the score differences for
large-scale query language models, this factor can be changed according to its
application4.

Next to the scoring itself, all single sources of relevance evidence need to be
combined to one final ranking. We decided not to use query expansion techniques,
but to combine the separately computed scores directly. This allows to make
efficiently use of precomputed document scores for topic language models and
avoids a second scoring of the initial query terms. When multiple preferences or
dislikes have to be handled the logarithmic scores of their corresponding models
Mi are simply added, respectively subtracted for disliked models:

m-score(D) =
∑
Mi

NLLR(Mi|D) . (7)

The final combination of the initial query score, called q-score(D) now, and all
summed up preference scores requires special attention. We have to ensure that
4 We set λ to 0.85 for queries, but to 0.5 for topic models.
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the scores on both sides deliver “compatible” values or even more to guarantee
still the dominance of the initial query in the final result. A minimum-maximum
normalization solves such a task (among others described in [16]). It shifts the
minimum of a score range min s = min{score(D∗)|D∗ ∈ C} to 0 and its max-
imum to 1. We further stressed the initial query by doubling its score value in
the final ranking:

norm(score(D)) =
score(D) − min s

max s − min s
, (8)

final-score(D) = 2 ∗ norm(q-score(D)) + norm(m-score(D)) . (9)

5 Experimental Study

We tried to evaluate our relevance feedback based on query profiles in the setting
of the HARD track 2005. A set of 50 queries, which are regarded as difficult5, is
evaluated on a ≈ 2GB newspaper corpus, the Aquaint corpus. The track set-up
allows one-step user interaction with so-called clarification forms that have to
fit one screen and have to be filled out in less than 3 minutes. In the original
TREC setting the sent-in clarification forms were filled out by the same person
who later does the relevance assessments for the specific query. We repeated the
experiment ourselves, asking different users to state preferences or restrictions
in the clarification forms after reading the query description and query narrative
coming with the TREC search topics. This way, we inevitably lose the consistency
between clarification and relevance assessment ensured by the HARD setting.
However, we could study differences in the user behavior and their results.

The 4 test users 6 have been shortly introduced to their task by demonstrating
one randomly picked out example clarification form. They needed on average 35
min to accomplish the task of clarifying all 50 queries. We want to remark here,
that the conducted experiment have to be regarded preliminary. It was not the
intention to carry out a fully qualified user study, but to gather first indication
whether the proposed feedback technique is able to improve retrieval.

In order to compare the improvements, we performed a baseline run using
just the up to 3 words from the query title, further one run with the auto-
matically derived preferences only as explained in Sec. 3, referred to as au-
tomatic run. From the 4 evaluated user runs, we present here the two most
different to keep the figures clear. Whereas user1 selected almost no topic dis-
likes, user2 had the highest fraction of dislike statements among his topic pref-
erences. For comparison, the user2 ∗ run refers to the same user, but ignores his
dislikes.

A closer look at the set of the 50 search topics revealed, that they have
not been distinctive with respect to their temporal profile. In fact, there was
5 The query set was taken from the Robust track which tries to tackle selected difficult

queries in an ad hoc retrieval setting.
6 1 female – 3 male students, one of them working in computer science but not in the

same project.
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almost no case where the user wanted to restrict the query to a certain time
span. Therefore, we restricted our analysis to the improvements by topical query
refinement and ignored all temporal restrictions.

base auto user1 user2 user2 ∗

MAP 0.151 0.187 0.204 0.187 0.201
R-Prec 0.214 0.252 0.268 0.255 0.265
P@10 0.286 0.380 0.396 0.354 0.402

(a) Result Overview
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(b) Precision Recall Graph
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(c) MAP Improvements on Single Queries

Fig. 4. Evaluation Results

Fig. 4(a) presents an overview
on the main evaluation measures
computed for all presented runs.
At a first glance it is obvious
that the refined queries, even in
our non-optimal evaluation set-
ting, show a considerable im-
provement over the baseline run.
The precision gain is most visible
at the P@10 measures, which is
an interesting characteristic aim-
ing at a high precision at the top
of the ranked list. The precision
recall graph (Fig. 4(b)) confirms
the observation made with the
P@10 values. The precision gain
stays the highest at the top of the
ranked list. On the right side, the
runs with query refinement slowly
converge to the baseline, but al-
ways stay on top of it.

The special run ignoring the
topic dislikes of user2 has a bet-
ter general performance than its
counterpart. Although it is not
shown in the table, this obser-
vation holds for all four tested
users. It indicates that topic dis-
like statements bear the risk to
weaken the result precision in our
current implementation.

Surprisingly, the values show
also that the automatic run can
compete with the user performed
clarification. We cannot entirely
explain this phenomenon, but can
make two remarks on its interpre-
tation. First, the query set has not been designed to test disambiguation. If a
query asking for “Java” expects documents about the programming language,
automatic topic feedback will work perfectly. However, it fails if in fact the is-
land was meant. Examples of the second type are necessary to compare user and
automatic feedback, but are unlikely to be included in the test set. A further
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reason for the good performance of the automatic run might simply be the fact
that it did not contain dislike statements.

For a more detailed view on the results, Fig. 4(c) presents the evaluation of
all single queries sorted by increasing MAP value of the baseline run. Thus, the
graphic shows the worst performing queries on the left, continued by a section
with still relatively low quality response in the middle, up to acceptable or even
good queries on the right. Although the improvement per query is not stable, it
seldom happens that the user feedback deteriorates the results. The one extreme
case on the right side of the figure is again caused by dislike statements. If
we consider the relative improvement, the queries in the middle part of the
figure apparently gain the most from query refinement. Within the distinction of
queries from Sec. 3 these queries probably fall under the ambiguous category 2.
The fact that we encounter the highest improvement in this category nicely
demonstrates the usefulness of our method.

6 Conclusions and Outlook

The results show promising improvements for all runs that make use of query
profiles even in our preliminary experimental study. With a query set designed
to test how retrieval systems cope with ambiguity, we would probably be able to
show even higher improvements using our feedback method. The same applies
for queries that reward temporal restrictions. Also a finer grained topical “res-
olution”, potentially in form of a topic hierarchy, could lead to a more focused
query profile on the topic dimension.

Further analysis is needed, how to involve topical dislike statements in a way
that they do not harm the results, but also contribute to the query refinement.
Furthermore, we need to examine query profiles on other dimensions. The tem-
poral profiles remained untested by the current HARD track query set, but also
geographical or genre profiles - in order to name just two possible other param-
eters - might enable similar improvements as the topical query refinement.

The automatic feedback method turned out to be an interesting side product
of the work with query profiles. It performed almost as good as the user feedback.
It raises the question to which extend the system can decide based on query
profile statistics, whether automatic feedback is reliable enough in a certain
case to omit user interaction. Especially when profiles on more dimensions get
involved in the analysis, the user should not be bothered by a multiple number
of feedback questions. Instead an intelligent retrieval system might be able to
select the most helpful dimension for explicit user feedback itself.
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Abstract. Textual Entailment has recently been proposed as an ap-
plication independent task of recognising whether the meaning of one
text may be inferred from another. This is potentially a key task in
many NLP applications. In this contribution, we investigate the use of
various lexical entailment models in Information Retrieval, using the lan-
guage modelling framework. We show that lexical entailment potentially
provides a significant boost in performance, similar to pseudo-relevance
feedback, but at a lower computational cost. In addition, we show that
the performance is relatively stable with respect to the corpus the lexical
entailment measure is estimated on.

1 Introduction

Textual Entailment has recently been proposed [7] as an application indepen-
dent task of recognising whether the meaning of one text may be inferred from
another text. As such, it plays a role in a variety of Natural Language Processing
applications such as Question Answering or Machine Translation. Textual entail-
ment may also impact Information Retrieval (IR) in at least two ways. First the
notion of relevance bears strong similarities with the one of entailment. Second,
the notion of entailment may offer a way to capture non-obvious dependencies
between query and documents which are not captured by simple word-based
similarities.

Although the general task of recognising textual entailment is potentially
much broader, the practical probabilistic approach proposed for example in [11]
relies on word based lexical probabilities. This amounts to assessing whether
one lexical unit is entailed by another one. This approach is reminiscent of the
lexical statistics used to characterize semantic domains or topics in IR. Most
lexical statistics studies rely on standard similarity measures in order to derive
affinities between words, affinities that can then be used to (a) create thesauri
that can in turn be used for indexing or query enrichment purposes, or (b)
compute an extended similarity between documents and queries.

Along the first line, one finds works pertaining to thesaurus construction, ex-
emplified by the phrase construction procedure of [18] and the various similarity
levels of [12]. Along the second line, one finds works that embed term similar-
ities within the computation of the similarity between queries and documents.
The generalized vector space model of [19], the similarity thesaurus of [17] or the
distributional semantics approach of [4] illustrate this approach through the use
of a term similarity matrix to map documents into a new vector space.

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 217–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The goal of this work is to investigate whether the TE paradigm proposed
in [7] leads to lexical measures which are better suited to the IR task than
the ones previously studied. To this end, we will first review the new measures
derived from TE using different IR collections, and assess their validity. We will
then propose some adaptations of these measures for IR purposes.

The remainder of this document is organised as follows: Section 2 presents
the various lexical entailment probabilities and similarities used in this work.
Section 3 describes the language modelling approach to IR and how it may
naturally take into account the entailment information. Section 4 summarises
the experiments we carried out to test the use of textual entailment in IR. We
discuss these results and their implications in section 5.

2 Lexical Entailment and Similarity

Given a mono-lingual collection D, let us first introduce some notations. Let u
and v be two terms from the vocabulary V , and #(u, d) the number of occur-
rences of term u in document d ∈ D. By analogy with the cross-lingual setting, we
will call u the source term, that is, the term for which we are interested to learn
some entailment or similarities measures and v is referred to as a target term.

Let us first recall the probabilistic lexical measure proposed in [11]:

P (v|u) =

1 +
∑

d∈D:u∈d

#(v, d)

|V| +
∑
w∈V

∑
d∈D:u∈d

#(w, d)
. (1)

In fact, this model behaves as if we were merging all documents that contain the
source term u into a single large document, and then building a simple unigram
language model with Laplace smoothing on this large document.

Because the notion of entailment is linked to that of lexical similarity, it makes
sense to use a typical similarity measure for comparison. As a consequence, the
second model we use is based on the Jaccard similarity.1 In particular, let U
(resp. V ) be the set of documents where u (resp. v) occurs and |U | (resp. |V |)
the cardinal of this set:

jaccard(u, v) =
|U ∩ V |
|U ∪ V | . (2)

The similarity is normalised to provide a lexical entailment probability:

P (v|u) =
jaccard(u, v)∑

w∈V jaccard(u, w)
. (3)

Note that in that case, only the presence of a word in a document, not its
frequency, is used. In other words, every document plays the same role, whether
1 Note that this use of the Jaccard similarity is over the document space and is quite

different from the traditional use in IR [13] for measuring the similarity between
queries and documents, in the “vector space” model, which is over words.
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the source term (u) occurs one or ten times in a document. The context of a
term is thus reduced to the set of documents in which this term occurs.

Instead of considering each document containing u (or v) equally, we would
like to take the frequencies of u (or v) into account. Intuitively, a good measure
of lexical similarity between u and v is that v occurs often in documents that
are typical of u (meaning usually that u also appears often). This leads us to
the third model, which in fact is a simple application of the rules of probability:

P (v|u) =
∑
d∈D

P (v|d)P (d|u). (4)

Assuming that P (d|u) = 0 for all d such that u 	∈ d, and assuming that P (d)
is uniform, the lexical entailment probability in equation 4 may be rewritten as:

P (v|u) ∝
∑

d∈D:u∈d

P (v|d)P (u|d). (5)

By analogy with the language modelling approach to Information Retrieval
[16, 6], P (u|d) and P (v|d) is a simple unigram language model of document d.2

In the experimental section we will call this third model “M3”.
The textual entailment measure in equation 1 was used with some success for

recognising textual entailment in a recent challenge [7] consisting of evaluating
entailment between pairs of hypotheses and reference texts. In this work, we
were interested in assessing whether a similar approach would be useful in a
more “open” domain such as IR, where a query must be matched against a
potentially large number of documents. This revealed a number of problems
with the simple lexical entailment probabilities expressed in equations 1-5.

2.1 Dealing with Common Words

The first problem we encounter with these models is the presence of common
words. Common words like ’year’, ’make’ or ’time’ often get high scores, be-
cause they are present in large amounts in many documents, and tend to pollute
the results. For example, the first model (eq. 1) acts as if it merges documents.
When documents are quite long, the common words may become overwhelming.
In order to decrease the influence of common words, the traditional IR counter-
measure is to use a weighting such as the inverse document frequency, or idf.
We found out however that this was not always effective in the context of the
estimation of lexical entailment measures. In our experience, a more natural and
effective technique was to first identify potentially related term pairs (u, v) using
the Information Gain (IG).3 The Information gain measures the number of bits
of information obtained on the presence of v in a document by knowing that u is
or is not in the document. In the context of our study, given a term u, it seems
natural to first identify which terms v are related to u before we estimate the
probability that the former entails the latter. Overloading our notation some-
2 Using an unsmoothed language model for which P (u|d) = 0 when u �∈ d implements

the above assumption.
3 The Information Gain, aka Generalised (or average) Mutual Information [5], has been

used for selecting features in text categorisation [20, 9] or detecting collocations [8].
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what, we denote by u (resp. ¬u) the presence (resp. absence) of term u in a
document. The Information Gain measure is:

IG(u, v) =
∑

X∈{u,¬u}

∑
Y ∈{v,¬v}

P (X, Y ) ln
P (X, Y )

P (X)P (Y )
, (6)

where the probabilities in eq. 6 are replaced by their empirical estimates: P (X =
u, Y = v) =

∑
d∈D I(u ∈ d)I(v ∈ d)/|D|, etc. I(·) is the indicator function: it

takes value one if the enclosed condition is true, and zero otherwise.
For each source term u, the information gain is computed for every other term

v. The Nmax terms with the highest values of information gain are selected. Then,
the lexical entailment probability defined in eqs. 1, 3 or 5 can be used on these
Nmax terms (and possibly renormalised, if needed).

2.2 Estimating P (u|u)

The second problem is the estimation of the probability P (u|u). Within the lex-
ical entailment approach, P (u|u) is the probability that a term entails itself.
Intuitively, this probability should be high, because a source term is more likely
to entail itself than any other term. However, in practice, using the lexical en-
tailment probability defined in eqs. 1, 3 or 5 yields a value of P (u|u) typically
not so much larger than the probability obtained for the other terms. In the
IR setting, this means that documents containing query terms may not be con-
sidered significantly more relevant than documents containing only “entailed”
terms. As many words tend to have several, often quite different, meanings (pol-
ysemy), this means that the relevance tends to get “diluted” as we move away
from query words.4 In order to counter this effect, we increase the self-entailment
probability P (u|u) by interpolating the lexical entailment distribution obtained
from eqs. 1, 3 or 5 with a Dirac distribution centred on u:

P̃ (v|u) =
{

α + (1 − α)P (v|u) if v = u
(1 − α)P (v|u) otherwise. (7)

The additional parameter α enables us to modify the weight given to the self-
entailment. The standard situation (no correction for P (u|u)) is obtained by
α = 0 and the extreme case of α = 1 is the baseline situation which corresponds
to using no lexical entailment. Accordingly, tuning this parameter is a way to
check our hypothesis that reinforcing the entailment probability of the term itself
is beneficial.

3 Language Modelling for Information Retrieval

Given a query q, the language model approach to IR [16] scores documents d by
estimating P (q|d), the probability of the query according to a language model
of the document. For a query q = {q1, . . . q�}, we get:
4 Of course there may be counter-examples where exact synonyms which are not pol-

ysemous may be perfectly acceptable, or even better than the original term.
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P (q|d) =
�∏

i=1

P (qi|d). (8)

For each document d, a simple language model is obtained by considering the
frequency of words in d, PML(w|d) ∝ #(w, d) (this is the Maximum Likelihood,
or ML, estimator). The probabilities are smoothed by the corpus language model
PML(w|D) ∝∑d #(w, d). The resulting language model is:

P (w|d) = λPML(w|d) + (1 − λ)PML(w|D). (9)

In the simplest approach, we just assume that P (qi|d) = P (w = qi|d), so the
documents are scored according to:

score(q, d) = P (q|d) =
�∏

i=1

P (w = qi|d). (10)

Berger and Lafferty [3] later proposed an extension of the method, inspired
by an analogy with translation. In this model, a word from the document may
be translated into a different query term. Hence:

P (qi|d) =
∑
w

P (qi|w)P (w|d), (11)

where P (q|w) is the probability of translating word w into query term q, and
P (w|d) is again the language model of document d. This approach is especially
useful in Cross-Lingual Information Retrieval (CLIR), where P (q|w) is a gen-
uine translation matrix which relates query terms written in one language to
documents written in another. Such a matrix may be obtained using a machine-
readable dictionary, or extracted from parallel or comparable corpora [10].

This framework is also convenient in order to take into account similarities
between words and in particular, to formalise the use of textual entailment in
IR. Given an entailment or similarity between words, expressed by a conditional
probability P (v|u), documents are scored according to:

P (q|d) =
�∏

i=1

∑
w

P (u = qi|v = w)P (w|d). (12)

P (u|v) may be obtained by any of the methods described in section 2, and
P (w|d) is given by equation 9. In addition, the CLIR setting as implemented
by the Lemur toolkit [2] introduces a background query-language smoothing.
Instead of eq. 8 the document score is in fact:

P (q|d) =
�∏

i=1

(βP (qi|d) + (1 − β)P (qi|D)) . (13)

In order to use our lexical entailment probabilities within the Language Mod-
elling approach, we must therefore set two extra parameters, λ and β.
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4 Experiments

Our experiments serve several purposes:

1. Evaluating the performance of various lexical entailment models (section 2);
2. Comparison with another query enrichment technique: pseudo-relevance

feedback;
3. Assessing the stability of the lexical entailment probabilities by estimating

them on a different, larger corpus than the IR collection.

4.1 Data

Our experiments were carried out on the English part of the CLEF-2003 corpus
[15], which contains around 160,000 documents. The indexing was done using the
Lemur toolkit [2] and the resulting vocabulary contains around 80,000 distinct
terms (types). The indexing process only retained the following sections from
the original documents: <TITLE>, <HEADLINE>, <LEAD>, <TX>, <LD>,
<TI>, <ST>. Words occurring less than five times were removed from the index
in order to limit its size.

In our evaluations, we used 54 queries of CLEF-2003, each with at least one
relevant document, and the corresponding relevance judgments. The retrieval
was also based on Lemur. When necessary, for example to implement the fea-
ture described in section 2.2, we used the Lemur API to implement new retrieval
functions. The calculation of the lexical entailment probability tables also lever-
aged the Lemur API.

4.2 Evaluation of Lexical Entailment Models

In our first evaluation, we compared the performance of five models:

– Baseline: standard monolingual retrieval model from Lemur. It amounts to
using an identity matrix as lexical entailment table, P (v|u) = I(v = u).

– TE: this is the probabilistic lexical entailment model from [11] (equation 1).
– Jaccard: the model based on the jaccard similarity measure (equation 3)
– M3: this is our third model, equation 5.
– M3+IG: the third model, with an additional prefiltering step based on the

information gain, as explained in section 2.1.

For each of the lexical entailment models, for each term u in the corpus, the
probability distribution P (.|u) was computed and the top Nbest = 20 words were
selected from this distribution. Then, a renormalisation of the score was done in
order to obtain a new probability distribution. There are several parameters to
set during these experiments: α, β and λ. Ideally, these should be optimised on
a distinct validation set (for example a subset of queries). Then the optimised
version may be used on the test queries. However, in order to get a better as-
sessment of performance differences and help comparison with other results on
the same data, we wish to keep our 54 queries for testing. As a consequence, we
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did not run an extensive optimisation of the parameters for each model. Instead,
we ran a couple of preliminary experiments, and set parameter values to λ = 0.5
for the baseline and α = 0.5, β = 0.25 and λ = 0.8 for the other methods. These
values seem to provide reasonable performance in various situations. Note that
the parameter values are therefore identical for all models, and not optimised for
each model. This limits the optimistic bias resulting from a partial use of the test
queries for deciding on reasonable global parameter values. Optimising (α, β, λ)
for each model would yield better apparent performance but also a much larger
optimistic bias.

We compare the various experimental results based on the mean average
precision (MAP) over the 54 queries, as calculated by trec eval [1]. In order to
assess the significance of the differences in MAP observed between the different
methods, we ran a (paired) Wilcoxon signed rank test [14] on the 54 average
precision results for each method. We indicate results that are significantly better
than the baseline at the 95% level, according to this test.

Influence of Lexical Entailment Probabilities

Our first experimental results are presented in the top row of table 1. We observe
that the lexical entailment models provide a small but significant improvement
over the baseline. The use of the Information Gain to filter out common words
provides an additional boost in performance. In conjunction with the M3 model,
it yields the biggest improvement in performance (+3.19% absolute, highly sig-
nificant). Note that because the paired Wilcoxon test is based on ranks, the sig-
nificance is not a monotonous function of the average difference. With a MAP
of 56.15%, the Jaccard similarity yields a slightly higher performance than the
TE model, but this is due to a large gain on a single query, and is therefore not
significant overall.

Figure 1 provides more information on the performance of TE and M3+IG
using the average precision-recall curve at the 11 standard points of recall. This
shows that the ranking in performance provided by the MAP is quite consistent
over the whole spectrum of recall values.

Comparison with Pseudo-relevance Feedback

Pseudo-relevance feedback (PRF) is a technique in which a first retrieval is
carried out, and the query is enriched with typical words from the top retrieved

Table 1. Experimental results, expressed in mean average precision (in %), for the 5
models considered in the evaluation, with and without using pseudo-relevance feedback.
Parameters are: λ = 0.5 for the baseline, and α = 0.5, β = 0.25 and λ = 0.8 for the other
4 models. The pseudo-relevance feedback parameters are NbDocs = 5 and NbTerms =
10. Bold indicate significant improvement over the baseline (paired Wilcoxon test at
95% level).

Model: Baseline TE Jaccard M3 M3+IG
Without PRF 54.34 55.99 56.15 55.94 57.52
With PRF 56.37 56.45 58.45 57.64 58.42
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Fig. 1. Precision-recall curves for the standard retrieval results for the baseline method,
the Textual Entailment model and the M3 model

documents. The rationale for this is that the top documents are more likely to
contain relevant vocabulary. The intention is similar to the textual entailment
problem: identify words which are different from query terms, but are somewhat
related. It therefore makes sense to compare the lexical entailment approach
to PRF.

PRF requires 2 additional parameters to be set: the number of top documents
considered and the number of terms added to the query. In our experiments we
consider the 5 highest ranked documents and enrich the query with the 10 most
typical words.

The experimental results using pseudo-relevance feedback are presented in
the second row of table 1. In our experiments, PRF provides an increase in
performance around 1% to 2%, making all observed increases in performance
significant or close to significant (p = 5.45% for M3, and p = 7.89% for base-
line with PRF). The best results are obtained with the jaccard model and the
(M3+IG) model, with a performance increase of around 4% (absolute). In fact,
these two models are also significantly better than the baseline PRF.

Again, we present the precision/recall curves at the 11 standard points of
recall for the baseline, the lexical entailment model, and the M3+IG model, all
with PRF. These are displayed in figure 2. The results obtained by M3+IG with
PRF are consistently above the other two. On the other hand, there is almost no
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Fig. 2. Precision-recall curves using pseudo-relevance feedback on the baseline method,
the Textual Entailment model and the M3 model

difference between TE and the baseline once PRF is applied. This is consistent
with the MAP performance recorded in table 1.

Dependency on the Corpus

The third issue we investigate is the dependency of the lexical entailment prob-
abilities on the corpus. In the previous experiments, the probabilities P (u|v)
where estimated on the same collection they were tested on. This is perfectly
“legal”, because the estimation is carried out once and for all beforhands and
does not use any relevance judgement. This leads to an important question: how
corpus-specific are the estimated probabilities? In particular, would it be pos-
sible to estimate the lexical entailment probabilities once and for all on a large
corpus, then apply the resulting estimates on every new collection?

In order to test this dependency, we use the Reuters RCV-1 corpus (used
for example in the ad-hoc filtering track at TREC in 2002), which contains
800,000 documents, mostly from finance-related newswire stories. This corpus
is much larger than the CLEF collection, and the two corpora differ somewhat
thematically.

Table 2 summarises the MAP we obtained using two models, TE and M3, with
entailment probabilities estimated on both corpora. Using the Reuters corpus
degrades the results slightly. Most noticeably, the performance of the TE model
is now below baseline, although the difference is not significant. The performance
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Table 2. Performance using the Reuters corpus to estimate the lexical entailment
probabilities for two models: TE and M3. All results are mean average precision (in
%). Parameters are: α = 0.5, β = 0.25 and λ = 0.8. No differences are significant (using
a paired Wilcoxon test at 95% level).

Model: TE M3
using CLEF 55.99 55.94
using Reuters 54.14 55.18

of the M3 model using Reuters is inbetween the baseline and what we obtained
earlier (table 1), but again the differences are not significant (p ≈ 15%).

The conclusion from this experiment seems to be that although the entailment
probabilities may be better estimated on the larger Reuters corpus, this does not
offset the fact that these probabilities will be sub-optimal for querying the CLEF
corpus, due to the different natures of the two corpora.

5 Discussion

Our investigation suggests that lexical entailment models do potentially provide
significant improvements over the baseline language modelling system. Using
our third model and a prefiltering based on the Information Gain, we obtain
a significant improvement of 3.18% over a monolingual language modelling IR
system, and even 4% by combining it with pseudo-relevance feedback.

Although the inspiration is entirely different, textual entailment models allow
us to provide a kind of lexical query enrichment. The traditional pseudo-relevance
feedback performs a different type of query enrichment. It yields improvements
similar to our lexical entailment model. However, it should be noted that once
the lexical entailment probability table is estimated, it may be used with any new
query in one pass. In contrast, pseudo-relevance feedback requires two passes over
the corpus: one for the original query and a second one for the enriched query.
In our experiments, we showed that both techniques provide similar results and
the use of PRF did not provide significant improvements over the best lexical
entailment models.

Finally, we tested whether the entailment probabilities estimated on a large,
independent corpus may compete with measures obtained on the queried collec-
tion itself. Our experiments show that performance seems to degrade slightly,
but this effect is not significant.

One issue is the choice of lexical entailment model. The three models that we
tried provide similar performance. In fact, we gain more from adding a prefilter-
ing step than we do from switching models. This suggests that there may be
additional work to do in developing new models that somehow incorporate this
filtering. A related issue is that in the open domain of IR, we found it crucial to
filter out common words. This is not so much an issue in the prototypical textual
entailment evaluations which test a relatively small number of individual (text,
hypothesis) pairs.
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6 Conclusion

In this paper we have presented the results of our investigations into the use
of lexical entailment models for IR. We have shown that lexical entailment po-
tentially provides a significant boost to monolingual IR performance. It is at
least comparable to what is achieved with pseudo-relevance feedback, and does
so with a lower overhead.

Future works include the refinement of the models to further improve the es-
timation of the entailment probabilities. In addition, we would like to investigate
the development of a query-specific entailment measure.
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4. R. Besançon, M. Rajman, and J.-C. Chappelier. Textual similarities based on a
distributional approach. In Proceedings of the Tenth International Workshop on
Database and Expert Systems Applications (DEX’99), Florence, Italy, 1999.

5. B. Colin. Information et analyse des données. Pub. Inst. Stat. Univ. Paris,
XXXVII(3–4):43–60, 1993.

6. W. Croft and J. Lafferty, editors. Language Modeling for Information Retrieval.
Kluwer Academic Publishers, 2003.

7. I. Dagan, O. Glickman, and B. Magnini. The PASCAL recognising textual entail-
ment challenge. In PASCAL Challenges Workshop for Recognizing Textual Entail-
ment, 2005.

8. T. Dunning. Accurate methods for the statistics of surprise and coincidence. Com-
putational Linguistics, 19(1):61–74, 1993.

9. G. Forman. An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3:1289–1305, 2003.
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Abstract. In-place and merge-based index maintenance are the two
main competing strategies for on-line index construction in dynamic in-
formation retrieval systems based on inverted lists. Motivated by re-
cent results for both strategies, we investigate possible combinations of
in-place and merge-based index maintenance. We present a hybrid ap-
proach in which long posting lists are updated in-place, while short lists
are updated using a merge strategy. Our experimental results show that
this hybrid approach achieves better indexing performance than either
method (in-place, merge-based) alone.

1 Introduction

Traditional information retrieval systems deal with static text collections: Once
indexed, no documents are ever added to or removed from the collection. Efficient
index construction for static collections has been studied in detail over the last
two decades. After contributions by Moffat and Bell [8, 9] and Heinz and Zobel
[13, 5], the indexing problem for static collections seems solved. Following an
inverted-file approach and combining the techniques described in the literature,
it is possible to index text collections at a rate well above 50 GB per hour on a
standard desktop PC, allowing the indexing of text collections in the terabyte
range on a single PC (see section 4 for details).

For on-line index maintenance in dynamic search environments, the situation
is different. Because index updates are interleaved with search queries, it is im-
portant that the index is always kept in a form that allows for efficient query
processing. Traditional batch index construction techniques do not meet this
criterion, as they do not make any guarantees about the contiguity of on-disk
inverted lists during the index construction process. If queries have to be pro-
cessed during index construction, this non-contiguity leads to a large number of
disk seek operations and thus poor query processing performance.

In a truly dynamic environment, documents may be added to and removed
from the collection at any point in time. For the purpose of this paper, we
disregard deletions and focus exclusively on document insertions. It is possible,
however, to integrate support for deletions into the methods described in this
paper (see [1], for example).

Many index maintenance strategies that deal with document insertions in
dynamic search systems have been examined in the past. The two dominant
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families are in-place update and merge-based index maintenance. When new
documents are added to the collection, in-place strategies update the index by
adding new postings at the end of existing on-disk inverted lists, relocating
the lists if necessary. Merge-based strategies update the index by merging the
existing on-disk inverted file with the new postings, resulting in a new inverted
file that replaces the old one.

The main disadvantage of merge-based update is that, whenever an on-disk
inverted file is updated, the entire file has to be read/written, even though most
parts of the index remain unchanged and only a relatively small number of post-
ings are added to the file. For large indices, this leads to a substantial decrease
in index update performance. In-place strategies try to overcome this problem
by leaving a certain amount of free space at the end of every on-disk inverted
list. If, during an index update, there is enough space for the new postings,
they are simply appended to the existing list. If not, the entire list has to be
moved to a new location in order to make enough room for the new postings.
These relocations make it impossible to keep the on-disk lists in any given order
(e.g., lexicographical order), as the order is destroyed every time a list is relo-
cated. This leads to a large number of non-sequential disk accesses during index
updates, the main shortcoming of in-place update strategies.

We propose a hybrid approach to index maintenance, based on the idea that
for long lists it takes more time to copy the whole list than to perform a single disk
seek operation, while for short lists a disk seek is more expensive than copying the
list as part of a longer, sequential read/write operation. Our approach exhibits
an amortized indexing performance superior to that of existing merge-based
strategies, while providing an equivalent or even slightly better level of query
processing performance.

The remainder of this paper is organized as follows: The next section gives an
overview of related work, divided into techniques for off-line and on-line index
construction; the on-line part covers both merge-based and in-place strategies. In
section 3, we present our hybrid approach to index maintenance, explain how in-
place updates are realized, and which merge strategies are used for the merge part
of the hybrid update. We present an experimental evaluation in section 4 and
compare our new approach to existing merge-based maintenance strategies. The
evaluation is done in terms of both indexing and query processing performance.

2 Related Work

This section gives an overview of existing work on index construction techniques
for retrieval systems based on inverted lists. We first cover the case in which a
static collection is indexed, using an off-line method, and then explain how the
off-line construction method can be adapted to deal with dynamic environments.

2.1 Off-Line Index Construction

Inverted files have proved to be the most efficient data structure for high per-
formance indexing of large text collections [14]. For every term that appears in
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Fig. 1. Basic structure of in-memory index and on-disk inverted file. Vocabulary terms
in memory are arranged in a hash table, using linked lists to organize the individual
posting lists. Terms on disk are sorted in lexicographical order, allowing for efficient
index access at query time.

the given collection, the inverted file contains a list of all positions at which the
term occurs (the term’s posting list).

The process of creating this inverted file can be roughly described as follows:
Input documents are read, one at a time, and postings are accumulated in an
in-memory index, using a hash table with move-to-front heuristics [13] to look
up vocabulary terms. Postings for the same term are stored in memory in com-
pressed form, either in an augmentable bitvector [5] or in a linked list [2]. When
the entire collection has been indexed, all terms are sorted in lexicographical
order and the in-memory data are written to disk, forming an inverted file. In
order to decrease disk I/O, the data in the inverted file are stored in compressed
form. A two-level search tree is used to access on-disk posting lists during query
processing later on. The general structure of the in-memory and the on-disk
index can be seen in Figure 1.

If the amount of main memory available is not sufficient to index the whole col-
lection at a single blow, the process is repeated several times, each time creating
an inverted file for a part of the total collection. The size of these subcollections
depends on the available main memory. It is determined on-the-fly during the
indexing process and does not require multiple passes over the collection.

After the whole collection has been indexed, all sub-indices created so far
are brought together through a multi-way merge process, resulting in the final
index. Since the posting lists in the sub-indices are stored in lexicographical
order, this can be done very efficiently by organizing the input indices in a
priority queue and employing standard input buffering techniqes (read-ahead).
For a given term, its final posting list is created by concatenating the sub-lists
from the individual sub-indices. This does not require the decompression of the
postings and thus allows for a very efficient creation of the final index.

2.2 On-Line Index Construction

It is possible to use the same techniques employed for off-line index construction
in a dynamic retrieval system in which update operations are interleaved with
search queries. Whenever a query is being processed and a posting list has to
be fetched from the (incomplete) index, sub-lists are retrieved from the existing
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Fig. 2. Query processing during batched index construction. A term’s posting list is
constructed by concatenating sub-lists from all on-disk indices and the in-memory index
containing the postings for the sub-index currently being created.

on-disk indices and the in-memory index. By concatenating these sub-lists, the
whole posting list is constructed, and the query can be processed (shown in
Figure 2). We refer to this method as the No Merge strategy.

Although, in principle, No Merge does solve the problem of dealing with a
dynamic text collection, it is not a good solution. Because the point at which the
whole collection has been indexed is never reached in a dynamic environment, the
final index is never created and all the on-disk inverted files have to be queried
individually. Since the number of these files can be quite large, this severely
harms query processing performance, as it requires a large number of disk seeks
– at least one per inverted file.

In order to avoid these disk seeks, the on-disk indices should be re-organized in
some way whenever a new sub-index is created. Unfortunately, this requires addi-
tional disk operations and can be quite time-consuming. Büttcher and Clarke [1]
characterize this as a trade-off between indexing performance and query process-
ing performance; maximum indexing performance is obtained by following the
off-line index construction strategy described above, while query performance
is optimized by immediately merging the in-memory postings with the existing
on-disk index, creating a new, optimized on-disk index whenever main memory
is exhausted. Depending on the ratio of document insertions and search queries,
different strategies lead to optimal overall system performance.

In-Place Index Maintenance
In-place index update techniques were examined very early in the history of
dynamic information retrieval systems. In general, two different flavors of in-
place update exist: those that keep each posting list in a contiguous part of
the on-disk index and those that allow posting lists to be split up by index
update operations. Keeping posting lists in a contiguous part of the inverted file
maximizes query performance, but requires frequent relocations of most lists in
the index. If lists have to be kept contiguous, and no free space is reserved at the
end of an existing list, it has to be relocated every time an update is applied to
the index. Preallocation strategies, such as predictive overallocation [10], reduce
the number of times a posting list has to be relocated, but do so at the cost of
increased disk space consumption.

Tomasic, Shoens, and Garćıa-Molina [12, 11] present a very thorough discus-
sion of in-place index maintenance and propose a system that is based on the
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distinction between short and long posting lists, storing short lists in fixed-size
buckets together with other short lists and long lists in (not necessarily contigu-
ous) sections of the inverted file.

The main problem of in-place strategies is the very high number of disk seeks
necessary to update an inverted file. Relocating inverted lists means destroying
the original ordering of the lists on disk. This has two important implications:

1. Accessing the index terms in a pre-defined order (e.g., in lexicographical
order) does not lead to a sequential disk access pattern during index updates
and thus requires a large number of disk seek operations.

2. Since on-disk index terms are unordered, a second index structure is neces-
sary, mapping terms to the positions of their posting lists. For large collec-
tions, this map cannot be kept in memory, but has to be stored on disk.

Because random disk accesses are very slow, compared with sequential access
patterns, in-place strategies might reduce the number of read/write operations
necessary to perform an index update, but this is not really reflected by their
effective indexing maintenance performance.

One possible implementation of the in-place strategy is to keep each posting
list in a separate file inside the file system. Whenever in-memory postings have
to be combined with the on-disk index, the respective file is opened and the
in-memory postings are appended to the existing on-disk list. Fragmentation
management etc. are deferred to the file system. This is the implementation we
are using in our experiments.

Merge-Based Index Maintenance
Merge-based update strategies share the common idea that disk read/write op-
erations are most efficient when they are carried out in a sequential manner,
minimizing disk head movement. The most popular form of merge update is the
Immediate Merge strategy: Whenever main memory is exhausted, the in-memory
postings are merged with the existing on-disk index, processing the on-disk in-
dex in a sequential fashion, resulting in a new on-disk index that immediately
replaces the old one. Since, at any given time, there is only a single active on-disk
index, this strategy minimizes the number of disk head movements necessary to
fetch a posting list from disk and thus maximizes query processing performance.

The Immediate Merge strategy was first described by Cutting and Pedersen
[4]. In their work, they present an index structure based on a B-tree and give
a comparison of leave node caching (a form of in-place update) and index re-
merging. Using the same amount of memory, the merge approach exhibits vastly
superior performance. Lester et al. [7] conducted similar experiments, comparing
Immediate Merge with more recently developed in-place strategies, and obtained
similar results, indicating that merge-based index maintenance is usually more
efficient than in-place update.

The main problem of Immediate Merge is that, whenever main memory is
exhausted, the entire on-disk index has to be re-processed. Hence, after N tokens
have been added to the collection, the total number of postings that have been
transferred from/to disk is:



234 S. Büttcher and C.L.A. Clarke


 N
M �∑

i=1

(2i − 1) · M ∈ Θ

(
N2

M

)
,

where M is the available main memory (the number of postings that can be kept
in memory at a time). This quadratic time complexity renders Immediate Merge
infeasible for text collections much larger than the available main memory.

Recently, Büttcher and Clarke [1] and Lester et al. [6] have proposed merge-
based update strategies that do not share this shortcoming. By allowing a con-
trolled number of on-disk indices to exist in parallel, indexing efficiency is greatly
increased, while query processing performance remains almost unchanged com-
pared to the Immediate Merge strategy. The basic idea is to maintain a set of
sub-indices of exponentially growing size. If M is the amount of main memory
available to the indexing system, then on-disk indices can be of size M , k · M ,
k2 · M , . . ., for some small value of k (usually, k = 2 or k = 3 is chosen). For
any given index size, there can be at most k − 1 indices of that size at the same
time. Whenever the creation of a new on-disk index leads to a situation where
there are k indices of the same size kn · M , they are merged into a new index
of size kn+1 · M . This process is repeated until, for every integer n, there are at
most k − 1 indices of the same magnitude kn · M .

This strategy is referred to as geometric partitioning or Logarithmic Merge. At
any given time, the number of on-disk sub-indices is bounded by

⌈
logk

(⌊
N
M

⌋)⌉
,

where N again is the number of input tokens processed so far. The total number
of postings that have been transferred from/to disk is Θ

(
N · log

(
N
M

))
. Limit-

ing the number of sub-indices to the logarithm of the collection size keeps query
performance at a very high level, but allows the retrieval system’s indexing com-
plexity to decrease dramatically from Θ(N2) to Θ(N · log(N)) disk operations.
However, although this is a great improvement, Logarithmic Merge shares the
same basic problem of all merge-based maintenance strategies: When a new sub-
index is created, posting lists (or parts thereof) have to be transferred from/to
disk even though they have not been changed.

3 A Hybrid Approach to Index Maintenance

In the previous section, we have discussed the advantages and disadvantages of
merge-based and in-place index update schemes. In merge-based index main-
tenance strategies, especially for Immediate Merge, a great amount of time is
spent copying postings from an old index to the new one. In-place strategies
avoid this overhead by leaving unchanged portions of a posting list untouched
during an index update operation, at the cost of many, possibly too many, disk
seek operations.

It seems obvious that there is a certain system-specific number X such that
for posting lists shorter than X postings it is faster to read the list (as part
of a longer, sequential read operation) than to perform a disk seek, while for
lists longer than X a disk seek is faster than reading the list. In other words, a
hybrid index maintenance strategy, in which short lists are maintained using a
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merge-based update method, while long lists are updated in-place, seems promis-
ing. It can be expected that such a method performs better than either pure
merge-based or pure in-place index maintenance.

We first explain how in-place updates are realized in our retrieval system and
then present two different hybrid strategies. The first is a combination of in-place
update and Immediate Merge. The second is a combination of in-place update
and Logarithmic Merge.

3.1 In-Place and the File System

Some of the optimizations for the in-place index update scheme, such as pre-
allocation strategies, have been used in file systems for a long time. Other tech-
niques, such as keeping very short posting lists inside dictionary data structure
instead of allocating separate space in the index file, are more recent, but have
their analoga in file system implementations as well: The Reiser41 file system
stores very small files within the directory tree itself, avoiding the overhead that
is associated with allocating a separate block for every file.

Since implementing an in-place strategy and fine-tuning it so that it de-
livers good indexing performance is a time-consuming task, we chose to real-
ize the in-place portion of our hybrid strategy by using existing file system
services. Whenever we refer to an in-place-updatable posting list in the remain-
der of this paper, this means that the list is stored in an individual file. Up-
dates to the list are realized by appending the new postings to the existing file
data.

We rely on the file system’s ability to avoid relocations and fragmentation
by using advanced pre-allocation strategies and hope that several decades of file
system research have resulted in file system implementations that are no worse at
this than a custom implementation of the in-place index update scheme. Since
in our hybrid approach only long lists are updated in-place, this seems like a
reasonable assumption.

3.2 In-Place + Immediate Merge

The combination of in-place update and Immediate Merge is straightforward.
Whenever a new on-disk index is created by merging the in-memory data with
the existing on-disk index, terms are divided into two categories:

1. Terms whose posting list contains less than X postings (short lists).
2. Terms whose posting list contains at least X postings (long lists).

The merge process is performed as usual. The only modification is that, whenever
a term with a long list is encountered during the merge, its postings are appended
to a file that contains the postings for that term (the file is created if it does not
exist yet) instead of being added to the new index that results from the merge
process. Short lists do not have their own files. They are added to the new index,
following the standard Immediate Merge strategy.
1 http://www.namesys.com/v4/v4.html
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3.3 In-Place + Logarithmic Merge

Integrating in-place update into the Logarithmic Merge strategy is slightly more
complicated than the combination with Immediate Merge. This is for two reasons:

– Most sub-index merge operations do not involve all existing on-disk indices,
but only a subset. Therefore, the total number of postings for a given term
is unknown at merge time.

– Even if we always knew the the total number of postings for a term, it is not
clear what implications the total size of a term’s posting list has for a merge
operation that only involves a small part of that list.

We address these problems by choosing a very conservative strategy. When main
memory is exhausted for the very first time and the first on-disk inverted file is
created, the predefined long list threshold value X is used to divide the posting
lists of all terms into short lists and long lists. Once this decision has been made,
it will never be changed. From the indexing system’s point of view, a posting list
that does not make it into the set of long lists when the first index is created will
always remain a short list, regardless of how many postings it actually contains.

Clearly, this solution is not optimal, as it does not take into account possible
changes in the term distribution that take place after the first on-disk index has
ben created. More adaptive strategies fall into the category “future work”.

3.4 Partial Flush

The main rationale behind our hybrid approach is to avoid the unnecessary disk
transfers that are caused by reading/writing unchanged portions of posting lists
during merge operations. Therefore, it makes sense to defer the merge part of
the hybrid update for as long as possible. This is achieved by the partial flush
strategy: When main memory is exhausted and postings have to be transferred
to disk, the indexing system only writes those postings to disk that belong to
long lists (i.e., postings whose list resides in an individual file and is updated
in-place). If, by doing so, the total memory consumption of the indexing system
is decreased below a certain threshold, the system does not perform the merge
part of the update, but continues its normal operation. Only if the total mem-
ory consumption cannot be decreased below the predefined threshold value, the
merge part is performed and all postings are transferred from memory to disk.

For our experiments, we set the partial flush threshold value to 85% of the
available memory. Depending on the value of the long list threshold X , this made
the system perform 2-3 in-place update sequences per re-merge operation.

4 Experimental Evaluation

In this section, we give an experimental evaluation of our hybrid index main-
tenance strategy. We compare it with the Immediate Merge and Logarithmic
Merge strategies, paying attention to both index maintenance and query pro-
cessing performance. We also compare it with No Merge (the dynamic variant
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Table 1. Comparing indexing and query processing performance of the off-line method,
Immediate Merge, Logarithmic Merge, and the best hybrid strategy (In-Place + Log.
Merge). The indexing time for the No Merge strategy does not include the final merge
operation that is part of the off-line method. Including the final merge, the total in-
dexing time is 5h30m (77.6 GB/h).

No Merge Imm. Merge Log. Merge Hybrid (IP+LM)
Total indexing time 4h01m 40h14m 7h14m 6h08m
Indexing throughput 106.1 GB/h 10.6 GB/h 59.0 GB/h 69.5 GB/h
Average time per query 5.028 sec 2.840 sec 3.011 sec 2.940 sec

of off-line index construction, described in section 2.2) and show that the hybrid
update strategy achieves indexing performance very close to that of the off-line
method.

4.1 Experimental Setup

For our experiments, we employed the GOV2 collection used in the TREC Ter-
abyte track [3]. GOV2 contains 25.2 million documents with a total uncom-
pressed size of about 426 GB. The collection was indexed using 1024 MB of
main memory for the in-memory index. As query set, we used 100 Okapi BM25
queries derived from the topics of the 2004 and 2005 TREC Terabyte ad-hoc
retrieval tasks. After stopword removal, the average query length was 3.0 terms.

For all experiments, the same update/query sequence was used. It contained
1360 search queries, interleaved with update commands (document insertions).
Queries were randomly drawn from the query set described above, with each
query occurring 13-14 times in the entire sequence. No caching is performed by
the search engine itself. Since the average amount of data read from the input
documents between two consecutive search queries is approximately 325 MB,
the entire content of the file system cache is replaced after about 6 queries. This
means that cache effects are negligible, and repeating each query 13-14 times
does not affect the experimental results.

The experiments were conducted on a PC based on an AMD Athlon64 3500+
(2.2 GHz) with a 7200-rpm SATA hard drive. The input files were read from a
RAID-0 built on top of two 7200-rpm SATA drives.

4.2 Results

Our first series of experiments consists of indexing the entire collection using the
No Merge strategy and two pure merge-based strategies (1. Immediate Merge; 2.
Logarithmic Merge for base k = 2). The results (reported in Table 1) are consis-
tent with earlier findings [6, 1] and show that the off-line method really should
not be used in a dynamic environment. Logarithmic merge exhibits indexing per-
formance close to off-line index construction and query processing performance
close to Immediate Merge.

The next series of experiments evaluates the indexing performance of the
two hybrid strategies described in the previous section. The long list threshold
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(a) Dynamic indexing performance (hybrid with immediate merge)

In-Place + Imm. Merge (without partial flush)
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(b) Dynamic indexing performance (hybrid with logarithmic merge)

In-Place + Log. Merge (without partial flush)
In-Place + Log. Merge (with partial flush)

Fig. 3. Dynamic indexing performance of the two hybrid index maintenance strategies
(In-Place + Immediate Merge and In-Place + Logarithmic Merge) with different long
list threshold values X. The rightmost data points (X = ∞) represent pure Immediate
Merge and pure Logarithmic Merge, respectively.

X , used to determine which posting lists are updated in-place and which are
maintained by the merge strategy, is varied in order to study the effects of
different values and to find the optimal configuration. The results presented
in Figure 3 show that hybrid index maintenance achieves a huge improvement
over the pure merge-based methods. For the hybridization of Immediate Merge
(Figure 3a), the time needed to index the whole collection can be reduced by
roughly 50% if X values between 218 and 220 are used to realize the split. With
partial flush enabled, the improvement is even greater; the total indexing time
drops by 70% – from 40 hours to just under 12 hours.

As expected, the improvements achieved by hybridizing Logarithmic Merge
are not as dramatic as in the case of Immediate Merge. Still, our experimental
results (depicted in Figure 3b) show that the combination of in-place update and
Logarithmic Merge reduces the total indexing time by 11% (15% with partial
flush), compared with pure Logarithmic Merge. For X around 218 and partial
flush turned on, the hybrid Logarithmic Merge indexes the whole collection in 367
minutes, only 37 minutes slower than off-line index construction. This represents
an indexing throughput of 69.5 GB/h.

Since all these improvements are worthless unless the hybrid strategies exhibit
query processing performance similar to their pure merge-based counterparts, we
also measured average query time for both hybrid strategies and different thresh-
old values X . The average query times depicted in Figure 4 show that both hybrid
Immediate Merge and hybrid Logarithmic Merge exhibit query processing per-
formance very close to the pure merge strategies. Figure 4a indicates that the
large number of in-place-updatable lists associated with small X values over-
burdens the file system. Fragmentation increases, and as a consequence query
performance drops. For hybrid Immediate Merge, greater X values mean less
fragmentation and thus better query performance. The effect that file fragmen-
tation has on query processing performance is quite substantial. For X = 210,
average query time increases by 25%, from 2.84 seconds to 3.55 seconds. The
lowest query time is achieved when X = ∞ (pure Immediate Merge).

For the hybridized Logarithmic Merge, the situation is different. Threshold
values between 216 and 220 actually increase query performance (compared to
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(a) Query processing performance (hybrid indexing)

In-Place + Log. Merge (with partial flush)
In-Place + Imm. Merge (with partial flush)
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(b) Query processing performance (hybrid indexing)

In-Place + Log. Merge (with partial flush)
In-Place + Imm. Merge (with partial flush)

Fig. 4. Query processing performance of the two hybrid index maintenance strategies
(In-Place + Immediate Merge and In-Place + Logarithmic Merge) with different long
list threshold values X. The rightmost data points (X = ∞) represent pure Immediate
Merge and pure Logarithmic Merge, respectively. Small X values lead to high file
fragmentation and thus poor query performance.

pure Logarithmic Merge) because in this interval the negative effect of file frag-
mentation is smaller than the impact of having to fetch partial posting lists from
different on-disk indices, as it is the case for Logarithmic Merge. This leads to a
query time reduction of up to 4% (X ≈ 217).

The reader might be surprised that the query times reported in Figure 4a
are lower for Logarithmic Merge than for Immediate Merge. The reason for this
is that in the case of Logarithmic Merge, the X value is used to split up short
lists and long lists when the first on-disk index is created, while with Immediate
Merge it is possible for a list initially classified as short to change its status to
long later on. This asymmetry is taken into account in Figure 4b in which the
X values for hybrid Logarithmic Merge are adjusted, pretending the decision
whether a list is long or short is made after 50% of the collection has been
indexed. Figure 4a shows the expected situation, where Logarithmic Merge has
slightly higher query times than Immediate Merge – due to the greater number
of disk seeks.

5 Conclusion and Future Work

We have presented a novel family of index maintenance strategies to be used
in dynamic information retrieval systems. These strategies are combinations of
merge-based and in-place index maintenance methods and offer better indexing
performance than either in-place or merge-based index maintenance alone, while
providing an equivalent level of query processing performance.

In our experiments, using optimal parameter settings, the combination of in-
place update and Logarithmic Merge achieved an indexing throughput of 69.5
GB/h on a typical desktop PC – only 10% less than the 77.6 GB/h of our off-line
index construction method. This demonstrates that on-line index construction,
in which update operations and search queries are interleaved, can be performed
very efficiently and almost as fast as the traditional batched index construction.

One of the shortcomings of our results is that the work being done within
the file system is completely invisible to us. We do not know the preallocation
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strategy used by the file system, we do not know how much internal fragmen-
tation there is in the individual files, and we do not know how often files are
relocated in order to avoid fragmentation. The main focus of our future work in
this area will be to investigate other implementations of hybrid index mainte-
nance that take these issues into account.
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Abstract. PageRank inherently is massively parallelizable and distribu-
table, as a result of web’s strict host-based link locality. We show that
the Gauß-Seidel iterative method can actually be applied in such a par-
allel ranking scenario in order to improve convergence. By introducing
a two-dimensional web model and by adapting the PageRank to this
environment, we present efficient methods to compute the exact rank
vector even for large-scale web graphs in only a few minutes and it-
eration steps, with intrinsic support for incremental web crawling, and
without the need for page sorting/reordering or for sharing global rank
information.

1 Introduction

Search engines are the enabling technology for finding information on the In-
ternet. They provide regularly updated snapshots of the Web and maintain a
searchable index over all retrieved web pages. Its size is currently reaching sev-
eral billions of pages from about 54 million publicly accessible hosts, but these
amounts are rapidly increasing [19]. When searching such huge datasets, one
would usually receive quite a few pages in response to her query, some of them
being much more relevant than others. This gave birth to a lot of ordering (or
ranking) research, the most popular algorithm being Google’s PageRank [20],
which recursively determines the importance of a web page by the importance
of all the pages pointing to it.

Although improvements for a centralized computation of PageRank have been
researched in detail [1, 5, 9, 11, 12, 16, 13, 18], approaches on distributing it over
several computers have caught researchers’ attention only recently. In this pa-
per we introduce a new approach to computing the exact PageRank in a parallel
fashion. We obtain exact results faster than all the other existing algorithms, im-
proving by orders of magnitude over the other algorithms generating exact Page-
Rank scores. We achieve this by modeling the web graph in a two-dimensional
fashion (with the URL’s hostname as the primary criterion), thus separating it
into reasonably disjunct partitions, which are then used for distributed, incre-
mental web crawling [6] and PageRank computation.

The remainder of the paper is organized as follows. After reviewing the
PageRank algorithm, common web graph representation techniques and exist-
ing parallel versions of PageRank in Section 2, we introduce our two-dimensional
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web graph model in Section 3. We then present a refined PageRank algorithm
in Section 4, and show that the convergence improvements of the Gauß-Seidel
method for solving linear systems [1] can also be efficiently applied in a par-
allelized PageRank scenario. Experimental results are discussed in Section 5.
Finally, Section 6 concludes with discussion of further work.

2 Related Work

2.1 PageRank

The main concept behind the PageRank paradigm [20] is the propagation of
importance from one Web page towards others, via its out-going (hyper-)links.
Each page p ∈ P (P is the set of all considered pages) has an associated rank
score r(p), forming the rank vector �r. Let L be the set of links, where (s, t) is
contained iff page s points to page t and L(p) be the set of pages p points to (p’s
outgoing links). The following iteration step is then repeated until all scores r
stabilize to a certain defined degree δ < ε:

∀t ∈ P : r(i)(t) = (1 − α) · τ (t) + α
∑

(s,t)∈L

r(i−1)(s)
|L(s)| (1)

The formula consists of two portions, the jump component (left side of the
summation) and the walk component (right side), weighted by α (usually 0.85).
r(i−1)(s) · |L(s)|−1 is the uniformly distributed fraction of importance a page
s can offer to one of its linked pages t for iteration i. Intuitively, a “random
surfer” follows an outgoing link from the current page (walk) with probability
α and will get bored and select a random page (jump) with probability 1 − α.
The main utility of α is however to guarantee convergence and avoid “rank
sinks” [3].

This “random-walk” is in fact the interpretation of the Markov chain asso-
ciated to the web graph, having �r as the state vector and A (see Equation 2)
the transition probability from one page to another. We can therefore also write
Equation 1 in matrix terms as follows:

�r = (1 − α) · �τ + α A�r (2)

Equation 1 also represents the linear system representation of this matrix
computation using the Jacobi iterative method. This enables the considera-
tion of using other stationary iterative solvers, such as the Gauß-Seidel method,
which converges two times faster than Jacobi but was said not to be efficiently
parallelizable here [1, 5, 18]. Actually, there already are parallel Gauss-Seidel
implementations for certain scenarios such as the one described in [14], using
block-diagonally-bordered matrices; however, they all admit their approach was
designed for a static matrix; after each modification, a specific preprocessing
(sorting) step is required, which can take longer than the real computation. Be-
cause the web is highly dynamic, almost 40% of all links change in less than one
week [6], disregarding this preparation step would veil the real overall processing
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time. Steady reorganization of coordinates in a huge link matrix simply imposes
an unjustified management overhead.

2.2 Web Graph Representation

Computing the PageRank vector for a large web graph using a materialized in-
memory matrix A is definitely not feasible. A common solution is to store the
links in a format like “Destination Page ID, Out-degree, Source Page IDs...”
(which resembles L). Because pages only link to a few others (the link matrix is
sparse), this results in much lower memory requirements of the link structure,
in the magnitude of | L | · n −1 · c bytes (n = average outdegree; c = const.)

Of course, compression techniques [15] or intelligent approaches to disk-based
“swapping” [9, 5, 18] can improve the space requirements even further (e.g. by
relying on a particular data order, or on the presence of caches). But with the
permanent growth of the web, even such techniques will soon hit memory limits
of a single computer, or unacceptably slow down the computation process. See
[18] for a thorough discussion of these optimizations.

In this paper, we thus propose a new strategy for keeping the web graph and
rank information completely in RAM of several networked machines, based on
the separation between global (host) and local information about each page.

2.3 Other Parallel PageRank Algorithms

Existing approaches to PageRank parallelization can be divided into two classes:
Exact Computations and Approximations.

Parallel Computations. In this scenario, the web graph is initially partitioned
into blocks: grouped randomly [21], lexicographically sorted by page [17, 22, 26]
or balanced according to the number of links [8].

Then, standard iterative methods such as Jacobi (Equation 1) or Krylov sub-
space [8] are performed over these pieces in parallel. The partitions periodically
must exchange information: Depending on the strategy this can expose sub-
optimal convergence speed because of the Jacobi method and result in heavy
inter-partition I/O (e.g., in [17], computing the rank for a page t requires access
to all associated source page ranks r(s) across all partitions).

PageRank Approximations. The main idea behind these approaches is that
it might be sufficient to get a rank vector which is comparable, but not equal to
PageRank. Instead of ranking pages, higher-level formations are used, such as
the inter-connection/linkage between hosts, domains, server network addresses
or directories, which is orders of magnitudes faster. The inner structure of these
formations (at page level) can then be computed in an independently paral-
lel manner (“off-line”), as in BlockRank [10], SiteRank [25], the U-Model [4],
ServerRank [24] or HostRank/DirRank [7].

We will try to take the best out of both approaches: the exactness of a straight
PageRank computation but the speed of an approximation, without any central-
ized re-ranking.



244 Chr. Kohlschütter, P.-A. Chirita, and W. Nejdl

3 The Two-Dimensional Web

3.1 Host-Based Link Locality

Bharat et al. [2] have shown that there are two different types of web links
dominating the web structure, “intra-site” links and “inter-site” ones. A “site”
can be a domain (.yahoo.com), a host (geocities.yahoo.com) or a directory
on a web server (http://www.geocities.com/someuser/). In general, we can
define a site as an interlinked collection of pages identified by a common name
(domain, host, directory etc.), and under the control of the same authority (an
authority may of course own several sites).

Due to web sites’ hypertext-navigable nature, it is supposable that a site
contains more internal than external links. In fact, about 93.6% of all non-
dangling links are intra-host and 95.2% intra-domain [10]. This assumed block
structure has been visualized by Kamvar et al. [10] using dotplots of small parts
(domain-level) of the ”LargeWeb” graph’s link matrix [23]. In these plots, the
point (i, j) is black, if there is a link from page pi to pj , clear otherwise.

We performed such a plot under the same setting, but on whole-graph scale.
The outcome is interesting: a clear top-level-domain (TLD) dominant struc-
ture (see Figure 1a). For example, the .com TLD represents almost 40% of
the complete structure and has high connectivity with .net and .org, whereas
the .jp domain shows almost no interlinkage with other TLDs. However, if
we only inspect the .com domain (see Figure 1b, the dotplot depicts a di-
agonally dominant structure. The diagonal represents links from target pages
near by the source page (which are inter-host pages). Both results are primar-
ily caused by the lexicographical order of URLs (with hostnames reversed, e.g.
http://com.yahoo.www/index.html).

But is this costly sorting over all URLs necessary at all? To further analyze
the impact of hostname-induced link locality, we redraw the LargeWeb dotplot
in a normalized (histographical) fashion, where a dot’s greyscale value depicts
the cumulative percentage of links in a specific raster cell. In addition, we do
not sort the pages lexicographically, but only group them per host and per-
mute all hosts randomly to avoid any lexicographical or crawl-order-dependent

(a) LargeWeb, sorted (b) .com subgraph of (a) (c) LargeWeb, normalized

Fig. 1. Linkage dotplots
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relationship between them. The clear diagonal dominance now also becomes
visible on whole-graph scale (Figure 1c).

3.2 From Numbers to Tuples

It should be obvious that the web was already designed to be two-dimensional:
Hostnames are “namespaces” aimed to disambiguate different local contexts (i.e.,
paths like “/dir/index.html”). Previous approaches to web graph partitioning
always resulted in having one unique ID associated to each page, eventually
sorted lexicographically [10, 17, 22] or in crawling order to exploit specific graph
properties [18].

Such a single page ID provides a very compact representation of the web
graph, which can be visualized in a matrix dotplot as shown above. But it also
requires continuous reorganization (sorting) for newly added or removed pages
in the course of incremental crawling. Otherwise, a mixture of hosts along the
URL IDs would render a host no longer characterizable by a closed interval of
IDs, thereby losing the advantage of link locality. One may introduce gaps in the
numbering to reduce the sorting costs, but still, all subsequent pages will have
to be renumbered once the gap is filled. In a distributed scenario, this can cause
extensive network I/O by repeatedly moving pages from one partition to another.

We therefore propose a different page identification scheme, based on the
affiliation of each page to a specific host and independently of pages from other
hosts. More specifically, we propose using a tuple consisting of two independent,
positive integers, a HostID (only dependent on the URL’s hostname) and a
LocalID (only identifying the remaining local components – path and query
string). The addition of new local pages to a specific host, as well as of new
hosts, is very easy, since renumbering is no longer necessary.

As an implementation-specific note, we expect that for current web graphs,
it is sufficient to store the tuples as two uint32 four-byte integers. We then can
address a maximum of 4.29 billion hosts and a maximum of 4.29 billion pages
per host in 8 bytes. For small hosts, we could even reduce the local part to 16
bit, thereby further cutting down memory footprint.

4 Partitioned PageRank

We will now consider the impact of such a partitioning scheme on the PageRank
algorithm. We will first present an analysis that unifies two of the most common
algorithms for solving linear systems, Gauß-Seidel and Jacobi. Then, we will
apply this analysis to propose an improved parallel PageRank algorithm, and
finally we will discuss several optimization issues.

4.1 Unifying Jacobi and Gauss-Seidel

It has been observed that the Gauß-Seidel iteration method compared to the
Jacobi method can speed-up PageRank convergence by a factor of 2, as it uses
scores of the current iteration as soon as they become available [1]:
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∀(s, t) ∈ L : r(i)(t) = (1 − α) τ (t) + α

(∑
s<t

r(i)(s)
|L(s)| +

∑
s>t

r(i−1)(s)
|L(s)|

)
(3)

As opposed to the Jacobi iteration, the Gauß-Seidel variant requires iterating
over the links (s, t) ∈ L in a strictly ascending order. At first glance, this seems
to be a major drawback when we want to apply it to a distributed, partitioned
web graph. To clarify the impact of the restriction of link order, we derive a com-
mon base algorithm for both, Jacobi (equation 1) and Gauß-Seidel (equation 3)
algorithms: We define an intermediate ranking vector r(i−1,i) that combines the
vectors of the previous and the current iteration, depending on the state of a
ranked page p in the set of available pages P (P = P ′∪P ′′; � p : p ∈ P ′∧p ∈ P ′′;
P ′ contains all pages which have already been ranked for iteration i; P ′′ contains
all other pages, whose score has not been touched since iteration i − 1):

r(i−1,i)(p) :=

{
r(i)(p) if p ∈ P ′

r(i−1)(p) if p ∈ P ′′ ; r(i)(t) = (1 − α) τ (t) + α
∑

(s,t)∈L

r(i−1,i)(s)
|L(s)| (4)

Under this setting, for the Gauß-Seidel method, P ′ = { p | p < k } and
P ′′ = { p | p ≥ k }, with k ∈ {1, 2, ..., |P |}, whereas for the Jacobi method, we
have P ′ = ∅ and P ′′ = P . Both iteration methods, Jacobi and Gauß-Seidel, can
then be simplified to this joint formula:

r(�)(t) = (1 − α) τ (t) + α
∑

(s,t)∈L

r(�)(s)
|L(s)| , with r(�)(t) = r(i−1,i)(t) (5)

From Equation 4, we know that before each iteration i, �r(�) = �r(i−1) and after
the iteration �r(�) = �r(i). The state of �r(�) during the iteration then only depends
on the order of links (s, t) ∈ L (the way how P ′ and P ′′ are determined). This
iteration method has worst-case convergence properties of Jacobi and best-case
of Gauß-Seidel, depending on the order of elements, random order vs. strictly
ascending order, while always providing the same per-iteration running time as
the Jacobi iteration.

We further generalize the impact of the rules for P ′ and P ′′: We argue that
if only a small fraction F of all links concerned (|F | � | L |) is not in strictly
ascending order, the overall convergence speed still remains in the magnitude of
standard Gauß-Seidel. In our case, in order to be able to parallelize the Gauß-
Seidel algorithm, we will assign inter-host/inter-partition links (about 6%) to
this small fraction.

4.2 Reformulating PageRank

For such an optimization, let us reformulate our above mentioned unified Page-
Rank equation using our new two-dimensional page numbering scheme. Thus,
page variables “p” will be replaced by page tuples p = (px, py), with px repre-
senting the page’s HostID, host(p), and py its LocalID, local(p). To account for
the separation of inter- and intra-host links, the formula now reads as follows:
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r(�)(t) = (1 − α) τ (t) + α
(
v
(�)
I (t) + v

(�)
E (t)

)
v
(�)
I (t) =

∑
(s,t)∈L

r(�)(s)
|L(s)| ∀ host(s) = host(t)

v
(�)
E (t) =

∑
(s,t)∈L

r(�)(s)
|L(s)| ∀ host(s) �= host(t)

(6)

Since v
(�)
I (t) solely requires access to local (intra-host) rank portions, it can

efficiently be computed from scores stored in RAM. The local problem of ranking
intra-host pages is solvable via a fast, non-parallel Gauß-Seidel iteration process.
There is no need for intra-host vote parallelization – instead, we parallelize on
the host-level, thus necessitating only inter-host communication, which is limited
to the exchange of external votes.

Our approach produces the same ranks as the original PageRank, while being
more scalable than the other parallel PageRank algorithms. This is mainly due
to the parallelization of the Gauß-Seidel algorithm, in which we take advantage
of web’s host-oriented block structure.

4.3 Reaching Optimal Performance

Communication Cost Optimization. While votes between hosts of the same
partition (server) can easily be conveyed in RAM, votes across hosts of different
partitions require network communication. The gross total for exchanging ex-
ternal votes over the network must not be underestimated. With the LargeWeb
graph setup, almost 33 million are exchanged between partitions. For bigger
web graphs, this could rise up to a few billion and can easily lead to network
congestion if too much information is transmitted per vote.

As opposed to other approaches, where a vote consisted of target page ID
(sometimes along with source page ID) and score, we simply reduce this to
transmitting a single value per page (the score), because the link structure does
not change during the iteration cycle. More generally, the link structure of all
the pages that exchange votes between two partitions pages only needs to be
determined whenever the graph changes (in the case of incremental web crawling)
and then to be sent to the specific target partition. Moreover, the source page
does not need to be specified in order to compute the PageRank score, but only
the target page ID (see Equation 6). Additionally, by grouping the list of target
pages by host, we need to transmit each target host ID only once.

Most notably, each partition has to transmit only one single value per target
page, not per link to that page, since all votes from local pages that link to a
specific page can be aggregated to a single value (surprinsingly, this simple but
very effective approach did not appear in any previous work):

v
(�)
E (t) =

∑
β∈Π

∑
(s,t)∈Lβ

r(�)(s)
|L| =

∑
β∈Π

v
(�)
β (t) ∀ host(s) �= host(t) (7)
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Table 1. LargeWeb Inter-Partition links and votes

Type Amount Percent
Total Links 601,183,777 100%
Inter-Partition Links 32,716,628 5.44%
Inter-Partition Votes 3,618,335 0.6%

with Π being the set of partitions containing links towards t, and β each one of
these partitions.

Transferring vβ(t) (the sum of votes from partition Lβ to t) as a single value
reduces the network load dramatically. Using this optimization, we can show a
reduction of vote exchanges by 89% with the DNR-LargeWeb graph. Table 1
depicts the difference between inter-partition links and votes and their quota of
all links.

Computational Load Balancing. In order to keep the convergence behav-
ior of the centralized PageRank in our parallel scenario, inter-partition votes
must be exchanged after every iteration (see [17] for a discussion of conse-
quences of not doing so). To keep the overall computation time still low, all
intra-partition computations and after that all network communication should
terminate isochronously (at the same time). Because intra-partition computation
is directly proportional to the number of pages per partition (see Equation 6),
this either means that all available servers must be equally fast, or the graph has
to be at least partitioned adequately to the performance of the servers. Moreover,
other slow-down factors could also influence the running time, such as different
network throughput rates of cheap NICs and system boards (even with the same
nominal speed).

A good strategy to load-balancing Parallel PageRank in a heterogeneous en-
vironment could be running a small test graph on all new servers, measure com-
putation speeds, and balance the real graph accordingly. In any case, memory
overflows due to bad balancing parameters like in [8] are avoided, and no manual
interaction to find these parameters is necessary.

5 Experiments

We first converted the Stanford DNR-LargeWeb graph [23] into the new tuple
representation, resulting in 62.8M pages and 601M links distributed over 470,000
hosts with averaged 137.5 pages each (maximum was 5084 pages per host); the
inter-host link percentage1 is 6.19% (see Table 2).

For our PageRank experiments, we sorted the available hosts by their page
count in descending order and distributed the pages host-wise in a round-robin
manner over 8 partitions of equal size (1

8 of the graph just fitted into our smallest
server’s RAM).
1 Unfortunately, the last 8 million pages of DNR-LargeWeb could not be converted,

since there was no URL associated with them – thus, our numbers slightly differ
from the ones in [10].
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Table 2. LargeWeb link distribution

Type Amount Percent
Total 601,183,777 100%
Intra-Host 563,992,416 93.81%
Inter-Host 37,191,361 6.19%

Inter-Partition 32,716,628 5.44%
Intra-Partition 4,474,733 0.74%

Fig. 2. Partitioned LargeWeb-Dotplot
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Although the pages-per-host distribution was not strictly exponential, it re-
sulted in an equal page and link distribution (see Figures 2, 3, 4, 5). Remarkably,
the intra-partition ratio (inter-host links inside the same partition) is negligible,
as the inter-partition link rate nearly equals to the inter-host ratio. This means
that hosts can arbitrarily be shifted from one partition to another one (which is
necessary for fast re-balancing with incremental web crawling).

5.1 Implementation

We have implemented Partitioned Parallel PageRank in Java using a P2P-like
network with a central coordinator instance. This coordinator is only respon-
sible for arranging the iteration process at partition-level and does not know
anything about the rank scores or the link structure (it is much simpler than
the coordinator in [26]). Before the computation, all nodes announce themselves
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to the coordinator, communicating the hosts they cover. The iteration process
is started as soon as all nodes are ready. The coordinator then broadcasts the
global host structure to all known nodes and instructs them to iterate. Whenever
a node’s subgraph changes, it sends lists of external outgoing link targets to the
corresponding nodes.

For every iteration step, a node will compute its votes using our reformulated
PageRank (Equation 6); the partition itself is again divided into subpartitions
processed in parallel. The nodes then aggregate all outgoing inter-partition votes
by target page and send them directly to the other nodes responsible for these
target pages, in the order specified beforehand. Finally, each node reports its
local rank status (using the sum and number of its PageRank scores) to the
coordinator, in order to compute the global residual δ. As soon as all nodes have
succeeded, the coordinator decides whether to continue iterating, by broadcast-
ing another “iterate” command unless the residual reached the threshold ε.

The addition of new pages during incremental crawling may happen at any
time. If the addition covers new hosts, the coordinator selects a node according
to the current balancing. From then on, this node is responsible for all pages of
that host. The assignment is broadcasted to all nodes in case that there were
dangling links to that (previously uncovered) host.

5.2 Results

We conducted most of the experiments on four Linux machines, an AMD Dual
Opteron 850 2.4 GHz, 10GB RAM (“A”), an Intel Dual Xeon 2.8 GHz, 6GB
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tion times using 8 partitions on 4 machines; ε = 0.001



Efficient Parallel Computation of PageRank 251

RAM (“B”) and two Intel Xeon 3.0 GHz, 1.5GB RAM (“C” and “D”). They
were connected via 100MBit Ethernet LAN and not under load before our
experiments. We divided the LargeWeb graph into eight partitions and dis-
tributed them among the four servers according to available memory (Machine
A holds four partitions, B two, C and D one) and performed unbiased PageRank
computations.

We examined the convergence behavior, rank distribution and elapsed time
both globally and per-partition. All per-partition results matched almost per-
fectly with the global counterpart and therefore confirmed our assumptions (see
Figure 6). The PageRank computation converged below ε = 10−3 after 17 itera-
tions, and the entire computation took less than 9 minutes, with only 66 seconds
accounted for rank computation, the rest being network I/O. With a Gigabit-
Ethernet connection, network communication costs would probably go down to
the same magnitude as computation costs.

Compared to the running times of a centralized PageRank computation with
disk I/O, using our networked servers, Parallel PageRank is about 10 times
faster per iteration. The recomputation itself (ignoring network transmission)
was about 75 times faster. Thus, for further experiments, it might be interesting
how our algorithm performs on a massive parallel machine.

6 Conclusions and Further Work

In this paper, we have presented an efficient method to perform the PageRank
calculation in parallel over arbitrary large web graphs. We accomplished this by
introducing a novel two-dimensional view of the web, having the host ID as the
only discriminator, as well as by adapting the Gauß-Seidel method for solving
linear systems in this scenario. Additionally, we have presented optimizations
for the distributed computation, such as vote aggregation and utilizing the par-
titioning scheme for fast re-balancing in the course of incremental crawling.

Our next goal is to combine our approach with other PageRank specific
enhancements that reduce convergence time, under extensive memory demand-
ing scenarios.
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Abstract. Efficient and effective routing of content-based queries is an emerg-
ing problem in peer-to-peer networks, and can be seen as an extension of the
traditional “resource selection” problem. Although some approaches have been
proposed, finding the best architecture (defined by the network topology, the un-
derlying selection method, and its integration into peer-to-peer networks) is still
an open problem. This paper investigates different building blocks of such ar-
chitectures, among them the decision-theoretic framework, CORI, hierarchical
networks, distributed hash tables and HyperCubes. The evaluation on a large test-
bed shows that the decision-theoretic framework can be applied effectively and
cost-efficiently onto peer-to-peer networks.

1 Introduction

Peer-to-peer (P2P) networks have emerged recently as an alternative to centralised
architectures. The major problem in such networks is query routing, i.e. deciding to
which other peers the query has to be sent for high efficiency and effectiveness. In
contrast to the traditional resource selection problem, this process is inherently decen-
tralised in peer-to-peer networks and based on local knowledge.

The decision-theoretic framework (DTF) [10, 6] computes an optimum selection
based on cost estimations (including retrieval quality, time or money). Most other (cen-
tralised) resource selection methods follow a heuristic approach and compute a ranking
of the digital libraries (DLs), e.g. CORI [4] or the language modelling approach [15].
The latter has been extended towards hierarchical peer-to-peer networks [8, 9], where
a hub also stores language models (“hub descriptions”) of the hubs directly connected
to it. A fixed number of hubs is selected, while unsupervised learning is employed for
learning a threshold for the number of selected DL peers. A modified version of the
semi-supervised learning algorithm [14] is used for result merging.

This paper presents an extensive discussion of resource selection architectures for
peer-to-peer networks. The architectures are classified based on the underlying resource
selection approach (in our case, DTF and CORI as a baseline), design choices like the
locality of knowledge (e.g. IDF values) and selections (centralised vs. decentralised),
as well as the network topology (hierarchical networks with DLs and hubs, distributed
hash tables and HyperCubes).

This paper is structured as follows: Section 2 briefly describes DTF and CORI. Then,
different topologies are introduced, and the resource selection frameworks are extended
towards P2P networks in section 4. The proposed approaches for resource selection in
P2P networks have been evaluated in section 5.

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 253–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Resource Selection Approaches

This section only sketches the decision-theoretic framework (DTF) and CORI.

2.1 The Decision-Theoretic Framework (DTF)

In contrast to other resource selection approaches (e.g. CORI, see section 2.2) which
only consider the similarity of the DL to a query, the decision-theoretic framework
(DTF) [10, 6] estimates retrieval “costs” from different sources (e.g. monetary costs,
computation and communication time, retrieval quality). As the actual costs are un-
known in advance, expected costs (for digital library DLi when si documents are re-
trieved for query q) are regarded instead:

ECi(si,q) := E[ri(si,q)] ·C+ +[si −E[ri(si,q)]] ·C− +Ct ·ECt(si)+Cm ·ECm(si) , (1)

where E[ri(si,q)] is the expected number of relevant documents among the si top-
ranked documents and si − E[ri(si,q)] is the expected number of non-relevant docu-
ments, ECt(si) denotes the expected “time” costs, and ECm(si) the expected monetary
costs. In addition, C+, C−, Ct and Cm are user-specific parameters which allow a user
to specify her own selection policy, e.g. cheap and fast results. Non-relevant documents
have higher costs (wasted time) than relevant ones, thus C+ < C−.

A user also specifies the total number n of documents to be retrieved out of m li-
braries, and the task is to compute an optimum solution (employing the algorithm pre-
sented in [6]):

s := argmin
∑m

i=1 si=n

m

∑
i=1

ECi(si,q). (2)

Relevance costs are computed in two steps:

1. First, the expected number E(rel|q,DL) of relevant documents in DL is computed
based on statistical aggregations (called “resource description”) of the DL.

2. Then, a linearly decreasing approximation of the recall-precision function is used
for computing the expected number E[ri(si,q)] of relevant retrieved documents.

For the first step, the resource descriptions store the DL size |DL| and the average
(expectation) μt = E[w(d, t)|d ∈ DL] of the indexing weights w(d,t) (for document d
and term t). For a query with term weights a(q, t) (summing up to one) and a linear
retrieval model, the expected number E(rel|q,DL) of relevant documents in DL w. r. t.
query q can be estimated as:

E(rel|q,DL) = ∑
d∈DL

Pr(rel|q,d) ≈ ∑
d∈DL

∑
t∈q

a(q,t) ·w(d,t) = |DL| ·∑
t∈q

a(q, t) ·μt , (3)

where Pr(rel|q,d) denotes the probability that document d is relevant.
In a second step, E(rel|q,DL) is mapped onto the expected number E[ri(si,q)] of

relevant retrieved documents employing a linearly decreasing recall-precision function:

E[ri(si,q)]
s

= precision(recall) := 1− recall = 1− E[ri(si,q)]
E(rel|q,DL)

. (4)

For DTF, the libraries have to return the probabilities of relevance of the result doc-
uments, thus no further normalisation step is required.
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2.2 CORI

CORI [4, 5] only considers retrieval quality, by ranking the DLs w. r. t. their similarity
to the query. This scheme can efficiently be implemented using a traditional IR system,
where documents are replaced by “meta-documents” which are created by concatenat-
ing all documents in the DL.

CORI uses a df · icf weighting scheme instead of tf · idf , based on the number m of
involved libraries, the document frequency df , the collection frequency cf (the number
of libraries containing the term) and the collection length cl (the number of terms in the
DL). Thus, the belief in a DL due to observing query term t (the “indexing weight” of
term t in the “meta-document” DL) is determined by:

w(DL, t) := 0.4 + 0.6 · df

df + 50 + 150 · cl
avgcl

·
log(m+0.5

cf )

log(m+ 1)
. (5)

Similar to DTF, a linear retrieval function is used based on w(DL, t). CORI then selects
a fixed number of top-ranked libraries, and retrieves an equal number of documents
from each selected DL.

CORI also covers the data fusion problem. The library scores C and the document
scores D := Pr(q|d) are normalised to [0,1], and then combined for computing the final
normalised document score D′′:

C′ :=
C −Cmin

Cmax −Cmin
, D′ :=

D−Dmin

Dmax −Dmin
, D′′ :=

1.0 ·D′ + 0.4 ·C′ ·D′

1.4
, (6)

where Cmin and Cmax are the minimum and maximum DL scores for that query, and
Dmin and Dmax the minimum and maximum document score in the DL.

3 Network Topologies

This section introduces different topologies of the peer-to-peer network, which will be
evaluated in section 5. In any topology, a direct neighbour of a peer is another peer if and
only if there is a (direct) connection link. All other peers are called remote peers. The
distance between two peers is the minimum number of hops (i.e., messages) required
to go from one peer to the other.

3.1 Hierarchical Networks

Most of the work reported in this paper—including the two other topologies—is based
on a partition of peers into DL peers (sometimes also called “leaves”) and hubs. DLs
are typically end-user machines which answer but do not forward queries, while hubs
are responsible for routing and, thus, high-end computers with high bandwidth which
are nearly permanently online. Each DL peer is connected to at least one hub but not
to other DL peers, which reduces the number of messages during query routing (i.e.,
resource selection). This results in a simple yet reasonable and efficient topology, called
hierarchical peer-to-peer networks (see figure 1(a)).
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Fig. 1. Different peer-to-peer network topologies

3.2 Distributed Hash Tables

Distributed hash tables (DHTs) are similar to traditional hash tables, which provide
fast insert and lookup functionality for keys based on hash functions. The DHT sys-
tem Chord [16] (see figure 1(b)) maps peers and keys onto numbers using the same
hash function. Peers are ordered in a ring according to the hash values, and each peer
is responsible for storing the values for all keys mapped onto its hash value (and all
values lower than the following peer). Each peer maintains a list of peers in exponen-
tially increasing distance, which allows for efficient routing in O(logm) hops for m
peers.

DHT have already been used for storing the complete index (of all documents) [7].
Here, the keys are terms, and the values are inverted lists (pairs comprised of document
identifiers and the indexing weight). Thus, all documents form a single (but distributed)
collection.

Similarly, DHTs can be employed for storing resource descriptions, Keys are terms,
and the values are inverted lists (pairs of DL identifiers and e.g. average indexing
weights). Once the inverted lists are fetched, a centralised selection can take place (see
section 4.1). This contrasts other DHT approaches, where either the whole document
index is kept in the DHT [7], or DHTs are used for resource selection in unstructured
networks (Minerva [1]).
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3.3 HyperCubes

Hierarchical networks can contain cycles, which decrease efficiency as peers are con-
tacted multiple times. In addition, estimating the quality of a hub connection is more
difficult. HyperCube graphs (HyperCubes for short) [13] can be used to overcome this
problem. A (binary) HyperCube is a regular d-dimensional structure, where each peer
is connected to exactly d other peers (one per dimension, see figure 1(c)). Messages
arriving via a connection on dimension l ∈ {0,1, . . . ,d − 1} can only be forwarded to
peers on strictly higher dimensions l′ > l. A consequence is that the dimensions define
(starting from an arbitrary peer) a spanning tree on the network, which ensures that
there is exactly one path from one peer to another peer. It also corresponds to a clearly
defined partition of the whole network. Positions of missing peers are filled with “vir-
tual peers” (see [13] for details), which are then replaced by “shortcuts” to all original
peers which can be contacted through virtual peers only. As a consequence, peers can
be connected to more or less than d neighbours.

4 Query Routing in Peer-to-Peer Networks

Query routing (i.e., resource selection) is a crucial task in peer-to-peer networks, as
contacting all connected peers does not scale [11]. This section introduces several com-
peting approaches for resource selection in peer-to-peer networks, which all can be used
with DTF or CORI.

4.1 Centralised Selection

A simple selection strategy is to use the P2P network for a “cost estimation collec-
tion phase”, where the query is flooded in a Gnutella-like way through the hub net-
work. Each hub computes cost estimations of its neighbour DLs, and sends them to the
hub starting the routing process. Then, DTF or CORI are employed for a single cen-
tral selection, and the selected DL peers are notified directly. As the hub starting the
routing process can only compute a selection when all cost estimations have arrived,
synchronous messages are employed. This centralised selection strategy yields a global
optimum, but is rather inefficient (see [11] for Gnutella, and section 5.2 for hierarchical
networks).

DHTs can significantly reduce the cost estimation collection phase in centralised
selection. Instead of flooding the hub network, the resource descriptions of all DLs
are extracted from the DHT with one lookup for each query term. In contrast to ear-
lier approaches, we combine DHTs with hierarchical networks, thus the DHT ring is
formed by the (fast and high-bandwidth) hubs only. The DHT contains resource de-
scriptions in the form of inverted lists (DL identifiers plus average indexing weight),
either for DLs (like in Minerva [1]) or for hubs. In the latter case, the inverted lists
are much shorter; however, the quality of hub descriptions is lower than for DL de-
scriptions, and a second selection step would be required for selecting DLs without
the DHT. Costs are estimated based on the returned inverted lists. Centralised selec-
tion in hierarchical networks involves each hub. In contrast, O(l · logm) hops for l
terms and m peers are required for the DHT, which is in most cases much more
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efficient. Effectiveness is not affected, as the same cost estimations are computed in
both strategies.

An alternative solution is to leverage the hierarchical network topology in a two-step
selection algorithm, where the DHT stores only descriptions of all hubs, and DLs are
still connected to hubs (topology “dht-hubs”). A queried peer first computes a selection
of hubs, and then calls the selected hubs which themselves compute a local selection,
considering only the directly connected DL peers. The advantage is that the inverted
lists are much smaller now and consume less bandwidth (remember that the full inverted
lists have to be transferred to the queried hub).

A last approach is to exploit the spanning tree property of HyperCubes: As no cycles
exist, each hub is contacted exactly once (not multiple times as for “cmu”), thus cen-
tralised selection with a HyperCube is more efficient (24 hops vs. 72 hops for the cost
estimation collection phase in our case).

4.2 Decentralised Selection

In contrast to the approaches mentioned in section 4.1, decentralised selection computes
a local optimum selection on every hub receiving the query, by considering locally
available descriptions of all DL and hubs in a predefined distance. Coordinating this
decentralised routing approach is easier, as no responses have to be collected before a
selection can be started; thus, asynchronous messages are sufficient. This decentralised
selection method produces an overhead as a cost estimation and selection has to be
performed on every hub. On the other hand, this method cuts down the number of hubs
that are traversed, and thus saves time and bandwidth. Section 4.3 describes how hub
descriptions can be obtained.

Decentralised selection also is the major application area for HyperCubes, as prob-
lems with cycles are avoided, in particular for “hc-1”, where there is exactly one path
from any hub to any DL. The selection should be improved by disjoint hub descriptions,
where each DL is included in at most one hub description.

4.3 Computing Hub Descriptions

A hub description is a representative of the neighbourhood of a hub. Its statistical char-
acteristics are defined by combining the resource descriptions of a set of DL peers.1

Given the average term weights μt,i for each involved DLi, the average term weights
μt,H in the description of hub H can efficiently be computed as:

μt,H =
1

∑ j |DLj| ·∑i
∑

d∈DLi

w(d, t) =
1

∑ j |DLj| ·∑i
|DLi| ·μt,i. (7)

The horizon h defines the maximum distance between the hub H and the DLs to be
considered for its hub description (see figure 1(a)). In the simplest case, only neighbour
DLs are considered (horizon h = 1). With a horizon h = 2, also DLs directly connected
to a neighbour hub of H have to be considered, and so on.

1 In peer-to-peer networks, co-operative peers can be assumed, so query-based sampling is not
considered here; each DL returns its description upon request.
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4.4 Locality of Knowledge

Often retrieval and resource selection methods rely on some “global” statistics, e.g. in-
verse document frequencies (IDF). Early experiments have shown that DL-local IDFs
(i.e., each DL computes its own values) are not accurate enough. Two alternatives are
investigated, system-wide and hub-global IDF values. System-wide DL values are de-
rived by combining all documents in all DL peers, and thus yield accurate estimates.
In a large peer-to-peer network, they are too expensive to acquire, and hub-global IDFs
(computed by combining all documents from all peers in a hub’s neighbourhood) can
be used as an approximation. A similar scheme is applied to CORI with its collection
frequencies (CF values).

5 Evaluation

The methods proposed in the previous sections have been evaluated on a large test-bed.
This sections describes the setup of the experiments and results in terms of efficiency
and effectiveness.

5.1 Experimental Setup

The WT10g collection is used as a basis for our experiments. The topology “cmu”
(taken from [8]) employes a hierarchical P2P network, where the WT10g collection
is divided into 11,485 collections according to the document URLs; 2,500 collections
(containing in total 1,421,088 documents) were chosen randomly, each of them forming
one DL peer. Hubs are formed by similarity of the DL peers, each hub is connected to
13-1,013 DLs (379.8 on average). Neighbour hubs are selected randomly so that each
hub has 1-7 hub neighbours (3.8 on average). The “dht-dl” and “dht-hubs” topology
organise the hubs as a DHT ring (dismissing the “cmu” hub subnetwork). All DLs are
kept in the hash table in “dht-dl”, while “dht-hubs” stores hub descriptions only (which
requires an additional local DL selection step).

The constructed HyperCube topologies “hc” and “hc-1” comprise of 25 hubs as in
“cmu” (with dimension d = 5); each hub is connected to 4–14 other hubs (5.8 on aver-
age). For “hc”, DLs are connected to these 25 hubs as in “cmu”. As an alternative, each
DL is connected to exactly one hub, randomly chosen out of the “cmu” connections2

in the “hc-1” topology, so that each hub is connected to 3–254 DLs (100 on average).
Thus, “hc-1” completely avoids cycles and yields disjoint hub neighbourhoods, in con-
trast to “cmu” and “hc”.

The WT10g collection only provides 100 topics with relevance judgements. For
large P2P networks, more queries are required. Thus, we use 1,000 random queries
(from the test set) generated from title fields of documents. Each query contains up to
6 terms, the average is 2.9 terms per query. Unless otherwise noted, n = 50 documents
are requested. As these queries were created artificially, no relevance judgements are

2 An alternative solution would be to choose the hub which is most similar to the DL, using a
suitable similarity measure.
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available. Pseudo-relevance judgements3 were obtained by combining all 2,500 col-
lections into one centralised collection (using system-wide IDF values), and marking
the 50 top-ranked documents for each query as “relevant”. Thus, the experiments mea-
sure how well distributed retrieval approximates the centralised collection. As the same
linear retrieval function with the same indexing weights is used for the centralised col-
lection, the DTF and the CORI experiments, these pseudo-relevance judgements form
a fair baseline.

BM25[12] indexing weights are used for terms t in documents d:

w(d, t) :=
tf (t,d)

tf (t,d)+ 0.5 + 1.5 · dl(d)
avgdl

·
log |DL|

df (t)

log |DL| , (8)

with term frequency tf (t,d), document length dl(d) and its average avgdl, the library
size |DL| and document frequency df (t).

Peer-to-peer networks form graphs, thus it is possible for a query to arrive at the
same peer multiple times for the topologies “cmu” (DLs and hubs) and “hc” (only DLs).
When this happens to a hub, it can only select DL peers which have not been selected
before. A DL has to return additional documents when it is contacted multiple times.
In earlier experiments, this approach has proven to be superior to other approaches like
ignoring queries which reach a node for the second time, or preventing infinite loops by
disallowing selections of a single hub.

All CORI variants select 5 peers (DLs and/or hubs) in each selection step, and re-
trieve an equal amount of documents for each selected peer. As the CORI-inherent result
merging (section 2.2) performs poorly, documents are re-ranked w. r. t. probabilities of
relevance, estimated in the same way as for DTF.

Only relevancy costs are investigated, as a good model for measuring time in peer-
to-peer networks is missing yet; we defer this to future work.

5.2 Results

Due to space restrictions, we only show tables for hub-global IDF/CF values which can
efficiently be computed in peer-to-peer networks, and report results on system-wide
values in the text where necessary.

First we set h = 1, and compare centralised with decentralised resource selection
(Table 1). DTF-d, the decentralised DTF variant, has lower effectiveness than
DTF-c, the centralised counterpart with its global knowledge (5-10% worse). Surpris-
ingly, CORI-d performs slightly better than CORI-c. The drawback of the centralised
selection is its inefficiency; DTF-d needs about 40% less hops4, CORI-d 22% less hops
compared to their centralised counterparts, mainly due to the cost estimation collection
phase. Table 1 also shows that CORI is outperformed by DTF in both variants: Set-
based precision is 30% (26%), MAP and recall are 40% (30%) lower for centralised
(decentralised, respectively) selection. CORI-c is more efficient compared to DTF-c,
while there is virtually no difference for decentralised DTF and CORI.

3 Queries and pseudo-relevance judgements are available at http://www.is.informatik.
uni-duisburg.de/projects/pepper/p2p-wt10g-testbed.zip .

4 Hops are the only efficiency measure investigated in this work.
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Table 1. Centralised vs. decentralised selection, DTF vs. CORI, topology “cmu”, h = 1

DTF, cent. DTF, decent. CORI, cent. CORI, decent.

P@5 0.8032 / 0.0% 0.7058 / -12.1% 0.6760 / -15.8% 0.6902 / -14.1%
P@10 0.6630 / 0.0% 0.5721 / -13.7% 0.6144 / -7.3% 0.5663 / -14.6%
P@15 0.5562 / 0.0% 0.4896 / -12.0% 0.4672 / -16.0% 0.4705 / -15.4%
P@20 0.4793 / 0.0% 0.4295 / -10.4% 0.3693 / -23.0% 0.3859 / -19.5%
P@30 0.3792 / 0.0% 0.3456 / -8.9% 0.2520 / -33.5% 0.2705 / -28.7%
MAP 0.2586 / 0.0% 0.2391 / -7.5% 0.1558 / -39.8% 0.1660 / -35.8%

Precision 0.2706 / 0.0% 0.2515 / -7.1% 0.1839 / -32.0% 0.1859 / -31.3%
Recall 0.2582 / 0.0% 0.2417 / -6.4% 0.1562 / -39.5% 0.1665 / -35.5%

#Hops 103.3 / 0.0% 59.9 / -42.0% 77.8 / -24.7% 60.2 / -41.7%

DTF is used in the remainder for resource selection on a hub.
Two different research questions for decentralised selection—the influence of differ-

ent hub description horizons, and the effect of different topologies, namely “cmu”, “hc”
and “hc-1”—are covered by table 2. Effectiveness and efficiency dramatically decreases
for “cmu” when the horizon h increases. This counter-intuitive result is caused by the
large hub neighbourhoods which contain half of the DLs in the network on average;
thus it is more difficult to distinguish between good and bad hubs. For the two Hy-
perCube topologies “hc” and “hc-1”, however, effectiveness increases while efficiency
decreases for larger hub horizons; as each hub (and for “hc-1”, each DL) is contained in
at most one neighbourhood, hubs can better identify good neighbours. The HyperCube
topology “hc” outperforms “hc-1” for all investigated horizons, probably because the
accuracy of the IDF values is higher (as more DLs are considered). For system-wide
(high-accuracy) IDFs and h = 3, also smaller neighbourhoods are useful, thus results
for “hc-1” are better than “hc”. In addition, “hc” also performs better than “cmu” for
h ≥ 2; there is virtually no difference for h = 1.

Table 3 finally compares centralised resource selection in hierarchical networks
(“cmu”) and in distributed hash tables (“dht-dl” and “dht-hubs”). Effectiveness for
“cmu” and “dht-dl” are the same, as the same DL descriptions and therefore the same
cost estimations, are used. The different way of acquiring them in this “cost estimation
collection” phase determines overall effectiveness: 72 hops are required for “cmu” (as
each hub is reached multiple times due to cycles), compared with 6.7 hops (on average)
for the DHT. When only hub descriptions are stored in the DHT (i.e., “dht-hubs”) and
5 hubs/DLs are selected in each selection step, precision in the first 10 ranks decreases
while set-based precision and recall as well as precision in lower ranks are improved.
The drawback of this method, however, is the lower efficiency: The cost estimation col-
lection phase requires the same number of hops as for “dtf-all”, but about 15 hops to
selected hubs have to be added, and the number of overall selected DLs is 25% higher.
This result for “dtf-hubs” cannot be replicated for system-wide IDFs: Here, effective-
ness is 10-13% worse w. r. t. all measures.

Indexing and retrieval for the 1,000 queries requires transmitting about 120 million
inverted list entry hops 5 for “cmu”, about 75 million entry hops for “dht-dl” (38% less),
as the latter topology lacks any redundancy (which is an disadvantage if a hub and all

5 When an entry is transmitted over multiple hops, each hop is counted individually.
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Table 2. DTF, decentralised selection, Hierarchical networks vs. HyperCubes

(a) Topologies “cmu” and “hc”

cmu, h = 1 cmu, h = 2 cmu, h = 3 hc, h = 1 hc, h = 2 hc, h = 3

P@5 0.7058 / 0.0% 0.6260 / -11.3% 0.5874 / -16.8% 0.6990 / -1.0% 0.7440 / 5.4% 0.7528 / 6.7%
P@10 0.5721 / 0.0% 0.4891 / -14.5% 0.4475 / -21.8% 0.5772 / 0.9% 0.6306 / 10.2% 0.6411 / 12.1%
P@15 0.4896 / 0.0% 0.4021 / -17.9% 0.3601 / -26.5% 0.4937 / 0.8% 0.5501 / 12.4% 0.5622 / 14.8%
P@20 0.4295 / 0.0% 0.3389 / -21.1% 0.2989 / -30.4% 0.4357 / 1.4% 0.4944 / 15.1% 0.5079 / 18.3%
P@30 0.3456 / 0.0% 0.2492 / -27.9% 0.2167 / -37.3% 0.3539 / 2.4% 0.4156 / 20.3% 0.4309 / 24.7%
MAP 0.2391 / 0.0% 0.1601 / -33.0% 0.1411 / -41.0% 0.2500 / 4.6% 0.3310 / 38.4% 0.3554 / 48.6%

Precision 0.2515 / 0.0% 0.1679 / -33.2% 0.1468 / -41.6% 0.2584 / 2.7% 0.3104 / 23.5% 0.3254 / 29.4%
Recall 0.2417 / 0.0% 0.1565 / -35.2% 0.1345 / -44.4% 0.2479 / 2.6% 0.3077 / 27.3% 0.3256 / 34.7%

#Hops 59.9 / 0.0% 89.9 / 50.2% 95.1 / 58.7% 49.2 / -17.9% 56.8 / -5.2% 57.1 / -4.6%

(b) Topologies “hc” and “hc-1”

hc, h = 1 hc, h = 2 hc, h = 3 hc-1, h = 1 hc-1, h = 2 hc-1, h = 3

P@5 0.6990 / 0.0% 0.7440 / 6.4% 0.7528 / 7.7% 0.5916 / -15.4% 0.7120 / 1.9% 0.7574 / 8.4%
P@10 0.5772 / 0.0% 0.6306 / 9.3% 0.6411 / 11.1% 0.4488 / -22.2% 0.5743 / -0.5% 0.6157 / 6.7%
P@15 0.4937 / 0.0% 0.5501 / 11.4% 0.5622 / 13.9% 0.3585 / -27.4% 0.4831 / -2.1% 0.5277 / 6.9%
P@20 0.4357 / 0.0% 0.4944 / 13.5% 0.5079 / 16.6% 0.2965 / -31.9% 0.4150 / -4.8% 0.4633 / 6.3%
P@30 0.3539 / 0.0% 0.4156 / 17.4% 0.4309 / 21.8% 0.2182 / -38.3% 0.3239 / -8.5% 0.3750 / 6.0%
MAP 0.2500 / 0.0% 0.3310 / 32.4% 0.3554 / 42.2% 0.1334 / -46.6% 0.2099 / -16.0% 0.2543 / 1.7%

Precision 0.2584 / 0.0% 0.3104 / 20.2% 0.3254 / 26.0% 0.1579 / -38.9% 0.2310 / -10.6% 0.2673 / 3.5%
Recall 0.2479 / 0.0% 0.3077 / 24.1% 0.3256 / 31.3% 0.1409 / -43.2% 0.2197 / -11.4% 0.2614 / 5.4%

#Hops 49.2 / 0.0% 56.8 / 15.4% 57.1 / 16.2% 42.9 / -12.8% 50.6 / 2.9% 51.3 / 4.4%

Table 3. Topologies “cmu”, “dht-dl” and “dht-hubs”, h = 1

cmu, cent. cmu, decent. dht-dl dht-hubs

P@5 0.8032 / 0.0% 0.7058 / -12.1% 0.8032 / 0.0% 0.7546 / -6.1%
P@10 0.6630 / 0.0% 0.5721 / -13.7% 0.6630 / 0.0% 0.6468 / -2.4%
P@15 0.5562 / 0.0% 0.4896 / -12.0% 0.5562 / 0.0% 0.5723 / 2.9%
P@20 0.4793 / 0.0% 0.4295 / -10.4% 0.4793 / 0.0% 0.5186 / 8.2%
P@30 0.3792 / 0.0% 0.3456 / -8.9% 0.3792 / 0.0% 0.4405 / 16.2%
MAP 0.2586 / 0.0% 0.2391 / -7.5% 0.2586 / 0.0% 0.3670 / 41.9%

Precision 0.2706 / 0.0% 0.2515 / -7.1% 0.2706 / 0.0% 0.3326 / 22.9%
Recall 0.2582 / 0.0% 0.2417 / -6.4% 0.2582 / 0.0% 0.3328 / 28.9%

#Hops 103.3 / 0.0% 59.9 / -42.0% 38.1 / -63.1% 60.6 / -41.4%

inverted lists on it disappears) while each DL is connected to multiple hubs in “cmu”.
In “dht-hubs”, 250 million hops are required. In the retrieval phase, “dht-hubs” is the
best performing approach with about 127,000 entry hops, compared to 4,9 million entry
hops for “dht-dl” and 8,6 million entry hops for “cmu”.

For n = 100 documents to be retrieved using “cmu”, set-based precision decreases
(more irrelevant documents are retrieved, and at most 50 of the retrieved 100 docu-
ments can be relevant at all), while recall (25-30%) and precision in the top ranks
(up to 30%) dramatically improves. For centralised selection, it is close to the op-
timum; for decentralised selection, it performs about as well as centralised selection
for n = 50.
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Table 4. Evaluation summary and suggestions

Policy Best method

High precision in top ranks (5-10) “cmu”, centralised DTF; “dht-dl”
High precision in lower ranks (15-30) “dht-hubs”
High MAP, set-based precision/recall, higher efficiency “hc”, decentralised DTF, h = 3
High MAP, set-based precision/recall, lower efficiency “dht-hubs”
High efficiency (lowest number of hops) “dht-dl”

With full knowledge (i.e., actual number of relevant documents and system-wide
knowledge), centralised DTF performs close to the optimum, with precision and
recall >99% (even if only the relevant documents in the DL are known). For decen-
tralised selection, precision drops to 72.8% and recall to 62.6%; the top ranking, how-
ever, is still close to the optimum (e.g. P@15 is still >0.9). Thus, further work should
concentrate on improvements in estimating the number of relevant documents in the
collections.

The evaluation has shown that no method outperforms all others for all measures
(efficiency, precision in top ranks, MAP, set-based precision and recall). Table 4 sum-
marises the most important results and suggests the best method for a given policy.

6 Conclusion and Outlook

This paper investigates different architectures of peer-to-peer information retrieval
systems. The architectures are based on the DTF or CORI resource selection approaches
and use different strategies for extending them towards peer-to-peer networks (e.g.
centralised vs. decentralised selection, system-wide or hub-global statistics). Five dif-
ferent topologies, namely hierarchical networks, HyperCubes (with two variants) and
distributed hash tables (DHTs, also with two variants) are investigated.

The extensive evaluation showed that there is no clear winner. Centralised DTF se-
lection in the “dht-dl” topology minimises the number of hops. Set-based precision and
recall and precision in the lower ranks can be maximised by switching to HyperCubes
(“hc” with h = 3, slightly better efficiency) and the DHTs storing only hub descrip-
tions (“dht-hubs”, slightly better effectiveness). Thus, the final goals (high efficiency or
effectiveness) designate the choice of the selection approach.

The major drawback of this approach is that hub descriptions are created by con-
sidering a hub as a single large library which is created by merging all documents of
all DLs in a neighbourhood. This does not take the distance of the involved DLs into
account (prohibiting cost estimations w. r. t. time), and ignores DLs in a larger distance.
Future work will concentrate on better descriptions for hubs and methods for approxi-
mating unknown distant DLs.
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Abstract. This paper describes an efficient method to construct reli-
able machine learning applications in peer-to-peer (P2P) networks by
building ensemble based meta methods. We consider this problem in the
context of distributed Web exploration applications like focused crawling.
Typical applications are user-specific classification of retrieved Web con-
tents into personalized topic hierarchies as well as automatic refinements
of such taxonomies using unsupervised machine learning methods (e.g.
clustering). Our approach is to combine models from multiple peers and
to construct the advanced decision model that takes the generalization
performance of multiple ‘local’ peer models into account. In addition,
meta algorithms can be applied in a restrictive manner, i.e. by leaving
out some ‘uncertain’ documents. The results of our systematic evaluation
show the viability of the proposed approach.

1 Introduction

Motivation. Text processing using machine learning algorithms (e.g. using su-
pervised methods such as classification or unsupervised algorithms like cluster-
ing) is an important part of many Web retrieval applications. As an example, we
may consider a focused crawler [7] that starts with the sport-related topics ‘ball
games’, ‘track and fields’, and ‘swimming’ that are initially filled by the user with
some training data. Based on these training data the parameters of a mathe-
matical decision model can be derived, which allows the system to automatically
classify web pages gathered during the crawl into the topic taxonomy. In the next
step, a large crawl would populate the topics of interest. In the postprocessing
phase, unsupervised machine learning methods (e.g. clustering) may be applied
for automatic organization of the ‘ball games’ documents by partitioning this
class into appropriate subtopics (say ‘soccer’, ‘basketball’, and ‘handball’).

The key to success for the classification step clearly lies in the selection of an
appropriate amount of human labeled training samples, being the intellectual
bottleneck of the system. The clustering step should provide high accuracy in
the sense that whatever subclasses it forms should indeed be reasonably homo-
geneous.

In the context of a peer-to-peer (P2P) network that puts together multiple
users with shared topics of interest, it is natural to aggregate their knowledge and
construct better machine learning models that could be used by every network
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member. The naive solution would be to share available data (training samples
and/or results of the focused crawl) along a higher number of peers with others.
However, the following reasons may prevent the peer from sharing all of its data
with other members of the overlay network:

– significantly increased network costs for downloads of additional training
data on every peer

– increased runtimes for the training of the decision models
– privacy, security, and copyright aspects of the user’s personal information

sources

Contribution. To overcome the limitations of single-peer models, we propose
the application of meta methods. Our objective is to combine multiple indepen-
dently learned models from several peers and to construct the advanced decision
model that utilizes the knowledge of multiple P2P users.

In addition we show how meta learning can be applied in a restrictive manner,
i.e. leaving out some documents rather than assigning them to inappropriate top-
ics or clusters with low confidence, providing us with significantly more accurate
classification and clustering results on the remaining documents.

Related Work. Focused Web exploration applications were intensively studied
in the recent literature. The idea of focused crawling [7] was recently adopted for
P2P systems. However, this work was mainly focused on sharing crawling results
from particular peers (e.g. using distributed indexes) rather than improving the
underlying crawler and its components.

On the other hand, there is a plethora of work on text classification and clus-
tering using all kinds of probabilistic and discriminative models [7]. The machine
learning literature has studied a variety of meta methods such as bagging, stack-
ing, or boosting [5, 29, 19, 13], and even combinations of heterogeneous learners
(e.g., [30]). There are also methods available for combining different clustering
methods [26, 12, 24]. The approach of intentionally splitting a training set for
meta classification has been investigated by [8, 25]. However, these techniques
were not considered in the context of P2P systems.

Algorithms for distributed clustering are described in [16, 18], but here doc-
ument samples must be provided to a central server, making these solutions
inconsistent with our requirements. The distributed execution of k-means was
discussed in [11]. However, this method requires multiple iterations that must be
synchronized among the peers and causes a considerable amount of coordination
overhead. Privacy-preserving distributed classification and clustering were also
addressed in the prior literature: In [27] a distributed Naive Bayes classifier is
computed; in [20] the parameters of local generative models are transmitted to
a central site and combined, but not in a P2P system.

2 System Architecture

The implementation of a peer in our distributed system consists of two layers.
The lower (network) layer determines the communication among the peers. The
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peers form an autonomous agent environment: the exact way one particular
peer solves its Web retrieval problem (e.g. crawling the Web, sending queries to
‘Deep Web’ portals, analyzing recent newsgroup discussions or publications in
electronic journals, etc.) is not restricted in any way. We assume that all peers
share the same thematic taxonomy such as dmoz.org [2]. The upper (application)
layer is the distributed algorithm that utilizes results from particular peers to
construct improved learning models (e.g. classification and/or clustering models)
that can be used to continue the focused crawl with higher accuracy and to adjust
the topics of a user-specific personalized ontology.

In our model, the peers use the epidemic-style communication [10]. Every peer
maintains an incomplete database about the rest of the network. This database
contains entries (e.g. addresses) on some other peers (neighbors) together with
timestamps of the last successful contact to that neighbor. The neighbor list is
refreshed using a push-pull epidemic algorithm.

To connect a new peer to the network one needs only one living address.
The database of the new peer is initialized with the entry containing this living
address only, and the rest is taken care of by the epidemic algorithm. Removal
of a peer does not require any administration at all.

When new data becomes available, the peer initiates the building of a new
meta learning method together with its direct neighbors as described in
Section 3.1. With the next epidemic messages, it is broadcast to all neighboring
peers.

3 Properties of the Application Layer

In this section we first describe a general framework for aggregating information
from k peers in meta models, and then consider two typical applications for such
a framework: classification and clustering for document collections.

3.1 Exchanging Data Models Among Peers

In our framework we are given a set of k peers P = {p1, . . . , pk}. Each peer pi

maintains its collection of documents Di. In the first step, each peer pi builds a
model mi(Di) using its own document set Di. Next, the models mi are propa-
gated among the k peers as described in Section 2. To avoid high network load,
it is crucial for this step that the models mi are a very compressed represen-
tation of the document sets Di. Each peer pi uses the set of received models
M = {m1, . . . , mk} to construct a meta model Metai(m1, . . . , mk). From now
on, pi can use the new meta model Metai (instead of the ‘local’ model mi) to
analyze its own data Di.

We notice that the dynamic nature of P2P overlay networks has no direct
impact on the construction of meta models. If the participating nodes do not
receive models MF = {mf1 , . . . , mfu} from some (failed) neighbors, they are still
able to construct the meta model Meta∗

i (M −MF ) on models obtained from the
remaining live peers. When the number k of required models is explicitly given
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by estimators or tuning parameters of the framework (Section 3.2), the multi-
cast capability of the network layer can be combined with advanced scheduling
methods [14] in order to reach the desired number of live nodes in presence of
failures.

3.2 Application to Automatic Document Organization

Meta Classifiers on k Peers. In the context of classification algorithms,
the introduced general approach 3.1 can be substantiated as follows. Each peer
pi contains a document collection Di, consisting of a set of labeled training
documents Ti and unlabeled documents Ui. The peer’s goal is to automatically
classify the documents in Ui. In the first step, every peer pi builds its own
feature vectors of topic labeled text documents Ti (e.g., capturing tf ·idf weights
of terms). The model mi corresponds to the classifier obtained by running a
supervised learning algorithm on the training set Ti.

Now, instead of transferring the whole training sets Ti, only the models mi

need to be exchanged among the peers. For instance, linear support vector ma-
chines (SVMs) [6] construct a hyperplane w ·x + b = 0 that separates the set of
positive training examples from a set of negative examples with maximum mar-
gin. For a new, previously unseen, document d the SVM merely needs to test
whether the document lies on the “positive” side or the “negative” side of the
separating hyperplane. The classifiers mi can represented in a very compressed
way: as tuples (w, l, b) of the normal vector w and bias b of the hyperplane
and l, a vector consisting of the encodings of the terms (e.g. some hashcode)
corresponding to the dimensions of w.

In the next step, every peer pj considers the set M = {m1, . . . , mk} of k
binary classifiers with results R(mi, d) in {+1,−1} for a document d ∈ Uj ,
namely, +1 if d is accepted for the given topic by mi and -1 if d is rejected.
These results can be easily combined into a meta result:

Meta(d) = Meta(R(m1, d), . . . , R(mk, d)) ∈ {+1,−1, 0} (1)

A family of such meta methods is the linear classifier combination with thresh-
olding [25]. Given thresholds t1 and t2, with t1 > t2, and weights w(mi) for the
k underlying classifiers we compute Meta(d) as follows:

Meta(d) =

⎧⎨⎩
+1 if

∑n
i=1 R(mi, d) · w(mi) > t1

−1 if
∑n

i=1 R(mi, d) · w(mi) < t2
0 otherwise

(2)

The important special cases of this meta classifier family include voting [5]
(Meta() returns the result of the majority of the classifiers), unanimous decision
(if all classifiers give us the same result), and weighted averaging [28] (Meta()
weights the classifiers using some predetermined quality estimator, e.g., a leave-
one-out estimator for each vi).

The restrictive behavior is achieved by the choice of the thresholds: we dismiss
the documents where the linear result combination lies between t1 and t2. For real
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world data there is often a tradeoff between the fraction of dismissed documents
(the loss) and the fraction of correctly classified documents (the accuracy).

If a fixed set U of unlabeled documents (that does not change dynamically) is
given, we can classify the documents with a user-acceptable loss of L as follows:

1. for all documents in U compute their classification confidence
∑n

i=1 R(mi, d)·
w(mi)

2. sort the documents into decreasing order according to their confidence values
3. classify the (1−L)|U | documents with the highest confidence values accord-

ing to their sign and dismiss the rest

In our experiments we assigned equal weights to each classifier, and instead of
R(mi, d), we considered a “confidence” value conf(mi, d) for the classification
of document d by the classifier. For SVM we chose the SVM scores, i.e., the
distance of the test points from the hyperplane. A more enhanced method to
map SVM outputs to probabilities is described, e.g., in [21].

Note that meta classifiers can be, similar as base classifiers, easily transferred
between peers as tuples

(m1, . . . , mk, w(m1), . . . w(mk), t1, t2). (3)

Meta Clustering Algorithms on k Peers. Clustering algorithms partition
a set of objects, text documents in our case, into groups called clusters. In the
introduced scenario, each peer pi contains a document collection Ui of unlabeled
data. Every peer wants to cluster its unlabeled data. Analogously to the classi-
fication task every peer pi can execute a clustering algorithm on its own data
Ui to build the model mi; a representation of the resulting clustering models mi

can be propagated to the other peers.
A simple, very popular member of the family of partitioning clustering meth-

ods is k-means [15]: k initial centers (points) are chosen, every document vector
is assigned to the nearest center (according to some distance or similarity met-
ric), and new centers are obtained by computing the means (centroids) of the
sets of vectors in each cluster. After several iterations (according to a stopping
criterion) one obtains the final centers, and one can cluster the documents ac-
cordingly. For the k-means algorithm, the clustering model mi can be represented
as (z1, . . . ,zl, l), where the zi are vector representations of the computed cen-
troids, and l contains encodings of the feature dimensions as described above for
the supervised case.

After propagating the models, every peer contains a set M = {m1, . . . , mk}
of different clustering models. Document d is assigned to one of l clusters with
labels {1, . . . , l} by each model: mi(d) ∈ {1, . . . , l}. In the case of k-means this
is the label of the centroid most similar to the document. The goal of meta
clustering is now to combine the different clustering results in an appropriate
way.

To combine the mi(d) into a meta result, the first problem is to determine
which cluster labels of different methods mi correspond to each other (note
that cluster label 3 of method mi does not necessarily correspond to the same
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cluster label 3 of method mj , but could correspond to say cluster label 1). With
perfect clustering methods the solution would become trivial: the documents
labeled by mi as a would be exactly the documents labeled by mj as b. However,
real clustering results exhibit certain fuzziness so that some documents end up
in clusters other than their perfectly suitable cluster. Informally, for different
clustering methods we would like to associate the clusters which each other
which are “most correlated”.

Formally, for every method mi we want to determine a bijective function
mapi : {1, . . . , l} → {1, . . . , l} which assigns all labels a ∈ {1, . . . , l} assigned by
mi a meta label mapi(a). By these mappings the clustering labels of the different
methods are associated with each other and we can define the clustering result
for document d using method mi as:

resulti(d) := mapi(mi(d)) (4)

One way to obtain the mapi functions is to take correlation of clusters from
different clusterings into account. We want to maximize the correlation between
the cluster labels. For sets A1..Ax, we can define their overlap as

overlap(A1, .., Ax) :=
|A1 ∩ .. ∩ Ax|

|A1| + .. + |Ax| − |A1 ∩ .. ∩ Ax| (5)

Now using
Aij := {d ∈ U |resi(d) = j} (6)

we can define the average overlap for a document set U and the set of clustering
methods M as

1
l

l∑
j=1

1(
k
2

) ∑
(i,m)∈{1,...,l}2,i<m

overlap(Aij , Amj) (7)

We choose the mappings mapi which maximize the average overlap.
After having computed the mapping we are given a set M = {m1, . . . , mk}

of k binary clustering methods with results resi(d). For simplicity we consider
here the case of k = 2 clusters and choose resi(d) ∈ {+1,−1} for a document d,
namely, +1 if d is assigned to cluster 1, and -1 if d is assigned to cluster 2. We can
combine these results into a meta result: Meta(d) = Meta(res1(d), . . . , resk(d))
in {+1,−1, 0} where 0 means abstention. A family of such meta methods is
the linear combination with thresholding [24]. Given thresholds t1 and t2, with
t1 > t2, and weights w(mi) for the l underlying clustering methods we compute
Meta(d) as follows:

Meta(d) =

⎧⎨⎩+1 if
∑k

i=1 resi(d) · w(mi) > t1
−1 if

∑k
i=1 resi(d) · w(mi) < t2

0 otherwise

(8)

Thus by an intermediate meta mapping step we have a completely analogous
situation to the one for the supervised case described in Section 3.2. Confidence
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values conf(vi, d) for the clustering of a document d by the base methods vi

can be obtained, say for k-means clustering, by computing the similarity (e.g.,
using the cosine measure) to the nearest centroid. The restrictive behavior can
be obtained in exactly the same way as for the supervised case.

Estimators and Tuning. For a restrictive meta classifier, we are interested in
its behavior in terms of accuracy and loss (fraction of unclassified documents).
A typical scenario could be a number of users in different peers accepting a loss
up to fixed bound, to obtain a higher classification accuracy for the remaining
documents. In [25] the tuning of the number k of classifiers for a user-acceptable
loss threshold was described. We will not repeat this here and will instead focus
on the P2P specific aspects.

The main ingredients of the estimation and tuning process are:

1. estimators for base classifiers (based on cross-validation between the training
subsets Ti)

2. estimators for the pairwise correlations between the base classifiers
{m1, . . . , mk}

3. probabilistic estimators for loss and error based on 1. and 2.

For the cross-validation, at least two peers, pi and pj , must cooperate: pi sends a
tuple (mi, IDs(Ti)), consisting of its classifier mi and a list of IDs (not contents!)
of its training documents, to pj . The peer pj uses the list of submitted IDs to
identify duplicates in both collections and performs cross-validation by mi on
Tj −Ti. (In the Web context, the IDs of Ti can be easily obtained by computing
content-based ‘fingerprints’ or ‘message digests’ (e.g. MD5 [23])). The resulting
error estimator (a simple numerical value) for mi can be forwarded from pj back
to pi or to other peers.

For the computation of pairwise covariance, at least three peers, pi,pj and
pm, must cooperate: pi and pj send their classifiers and document IDs to pm and
pm cross-validates in parallel both classifiers on Tm −Ti −Tj. By this procedure
we get also accuracy estimators.

Finally, the estimators for covariance and accuracy (numerical values) can
be distributed among the peers and estimators for the overall meta classifier
can be built. When the estimated quality of the resulting meta classifier does
not meet the application-specific peer requirements (e.g. the expected accuracy
is still below the specified threshold), the initiating peer may decide to invoke
additional nodes for better meta classification. Note that for meta clustering,
estimators cannot be built in the same easy way, because for the unsupervised
case we cannot evaluate base methods by cross-validation.

4 Experiments

Setup. To simulate different P2P Web retrieval scenarios (crawling the Web,
sending queries to ‘Deep Web’ portals, analyzing recent newsgroup discussions or
publications in electronic journals) we performed multiple series of experiments
with real-life data from
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1. The academic WebKB dataset [9] containing 8282 HTML Web pages from
multiple universities, manually classified into the categories ‘student’,
‘faculty’, ‘staff’, ‘department’, ‘course’, ‘project’, and ‘other’.

2. Newsgroups collection at [1]. This collection contains 17847 postings col-
lected from 20 Usenet newsgroups. Particular topics (‘rec.autos’, ‘sci.space’,
etc.) contain between 600 and 1000 documents.

3. The Reuters articles [17]. This is the most widely used test collection for
text categorization research. The collection contains 21578 Reuters newswire
stories, subdivided into multiple categories (‘earn’, ‘grain’, ‘trade’, etc.).

4. The Internet Movie Database (IMDB) at [3]. Documents of this collection
are articles about movies that include the storyboard, cast overview, and
user comments. The collection contains 6853 movie descriptions subdivided
into 20 topics according to particular genres (‘drama’, ‘horror’, etc.).

We used the Porter stemming algorithm [22] in combination with stopword
elimination to transform documents into the vector space model. In all discussed
experiments, the standard bag-of-words approach [4] (using term frequencies to
build L1-normalized feature vectors) was used for document representation.

Experiments with Supervised Learning Methods (Classification). For
each data set we identified all topics with more than 200 documents. These were
20 topics for Newsgroups, 6 for Reuters, 12 for IMDB, 4 for WebKB. Among
these topics we randomly chose 100 topic pairs from Newsgroups and all possible
combinations for the others, i.e. 66 topic pairs from IMDB, 15 for Reuters, and 6
for WebKB. For each topic pair we randomly chose 200 training documents per
class and kept - depending on the available topic sizes in particular collections -
a distinct and also randomly chosen set of documents for the validation of the
classifiers.

In each experiment, the training data was distributed over 16 peers (data
collections in sizes suitable for larger network experiments are hard to get for
our scenarios) using equal-sized subsets with approximately 15% overlap (corre-
sponding to peers that contain non-disjoint training data). Among these peers
we randomly chose 1,2,4,8, and all 16 peers to simulate various P2P classification
scenarios. The configuration with 1 peer corresponds to the ‘local’ classification
that does not involve sharing of classifiers. As discussed in Section 3.2, we also
compared the restrictive form of meta classification, where we dismissed at each
peer exactly the same amount of documents with worst classification confidence
using confidence values as discussed in Section 3. Our quality measure is the
fraction of correctly classified documents (the accuracy) among the documents
not dismissed by the restrictive algorithm. The loss is the fraction of dismissed
documents.

Finally, we computed micro-averaged results along with their 95% confidence
intervals for all groups of topic pairs. Figure 1 shows the observed dependencies
between the numbers of cooperating peers, the induced loss, and the result-
ing accuracy for various reference collections. It can be observed that the meta
classification and restrictive meta classification by multiple cooperating peers
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Fig. 1. Results of Restrictive Meta Classification

clearly outperforms the single-peer solution for all settings of the user-defined
loss, including the non-restrictive meta classification with loss = 0. The quality
of the meta algorithm clearly increases with the number of participating peers.
In general, the difference between the one-peer solution and the meta solution is
statistically significant for 4 and more participating peers and all values of the
induced loss. The only exceptions are the results for Reuters with loss > 0.7
(the accuracy of all peer combinations, including one-peer experiment, becomes
nearly 1.0) and the WebKB collection (due to the very limited number of possible
topic combinations).

Experiments with Unsupervised Learning Methods (Clustering). The
same collections and topics were used to evaluate distributed meta clustering.
All documents from randomly combined selections of 3 or 5 topics were consid-
ered as unlabeled data and distributed among peers analogously to classification
experiments from the previous section, with approximately 15% overlap. The
goal of the clustering algorithm was to reproduce the partitioning into topics on
each peer with possibly high accuracy. Our quality measure describes the corre-
lation between the actual topics of our datasets and the clusters found by the
algorithm. Let k be the number of classes and clusters, Ni the total number of
clustered documents in classi, Nij the number of documents contained in classi

and having cluster label j. We define the clustering accuracy as follows:

accuracy = max(j1,...,jk)∈perm((1,...,k))

∑k
i=1 Ni,ji∑k
i=1 Ni

(9)
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Fig. 2. Results of Restrictive Meta Clustering, k=3 Clusters

The loss is the fraction of documents dismissed by the restrictive algorithm.
For all peers, k-means was used as the underlying base method. We compared

the one-peer clustering (i.e. clustering that can be executed by one peer on its
local dataset without cooperation with others) with meta clustering, exchanging
centroids from cooperating peers and correlation-based mapping (Section 3.2)
of the final clusters. Analogously to classification experiments, we considered
restrictive meta clustering, dismissing exactly the same number of documents
with the worst clustering confidence [24] on each peer.

The results are summarized in Figure 2. The main observations are similar to
the ones discussed for the supervised case:

– The quality of the meta clustering results is consistently higher than for
isolated one-peer solutions.

– The quality of the meta algorithm tends to increase with the number of
participating peers and is in almost all cases statistically significant. For the
Reuters collection, the difference between one-peer solution and the meta
result is statistically significant for 8 and more participating peers and all
values of the induced loss. For the IMDB and Newsgroups collections, the
difference between the one-peer solution and the meta result is statistically
significant for 4 and more participating peers and all loss values.

In the experiments with the Reuters dataset, the accuracy decreases for high
loss values (greater 0.7). Possibly this can be explained by the fact that the Reuters
topics - unlike the other considered reference collections - are very different in size
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(e.g. the topics ‘earn’ and ‘grain’ contain about 3900 and 280 documents, respec-
tively). The in-depth analysis of such artifacts is subject of our future work.

5 Conclusion

In this paper, we proposed a new methodology to construct distributed ma-
chine learning meta models for P2P Web exploration applications. The results
of the evaluation clearly show the advantages of cooperation between nodes for
building meta decision models. Our method does not require the comprehensive
exchange of private data collections between peers and thus provides substantial
advantages for aspects of privacy, network bandwidth, storage, and computa-
tional expense. Furthermore, in terms of accuracy our restrictive meta methods
clearly outperform the models that can be separately built on training sources
of isolated peers and - more importantly - also the restrictive variant of such
one-peer solutions with the same induced loss.
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Abstract. URL usually contains meaningful information for measuring the 
relevance of a Web page to a query in Web search. Some existing works utilize 
URL depth priors (i.e. the probability of being a good page given the length and 
depth of a URL) for improving some types of Web search tasks. This paper 
suggests the use of the location of query terms occur in a URL for measuring 
how well a web page is matched with a user’s information need in web search. 
First, we define and estimate URL hit types, i.e. the priori probability of being a 
good answer given the type of query term hits in the URL. The main advantage 
of URL hit priors (over depth priors) is that it can achieve stable improvement 
for both informational and navigational queries. Second, an obstacle of exploit-
ing such priors is that shortening and concatenation are frequently used in a 
URL. Our investigation shows that only 30% URL hits are recognized by an 
ordinary word breaking approach. Thus we combine three methods to improve 
matching. Finally, the priors are integrated into the probabilistic model for en-
hancing web document retrieval. Our experiments were conducted using 7 
query sets of TREC2002, TREC2003 and TREC2004, and show that the pro-
posed approach is stable and improve retrieval effectiveness by 4%~11% for 
navigational queries and 10% for informational queries. 

1   Introduction 

When searching the World Wide Web, “end users want to achieve their goals with a 
minimum of cognitive load and a maximum of enjoyment.”[11] Some recent studies 
[4] [17] [10] found that the goal of a user can be classified into at least two categories: 
navigational and informational. A user searches a navigational query to reach a par-
ticular Web page in mind, whereas an informational query is usually short and broad 
where the user intends to visit multiple pages to learn about a topic. Actually, real 
Web search is to deal with the mixed query stream. Therefore, finding robust evi-
dence which works well for various types of queries has been one challenging interest 
of Web IR community. 

As a workshop that provides the infrastructure necessary for large-scale evaluation 
of text retrieval methodologies, Text Retrieval Conference (TREC) has set up 3 tasks, 
namely homepage finding, named page finding and topic distillation, in Web track to 
encourage research on Web information retrieval. Homepage finding (HP) and named 
page finding (NP) is to model two types of navigational queries. The difference is that 
a homepage finding query is the name of a site while a named page finding query is 
the name of a non-homepage that the user wishes to reach. Topic distillation (TD), on 
the other hand, is to model informational queries. It was first proposed by Bharat and 
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Henzinger [3] to refer to the process of finding quality document on a query topic. 
They argued that it is more practical to return quality documents related to the topic 
than to exactly satisfy the users’ information need since most short queries do not 
express the need unambiguously. In TRECs, a topic distillation query describes a 
general topic and requires retrieval systems to return homepages of relevant sites. 
Until now, these three types of queries are acknowledged and TRECs cumulated valu-
able data through years for related research. 

URL, as a Uniform Resource Locator [19] for each Web page, usually contains 
meaningful information for measuring the relevance of the Web page to a query. 
Related works can be roughly grouped into 3 categories: one is to use the length or 
depth of a URL as query-independent evidence in ranking [9][21][12][6]; another is 
to use URL-based sitemap to enhance topic distillation [20][18]; the other addresses 
the issue of word break in URLs [5][12].  

Kraaij et al [9] found that the probability of being an entry page, i.e. homepage, 
seems to inversely related to the depth of the path in the corresponding URL. They 
classified URLs into four types in terms of the depth, estimated prior relevance prob-
ability for each type, and integrated the priors in the language model. Their experi-
mental results verified that the depth is a strong indicator for homepages. By doing 
some extension, Ogilvie and Callan [12] reported improvements on mixed home-
page/named-page finding task. However, by closely observing the URL priors in [12], 
we found that the priors for homepage finding queries are quite different from those 
for named page finding queries (see Section 2 for details). Thus the priors may hurt 
named-page finding while improving homepage finding. 

In this paper, we aim to find a kind of stable priors to enhance retrieval perform-
ance for various kinds of queries. We observe that the occurrence location of the 
query terms in a URL is an effective indicator of the quality and relevance of a Web 
page. Especially, a URL with some query term appearing near to its tail promises to 
be a relevant domain, directory or file. Our statistics on queries of past TREC experi-
ments verify this observation. Therefore, we treat the occurrence location of the query 
terms in a URL as a good prior for the relevance of a page. We call this kind of priors 
the URL hit priors as a hit refers to a query term occurrence. 

The effectiveness of URL hit priors relies on the capability of detecting the hits of 
query terms in URLs. To increase the hit rates of query terms, we explore three suc-
cessive methods to recognize terms in URLs. First, a simple rule is used to recognize 
most of acronyms in URLs. Second, the recognition of concatenations is formulated 
as a search problem with constraints. Third, prefix matching is used to recognize 
other fuzzily matched words. With this 3-step approach, it is shown on the TREC 
data that the recall of URL hits is doubled from 33% to 66% while the precision is 
close to 99%. 

We integrate the URL hit priors into the probabilistic model. Experimental results, 
on seven TREC Web Track datasets, indicate that, with the URL hit priors and URL 
hit recognition methods, the performance is consistently improved across various 
types of queries. 

The rest of the paper is organized as follows. Section 2 introduces the related 
work. In section 3, we give the details of URL hit priors, URL hit recognition  
methods, and how to combine URL hit priors into the probability model. We conduct 
experiments to verify the proposed methods in Section 4. Conclusion and future 
work are given in Section 5. 
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2   Related Work 

As mentioned in the introduction, several URL-related approaches have been pro-
posed to enhance Web search or recognize more query terms. In this section, we will 
briefly review four latest and representative works. 

Kraaij et al found that the URL depth is a good predictor for entry page search [9]. 
Four types of URLs are defined in their work [21] as follows: 

“ROOT: a domain name, optionally followed by 'index.html'. 
SUBROOT: a domain name, followed by a single directory, optionally followed 

by 'index.html'. 
PATH: a domain name, followed by a path with arbitrarily deep, but not ending 

with a file name other than 'index.html'. 
FILE: any other URL ending with a filename other than 'index.html'.” 

The priori probability of being an entry page is elegantly integrated in the language 
model. As a result, the performance is improved by over 100%. About 70% of entry 
pages are ranked at No.1. The TREC2001 evaluation confirmed some successful 
exploitation of URL depth in entry page search [7][13]. 

Ogilvie and Callan extends the usage of URLs in TREC2003 [12]. A character-
based trigram generative probability is computed for each URL. A shortened word or 
a concatenation of words is handled by treating a URL and a query term as a character 
sequence. Another extension is that they include named page in the estimation of 
URL depth priors.  

Based on the TREC2003 data, we did some statistics about the distributions of URL 
depth types for different retrieval tasks. The results are shown in Table 1. It is clear that 
most of the relevant documents for HP queries have the ROOT type URLs, while the 
majority of NP queries tend to have the FILE type URLs for their relevant documents. 
For TD queries, more than half of relevant documents' URLs are with the FILE type, 
whereas the distributions in the other three URL types are quite even. Therefore, the 
computed priors based on URL depth are unlikely to benefit all query types. 

Craswell et al [6] use URL length in characters as query independent evidence 
and propose a function to transform the original depth for effective combination. 
Their results show a significant improvement on a mixed query set. And their finding 
is that the average URL length of relevant pages is shorter than that of the whole 
collection.  

Chi et al [5] reported that over 70% URL words are "compound word", that means 
multiple words are concatenated to form one word. Such phenomenon is caused by 
the special of URLs. Some of the most frequent delimiters, such as spaces, in a docu-
ment are not allowed to appear in URLs [19]. Consequently, webmasters have to  
 

Table 1. Distributions of URL depth types (TREC2003) 

URL Depth Type HP NP TD 

ROOT 103 1 79 
SUBROOT 33 8 65 

PATH 13 11 77 
FILE 45 138 295 
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concatenate multiple words when creating a URL. These compound words cannot be 
found in the ordinary dictionaries. Thus they proposed to exploit maximal matching, a 
Chinese word segmentation mechanism, to segment a “compound word”. An interest-
ing idea is that title, anchor text and file names and alternated text of embedded 
objects are used as a reference base to help disambiguate segmentation candidates. 
Although the authors aim to recover the content hierarchy of Web documents in terms 
of URLs, the approach is also a good solution for recognizing URL hits. We have not 
implemented their approach because this paper focuses on the effectiveness of URL 
hit priors for search and their approach does not handle individual shortened words. In 
addition, our recognition methods do not use any dictionary but the query only. An-
other solution worth mention was proposed by Ogilvie and Callan [12]. They treat a 
URL and a query term as a character sequence and compute a character-based trigram 
generative probability for each URL.  

3   Our Approach 

In this section, we first define a new classification of URL types and the related URL 
priors called URL hit priors. Then three methods are described to recognize URL hits. 
Finally, we introduce how to combine the URL hit priors into the probabilistic model 
and for improving retrieval performance. 

3.1   URL Hit Priors 

A query term occurrence in a URL is called a URL hit. We assume that the location 
of a URL hit may be a good hint to distinguish a good answer from other pages. For 
example, when a user is querying "wireless communication" and 2 URLs below are 
returned, U2 is more probably to be a better answer because it seems to be a good 
entry point, neither too general nor too narrow. 

U1: cio.doe.gov/wireless/3g/3g_index.htm 
U2: cio.doe.gov/wireless/ 

When “ADA Enforcement” is queried, U3 looks like a perfect answer as a URL hit 
occurs in the file name. 

U3: http://www.usdoj.gov/crt/ada/enforce.htm 

Given the query of “NIST CTCMS”, U4 is easy to beat other pages like U5 and again 
the URL hits appear in a good position. 

U4: http://www.ctcms.nist.gov/ 
U5:http://www.ctcms.nist.gov/people/ 

Given a URL, slashes can easily split the URL into several segments (the last slash 
will be removed if there is no character followed by it). U2, U3 and U4 are similar for 
the last URL hit occurs in the last segment. Therefore, we define four kinds of URL 
hit types: 

 Hit-Last: A URL, in which the last URL hit occurs in the last segment; 
 Hit-Second-Last: A URL, in which the last URL hit occurs in the second last 

segment; 
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 Hit-Other: A URL, in which all the URL hits occur in other segment than the 
last two; 

 Hit-None: A URL, in which no URL hit is found. 

In our examples, U2, U3 and U4 belong to the type of “Hit-Last”, U5 is of the type 
“Hit-Second-Last”, while U1 is of the type “Hit-Other”. 

We perform a statistical analysis base on the TREC2003 data. The distribution of 
URL hit types is shown in Table 2. There are two important observations from the 
statistics. First, a large portion of good answers have query term hits in their URLs. 
Second, the distributions of good answers in different types are quite consistent across 
different query types. Except for the "Hit-None" type, most of the good answers fall 
into the URL type "Hit-Last" for all the three query types HP, NP and TD. Also, type 
"Hit-Second-Last" has more good answers than type "Hit-Other". Thus, we expect to 
find a stable prior relevance probability for the URL hit types, which can be uni-
formly used in various tasks. 

Table 2. Distribution of URL hit types (TREC2003) 

URL Hit Type HP NP TD 

Hit-Last 136 86 129 

Hit-Second-Last 21 17 21 

Hit-Other 8 12 6 

Hit-None 29 43 360 

 
Based on the above observations, we target to assign each URL a prior relevance 

probability. Given a hit type t, this prior is consistently used for HP, NP and TD que-
ries. Given a query q and a page with URL u, we denote P(t) as the probability of 
URL u having hit type t for the query. We denote P(R) as the probability of u being 
relavant to query q. And P(TD), P(HP), and P(NP) are denoted respectively as the 
probability of query q being a TD, HP, and NP query. Since NP, HP and TD are dis-
joint, we can estimate the prior for hit type t by the following formula, 
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By applying a training query set, the values of P(R,t|TD), P(t|TD), and P(TD) can be 
roughly estimated by maximal likelihood estimation (the probabilities for HP and NP 
can be estimated in a similar way) as follows, 
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where ntd and n are the numbers of TD queries and all queries respectively. We denote 
),( TDtcr
as the total number of relevant pages in top K with hit type t for all TD que-

ries in the training data and ),( TDtc denotes the number of all pages (relevant or irrele-

vant) in top K for all TD queries. Please note that only top K query result pages are 
considered in counting the number of Web pages. 

Consequently, the estimated priors for different URL hit types are shown in Table 3. 

Table 3. Estimated URL hit priors 

Type Prior 

Hit-Last 0.03273 
Hit-Second-Last 0.00382 

Hit-Other 0.00056 
Hit-None 0.00349 

3.2   URL Hit Recognition 

The key of estimating and applying URL hit priors is to correctly identify URL hits. 
However, the way of word usage in forming a URL is very different from word usage 
in composing a document. Our investigation shows that only about 30% URL hits are 
recognized by an ordinary word break method (see Section 4.2 for details). Therefore, 
we use three URL hit recognition methods to detect acronym hits, concatenation hits 
and fuzzy hits sequentially. 

Step 1: Acronym Hits Recognition 
Similar to [5], this method was used to recognize acronyms.  The assumption is that 
an acronym is often the concatenation of the first character of each word in the full 
name. For example, “fdic” is the acronym of “Federal Deposit Insurance Corporation” 
in the following URL: 

http://www.fdic.gov/ 

Given an ordered list of query terms 1,..., nQ q q=< > , when eliminating functional 

words, such as “of”, “and” and “the”, in Q , we get ' ' '
1,..., mQ q q=< > . The first characters 

of all words in Q  are concatenated as s , and the first characters of all words of 'Q  are 
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concatenated as 's . Then 's or s is matched against the URL to see if any URL word is 
a substring of 's or s . If matched, the URL word is mapped to the set of query terms. 

Step 2: Concatenation Hits Recognition 
This method aims at recognizing the URL word that is concatenated by the whole or 
prefix of query terms. For example, the query 185 in known-item task of TREC2003 
is “Parent’s Guide to Internet Safety” and the target URL is as below: 

http://www.fbi.gov/publications/pguide/pguide.htm 

“pguide” concatenates the first character “p” of “Parent’s” and the word “guide”. 
The concatenated query terms are required to appear continuously and in the same 

order as in 'Q or Q . A dynamic programming algorithm is used in this step.  

Step 3: Fuzzy Hits Recognition 
In some other URL words, only parts of them match with the whole or parts of query 
terms. We call such a hit as a fuzzy hit. For example, given a query of “FDA Human 
Gene Therapy” and a target document URL:  

http://www.fda.gov/cberlinfosheets/genezn.htm 

“gene” is a partial of the URL word of “genezn”, which is a fuzzy hit. 
Given strings a and b , the operation | |a returns the count of characters in the 

string a . The operation of prefix match a bI  is defined as the longest prefix of a that 
is also a substring of b . Therefore, for each query term q and a URL word u , u will be 
recognized as a fuzzy hit if it satisfies two conditions as follows. 
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 2)    2

| |
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In our latter experiments, 1Threshold is set to 3 and 2Threshold  is set to 0.6. 

A more complex way of abbreviating may omit some characters in the middle. For 
example, “standards” is shortened as “stds”. In this paper, we will not address this 
complex case that occurs less often in our investigations. 

3.3   Combining URL Hit Priors into Retrieval Models 

A classic probability model is the binary independent retrieval (BIR) model, which has 
been introduced by Robertson and Sparck Jones [15]. Please refer to [1] for more de-
tails. The ranking function, well-known as BM25, is derived from such a model and has 
shown its power in TRECs [14]. For our experiments, we choose BM25 as our basic 
ranking function, in which the retrieval status value (RSV) is computed as follows. 
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Where, i  denotes a word in the query Q , itf and idf are term frequency and document 

frequency of the word i respectively, N is the total number of documents in the collec-

tion, dl is document length, avdl is average document length, and 1k , b are  parameters. 

In our experiments, a document D is represented as all of the texts in the title, body 
and anchor (i.e. the anchor text of its incoming links), while URL is treated as a spe-
cial field that is labeled asU . We linearly interpolate two scores based on D and U to 
get the final. 

 combi D US S w S= + ⋅   

Here, w is combination weight for the URL score.  
To make the combination easy, it is necessary to transform the original scores 

on D and U to the same scale and also to eliminate the query dependent factors. The 
original score on D  is ( , )RSV D Q , we divide ( , )RSV D Q by the query dependent factor 

below to get DS as Hu et al did in [8].  
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US  is the URL hit priors that we have estimated in section 3.1. Such a score is a 

probability and thus needs no transformation. 

4   Experiments 

In this section, we report the results of four kinds of experiments: a) by using the URL 
hit recognition methods, how many new query term hits can be found; b) the effec-
tiveness of using URL hit priors in the probabilistic model; and c) the performance 
comparison between using the URL hit recognition methods and not using them.  

4.1   Experimental Settings 

Our experiments are conducted on the Web track datasets of TREC2002, TREC2003 
and TREC2004. All of them use the ".GOV" Web page set, which is crawled in 2002. 
Topic distillation task of TREC2002 is not used because its relevance judgments are 
not consistent with the guidelines of TREC2003 and TREC2004 [10]. 

In order to evaluate the performance for different types of queries, we separate 
queries of the known item finding task of TREC2003 into HP and NP queries, and 
queries of the mixed query task of TREC2004 into HP, NP and TD queries. Totally 
seven query sets used. The numbers of queries are 300, 150, 150, 50, 75, 75 and 75 
respectively. 

In our retrieval experiments, the mean reciprocal rank (MRR) is the main measure 
for named-page finding and homepage finding tasks, while the mean average preci-
sion (MAP) is the main measure for topic distillation tasks. 

4.2   Experiments on URL Hit Recognition 

The experiments on URL hit recognition are conducted on the URLs that are judged 
as relevant for the TREC data. Two volunteers labeled all the pairs that a query term 
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occurs in a URL word. Then we applied the ordinary method and our 3-step method 
respectively to automatically recognize URL hits and output the pairs. The ordinary 
method breaks words in a URL based on delimiters, and then stems the words with 
the Porter stemmer. Finally precision and recall is calculated. The ordinary method 
achieves 100% precision but low recall, about 33.2% only. Our 3-step method dou-
bles the recall while the precision is high, about 98.5%. 

4.3   Experiments on Retrieval Performance 

As described in Section 3.3.1, we use computed on all the texts in the title, body and 
anchor by BM25 formula as the baseline. In our experiments, parameters are trained 
on TREC2003. The optimized parameters of BM25 formula are 7.0,1.11 == bk . And 

Figure 1 shows the tuning curves on the training set. The start point at the left is the 
baseline. The improvements are significant and it is easy to find a common and stable 
wide range of the optimal parameter for three types of queries.  

 
(a) 

 
(b) 

Fig. 1. Tuning the combination weight on TREC2003 data. (a) shows the results for HP and NP 
task in terms of MRR and (b) shows the result for TD in terms of MAP. 
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Table 4. Integrating URL Hit Priors in the Probability Model 

Query SD Scombi Improve 

2002NP 0.6294 0.6529 +3.73% 

2004NP 0.557 0.5818 +4.45% 

2004HP 0.5404 0.6002 +11.07% 

2004TD 0.13 0.1436 +10.46% 

 
On the test set, the URL hit priors improve MRR by about 4% for named page 

finding queries and by about 11% for homepage finding queries. And it also improves 
MAP by about 10% for topic distillation queries (See Table 4). Therefore, it is safe to 
conclude that the improvement with the usage of URL hit priors is stable for different 
types of queries. In addition, the improvement for NP tasks are less than those for the 
HP and TD tasks, which may be caused by the relatively rare occurrences of query 
terms in file names. 

4.4   Experiments on Using 3-Step Recognition Method vs. Not Using 

It is necessary to evaluate how the URL hit recognition affects URL hit priors and the 
retrieval performance. Therefore, we use the ordinary word break method to recog-
nize URL hits and apply the same approach to estimate the URL hit priors. And we 
redo the retrieval experiments of combining the priors with the basic content score. 
Figure 2 shows the results on HP task of TREC2003. There is a big gap between pri-
ors based on different recognition methods. The same gaps are also found for other 
query sets and data sets. We omit the figures due to space limitation. In summary, the 
URL hits recognition methods are essential for fully taking advantage of the URL hits 
priors. If not sufficient URL hits are detected, the URL hit priors are less useful for 
improving retrieval performance. 

 

Fig. 2. Comparison of priors based on the ordinary word break method and our 3-step method 
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5   Conclusion and Future Work 

Through observation and statistics, we found that the location of a query term appear-
ing in a URL is closely related to whether the corresponding document is a good  
answer for homepage finding, named-page finding and topic distillation queries. 
However, shortening and concatenating make it difficult to match a URL word with 
query terms. We proposed three steps together to recognize URL hits. Such method 
improves the recall of URL hits from 33% to 66% for relevant URLs of TREC data of 
three years. Based on recognized URL hits, URL hit priors are estimated and inte-
grated into the probability model. Experiments conducted on the TREC datasets show 
that the URL hit priors can achieve stable improvement across various types of  
queries. 

In the current implementation, URL hits are detected when a query is submitted to 
the search engine. This requires additional time in processing the query, which could 
be an issue when the approach is used in a real large-scale search engine. We will 
leave offline URL hit recognition as our future works. Our current experiments are 
based on TREC dataset which have little spam. As a next step, more experiments can 
be done for current real Web data to further test the effectiveness of our approach. 
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Abstract. We present an analysis of a large blog search engine query
log, exploring a number of angles such as query intent, query topics, and
user sessions. Our results show that blog searches have different intents
than general web searches, suggesting that the primary targets of blog
searchers are tracking references to named entities, and locating blogs by
theme. In terms of interest areas, blog searchers are, on average, more
engaged in technology, entertainment, and politics than web searchers,
with a particular interest in current events. The user behavior observed
is similar to that in general web search: short sessions with an interest
in the first few results only.

1 Introduction

The rise on the Internet of blogging—the publication of journal-like web page
logs, or blogs—has created a highly dynamic and tightly interwoven subset of the
World Wide Web [10]. The blogspace (the collection of blogs and all their links)
is giving rise to a large body of research, both concerning content (e.g., Can we
process blogs automatically and find consumer complaints and breaking reports
about vulnerabilities of products?) and structure (e.g., What is the dynamics of
the blogspace?). A variety of dedicated workshops bear witness to this burst of
research activity around blogs; see e.g., [20].

In this paper we focus on another aspect of the blogspace: searching blogs.
The exponential rise in the number of blogs from thousands in the late 1990s
to tens of millions in 2005 [3, 18, 19] has created a need for effective access and
retrieval services. Today, there is a broad range of search and discovery tools for
blogs, offered by a variety of players; some focus exclusively on blog access (e.g.,
Blogdigger [2], Blogpulse [3], and Technorati [18]), while web search engines such
as Google, Yahoo! and AskJeeves offer specialized blog services.

The development of specialized retrieval technology aimed at the distinct
features of the blogspace is still in its early stages. We address a question whose
answer should help inform these efforts: How does blog search differ from general
web search? To this end we present an analysis of a blog search engine query log.
We study the intent of blog searches, find out what the user behavior of blog
searchers is, and determine the profile of blog searchers in terms of query types.

In the next section we briefly survey related work that guided us in our study.
In Section 3 we describe the data used for our analysis and provide basic de-
scriptive statistics about it. In Section 4 we analyze the queries in terms of user

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 289–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



290 G. Mishne and M. de Rijke

intent. Then, in Section 5 we classsify queries by category, and Section 6 is de-
voted to an analysis of the sessions in our data. Section 7 wraps up the paper
with conclusions, discussions, and future work.

2 Related Work

At the time of writing, no published work exists on blog search engine logs.
However, work on search engine log analysis is plentiful: a recent survey paper
describes a large body of related work in this area published during the last 10
years [5]. Our work was particularly inspired by some of this work. Most notably,
work by Broder [4] on classifying search requests of web users using the (then
popular) AltaVista search engine, as well as the follow-up work by Rose and
Levinson [13] with Yahoo! data, inspired our attempts at classifying the hidden
intents behind blog searches.

In terms of statistical analysis, our work is influenced by one of the first large-
scale studies of search logs available to the public, performed by Silverstein et al.
[16], and the numerous analyses published by Jansen, Spink et al., which targeted
various angles of search engine usage (e.g., [4, 7, 8]), analyzing data not accessible
to the majority of the research community.

Finally, our query categorization work was influenced by work done by Pu and
Chuang [12], and by Beitzel et al. [1]. Some of the query categorization methods
used for the 2005 KDD Cup [9] (which targeted query classification) are similar
to our categorization approach, which was developed in parallel.

3 Dataset

Our data consists of the full search log of Blogdigger.com for the month of May
2005. Blogdigger.com is a search engine for blogs and syndicated content feeds
(such as RSS and ATOM feeds) that has been active since 2003, being one of the
first fully-operational blog search engines. Recently, as major web search engines
introduced their capabilities for blog search, it is gradually becoming a second-
tier engine. Nevertheless, Blogdigger.com provides some unique services such as
local-based search and media search, which attract a relatively large number of
users to it. Our log contains both queries sent to Blogdigger’s textual search
engine and queries sent to its media search engine—a service for searching blog
posts (and additional syndicated content) containing multimedia files or links.

Blogdigger.com—like other major blog search engines—serves both ad-hoc
queries and filtering queries. Ad-hoc queries originate from visitors to the search
engine’s web site, typing in search terms and viewing the result pages, in a similar
manner to the typical access to web search engines. A user who is interested in
continuous updates about the results of a specific query can subscribe to its
results: in practice, this means she is adding a request for a machine-readable
version of the query results to a syndicated content aggregator (e.g., an RSS
reader) she is running. The query results will then be periodically polled; each
of these polls is registered as a filtering query in the search log.
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Table 1. Search log size and breakdown

All queries Unique queries
Number of queries 1,245,903 116,299
Filtering queries 1,011,962 (81%) 34,411 (30%)
Ad-hoc queries 233,941 (19%) 81,888 (70%)
Text queries 1,016,697 (82%) 50,844 (44%)
Media queries 229,206 (18%) 65,455 (56%)
Link queries 2,967 (<1%) 562 (<1%)
Mean terms/filtering query 1.96 1.98
Mean terms/ad-hoc query 2.44 2.71

Table 1 contains statistics about our log file. Due to the large percentage of
duplicates typical of query logs, we provide statistics separately for all queries
and for the set of unique queries in the log (i.e., exact repetitions removed). While
filtering queries make up the bulk of all queries, they constitute a relatively
small amount of unique terms, and the majority of unique queries originate
from ad-hoc sessions. The mean terms/query number for (all) ad-hoc queries
is comparable to the mean terms/query numbers reported in the literature for
general web search (2.35 [16], 2.21 [6], 2.4–2.6 [17], and 2.4 [7]); while the mean
terms/query number for filtering queries appears somewhat smaller (1.96), a
closer examination reveals that this difference is caused to a large extent by
two specific clients; excluding these outliers, the mean terms/query for filtering
queries is 2.5, similar to that of ad-hoc ones.1

4 Types of Information Needs

Next, we analyze the information needs in the blogspace, partitioning the queries
into two broad classes.

Following Broder’s influential work [4], queries submitted to web search en-
gines are generally grouped into three classes: informational (find information
about a topic), navigational (find a specific web site), and transactional (perform
some web-mediated activity). This may not be an appropriate classification for
queries submitted to blog search engines—clearly, transactional queries are not
a natural category for blog search, and a user searching for a particular site, or
even a particular blog (i.e., submitting a navigational query) would not neces-
sarily use a blog search engine, but rather a general-purpose web engine. Our
working hypothesis, then, is that the majority of blog queries are informational
in nature, and a scan of the search log confirms this.

Given this assumption, is it possible to identify different types of informa-
tional queries submitted to a blog search service? Ideally, this would be done
using a user survey—in a manner similar to the one performed by Broder [4].
Unfortunately, we only have retrospective access to the submitted queries, with
1 The two clients issued large amounts of queries in fixed, short intervals; the queries

appear to have been taken from a dictionary in alphabetical order and are all single
words, pushing down the mean number.
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no possibility of conducting such a survey. However, Broder’s work shows a fairly
good correlation between the results of his survey and manual classification of a
subset of the queries, leading us to assume that an analysis of the query types
based on an examination of the queries in our data is worthwhile.

First, we examined a random set of 1000 queries, half of which were ad-hoc
queries and half filtering ones, so as to discover likely query types. We observed
that the majority of the queries—52% of the ad-hoc ones and 78% of the filter-
ing ones—were named entities: names of people, products, companies, and so on.
Of these, most belonged to two types: either very well-known names (“Bush”,
“Microsoft”, “Jon Stewart”), or almost-unheard-of names, mostly names of in-
dividuals and companies.2 An additional popular category of named entities was
location names, mostly American cities. Of the non-named-entity queries, most
queries—25% of the ad hoc queries and 18% of the filtering ones—consisted
of high-level concepts or topics, such as “stock trading”, “linguists”, “humor”,
“gay rights”, “islam” and so on; the filtering queries of this type were mostly
technology-related. The remainder of the queries consisted of adult-oriented
queries (almost exclusively ad-hoc queries), URL queries, and other queries for
which we could not find specific characteristics.

Next, we examined the 400 most common queries (again, half ad-hoc and
half filtering), to find out whether the query types there differ from those found
in “the long tail.” While the types remained similar, we witnessed a different
distribution: 45% of the ad-hoc queries and 66% of the filtering queries were
named entities; concepts and technologies consisted of an additional 30% of top
ad-hoc queries and 28% of filtering ones. Adult-oriented ad-hoc queries were
substantially more common in top ad-hoc queries than in the random set.

Consequently, our hypothesis regarding the intents of blog searchers divides
the searches into two broad categories:

– Context Queries: The purpose of these queries is to locate contexts in
which a certain name appears in the blogspace: what bloggers say about it.
Most of the named entity queries have this intent; the well-known names
might be entities in which the searcher has an ongoing interest (such as
politicians) or products she is researching, whereas the lesser-known names
are typically vanity searches, or searches for contexts of entities which con-
stitute part of the searcher’s closer environment (an employer, organization
in which the searcher is a member, etc).

– Concept Queries: With these queries the searcher attempts to locate blogs
or blog posts which deal with one of the searcher’s interest areas, or with
a geographic area that is of particular interest to the searcher (such as
blogs authored by people from his home town). Typical queries of this type
are the various high-level concepts mentioned earlier, as well as location
names.3

2 The prevalence of the named entity was established using Google hit counts: well-
known names typically had millions of hits; unknown names had few if any.

3 These queries are somewhat similar to distillation queries as defined by TREC, with
target results being blogs rather than websites.
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Table 2. Query classes: the top 400 queries vs. a random sample of 1000 queries

Top queries Random queries
Class Ad-hoc Filtering Ad-hoc Filtering
Context 39% 60% 47% 73%
Concept 36% 34% 30% 23%
Other 25% 6% 23% 4%

Table 2 shows a breakdown of both the random set and the top-query set
according to query type, for ad-hoc and filtering queries separately. For this
breakdown, named-entity queries (except location names) were considered as
context queries; high-level areas of interest and location names were considered
concept queries.

As an aside, while examining the top queries, we observed an interesting
phenomenon which we did not witness in the random set: many of the queries
were related to events which were “in the news” at the time of the log. This
supports the assumption that blogs are conceived as a source of information and
commentry about current events [11]. To quantify the number of news-related
queries, we used two independent methods. First, a human decided, for each
query, whether it was news-related. This was done by studying the terms in
the query, and attempting to locate events related to it that happened during
May 2005, the period covered by the log. The second method was an automated
one: we obtained daily word frequencies of the terms appearing in the query as
reported by Technorati, for the entire year of 2005. Terms which had substantial
peaks in the daily frequency counts during May 2005 were considered related to
news; sample daily frequencies over the entire year of 2005 are shown in Figure 1.
The agreement between our two methods (kappa) was 0.72.

In total, we found that 20% of the top ad-hoc queries and 15% of the top
filtering ones are news-related; in the random set, news-related queries were sub-
stantially less frequent, amounting to 6–7% of both ad-hoc and filtering queries.

In sum, blog searches have different intents than typical web searches, suggest-
ing that the primary targets of blog searchers are tracking references to named

Fig. 1. Sample daily frequency counts in 2005. (Left): a news-related query (“Star
Wars”). (Right): a non-news-related query (“Tivo”).
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entities and identifying blogs or posts which focus on a certain concept; in addi-
tion, searches related to current events are substantially more common in blog
searches than in web searches, in particular in the popular queries.

5 Popular Queries and Query Categories

Next, we provide a brief overview of the top queries posted, describe a cate-
gorization method, and apply this method to the queries in the log, trying to
construct the profile of topics blog searchers are interested in.

Simply counting the number of times a query appears in our log yields mis-
leading results regarding the most popular queries. This is due to the fact that
the majority of the search requests are automated, and are repeated at regular
intervals; agents issuing these queries with high refresh rates will create a bias
in the query counts. As a result, we measure the popularity of a query not ac-
cording to the number of occurrences, but according to the number of different
users submitting it. As a key identifying a user we use a combination of the IP
address and the user agent string (more details on user identification are given
in Section 6).

The most popular queries in the log are shown in Table 3, columns 1 and 2,
separately for ad-hoc and filtering queries.

Table 3. Top 20 queries. (Left): Ad-hoc blog queries. (Center): Filtering blog queries.
(Right): Web queries.

Ad-hoc Filtering Web
filibuster Lotus Notes American Idol
Blagojevich Daily Show Google
sex microcontent Yahoo
porn information architecture eBay
blogdigger MP3 Star Wars
Madagascar Streaming Mapquest
RSS Google Hotmail
adult Wayne Madsen Valentine’s day
Google Tom Feeney NASCAR
nude Clint Curtis hybrid cars
MP3 digital camera MP3 players
Los Angeles DMOZ NFL
test desktop search dictionary
China manga Paris Hilton
3G RSS Michael Jackson
Star Wars Abramoff Hillary Clinton
IBM knowledge management heartburn
blog government Lohan
music restaurant flowers
Bush information management Xbox 360
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5.1 Comparison to Web Queries

To compare the popular queries submitted to blog search engines with those
sent to general web search engines, we obtained a set of 3.5M queries submitted
to Dogpile/Metacrawler, a second-tier general web search engine,4 during May
2005—the same timespan as our blog search log. The top 20 queries from this
source are listed in Table 3, column 3.

Some differences between the query lists are clear: the web queries contain
many large web sites (Yahoo!, eBay, Hotmail, and so on), perhaps because for
some users, the distinction between the search input box and the browser’s
address bar is unclear. Additionaly, the top blog queries seem to contain a some-
what higher percentage of political and technology-related queries; this strength-
ens our findings in Section 5.2 regarding the top interests of bloggers.

Other differences between blog queries and web queries require examining
more than a small number of top queries. Comparing the most popular 400
queries from both sources, we observed a substantially higher rate of named-
entity queries within blog queries than in web queries. As mentioned in Sec-
tion 4, 45% of ad-hoc blog queries and 66% of the filtering queries were named
entities; in comparison, only 33% of the top 400 web queries were named entities,
many of which were website names. This suggests that blog searchers—especially
those registering filtering queries—are more interested in references to people,
products, organizations or locations than web searchers.

As noted earlier, we found a relatively large amount of new-related queries
among top blog queries; this type of queries proved to be fairly uncommon in
general web search engines, accounting for less than 8% of the top 400 queries,
and less than 2% of 400 random ones.

An additional difference between the query lists is the presence of very detailed
information needs (such as factoid questions) in the web query log: such queries
were not found among the blog queries. Finally, as is the case with web searches,
adult-oriented queries are an important area of interest for ad-hoc blog searchers;
however, these are nearly non-existent in filtering queries.

5.2 Query Categories

Current approaches to automatic categorization of queries from a search log
are based on pre-defining a list of topically categorized terms, which are then
matched against queries from the log; the construction of this list is done manu-
ally [1] or semi-automatically [12]. While this approach achieves high accuracy,
it tends to achieve very low coverage, e.g., 8% of unique queries for the semi-
automatic method, and 13% for the manual one.

We take a different approach to query categorization, substantially increas-
ing the coverage but (in our experience) sustaining high accuracy levels:
our approach relies on external “categorizers” with access to large amounts of
data. We submit every unique query in our corpus as a search request to two

4 This is a metasearch engine, submitting queries to a number of other engines such
as Google and Yahoo! and aggregating the results.
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category-based web search services: Yahoo! Directory (http://dir.yahoo.com)
as well as Froogle (http://froogle.google.com). The former is a manually-
categorized collection of web pages, including a search service for these web
pages; the latter is an online sales search service. We use the category of the top
page retrieved by the Yahoo! Directory as the “Yahoo! Category” for that query,
and the top shopping category offered by Froogle as its “Froogle Category;” while
the Yahoo! Category is a topical category in the traditional sense, the Froogle
Category is a consumer-related one, possibly answering the question “if there
is potential commercial value in the query, what domain does it belong to?”
In spirit, this is similar to the usage of the Open Directory Project to classify
web pages by category (e.g., in [15]), except that we classify terms, not URLs
(similar methods for query classification have been developed in parallel for the
KDD 2005 Cup [14]).

The coverage achieved with this method is fairly high: in total, out of 43,601
unique, non-media queries that were sent to Yahoo! and Froogle, 24,113 (55%)
were categorized by Yahoo! and 29,727 (68%) by Froogle. Some queries were not
categorized due to excessive length, non-standard encodings, and other technical
issues, so the coverage over common queries is even higher. An examination of
the resulting categories shows high accuracy, even for queries which are very
hard to classify with traditional methods, using the query words only. Table 4
lists some examples of queries along with their corresponding categories.

Table 4. Example queries and categories

Query: 24
Yahoo! category: /Entertainment/Television Shows/Action and Adventure/24
Froogle category: /Books, Music and Video/Video/Action and Adventure
Query: Atkins
Yahoo! category: /Business and Economy/Shopping and Services/Health/Weight

Loss/Diets and Programs/Low Carbohydrate Diets/Atkins Nutritional Approach
Froogle category: /Food and Gourmet/Food/Snack Foods
Query: Evolution debate
Yahoo! category: /Society and Culture/Religion and Spirituality/Science and Reli-

gion/Creation vs. Evolution/Intelligent Design
Froogle category: /Books, Music and Video/Books/Social Sciences
Query: Vioxx
Yahoo! category: /Health/Pharmacy/Drugs and Medications/Specific Drugs and Med-

ications/Vioxx, Rofecoxib
Froogle category: /Health and Personal Care/Over-the-Counter Medicine

Figure 2(Left) shows a breakdown of the top Yahoo! categories for ad-hoc and
filtering queries. Taking into account that “Regional” queries often refer to news-
related events, we witness again that current events are a major source of interest
for blog searchers. A similar breakdown of the top Froogle categories is given in
Figure 2(Right), indicating that most queries which can be related to products
deal with intellectual property, such as movies and books. An added benefit of
the Yahoo! and Froogle categories is their hierarchical nature: this enables us to
not only examine the most frequent category, but also to evaluate the breakdown
of subcategories within a given category. For space reasons, we do not include
an analysis of these subcategories here, and plan to do so in future work.
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Fig. 2. (Left): Top Yahoo! categories. (Right): Top Froogle categories.

As is the case for general web searches, adult-oriented searches are the top
category for commercial queries, followed by technology-related queries and fi-
nancial issues. In the entertainment domain, music clearly dominates the scene.

We conclude that in terms of interest areas, blog searchers are more engaged in
technology and politics than web searchers, with a noticeable interest in named
entities: names of people, brands, companies, and so on.

6 Session Analysis

Next we analyze the query sessions in the log, examining issues such as the
amount of queries submitted in a session and the number of viewed results.

Our log does not contain full session information: we do not know how long the
user spent examining the results, and which result links she followed. However,
since some identification of the user is given for each query in the log in the form
of IP address and user agent string, it is possible to group the queries by sessions
and to perform a basic analysis of these.

Before describing our approach to session recovery and discussing charac-
teristics of the extracted sessions it is important to note the difference between
sessions that contain ad-hoc searches and sessions that contain filtering searches.
The former are similar to standard web search sessions, and consist of different
queries that a user submitted to the search engine during her visit. These differ-
ent queries include, in many cases, reformulations of a query, or highly-related
terms which indicate the user is trying to collect more information regarding her
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interest. In contrast, “sessions” containing filtering searches are actually sets of
queries registered by the same user: in practice, they are not queries submitted
during a single visit to the search engine, but a list of queries the same user
expressed ongoing interest in, possibly added over a long period of time.

6.1 Recovering Sessions and Subscription Sets

We assume two queries to belong to the same session if the following conditions
hold: (1) The queries originate from the same IP address; (2) The user agent
string of the two queries is identical, and (3) The elapsed time between the
queries is less than k seconds, where k is a predefined parameter.

The main drawback of this method is its incompatibility with proxy servers:
queries originating from the same IP address do not necessarily come from the
same user: they can also be sent by different users using the same proxy server;
this is a common scenario in certain environments, such as companies with a
single internet gateway. While the usage of the user agent string reduces the
chance of mistaking different users for the same one, it does not eliminate it
completely. Having said that, anecdotal evidence suggests that the recovered
sessions are in fact “real” sessions: the conceptual and lexical similarity between
queries in the same session is high for the vast majority of sessions we examined.
Additional evidence for the relative robustness of this method can be seen in
the fact that, when used on the set of all queries, it produces less than 0.5%
“mixed sessions” – sessions containing both ad-hoc and filtering queries, which
are unlikely to be a real session.

We performed our analyses independently for ad-hoc and filtering queries; to
avoid confusion, we use the term “sessions” only for ad-hoc sessions—which are
indeed sessions in the traditional sense; for filtering sessions, we use the term
“subscription sets” (which denotes lists of filtering queries done by the same user
within a short timeframe).

6.2 Sessions and Subscription Sets

We experimented with various values of k; manual examination of the recovered
sessions suggests that values between 10 and 30 seconds yield the most reliable
sessions for ad-hoc queries. For filtering queries, the session time is much shorter,
in-line with intuition (since the queries are automated): reliable sessions are
found with k values of 2–5 seconds. The thresholds were set to 20 seconds for
sessions and 5 seconds for subscription sets; this produces 148,361 sessions and
650,657 subscription sets.

Many sessions and subscription sets contain simple reformulations such as
different uses of query operators; others are composed of related terms, and
yet others consist of seemingly unrelated queries, matching different interests
of the same user. Table 5 provides example sessions and subscription sets, and
Table 6(Top) details statistics about the session length (the number of unique
queries per session), comparing our findings to those for general web searches [16].

The short session length is similar to the one observed in web search engines,
e.g., in [16]. While subscription sets also exhibit a short length on average, the
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Table 5. Example sessions and subscription sets; queries belonging to the same session
or subscription set are separated by semicolons

Type Queries
Session autoantibodies ; autoantibodies histamine ; histamine
Session firmware dwl 2000 ap+ ; dwl 2000 ap+ ; dwl-2000 ap+
Subscription set “XML Tag Monitor Report” ; “XML Search Selector”
Subscription set imap ; imap gmail ; Thunderbird IMAP ; imap labels ; rss email ;

thunderbird label ; imap soap

Table 6. (Top): Session and subscription set lengths (number of unique queries). (Bot-
tom): Result page views for ad-hoc queries, per session.

Blog queries Web queries
Sessions Subscriptions Sessions [16]

Length Mean 1.45 1.53 2.02
Length 1 70.2% 75.8% 77.6%
Length 2 20.9% 13.7% 13.5%
Length ≥3 8.8% 10.4% 9.9%

Page views Mean 1.09 N/A 1.39
1 result page 94.9% N/A 85.2%
2 result pages 3.4% N/A 7.5%
3 or more pages 1.7% N/A 7.3%

actual lengths of the sets vary much more than those of sessions—as can be seen
from the much higher variance (5.10 for subscriptions vs. 0.87 for sessions). Users
may subscribe to any amount of queries, and, in our data, some users registered
as much as 20 queries.

For ad-hoc queries, an additional interesting aspect is the number of result
pages the user chooses to view (each containing up to 10 matches). As with web
searches, we find that the vast majority of users view only the first result page:
see the detailed breakdown in Table 6(Bottom), again comparing our findings
to those presented for general web searches in [16]. While there is a statistically
significant difference between the two samples (blog sessions vs web sessions),
the bottom line is similar: most users do not look beyond the first set of results.5

In sum, while we found that query types in the blogspace differ from the types
of queries submitted to general web search engines, we discovered a very similar
user behavior for issuing queries and viewing their results.

7 Conclusions

We presented a study of a large blog search engine log, aimed at analyzing the
type of queries issued by users in this domain, the user behavior in terms of
5 Also, the number of page views for web searches is constantly decreasing, as search

engine technology is improving and more relevant documents appear in the first few
results.
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amount of queries and page views, and the categories of the queries. The query
log covers an entire month, and contains both ad-hoc and filtering queries.

Our main finding in terms of query types is that blog searches fall into two
broad categories—context queries, attempting to track the references to various
named entities within the blogspace, and concept queries, aimed at locating blogs
and blog posts which focus on a given concept or topic. The distribution of these
types differs between ad-hoc and filtering queries, with the filtering ones being
more context-oriented. In addition, we found that blog searches tend to focus on
current events more than web searches.

As to user behavior, the behavior observed is similar to that in general web
search engines: users are typically interested only in the first few results returned,
and usually issue a very small number of queries in every session.

Finally, using external resources to categorize the queries, we uncovered a blog
searcher profile which is substantially more concentrated on news (particularly
politics), entertainment, and technology than the average web searcher. Hence,
it may be useful for blog search engines to identify and exploit named entities
(and parts of them), especially in the domains mentioned above.
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Abstract. Presentation of search results in Web-based information retrieval 
(IR) systems has been dominated by a textual form of information such as the 
title, snippet, URL, and/or file type of retrieved documents. On the other hand, 
document’s visual aspects such as the layout, colour scheme, or presence of im-
ages have been studied in a limited context with regard to their effectiveness of 
search result presentation. This paper presents a comparative evaluation of tex-
tual and visual forms of document summaries as the additional document  
surrogate in the search result presentation. In our study, a sentence-based sum-
marisation technique was used to create a textual document summary, and the 
thumbnail image of web pages was used to represent a visual summary. The 
experimental results suggest that both have the cases where the additional ele-
ments contributed to a positive effect not only in users’ relevance assessment 
but also in query re/formulation. The results also suggest that the two forms of 
document summary are likely to have different contexts to facilitate user’s 
search experience. Therefore, our study calls for further research on adaptive 
models of IR systems to make use of their advantages in appropriate contexts. 

1   Introduction 

The Internet has transformed into a main source of information for many and as a 
consequence web search engines have become an essential tool in our day to day  
life. Web search engines such as Google, Yahoo!, and MSN Search are processing 
millions of queries a day. The interaction paradigm of such engines follows more or 
less the same style assuming that this is the best for all users. However, recent user 
behaviour studies on commercial search engines challenge such assumptions [1]. In 
this paper, we conduct a comparative evaluative study assessing the effectiveness of 
various forms web search interfaces. 

Most web search engines operate on a general principle of retrieval. Users’ provide 
a set of query terms as a representative of their underlying information need. In re-
sponse systems, after comparing the query to the documents in the collection, provide 
a list of potential documents which might contain useful information to satisfy the 
users’ information need [2]. 

However, a number of issues are overlooked in such a simplistic view. The first 
one is that formulating a good query is proved to be cognitively challenging task for 
users [3]. Often queries are approximations of their underlying need and hence the 
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whole information seeking process is iterative in nature [4]. The second issue is in 
interpreting and assessing the relevance of documents in the returned list [5]. It has 
been shown that users of web search engines are reluctant to examine a large number 
of individual documents or even past the first page of the result list [1]. The users 
decision to view a document or not depend on the information in the document surro-
gates such as title, URLs and abstracts (often snippets extracted form the documents). 
The third issue is in the matching of the submitted query with the documents (or their 
indexes) with the intention of selecting a set of documents that contain information on 
the query. The first two issues make the development of information seeking inter-
faces a non-trivial task. 

The major thrust of this paper is related to the first two issues. That is pertaining to 
user interaction which includes issues related to query formulation and judging the 
usefulness of each document in the list. In this paper we propose and evaluate a num-
ber of interfaces which facilitate the relevance (usefulness) judgement issues differ-
ently. The results of the experiments demonstrate the effectiveness of our proposed 
interfaces and demonstrate the inadequacy of current interfaces. 

2   Background and Motivation 

The main purpose of search engines is to help people find information that is useful or 
relevant to completing a task. Search interfaces are the means through which users 
interact with search systems and control all aspects of their search. 

The results from information seeking studies point to the fact that users look for in-
formation to complete a task. From a cognitive perspective, it has been termed that 
there is a gap in users’ knowledge and the information is needed to fill this gap [3]. 
Finding relevant information may require running several queries, making judgments 
on the usefulness of documents returned, and reading many documents. Considering 
the importance of this task to many users, it is imperative to design interfaces that 
maximize the amount of information users can obtain during a search. 

Submitted user queries are often an approximation of his/her underlying informa-
tion need [6]. Since the system returns documents based on such queries, the useful-
ness of such documents are not certain. The documents in the result list might be not 
relevant, or partially relevant. Often documents contain partial information or redun-
dant information from a previously seen document. In order to conduct an effective 
search it is imperative that users be able to make reasonably correct judgements about 
the documents in the result list. 

Novel result visualisation techniques were proposed to address this problem [5]. 
Another techniques tried out are various summarisation techniques [7]. It has shown 
that the use of query-based summarisation techniques in improving the search effec-
tiveness. Recently, new approaches to web page result presentation were tried. Most 
of these systems present the user with an unfamiliar, graphical interface that imposes 
an increased cognitive burden on the user or consider documents as finest level of 
granularity for result presentation [8]. 

Users’ assessment of relevance of documents in the result list is based on the sur-
rogates displayed (e.g., title, URL and snippets). It has been shown that such informa-
tion is inadequate to provide effective search sessions [9]. For example, the quality of 
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title information can vary mainly because of the casual approach to generating a title 
at the time of web-page creation. The document snippets shown by many web search 
engines are fragments extracted from the whole document. Often such snippets are 
incomplete sentences extracted from the documents and as such inadequate to aid 
effective relevance judgements. The role of query-based sentences in assisting on 
making proper relevance assessments has been reported [9]. 

An aspect that affects information seeking process is the task at hand. For some 
tasks, it is important to know the genre of document. Often users may search for same 
information again and again. In this case, a thumbnail of the document would aid in 
judging the usefulness of the document [10]. 

In this work, we device three alternative forms of search result presentations. We 
use Google result presentation as a baseline. As additional surrogates we use query-
based document summary called top ranking sentences, or TRS [11] and thumbnails 
of documents retrieved. While the previous study used the TRS as a replacement of 
Google snippet, in our interface, the TRS was used as additional information to the 
snippet. In addition, we make use of document thumbnails as a surrogate. We believe 
it is useful in judging the relevance and assessing the genre of a document. We aug-
ment information on the Google interface with thumbnails of documents. In the fol-
lowing session we will introduce these interfaces briefly. 

The purpose of the experiment is to find the effectiveness of these interfaces in 
web information seeking tasks. We designed an experiment with real users, real tasks 
on the live Internet. 

3   Interfaces for Search Result Presentation 

We augment web search system Google with 3 new interfaces. Our interfaces collect 
user queries and forward to the Google search system using Google API1. The result 
list from Google collected and processed. Information needed for new interfaces were 
created at this time. Like in web search result pages, user can peruse ten document 
records at a time. After this, they can either reformulate the query or peruse the next 
ten records. 

As a baseline we use the Google interface. Three layouts of search results presenta-
tion were designed and compared to the baseline layout. All layouts were designed to 
show ten records per page as Google's default setting did. The rest of this section will 
present the layouts used in our experiment. 

Layout 1: Baseline – The baseline layout was designed to provide an almost identical 
interface to the search result of Google. For each record, it had a title, snippet, URL, 
size, and the hyperlinks of cached page and similar page. 

Layout 2: Baseline + TRS – The second layout integrated up to three top ranking 
sentences (TRS) into the baseline layout. The sentences were inserted below the snip-
pet as a list, and background was highlighted to clarify the distinction between the 
TRS and snippet. The query terms were highlighted in bold in the same manner as it 
would have been in the title and snippet. There was some run-time overhead in gener-
ating TRS for retrieved documents. In order to minimise the difference of response 

                                                           
1 http://www.google.com/apis/ 
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time among the layouts, TRS was always created when a new query was submitted to 
the interface, but it was only displayed in Layout 2 and 4. 

Layout 3: Baseline + Thumbnail – The third layout integrated a thumbnail image of 
the web page screenshot into the baseline layout. The thumbnails were fetched from 
the Alexia's thumbnail archive2. The thumbnail was placed on the left side of the other 
document surrogates, and it was linked to the URL of the pages. The size of thumb-
nails was 112 (width) and 82 (height) pixels which was perhaps too small to read the 
texts, but we considered that it should be large enough to grasp the visual aspects of 
pages such as the layout, colour scheme, or the presence of images. 

Layout 4: Baseline + TRS + Thumbnail – The last layout was the combination of 
Layout 2 and 3 (See Fig. 1). While this layout took up the largest space in the screen, 
it was designed to provide the largest amount of information per record among the 
four layouts. 

 

Fig. 1. Search result with TRS and thumbnail (Layout 4) 

As can be seen, we designed the four layouts so that the different variable between 
layouts remained to be a single element. This was due to our consideration for mini-
mising the difference between layouts to evaluate the effectiveness of TRS and 
thumbnails in a systematic way. The next section will discuss the detail of our ex-
periment based on the four layouts. 

4   Experiments 

A comparative user study was carried out to evaluate the effectiveness of the four 
search result layouts described above. This section will discuss the methodology 
adopted in our experiment. 

A total of twenty-four people (6 female and 18 male) were recruited for our ex-
periment. Most participants were the research students of the University of Glasgow. 
The rest was affiliated members of the University. The entry questionnaire established 
that the range of age varied from 20 to 37 with an average of 27.7. Their experience 

                                                           
2 The Alexa archive (www.alexa.com) did not always contain the thumbnail of the web pages 

retrieved during our experiment. Our understanding was that a missing thumbnail was re-
placed by a parent site when it was available. Otherwise it showed the Alexa's logo image to 
indicate the absence of thumbnails. In our experiment, a missing thumbnail was treated as a 
similar case to a dead link on the web. 



306 H. Joho and J.M. Jose 

 

with search engines varied from 4.5 to 11 years with an average of 7.1 years. All par-
ticipants carried out several searches every day, and 91.6% of them used Google most 
frequently. 

Participants were asked to carry out four search tasks in the experiment. The tasks 
were designed based on the simulated work task approach [12]. The simulated work 
task described a task as a form of short scenario. The scenario explained the contexts 
and motivation of the search with the sufficient information about the relevance of 
pages. The details of the tasks used in our experiment were as follows. 

Task 1: Background search task – This task asked participants to find general back-
ground information on a topic. In our experiment, participants were asked to find the 
pages which provide the information about the recent change of student populations. 
Task 1 and the following Task 2 were originally used and replied by [13]. 

Task 2: Decision making task – This task asked participants to make a decision 
about a topic. In our experiment, participants were asked to find the best Hi-Fi speak-
ers available in a target price. Participants were encouraged to compare the speakers’ 
details in the decision making. 

Task 3: Known item search task – This task asked participants to find the informa-
tion about a topic which was previously known by the searcher. In out experiment, 
participants were asked to find the current whereabouts of a person who assumed to 
be a previous colleague of the searcher. 

Task 4: Topic distillation task – This task asked participants to find a list of key 
resources for a topic. The definition of key resources was based on the instruction of 
the Web Track of TREC3. The main criteria for being a key resource was that the 
website was principally devoted to the topic. In our experiment, participants were 
asked to find the key resources for designer handbags. 

One of our intentions behind the selection of these tasks was to investigate a differ-
ent level of documents’ textual and visual elements that were likely to be significant 
to complete the tasks. For example, Task 1 was likely to involve more textual infor-
mation than visual while Task 4 was likely to involve visual aspects of documents in a 
greater degree than other tasks. Task 2 and 3 were supposed to involve both aspects in 
a similar degree. 

The user study was carried out in the following manner. At arrival time participants 
were asked to read an information sheet which described the guideline for the partici-
pation and goal of the experiment. Upon the agreement of participation, participants 
were asked to fill in an entry questionnaire to indicate their age, sex, and search ex-
perience. Then they were presented with a training topic and explained the nature of 
simulated-work task. They were given approximately 10 minutes to familiarise with 
the search interfaces and task activity. During the training session, the four layouts 
were introduced to participants and the questions regarding the interface and tasks 
were answered. 

During the tasks, participants were asked to bookmark the pages they thought rele-
vant. However, no explicit instruction was given to participants regarding the number 
of bookmarks required to complete the tasks. We asked participants to bookmark pages 

                                                           
3 http://es.csiro.au/TRECWeb/guidelines_2004.html 



 A Comparative Study of the Effectiveness of Search Result Presentation on the Web 307 

 

to ensure their engagement to search tasks. Participants were given up to 15 minutes to 
complete a task, but allowed to end it when they felt they completed the tasks. 

After the first task was completed, participants were asked to fill in a post-search 
questionnaire to provide subjective assessments about their search. Then a new task 
was given to them and change of layout was informed. The same procedure was re-
peated four times. The presentation order of topic and layout was rotated according to 
a Latin-Square arrangement to reduce bias from participants performing the same 
tasks with the same system in the same order. 

After the completion of four tasks, participants were asked to fill in an exit ques-
tionnaire to indicate their overall preference of layouts, followed by an open-end 
interview to capture their feedback and comments of the result presentation and 
experiment. 

5   Experimental Results 

This section presents the results of our experiment. A total of 96 search sessions were 
performed by participants and analysed in our investigation. Due to the nature of 
study concerning search results presentation, both quantitative and qualitative data 
were equally important to our study. The quantitative data such as participants' inter-
actions with the interface were based on the system logs recorded during the experi-
ment. The qualitative data such as participants' subjective assessments of search were 
established by the post-search questionnaires and exit interview. We used a 7 point 
scale to capture participants' assessments where a positive assessment was represented 
by a low score in the analysis. 

The results of our experiment were analysed from four perspectives as follows: 
user interaction, relevance assessment, contribution of layout features, and finally, 
layout preference. In this section, the discussion about the results is often based on the 
comparison to our baseline layout (Layout 1). For simplicity, we sometimes use the 
term summary layouts to refer to Layout 2, 3, and 4. In addition, one of the aspects we 
were interested in this investigation was participants' decision of which document to 
visit from search results. We refer such decisions as to an initial relevance assessment 
in this section. 

For most differentials presented in this section, the Kruskal Wallis Test was ap-
plied to the data to establish statistical significance of the results. When a statistical 
significance was found between groups, Dunn’s post hoc test was applied to deter-
mine the significant pairs. Due to the size of cases and arguably large variance of lay-
outs’ performance across the tasks, we did not find a statistical significance in many 
cases. We only report it when the significance was found in this section. 

5.1   User Interaction 

Table 1 shows participants' interactions with the four layouts evaluated in our  
experiment. The second column shows the average number of queries submitted to 
the interface per search session. The third column shows the number of words used in 
the queries. The fourth column shows the number of result pages viewed during the 
tasks. The fifth column shows the number of pages viewed per iteration. The sixth  
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Table 1. User interaction 

Layout Iteration 
Query 

Length Page
Page / 

Iteration
Click / 

Page Bookmark 
Time 
(min) 

1 5.6 (3.9) 3.6 (2.6) 7.7 (5.7) 1.5 (0.7) 2.2 (1.6) 4.0 (2.8) 13.5 (2.8) 

2 8.5 (6.3) 3.4 (1.6) 10.1 (6.4) 1.3 (0.6) 1.6 (1.3) 3.4 (2.2) 13.3 (3.0) 

3 7.4 (4.7) 3.9 (1.5) 10.1 (5.7) 1.9 (1.5) 1.3 (0.8) 3.6 (3.3) 13.6 (2.5) 

4 7.6 (5.6) 3.2 (1.4) 10.0 (6.1) 1.7 (1.1) 1.6 (1.4) 4.0 (3.7) 13.7 (2.5) 

Total 7.3 (5.2) 3.5 (1.7) 9.6 (6.0) 1.6 (1.0) 1.7 (1.3) 3.7 (3.0) 13.6 (2.6) 

n=24 (Layout 1-4), n=96 (Total) 

 
column shows the number of retrieved records clicked per result page. The seventh 
column shows the number of bookmarked URLs. The eighth column shows the time 
taken to complete the tasks. The numbers in 2nd to 5th rows are a mean value across 
24 sessions, and the standard deviation of the value is shown in the brackets. 

One of the noticeable differences in Table 1 is the number of iterations. Partici-
pants tended to submit more queries to the interface in the summary layouts compared 
to the baseline layout. We also examined the presence of phrases in the queries. The 
number of queries that had at least one phrase was six in Layout 1, while 31, 21, and 
30 queries contained at least one phrase in Layout 2, 3, and 4, respectively. This sug-
gests that participants were more engaged in query re/formulation with the summary 
layouts compared to the baseline layout. 

More iteration in the summary layouts led to a greater number of result pages 
viewed by participants to find relevant documents. However, the click per page ratio 
shown in the sixth column of Table 1 suggests that participants tended to click fewer 
records in the summary layouts. Given that an underlying search engine was identical 
across the layouts, this suggests that participants made more relevance judgements 
based on the document surrogates in the summary layouts, thus, they did not have to 
visit the retrieved pages as much as they did with the baseline layout. This suggests 
that the additional information offered by TRS or thumbnails appears to facilitate  
participants’ relevance assessments. 

A statistical significance was found in the query length between Layout 1 and  
Layout 3. No statistical significance was found for other differentials. 

Figure 1 shows the distribution of click-through documents’ ranking positions. 
Two trends can be found for the summary layouts in this figure. Firstly, more clicks 
were found in the top ranking positions which can be due to the larger number of  
iterations. Secondly, the clicks were stretched across a wider range of the ranking 
position compared to the baseline layout. This suggests that the TRS and thumbnails 
can contribute to an increasing level of exhaustively in relevance assessments. 

5.2   Relevance Assessments 

The previous results indicated that the initial relevance assessment might be more 
focused and exhaustive when TRS and/or thumbnails were added to the document 
surrogates. Table 2 presents participants' perception of relevance assessment from 
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Table 2. Relevance assessment 

Layout Ease of finding New information Contents prediction 

1 3.6 (1.7) 3.9 (1.6) 3.3 (1.5) 

2 3.6 (2.1) 3.1 (1.4) 4.1 (1.7) 

3 2.8 (1.5) 3.3 (1.4) 3.8 (1.9) 

4 2.5 (1.6) 3.2 (1.1) 3.1 (1.8) 

Total 3.2 (1.8) 3.3 (1.4) 3.6 (1.8) 

n=24 (Layout 1-4), n=96 (Total) 
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Fig. 2. Rank positions of click-through pages (n=1039) 

three perspectives. The second column is the score given to the question regarding the 
ease of finding relevant documents from search results. The third column is the score 
regarding the ease of finding the documents which contained new information.  
Finally, the third column is the score regarding how often the documents contained 
the contents they expected to find in the full text. A positive assessment is represented 
by a low score (i.e., Score 1 = Very easy or very often, 7 = Not at all). The numbers 
are the average of 24 sessions, and the standard deviation of the mean value is shown 
in the brackets. 

As can be seen, a similar or more positive average score was found in Layout 2, 3, 
and 4 compared to Layout 1 with regard to the ease of finding relevant documents as 
well as of finding new information. While Layout 4 was given the best score among 
them in the ease of finding relevant documents, Layout 2 was given a better score 
than the others in the ease of finding new information. This suggests that both a tex-
tual and visual presentation of document's summary had the cases where user's rele-
vance assessments were facilitated by them. 

A slightly contradicting result was found in the expectation of document's contents. 
While Layout 4 was given a better score than Layout 1, participants tended to give a 
lower score to the other two layouts. It is not clear why participants found Layout 2 
and 3 less predictable for document's contents, but there might be an unfamiliarity 
factor of TRS or thumbnails causing confusion in user's contents prediction. 
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5.3   Contribution of Layout Features 

The previous sections highlighted the advantages and disadvantages of adding new 
elements to the baseline presentation. The overall results suggested that Layout 4 
were likely to offer a better support in user’s information seeking process than Layout 
1. However, the difference between Layout 2 and 3 was less clear in several aspects. 
This section compares TRS and thumbnails by analysing the contribution of layout 
features in initial relevance assessments. 

The document surrogates are some of the primary sources for the searchers to de-
cide which documents to view from the search results. A typical document surrogate 
in search engines consists of the title, snippet, URL, size, and/or file type. In our ex-
periment, after each task, participants were asked to indicate to what extent each of 
the layout features contributed to their decisions of viewing documents from the 
search results. Like the previous section, a 7 point scale was used for the assessments. 
The result is shown in Table 3 where a stronger contribution is represented by a low 
score. The numbers are the average, and the standard deviation of the mean value is 
shown in the brackets. Note that the sample size differs across the layout features. 

The bottom row of the table suggests that participants often found the title of re-
trieved documents the strongest factor in deciding which document to view from the 
search result. This echoes the finding of [13]. When we compare TRS and thumbnail 
to Google's snippet, TRS was given a stronger score in Task 1 while the thumbnail 
was given a stronger score in Task 4. This suggests that the effectiveness of TRS and 
thumbnail can vary across the tasks. Also it indicates that the benefits of TRS and 
thumbnails might be mutually exclusive. In other words, the thumbnails might be 
useful where TRS are less effective, and vice versa.  

We were also interested in the correlation of the layout features contribution.  
Table 4 shows Spearman correlation coefficient of seven layout features measured  
in our experiment. The correlations that are statistically significant (p < .05) are high-
lighted in italic in the table. As can be seen, TRS was found to have a positive correla-
tion with both the title and snippet of the retrieved documents. On the other hand, the 
thumbnails had a small but significant negative correlation with the snippet and a 
positive correlation with URLs. The negative correlation with the snippet again sug-
gests that the usefulness of textual information might be mutually exclusive to the 
visual information in user’s initial relevance assessments. Also, thumbnails' positive 
correlation with URLs indicates that the thumbnails can be more influential when the 
genre or category of web pages is an important factor in the search tasks. 

Table 3. Contribution of layout features 

Task Title Snippet TRS Thumb. URL Size Type 

1 1.6 (1.1) 2.4 (1.7) 2.1 (1.2) 4.4 (2.2) 4.3 (1.9) 6.7 (0.8) 5.8 (1.7) 

2 1.9 (1.5) 2.7 (1.8) 2.7 (1.4) 4.8 (2.0) 3.5 (2.3) 6.5 (1.0) 6.4 (1.2) 

3 2.1 (1.6) 2.0 (1.3) 2.6 (1.7) 4.3 (1.8) 4.4 (2.0) 6.8 (0.5) 5.8 (1.7) 

4 1.8 (1.2) 2.5 (1.5) 3.3 (1.7) 2.3 (1.5) 3.0 (2.0) 6.4 (1.3) 5.8 (1.7) 

Total 1.8 (1.4) 2.4 (1.6) 2.6 (1.5) 4.0 (2.1) 3.8 (2.1) 6.6 (0.9) 5.9 (1.6) 

n=12 (TRS and Thumb. in Task 1-4), n=24 (the rest in Task 1-4), n=48 (TRS and Thumb. in Total), n=96 
(the rest in Total) 
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Table 4. Correlation of layout features contribution 

  Title Snippet TRS Thumb. URL Size Type 

TRS .410 .314 1.000 -.175 -.202 .010 .147 

Thumb. .210 -.265 -.175 1.000 .284 .247 .051 

n=48 

5.4   Layout Preference and Participants’ Comments 

Upon the completion of four tasks, participants were asked to rank the four layouts in 
their order of preference. In the exit open-ended interview, participants had an oppor-
tunity to provide any comments and feedback regarding the layouts and overall ex-
periment. We asked participants to rank the layouts based on the search experience 
with the given tasks. The most preferred layout was given Score 1 and the least was 
given Score 4. The counts of participant’s ranking are presented in Table 5, along with 
the average ranking. As can be seen, nearly half of participants preferred Layout 4 over 
the other layouts. Layout 1 was give the largest votes as the least preferred layouts. 
There appeared to be a slight preference towards Layout 2 compared to Layout 3. 

Table 5. Layout preference 

Preference Layout 1 Layout 2 Layout 3 Layout 4 

1 (Most) 4 6 3 11 

2 6 8 8 2 

3 2 7 10 5 

4 (Least) 12 3 3 6 

Average rank 2.92 2.29 2.54 2.25 

6   Implications 

The results of our study have several implications for the design of search interface  
on the web. First of all, adding the new elements that are designed to support user’s 
information seeking activity are likely to increase the level of interaction with a 
search interface. Our results suggest that query re/formulation and initial relevance 
assessments are likely to be facilitated by adding TRS and thumbnails to the result 
presentation. Given that many search engine users are reluctant to offer their effort in 
search [1], it is encouraging to see the cases where the proposed presentation of 
search results can contribute to the enhancement of search experience. Our results 
indicate that the additional information might have a positive effect for increasing the 
number of iterations. Participants often found it easier to find relevant documents and 
new information when TRS and thumbnails were added to the document surrogate. 
This suggests that the current search engine’s result presentation is not necessarily 
optimised and there is a room for improving the presentation. 

Our study also provided additional insight into the nature of textual and visual 
forms of documents’ summary. Previous study shows that, for example, TRS can be 
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useful for supporting users of interactive IR systems [7], and the effectiveness of 
thumbnails can vary across the types of search tasks [14]. Our experiment with the 
four types of layouts allowed us to compare the effectiveness of these two forms of 
additional information in a systematic way. Moreover, TRS and thumbnails were 
evaluated as an additional element as opposed to a replacement of some of layout 
features used in the current search engines. Our results suggest that the textual and 
visual presentation of documents’ summary is likely to offer additional information in 
a different context. Therefore, the effectiveness of TRS and thumbnails is often task 
dependent, but also their usefulness can be mutually exclusive in the search tasks. The 
overall positive performance of Layout 4 appears to be due to the fact that it could 
offer a support in a wider range of tasks than Layout 2 or 3. 

One of our conclusions, therefore, might be that it is safer to show both the textual 
and visual summaries of documents in the result presentation. It might offer some 
searchers a greater degree of control in the selection of useful information to carry out 
searches. However, it is also likely that user’s cognitive load will be increased when 
more elements are added to the search interface. Therefore, we suggest that the search 
interface should be able to offer a right form of document’s summary in an appropri-
ate context or task. Consequently, this study calls for more research on the under-
standing of users’ search contexts and adaptive technique to capture their needs in an 
appropriate context. This study presented the cases where such advance can be used 
to improve several aspects of search experience. 

7   Conclusion 

This paper presented a user study investigating the effectiveness of search result pres-
entation on the web. Both the textual and visual forms of document’s summary were 
evaluated as additional information that can be integrated into the current search en-
gine interface. Our evaluation investigated a wider range of aspects of information 
seeking behaviour than those previously carried out. Our results presented the cases 
where the additional elements of result presentation were likely to have a positive 
effect not only in the relevance assessment but also in query re/formulation. There-
fore, it was suggested that the typical result presentation used in the major search  
engine was not necessarily optimised and had a room for improving searching experi-
ence. The textual and visual forms of document summaries were likely to have differ-
ent contexts to facilitate user’s search experience. However, we will need more  
progress on adoptive models of information retrieval systems to make use of their 
advantages in an appropriate context. 
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Abstract. Structured document retrieval focusses on the retrieval of
relevant document fragments for a given information need that contains
both structural and textual aspects.

We focus here on the theory behind Bricks, a visual query formula-
tion technique for structured document retrieval that aims at reducing the
complexity of the query formulation process and required knowledge of the
underlying document structure for the user, while maintaining full expres-
sion power, as offered by the NEXI query language for XML retrieval.

In addition, we present the outcomes of a large scale usability experi-
ment, which compared Bricks to a keyword-based and a NEXI-based
interface. The results show that participants were more successful at com-
pleting a search assignments using Bricks. Furthermore, we observed that
the participants were also able to successfully complete complex search
assignments significantly faster, when using the Bricks interface.

1 Introduction

The focus in this article is on the query formulation process for structured docu-
ment retrieval. The large scale search engines available on the Internet allow easy
access to large quantities of on-line information. Using a few keywords a user
can formulate the information need and retrieve a list of relevant documents.
This approach is satisfactory for most users; but for digital libraries and large
intranets, where the information need is usually more specific and large amounts
of information on a particular subject are available, more sophisticated query
formulation techniques are desired.

Current approaches in structured document retrieval allow a user to either
specify the information need using keywords (content only), or by using a com-
bination of structural constraints and keywords. This is formalized in the NEXI
query language [1], where a user can specify the information request through an
XPath-like expression [2], that combines both the structural and content-based
aspects of the user information need.

Using such a query language for retrieval provides powerful expression mech-
anisms, but also has its impact on the query formulation process. The user
should then be able to express the information need using the syntax of the
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query language. In addition, the user should have knowledge of the structure of
the document. Consider the information need of Example 1, where a user visiting
the Lonely Planet Web-site wants to:

Example 1. Find historical information about revolutions for destinations with
a constitutional monarchy as government.

Using a (NEXI-CO) content-only approach, the user is likely to use the following
keyword combination to formulate the user information need: history revolutions
destination government “constitutional monarchy”. Without any path directives
in the information request a structured document retrieval system can literally
retrieve any document fragment that contains one or more of the given terms. For
example, this can be a piece of text that is emphasized, or the entire document.

Taking a closer look at the information need, we can see that the objective in
the example is to retrieve historical information. Furthermore suppose that the
user is familiar with the (semantical) structure of the document collection, the
user is then able to identify the structural conditions of the information need.

In Example 1 the structural conditions of the information request are under-
lined, while the emphasized terms form the content-based aspects of the infor-
mation need. If we make the transition from the information need to a formal
specification, the following NEXI content and structure (NEXI-CAS) query is
derived:

//destination[about(.//government, ”constitutional monarchy”)]//history[about
(., revolutions)]

The NEXI query language provides the necessary expression power for struc-
tured document retrieval. Although the syntax of the NEXI query language is rel-
atively simple, a user needs to learn the syntactical features. This makes it hard, if
not impossible, for the average user to express their information need in NEXI.

To overcome these limitations we have developed Bricks, a visual query for-
mulation technique for structured document retrieval that aims at:

1. Reducing the complexity of the query formulation process.
2. Reducing the required knowledge of the document structure.
3. Maintaining maximum expression power, as offered by the NEXI query

language.

To realize this, Bricks uses a graphical approach that allows the user to specify
the information need using small building blocks (‘bricks’), starting with the
specification of the desired element of retrieval. As a result, Bricks guides the
user in a more natural way through the query formulation process. Not only does
it solve the syntactical formulation issues, it also prevents possible information
overload, when the document structure is large and complex. This is realized by
using a priority for the different XML elements. Elements with a low priority
are not visible for the user early in the query formulation process. In Figure 1
the information need of Example 1 is expressed with Bricks.

To validate our ideas, we have designed and implemented the Bricks inter-
face on top of the structured document retrieval system that was developed for
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Fig. 1. Example information request in Bricks

participation in INEX, the INitiative for the Evaluation of XML retrieval [3].
INEX provides an international platform for the evaluation of structured doc-
ument retrieval strategies, allowing researchers to measure the retrieval perfor-
mance of their system.

Furthermore, we have set-up and performed a usability experiment to evaluate
our ideas. In the experiment, we used the Lonely Planet document collection1

to compare Bricks with a keyword-based (NEXI-CO) approach and the ‘content
and structure’-based (NEXI-CAS) approach. We will discuss the outcome of the
experiment in terms of effectiveness, efficiency and user satisfaction [4].

2 Related Work

In general an information retrieval system consists of three components: a query
formulation interface, a retrieval strategy (engine), and an interface for the result
presentation. Below we will discuss the impact of various research approaches
on structured document retrieval for each of the three components.

Query Formulation. The research on query formulation, presented in this
article is using the NEXI query language as a starting point. NEXI [1] is an
XPath-based query language that primarily focusses on the extraction of relevant
information, using a combination of path directives and content-based filters.
This makes NEXI an excellent query language for structured document retrieval,
providing a powerful expression mechanism to the user.

Alternative XML query languages, such as XQuery[5] and XSLT[6], do not
focus on the retrieval task. They provide additional functionality that lays out-
side the scope of structured document retrieval, like for example transformations
on the extracted XML document structure.
1 We would like to thank the Lonely Planet organization for provided the XML doc-

ument collection, based on their WorldGuide that is used for our experiments.



Bricks: The Building Blocks to Tackle Query Formulation 317

A more trivial query formulation technique is adopted by Lucene [7]. Infor-
mation that is found within a specific field, i.e. an XML element, can be specif-
ically targeted, like: government: ”constitutional monarchy”. The downside of
this approach is that it is not possible to retrieve anything other than the doc-
ument containing the requested field and content, or to specify more complex
paths.

Of course one should not neglect the power of keyword-based information
retrieval. It is still the driving force behind all popular search engines, allowing
literally anyone to specify the user’s information need with just a simple keyword
combination. The NEXI query language therefore allows for the specification
of keyword combinations, including the usage of phrases. This is referred to as
NEXI-CO (Content Only), while a NEXI query that contains a path specification
is referred to as a NEXI-CAS query (Content and Structure).

Retrieval Strategy. The success of a structured document retrieval system also
depends heavily on the retrieval strategy. It executes the (structural) information
request and derives a ranked list of relevant document fragments. In INEX, the
INitiative for the Evaluation of XML Retrieval [3], the retrieval performance of
structured document retrieval strategies is evaluated. Within INEX a number
of user-related issues are topic of discussion. With respect to query formulation
it is the question whether the structural conditions of the information request
should be strictly interpreted, or whether these conditions should be seen as
merely hints of where the user expects to find the relevant information [8]. For
our experiment, we have used a semi-strict interpretation of the path directives,
which penalizes retrieved document fragments that do not exactly fulfill the
structural conditions of the information request [9].

Result Presentation. Another issue within INEX refers to result presentation.
It deals with the question of finding the most specific and exhaustive element
of retrieval for a given information need. Therefore, it is possible that the list
of document fragments returned by the retrieval strategy contains overlapping
results [10]. When an XML fragment is considered relevant, its parent is by
definition also relevant, and probably more exhaustive. From a user perspective,
however, it is undesirable to have redundant items in the ranking of the document
fragments.

Since relatively small document fragments are derived by the system, it is
possible to use alternative techniques to present the retrieved information to the
user. This is also the scope of the INEX interactive track [11], where the inter-
action of the user with a result presentation interface for structured document
retrieval is evaluated, using a content-only approach for query formulation.

For our experiment we use a commonly accepted presentation technique,
which provides a link to the relevant fragment, a short summary of the frag-
ments content, and some additional statistical information that help the users
to judge the relevancy of the retrieved information. Nearly all main search en-
gines use this presentation format, therefore we can safely assume that the result
presentation is not of significant influence to the outcome of our experiment.
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3 Theoretical Foundation for Bricks

The theoretical foundation for Bricks is derived from the three objectives that
are identified in the introduction.

A Graphical Approach. The use of a graphical interface reduces the burden
of syntactical formulation issues related to the NEXI query language. Although
NEXI uses a relatively simple syntax based on XPath, it still allows users to
submit malformed queries to the retrieval system. This is not possible with the
graphical approach adopted by Bricks, apart from submitting incomplete queries.
This feature is referred to as direct manipulation of the query language [4].

Furthermore, the underlying structure that is present in the document col-
lection can be integrated into the query interface. Several approaches can be
imagined, but for Bricks we have chosen to work with pull-down lists, allowing
the user to select structural elements into the query. Alternatively, a tree-based
approach can be used to visualize the structure to the user. However, this is a
more complex structure that needs to be interpreted by the user.

Construction of a Mental Model for Query Formulation. When formulat-
ing a specific information request, the user has a mental model of the information
he is looking for [12]. Research on information seeking behavior [13, 14] has shown
that the effectiveness of the task performance can be increased if the interface and
offered functionality is closely related to the mental model of the user. When fo-
cussing on query formulation for structured document retrieval the task is more
complex. The user also has to specify what the structural and content-based con-
ditions of the information need are. If a user is asked to express the information
need in natural language, it is likely that a sentence is formulated, such as: “Find
historical information about revolutions, for destinations ...”.

A logical first step is to specify the requested element of retrieval, “Find
historical information”. Next, a limited number of iterative steps are possible.
The user either specifies a content-based constraint, “about revolutions”, using
the filter that is associated with the request path, or adds additional path di-
rectives to the request path, “, for destinations”. If needed the user can add
one more content-based filter, and simultaneously introduce a support path
to the information request. This allows the users enough flexibility to follow
their intuition, and to perform intermediate checks on the specified information
request.

To further stimulate the construction of a mental model, words are added to
illustrate the relation between the bricks (see Figure 1), such as ‘in’, ‘with’ or
‘about’. As a result, the composed query can be read back in natural language:
“In destinations with government information about ‘constitutional monarchy’,
find historical information about revolution(s).”.

Step-by-Step Formulation of the Information Need. Bricks uses small
building blocks to formulate the information request (query). Each block repre-
sents a small step in the formulation process, that needs to be completed, before
another block is added to the query. After specifying the requested element of
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retrieval, the user can add an about clause to the request filter, or specify addi-
tional path directives to the request path. By adding an about clause, the user
can specify a text constraint to the current context and specifiy a sub path for
this text constraint.

Based on the document structure and the syntax of the NEXI query language,
the possible actions are controlled by the Bricks interface. This prevents the
specification of malformed and unmeaningful (with respect to the document
structure) queries. On the other hand we aim at preserving full expression power,
as offered by the NEXI query language.

Avoiding Information Overload. It is important that the user is not over-
whelmed with options and possible next steps. In a sense, the gradual building of
a mental model is one approach to avoid information overload. Using a wizard-
based approach is a proven technique to reduce the learning curve of a task that
needs to be accomplished. However, expert users can experience a limitation in
the provided functionality, causing them to get frustrated [15]. In our case, we
are not focussing on the high-end experts, such as programmers and database
administrators, but on users with a complex information need that goes beyond
the average profile of a user on the Internet. Although Bricks is more flexible
than a wizard-based approach, the aim is similar: by reducing the number of
options that are available, it becomes easier to complete (more efficiently) the
query formulation task.

In an attempt to reduce the required knowledge of the document structure,
Bricks provides lists of structural elements that allow the user to select path el-
ements into their query. However, the Lonely Planet XML document collection
contains 271 unique element and attribute names. This can easily cause an in-
formation overload for the user, and lower the efficiency of the task performance.
But it appears that not all elements are meaningful from a retrieval perspective.
For instance, the retrieval of a highlighted (italic) text fragment, containing just
a few keywords, will probably not satisfy the user’s information need, since all
context is missing.

In general, it is possible to define a structure for a document collection that
consists of three layers, as is presented in Figure 2. The top layer is formed by a
semantical markup that provides a high level description of the content that is
contained. The middle layer provides a logical markup, containing elements that

Fig. 2. Three layer structure for XML document collections
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have a logical function/meaning to the user. I.e. a chapter and its sections form
logical containers of information. At the bottom layer the presentation markup
is found, which is used for visual layout and presentation of the content. Any
XML document can be seen as a tree. When using such a three-layer structure,
the semantical element will naturally appear in the top of the tree, while the
presentation element as usually found near the leaves to the tree. The mid-section
of the XML document will then contain the logical elements.

Bricks exploits this three layer structure in the retrieval process by adding
a priority to each of the structural elements. Semantical elements will receive a
high priority, followed by the logical elements, while the presentation elements
are given a low priority. Early in the query formulation process, only the high
priority elements can be selected in the query. Elements with a lower priority
will become available once the user has made a first selection of the elements
that should be retrieved. In a sense the user is traversing down the tree structure
of the document collection, and narrowing down the possible elements that can
be added to the query.

For the experiment a threshold of 20 elements is used, which limits the number
of structural elements that can be presented to the user at once. Alternative
presentation techniques with sub-lists are possible, to allow the user to explore
a larger set of structural elements that can be included in the query.

4 Usability Experiment

We evaluated three different query formulation techniques: keyword-based
(NEXI-CO), content and structure-based (NEXI-CAS), and Bricks. First we
will discuss the hypotheses, then present the setup and methodology used for
the experiment and finally discuss the results and some observations. A more
detailed discussion of the experiment, including the results of a retrieval perfor-
mance experiment can be found in [16].

4.1 Hypotheses

Based on the three objectives for query formulation that are discussed in
Section 1 we have formulated three hypotheses.

Hypothesis 1. The use of advanced query formulation techniques will lead to
a higher effectiveness of the task performance.

The intuition behind Hypothesis 1 is that if a user can add structural conditions
to the information request, by using either NEXI-CAS or Bricks, the user is more
successful in completing a given complex task. Furthermore we designed Bricks
to provide similar expression power as is available for NEXI-CAS. Therefore we
expect that regardless of task complexity the effectiveness of NEXI-CAS and
Bricks will be almost equal, but significantly higher than for NEXI-CO.

When taking task complexity into account, we expect to find that for tasks
with a low complexity the three approaches will have a similar performance,
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however if the task complexity increases, the effectiveness of NEXI-CO will drop.
The effectiveness of NEXI-CAS and Bricks should remain more or less constant,
or slightly decrease.

To validate our expectations we adopt two measures that express the effective-
ness of the user: correctness and positioning. Correctness (scale: [0..1]) expresses
the ability of the user to find a correct answer for a given task. The positioning
measure (scale: [0..10]) defines the ability to rank the relevant fragment selected
by the user at a high position. E.g. if the user-selected relevant fragment is re-
trieved at the first position in the ranking, the maximum score (10) is given. If
an answer is incorrect, or found below the first ten hits, the minimum score is
assigned (0) [17].

Hypothesis 2. The Bricks approach for query formulation will increase the
efficiency of the user for a given task.

When taking the time factor into account, we expect to see a different picture.
If our assumptions for Bricks are correct, a user should be able to successfully
complete a search task in a shorter period of time, compared to NEXI-CAS. It is
difficult to predict how this will relate to NEXI-CO, because we expect that in
this case the user behavior will be focussed more on query refinement and a quick
scan of the list with retrieved document fragments. This corresponds with normal
search behavior of users on the Internet [17]. We will measure the efficiency of
the systems using the following formula: efficiency = correctness/time.

Hypothesis 3. Bricks will achieve a higher overall satisfaction among users
that perform a (complex) search, when compared to both NEXI-based approaches.

We expect that users who are offered sophisticated query formulation tech-
niques (Bricks and NEXI-CAS) will be more satisfied, than users working with
a keyword-based interface. Furthermore, the reduction of both the syntactical
and structural obstacles at the user interface will have a positive influence on
the user satisfaction. Together this will result in higher overall satisfaction, when
working with Bricks.

4.2 Methods

For the usability experiment we have used the following method, as implemented
in TERS, the testbed for the evaluation of Retrieval Systems [17]:

Document Collection. For the experiment we used the Lonely Planet
WorldGuide,which consists of XML documents with interesting facts and back-
ground information about destinations on our planet.

Systems. Three systems were prepared for the experiment: NEXI-CO, NEXI-
CAS, and Bricks. To eliminate undesirable side-effects all three systems used the
same retrieval engine and result presentation technique.

Users. The user pool consisted of 52 students, who participated in the course
‘Multimedia Information Retrieval’. During the course they were taught the
basic principles of structured document retrieval, and they followed a lecture
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on the NEXI query language. Prior to the experiment, they had to complete
an assignment where they were asked to create both NEXI-CO and NEXI-CAS
queries for fifteen representative information needs, based on the Lonely Planet
WorldGuide. The users were divided randomly over the three systems in three
groups of 18 participants.

Experience. The first 30 minutes of the experiment the participants performed
training tasks using the retrieval system and assigned interface. This reduces the
learning effects, and familiarizes the user with the setup of the experiment.

Topics. A pool of 27 topics is used that represent the specific information
need of travelers planning their next holiday or business trip. The topics can
be sorted in three complexity groups, ranging from low to high complexity.
The groups were formed by counting the syntactical and structural elements
of the ideal NEXI-CAS query that represents the information need expressed in
the topic [16]. Based on this classification, we equally distributed the topics over
the complexity groups. Each user carried out all topics.

Survey. Prior to and directly after the experiment we have presented the par-
ticipants a survey to examine their expertise and experiences with the systems.

4.3 Results of the Usability Experiment

First we will give a brief overview of the overall results, and then discuss the
influence of task complexity on the performance.

Overall Results. In Table 1 the overall results of the experiment are presented
for the three systems based on the measures that we used for the experiment:
time, correctness, positioning, efficiency, and satisfaction. The effectiveness mea-
sures (correctness and positioning), which are used to test Hypothesis 1 show
that a significant difference (p < .001) is found between the systems, where
Bricks is more effective than both NEXI-CO and NEXI-CAS. Therefore we can
support Hypothesis 1.

When the time factor is taken into account, it becomes apparent that users
need significantly (p < .001) more time to formulate their information need in
NEXI-CAS expressions. But also query formulation in Bricks takes longer than
for NEXI-CO. With the focus on efficiency, NEXI-CO and Bricks are performing
best (p < 0.04), which partly supports Hypothesis 2.

Inspection of the outcome of the experiment for user satisfaction shows that
users appreciate the additional query formulation power, but have a marginal
preference for Bricks. Given that the satisfaction scale goes from 1 to 7, we
conclude that the users were content with both the Bricks and NEXI systems.

Table 1. Overall performance for the three systems

System Time Correctness Positioning Efficiency Satisfaction
(sec.) avg. (std.) avg. (std.) avg. (std.) avg. (std.)

NEXI-CO 197 0.58 (0.49) 4.42 (4.62) 0.72 (1.03) 4.62 (1.69)
NEXI-CAS 245 0.65 (0.48) 6.07 (4.63) 0.48 (0.55) 4.96 (1.43)
Bricks 214 0.73 (0.45) 6.32 (4.29) 0.72 (0.80) 5.25 (1.42)
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The differences are however not significant, therefore we are inconclusive with
respect to Hypothesis 3.

Including Task Complexity. A more detailed insight in the results can be
obtained when task complexity is also considered an influencing factor.

Correctness and Positioning: Figure 3.a and 3.b show the influence of task
complexity on the effectiveness of the performance. An increase in complexity
of the information need results in a linear decline of correctness for Bricks,
where both NEXI-based approaches show a sudden drop in correctness when
the task complexity is shifting from low- to mid-level complexity. Focussing
on the positioning measure, it becomes apparent that the NEXI-CO lacks
the necessary query formulation power, forcing users to browse more often to
the lower ranked results. With respect to our expectations, we see a sudden
drop in effectiveness for Bricks and NEXI-CAS, which was not predicted.
The overall picture however, supports our expectations.

Time: When comparing the task complexity with respect to the average time
needed to complete a task, we see that time increases with the task complex-
ity, regardless of the system (Figure 3.c). However, on average the users need
more time to formulate NEXI-CAS queries, compared to the other systems.

Efficiency: Figure 3.d illustrates the combination of correctness and time into
the efficiency measure. It shows that the highest efficiency for tasks with
a low complexity is achieved with NEXI-CO, closely followed by Bricks.

(a) task complexity vs. correctness (b) task complexity vs. positioning

(c) task complexity vs. time (d) task complexity vs. efficiency

Fig. 3. Experimental results, including task complexity
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However, for mid-level complexity Bricks is more efficient, and for highly
complex tasks the results converge to an almost equal low point of efficiency.
Comparing the results for efficiency with our expectations, we are mildly
positive with the outcome. We had not anticipated the significant increase
in time needed to complete more complex tasks.

4.4 Observations

The search behavior of the users working with the different systems was com-
pletely different. Users working with the NEXI-CO interface used many iteration
steps to formulate a query and inspect the top of the ranking. If the results were
unsatisfactory, they refined their previous query and tried again.

The participants working with the NEXI-CAS interface showed a different
strategy: they constructed the NEXI query in several steps. After each step,
they submitted the query, to check the syntax and the intermediate results.
Then continued extending the query, until they were satisfied with the results.
Manual inspection of the submitted queries, showed numerous syntax errors, and
misinterpretation of the document structure.

Finally, we observed that the participants working with Bricks hardly used
any refinement steps. They continued working until they fully created a repre-
sentation of the information need in Bricks, and only then inspected the results.

5 Conclusions

Structured document retrieval has gained popularity due to the use of XML in
digital libraries, intranet environments, and large structured web-sites, where
users have a specific and often complex information need. For structured doc-
ument retrieval to work in practice, it is important that users are capable to
adequately use the structure of a document in all facets of the retrieval process.

In this article we have identified three aspects that influence the query formu-
lation process for structured document retrieval: (1) adequate expression power,
(2) syntactical complexity of the query formulation, and (3) required knowledge
of the document structure. Using a keyword-based approach will not provide
the user with sufficient expression power. The NEXI query language allows a
user to specify both the structural and content-based aspects of the information
need, but also burdens the user with syntactical issues during the query formu-
lation process. In addition, the user must be familiar with the structure of the
document collection to avoid the specification of ill-formed structural paths.

To overcome these issues, we have introduced Bricks, the building blocks to
tackle query formulation issues in structured document retrieval. Bricks reduces
the syntactical complexity of the query formulation process, and the required
knowledge of the document structure, while maintaining maximum expression
power. Bricks allows the user to formulate the information need, while avoiding
a possible information overload, by using a graphical approach that follows the
construction of a mental model for query formulation.
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Based on the results of the usability experiment we conclude that sophisti-
cated query formulation techniques, such as offered by Bricks, will increase the
effectiveness (correctness) of the task performance. For simple tasks the content-
only approach is most efficient. However when task complexity increases, Bricks
turns out to be a better choice.
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3. Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z., eds.: Advances in XML Information
Retrieval. Number 3493 in LNCS, Schloss Dagstuhl, Germany, INitiative for the
Evaluation of XML Retrieval, Springer (2005)

4. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T.: Human
Computer Interaction: Concepts and Design. Addison Wesley (1994)

5. Boag, S., et al.: Xquery 1.0: An XML query language. Working draft, W3C:
World-Wide-Web Consortium (2005)

6. Adler, S., et al.: Extensible stylesheet language (XSL). W3c recommendation,
W3C: World-Wide-Web Consortium (2001)

7. Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications Co. (2005)
8. Lalmas, M., Roelleke, T.: Modelling vague content and structure querying in XML

retrieval with a probabilistic object-relational framework. In: 6th International
Conference On Flexible Query Answering Systems, Lyon, France (2004)

9. Zwol, v.R., Dignum, V., Wiering, F.: The Utrecht Blend: Basic ingredients for an
XML retrieval system. In: Advances in XML Information Retrieval. LNCS 3493,
Springer (2005) 140–152

10. Kazai, G., Lalmas, M., Vries, A.d.: The overlap problem in content-oriented XML
retrieval evaluation. In: Proceedings of the 27th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval. Number
ISBN:1-58113-881-4, Sheffield, UK, ACM Press (2004) 72 – 79

11. Tombros, A., Larsen, B., Malik, S.: The interactive track at INEX 2004. In:
Advances in XML Information Retrieval. LNCS 3493, Springer (2005) 410–423

12. Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Re-
trieval in Context. Volume 18 of The Information Retrieval Series. Springer (2005)

13. Meho, L., Tobbo, H.: Modelling the information-seeking behaviour of social scien-
tists; Elly’s study revisited. Journal of American Society for Information Science
and Technology 4(6) (2003) 570–587

14. Muramatsu, J., Pratt, W.: Transparent queries: Investigating users’ mental models
of search engines. In: proceedings of the 24th International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM Press (2001) 217–224

15. Dryer, D.: Wizards, guides, and beyond: Rational end empirical methods. In:
proceedings of the International Conference on Intelligent User Interfaces, New
York, NY, ASU, ACM Press (1997) 265–286

16. Baas, A.J.: Structured document retrieval from a user perspective. Master’s thesis,
Department of Information and Computing Sciences, Utrecht University, Utrecht,
the Netherlands (2005)

17. Zwol, v.R., Oostendorp, H.v.: Google’s ”I’m feeling lucky”, truly a gamble? In: Web
Information Systems - WISE 2004, Brisbane, Australia, Springer (2004) 378–390



Structural Feedback for Keyword-Based XML
Retrieval

Ralf Schenkel and Martin Theobald

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{schenkel, mtb}@mpi-inf.mpg.de

Abstract. Keyword-based queries are an important means to retrieve
information from XML collections with unknown or complex schemas.
Relevance Feedback integrates relevance information provided by a user
to enhance retrieval quality. For keyword-based XML queries, feedback
engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is
inspired by text-based IR completely ignores the semistructured nature
of XML. This paper makes the important step from pure content-based
to structural feedback. It presents a framework that expands a keyword
query into a full-fledged content-and-structure query. Extensive experi-
ments with the established INEX benchmark and our TopX search engine
show the feasibility of our approach.

1 Introduction

1.1 Motivation

XML has seen increasing importance recently to represent large amounts
of semistructured or textual information in digital libraries, intranets, or the
Web, so information retrieval on XML data is growing more and more impor-
tant. XML search engines employ the ranked retrieval paradigm for producing
relevance-ordered result lists rather than merely using XPath or XQuery for
Boolean retrieval. An important subset of XML search engines uses keyword-
based queries [2, 8, 31], which is especially important for collections of docu-
ments with unknown or highly heterogeneous schemas. However, simple keyword
queries cannot exploit the often rich annotations available in XML, so the results
of an initial query are often not very satisfying.

Relevance Feedback is an important way to enhance retrieval quality by in-
tegrating relevance information provided by a user. In XML retrieval, existing
feedback engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is inspired by
text-based IR completely ignores the semistructured nature of XML. This paper
makes the important step from content-based to structural feedback. We extend
the well-established feedback approach by Robertson and Sparck-Jones [21] to
expand a keyword-based query into a possibly complex content-and-structure
query that specifies new constraints on the structure of results, in addition to
“standard” content-based query expansion. The resulting expanded query has
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weighted structural and content constraints and can be fed into a full-fledged
XML search engine like our own TopX engine [25, 26].

As an example, consider the keyword query (query 204 from the INEX bench-
mark [12]) moldovan semantic networks. Without additional knowledge, it is
unclear that the term “moldovan” actually refers to the author of a paper about
semantic networks. Additionally, it is very unlikely that the author name and
the terms “semantic network” occur in the same element, as author names are
usually mentioned in different places than the content of articles. A query with
constraints on both content and structure would probably yield a lot more rele-
vant results, but it is impossible to formulate a query like the following without
knowledge of the underlying schema:
//sec[about(.//au, ‘‘moldovan") and about(., ‘‘semantic networks")]

The techniques presented in this paper automatically construct a content-and-
structure query from a keyword-based query, exploiting relevance feedback by
a user. This paper makes the following important contributions: (1) It presents
a formal framework to integrate different classes of query expansions, beyond
content-based feedback, into XML retrieval, (2) it presents the implementation
of four expansion classes, and (3) it evaluates the performance of the techniques,
showing a huge gain in effectiveness with the established INEX benchmark [12].

The primary goal of this paper is to show that structural feedback helps
to enhance result quality. The paper does not claim to present the ultimately
best implementation of structural feedback, but opens a whole design space and
presents variants that give reasonably good results.

1.2 Related Work

Relevance feedback has already been considered for document retrieval for a
long time, starting with Rocchio’s query expansion algorithm [22]. Ruthven and
Lalmas [23] give an extensive overview about relevance feedback for unstructured
data, including the assessment of relevance feedback algorithms.

Relevance feedback in XML IR is not yet that popular. Of the few papers that
have considered it, most concentrate on query expansion based on the content
of elements with known relevance [5, 14, 24, 30]. Some of these focus on blind
(“pseudo”) feedback, others on feedback provided by users. Pan et al. [16] apply
user feedback to recompute similarities in the ontology used for query evaluation.

Even fewer papers have considered structural query expansion [9, 10, 15, 18, 19].
Mihajlovic̀ et al. [15, 18, 19] proposed deriving the relevance of an element from its
tag name, but could not show any significant gain in retrieval effectiveness. Ad-
ditionally, they considered hand-tuned structural features specific for the INEX
benchmark (e.g., the name of the journal to which an element’s document be-
longs), but again without a significant positive effect. In contrast, we propose a
general approach for feedback that can be applied with the INEX data, but does
not rely on any INEX-specific things.

Hlaoua and Boughanem [9] consider common prefixes of relevant element’s
paths as additional query constraints, but don’t provide any experimental eval-
uation of their approach.
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The work of Hsu et al. [10] is closest to our approach. They use blind feedback
to expand a keyword-based query with structural constraints derived from a
neighborhood of elements that contain the keywords in the original query. Our
approach considers the whole document instead of only a fragment, can generate
constraints with negative weight, and integrates also content-based constraints.

2 Formal Model and Notation

2.1 Data Model

We consider a fixed corpus of D XML documents with E elements. For such a
document d, E(d) denotes the set of elements of the document; for an element
e, T (e) denotes its tag name and d(e) the document to which it belongs.

The content c(e) of an element e is the set of all terms (after stopword removal
and optional stemming) in the textual content of the element itself and all its
descendants. (Note that XML retrieval engines usually use this content model,
while boolean languages like XPath or Xquery typically only use the content of
the element itself.) For each term t and element e, we maintain a weight we(t).
This can be a binary weight (we(t) = 1 if the term occurs in e’s content and 0
otherwise), a tf-idf style [13] or a BM25-based [1, 29] weight that captures the
importance of t in e’s content. The content c(d) of a document d is defined as
the content c(r) of its root element r.

We maintain a number of statistics about the occurrence of terms in docu-
ments and elements: The document frequency dft of a term t is the number of
documents in which the term appears in the content. Analogously, the element
frequency eft of a term t is the number of elements in which the term appears
in the content.

2.2 Queries and Relevance of Results

We use an extended version of INEX’s query language NEXI [27]. NEXI basically
corresponds to XPath restricted to the descendants-or-self and self axis
and extended by an IR-style about predicate to specify conditions that relevant
elements should fulfil. The wildcard symbol ’*’ matches any tag and can be
used to formulate keyword queries in NEXI. We extend NEXI with additional
weights for each content constraint. A typical extended NEXI query looks like
the following:
//article[about(.,‘‘0.8*XML")//*[about(//p,‘‘0.4*IR -0.2*index")]

The result granularity of such a query are elements. The relevance of an
element with respect to a query relevance model is measured binarily, i.e., an
element is either relevant or nonrelevant.

3 Expanding Keyword-Based Queries

We studied the content-and-structure queries from INEX to find patterns that
are regularily used in such queries to describe relevant elements, in addition to
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content conditions on the result element. A canonical example for such a query
is the following:

//article[about(.,‘‘XML") and about(//bib,‘‘numbering")]//sec[about(.,IR)

and about(//par,index)]

that is a content-and-structure version of the simpler keyword query “XML
IR index numbering”. In contrast to the keyword query, the structured query
specifies a tag (or, more generally, a set of tags) that relevant elements should
have (“I am interested in sections about ’IR’”). Additionally, this query contains
constraints on the content of descendants of relevant elements (“sections with a
paragraph about ’index’”), the content of ancestors (“sections in articles about
’XML’”), and the content of descendants of ancestors (“sections in articles that
cite a paper about ’numbering’”).

As such a content-and-structure query specifies much more precisely the con-
ditions that relevant elements must satisfy, we can expect that a search engine
will return more relevant results for a content-and-structure query than for the
keyword query, provided that the content-and-structure query correctly captures
the same information need as the keyword query.

Our feedback framework aims at generating a content-and-structure query
from a keyword query, exploiting relevance feedback provided by a user for some
results of the keyword query. This section presents the core elements of our
feedback framework. We start with the formal model for relevance feedback,
discuss possible expansions of a query, show how the possibly best expansions
can be selected, and how an expanded query is generated.

3.1 Feedback Model

We consider a keyword query q = {q1, . . . , qp} with a set E = {e1, . . . , el} of
results with known relevance, i.e., elements for which a user has assigned an
exhaustivness value e(e) and a specificity value s(e). We say that an element e
is relevant for the query if both e(e) and s(e) are maximal (i.e., have the value
3 in INEX), yielding a set E+ = {e+

1 , . . . , e+
R} of relevant elements and a set

E− = {e−1 , . . . , e−N} of nonrelevant elements.
Note that even though this paper considers only binary relevance, it is pos-

sible to extend the mechanism presented here to approaches where relevance
is measured with a probability-like number between 0 and 1, for example by
representing E+ and E− as probabilistic sets.

3.2 Candidates for Query Expansion

Following the discussion in the beginning of this section, we derive the fol-
lowing classes of candidates for query expansion from an element with known
relevance:

– all terms of the element’s content together with their score (C candidates),
– all tag-term pairs of descendants of the element in its document, together

with their score (D candidates),
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– all tag-term pairs of ancestors of the element in its document, together with
their score (A candidates), and

– all tag-term pairs of descendants of ancestors of the element in its document,
together with their score and the ancestor’s tag (AD candidates).

The system can be extended with additional classes of candidates like tags, twigs,
or paths, which is subject to future work.

Formally, we consider for an element e

– the set C(e) = {t ∈ c(e)} of its C candidates, i.e., the terms in its content,
– the sets A(e) of A and D(e) of D candidates, i.e., all triples (a, T (e′), t) where

e′ is an element in e’s document that is an ancestor/a descendant of e, a is
the relative position of e and e′ (ancestor or descendant), T (e′) is the tag
name of e′, and t is a term in the content of e′, and

– the set AD(e) consists of its AD candidates, i.e., triples (T (e′), T (e′′), t)
where e′ is an ancestor of e, e′′ is a descendant of e′, and t ∈ c(e′′).

The candidate set Γ (e) := C(e)∪A(e)∪D(e)∪AD(e) is the set of all candidates
for element e. We extend the notion of frequencies from terms to candidates as
follows: The element frequency ef(c) of a candidate c is the number of elements e
for which c ∈ Γ (e), and its document frequency df(c) is the number of documents
that contain at least one element e with c ∈ Γ (e).

3.3 Weights for Expansion Candidates

To weight the different candidates, we apply a straight-forward extension of
the well-known Robertson-Sparck-Jones weight [21] to element-level retrieval in
XML. The weight w+

RSJ (c) of a candidate c is computed analogously to Robert-
son and Sparck-Jones with binary weights:

w+
RSJ (c) = log

rc + 0.5
R − rc + 0.5

+ log
E − efc − R + rc + 0.5

efc − rc + 0.5

Here, for a candidate c, rc denotes the number of relevant elements which contain
the candidate c in their candidate set, R denotes the number of relevant elements,
and E the number of elements in the collection. As the RSJ weights do not
yield useful values if there are no relevant results at all, we additionally compute
another weight for each term that captures its importance within the nonrelevant
results:

w−
RSJ (c) = log

nc + 0.5
N − nc + 0.5

+ log
E − efc − N + nc + 0.5

efc − nc + 0.5

where nc denotes the number of nonrelevant elements which contain the
candidate c in their candidate set and N denotes the number of nonrelevant
elements. The weight wRSJ (c) of the candidate is then w+

RSJ (c) if R > 0 and
−w−

RSJ(c) otherwise, so we consider our new weight only if there are no relevant
results at all.
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3.4 Selecting Expansion Candidates

The set of all possible expansion candidates is usually very large and contains
many unimportant and misleading expansions, so we have to select the best b of
them for generating the expanded query. This problem already exists for content-
based expansion of keyword queries, and several possible weights have been pro-
posed in the literature that go beyond naively ordering terms by their weight, like
prefering terms that occur in many relevant elements [6], Porter’s Algorithm [17],
and the expected mutual information measure EMIM [28]. We use the so-called
Robertson Selection Values (RSV) proposed by Robertson [20]. For a candidate c,
its RSV has the form RSV (c) = wRSJ (c)·(p−q), where p = rc/R is the estimated
probability of the candidate occurring in a relevant element’s candidate set and q
is the probability that it occurs in a nonrelevant element’s set. Unlike Robertson
who assumed q to be negligible, we estimate q = nc/N as there are usually a lot
more nonrelevant than relevant elements in the top results. We ignore candidates
that occur only within the documents of elements with known relevance as they
have no potential to generate more relevant results outside these documents. We
order the union of the remaining candidates by their RSV and choose the top b of
them, where b is a configuration parameter of the system. To be able to generate
a valid NEXI query in the next step, we have to limit the A and AD candidates
chosen to contain the same ancestor tag.

3.5 Generating an Expanded Query

Using the top-b candidates, we generate a content-and-structure query from the
original keyword query. This expansion is actually straight-forward, and the
generated query has the following general structure:

//ancestor-tag[A+AD constraints]//*[keywords+C+D constraints]

As an example, if the original query was ’XML’ and we selected the A candidate
(anc,article,’IR’), the AD candidate (article,bib,’index’) and the D candidate
(desc,p,’index’), the expanded query would be

//article[about(.,’IR’) and about(//bib,’index’)]//*[about(.,’XML’)
and about(//p,’index’)]

Each of the expansions is weighted, where the weight is the candidate’s RSJ
weight adjusted by a factor that depends on the candidate’s class. C and D
candidates help finding new relevant results, so they should get a high weight;
we allow for C and D conditions at most the weight of all original keywords (to
make sure that the new constraints don’t dominate the query’s results). As an
example, for a query with four keywords and six C and D expansions, the factor
for each expansion is 4

6 . On the other hand, A and AD conditions are satisfied
by most – if not all – elements of a document, so they generate a huge amount
of new result elements, most of which will be nonrelevant. Their weight should
therefore be smaller than the weight of C and D conditions. We choose a fraction
β of the accumulated weight of existing keyword conditions, with β = 0.2 in our
experiments.



332 R. Schenkel and M. Theobald

4 Architecture and Implementation

Figure 1 shows the high-level architecture of our extensible feedback framework.
Each candidate class is implemented with a standard interface that allows a
simple integration of new classes.
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Fig. 1. Architecture of the feedback engine

The initial results of a query are presented to the user who gives positive or
negative feedback to some of the results. This feedback is sent together with
the query and its initial results to the feedback framework which forwards them
to the available candidate classes. For each class, all possible candidates are
computed for the results with known relevance. Out of all those candidates, the
best b candidates are selected and used to build the expanded query that is
sent back to the engine which evaluates it and presents the results to the user.
The user may now again submit feedback for some of the new results, triggering
another feedback cycle. To facilitate an automatic assessment of the feedback
approach, the system can additionally import queries and results from INEX (see
Section 5.1) and automatically generate feedback for the top-k results, using the
existing INEX assessments.

We have implemented the framework in Java with the candidate classes shown
in Section 3.2 and the TopX search engine. Our implementation requires that
important information about elements is precomputed: unique identifiers for the
element (eid) and its document (did), its pre and post order to facilitate the
evaluation of structural query conditions like the XPath axes [7] or any other
similar information, its tag, and its terms (after stemming and stopword re-
moval), together with their score. This information is stored in a database table
with schema (did,eid,pre,post, tag,term,score) that contains one tuple
for each distinct term of an element. We can reuse an existing inverted file of
an XML search engine that typically captures similar information, possibly after
some transformation. On the database side, we provide indexes on (eid,did)



Structural Feedback for Keyword-Based XML Retrieval 333

to efficiently find d(e) for an element e and on (did) to efficiently collect all ele-
ments of a document. Inverse element and document frequencies of the different
candidate classes are precomputed (e.g., while initially parsing the collection)
and stored in database tables, too.

For each element with known relevance, the implementation of the feedback
engine first loads the complete content of the element’s document and computes
all possible expansions in memory with the ief for the candidate loaded from the
database.The additional constraint on the candidate’s document frequency is then
only checked for the best candidates that are considered for expanding the query.

5 Experimental Results

5.1 Settings

We use the INEX [12] benchmark for XML IR that provides a set of 12,107
XML documents (scientific articles from IEEE CS), a set of NEXI queries to-
gether with a manually assessed set of results for each query, and an evaluation
environment to assess the effectiveness of XML search engines. INEX provides
a Relevance Feedback Track [11, 4] that aims at assessing the quality of differ-
ent feedback approaches. As this paper concentrates on keyword-based queries
(content-only topics or CO for short in INEX), we used the set of 52 CO queries
from the 2003 and 2004 evaluation rounds with relevant results together with
the strict quantization mode, i.e., an element was considered as relevant if it
exactly answers the query.

A run is the result of the evaluation of all topics with a search engine, it
consists of 1500 results for each topic that are ranked by expected relevance.
The measure of effectiveness is the mean average precision (MAP) of a run.
Here, we first compute for each topic the average precision over 100 recall points
(0.01 to 1.00) and then take the macro average over these topic-wise averages.
Note that absolute MAP values are quite low for INEX (with 0.152 being the
best MAP value of any participating engine in 2004). This reflects the fact that
XML retrieval is inherently more complex than document retrieval as not only
relevant documents, but also relevant elements within these documents have to
be identified. In addition to MAP values, we also measured precision at different
positions for each run.

To assess the quality of feedback algorithms, we use the residual collection
technique [23] that is also used in the INEX 2004 Relevance Feedback Track.
In this technique, all XML elements that are used by the feedback algorithm,
i.e., those whose relevance is known to the algorithm, must be removed from the
collection before evaluation of the results with feedback takes place. This includes
all k elements “seen” or used in the feedback process regardless of their relevance.
Under INEX guidelines, this means not only each element used or observed in
the RF process but also all descendants of that element must be removed from
the collection (i.e., the residual collection, against which the feedback query is
evaluated, must contain no descendant of that element). All ancestors of that
element are retained in the residual collection.
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Table 1. Precision at k for the baseline run

k 5 10 15 20
prec@k 0.231 0.204 0.191 0.174

For all experiments we used the TopX engine that fully supports the evalua-
tion of weighted content-and-structure queries. The baseline for all experiments
is a run for all 52 INEX topics, with 1500 results for each topic. Table 1 shows the
macro-averaged precision for this run for the top-k ranked elements per topic,
for different k; this corresponds to the average fraction of relevant results among
the elements used for top-k feedback.

To select the candidates for query expansion, we tried using the plain weight,
the number of relevant elements with the feature, and RSV. In our experiments,
all of these gave similar results with a small advantage for RSV, so we report
only the results for experiments with RSV for feature selection.

5.2 Results

Table 2 shows the MAP values of our experiments with different combinations
of candidate classes for query expansion, providing relevance feedback for a dif-
ferent number of top elements of the baseline run and selecting the best 10
candidates for expansion. Note that all values, including those for the baseline,
are computed for the residual collection. It is evident that using only candi-
dates of class D consistently outperforms the established content-based feedback
(candidates of class C), with an increase over the baseline run of almost 150%
for top-15 feedback. Candidates of classes A and AD did not perform too well
if used alone, but this could be expected as using these candidates potentially
adds a lot of nonrelevant elements to the result of the expanded query (see
Section 3.3). However, if they are combined with the other classes and rele-
vance for at least 10 elements is provided, the combination outperforms all other
combinations.

We also measured the precision of the feedback runs at different positions; the
results are depicted in Table 3. Again, using class D candidates outperformed
traditional content-based feedback and gained up to 100% increase over the
baselines’ precision values. The combination of all candidate classes was again
best if feedback for more than 10 results was available.

Table 2. MAP values for top-k feedback runs with different configurations and different
values of k

k baseline C D C+D A AD A+AD A+C+D+AD
5 0.0493 0.0727 0.0757 0.0772 0.0520 0.0540 0.0497 0.0647
10 0.0544 0.0748 0.0784 0.0778 0.0584 0.0528 0.0547 0.0777
15 0.0290 0.0659 0.0717 0.0709 0.0574 0.0560 0.0575 0.0742
20 0.0498 0.0644 0.0725 0.0721 0.0555 0.0594 0.0579 0.0759
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Table 3. Precision@p values for top-k feedback runs with different configurations and
different values of k

k baseline C D C+D A AD A+AD A+C+D+AD
p=5

5 0.1529 0.1804 0.2118 0.2157 0.1725 0.1686 0.1765 0.2000
10 0.1373 0.2078 0.2471 0.2392 0.1686 0.1752 0.1451 0.2391
15 0.0980 0.1804 0.1922 0.1843 0.1412 0.1529 0.1490 0.1922
20 0.1120 0.1800 0.1960 0.2160 0.1360 0.1600 0.1360 0.2000

p=10
5 0.1411 0.1569 0.1588 0.1667 0.1549 0.1490 0.1412 0.1569
10 0.1275 0.1647 0.1765 0.1745 0.1373 0.1471 0.1451 0.1843
15 0.1039 0.1569 0.1627 0.1647 0.1235 0.1294 0.1314 0.1667
20 0.1040 0.1480 0.1720 0.1700 0.1140 0.1320 0.1200 0.1820

p=15
5 0.1333 0.1412 0.1412 0.1464 0.1373 0.1399 0.1373 0.1346
10 0.1163 0.1438 0.1634 0.1621 0.1280 0.1307 0.1294 0.1608
15 0.1033 0.1333 0.1529 0.1490 0.1124 0.1216 0.1176 0.1490
20 0.0933 0.1307 0.1360 0.1360 0.0987 0.1147 0.1080 0.1467

p=20
5 0.1255 0.1373 0.1363 0.1412 0.1255 0.1275 0.1245 0.1245
10 0.1108 0.1314 0.1431 0.1412 0.1186 0.1245 0.1225 0.1373
15 0.0902 0.1245 0.1382 0.1343 0.0980 0.1078 0.1029 0.1343
20 0.0830 0.1170 0.1150 0.1190 0.0890 0.1080 0.0990 0.1260

6 Conclusion and Future Work

This paper has made important steps from content-based to structural feedback
in XML retrieval. It presented an integrated solution for expanding keyword
queries with new weighted content and structure constraints as a part of an
extensible framework and showed huge performance gains with the established
INEX benchmark of up to 150% for MAP and up to 100% for precision under
the evaluation method used in the INEX 2004 relevance feedback track.

Our future work will contentrate on adding new candidate classes (like twigs,
tags and paths) and extending this work to queries with content and structural
constraints. We also plan to evaluate the effectiveness of our approach with
pseudo relevance feedback.
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Abstract. We consider the Structured Information Retrieval task which
consists in ranking nested textual units according to their relevance for
a given query, in a collection of structured documents. We propose to
improve the performance of a baseline Information Retrieval system by
using a learning ranking algorithm which operates on scores computed
from document elements and from their local structural context. This
model is trained to optimize a Ranking Loss criterion using a training set
of annotated examples composed of queries and relevance judgments on
a subset of the document elements. The model can produce a ranked list
of documents elements which fulfills a given information need expressed
in the query. We analyze the performance of our algorithm on the INEX
collection and compare it to a baseline model which is an adaptation of
Okapi to Structured Information Retrieval.

1 Introduction

Structured document collections, with documents encoded into a structured rep-
resentation standard such as XML, XHTML, RDF, RSS are now becoming avail-
able and the IR community has started to develop search engines specifically
dedicated to this type of documents [1] [2]. Document structure offers many
new possibilities such as answering queries with structural constraints (Content
and Structure queries in the INEX context1 [1]), or simply providing the user
with a list of relevant units with different granularities (Content Only queries
in INEX (CO)). These units may correspond to different types of document el-
ements in a structured document. In this paper, we consider the latter (CO)
problematic. One difficulty of this task is to compare and rank document ele-
ments with very different characteristics such as their length, their redundancy,
their thematic homogeneity, etc. Traditional search engines have been developed
for ranking similar documents and are not adapted to this ranking task. Different
frameworks have been developed for scoring elements in structured documents.
For example theory of evidence has been used for aggregating evidence from
sub-documents elements [3] [4]. Bayesian networks [5] or language models [6]
are other formal paradigms for combining evidence from sub-elements in order
1 INEX is the “INitiative for the Evaluation of XML Retrieval of the DELOS network

of excellence”.
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to score a containing document element. In the Machine Learning community,
ranking algorithms have recently motivated different studies and developments.
In the field of textual documents, they have been successfully used to combine
features or preferences relations in task such as meta search [7] [8] [9], automatic
summarization [10] and recently for the combination of different sources of evi-
dence in IR [11]. One of the difficulties of this paradigm is its complexity which
is in the general case quadratic in the number of examples. Linear solutions
have been proposed by some authors [9] [10]. Our approach extends the work of
[10] to multiclass problems whereas most of experiments of ranking are based
on two-classes problems, with a small class of relevant elements, and a large
class of irrelevant elements. Under some conditions, fast rates of convergence are
achieved with this class of methods [12].

We propose here to develop and use ranking methods adapted to a particular
task of Structured Information Retrieval (SIR) which consists in producing a list
of ordered documents elements which fulfills a content oriented query. Ranking
can be particularly useful for SIR due to the intrinsic difficulty of this task, as
already mentioned above, and because traditional search engines are not well
adapted to this ranking task. It is hoped that ranking algorithms may help to
improve the performance of existing techniques. Ranking algorithms work by
combining features which characterize the data elements to be ranked. In our
case, these features will depend on the document element itself and on its struc-
tural context. Ranking algorithms will learn to combine these different features
in an optimal way according to a specific loss Function using a set of examples.

The paper is organized as follows, in section 2 we present the ranking model,
in section 3 we show how it can be adapted to Structured Information Retrieval.
In section 4 we describe some experiments with content-based queries on a semi-
structured database and compare the algorithm to a baseline Okapi method
adapted for SIR.

2 Framework

We present in this section a general model of ranking which can be adapted to
IR or SIR. The idea of the ranking algorithms proposed in the Machine Learning
community is to learn a total order on a set X , which allows to compare any
element pair in this set. Given this total order, we are able to order any subset
of X in a ranking list. For instance in IR, X can be the set of documents which
are relevant to a given query, and the total order is the natural order on the
document scores.

As for any Machine Learning technique, one needs a training set of labeled ex-
amples in order to learn how to rank. This training set will consist in ordered pairs
of examples. This will provide a partial order on the elements of X . The ranking
algorithm will use this information to learn a total order on the elements of X and
after that will allow to rank new elements. For plain IR, the partial ordering may
be provided by human assessments on different documents for a given query.

We introduce below some notations which will be used to compare the differ-
ent subsets of a partially ordered set X .
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2.1 Notations

Let X be a set of elements with a partial order ≺ defined on it. This means that
some of the element pairs in X may be compared according to the ≺ relation. If
there is no preference between two element x and x′, this is denoted by x ⊥ x′.
For Structured Information retrieval X will be the set of couples (doxel2, query)
for all doxels and queries in the document collection. This set is partially ordered
according to the existing relevance judgments for each query.

The set of all couples of X × X which are comparable according to ≺ is
denoted:

A(X ) = {(x, x′) ∈ X × X/x ≺ x′ or x′ ≺ x}.

2.2 Ranking

Let f be a Function from X to the set of real numbers. We can associate a total
order to f such that:

x ≺ x′ ⇔ f(x) < f(x′) . (1)

Clearly, learning the f Function is the same as learning the total order.
An element of X is represented by a real vector of features x = (t1, t2, ..., td).

In our case, the features will be local scores computed on different contextual
elements of a doxel (label, parent, children, document...). In the following, f will
be a linear combination of x’s features:

fω(x) =
d∑

j=1

ωjtj (2)

where ω = (ω1, ω2, ..., ωd) are the parameters of the combination to be learned.

Ranking Loss. fω is said to respect x ≺ x′ if fω(x) < fω(x′). In this case,
couple (x, x′) is said to be well ordered by fω. The ranking loss [9] measures how
much fω respects ≺.

By definition, the ranking loss measures the number of mis-ordered couples
in A(X ):

R(A(X ), ω) =
∑

(x,x′)∈A(X )
x≺x′

χ(x, x′) (3)

where χ(x, x′) = 1 if fω(x) > fω(x′) and 0 otherwise.
Ranking aims at learning ω for minimizing Function 3. This approach is differ-

ent from previous Machine Learning approaches to IR such as Logistic Regression
[13], since we do not try to classify elements into relevant group and irrelevant
groups. Here, we are only interested in producing a well ordered list. That is
why the criterion we use is only based on the relative position of elements in the

2 Doxel means document element, a subpart of the document.
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ranking list rather than on an absolute probability of belonging to a relevant or
irrelevant class.

Exponential loss. In practice, this expression is not very useful since χ is not
differentiable, ranking algorithms use to optimize an approximation of this loss
criterion called the exponential loss:

Re(A(X ), ω) =
∑

(x,x′)∈A(X )
x≺x′

efω(x)−fω(x′) (4)

It is straightforward that R(A(X ), ω) ≤ Re(A(X ), ω). Function 4 is differ-
entiable and convex, and then can be minimized using standard optimization
techniques. Minimizing Function 4 will allow to minimize R(A(X ), ω).

Properties. Some properties may be inferred from Function 4 which will allow
us to reduce the complexity of the learning algorithm. In the general case, the
complexity is quadratic in the number of examples and this does not allow us
to learn with more than a few thousands of examples, which is not sufficient for
most of real tasks.

Let us introduce on the subsets of X , P(X ), a derived strict partial order
≺P(X ) from ≺. For two subsets Xi and Xj of X :

Xi ≺P(X ) Xj ⇔
⎧⎨⎩

∀xi ∈ Xi, ∀xj ∈ Xj : xi ≺ xj and
∀(xi, x

′
i) ∈ Xi × Xi : xi ⊥ x′

i and
∀(xj , x

′
j) ∈ Xj × Xj : xj ⊥ x′

j

We derive similarly ⊥P(X ) from ⊥ as :

Xi ⊥P(X ) Xj ⇔ ∀xi ∈ Xi, ∀xj ∈ Xj : xi ⊥ xj .

Using these definitions, we can deduce elementary properties for Re(A(X ), ω).

Property 1. We denote Ai = A(Xi) and Aj = A(Xj). If any element of Xi is not
comparable to any element of Xj , the ranking loss can be expressed as the sum
of two sub-ranking losses over A(Xi) and A(Xj):

Xi ⊥P(X ) Xj ⇒ Re(A(Xi) ∪ A(Xj), ω) = Re(A(Xi), ω) + Re(A(Xj), ω). (5)

Property 2. If any element of Xi is superior to any element of Xj , and elements
inside Xi or Xj are not ordered, the ranking loss can be expressed as the product
of two summations over Xi and Xj :

Xi ≺P(X ) Xj ⇒ Re(Xi × Xj , ω) =

(∑
x∈Xi

efω(x)

)⎛⎝ ∑
x′∈Xj

e−fω(x)

⎞⎠ (6)

Reduction of the complexity. Using these properties, we will now propose
a way for reducing the complexity of minimizing Function 4. It is based on
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Fig. 1. Representation of a partition of X . There is no order between an element of
X1 and an element of X2. Inside X1, the arrow X 1

1 → X 2
1 means that an element of X 1

1

must be higher ranked than an element of X 2
1 . Inside any X j

i , there is no order.

a decomposition of Re(A(X ), ω) according to the greatest subsets of X which
verify either of the conditions expressed in the left hand side of Equations 5 or 6
(Xi ⊥P(X ) Xj or Xi ≺P(X ) Xj). These subsets are denoted X j

i in the following.
Let X1,X2, ...,Xn be a partition of X such that:

∀(i, j) ∈ {1, ..., n}2 : Xi ⊥P(X ) Xj . (7)

The subsets used for the decomposition of the error Function, X 1
k ,X 2

k , ...,Xnk

k ,
will be a partition of Xk such that:

∀(i, j) ∈ {1, ..., nk}2 :

⎧⎨⎩
X i

k ⊥P(X ) X j
k or

X i
k ≺P(X ) X j

k or
X j

k ≺P(X ) X i
k

(8)

An example of possible partition is represented in figure 1.
According to property 1 and property 2, the exponential loss (4) can be

rewritten:

Re(A(X ), ω) =
n∑

k=1

nk∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝∑

x∈X i
k

efω(x)

⎞⎠
⎛⎜⎜⎜⎝ ∑

j∈[1,nk]
X j

k≺X i
k

∑
x′∈X j

k

e−fω(x′)

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (9)

The complexity for computing this expression is O(n · K · |X |) whereas it is
O(n · |X |2) for Function 4 where K is the total number of subsets X i

j in the
partition of X . The worst case occurs when K = |X |.

Gradient descent. Since Function 9 is convex, we can use a gradient descent
technique to minimize it. The components of the gradient has the following form:
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x∈X i
k

tpe
fω(x)

⎞⎠
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k≺X i
k

∑
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k

e−fω(x′)

⎞⎟⎟⎟⎠

+

⎛⎝∑
x∈X i

k

efω(x)

⎞⎠
⎛⎜⎜⎜⎝ ∑

j∈[1,nk]
X j

k≺X i
k

∑
x′∈X j

k

−t′pe
−fω(x′)

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

. (10)

The complexity for computing the gradient is the same (O(n · K · |X |)) as
that of Function 9.

3 Application to Structured Information Retrieval

3.1 Definitions

Suppose we have a collection of hierarchically structured documents. Each doc-
ument d can be represented by a tree T . Each node of the tree has a “type” (or
tag) and a textual content. L will denote the set of node types.

For each node n of T , the doxel at node n is the subtree Tn of T rooted at n.
We use the following notations, D is the set of doxels for all the documents

in the collection, Q is a a set of information needs and X = Q × D is the set of
elements we want to order.

We suppose that there exists a partial order ≺ on X = Q×D, this partial order
will reflect for some information needs, the evidence we have about preferences
between doxels. It is provided via user feedback or manual assessments of the
SIR corpus. Note that these relevance assessments are needed only on a subpart
of the collection We consider here the task which consists in producing a ranked
list of doxels which fulfill an information need q ∈ Q. For that, we will train the
ranking model to learn a total strict order on X .3

3.2 Representation

Each element x ∈ X is represented by a vector (t1, t2, ..., td) were ti represents
some feature which could be useful to order elements of X .

To take into account the structural information, we will use the information
provided by the context of the doxel and the information given by the node type
of the doxel. For the former, we will use features characterizing the doxel, its
parent, and the whole document. For the latter, label information can be used
by ranking doxels with the same node type which leads to learn a fω|l for each
node type l, and then using all fω|l(x)l=1..|L| as features in a second ranking
step.

3 For simplification, we consider here a total strict order on the doxels, and not the
case where different doxels may have the same rank.
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These two steps can be reduced to one using the following vector representa-
tion. If we denote xl = (tl0, t

l
1, t

l
2, ..., t

l
d), where tl0 = 1 is a bias term, the vector

representing x for node type l, we have tli = ti if l is the node type of the root
of x and t

(l)
i = 0 if not. We will consider the ranking of global vectors defined as

follows:

x =
(
(tl10 , tl11 , tl12 , ..., tl1d ), (tl20 , tl21 , tl22 , ..., tl2d ), ..., (tl|L|

0 , t
l|L|
1 , t

l|L|
2 , ..., t

l|L|
d )
)

.

Where |L| is the number of different labels in the collection. In the above ex-
pression all vector components of the form (tlii , tlii , tli2 , ..., tlid ) will be equal to
(0, 0, ..., 0) except for one which corresponds to x label. This representation al-
lows computing in one step the ranking of nodes from different types.

3.3 Reduction of Complexity

In order to reduce the complexity, we have to find the subsets X1,X2, ...,Xn of
X which verify the condition (7) in section 2.2. We can easily find such subsets,
if we denote (qi)i=1..|Q| the elements of Q, there are at least for each qi:

Xi = {x = (d, q) ∈ X/q = qi}
Xi is the set of couples (doxel, information need) which corresponds to the same
information need. A corollary of this property is that it is useless to compare
scores of doxels from different queries. For each Xi’s, the preferences among
doxels may be expressed according to several discrete dimensions. For example
in INEX, we have:

- an information of exhaustivity, which measures how much a doxel answers
the totality of an information need (0 not exhaustive, ..., 3 fully exhaustive)

- an information of specificity, which measures how much a doxel answers only
the information need (0 not specific, ..., 3 means fully specific)

A doxel labeled E3S3 (which means fully exhaustive and specific) is greater than
one labeled E1S3 (which means marginally exhaustive and fully specific).

If such a discrete multidimensional scale exists, we can find a partition ac-
cording to (8) by considering for each X j

i a set of doxels whose assessments share
the same values along all dimensions. For instance, we can choose X 0

i to be the
set of doxels assessed E0S0 for the information need qi.

4 Experiments

4.1 Test Collection

To evaluate our method, we used the INEX document, topic and assessment col-
lection. This collection contains 16819 XML documents representing the content
of the articles of the IEEE Computer Society’s journal publications from 1995 to
2004. These documents are represented in the same DTD. In the year 2003, 36
content-oriented topics with the corresponding assessments on doxels were pro-
duced. In 2004, 40 topics and assessments were added. The assessments for 2003
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E3S3

E3S2

E2S3

E3S1

E2S2

E1S3

E2S1

E1S2

E1S1 E0S0

Fig. 2. Graph representing the order between elements for a given information need,
according to the two dimensional discrete scale of INEX. Doxels labeled E3S3 must be
the highest ranked, and doxels labeled E0S0 the lowest ranked.

and 2004 only concern 12107 documents from 1995 to 2002, since the rest of the
collection was not available at this time. In 2005, the database has been extended
with document from 2003 to 2004 and 40 topics and assessments were added.

A content-oriented topic is a list of words representing an information need.
An assessment is an evaluation of how much a particular doxel of the doc-

ument collection answers the information need. In INEX, assessments are ex-
pressed in a two dimensional discrete scale which has been described above in
section 3.3. The assessments and the trellis giving the partial ordering between
these assessments are described in Figure 2.

4.2 Representation

For computing features, we used an Okapi model4 [14], which is one of the
reference models on flat documents. Okapi was adapted so as to reach good
performance on the collection of structured documents. This adaptation consists
in using doxels rather than documents for computing the term frequencies, and
using as normalization factor for each doxel, the mean size of the doxels with
the same node type.

In the experiments, we used three features for the combination:

- t1 = the Okapi score of the doxel
- t2 = the Okapi score of the parent of the doxel
- t3 = the Okapi score of the whole document

these features provide some information about the structural context of a doxel.
Sets of node types were defined according to the DTD of the document collec-
tion: article, abstract, sections, paragraphs, lists... Node type was introduced
according to the method described in section 3.2.

We used the series of topics and assessments from the INEX 2003 and 2004
collections as a learning base and those from 2005 as a test base.

4.3 Filtering

For some SIR systems, returning overlapping doxels could be an undesirable
behaviour, which means for example that it should not return a section, and
4 With parameters k1 = 2.0, k3 = 7.0 and b = 0.75.
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one of its paragraphs. In order to suppress all overlapping elements from an
existing list, we used a strategy which consists in removing all elements which
are overlapping with an element ranked higher in the list. This is the simplest
way to remove overlap and this allows us to focus on the efficiency of the ranking
algorithm rather than the filtering technique. Other ways of limiting overlapping
can be found in [15]. Two kinds of experiences have been carried out : 2 without
removing overlap, and 2 where overlap was removed.

4.4 Evaluation

We used two metrics to evaluate our approach:

- a precision recall metric which does not take into account overlapping ele-
ments;

- a cumulated gain based metric [16]. This metric, developed for the evaluation
of INEX [17], considers the dependency of XML elements, and will penalize
ranked lists with overlapping elements.

4.5 Results

With filtering. We have plotted in figures 3 and 4 the evaluation of the lists
produced by the ranking algorithm and by the modified Okapi where overlap
was removed. We can see for both metrics that the ranking algorithm performs
better than Okapi. The difference for the precision/recall metric is not large:
this is due to the post filtering of the lists. The ranked lists had not been op-
timized for non overlapping elements since there is no notion of overlapping in
the exponential loss.

Without filtering. Figures 5 and 6 show the evaluation of the lists produced
by the ranking algorithm and modified Okapi where overlap was removed. We
can see for both metrics that the ranking algorithm performs clearly better than
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Okapi and the difference in performance is superior than in the non overlap-
ping case.

For both experiments, the ranking algorithm has been able to increase the
performance of the baseline Okapi. Ranking methods thus appear as a promising
direction for improving SIR search engine performance. It remains to perform
tests with additional features (for example the scores of additional IR systems).

5 Conclusion

We have described a new model for performing Structured Information Retrieval.
It relies on a combination of scores from the Okapi model and takes into account
the document structure. This score combination is learned from a training set by
a ranking algorithm. We have shown that learning to rank document elements
improves a baseline model Okapi, which is known to be effective on IR on flat
documents.
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Abstract. When presented with a retrieved document, users of a search
engine are usually left with the task of pinning down the relevant in-
formation inside the document. Often this is done by a time-consuming
combination of skimming, scrolling and Ctrl+F. In the setting of a digital
library for scientific literature the issue is especially urgent when dealing
with reference works, such as surveys and handbooks, as these typically
contain long documents. Our aim is to develop methods for providing a
“go-read-here” type of retrieval functionality, which points the user to
a segment where she can best start reading to find out about her topic
of interest. We examine multiple query-independent ways of segmenting
texts into coherent chunks that can be returned in response to a query.
Most (experienced) authors use paragraph breaks to indicate topic shifts,
thus providing us with one way of segmenting documents. We compare
this structural method with semantic text segmentation methods, both
with respect to topical focus and relevancy. Our experimental evidence
is based on manually segmented scientific documents and a set of queries
against this corpus. Structural segmentation based on contiguous blocks
of relevant paragraphs is shown to be a viable solution for our intended
application of providing “go-read-here” functionality.

1 Introduction

The growing number of scientific publications available in electronic format
has changed the way people relate to documents. Working within the scien-
tific domain, Tenopir and King [32] observe that researchers now tend to read
more articles than before, but that, on average, the time dedicated to each ar-
ticle has shrunk and readers very rarely read an entire article—instead, they
browse and skim the document, possibly doing attentive reading of only some
parts of it. Increasingly, people use a “locate-and-read” strategy instead of the
more traditional “read-and-locate” typical of a paper environment.

Currently, there are several examples where a kind of “go-read-here” function-
ality is available or being explored. For example, some general web search engines
help users in their search “within” retrieved documents by providing links labeled
“HTML version” (for non-HTML documents) and “In cache” (which takes the
user to a cached version of the document where query words are highlighted).
In the setting of document-centric XML retrieval, the search engine looks in-
side the document for relevant information, and selects small relevant elements
(“sub-documents”) to be returned to the user [17].

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 350–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our setting is that of scientific literature digital libraries, and, more specifi-
cally, reference works such as surveys and handbooks in such libraries. Within
this setting our aim is to provide “go-read-here” functionality of the following
kind: given a query, suggest to the reader short, highly relevant segments from
retrieved documents. How should we identify and retrieve appropriate segments
for a “go-read-here” type of facility, using only query-independent information?
Put differently, how should we create potential targets for hypertext links prior
to knowing the link source (i.e., the query). Since every text has an internal struc-
ture [35], corresponding to the topics the author of the text wants to present,
one obvious approach to identify the kind of segments we seek to identify is to
adopt a so-called structural view on text segments, and take segments to be
nothing but paragraphs. How does this strategy compare to so-called semantic
segments, as produced by state-of-the-art segmentation algorithms such as Text-
Tiling [13, 14] and C99 [6, 7]? These are the research questions that have guided
much of the research on which we report in this paper.

Our main contributions are the following. First, we present an analysis of
query independent text segmentation techniques applied to scientific texts. Sec-
ond, we investigate the use of segments within a “go-read-here” retrieval task;
in the process we define two new evaluation measures and also define a varia-
tion of precision to meet our needs. Our experimental evaluation is based on the
Handbook of Logic and Language [34], a collection of 20 essays on the interface
between logic and linguistics; each chapter (65 pages long, on average) is written
by a different author and with varying internal organization and writing style.
Our main finding is that structural segmentation based on contiguous blocks of
relevant paragraphs is a simple but viable solution for our intended application
of providing “go-read-here” functionality.

The rest of the paper is structured as follows. In Section 2 we present related
work on “within document navigation.” In Section 3 we survey relevant aspects
of text segmentation methods. In Section 4 we describe experiments concerning
document segmentation, and in Section 5 we present experiments concerning the
use of these segments in a retrieval setting. We conclude in Section 6.

2 Related Work

Work related to this paper comes from research into hypertext link genera-
tion, information retrieval, information visualization, and digital libraries. The
relations between two linked hypertext documents have been analyzed exten-
sively [3, 9, 11, 33]. Information retrieval techniques have been used to generate
hypertexts [1], and also text passages have played a role in generating links
among documents [2]. In IR, passage retrieval refers to approaches that either
return passages to the reader [27], or make use of evidence obtained from pas-
sages to improve the performance of full document retrieval [5, 18], or to select
excerpts to index independently [14]; we follow the latter route.

Information visualization techniques have provided important means for im-
proving the way in which documents are accessed, and especially the way in which
focused retrieval is increasingly being facilitated. For example, TileBars [15] is a
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visualization paradigm for boolean retrieval, where documents are represented in
their relative size, and passages within them are highlighted in color depending
on the distribution of the query terms. SmartSkim [12] is a content-based brows-
ing and skimming tool that divides a document deemed relevant by a user into
fixed length sections represented by histograms whose height corresponds to the
computed relevance of that section to a query.

In the context of digital libraries there has been considerable work on dig-
itizing both content and metadata. Increasingly, methods are considered that
integrate ideas building on traditional classification techniques developed over
the centuries by librarians and information specialists with “free text” search
technology, thus bringing in modern document retrieval technology [19].

Relatively little research has been aimed at providing focused access to sci-
entific documents. Our work differs from the work carried out on generating
hypertext in that we do not split the document into hyperlinked snippets, but,
instead, provide the reader with a passage where she is to start reading, without
missing out relevant text. In this sense, our work also differs from SmartSkim,
in that we do not use fixed size passages. Finally, like TileBars, we presuppose
that the document segmentation takes place offline, at indexing time, but unlike
TileBars we aim at performing a comparison to understand which segmentation
better suits the type of documents at hand.

3 Methods for Text Segmentation

Recall that our overall aim is to provide “go-read-here” functionality: return a
highly relevant text segment from a long document in return to a user’s query.
Our first steps, then, will be to identify suitable text segments.

A segmentation is called semantic if segments are defined using a notion of the
semantics of the text, structural if defined on the basis of structural information,
e.g., paragraphs or sections, and fixed size if segments are identified through a
fixed number of words or characters [30]. Many authors have proposed algorithms
for semantic segmentation [16, 23, 25, 28, 29], either to achieve more accurate
indexing [16] or to detect topic shifts in streams of news [31].

One of our core questions in this paper is to find out whether semantic meth-
ods offer an advantage over and above structural methods. Rather than im-
plementing a new semantic segmentation method, or providing an exhaustive
experimental comparison of all existing ones, we selected two well-known se-
mantic methods for our experiments: TextTiling and C99. Both perform linear
segmentation, the former based on cosine similarity between sliding windows of
text, the latter based on divisive clustering. We chose TextTiling because of its
established position in the literature (and because many other methods build
on it); C99 was chosen because of the good results reported in the literature [6].
Below, we outline both segmentation methods; after that we compare the quality
of the outputs of the two algorithms against the quality of structural methods
(Section 4), and examine the effectiveness of segments identified using either of
the two methods for information access, again in comparison with structural
methods (Section 5).
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TextTiling [13, 14] tokenizes the document and performs stopword removal
and morphological normalization. TextTiling divides texts into pseudo-sentences
of a fixed length, which are grouped into pseudo-paragraphs, or blocks, of a fixed
size, sliding along the text. Hearst [14] suggests that pseudo-sentences of twenty
words and blocks of six pseudo-sentences work best in practice.

Each gap in between pseudo-sentences is assigned a cosine similarity value
between pairs of adjacent blocks, computed with a sliding window mechanism.
These values are then smoothed with a simple median smoothing algorithm
[24] with a window of size 3, to eliminate small local minima, and the smoothed
similarity values are then plotted against the sequence of gaps. The resulting plot
is analyzed for peaks and valleys. Each gap is assigned a depth score, indicating
how strong the evidence is that it is a candidate topic break. The depth score at
gap g, ds(g), is computed as ds(g) = (as−gs)+(bs−gs), where gs is the smoothed
similarity value at gap g and as and bs are the smoothed similarity values at
gaps a and b, to the left and to the right of g, respectively, each being a peak
with respect to g. The deeper g is with respect to the closest valleys to the left
and to the right, the more likely it is that the gap is a candidate break. Finally,
TextTiling takes the gaps with the highest depth scores as candidate subtopic
boundaries, but only places topic boundaries at (real) paragraph breaks.

C99 [6, 7] differs from TextTiling in that it takes real sentences as units and
identifies topic boundaries by means of a divisive clustering method. First, the
text is divided into tokenized sentences, then stop word removal and stemming
follow. The algorithm then computes a similarity matrix at the sentence level,
where the adopted similarity measure is the usual cosine similarity. Since the
cosine measure is sensitive to the length of the sentences, Choi [6] applies a
ranking scheme [22] to the similarity matrix to avoid using absolute values.
Finally, a hierarchical divisive clustering method (based on [25]) is applied, where
segment boundaries are selected to maximize a measure of internal segment
cohesion. If the number of desired segments is not given up front, the clustering
process is continued until no further segmentation is possible.

TextTiling has a clear intuitive interpretation in terms of text structure, while
this is not the case for C99 (consider, e.g., the ranking scheme and the lack of
references to specific textual or linguistic features). The experiments reported
in [6] were performed on an artificially generated corpus of 700 samples, where
a sample is a concatenation of ten text segments, where each segment consists
of the first n lines extracted from a random document from the Brown Corpus.

4 Splitting Documents into Topic-Oriented Segments

Having introduced the two semantic text segmentation methods that we consider
in this paper, our first aim is to see to how the segments they produce compare
against a structural segmentation. Recall that structural segmentations in terms
of paragraphs exploit the topic shifts (implicitly) marked by authors through
their paragraph boundaries.

When applied to our data, consisting of long scientific documents, do Text-
Tiling and C99 produce segments that are topically coherent? And: do they add
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anything when compared against two structural segmentations, into paragraphs
and sections respectively? To answer these questions we developed a gold stan-
dard segmentation using two documents from our corpus, and used it to assess
and compare the outputs of both the semantic and structural segmentation, as
we will now describe.

4.1 Experimental Setting

First, a manually annotated corpus was created, containing “gold standard”
topic breaks, to be used as the ground truth for evaluating the output of the
structural and semantic segmentation algorithms. Two annotators independently
annotated the text for topic breaks, and then discussed their results between
them to come to a single annotation. The annotators were given basic guidelines:

1. a topic segment is a text snippet smaller than the original text and of ho-
mogeneous content;

2. segments do not overlap;
3. there are no topic breaks within paragraphs; and
4. no segment should span more than an entire section.

The corpus consists of two chapters—[36] and [21]—from the Handbook of Logic
and Language, here called Chapter A and Chapter B, respectively (see Table 1,
left-hand side, for details), with different internal structure and writing styles.1

Chapters were in LATEX format, which necessitated some preprocessing.

Table 1. (Left): Details about the corpus. (Right): Details about the ground truth for
segmentation. Average paragraph length is given in number of words.

Chapter A Chapter B Chapter A Chapter B

# pages 55 54 # segments 102 90
# section 13 3 # paragraphs/segm 1.6 2.5
# subsections 0 9 κ (inter-annotator 0.69 0.84
# paragraphs 168 223 agreement)
avg. par. length 458 320

The right-hand side of Table 1 contains details about the annotators’ output.
The inter-annotator agreement, κ [8], indicates tentative reliability for Chapter
A and high reliability for Chapter B (third row, right-hand side). The low κ
score for Chapter A is probably due to the presence of long lists of examples
and properties. This caused the annotators to have different perceptions about
where an appropriate break between segments could be placed. The annotators
agreed on a rather fragmented segmentation in case of Chapter A and on an
only slightly more aggregative annotation in case of Chapter B.
1 We counted as paragraph blocks of text separated by indentation, independently of

the non-textual elements they can include (e.g., figures, tables, equations, . . . ).
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Table 2. Results for the two structural segmentations, and the best performing versions
of TextTiling and C99. The highest values are in boldface.

Chapter A Chapter B
P R F # Segm. P R F # Segm.

Paragraphs 0.61 1 0.76 168 0.41 1 0.58 223
Sections 1 0.10 0.18 13 1 0.02 0.04 3
TT default 0.62 1 0.77 165 0.42 0.98 0.59 212
TT s5-w20 0.61 1 0.76 169 0.42 0.99 0.59 215
TT s5-w30 0.61 1 0.76 166 0.42 0.99 0.59 215
TT s20-w30 0.64 0.83 0.72 132 0.46 0.79 0.58 157
TT s20-w40 0.64 0.80 0.71 128 0.43 0.71 0.54 150
C99 default 0.57 0.08 0.14 14 0.57 0.14 0.22 24
C99 r9 0.54 0.07 0.12 13 0.62 0.11 0.19 17
C99 r57 0.72 0.13 0.22 18 0.60 0.16 0.25 25

4.2 Evaluation

We compared the segmentations produced by TextTiling and C99 with two struc-
tural segmentations: one in which each paragraph is a segment, and one in which
each section is a segment. We used the implementations of TextTiling and C99
made available by Choi. We exhaustively explored the parameter settings for
TextTiling (the number of smoothing cycles s, default = 5, and the window size
w, default = 30 words) and for C99 (the size of the rank mask, default = 11×11,
and the number of segments to find). Table 2 reports the results obtained with
default values and with the best performing parameter settings. We report on
precision (P), recall (R), and F-scores; P and R were computed on segment
breaks, as opposed to entire segments.2

As expected, segments that are one paragraph long score best in recall but
much less in precision, while sections do the opposite. C99 and the segmentation
based on sections produce a similar number of segments and recall figures for
Chapter A. In the case of Chapter B, they both score very low. This suggests
that the quality of a segmentation is strictly related to the number and size of
segments in the reference annotation.

C99 performs worst. When default parameters are used, the algorithm returns
a few very long segments, too long to be of use in our intended focused retrieval
application; varying the rank mask size does not yield significant change in the
resulting segmentation. The stopping criterion used by the algorithm seems un-
suitable to the type of text we deal with, and the good results achieved by C99
in the experiments reported in [6] do not carry over to our corpus.

TextTiling performs better on Chapter A than on Chapter B, and for C99 it is
the other way around. This is related to the type of text and the type of segmen-
tation they perform: TextTiling is more like a splitter (which matches with the

2 In this way we look at how many segment boundaries are correctly identified, and
we obtain a slightly more forgiving measure, with respect to counting how many
entire segments are correctly identified.
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Chapter A gold standard), while C99 is more like a lumper (matching with the
gold standard for Chapter B).3 The precision of C99 improves greatly when using
a large rank mask (57) in the case of Chapter A, although recall remains very low.

We set out to find out whether TextTiling and C99 produce segments that
are topically coherent, and whether they add anything when compared against
two structural segmentations, into paragraphs and sections, respectively. The
segments produced by C99 do not seem to be usable, given their low F-score.
TextTiling and paragraph-based structural segmentation are on a par, both
producing segments with reasonable F-score for one chapter (A) and mediocre
F-score on another (B).

5 Retrieving Segments

Now that we have examined different ways of generating topically coherent seg-
ments from long scientific documents, our next aim is to use these segments
in a retrieval setting. If we return relevant segments to users’ queries, do we
obtain segments that are “on target?” Do we obtain segments that are both
relevant and a good starting points for reading? Are semantic segments better
than structural segments?

To address these questions, we asked a single annotator (different from the
two that created the gold standard segmentation described in Section 4) to create
topics and mark up paragraphs in Chapters A and B for relevancy with respect
to these topics. A baseline retrieval system was used to return ranked lists of
segments for each of the segmentation methods and parameter settings listed
in Table 2), and the outcomes were compared against the gold standard rele-
vancy annotation. Below, we provide details about the development of the gold
standard, the evaluation measures used, and the outcomes of our experiments.

5.1 The Gold Standard

We created a manually annotated corpus based on the same two chapters used
in Section 4. A new annotator (different from the ones used for the gold stan-
dard creation in the previous section) developed a set of 37 queries and marked
paragraphs in both Chapter A and Chapter B with respect to relevancy to each
of the queries. The annotator was told to think of the annotation task in the fol-
lowing terms: you are helping to create a hypertext environment, with (possibly
multiple) links from your topics into the corpus; you have to identify good link
targets for your topics. The annotator was given the following constraints:

1. targets are non-empty sets of paragraphs;
2. the minimal target, i.e., the minimal unit of relevancy, is a single paragraph;
3 The distinction between ‘lumpers’ and ‘splitters’ is used in lexicography to distin-

guish different behaviors in building of dictionary definitions. Lumpers look at sim-
ilarities and tend to provide fewer definitions, broad enough to cover several cases;
splitters look at differences and tend to provide more specific definitions, each cover-
ing a smaller set of cases.
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3. if there are cross-references within a paragraph, do not also mark the text
the cross-reference refers to (the text will be accessed in a hyperlinked form).

The annotator was given the chapters with no indication of the segmentation(s)
produced in Section 4. The annotation resulted in an average of 2.1 and 7.1
relevant paragraphs per query, for Chapter A and Chapter B, respectively. In
Chapter A relevant paragraphs are grouped in a single “block” per query, while
in Chapter B there are, on average, 2.3 segments per query.

5.2 Evaluation Measures

We are interested in obtaining segments that are both relevant and good starting
points for reading. Our task is similar to INEX in that we need to assess the
relevancy of a document excerpt with respect to a topic, but arguably in our
setting exhaustivity is less important than specificity, nor do we have the problem
of document overlapping. Since we compare segments of varying length against
a corpus where the unit for relevance assessment is the paragraph, we base our
evaluation measures on paragraphs. In view of these considerations, we developed
three measures: C-presision to determine the relevancy of a retrieved segment,
and early onset error (EoE) and late onset error (LoE) to capture appropriateness
of the start of the segment with respect to the distribution of the relevancy in the
document. While C-precision corresponds to the (binary) notion of specificity in
INEX, the two error measures were loosely inspired by [10].

C-precision is the proportion of relevant paragraphs included in a segment.
Early onset Error (EoE) measures the proportion of non-relevant paragraphs

before the first relevant paragraphs in the segment. For a paragraph P , let rP

denote its rank in the document order (i.e., 1 for the first paragraph in the
document, 2 for the second, etc.); by extension, for a segment S, rS denotes the
rank of the first paragraph in S. Then, for a query q and a retrieved segment S,
EoE (S) = 1 if there is no block R of relevant paragraphs for q that overlaps with
S, and otherwise EoE (S) = min{1, (rR − rS)/|S| : rR ≥ rS and R is relevant to
q and overlaps with S}, where |S| is its size in number of paragraphs.

Late onset Error (LoE) measures the proportion of missed relevant paragraphs
at the beginning of the segment. Using the same notation as in the definition
of EoE, assuming that q is a query, and S is a retrieved segment, we define
LoE (S) = 1 if there is no block R of relevant paragraphs that overlaps with
S, and otherwise we put LoE (S) = min{1, (rS − rR)/|R| : rR ≤ rS and R is a
relevant segment for q that overlaps with S}.

A segment S with a perfect entry point, i.e., coinciding with the beginning of
a relevant block R, will have LoE(S) = EoE(S) = 0.

A few quick remarks are in order. C-Precision depends on the size of the
segment, as a segment consisting of only one relevant paragraph scores 1. The
number of irrelevant paragraphs before the first relevant paragraph in a segment
gives an indication of the effort required by the reader to reach relevant text.
EoE has a bias for longer documents, since it divides the number of non-relevant
paragraphs by the total number of paragraphs in the segment.
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Table 3. Summary values for all algorithms considered, across all queries. Highest
scores per measure are in boldface.
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Paragraphs 22 1.08 0.36 69 0.00 (0) 0.64 2.11 (17) 0.71
Sections 13 0.83 0.07 78 7.77 (13) 0.72 3.00 (1) 0.67
TT default 22 1.06 0.35 70 0.00 (0) 0.65 2.12 (16) 0.71
TT s5-w20 21 1.00 0.33 72 0.00 (0) 0.67 2.05 (15) 0.73
TT s5-w30 21 1.03 0.34 71 0.00 (0) 0.66 2.12 (16) 0.72
TT s20-w30 22 1.06 0.32 71 1.00 (3) 0.67 2.05 (12) 0.70
TT s20-w40 22 1.06 0.31 71 3.50 (2) 0.67 1.78 (12) 0.69
C99 default 6 0.92 0.09 78 6.44 (16) 0.75 4.88 (5) 0.66
C99 r9 4 0.83 0.06 81 10.78 (19) 0.81 6.00 (1) 0.67
C99 r57 7 0.97 0.10 77 6.00 (17) 0.76 4.88 (5) 0.67
(†) results averaged over all queries. (††) total number.

5.3 Evaluating the Retrieval of Segments

We will now evaluate the retrieval of segments, using the 37 topics developed.
We use a basic retrieval engine based on the vector space model, with tf.idf term
weighting and settings that are known to be beneficial for the retrieval of short
documents [26]. In Table 3 we report on the following measures: total number of
topics for which an exact entry point was returned (no onset error, NoE); average
proportion of retrieved segments with no onset error, average C-precision; total
number of non-relevant segments; average number of non-relevant paragraphs
at the start of segments returned; average EoE; average number of relevant
paragraphs missed at the start of segments; and average LoE.

The measures described above are applied at cut-off three; i.e., we capture the
situation where we are returning three targets per query. Results are reported
in Table 3, where columns 2–8 correspond to the measures listed above.

When a segment only contains one non-relevant paragraph, the entire segment
can only be counted as non-relevant, Similarly, the longer a segment is, the more
likely it is that it also contains non-relevant paragraphs, possibly placed at the
beginning of the segment. The number of non-relevant segments retrieved when
segments are as long as entire sections suggests that tf.idf tends to discriminate
short documents better than long ones.

As in the previous section, the results for TextTiling are similar to those of
the single paragraph structural segmentation. This is due to the length of the
segments, which is similar in the two cases. Analogously, when C99 is used,
the retrieval algorithm finds approximately as many non-relevant segments as in
the case of segments one section long.
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All C99 versions perform only slightly better than segmentation by sections.
The single paragraph segmentation has lowest average EoE, a fact that is
explained by the high precision: since a single paragraph can only be either
totally relevant or totally irrelevant, it follows that in case of many relevant seg-
ments, there will be many zeros in the average. This is also witnessed by the fact
that C-precision and EoE sum to one for this system. C99 with default settings
scores the highest EoE, due to the large size of the segments. Concerning the
LoE, this time the lower error rate is scored by C99 with default parameters,
immediately followed by the baseline based on paragraphs.

Discussion. The experiments on which we reported in this section were aimed
at investigating the use of structural vs. semantic text segmentation as a basis
for providing “go-read-here” functionality. Structural segmentation (in terms of
single paragraphs) scores best according to many of the measures adopted: in
some cases this is due to the length of the segments (e.g., C-precision and EoE),
in other cases it is due to the sparsity of the relevant text in the reference corpus.
The fact that LoE is higher for the single paragraph structural segmentation and
TextTiling suggests that, in case of documents with more dense relevancy, it is
useful to retrieve longer segments than just paragraphs. This issue could also be
addressed by aggregating paragraphs after the retrieval phase, which will also
help in case of documents with sparse relevancy with respect to the query. In
order to address this issue, it could be good to aggregate paragraphs after the
retrieval phase, and only then form the segment to return to the user.

6 Conclusions and Future Work

In this paper we reported on an analysis of query-independent text segmentation
methods aimed at supporting “go-read-here” type of functionality in the setting
of scientific literature digital libraries. We focused on two aspects: generating
segments and retrieving segments as focused responses to user queries. For both
aspects we had to develop ground truth data and evaluation measures.

For the generation of segments our main finding was that the presence of
formulas, tables and long list of examples, together with the presence of differ-
ent kinds of internal references, made the annotators divide the documents in
a very fragmented way, which resulted in very competitive scores for the struc-
tural segmentation into paragraphs. As to retrieving segments, we found that the
structural segmentation into paragraphs is hard to beat using the semantic seg-
mentation methods that we considered. We conjecture that it may be beneficial
to aggregate paragraphs after retrieving them.

Now, a number of caveats apply. First, we only worked with one corpus,
albeit with chapters authored by different people. It remains to be seen to what
extent our findings generalize to other corpora. Second, we treated the issue of
search within a document as a passage retrieval task, where we assume that the
passages are independent: relevancy of one paragraph does not imply relevancy
of earlier or later paragraphs. It would be interesting to see whether a more
sophisticated model that captures dependencies between paragraphs improves
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the retrieval scores. Third, we assumed that segmentation can be done off-line,
independent of user queries. We have not investigated whether text segments
can best be established with respect to the question one intends to ask, in which
case it is worthwhile integrating the segmentation and the retrieval phases so
that segments can be defined on the basis of the query posed.

For future work, it is interesting to see to which extent some level of discourse
semantics might be used to improve both the identification of segments and their
retrieval. Along similar lines, we suggest looking in more detail at cue phrases,
even though there is mixed evidence in the literature (they have been shown to
be misleading in [4] but useful in [20]).
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Abstract. In this paper we consider episodic memory for system design in im-
age retrieval. Time and location are the main factors in episodic memory, and 
these types of data were combined for image event clustering. We conducted a 
user studies to compare five image browsing systems using searching time and 
user satisfaction as criteria for success. Our results showed that the browser 
which clusters images based on time and location data combined was signifi-
cantly better than four other more standard browsers. This suggests that epi-
sodic memory is potentially useful for improving personal image management. 

1   Introduction 

As digital images are becoming increasingly popular, it becomes necessary to support 
users of digital cameras with software tools for personal image management. Most 
digital cameras time stamp each photograph at the time the image is created. More 
recently, digital cameras with the Global Positioning System (GPS) function have 
been developed. These cameras record the geographical coordinates at which each 
picture file is taken, and then using gazetteers, annotate each picture with location 
data. In this paper we describe a system which combines time and location data for 
the automatic identification of episodes or events, since these are the main factors in 
human episodic memory [4]. We perform user studies to show that this identification 
of events helps users to browse their personal collections of digital photographs. Gra-
ham et al. [10] and Platt et al. [15] have previously shown that browsing and retriev-
ing images arranged by time is quicker than for unindexed images. Graham [10] also 
suggested that the use of GPS location data could be used to assist browsing. Naaman 
et al [14], built a time and location hierarchy clustering system, but did not evaluate it 
on real users. 

In section 2, this paper will review some previous studies related to human episodic 
memory. Section 3 describes the development of our time and location clustering 
system. Section 4 describes our experimental design, where subjects were asked to 
perform both general and specific scenario image retrieval tasks using five different 
image browsing systems, and retrieval performance was assessed by speed of search-
ing and user satisfaction questionnaires.  Both user and system centre evaluation re-
sults are given in Section 5, and our analysis is in Section 6 concludes that the use of 
episodic memory (time and location) is one way of improving personal browsing. 
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2   Background and Related Work 

Within the field of image retrieval, the focus of research has been on the develop-
ment of image processing techniques rather than measuring the usability of the 
search tools. Previous studies [7] [9] [11] [17] [18] [19] have suggested that images 
can be indexed in a variety of ways. We currently know relatively little about the 
image search process and the factors which affect this process. However, Chan & 
Wang [3] found that human factors strongly affect the search results of image re-
trieval. Specifically, human episodic memory has been considered in system design 
in a number of areas of Human-Computer Interaction (HCI) - see for example, [1] 
[5] [10] [14] [15].  Baddeley [2] described episodic memory as people’s memory of 
events and experience, sometimes referred to as personal memory. Episodic memory 
is about special events and episodes, such as a birthday, or a meeting which took 
place a week ago. For example: I remember the conversation between you and me 
yesterday, and I remember what I was doing and what were my feelings during the 
conversation. Episodic memory can be general or specific, it can also involve either 
long-term memory or short-term memory. Episodic memory has been used to sup-
port system design in a number studies. Abrams et al. [1] used episodic memory for 
helping users retrieve web pages and web documents in a bookmark management 
system. Users used the “my history” (an implementation of episodic memory) tool 
for navigating the web [1].  User feedback indicated that the use of episodic memory 
could help them keep track of what they had browsed before. Platt et al. [15] devel-
oped an image browsing system based on time and colour histogram clustering 
called PhotoTOC. Graham et al. [10] developed two photo browser systems for col-
lections of thousands of time-stamped digital photographs. Their first browser was 
called the calendar browser, which had a very simple interface which included only 
the date line and time line to enable browsing and summarisation. Users could 
browse images by year or month. They called their second system a hierarchical 
browser which allowed users to browse a hierarchy of year, month, date, and time. 
Their experimental results showed that time (a component of episodic memory) can 
improve both the retrieval performance and user satisfaction of image searching. 
Naaman et al. [14] developed a time and location hierarchy clustering system. They 
also discuss episodic memory, particularly the location component, but did not per-
form any user studies of this interface. Cooper et al. [5] are also interested in the 
specific events associated with images, but because they feel that GPS cameras are 
still not widespread, their image browsing system concentrates on time and visual 
content clustering. However, Content-Based Image retrieval relies on low-level fea-
tures of the images such as colour, texture and shape. The term “semantic gap” [7] 
refers to the mismatch between the meaning humans assign to images, and these 
low-level feature descriptions. For example, images interpreted by humans as being 
of “sailing boat” and “pyramid” might both be interpreted as “triangle” using  
shape alone. In contrast, human episodic memory is concerned with high-level  
semantic concepts, so the use of time and location does not suffer from the semantic 
gap problem.  



364 C. Chen, M. Oakes, and J. Tait 

 

3   Development of the Time and Location Clustering System 

A personal image browsing system which relates to human episodic memory by using 
both time and location for identifying different events has been developed [4]. This 
system includes the database shown in Figure 1 and the user interface shown in 
Figure 2. The database contains all the data for date and time, latitude, longitude and 
location names automatically provided for each image by the GPS digital camera 
(mobile phone cameras also can do this). Our starting point was the time clustering 
model for event identification by [15], which we have modified to enable images to 
be clustered into events according to both time and location. 

3.1   Time Clustering 

Time-based clustering can detect obvious gaps in the creation time of digital images. 
A cluster is then defined as those photographs falling between two such obvious time 
gaps. These gaps are assumed to identify different events. Following Platt et al. [15], 
we separate different events by comparing the average time gap in a fixed length 
window of successive images with the local time gap between two successive images. 
When the local time gap is much longer than the average time gap, a boundary be-
tween two separate events has been found. Platt et al. [15] provided an algorithm 
which operates on logarithmically transformed gap times, as follows:  

−=
+++≥ d

di
igNLogdKgNLog )()12/(1)(  

 

Fig. 1. Data processing database 
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Fig. 2. Example of the user interface 

where gN+i is the time gap between the image i and image i+1, gN is the local time 
gap between two successive images, d is the window size of images (Platt et. al. used 
d =10, the value used in our experiments). K is a suitable threshold (we also followed 
Platt et al. who used K = log17). If the local time gap gN is much greater than the 
average gap

−=
+++ d

di
igNLogdK )()12/(1 , then a time event has been located. We 

call this condition 1. 

3.2   Location Clustering 

Location clustering can detect obvious gaps in the location coordinates, latitude and 
longitude. A cluster is defined as those photographs falling between two obvious 
latitude or longitude gaps. Like time gaps, latitude and longitude gaps are also as-
sumed to identify different events. Just as two different events can be identified by 
comparing the local time gap and the average time gap, two separate events can also 
be located by comparing the local latitude or longitude gap with the average latitude 
or longitude gap. We use an analogous formula for our location clustering model, 
separated into a latitude clustering algorithm model and a longitude clustering  
algorithm model. 
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Latitude Clustering: LatgN
−=

++≥ d

di
iLatgNd )12/(1  

LatgN+i is the latitude distance gap between, image i and i+1, LatgN is the local 
latitude distance gap, d (we used d=10) is the window size of images. If the local 
latitude distance gap is much greater than the average gap

−=
++ d

di
iLatgNd )12/(1 , 

then a new location event has been located. We call this condition 2. 

Longitude Clustering: LonggN
−=

++≥ d

di
iLonggNd )12/(1  

LonggN+i is the longitude distance gap between, image i and i+1, and LonggN is the 
local longitude distance gap. If the local longitude distance gap is much bigger than 
the average gap, then a new location event has been located. We call this condition 3. 
Log and K are not included in the location models because the location gaps tend to 
be very small numbers of latitude and longitude degrees. 

3.3   Time – Latitude and Longitude Clustering Model 

The relationship of time, latitude and longitude is shown on a three dimensional  
x-y-z-coordinate (figure 3). If any one of the above conditions (1 to 3) occurs, a new 
event has been located. Thus events are not only located by time, but also by location. 
For example, I might take some pictures in London in the morning, then take some 
pictures in Oxford in the afternoon. In this case the local time gap between these two 
sets of photos is small, suggesting that they could not be separated on the basis of 
time alone. However, the large gaps in latitude and longitude between the sets of 
photographs clearly show that they belong to separate events. 

 

Fig. 3. Clustering model for time and location combination 
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3.4   User Interface 

We have produced a user interface, so users can browse their personal images which 
have been grouped into discrete events. The browser allows users to browse their 
entire collection on a scrollable panel as shown in Figure 2. The images follow the 
time line (the earliest taken photo in the top left corner, the last taken in the bottom 
right hand corner). Events are separated by the symbol “event”. 

4   Main Experiment 

The main experiment was designed to test the time and location combination browser 
described in this paper against the four other, more standard, browsers: BR’s 
PhotoArchiver®, Canon ZoomBrowserEX®, the WinXP® image folder browser, and 
our own time alone clustering browser (using Platt et al.’s original model). BR’s 
PhotoArchiver allows EXIF metadata extraction, so users can browse images using 
the metadata such as time and place name in a classified hierarchy browsing interface. 
It hierarchically classifies images by year, month and place name, but unlike our sys-
tem, does not use this data to automatically cluster the images by event. Canon 
ZoomBrowserEX is a time base line browser, but does not have the function of clus-
tering. We use the Microsoft windows XP folder browser for unindexed photos. The 
time alone clustering browser is similar to the time and location clustering combina-
tion browser, except in that it does not have the function of location clustering. 

4.1   Hypothesis and Aim 

The hypothesis of this study was that the browsing features related to episodic mem-
ory, incorporated into our time and location combination browser would improve 
image searching of personal collections. To confirm this hypothesis, we needed to 
show that the time and location clustering combination browser performed better than 
the other four browsers with real experimental subjects. 

4.2   Subjects 

Six volunteers, three male and three female, all with normal colour vision, partici-
pated in this study. They were all staff and students at the University of Sunderland, 
and all had experience in managing their own digital photos. Each subject was asked 
to provide a personal collection of about 200 images, as shown in Table 1. This mod-
est number was comparable with the sizes of the subjects’ entire personal photograph 
collections, since 5 subjects estimated that they had collected between 250 and 400 
photographs, and just one subject had over 2000 photographs. Some subjects did not 
want to give us all their personal photographs.  

Table 1. The photo collection size for each subject 

 Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 
Collections 202 199 200 202 208 199 
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In a future experiment we will require the subjects to annotate the collections they 
submitted, and we felt that 200 photographs would be a manageable number.  

4.3   Scenario Tasks 

We gave each subject four general and four specific tasks for image searching. They 
were each asked to read each the scenario description beforehand, and then in the 
timed phase of the experiment, find out the image which best matched each scenario 
description. 

The General search tasks involved non-specific scenarios, so that every collection 
would contain at least one image answering that description. No time limit was set for 
any of the searching tasks, but for each task the time spent searching was recorded. 
The general search tasks were as follows: 1. Please find a photo where you were with 
one or two of your friends (or family members), at an outdoor sunny place on your 
last holiday. 2. Please find a photo where you were standing in a crowded city centre. 
3. Please find a Photo where you were with your families in an indoor environment.  
4. Please find a photo of the most famous building of the city which you last visited. 

The Specific search tasks were based on the contents of each subject’s personal 
collection, so were different for each subject. For example, one subject was asked to 
perform the following four search tasks: 1. please find the photo where your girl 
friend was sitting on the grass with flowers in the background in sunny weather. 2. 
Please find out the photo where your were sitting with your girl friend in front of 
your new house in your hometown. 3. Please find the photo where in good weather, 
you were on the way to Sunderland air show, and there was a river next to you. 4. 
Please find the photo with a rainbow over the river and docks. All the subjects per-
formed four general scenario tasks and four specific scenario tasks for all five brows-
ers under test. 

4.4   The Experimental Method 

The experiment used the repeated measures design. In order to overcome the prob-
lems of practice and order effects inherent in repeated measures experiments, we used 
a Latin square design. Half of the subjects did the general tasks first followed by the 
specific tasks, and the other half did the specific tasks first followed by the general 
tasks. Each subject also used the different browsing tools in Latin square design order.  

We used five Likert scale questionnaires to determine the degree of user satisfac-
tion for each browser, using the same questions as [15], as follows: 1. I like this image 
browser. 2. This Browser is easy to use. 3. This Browser feels familiar. 4. It is easy to 
find the photo I am looking for. 5. A month from now, I would still be able to find 
these photos. 6. I was satisfied with how the pictures were organized. 

4.5   System-Centred Evaluation 

System performance, in terms of how closely the event clusters suggested by the users 
match the event clusters produced automatically, were evaluated quantitatively using 
Recall and Precision. We found the number of image pairs in the collection which fall 
into each of the following categories:  1. user and machine place the image pair in the 
same event; 2. user places the image pair in the same event, but the machine places 
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them in different events; 3. user places the image pair in different events but the ma-
chine places them in the same event; 4 user and machine both place the image pair 
into separate events. Recall = (pairs in 1) / (pairs in 1 + pairs in 2), while Precision  = 
(pairs in 1) / (pairs in 1 + pairs in 3). The overall effectiveness measure, F, was the 
harmonic mean of Recall and Precision, 2PR / (P + R). We compared the performance 
of time-based clustering alone with time and location-based clustering.  

5   Results 

5.1   Completion Time of the General Scenario Searching Tasks 

The searching times (averaged over all 6 subjects) for the general scenario tasks using 
each of the five browsers are shown in Table 2. Although the average searching time 
was less when using the time and location combination browser than for any of the 
other browsers, a one-way ANOVA test showed that this difference was not signifi-
cant at the p = 0.05 level (F (4, 25) = 2.44, p = 0.0733).  

 5.2   Completion Time of the Specific Scenario Searching Tasks 

Table 3 shows the subjects’ average searching time for the specific scenario tasks 
when using the five different browsers. As was the case for the general scenarios, the 
time and location combination browser required the shortest average searching time. 
Once again, the one way ANOVA analysis was not significant at the p=0.05 level  
(F (4, 25) = 2.38, p = 0.0787). However, when taking the average total search time for 
the general and specific scenarios combined, the time and location combination 
browser was again the fastest overall. This time the one-way ANOVA test showed 
that this difference was significant at the p = 0.05 level (F (4, 25) = 2.99, p = 0.0381). 

5.3   Questionnaires 

The user satisfaction questionnaires were filled in immediately after the timed search-
ing tasks had been performed, and the average satisfaction ratings for the six subjects 
are shown in Table 3. The time and location combination browser was rated more 
highly than the other browsers according to all six criteria, except for question 5, where 
 

Table 2. System searching time for five browsers 
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Table 3. User satisfaction for five different browsers 

 

Table 4. Recall and precision results  

 Time and location clustering. Time Alone clustering 
 Recall Precision F1 

measure 
Recall Precision F1 

measure 
Subject1 

 
0.7289 1.0000 0.8432 0.9419 0.6965 0.8008 

Subject2 
 

0.9927 0.9647 0.9785 0.6903 0.6071 0.6551 

Subject3 
 

0.7956 0.9290 0.8571 0.9962 0.2757 0.4319 

Subject4 
 

0.8826 0.9449 0.9127 0.8832 0.9422 0.8976 

Subject5 
 

0.8435 0.9747 0.9044 0.9979 0.3555 0.5242 

Subject6 
 

0.8847 0.9956 0.9369 0.8847 0.9956 0.9369 

Average 0.8547 0.9681 0.9079 0.8990 0.6454 0.7514 

it was rated equal to the time alone clustering browser. One way ANOVA tests for 
each question showed that the differences between the browsers were significant at p = 
0.5 for questions 1, 2, 4, 6 and the overall average, but not for questions 3 and 5. 

5.4   Recall and Precision 

The results for Recall, Precision and the F measure for both the time and location 
combination system and the time alone system are shown in table 4: 
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The results show that precision for the time and location combined clustering is 
better than for time alone clustering, while the recall for time alone clustering is 
higher than time and location clustering. The overall effectiveness, as estimated by 
the F measure, was better for the time and location combined clustering. 

6   Discussion and Conclusion 

Although we could not find a significant improvement with the time and location 
browser in searching time at the 5% level for either the general scenario searching 
tasks or specific scenario searching tasks alone, the total system searching time 
(searching time for the general and specific searching tasks combined) was signifi-
cantly better for the time and location browser. In the user satisfaction analysis, the 
time and location combination browser received significantly more favorable ques-
tionnaire responses than the other browsers. For the two important questions 4 and 6 
(see table 3), the time and location combination browser had strong scores on the one 
way ANOVA. Our system-centered evaluation showed that the time and location 
combination browser had greater retrieval effectiveness than the time alone browser, 
as measured by the F measure. All these results support our hypothesis that factors 
related to human episodic memory, time and location, can be used to help users 
search their personal photograph collections more easily.   

We have shown that the time and location browser is helpful for users with collec-
tions of about 200 photographs, but it remains to be seen whether our experiments 
will scale up to very large collections. 

In future we plan to continue our experiments with a larger number of subjects. 
Some subjects suggested that we should modify the system to label each event with 
its location and time, rather than using a standard label “event” to signal the beginning 
of each new event, so this feature will be incorporated into future versions. We also 
intend to develop a prototype system which can automatically caption personal im-
ages by location using gazetteers, and to make use of short captions for each image 
provided by the subjects themselves. We will devise quantitative studies of system 
performance and qualitative studies of human satisfaction for this new prototype per-
sonal image browser. 
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Abstract. Motion capturing has become an important tool in fields
such as sports sciences, biometrics, and particularly in computer anima-
tion, where large collections of motion material are accumulated in the
production process. In order to fully exploit motion databases for reuse
and for the synthesis of new motions, one needs efficient retrieval and
browsing methods to identify similar motions. So far, only ad-hoc meth-
ods for content-based motion retrieval have been proposed, which lack
efficiency and rely on quantitative, numerical similarity measures, mak-
ing it difficult to identify logically related motions. We propose an effi-
cient motion retrieval system based on the query-by-example paradigm,
which employs qualitative, geometric similarity measures. This allows
for intuitive and interactive browsing in a purely content-based fashion
without relying on textual annotations. We have incorporated this tech-
nology in a novel user interface facilitating query formulation as well as
visualization and ranking of search results.

1 Introduction

In the past two decades, motion capture systems have been developed that allow
to track and record human motions at high spatial and temporal resolutions. The
resulting motion capture data, typically consisting of 3D trajectories of markers
attached to a live actor’s body, is used to analyze human motions in fields such as
sports sciences and biometrics (person identification), and to synthesize realistic
motion sequences in data-driven computer animation. Even though there is a
rapidly growing corpus of motion data, there still is a lack of efficient motion
retrieval systems that allow to identify and extract user-specified motions.

Previous retrieval systems often require manually generated textual annota-
tions, which roughly describe the motions in words. Since the manual genera-
tion of reliable and descriptive labels is infeasible for large data sets, one needs
efficient content-based retrieval methods such as techniques based on the query-
by-example paradigm. The crucial point in such an approach is the notion of
similarity used to compare the query with the documents to be searched. For
the motion scenario, two motions may be regarded as similar if they represent

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 373–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Top: 14 poses from a forceful jump. Bottom: 14 poses from a weak jump.

Input: Short query motion clip.
Feature selection.
Fault tolerance settings.

Procedure: Automatic conversion of query motion into a sequence of geometric
configurations (with respect to the selected features).
Index-based retrieval, post-processing, and ranking.

Output: Ranked list of hits.

Fig. 2. Overview of the retrieval process based on the query-by-example paradigm

variations of the same action or sequence of actions, see [4]. These variations
may concern the spatial as well as the temporal domain. For example, the jumps
shown in Fig. 1 describe the same kind of motion even though they differ con-
siderably with respect to timing, intensity, and execution style (note, e.g., the
arm swing). In other words, logically similar motions need not be numerically
similar, as is also pointed out in [4].

In this paper, we present a motion retrieval system that allows for efficient
retrieval of logically related motions based on the query-by-example paradigm,
see Fig. 2 for an overview. As opposed to previous approaches that are based on
quantitative, numerical features, our approach is based on qualitative, relational
features, which describe certain geometric constellations between specified points
of the body. As will be described in Sect. 2, such relational features are not only
robust to spatio-temporal variations (thus providing a basis for the identification
of logically related motions) but are also ideally suited for indexing (speeding
up the retrieval process considerably). The front end of our retrieval system
consists of a graphical user interface facilitating intuitive query formulation as
well as visualization and ranking of search results, see Sect. 3. Finally, we report
on some of our experiments in Sect. 4. For more experimental details and re-
sult videos, we refer to http://www-mmdb.iai.uni-bonn.de/projects/mocap/
RetrievalGUI.html.

We close this section with a discussion of related work. So far, only little work
has been published on motion capture indexing and retrieval based on the query-
by-example paradigm. To account for spatio-temporal variations, most previous
approaches rely on the technique of dynamic time warping (DTW), see [2, 4, 8].
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However, major drawbacks to DTW are its quadratic running time and storage
requirements, making DTW infeasible for large data sets. To speed up similarity
search, Keogh et al. [3] use an index structure based on bounding envelopes,
allowing to identify similar motion fragments that differ by some uniform scaling
factor with respect to the time axis. In comparing individual frames of the data
streams, all of these approaches rely on numerical cost measures. As a first
step towards logical similarity, Liu et al. [5] compare motions based on a so-
called cluster transition signature that is immune to temporal variations. To
bridge the semantic gap between logical similarity as perceived by humans and
computable numerical similarity measures, Müller et al. [6] introduce a new type
of qualitative geometric features and induced motion segmentations, yielding
spatio-temporal invariance as needed to compare logically similar motions.

The main contribution of the present paper is to extend the concepts from [6]
in the following ways: we define new classes of generic relational features grasping
important aspects of an actor’s motion patterns, which prove to be well-suited
for content-based motion retrieval. A novel Feature Design GUI allows to instan-
tiate the generic features into semantically meaningful feature sets, supported
by suitable optimization and visualization tools. As a further contribution, we
present a Retrieval GUI based on the query-by-example paradigm that includes
a novel ranking strategy and facilitates merging operations on hits.

2 Relational Motion Features

The most common recording technology for motion capture data uses an array of
digital cameras to three-dimensionally track reflective markers attached to a live
actor’s body, see, e.g. [7]. The tracking data can then be post-processed to obtain
a multi-stream of 3D trajectories corresponding to the joints of a fixed skeletal
kinematic chain as indicated by Fig. 3. A full set of 3D coordinates describing
the joint positions of a kinematic chain for a fixed point in time is also referred
to as a pose. A motion capture data stream is thought of as a sequence of poses
or frames, typically sampled at 30–600 Hz.

In a sense, motion capture data has a much richer semantic content than, for
example, pure video data of a motion, since the position and the meaning of all
joints is known for every pose. This fact can be exploited by considering relational
features that describe (boolean) geometric relations between specified points of
a pose or short sequences of poses, see [6]. We explain the main idea of such
features by means of some typical examples. Consider the test whether the right
foot lies in front of (feature value one) or behind (feature value zero) the plane
spanned by the center of the hip (the root), the left hip joint, and the left foot,
cf. Fig. 3 (a). Interchanging left with right, one obtains the analogous feature for
the other leg. A combination of these features is useful to identify locomotion
such as walking or running. A similar feature is defined by the oriented plane
fixed at the left and right shoulders and the root, shifted one humerus length to
the front: checking whether the left hand is in front of or behind this plane, one
obtains a feature suitable to identify left punches, see Fig. 3 (b). The feature
indicated by Fig. 3 (c) checks whether the right hand is moving into the direction
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headtop
head
neck

lclavicle rclavicle
lshoulder rshoulder

lelbow relbow

lwrist rwrist

lfingers rfingers

chest
belly

root
lhip rhip

lknee rknee

lankle
rankle

ltoes rtoes

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Left: skeletal kinematic chain model consisting of rigid body segments flexibly
connected by joints, which are highlighted by circular markers and labeled with joint
names. Right: qualitative features describing geometric and kinematic relations between
the body points of a pose that are indicated by thickened markers.

determined by the belly-chest segment. Other types of relational features express
whether specified points of the body are close together, yielding, for example,
“touch” detectors for the two hands, a hand and a leg, or a hand and the head
(Fig. 3 (d)–(f)). We also use relational features to check if certain parts of the
body such as the arms or the legs are bent or stretched (Fig. 3 (g)).

By looking at maximal runs of consecutive frames yielding the same feature
values for a fixed combination of frame-based relational features, one obtains
a temporal segmentation of motion data streams, see Fig. 4. In order to com-
pare two different motions, each motion data stream is coarsened by transform-
ing it into a segment-based progression of feature values. Two motion clips are
then considered as similar if they possess (more or less) the same progression of
feature values. For further details, we refer to [6]. The main point is that rela-
tional features are invariant under global orientation and position, the size of the
skeleton, and local spatial deformations, whereas the induced segmentation in-
troduces robustness to temporal variations.

2.1 Feature Design

To facilitate retrieval in large motion databases containing a great variety of
motions, it is essential to provide the end-user of our retrieval system with a
semantically rich set of features covering different body parts and various aspects
of motions. Of course, the requirements to such a feature set will heavily depend
on the intended application. The goal of our retrieval system is to search for
motion clips in view of their rough course of motion. In this paper, we describe
an exemplary system based on a set of 22 features, see Table 1.

In constructing such a feature set, we started with a small set of generic
boolean features, which encode certain joint constellations in 3D space and time.
In particular, we used the following generic features:

F
(j1,j2,j3;j4)
α,plane , F

(j1,j2,j3;j4)
α,nplane , F

(j1;j2)
α,touch, F

(j1,j2,j3)
α,bent , F

(j1;j2)
α,fast , F (j1,j2;j3)

α,move , F (j1,j2,j3;j4)
α,nmove .
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(00) (01) (11)

1 2 3
4

5
6 7 8 9

Fig. 4. Segmentation of a parallel leg jumping motion with respect to a combina-
tion of the feature “left knee bent” and the feature “right knee bent”. Here the nine
segments correspond to the sequence

(
(00),(01),(11),(01),(00),(01),(1

1),(01),(00)
)

of feature values.
Poses assuming the same feature values are indicated by identically marked trajectory
segments. The trajectories of the joints ‘headtop’ and ‘rankle’ are shown.

Table 1. The feature set used in our experiments. All described features pertain to
the right half of the body. Analogous versions for the left body parts exist and are
assigned the even IDs F2, F4, . . . F22. The abbreviation “hl” denotes the relative length
unit “humerus length”, which is used to handle differences in absolute skeleton sizes.

gen. feature ID set j1 j2 j3 j4 α description
F

(j1,j2,j3;j4)
α,plane F1 � root lhip ltoes rankle 0.3 hl foot in front

F
(j1,j2,j3;j4)
α,nplane F3 � lhip rhip rhip rankle 0.5 hl leg sideways

F
(j1,j2,j3)
α,bent

F5 � rhip rknee rankle 110◦ knee bent
F7 u rshoulder relbow rwrist 110◦ elbow bent

F
(j1,j2)
α,fast

F9 � root rankle 6 hl/s foot fast
F11 u rshoulder rwrist 6 hl/s hand fast

F (j1,j2;j3)
α,move

F13 � root belly rankle 2 hl/s foot moves up
F15 u belly chest rwrist 3 hl/s hand moves up
F17 u chest belly rwrist 3 hl/s hand moves down
F19 u neck rshoulder rwrist 3 hl/s hand moves sideways

F (j1,j2,j3;j4)
α,nmove F21 u root lshoulder rshoulder rwrist 3 hl/s hand moves forward

Each of these features assumes either the value one or the value zero and depends
on a set of joints, denoted by j1, j2, . . ., and on a threshold value α ∈ R. The first
generic feature assumes the value one iff joint j4 has a signed distance greater
than α from the oriented plane spanned by the joints j1, j2 and j3. For example,
setting j1 =‘root’, j2 =‘rhip’, j3 =‘rankle’, j4 =‘lankle’, and α = 0.3, one obtains
the feature of Fig. 3 (a). The same test is described by F

(j1,j2,j3;j4)
α,nplane , but here we

define the plane in terms of a normal vector (given by j1 and j2), and fix it at j3.
The generic feature F

(j1;j2)
α,touch assumes the value one iff the two joints j1 and j2 are

closer than α. Similar generic touch detectors can also be defined for two body
segments, or a joint and a body segment, see Fig. 3 (d)–(f). The generic feature
F

(j1,j2,j3)
α,bent assumes the value one iff the angle between the segments determined

by (j2, j1) and (j2, j3) is below the threshold α. For example, in Fig. 3 (g),
we set j1 =‘lhip’, j2 =‘lknee’, j3 =‘lankle’, and α = 110◦. The generic feature
F

(j1,j2)
α,fast assumes the value one iff joint j2 has a relative velocity with respect to j1
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that is above α. Similarly, the feature F
(j1,j2;j3)
α,move considers the velocity of joint j3

relative to joint j1 and assumes the value one iff the component of this velocity in
the direction determined by (j1, j2) is above α. For example, setting j1 =‘belly’,
j2 =‘chest’, j3 =‘rwrist’, one obtains the feature of Fig. 3 (c). F

(j1,j2,j3;j4)
α,nmove has the

same semantics, but the direction is given by the normal vector of the oriented
plane spanned by j1, j2 and j3. Of course, there are numerous other ways to
define semantically meaningful generic features.

To determine reasonable joint combinations as well as suitable thresholds α
for the generic features, we implemented a Feature Design GUI, which provides
tools for visual feedback, statistical evaluations, and optimization. In designing
our features, we incorporated most parts of the body, in particular the end ef-
fectors, so as to create a well-balanced feature set. One guiding principle was
to cover the space of possible end effector locations by means of a small set
of pose-dependent space “octants” defined by three intersecting planes each
(above/below, left/right, in front of/behind the body). Obviously, this subdi-
vision is only suitable to capture the rough course of a motion, since the feature
function would often yield a constant output value for small-scaled motions.
Here, our new features of type Fα,move turned out to effectively grasp finer mo-
tion details. In general, our boolean features are designed to be zero for large
portions of time (e.g., for a standing pose, all features assume the value zero),
but still manage to capture important motion characteristics. Threshold specifi-
cation is a delicate issue, since improper thresholds α may significantly degrade
retrieval quality. To determine a suitable α for a given feature, we proceed as
follows: we supply the system with a training set A of “positive” motions that
should yield the feature value one for most of its frames and a training set B
of “negative” motions that should yield the feature value zero for most of its
frames. The threshold α is then determined by a one-dimensional optimization
algorithm, which iteratively maximizes the occurrences of the output one for the
set A while maximizing the occurrences of the output zero for the set B. Visual
feedback about the resulting feature values aids the designer in fine-tuning α.
Further boolean features can then be derived—supported by a textual editor—by
taking boolean expressions (AND, OR, XOR) of previously designed features.

2.2 Indexing

A major advantage of our approach is that all involved retrieval and indexing
algorithms are time and space efficient. Here, the crucial point is that by in-
corporating spatio-temporal invariance in the relational features and induced
segments, one can employ standard information retrieval techniques for fast
content-based and fault-tolerant retrieval based on inverted lists, see [6]. In our
system, we have divided the 22 features from Table 1 into two subsets F � (10
features) and F u (12 features), as denoted by the column marked “set”. F � ex-
presses properties of the lower part of the body (mainly of the legs), while F u

expresses properties of the upper part of the body (mainly of the arms).
Given a motion database (w.l.o.g. consisting of a single motion), we create an

index I� for F �, which consists of the inverted list representation of the temporal
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segmentation of the motion, see Sect. 2. Analogously, we create a second index
Iu for the feature set F u. Note that in this approach, a feature set containing
n features leads to 2n possible feature vectors, each of which may give rise to
an inverted list in the index. Thus, we restrict the maximum number of features
per index to 12, corresponding to a maximum of 4, 096 inverted lists. Efficient
retrieval can then be done by suitable union and intersection operations on the
inverted lists, see [6] for further details.

3 User Interaction

Recall from Fig. 2 that a query specification consists of an example motion
together with some fault tolerance settings and a suitable selection from the
relational features listed in Table 1. In this section, we illustrate the typical
workflow in our query-by-example system by means of a “jump” query as shown
in Fig. 4, while presenting the corresponding elements of our Retrieval GUI.

Step 1: Specifying an example motion. In our system, a query motion is specified
by selecting a frame range from a motion capture file, see Fig. 5 (a). Here, the se-
lected jumping motion is a small excerpt from a sequence of pre-recorded sports
movements, corresponding to segments 3–9 in Fig. 4. Note that in principle, it
would also be possible to provide an example motion by keyframing, a process
widely used in computer animation. Here, a motion is sketched by a few charac-
teristic poses that are then interpolated. In a further input mode, the example
motion could be generated on-line using suitable motion capturing hardware.

To get a better feeling for our query motion from Fig. 4, let us first focus on the
movement of the legs. Both legs are kept parallel throughout the jump sequence
and are stretched during the initial phase of arm-swing (segment 1 in Fig. 4).
The legs are then bent into a half-squatting position (segments 2–3), preparing
the following push-off (starting shortly before segment 4), during which the legs
are stretched once more. In the landing phase (starting shortly before segment
6), the legs absorb the energy of the jump by bending as deep as before push-off.
The jump sequence is concluded by stretching the legs into a normal standing
position (segments 8–9). This sequence of bending and stretching the knees is
characteristic for many kinds of parallel-leg jumping motions.

Step 2: Selecting suitable features. The above considerations show that it is
reasonable to choose the features as in Fig. 4, where kneeLeftAngle and knee-
RightAngle (corresponding to F 5/F 6 in Table 1) were selected. This is indicated
in our GUI by a ‘+’ mark, see Fig. 5 (b). In general, the strong semantics of
geometric relations makes feature selection an intuitive process: the user can
often anticipate which features will grasp important aspects of the query.

Since in Step 1, we only selected the frames corresponding to segments 3–9, we
obtain the sequence

(
(1
1),(0

1),(0
0),(0

1),(1
1),(0

1),(0
0)
)

with respect to F5 and F6, which
is a subsequence of the feature progression given in the caption of Fig. 4. In
our GUI, we represent this feature progression as a query matrix Q, where each
column corresponds to a segment, each row corresponds to a feature, and where
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Fig. 5. Left: query interface; for a better overview, only 6 of the 10 features in I�

are shown in (b). Right: fourteen hits for a “jump” query on D20. The query motion
(foreground) and a false positive hit (background) are highlighted.

features from the chosen index that were not selected by the user are marked by
rows of asterisks, e.g.,

Q =

⎛⎝ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 0 0 1 0 0
1 1 0 1 1 1 0

⎞⎠ F2
F4
F1
F3
F6 +
F5 +

For the sake of simplicity, we omitted the features F9, F10, F13, and F14, which
are constituents of F �. The features corresponding to each row are given to the
right of Q, and the user-selected features are once more marked by a ‘+’. Such a
query matrix is automatically generated by our system as soon as the frame range
and the features have been selected (cf. Fig. 5 (c)). We visualize the structure

a

b

c

d

e
f
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of the current segmentation as a multicolored bar, as shown in the lower part of
Fig. 5 (c). Here, each color corresponds to a feature vector, and the lengths of
the colored bars are proportional to the segment lengths in frames.

Step 3: Setting up fault tolerance. The query matrix shown in Fig. 5 (c) differs
from Q in that the user has inserted asterisks in columns 2, 4, and 6. These
asterisks mask out irrelevant transitions between the alternating vectors (1

1) and
(0
0) from the original feature sequence. In more detail, the feature vectors (0

1) arise
because the actor does not bend or stretch both legs at the same time. Instead,
he has a tendency to keep the right leg bent a bit longer than the left leg. There
are many possible transitions from, e.g., (1

1) (legs bent) to (0
0) (legs stretched),

such as (1
1) →(0

0), (1
1) →(0

1) →(0
0), or (1

1) →(1
0) →(0

1) →(0
0). This is the reason why we

inserted the asterisk columns in Fig. 5 (c): each of the aforementioned transitions
encodes the motion “stretching the legs”, which is all that matters to our query.
Our system automatically translates the asterisk notation into a suitable query.

Step 4: Querying, ranking and result presentation. Once the user has finalized
the query matrix, the system starts the retrieval and then presents the hits to the
user, who can browse the corresponding motion fragments in a graphical display,
see Fig. 5 (d). The hits can be post-processed by means of a new DTW-based
ranking strategy: a hit’s ranking value is determined by the cost of a cheapest
path in a cost matrix (cij), where each entry cij is the hamming distance between
the i-th vector in the feature progression of the query and the j-th vector in the
feature progression of the hit. At this stage, we use a segmentation that is induced
by a compound feature function containing all features from Table 1, regardless
of the features that were selected for the query. Note that DTW is only applied
to a generally very small number of hits that were efficiently retrieved by our
index-based approach and not to the entire database, as for most previous DTW-
based methods. Furthermore, the cost matrices are typically very small because
the query and the hits are compared at the segment level instead of the frame
level, thus working on strongly downsampled motion representations.

Step 5: Combining queries. Our example query as it has been discussed so far
yields a relatively large number of false positive hits on our test database. For
example, many squatting motions exhibit the same progression of knee bending
and stretching as found in a jump. To further refine our query, we can incorporate
additional constraints regarding the upper part of the body, i.e., the index Iu. To
this end, the user may specify several independent queries (on different indexes
or even on the same index), which can then be combined in a query expression
by means of merge and intersect operations, cf. Fig. 5 (e). Merging two sets of
hits H1 and H2 means that a hit h1 ∈ H1 is reported as a result if there is a hit
h2 ∈ H2 that overlaps h1 by more than a fraction of θ ∈ (0, 1] (relative to the
length of h1, measured in seconds). Our intersection operator coincides with the
set theoretical intersection of the hits interpreted as time intervals. The results
of a combined “jump” query, which uses merging to incorporate a query that
focuses on the arm motion, are discussed in Sect. 4 and visualized in Fig. 5 (f).
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Step 6: Iteratively refining the query. Assisted by the system’s feedback, a user
can modify his query at several points in the query process. Initially, he may
modify the frame range and feature selection so as to achieve a segmentation
that is characteristic, but not too specific. Here, the query matrix and the seg-
mentation bar support the user’s decisions. Short segments in the segmentation
bar hint at transitions that may be masked out by means of an asterisk col-
umn, cf. Step 3. After inspecting the hits for the initial query, the user may
reconsider the current query settings. If, for instance, many false positive hits
have been retrieved, it often helps to extend the query motion or to incorporate
additional features that discern the query motion from the false positives. If, on
the other hand, only few hits are retrieved, the user may decrease the complex-
ity of the induced segmentation by reducing the number of selected features,
by reducing the length of the example motion, or by decreasing the merging
parameter θ.

4 Experimental Results

Our motion retrieval system was implemented in Matlab, and experimental re-
sults were obtained on a 3.6 GHz Pentium 4 with 1 GB of main memory. We
evaluated the system on a subset D180 of the CMU database [1], which con-
tains about one million frames of motion capture data (∼180 minutes sampled
at 120 Hz) and covers a wide range of motions.

The columns of Table 2 show the results for five exemplary queries: a force-
ful jump, a cartwheel, the gymnastics motions “elbow-to-knee” and “jumping
jack”, and a punch with the right fist. Further information and result videos for
these queries can be found at http://www-mmdb.iai.uni-bonn.de/projects/
mocap/RetrievalGUI.html. In order to determine the recall (proportion of rel-
evant hits that were retrieved) of our queries, we manually annotated a subset

Table 2. Summary of representative query results. See Sect. 4 for a discussion.

jump cartwheel elbow-to-knee jumping jack punch

recall on D20 13/16 4/4 14/14 19/19 24/24

precision on D20 13/14 4/4 14/15 19/19 24/37

precision on D180 17/27 4/59 14/27 19/29 83/153

p180
5 | p180

10 | p180
20 5 | 10 | 16 4 | 4 | 4 5 | 9 | 14 5 | 10 | 18 5 | 10 | 20

query time on D180 (s) 0.87 0.06 0.39 0.60 0.08

ranking time on D180 (s) 4.42 5.87 1.04 1.54 4.46

total length of hits in D180 (s) 136.45 125.89 15.08 37.87 128.53
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D20 of D180 consisting of about 145,000 frames (∼20 minutes). D20 includes a
diverse range of about 15 different gymnastics motions, some walking, jogging,
jumping, climbing sequences, several martial arts moves, pantomime, and bas-
ketball motions. The precision (proportion of retrieved hits that are relevant)
of query results was evaluated on both D20 and D180. Our retrieval concept
focuses on maximizing the recall for any given query, which may lead to a rela-
tively low precision. However, we improve the quality of our retrieval results by
applying DTW-based ranking as explained in Sect. 3. In order to evaluate this
ranking, we counted the number of relevant hits within the top 5, top 10, and
top 20 positions of the ranked hit list, denoted in Table 2 by p180

5 , p180
10 , and p180

20 ,
respectively.

Our query for parallel-leg jumps (first column of Table 2) successfully retrieved
13 of the 16 jumping motions that were contained in D20, leading to a recall of
13/16. The three remaining jumps were missed because the actors’ knees were
not bent far enough to trigger our features. The total number of hits was 14
(cf. Figure 5 (f)), only one of which was a false positive, namely, the squatting
motion that is highlighted in Figure 5 (f). This leads to a precision of 13/14
on D20. On D180, four additional jumps and nine additional false positives were
found, leading to a precision of 17/27. There were no false positives in the top
5 and top 10 positions of the ranked hit list, and only one of the 17 relevant
hits did not appear in the top 20. Only 136.45 seconds of D180, or 1.26%, had to
be inspected by the DTW-based ranking procedure. The index-based retrieval
step took 0.87 seconds for the D180 database, whereas the ranking consumed
another 4.42 seconds. Note that in general, the running time for the ranking
step correlates with the total length of the retrieved hits.

The query for right cartwheels uses only two different features, F9 and F10,
which test whether the feet move with a high velocity. The resulting feature
sequence ((0

0),(0
1),(1

1),(1
0),(0

0)) reflects how the left leg is kicked up in the air, quickly
followed by the right leg. The left leg touches the ground first, leading to a low
velocity in this phase, again followed by the right leg. This query is characteristic
enough to lead to perfect precision and recall values on D20. Its precision on D180

is very low, as there are 55 false positive hits, but our ranking strategy places
the cartwheels among the top 5 hits. In contrast to the three other examples, the
cartwheel and punch queries operated on one index only, which makes merging
superfluous—hence the low retrieval times of 0.06 and 0.08 seconds, respectively.

For the gymnastics motions “elbow-to-knee” and “jumping jack”, a larger
number of spurious hits was returned on D180, but our ranking succeeds in
placing the relevant hits at the top of the list. The queries “cartwheel”, “elbow-
to-knee”, and “jumping jack” achieve perfect recall values on D20. No additional
relevant hits for these queries appear in the results for D180 because to our
knowledge, all of these rather specific motions are already contained in the subset
D20 of D180. For characterizing right-handed punches, we used F7, F11, F21, and,
to improve precision, F22. Once again, the recall on D20 is perfect, while the
precision is 24/37. On D180, the precision decreases to roughly 50%, but this is
successfully compensated for by our ranking.
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5 Conclusions and Future Work

In this paper, we presented a Retrieval GUI for content-based motion retrieval,
where the query consists of a motion clip as well as a user-specified selection of
motion aspects to be considered in the retrieval process. Based on the concept of
quantitative relational features as introduced in [6], we suggested several generic
boolean features, which can then be used—aided by our Feature Design GUI—
to determine a set of semantically meaningful features covering a wide range
of motion aspects. Being in a way conceptually orthogonal to computationally
expensive DTW-based strategies, our technique is ideally suited to efficiently
cut down the search space in a pre-processing step, thus making DTW-based
techniques applicable to large data sets. This finding is supported by our exper-
imental results, see Sect. 4.

Motion reuse based on morphing and blending as used in computer anima-
tion may require batch techniques to automatically retrieve suitable motion
fragments. To this end, we plan to automate the feature selection step using
statistical methods. Furthermore, we are developing and analyzing DTW-based
ranking strategies based on different cost measures. First experiments showed
that our relational approach to motion description not only constitutes a possible
framework for flexible and efficient retrieval mechanisms, but also for automatic
classification and annotation of motion data.
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Abstract. We have proposed a novel image retrieval system that incorporates a
workspace where users can organise their search results. A task-oriented and user-
centred experiment has been devised involving design professionals and several
types of realistic search tasks. We study the workspace’s effect on two aspects:
task conceptualisation and query formulation. A traditional relevance feedback
system serves as baseline. The results of this study show that the workspace is
more useful with respect to both of the above aspects. The proposed approach
leads to a more effective and enjoyable search experience.

1 Introduction and Motivation

Content-based image retrieval (CBIR) systems have still not managed to find favour
with the public even after more than a decade of research effort in the field. There are
two main reasons for their lack of acceptability: first, the low-level features used to
represent images in the system do not reflect the high-level concepts the user has in
mind when looking at an image (semantic gap); and—partially due to this—the user
tends to have major difficulties in formulating and communicating their information
need effectively (query formulation problem).

We are seeking to find a solution to these problems by supporting an alternative
search strategy. We have designed a system, EGO, that combines the search and the
management process [1]. This is accomplished by introducing a workspace and rec-
ommendation system. While searching for images, the creation of groupings of related
images is supported, encouraging the user to break up the task into related facets to or-
ganise their ideas and concepts. The system can then assist the user by recommending
relevant images for selected groups. This way, the user can concentrate on solving spe-
cific tasks rather than having to think about how to create a good query in accordance
with the retrieval mechanism.

Although a workspace has been introduced in a few IR systems before, e.g. Sketch-
Trieve [2], its usefulness—especially for image retrieval—has not been evaluated for-
mally yet. To remedy this shortcoming, we have designed a user experiment to evaluate
the effectiveness of our approach for solving realistic image search tasks. We compare
EGO’s performance to that of a traditional relevance feedback system as a baseline. In
the relevance feedback system, the user is given the option of selecting relevant images
from the search results in order to improve the results in the next iteration. Our aim is

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 385–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to collect evidence on the systems’ effectiveness as perceived by the users. More im-
portantly, however, we would like to determine the workspace’s role in helping the user
to both conceptualise their search tasks and overcome the query formulation problem.

The experiment has been completed in two stages. Experiment 1 involved 12 partic-
ipants using the two systems for category search tasks and a design task. A summary of
the results has been published elsewhere [3]. This previous study only provided indica-
tive conclusions on our research hypotheses. The results of the system’s effectiveness
were ambiguous: people performed better (using quantitative measures) in the cate-
gory search tasks on the baseline while they were generally more satisfied with the
workspace system. On the other hand, it indicated that the organisation did indeed help
to conceptualise the tasks. However, we only studied two kinds of tasks from which
the design task was only performed on the workspace system. So to be able to further
study the effect of task on searching and organisation behaviour we need to investigate
a larger variety of tasks. Above all, we failed to capture the grouping process’ effect on
the query formulation process, which we address in this paper.

In addition, the retrieval mechanism based on visual features only was limiting: the
results were generally poor, the recommendation system was even more affected as it
only returned the top 10 results, and the users were often swamped by irrelevant images
due to not being able to provide negative feedback. We have decided to remedy these
problems and introduce a different set of tasks for the second stage of the experiment.
With this improved evaluation setup, Experiment 2 should help to clarify the validity of
our research hypotheses. These results are presented in this paper. We look at the results
from slightly different angles, such as a detailed analysis of the users’ perception of task
performance and user effort to complete the tasks. In particular, a direct comparison
between the relevance feedback process and the grouping and recommendation system
finally enables us to compare their impact on query formulation.

2 The Interfaces

We describe the main characteristics of both interfaces used in the evaluation, followed
by an overview of the underlying retrieval system in this section.

2.1 Workspace Interface – WS

The interface used in the evaluation is a simplified version of that of the EGO
system [1]. EGO has some additional features for personalisation and can, in princi-
ple, accommodate any sort of query facility. Since our main objective in these exper-
iments is to evaluate the usefulness of the workspace, this interface is referred to as
the Workspace Interface (WS). The WS interface depicted in Figure 1 comprises the
following components:

1. Query Panel: This provides a basic query facility to search the database by al-
lowing the user to compose a search request by entering search terms or adding
example images to the query-by-example (QBE) panel provided here. Clicking on
the “Search” button in this panel will issue a search.
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Fig. 1. Annotated WS interface

2. Results Panel: The search results from a query constructed in the Query Panel will
be displayed in this panel. Any of the returned images can be dragged onto the
workspace to start organising the collection or into the QBE panel to change the
current query.

3. Workspace Panel: The workspace holds all the images added to it by the user, and
serves as an organisation ground for the user to construct groupings of images.
Groupings can be created by right-clicking anywhere on the workspace, which
opens a context menu in which the option can be selected. Traditional drag-and-
drop techniques allow the user to drag images into (or out of) a group or reposition
the group on the workspace. An image can belong to multiple groups simultane-
ously. Panning and zooming techniques are supported to assist navigation in a large
information space. The top 10 recommendations will be displayed close to the se-
lected group on the workspace (see centre of workspace in Figure 1). In addition,
the complete recommendation results are also displayed in the Results Panel.

4. Group Results Panel: For each query or recommendations issued the existing groups
will be ranked in order of similarity to the current query/group and the five top
matching groups will be displayed in this panel. Each returned group contains a
link to the original group on the workspace.

To recapitulate, the query facilities available in the WS interface are: (1) manually con-
structed queries by providing keywords and/or one or more image examples (QBE),
and (2) user-requested recommendations.
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2.2 Relevance Feedback Interface – CS

The baseline system is a traditional relevance feedback system, referred to as CS (for
Checkbox System). The interface contains the following components:

Fig. 2. Relevance feed-
back in CS (image is
marked “neutral”)

1. Query Panel: as above.
2. Results Panel: As above, but instead of dragging a relevant

image onto the workspace the user has the choice of mark-
ing it as one of relevant (+), irrelevant (-), or neutral (=) by
checking the respective combo box underneath the image.
After images have been marked the user can ask the system
to update the current search results (based on the feedback
provided) by clicking the “Update Results” button in this
panel.

3. Selected Items Panel: Any item selected relevant during the
course of the search session will be added to this panel. The
user can manually delete images from this panel if they change their mind at a later
change.

To summarise, the look-and-feel of the interface is similar to WS (without the workspace
facility). Finally, CS supports two query facilities: (1) manual queries as above, and (2)
automatic query reformulation by the feedback provided in the search results.

2.3 Retrieval System

The underlying retrieval system is the same in both interfaces and is described in [1].
Images are represented by a set of low-level visual features and modelled according
to the hierarchical object model [4]. The distance between an object in the database
and a given query representation is computed in two steps: computing the individual
feature distances by the generalised Euclidean distance; then combining the individual
distances linearly with a set of feature weights. The relevance feedback algorithm is
implemented by an optimised framework for updating the retrieval parameters as pro-
posed in [4]. It attempts to learn the best query representation and feature weighting for
a selected group of images (positive training samples).

After the results obtained from the first set of participants, the experimental systems
were scrutinised and consequently redesigned to take into account the lessons learnt.
The main changes made were:

– The recommendation system in WS was not used to its full potential, due to its in-
ability to recommend relevant images. This has been addressed in two ways. First,
instead of just showing the top 10 recommendations on the workspace, the results
panel now also shows the complete results (limited to 100 images). Second, a tex-
tual search facility has been introduced, because the visual features seemed not
sufficient to solve more abstract tasks providing a more realistic search experience.
Textual annotations obtained from [5] were incorporated and implemented accord-
ing to the vector-space model [6]. Visual and textual features are combined using a
rank-based list aggregation method [7].
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– The retrieval mechanism was further improved by allowing negative feedback, as
people complained about the inability to continue a search when the majority of
returned images were irrelevant. Since incorporating negative feedback is a difficult
endeavour [8], we have opted for a quick and safe approach: irrelevant images are
added to a negative filter excluding them to be returned for the same search. It was
straight-forward to implement this in CS where negative feedback can easily be
provided explicitly. In WS however, we have chosen an implicit feedback strategy,
whereby an image is automatically added to a negative filter for a group when it has
been ignored (i.e. not dragged into this group) after having been returned 3 times
amongst the top 10 recommendations.

3 Evaluation Methodology

It has been argued that traditional IR evaluation techniques based on precision-recall
measures are not suitable for evaluating adaptive systems [9, 10]. Thus, we adopted a
task-oriented, user-centred approach [10]. We have designed the experiments to be as
close to real-life usage as possible: we have chosen participants with a design-related
background and have set tasks that are practical and relevant.

We employed a subset of the Corel collection (CD 1, CD 4, CD 5, and CD 6 of
the Corel 1.6M dataset), containing 12800 photographs in total. 12 searchers used two
systems in a randomised within-subjects design. The independent variable was system
type; two sets of values of a variety of dependent variables indicative of acceptability
or user satisfaction were to be determined through questionnaires. In addition, users’
actions were logged and analysed.

Participants. Since we wanted to test the system in a realistic usage scenario, our
sample user population consisted of post-graduate design students and young design
professionals. There were 12 participants, 7 male and 5 female, with a wide variety of
ages in the range of 20-50 years. The average age was 28 years. The participants had
on average 5 years experience in a design-related field (graphic design, architecture,
photography). Most people dealt with digital images at least once a day as part of their
course or work. The user profile in the current experiment is similar to Experiment 1.

Tasks. The tasks in Experiment 1 consisted of: category search tasks where participants
had to find as many images as possible for a specific topic such as “elephants” (Task A)
and a complex topic such as “underwater world” (Task B); and a design-task in which
participants chose 3-5 images for designing a leaflet with a very open topic (Task C).
We felt that more tasks were needed in order to draw definitive conclusions on the
workspace’s usefulness in helping to conceptualise tasks. We have devised a variety of
realistic tasks, with different levels of complexity, abstraction and creativity. The tasks
in Experiment 2 are:

Theme search task (Task D). In this task people were asked to find an image fitting
into a specified theme (“people in national costumes” and “seasons in the country”).
The theme was illustrated by three example images and the task involved searching
for and selecting one further image complementing this set.
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Illustration task (Task E). The task was to illustrate a piece of text for publication on
the WWW, or an advertising slogan with three images. There were four tasks in
total from which the participants had to choose two (one on each system).

Abstract search task (Task F). Here people were asked to select at least one image
representing a given abstract topic (“cute” and “dynamic”). The simulated work
task situation prescribed to select an image for a photo competition.

The level of abstraction grows from Task D to F: Task D has a very specified theme
as defined by the three example images; the theme in Task E is specified by the given
text or slogan but leaves more room for choosing the appropriate images; Task F finally
leaves both the interpretation of the topic as well as the choice of images illustrating
that topic open to the individual. Tasks A and B would be found before Task D on this
scale, while Task C is a little more abstract and creative than Task E (since there was no
text for illustration purposes). The complexity of a task is influenced by the coherence
of its topic: if a topic is composed of several concepts or interpretations we regard it as
complex. When we talk about facets of a task, we mean the concepts or interpretations
that an individual filtered out when pursuing the task.

In Tasks D and F, the participants were assigned a specific topic, which was rotated
based on a Latin-square design. The 4 topics of Task E were very similar in nature
(level of complexity and available choice of suitable images). We have not found any
significant variations between these topical alternatives within this search task group.

No time limits were set on the new tasks, as was learnt from Experiment 1 that this
adversely affected people’s performance.

Hypothesis. Evidence was to be collected for the following sub-hypotheses:

1. The workspace leads to an increased effectiveness and user satisfaction.
2. The workspace helps to conceptualise and diversify tasks.
3. The grouping process helps to overcome the query formulation problem.

Procedure. Each participant performed four search sessions, using each system twice,
completing two tasks with a different topic per system. The procedure involved a pre-
search questionnaire, the four search sessions followed by a post-search questionnaire
each time, and finally an exit questionnaire/interview comparing the systems. A search
session was preceded by a training session if the system was used for the first time.
The whole procedure lasted approximately two hours. Tasks and systems were rotated
according to a Latin-square design in order to compensate the learning bias.

4 Results Analysis

The systems are compared according to (a) their effectiveness, and (b) user satisfaction.
The following results are based on 48 (12×4) searches in total.

The results for Likert-scales and semantic differentials are in the range [1,5], the
higher the value the better. Statistically significant differences are provided where ap-
propriate with p ≤ .05 using the two-tailed version of the non-parametric Wilcoxon
Paired-Sample test. CS and W S denote the means for CS and WS respectively, while
C̃S and W̃ S denote the medians.
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4.1 Effectiveness

The systems’ effectiveness is investigated from two sides: objectively from the perspec-
tive of the required effort as determined from the usage logs and subjectively from the
perspective of the participants.

User Effort. Due to the lack of ground truth for the tasks in Experiment 2, we provide
an analysis of the number of images selected per task and the amount of user effort
required to select them. These include: total search time and number of queries issued.
People can issue either manual queries—constructed in textual form, by providing im-
age examples or a combination of both—or relevance feedback queries. The latter cor-
respond to relevance feedback iterations in CS or group recommendations in WS.

Table 1 reveals that less queries were issued and more images were selected on
WS. In particular, more relevance feedback queries were requested on WS, while more
manual queries were constructed on CS (with the exception of Task F). The RF queries
were particular useful for Tasks E and F. The search session lasted on average longer
on WS. By contrast, Task E stands out for being completed in less time on WS (with a
difference of about 4 minutes) but still achieving a slightly larger selection of images in
the end. This indicates that WS is particularly useful for design-oriented tasks.

Table 1. User effort indicators per task and system in Experiment 2

DCS DW S ECS EWS FCS FWS CS WS

time 9’55” 12’02” 18’26” 14’18” 9’40” 14’31” 12’40” 13’35”
#images 9.6 12.3 17.9 18.6 13.6 17.8 13.7 16.2
#queries 11.9 9.8 21.5 19.1 15.9 17.1 16.4 15.3

manual 8.4 7.6 15.8 12.2 11.4 12.0 11.9 10.6
RF 3.4 2.1 5.8 6.9 4.5 5.1 4.6 4.7

User Perception of Performance. After each task the users were asked if they thought
they had succeeded in their performance of the task and also rate potential problems
that might have affected their performance. Performing a task on WS was more suc-
cessful, as can be seen in Table 2. In comparison to CS, people had a slight difficulty in

Table 2. User perception of task performance per task and system (performance:higher=better,
problems:lower=more problematic)

DCS DW S ECS EW S FCS FWS CS WS p

performance success 4.2 4.6 4.1 4.2 4.3 4.4 4.2 4.4 -
did not understand task 5.0 4.8 5.0 4.9 4.9 4.6 5.0 4.8 -
images not in collection 4.2 4.4 3.5 3.5 4.1 3.4 3.9 3.8 -
no relevant images returned 4.0 4.4 3.6 3.5 4.5 4.4 4.0 4.1 -
not enough time 4.8 4.9 4.4 4.1 4.9 4.6 4.7 4.5 -
unsure of next action 4.1 4.5 4.4 4.4 4.0 4.3 4.2 4.4 -
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understanding the search task. Also, time was more of an issue on WS than CS1. This
reflects the increased cognitive effort required to perform a task on WS.

On the other hand, people’s performance was hindered more by an uncertainty of
what action to take next on CS. Together with the user comments presented below this
indicates that—though a simple concept in principle—providing relevance feedback
brings uncertainty as to which images to select for feedback in order to achieve better
results. This corroborates similar results in textual information retrieval [11].

4.2 User Satisfaction

In this section we first present the user satisfaction with the particular interface features—
the grouping and recommendation system in WS and the relevance feedback process in
CS. After that, we discuss the responses concerning user satisfaction with the system in
general.

Interface Support. People were asked how effective they found the interface and rated
the contributing features. Table 3 summarises these results. Overall, WS was regarded
significantly more effective. The three top rated features on WS were that it helped to or-
ganise images, explore the collection, and analyse the task. The ordering of features on
CS was: find relevant images, explore the collection, and detect/express different task as-
pects. Apart from find relevant images, all features are rated significantly higher on WS.

Table 4 compares the adaptive querying mechanisms: the relevance assessment in
CS and the grouping in WS. It turns out that the grouping was considered significantly
more effective and useful. It is also interesting to note that the relevance assessment was
even considered more difficult than the grouping.

In open-ended questions the participants were asked to state the most and least useful
tools of the interface. The most useful tools in CS were stated as, in order of frequency
of responses: textual query (10 responses2), QBE (9), and relevance feedback facility
(7). The least useful tools were: result filters for various features (5), relevance feedback
(4), and lack of storing facility/overview of selected images (4). Users who thought the
relevance feedback was a useful tool stated it as helping them to improve and/or narrow
down their search. The problems with relevance assessment were mainly that it returned
unexpected results and that it was difficult to keep track of what the system was doing.

In WS, people unanimously liked the grouping facility on the workspace. The three
most useful tools in WS included the grouping of images (14), group recommenda-
tions (10) and textual queries (5), and the least useful tools were: QBE (4), top 10
window of recommendations (3) and text search (2). This shows that using groups and
recommendations was considered more useful than the manual search facilities; espe-
cially the query-by-example facility was superfluous in this system. The grouping’s
only disadvantage that became apparent was that it was difficult to remove images from
existing groups.

These results support our view that WS, with its grouping and recommendation fa-
cility, assists the user in the query formulation process, while removing the need to

1 In Experiment 1, people also tended to agree more with the statement that they had enough
time to complete their task in CS: CS = 4.6, and W S = 4.3.

2 This question was asked after each search, thus 24 responses are possible per system.
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Table 3. Interface effectiveness

Statement CS C̃S W S W̃ S p

effective 3.7 4 4.4 5 0.032
analyse task 2.8 3 4.3 5 0.001
explore collection 3.5 4 4.6 5 0.001
find relevant images 4.2 4 4.2 4 -
organise images 2.7 3 4.7 5 0.001
detect/express task aspects 3.0 3 4.2 4 0.003

Table 4. Relevance assessment on
CS vs. grouping on WS

Differential CS W S p

easy 3.8 4.4 -
effective 3.3 4.3 0.019
useful 3.7 4.4 0.017

Table 5. Results for system part

Differential CS C̃S W S W̃ S p

wonderful 3.3 3 4.1 4 -
satisfying 3.2 3 4.0 4 -
stimulating 3.5 3 4.3 4 -
easy 4.0 4 3.8 4 -
flexible 2.9 3 4.2 4 0.004
efficient 3.3 3 3.9 4 -
novel 3.7 4 4.4 5 -

CS C̃S WS W̃S p

in control 3.6 4 3.6 4 -
comfortable 3.7 4 4.3 5 -
confident 3.1 3 3.8 4 -
learn to use 4.1 4 3.9 4 -
use 3.9 4 3.9 4 -

manually reformulate queries. The picture in CS is quite different: people were divided
on the usefulness of the relevance assessments and some still relied heavily on the man-
ual query facilities. On average, people selected 2.4, 3.2, and 3.8 images per relevance
feedback iteration for Task D, E, and F, respectively. Compared to that, the groups in
WS contained 4.9, 4.6, and 4.4 images. So the manual selection process was less pro-
ductive than collecting the images in groups. Moreover, the grouping process has the
additional benefit of supporting a diversifying search by allowing to declare and pursue
various task aspects simultaneously.

System. In the post-search questionnaires, the participants considered CS more easy
than WS, while they considered WS to be significantly more flexible. The scores for
the remaining differentials, wonderful, satisfying, stimulating, efficient, and novel were
generally higher for WS as well (see Table 5). While using the system, people felt more
comfortable and confident. However, WS was more difficult to learn to use.

After completing all four search tasks, the users were asked to determine the system
that was (a) easiest to learn to use, (b) easiest to use, (c) most effective, and (d) they
liked best overall in the exit questionnaire. They could choose between WS, CS, and
no difference as responses to these questions. 67% liked WS best and the majority also
thought it was more effective (46% compared to 26% for CS). CS was clearly easier to
learn to use (58%), whereas the ranking for using the systems was relatively balanced
(46% for WS and 42% for CS).

Finally, the participants were asked for their opinion on what they liked or disliked
about each system. The responses reconfirmed most advantages and disadvantages al-
ready identified in the previous experiment. The advantages listed for CS were that it
was easy to use, fast and efficient especially for specific searches. Its disadvantages
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included that the users felt they did not have enough control over the search and that its
interface and search process was less intuitive.

People appreciated WS as an organising tool. The workspace enabled them to plan
their tasks and pursue alternative search threads, without losing the overview of inter-
mediate results and searches. Once more, the system was regarded as more flexible and
offering better control over the search process. In Experiment 1, the disadvantages were
mainly concerned with the poor quality of the recommendations and that the handling
of groups was sometimes cumbersome. Both of these issues are not inherent in the in-
teraction paradigm of the proposed system itself, and were consequently improved for
Experiment 2. The recommendation quality was improved by taking textual annota-
tions into account. The handling of the groups and images within groups was changed
so that the system now automatically arranges the layout of the images in a group.
Consequently, none of these issues resurfaced in Experiment 2.

Organisation Analysis. A further objective of this study was to see if there is any
correlation between task characteristics and the way people organise images on the
workspace. Due to space restrictions we can only briefly provide our conclusions here.
We observed that the more open or complex a task is, the more groups were created on
the workspace (1.5, 2.9, and 2.6 for Task D, E, and F, respectively). For these types of
tasks the organisation was deemed most useful and recommendations were requested
more often.

The groups the participants created for any given task often overlapped in the over-
all themes of the groups, but not necessarily the images themselves. This shows that
groups are to a great extent task-dependent and hence people would possibly bene-
fit from using and working with other people’s groups. We briefly list some examples
of the facets created by the participants for two topics. For Task D, topic “seasons in
the country”, people created groups for “autumn” images (the image that was missing
from the set) mainly displaying leafy, red forests; other groups created were “colour-
ful fields”, “close-up of plants”, “boats”, “country houses”. The abstract topic “dy-
namic” of Task E was illustrated by the following groups: “animals” (sometimes split
into “flying birds”, “tigers/leopards”, etc.), “sports”, “mountains”, “waterfalls”, “sun-
sets/landscapes”, “boats/water”.

5 Discussion

In this section, we explore the benefits of the workspace system in comparison to the tra-
ditional relevance feedback approach. Our observations are based on the overall results
of the two-stage experiment involving 24 participants on a variety of realistic search
tasks.

First, we investigated the systems’ ability to support the users in solving their tasks.
The questionnaire responses indicated that the workspace helped them to analyse and
explore their tasks better. This is most likely as a result of it allowing them to explore the
facets of the search task they were performing. Together with the recommendation fa-
cility, this has increased the effectiveness of the system. The required effort to complete
a task was lower on WS: less queries were issued to find a larger selection of images.
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In particular, users created less manual queries but issued more system recommenda-
tions. The participants also perceived their performance as more successful on WS and
the interface was perceived significantly more effective for completing the tasks. This
shows that the workspace helped to conceptualise and diversify the task better and as a
result increased the effectiveness of the search.

Moreover, the grouping facility was not only considered easier, more effective and
useful than the relevance feedback approach in CS, but was praised unanimously in
open-ended questions. In addition, the relevance feedback facility caused more con-
fusion. It became apparent that providing relevance feedback brings uncertainty as to
which images to select for feedback in order to improve the results. Hence, people re-
lied more on the manual query facilities on CS than WS. Although both systems have
the same underlying retrieval mechanism, the workspace approach is more successful
at eliciting constructive feedback while hiding the internals of the retrieval mechanism.
It is more natural to the user to provide feedback in a structured form by creating groups
on the workspace instead of indicating relevant and irrelevant images indiscriminately.
The groups allowed users to see which images contributed to the result list. Conse-
quently, people selected more images for feedback and requested more recommenda-
tions on WS than RF iterations on CS. Thus, one can conclude that the grouping process
is better at overcoming the query formulation problem.

We also found a link between task and the use of the workspace. The more complex
or open the task, the more useful the workspace was perceived to be. For these tasks,
the organisation was regarded more useful and recommendations were consulted more
often. With growing task complexity, users created more groups which allowed them
to explore the task and collection by following up on various facets (trains of thought).
On the other hand, CS was better for tasks that required selection of a large number of
images for a very specific topic.

These observations have led us to accept all three experimental hypotheses. How-
ever, this study also helped to identify the limitations of the workspace. WS was more
difficult to use and the cognitive effort required to solve a task was higher. This was
reflected in the questionnaire responses; in particular users had more difficulty in un-
derstanding the task and it took longer to complete it. However, the longer learning
period and increased cognitive effort is not perceived as a disadvantage of WS; af-
ter all, 16 people preferred WS over CS. More importantly, we found evidence that
attributed the prolonged search session to the system’s ability to support the user in
exploring the tasks from different perspectives. As mentioned before, people were able
to diversify their search better and follow up on multiple trains of thought simulta-
neously. Still, one has to keep in mind that it takes longer to become familiarised
with this interface, although we strived to make its operation as intuitive as possible
by using standard commands which the user may already be familiar with wherever
possible.

Finally, we did not explore the use of WS for collaborative image retrieval. On the
workspace, people leave footprints of their activities behind for later usage. We also ob-
served that people’s groups overlapped in their overall themes, which could be exploited
in a collaborative context. Such a feature will be explored in future studies.
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6 Conclusion

In this paper, we have established the usefulness of the workspace system for image
retrieval. We have created a realistic experimental study, in which design professionals
performed a variety of realistic search tasks. Based on the results of this experiment, we
argue that the workspace is an indispensable tool in an image retrieval system. It is used
for organising the results according to the different aspects or facets of the task. This
helps users greatly in analysing and exploring the task as well as the collection. More-
over, the workspace supports a more intuitive search process and helps to overcome
the query formulation problem. All these factors lead to a more effective and enjoyable
search experience.
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Abstract. The quality of search engines depends usually on the content
of the returned documents rather than on the text used to express this
content. So ideally, search techniques should be directed more toward
the semantic dependencies underlying documents than toward the texts
themselves. The most visible examples in this direction are Latent Se-
mantic Analysis (LSA), and the Hyperspace Analog to Language (HAL).
If these techniques are really based on semantic dependencies, as they
contend, then they should be applicable across languages.

To investigate this contention we used electronic versions of two kinds
of material with their translations: a novel, and a popular treatise about
cosmology. We used the analogy of fingerprinting as employed in foren-
sics to establish whether individuals are related. Genetic fingerprinting
uses enzymes to split the DNA and then compare the resulting band
patterns. Likewise, in our research we used queries to split a document
into fragments. If a search technique really isolates fragments semanti-
cally related to the query, then a document and its translation should
have similar band patterns.

In this paper we (1) present the fingerprinting technique, (2) introduce
the material used, and (3) report results of an evaluation for two semantic
indexing techniques.

1 Introduction

Users searching the web for on-line documents are usually looking for content,
not words. So it is at least remarkable that the user’s information need can be
satisfied with search results based on keywords. This may stem from the user’s
ability to quickly learn to formulate an effective query, and the possibility to
refine it. Or perhaps it is due to statistical properties of large corpora. Yet,
most IR researchers would agree that trying to target the semantics underlying
documents more directly could lead to better search results. One argument is
that it may obviate or circumvent the lexicon problem (the influence of syn-
onymy and polysemy) and another argument is the growing interest in retrieval
of material other than text. Regarding textual material, there are already several
proposals that contend to target the semantics underlying documents. For the
present paper we selected two particular techniques that, first, seem more than
an isolated proposal, second, have been under experimental scrutiny, and third,
represent two different IR paradigms. Our proposal is to investigate the claim
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about the semantics underlying a document by applying the same technique to
the document and its translation. If a technique really operates on the underly-
ing semantics, than it should be invariant under translation. We will first look
at research that pertains to the experiment in this paper.

2 Cross-Language Information Retrieval

As we will talk about language pairs, we should mention up front that we don’t
want to study cross-language information retrieval (CLIR). Researchers in CLIR
have pursued a variety of goals (e.g. [1] mentions five goals) that are different
from ours. Yet we borrow the method of using a corpus in one language aligned
with one in another language. An example that can stand for several others is
Yang et al.’s [2] study of bilingual corpora. It is an experiment in the vector
space paradigm, and it compares traditional IR approaches such as the Gener-
alized Vector Space Model (GVSM), Latent Semantic Analysis (LSA), relevance
feedback, and term in context translation. The evaluation is based on the usual
recall/precision metrics. In contrast to this inquiry and others, our interest here
is not so much in which is the most effective IR system, but why is it the most
effective. More precisely, we are interested to discern whether a system is suc-
cessful because it handles the underlying concepts that were communicated, or
because it excels in statistical sophistication. Hence, we shift the focus from
comparing how well techniques work for CLIR, to using the CLIR paradigm to
compare which ones best handle underlying concepts. If the success of a tech-
nique for a corpus can be attributed to its handling of the underlying concepts,
then it should (1) also be successful for a translation of the corpus, and (2) show
similar search results for a query and its translation. We will describe a tech-
nique to assess the degree of invariance under translation, with an illustration
from two approaches to IR: the traditional vector space model, and the more
recent probabilistic language modeling approach.

3 Paradigms of Semantics Based Indexing: LSA and HAL

One approach in the vector space model that tries to target the underlying se-
mantics of a corpus, is Latent Semantic Analysis (LSA). LSA performs a lossy
compression [3] of the high dimensional document space spanned by the terms,
and empirical evidence suggests that this results in a lower dimensional space
spanned by latent semantic factors [4]. The same technique has been applied in
CLIR experiments such as the one mentioned above [2]. The approach we will
compare it with, and which tries to incorporate manifest semantic relationships
in the corpus, is the ‘Hyperspace Analog to Language’ (HAL). It is related to
early attempts in psycho-linguistics to measure a ‘semantic distance’ between
words [5]. The HAL approach is based on the observation that distance between
words in text is an indicator of how related the words are in meaning [6]. The
representation for HAL is computed as follows: (1) a window slides over the doc-
uments, and (2) for each window position, and each word-pair in the window, a
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weight is assigned inversely related to the distance between the pair of words. (So
a high weight means that the words are semantically close, and semantic close-
ness decreases with distance in the text.) Accumulating the weights produces a
matrix of word pairs with weights in the cells. The weights can be mapped to
probabilities [7] used for experiments in probabilistic language modeling. The
latter is a more recent development in IR, which views documents as samples
from a source that stochastically produces terms (e.g. [8]).

In the remainder we will report on our experiments in the two distinct
paradigms of HAL and LSA. The paradigms differ in their actual representa-
tion of the semantics (latent versus manifest), but their claims are similar. The
claims that (1) similar words appear in similar contexts, (2) cross-document re-
lationships emerge from shared contexts, and (3) that their formalisms in some
way represent the semantics underlying texts. Both techniques allow for the
fingerprinting technique we are about to describe.

4 Cross-Language Fingerprinting

CLIR experiments in the literature have often used multilingual, document-
aligned corpora, where documents in one language are paired with their trans-
lations in the other.

To study the semantic relationship between an original and its translation, we
developed a fingerprinting technique inspired by the kind of comparison made
between fingerprints (RFLP’s) in case of a paternity dispute. To explain the
fingerprint analogy, figure 1 shows the DNA fingerprints of pairs of twins. Iden-
tical twins have band patterns that are much more alike than fraternal twins
(who are genetically less strongly connected). Now imagine documents in one
language stacked on a pile. For a given query, a search technique will assign
a relevance weight to each document. Suppose we translate the weights into a
grayscale from black (highly relevant) to white (not relevant) and we paint the
spine of the documents accordingly. Then the pile will show bands reminiscent of
the bands in a DNA fingerprint. We do the same for the translation, keeping the
same order of documents. If the search technique is invariant under translation,
than we expect the bands for both piles to be in the same place. And the less
invariance, the less the band patterns will look alike.

In our experiment we did not use a document aligned corpus, but instead we
used books and their translations. For the experiment, a book takes the role of
a corpus, and passages from the book take the role of documents. We aimed for
heterogeneous material, to wit: a novel, a popular science book, and a technical
data base. For all three we had electronic versions of the original in English with
translations in German and Italian. In the experiment for the present paper, we
used the English-German pairs of the novel and the popular science book.

The advantage of using books was twofold. Having read the books, we could
easily determine the relevance of search results for a query (would the need for
such a judgement arise). It also allowed us to make more qualitative judgments,
such as that the answer to a query would be in the beginning of a book or more
toward the end. For example, if the answer to a query is at the beginning of
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Fig. 1. The figure shows DNA fingerprints for four pairs of twins. B’s and C’s are
identical twins, and their band patterns are much more alike then those of the other
(fraternal) twins A and D. The “twins” in our retrieval experiment are books and their
translations. With grayscale indicating relevance of a passage to a query, band patterns
should in that case also approximately align.

the original, it should be at the beginning of the translation as well. And so in
that case both fingerprints would be expected to have dark bands at the top
that approximately align. Note that they need not align exactly, as first, the
human translator may need more words, or perhaps fewer words, to render the
original sentence in the target language. And second, the translator may take
some liberty in the arrangement of sentences. If we construct queries by hand,
and verify search results by hand, such variations can be accommodated. But
automated query construction and result verification requires a more careful
design, as we will explain in a moment.

4.1 Computing Relevance Values for LSA and HAL

LSA and HAL use different document representations, and the relevance values
have to be computed appropriately. For LSA the traditional vector space ap-
proach was used. After lossy compression of the document space, the relevance
of a document was its cosine distance from the query. The same procedure does
not work for HAL, as it does not represent the document as a vector, but as a
distance matrix of the words it contains. We used a variant of HAL, that maps
the distance matrix to a distribution over terms [7] called epi-HAL (ergodic pro-
cess interpretation of HAL). This way, the epi-HAL representation of a document
becomes an instance of probabilistic language modeling. This means that to com-
pute a relevance ranking, two probability distributions must be compared: the
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term distribution of the query and that of the documents. The Kullback-Leibler
divergence between these distributions was used to compute the relevance of a
document given the query.

4.2 An Experiment Comparing Semantic Indexing Techniques

Preparation of the material. We chose two kinds of material with their paired
translations:

- Hemingway. The old man and the sea and its German translation Der alte
Mann und das Meer,

- Hawking. A brief history of time and its German translation Eine kurze
Geschichte der Zeit.

We wanted to split the books into segments of about equal size, segments tak-
ing the role of documents in a corpus, so they could be aligned. We could not
take a fixed number of words to define segments, because the number of words
in the original segment will likely be different in the translation. Therefore, a
segment was defined relative to the length of the book, and we took the same
percentage of text for original and translation. For a workable absolute length,
we checked a series of segments by hand, to find that around 1000 words gives
sufficient overlap in the stories. Queries were formed by picking random samples
of text of approximately 100 words. This number was large enough to guarantee
a contiguous meaningful passage with enough overlap in both languages.

Procedure. We compared retrieval results for HAL and LSA. As queries we se-
lected fragments from the book itself, as exemplified in figure 2, where the exam-
ple fragments are located at the arrows. Using fragments from the book as query
has several advantages: (1) it gives an overall measure for quality of the search,
as at least this fragment should be located as relevant (i.e. there should be a
dark band at the place of the query), (2) we will not have to manually translate
the query into the target language. (So in principle the technique could even
be repeated for a language we don’t have a command of.) This way for each
fragment in the original language the corresponding fragment in the translation
can be found.

Invariance under translation was computed as follows:

1. Select a random fragment (100 word contiguous text) from the original book.
This will be the query.

2. For each segment of the book compute its relevance value (as per section 4.1).
This produces the fingerprint for the query.

3. Repeat the previous steps for the translation. (Using the corresponding frag-
ment in the translation.)This produces apair of fingerprints for the givenquery.

4. Compute the similarity of the pair of fingerprints1.
5. Repeat the previous steps 500 times, and compute the average correlation.

The resulting value is taken as the measure of invariance under translation.
1 Obviously the values themselves are retained, the band pattern is just a visual rep-

resentation of these values.
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Fig. 2. Two examples of fingerprinting. The gray-level indicates the relevance for the
query, with black most relevant. The black band indicates here the position of the query
(which is obviously relevant to itself). The vertical axis is the location of passages in
the book, page 1 at the top. Fingerprints were collected for 500 passages from the
original, used as queries, in parallel with their translations. Relevance was calculated
for HAL and for LSA. Fingerprints and queries are taken from the actual, but reduced
here to keep the example readable.
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For step (4), of course we looked for such measures in forensics. But the mea-
sures employed there are derived from specific knowledge about the fragments
produced in RFLP digests of real DNA material, and they can therefore not be
used. Instead, especially given the large number of relevance values per finger-
print (the number of bands) we chose to simply use the correlation between the
fingerprints of the original and its translation. In step (5) we chose the value 500
because the Old Man and the Sea contains about 500 segments of 1000 words,
and the statistical significance of the result would be guaranteed (as the sample
covers the whole population). Yet the sampling was done randomly so we could
use the same value for A Brief History of Time.

Results. There are several variables in the query matching procedure that have
to be controlled for. For example, for both LSA and HAL it is important to look
at the influence of stemming, stop-word removal, and query expansion. Both
paradigms have also their own variables to control for. In the case of LSA this is
the degree of dimension reduction. For HAL it is the window size. In the liter-
ature about HAL we only found a window size of 10. Yet we wanted to control
for the influence of window size because it may give different values depending
on the grammar and spelling of the target language. For example, in the spelling
of compound nouns, The German spelling of a compound is usually as one word
whereas English usually puts spaces between the nouns. This may influence the
accumulated distances between words in the HAL matrix. The window size may
also have to be greater for languages with freer word order (such as Italian). For
an impression of how these variables influence the fingerprint correlations, we
included Table 3 which summarizes the values for the (epi-)HAL approach. We
constructed the same table for LSA to study the influence of the degree of dimen-
sion reduction, using reduction to 5, 10, 15, and 20 dimensions (beyond 20 the
data changed too little). Table 1 shows the average results for the paradigms. We
could take this outcome as a rough indication of the quality of the search tech-
nique. If we do, HAL seems more effective for the given corpora. Note, however,
that we would need a more sophisticated measure to cover all the variables in-

Table 1. The number of original fragments recovered in the matching process

The Old Man A Brief History
and the Sea of Time

HAL 99-100% 99-100%
LSA 28-40% 40-45%

Table 2. The average correlation of the fingerprints over 500 queries

The Old Man A Brief History
and the Sea of Time

HAL .99 % .98%
LSA .69% .68%
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Table 3. Average fingerprint correlations between English and German for The Old
Man and the Sea for the HAL paradigm, depending on the controlled variables. As the
query was always a part of the text itself, the last column shows how well the search
technique locates this original part.

window stemming stopword query fingerprint original
size removal expansion correlation segment most

terms relevant
5 no no 0 0.66 100 %
5 no no 10 0.73 100 %
5 no no 20 0.95 100 %
5 no yes 0 0.75 96 %
5 no yes 10 0.76 95 %
5 no yes 20 0.76 94 %
5 yes no 0 0.63 100 %
5 yes no 10 0.70 100 %
5 yes no 20 0.94 100 %
5 yes yes 0 0.69 95 %
5 yes yes 10 0.69 93 %
5 yes yes 20 0.69 92 %
10 no no 0 0.97 100 %
10 no no 10 0.97 100 %
10 no no 20 0.97 100 %
10 no yes 0 0.95 99 %
10 no yes 10 0.95 99 %
10 no yes 20 0.95 99 %
10 yes no 0 0.96 100 %
10 yes no 10 0.96 100 %
10 yes no 20 0.96 99 %
10 yes yes 0 0.92 97 %
10 yes yes 10 0.92 97 %
10 yes yes 20 0.92 97 %
15 no no 0 0.98 99 %
15 no no 10 0.97 99 %
15 no no 20 0.97 99 %
15 no yes 0 0.97 99 %
15 no yes 10 0.97 99 %
15 no yes 20 0.97 99 %
15 yes no 0 0.96 99 %
15 yes no 10 0.96 99 %
15 yes no 20 0.96 99 %
15 yes yes 0 0.97 99 %
15 yes yes 10 0.97 99 %
15 yes yes 20 0.97 99 %

volved. Note also that LSA may still have a better relevance ranking on average.
We did not investigate this further as evaluating the search technique is not the
aim of the present paper. In addition, LSA could still have a good average finger-
print correlation, as long the correct and incorrect relevance judgments are in the
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same place for original and translation. And this would corroborate the transla-
tion invariance of the search technique. So an independent assessment is needed
for fingerprint correlations. This is presented in Table 2, where HAL performs
much better than LSA on average. But these are two completely different search
paradigms, and the difference in evaluation can have many causes. To give the
LSA data an advantage, we also compared the average values for HAL with the
best correlations for LSA. That is, we took an instance where the combination
of controlled variables such as stemming, dimension reduction, etc. gave the best
overall results for LSA. Still HAL outperformed LSA on fingerprint correlation.

5 Conclusion

In this paper we accomplished several things.
First, precision and recall can be boosted for monolingual retrieval in clever

ways that may or may not pertain to the meaning underlying the documents.
We introduced a fingerprinting technique that seems orthogonal to the usual
precision and recall evaluation. It can be used for document aligned bilingual
(or multilingual) corpora, and we constructed the method such that it might be
useful even in the absence of human relevance judgments. Note, that although it
was is not our goal to study cross-language IR, we think it could easily contribute
to CLIR as evaluations tool.

Second, we applied fingerprinting to techniques that seem to explicitly tar-
get underlying semantics: HAL and LSA. In a cross-language study using two
different kinds of material, we found that HAL was considerably more invariant
under translation than LSA. Note however, that this does not show that one
or the other derives its results from being based on semantics, because either
technique could be conducive to translation invariance for other reasons. It does
show however that if there is a claim that the search technique is based on
underlying semantics, then HAL is much more justified to this claim than LSA.

Third, if information retrieval would benefit from using semantics underlying
the documents to be retrieved, then it is important to look at approaches that
explicitly target semantics. We postulated that such an approach would be in-
variant under translation, and that fingerprinting can be used to assess this, by
using the correlation between the fingerprints, which can be easily obtained.
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Abstract. Our cultural heritage, as preserved in libraries, archives and
museums, is made up of documents written many centuries ago. Large-
scale digitization initiatives make these documents available to non-
expert users through digital libraries and vertical search engines. For
a user, querying a historic document collection may be a disappointing
experience: queries involving modern words may not be very effective for
retrieving documents that contain many historic terms. We propose a
cross-language approach to historic document retrieval, and investigate
(1) the automatic construction of translation resources for historic lan-
guages, and (2) the retrieval of historic documents using cross-language
information retrieval techniques. Our experimental evidence is based on
a collection of 17th century Dutch documents and a set of 25 known-item
topics in modern Dutch. Our main findings are as follows: First, we are
able to automatically construct rules for modernizing historic language
based on comparing (a) phonetic sequence similarity, (b) the relative
frequency of consonant and vowel sequences, and (c) the relative fre-
quency of character n-gram sequences, of historic and modern corpora.
Second, modern queries are not very effective for retrieving historic docu-
ments, but the historic language tools lead to a substantial improvement
in retrieval effectiveness. The improvements are above and beyond the
improvement due to using a modern stemming algorithm (whose effec-
tiveness actually goes up when the historic language is modernized).

1 Introduction

Natural languages evolve over time. In Europe, almost all languages are part of
the Indo-European language family [25]; they have evolved gradually, changing
in pronunciation and spelling. To a large extent, our cultural heritage, as pre-
served in libraries, archives, and museums, consists of documents written many
centuries ago. Many cultural heritage institutions are currently exploring ways
of digitizing their document collections [13], which has resulted in a number of
collaborative projects on digital cultural heritage, including DigiCULT [7].

Having digital versions of old, fragile documents is a good way of preserving
them, and it makes them easily accessible to a multitude of users over the web.
Browsing through such documents, one can probably recognize the language they
are written in as a historical variant of a modern European language, although
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one may run into significant differences with today’s spelling rules and vocabu-
lary. What if a vertical search engine is created that gives access to the historic
documents? One that “knows” about changes in spelling and vocabulary? Con-
sider a user that searches for 300 year old documents about, for instance, Central
European politics. Her query will consist of modern words, and hence will not
be very effective for retrieving documents containing historic terms. In order to
make historic documents accessible to modern users, our vertical search engine
should be able to bridge the gap between the historic language of the document
and the modern language of a user’s query. This is the focus of the present paper.

We define Historic Document Retrieval (HDR) as the retrieval of relevant
historic documents given a modern query. Earlier research [18, 17, 3] dealt with
spelling differences between a modern language and a historical variant in a
collection of old documents. We continue research on this spelling problem and
propose a cross-language approach to HDR. Using historic Dutch as a concrete
example, we argue that the gap between modern and 17th century Dutch is
substantial, and that effective retrieval therefore requires a mapping between
the two languages.

A cross-language approach to HDR raises a number of questions. Manually
constructing historic language tools is an unattractive option, because of the
large number of spelling variants. These variants are caused by the absence of
strict spelling rules and by various regional differences. Is it possible to automat-
ically construct translation resources for historic languages? In Cross-Language
Information Retrieval (CLIR, [2]), stemming algorithms have proved to be ef-
fective in modern monolingual retrieval. Are these also effective in HDR? Our
research identifies HDR as a new cross-language IR problem and consists of two
main parts. The first is the construction of resources for our CLIR approach to
HDR. We have developed tools to automatically construct translation resources.
In the second part we test the effectiveness of these translation resources on
historic documents in a CLIR experiment. Since these methods are data-driven,
they can be straightforwardly applied to new HDR problems.

The article is outlined as follows: Section 2 discusses Historic Document Re-
trieval, and details the historic documents used. Section 3 describes the auto-
matic construction of translation tools for historic languages. Then, Section 4
focuses on HDR proper, and evaluates the effectiveness of the constructed trans-
lation tools. Finally, in Section 5 we discuss the results and our main findings.

2 Historic Document Retrieval

Robertson & Willett [17] tested spelling correction methods to find historic vari-
ants of modern word-forms in historic English documents. They also tested the
effectiveness of a list of manually constructed phonetic substitutions to prepro-
cess historic words before applying the spelling correction methods to see if
preprocessing decreases the gap between 17th century and modern English. For
instance, the phonetic substitution YGHT → IT (ME), replaces all occurrences
of yght in the middle or at the end of a word to it. They find that preprocess-
ing has very little effect. However, the spelling correction methods themselves
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are very effective in finding historic word-forms. The use of the same correction
techniques on old French confirmed these results [16].

Braun [3] tested the effectiveness of preprocessing 17th century Dutch doc-
uments by applying rewrite rules in a document retrieval experiment. Rewrite
rules take a sequence of characters out of a word and replaces it with a new
sequence. After rewriting, historic words, especially their pre- and suffixes, are
closer in spelling to modern Dutch words, making the Dutch variant of the Porter
Stemmer more effective. Rewrite rules are thus an effective way of decreasing
the spelling gap between 17th century and modern Dutch.

The main problem with the rewrite rules in [17, 3] is that manual construc-
tion takes a lot of time and requires intimate knowledge of the specific historic
language. Moreover, the rewrite rules for 17th century Dutch work for 17th cen-
tury Dutch, but probably not for 17th century English, nor for 14th century
Dutch. In the next section we propose data-driven methods for constructing
rewrite rules using only a historic and modern document collection. Because of
their data-driven nature, these methods can be applied to historic and modern
document collections in other languages as well. Their output—sets of rewrite
rules—can be used to construct translation dictionaries for a specific historic doc-
ument collection, thus providing the resources required for our CLIR approach
to HDR.

As mentioned before, we take historic Dutch as a case study. Dutch cul-
tural heritage institutions possess large collections of old books, newspapers and
other documents, and many of these are written in historic variants of modern
Dutch. Uniformity in the Dutch language is a relatively new phenomenon. Mid-
delnederlands is a predecessor of the modern Dutch language that was spoken
during the Middle Ages and can best be thought of as a collection of different
dialects. Moreover, whereas modern Dutch spelling is based on strict spelling
rules, spelling in Middelnederlands was based on pronunciation [11]. Since pro-
nunciations can have different orthographic representations, spelling was highly
inconsistent. Each region had its own pronunciation, and hence its own spelling
conventions. Although the Dutch language became more uniform in the 17th
century, mainly through the nation-wide use of the first official Dutch Bible
translation, the lack of spelling rules still resulted in the occurrence of many
spelling variations throughout documents.

In our tool development and retrieval experiments we use the same his-
toric corpus as [3]. It contains two 17th century collections of legal texts: the
Antwerpse Compilatae (1609) and the Gelders Land- en Stadsrecht (1620). Al-
though they are written in different dialects (southern and eastern, respectively),
they are written in the same legal idiom. Hence, they contain many technical
law terms and long sentences. This contrasts with other idioms from that pe-
riod, such as the language of sailors. The Antwerpse Compilatae are part of
a collection of legal texts called the Costumen van Antwerpen [1]. The collec-
tion consists of four parts: the Anitiquissimae (1547), the Antiquae (1571), the
Impressae (1582), and the Compilatae (1609). OCR errors were manually cor-
rected. Each section was treated as a separate document. This resulted in 222
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documents. The Gelders Land- en Stadsrecht [9] is very similar to the Antwerpse
Compilatae. It contains parts on the same subjects as the Compilatae, with the
only difference that substantive and formal criminal law are covered in one part.
This collection was digitized by manually entering the text into the computer.
The Gelders Land- en Stadsrecht collection contains 171 documents.

To clarify the differences between the historic language of the corpus and
modern Dutch, we took a random sample of 500 words from the historic collec-
tion. Each word was assigned to one of three categories: modern, spelling variant,
or historic. The overlap between historic and modern Dutch is significant (177
words, 35%). These words are spelled in accordance with modern Dutch spelling
rules. An example is the word ik (English: I) which is often found in historic
texts, but it has not changed over time. It turns out that most of the words (239
words, about 48%) are historic spelling variants of modern words. These words
can still be recognized as a modern word, but are spelled in a non-modern way.
An example is the word heyligh which is easily recognized as a historic spelling
of the modern word heilig (English: holy) The remaining words (84 words, 17%)
have a non-modern morphology, or cannot be recognized as a modern word at
all. An example is the word beestlijck. Even adjusting its historic spelling, pro-
ducing beestelijk, it is not a correct modern Dutch word. Taking a look at the
context makes it possible to identify this word as a historic translation of the
modern word beestachtig (English: bestial or beastly).

All documents in our collection were transformed into the standard TREC
document format, resulting in 393 documents, with an average length of 912
words. In total, the corpus contains 17,794 distinct word tokens. We created a
topic set consisting of 25 modern Dutch known-item topics. The topic creators
are non-experts in the field of historical law texts, and are therefore unfamiliar
with specific historical law terms. This is an important criterion for a HDR topic
set, since this leaves the linguistic difficulties to the system. Here is an example
topic (description field):

(Q25) Welke methoden zijn geoorloofd ter ondervraging van gevangenen?
(English: Which methods are allowed in the interrogation of prisoners?)

Topics were given the familiar TREC topic format: title, description, and nar-
rative.

3 Tools for Historic Document Retrieval

Our goal is to design algorithms for mapping historic spelling variations of a word
into a single modern form. Below, we describe three tools for creating rewrite
rules for 17th century Dutch. One of these tools exploits the phonological overlap
(i.e., how words are pronounced) to find sequences that are spelled differently
but sound the same. The other two algorithms exploit the orthographical overlap
in a historic and a modern word to find the most probable modern version of a
historic sequence. These two algorithms use only a corpus of 17th century Dutch
documents and a corpus of modern Dutch documents. Since the corpus described
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in the previous section is rather small, for the construction of the rewrite rules,
the corpus was expanded with a number of 17th century literary works taken
from the DBNL [6]. To make sure that they were written in roughly the same
period as our main corpus, we used texts written between 1600 and 1620. The
literary texts from DBNL are not suitable for a document retrieval experiment
because it is hard to determine the topic of such a text, but they do contain
the same spelling variations, so they can be used for devising rewrite rules. As
a modern corpus, we used the Dutch newspaper Algemeen Dagblad, part the
Dutch corpus of CLEF [4].

The three techniques are related to spelling correction techniques such as
isolated-word error correction [12, 20]. Since the context of a historic word is
also historic text, context dependent (semantically or syntactically informed)
error correction techniques are no option in the case of cross-language HDR.

PSS. The Phonetic Sequence Similarity (PSS) algorithm finds historic spelling
variants of modern words by comparing the phonetic transcriptions of historic
and modern words.1 If the phonetic transcription of a historic word Whist is
equal to the phonetic transcription of a modern word Wmod, but their spelling
is different, then Whist is a spelling variant of Wmod. All words in the historic
corpus and the modern corpus are converted to phonetic transcriptions by the
grapheme-to-phoneme converter tool in NeXTeNS, a text-to-speech generation
system for Dutch [15]. Whist and Wmod are then split into sequences of vowels
and consonants, and these sequences are aligned. If sequence Shist

i is orthograph-
ically different from sequence Smod

i , Shist
i is a historic spelling variant of Smod

i .
The resulting rewrite rule is: Shist

i → Smod
i .

Take the following example. The 17th century Dutch verb veeghen (English: to
sweep) is pronounced the same as its modern counterpart vegen; their phonetic
transcriptions are both v e g @ n according to Nextens. Splitting both words
into sequences and aligning these, results in:

historic: v ee gh e n
modern: v e g e n

At positions 2 and 3 we find differences between the historic sequences and the
modern counterparts. This results in the rewrite rules: ee → e and gh → g. Each
rewrite rule is assigned a value N , where N is the number of times the rule was
generated. If N is high, there is a high probability that the rule is correct.

RSF. The Relative Sequence Frequency (RSF) algorithm exploits orthographic
overlap between historic and modern words, to construct rewrite rules for the
parts that do not overlap. First, all words in the historic corpus are split into
sequences of consonants and sequences of vowels. An index is made, containing
the corpus frequency F (Shist

i ) of each unique sequence Shist
i . The same is done

for all words in the modern corpus.

1 This requires a tool to transform the orthographic form into a phonetic transcription.
For a number of European languages, such a tool exists, making the PSS algorithm
useful for several languages.
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The relative frequencies RF (Shist
i ) and RF (Smod

i ) of a sequence Si are given
by:

RF (Shist
i ) = F (Shist

i )
Nhist and RF (Smod

i ) = F (Smod
i )

Nmod ,

where Nhist is the total number of sequences in the historic corpus, and Nmod

is the total number of sequences in the modern corpus. The relative sequence
frequency RSF (Si) of sequence Si is then defined as

RSF (Si) =
RF (Shist

i )
RF (Smod

i )
.

In words, RSF (Si) is the frequency of Si in the historic corpus compared to its
frequency in the modern corpus. If Si is relatively more frequent in the historic
corpus than in the modern corpus, its RSF value will be greater than 1. Se-
quences with a high RSF-value are sequences with typical historic spelling. The
RSF-algorithm tries to find modern spelling variants for these typical historic
sequences.

RSF proceeds as follows. The sequence Shist in a historic word Whist is re-
placed by a wildcard. Vowel sequences are replaced by vowel wildcards, conso-
nant sequences by consonant wildcards. These wildcard words are matched with
words from the modern corpus, and the modern sequence Smod matching the
wildcard sequence is considered a possible modern spelling variant of Shist. Con-
sider the 17th century Dutch word volck (English: people). This is split into the
following consonant/vowel sequences: v o lck. The sequences v and o are fairly
frequent in modern Dutch, but lck is much more frequent in 17th century Dutch
than in modern Dutch: it is a typical historic sequence. It is replaced by a con-
sonant wildcard C, so the wildcard word becomes: v o C. The C wildcard can
be matched with any sequence of consonants. In the modern Dutch corpus, voC
is matched with vol (English: full), volk (English: people), and vork (English:
fork), among others. Thus, the rewrite rules lck → l, lck → lk and lck → rk are
created and receive score 1. (If one of these rules has already been created by
another wildcard word, its score is increased by one.) After all wildcard words
containing lck have been processed, the rule with the highest score is the most
probable.

RNF. A variant of the RSF algorithm is the Relative N-Gram Frequency (RNF)
algorithm. Instead of splitting words into sequences of consonants and sequences
of vowels, the RNF algorithm splits words into n-grams of a certain length, and
tries to find typically historic n-gram sequences. With an n-gram length of 3, the
word volck is split into the following n-grams: #vo vol olc lck ck#, where #
denotes a word boundary.

Since the restriction on consonants and vowels is dropped, another restriction
on the wildcard is necessary to prevent overly productive matches. If the lck
sequence is considered typically historic, the wildcard word voW (with W being
the wildcard) can be matched with any modern Dutch word starting with vo,
including voorrijkosten (English: initial driving charge). Clearly the length of the
modern sequence replacing lck should be similar, we allow a maximal difference
in length of 2. The rest of the algorithm is the same as RSF.
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3.1 Evaluation

The algorithms PSS, RSF, and RNF construct a large amount of rules; not all of
them make sense. Pruning of rewrite rules can be done in several ways. Simply
selecting the highest scoring rule for each typical historic sequence is one way.
Another way is to test the rules on a small test set containing historic Dutch
words from the collection and their modern Dutch counterparts. First, the edit
distance D(Whist, Wmod) between the historic word Whist and its modern form
Wmod is calculated, similar to [24]. Next, the rewrite rule Ri is applied to Whist,
resulting in W rewr. D(W rewr, Wmod) is the distance between W rewr and Wmod.
The test score S for rule Ri is:

S(Ri) =
∑N

j=0 D(Whist
j , Wjmod) − D(W rewr

j , Wmod
j ),

where j ranges over all N word pairs in the test set. If S(Ri) is positive, ap-
plying the rewrite rule on Whist has decreased the edit distance between the
historic words and their modern forms. In other words, the historic spelling is
more similar to the modern spelling after rewriting. The test set contains 1600
manually constructed word pairs. For each typical historic sequence Shist, the
rule with the highest test score is selected. By setting a threshold, rules that
have a negative score can be filtered since they do not bring the historic word
and its modern variant closer to each other.

To compare the three rule construction algorithms PSS, RSF and RNF, an-
other test set with 400 new word pairs (historic Dutch words and their modern
spelling) was used; the historic words were fed to the various algorithms, and
their outputs were compared against the corresponding modern word.

The first column in Table 1 shows the method used (for RNF, the suffixes
indicate the n-gram length); the second column shows the number of selected
rewrite rules; the third gives the total number of words from the test set that
were affected, while the fourth column gives the number of historic words that
are rewritten to their correct modern form (edit distance is 0). This is used as
an extra measure to compare the rule sets. The last column gives the average
edit distance between the rewritten historic words and the modern words, plus
the difference with the baseline in parentheses.

Table 1. Results of evaluating the different sets of rewrite rules

Method number total perfect new
of rules rewrites rewrites distance

none – – – 2.38 –
PSS 104 253 101 1.66 (−0.72)
RSF 62 252 140 1.33 (−1.05)
RNF-2 12 271 152 1.29 (−1.09)
RNF-3 127 274 162 1.19 (−1.19)
RNF-4 276 269 166 1.20 (−1.18)
RNF-5 276 153 97 1.79 (−0.59)
RNF-all 691 315 207 0.97 (−1.41)
RNF-all + RSF + PSS 753 337 224 0.86 (−1.52)
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The RNF algorithm clearly outperforms the other 2 algorithms with almost
all n-gram lengths, except for n-gram length 5. The rule set for N = 3 gives
the best results. Compared to the baseline (no rewriting at all), this rule set
reduces the average edit distance between the historic words and the modern
words in the test set by 50%. However, by combining the rule sets of all n-gram
lengths, even better results are obtained. This shows that the rule sets have a
complementary effect on the test set.

Finally, a combination of all 3 algorithms was used. First creating and apply-
ing these rules using one algorithm, then constructing and applying rules using
the second algorithm, then the third algorithm was used. These 3 sets of rules
were then combined and tested again on the 400 word pair test set (in Table 1,
only the best order of application is given). We see that the combination of
methods scores best on all of the measures.

Which of our rewrite methods is most effective in bridging the spelling gap
between 17th century and modern Dutch? A bigger reduction in edit distance
does not always lead to a better rule. The modern Dutch spelling for the historic
sequence cx should be ks. The rule cx → k leads to a bigger reduction than the
rule cx → cs, but also leads to a change in pronunciation and often a change
in word meaning as well. The number of perfect rewrites provides additional
information. A larger reduction in edit distance leads to a larger number of
perfect rewrites, leading to more direct matches between historic and modern
Dutch. Together, these measures give a fair indication of the effectiveness of the
rule sets. For now, this suffices: our aim is to enable the retrieval of historic
documents. Does the rewrite method with the biggest reduction in edit distance
and/or the largest number of perfect rewrites give rise to the best retrieval
performance?—This is the topic of the next section.

4 CLIR Approaches to Historic Document Retrieval

Finally, we turn to retrieval, and investigate the effectiveness of the translation
tools developed in the previous section for the retrieval of historic documents.
Our main issue is whether the translation resources help the user in retrieving
historic documents. For comparison, we take a monolingual approach as our
baseline; here, no mapping between the languages takes place. For comparison
with earlier research on historic English [18], we also apply the SoundEx algo-
rithm that translates words into codes based on phonetic similarity [19]; based
on preliminary experiments we use code length 7.

Also based on preliminary experiments, we found that document transla-
tion outperforms query translation. In the case of HDR, translating the historic
documents into modern Dutch provides additional advantages over query trans-
lation. An advantage for the user is that the “modernized” documents are easier
to read. Also, since no stemming algorithm exists for historic Dutch, document
translation enables us to use tokenization techniques that have proven to be
useful in modern Dutch. This is important because successful cross-language re-
trieval requires both effective translation and tokenization [22, 10]. In addition
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to the performance of the translation tools, we investigate the effectiveness of a
stemming algorithm for modern Dutch [23].

Our third set of questions concerns the use of long versus short topic state-
ments. Since the spelling bottleneck may have an especially detrimental impact
on retrieval effectiveness for short queries, we conjecture that our translation
tools will be more effective for short topics than for long topics.

4.1 Experimental Setting

We used the corpus in historic Dutch, and the topic set in modern Dutch de-
scribed in Section 2 above. All runs were of the following form: query in modern
Dutch, with relevant document in 17th century Dutch. All runs used out-of-the-
box Lucene [14] with the default vector space retrieval model and the Snowball
stopword list for Dutch [23]. In addition to our monolingual baseline run, we
generated runs using the outputs of the various tools described in the previous
section, runs with and without the use of stemming, and runs using only the title
field of the topic statement as well as runs that use the description field. The
measure used for evaluation purposes is mean reciprocal rank (MRR), a natu-
ral (and standard) measure for known-item retrieval [5]. To determine whether
the observed differences between two retrieval approaches are statistically sig-
nificant, we used the bootstrap method, a non-parametric inference test [8, 21].
We take 100,000 resamples, and look for significant improvements (one-tailed)
at significance levels of 0.95 (�) and 0.99 (��).

4.2 Results

Table 2 shows the results for runs produced without invoking a stemmer. First,
restricting our attention to the title queries in the top half of the table, we
see that all translation resources (except RSF) improve retrieval effectiveness.
SoundEx is surprisingly effective, almost on a par with the combination of all

Table 2. Evaluating translation effectiveness, using the title of the topic statement
(top half) or its description field (bottom)

Method MRR % Change
Baseline (titles) 0.1316 –
Soundex7 0.2600� +97.6
PSS 0.2397� +82.1
RSF 0.1299 -1.3
RNF-all 0.2114� +60.6
RNF-all + RSF + PSS 0.2780�� +111.2
Baseline (descriptions) 0.1840 –
Soundex7 0.1890 +2.7
PSS 0.2556 +38.9
RSF 0.1861 +1.1
RNF-all 0.2025 +10.1
RNF-all + RSF + PSS 0.2842� +54.5
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Table 3. Does the stemming of modern translations further improve retrieval? Using
the title of the topic statement (top half) or its description field (bottom)

Method MRR % Change
Baseline (titles) 0.1316 –
Stemming 0.1539 +16.9
RNF-all + RSF + PSS 0.2780�� +111.2
RNF-all + RSF + PSS + Stemming 0.2766�� +110.2
Baseline (descriptions) 0.1840 –
Stemming 0.1870 +1.6
RNF-all + RSF + PSS 0.2842� +54.5
RNF-all + RSF + PSS + Stemming 0.3410�� +85.3

translation resources. The results for runs that use the description field of the
topic statement, shown in the bottom half of Table 2, are somewhat different.
Here, Soundex only makes a minor difference. How can this behavior be ex-
plained? Soundex transforms all words into codes of a certain length. Many
short words that start with the same letter are transformed into the same code,
matching the short (and often irrelevant) words in the description with many
other short Dutch words. Soundex adds much more of these short words to the
query than the rewrite rules. The titles contain only content words, which are
often longer than non-content words, and are matched far less by other, irrel-
evant words. While still impressive, the relative gain in MRR produced by the
combination of all translation resources (on the description field of the topic
statement) is only about half the gain on the title topics.

Next, to find out whether there is an added benefit of performing stemming
on top of the translated documents, we turn to the results in Table 3. Note
that the SoundEx algorithm generates codes rather than human readable text,
defying the application of further linguistic tools. On title-only topic statements
(see the top half of Table 3) stemming improves effectiveness, but it does not
add anything to the combination of the translation resources. In contrast, on
the description topics (see the bottom half of Table 3), the grand combination
of all translation resources plus stemming leads to further improvements over
stemming and over the translation resources.

The previous section showed that the resulting rule set of a combination of the
RNF, RSF, and PSS algorithms produced the largest reduction in edit distance
and the largest number of perfect rewrites. The question was whether these
measures provide a reliable indication of the retrieval effectiveness. The success
of the combination is reflected in the retrieval results: all individual algorithms
are outperformed by the combined method. It should be noted, however, that
the contribution of the RSF algorithm seems minimal. This is likely caused by
the relatively small number of rewrite rules it produces: of the 17,794 unique
words in the corpus, somewhat more than 4,000 words are rewritten by the RSF
rule set, while the PSS rule set rewrites over 8,000 words. The RNF rule set and
the combined rule sets rewrite over 11,000 words.
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5 Discussion and Conclusions

We proposed a cross-language approach to Historic Document Retrieval, and
investigated (1) the automatic construction of translation resources for historic
languages, and (2) the retrieval of historic documents using cross-language infor-
mation retrieval techniques. Our experimental evidence was based on a collection
of 17th century Dutch documents and a set of 25 known-item topics in modern
Dutch. Our main findings are as follows: First, we are able to automatically con-
struct rules for modernizing a historic language based on comparing (a) phonetic
sequence similarity, (b) the relative frequency of consonant and vowel sequences,
and (c) the relative frequency of character n-gram sequences, of historic and
modern corpora. Second, modern queries are not very effective for retrieving
historic documents, but the historic language tools lead to a substantial im-
provement of retrieval effectiveness. The improvement is above and beyond the
improvement due to using a modern stemming algorithm. In fact, modernizing
the historic language generally has a beneficial impact on the effectiveness of
the stemmer. In sum, our translation resources reduce the spelling gap between
17th century and contemporary Dutch, showing that a cross-language approach
to HDR is a viable way of bridging the gap between the historic language of the
document and the modern language of a user’s query.

Following Braun [3], one can identify two bottlenecks for retrieving documents
written in a historic language. The spelling bottleneck is caused by differences
in spelling between the modern and historic language. The highly inconsistent
spelling also resulted in the existence of multiple spelling variations of a word
within a single document. A second problem is caused by vocabulary changes. As
languages evolve, new words are introduced, while others disappear over time.
Yet other words remain part of the language, but their meanings shift. This
problem forms the vocabulary bottleneck. Our CLIR approach to HDR implies
the use of translation resources for retrieval purposes. At present, we make no
distinction between different linguistic relations that may hold between trans-
lations. The automatically produced rewrite rules exploit the fact that there
are common elements in the different orthographic forms of words. Hence, they
are an effective method for addressing the spelling bottleneck. The vocabulary
bottleneck is a much harder problem. We are currently exploring methods that
address the vocabulary bottleneck both directly and indirectly. First, we address
it indirectly by using query expansion techniques that specifically expand queries
with words not occuring in a modern corpus. Second, we address it directly by
mining annotations to historic texts published on the web. This exploits the fact
that these words require explanation for modern readers, frequently leading to
annotations that explain the historic meaning of a term.

All resources used for the experiments in this paper (the corpus, the topics,
and the qrels) are available from http://ilps.science.uva.nl/Resources/.
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Abstract. Parallel corpora are a valuable resource for tasks such as
cross-language information retrieval and data-driven natural language
processing systems. Previously only small scale corpora have been avail-
able, thus restricting their practical use. This paper describes a system
that overcomes this limitation by automatically collecting high quality
parallel bilingual corpora from the web. Previous systems used a single
principle feature for parallel web page verification, whereas we use mul-
tiple features to identify parallel texts via a k-nearest-neighbor classifier.
Our system was evaluated using a data set containing 6500 Chinese–
English candidate parallel pairs that have been manually annotated.
Experiments show that the use of a k-nearest-neighbors classifier with
multiple features achieves substantial improvements over the systems
that use any one of these features. The system achieved a precision rate
of 95% and a recall rate of 97%, and thus is a significant improvement
over earlier work.

1 Introduction

Parallel corpora provide a rich source of translation information. In the past,
they have been used to train statistical translation models [1, 2, 3], translation
disambiguation systems [4], out-of-vocabulary term translation [5], and multi-
lingual thesaurus construction [6]. However, some parallel corpora are subject to
subscription or licence fee and thus not freely available, while others are domain
specific. For example, parallel corpora provided by the Evaluations and Language
resources Distribution Agency [7], the Linguistic Data Consortium [8], and the
University Centre for Computer Corpus Research on Language [9], all require
subscription or fee. There are several large manually constructed parallel cor-
pora available on the web but they are always domain specific, thus significantly
limiting their practical usage. For instance, the biblical text [10] in a number of
languages (collected by the University of Maryland) and the European parlia-
ment proceedings parallel corpus (1996-2003) [11] in eleven European languages.

In order to make use of the ever increasing number of parallel corpora, a robust
system is needed to automatically mine them from the web. This paper presents a
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system to automatically collect parallel Chinese–English corpora from the web —
Web Parallel Data Extraction (WPDE). Similar to previous systems that have
been developed for the same purposes, WPDE uses a three stage process: first,
candidate sites are selected and crawled; second, candidate pairs of parallel texts
are extracted; finally, we validate the parallel text pairs. Compared to previous
systems, WPDE contains improvements at each stage. Specifically, in stage one,
in addition to anchor text, image ALT text (the text that always provides a
short description of the image and is displayed if an image is not shown) is
used to improve the recall of candidate sites selection. In stage two, candidate
pairs are generated by pattern matching and edit-distance similarity measure,
whereas previous systems only applied one or the other of these. In stage three,
where previous systems used a single principle feature to verify parallel pages,
WPDE applies a KNN classifier to combine multiple features. Experiments on
a large manually annotated data set show that each of the methods leads to
improvements in terms of the overall performance in each step, and that the
combined system yields the best overall result reported.

The structure of the paper is as follows. In Section 2, we consider other related
work. Section 3 lays out the WPDE architecture. In Section 4 we detail our
experiments and present the results we obtained; and Section 5 concludes the
paper.

2 Related Work

The amount of information available on the web is expanding rapidly, and
presents a valuable new source of parallel text. Recently, several systems have
been developed to exploit this opportunity.

Nie et al. [1, 12] developed the PTMiner to mine large parallel corpora from the
web. PTMiner used search engines to pinpoint the candidate sites that are likely
to contain parallel pages, and then used the URLs collected as seeds to further
crawl each web site for more URLs. The pairs of web pages were extracted on the
basis of manually defined URL pattern-matching, and further filtered according
to several criteria, such as file length, HTML structure, and language character
set. Several hundred selected pairs were evaluated manually. Their results were
quite promising, from a corpus of 250 MB of English–Chinese text, statistical
evaluation showed that of the pairs identified, 90% were correct.

STRAND [13] is another well-known web parallel text mining system. Its
goal is to identify pairs of web pages that are mutual translations. Resnik and
Smith used the AltaVista search engine to search for multilingual websites and
generated candidate pairs based on manually created substitution rules. The
heart of STRAND is a structural filtering process that relies on analysis of the
pages’ underlying HTML to determine a set of pair-specific structural values,
and then uses those values to filter the candidate pairs. Approximately 400
pairs were evaluated by human annotators. STRAND produced fewer than 3500
English–Chinese pairs with a precision of 98% and a recall of 61%.

The Parallel Text Identification System (PTI) [14] was developed to facili-
tate the construction of parallel corpora by aligning pairs of parallel documents
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Table 1. Summarized Results from PTMiner, STRAND, and PTI

Precision Recall Parallel text size Number of pairs evaluated

PTMiner 90% – 250 MB 100–200 (randomly picked)

STRAND 98% 61% 3500 pairs 400 (randomly picked)

PTI 93% 96% 427 pairs all

from a multilingual document collection. The system crawls the web to fetch
(potentially parallel) candidate multilingual web documents using a web spider.
To determine the parallelism between potential document pairs, a filename com-
parison module is used to check filename resemblance, and a content analysis
module is used to measure the semantic similarity. The results showed that the
PTI system achieves a precision rate of 93% and a recall rate of 96%. PTI is
correct in 180 instances among a total of 193 pairs extracted. Our later evalua-
tion showed that WPDE is able to produce 373 correct pairs with a precision of
97% and a recall of 94% on the same domain, using the file length feature-based
verification only.

The summarized results from above studies are tabulated in Table 1.

3 The WPDE Architecture

WPDE is an automatic system for large scale mining of parallel text from exist-
ing English–Chinese bilingual web pages in a variety of domains. In summary,
our procedure consists of three steps: candidate sites selection and crawling,
candidate pairs extraction, and parallel pairs verification.

3.1 Candidate Sites Selection and Crawling

Rather than using search engines to identify the candidate sites, we started with
a snapshot of two million web pages from Microsoft Research. We noticed that
images representing the language types are almost always accompanied by their
text equivalents — ALT text. One of the major differences between WPDE
and previous systems is that the candidate sites are selected on the basis of
both anchor text and image ALT text. For a given web page, we extract the
hypertext links when the anchor text or the image ALT text matches a list
of pre-defined strings that indicate English, simplified Chinese, and traditional
Chinese (see Appendix A). If a website contains two or more hypertext links
to the different versions, we select these as candidate websites. 1598 candidate
websites were selected based on the anchor text and 211 extra candidate websites
were obtained using the image ALT text.

Once candidate sites were extracted from the snapshot, we used Wget1 to
fetch all documents from each site on the live web and create local copies of
remote directory hierarchies.
1 http://www.gnu.org/software/wget/
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3.2 Candidate Pairs Extraction

We then extract candidate parallel pairs from the crawled web pages. URLs
consist of a protocol prefix, a domain name, a pathname, and a filename. Web-
masters tend to name the pages with similar names if they are the translation
of each other. The only difference between these two URLs is the segments that
indicate the language type. For example, given the URLs of an English–Chinese
parallel pair,

English page:    http://www.XXXX.com/AA/BB/eng/CC/content_e.html

Chinese page:   http://www.XXXX.com/AA/BB/chi/CC/content_c.html

where eng and e are used to indicate the English version and chi and c are
used to indicate the Chinese version. We observed that there are only five pat-
terns e,en,eng,engl,english that are utilized to indicate the English version.
Whereas, the patterns employed to indicate the Chinese version are quite un-
predictable, and it is unrealistic to expect a “complete” pattern list. Therefore,
previously employed language flag matching approaches [1, 12], that replace one
language prefix/suffix/infix with all possible prefixes/suffixes/infixes in the other
language based on a static pre-defined pattern list, will not work on a large scale
URL matching process.

An improved approach combining pattern matching and edit-distance simi-
larity measure [15] has been exploited in our work. For example, if an English
pattern is detected in the pathname of an URL, we first extract the candidate
Chinese URLs with the same protocol prefix, the same domain name, and the
same pathname, except for the language flag segment. If the Chinese URL con-
tains a language pathname segment that is in our standard Chinese pattern
list — c,ch,chi,chinese, we select this URL. Otherwise we use an edit dis-
tance metric to find the nearest match to one of these Chinese patterns, for
example tc,sc,tchi,schi, etc. If the filenames are the same, the process is fin-
ished. Sometimes this is not the case, and an additional filename matching step
is required. In the simplest case the filename will differ by one of the standard
language flag patterns, otherwise we again use the same edit distance function
to find the filename closest to the one of these Chinese patterns.

We have extracted a total of 7894 candidate pairs. Later evaluation showed
that in isolation, this approach has a precision of 79%. Among a total of 606
pages, which are in .pdf, .doc, .rtf, and .cfm format, 558 of them are parallel
pages with a high quality. We would suggest the web documents in these specific
formats as a reliable parallel text source.
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3.3 Parallel Pairs Verification

The candidate pairs extracted in the previous steps are further filtered based
on three common features of parallel pages: the file length, the file structure,
and the translation of the web page content. To filter out the pairs that are not
similar enough, a threshold is set to each feature score. The experimental results
are shown in Section 4.

File length. We assume the files sizes of Chinese–English parallel texts are
roughly proportional. Additionally, files of length 40 bytes or less are discarded.
Using these metrics, 323 candidate pairs (5%) were filtered out. For the candi-
date pairs that remain, we then calculate the ratio of the two file lengths Slen=
length(fch) / length(fen). This ratio is then used in combination with other fea-
tures as described below.

File structure. The HTML structures of two parallel pages should be simi-
lar. We extract the linear sequences of HTML tags from each candidate pair,
then apply case-folding and remove noise, such as meta, font and scripts. Unix
sdiff2 is used to find differences between these two sequences of HTML tags ob-
tained. For example, as shown in Figure 1, consider the two sequences of HTML
tags on the left, the aligned sequence generated by sdiff is shown on the right.

The feature score of the file structure is calculated using Sstruct =Ndiff / Nall,
where Ndiff = 4 is the number of unaligned lines in the given example above,
and Nall = 12 is the total number of the lines, and is used to normalize the score.
Thus, the lower the score the better, with 0 being ideal.

Content translation. To consider the content translation of a candidate paral-
lel pair, we align the two pages using the Champollion Tool Kit3, which provides
ready-to-use parallel text sentence alignment tools. Champollion depends heav-
ily on lexical information, but uses sentence length information as well. Past ex-
periments indicate that champollion’s performance improves as the translation
lexicon becomes larger. We therefore compiled a large English–Chinese lexicon,
which contains 250, 000 entries. The score of the content translation feature is
calculated using Strans = Naligned / N(ch,en), where Naligned is the number of
aligned sentences and N(ch,en) is the total number of lines in the two pages.

K-nearest-neighbors classifier. After investigating the recall-precision re-
sults of each single feature verification, we observed that although the file length
feature produced the highest precision, the file structure feature can achieve a
relatively high recall when lower precision is acceptable. Intuitively, it is possi-
ble to achieve better overall performance if multiple features can be combined
using an appropriate model. To observe the data distribution in a 2-dimensional
feature space, we generated the scatter plot matrix shown in Figure 2. The file
length feature score is plotted in the X axis, while the file structure feature score
is plotted on the Y axis. The ‘true’ pair is marked by triangle and the ‘false’

2 http://linuxcommand.org/man pages/sdiff1.html
3 http://champollion.sourceforge.net/
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Fig. 1. An example of file structure comparison using sdiff
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Fig. 2. A scatter plot of the 2-feature dimensions. The x-axis shows the file length
feature score. The y-axis shows the file structure feature score.

pair is represented by cross. As we can see, in the case of mixture of tightly clus-
tered ‘true and false’ data, a linear decision boundary is unlikely to be optimal.
k-nearest-neighbors method would be more appropriate for the mixture.

KNN has been successfully used for pattern classification on many applica-
tions [16]. Being a non-parametric classification method, it is a simple but effective
method for classification. It labels an unknown sample with the label of the major-
ity of the k nearest neighbors. A neighbor is deemed nearest if it has the smallest
distance. The distance is usually calculated using the Euclidean distance.

Using a total of 6500 English-Chinese candidate pairs, we carried out tenfold
cross-validation experiments using a KNN classifier to predict the correctness of a
candidate pair. Specifically, the data is randomly split into 10 disjoint validation
subsets, each with 650 pairs. In each fold, we then select one of those subsets
as a test set with 650 test items and use the rest 5850 pairs as its training
set; the fraction of true and false pairs in each fold’s test and training sets
approximates the overall division, 80% to 20%, respectively. The choice of k
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affects the performance of a KNN classifier. Wilson and Martinez [17] proposed
that the k is typically a small integer that is odd and often determined from cross-
validation. Therefore we choose the optimal k value with the best performance
in cross-validation experiments. Through our experiments, we determined that
the best results are generally obtained with k = 15 for 3-feature dimension, and
k = 7 for 2-feature dimensions.

4 Experiments Results and Discussion

In this section, we describe the experimental setup and the experimental results.

4.1 Evaluation Methodology

The performance of a system that finds web parallel pages can be evaluated using
standard IR measures of precision and recall. Precision represents the proportion
of candidate parallel pages retrieved that are correct, thus:

Precision =
Number of correctly aligned pairs

Total number of aligned pairs

Whereas recall represents the proportion of parallel pages that the system actu-
ally found:

Recall =
Number of correctly aligned pairs

Total number of parallel pairs in the collection

Recall can be calculated for a test collection since the total number of parallel
pairs can be determined by inspection, but cannot be calculated for the entire
web.

We used three Chinese–English bilingual speakers (none of whom are authors
of this paper) to evaluate the correctness of all the parallel pairs we extracted
from the web. Only if the English and Chinese pages contain entirely the same
meaning, the pair is annotated as a ‘correct pair’. While previous systems have
been evaluated on relatively small data set (about a few hundreds of pairs),
we created a large manually annotated test collection containing around 6500
English–Chinese pairs.

4.2 Web Crawling Results

Atotal of 61web sites, which include 26 .hk sites and 35 .cn sites, were randomly se-
lected from the candidate websites obtained in Section 3.1. We have crawled about
2.7 GB of web data, comprising approximately 53, 000 web pages. We noticed that
the quality of the parallel data provided by the .hk sites is seemingly better than
that provided by the .cn sites, and therefore we strongly suggest that more impor-
tance should be attached to the .hk web sites in candidate website selection.

4.3 Parallel Pairs Mining Results

We then tested the effect of the features, both separately and in various of
combinations.
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Single feature effect. We have run three experiments to separately gauge the
effectiveness of each of these features — the file length, the file structure, and the
content translation features in RUNlen, RUNstruct, and RUNtrans, respectively.
The evaluation results with the highest average precision achieved using tenfold
cross-validation are shown in Table 2.

Surprisingly, the file length feature, the simplest and thus the most efficient,
is clearly superior. When 0.55 ≤ Slen < 0.75, we are able to achieve a precision
of 97% and a recall of 70%. This compares favorably to the results of STRAND
and PTMiner (see Table 1), which while not directly comparable because of the
the differing corpora, suggests that our system performs reasonably well.

Our utilization of linear sequence of HTML tags to determine whether two
pages are parallel, is similar to that of STRAND and PTMiner. The file HTML
structure feature provides a relatively high precision; meanwhile, it greatly im-
pairs the recall.

The content translation feature has produced mediocre results. Given Cham-
pollion depends heavily on lexical information (previously described in Sec-
tion 3.3), we suspect the main reason is that the majority of the candidate pairs
we have generated in Section 3.2 are in traditional Chinese, where the bilingual
lexicon we have compiled is based on simplified Chinese. Although there are
no differences between the basic vocabularies or grammatical structures of sim-
plified and traditional Chinese, different Chinese communities translate English
terms in different ways. Due to the limited communication between mainland
China (using simplified Chinese) and Taiwan, Hong Kong and the overseas areas
(using traditional Chinese), there are some differences in terminology, especially
new cultural or technological nouns. For instance, the English computer phrase
“cross-language information retrieval” is commonly translated in simplified Chi-

nese as “ ”while in traditional Chinese it is “ ”. This
suggests that better results might be obtained if specially tailored lexicons were
used for mainland and overseas Chinese text.

Feature fusion effect. This set of experiments allowed us to test whether
using feature fusion in the parallel pairs verification is likely to provide any ben-
efit, as well as the effect of the number of the features of fusion on the overall
performance. As shown in Figure 3, three types of feature combinations are inves-
tigated: the direct intersection, the linear phase filtering, and a KNN classifier.

Table 2. Effect of the features separately. For the file length feature, ratios between
0.55 and 0.75 achieved the best precision. For the file structure feature, pairs with
scores ≤ 0.1 performed best, whereas for the translation feature, attribute scores ≥ 0.1
provided the best precision.

RUN ID Precision Recall

RUNlen (0.55 ≤ Slen < 0.75) 97% 70%

RUNstruct (Sstruct ≤ 0.1) 95% 46%

RUNtrans (Strans ≥ 0.1) 90% 53%
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Fig. 3. Outline of different feature fusion methods

In the direct intersection run RUNinters, we evaluated a direct intersection
of the pair sets aligned by each of the features. In the linear phase filtering run
RUNlinear , the candidate pairs were passed through the linear phase filters. The
pairs that are unable to be detected by the first feature filter were aligned using
the second feature filter, the pairs left were piped to the last feature filter and
processed. In other words, this process produces the union of the sets of pairs
aligned by each filter. In the RUNknn, we experimented with a KNN classifier
previously described in Section 3.3. For example, using a feature space of three
dimensions each pair instance x is represented as a vector 〈 Slen(x), Sstruct(x),
Strans(x) 〉. RUNlen provided the best results for a single feature run, and thus is
used to establish a reference by which we can measure our feature fusion results.
The results reported are obtained after selecting an optimal threshold for each of
the feature scores. The experimental results with the highest average precision
achieved using tenfold cross-validation are shown in Table 3.

The results of the direct intersection combination method (RUNinters) were
disastrous. This suggests a large proportion of correct pairs only satisfy some of
the above three features. The result of this was often that many correct pairs
were omitted. This outcome is corroborated by the results of RUNlinear . Using
the liner phase filtering feature fusion, we are able to achieve a precision of 96%
and a recall of 90%. The KNN classifier further improved the recall to 97%. We
used the Wilcoxon ranked signed test to test the statistical significance of the
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Table 3. Effect of the different types of feature fusion (All values are percentages)

RUN ID
Features

Precision Recall
Flen Fstruct Ftrans

RUNlen (Baseline)
√

97 70

RUNinters

√ √
97 30√ √
97 64√ √
97 27√ √ √
98 20

RUNlinear

√ √
95 85√ √
95 88√ √
94 89√ √ √
96 90

RUNknn

√ √
94 94√ √
94 97√ √
93 97√ √ √
95 97

improvement. It showed a significant improvement at the 95% confidence level,
and emphasizes the importance of a good feature fusion technique.

Our experiments also show that 3-feature fusion statistically significantly out-
performs 2-feature fusion in both RUNlinear and RUNknn. Therefore we con-
clude that a larger number of features will increase the overall performance of
the system.

5 Conclusion

The paper describes WPED, an automatic mining system for bilingual web par-
allel corpora. This system used several new techniques to extract parallel web
pages, and thus has the potential to find more candidate pages than previous
systems. We have explored the use of multiple features via a KNN classifier. Ex-
perimental results show that the use of the KNN classifier with multiple features
achieves substantial improvements over the systems that use any one of these
features. WPDE has achieved a precision rate of 95% and a recall rate of 97%,
and thus is a significant improvement over earlier work.
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A A List of Pre-defined Strings

english
chinese
simplifiedchinese
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traditionalchinese
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englishversion
simplifiedchineseversion
traditionalchineseversion
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Abstract. Detection of highly similar sequences within genomic collec-
tions has a number of applications, including the assembly of expressed
sequence tag data, genome comparison, and clustering sequence collec-
tions for improved search speed and accuracy. While several approaches
exist for this task, they are becoming infeasible — either in space or in
time — as genomic collections continue to grow at a rapid pace. In this
paper we present an approach based on document fingerprinting for iden-
tifying highly similar sequences. Our approach uses a modest amount of
memory and executes in a time roughly proportional to the size of the
collection. We demonstrate substantial speed improvements compared to
the CD-HIT algorithm, the most successful existing approach for clus-
tering large protein sequence collections.

1 Introduction

Similarity between genomic sequences is a strong predictor of functional or
phylogenetic relatedness, and thus the identification of sequence similarity is
a very important application in bioinformatics. The first step towards identi-
fying a new sequence typically involves searching a large sequence databank
for similar sequences using an alignment algorithm such as Smith-Waterman
(Smith & Waterman 1981), FASTA (Pearson & Lipman 1988) or BLAST
(Altschul et al. 1990, 1997, Cameron et al. 2004, 2005). These algorithms com-
pare a single query sequence against a collection of sequences, and are notable
for their accuracy and sensitivity. In many cases, however, it is useful to know
not just the similarity between a single sequence and a collection, but between all
sequences in the collection. The identification of similar sequence pairs is useful
for clustering EST (expressed sequence tag) data (Burke et al. 1999, Malde et al.
2003), genome comparison (Kurtz et al. 2004), and reducing redundancy in a
collection to improve search speed (Holm & Sander 1998, Li et al. 2001b,a) and
accuracy (Park et al. 2000, Li et al. 2002). In such cases, a straightforward ap-
plication of Smith-Waterman or BLAST is not appropriate: an all-against-all
comparison of a 100 Mb collection takes several days with BLAST.

Previous studies have investigated a range of approaches to identifying all
pairs of highly similar sequences in a collection. Most of the proposed techniques
execute significantly faster than a näıve application of query-based algorithms
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such as BLAST. However, a majority of these algorithms still have a fundamen-
tal O(n2) complexity in the size of the collection, rendering them increasingly
infeasible as genomic databases continue their exponential growth. Malde et al.
(2003) have investigated the use of suffix structures such as suffix trees (Gusfield
1997) or suffix arrays (Manber & Myers 1993) to efficiently identify high-scoring
pairs in a single pass of the collection. This approach does not suffer from the
quadratic complexity problem, however suffix structures have significant mem-
ory overheads and long construction times, making them unsuitable for large
genomic collections such as GenBank.

In this paper we describe and apply document fingerprinting to isolate candi-
date pairs of highly similar sequences. Our approach is fast, scales linearly with
collection size, and has modest memory requirements. We describe our method
for applying fingerprinting to genomic sequences and find that it is remarkably
accurate and sensitive for this task. We also apply fingerprinting to the creation
of representative-sequence databases (Holm & Sander 1998, Park et al. 2000,
Li et al. 2001b). We are able to process the GenBank non-redundant database in
around 1.5 hours, while the fastest existing approach, CD-HIT (Li et al. 2001b),
requires over 9 hours for the same task. Importantly, there is no significant
change in accuracy.

2 Similarity Detection: Techniques and Applications

Query-based similarity detection in sequence collections is a fundamental task
in bioinformatics. It is often the first step in the identification, classification
and comparison of new sequence data. A number of well-researched and well-
established techniques exist for this task; alignment algorithms such as BLAST
compare a single query sequence to every sequence in a collection and are gen-
erally considered satisfactory solutions for this task.

For some important applications, however, there is no notion of a query
sequence; rather, it is necessary to identify similarity between arbitrary pairs
of sequences in a collection. For example, the assembly of EST (expressed se-
quence tag) data involves arranging a collection of overlapping sequences into
a longer consensus sequence. For this application there is no apparent query
sequence: rather, we are interested in similarity between any pair of sequences
in the collection. Another application where an all-against-all comparison is re-
quired is the construction of a representative-sequence database (RSDB), where
highly redundant sequences are removed from a collection resulting in faster,
more sensitive search for distant homologies using search algorithms such as
PSI-BLAST (Altschul et al. 1997).

Several past solutions — including Holm & Sander (1998) and Li et al.
(2001b) — use a simple pairwise approach to identify pairs of similar sequences.
These schemes use fast BLAST-like heuristics to compare each sequence in the
collection to the entire collection. The representative-sequence database tool
CD-HIT (Li et al. 2001b) is the fastest approach based on this method. How-
ever, despite fast methods for comparing each sequence pair, such approaches
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require time that is quadratic in the size of the collection and are increasingly
infeasible as genomic collections continue to grow. The CD-HIT tool requires
over 9 hours to process the current GenBank non-redundant protein database.

An alternative approach to identifying similar sequences involves using a suf-
fix structure such as a suffix tree or suffix array. This approach is taken by
Malde et al. (2003), where suffix arrays are used to cluster EST sequences in lin-
ear time. While the approach is highly effective for this application — in which
collections are typically quite small — suffix structures are known to consume
large amounts of main-memory. In our experiments with the freely available
XSACT software, this was confirmed: the software required more than 2 Gb of
main memory to process a 10 Mb collection of uncompressed nucleotide data.
Although more compact suffix structures exist (Grossi & Vitter 2000) they have
longer construction and search times.

In the following sections we describe a novel, alternative approach called
document fingerprinting with linear time complexity and modest memory
requirements.

3 Document Fingerprinting and spex

Document fingerprinting (Manber 1994, Brin et al. 1995, Heintze 1996),
(Broder et al. 1997, Shivakumar & Garćıa-Molina 1999) is an effective and scal-
able technique for identifying pairs of documents within large text collections
that share portions of identical text. Document fingerprinting has been used
for several applications, including copyright protection (Brin et al. 1995), doc-
ument management (Manber 1994) and web search optimisation (Broder et al.
1997, Fetterly et al. 2003, Bernstein & Zobel 2005).

The fundamental unit of document fingerprinting techniques is the chunk, a
fixed-length unit of text such as a series of consecutive words or a sentence. The
full set of chunks for a given document is formed by passing a sliding window
of appropriate length over the document; this is illustrated below for a chunk
length of six words:

[the quick brown fox jumped over]
the quick brown fox jumped [quick brown fox jumped over the]
over the lazy dog [brown fox jumped over the lazy]

[fox jumped over the lazy dog]

The set of all chunks in a collection can be stored in an inverted index
(Witten et al. 1999) and the index can be used to calculate the number of shared
chunks between pairs of documents in a collection. Two identical documents will
naturally have an identical set of chunks. As the documents begin to diverge, the
proportion of chunks they share will decrease. However, any pair of documents
sharing a run of text as long as the chunk length will have at least one chunk
in common. Thus, the proportion of common chunks is a good estimator of the
quantity of common text shared by a pair of documents. The quality of this
estimate is optimised by choosing a chunk length that is long enough so that
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two identical chunks are unlikely to coincidentally occur, but not so long that it
becomes too sensitive to minor changes. In the deco package, for example, the
default chunk length is eight words (Bernstein & Zobel 2004).

For practical document fingerprinting, chunks are generally hashed before
storage in order to make their representation more compact. Further, some sort
of selection heuristic is normally applied so that only some chunks from each
document are selected for storage. The choice of selection heuristic has a very
significant impact on the general effectiveness of the fingerprinting algorithm.
Most fingerprinting algorithms have used simple feature-based selection heuris-
tics, such as selecting chunks only if their hash is divisible by a certain number,
or selecting chunks that begin with certain letter-combinations. These heuristics
are obviously lossy: if two documents share chunks, but none of them happen
to satisfy the criteria of the selection heuristic, the fingerprinting algorithm will
not identify these documents as sharing text.

Bernstein & Zobel (2004) introduced the spex chunk selection algorithm,
which allows for lossless selection of chunks, based on the observation that single-
ton chunks (chunks that only occur once and represent a large majority in most
collections) do not contribute to identifying text reuse between documents. The
spex algorithm takes advantage of the fact that, if any subchunk (subsequence)
of a chunk is unique, the chunk as a whole is unique. Using a memory-efficient
iterative hashing technique, spex is able to select only those chunks that occur
multiple times in the collection. Using spex can yield significant savings over
selecting every chunk without any degradation in the quality of results.

Figure 1 provides a pseudocode sketch of how spex identifies duplicate chunks
of length finalLength within a collection of documents or genomic sequences.
The algorithm iterates over chunk lengths from 1 to finalLength, the final chunk
length desired. At each iteration, spex maintains two hashtables (referred to as
lookup in the figure): one recording the number of occurrences of each chunk for
the previous iteration, and one for the current iteration. As we are only interested
in knowing whether a chunk occurs multiple times or not, each entry in lookup
takes one of only three values: zero, one, or more than one (2+). This allows
us to fit four hashtable entries per byte; collisions are not resolved. A chunk is
only inserted into lookup if its two subchunks of length chunkLength - 1 both

for chunkLength = 1 to finalLength
foreach sequence in the collection

foreach chunk of length chunkLength in sequence
if chunkLength = 1

increment lookup[chunk]
else

subchunk1 = chunk prefix of length chunkLength - 1
subchunk2 = chunk suffix of length chunkLength - 1
if lookup[subchunk1] = 2+ and lookup[subchunk2] = 2+

increment lookup[chunk]

Fig. 1. The spex algorithm
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appear multiple times in the hashtable from the previous iteration. The iterative
process helps prevent the hashtables from being flooded. The spex algorithm is
able to process quite large collections of text and indicate whether a given chunk
occurs multiple times in a reasonable time, and consuming a relatively modest
amount of memory. For a full description of how the spex algorithm works, we
refer the reader to Bernstein & Zobel (2004).

4 Fingerprinting for Genomic Sequences

The spex algorithm (and, indeed, any fingerprinting algorithm) can be trivially
adapted for use with genomic sequences by simply substituting documents with
sequences. However, the properties of a genomic sequence are quite different from
those of a natural language document. The most significant difference is the lack
of any unit in genomic data analogous to natural language words. The protein
sequences we consider in this paper are represented as an undifferentiated string
of amino-acid characters with no natural delimiters such as whitespace, commas
or other punctuation marks.

The lack of words in genomic sequences has a number of immediate impacts
on the operation and performance of the spex algorithm. First, the granularity
of the sliding window must be increased from word-level to character-level. An
increased granularity means that there will be far more chunks in a genomic
sequence than in a natural-language document of similar size. As a result, the
spex algorithm is less efficient and scalable for genomic data than for natural
language documents.

The distribution of subsequences within genomic data is also less highly
skewed than the distribution of words in English text. Given a collection of
natural language documents, we expect some words (such as ‘and’ and ‘or’) to
occur extremely frequently, while other words (such as perhaps ‘alphamegamia’
and ‘nudiustertian’) will be hapax legomena: words that occur only once. This
permits the spex algorithm to be effectual from the first iteration by remov-
ing word-pairs such as ‘nudiustertian news’. In contrast, given a short string of
characters using the amino acid alphabet of size 20, it is far less likely that the
word will occur only once in any collection of nontrivial size. Thus, the first few
iterations of spex are likely be entirely ineffectual.

One simple solution to these problems is to introduce ‘pseudo-words’, effec-
tively segmenting each sequence by moving the sliding window several characters
at a time. However, this approach relies on sequences being aligned along seg-
ment boundaries. This assumption is not generally valid and makes the algorithm
highly sensitive to insertions and deletions. Consider, for example, the following
sequences given a chunk length of four and a window increment of four:

Sequence Chunks
Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP
Sequence 2 AABCDEFGHIJKLMNOP AABC DEFG HIJK LMNO
Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF GHIJ KLMQ
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Despite all three of these sequences containing an identical subsequence of length
11 (in bold above), they do not share a single common chunk. This strong corre-
spondence between the three sequences will thus be overlooked by the algorithm.

We propose a hybrid of regular spex and the pseudo-word based approach
described above that we call slotted spex. Slotted spex uses a window increment
greater than one but is able to ‘synchronise’ the windows between sequences so
that two highly-similar sequences are not entirely overlooked as a result of a
misalignment between them.

chunkLength = finalLength - Q × (numIterations - 1)
for iteration = 1 to numIterations

foreach sequence in the collection
foreach chunk of length chunkLength in sequence

if lookup[chunk] �= 0
increment lookup[chunk]

else
count number of subchunks of length chunkLength - Q

where lookup[subchunk] = 2+

if (count ≥ 2 or iteration = 1) and
(number of chunks processed since increment lookup ≥ Q)
increment lookup[chunk]

increment chunkLength by Q

Fig. 2. The slotted spex algorithm

Figure 2 describes the slotted spex algorithm. As in standard spex, we pass a
fixed-size window over each sequence with an increment of one. However, unlike
spex, slotted spex does not consider inserting every chunk into the hashtable.
In addition to decomposing the chunk into subchunks and checking that the
subchunks are non-unique, slotted spex also requires that one of two initial
conditions be met. First, that it has been at least Q window increments since
the last insertion; or second, that the current chunk already appears in the
hashcounter. The parameter Q is the quantum, which can be thought of as the
window increment used by the algorithm. Slotted spex guarantees that at least
every Qth overlapping substring from a sequence is inserted into the hashtable.
The second precondition — that the chunk already appears in the hashcounter —
provides the synchronisation that is required for the algorithm to work reliably.

The operation of slotted spex is best illustrated with an example. Using the
same set of sequences as above, a quantum Q = 4 and a chunk length of four,
slotted spex produces the following set of chunks:

Sequence Chunks
Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP
Sequence 2 AABCDEFGHIJKLMNOP AABC ABCD EFGH IJKL MNOP
Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF EFGH IJKL

For the first sequence, the set of chunks produced does not differ from the näıve
pseudo-word technique. Let us now follow the process for the second sequence.
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The first chunk — AABC — is inserted as before. When processing the second
chunk, ABCD, the number of chunks processed since the last insertion is one, fewer
than the quantum Q. However, the condition lookup[chunk] 	= 0 on line 5
of Figure 2 is met: the chunk has been previously inserted. The hashcounter
is therefore incremented, effectively synchronising the window of the sequence
with that of the earlier, matching sequence. As a result, every Qth identical
chunk will be identified across the matching region between the two sequences.
In this example, the slotted spex algorithm selects two chunks of length four
that are common to all sequences. Slotted spex also differs from regular spex
by incrementing the word length by Q rather than 1 between iterations.

In comparison to the ordinary spex algorithm, slotted spex requires fewer
iterations, consumes less memory and builds smaller indexes. This makes it suit-
able for the higher chunk density of genomic data. While slotted spex is a lossy
algorithm, it does offer the following guarantee: for a window size finalLength
and a quantum Q, any pair of sequences with a matching subsequence of length
finalLength + Q - 1 or greater will have at least one identical chunk selected.
As the length of the match grows, so will the guaranteed number of common
chunks selected. Thus, despite the lossiness of the algorithm, slotted spex is still
able to offer strong assurance that it will reliably detect highly similar pairs of
sequences.

5 Fingerprinting for Identity Estimation

In this section, we analyze the performance of slotted spex for distinguishing
sequence pairs with a high level of identity from those that do not.

Following Holm & Sander (1998) and Li et al. (2001b), we calculate the per-
centage identity between a pair of sequences by performing a banded Smith-
Waterman alignment (Chao et al. 1992) using a band width of 20, match score
of 1, and no mismatch or gap penalty. The percentage identity I for the se-
quence pair si, sj is calculated as I = S(si, sj)/L(si, sj) where S(si, sj) is the
alignment score and L(si, sj) is the length of the shorter of the two sequences.
This score can be functionally interpreted as being the proportion of characters
in the shorter sequence that match identical characters in the longer sequence.
We define similar sequence pairs as those with at least 90% identity (I ≥ 0.9);
this is the same threshold used in Holm & Sander (1998) and is the default
parameter used by CD-HIT (Li et al. 2001b).

For experiments in this sectionweuseversion1.65 of theASTRALCompendium
(Chandonia et al. 2004), because it is a relatively small yet complete database that
allows us to experiment with a wide range of parameterisations. The ASTRAL
database contains 24,519 sequences, equating to 300,578,421unique sequence-pair
combinations. Of these, 139,716 — less than 0.05% — have an identity of 90% or
higher by the above measure; this is despite the fact that the database is known to
have a high degree of internal redundancy. A vast majority of sequence pairs in any
database can be assumed to be highly dissimilar.

Although we do not expect fingerprinting to be as sensitive and accu-
rate as a computationally intensive dynamic-programming approach such as
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Smith-Waterman, we hope that the method will effectively distinguish sequence-
pairs with a high level of identity from the large number of pairs that have very
low identity. Our aim is to use document fingerprinting to massively reduce the
search space within which more sensitive analysis must be pursued. For exam-
ple, even if fingerprinting identifies three times as many false positives (dissimilar
sequences) as true positives (similar sequences), less than 0.2% of all sequence
pairs in the ASTRAL collection would need to be aligned.

In order to find a good compromise between resource consumption and
effectiveness, we have experimented with different parameter combinations.
Figure 3 (left) shows the spex index size for varying chunk lengths and quanta.
The results show that increasing the word length does not result in a large reduc-
tion in index size, but increasing the quantum results in a marked and consistent
decrease in the size of the index.

Figure 3 (right) plots the average precision (Buckley & Voorhees 2000) as
a function of chunk length and quantum. The average precision measure was
calculated by sorting pairs in decreasing order of spex score — the number of
matching chunks divided by the length of the shorter sequence — and using
sequence pairs with an identity of 90% or above as the set of positives. We
observe that increasing the chunk length results in a small loss in accuracy,
however increasing the quantum has almost no effect on average precision. This
indicates that slotted spex — even with a high quantum — is able to estimate
sequence identity nearly as well as the regular spex algorithm with reduced costs
in memory use, index size and index processing time.

The result in Figure 3 make a strong case for using a shorter word length;
however, shorter words place a greater loading on the hashcounter. With larger
collections, memory bounds can lead to the hashtable flooding and a consequent
blowout in index size. Thus, shorter word lengths are less scalable. Similarly,
longer quanta are in general beneficial to performance. However, a larger quan-
tum reduces the number of iterations possible in slotted spex. Thus, a very
high quantum can result in more collisions in the hashcounter due to fewer it-
erations, suggesting once again that a compromise is required. Guided by these
observations along with the other data, chunk lengths of 25 or 30 with a quantum
of 5 to 9 appear to provide a good compromise between the various considera-
tions in all-against-all identity detection for large collections.
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Fig. 3. spex index size as a function of final chunk length and quantum (left) and
average precision as a function of final chunk length and quantum (right)
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The high average precision results indicate that slotted spex provides an
accurate and sensitive prediction of whether sequence pairs have a high level of
identity. What is particularly surprising is that the average precision stays high
even with reasonably long chunk lengths and high quanta. Earlier efforts by
Holm & Sander (1998) and Li et al. (2001b), and Li et al. (2001a) are extremely
rigorous and rely upon short matching chunks, typically less than ten characters
in length, between sequence-pairs before proceeding with alignment. Our results
indicate that longer chunk lengths have only minor impact on result quality.

In our experiments we have focused on identifying sequence-pairs with greater
than 90% identity, and we have shown that fingerprinting is effective at this task.
However, it is probable that fingerprinting will prove less useful as the identity
threshold is lowered.

6 Removing Redundant Sequences: An Application

Holm & Sander (1998), Park et al. (2000) and Li et al. (2001b) have all investi-
gated techniques for creating representative-sequence databases (RSDBs), culled
collections where no two sequences share more than a given level of identity.
RSDBs are typically constructed by identifying clusters of similar sequences and
retaining only one sequence from each cluster, the cluster representative. Such
databases are more compact, resulting in faster search times. More significantly,
they have been demonstrated to improve the sensitivity of distant-homology
search algorithms such as PSI-BLAST (Li et al. 2002).

The most recent and efficient technique for constructing an RSDB,
CD-HIT (Li et al. 2001b), uses a greedy incremental approach based on an
all-against-all comparison. The algorithm starts with an empty RSDB. Each se-
quence is processed in decreasing order of length and compared to every sequence
already inserted into the RSDB. If a high-identity match is found, where I exceeds
a threshold, the sequence is discarded; otherwise it is added to the RSDB. To
reduce the number of sequence pairs that are aligned, CD-HIT first checks for
short matching chunks — typically of length four or five — between sequences
before aligning them. The approach is still fundamentally quadratic in complexity.

We have replicated the greedy incremental approach of CD-HIT, but use
fingerprinting with slotted spex as a preprocessing step to dramatically reduce
the number of sequence comparisons performed. A list of candidate sequence-
pairs, for which the spex score exceeds a specified threshold, is constructed. We
only perform alignments between sequence pairs in this candidate list. This is
significantly faster than comparing each sequence to all sequences in the RSDB.

We measured the performance and scalability of our approach by comparing
it to CD-HIT — which is freely available for download — using several releases of
the comprehensive Genbank non-redundant (NR) protein database over time1.
We used the CD-HIT default threshold of T = 90% and the four releases of
1 Ideally, we would have had more datapoints for this experiment. However, old re-

leases of the NR database are not officially maintained, and thus we could only find
four different releases of the database.
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Table 1. Reduction in collection size for CD-HIT and our approach for various releases
of the GenBank NR database

Original Size reduction
Release date Size (Mb) CD-HIT Our approach
16 July 2000 157 61.71 Mb (39.56%) 61.72 Mb (39.57%)
22 May 2003 443 164.38 Mb (37.33%) 165.07 Mb (37.48%)
30 June 2004 597 217.80 Mb (36.71%) 218.76 Mb (36.87%)
18 August 2005 900 322.98 Mb (36.08%) 324.92 Mb (36.30%)
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Fig. 4. Time required to identify and remove redundant sequences from various releases
of the GenBank NR database

GenBank NR database from July 2000 until August 2005 described in Ta-
ble 1. For tests with CD-HIT we used default parameters except for max memory
which we increased to 1.5 Gb. For our approach, we used a final chunk length
finalLength of 25, a quantum of 9 and 3 iterations. Our threshold for iden-
tifying a candidate pair is one matching chunk between the pair. We use this
low threshold because we have found that it provides improved accuracy with
a negligible increase in execution time. In our experiments with the ASTRAL
database described previously and our chosen default parameters, slotted SPEX
identifies only 10,143 false positives out of 147,724 sequence pairs identified.

The results in Table 1 show no significant difference in representative col-
lection size between our method and CD-HIT, indicating the two approaches
are roughly equivalent in terms of accuracy. Figure 4 shows the runtime for our
approach and CD-HIT for the releases of GenBank tested. A visual inspection
reveals that our approach scales roughly linearly with the size of the collection
while CD-HIT is superlinear. When processing the recent August 2005 collection,
our approach is more than 6 times faster than CD-HIT.

7 Conclusions

The identification of highly-similar sequence pairs in genomic collections has sev-
eral important applications in bioinformatics. Previous solutions to this problem
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involve either an all-against-all comparison with O(n2) complexity or the use of
suffix structures that suffer from large main-memory overheads or long construc-
tion times. Therefore, existing approaches are not suitable for processing large
collections such as GenBank.

We have applied document fingerprinting techniques to genomic data with
the aim of more efficiently identifying pairs of similar sequences in large collec-
tions. We have described a new algorithm called slotted spex that requires less
main-memory and CPU resources when processing genomic collections. We show
that slotted spex is highly accurate for identifying high-identity sequence pairs,
even with long chunk lengths and large quanta. We have also tested the effec-
tiveness of our slotted spex approach for removing redundant sequences from
large collections. When processing the recent GenBank non-redundant protein
database our scheme is more than 6 times faster than the previous fastest ap-
proach, CD-HIT, with no significant change in accuracy. Further, our approach
scales approximately linearly with collection size.

As future work, we plan to investigate the effectiveness of our approach on
nucleotide data. We also plan to apply our slotted spex algorithm to English
text in applications where the original spex algorithm has proved successful.
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Abstract.  Genomic IR, characterized by its highly specific information need, 
severe synonym and polysemy problem, long term name and rapid growing  
literature size, is challenging IR community. In this paper, we are focused on 
addressing the synonym and polysemy issue within the language model frame-
work. Unlike the ways translation model and traditional query expansion tech-
niques approach this issue, we incorporate concept-based indexing into a basic 
language model for genomic IR. In particular, we adopt UMLS concepts as in-
dexing and searching terms. A UMLS concept stands for a unique meaning in 
the biomedicine domain; a set of synonymous terms will share same concept 
ID. Therefore, the new approach makes the document ranking effective while 
maintaining the simplicity of language models. A comparative experiment on 
the TREC 2004 Genomics Track data shows significant improvements are ob-
tained by incorporating concept-based indexing into a basic language model. 
The MAP (mean average precision) is significantly raised from 29.17% (the 
baseline system) to 36.94%. The performance of the new approach is also sig-
nificantly superior to the mean (21.72%) of official runs participated in TREC 
2004 Genomics Track and is comparable to the performance of the best run 
(40.75%). Most official runs including the best run extensively use various 
query expansion and pseudo-relevance feedback techniques while our approach 
does nothing except for the incorporation of concept-based indexing, which 
evidences the view that semantic smoothing, i.e. the incorporation of synonym 
and sense information into the language models, is a more standard approach to 
achieving the effects traditional query expansion and pseudo-relevance feed-
back techniques target. 

1   Introduction 

Biomedical literature contains a wealth of valuable information. How to help scien-
tists find desired information effectively and efficiently is an important research en-
deavor. In recent years, genomic information retrieval (GIR) is getting more and more 
attention from IR community. TREC Genomic Track has attracted lots of talented IR 
researchers to participate in. 
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However, GIR is challenging IR community most likely due to the following rea-
sons.  First, unlike general searching that Google and Yahoo are working on, GIR are 
working for the scientists who have very specific information need. Second, GIR is 
dealing with a huge collection of biomedical literature that hinders many existing IR 
approaches that may be backed by a perfect theoretical model but not scalable to large 
document collections. Third, in genomic-related literature, a term is often comprised 
of multiple words; the word-based unigram IR models may lose the semantics of the 
term. Last, severe synonym and polysemy problem would cause trouble while an IR 
system tries to match query terms with indexing terms according to their strings in-
stead of meanings. 

In this paper, we focus on addressing the synonym and polysemy problem in GIR 
rather than attempting to solve all the problems. On one hand, synonyms of terms 
such as genes, proteins, cells and diseases are widely used in biomedical literature. On 
the other hand, the polysemy of many terms plus the use of partial names and abbre-
viations have caused the ambiguity of terms. The synonym and polysemy have af-
fected the performance of genomic IR. A fundamental way to solve this problem is to 
index and search documents through a set of concepts. A concept has a unique mean-
ing in a domain and therefore will not cause any ambiguity. All synonymous terms in 
the domain will share same concept identities and thus concept-based indexing will 
easily solve the synonym problem too.  

The sense-based information retrieval is a kind of implementation of concept-
based indexing and searching. However, word sense disambiguation (WSD) is a 
challenging task in the area of natural language processing (NLP). The perform-
ance (e.g. precision and recall) of WSD in general domain is not satisfying yet, 
which discourages IR researchers to incorporate word sense into their IR models. 
Some researchers reported positive outcome of sense-based IR models [15] but 
most of them failed to show any performance improvement partially due to the 
low accuracy of WSD in general domain [11]. Furthermore, word senses can not 
capture well the meaning of many terms in a technical domain such as biomedi-
cine. For example, three individual word senses can not express the meaning of 
the concept “high blood pressure”. 

Many alternative approaches are then proposed to addressing the synonym and 
polysemy issue in IR. Latent semantic indexing (LSI) [2] tries to identify the latent 
semantic structure between terms; thus it can in part solve the synonym problem. 
However it is not suited to large document collections because the factorization of 
large matrix is prohibitive. Meanwhile, LSI can not handle the polysemy problem 
well. Vector space models and other traditional probabilistic models [10, 14] use 
query expansions to relax the synonym problem. Unlike LSI that is well supported by 
solid mathematical models, various query expansion techniques are often heuristic. 
But they achieve great success in IR practice. The translation model [1] extended 
from the basic unigram language model is a more formal approach for achieving the 
effects that query expansion techniques target. Berger and Lafferty reported signifi-
cant improvement of IR performance with translation models [1]. However, there are 
several difficulties with translation model approach to semantic smoothing under 
language modeling framework (refer to Section 2 for details) [4].  
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Recent developments in large domain ontology such as UMLS1 and statistical lan-
guage modeling approach to information retrieval lead us to a re-examination of the 
concept-based indexing and searching. The language modeling approach to IR, ini-
tially proposed by Ponte and Croft [9], has been popular with IR community in recent 
years due to its solid theoretical foundation and promising empirical retrieval per-
formance. We think a well-motivated retrieval framework such as language models 
might well take the full advantage of concept-based indexing. Meanwhile, the avail-
ability of large domain ontology will allow us to extract concepts from documents and 
queries efficiently and effectively.  

To verify our idea, we build a prototyped IR system that indexes and searches 
documents through both controlled concepts and phrases, and then conduct a com-
parative experiment on the TREC 2004 Genomic Track data using a basic unigram 
language model for retrieval. The concept-based approach achieved a 36.94% MAP 
(mean average precision), significantly higher than the 29.17% MAP of the baseline 
approach (using phrases for index and search). The result of the concept-based ap-
proach is also significantly superior to the average performance (21.72%) of the offi-
cial runs in TREC 2004 Genomic Track and is comparable to the performance of the 
best run (40.75%). Considering most official runs including the best run extensively 
used various query expansion and pseudo-relevance feedback techniques while our 
approach did nothing except for the incorporation of concept-based indexing, the 
concept-based approach demonstrated its effectiveness on solving synonym and 
polysemy issue in IR. 

The rest of the paper is organized as follows: Section 2 describes the background 
of language modeling approach to IR. Section 3 presents a generic ontology-based 
approach to the concept extraction. Section 4 shows the experiment design and result. 
A short conclusion finishes the paper. 

2   Language Modeling Approach to IR 

In this section, we shortly review the work on language modeling approach to IR and 
point out the urgency of the development of semantic smoothing approaches and then 
propose our concept approach that directly uses concepts to index and search docu-
ments with the language modeling framework. 

Language modeling approach to information retrieval (IR) was firstly proposed by 
Ponte and Croft [9]. Basically, the language model uses the generative probability of a 
query according to the language model of each document in the collection, )|( dqp , 

to rank the document for IR. Lafferty and Zhai further made the underlying semantics 
of the language model clear by linking the notion of relevance to the language model 
[5]. Under their framework, the relevance of a document to the query is defined as 
(2.1).  Assuming the document is independent of the query conditioned on the 
event rR = , the ranking formula is reduced to (2.2). Further ignoring the document 
prior such as PageRank used by Google in (2.2), the rank formula could be further 
reduced to be as simple as (2.3).  

                                                           
1 http://www.nlm.nih.gov/research/umls/  
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Let ),...,,( 21 mAAAQ =  and assume that the attributes (terms) are independent 

given R and the document D. The ranking formula is then transformed to (2.4) and the 

term frequency in each document is used to estimate the term ),|(log rDAp i . For 

the simplicity of the notation, we will use (2.5) as the basic ranking formula for IR in 
the present paper. 

  ),|(log),|(log =
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i rDAprDQp  (2.4) 

 )|(log)|(log =
i

i DApDQp  
(2.5) 

However, some query terms may not appear in a given document; thus language 
models for IR must be smoothed because zero probability can not be assigned to 
query terms. The Jelinek-Mercer method is one of the simplest ways to smooth lan-
guage models [17]. It involves a linear interpolation of the maximum likelihood 
model with a background collection model, using a coefficient  to control the influ-
ence of the background collection model C: 

)}|()|()1log{()|(log Capdapdap iii λλλ +−=  (2.6) 

Semantic smoothing, which incorporates synonym and sense information into the 
language model, is regarded as a potentially more effective smoothing approach [4]. 
With semantic smoothing, a document containing term high blood pressure may be 
retrieved for the query term hypertension; a document containing term ferroportin-1 
may not be retrieved for query term ferroportin-1because the former refers to a gene 
in human while the latter refers to a gene in mouse. 

Berger and Lafferty present a translation model [1] that maps a document term t 
into a query term ai. With term translations, the estimation of the generative probabil-
ity for query term ai becomes (2.7). In the simplest way, a document term can be 
translated into a query term with high probability if they are synonyms to each other. 
Thus, the translation model is kind of semantic smoothing. It achieved significant 
improvement in practice over the baseline system as described in [9]. 

 )|()|(log)|(log =
j

jjii dtptapdap  (2.7) 
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However, there are several difficulties with translation model approach to semantic 
smoothing in language modeling framework [4]. First, the estimation of translation 
probability would be a problem due to the lack of sufficient training data. Second, the 
calculation of the ranking score would be prohibitive for large document collections. 
Third, it can not incorporate sense information into the language model, i.e. it can not 
handle polysemy problem well. 

We propose in this paper the direct use of controlled concepts for indexing and 
searching with the framework of language models. Except terms (often words) will be 
replaced by concepts as indexing and searching unit, no additional modification is 
required on the basic unigram language model. Thus the concept approach keeps 
language models as simple as described in (2.5) and (2.6). Furthermore, the calcula-
tion of the ranking score will be very efficient in comparison with the translation 
models. In addition, the concept approach solves both synonym and polysemy prob-
lems in IR. The major concern with this approach may be the extraction of concepts. 
However, with the availability of human-coded domain ontology, we are able to ex-
tract multi-word concept names with high accuracy. The further disambiguation of 
concept name, i.e. mapping a concept name to a unique concept ID in the domain 
according to the contextual information, is much easier than word sense disambigua-
tion because term polysemy in technical domains such as biomedicine is rarer than 
generic domains. Therefore, it is reasonable to expect good overall performance of 
concept extractions.  

3   Concept Extraction and Indexing Schema 

In this section, we will briefly review the past work on biological term extractions and 
then introduce our generic ontology-based approach. In general, the concept extrac-
tion is done in two steps. In the first step, we extract multi-word concept names such 
as “high blood pressure”. We call them phrases in this paper. Because a concept 
name may correspondence to more than one concept ID in UMLS, we need the sec-
ond step to disambiguate the concept name using the contextual information. 

The approaches to biological term extraction roughly fall into two categories, with 
dictionary [16, 18] or without dictionary [7, 8, 12, 13]. The latter approaches use 
either hand-coded or machine learned rules to extract terms. It is able to recognize 
new terms, but it assign semantic class rather than concept IDs to extracted terms. For 
this reason, we do not use this line of approaches.  The dictionary-based approaches 
use either noun phrase [16] produced by shallow parsers or part of speech patterns 
[18] to generate term candidates and then check the candidates with the dictionary. 
Both of them recognize terms based on exact character matching and would yield 
high precision. However, the extraction recall is often very low because a term name 
usually has many variants but a dictionary collects very few term variants. 
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To overcome the limitation of exact character matching, we develop an IE system 
called MaxMatcher that is namely able to recognize concept names by approximate 
matching. The basic idea of this approach is to capture the important tokens (not all 
tokens) of a concept name. For example, the token gyrb is obviously important to the 
concept gyrb protein; we will treat it as a concept name even if the token protein is 
not present. So the problem is reduced to how to score the importance of each token 
to a given concept name. Formally, given a concept that has n concept names or vari-
ants and let Sj(w) denotes the importance of the token w to the j-th variant name, and 
let N(w) denotes the number of concepts whose variant names contain token w in the 
dictionary, and let wji denotes the i-th token in the j-th variant name of the concept, 
the importance of w to the concept is defined as in (3.1). 

Table 1. Demonstrate the calculation of the importance score of each token to concept 
C0120543 in UMLS (this concept has three variant names). The number in the parenthesis of 
the first column is the number of concepts whose variant names contain that token. The final 
importance score of each token to this concept is listed in the rightmost column. 

Token gyrb protein gyrb gene product DNA gyrase subunit b Score 
gyrb (1) 0.99998 0.99990  0.99998 
protein (47576) 0.00002   0.00002 
gene (22186)  0.00005  0.00005 
product (18724)  0.00005  0.00005 
b (9548)   0.00083 0.00083 
DNA (1884)   0.00421 0.00421 
gyrase (8)   0.98995 0.98995 
subunit (1580)   0.00501 0.00501 

Using the importance score formula in (3.1), we can easily build a matrix each cell 
of which stores the importance score of a token (row) to a concept (column) in the 
dictionary (i.e. UMLS in this paper). Then the concept name extraction is equivalent 
to tokenize sentences in a document and maximize the match between token se-
quences and concept names with a few syntactic constraints. The detailed extraction 
algorithm is presented in Figure 1. We treat a verb, preposition, punctuation and so on 
as the boundary of a concept name. If two or more concept candidates are found for 
an extracted concept name, we will further use surrounding tokens (3 to the left and 3 
to the right) to narrow down the candidates in the same way as the extraction algo-
rithm shown in Figure 1. The candidate with maximum importance score is chosen in 
the end unless only one candidate is remained. 

Approximate Matching is a neat approach to the concept extraction. It completes 
phrase extraction and phrase meaning disambiguation within one step. More impor-
tantly, it achieves high precision as well as high recall. The evaluation of the extrac-
tion module on GENIA2 3.02 corpus achieved 56.32% F-score for exact match and 
73.35% for approximate match, which are significantly better than approaches de-
scribed in [16] and [18] (see table 2). We did not do formal evaluation for meaning 
disambiguation because no concept is annotated in GENIA corpus. 
 
                                                           
2 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/  
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Fig. 1. The algorithm for extracting one concept name and its candidate concept IDs. The 
threshold is set to 0.95; the maximum number (skip) of skipped tokens is set to 1. 

Table 2. The performance comparison of three different dictionary-based term extraction sys-
tems. Please read [16] for the detail of the evaluation method. BioAnnotator actually tested 
several configurations. But only the configuration with only dictionaries is compared. 

Exact Match Approximate Match 
IE Systems 

Recall Precision F-score Recall Precision F-score 
MaxMatcher 57.73 54.97 56.32 75.18 71.60 73.35 
BioAnnotator [16] 20.27 44.58 27.87 39.75 87.67 54.70 
PatternMatcher [18] 26.63 31.45 28.84 61.56 72.69 66.66 

Given a document, MaxMatcher will extract a set of phrases and concepts. We will 
use both of them for indexing, called phrase-based indexing and concept-based index-
ing, respectively. One indexing example is presented below. The advantage of concept-
based indexing over phrase-based indexing is twofold. First, it is able to solve synonym 
problem well because all synonymous terms share same concept IDs. Second, a concept 
stands for a unique meaning in a domain and thus, it will not cause any ambiguity.  

Example 
A recent epidemiological study (C0002783) revealed that obesity (C0028754) is an 
independent risk factor for periodontal disease (C0031090). 
Phrase Index: epidemiological study, obesity, periodontal disease 
Concept Index: C0002783, C0028754, C0031090 

4   Experiments 

We implement a basic unigram language model as described by formula 2.5 and 2.6. 
The coefficient  in (2.6) is empirically set to 0.1 in our experiment. The dictionary 
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used for concept extraction is UMLS 2005AA version. With this prototyped IR sys-
tem, biomedical literature can be indexed and searched either by concepts (concept 
approach) or by phrases (baseline approach).  

The document collection we used for the experiment is from the TREC 2004 Ge-
nomic Track. The collection is a 10-year subset (1994-2003, 4.6 million documents) 
of the MEDLINE bibliographic database. However, human relevance judgments were 
merely made to a relative small pool. The pools were built from the top-precedence 
run from each of the 27 groups.  They took the top 75 documents for each topic and 
eliminated the duplicates to create a single pool for each topic. The average pool size 
was 976, with a range of 476-1450 [3].  Our prototyped IR system only index and 
search all human relevance judged documents, i.e. the union of 50 single pools that 
contains total 42, 255 unique documents. 

Following the convention of TREC, we take MAP (Mean Average Precision) as 
the primary measure for IR performance evaluation. MAP is a comprehensive indica-
tor of IR performance that captures both precision and recall. P@10 (the precision of 
top 10 documents) and P@100 (the precision of top 100 documents) are treated as 
secondary measures in our evaluation.  

Table 3.  The comparison of our runs with official runs participated in TREC04 Genomics 
Track. Runs in TREC are ranked by Mean Average Precision (MAP) [3].  

 Run MAP (%) P@10 P@100 
Concept Approach (Our Run) 36.94 59.80 44.76 
Baseline Approach (Our Run) 29.17 49.53 40.82 
pllsgen4a2 (the best) 40.75 60.04 41.96 
uwntDg04tn (the second) 38.67 62.40 42.10 
pllsgen4a1 (the third) 36.89 57.00 39.36 
PDTNsmp4 (median) 20.74 40.56 23.18 
edinauto5 (the worst)  0.12  0.36  1.3 
Mean@TREC04 (47 runs) 21.72 42.69 26.37 

The concept approach with a basic unigram language model achieves the 36.94% 
MAP, 59.80% P@10 and 44.76% while the baseline approach (phrase-based indexing 
and searching) achieves 29.17% MAP, 49.53% P@10 and 40.82% P@100, respec-
tively. The paired-sample T test (M=7.77%, t=3.316, df=49, p=0.002) shows the 
concept approach is significantly better than the baseline approach in terms of mean 
average precision. Thus, we can conclude that concept-based indexing and searching 
in conjunction with language model would significantly improve the performance of 
IR especially in a very specific domain such as biomedicine. This outcome, however, 
is slightly different from the result of many previous studies on sense-based IR which 
failed to show significant performance improvement. A possible explanation is that 
the concept extraction with an ontology in a very specific domain such as biomedicine 
would achieve much higher accuracy than word sense disambiguation in generic do-
mains. Furthermore, the language models provide the chance to “smooth” the genera-
tive probability (or importance) of terms in a formal manner, which may allow the 
concept approach to fully take its potential. 
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Fig. 2. The comparison of the MAP of our runs (Concept Approach and Baseline Approach) 
with the average MAP of official runs in TREC 2004 Genomic Track on 50 ad hoc topics 
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Fig. 3.  The comparison of the P@100 of our runs (Concept Approach and Baseline Approach) 
with the average P@100 of official runs in TREC 2004 Genomic Track on 50 ad hoc topics 

We further compare the sense approach with the official runs in TREC 2004 Ge-
nomic Track. Most runs in the track extensively apply various query expansion and 
pseudo-relevance feedback techniques to their IR models while our sense approach did 
nothing except for incorporating concept-based indexing into a basic unigram language 
model. Surprisingly, the performance of the sense approach is still much better than the 
average of the runs in the track and is comparable to the best run. The P@100 (44.76%) 
is even better than that of the best run. This outcome give us more reason to believe that 
semantic smoothing, i.e. the incorporation of synonym and sense information into the 
language models, is a more standard approach to achieving the effects the traditional 
query expansion and pseudo-relevance feedback techniques target. 
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Fig. 4.  The comparison of the P@10 of our runs (Concept Approach and Baseline Approach) 
with the average P@10 of official runs in TREC 2004 Genomic Track on 50 ad hoc topics 

5   Conclusions and Future Work 

For biomedical literature, synonyms of terms such as genes, proteins, cells and diseases 
are widely used while the polysemy of many terms and the use of partial names and 
abbreviations cause the ambiguity of terms. The synonym and polysemy has affected 
the performance of genomic IR. Unlike the emerging translation model and the tradi-
tional query expansion techniques, we address the issue of synonym and polysemy by 
incorporating concept-based indexing into a basic language model. In other words, we 
directly use concepts rather than phrases or individual words to index and search docu-
ments under the language modeling framework. It not only maintains the simplicity of 
language models, but also makes the ranking schema efficient and effective.  The com-
parative experiment on the TREC 2004 Genomic Track data showed that the concept 
approach achieved significant performance improvement over the baseline approach. 
This outcome, however, is slightly different from the result of many previous studies on 
sense-based IR which failed to show significant performance improvement. A possible 
explanation is that the concept extraction with an ontology in a very specific domain 
such as biomedicine would achieve much higher accuracy than word sense disambigua-
tion in generic domains. Furthermore, the language models provide the chance to 
“smooth” the generative probability (or importance) of terms in a formal manner, which 
may allow the concept approach to fully take its potential. 

The performance of the concept model is also significantly superior to the average 
of official runs in TREC 2004 Genomic Track and is comparable to the performance 
of the best run. Because most official runs in the track extensively use various query 
expansion and pseudo-relevance feedback techniques while our approach does noth-
ing except for the incorporation of concept-based indexing, we have more reasons to 
believe that semantic smoothing, i.e. the incorporation of synonym and sense infor-
mation into the language models, is a more standard approach to achieving the effects 
the traditional query expansion and pseudo-relevance feedback techniques target. 
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For future work, we will continue to refine the method for concept extraction that 
we believe will affect the retrieval performance of the concept model. We will also 
test the generalization of our positive outcome by incorporating concept-based index-
ing into other retrieval models such as vector space model and other traditional prob-
abilistic models. Last, we will take effort on other challenging issues of genomic IR 
as described in the introduction section. 
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Abstract. This paper presents an experimental study on the effect of topic 
familiarity on the assessment behaviour of online searchers. In particular we 
investigate the effect of topic familiarity on the resources and relevance criteria 
used by searchers. Our results indicate that searching on an unfamiliar topic 
leads to use of more generic and fewer specialised resources and that searchers 
employ different relevance criteria when searching on less familiar topics.  

1   Introduction 

Searchers of online resources make a variety of judgments on the material retrieved 
by Information Retrieval (IR) systems. In evaluations of IR systems these judgments 
are often simplified into decisions of relevance: are the documents relevant or not to 
the searcher? However, studies of how people search for information, and the 
assessments they make on retrieved material, show that this is overly simplistic and 
people instead make a range of decisions on material they encounter whilst they are 
searching. These decisions are generally known as relevance criteria, reasons people 
give for assessing material as relevant. There have been many studies of relevance 
criteria uncovering either which criteria are used in searching [1], how criteria change 
over time [7] and how these criteria relate to the search problem being undertaken [8]. 

Previous work [e.g. 4, 5, 6] also shows that topic familiarity can affect a searcher’s 
search strategy and the type of information they believe they will require. In this 
paper we present the results of a pilot study to investigate the degree to which a 
searcher’s familiarity with a topic affects their use of resources and their ability to 
predict which relevance criteria will be important to them in a search.  

2   Methodology 

18 participants took part in this study, all of whom were postgraduate students in 
Masters’ level courses at the University of Strathclyde. Each participant was asked to 
search on basis of two simulated work task situations [2] both of which had a 
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common structure in which the participant was asked to find 10 or more good 
resources (books, web pages, or articles) that they would recommend to a colleague 
interested in that topic. The major difference between the two tasks was the task topic. 

The first task, given to all participants, asked the participants to find information 
on the topic of ‘multimedia information retrieval’. As all participants took part in a 
compulsory course in Information Retrieval as part of their degree course, this was a 
topic with which we expected them to be familiar. For the second task the topic varied 
between participants. Participants were asked at the start of the study which of three 
domains (psychology, history, or architecture) was the least familiar to them and they 
were then given a search task based on that topic. 11 participants chose architecture as 
the topic of which they had least knowledge, 2 chose history and 5 chose psychology. 

Simply asking the participants which topic is least familiar does not guarantee that 
they are unfamiliar with the topic. However, as part of the study the participants were 
asked to assess the familiarity of each search topic on a 5-point scale (1 being ‘very 
unfamiliar’, 5 being ‘very familiar). The average rating given to the familiar task was 
4.1, and 2.1 for the unfamiliar task. Using a Wilcoxon Test we found a statistically 
significant difference between the participants’ responses showing that the 
participants felt more familiar with the topic ‘multimedia information retrieval’. 

For both search tasks the participants were asked to find a number of resources. As 
the study was aimed at understanding the effects of topic familiarity on the 
participants’ existing search behaviour we placed no restrictions on the participants 
search strategies: the participants could search in any way they felt comfortable and 
could use any search engine, database or visit any website they wished. The only 
restriction we placed on their searching was that they were not allowed to ask for 
recommendations from the investigators or to ask for opinions on the resources they 
found. The participants were restricted to 15 minutes on each search task and the 
study took place in the departmental laboratory which was the main laboratory for the 
participants and hence is a familiar place to carry out work tasks.  

As well as the effects of topic familiarity on search behaviour we were also 
interested in how topic familiarity would affect people’s relevance criteria: would 
people with less familiarity use different criteria in assessing relevance? To 
investigate this we gave the participants a list of 12 relevance criteria drawn from the 
criteria described in [1]. We selected the relevance criteria that could reasonably be 
applied to any search task and which were mentioned as being the most frequent in 
[1]. The relevance criteria we chose were depth/scope/specificity, accuracy/validity, 
clarity, currency (recent information), tangibility (material contains specific facts), 
quality of sources, accessibility (information is available), verification (verification a. 
information is consistent with other information and verification b. the participant 
agrees with the information), affectiveness (affectiveness a. the participant enjoys 
reading the material and affectiveness b. the document is interesting) and background 
experience (participant is familiar with the topic or source of the document). 

The criteria were presented in a list with a simple English description of each 
criterion as part of the initial study interview rather than before each search task. Each 
participant was asked to note which criteria they felt would be important to them in 
assessing material for different types of search task including familiar and unfamiliar 
tasks. There was a slight, although not significant, difference in the number of criteria 
chosen per task (average of 6 criteria for familiar task vs. 5.6 criteria for unfamiliar 
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task) and a similar distribution of criteria to both tasks. The main difference was that 
all participants rated the criterion background experience as being important for the 
familiar task whereas only 4 participants rated this as important for the unfamiliar 
task. Currency and verification b. were also more important for the familiar task. 

3   Findings 

The effects of topic familiarity in this study can be seen in two areas of searching: the 
use and selection of resources and how searchers employed relevance criteria. The 
participants used more formal resources and search engines when searching on the 
familiar task than the unfamiliar task (average 2.6 resources in the familiar task vs. 
average of 3 for the unfamiliar task) with a higher use of domain specific resources on 
the familiar task, e.g. Google Scholar, or ACM Digital Library, than on the unfamiliar 
task where more generic resources were used such as Yahoo, or Wikipedia. The 
participants’ reasons for using these generic resources were that they helped either 
structure their searching, e.g. Yahoo hierarchies, or provided more information on the 
topic which helped the participant assess the quality of retrieved material, e.g. 
Wikipedia. This is in line with work by Michel [5] who found that topically 
experienced searchers are better at assessing the relevancy of retrieved objects.   

There was a strong relationship between familiarity and the number of sources 
recommended: participants recommended significantly more documents on the 
unfamiliar task than on the familiar task (average 9.9 familiar task vs. 12.6 unfamiliar 
task). This relates to the work of Byström and Järvelin [3] who found that low task 
familiarity increases the complexity of a task and that, as task complexity increases, 
the need for more sources of information increases. The increase in number of sources 
found could also be due to an increased number of sources available. It is difficult to 
assess the number of sources available for a given topic on the Internet but we note 
that 15 of the 18 participants recommended more sources for the unfamiliar task. 

In section 2 we explained that the participants were asked to predict which 
relevance criteria they would use in assessing material. After searching we asked the 
participants to view the recommended resources and discuss why they would 
recommend them to a colleague. This was to elicit whether the criteria they did use in 
assessing relevance were the ones that they predicted would be important. For 
familiar tasks the predicted relevance criteria were generally similar to the ones used 
in assessing the retrieved material. For unfamiliar tasks, however, they were often not 
the same and criteria such as depth/scope, or accuracy could not be easily employed. 
Although the participants were confident before searching that these criteria were 
important features of the information they sought, these were criteria that could not 
easily be judged on an unfamiliar topic. Instead, participants compensated for their 
lack of topic familiarity by using other criteria. For example, tangibility was 
employed as a substitute measure for accuracy because the extent to which specific 
information was provided was seen as a measure of the reliability of information. 

The use of a criterion such as accessibility was also not straightforward. On 
unfamiliar tasks participants would recommend resources that were less accessible, 
e.g. a book from Amazon rather than a freely available book from the University 
Library, because generic sites such as Amazon gave more information on the 
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resources. As one participant noted “Amazon represented more book details…even a 
few paragraphs from each chapters, this information is very helpful to evaluate a book 
which I have never seen before”. The University library, on the other hand, only 
supplies limited bibliographic information. The degree to which information is 
consistent with other information (relevance criterion verification a) was more 
important for unfamiliar tasks because participants reported that in early search stages 
they were forced to learn about a topic whilst searching and consistent information 
helped the process of learning about a topic.  

4   Conclusions 

This paper reports on a pilot test to investigate the effects of topic familiarity on 
search behaviour. We found that topic familiarity can affect the number and type of 
resources selected by searchers and the ability of a searcher to use relevance criteria.  
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Abstract. Improving the accuracy of assigning new email messages to small 
folders can reduce the likelihood of users creating duplicate folders for some 
topics. In this paper we presented a hybrid classification model, PERC, and use 
the Enron Email Corpus to investigate the performance of kNN, SVM and 
PERC in a simulation of a real-time situation. Our results show that PERC is 
significantly better at assigning messages to small folders. The effects of differ-
ent parameter settings for the classifiers are discussed. 

1   Introduction 

Automatic categorising emails into user-defined folders is still an under-explored area 
in automatic text categorisation. In our initial user study we found that a large propor-
tion of users sometimes cannot remember which folders they have created or which 
folders they should file the email under. In these circumstances, users tend to create 
new folders, which results in creating duplicate folders for some topics. Bekkerman et 
al. [1] reported that newly-created folders significantly affect the performance of 
classifiers for two main reasons: usually these new folders contain a relatively small 
number of emails, which means fewer positive training examples are available, and 
classifiers need be re-trained in order to recognise these new folders. Therefore, re-
ducing the likelihood of users creating new folders when they forget which folders 
they already have can significantly improve the performance of an email classifier. To 
achieve this, the accuracy of assigning emails to folders that are created in the first 
place needs to be improved, i.e. improve the accuracy of assignment to small folders. 

Klimt and Yang [6] investigated the performance of a Support Vector Machine 
(SVM) on the Enron email corpus using different fields, such as “From”, “Subject” 
and “To, CC”. No field was clearly more useful than the others. Zhang and Yang [9] 
examined the different behaviour of three selected linear classification methods – 
linear SVM, linear regression and logistic regression – on rare categories with few 
positive training examples by randomly extracting small samples of positive examples 
from the 12 most common categories of Reuters-21578. However, this collection of 
news stories is not directly comparable with the Enron corpus of email messages used 
in the experiments described here. Kiritchenko and Matwin [5] applied the co-training 
technique to iteratively train classifiers starting with a small number of positive ex-
amples and a larger number of unlabelled examples. None of the authors cited in this 
section evaluated the k-Nearest Neighbour (kNN) technique. 
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2   The PERC Classifier 

We propose a hybrid classification model, PERC (PERsonal email Classifier) here. 
PERC combines the characteristics of kNN and centroid-based classification [3]. One 
centroid ci for each category Ci is obtained by summing the weight values of each 
attribute in all training examples of the category [4], then the weight value of each 
attribute is divided by the number of training examples in the category.  In the test 
phase PERC finds the k nearest neighbours in the training data set to each test docu-
ment in turn. The similarity between a test document x and the training document dj is 
added to the similarity between x and ci, the centroid of the category that dj belongs 
to. Hence PERC’s algorithm can be written as: 
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where y(dj,Ci)∈{0,1} is the classification for document dj with respect to category Ci; 
and sim(x,dj) is the similarity of x to dj; and sim(x,ci) is the similarity of x to the cen-
troid ci of the category that dj belongs to. The sim(x,Ci) values for each category are 
then sorted in descending order when k nearest neighbours are calculated. The deci-
sion to assign x to Ci can be made using different thresholding strategies [8]. 

Similar work has been carried out by [7] and [2]. Lam and Ho [7] proposed the 
generalised instance set (GIS) algorithm which constructs one set of generalised in-
stances (GI) to replace the original training examples of each category. Lam and Ho 
assigned a test document to the category by determining the product of similarity 
score of each GI and the test document and the association factor between the GI and 
the category. One of the disadvantages of GIS is that the performance of GIS depends 
on the order in which positive instances are selected. The kNN model-based approach 
proposed by Guo et al. [2] tried to tackle the drawbacks of the GI and Rocchio meth-
ods by building several local centroids for each category and the GI as a model to 
represent the whole training dataset. However, the performance of GIS and kNN 
model-based approach on rare categories are unknown and their results are not di-
rectly comparable. 

3   Evaluation 

We applied SVM [1], kNN [8] and PERC to seven large email directories selected 
from the Enron Corpus [1]. Unlike [1,6] we divided each user’s emails according to 
the week in which they were received,  regardless of how many emails they received 
in that week, because it takes different lengths of time for different users to accumu-
late the same number of messages. For example it took sanders-r 26 weeks to collect 
the first 100 messages. Stemming and stopword removal were applied to all mes-
sages, which were then represented as term frequency vectors using a bag-of-words 
document representation. We assumed mono-classification, i.e. only one folder could 
be assigned to each message in the experiment. In our simulation, the classifiers 
were evaluated and updated “weekly” (i.e. after consideration of the all the messages 
received in the space of one week) over a period of 26 weeks, starting at the second 
week because the first week’s messages were all training data. Test messages  
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belonging to folders that did not exist in the current week’s training data were ig-
nored in that week’s evaluation, but were used as training data in the following 
week.  

In order to investigate the overall performance of these three classifiers, results 
were averaged over each user in the dataset. We set k to be 1, 3, 5, 7, 10, 15, 20, and 
25 for different kNN and PERC trials and used the RCut thresholding strategy (t=1) 
and the cosine similarity function as the similarity measure. We fixed the SVM pa-
rameters c (trade-off between training error and margin) = 0.01 [1] or c = 1 (the de-
fault value) and kept cost-factor j = 1 at all times.  

4   Results 

Figures 1 and 2 summarise the performance of SVM, kNN and PERC. SVM with  
c = 1 is denoted as SVM1 and SVM with c = 0.01 is denoted as SVM2. Macro-F1 and 
micro- F1 averaging are presented. Note that micro-precision, micro-recall and micro-
F1 are all equal in mono-classification. In the micro-averaging evaluation SVM1, 
kNN and PERC performed similarly with SVM2 performing much more poorly. In 
the macro-averaging evaluation PERC outperformed the other classifiers, except 
where kNN performed slightly better than PERC when k =15. We performed paired-t 
tests on the results shown in Figures 1and 2. There were no significant differences 
between PERC, kNN and SVM1 for the micro-averaging evaluations. However, for 
the macro-averaging evaluations, PERC significantly outperformed kNN (t=2.786, 
p=0.032), SVM1 (t=2.533, p=0.044) and SVM2 (t=5.926, p=0.001). This suggests 
that PERC can reduce the likelihood of users creating new folders as the macro-
averaged scores are more influenced by the classifier’s performance on small folders. 

 

  
Fig. 1. Micro-averaging F1 over all users 
with standard deviation for kNN, SVM and 
PERC 

Fig. 2. Macro-averaging F1 over all users 
with standard deviation for kNN, SVM and 
PERC 

5   Conclusions 

In this paper we have presented a hybrid classification model, PERC, and investigated 
the performance of kNN, SVM and PERC in a simulation of a real-time situation 
where classifiers were trained weekly. We also investigated the behaviour of kNN and 
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PERC with different values of k and that of SVM with different settings of trade-off 
between training error and margin. Bekkerman [1] points out that incoming messages 
are usually more related to those that are recently received. This may be the reason 
why kNN and PERC performed better with smaller k, where a small number of the 
most related messages in the training data are considered. SVM2 performed poorly in 
our experiments which indicates that the parameters of SVM can be very sensitive to 
the number of training data available and the way it is trained (such as on a weekly 
basis), but it is not clear what setting of SVM parameters will achieve the optimal 
performance in email classification as the training dataset grows over time. PERC 
takes the advantage of the centroids which summarise the content of each category. 
This can be very important in email classification because centroids contain informa-
tion about both the older and the newer messages. In our future work we will investi-
gate the effect of various parameter settings and use of time on email classification. A 
questionnaire-based study is being conducted in order to indicate the behaviour of real 
users in email management. 
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Abstract. The purpose of contextual information retrieval is to make
some exploration towards designing user specific search engines that are
able to adapt the retrieval model to the variety of differences on user’s
contexts. In this paper we propose an influence diagram based retrieval
model which is able to incorporate contexts, viewed as user’s long-term
interests into the retrieval process.

Keywords: personalized information access, influence diagrams, user
context.

1 Introduction

A key challenge in information retrieval is the use of contextual evidence within
the ad-hoc retrieval.Several approaches explored in contextual retrieval area,
techniques for building the user’s profile [3, 6, 2] and using it in the retrieval
process [2, 7, 5, 8]. Most of these approaches employ implicit user feedback to
model the related long-term interests as contexts represented by word vectors
[2], classes of concepts [3] or a hierarchy of concepts [6]. Since the contexts
are modeled, they are exploited in order to refine the query [2, 8], re-rank the
documents [7] or model the whole retrieval process [5, 8]. The latest goal is
precisely our own one. Our contribution is particularly based on the belief that
contextual retrieval is a decision-making problem. For this reason we propose to
apply influence diagrams witch are an extension of Bayesian networks to such
problems, in order to solve the hard problem of user’s relevance estimation.

2 The Influence Diagram Based Model

An influence diagram [4] is a graphic model used to represent and resolve a
decision-making problem. Our interest in influence diagrams is namely to model
the decision problem of document relevancy by taking into account the influence
of both user’s long-term interests and the query submitted.

2.1 Diagram Topology

Figure 1 illustrates the qualitative component of our influence diagram based
retrieval model. The set of nodes V is composed of four different types of nodes
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Fig. 1. Influence diagram-based retrieval model

V = D ∪ T ∪ P ∪ C. The set D = {D1, D2, , Dn} represent the set of documents
in the collection, T = {T1, T2, , Tm} represent the set of terms used to index
these documents, P = {P1, P2, .., Pn} represent the decisions to state that these
documents are relevant and C = {C1, C2, , Cu} represent the set of a specific
user’s contexts expressing his long-term interests. These different types of nodes
are described below:

– Chance nodes. There are three types of chance nodes: documents, terms and
contexts. Each document node D, represents a binary random variable taking
values in the set

{
d, d
}
, where d represents ’the document d is relevant for

a given query’, and d represents ’the document d is not relevant for a given
query’. Each term node T represents a binary random variable taking values
in the set

{
t, t
}
, where t represents ’the term t is representative for a given

query’ and t represents ’the term t is not representative for a given query’.
Each context node C represents a binary random variable taking values in
the set {c, c}, where c represents ’the context c is relevant for a given query’
and c represents ’the context c is not relevant for a given query’.

– Utility nodes. There is an utility node corresponding to each decision node.
– Decision nodes. Each decision node P represents a binary random variable

p, taking values in the set {p, p} . These values correpsonds to each pair{
d, d
}

corresponding to a document node.

Influence arcs join each node term Ti ∈ τ(Dj) and each document node
(Dj) ∈ D. Similarly there are influence arcs joining each node term Ti ∈ τ(Ck)
and each context node Ck ∈ C. We note Pa(.) the parent sets for each node in the
network: ∀Ti ∈ T, Pa(Ti) = !, ∀Dj ∈ D, Pa(Dj) = τ(Dj), ∀Ck ∈ C, Pa(Ck) =
τ(Ck).
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The informative arcs point to utility nodes for which ordered numerical values
are assigned.

2.2 Probability Distributions

The estimation of the probability distributions stored in chance and decision
nodes is carried out in the following ways:

– Term node: p(ti/pa(ti)) = p(ti) as Pa(Ti) = !. We assume that p(ti) =
α, p(ti) = (1 − α) ∀ti ∈ T (0 ≤ α ≤ 1).

– Document node: p(dj/pa(dj))=
∑

ti∈rel(pa(dj)) Wtd(i, j)where rel(pa(dj))=

{Ti ∈ Pa(Dj)/ti ∈ pa(dj)} , Wtd(i, j) = wtdij∑
tl∈τ(Dj ) wlj

wtdij is the weight of

the term Ti in the document Dj.
– Context node: p(ck/pa(ck)) =

∑
ti∈rel(pa(ck)) Wtc(i, k) where rel(pa(ck)) =

{Ti ∈ Pa(Ck)/ti ∈ pa(ck)} , Wtc(i, k) = wtcik∑
tl∈τ(Ck) wtclk

wtcik is the weight of

the term Ti in the context Ck.

3 Query Evaluation

The query evaluation consists in the propagation of new evidence through the
diagram, like in Bayesian networks [1], in order to maximize a re-ranking utility
measure. More precisely, given a query Q represented by a set of positive terms
(τ (Q) = {T1, T2, ..., Tr}), the retrieval process starts placing the evidence in the
term nodes (marginally independent): p(ti/Q) = 1 if Ti ∈ τ (Q) and p(ti/Q) =
α if Ti /∈ τ (Q). Then, the inference process is run by maximizing the re-ranking
utility measure EU(p/Q)

EU(p/Q computed as follows: (we assume that documents are
independent given the query and context)

EU(p/Q) =
∑

ck∈{c,c},dj∈{d,d}
u(p/ck, dj)p(ck/Q)p(dj/Q) (1)

EU(p/Q) =
∑

ck∈{c,c},dj∈{d,d}
u(p/ck, dj)p(ck/Q)p(dj/Q) (2)

When using the probability functions used respectively for document and context
nodes, we compute respectively p(dj/Q) and p(ck/Q) as follows:

p(dj/Q) = α + (1 − α)
∑

Ti∈(τ(Dj)∩τ(Q))

Wtd(i, j) (3)

p(ck/Q) = α + (1 − α)
∑

Ti∈(τ(Ck)∩τ(Q))

Wtc(i, k) (4)
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4 Conclusion

We proposed in this poster, an influence diagram based model for contextual
information retrieval. This model allows to make inferences about the user’s
search intention and to take ideal actions based on probability query term dis-
tributions over the document collection and the user’ contexts. We are currently
experimenting with the graph representation, identification of user’ contexts and
parameters to be used for query evaluation.

Acknowledgment

This research was partially supported by the French Ministry of Research and
New Technolologies under the ACI program devoted to Data Masses (ACI-MD),
project MD-33.

References

1. S. Acid, L..M. De Campos, J.M, Fernadez-Luna J.F. An information retrieval model
based on simple Bayesian networks. International Journal of Intelligent Systems, 18,
pages, 251-265, 2003

2. J. Budzik, K.J Hammond, Users interactions with everyday applications as context
for just-in-time information access. In Proceedings of the 5th international confer-
ence on intelligent user interfaces, pages 44-51, 2000

3. J.P Mc Gowan , A multiple model approach to personalised information access.
Master Thesis in computer science, Faculty of science, University College Dublin,
February 2003

4. F. Jensen : Bayesian networks and decision graphs. Berlin: Springer Verlag, 2001
5. Lin C., Xue G.R., Zeng H.J., Yu Y., Using probabilistic latent semantic analysis for

personalized Web search. In Proceedings of the APWeb Conference, Springer Verlag
Eds, pages 707-711, 2005

6. F. Liu, C. Yu, Personalized Web search for improving retrieval effectiveness, IEEE
Transactions on knowledge and data engineering, 16(1), pages 28-40, 2004

7. M. Speretta, S. Gauch, Personalizing search based on user search histories, In 30th
Conference on information retrieval and management, CIKM, 2004

8. J.R Wen, N. Lao, W.Y. Ma, Probabilistic model for contextual retrieval. In Pro-
ceedings of the 27th Annual International ACM SIGIR Conference on Research and
development in information retrieval, pages 57-63, Sheffield, 2004



 

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 468 – 471, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Morphological Variation of Arabic Queries 

Asaad Alberair and Mark Sanderson 

Department of Information Studies, University of Sheffield, 
Regent Court, 211 Portobello St, Sheffield, S1 4DP, UK 
{a.alberair, m.sanderson}@shef.ac.uk 

Abstract. Although it has been shown that in test collection based studies, 
stemming improves retrieval effectiveness in an information retrieval system, 
morphological variations of queries searching on the same topic are less well 
understood. This work examines the broad morphological variation that 
searchers of an Arabic retrieval system put into their queries. In this study, 15 
native Arabic speakers were asked to generate queries, morphological variants 
of query words were collated across users. Queries composed of either the 
commonest or rarest variants of each word were submitted to a retrieval system 
and the effectiveness of the searches was measured. It was found that queries 
composed of the more popular morphological variants were more likely to 
retrieve relevant documents that those composed of less popular. 

1   Introduction 

In a text retrieval system, a query is posted to the retrieval system to satisfy an 
information need. Retrieval systems apply matching functions; measuring the 
similarity between the query terms and documents in the collection. Languages are 
dynamic and humans are capable of expressing similar ideas in both queries and 
documents with the use of different vocabulary. There is always a chance for a query 
to be formulated with terms that are different from terms in the document. A query 
term can retrieve morphologically related terms in the collection by means of 
stemming, where words are reduced to their root or stem forms with the aim of 
improving retrieval system effectiveness. A number of test collection-based 
evaluations have shown that normalizing user queries with stemmers generally 
improves retrieval effectiveness (Hull, 1996; Krovetz, 1993), however, there is to the 
best of our knowledge, little research that studies morphological variation of queries 
analyzed across a user population. As part of a wider study of the expectations Arabic 
users have of the processing IR systems might perform, a study of the morphological 
variation that might be found in Arabic language queries was conducted. 

2   Methodology 

Studying morphological variation within a topic is somewhat challenging as there is 
little existing data on the variability of queries: test collections at best hold different 
versions of topics that vary in length. Eliciting from a group of users a variety of 
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queries for a particular topic was the task of the TREC Query Track, which ran in 
1999 and 2000 (Buckley, 2000). Simply asking users to think of a query after being 
shown the text of a topic, is likely to result in users generating query words based 
purely on the topic text, resulting in queries failing to show the broad morphological 
variations of queries for a particular topic that maybe observed in operational settings. 
Buckley attempted to address this issue in the TREC query track by using a number of 
different approaches to inform users of the subject of a topic. The approaches 
informed users of the topic area by showing them both topic text and relevant 
documents before asking users to write a query related to the topic. Even with such a 
variation, however, it is still quite possible that users’ choice of terms will be 
influenced by the texts they are shown. Therefore, in this experiment, we extended 
Buckley’s approach to user topic generation, by recruiting users who were bilingual. 
Participants were asked to formulate Arabic language queries based on topics and 
sample relevant documents that were written in English. It was hoped that the process 
of translating English to Arabic would reduce the influence on users’ word choices. 
The three approaches used were as follows: 

• Length-Free Query: Participants were shown a topic, but no supporting material. 
After reading the topic each participant was asked to formulate a query freely, 
without any restrictions. 

• Natural Language Sentence Query: Each participant was shown two documents 
relevant to a particular topic. After reading the two, participants were asked to 
formulate appropriate natural language sentence queries that could retrieve similar 
documents. 

• Short Query: Participants were shown a topic and two examples of relevant 
documents to that topic. Participants were then asked to formulate a short query. 
The length of this form of query was not specified to the participants. 

The topics used were the 25 topics of the TREC-2001 Arabic collection; each 
participant formulated 25 queries (one from each topic). Fifteen native Arabic 
speakers were used. Topics and query generation approaches were arranged in a Latin 
Square to avoid any bias in topic generation. All participants were male and either 
students studying at the university or working in an academic institute in the United 
Kingdom. Participants were volunteers. 

In total, 375 queries were created. For each topic, the words of the fifteen user 
queries were manually arranged into separate classes, where each class contained 
morphologically related terms (i.e. terms that conflate to one root). (Note, that an 
Arabic root encompasses a much broader range of word forms than a morphological 
root in a language like English.) For each root-class, the number of times each term 
occurred in a class was counted. Out of each topic’s classes, three types of queries 
were generated, namely:  

• All Morphological Variants (AMV) - A query of this category includes the union 
of all terms produced for a topic. Therefore, for each topic, queries of this category 
were the longest and morphologically the richest. For the purposes of these 
experiments, AMV can be regarded as a stemming run. 

• Most Repeated Terms (MRT) - It was observed that a number of terms from each 
topic were used more than once by different participants to formulate a query.  
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A query of this category therefore, was formed by selecting the most repeated term 
from each class. If more than one term shared the same frequency of being 
mentioned in a class, then a term was chosen at random to be put in the query. 

• Least Repeated Terms (LRT) - A query of this category contained terms that are 
the least used by participant. Conditions used in formulating queries of the MRT 
category were also applied when formulating queries of this category. The MRT 
and LRT query categories were identical in length. 

The three queries were posted to an Arabic Information Retrieval System 
(InQuery). The collection as described in (Voorhees and Harman 2001) consisted of 
869 megabytes of news articles taken from Agence France-Presse (AFP) Arabic 
newswire. It contained 383,872 documents or articles dated from May 1994 through 
December 2000. InQuery was set to a cut-off level of twenty documents. 

There are some variations in the way Arabic text was presented across Arabic 
speaking countries, beside differences in the individual style of writing. In view of 
these variations and the fact that participants were from different backgrounds, it was 
found that the unification of text presentations was a necessity. Therefore, queries 
were normalized, where punctuations, full stops and diacritics were removed. Also, 
regardless in which position of a word any of the two alifs (  and ) and/or the alif-
mamdood ( ) was found, it was replaced with the bare alif )). Furthermore, the Hamza 
when placed under the Ya ( ) was replaced with the one over the Ya ( ); and the 
final Ya if it was written without the below two dots ( ) was replaced with the one 
that has the two dots ( ). Finally, the final Ta-marboota if it was written with the 
above two dots ( ) was replaced with the one without the two dots ( ). 

3   Results and Analysis 

The three types of queries for each topic were generated and on the basis of TREC 
relevance judgments, the number of relevant documents for each query category was 
counted and precision at rank 20 was calculated. Results for the retrieval effectiveness 
of the three query types is shown below. 

 AMV LRT MRT
P@20 0.50 0.24 0.36
% of AMV 100% 47% 72%

  

Pair wise comparisons between the three types were tested for statistical sig- 
nificance using the t-test; each was found to be significant at a level of p<0.01. As 
expected, AMV, a query composed of all morphological variants, produced the best 
retrieval effectiveness. This is in agreement with past work showing the benefit of 
stemming over user queries, (e.g. Hull, 1996; Krovetz, 1993). What the results also 
show however is that popular terms that native Arabic language speakers use to 
formulate queries (i.e. those occurring in the MRT column), were capable of retrieving 
many more relevant documents than the terms users used less frequently (i.e. the LRT 
column). To the best of our knowledge such a result has not been shown before. 

While a preliminary study, the result based on fifteen users and 25 topics is striking 
as it shows that users can generally be expected to type in a query composed of 
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morphological forms that retrieve a substantial fraction of relevant documents. 
Although stemming can help, it is only likely to add a minority of relevant documents 
to that already retrieved. The least commonly entered query terms were the ones that 
stemming can help the most. Such a result suggests a possible reason for the limited 
use of stemming in many operational IR systems: namely that the greatest benefit 
stemming can provide is rarely needed. 

4   Conclusions and Future Work 

This poster presented a new form of a previous method for eliciting a variety of 
queries from users on a set of topics. The method was used to create a large set of 
queries, which was used to study the relationship of Arabic morphological variation to 
retrieval effectiveness. It was found that the morphological form used most often by 
users was commonly the form that retrieved a substantial number of relevant 
documents. This is a result that we believe has not been reported before in Arabic nor, 
we believe in other languages. The work is part of a wider study of both the 
methodology and results. The methodology of eliciting queries from users needs 
further study to determine its effectiveness and to better understand any influence on 
users on which words or morphological variants of words they choose to use. The 
methodology could also be studied in the context of the results. For example, rather 
than merge all fifteen query variants of a topic into a single LRT or MRT, each of the 
query formation approaches could themselves contribute to an individual LRT or 
MRT query. For the runs themselves, a number of additional processes could be 
applied, one example would be to stem the three query types (AMV, MRT, LRT) and 
measure the difference in retrieval effectiveness. Finally the experiment is planned to 
be re-run with queries formed in other languages to test the consistency of the effects 
observed and reported here. 
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Abstract. As bearer of high-level semantics, audio signal is being more
and more used in content-based multimedia retrieval. In this paper, we
investigate TV tennis game highlight detection based on the use of both
short and long term audio features and propose two approaches, decision
fusion and hierarchical classifier, in order to combine these two kinds of
audio features. As more information is included in decision making, the
overall performance of the system is enhanced.

1 Introduction

As bearer of high-level semantics, audio signal has been recognized as a key
component in content-based multimedia information retrieval. In this paper, we
investigate a prospective application of multimedia information retrieval, namely
TV sports highlight detection based on audio analysis. Many approaches were
proposed in the literature [1] [2]. However, short or long term features were em-
ployed separately by the highlight detection systems. We can use, for example,
only spectrum envelope as short term feature, or the variance of spectrum en-
velopes as long term feature, to discriminate speech and silence, respectively.
Because short and long term features are extracted in completely different ways,
different aspects of information are carried by these two kinds of features. More
specifically, some instantaneous characteristics of the audio signal are presented
by short term features, while some long time and time-dependent characteristics
are expressed by long term features. The performance is therefore limited if we
use only one of them, and this drawback can be overcome if both features are
employed. Yet, these two kinds of features are generated in different time scales,
making the combination of the two rather difficult.

Two novel approaches, which combine short and long term features in de-
cision making, are proposed in this paper. By employing both short and long
term features, more information about audio signal can be considered in classi-
fication, and thus higher accuracy can be attained. The experiment also reveals
the enhancement of overall performance.

� This work has been supported by Programme de Recherches Avancées de
Coopérations Franco-Chinoises (PRA SI04-02).
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2 Combination of Short and Long Term Audio Features

Audio features used in most papers are two categories: short term features and
long term features. Short term features are generated in short, usually overlap-
ping windows (typically 10 to 20 ms) named analysis windows [3]. They can
present some instantaneous characteristics of the signal, e.g., the short time
spectrum envelope. To the contrary, long term features, also referred as texture
[3], are extracted in relatively long windows (texture window [3], usually 1 sec-
onds), by exploiting some time-dependent characteristics of the audio signal. In
this paper, Mel Frequency Cepstral Coefficient (MFCC) [4] is used as short term
feature, and is extracted in every analysis window with a length of 10ms. The
statistics, more specifically, the mean and variance, of MFCC in every texture
window (1 second long) are used as texture in this paper. The mean of the
first MFCC coefficient, logarithmic energy, is excluded from the texture feature
in our experiment, because poor performance is observed with this component
used.

Short term features and long term features were used separately in the litera-
ture, both yielding good performance [1] [2]. They can represent the behavior of
audio signal from different aspects. We believe, consequently, the overall perfor-
mance of the classifier can be enhanced, by combining together the information
provided by these two kinds of features. Because they are generated in different
scales, however, it is difficult to combine them in the same feature space, i.e.,
to concatenate both short term and long term features and form an expanded
feature vector. Two approaches, decision fusion and hierarchical classifier, are
proposed in this paper as solutions to combination. The structures of the two
approaches are shown in Fig. 1. In both approaches, Support Vector Machines
(SVM) [5] with the Radial Basis Function (RBF) kernel are employed to classify
the data into three audio classes (silence, applause, and speech). To some extent,
games can be considered as a composition made up of these three basic audio
classes. Although we are only interested in applause detection in the following
experiment, it should be noted that the discrimination of these audio classes is
crucial to semantical understanding. As the boundary of these classes may be
vague sometime, we consider them, however, distinct audio classes in this pa-
per for simplicity. Fuzzy segmentation of audio classes will be applied in future
work.

In the decision fusion approach (Fig. 1(a)), two distinct classifiers, which are
based on short term and long term features respectively, are built. Each classifier
assigns a decision to the same texture window. A Bayesian inference [6] module
is employed to fuse the decisions of two classifiers. The a posterior probability
P (dF|d1d2) is computed as follows according to the Bayes’ rule:

P (dF|d1d2) =
P (d1d2|dF)P (dF)

P (d1d2)
=

P (dF|d1)P (dF|d2)
P (dF)

, (1)

where, di is the decision of classifier i (i = 1, 2), dF the final decision (hypothesis),
and P (di|dF) the likelihood function of classifier i. The decisions of two classifiers
are assumed independent here.
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Fig. 1. The structures of two approaches: (a) decision fusion, (b) hierarchical classifier

Table 1. Fusion matrix

Fused Output of Classifier 1
Output silence applause speech

Output silence silence applause silence
of applause silence applause applause

Classifier 2 speech silence applause speech

The system needs to be trained in three steps: 1) train classifier 1, 2) train
classifier 2, 3) train the Bayesian inference module. Step 1 and 2 can be done
in parallel, and step 3, however, has to be done alone after step 1 and 2. By
approximating P (dF|di) and P (dF) in (1) using the statistics of the results from
both classifiers, the a posteriori probability function can be obtained. Since the
probability space is discrete, we have only 3 × 3 = 9 combinations of d1d2. It
is very easy to calculate the a posteriori probability matrix. Finally, a fusion
matrix (Tab. 1) can be attained based on maximization of the a posterior prob-
ability (MAP). Alternatively, we can also determine the fusion matrix manually
according to our prior knowledge of a specific application. By applying Bayesian
inference, decision relying on only one classifier is avoided, and every final deci-
sion is made based on the consideration of results from both classifiers. However,
the drawback of this approach is that no information other than the decisions of
classifiers is included in fusion, making its accuracy lower than Dempster-Shafer
algorithm or fuzzy logic [6].

In the hierarchical classifier approach (Fig. 1(b)), two classifiers are built in a
style of cascade composed of two levels. The level-1 classifier assigns decision to
every analysis window, and the proportion of decisions belonging to each class is
calculated in every texture window. These statistics, together with the texture
features, are inputted into the level-2 classifier, which makes the final decision,
as combined features. Compared with the first approach, decision fusion, more
information about short term and long term features is included and fused in
the level-2 classifier, and the performance is therefore better.
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3 Experimental Results and Conclusion

We use one tennis game in our experiment, in which highlights can be basically
located by the occurrence of applause. The training for decision fusion is ac-
complished using two sets of training sequences. The training sequences in the
first set, which are 20 seconds in length (for each sound class), are used to train
classifier 1 and 2. The training sequences in the second set, which are 1 minute
in length (for each sound class), are used to train the Bayesian inference module.
Since there is normally no single audio class lasting for 1 minute in real games,
fragmentary audio clips are manually segmented from the game and concate-
nated together for training. For the hierarchical classifier approach, however,
the first training set mentioned above is used to train classifier 1 and the second
set to train classifier 2, respectively. The testing data set for both approaches is
the whole game, which is about 30 minutes long.

Table 2. Experimental results

Short term Long term Decision Hierarchical
feature only feature only fusion classifier

Precision 98% 91% 92% 98%
Recall 91% 87% 96% 96%

The performance of highlight detection is listed in Tab. 2. The conventional
precision-recall metric [2] is used for evaluation. It can be seen from the results
that, by consider precision and recall comprehensively, combination of short term
and long term features outperforms either short term or long term features.
Especially, the hierarchical classifier approach performs the best. Nevertheless,
the improvement is not yet great enough. One possible solution is to explore
more information from the decisions of classifiers. From this point of view, con-
ventional classifiers with crisp outputs can not meet the needs. Fuzzy classifiers
are therefore to be used in the future, by which some advanced fusion techniques
[6] can be involved to make the performance even better.
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1 Introduction

Recent years have seen the development of different modalities for video retrieval.
The most common of these are (1) to use text from speech recognition or closed
captions, (2) to match keyframes using image retrieval techniques like colour and
texture [6] and (3) to use semantic features like “indoor”, “outdoor” or “persons”.
Of these, text-based retrieval is the most mature and useful, while image-based
retrieval using low-level image features usually depends on matching keyframes
rather than whole-shots. Automatic detection of video concepts is receiving much
attention and as progress is made in this area we will see consequent impact on
the quality of video retrieval. In practice it is the combination of these techniques
which realises the most useful, and effective, video retrieval as shown by us
repeatedly in TRECVid [5].

For many types of query we seek video which contains an object of interest
such as a car, a building or an animal, something where the background is of no
importance. Here we introduce a technique we have developed for object-based
video retrieval. We outline the processes involved in analysing and indexing video
to support this and we present an interactive system to support user searching
using objects and/or using matching of whole keyframes.

The data used in our work is 50 hours (c. 4.5M frames) of rushes video pro-
vided by BBC as part of the TRECVid evaluation in 2005. Rushes is a term
used to refer to raw video footage which is unedited and contains lots of re-
dundancy, overlap and “wasteful” material. Shots tend to be much longer than
in post-produced video and it generally contains a lot of re-takes, bloopers and
content where nothing much happens. It is very similar to home movies or per-
sonal video material since it often contains camera shake and re-focus, and little
or no dialogue. The task for participants in this track in TRECVid 2005 was
to explore how to develop techniques to automatically analyse such video given
that there is no text dialogue to work with and to build systems which allow
users who know nothing about the content of the data to navigate through it
with some information need in mind.

2 Object-Based Video Retrieval

In work reported elsewhere [2] we developed a video retrieval and browsing sys-
tem which allowed users to search using the text of closed captions, using the
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keyframe for locating similar keyframes in terms of colour, texture and edges,
and using the occurrence (or non-occurrence) of a set of pre-defined video ob-
jects. The content used was several seasons of the Simpsons TV series and the
video objects corresponded to the faces of the 10 major characters in the se-
ries, Homer, Bart, Marge, etc. We evaluated the ways in which different video
retrieval modalities (text search, image search, object search) were used [3] and
we concluded that certain queries can benefit from using objects as part of their
search, but this is not true for all query types.

In moving from object detection and retrieval on synthetic video (e.g. the
Simpsons) to object retrieval on natural video as in [4], we are faced with a
problem of object segmentation. This is hard because in video objects can de-
form and turn, cameras can move, objects can become occluded when other
objects move in front of them, lighting conditions can change, and so on. Never-
theless we have developed a semi-supervised technique for object segmentation
based on an RSST region segmentation which requires the user to indicate some
regions both within and outside the contours of the object to be segmented and
this can be done easily with two mouse-strokes, one inside and one outside the
object [1]. This approach is feasible for the BBC rushes video corpus in compari-
son with the amount of manual effort currently placed on video annotation, and
we’ve segmented objects from this corpus of video data in order to support ob-
ject retrieval. Our retrieval system also supports whole keyframe based retrieval
where a number of images can be used as the query and in object based retrieval
a number of example objects can be used as the query. These two approaches
can also be combined into one query for retrieval and our interest is in seeing
under what circumstances users find object-based retrieval to be useful.

We used a standard approach to shot boundary determination, comparing ad-
jacent frames over a certain window and using low-level colour features, in order
to determine boundaries [5]. We detected 8,717 shots (a rate of 174 keyframes
per hour) for the 50 hours and for each of these we automatically extracted a
single keyframe by examining the whole shot for levels of visual activity using
features extracted directly from the encoded video. The rationale for this is that
the approach of choosing the first, last or middle frame as the keyframe would
be quite inappropriate given the amount of “dead” time there is in shots within
rushes video. Much of the unusable video footage in rushes is there because the
camera is left running while the main action of the shot is prepared and then
takes place. In rushes footage the camera is left running in order to ensure the
action, whatever that may be, is not missed. Thus our approach to automatic
keyframe selection based on choosing the frame where the greatest amount of
action is happening, seems to make sense, although this is certainly a topic for
further investigation.

Each keyframe was manually examined to determine if there was a single dom-
inant object present and if so it was segmented from its background using our
semi-automatic tool [1] described in the previous section [1] which yielded 1,210
objects. Once segmentation was completed we extracted features for keyframes
using global MPEG-7 colour and texture features for whole keyframes and
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dominant colour, homogeneous texture and shape compactness MPEG-7 fea-
tures for objects. We then pre-computed two 8, 717×8, 717 matrices of keyframe
similarities using the two image features for the whole keyframe, and three
1, 210 × 1, 210 matrices of similarities between objects in those keyframes using
object features.

For retrieval we cannot assume that the user knows the archive’s content since
rushes content is not catalogued in any way. In order to begin a user’s retrieval
we ask the user to locate one or more external images using some other image
searching resource. The aim here is to find one or more images, or even better
one or more video objects, which can be used for searching. In our experiments
our users use Google Image Search to locate such external images but any image
searching facility could be used. Once external images are found they are indexed
in the same way as keyframes in terms of colour and texture for the whole image
and the user is also allowed to segment one object in the external image if s/he
wishes. This is done in real time.

At search time the user indicates which visual characteristics in each query im-
age are important — colour or texture in the case of the whole image, or colour,
shape or texture in the case of an object. The set of query images is then used
for retrieval and the user is presented with a list of keyframes from the archive.
The similarity between these and the user query is a combination of image-image
similarity (using colour and texture) and object-object similarity (using colour,
shape and texture). For the 1,210 of 8,717 keyframes where there is a segmented
object present the object is highlighted when the keyframe is presented. The user
browses these keyframes and can either play the video, save the shot, or add the
keyframe (and its object, if present) to the query panel and the query-browse
iteration continues. The overall architecture and a sample screen taken from the
middle of a search is shown as Figure 1 where there are 3 query images (the
first is a whole keyframe added from within the collection as relevance feedback;
the second and third are external images and the user has segmented objects
in these), 5 pages of search results and 4 saved keyframes. Objects appearing in
frames with segmented objects, either in the query panel or search result, are
outlined in red and the facets of the query images which are to be used for the
search (colour, texture, object shape) are shown in the query panel.

Fig. 1. (a) System architecture and (b) sample screen for video rushes search system
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3 Experiments and Plans

We now have two versions of our system allowing us to explore how useful video
objects are in video browsing and search. One supports image similarity based
only on whole keyframes, while the other supports object-object similarity as well
as whole keyframe matching. A small user experiment with 12 users is being run
to compare the performance of the two systems for a number of searches. We
are using a Latin squares design for rotating the order of users for topics, and
systems. Since there was no formal evaluation task for BBC rushes at TRECVid
2005 (it was an exploratory task only), we take a “do-it-yourself” approach to
formulating search topics and performing relevance assessments. We will share
our topics, pool retrieved shots and share relevance judgments with at least
one other TRECVid participating group in a a mini-TRECVid for the BBC
rushes data. Search topics are taken from a log of actual search topics from a
broadcaster’s archive to which we have access.

The use of video objects in searching offers interesting potential to expanding
the set of possible modalities for video search and browsing but our dependency
on using objects from single keyframes is limiting. We index objects in a keyframe
rather than in a shot, and as we know during a shot an object can turn or
deform, and the camera and/or the object can move, all yielding different object
representations. To overcome this we would like to track an object throughout
a shot and to index each instance of the object throughout the frame. Although
this is very ambitious it would reduce dependency on keyframes rather than
whole shots and is planned as further work.
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Abstract. The Multiple Bernoulli (MB) Language Model has been gen-
erally considered too computationally expensive for practical purposes
and superseded by the more efficient multinomial approach. While, the
model has many attractive properties, little is actually known about the
retrieval effectiveness of the MB model due to its high cost of execution.
In this paper, we show how an efficient implementation of this model can
be achieved. The resulting method is comparable in terms of efficiency
to other standard term matching algorithms (such as the vector space
model, BM25 and the multinomial Language Model).

1 Introduction

The Multiple-Bernoulli Language Model was originally proposed for Information
Retrieval (IR) in [3] and has been recently extended in the context of Bayesian
Learning[2, 1]. The MB language model is an appealing IR model, providing a
coherent framework in which queries and documents are treated in a uniform
manner. Also, the model provides implicit length normalization, because doc-
uments which contain many non-query terms are penalized for being off topic.
This feature would suggest that the applicability of the model would favor partic-
ular IR tasks where length normalization is critical (such as in element retrieval).
Already, some evidence to this tune has been shown in the context of sentence
retrieval[1].

Although the computational complexity of the MB model could be thought to
be too high for the model to be implemented in a practical setting, we show here
that an efficient method can be designed to do retrieval efficiently. If we examine
the formulation of the MB model in Eq. 1, we can see that the probability of
generating a query q given the document model θd involves a computation across
all terms ti in the vocabulary T , (i.e. ti ∈ T ).
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p(q|θd) =
∏
ti∈q

p(ti|θd)
∏
ti /∈q

(1 − p(ti|θd)) (1)

In the worse case scenario a direct implementation for a collection of documents
would be equal to the number of terms in the vocabulary, |T | multiplied by the
number of documents in the collection, |D| (i.e. |T | × |D|).

2 Optimization

Instead of directly computing p(q|θd) for every d in the collection of document
D, an optimization of the model is possible, by decomposing the scoring pro-
cedure. First, we require a pre-computation given the set of model parameters
which define θd, before query time. This estimates the probability of a hypothet-
ical ‘empty’ query being generated from the document model. Then, at query
time, the pre-computed document score is adjusted according to the terms that
appear in the query. To facilitate the optimization, we shall require some extra
definitions. Let qe be the empty query, and let de be an empty document, where
the number of times ti occurs in the document is zero for any ti (denoted as
n(ti, de) = 0). The document model of de is denoted as θde .

2.1 Pre-computation Before Query Time

The probability of the empty query qe given each document model θd is computed
offline.

p(qe|θd) =
∏

ti /∈qe

(1 − p(ti|θd)) (2)

Since the query is empty, this involves a product across all vocabulary terms.
Whilst this value is document dependent, we can design an efficient method
for computing the p(qe|θd). This is accomplished by first scoring a hypothetical
‘empty’ document and then updating this score given the terms seen in the actual
document. Thus, we pre-compute the probability of the empty query given the
empty document model, p(qe|θde) as follows:

p(qe|θde) =
∏

ti /∈qe

(1 − p(ti|θde)) (3)

Note that any term ti is unseen in the empty document and, therefore, the value
p(ti|θde) is computed using n(ti, de) = 0. Once we see the actual document d
we can compute the probability of producing the empty query, p(qe|θd), start-
ing from p(qe|θde). The approach can be illustrated as follows. Starting from
p(qe|θde) can be thought as an initial assumption that any document is empty.
As we see the actual document terms, we update the probability score, removing
(1− p(ti|θde)) which was computed assuming n(ti, d) = 0. And then multiplying
by (1−p(ti|θd)), which is computed using the actual term document counts (i.e.
n(ti, d) > 0). Formally,

p(qe|θd) = p(qe|θde) ·
∏
ti∈d

1 − p(ti|θd)
1 − p(ti|θde)

(4)
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That is, we only need to go on the seen terms whereas the unseen terms take its
probability from the pre-computed p(qe|θde), which needs only to be computed
once. This is the first significant saving because the number of unique terms in
the documents is usually several orders of magnitude less than the size of the
vocabulary, |T |. The reader may note that this imposes an implicit constraint
on the optimization, because of the assumption that p(ti|θd) = p(ti|θde) for
all the terms which are unseen in the document d. This equality holds in the
original Ponte and Croft formulation [3] as the unseen terms’ probabilities are
assumed to be equal to the probability in a background model. That is, there
is no document dependent factor in the unseen term probability. On the other
hand, in the context of Bayesian Learning, the case is slightly different. The
basic MB formulation of the p(ti|θd) formula in [2] and [1] also depend only
on background probabilities for unseen terms and, therefore, the same efficient
approach can be taken. However, in a variation of the MB model to deal with
non-binary term-document counts (called Model B in [2]), the above method
cannot be immediately applied as p(ti|θd) is not equal to p(ti|θde) because the
final term estimate is proportional to the length of a document. When this is the
case, then a generalization of the process designed here can be employed. Instead
of assuming one hypothetical document, which is empty (i.e.

∑
ti

n(ti, de) = 0),
a set of hypothetical documents need to be constructed, where the length of each
hypothetical document is 1, . . . , n, n being the document length of the largest
document1. This enables the computation to be performed almost as efficiently,
but incurs higher storage/memory costs.

2.2 Computation at Query Time

For each query term we adjust the contribution from the query terms in the
empty document model (eq. 5). Next, we compute the factor involving the query-
document matching terms (eq. 6).

p(q|θd) = p(qe|θd) ·
∏
ti∈q

p(ti|θde)
1 − p(ti|θde)

(5)

×
∏

ti∈q∩d

p(ti|θd)
p(ti|θde)

· 1 − p(ti|θde)
1 − p(ti|θd)

(6)

Note that the product across query terms in eq. 5 is document independent
and, thus, it only needs to be computed once for each query. The product across
matching terms in eq. 6 introduces the right score for a matching term, p(ti|θd),
and removes the score introduced in the previous steps2. This speed up uses a
similar tactic to that suggested in [4] for the multinomial approach. However, in
the multinomial model unseen query terms are not considered and, hence, there
is no need for an initial query score.
1 Actually, only one hypothetical document is needed for each unique document length.
2 Note that, for a matching term, after applying eqs 3, 4 and 5, we have a contribution

equal to p(ti|θde )·(1−p(ti|θd))
(1−p(ti|θde )) . We just multiply by the inverse of this value.
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3 Complexity Analysis

We described the computation complexity according to the number of term
score calculations required. The before query time pre-computation of calculating
p(qe|θde) (eq. 3) takes |T | steps and to compute the value p(qe|θd) for all the
documents (eq. 4) takes |D| · |T | ·s steps, where s is the sparsity expressed as the
percentage of non-zero entries in the document-term matrix. This is computed
offline and so does not directly affect on-line performance. At query time, the
online computations in eq. 5 involves |q| steps, and eq. 6 takes |d|·|q|·s iterations,
where |q| is the number of query terms. Under this optimization a very significant
reduction in the run time of the MB retrieval model can be achieved which makes
it comparable to other state of the art retrieval models.

4 Conclusion

We have presented an efficient method for computing the MB model, which
reduces significantly the expected matching time3. From prior research and our
own intuitions we believe that the MB model will be more effective in specific
retrieval scenarios, such as when the elements to be retrieved are short and
need to be focused or when the variation in size of retrievable elements is high.
Further work will be directed at identifying retrieval scenarios that can exploit
the attractive properties of the MB model.
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Abstract. Collaborative Web search is a form of meta-search that ma-
nipulates the results of underlying Web search engines in response to
the learned preferences of a given community of users. Results that have
previously been selected in response to similar queries by community
members are promoted in the returned results. However, promotion is
limited to these previously-selected results and in this paper we describe
and evaluate how relevant results without a selection history can also be
promoted by exploiting snippet-text and title similarities.

1 Introduction

Collaborative Web Search (CWS) records the search behaviours of communities
of like-minded searchers with a view to capturing their preferences in order to
personalize result lists for their needs [1]. CWS accommodates different types
of communities—for example the set of searchers who use a search box on a
motoring Web site, the employees of a given company or a class of students—
and has been shown to be especially effective when it comes to dealing with the
type of vague queries that are commonplace in Web search.

The key to CWS is its ability to record and exploit the search behaviour of
individual communities of searchers as a matrix of query-result selections, H [1].
Thus when a searcher selects a result pj for query qi, Hij is incremented. In turn,
the relevance of a page pj to some target query qT is calculated from a weighted
sum of the proportion of times that this page has been selected in the past for
qT and similar queries (Equation 1); the contributions of more similar queries
to qT are weighted higher than the contributions of less similar queries. Query
similarity is estimated using a simple term overlap metric.

WRel(pj , qT , q1, . . . , qn) =
n∑

i=1

(
Hij∑
∀j Hij

) · Sim(qT , qi) (1)

Thus, for each new search qT , in addition to combining the results from a
set of underlying search engines, CWS seeks to identify a set of similar queries,
q1, . . . , qn, and produces a list of results that have previously been selected for
� This material is based on works supported by Science Foundation Ireland under

Grant No. 03/IN.3/I361.
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these queries, ranking them in descending order of their weighted relevance.
These results are then promoted ahead of the normal meta-search results.

One important limitation of this approach is that only previously-selected
results can be promoted, which leads to a cold-start problem for young commu-
nities. In this paper we propose a solution to this problem in which the promoted
results in a given search session, i.e. the results selected for similar searches in
the past, are used as a basis for selecting additional relevant results from the
meta-search results based on title and snippet-text similarity. Accordingly, even
in sessions where there is only a single promoted result it is possible to use this
method to re-rank the meta-results in line with community preferences so that
similar results are effectively promoted.

2 Title and Snippet Based Re-ranking

For a given search, the promoted results tell us something about the preferences
of the corresponding search community because these are the results that have
frequently been selected in the past for the current and similar queries. It seems
reasonable to assume then that the terms contained in the titles and snippet-
texts of these promoted results will capture, at least in part, the community’s
preferences; after all, selections from a result-list are often made on the basis of
title and snippet-text. By comparing these titles and snippet-texts to the other
meta-search results for the current session it may be possible to identify other
results that similarly conform to community preferences. This idea has its origins
in the work of [2], which looked at snippet-based re-ranking based on the results
selected by an individual user in the current session, and [3], which focused on
multiple sessions for a given user. However, in our work we are leveraging the
multiple-session histories of a community of users.

Thus, we adapt the standard CWS approach to accommodate a two-stage
promotion model. First, results that have been selected in the past for similar
queries are promoted ahead of the meta-search results in the normal way. Sec-
ond, we re-rank the remaining meta-results in decreasing order of their similarity
to the results promoted during stage one. During stage two we use a standard
TFIDF weighted cosine similarity measure [4] as our similarity metric (Equa-
tion 2) where r and p are the TFIDF weighted term vectors of the combined title
and snippet text of the meta-result, and the combined titles and snippet texts
of all the promoted results respectively. The query terms are first removed, as
these generally occur in all the snippets returned by the underlying Web search
engine(s). We also remove common stop words and stem the terms.

Sim(r, p) =
∑t

i=1 ripi

(
∑t

i=1(ri)2
∑t

i=1(pi)2)
1
2
. (2)

3 Evaluation

To evaluate the effectiveness of this new promotion model we used search logs
generated from a recent live-user trial of CWS [5], which cover an eight month
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period. These logs provide information about the queries used and the results
selected during an extended period of time. However, the logs do not contain
snippet or title texts for search results and so this data was retrieved from Google
and HotBot for the purpose of the current evaluation. In fact this eliminated a
portion of the log data when titles and snippets could not be retrieved because
the page no longer existed, for example.

The key to our evaluation is the ability to judge the relevance of particular
meta-results; ultimately we were interested in measuring the mean average preci-
sion (MAP) of the top 10 meta-results returned by the standard CWS approach
and by our modified promotion technique. To do this we rely on explicit user se-
lections and thus we were only interested in search sessions that had at least one
CWS-promoted result and at least one selected meta-result. This provided 160
separate search sessions. However there is a problem arising from the selection
bias that naturally exists in search in which most user selections occur at the
top of a result-list [6]. As a consequence, for many of the sessions the selected
meta-results tended to occur at the top of the meta-result list and so there is
little opportunity for improved MAP as a result of re-ranking.

To account for this we looked at two options for coping with this bias. In
the first (which we denote original CWS trial order) we focused on sessions
where the first selected meta-result was not at the top of the meta-results to see
whether our new promotion technique would be able to push this relevant result
(and any other selected meta-results) higher in the result-list. This reduced our
evaluation set to leave 81 search sessions and the MAP for the top 10 meta-
results for these sessions using standard CWS (original ranking) and using our
new technique (after re-ranking) is presented in Figure 1. The results show a 9%
relative increase in MAP for the new technique.

Fig. 1. Results of the Evaluation

The second option for coping with this bias is to randomise the order of the
meta-results prior to re-ranking. This is not as extreme as it sounds since we are
after all only focusing on the top 10 meta-results, results which are likely to be
just as relevant to the query as far as the underlying search engines (Google and
HotBot in this case) are concerned. This option allowed us to use the full set of
160 search sessions and the MAP shown in Figure 1 indicates a significant 27%
relative increase for the new re-ranking method compared to standard CWS.
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4 Conclusions

Collaborative Web Search personalizes meta-search results for a community of
like-minded searchers based on their prior search histories, by promoting re-
sults that have previously been judged to be relevant by the community. In this
paper we have described and evaluated a method to enhance the effectiveness
of CWS by facilitating additional result promotions by exploiting textual sim-
ilarities between promoted results and results without a selection history. Our
preliminary evaluation suggests that our new approach has the potential to sig-
nificantly improve result precision by leveraging similarities between result titles
and snippet-texts, thus avoiding the need for any processing of full-page content.

As already mentioned, the work of [2, 3] has also looked at result personal-
ization by leveraging the snippet-texts of the results selected by a user (within
the current session or beyond). The use of snippet text for result page clustering
has also been extensively researched [7, 8]. We believe that our approach adds
to this growing body of work and helps to clarify the value and importance of
snippet-text data as a source of result re-ranking and personalization.
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Abstract. Effectiveness is a primary concern in the information re-
trieval (IR) field. Various metrics for IR effectiveness have been proposed
in the past; we take into account all the 44 metrics we are aware of, classi-
fying them into a two-dimensional grid. The classification is based on the
notions of relevance, i.e., if (or how much) a document is relevant, and
retrieval, i.e., if (how much) a document is retrieved. To our knowledge,
no similar classification has been proposed so far.

1 Introduction

Evaluation is an important issue in Information Retrieval (IR). Evaluation ini-
tiatives (Cranfield, TREC, CLEF, NTCIR, INEX) have a strong tradition, and
user studies experiments are frequently performed. Whatever the approach (test
collection or user study), the effectiveness metrics chosen are crucial. We are
aware of 44 metrics proposed so far. We propose a novel classification of all of
them, based on the notions of relevance, i.e., if (or how much) a document is rel-
evant, and retrieval, i.e., if (how much) a document is retrieved. The simple and
traditional approach is based on the binary relevance and retrieval assumptions:
either a document is relevant or not, and either a document is retrieved or not.
By relaxing these two assumptions, one can speak of: ranking relevance and/or
retrieval (a document is more relevant/retrieved than another), and of continu-
ous relevance and/or retrieval (the value of relevance/retrieval is a real number
on a continuum, measuring the amount of relevance/retrieval). Combinations,
like binary relevance and ranking retrieval are possible, and indeed frequent.

2 IR Metrics: A Survey and a Classification

Table 1 shows the (approximated) year in which each metric has been made
public, the metric name, a bibliographic reference, the category(ies) to which
it belongs (•), the category(ies) to which it can belong with straightforward
extensions (◦), and in which evaluation initiatives it is used (×). We take into
account also the metrics used in INEX 05, made public a few weeks ago. For
space limitations, being most of the metrics described in well known textbooks
[19, 18, 13], we briefly recall only the following, less common, ones:1

1 N is the set of documents in the database; R is the set of relevant documents; r is
the set of retrieved documents; x is the complement of x; |x| is the cardinality of x.

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 488–491, 2006.
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Table 1. A classification of IR effectiveness metrics (sorted by year)

– R/fallout curve: a plot of the recall values corresponding to the fallout values.
– Expected Search Length: average number of documents which must be ex-

amined before the total number of relevant documents is reached.
– Sliding Ratio: sum of the relevance judgments of the documents retrieved

so far divided by the sum of the relevance judgments of the documents the
ideal system would have retrieved so far.

– Novelty Ratio: percentage of the relevant retrieved documents which were
previously unknown to the user.

– Coverage Ratio: percentage of relevant and known documents which are
retrieved.
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– Relative Recall (aka sought recall): percentage of the documents the user
would have liked to examine which are relevant, retrieved, and examined.

– Recall effort : ratio of desired to examined by the user documents.
– Satisfaction (and Frustration): sliding ratio on documents in R (R) only.
– Total : weighted mean of satisfaction and frustration.
– Usefulness measure: which of two IR systems delivers more useful informa-

tion to the user.
– Average Search Length: average number of documents examined moving down

in a ranked list before the average position of a relevant document is reached.
– NDPM : normalized distance between user and system ranking of documents.
– Ranked Half Life: degree to which relevant documents are located on the top

of a ranked retrieval result.
– Relative Relevance: degree of agreement between the types of relevance ap-

plied in a non-binary assessment context.
– Classification Accuracy: if the classification is correct ((|r∩R|+|r∩R|)/|N |).
– Average Weighted Precision (AWP): based on Cumulative Gain (CG), but

more statistically reliable since it performs comparison with an ideal ranked
output before averaging across topics.

– Weighted R-Precision: an extension of R-Precision.
– Average Distance Measure (ADM): average difference between the relevance

amount of documents and their estimates by the IR system.
– eXtended Cumulative Gain (XCG): extends DCG-based metrics via the defi-

nition of a set of relevance value functions modeling different user behaviors.
– bpref : the average number of nonrelevant documents before a relevant doc-

ument in the ranking, using the documents in the pool only.
– Q-measure: is based on CG, but it is better than AWP because it imposes

a penalty for going down the ranked list.
– R-measure: is based on CG and it is the counterpart of Q-measure for R-

Weighted Precision.
– Tolerance to Irrelevance (t2i): maximum time that the user would keep read-

ing nonrelevant documents before she proceeds to the next result.
– Estimated Ratio of Relevant : expectation of the number of relevant docu-

ments a user sees in the list of the first k returned documents, divided by
the number of documents a user would see in the collection.

– Kendall, Spearman: statistical correlation between the ranked retrieval result
and the user ranking of the documents.

– Normalized xCG: reflects the relative gain the user accumulated up to that
rank, compared to the gain she could have attained if the system would have
produced the optimum best ranking.

– Mean average nxCG at rank n: the average of nxCG[i] values for i=1 to n.
– Effort-precision/gain-recall at standard gain-recall points: the amount of rel-

ative effort (where effort is measured in terms of number of visited ranks)
that the user is required to spend when scanning a systems result ranking
compared to the effort an ideal ranking would take in order to reach a given
level of gain (relative to the total gain that can be obtained).

– Non-interpolated (Interpolated) mean average effort-precision: the average
of effort-precision values at each natural (standard) gain-recall point.
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3 Conclusions and Future Work

The evolution over time shows that: (i) INEX initiative has caused a steep in-
crease in the number of metrics; and (ii) the earlier metrics are usually classified
under binary relevance and retrieval, and more recent metrics are often rank- or
continuous-based, thus reflecting the changes in the underlying notion of rele-
vance [15]. We hope that this classification will be useful for IR researchers, and
will enable them to choose more consciously the most appropriate metrics for
their purpose.

References

1. R. Belew. Finding Out About. Cambridge Univ. Press, 2000.
2. P. Borlund and P. Ingwersen. Measures of relative relevance and ranked half-life:

Performance indicators for interactive IR. In 21st SIGIR, pages 324–331, 1998.
3. R. Brache. Personal communication, 2005.
4. C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information. In

27th SIGIR, pages 25–32, 2004.
5. W. S. Cooper. Expected search length: A single measure of retrieval effectiveness

based on weak ordering action of retrieval systems. JASIST, 19:30–41, 1968.
6. A. de Vries, G. Kazai, and M. Lalmas. Tolerance to irrelevance: A user-effort

oriented evaluation of retrieval systems without predefined retrieval unit. In RIAO
2004 Conference Proceedings, pages 463–473, 2004.

7. V. Della Mea and S. Mizzaro. Measuring retrieval effectiveness: A new proposal
and a first experimental validation. JASIST, 55(6):530–543, 2004.

8. H. Frei and P. Schauble. Determining the effectiveness of retrieval algorithms.
IPM, 27(2):153–164, 1991.
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Abstract. ADM (Average Distance Measure) is an IR effectiveness
metric based on the assumptions of continuous relevance and retrieval.
This paper presents some novel experimental results on two different
test collections: TREC 8, re-assessed on 4-levels relevance judgments,
and TREC 13 TeraByte collection. The results confirm that ADM cor-
relation with standard measures is high, even when using less data, i.e.,
few documents.

1 Introduction

Common effectiveness measures for Information Retrieval Systems (IRSs) are
based on the assumptions of binary relevance (either a document is relevant to
a given query or not) and binary retrieval (either a document is retrieved or
not). Several measures go beyond this and work with category relevance and
ranked retrieval; almost no measures are available for the continuous relevance
and retrieval case. One exception is ADM (Average Distance Measure) [1, 2, 3].

ADM measures the average distance between the amount of User Relevance
Estimate (UREs, the actual relevances of documents) and the amount of System
Relevance Estimates (SREs). ADM values lie in the [0, 1] range, with 0 represent-
ing the worst performance and 1 the performance of the ideal IRS. As discussed
in detail in previous papers [1, 2, 3], ADM presents some nice theoretical proper-
ties; also, ADM has been experimentally validated on TREC and NTCIR data,
with encouraging results, although the experimentation was somewhat limited.
Indeed, an experimental confirmation of ADM effectiveness is both needed and
difficult because very few data are available featuring continuous UREs and
SREs, so that some approximations and assumptions are necessary.

The present work aims at providing further experimental evidence on the
suitability of ADM for measuring the effectiveness of IRSs, especially when only
a limited number of documents is available. In particular, this work aims at
answering to the following two research questions: How many documents are
needed to compute ADM in order to obtain results comparable to those of con-
ventional measures like Average Mean Precision and R-Precision? What is the
difference between computing ADM on the basis of two relevance levels or more?

In the experiments presented here, we used two document collections that
include non-binary relevance scales (which are not continuous, yet provide more

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 492–495, 2006.
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information than binary values): TREC 13 TeraByte, assessed on a 3-levels
relevance scale, and TREC 8, re-assessed on a 4-levels relevance scale [4]. We
compare ADM, by means of the Kendall’s correlation, with the traditional
effectiveness measures used by TREC, i.e., Mean Average Precision (MAP),
R-Precision (R-Prec), and precision at N retrieved documents (P@N).

2 Experiments on TREC 13 TeraByte

The TREC 13 TeraByte test collection features data from 70 IRSs, 57 of which re-
trieved at least 1,000 documents for each topic. To study ADM effectiveness when
considering only few documents, we compare the correlations among ADM@N
(ADM calculated after N documents retrieved) and the reference measures.

For this test collection, Kendall’s correlation between the two reference mea-
sures MAP and R-Prec is 0.82, whereas, as reported in Figure 1, the correlation

N MAP R-Prec
1000 0.90 0.91
500 0.90 0.92
400 0.89 0.92
300 0.90 0.93
200 0.92 0.94
100 0.90 0.90
90 0.88 0.88
80 0.87 0.86
70 0.87 0.87
60 0.88 0.87
50 0.87 0.85
40 0.87 0.85
30 0.86 0.84
20 0.82 0.81
10 0.76 0.76
5 0.73 0.72
1 0.57 0.59
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Fig. 1. Correlation between ADM@N and the two standard metrics MAP and R-Prec
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N 5 10 20 30 100 200 500 1000
5 0.89 0.88 0.88 0.86 0.82 0.76 0.75 0.75
10 0.84 0.88 0.91 0.91 0.88 0.83 0.80 0.80
20 0.82 0.85 0.92 0.94 0.89 0.85 0.82 0.82
30 0.81 0.83 0.91 0.94 0.87 0.81 0.78 0.77
100 0.72 0.74 0.81 0.85 0.94 0.93 0.90 0.90
200 0.71 0.75 0.79 0.82 0.91 0.98 0.94 0.93
500 0.67 0.71 0.75 0.77 0.85 0.92 0.99 0.97
1000 0.66 0.68 0.72 0.75 0.83 0.87 0.92 0.92
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between ADM@N and the reference measures is higher than 0.82 for N ≥ 20.
This suggests that, at least for this test collection, ADM calculated on only the
first 20 documents provides the same information value as R-Prec and MAP
computed on the whole set of retrieved documents.

Figure 2 shows how the correlation between ADM@N and P@N varies de-
pending on the value of N . As expected, the higher correlation values for each
N (shown in boldface) lie on the diagonal of the table or in its proximity, so
that the two measures correlates most for equal (or very close) N values. This
confirms that ADM@N and P@N measure similar phenomena.

3 Experiments on 4-Levels Relevance TREC

Sormunen [4] has re-assessed 18 topics from TREC 7 and TREC 8 using 4 levels
of relevance (0, 1, 2 and 3). For the sake of applying traditional binary measures,
these levels can (and have to) be binarized as either a Rigid mapping (levels 0
and 1 become 0, levels 2, and 3 become 1) or a Relaxed mapping (level 0 becomes
0, levels 1, 2, and 3 become 1).

We calculated ADM using both the 4 levels of relevance (denoted by ADM[4])
and the rigid and relaxed binary data (ADM[2rig] and ADM[2rel], respectively).
These three ADM values were then compared with the reference measures MAP
and R-Prec calculated on the Sormunen data (see Table 1). We then compared
Sormunen and ADM values with the original MAP and R-Prec measures calcu-
lated on the TREC 8 data (see Table 2 and Figure 3).

ADM computed on the binary relaxed mapping has a higher correlation with
the reference measures than ADM computed on the 4 levels of relevance. We
conjecture that this phenomenon is related to the TREC evaluation rules: the
TREC guidelines state that a document is judged relevant if any piece of it is
relevant, thus the relaxed mapping matches better with the reference measures
calculated by the original TREC assessments. This is a confirmation of the results

Table 1. Correlation between ADM and R-Prec and MAP. All measures are computed
on the basis of the Sormunen’s 4 levels reassessment.

ADM[2rig] ADM[2rel] ADM[4]
R-Prec[rig] 0.75 0.70 0.77
R-Prec[rel] 0.80 0.83 0.90
MAP[rig] 0.41 0.40 0.39
MAP[rel] 0.67 0.67 0.64

Table 2. Correlation between ADM computed on the basis of the Sormunen’s 4 levels
reassessment and the original TREC 8 measures

Sormunen
ADM[2rig] ADM[2rel] ADM[4] R-Prec[rig] MAP[rig] R-Prec[rel] MAP[rel]

T
R

E
C

8 ADM 0.80 0.94 0.86 0.69 0.39 0.82 0.66
MAP 0.79 0.85 0.82 0.72 0.43 0.82 0.79
R-Prec 0.79 0.84 0.80 0.68 0.46 0.78 0.79
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Fig. 3. Correlation between ADM[2rel] and R-Prec and between ADM[4] and R-Prec

shown in [4]. However, differences between ADM calculated on rigid and relaxed
data are lower than those between either MAP or R-Prec calculated on rigid
and relaxed data. This fact may be interpreted as either a greater robustness
of ADM or a lower sensitivity to relevance variations, and thus needs further
experimentations to be fully understood.

4 Conclusions and Future Work

The results on ADM presented in this paper are to be considered still prelim-
inary. However, when considered together those already presented in [1, 2, 3],
give insights on the capabilities of ADM as an effectiveness measure for infor-
mation retrieval systems. In particular, the results show that ADM correlation
with standard measures (R-Prec, MAP, P@N) is high, and that the correlation
is still high also when using just few documents. The latter capability makes
ADM easier to use for IRS evaluation than traditional binary measures.

In the future, we plan to further study the phenomena emphasized above; we
are experimenting with ADM on INEX 2004 data and we intend to build an IRS
capable of estimating the amount of relevance on a continuous scale.
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Abstract. We applied different clustering algorithms to the task of clus-
tering multi-word terms in order to reflect a humanly built ontology.
Clustering was done without the usual document co-occurrence infor-
mation. Our clustering algorithm, CPCL (Classification by Preferential
Clustered Link) is based on general lexico-syntactic relations which do
not require prior domain knowledge or the existence of a training set.
Results show that CPCL performs well in terms of cluster homogeneity
and shows good adaptability for handling large and sparse matrices.

1 Introduction

We test the ability of clustering methods in an out-of-context clustering (OTC)
task, i.e., clustering without document co-occurrence information. The methods
are evaluated against categories issuing from a humanly built ontology. For this
purpose, we chose as test corpus the GENIA dataset which comes with an exist-
ing ideal partition. Domain terms in this corpus have been manually annotated
by specialists, yielding 31, 398 terms. The GENIA ontology consists of 36 cate-
gories at the leaf nodes. Each term in the GENIA corpus has been assigned a
semantic category at the leaf node of the ontology. The goal of the evaluation
is to determine the method whose output requires the least effort to reproduce
the categories at the leaf nodes of the ontology.

2 Our Clustering Methodology

We developed a fast and efficient clustering algorithm, CPCL that builds clus-
ters of multi-word terms (MWTs) without relying on document context. De-
tails of our clustering methodology can be found in [1]. Here we only sketch
out its principle. Terms are clustered depending on the presence and number
of shared lexico-syntatic relations. Two types of lexico-syntatic operations are
studied: the expansion of an existing term by the addition of one or more mod-
ifier words (information retrieval – efficient retrieval of information); the sub-
stitution a word in a term, either in the modifier position (coronary heart dis-
ease – coronary lung disease) or in the head position (mutant motif – mutant
strain). We call COMP the subset of relations that affects modifier words in
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a term and CLAS the subset that affects the head word in a term. Cluster-
ing is based on COMP and CLAS relations and CPCL, a graph-based algo-
rithm called which implements a variant of hierarchical clustering. Let us refer
to this principle of clustering as “clustering by lexico-semantic similarity” (LSS).
COMP relations are used in an initial phase to form connected components and
CLAS relations are used in the 2nd phase to form clusters of such components
in a hierarchical process. The particularity of CPCL is to compute at each
iteration the local maximal similarity values in the graph of non null similar-
ity relations. Average link clustering is then performed on the resulting sub-
graph.

3 Evaluation Metrics

For the OTC task, we need a measure that focuses on cluster quality (homo-
geneity) vis-à-vis an existing partition (here the GENIA categories) and that is
also adapted to the comparison of methods producing a great number of clus-
ters (hundreds or thousands) and of very differing sizes. Pantel & Lin’s editing
distance [2] appears as the most suitable for this task. We focus on two of the
elementary operations in their measure: “merges” which is the union of disjoint
sets and “moves” that applies to singular elements. In this restricted context,
Pantel & Lin’s measure has a more deterministic behaviour with some inherent
bias which we correct hereafter.

Let Ω be a set of objects for which we know a crisp classification C ⊆ 2Ω.
Consider now a second disjoint family F of subsets of Ω representing the output
of a clustering algorithm. For each cluster F ∈ F , we denote by CF the class
C ∈ C such that |C ∩F | is maximal. We thus propose a corrected version of this
measure where the weight of each move is no more 1 but |Ω|/(|Ω| − max{|C| :
C ∈ C}) and the weight of a merge is |Ω|/(|Ω| − |C|):

μED(C,F) = 1 − max{0, |F| − |C|}
|Ω| − |C| −

∑
F∈F (|F | − |CF ∩ F |)

|Ω| − max{|C| : C ∈ C} (1)

The maximal value of μED is 1 in the case where the clustering output corre-
sponds exactly to the target partition. It is equal to 0 in the case that F is a
trivial partition (discrete or complete). Based on the corrected μED index, we
propose a complementary index, cluster homogeneity (μH) defined as:

μH(C,F) =
μED(C,F)

1 +
∑

F∈F(|F | − |CF ∩ F |) × |Ω| (2)

μH takes its maximal value |Ω| if F = C and, like the μED measure, it is null
if F is one of the two trivial partitions. We will use μH to distinguish between
algorithms having similar editing distances but not producing clusters of the
same quality.
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4 Experimental Setup

For statistical clustering methods to find sufficient co-occurrence information, it
was necessary to represent term-term similarity. Co-occurrence is defined here
as internal word co-occurrence within a term. We then built a term × word
matrix where the rows were the terms and the columns the unique constituent
words. We further adapted this matrix as follows: words are assigned a weight
according to their grammatical role in the term and their position with regard
to the head word. Since a head word is the noun focus (the subject), it receives
a weight of 1. Modifier words are assigned a weight which is the inverse of their
position with regard to the head word. Let M be the term×word matrix such
that Mi,j refers to the weight of word j in term i. We derive two other matrices
from M . A similarity matrix S = M.M t whose cells give the similarity between
two terms as the scalar product of their vectors (for hierarchical algorithms).
A core matrix C for partitioning algorithms by removing all rows and columns
of M with less than 5% of non null values.

We experimented three types of clustering relations on four clustering meth-
ods. The three clustering relations were:

– Coarse Lexical Similarity (CLS). This consists in grouping terms by identical
head word and will serve as a “baseline” against which the other algorithms
can be aligned.

– Lexico-Syntactic Similarity (LSS). This is based on the linguistic relations
identified by our clustering methodology as described in section §2.

– Lexical Cohesion (LC). This is based on the vector representation of terms
in the space of words they contain as described in section §4.

The following clustering algorithms were tested:

– Baseline with CLS: No particular parameter is necessary. All terms shar-
ing the same head word are grouped in the same cluster.

– CPCL with LSS: Custering is based on LSS relations. No threshold was
set so as not to exclude terms and relations. The algorithm was stopped at
iteration 1. We also tested the performance of the 1st step of CPCL, i.e., the
connected components formed at the COMP level.

– Hierarchical with LC: Clustering is based on the similarity matrix S[S ≥
th] where th is a threshold with the following values: 0.5 and 0.8.

– Partitioning with LC: This is based on the computation of k-means cen-
ters and medoids on the core matrix C. We used the standard functions of
k-means and CLARA (Clustering LARge Applications).We ran these two
variants for the following values of k: 36, 100, 300, 600 and 900.

5 Results

The baseline clustering grouped the whole list of terms in 3, 220 clusters. CPCL
on LSS generated 1, 897 non trivial components at the COMP phase and 3, 738
clusters at the CLAS phase. Hierarchical clustering on LC, based on similarity
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Fig. 1. Cluster homogeneity measure μED

matrix generated 1, 090 clusters for a threshold of th = 0.5 and 1, 217 clusters
for th = 0.8.

The hierarchical algorithm with th=0.8 and CPCL obtain a better μED score
(≥ 0.36) than the baseline (≤ 0.24) and partitioning methods (≤ 0.14) when
considering all terms (length ≤ 2). When fewer and longer terms are considered
(length ≥ 3), partitioning methods obtain μED scores between 0.58 and 0.79 and
outperform the baseline, CPCL and hierarchical algorithms (≤ 0.59). However,
the μED measure masks important features of the evaluation: how homogeneous
a cluster is with regard a category in the target partition.

Cluster homogeneity is measured by the μH index which computes the ratio
between the value of μED and the number of movings. This is plotted on figure 1.
Since the majority of the clustering methods showed sensitivity to term length,
we plotted the score obtained by each of the measure (y-axis) by term length
(x-axis). Note that at each length, only terms of that length and above are
considered. Thus, the further we move down the x-axis, the fewer the input
terms for clustering. The baseline clustering is noted “basic” on this figure.

It appears clearly that CPCL outperforms the other methods. It forms the
most homogeneous clusters that need the least number of moves and merges
in order to obtain the target partition. Also, CPCL is the only algorithm that
significantly outperforms the baseline, irrespective of term length.

6 Conclusion

Overall, this experiment has shown that even without adequate context (docu-
ment co-occurrence), clustering algorithms can be adapted to partially reflect a
human semantic organisation of scientific concepts. Moreover, clustering based on
simple linguistic relations outperforms other criteria in terms of cluster quality.
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Abstract. In this paper we describe the application of our statistical
pattern classification approach to question answering (QA) to the rapid
development of monolingual QA systems. We show how the approach
has been applied successfully to QA in English, Japanese, Chinese, Rus-
sian and Swedish to form the basis of our publicly accessible web-based
multilingual QA system at http://asked.jp.

1 Introduction

The approach to question answering (QA) that we adopt has previously been
described in [3, 4, 5] where the details of the mathematical model and how it was
trained for English and Japanese were given. In this paper we demonstrate how
this new statistical pattern classification approach to QA has been successfully
applied to monolingual QA for the five distinct languages of English, Japanese,
Chinese, Russian and Swedish. Using our approach and given appropriate train-
ing data it is found that a proficient developer can build a QA system in a new
language in approximately 10 hours. The systems, built using this method, form
the basis of our web demo which is publicly available at http://asked.jp.

Our approach to QA is significantly different to that commonly employed in
contemporary QA systems. Specifically, our approach was designed to exploit
the vast amounts of data available on the web, to require an absolute minimum
of linguistic knowledge about the language to be encoded in the system and to
be robust to the kinds of input errors that might come from a spoken interface to
the system. For example, in our English-language system we only use capitalised
word tokens in our system and do not use WordNet, named-entity (NE) extrac-
tion, regular expressions or any other linguistic information e.g. from semantic
analysis or from question parsing. We do, however, rely heavily on the web and
a conventional web search engine as a source of data for answering questions,
and also require large collections of example questions and answers (q-and-a).
Nonetheless, our approach is still very different to other purely web-based ap-
proaches such as askMSR and Aranea. For example, we use entire documents
rather than the snippets of text returned by web search engines; we do not use
structured document sources or databases and we do not transform the query
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in any way neither by term re-ordering nor by modifying the tense of verbs.
These basic principles apply to each of our language-specific QA systems thus
simplifying and accelerating development.

Our approach has been successfully evaluated in the 2005 text retrieval con-
ference (TREC) question answering track evaluations [1] where our group placed
eleventh out of thirty participants [3]. Although the TREC QA task is substan-
tially different to web-based QA this evaluation showed that the approach works
and provides an objective assessment of its quality. Similarly, for our Japanese
language system we have evaluated the performance of our approach on the
NTCIR-3 QAC-1 task [5]. Although our Japanese experiments were applied ret-
rospectively, the results would have placed us in the mid-range of participating
systems.

We briefly describe our statistical pattern classification approach to QA in
Section 2. In Section 3 we describe the basic building blocks of our QA system
and how they can typically be trained. We also give a breakdown of the data
used to train each language specific QA system and the approximate number of
hours required for building each system.

2 Statistical Pattern Classification Approach to QA

The answer to a question depends primarily on the question itself but also on
many other factors such as the person asking the question, the location of the
person, what questions the person has asked before, and so on. For simplicity,
we choose to consider only the dependence of an answer A on the question Q.
In particular, we hypothesize that the answer A depends on two sets of features
extracted from Q: W = W(Q) and X = X (Q) as follows:

P (A | Q) = P (A | W, X), (1)

where W can be thought of as a set of lW features describing the “question-
type” part of Q such as who, when, where, which, etc. and X is a set of fea-
tures comprising the “information-bearing” part of Q i.e. what the question
is actually about and what it refers to. For example, in the questions, Where
is Mount Everest? and How high is Mount Everest? the information-bearing
component is identical in both cases whereas the question-type component is
different.

Finding the best answer Â involves a search over all A for the one which
maximizes the probability of the above model:

Â = argmax
A

P (A | W, X). (2)

This is guaranteed to give us the optimal answer in a maximum likelihood
sense if the probability distribution is the correct one. Making various conditional
independence assumptions to simplify modelling we obtain the final optimisation
criterion:

arg max
A

P (A | X)︸ ︷︷ ︸
retrieval

model

· P (W | A)︸ ︷︷ ︸
filter

model

. (3)
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The P (A | X) model is essentially a language model which models the prob-
ability of an answer sequence A given a set of information-bearing features X .
It models the proximity of A to features in X . This model is referred to as the
retrieval model.

The P (W | A) model matches an answer A with features in the question-
type set W . Roughly speaking this model relates ways of asking a question with
classes of valid answers. For example, it associates names of people or companies
with who-type questions. In general, there are many valid and equiprobable A
for a given W so this component can only re-rank candidate answers retrieved
by the retrieval model. Consequently, we call it the filter model.

3 System Components

There are four basic ingredients to building a QA system using our approach:
(1) a collection of example question-and-answer (q-and-a) pairs used for answer-
typing (answers need not necessarily be correct but must be of the correct answer
type); (2) a classification of words (or word-like units cf. Japanese/Chinese) into
classes of similar words (classes) e.g. a class of country names, of given names,
of numbers etc.; (3) a list of question words (qlist) such as “Who”, “Where”,
“When” etc.; and (4) a stop list of words that should be ignored by the retrieval
model (stoplist).

The q-and-a for different languages can often be found on the web or in com-
mercial quiz software that is relatively cheap to acquire. To obtain the classes
C for each language a fast automatic clustering algorithm taken from the sta-
tistical language modelling literature was applied [2]. To obtain word classes in
this manner only a large source of training text T comprising |T | words in the
target language is required. Typically, the vocabulary V is taken to be the most
frequent |V | word tokens in T which are then clustered into |C| classes. The
qlist is generated by taking the most frequently occurring terms in the q-and-a
examples and the stoplist is formed from the 50 or so most frequently occurring
words in T .

At run time Google is used to select web documents related to the ques-
tion being asked. The question is passed as-is to Google after the removal of
stop words. In our web demos the top 100 documents are downloaded in their
entirety, HTML markup removed, the text cleaned and upper-cased. We have
found that the more documents used the better the performance with no ob-
served performance degradation even up to 10000 documents in Japanese, for
example. For consistency, all data in our system in encoded using UTF-8.

The data and relevant system details for each language-specific QA system
are given in Table 1 where the estimated number of man-hours to build each
of the new systems is also shown. For the Japanese system Chasen1 is used to
segment character sequences into word-like units. For Chinese each sentence is
mapped to a sequence of space-separated characters.

1 http://chasen.naist.jp/hiki/ChaSen
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Table 1. System description and number of hours to build each new language’s QA
system

Language # q-and-a examples T (corpus name) |T | |V | |C| # hours
English 290k AQUAINT 300M 300k 5k —

Japanese 270k MAINICHI 150M 215k 500 —
Chinese 7k TREC Mandarin 68M 33k 1k 10
Russian 98k LUB [2] 100M 500k 1k 10
Swedish 5k PAROLE 19M 367k 1k 10

4 Conclusion and Further Work

In this paper we have shown how our recently introduced statistical pattern
classification approach to QA can be applied successfully to create with mini-
mal effort monolingual web-based QA systems in many languages. In the official
TREC2005 QA evaluation our approach was shown to be comparable to the
state-of-the-art for English language QA. On the NTCIR-3 QAC-1 Japanese-
language QA task comparable performance with the state-of-the-art was also
obtained. Although no official results are available for Chinese, Russian and
Swedish QA systems our subjective evaluations show that performance is lower
but competitive with the English and Japanese systems. In future we aim to de-
velop QA systems in many more languages and evaluate performance objectively
for example by participating in the annual CLEF evaluations.
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Abstract. Rule-based email filters mainly rely on the occurrence of critical
words to classify spam messages. However, perceptive obfuscation techniques
can be used to elude exact pattern matching. In this paper we propose a new
technique for filtering obfuscated email spam that performs approximate pattern
matching both on the original message and on its phonetic transcription.

1 Introduction

The increasing amount of unsolicited emails (a.k.a. junk email or spam) that circulate
over the Internet has prompted research efforts aiming at building effective anti-spam
filters. An ideal filter should stop all spamming messages without preventing the deliv-
ery of regular emails. In practice, however, any filter is based on an error-prone classifi-
cation algorithm that can produce both false-negative results (FN), delivering spamming
messages, and false-positive results (FP), blocking regular emails.

Existing approaches can be broadly classified into rule-based and statistical ap-
proaches. Rule-based filters classify an incoming message as spam if it meets user-
specified rules that characterize known unsolicited emails. Statistical approaches rely
on corpora of unsolicited and regular e-mails to infer distinguishing features to be used
for classifying incoming email messages [6, 8]. A message is classified as spam if its
statistical properties are closer to those of the unsolicited corpus than to those of the
regular one. Both approaches look not only at the content of the message, but also at its
header (list of recipients, source IP address, subject, ...). Since none of the approaches
clearly outperforms the other, available tools usually integrate both of them. In this
paper we focus only on rule-based spam filtering.

Since junk emails are often characterized by recurrent words (keywords) that do not
appear in regular traffic, rule-based approaches make use of pattern matching to detect
such words in the incoming messages. The list of keywords needs to be periodically
updated, possibly using pattern-discovery algorithms that automatically find recurrent
words in the emails discarded by the user [5].

To elude keyword-detection, spammers apply perceptive obfuscation techniques that
change the orthography of the words in order to prevent exact pattern matching without
avoiding the user to properly recognize them. For instance, the term ‘viagra’ is easily
identified by a human reader even if it is changed in ‘\/1@gr@’, ‘v-i-a-g-r-a’or ‘vaigra’.

Generalized rules based on regular expressions have been introduced to contrast de-
liberate misspellings [7]. However, regular expressions are hard to maintain and they

� This work was partially supported by PIT Consulting SpA and Zone-H.org.
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are not expressive enough to deal with all possible obfuscations. In alternative, statis-
tical de-obfuscation techniques have been proposed to reduce obfuscated words to the
corresponding keywords [4]. Finally, approximate pattern matching (APM) [2] can be
used in place of exact matching to directly compare obfuscated words and keywords.

The key problem with de-obfuscation techniques is that the generalization of rules
(or the relaxation of matching criteria) decreases the number of FNs at the cost of in-
creasing the number of FPs. Moreover, new obfuscation strategies have been recently
devised that exploit the complexity of English spelling rules to significantly change the
orthography of a word without affecting its pronunciation. Since this kind of obfusca-
tions work at phonological level, the orthographic effects they produce are not easily
captured by orthographic de-obfuscation techniques. For instance, ‘vyaggrra’ has edit
distance [2] 3 from ‘viagra’, but it has exactly the same pronunciation in English. This
means that an orthographic APM tool should set a threshold 3 in order to detect the key-
word despite its obfuscation (thus also recognizing the words ‘diagram’, ‘via’, ‘vagrant’
and ‘anagram’ as possible obfuscations of viagra). A filter based on English pronunci-
ation could use threshold 0 to detect the keyword without any FP.

In this work we propose a new spam filtering technique that applies APM both to
the original messages and to their phonetic transcriptions. Phonetic de-obfuscation is
combined with orthographic APM to achieve the best trade off between FPs and FNs.

2 Proposed Approach

Figure 1 shows the tool flow of the proposed approach. The incoming message prop-
agates through a message-transformation chain composed of 4 tasks (represented on
the first row of the flow): normalization, null-char removal, key-specific deambigua-
tion and phonetic transcription. The original message, together with the results of each
transformation, are then passed to the APM modules (represented on the second row)
that work in parallel providing independent flags that are eventually combined by the
rule-composition module.

null char
removal

normalization

pron. rules keywords
phonetic

th4
approximate

string matching

null char listnorm. rules
e−mail

rule
composition

th3th1
approximate

string matching
approximate

string matching
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keywords
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Fig. 1. Tool flow of the proposed approach
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Orthographic obfuscations are handled in three steps. First, normalization rules are
applied to restrict as much as possible the character set by replacing the original char-
acters (or their combinations) with the graphically closest lower-case letters (e.g., â,ä,á,
@ and å, are all mapped into ’a’, c©into ’c’ and \/ into ‘v’). Normalization rules are
applied only when the transformation is considered to be non-ambiguous (e.g., char-
acter ‘1’ can be used to obfuscate either ‘I’ or ‘l’, hence it is left unchanged by the
normalization step). Second, non-alphabetic characters that do not represent any letter
(e.g., ‘-’) are considered as null characters and removed from the string.

Finally, APM modules are used to search for the approximate occurrences of the
keywords under a modified version of the Damerau distance metric [1], where inser-
tion, deletion and possible swapping of adjacent characters are assigned with a unitary
cost, while the costs of character substitutions are specified by a scoring matrix. In
particular, the scoring matrix is used to handle ambiguous graphical obfuscations by
assigning cost 1 to pairs of strongly dissimilar characters, cost 0 to identical charac-
ters (that correspond to diagonal entries) and cost 0 to all possible de-obfuscations of
non-alphabetical characters (e.g., character ‘1’ can be replaced at no cost either with ‘i’
or with ‘l’). The choice of the proper de-obfuscation is implicitly made by the APM
algorithm by finding the best alignment with the keyword (e.g., the ‘1’ that appears in
‘v1agra’ is aligned with the ‘i’ of ‘viagra’ at no cost).

Phonetic de-obfuscation entails: key-specific disambiguation, phonetic transcription
and APM with phonetic keywords. The strings returned by normalization and null-
char removal steps still contain non-alphabetic characters that couldn’t be normalized
because of ambiguity. As previously observed, ambiguities can be conservatively solved
when searching for a specific keyword. Key-specific deambiguation exploits the APM
algorithm to decide which letter to use in place of all residual non-alphabetic characters.
The resulting string is then processed by the phonetic transcription module that returns
a sequence of phonetic symbols that represents the most likely English pronunciation.
The same pronunciation rules are applied off-line to the keywords to build a list of
phonetic keywords. The last step consists of searching for the approximate occurrences
of the phonetic keywords in the phonetic transcription of the incoming message.

Phonetic transcription is based on hierarchical pronunciation rules (expressed as
grapheme to phoneme correspondences) inferred from a dictionary [3]. Level-1 rules
provide the most likely context-independent pronunciation of each grapheme, while
level-n rules provide context-specific exceptions derived by looking at up to n context
graphemes.

3 Experimental Results

The proposed tool flow was implemented in C and tested on a real-world benchmark
composed of 2377 e-mail messages received by the authors during Summer 2005. For
the sake of simplicity our analysis was restricted to the email subjects. This allowed us
to manually annotate the benchmark finding 162 messages containing obfuscations of
‘viagra’ in the subject field.

SpamAssassin [7] was used for comparison. In particular, we applied the filter to
the benchmark and we checked the logs to single out the messages satisfying the rules
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Table 1. Experimental results for ortographic matching, phonetic matching (rule depth 1) and
phonetic matching (rule depth 5)

Ortographic (flag 3) Rule depth 1 (flag 4) Rule depth 5 (flag 4)
th3 FP FP/Nn FN FN/Ns th4 FP FP/Nn FN FN/Ns th4 FP FP/Nn FN FN/Ns

0.0 0 0.00 104 0.64 0 0 0.00 68 0.42 0 0 0.00 72 0.44
1.0 0 0.00 25 0.15 1 0 0.00 11 0.07 1 0 0.00 45 0.28
2.0 42 0.02 20 0.12 2 25 0.01 0 0.00 2 35 0.02 4 0.03
3.0 688 0.31 0 0.00 3 279 0.13 0 0.00 3 270 0.12 0 0.00
4.0 1846 0.83 0 0.00 4 1481 0.67 0 0.00 4 1342 0.61 0 0.00

specifically designed to detect the obfuscations of ‘viagra’ in the subject. SpamAssassin
classified as obfuscations of ‘viagra’ 48 messages, with 3 FPs and 117 FNs1.

We applied the proposed approach with a keyword list containing only the word
‘viagra’. The results achieved are reported in Table 1, that shows the separate effec-
tiveness of ortographic (flag3) and phonetic (flag4) de-obfuscations. For the sake of
conciseness we do not report separate results for the first two flags.

For each instance of the APM algorithm a different threshold can be specified to
span the trade off between FPs and FNs: The higher the threshold the lower the number
of FNs and the higher the number of FPs. We evaluated the effect of phonetic pattern
matching with different sets of pronunciation rules, ranging from context-free rules
(rule depth 1) to context-dependent rules (up to rule depth 5). As expected, the best
results were achieved with the simplest rule set. In fact, phonetic obfuscations rely on
the most intuitive (i.e., most likely) pronunciation of each grapheme. From Table 1 we
observe that the best tradeoff between FPs and FNs separately provided by each flag
(highlighted in boldface) outperforms the results of SpamAssassin.

Finally, flag composition rules were tested to build a classifier combining the infor-
mation provided by flag3 and flag4. The best result was provided by flag3(th3=1) +
flag4(th4=1), returning 0 (i.e., 0%) FPs and 5 (i.e., 3.08%) FNs. These results demon-
strate that ortographic and phonetic pattern matching provide complementary informa-
tion, allowing us to properly recognize heavily obfuscated words (such as ‘\/1@grr/A’)
using only the exact spelling of the undesired word (e.g., ‘viagra’) as a keyword.
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Abstract. Latent Semantic Indexing (LSI) is an established dimensionality 
reduction technique for Information Retrieval applications. However, LSI 
generated dimensions are not optimal in a classification setting, since LSI fails to 
exploit class labels of training documents. We propose an approach that uses class 
information to influence LSI dimensions whereby class labels of training 
documents are endoded as new terms, which are appended to the documents. 
When LSI is carried out on the augmented term-document matrix, terms 
pertaining to the same class are pulled closer to each other. Evaluation over 
experimental data reveals significant improvement in classification accuracy over 
LSI. The results also compare favourably with naive Support Vector Machines. 

1   Introduction 

Supervised text classification systems are typically based on the Vector Space Model 
(VSM) or the Probabilistic Model. Latent Semantic Indexing (LSI) [1] uses a two-
mode factor analysis on the VSM term-document representation to construct a lower-
dimensional space where term co-occurrence patterns are used to infer “latent” 
associations between terms (words). LSI has been shown to be effective in handling 
synonymy, and to a lesser extent polysemy [1]. 

LSI has been successfully used previously for text classification applications [2,3]. 
One limitation of LSI in classification is that it fails to exploit class labels of training 
documents. If taken into account, class labels can help LSI promote inferred 
associations between words representative of the same class and attenuate word 
associations otherwise.  

In this paper, we investigate how additional terms corresponding to class labels of 
documents can be appended to each training document, so as to promote class specific 
word associations. We call this process “sprinkling”. When LSI is performed on a 
term-document matrix augmented with sprinkled terms, documents belonging to the 
same class are moved closer to each other. Furthermore, since LSI maps documents 
and words to a homogeneous space, words pertaining to concepts associated with the 
same class are drawn closer to each other. 

2   Latent Semantic Indexing and Sprinkling 

LSI [1] uses singular value decomposition (SVD) to factor a term-document matrix 
into three matrices U,  and V where U and V contain the left and right singular 
vectors of A and the matrix  is a diagonal matrix containing the singular values  
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A = U  VT 

Retaining only top k singular values in , we can construct an approximation Ak to 
the original matrix that is the best k-rank approximation to A in the least-squares 
sense. Terms which occur in similar documents will be drawn close to each other in 
the k dimensional factor space even if they never actually co-occur in the same 
document.  

Two limitations of LSI in a classification setting are: top k singular values 
correspond neatly to class structure mostly in the absence of overlapping terms 
between documents from different classes; and infrequent words with high 
discriminatory power are watered down. To address these issues, we incorporate class 
knowledge into LSI by generating a set of artificial terms corresponding to the class 
labels and appending these terms to the training documents. We refer to this process 
as ‘sprinkling’. LSI is then carried out on this augmented matrix, and a lower-rank 
approximation of this matrix is obtained. The resulting matrix has the same 
dimensionality as the augmented matrix. Columns corresponding to additional  
 

 

Fig. 1. Classification using Sprinkled LSI 

 

Fig. 2. (a) Original Term Doc Matrix (b) Matrix after Sprinkling 3 terms (c) Fall of Singular 
Values before and after sprinkling 
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sprinkled terms are dropped from this matrix and test documents are classified using 
weighted kNN using an Euclidean distance metric. These steps are illustrated in 
Fig.1.While in principle it is possible to augment the matrix with real valued 
elements, we retain the binary-valued nature of the matrix in the interest of efficiency. 

Sprinkling aims to make explicit any implicit associations between terms indicative 
of underlying classes. Since sprinkled terms are essentially class labels, the inclusion 
of them helps to artificially promote co-occurrences between existing terms and 
classes. Fig. 2(a) shows a trivial term-doc matrix which is sprinkled with additional 
terms. We assume that documents 1, 2, 3 belong to class 1; documents 4, 5 and 6 to 
class 2; documents 7, 8 and 9 to class 3. With increased sprinkling the top three 
singular values get promoted with respect to the remaining ones. This has the desired 
effect of creating a document space that is separable into class specific clusters. 

3   Evaluation 

We evaluate classification effectiveness of Sprinkled LSI using routing datasets 
created from the 20 Newsgroups [4] corpus. One thousand messages from each of the 
20 newsgroups were chosen at random and partitioned by the newsgroup name [4]. 
We form the following four sub corpuses: SCIENCE from 4 science related groups; 
REC from 4 recreation related groups; HARDWARE from 2 problem discussion 
groups on Mac and PC and RELPOL from 2 groups on religion and politics. Two 
further Spam filtering datasets were used: USREMAIL [8] which contains 1000 
personal emails of which 50% are Spam and LINGSPAM [7] which contains 2893 
email messages, of which 83% are legitimate messages related to linguistics and the 
rest are Spam. Equal sized disjoint training and test sets were created, where each 
stratified set contains 20% of the dataset of documents randomly selected from the 
original corpus. For repeated trials, 15 such train test splits were formed. Documents 
were pre-processed by removing stop words and some special characters.  

We use an Information Gain based feature (term) selection. Results are presented at 
nine different choices of LSI dimensionality: 5, 10, 15, 20, 40, 60, 80, 100 and 120. It 
is important to note that sprinkling too many terms (over-sprinkling) may fail to 
preserve interesting variations in the original term-doc structure. When evaluating 
Sprinkled LSI, we used 16 sprinkled terms over each dataset, as this was found to 
strike a good tradeoff between under- and over-sprinkling.   

Accuracy results for LSI with and without Sprinkling appear in Fig. 3 and 
comparisons with Naïve VSM and Support Vector Machines (SVM-Light [9]) are in 
Table 1. Significance testing involved paired t-tests (p = 0.05) carried out over each 
of 6 pairs (of four algorithms). Results in bold correspond to best accuracy in  
Table 1. Sprinkled LSI significantly outperforms SVM in three of the four binary 
classification problems. Results further confirm that Sprinkling’s significant 
improvement in classification accuracy is achieved with less than a 2% increase in 
matrix size. This implies that sprinkled LSI involves nominal overheads in terms of 
computation time.  
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Table 1. Comparison of optimal performance of algorithms 

 Routing Filtering 
USREMAIL LINGSPAM  REC 

Accuracy 
SCIENCE 
Accuracy 

HARD
WARE 

Accuracy

RELPOL 
Accuracy Acc Prec Acc Prec 

Naïve 
VSM 

62.79 54.89 59.51 70.51 59.23 62.84 85.09 58.89 

LSI 79.32 72.55 66.30 91.17 94.67 93.71 97.37 99.05 
Sprinkled 
LSI 

86.99 80.60 80.42 93.89 96.13 96.40 98.34 98.32 

SVM     ---    --- 78.82 91.86 95.83 97.37 95.63 98.32 

 
Fig. 3. Classification accuracy results for six datasets (BASE refers to naïve VSM) 

4   Related Work 

Zelikovitz et al.[2] use background texts in addition to training data. This is useful 
when the training data set is small and each document has few words. The significant 
difference with our approach is that instead of using an extended corpus, we attempt 
to integrate additional knowledge by way of additional terms that represent the 
underlying class structure. Wang and Nie [5] have an objective similar to ours; they 
present a theoretical model to extend LSI to classification domains. The authors do 
not present any experimental validation for their algorithm, but observe that the 
algorithm slows down in situations where a document can belong to more than one 
class. In contrast, sprinkling is, in principle, insensitive to the number of classes, 
which only affects the encoding of the sprinkled terms. Wiener et al. [6] approach the 
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problem of text classification using LSI by introducing a local LSI in addition to  
the global LSI. Local LSI representations are created separately for each class and  
the test document is compared with each local LSI representation separately. The 
disadvantage is that similarities between test documents across different representa-
tions are not easily comparable.  

5   Conclusion 

We have presented Sprinkling, a novel approach to incorporating knowledge of 
classes into LSI for text classification tasks. Experimental evaluation shows its 
superior effectiveness compared to LSI on its own. Sprinkled LSI also outperforms 
SVM on binary classification problems. Future work will investigate the problem of 
empirically arriving at the optimal number of sprinkled terms. 
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Abstract. Answering multiple-choice questions, where a set of possible
answers is provided together with the question, constitutes a simplified
but nevertheless challenging area in question answering research. This
paper introduces and evaluates two novel techniques for answer selection.
It furthermore analyses in how far performance figures obtained using the
English language Web as data source can be transferred to less dominant
languages on the Web, such as Arabic. Result evaluation is based on
questions from both the English and the Arabic versions of the TV show
“Who wants to be a Millionaire?” as well as on the TREC-2002 QA data.

1 Introduction

A large body of research exists on Question Answering (QA) where user queries
are received in a natural language and precise answers are returned, decompos-
ing the problem into three steps: (1) retrieving documents that may contain
answers, (2) extracting answer candidates, and (3) selecting the most probably
correct answer. Early TREC QA systems were looking for an answer that was
known to be included in a given local corpus. Now, many QA systems use the
Web as a corpus, either by extracting answers or by learning lexical patterns
from the Web which are then used to improve the system itself. Studies suggest
that the resulting data redundancy provides more reliable answer extraction [1].
Different approaches to improve system performance exist, such as using prob-
abilistic algorithms to learn the best question paraphrase [2] or training a QA
system to find possible sentence-length answers [3]. When several potential an-
swers are retrieved, answer validation techniques rank them, selecting the most
probable answer. This basically resembles multiple-choice QA. Approaches to
answer validation range from purely statistical methods [7] based on Web search
to the use of semantic techniques [4].

In this paperwepresentandevaluate twonewanswer selection techniqueswithin
a multiple-choice QA settings, comparing them to excisting answer validation
techniques. These are evaluated on both English and Arabic language questions
to evaluate the impact of the different sizes of the Web in the respective languages.
Questions stem from both the TREC-2002 QA task questions as well as the En-
glish and the Arabic versions of the TV show “Who wants to be a Millionaire?”,
a quiz-show that originated in the UK and has been exported around the world,
where candidates have to answer 4-choice trivia general-interest questions.
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The remainder of the paper is organized as follows: Section 2 describes our
multiple-choice QA module. Experiments are detailed in Section 3, with conclu-
sions being presented in Section 4.

2 The MCQAS Module

The core procedure of our Multiple Choice Question Answering System (MC-
QAS) is roughly as follows: A set of representative keywords both from the
question and from each individual answer is extracted using simple linguistic
techniques. Tokenization is performed to extract individual terms followed by
(attached and detached) stop word and punctuation removal. The stem of each
of the remaining words is obtained. For Arabic, a normalization process is further
applied on the remaining words as described in [8]. The set of these remaining
words along with their stems form the keywords set which is transformed into a
set of individual queries combining the question keywords and the answer key-
words of each individual answer. This is then submitted to, in our case, the
Google search engine. A core task now is to assess the relevance of the candi-
date answers. Using search engines and the Web as a basis for answer selection,
several different techniques utilizing different amounts of information can be ap-
plied. Those range from simple hit counts, via using the text snippets returned
for each document providing context information on the query words found, to
full-fledged analysis of the documents retrieved by the search engine. As the
latter results in a rather high overhead in terms of document downloads, our
work focuses on utilizing the result snippets for answer selection. In MCQAS,
six answer selection techniques are used – four were previously used in answer
validation task and two new ones. These are either based on the number of doc-
uments retrieved from the Web (Hits, CCP, KA), or on the analysis of snippets
returned by the search engine (CW, AQC, AQA):

1. Hits: simple hit counts returned by a search engine [5].
2. Corrected Conditional Probability (CCP): based on the conditional

probability of answer keyword based hits, given query keywords [7].
3. Key Words Association (KA): based on forward and backward associa-

tions of the query using hand crafted rules, calculating probabilities for hits
using the set of question and answer keywords.

4. Co-occurrence Weight (CW): based on the distance (number of non-
stopwords) between question and answer keywords in result snippets [7].

5. Answer and Question words Count (AQC): based on the number of
question and/or answer keywords ocurring in result snippets.

6. Answer and Question words Association (AQA): based on the co-
occurrence of both question and answer keywords within the same result
snippet’s context.

In a nutshell, the two new techniques are calculated as follows: The snippets
of the first 10 (or all, if less than 10) search results for each query are weighted,
and their average should be the answer score. For AQC, a snippet weight is the
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number of query words it contains. For AQA, a snippet weight is the sum of
its sub-snippets weights where the sub-snippet (context) is defined by the text
between the ellipsis symbols “...”, and in which at least one question keyword
and at least one answer keyword co-occur. A sub-snippet weight is the percentage
of the different question keywords added to the percentage of the different answer
keywords.

3 Experiments

In order to check the validity of the different answer validation techniques exper-
iments have been carried out using questions from the English1 and the Arabic
version of the TV Show “Who Wants to Be a Millionaire?”, as well as the
TREC-2002 QA track questions. To transform the latter into a multiple choice
QA setting four answers returned during the TREC sessions were selected man-
ually for each question, making sure that exactly one correct answer is among
the four.

Table 1. QA accuracy of different techniques for different questions categories

Category Hits CCP KA CW AQC AQA

Arabic 38.0% 43.0% 45.0% 50.0% 44.0% 55.0%
English 43.0% 45.0% 48.0% 59.0% 63.0% 60.0%
TREC 35.0% 40.0% 42.0% 59.0% 62.0% 56.0%

A random subset of 100 questions was used to run the experiments in each
case. An overview of the results is provided in Table 1. The snippet-based tech-
niques outperformed the hits-based ones. For Arabic, AQA outperforms the other
techniques, while for English, AQC is dominant. An analysis of the Arabic queries
search results has revealed, that the returned number of snippets for most queries
was less than 10 and most of these snippets were irrelevant and only few relevant
precise phrases were found to exist on the Web. This is because there are many
Arabic words with the same spelling but with different meanings. So the use of
more restrictive schemas (CW and AQA) is essential. More over, using general
search engines such as Google for Arabic queries does not satisfy the redun-
dancy issue required by the hits-based techniques since Arabic specific features
to query correction such as word morphology or word root is not implemented,
which emphasizes the need for more linguistic efforts. On the other hand, for En-
glish queries the redundancy is higher and more restrictive schemas may ignore
the cases where the question and the right answer keywords appear frequently
but in different contexts (sub-snippets).

A more detailed analysis reveals that the various techniques tend to answer
different questions correctly. This opens room for ensemble methods. However,
1 Thanks to Shyong K. Lam for providing us with their test data from [5].
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more detailed analysis of question types and answer characteristics will be re-
quired to reveal an optimized strategy.

4 Conclusions

In this paper we proposed two new techniques for answer selection based on
analyzing the text snippets returned by a search engine when confronted with
modified question–answer pairs as queries. Evaluations have been performed
both on English and Arabic questions from the TV show “Who wants to be a
Millionaire?” as well as TREC-2002 data. Experiments reveal an average per-
formance of 55-62%, with the AQA strategy performing better on the Arabic
language questions, while AQC is superior for English language tasks. This may
be attributed to the morphological complexity of the Arabic language, resulting
in only precise phrases returned if they exist on the Web, rather than having
split segments returned as well. Analysis reveals that further improvements can
be obtained by both more complex linguistic pre-processing, specifically for the
Arabic language, and by using ensemble methods for answer selection.
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Abstract. We examine the use of authorship information in information
retrieval for closed communities by extracting expert rankings for queries.
We demonstrate that these rankings can be used to re-rank baseline
search results and improve performance significantly. We also perform
experiments in which we base expertise ratings only on first authors or
on all except the final authors, and find that these limitations do not
further improve our re-ranking method.

1 Introduction

Professionals have several options available to fulfill their information needs. One
particularly rich source of useful information is the combined body of publica-
tions of the workgroup that the professional is a part of. Colleagues share both
interests and vocabulary, and publications of colleagues are also often considered
to be more trustworthy compared to random documents found in libraries and
on the WWW. Workgroup members are bound by the common research focus
of the workgroup, but each member also has separate interests and may be the
group’s expert on specific topics. By adopting a wider perspective and by dis-
regarding institutional proximity, scientific communities or collectives of people
who publish articles in a specific journal can also be considered a workgroup; in
the remainder of this paper we use “workgroup” to refer to both meanings.

In this paper we present authoritative re-ranking, a novel method of re-ranking
search results which utilizes information on topical expertise of workgroup mem-
bers to improve the information retrieval process within these workgroups. We
assume that we can estimate the expertise of each member of the workgroup from
the aggregated content of his or her publications. Based on this, we estimate how
well a term or phrase points to a certain expert, by calculating the author-term
co-occurrence weights. We describe a method to create expertise rankings of the
workgroup members for a query, and use these rankings to re-rank the search
results produced by a baseline system. We performed experiments to determine
which authors contribute the most to this re-ranking.

Constructing rankings of author expertise is a relatively new subfield of infor-
mation retrieval research. TREC 2005 marked the introduction of the ‘Expert
Search Task’, aimed at solving the problem of identifying employees who are
the experts on a certain topic or in a certain situation [6]. Campbell et al. [2]
performed similar experiments on a corpus of e-mail messages sent between peo-
ple in the same company. Neither approach uses these expertise rankings to
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improve search results. A considerable amount of research has been devoted to
improving the search results of information retrieval systems. Among the more
successful approaches are query expansion [7] and using cluster analysis [5] or
citation analysis for re-ranking purposes [4].

2 Authoritative Re-ranking

Our re-ranking approach was designed to be used on top of a basic TF·IDF
vector space model of information retrieval. In our experiments, we used the
formulas for document weights and query weights as determined by [3]. We
incorporated some tried and tested low-level NLP-techniques into our baseline
system, such as stop word filtering and stemming. We also experimented with
statistical and syntactic phrases and optimized the use of these techniques for
every test collection, as recommended by [1].

We partitioned the documents into one-vs-all data sets for each author and
then calculated the co-occurrence weights of each author-term pair for each
term (words and phrases) that occurred in the collection. The weights were
determined using the following feature selection metrics from text categorization:
Information Gain, Chi-Square, and Mutual Information [8]. We also tested using
the average TF·IDF value as a measure of term informativeness; collection terms
that did not occur in the author’s documents were assigned a score of zero.

Combining these term weights for each author yielded a matrix of term-author
weights for each of these metrics. For each query-author combination an expert
score was calculated that signified the expertise of the author on the query topic.
Calculating the expert scores is based on the straightforward assumption that
if terms characteristic for author A occur in query Q, A is likely to be more of
an expert on Q. For each author separately, the informativeness weights were
collected for each of the query terms and combined into an expert score. We
experimented with taking an unweighted average of the weights and an average
weighted by the TF·IDF values of the query terms.

Re-ranking the baseline results using these expert rankings was the final step
in authoritative re-ranking. It is based on the premise that the documents au-
thored by the experts on the current query topic are more likely to be relevant
to the query, i.e. more suitable to fulfill the query. Since many documents have
multiple authors, the expert scores associated with each document had to be
combined. Early experimentation showed that weighting the expert scores with
the total number of publications of each author gave the best performance. We
also investigated abating the influence of high numbers of publications with the
square root and the natural logarithm of these counts as weighting factors. After
computing this ‘suitability’ score, which is computed for each query–document
combination, it is combined with the original baseline similarity score to form a
new score on the basis of which the authoritative re-ranking is performed.

We performed additional experiments to test and fine-tune the ways in which
similarity scores and suitability scores can be combined. The most successful com-
binations involved multiplying the original similarity score with the (normalized)
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suitability score S and transforming the original similarity score by multiplying it
with 1 + S. Experiments showed that the optimal re-ranking settings were
collection-dependent, so the settings were optimized for each collection, similar to
the NLP techniques used in the baseline [1].

3 Evaluation

Investigating the merits of authoritative re-ranking in workgroups required test-
ing our approach on test collections that (1) contain information about the
authors of each document, and (2) are a realistic representation of a workgroup.
We used two well-known test collections, CACM (3204 documents, 52 queries,
and 2963 unique authors) and CISI (1460-76-1486), and we created a third col-
lection called ILK (147-80-89), because to our knowledge no real workgroup
test collections exist. ILK contains 147 document titles and abstracts of pub-
lications of current and ex-members of the ILK workgroup. The paper topics
focus mainly on machine learning for language engineering and linguistics1. We
also performed some experiments to determine which author rank contributes
most to expertise re-ranking. We created special versions of each corpus where
only the primary authors were included (CACM–first, CISI–first, and ILK–
first), and versions where the last author was removed from the author listings
(CACM–m1, CISI–m1 and ILK–m1). Our hypothesis was that, on average,
first authors contribute the most to a paper and final authors the least.

We evaluated the performance of our approach using R-precision, the precision
at the cut-off rank of the number of relevant documents for a query. It emphasizes
the importance of returning more relevant documents earlier. The reliability of
the comparisons between our baseline system and the re-ranking approach was
determined by performing paired t-tests.

Table 1. Comparison of the re-ranking approaches in terms of R-precision scores. The
underlined scores are statistically significant improvements.

collection–author selection re-ranked baseline

CACM 0.313 0.233 (+34.3%)
CACM–first 0.302 (+20.2%)
CACM–m1 0.304 (+30.5%)
CISI 0.206 0.203 (+1.5%)
CISI–first 0.206 (+1.5%)
CISI–m1 0.206 (+1.5%)
ILK 0.649 0.647 (+0.3%)
ILK–first 0.650 (+0.5%)
ILK–m1 0.656 (+1.4%)

Table 1 shows the results of our experiments. Authoritative re-ranking pro-
duced statistically significant performance improvements on the CACM and
1 Publicly available at http://ilk.uvt.nl/˜tbogers/ilk-collection/.
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CISI collections, ranging from +1.5% to +34.3%. The improvements seem to
be dependent on the corpus, but even the optimal performance on the ILK col-
lection yielded very small improvements. A possible reason for the differences in
performance might be the topical diversity of the test collections: CACM seems
to have a more diverse range of topics than CISI and ILK which might make
it easier for different fields of expertise to be recognized.

The experiments with different author selections did not confirm our initial
hypothesis. Using the expertise of all authors associated with a document yields
the best results and using less authors did not increase performance significantly.

4 Conclusions

Under optimized settings, authoritative re-ranking is able to significantly boost
R-precision, with the exact performance increase dependent on the document
collection. The technique appears to be suited for collections with a fair topical
heterogeneity, such as publications in a journal, and perhaps less so for collections
of workgroups with more topical coherence among publications. Furthermore,
optimal re-ranking performance requires using the expertise of all the authors
associated with a document.

Acknowledgements. This research was funded by the IOP-MMI-program of
SenterNovem / The Dutch Ministry of Economic Affairs, as part of the À Propos
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1 Introduction

Readability refers to all characteristics of a document that contribute to its ‘ease
of understanding or comprehension due to the style of writing’ [1]. The readabil-
ity of a text is dependent on a number of factors, including but not constrained
to; its legibility, syntactic difficulty, semantic difficulty and the organization of
the text [2]. As many as 228 variables were found to influence the readability of
a text in Gray and Leary’s seminal study [2]. These variables were classified as
relating to document content, style, format or, features of organization.

However, the concept of readability does not simply refer to properties of text
but incorporates the engagement or interaction of a particular reader with the
text. A number of reader characteristics affect readability alongside the reader’s
level of literacy. How motivated a reader is will affect how much effort they
are willing to expend in order to understand a difficult text [3, 4]. Entin and
Klare have shown that a reader’s levels of interest, their prior knowledge and
the readability of a text influence the reader’s comprehension of the text [3].

Traditionally, information retrieval systems have concentrated on improving
topical relevance, however relevance has been shown to be a multi-faceted con-
cept [5]. Information seekers have listed various relevance criteria that relate
directly to readability, including technicality, depth of treatment of topic, clar-
ity of explanation and presentation, understandability, and the extent to which
the information presented is novel to the user [6, 7]. From this we can conclude
that information seekers desire documents that are topically relevant to their
information need but also relevant in terms of readability in their context.

In particular, it is hypothesized that an information seeker with a high degree
of domain knowledge [relating to their information need] will find documents
of an introductory style to contain predominantly redundant information. Such
documents will thus be irrelevant in their context. In turn, information seek-
ers with a low level of domain knowledge who encounter documents containing
domain specific concepts, without sufficient explanation, will be unable to learn
from the document. This follows Kintsch’s hypothesis concerning ‘zones of learn-
ability’ [8].

The objective of our research is to match a user with a given level of domain
knowledge to documents that they can learn the most from, documents that

� Enterprise Ireland Grant No. SC/2003/0255.
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have the optimum balance of redundant and new information. We propose to
achieve this aim by re-ranking a topically relevant set of documents as obtained
from a traditional retrieval system. Readability analysis would be used to boost
documents of suitable readability according to the user’s context. This objective
must be carried out without compromising topical relevance.

2 Related Work

A number of readability formulae have been developed since research into the
area began in the early part of the 20th century. Some of the most widely used
of these are the Flesch Reading Ease formula [9], the Dale-Chall formula [10],
the Fog-Index [11], and the Fry Readability Graph [12].

Most readability formulae calculate some measure of syntactic complexity and
semantic difficulty. These are commonly operationalised using sentence length
to determine syntactic complexity and a syllable count or word frequency list
to measure semantic difficulty. Other variables that have been found to affect
readability include prepositional phrases, personal pronouns and number of in-
determinate clauses. See [2] for a review of criteria that have been correlated
with reading difficulty in traditional readability research.

Contemporary work relating to readability includes the use of latent semantic
analysis [13], textual coherence [14], and statistical language models [15].

3 Corpus and Experimental Setup

To the authors’ knowledge no corpus annotated with readability data is freely
available. Thus, a corpus was assembled for the purpose of this research. The
corpus is made up of news articles, expository in nature, that are written for
target age groups (either children or adult) from disparate topic areas. A total
of 2394 ‘easy’ and ‘difficult’ documents were collected.

We use a machine learning approach to classify the documents for readability.
The C5.0 [16] decision tree learning algorithm was utilised as it has been suc-
cessfully used for a similar task (classifying text genre) [17]. C5.0 is also suitable
as the rule set generated is amenable to intuitive human analysis.

We selected parts of speech (POS) as features for classifying the documents to
obtain a measure of the documents’ syntactic complexity. A number of studies
have found particular parts of speech to correlate with readability, as mentioned
in Section 2. The number of words of each part of speech, divided by the total
number of words in the passage, produced the set of continuous attributes.

For comparative purposes, a close approximation of the Flesch readability
formula was applied to the documents, as implemented by Talburt [18]. This
measure is one of the most commonly used of the readability formulae. Classi-
fication was carried out using the metrics embedded in the Flesch formula, av-
erage words per sentence and average syllables per word, along with the Flesch
score.
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4 Evaluation

Results from classification experiments are shown in Table 1. Error rates were
measured using ten-fold cross-validation repeated ten times.

Table 1. Comparison of error rates across feature sets

Fold POS Flesch Combined
0 12.0 % 9.8 % 6.9 %
1 12.4 % 9.7 % 6.4 %
2 14.0 % 9.6 % 6.5 %
3 12.5 % 9.5 % 6.8 %
4 12.5 % 9.6 % 6.9 %
5 10.8 % 9.5 % 7.0 %
6 11.4 % 9.8 % 6.2 %
7 11.8 % 9.8 % 6.2 %
8 11.8 % 10.0 % 6.9 %
9 12.5 % 9.7 % 7.2 %

Mean 12.2% 12.2% 6.7%
SE 0.3% 0.3% 0.1%

Upon examination of the decision trees generated using the part of speech
feature set, C5.0 considered the proportion of personal pronouns, prepositions
and subordinating conjunctions, and adjectives to be the most informative when
classifying readability. In the combined feature set, C5.0 considered Flesch mea-
sures to be most indicative of readability.

5 Conclusions and Future Work

Our part of speech features performed well at classifying readability, though
not as well as the Flesch measures. When part of speech and Flesch features
were combined misclassifications were significantly decreased. We have shown
that the performance of traditional readability measures can be boosted in a
machine learning environment using part of speech features that are cumber-
some to measure via human analysis. We have shown that high accuracy can be
achieved using a machine learning approach to classifying readability.

While personal pronouns and prepositions have previously been correlated
with readability, adjectives have not commonly appeared in readability literature
[2]. However, it is intuitive that writers may often use more adjectives to assist
a reader to create a cognitive ‘image’ of the topic under discussion.

Experiments completed thus far have been exploratory and confined to the
task of measuring text characteristics. A fuller feature set that will incorporate
measures of sentence construction, textual coherence, idea complexity and den-
sity with some rhetorical structure analysis is expected to give a more accurate
and natural measure of document readability.
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Once the optimal readability analysis technique is found, further work must
include finding the most beneficial method of incorporating readability analysis
into an existing IR system. This will entail investigating methods of inferring
the level of readability that is suitable for a particular user. Integration into an
IR system will also necessitate developing a re-ranking formula that does not
trivialise the importance of topical relevance.
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1 Introduction

Image and video retrieval are both currently dominated by approaches which
combine the outputs of several different representations or features. The ways in
which the combination can be done is an established research problem in content-
based image retrieval (CBIR). These approaches vary from image clustering
through to semantic frameworks and mid-level visual features to ultimately de-
termine sets of relative weights for the non-linear combination of features. Simple
approaches to determining these weights revolve around executing a standard
set of queries with known relevance judgements on some form of training data
and is iterative in nature. Whilst successful, this requires both training data and
human intervention to derive the optimal weights.

We address the problem of determining the optimal set of relative weights
for different features by automatically determining the weights at query time.
This has advantages in that it does not require any prior training data or query
history. Our approach calculates a ratio of the distance between result scores in a
top subset of results, versus the distance between results over a larger result set.
This provides an indication of how tightly clustered results are in the top subset
as opposed to the larger set. For this paper we compute one of these ratios per
visual feature for a given query image, and compare these ratios across features
to arrive at a set of weights that can be applied to those features.

We also apply this technique to image and video queries where multiple exam-
ple query images are used. This allows us to determine weights to apply to the
results generated from each query image, giving greater weights to those query
images which are more likely to aid retrieval performance. Whilst our work is
at an early stage, results to date have been positive and demonstrate that this
approach warrants further investigation.

2 Automatic Determination of Weights

2.1 Visual Features

We first extract the visual features that we are going to retrieve against. Our
work uses MPEG-7 [1] visual features. We extract an edge histogram descriptor
and a local colour descriptor from the images using the aceToolbox, developed
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as part of our participation in aceMedia [2]. The edge histogram descriptor cap-
tures the spatial distribution of edges by dividing the image into 4 × 4 subim-
ages (16 non-overlapping blocks) and categorizing the edges into one of 5 types
0o, 45o, 90o, 135o and non-directional. The local colour descriptor partitions the
colour information of the image in 8 × 8 blocks and for each block the repre-
sentative colour is determined by using the average colour from each block. To
compare one feature representation against another of the same type, we employ
an L2/Euclidian distance measure, scores are then normalized.

2.2 Feature Weight Determination

The calculation of feature weights is based upon the following assumption. That
given a set of normalized similarity scores, if we calculate the average difference
between adjacent scores across the result set, and then compare that to the
average distance among the very top subset of the ranking, we would expect
to find that the mean of the top subset shows a tighter clustering of similarity
scores than that of the larger set. But that the closer these values, the more
likely that there is similar scores at a greater depth.

We assert that given a result list of 1,000 normalized similarity scores, that
the top subset of these results (we have explored a range of 10 - 100) would have
a mean average distance (MAD) between these results that is less than the mean
average distance between the top 1000 results, but the closer these scores the
greater the depth of the similar results. The calculation of the MAD measure
can be expressed as:

mad(UB) =
∑n=UB

n=1 [score(n) − score(n + 1)]
UB − 1

(1)

where UB (or Upper Bound) defines the set size. By calculating the MAD value
for a given subset, and for that of a larger result set, we can define a ratio that
represents the degree of clustering of similar scores that occurs in the results.
The higher the value of this ratio, the greater the amount of clustering over the
entire set. We can define this similarity cluster (sc) ratio as:

sc =
MAD(subset)
MAD(1000)

(2)

Whilst this equation looks similar to standard deviation, standard deviation
informs us of the degree of compactness around a mean, whereas in this formula,
it is the comparison of the actual means that we are interested in.

For each feature we calculate a score, sc. To arrive at our feature weights, we
simply determine the relative percentage of that score, against the sum of the
scores. For example, the colour weight is defined as:

ColourWeight =
ColourSC

ColourSC + EdgeSC
(3)

The final combination of the features involves normalising each complete result
list, applying the weight for that feature, and linearly interpolating the results
using CombSUM [3].
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2.3 Query Image Weight Determination

Another problem for CBIR where each query topic contains multiple example
query images, is that all query images are equally weighted. We know that some
images will perform better than others. Just as text retrieval has developed
techniques to weight query terms differently, our approach can be used to apply
weights to query images. Text retrieval achieves this through the use of IDF in
ranking formula, where common terms are given lower weights. Our approach as-
signs weights to images based upon the score distribution of an images’ result set.

If we take the result list generated by each query image and normalise it we
are left with a result list that is similar to the data that we were previously
dealing with, i.e. a list of scores with varying degrees of distribution. We can
make a similar assumption as previously, that result lists which have a higher
value for sc should provide better retrieval performance and thus give these
greater weight.

3 Experiment

Our experiment used the TRECVid 2004 and 2005 video collections. These are
collections of video materials for which keyframe images are made available by
the TRECVid organisers. We acknowledge that this is a video collection, how-
ever the matching of query images against video keyframes does form a part of
many of the video retrieval systems used in TRECVid. The TRECVid keyframe
collection for 2004 consisted of 33,367 keyframes and 45,675 keyframes for 2005.
For each collection, 24 search topics with multiple query images were available,
with a total of 145 query images for 2004 and 227 for 2005. These query images
were either example images supplied by the organisers or as keyframes extracted
from the development set of videos.

The search task we performed was fully automatic image-only retrieval with
no user intervention in query formulation, and no iteration through the search.
For each run we processed all 24 topics. We compared two systems in our ex-
periments. The baseline (referred to as Oracle Manual Weights) used the same
static feature weights across all topics to fuse the feature data. These weights
were selected based upon the best results achieved through manual training (i.e.
select the weights, run the experiment, evaluate results, refine weights). The
Auto. Feature & Query Image Weights system used our automatic weight
techniques to fuse feature data and weight the example query images. We used
‘25’ as the value of UB in the calculation of MAD for both feature weights and
query image weights. To reiterate, each example query image in each topic had
a set of unique feature weights automatically determined for fusion of feature
data. Weights were also determined when fusing the results of multiple example
query images, as opposed to the equal weight given in the baseline system. The
results can be seen in Table 1.

The results demonstrate several things, such as performance on TRECVid
2005 is much better than on TRECVid 2004 which is in line with the results
of others, and that the automatic weight assignment is better than the baseline
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Table 1. Experimental results

MAP P@5 P@10 Recall
2004 Oracle Manual Weights 0.0298 0.1391 0.1043 246

Auto. Feature & Query Image Weights 0.0324 0.1478 0.1174 251
2005 Oracle Manual 0.0668 0.2250 0.2250 870

Auto. Feature & Query Image Weights 0.0689 0.2667 0.2375 862

when assessed against MAP, P@5 and P@10. Yet it is hard to make definitive
conclusions about whether we can dynamically determine the best feature com-
bination weights at query time, without performing a thorough analysis of the
results at the topic level. We can see that the approaches put forward here do
generate results that are comparable with the best static weights that can be
obtained through training and this is encouraging.

4 Conclusion

We have presented an approach towards automatically generating feature
weights for fusion of similarity scores from different image features, and for
weighting query images. Our approach makes use of the distribution of result
scores to derive weights which aid in retrieval performance, that can be calcu-
lated at query time without the need for prior training. The approach achieves
better results to manual weights obtained from oracle training for the same sets
of queries. These results whilst encouraging highlight the work yet to be done,
and there are several future directions that this work needs to undertake. The
first will be to increase the number of low-level image features. Increasing the
number of features to be fused will increase the complexity of the weight deter-
mination and will better test its applicability.
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Abstract. We present first steps towards intelligent retrieval of music
album covers from the web. The continuous growth of electronic music
distribution constantly increases the interest in methods to automati-
cally provide added value like lyrics or album covers. While existing ap-
proaches rely on large proprietary databases, we focus on methods that
make use of the whole web by using Google’s or A9.com’s image search.
We evaluate the current state of the approach and point out directions
for further improvements.

1 Introduction and Context

Today’s digital music players provide a wide variety of meta-information (e.g.
ID3-tags of MP3-files, song lyrics, or album cover images) to the user. Consid-
ering the trend towards digital music distribution via online stores and the need
of offering additional and valuable meta-data to catch a decisive advantage in
competition makes automatic retrieval of e.g. cover images an interesting and
important task. Furthermore, cover images can be used to enrich visual interfaces
to music collections like [3], or serve as data source for applying collaging tech-
niques [1] to facilitate browsing in digital music libraries. In [2], the authors use
color histogram representations of cover images together with lyrics and musical
scores to build a basis for clustering pieces of music.

While we could not find previous scientific publications on automatic retrieval
of album covers, there exist a number of applications for this task. For exam-
ple, programs like the “Album Cover Art Downloader”1 or the “Essential MP3
Player”2 offer functions to crawl the web for album covers. However, the main
drawback of these programs is that they only perform semi-automatic retrieval.
This means that the user is presented with some candidate covers and he/she
has to select the most appropriate.

An alternative to programs that crawl the web are specialized web pages
like “CoverUniverse”3 that provide access to cover image databases. Also online

1 http://louhi.kempele.fi/˜skyostil/projects/albumart
2 http://www.twistermp3.com/emp3player
3 http://www.coveruniverse.com
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stores that sell music like Amazon or Wal-Mart usually maintain such databases.
Although these web pages frequently offer high quality scans of cover images,
the number of available covers is obviously quite small compared to the number
accessible by crawling the web.

In this paper, we investigate approaches that use image search functions of
popular search engines and complement them with simple, robust image content
analysis to retrieve covers. We aim at combining the advantages of both semi-
automatic cover image retrieval by web crawling and cover image databases,
namely, access to an enormous number of images and high certainty to retrieve
the correct cover image. For evaluation, we use two international collections of
CD covers. We report on occurring problems and point out possible solutions.

2 First Explorations

To get a first impression of the performance of image search functions for cover
retrieval, we ran a set of experiments on a small private collection of 225 CDs. For
retrieval, we query the image search functions provided by A9.com and Google
using two schemes, "artist name " "album title" cover (abbreviated as C
in the following) and "artist name " "album title " cover album (CA). The
CA scheme was introduced to omit images of scanned discs that were sometimes
returned in preliminary experiments when using C. Since it is often quite difficult
to figure out if an album cover is correct, for example due to different versions for
different sales regions, covers that became censored after release, or remastered
versions with new covers, we have to inspect every retrieved cover manually and
decide whether it is a correct one.

Table 1 shows the results for the query settings C and CA (in the rows
labeled baseline). It can be seen that the search engine Google generally performs
better than A9.com. Moreover, it is obvious that using CA instead of C not only
eliminates images of scanned discs, but unfortunately also decreases the number
of found cover images considerably.

From these insights we conclude that improvements are unlikely to be achieved
by adding additional query constraints other than cover. Thus, in subsequent
steps we focus on implementing content-based techniques and filtering with re-
spect to image dimensions to eliminate erroneous covers. To this end, we reject
all returned images that have non-quadratic dimensions within a tolerance of 15
percent. With this simple constraint on retrieved images we can improve accu-
racy for all settings by more than 4 percentage points in average (Table 1, rows
labeled quad. filter). While this approach remedies problems with misdimen-
sioned images, it cannot distinguish between actual covers and scanned discs.
To address this issue, we propose a simple circle detection technique in order
to filter out scanned disc images. We found all images of scanned discs to be
cropped to the circle-shaped border of the CD which allows us to use a simple
algorithm instead of complex circle detection techniques usually used in pattern
recognition. For every potential cover image returned by the search engine, we
examine small rectangular regions along a circular path that is touched by the
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Table 1. Evaluation results on the test collection of 225 albums. The upper part of
the table shows the results using the scheme C, the lower those using CA. The column
labels indicate the following: correct – correct cover image, dim.err. – image does not
fit to cover dimensions, other – other album or single by same artist, scanned – scanned
disc, related – other artist-related material, wrong – something completely wrong, not
found – no images returned. The values indicate the fraction on the total collection.

cover
correct dim.err. other scanned related wrong not found

Google baseline 0.78 0.01 0.06 0.02 0.02 0.03 0.07
quad. filter 0.81 0.00 0.06 0.02 0.01 0.02 0.07
quad,circle 0.83 0.00 0.07 0.00 0.01 0.02 0.07

A9.com baseline 0.63 0.05 0.05 0.01 0.06 0.05 0.15
quad. filter 0.68 0.00 0.07 0.03 0.01 0.03 0.18

cover album
correct dim.err. other scanned related wrong not found

Google baseline 0.63 0.01 0.06 0.00 0.02 0.04 0.23
quad. filter 0.68 0.00 0.05 0.00 0.00 0.04 0.23

A9.com baseline 0.56 0.02 0.07 0.00 0.02 0.04 0.28
quad. filter 0.60 0.00 0.08 0.00 0.00 0.03 0.29

image borders tangentially. We then determine the contrast between subareas
of these regions using RGB histograms. If there is a strong contrast between
subareas that would show the imprint of the CD in case of a scanned CD and
subareas that would show the background, the image is classified as scanned CD
and removed from the set of potential cover images.

Applying this technique to our test collection further improves results, as it
can be seen in Table 1 for the C scheme in conjunction with Google.4 Using
the quadratic dimension constraint together with the circle detection approach
improves results from a baseline of 78% to 83%.

3 Evaluation on a Large Collection

The approach was also tested on a large commercial collection of 3 311 albums.
This collection comprises albums by various artists from all around the world.
Thus, it should give better insights into the behavior of our approach on a
broader spectrum of music. Again, we had to laboriously classify each album
manually for the reasons mentioned above. The results of this evaluation can
be found in Table 2. It can be seen that only about 60% are correct. The main
reason for this is the high amount of covers that could not be found (27%). This
suggests that even in the best case we can only expect accuracies around 73%.
However, for covers available on the web we can improve results by 3 percentage
points.

4 Since this setting performed significantly better than the others in the preliminary
experiments, we decided to focus on it in all subsequent investigations.
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Table 2. Evaluation results on the test collection of 3 311 albums. Labels as in Table 1.

cover
correct dim.err. other scanned related wrong not found

Google baseline 0.57 0.02 0.08 0.00 0.02 0.06 0.27
quad,circle 0.60 0.00 0.08 0.00 0.01 0.05 0.27

4 Conclusions and Future Work

We explored first steps towards fully automatic album cover retrieval from the
web. Compared to the simplest approach of taking the first proposed image
returned by an image search, we could raise accuracy of correctly found covers
from 57% to 60% by incorporating very simple filtering techniques. Moreover,
we noticed that it is unlikely to achieve more than 70-75% accuracy on large
international collections due to not available images.

As for future work, we plan to improve performance by decreasing the number
of covers from the correct artist but from another album by examining the pages
from which the presumed covers were taken instead of taking the suggested pic-
ture. Comparing the found pictures across multiple sites may help to identify
the correct cover, even though first histogram-based attempts to find the most
frequent cover among the displayed results yielded disappointing results. We sup-
pose that this was caused by the fact that Google performs similar preprocessing
steps to omit duplicate images, which may interfere with our attempts. Finally,
we aim at combining different approaches for automatic meta-data retrieval, e.g.
for lyrics, into a single media player application.
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Abstract. We investigate the use of clustering methods for the task of
grouping the text spans in a news article that refer to the same event.
We provide evidence that the order in which events are described is
structured in a way that can be exploited during clustering. We evaluate
our approach on a corpus of news articles describing events that have
occurred in the Iraqi War.

1 Introduction

A news event is defined as a specific thing that happens at a specific time and
place [1], which may be reported by one or more news sources. Multiple news
articles often contain duplicate information concerning the same event, but differ
in choice of language used. Specific details regarding the event may vary from
source to source. For example, one article about a given bombing in Iraq may
say “at least 5 people were killed” while a second may contain the phrase “6
people were found dead”.

Our research focuses on merging descriptions of events from multiple sources
to provide a concise description that combines the information from each source.
We decompose this problem into three sub-problems: (1) Annotation: identifying
the spans of text in an article corresponding to the various events that it men-
tions; (2) Matching: identifying event descriptions from different articles that
refer to the same event; and (3) Aggregation: converting the event descriptions
into a structured form so that they can be merged into a coherent summary.

In this paper we focus on the first sub-problem. Specifically, we describe and
evaluate methods for annotating each sentence in an article with a set of identi-
fiers specifying which event(s) the sentence mentions. This set can be empty (if
the sentence does not mention any event) or it can contain multiple identifiers.

Event annotation is challenging for several reasons. Most news articles refer
to multiple events. Moreover, sentences that refer to the same event are usually
scattered through the article with no simple sequential pattern. Fig. 1 shows a
sample article that demonstrates these issues.

The task of clustering similar sentences is a problem that has been investigated
particularly in the area of text summarization. In SimFinder [2], a flexible clus-
tering tool for summarisation, the task is defined as grouping small paragraphs
of text containing information about a specific subject. However, we examine
the use of clustering at sentence level.
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Fig. 1. Sample news article that describes multiple events

2 Event Extraction as Sentence Clustering

This paper investigates the use of clustering to automatically group sentences
in terms of the event they describe. We generated sentence clusters using av-
erage link, complete link and single link agglomerative clustering. Hierarchical
agglomerative clustering (HAC) initially assigns each data point to a single-
ton cluster, and then repeatedly merges clusters until a specified termination
criteria is satisfied [3]. HAC clustering methods require a similarity metric be-
tween two sentences. We use the standard cosine metric over a bag-of-words
encoding of each sentence. We removed stopwords, but did not employ term
weighting.

We evaluated our clustering algorithms using a collection of 219 news stories
describing events related to the recent war in Iraq. Excess HTML (image captions
etc.) was removed, and sentence boundaries were identified. The corpus was then
annotated by two volunteers. Within each article, events were uniquely identified
by integers. Starting at the value 1, the annotators were asked to assign labels
to each sentence representing the event(s) it describes. If a sentence did not refer
to any event, it was assigned the label 0. Sentences may refer to multiple events.
For example, consider the sentence “These two bombings have claimed the lives
of 23 Iraqi soldiers”. This sentence would be annotated with two labels, one for
each of the two bombings. Note that sentences from the same document that
refer to the same event are assigned the same label.

To evaluate our clustering method, we define precision and recall as follows.
We assign each pair of sentences into one of four categories: a, clustered to-
gether (and annotated as referring to the same event); b, not clustered together
(but annotated as referring to the same event); c, incorrectly clustered together;
d, correctly not clustered together. Precision and recall are thus found to be
computed as P = a

a+c and R = a
a+b , and F1 = 2PR

P+R .
We also need to consider sentences annotated with multiple event labels. For

each pair, where one or both of the sentences were annotated as referring to multi-
ple events, we consider them as belonging in the same event cluster if the intersec-
tion between their labels is not empty. For example, we consider that a sentence
pair with labels “1,2” and “1,3” respectively as belonging to the same cluster.

A fully-automated approach must use some termination criteria to decide
when to stop clustering. In this preliminary work, we simply compare the results
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Fig. 2. Left: F1 at each value of normalized k, for complete link, single link and aver-
age link clustering algorithms. Right: Distribution in the probability that actual and
random event sequences are generated by the tuned FSA.

emitted by the HAC algorithm for various values of k, where k is the number of
remaining clusters.

As seen in Fig. 2, F1 increases slightly as k is increased, but then rapidly falls
with increasing k. We also implemented a semi-supervised approach in which k
is manually set to the annotated number of incidents in each article. We found
that precision ranges between 0.58 and 0.39 and recall falls between 0.29 and
0.25 for all three algorithms. Interestingly, we observe that the “correct” value
for k is not necessarily the value of k that maximizes accuracy.

3 Sequential Event Structure

Our clustering approach ignores an important constraint on the event associated
with each sentence: the position of the sentence within the document. Intuitively,
adjacent sentences are more likely refer to the same event, later sentences are
likely to introduce new events, etc.

To confirm the intuition that such latent structure indeed exists, we treat
each document as a sequence of event labels (namely, one label per sentence).
We trained a finite state automaton (FSA) from the sequences, where states
corresponded to event labels, and transitions corresponded to adjacent sentences
that mention the pair of events. The automaton is stochastic: we counted the
number of each transition across a set of training documents (as well as the
fraction of documents whose first and last sentences are labeled with each event).
We can calculate the probability that the trained automaton generated a given
document as the product of the probability that the first sentence’s event is
an initial state, the probabilities of each transition in turn, and the probability
that the last sentence’s label is a final state. (This assumes that each sentence
mentions at most one event. We deal with multi-event sentences in various ways,
such as making a “copy” of each article for each permutation of its labels; for
example, the article sequence “1, {1,2}, 2, {2,3}” is mapped to 4 sequences, “1
1 2 2”, “1 2 2 2”, “1 1 2 3” and “1 2 2 3”.)
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Finally, we estimate how much sequential structure exists in the sentence la-
bels as follows. The document collection was split into training and test sets. The
automaton parameters were learned from the training data, and the probability
that each test sequence was generated by the automaton was calculated. These
probabilities were compared with those of a set of random sequences (generated
to have the same length distribution as the test data).

The probabilities of event sequences from our dataset and the randomly gen-
erated sequences are shown in Fig. 2. The test and random sequences are sorted
by probability. The horizontal axis shows the rank in each sequence and the ver-
tical axis shows the negative log probability of the sequence at each rank. The
data suggest that the documents are indeed highly structured, as real document
sequences tend to be much more likely under the trained FSA than randomly
generated sequences.

4 Discussion

We have presented exploratory work on the use of clustering for event annotation
in news articles. We are currently trying variations of our approach, such as using
WordNet [4] to deal synonymy (eg, “killed” and “died”).

Although the precision of our approach is approximately 50%, we are encour-
aged since the similarity metric ignored the sequential structure demonstrated
in Sec. 3. We have developed a revised distance metric that incorporates the se-
quential regularities demonstrated in Fig. 2. Preliminary experiments show that
this enhancement provides a modest increase in F1.

Finally, our approach did not use term weighting. We have developed a
TFIDF-like weighting scheme where we define a “document” to be the set of
sentences which discuss a given event and then weight terms according to their
frequency in the document compared to the entire corpus. Of course, these “doc-
uments” are precisely what the clustering algorithm is trying to discover. We
therefore initialize the term weights uniformly, and then iterate the clustering
process, re-calculating the term weights based on the previous output, stopping
when the event labels converge. Preliminary results show that this approach
converges rapidly and also produces a modest increase in F1.
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Abstract. We examine the impact on classification effectiveness of se-
mantic differences in categories. Specifically, we measure broadness and
narrowness of categories in terms of their distance to the root of a hi-
erarchically organized thesaurus. Using categories of four different levels
degrees of broadness, we show that classifying documents into narrow
categories gives better scores than classifying them into broad terms,
which we attribute to the fact that more specific categories are associ-
ated with terms with a higher discriminatory power.

1 Introduction

While text categorization has a long history [7], the increased availability of
large scale semantically rich thesauri and ontologies, raises a number of chal-
lenging scientific questions. If we classify text documents into categories that
are organized in such a semantic structure, how can we exploit the structure?
How does the position of a category in such a hierarchy impact a classifier’s
performance?

Specifically, in this paper we aim to find out whether classification accuracy is
influenced by the level of “broadness” (or “narrowness”) of a category. A priori,
one may entertain one of two clear intuitions here. One is that classification into
broader classes is more effective than into narrow categories due to more training
examples [9]. The competing intuition is that classification into more narrow
categories is more effective because the terms associated with such categories
tend to be more discriminating. Our experiments show that the latter is the
case.

The rest of the paper is organized as follows. In Section 2 we describe our
experimental set-up. We follow with our results and a discussion in Section 3,
and conclude in Section 4.

2 Experimental Set-Up

We addressed our research question by working with data provided by TREC
as part of the classification task for the 2004 edition of the Genomics track [8].
Here, Medline documents need to be classified in categories that correspond to
term descriptions in the MeSH thesaurus [6]. Categories are organized in levels,
from broad to narrow, depending on the length of the shortest path to the root
of the thesaurus. A total of eleven levels are found in MeSH.
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Table 1. Categories chosen for our experiments, grouped by level, together with the
number of examples per selected category

Level 1 Level 3
6847 Pharmaceutical Preparations 8383 Bladder
3937 Eye Diseases 8186 Education, Medical
2472 Parasitic Diseases 4203 Malondialdehyde
1421 Archaea 1990 Philosophy, Medical
1110 Organic Chemicals 1365 Product Surveillance, Postmarketing
947 Animal Diseases 1118 Work Schedule Tolerance
910 Endocrine System 844 Disasters

Level 8 Level 10
8409 Xenopus laevis 8360 Macaca mulatta
7226 Mice, Mutant Strains 7943 Cercopithecus aethiops
4216 Motor Cortex 2396 Trypanosoma cruzi
2376 Receptors, Antigen, T-Cell, gamma-delta 1530 Trypanosoma brucei brucei
1421 Medroxyprogesterone 17-Acetate 1183 Entamoeba histolytica
1162 Goldfish 4190 Macaca fascicularis
1024 Receptors, Kainic Acid 981 Leishmania donovani

From the eleven levels found in MeSH, we selected four for our experiments—
1, 3, 8 and 10—, and from each we selected seven categories, which we hoped
would allows us to demonstrate differences in classification effectiveness across
levels. Level 10 had the smallest number of categories (32); we selected the seven
categories with the most examples. Level 3 had the most categories (2525). For
levels 1, 3, and 8 we selected seven categories with roughly the same number
of examples as the selected categories at level 10. Table 1 shows the chosen
categories and the number of positive examples used in the experiments. To rule
out other possible semantic influences we made sure that the selected categories
are all unambiguous (that is, they have one, and only one, level in the MeSH
thesaurus).

To build the training material for our experiments, we took a sample of doc-
uments from the Medline corpus used at TREC. One hundred categories were
randomly selected from MeSH. We used around 40 thousands documents that
are classified with these categories, these were used as negative instances. We
made sure that the term distributions in the different MeSH levels in the sam-
ple were statistically the same as in the entire corpus. In the experiments the
positive instances of the chosen category were merged with this sample.

For text representation, we employed Weka [10]. Following standard practice,
documents were turned into word vectors, each consisting of one thousand most
significant words after eliminating stopwords; here, significance was measured
by using TF.IDF. Stemming was not used.

Finally, we carried out single-label classification experiments using the SVM-
Light [5] and BBR [2] classifiers for each of the 28 categories chosen. Both clas-
sifiers have been shown to perform well on the classification task at the TREC
Genomics track [4]. The classification effectiveness is measured in Precision, Re-
call, and F-score, all averaged over all categories per level.
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3 Results

Classification into narrow categories was found to be significantly more effective
than into broad categories: for each level considered, the F-scores for that level
were higher (in many cases significantly so) than the F-scores for all broader levels.

Table 2. Average scores per level (SVM and BBR)

SVM BBR
Level Precision Recall F-score Precision Recall F-score

1 90.33 61.98 72.89 67.50 65.21 66.22
3 90.21 73.93 80.76 75.66 74.64 75.07
8 94.80 85.41 89.78 86.84 85.19 85.94

10 96.80 87.48 91.80 92.71 88.51 90.52

Specifically, Table 2 shows the averaged Precision, Recall, and F-scores for
each of the levels. Observe that the F-scores increase, for both classifiers, as the
category level increases. The two classifiers behave quite differently, however. For
SVM the precision is high for all levels, even for the broadest categories (level 1);
for BBR precision and recall increase almost in sync.

A significant (α = 0.1) difference of 10 points in F-score was found between
level one and level ten. Level one compared with level three and level three
compared with level eight both gave a significant difference of 5 points in F-
score, but with weaker evidence (α = 0.25). No significant difference was found
between levels eight and ten.

For finding a possible explanation for the observed differences in classification
effecitiveness, we carried out an analysis of the TF.IDF scores in the word vectors
used to represent documents. For every category, we ranked the features accord-
ing to their TF.IDF score, and found no differences between the TF.IDF scores
of the most discriminating terms for levels 1 and 3, while the scores for the most
discriminating terms at levels 8 and 10 as much as 50% higher—supporting the
intuition that more specific categories are associated with terms with a higher
discriminatory power.

4 Conclusion

Our findings refute claims by Wibowo and Williams [9] that classification into
broader categories is more accurate than into narrow categories. We explain the
different findings in terms of the fact that 80 of narrow categories used by Wi-
bowo and Williams [9] had only one training example. In our study the number
of positive examples for the narrow categories ranged from 981 to 8360. The
larger amount of narrow category examples can be seen as a positive influence
on the discriminatory power of the features. Also the specific domain of the
MeSH thesaurus should help in that matter.

As to future work, in our research so far we ignored the fact that many
category labels are ambiguous, in the sense that they may occur at different levels
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in the thesaurus: we did not investigate whether the ambiguity of a category
label impacts categorization accuracy. Additionally, for a broad category like
Animal diseases the singular and plural form of the words animal and disease are
both scored separately. Scoring according to the same morphological root could
increase their influence, and we conjecture that multiple word representations [1]
will probably have a positive effect on classification effectiveness here. Finally,
Granitzer [3] uses the hierarchy as a path for classification. More attention could
be advised for top level decisions, also since they are propagated downwards.
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Abstract. We present a prototype system using array comprehensions
to bridge the gap between databases and information retrieval. It al-
lows researchers to express their retrieval models in the General Matrix
Framework for Information Retrieval [1], and have these executed on
relational database systems with negligible effort.

1 Introduction

Information Retrieval (IR) researchers develop methods to assess the degree of
relevance of data to user queries. While ideally such a retrieval model could
be considered ‘just’ a (somewhat complicated) query for a database system, in
practice the researcher attempting to deploy database technology to information
retrieval will stumble upon two difficulties. First, database implementations of
IR models are still inefficient in runtime and resource utilisation if compared to
highly optimised custom-built solutions. The second difficulty, which is the fo-
cus of this paper, is that the set-oriented query languages provided by relational
database systems provide a fairly poor abstraction in expressing information re-
trieval models. Specifically, the lack of explicit representation of ordered data has
long been acknowledged as a severe bottleneck for developing scientific database
applications [2], and we believe the same problem has hindered the integration
of databases and information retrieval.

Recently, Roelleke et al. [1] have developed a mathematical framework that
maps IR concepts to matrix spaces and matrix operations (Matrix Framework
in the remainder). We explain how this theoretical framework to IR can be op-
erationalised in a prototype for array data management in relational database
systems (RAM) [3]. RAM defines operations over arrays declaratively in compre-
hension syntax (see [4]). For example, the expression

A = [ f(x,y,z) + 1 | x<5, y<3, z<10 ]

defines a three-dimensional array, whose axes x, y and z have dimensions 5, 3 and
10, respectively. Each cell (x, y, z) of such an array is filled with the value of the
function f(x,y,z) + 1. While comprehension syntax allows to express array
operations on an element by element basis, the RAM system translates such
element-at-a-time operations to collection-oriented database queries, suited for
(potentially more efficient) bulk processing.

The remainder of the paper demonstrates how the Matrix Framework com-
bines nicely with the RAM system, using the Language Modelling (LM) retrieval
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model (see [5]) as an example. The results apply likewise to the other retrieval
models discussed by [1].

2 Language Modelling in the Matrix Framework

First define matrices L (locations), LT (location-term), LD (location-document)
and QT (query-term) to represent documents d ∈ D and queries q ∈ Q:

L = [li]L×1, LT = [ltij ]L×T , LD = [ldij ]L×D, QT = [qtij ]Q×T

li =1, ltij =

{
0, if tj /∈ li

1, if tj ∈ li
, ldij =

{
0, if li /∈ dj

1, if li ∈ dj

, qtij =

{
0, if tj /∈ qi

1, if tj ∈ qi

(1)

Following the language modelling approach to IR, result matrix RSV contain-
ing retrieval status values for documents d and queries q is defined as

RSV = [rsvdq ]D×Q =

⎡⎢⎣ log P (t1|d1, r) . . . log P (tNt |d1, r)
...

. . .
...

log P (t1|dNd
, r) . . . log P (tNt |dNd

, r)

⎤⎥⎦
D×T

·QT T , (2)

where the probability P (t|d, r) is a linear combination of foreground and
background probabilities P (t|d) and P (t), defined in terms of within-document
term frequency and collection term frequency:

P (t|d, r) = λ · P (t|d) + (1 − λ) · P (t), (3)

using their maximum likelihood estimators

P (t|d) = tf (d, t) =
NL(d, t)
NLD(d)

, P (t) = tf (t) =
NLT (t)

|L| , (4)

where

NL = LDT · LT , NLD = LT · LD, NLT = LT · LT (5)

Here, NL(d, t) denotes the number of locations at which t occurs in d, NLD(d)
the number of locations belonging to document d, and NLT (t) the number of
locations at which t occurs in the collection.

3 Language Modelling in RAM

We now present the corresponding array expressions in RAM. First, introduce
two macros for matrix transposition and matrix multiplication (the pre-processor
expands macro-definitions symbolically):

mxT(A) = [ A(j,i) | i,j ]
mxMult(A,B) = [ sum([ A(n,m) * B(m,p) | m ] ) | n,p ]
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1 LD = ([$Nlocs,$Ndocs], bool) sparse("0",0.01) "LD_table"
F. (1) 2 LT = ([$Nlocs,$Nterms], bool) sparse("0",0.01) "LT_table"

3 QT = ([$Nqueries,$Nterms],bool) sparse("0",0.001) "QT_table"

F. (2) 4 RSV = mxMult( [log(p_rel(d,t)) | d<$Ndocs, t<$Nterms] , mxT(QT) )
F. (3) 5 p_rel(d,t) = ($Lambda * p_dt(d,t)) + ((1.0 - $Lambda) * p_t(t))
F. (4) 6 p_dt(d,t) = NL(d,t) / NL_d(d)
F. (4) 7 p_t(t) = NL_t(t) / $Nlocs
F. (5) 8 NL = mxMult( mxT(LD), LT )
F. (5) 9 NL_d = mxMult( mxT(L), LD )
F. (5) 10 NL_t = mxMult( mxT(L), LT )
F. (1) 11 L = [ 1 | l<$NLocs, x<1 ]

Fig. 1. Matrix Framework-compliant RAM query for Language Modelling retrieval

The LM retrieval model is then expressed as shown in Fig. 1. Each piece of code
is a straightforward rewrite of the formulas in Section 2, as indicated by the
leftmost column.

The upper part of the query (lines 1-3) declares the input matrices (in the
next prototype, a data dictionary will replace explicit declaration of properties
such as axis length, element type, sparsity, and name of the physical table).

The actual retrieval algorithm is implemented by the lower part of Fig. 1
(lines 4-11). The one-to-one relation between such expressions and the formulas
in Section 2 clearly shows that RAM syntax is simple and fully declarative. This
example gives a further evidence of the importance of the declarative nature
of the RAM approach. The array NL t (line 10) is computed as in (5), by the
matrix multiplication LT · LT . However, it is easily verified that such a matrix
multiplication is equivalent to a summation over the L axis, which is natively
supported in RAM: NL_t = [ sum([LT(l,t) | l<$Nlocs]) | t<$Nterms ].

Because the RAM query optimiser detects and removes unneeded arithmetic
operations, the matrix multiplication LT ·LT (potentially more expensive) and
the equivalent summation over the L axis would result in the same physical
query plan (the same considerations hold for the computation of NL d). This
allows us to make the RAM query fully compliant with the Matrix Framework
without compromising the performance.

4 Query Processing

Multi-layer approach. The front-end translates the high level array compre-
hensions into an intermediate array-algebra before final transformation to the
relational domain. This algebraic expression is then rewritten by a traditional
rule-based optimiser. A second step translates the array-algebra plan into the
native query language of the database system. Currently, translations are avail-
able for SQL and (binary) relational algebra. For testing purposes, RAM sup-
ports direct translation into stand-alone programmes (Matlab and C++). A
k-dimensional array is represented as relation R(I1, . . . , Ik, V), where columns
I1, . . . , Ik identify the coordinates of each cell and V contains their values.
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Sparse arrays. While the Matrix Framework is an elegant formalism, represen-
tation of its matrix spaces is only feasible if the materialisation of the absence of
a term can be avoided. Matrices like LT , for instance, are extremely sparse (the
density of the non-0 values is lower than 0.0001%). Therefore, we extended the
RAM prototype with specific query processing techniques to handle sparse arrays.

The relational representation of sparse arrays is relatively easy: tuples
(i1, . . . , ik, v) are only stored if v 	= 0 (more precisely, we allow arrays to be
sparse on any value, not only 0). The evaluation of query plans involving sparse
arrays is however more complicated, to ensure correct results when the input val-
ues are not physically stored. We have found experimentally that the increased
complexity starts to pay off when input array density drops below 20%, while
performance improves dramatically with smaller densities.

The RAM extension for the evaluation of expressions involving sparse arrays
has made it possible for the user to deal with well-defined array structures,
regardless of their theoretical sizes; the low-level, physical details are handled by
the system. Remarkably, the resulting set-based and bulk-oriented query plans
are not dissimilar to what an expert database developer would devise.

5 Summary and Future Work

The Matrix Framework for information retrieval captures a wide spectrum of
IR in a consistent way, including indexing, retrieval, relevance feedback, and
evaluation measures. Also, it establishes a consistent notation for frequencies in
event spaces (see (4)), readily available as building blocks in common libraries
for matrix operations.

Thanks to its array-based data model, the RAM query language remedies
many of the interfacing hurdles encountered when implementing computation
oriented algorithms in database systems. It provides for arrays a level of abstrac-
tion which is similar to that provided by SQL for sets: queries can be expressed
in a declarative manner, such that application logic and physical implementation
are clearly separated, and can be improved independently.

The research presented in this paper demonstrates how RAM provides an el-
egant implementation platform for information retrieval research. It justifies the
development of optimisations, under investigation at present, that are specific
for a matrix-based computational model. Future work topics include the imple-
mentation of sparse arrays evaluation for all backends (currently available only
for relational algebra), and the usage of lightweight data compression provided
by MonetDB/X100 [6], which is expected to be highly effective in the presented
scenario.
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Abstract. Geographic Information Retrieval (GIR) is concerned with the 
retrieval of documents based on both thematic and geographic content. An 
important issue in GIR, as for all IR, is relevance. In this paper we argue that 
spatial relevance should be considered independently from thematic relevance, 
and propose an initial scheme. A pilot study to assess this relevance scheme is 
presented, with initial results suggesting that users can distinguish between 
these two relevance dimensions, and that furthermore they have different 
properties. We suggest that spatial relevance requires greater assessor effort and 
more localised geographic knowledge than judging thematic relevance. 

1   Introduction 

Geographic Information Retrieval (GIR) is a relatively new research area, concerned 
with the retrieval and ranking of documents from collections based on queries that 
specify both thematic and geographic scopes [1,2]. As with any new form of retrieval 
appropriate methodologies and resources are required to evaluate GIR systems [3][4]. 
In IR, test collections are often used to benchmark system performance (e.g. TREC, 
CLEF and INEX), however existing resources do not necessarily distinguish spatial 
aspects of information, an important point to consider when evaluating GIR [5]. 

Assessing the relevance of documents across multiple dimensions is not a new 
problem in IR. For example, INEX has implemented such a scheme to assess both 
structural and conceptual relevance of XML documents. Cai [2] suggests two 
subspaces for GIR which represent two different cognitive aspects of relevance: 
geographic and thematic. In the former, relevance is judged based upon spatial 
relationships (e.g. overlap and adjacency) between the query location and spatial 
footprints identified within a document. It is therefore necessary to assess whether 
different relevance schemes are required to evaluate GIR systems based upon the 
specifically geographic aspects of documents.  

This paper investigates the usability of an assessment scheme which takes into 
account both thematic and spatial relevance for the evaluation of GIR systems. The 
following sections present our proposed relevance scheme and a pilot test evaluating 
the usability of such a scheme, before briefly discussing some aspects of our results 
and considering the implications. 
                                                           
* Research part-funded by EU-IST Projects IST-2001-35047 (SPIRIT) and IST-2002-2.3.1.12 
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2   Relevance Scheme 

Our initial proposed scheme (shown in Table 1) was based on assessing the relevance 
of Web documents and used a three-point scale to indicate the degree of relevance 
(we intentionally did not label the scales as highly relevant, partially relevant, or 
relevant to avoid the influence of preconceived ideas about relevance). 

Table 1. Relevance scheme 

Thematic relevance 
Score 1 A document which contains relevant information about the concept queried AND on its 

own allows you to form a judgment about the document (i.e. requires no external 
knowledge). 

Score 2 A document is relevant, since it points to a resource MENTIONING the concept, but you 
must consult further pages referenced by the document to perform a judgment. 

Score 3 A document does not provide information about the concept provided. 
Spatial relevance 

Score 1 A document refers to a location that is/near the query location AND you think that the 
location in the document has sufficient detail for you to find it on a local map of the area. 

Score 2 A document refers to a location that is in/near the query location BUT you think that there 
is insufficient information for you to find that location on a local map of the area. 

Score 3 A document does not fall within the query location. 

3   Experiment and Results 

A pilot user study was carried out to investigate the effectiveness of the proposed 
scheme. Subjects were asked to make relevance judgments regarding the thematic and 
spatial relevance of 10 documents per topic using the proposed schemes. Each subject 
was given five topics to judge. The judged scores were analysed in relation to their 
distribution across the topics, inter-assessor agreement, ease of assessment, 
confidence in judgments and any difficulties they faced in assessing topics through 
the use of pre-topic, post-topic and post-session questionnaires. 

Documents were retrieved using SPIRIT, a prototype spatially-aware search engine 
[6], based on a set of approximately 20,000 web pages. A set of 10 documents were 
retrieved based for each of the following five topics: 1) Caving in Derbyshire (UK), 
2) Castles in Wales (UK), 3) Skiing near Glencoe (UK), 4) Art festivals in Edinburgh 
(UK), and 5) Music in Montreux (Switzerland).  

In addition, a paragraph-length description of each topic was provided to subjects 
in order to help them make their judgments. Subjects were also allowed to use the 
Internet as a source of geographical knowledge and could also select “Not sure” when 
unable to make an appropriate decision for a particular document. A total of 11 
subjects participated in the experiment giving a total of 1,100 judgments (550 
judgments for each type of relevance). The results of our experiment are as follows. 

3.1   Perception of Subject Assessments 

Subjects were asked three questions: (Q1) Was the three-point scale suitable, (Q2) Were 
the schemes easy to understand, and (Q3) Did you make a judgment confidently? And  
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Table 2. Participants’ perception of the assessment scheme (T: Thematic S: Spatial) 

  Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

Q1 (T) 0 2 0 7 2 
Q1 (S) 0 1 0 7 3 
Q2 (T) 0 0 1 5 5 
Q2 (S) 1 1 0 6 2 
Q3 (T) 0 0 4 6 1 
Q3 (S) 1 2 3 3 2 

results are shown in Table 2. Assessors agreed that a ternary scheme was suitable for 
judging and most found the scheme easy to understand, especially for thematic 
relevance. Assessors appeared to be more confident in judging thematic than spatial 
relevance.  

3.2   Relevance Assessments 

Although our subjects appeared to have been somewhat confident about making 
relevance judgements in both the thematic and spatial cases, on initial investigation of 
our data we found that inter-annotator agreement was in many cases relatively poor (a 
multi-rater Kappa test gave k=0.1886, p<.05 for thematic relevance and k=0.1388, 
p<.05 for spatial relevance). We decided to investigate this contradiction in more 
detail and, to ease analysis, reduced both the thematic and spatial relevance 
judgements to a binary scale. 

Figure 1 shows a histogram illustrating summed relevance judgements for each 
document, where a single judgement of not relevant scored -1, and a judgement of 
relevant scored 1. Thus, 10 documents were judged to be thematically relevant by all 
11 of our subjects. The histogram is biased towards relevant documents since the 
judgements were made on documents retrieved by a GIR system which we expect to 
retrieve at least some relevant documents. However, it is clear that there is 
considerably more inter-annotator agreement for thematic judgements than spatial 
judgements. Furthermore, thematic relevance judgments are only moderately 
correlated with spatial relevance (r= 0.63). 
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Fig. 1. Sum of relevant and non-relevant judgments per document 
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Fig. 2. Distribution of spatial references in documents for topic 1 (mapped as pairs) 

Since it appeared that, although our subjects were happy with the scheme for 
making spatial judgements, in many cases they disagreed about the spatial relevance 
of indidvidual documents, we decided to investigate such judgements in more detail. 
We parsed location names from documents, and where possible geocoded them for 
each of the 10 documents from each topic. Figure 2 shows the results for the 10 
documents retrieved for Topic 1 (caving in Derbyshire). The spatial relevance 
judgement for each of these documents was as follows: (doc:score): 1:2, 2:9, 3:-5, 4:7, 
5:-1, 6:0, 7:5, 8:0, 9:-1 and 10:-7. Therefore, documents 2, 4 and 7 were judged to be 
spatially relevant by more than 2/3 of our subjects, and documents 3 and 10 was 
judged to be spatially irrelevant by more than 2/3 of our subjects. Documents 1, 5, 6, 
8 and 9 are all more or less ambiguous in terms of judgements of spatial relevance. 

4   Discussion 

The spatially relevant documents (2,4,7) all appear to have a small set of locations 
tightly focussed around Derbyshire (indicated in the centre of Figure 2). However, 
much less of a pattern is evident in the case of both the ambiguous or irrelevant 
documents. We suggest that this is because documents which have a well-defined 
geographic focus and are centred on the query location are probably much easier to 
assess, in particular for subjects with less geographic knowledge of the query region. 
Documents referring to many locations appear difficult to assess according to the sub-
ject’s background knowledge of the area resulting in poor inter-annotator agreement. 

These initial qualitative results show that, in general, spatial relevance appears 
more difficult than thematic relevance to judge. However, they also suggest that use 
of a “spatially-aware” relevance scheme is appropriate. Further work is required with 
larger subject and topic groups to refine the scheme and to propose guidelines for 
making appropriate judgements of spatial relevance. 
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Abstract. Rank aggregation is a pervading operation in IR technology. We  
hypothesize that the performance of score-based aggregation may be affected 
by artificial, usually meaningless deviations consistently occurring in the input 
score distributions, which distort the combined result when the individual biases 
differ from each other. We propose a score-based rank aggregation model 
where the source scores are normalized to a common distribution before being 
combined. Early experiments on available data from several TREC collections 
are shown to support our proposal. 

1   Introduction 

Rank aggregation is a pervading operation in IR technology [6]. To name a few  
examples, rank aggregation takes place in the combination of multiple criteria for 
document/query similarity assessment in most search engines; in merging the outputs 
of different engines for meta-search; in the combination of query-based and prefer-
ence-based relevance for personalized search [1]; or even in the combination of pref-
erences from multiple users for collaborative retrieval [5]. Both rank-based and 
score-based aggregation techniques have been explored in prior research on this 
topic [7]. We hypothesize that that the performance of score-based aggregation may 
be affected by artificial, usually meaningless deviations consistently occurring in the 
input score distributions, which do not affect the performance of each ranking tech-
nique separately, but distort the combined result when the individual biases differ 
from each other, and therefore it should be possible to improve the results by undo-
ing these deviations. 

In order to devise a general method to merge the output of several ranking tech-
niques, no a-priori assumption on the interpretation of the scores values should be 
made. The values may correspond to a degree of relevance, probability of relevance, 
odds of relevance, user preference, or other interpretations in a variety of retrieval 
models, often undergoing further mathematical transformations (scaling, dampening, 
logs, etc.) for practical purposes. However, in order to combine the scores, the values 
should be first made comparable across input systems [2], which usually involves a 
normalization step [6]. In this poster we propose an aggregation model where the 
source scores are normalized to a common ideal score distribution, and then merged 
by a linear combination. Early experiments on available data from several TREC 
collections are shown to support our proposal. 
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2   Score Normalization 

In prior work, normalization typically consists of linear transformations [3], and other 
relatively straightforward, yet effective methods, such as normalizing the sum of 
scores (rather than the max) of each input system to 1, or shifting the mean of values 
to 0 and scaling the variance to 1 [6]. But none of these strategies takes into account 
the detailed distribution of the scorings, and is thus sensitive to “noise” score biases. 

A work where the score distribution is taken into account is that of Manmatha et al 
[4], who analyze the probabilistic behavior of search engines, in order to derive a better 
combination of their outputs. They observe that the scoring values have an exponential 
distribution for the set of non-relevant documents, and a Gaussian distribution for the 
set of relevant ones. According to this, a score s output by a given engine for a docu-
ment d is normalized to P (d is relevant | score(d) = s), which is computed by applying 
Bayes’ rule, and approximating the probabilities by a mixture of an exponential and a 
Gaussian distribution, using the Expectation Maximization method. 

Starting from Manmatha’s analysis of typical score distributions, we propose an al-
ternative approach, where input scores are mapped to an optimal score distribution 
(OSD), which we define as the distribution of an ideal scoring function that matches the 
ranking by actual relevance. Of course this is a difficult concept to define, let alone to 
obtain, but we claim that an acceptable approximation can provide good results.  

Our method works as follows. Let Ω be the universe of information objects to be 
ranked, and  the set of rank lists to be combined. Each rank source τ∈  can be 

represented as a bijection 
τ

+
τ Ωτ : Ω →  for some Ωτ ⊂ Ω, where for each x∈Ωτ, τ(x) 

is the position of x in the ranking returned by τ. For each τ∈ , we shall denote by     

sτ : Ω →  the scoring function associated to τ, where we take sτ(x) = 0 if x∉Ωτ. Our 

approach consists of two phases. The first one is performed offline, as follows: 

1. For each ranked list τ∈ , compute the cumulative score distribution Fτ of the 
values sτ returned by the ranking system that outputs τ. This can be 
approximated by running a significant number of calls to each system with 
different random inputs (e.g. queries and documents). 

2. Build a strictly increasing OSD F  : [0,1]  [0,1]. This step is discussed 
below. 

In the second phase, which takes place at query-time, the outputs of the rank sources 
are normalized and merged: 

3. Normalization: For each x ∈ Ω and τ∈ , map the score of each rank source to 

the OSD: ( ) ( ) ( )1F Fs x s x s x−
τ τ τ τ→ = . 

4. Combination: merge the normalized scores, e.g. by a linear combination or 
some other score-based technique. 

The idea of step 3 is illustrated in figure 1. The normalization respects the order of 
each rank list (except in intervals where Fτ is constant, i.e. where by definition it is 
unlikely that any score value should fall), since 1F F−

τ  is monotonically  
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Fig. 1. Mapping scores to a common distribution 

non-decreasing. The resulting scores 1F Fs s−
τ τ τ=  range in [0,1], and their distribu-

tion is F  for all τ∈ , thus undoing potential distributional biases, as intended.  

The choice of F  as an appropriate OSD, in step 2 above, is critical to our method. 
Our proposed approach consists of computing the average distribution of several good 
scoring systems, as a rough approximation to an actual relevance distribution. This can 
be obtained empirically on a statistically significant sample of scoring systems (the ones 
to be merged, or different ones) and input values. In this estimation, the scores of each 
system are first linearly normalized to [0,1] by a variation of the standard normalization 
technique [3], where rather than taking the min and max scores of a single ranked list, 
all the scores collected from the system over several runs are included.  

3   Evaluation and Results 

We have tested our techniques in four different test collections from the TREC Web 
Results, namely TREC8, TREC9, TREC9L, and TREC2001. For the comparative 
evaluation we have tried our technique with two reference combination functions after 
the normalization step, to which we will refer as: a) DCombSUM, where the fused 

score is computed as ( ) ( )s x s xτ
τ∈

= , i.e. our score normalization step is fol-

lowed by the so-called CombSUM method [6]; and b) DCombMNZ, where s (x) = 

( ) ( )h ,x s xτ
τ∈

, and h(x, ) = ( ){ }| 0s xττ∈ >  is the number of engines that 

return x, a technique named as CombMNZ in prior work [6]. 
We have compared these functions with other ones where the same combination 

step is used, but a different normalization method is applied. As a benchmark for 
comparison, we have taken the results published in [7], which we label as SComb-
SUM (CombSUM with standard score normalization), RCombSUM (CombSUM with 
Rank-sim normalization), and SCombMNZ (CombMNZ with standard score normali-
zation). Table 1 shows the average results over the four collections. It can be seen that 
both DCombSUM and DCombMNZ are globally better that the other techniques. 
Although we only show the averaged results, this behavior is consistent over the four 
collections. DCombMNZ is only surpassed on average by SCombMNZ in TREC 
2001, while the performance of DCombSUM, which could be thought of as a non-
tuned version of our algorithm, performs slightly below DCombMNZ, but still glob-
ally better than any other of the benchmarks taken from [7]. 
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Table 1. Average precision for 10 trials of the combination of 2 to 12 rank lists. The results are 
averaged over the four TREC collections. 

 2 4 6 8 10 12 Avg 
SCombSUM 0.2598 0.2886 0.3084 0.3172 0.3204 0.3241 0.3031 
RCombSUM 0.2567 0.2884 0.2847 0.2877 0.2971 0.2994 0.2857 
SCombMNZ 0.2599 0.2884 0.3058 0.3176 0.3156 0.3231 0.3017 
DCombSUM 0.2614 0.2942 0.3096 0.3184 0.3237 0.3268 0.3057 
DCombMNZ 0.2637 0.2979 0.3090 0.3194 0.3228 0.3268 0.3066 

5   Further Work 

The possibilities for the continuation of this work are manifold. Studying score dis-
tributions is a research topic by itself. For instance, we foresee that a finer, more 
specialized analysis of score distributions could be achieved by identifying and sepa-
rating certain conditions on which the distribution may depend, such as properties of 
the queries (e.g. query length), the search space, the result set, or other domain-
specific factors. Also, we are currently exploring techniques where the coefficients 
in the linear combination are a function of application-specific variables of the rank-
ing system, such as the uncertainty in the rankings [1].  
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Abstract. Personal information needs depend on long-term interests and on cur-
rent and future situations (contexts): people are mainly interested in weather 
forecasts for future destinations, and in toy advertisements when a child’s birth-
day approaches. As computer capabilities for being aware of users’ contexts 
grow, the users’ willingness to set manually rules for context-based information 
retrieval will decrease. Thus computers must learn to associate user contexts 
with information needs in order to collect and present information proactively. 
This work presents experiments with training a SVM (Support Vector Ma-
chines) classifier to learn user information needs from calendar information. 

1   Introduction 

If asked, people can usually explain why they were looking for certain pieces of 
information. Computer systems also need to take into account these cause-and-effect 
relations as they become increasingly capable of context recognition. However, 
recommender and IR systems do not detect the user context via wired networks, 
while mobile devices are aware of user contexts, but not aware of user information 
needs because, with the exception of mobile context-based reminding and location-
based guiding systems, it is mainly a desktop that is used for information search 
purposes.  

We suggest that user context data should be connected to information retrieval, so 
that dependences between them can be learned and used in recommender systems and 
for proactively collecting and uploading to an appropriate mobile device multimedia 
and information which the user might be interested in while on the move. This ap-
proach poses the following research problems: first, which context types (among the 
many contexts which it is possible to detect) affect user interests most of all; second, 
what are the advantages and disadvantages of different machine learning methods that 
could be applied to the task; and third, which threats or benefits to privacy are in-
volved in such data linkages. Using context data for personalisation purposes is not 
yet an active area of research, but its importance has recently been acknowledged. 
Work [1] suggests using social context by merging the profiles of users whose indi-
vidual interests are known beforehand; works [2] and [3] present benefits of learning 
the dependence of TV programme selection on day and time. The work [4] proposes 
that user interests can be modelled in context as multidimensional spaces. 
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2   Summary of User Interviews 

We found during user interviews that users are interested in having a proactive infor-
mation/multimedia retrieval system provided that it will not require much prior con-
figuration and will be unobtrusive (that is, it will collect and store information and 
multimedia until the user needs it or until it becomes outdated). Such offline delivery 
can be useful e.g. in cases when a user needs guiding or wants to watch videos and to 
read news while on the move. A network connection can be too costly or imperfect, 
e.g. problems are common underground and in the wild. Moreover, wireless connec-
tions are not allowed in aeroplanes or in some hospitals. Proactive context-based 
Multimedia and Information Retrieval and corresponding application goals could 
include the following: 

1. Learning of complex dependences within a set of metadata on a set of contexts. 
This can include regular routines (e.g. checking the weather forecast in the morning of 
every workday to decide how to dress the children, or looking for news on interesting 
topics during breakfast), or not so regular (such as the selection of videos for several 
family members to watch together, or the selection of home videos to show to guests, 
or looking at news during free time at work). The application goal is to learn desired 
topics for different sets of people and other factors, such as when information is 
needed, the time available (e.g. a 10-minute digest on a workday morning vs. more 
detailed information at weekends) and event dependence (e.g. Christmas videos in 
Christmas time).  

2. Learning of the dependence of a set of metadata on a particular context, usually 
an event, either in the user’s life (weather forecast for a destination), or a global event 
(people often watch news about a major terrorist attack even if they rarely watch news 
generally). The application goal is to learn person-dependent links between events and 
desired information, and also when the user needs this information: some people check 
the weather and collect things at the last moment, while others do so in advance.  

3. Privacy concerns (e.g. to hide completely the existence of erotic or cruel videos 
from children or girlfriends). The goal here is not to suggest anything if it was not 
retrieved previously in a similar social context. 

3   Learning of Links Between Contexts and IR 

User context is a complex notion described by many parameters. We have chosen to 
represent context as a vector in a multidimensional space which points at certain top-
ics of user interests. The choice of dimensions was made on the basis of user inter-
views:  

• time (time of day; day of week; time available) 
• event (personal event; close person event (“wife’s birthday”); world-wide 

event (“crash of twin towers”). 
• social context (people located together or involved in the same activity); 
• location (e.g. at home, at work, on the move) 
• activity (e.g. gymnastics needs to be accompanied by rhythmic music)  
• device (desktop; PDA; phone) 
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Each of these contexts can refer to a user’s current situation or future situation, or 
even past situation for some applications (e.g. a reminder to take the latest holiday 
photos when going to visit friends). We have selected only context types which are 
fairly easy to detect, e.g. social context recognition is described in [5]. Each case of 
information retrieval is associated with a long list of contexts, for example: 

Time of Day: morning; Day of week: Monday; Location: work; Device: desktop; 
Social Context: alone; Near Future Event: work trip to Brussels; its Social Context: 
alone; Near Future Event: child's birthday; its Social Context: family, relatives... 
Similar, corresponding list of retrieved information might contain many descriptors, 
e.g.: Shopping Pages: books; Source: Amazon; News: Sports: skiing; Source: local 
newspaper; News: weather Brussels; Source: CNN.... 

The initial data were collected by means of user interviews: users reported infor-
mation/multimedia retrieval cases and corresponding contexts over a period of one 
week. To these cases we added 30% noise (retrieval of similar and arbitrary informa-
tion in arbitrary contexts), taking into account that some cases were not described 
correctly or were simply forgotten. This resulted in 210 IR cases on 45 topics, among 
which were ten favourite (almost everyday) topics and one event-related topic.  

For learning associations between contexts and information/multimedia retrieval 
we used SVM (Support Vector Machines) and its implementation in the TORCH 
library of machine learning methods [6], because of the following advantages: 

• SVM has good generalization capabilities and should thus be able to provide 
valuable recommendations even after training on only a small amount of data 

• SVM allows utilizing user feedback and treating most recent examples as 
more important by assigning different penalties for misclassification of differ-
ent examples 

• SVM training is very fast and allows retraining of the model as often as addi-
tional information comes in, at least during the initial phases of learning (less 
than several thousand examples), when this is especially important.  

We trained SVM to provide recommendations on each topic separately (distinct 
models for news, documents, videos, etc). Since each topic has its own model, each 
new IR case means that either a few corresponding models need to be updated or new 
models created, but not the whole system. During training several “good” sets of 
contexts (sets which perform sufficiently well on a randomly selected subset of train-
ing data) are selected for each topic. During testing four test examples per topic of 
interest were generated, as follows: two contained all the contexts described by a user 
as important predicates for an IR case, while contexts described as irrelevant were 
different, whereas in the other examples all the contexts were different.  

We tested the ability of the method to learn the links between the list of relevant 
contexts and the list of relevant topics for these contexts; to learn one relevant context 
(e.g. Near Future Event: work trip to Brussels) from among many irrelevant ones in 
order to provide specific information (News: weather Brussels); and to learn when the 
system should not present certain information. We have found that SVM learns regu-
lar user activities fast (the five favourite topics for mornings and three for evenings 
were always among the top twelve suggestions for the corresponding context, while 
two other favourite topics retrieved in random contexts were not learned as favourites 
based on one week data). At the moment, however, the method lacks the ability to 
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learn when it should not present information, which is not a desirable situation as far 
as privacy protection is concerned, and treats all context types as equally important. 
We therefore added the rule that the method should not recommend a given topic (i.e. 
it can only reject it) if there are no positive examples in same social context.  

As for the need to find one relevant context for a certain IR case, such as (weather 
Brussels) for a trip, the method has learned to associate “trip to Brussels soon” with 
interest in weather Brussels after meeting with only three examples (this was among 
top five suggestions for a similar context). One good feature of SVM is that it does 
not forget training examples easily (it is mainly engaged in detecting differences be-
tween examples). In contexts where there were a few training examples on different 
topics, however, the suggestions were unpredictable and unusable. 

4   Conclusions 

This work has suggested trained classifier-based approach to learning the dependence 
of user information needs on user context, and presented the choice of most important 
context dimensions. The first experiments made with one week history of IR cases, 
calendar data and social context, collected via user interviews, suggest that the classi-
fier can learn topics which are generally interesting to a user in different contexts, and 
can select the context dimensions which are most important for current topic. How-
ever, the classifier currently can not learn fast which topics should not be presented in 
certain contexts, and thus additional rule for user privacy protection was added on top 
of the learned models. Another drawback is that the method generates as many mod-
els as there are users' topics of interests, which allows for system flexibility but re-
quires disk space. The scalability of the method; its ability to adapt to concept drift 
and its applicability to real-time recommender systems need to be tested further. 

The work has been carried out in EU project Amigo, contract number IST 004182. 

References 

1. Masthoff, J., Group Modeling: Selecting a Sequence of Television Items to Suit a Group of 
Viewers, User Modeling and User-Adapted Interaction 14: 37-85, 2004 

2. Goren-Bar, D., Glinansky, O., FIT-recommending TV programs to family members, Com-
puters & Graphics 28 (2004) 149-156 

3. Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A., Negro, B., 
User Modeling and Recommendation Techniques for Personalized electronic Program 
Guides, Personalized Digital Television, Vol. 6, 2004 

4. Adomavicius, G., Sankaranarayanan, R., Sen, Sh., Tughilin, A., Incorporating Contextual 
Information in Recommender Systems Using a Multidimensional Approach, ACM Trans. 
Inf. Syst., Vol. 23, No. 1. (January 2005), pp. 103-145 

5. Mäntyjärvi, J., Gfeller, B., Social Cliques: Group Awareness for Mobile Terminals, EI 2005 
6. http://www.torch.ch/ 



 

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 561 – 564, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Supporting Relevance Feedback in Video Search 

Cathal Gurrin1,2, Dag Johansen1, and Alan F. Smeaton2 

1 Dept. of Comp. Sci, Universitetet i Tromsø, 9037 Tromsø, Norway 
dag@cs.uit.no 

2 Centre for Digital Video Processing, Dublin City University, 
Glasnevin, Dublin 9, Ireland 

{cgurrin, alan.smeaton}@computing.dcu.ie 

Abstract. WWW Video Search Engines have become increasingly common-
place within the last few years and at the same time video retrieval research has 
been receiving more attention with the annual TRECVid series of workshops. 
In this paper we evaluate methods of relevance feedback for video search en-
gines operating over TV news data. We show for both video shots and TV news 
stories, that an optimal number of terms can be identified to compose a new 
query for feedback and that in most cases; the number of documents employed 
for feedback does not have a great effect on these optimal numbers of terms. 

1   Introduction 

Within the last few years we have seen the major search engines provide video 
searching and we are now able to search through large collections of video as if 
searching for web pages. At the same time, video retrieval research has continued 
apace, fostered to a great extent, by the TRECVid series of workshops. One aspect of 
interactive video retrieval systems, both research systems and WWW video search 
engines, has been the facility for a user to engage in relevance feedback. The research 
we present in this paper evaluates the effect of query size on relevance feedback per-
formance for video archives of TV news shots and TV news stories where, like 
WWW video search engines, retrieval uses text surrogates of the video data. We ex-
amine scenarios where a user may choose to feedback one video document, or more 
than one video document in a relevance feedback process. Typically single document 
feedback is employed in WWW video search, whereas multi-document feedback has 
been employed primarily in research systems. For recommendation of video content 
based on user histories, the ability to automatically generate meaningful (and optimal) 
queries based on multiple user history documents is an important consideration and 
motivates this research.  

Major search engines (such as Google and Yahoo!) have recently begun to provide 
video retrieval services. In addition there are a number of dedicated video search 
engines such as Truveo.com and Blinkx.com. WWW video search engines normally 
operate using a text surrogate of a video and process textual user queries. One possi-
ble option for generating text surrogates is the ASR (Automatic Speech Recognition) 
text from the audio track of the video; however the most widely used technique uses 
the surrounding text from a web page, in a similar manner to the WWW image search 
engines. Search and relevance feedback is then supported using these text surrogates. 
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Research into video retrieval has been ongoing since the early 90s and two of the best 
known projects are Informedia [1] from CMU the Físchlár [2] Digital Video suite from 
DCU. Since 2001, the annual TRECVid Workshop [3] has fostered and encouraged 
such research by providing video test collections and a comparison and evaluation 
framework for participants. Many research video retrieval systems (e.g. [2]) support 
single video document feedback, but also ‘more like these’ relevance feedback where 
more than one document can be selected for feedback. Conventional relevance feedback 
techniques, when presented with a video document (a text surrogate), or many video 
documents, can then select terms to append to a query or compose a new query. We are 
interested in identifying the optimal number of terms (for both video shots and video 
news stories) used to compose a new query from text surrogates of video documents and 
how the number of feedback video documents influences this. 

2   Relevance Feedback Experiment from Digital Video Libraries 

The data used for this experiment was the TRECVid 2004 test collection, (33,367 
video shots from TV news video and 24 topics). We represented each video shot by a 
document (textual surrogate) generated from the ASR transcript. In addition, we con-
structed a similar test collection of 1,757 news stories (with relevance judgments) 
from the TRECVid 2004 video shots, using predefined manually generated story 
boundaries (which excluded story transition shots). The basic text retrieval engine 
employed for this work implemented BM25 [4] with parameters trained on the 
TRECVid 2003 collection, which was similar in nature and size to TRECVid 2004. A 
custom stopword list was employed, based on the SMART list, but employing thir-
teen additional terms and the Porter stemmer was applied.  

To evaluate relevance feedback, we automatically modeled a user selecting from 
one to nine video documents for feedback and examined system performance when 
between one and thirty terms were selected from these surrogates (270 evaluations). 
This feedback process generated a new query, not an expanded version of the original 
query. We assumed that the user would only feedback relevant video documents and 
that the user’s information need, as expressed in the TRECVid topic did not change 
during the feedback process. Therefore, we only selected relevant (judged) video 
documents for feedback from the top ranked videos returned by the BM25 retrieval 
engine for each of the 24 topics and evaluated performance using the relevance judg-
ments (which excluded the video documents already chosen for feedback). For feed-
back of 1 to 3 video documents we evaluated 5 different random combinations of 
documents from the top 5 relevant documents and averaged the results1. Feedback of 
4 to 9 video documents was performed similarly, though we evaluated 10 different 
random combinations from the top 10 relevant documents.  

Two feedback techniques were examined for this study, TF-IDF and a variation on 
Robertson’s Relevance Weight formula [4]. These algorithms are used to select the N 
most useful terms from the feedback documents to compose a new query. The TF-
IDF algorithm employed log normalised TFs. The second algorithm incorporates a 
                                                           
1 E.g. two document feedback: 5 random pairs of unique documents from the top 5 relevant 

documents were chosen and evaluated for all 1-30 terms with the results averaged across the 
five pairs of documents producing 30 results (1-30 terms) for two document feedback. 
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log nomalised TF weight into Robertson’s RW formula and will be called TFRW. 
Having (r=R=0) where N is the size of the collection and n is the number of segments 
that term i occurs in, the formula is: 

TFRWi = log(TFi)×log((0.5 /(N − n + 0.5)) /((n + 0.5) × 0.5) . (1) 

Our findings suggest that there is no significant difference between the performances 
of these techniques in the experiments we present, and therefore we focus on TFRW 
in our results, which performed marginally better than TFIDF. 

2.1   Shot-Level and Story-Level Feedback 

The shot-level search engine achieved a MAP of 0.0465 over the 24 TRECVid 2004 
topics (optimal parameter MAP is 0.0511). While low in absolute terms this is compa-
rable to the expected performance of an automatic system on the TRECVid 2004 data.  

Examining the results in detail (Fig. 1), it is clear that performance increases sig-
nificantly for relevance feedback of shots as terms are added up to a maximum of 7-8 
terms, after which performance decreases or remains relatively static, regardless of 
the number of video documents chosen for feedback. The addition of any additional 
terms will not only affect query response time but also effectiveness. 
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Fig. 1. Plot of 1,3,5,7 & 9 video shots chosen for feedback. The average MAP is shown as the 
number of feedback terms increased up to twenty (2,4,6 &8 removed for clarity). 

The 2004 story-level search engine achieved a MAP of 0.2310 when using the 2003 
parameters (optimal parameter MAP is 0.2318). With TV news story video, the opti-
mal performance occurs between 10 and 13 terms in the feedback query (see Fig. 2).  
 

 

Fig. 2. Plot of 1,3,5,7 & 9 TV news story videos chosen for feedback. The average MAP is 
shown as the number of feedback terms increased up to twenty (2,4,6 & 8 removed for clarity). 
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The notable exception is when a single video document is chosen for feedback, when 
the optimal number of terms was found to be 30, though only a minor improvement in 
performance (6%) was noted over queries comprised of the top 13 terms. Adding 
additional terms above the top 30 has a negative effect on MAP. This negative effect 
increases with the number of video documents chosen for feedback. 

3   Conclusions and Future Work 

The purpose of this experiment was to evaluate the influence of query size on rele-
vance feedback for video retrieval systems that index video shots or news stories.  We 
have shown that for shots a system will perform at or near its peak when 7-8 terms are 
used to generate a new feedback query and for TV news stories that the peak can be 
found in most cases when 10-13 terms comprise the query. The number of video 
documents chosen for feedback does not affect these optimal numbers of terms no-
ticeably (except for a single news story). The addition of more terms (beyond the 
optimal) from feedback video documents will be expected to hamper performance, 
while also having a negative effect on processing time. This is an important consid-
eration for commercial WWW video search engines for whom processing time for 
each query is an important consideration. Future work planned includes optimising 
the feedback algorithms for general video data and we also plan to evaluate video 
search and relevance feedback on real-world WWW video content, with real users.  
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Abstract. Current research in the field of automatic plagiarism detection for text
documents focuses on algorithms that compare plagiarized documents against
potential original documents. Though these approaches perform well in iden-
tifying copied or even modified passages, they assume a closed world: a refer-
ence collection must be given against which a plagiarized document can be
compared.

This raises the question whether plagiarized passages within a document can
be detected automatically if no reference is given, e. g. if the plagiarized passages
stem from a book that is not available in digital form. We call this problem class
intrinsic plagiarism detection. The paper is devoted to this problem class; it shows
that it is possible to identify potentially plagiarized passages by analyzing a single
document with respect to variations in writing style.

Our contributions are fourfold: (i) a taxonomy of plagiarism delicts along
with detection methods, (ii) new features for the quantification of style as-
pects, (iii) a publicly available plagiarism corpus for benchmark comparisons,
and (iv) promising results in non-trivial plagiarism detection settings: in our
experiments we achieved recall values of 85% with a precision of 75% and better.

Keywords: plagiarism detection, style analysis, classifier, plagiarism corpus.

1 Introduction

Plagiarism refers to the use of another’s information, language, or writing, when done
without proper acknowledgment of the original source [10]. A recent large-scale study
on 18,000 students by McCabe shows that about 50% of the students admit to plagiarize
from extraneous documents [5]. Plagiarism in text documents happens in several forms:
plagiarized text may be copied one-to-one, passages may be modified to a greater or
lesser extent, or they may even be translated. Figure 1 shows a taxonomy of plagiarism
delicts, which organizes delicts and possible detection methods.

State of the Art in Plagiarism Detection. The success of current approaches in pla-
giarism detection varies according to the underlying plagiarism delict. The approaches
stated in [1; 3] employ cryptographic hash functions to generate digital fingerprints
of so-called text chunks, which are then compared against a database of original text
passage fingerprints. Since cryptographic fingerprints identify a text chunk exactly, the
quality of these approaches depends on offsets and sizes of chunks within both plagia-
rized and original texts. An approach given in [8] overcomes these limitations: unlike
cryptographic fingerprints, the proposed method generates fingerprints that are robust
against modifications to some extent.

M. Lalmas et al. (Eds.): ECIR 2006, LNCS 3936, pp. 565–569, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Plagiarism delict
Detection method

Accurate copy
Identity analysis

Modified
copy

Small part of document
Local identity analysis

Large part of document
Global identity analysis: Document model comparison (suffix-tree)

Language translation
Structure analysis

Transformation
Similarity analysis

w/o reference corpus:
Style analysis

with reference corpus:
Chunk identity (MD5-Hash)

Small part of document
Local similarity analysis

Large part of document
Global analysis: Document model comparison (vsm)

w/o reference corpus:
Style analysis

with reference corpus:
Fuzzy-Fingerprint

Fig. 1. A taxonomy of plagiarism delicts and analysis methods [7]. The encircled parts indicate
our contributions: the detection of plagiarism delicts without having a reference corpus at hand.

Intrinsic Plagiarism Detection. The mentioned approaches have one constraint in
common: they require a reference collection of potential original documents. Observe
that human readers may identify suspicious passages within a document without having
a library of reference documents in mind: changes between brilliant and baffling pas-
sages, or the change of person narrative give hints to plagiarism. Situations where such
an intrinsic plagiarism detection can be applied are shown encircled in Figure 1.

Basically, the power of a plagiarism approach depends on the quality of the quan-
tified linguistic features. We introduce features which measure—simply put—the cus-
tomariness of word usage, and which are able to capture a significant part of style
information. To analyze the phenomenon of intrinsic plagiarism detection we have con-
structed a base corpus from which various application corpora can be compiled, each
of which modeling plagiarism delicts of different severity. Section 3 reports on experi-
ments that we have conducted with this corpus.

2 Quantification of Writing Style

Intrinsic plagiarism detection can be operationalized by dividing a document into “nat-
ural” parts, which may be sentences, paragraphs, or sections, and analyzing the variance
of certain style features. Within the experiments presented below the size of a part is
chosen rather small (40-200 words), which is ambitious from the analysis standpoint—
but which corresponds to realistic situations.

Stylometric Features. Stylometric features quantify aspects of writing style, and some
of them have been used successfully in the past to discriminate between books with
respect to authorship [4]. Most stylometric features fall in one of the following five
categories: (i) text statistics, which operate at the character level, (ii) syntactic fea-
tures, which measure writing style at the sentence-level, (iii) part-of-speech features to
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quantify the use of word classes, (iv) closed-class word sets to count special words, and
(v) structural features, which reflect text organization.

In addition to these features we now introduce a new statistic, the averaged word fre-
quency class, which turned out to be the most powerful concept with respect to intrinsic
plagiarism detection that we have encountered so far.

Averaged Word Frequency Class. The frequency class of a word is directly connected
to Zipf’s law and can be used as an indicator of a word’s customariness. Let C be a
text corpus, and let |C| be the number of words in C. Moreover, let f(w) denote the
frequency of a word w ∈ C, and let r(w) denote the rank of w in a word list of C, which
is sorted by decreasing frequency.

In accordance with [9] we define the word frequency class c(w) of a word w ∈ C
as #log2(f(w∗)/f(w))$, where w∗ denotes the most frequently used word in C. In
the Sydney Morning Herald Corpus, w∗ denotes the word “the”, which corresponds
to the word frequency class 0; the most uncommonly used words within this corpus
have a word frequency class of 19. A document’s averaged word frequency class tells
us something about style complexity and the size of an author’s vocabulary—both of
which are highly individual characteristics [6].

Note that, based on a lookup-table, the averaged word frequency class of a text pas-
sage can be computed in linear time in the number of words. Another salient property
is its small variance with respect to text length, which renders it ideal for our purposes.

3 Experimental Analysis

Since no reference collection is available for our concern, we constructed a new corpus,
oriented at the following corpus-linguistic criteria [2]: (i) authenticity and homogene-
ity, (ii) possibility to include many types of plagiarism, (iii) easy processable for both
human and machine, (iv) clear separation of text and annotations.

We chose genuine computer science articles from the ACM digital library that we
“plagiarized” with both copied as well as reformulated passages from other ACM com-
puter science articles, contributing to criterion 1. With respect to criteria 2-4, all docu-
ments in the base corpus are represented in XML and validate against an XML schema.
The schema declares a mixed content model and provides element types for plagiarism
delict, plagiarism source, and other meta information.

An XML document with k plagiarized passages defines a template from which 2k

instance documents can be generated, depending on which of the k plagiarized parts are
actually included. Instance documents contain no XML tags, in order to ensure that they
can be processed by standard algorithms. Instead, a meta information file is generated
for each, containing information about the exact locations of plagiarized passages.

Experiments. For the experiments presented here more than 450 instance documents
were generated each of which containing between 3 and 6 plagiarized passages of differ-
ent lengths. During the plagiarism analysis these instance documents were decomposed
into 50 - 100 passages from which the feature vectors were computed; the feature set
included average sentence length, 18 part-of-speech features, average stopword number,
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Fig. 2. Analysis performance versus severity of plagiarism delicts: The plot shows the averaged
values for precision and recall of a series of experiments, where the sizes of the plagiarized
passages are successively increased

Table 1. The table shows significance scores for the three best-discriminating features. Lower
Lambda-values and higher F-ratios indicate better performance.

Ranking Feature Wilks Lambda F-Ratio significant

1 av. word frequency class 0.723 152.6 yes
2 av. preposition number 0.866 61.4 yes
3 av. sentence length 0.880 54.0 yes

and the averaged word frequency class. Figure 2 illustrates good detection rates for pla-
giarism delicts in terms of precision and recall with respect to the plagiarism severity.
These results were achieved using a classical discriminant analysis; however, an SVM
classification showed similar results. Table 1 quantifies the discrimination power of the
best features.
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Abstract. Current information retrieval systems make no measurement of the
user’s response to the searching process or the information itself. Existing psy-
chological studies show that subjects exhibit measurable physiological responses
when carrying out certain tasks, e.g. when viewing images, which generally result
in heightened emotional states. We find that users exhibit measurable biometric
behaviour in the form of galvanic skin response when watching movies, and en-
gaging in interactive tasks. We examine how this data might be exploited in the
indexing of data for search and within the search process itself.

1 Introduction

There is currently significant interest in the topic of context in information retrieval
(IR). It is widely held that taking account of the context in which IR takes place might
be used to increase search effectiveness. There are a great range of context features
which could potentially be incorporated into the search, although these in general all
seek to better express and exploit the user’s information need within the IR system.
Such features include information details such as the ongoing interests and previous
searches of a specific user, but of interest in this paper are features associated with
measurable biometric responses to information presentation and the search process.

Recent neuro-scientific research has demonstrated relations between measurable
physiological attributes and psychological states (often related to emotional or affective
states) [1] [2]. A number of measurements can be made which are shown to be related
to these states, including galvanic skin conductivity (GSR), skin temperature and heart
rate. These features can be used to measure variations in user arousal (activity levels)
and valence (positive vs negative response) which have been shown to be correlated
with affective state [3]. Using these measurements studies have demonstrated a number
of results of potential relevance in IR. For example, using machine learning, models
can be built that enable a predefined group of emotional states to be recognized with
good reliability [4], a user’s frustration response to interacting with a poorly performing
computer application can be recognised [5], and variations in physiological responses
to different images presentation to a user can be captured [6].

In this paper we describe two of our current experiments to capture biometric in-
formation which can be exploited in IR applications. The first of these relates to the
indexing of data and the second explores biometric response in search.
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2 Measuring Biometric Response

The biometric responses most easily captured and associated with emotional stimuli are
GSR, skin temperature and heart rate. In our work we are currently using a SenseWear
PRO2 armband produced by BodyMedia Inc. [7]. This monitors GSR, skin temperature,
heat flux (loss), and acceleration. The SenseWear PRO2 armband is a small lightweight
device which straps unobtrusively to the back of the upper arm. Sensors on the back of
the device monitor user response. GSR is measured using electrical skin conductance
(in μSiemens) between two electrodes placed on the skin - associated with sweat gland
activity. Changes in the levels of sweat in the eccrine sweat glands have been shown
to be linked to measures of emotion, arousal, and attention. The rate of sampling can
be varied, and we informally optimised this to capture short variations in signals. The
captured data is uploaded to a PC for analysis and further processing. We find that GSR
is more significant than skin temperature, and for reasons of space only include GSR
results here. We are also exploring the use of separate heart rate monitors, but we do
not describe results of this work here.

3 Measuring Affective Response to Movies

Documents in IR are conventionally indexed in terms of objective features appearing
in the documents; words or phrases in text documents, or objects and named individu-
als and places in images and video. Indexing features can potentially be augmented by
describing more subjective features such as their emotional content or user response.
In related work our group are currently exploring the affective labelling of movies [8]
based on their audio-visual content. Indexing using features of this type enables search-
ing, for example, for exciting or sad sections of a movie. In this paper we introduce our
study of movies based on user biometric response.

Based on the observation in previous work that users respond in measurable ways to
visual stimuli [6], we have recently recorded the responses of small groups of viewers
watching a wide range of movies using the BodyMedia device and heart rate monitors.
As an example of the initial output of this work, Figures 1 and 2 show the GSR response
of two viewers of the first 10 minutes of the film Finding Nemo. We can see considerable

Fig. 1. Finding Nemo: Viewer 1 Fig. 2. Finding Newo: Viewer 2
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Fig. 3. Raw GSR signal Fig. 4. Low-pass filtered GSR Fig. 5. FFD of filtered GSR

variation in these two graphs. This difference between individuals is to be expected, and
means that it is not possible to directly compare GSR measurements across individuals
(there are no “normal” baselines). However, there is a significant consistent response
after around one minute which we know to correspond to a very significant event in the
film. While we can clearly see this event and discriminate from it personal variations in
GSR caused by less significant events in the movie or from the user’s environment, a
key challenge is to do this automatically.

In order to better understand variations and detect significant events, we conducted
an investigation of 10 individuals watching one movie. For the collected data we mea-
sured average GSR range, mean GSR, and the size and rate of peaks. An example
result is shown in Figures 3, 4 and 5. Figure 3 is the raw signal for one subject,
Figure 4 shows the results of using a low-pass filter to remove high frequency noise,
finally Figure 5 shows the absolute value of the first forward difference (FFD) showing
the size of changes between consecutive points. The FFD values can be thresholded
to include only large changes. We explored variations in absolute and relative thresh-
old values. Analysis across our test subjects revealed similar levels of GSR activity,
although there were significant variations in mean level and variation, indicating that
the GSR must be personalised to individuals.

Variations in affective state will generally be gradual, and thus it is tempting to con-
sider applying a smoothing function to the GSR output to take account of this, as is
applied in [8]. However, while affective state may vary gradually, the results indicate
that GSR responses are rapid pulses. We are continuing to explore methods to identify
the significant events in a GSR output. A further consideration is that in order to be able
to relate biometric response to specific classes of affective state, we need to relate it to
arousal and valence levels [3].

4 Interactive Task Analysis

Previous work has shown that users exhibit anticipatory GSR responses to risky deci-
sions, before they are consciously aware that the decision is a risky one [2]. This is an
interesting result for IR. For example, can we exploit this information so that a computer
is aware via GSR readings of a pattern in a users search results before they are conscious
of it? If there is a pattern in the search results that the user is not consciously aware of
and the biometric measurements can pick up, can we use this usefully in retrieval?
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Fig. 6. GSR response for tasks with negative reward

In order to explore anticipatory response measurements, we set out an investigation
with individuals performing a timed puzzle where a “negative reward” was adminis-
tered for failure. Participants perform a Google image search to find 5 images within 3
minutes, and a strategy game to reach level 2 in 60 seconds. The result of the experiment
for one subject is shown in Figure 6, in this graph there are visible peaks in GSR before
anticipated negative rewards, but not before unexpected ones. Having demonstrated that
we can capture anticipatory response in a highly stressed task, we plan to investigate its
potential appearance and exploitation in interactive search.

5 Conclusions and Current Work

Our investigation of biometric response has so far demonstrated that we can observe
measurable features in response to events in movies, and within engaging computer
mediated tasks. We are currently examining the results of our collection of biometric
data for a large number of movie viewers, and exploring further methods for identifying
significant features in the signals. We are also planning to record biometric signals
within an image search task requiring high levels of cognitive engagement.
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Abstract. A new Relevance Feedback (RF) technique is developed to improve 
upon the efficiency and performance of existing techniques. This is based on 
propagating positive and negative weights from documents judged relevant and 
not relevant respectively, to other documents, which are deemed similar 
according to one of a number of criteria. The performance and efficiency 
improve since the documents are treated as independent vectors rather than 
being merged into a single vector as is the case with traditional approaches, and 
only the documents considered in a given neighbourhood are inspected. This is 
especially important when using large test collections. 

1   Introduction 

In Information Retrieval (IR), documents are usually retrieved using lexical matching 
(LM), where terms in a user's query are matched with those in a set of documents.  
Using a standard interface for Relevance Feedback (RF), the user will mark the 
retrieved documents as either relevant or non-relevant [1]. In a positive RF, index 
terms are taken from documents deemed relevant, and added to the initial query. The 
search process is then repeated using this new query. It is also possible to make use of 
documents declared not relevant, by removing index terms in those documents from 
the query. It has been found that standard RF algorithms usually do not perform any 
better given the evidence of negative judgments [2]. This poster describes a new RF 
technique that outperforms existing RF techniques in term of computational time and 
quality of the retrieval results.  

2   The Weight Propagation Technique 

The technique described here uses weight propagation (WP). A relevant document 
will propagate positive weights to neighbouring documents, and negative weights if 
chosen to be non-relevant. Similar techniques have been used in statistical 
telecommunications fraud detection to identify 'communities of interest' [3] and in 
web retrieval where similarities between web pages affect similarity of queries and 
vice versa [4]. Similarity matching and propagating weights have also been used in 
data mining to obtain the subset of the most relevant and authoritative Web pages  
[5]. However, the Weight Propagation technique has never been used before for query 
reformulation. To illustrate  the  technique we have  adopted, in  Figure 1, "doc1" is a 
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Fig. 1. Documents propagating positive and negative weights 

relevant document; therefore, it will propagate positive weights to "doc2", "doc3", 
and "doc4" while "doc4", which is not relevant, will propagate negative weights to 
"doc1", "doc2", and "doc3". This process is repeated for all the relevant and non-
relevant documents and the documents with highest weights are then retrieved as the 
result of the RF process. The weights propagated from a document to other 
documents in the neighbourhood are influenced by how far away those documents are 
from the given document in vector similarity space.  

The weight propagated, wij, from a document i to a document j, is based on the 
distance between the two documents as defined by the equation: 

wij = 1 / distance (document i, document j). (1) 

where 

- wij is the weight propagated from a document i to a document j  
- distance (document i, document j) is the conceptual distance between document i 
and document j estimated by the numeric cosine similarity measure. 

To reduce the time complexity, it would be enough for the document to propagate 
weights only to nearby documents. The time complexity for performing RF is O (n) 
[6] where n is the number of documents in the collection. The time complexity for 
the WP technique is O (q n'), where q is the number of documents most highly 
ranked in the original hit list and marked relevant or non-relevant by the user, and n’ 
is the number of documents found in close proximity to each of the retrieved 
documents and consequently affected by the propagation. The user chooses the value 
of q, and in our experiments n' is set to a maximum of 12. Therefore, WP is 
sufficiently efficient to work in a search engine, taking into account the size of the 
WWW and the speed users expect. 

3   Experimental Design 

The weight propagation technique is inspired by both the Rocchio and the Ide techni-
ques, as shown in Figure 2. WP inspired by Rocchio (WPR) takes the following format: 

wt = wi +  (1/r) Σ wr -  (1/n) Σ wn. (2) 
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where 

- wt is the total weights propagated from neighbourhood documents 
- wi is the weight derived from the initial query 
- r is the number of relevant documents 
- wr is the weight propagated from relevant documents 
- n is the number of non-relevant documents 
- wn is the weight propagated from non-relevant documents 

In a second variant of WP, inspired by Ide (WPI), weight propagation is taken to be 

wt = wi +  Σ wr -  Σ wn. (3) 

A third variant of WP, WPY, the primary focus of this poster (Figure 2), counts 
only the maximum weight propagated to the document. The system, as a result, 
produces better results than summing all the weights or computing their averages.  

Inspired by Rocchio(WPR):
Weight accumulated at docs = 
avg(wp, wq,…, wr)

docp

docr

wr

wq

wp

docsdocq
...

Weights propagated to docs

Inspired by Ide (WPI):
Weight accumulated at docs = 

(wp, wq,…, wr)
A third variant (WPY):
Weight accumulated at docs = 
max(wp, wq,…, wr)

 

Fig. 2. WP expressed in 3 variant ways 

4   Results and Analysis 

The experiment was conducted on the TREC WT18G test collection. Both the 
standard Rocchio and Ide techniques were compared against the WPY method and 
tested with different values of n’ (the number of documents affected by the 
propagation). In this experiment only positive feedback was employed. The 
assessments were done as follows: For each query, an initial document ranking was 
obtained. The relevant documents, as determined by the list of relevance judgments 
that comes with the test collection, are taken from the top N retrieved documents (N is 
set equal to 20) and used for one iteration of query reformulation.  

WPY gave better precision than the baselines when tested on the TREC WT18G 
collection. Precision was better at low recall levels, meaning that the user will find 
more relevant documents on the first pages of search hits as is preferable in a search 
engine. WPY shows improvement in recall when propagating between 2 and 6 
documents. When propagating to 2 documents, for instance, WPY and the baselines 
cross at 15% recall. The baselines, however, performed better at low recall levels. 
When the number of propagated documents increases, the recall level increases as 
well. WPY shows that when propagating to 6 documents, WPY and the baselines 
 



578 F. Yamout, M. Oakes, and J. Tait 

 

TREC WT18G - Positive Feedback

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

P
re

ci
si
on

Rocchio
Ide
WPY(12)
WPY(13)
WPY(14)
WPY(15)
WPY(16)

> WPY(11)

 
Fig. 3. Propagating over 11 documents 

cross at 40% recall. The performance of the system kept improving as the number of 
propagated documents was increased to 11 (Figure 3), but no further improvement 
was noted after that. WPY and the baselines cross at 70% recall for 11 propagated 
documents, which means WPY performs better. 

5   Conclusions 

In this poster, we have developed a new technique for RF, called WPY, which uses 
Weight Propagation where positive and negative weights are propagated to documents 
in given vicinity.  Both the Rocchio and the Ide technique inspire the technique.  

This new technique improves precision since the documents are treated as 
independent vectors rather than having them merged into a single vector, as is the 
case with Ide and Rocchio. In addition, the WPY approach consumes less 
computation time since it inspects only nearby documents.  
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Abstract. Structured document retrieval requires the ranking of doc-
ument elements. Previous approaches either aggregate term weights or
retrieval status values, or propose alternatives to idf , for example, ief
(inverse element frequency). We propose and investigate in this paper a
new approach: Context-specific idf , which is, in contrast to aggregation-
based ranking functions, parameter-free.

1 Introduction

The structure of XML documents makes XML retrieval different from tradi-
tional information retrieval, since the retrieval result contains document elements
rather than just whole documents.

One of the main issues of element retrieval is to assign a retrieval status value
(RSV ) to each element. Previous approaches are based on:(1) the aggregation
of term weights from that of the sub-elements’, then computing the RSV’s ([8],
[4], [7]), or (2) the aggregation of RSV’s directly from that of their sub-elements
([1], [2]), or (3) alternative the inverse element frequency (ief ,[5],[9] , [6]).

Approaches (1) and (2) need to assign each element an aggregation parameter,
which decides the sub-elements’ contribution to its parent’s RSV or term weight.
The estimation of aggregation parameters is not easy; (3) provides a different idf
calculation method according to the retrieval requirements, but it didn’t prove
superior to idf .

2 Context-Specific Frequencies, Discriminativeness and
RSV’s

Structured documents can be viewed as a document tree. Document collec-
tions can also be organized in a tree structure. Then documents and collections
are in the same framework. In definition 1, we generalize the frequencies for
each node. Then, RSV computation depends on the root, which is defined in
definition 2.
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Definition 1. Tree-based frequencies. Let c1, . . . , cn be the children of node c.

nD(t, c) :=
∑

i

nD(t, ci), ND(c) :=
∑

i

ND(ci)

nE(t, c) :=
∑

i

nE(t, ci), NE(c) :=
∑

i

NE(ci)

nL(t, c) :=
∑

i

nL(t, ci), NL(c) :=
∑

i

NL(ci)

Definition 2. Retrieval Function with Context-Specific Discriminativeness

RSVief (d, q) :=
∑

t

tf(t, q) · tf(t, d) · ief(t, root(d))

RSVidf (d, q) :=
∑

t

tf(t, q) · tf(t, d) · idf(t, root(d))

RSV(d, q) :=
{

RSVief (d, q) if d is an element
RSVidf (d, q) if d is a document

3 Experimental Results and Their Analysis

The implementation of our model requires to maintain element and location
frequencies for each element in the collection tree. This sounds like a lot of
overhead, but actually, the implementation is very modular since local frequency-
spaces are created, and the local frequency-spaces form the frequency-space of
their parent, and so on (see definition 1).

Experiment is running on INEX2003. Currently we only maintain frequencies
for sub-collections, including df , ef and lf .
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For investigating our approach to structured document retrieval, we choose
the following retrieval functions:

– tf with Global idf vs ief vs ilf
– tf with Local idf vs ief vs ilf : to see whether the relevant documents come

from several promising sub-collections, we select 10 highest idf summariza-
tion collections to retrieve.

– Context-specific discriminativeness: Ranking of documents based on the idf
of the collection to which the document belongs to, and, analogously, ranking
of elements based on the ief in the document to which the element belongs
to (see definition 2).

Figure 1 shows the performance of global idf , ief and ilf , and local idf , ief ,
and ilf.

The overall conclusion is that the performance increases with the abstraction
of the discriminativeness measure: ilf as the least abstract measure shows the
worst performance; this confirms the result of [3], and the argument on the bursti-
ness/clinginess of good terms. The positioning of ief between ilf and idf per-
fectly fits the picture, as ief is more abstract than ilf and less abstract than idf .

4 Normalization of Context-Specific idf

Considering the subject of a collection may impact on the discriminative-
ness of local idf , we also did another interesting experiment. We mixed all
the documents from INEX sub-collections and regrouped them into 20 new
sub-collections. After sub-collection regrouping, statistic result shows, all the
query terms occur in the each sub-collection almost the same times. The local
retrieval strategy was run again. This time the result improves a little more than
previous local strategy run on INEX original sub-collection. The result is shown
in figure 2.a. To be conveniently observed, only idf runs are shown on the figure.

We also take into account Zipf’s law (Luhn’s analysis, a very rare term is not
necessarily a good term), and divergence from randomness (the more a term’s
distribution diverge from randomness, the more discriminative is the term).
Currently rare terms are given very high weights and frequent terms are given
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pretty low weights. Therefore, we decreased the term weight of rare terms, and
increased the term weight of frequent terms. Then we investigated whether this
improves the retrieval result. The adjustment of term weights is based on the
term distribution among the different sub-collections. The idea is that df is
up-level frequency of tf . Figure 2.b shows that this approach did not improve
the retrieval quality, and we will reconsider the adjustment of the term weights.

5 Summary and Conclusion

We havepresented and investigated a new retrievalmodel for structured document
retrieval: The basic idea of the model is the context-specific discriminativeness. By
context-specific we mean that the retrieval function selects the discriminativeness
measure based on the properties of a context. This is different to classical retrieval,
and in contrast to aggregation-based approaches, parameter-free.

Our investigation indicates (confirms) that global idf yields the best retrieval
quality, despite the intuition that ief or context-specific discriminativeness cover
better the specialties of element retrieval.

In the future study, we would like to maintain a discriminativeness space
for each node in a structured document collection. We intend to look closer
at the divergence of randomness as an alternative to idf -based discriminative-
ness spaces, since our initial observations show a surprisingly strong correlation
between randomness-based and idf-based discriminativeness.
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Rüger, Stefan 1
Ruthven, Ian 456

Sanderson, Mark 468
SanJuan, Eric 496
Sav, Sorin 476
Schedl, Markus 531
Schenkel, Ralf 326
Scully, Micheál 570
Seraghiti, Andrea 505
Shi, Shuming 277
Siersdorfer, Stefan 265
Sizov, Sergej 265
Smeaton, Alan F. 476, 527, 561, 570
Smith, Simón C. 143

Smyth, Barry 484
Song, Ruihua 277
Stein, Benno 565

Tait, John 96, 362, 575
Tamine-Lechani, Lynda 464
Theobald, Martin 326
Tsikrika, Theodora 1

Urban, Jana 385

Vallet, David 553
van den Bosch, Antal 519
van Dijk, Sander 397
van Oostendorp, Herre 314
van Zwol, Roelof 314
Vildjiounaite, Elena 557
Vinay, Vishwa 107
Vines, Phil 420
Vittaut, Jean-Noël 338
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