
Efficient Cryptographic Protocol Design Based
on Distributed El Gamal Encryption

Felix Brandt

Stanford University, Stanford CA 94305, USA
brandtf@cs.stanford.edu

Abstract. We propose a set of primitives based on El Gamal encryp-
tion that can be used to construct efficient multiparty computation pro-
tocols for certain low-complexity functions. In particular, we show how
to privately count the number of true Boolean disjunctions of literals
and pairwise exclusive disjunctions of literals. Applications include effi-
cient two-party protocols for computing the Hamming distance of two
bitstrings and the greater-than function. The resulting protocols only
require 6 rounds of interaction (in the random oracle model) and their
communication complexity is O(kQ) where k is the length of bit-strings
and Q is a security parameter. The protocols are secure against active
adversaries but do not provide fairness. Security relies on the decisional
Diffie-Hellman assumption and error probability is negligible in Q.

1 Introduction

Secure multiparty computation (MPC) deals with protocols that allow a group
of agents to jointly compute a function of their individual private inputs, so
that only the function value is revealed in the end. Since Yao’s and Goldreich
et al’s seminal completeness results [Yao86, GMW87], it is well known that any
function can be computed securely if trapdoor permutations exist. However, the
general constructions in [Yao86, GMW87] have proven to be rather inefficient and
unpractical. It has been shown that general MPC is feasible in a constant number
of rounds with polynomial communication complexity for various settings such
as 2-party MPC (without fairness) [Lin01] or n-party MPC (with an honest
majority) [BMR90]. Although theoretically interesting, the constructions of the
underlying proofs do not yield practical constant-round MPC schemes due to
the extensive use of generic proofs of knowledge.

In this paper, we propose a set of cryptographic techniques that enable the
efficient computation of “low-complexity” functions in the presence of active ad-
versaries. These techniques, some of which have been known for some time, can
be used straightforwardly to construct round-efficient protocols for the equal-
ity function (solving the so-called socialist millionaires’ problem), the Boolean
or function (e.g., for veto voting), or the maximum function. Furthermore, we
show how to privately count the number of true Boolean disjunctions of liter-
als and pairwise exclusive disjunctions of literals. Applications include efficient

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 32–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Cryptographic Protocol Design 33

two-party protocols for computing the Hamming distance of two bitstrings and
the greater-than function (thus providing a solution to Yao’s millionaires’ prob-
lem [Yao82] in which two millionaires (Alice and Bob) want to find out who
is richer without revealing their wealth). Our primary objective when designing
these protocols was to minimize round complexity as interaction over a computer
network is usually the most time-consuming operation in distributed protocols.
Our protocol for the millionaires’ problem only requires 6 rounds of interaction
(in the random oracle model) and its communication complexity is O(kQ) where
k is the length of bit-strings to be compared and Q is a security parameter. To
the best of our knowledge, this is the most efficient constant-round protocol for
the millionaires’ problem. Under reasonable conditions (see Section 5.2), each
party only needs to communicate about 73 Kbytes of data. This is achieved by
exploiting the homomorphicity of the underlying encryption scheme when eval-
uating a modified Boolean formula for the greater-than function. The protocol
is correct with error probability O(2−Q). It does not provide fairness, i.e., one
party might learn the outcome and leave the other party uninformed by quitting
the protocol prematurely. However, fairness can be obtained by using known
standard techniques of gradual exchange (see e.g., [GMY04]). For this paper,
we assume that there is either a fairness-providing third-party, i.e., a party that
does not reveal information or quits prematurely,1 or that only one of the agents,
say Alice, is supposed to learn the function value.

Many representations for general secure MPC have been suggested in the
literature: Boolean circuits [Yao86], arithmetic circuits [GMW87], branching
programs [Kil88], low degree polynomials [BFKR90], randomizing polynomials
[IK00], etc. Our approach differs in that we provide a set of efficient building
blocks (distributed homomorphic encryption, random exponentiation, and veri-
fiable mixing) for which there exist efficient proofs of correctness and use these
to construct special-purpose protocols for a limited, but nevertheless relevant,
group of functions.

Our primitives are built around El Gamal encryption [El 85] because it allows
for the efficient generation of distributed keys and because encrypted values
can easily be exponentiated with jointly created random numbers. The building
blocks can be used for any number of parties. We consider full privacy, i.e.,
(n − 1)-privacy, rather than threshold privacy.2 Any party that deviates from
the prescribed protocol can be identified (because it fails to prove its correctness
in zero-knowledge) and removed from the set of participants. There are very
efficient (honest-verifier) zero-knowledge proofs to show the correctness of each
protocol step (see Section 3.2).

The remainder of this paper is structured as follows. In Section 2, we review
related work. Section 3 contains building blocks to be used in the protocols.
Basic protocols consisting of these primitives are presented in Section 4 whereas
more sophisticated protocols based on the evaluation of simple Boolean formulae

1 Please note that such a third-party will not be able to learn any information besides
the outcome.

2 Threshold privacy can easily be obtained by using standard secret sharing techniques.

34 F. Brandt

are proposed in Section 5. The paper concludes with a summary of the results
and a brief outlook in Section 6.

2 Related Work

Various recent advances in efficiency for cryptographic protocols build on homo-
morphic encryption (e.g., [JJ00, CDN01, Fis01, ST04, BGN05]). Most of these
protocols ([JJ00] and [ST04] are exceptions) use factorization-based encryption
schemes like Paillier encryption [Pai99] due to their versatility. However, these
schemes require the joint generation of an RSA modulus before the actual com-
putation begins. Even though protocols for this task improved over the years
[BF97, Gil99, DK01, ACS02], they remain inefficient and unpractical, especially
when having to tolerate active adversaries.3 Distributed key generation for dis-
crete logarithm based schemes like El Gamal, on the other hand, is straightfor-
ward and very efficient (see [Ped91, GJKR99, GJKR03]).

Our protocols bear some similarities to mix-and-match [JJ00] as distributed
El Gamal random exponentiation and the mixing of ciphertexts are also part of
the mix-and-match framework. However, in contrast to our work, mix-and-match
allows general MPC. As a consequence, their approach is more versatile but less
efficient in special cases. E.g., a straightforward mix-and-match implementation
of a millionaires’ protocol is considerably less efficient in both round complexity
and communication complexity than our protocol because mix-and-match does
not take advantage of El Gamal’s homomorphicity (except for the plaintext
equality test).

[BST01] give a protocol for the socialist millionaires’ problem in which two
parties compute whether their inputs are equal. Security is based on the deci-
sional Diffie-Hellman problem and a similar protocol (disregarding fairness) can
be constructed by using the techniques presented in this paper (see Section 4.1).

Since the publication of Yao’s original protocols in [Yao82], numerous solu-
tions to the millionaires’ problem have been proposed. While the complexity of
some protocols is exponential in k [Sch96], others do not consider active adver-
saries [Fis01, IG03, LT05] or have quadratic complexity [IG03]. The protocol
proposed in [Fis01] is quite efficient but also relies on the prior setup of a dis-
tributed RSA modulus which (even for just two parties) requires a large amount
of communication. Nevertheless, we adopted [Fis01]’s idea of securely evaluat-
ing the greater-than function by shuffling k equality tests. The efficiency of Lin
and Tzeng’s recent protocol [LT05], which can be based on El Gamal encryp-
tion, is similar to that of our protocol, although it is based on a quite different,
interesting idea. However, their model only allows passive adversaries and the
protocol cannot straightforwardly be turned into one that is secure against active
adversaries.
3 Communication complexity in these protocols always contains high orders of the

security parameter. For example, the 2-party key generation proposed in [Gil99]
requires about 42MB of data to be sent for setting up a 1024-bit key (while only
tolerating passive adversaries).

Efficient Cryptographic Protocol Design 35

There are randomized protocols for the millionaires’ problem (e.g., [NN01,
PBDL04]) whose communication complexity may be less than linear in the input
size [NN01]. However, these protocols cannot provide constant round complex-
ity.4 The same holds for recently proposed protocols based on evaluating circuits
that contain so-called conditional gates [ST04]. The communication complexity
of [ST04]’s solution for the Millionaires’ problem is comparable to ours but their
protocol requires k rounds of interaction.

It is difficult to compare our techniques with advanced two-party protocols
based on Yao’s “garbled circuit” construction [Yao86], e.g., [NPS99, CC00].
Naturally, these protocols have the advantage of being universally applicable.
However, [NPS99] relies on the inefficient “cut-and-choose” technique to prove
circuits correct and even [CC00], which uses zero-knowledge proofs instead of
cut-and-choose, is less efficient than our approach because the correctness of
every single gate has to be proven. Even for simple functions, like the greater-
than function, the number of gates is relatively high (at least 5k − 4 [KO02]),
resulting in substantially higher complexity than our protocol for the same func-
tion. Moreover, our techniques have the advantage of being applicable to settings
with any number of parties which is generally not possible with garbled circuit
protocols.

3 Building Blocks

This section contains building blocks to enable the construction of efficient pro-
tocols for simple functions. In the heart of the system lies El Gamal encryption
because it allows for the easy generation of distributed keys and because en-
crypted values can be exponentiated with a shared random number in a single
round. This random exponentiation will be used as a blinding step in our pro-
tocols as it transforms every plaintext, except 1, into a meaningless random
number.

We suggest the following general methodology for efficiently computing
low-complexity functions: All parties publish encryptions of their inputs in a
representation—e.g., binary (see Section 5) or unary (see Section 4.3)—that at
the same time allows efficient proofs of correctness and further processing in or-
der to compute the function outcome. By exploiting the homomorphic property
of the underlying encryption scheme, participants compute a vector of encrypted
values that contains the function outcome but may also contain additional, un-
wanted information. In order to get rid of this information, all agents jointly
execute random exponentiations for each vector component. Finally, if needed,
components can be shuffled to only reveal if (or how many) vector components
equal 1. We stress the fact the we do not rely on a strict Boolean or arithmetic
representation of the function. We rather suggest a bottom-up approach, i.e.,
trying to represent the function by using the mentioned limited set of primitives.

4 Furthermore, the protocol in [PBDL04] is flawed because the proposed primitive
“complex zero test” reveals statistical information.

36 F. Brandt

3.1 El Gamal Encryption

El Gamal cipher [El 85] is a probabilistic and homomorphic public-key cryp-
tosystem. Let p and q be large primes so that q divides p − 1. Gq denotes Z

∗
p’s

unique multiplicative subgroup of order q.5 All computations in the remainder
of this paper are modulo p unless otherwise noted. The private key is x ∈ Zq,
the public key is y = gx (g ∈ Gq is an arbitrary, publicly known element). A
message m ∈ Gq is encrypted by computing the ciphertext tuple

(α, β) = (myr, gr)

where r is an arbitrary random number in Zq, chosen by the encrypter. A message
is decrypted by computing

α

βx
=

myr

(gr)x
= m.

El Gamal is homomorphic as the component-wise product of two ciphertexts
(αα′, ββ′) = (mm′yr+r′

, gr+r′
) represents an encryption of the plaintexts’ prod-

uct mm′. It has been shown that El Gamal is semantical secure, i.e., it is com-
putationally infeasible to distinguish between the encryptions of any two given
messages, if the decisional Diffie-Hellman problem is intractable [TY98]. We will
use functions E(·) and D(·) to denote the encryption and the decryption of plain-
and ciphertexts, respectively.

In the following, we describe how to apply the El Gamal cryptosystem as a
fully private, i.e., non-threshold, MPC scheme for n agents.6 If a value represents
an additive share, this is denoted by a “+” in the index, whereas multiplicative
shares are denoted by “×”. Underlying zero-knowledge proofs will be presented
in the next section.

Distributed key generation [Ped91]: Each participant chooses x+i at ran-
dom and publishes y×i = gx+i along with a zero-knowledge proof of knowl-
edge of y×i’s discrete logarithm. The public key is y =

∏n
i=1 y×i, the private

key is x =
∑n

i=1 x+i. This requires n multiplications, but the computational
cost of multiplications is usually negligible in contrast to exponentiations.
Broadcast round complexity and exponentiation complexity of the key gen-
eration are O(1).7

Distributed decryption: Given an encrypted message (α, β), each participant
publishes β×i = βx+i and proves its correctness by showing the equality
of logarithms of y×i and β×i. The plaintext can be derived by computing

α∏n
i=1 β×i

. Like key generation, decryption can be performed in a constant
number of rounds, requiring n multiplications and one exponentiation.

5 We will focus on multiplicative subgroups of finite fields here, although El Gamal
can also be based on other groups such as elliptic curve groups.

6 Please note that this multiparty scheme is limited in the sense that it does not allow
the computation of arbitrary functions.

7 Finding “unbiased” parameters p and q requires no extra communication in the
random oracle model.

Efficient Cryptographic Protocol Design 37

Random Exponentiation: A given encrypted value (α, β) can easily be raised
to the power of an unknown random number M =

∑n
i=1 m+i whose addends

can be freely chosen by the participants if each bidder publishes (αm+i , βm+i)
and proves the equality of logarithms. The product of published ciphertexts
yields (αM , βM) in a single step. The computational cost is two exponenti-
ations and 2n multiplications.

When adding a commitment round (e.g., using [Ped91]) during key generation
and random exponentiation, security of these primitives is evident. We pre-
sume that even without these commitment rounds, security is preserved (see
Proposition 1).

3.2 Zero-Knowledge Proofs

In order to obtain security against malicious or so-called active adversaries,
agents are required to prove the correctness of each protocol step. One of the
objectives when designing the protocols presented in Sections 4 and 5 was to
enable efficient proofs of correctness for protocol steps. In fact, the proposed
protocols can be proven correct by only using so-called Σ-protocols which just
need three rounds of interaction [Dam02, CDS94]. Σ-protocols are not known
to be zero-knowledge, but they satisfy the weaker property of honest-verifier
zero-knowledge. This suffices for our purposes as we can use the Fiat-Shamir
heuristic [FS87] to make these proofs non-interactive. As a consequence, the
obtained proofs are indeed zero-knowledge in the random oracle model and
only consist of a single message.8 We will make use of the following four
Σ-protocols.

Proof of knowledge of a discrete logarithm. This is a classic Σ-protocol
by Schnorr [Sch91]. Alice and Bob know v and g, but only Alice knows x, so
that v = gx.

1. Alice chooses z at random and sends a = gz to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr = avc.

Alice needs to send log p + log q bits.

Proof of equality of two discrete logarithms. When executing the previous
protocol in parallel, the equality of two discrete logarithms can be proven [CP92].
Alice and Bob know v, w, g1, and g2, but only Alice knows x, so that v = gx

1 and
w = gx

2 .

8 The additional assumption of a random oracle is only made for reasons of ef-
ficiency. Alternatively, we could employ non-interactive zero-knowledge proofs in
the common random string model (see [DDO+01] and references therein) to obtain
non-interactiveness. However, it has become common practice to use secure hash
functions like MD5 or SHA-1 as random oracles for practical applications.

38 F. Brandt

1. Alice chooses z at random and sends a = gz
1 and b = gz

2 to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr

1 = avc and that gr
2 = bwc.

Alice needs to send 2 log p + log q bits. It is possible to show the equality of any
polynomial number of discrete logarithms in parallel. Thus, for showing that the
discrete logarithms of k values are equal, Alice only sends k log p + log q bits.

Proof that an encrypted value is one out of two values. The following
protocol was proposed by Cramer et al [CGS97]. Alice proves that an El Gamal
encrypted value (α, β) = (myr, gr) either decrypts to 1 or to a fixed value z ∈ Gq

without revealing which is the case, in other words, it is shown that m ∈ {1, z}.

1. If m = 1, Alice chooses r1, d1, w at random and sends (α, β), a1 = gr1βd1 ,
b1 = yr1

(
α
z

)d1 and a2 = gw, b2 = yw to Bob.
If m = z, Alice chooses r2, d2, w at random and sends (α, β), a1 = gw,
b1 = yw, a2 = gr2βd2 , and b2 = yr2αd2 to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.
3. If m = 1, Alice sends d1, d2 = c − d1 mod q, r1, and r2 = w − rd2 mod q

to Bob.
If m = z, Alice sends d1 = c − d2 mod q, d2, r1 = w − rd1 mod q, and r2
to Bob.

4. Bob checks that c = d1 + d2 mod q, a1 = gr1βd1 , b1 = yr1
(

α
z

)d1 , a2 =
gr2βd2 , and b2 = yr2αd2 .

The total amount of bits Alice sends to Bob is 4 log p + 4 log q.

Verifiable shuffle of k encrypted values. A shuffle is a rearrangement and
reencryption of input ciphertexts. By proving such a shuffle correct, a party
can verifiably rearrange a vector of ciphertexts without revealing the applied
permutation. [Gro03] proposed a very efficient way of proving the correctness
of a shuffle of El Gamal encryptions in honest-verifier zero-knowledge (in fact,
the proof is shorter than the vector itself). As the proof is public-coin honest-
verifier zero-knowledge, it can be executed in a single round in the random oracle
model. Alice needs to send k(log p + log q) + 6 log p + 3 log q bits to prove the
correctness of a shuffle consisting of k ciphertexts. This primitive will be used
as a 2-server mix-net in Section 5 in order to hide which component of a vector
equals 1.

4 Basic Protocols

In order to demonstrate the applicability of the proposed techniques, we briefly
sketch three 4-round protocols that compute the equality-, the or-, and the
maximum-function, respectively.

Efficient Cryptographic Protocol Design 39

4.1 Socialist Millionaires’ Protocol

Suppose Alice and Bob want to compute the equality function f(b1, b2) = [b1 =
b2]. This problem is also known as the socialist millionaires’ problem [BST01]
and can be solved by executing the following protocol.9

– Round 1: Alice and Bob generate a distributed pair of El Gamal keys
– Round 2: Both parties publish El Gamal encryptions of their inputs: E(b1)

and E(b2).

– Round 3: They jointly compute A =
(

E(b1)
E(b2)

)M

where M is a random

number not known to Alice or Bob (see Section 3.1).
– Round 4: Both parties jointly decrypt A. If D(A) = 1, both inputs were

equal. Otherwise, D(A) is a meaningless random number.

4.2 Veto Protocol

A variation of the previous protocol can be used for veto voting (in other words,
the Boolean or-function): f(b1, b2, . . . , bn) =

∨n
i=1 bi. Let Y ∈ Gq\{1} be a

publicly known constant. Now, each voter i submits E(bi) where bi is 1 if voter i
agrees with the issue at hand or Y if he does not agree. The correctness of each
vote, i.e., D(E(bi)) ∈ {1, Y }, can be proven by using the zero-knowledge proof
given in Section 3.2. Voters than jointly decrypt (

∏n
i=1 E(bi))

M and only learn
whether they unanimously agree or not. No other information is revealed, not
even to any (strict) subset of agents.

4.3 Maximum Protocol

Consider a group of n parties that wants to compute the maximum of their
private input values: f(b1, b2, . . . , bn) = max{b1, b2, . . . , bn}. By using a unary
representation of numbers, this task can be accomplished by the following pro-
tocol. Let {1, 2, . . . , k} denote the set of possible input values and let Y ∈ Gq\{1}
again be a publicly known constant. Each participant i publishes E(bij) where
bij = Y if bi = j or bij = 1 otherwise. Agent i can efficiently prove the cor-
rectness of his input by showing that ∀j ∈ {1, 2, . . . , k} : D(E(bij)) ∈ {1, Y }
(Section 3.2) and that

∏k
j=1 E(bij) = E(Y) (Section 3.2). Then, all agents jointly

compute

Aj =

⎛

⎝
n∏

i=1

k∏

d=j

E(bid)

⎞

⎠

Mj

∀j ∈ {1, 2, . . . , k}

where, as above, Mj are jointly created random numbers. For all j greater
than the maximum, D(Aj) is equal to 1. All other D(Aj) are random numbers.
Clearly, the drawback of this protocol is that its communication complexity is
linear in k, i.e., exponential in the length of bitstrings. Nevertheless, it can be
practical for small k.
9 Similar protocols previously appeared in various contexts, e.g., password authenti-

cation key exchange or the “plaintext equality test” in [JJ00].

40 F. Brandt

5 Counting Boolean Disjunctions of Literals

In this section, we will show how the primitives defined in Section 3 can be
used to evaluate simple Boolean expressions. Consider n parties whose inputs
are bitstrings bi of length k. We define E[b] to be an (El Gamal) encryption of
bit b if E[0] decrypts to 1 and E[1] decrypts to any other number in Gq:

D[E[b]] ∈
{

{1} if b = 0
Gq\{1} otherwise

.

As in Section 4.3, let Y be an arbitrary, publicly known, fixed element of Gq\{1}.
Before the actual protocol starts each agent publishes encryptions of his indi-
vidual input bits so that

E[bij] =

{
E(1) if bij = 0
E(Y) otherwise

.

The correctness of inputs can be efficiently proven by showing that each cipher-
text either decrypts to 1 or to Y without revealing which case holds (Section 3.2).
Based on this representation, we can count the number of true Boolean disjunc-
tions of literals and pairwise exclusive disjunctions of literals by computing

f(b1, b2, . . . , bn) = #

(
∨

r

Lr ∨
∨

s,t

(Ls ⊕ Lt)

)

(1)

where Lr, Ls, Lt ∈ {bij ,¬bij} for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k} and #
is a count operator that counts the number of true expressions. The individual
operators can be implemented as follows.

– Negations
The Boolean negation of input bits can be computed by dividing Y by the
input bit’s encryption, i.e.,

E[¬bij] =
Y

E[bij]
.

– Disjunctions
As in Section 4.2, the product of ciphertexts yields the logical or of the
corresponding plaintext bits:

E

[
∨

r

Lr

]

=
∏

r

E[Lr].

– Exclusive Disjunctions
The exclusive or of pairs of literals can be computed by dividing the en-
cryptions of these bits,

E [Ls ⊕ Lt] =
E[Ls]
E[Lt]

.

Efficient Cryptographic Protocol Design 41

When combining these exclusive ors via the disjunction operator, it has to
be made sure that two encryptions that represent E[1] do not “accidently”
multiply to E[0]. This can be achieved by raising the dth factor to the 2d−1th
power:

E

[
k∨

d=1

(Lsd
⊕ Ltd

)

]

=
k∏

d=1

(
E[Lsd

]
E[Ltd

]

)2d−1

.

– Count Operator
Finally, we can count the number of true bits in a vector of encrypted bits by
consecutively letting each party verifiably shuffle its vector of bits (see Sec-
tion 3.2), thus effectively emulating a mix-net. After exponentiating each
component with a jointly created random number (as described in Sec-
tion 3.1) and decrypting all components, the number of true bits is exactly
the number of components not equal to 1.

5.1 Hamming Protocol

A simple function that can be expressed as an arithmetic formula fitting Equa-
tion 1 is the Hamming distance of two bitstrings. The Hamming distance is
defined as the number of corresponding bits that are not equal. In other words,

f(b1, b2) = #k
j=1

(

b1j ⊕ b2j

)

.

An efficient 6-round protocol for computing this function can be designed based
on the constructions proposed in the beginning of this section. For reasons of
limited space, we just spell out the similar, but more sophisticated, protocol for
computing the greater-than function in the following section.

5.2 Millionaires’ Protocol

A protocol for the millionaires’ problem can be obtained by reformulating the
greater-than function f(b1, b2) = [b1 > b2] to fit Equation 1. Let Alice’s and
Bob’s inputs, b1 and b2, be k-bit numbers so that bi =

∑k
j=1 bij2j−1, i.e., the

least significant bit is bi1 and the most significant bit is bik. Consider the following
Boolean expression for computing b1 > b2 given in [Fis01].

[b1 > b2] ⇐⇒
k∨

j=1

(

b1j ∧ ¬b2j ∧
k∧

d=j+1

(¬(b1d ⊕ b2d))

)

. (2)

The outer disjunction is exclusive, i.e., at most one of the k terms can be satisfied.
By applying De Morgan’s laws, the right expression in Implication 2 can be
rewritten as

k∨

j=1

(

¬
(

¬b1j ∨ b2j ∨
k∨

d=j+1

(b1d ⊕ b2d)

︸ ︷︷ ︸
Bj :=

))

.

42 F. Brandt

Using the techniques proposed at the beginning of this section, the inner term
Bj can be computed as follows.

E[Bj] =
Y · E[b2j]

E[b1j]
·

k∏

d=j+1

(
E[b1d]
E[b2d]

)2d−2

.

Recall that the outer disjunction is exclusive, i.e., counting the number of false
Bj ’s will yield either 0 or 1. This implies that b1 > b2 holds if and only if #(Bj) =
k − 1. For this reason, the following procedure suffices: Alice sends a verifiable
shuffle of all E[Bj] to Bob who verifiably shuffles the resulting ciphertexts himself
and sends them back to Alice. Finally, both parties raise each E[Bj] to a jointly
created random exponent Mj and decrypt all (E[Bj])Mj . If any of these values
equals 1, then b1 > b2, i.e., Alice is richer than Bob. The detailed 6-round
protocol is given in Figure 1.

In the remainder of this section, we use the millionaires’ protocol as an ex-
ample to analyze security and efficiency of our proposed techniques.

Proposition 1. The millionaires’ protocol is correct with negligible error prob-
ability and secure if the decisional Diffie-Hellman problem is intractable.

Proof. (sketch)

Correctness: The protocol only fails when the random exponentiation for any
outcome vector “accidently” yields a one, i.e.,

∑n
h=1 m+h

ij = 0 mod q for any i
and j. Due to the exponential size of Gq and the polynomial number of output
components, the probability of this event is negligible. Error probability of the
protocol is (1 − (1 − 2−Q)k) = O(2−Q) where Q = log q. The malleability of
El Gamal encryption does not pose a problem because bidders prove that they
know each plaintext using non-malleable zero-knowledge proofs.

Security : The security of El Gamal cipher as well as the applied zero-knowledge
proofs can be based on the intractability of the decisional Diffie-Hellman assump-
tion [TY98]. The security of distributed El Gamal cipher, in particular Pedersen’s
straightforward key generation [Ped91] which might result in non-uniformly dis-
tributed keys, follows from a recent argument by Gennaro et al [GJKR03]. Since
encryption keys are essentially distributed by using 2-out-of-2 secret sharing,
privacy can not be breached (unless Alice and Bob collude). �	

We now investigate the computation and communication complexity of the mil-
lionaires’ protocol. Typically, the computational cost of performing multiplica-
tions is negligible. Exponentiation and communication complexity are identical
in the proposed protocol. Zero-knowledge proofs we apply in the protocol are
non-interactive and have low constant overhead. Table 1 shows the communi-
cation complexity of each protocol step and also gives the complexity of the
accompanying zero-knowledge proofs.

Efficient Cryptographic Protocol Design 43

Depending on i ∈ {1, 2}, the directions address Alice (i = 1) or Bob (i = 2)).

Round 1: Generate public key

– Choose x+i ∈ Zq and m+i
j , rij ∈ Zq for each j at random.

– Publish y×a = gx+i along with a zero-knowledge proof of knowledge of y×a’s
discrete logarithm (Section 3.2).

– Compute y = y×1 · y×2.

Round 2: Encrypt input

– Publish αij = Y bij · yrij and βij = grij for each j.
– Prove that ∀j : logg(βij) equals logy(αij) or logy

(αij

Y

)
(Section 3.2)

Round 3: Mix output (1/2)

– Compute for each j:

γj =
Y · α2j

α1j
·

k∏

d=j+1

(
α1d

α2d

)2d−2

and δj =
β2j

β1j
·

k∏

d=j+1

(
β1d

β2d

)2d−2

– Alice (i = 1): Verifiably shuffle k vectors (γj , δj) by index j (Section 3.2).

Round 4: Mix output (2/2)

– Bob (i = 2): Verifiably shuffle k vectors (γj , δj) by index j (Section 3.2).

Round 5: Randomize output

– Compute and publish γ×i
j = (γj)m+i

j and δ×i
j = (δj)m+i

j for each j with a proof
of logarithm equality (Section 3.2).

Round 6: Decrypt output

– Publish ϕ×i
j =

(
δ×1

ij · δ×2
ij

)x+a for each j with an accompanying proof of correct-
ness (Section 3.2).

– Compute vj =
γ×1

j · γ×2
j

ϕ×1
j · ϕ×2

j

for each j. If vj = 1 for any j, then b1 is greater than

b2.

Fig. 1. Millionaires’ Protocol

The total number of bits each party needs to communicate in the protocol
is (15k + 9)P + (6k + 5)Q where P =
log p� and Q =
log q�. To achieve
an appropriate level of security today, 1024 bits for p and 160 bits for q are
reasonable settings. Then, in order to compare two 36-bit numbers,10 each party
only needs to send around 73 Kbytes of data.

10 36 bits are currently sufficient to compare the wealth of any given pair of human
beings with a precision of one US dollar.

44 F. Brandt

Table 1. Communication complexity (number of bits each party sends)

Body Zero-Knowledge Proofs

Round 1 P P + Q

Round 2 2kP 4k(P + Q)

Round 3/4 2kP k(P + Q) + 6P + 3Q

Round 5 2kP k(2P + Q)

Round 6 kP (k + 1)P + Q

Σ (7k + 1)P (8k + 8)P + (6k + 5)Q

Σ Body+ZK (15k + 9)P + (6k + 5)Q

P = �log p�, Q = �log q�

6 Conclusion

We have presented a set of primitives based on El Gamal encryption that
can be used to construct efficient MPC protocols for certain low-complexity
functions. Due to underlying efficient honest-verifier zero-knowledge proofs,
the resulting protocols are secure against active adversaries. Security relies on
the decisional Diffie-Hellman assumption. To demonstrate the applicability of
the proposed techniques, we constructed protocols to compute the equality, the
or, the maximum, the Hamming and the greater-than functions. The latter
requires only 6 rounds of interaction in the random oracle model while com-
munication complexity is linear in the length of bitstrings to be compared,
and error probability is exponentially small in the security parameter. To the
best of our knowledge, this is the most efficient constant-round protocol for
the greater-than function to date. The protocol can serve as a building block
for the secure computation of more sophisticated functions such as the me-
dian [AMP04].

Future work includes the investigation of a more complete algebraic
characterization of functions that can be efficiently computed using the
proposed primitives. Furthermore, it might be possible to construct a
sub-protocol for checking whether a vector of El Gamal ciphertexts contains
an encrypted 1 which is considerably more efficient than consecutive mixing and
decrypting.

Acknowledgements

Thanks to Jens Groth, Jesper Nielsen, Kobbi Nissim, and the anonymous ref-
erees for helpful comments. This material is based upon work supported by the
Deutsche Forschungsgemeinschaft under grant BR 2312/1-1.

Efficient Cryptographic Protocol Design 45

References

[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In Proc. of 22th CRYPTO Conference, volume 2442 of LNCS,
pages 417–432. Springer, 2002.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-
ranked element. In Proc. of 21st Eurocrypt Conference, volume 3027 of
LNCS, pages 40–55. Springer, 2004.

[BF97] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In
Proc. of 17th CRYPTO Conference, volume 1294 of LNCS, pages 425–439.
Springer, 1997.

[BFKR90] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low
communication overhead. In Proc. of 10th CRYPTO Conference, number
537 in LNCS, pages 62–76. Springer, 1990.

[BGN05] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Proc. of 2nd Theory of Cryptography Conference (TCC), volume
3378 of LNCS, pages 325–341. Springer, 2005.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Proc. of 22nd STOC, pages 503–513. ACM Press, 1990.

[BST01] F. Boudot, B. Schoenmakers, and J. Traoré. A fair and efficient solution to
the socialist millionaires’ problem. Discrete Applied Mathematics, 111(1-
2):23–36, 2001.

[CC00] C. Cachin and J. Camenisch. Optimistic fair secure computation. In
Proc. of 20th CRYPTO Conference, volume 1880 of LNCS, pages 93–111.
Springer, 2000.

[CDN01] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Proc. of 18th Eurocrypt Conference,
volume 2045 of LNCS, pages 280–300. Springer, 2001.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Proc. of 14th
CRYPTO Conference, volume 893 of LNCS, pages 174–187. Springer,
1994.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Proc. of 14th Eurocrypt Con-
ference, volume 1233 of LNCS, pages 103–118. Springer, 1997.

[CP92] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Proc. of
12th CRYPTO Conference, volume 740 of LNCS, pages 3.1–3.6. Springer,
1992.

[Dam02] I. Damg̊ard. On Σ-protocols. Lecture Notes, University of Aarhus, De-
partment for Computer Science, 2002.

[DDO+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sa-
hai. Robust non-interactive zero knowledge. In Proc. of 21th CRYPTO
Conference, volume 2139 of LNCS, pages 566–598. Springer, 2001.

[DK01] I. Damg̊ard and M. Koprowski. Practical threshold RSA signatures with-
out a trusted dealer. In Proc. of 18th Eurocrypt Conference, volume 2045
of LNCS, pages 152–165. Springer, 2001.

[El 85] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

46 F. Brandt

[Fis01] M. Fischlin. A cost-effective pay-per-multiplication comparison method
for millionaires. In Proceedings of the Cryptographers’ Track at the 10th
RSA Conference, volume 2020 of LNCS, pages 457–472, 2001.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Proc. of 12th CRYPTO Conference,
LNCS, pages 186–194. Springer, 1987.

[Gil99] N. Gilboa. Two party RSA key generation. In Proc. of 19th CRYPTO
Conference, volume 1666 of LNCS, pages 116–129. Springer, 1999.

[GJKR99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In Proc. of 16th Eurocrypt
Conference, volume 1592 of LNCS, pages 295–310. Springer, 1999.

[GJKR03] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Applications of Ped-
ersen’s distributed key generation protocol. In Proc. of Cryptographers’
Track at the 12th RSA Conference, volume 2612 of LNCS, pages 373–390.
Springer, 2003.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proc. of
19th STOC, pages 218–229. ACM Press, 1987.

[GMY04] J. Garay, P. MacKenzie, and K. Yang. Efficient and secure multi-party
computation with faulty majority and complete fairness. To appear, 2004.

[Gro03] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In
Proc. of 6th PKC Conference, volume 2567 of LNCS, pages 145–160, 2003.

[IG03] I. Ioannidis and A. Grama. An efficient protocol for Yao’s millionaires’
problem. In Proc. of 36th Hawaii International Conference on System
Sciences (HICSS), pages 205–210. IEEE Press, 2003.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new represen-
tation with applications to round-efficient secure computation. In Proc. of
41st FOCS Symposium, pages 294–304. IEEE Press, 2000.

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via
ciphertexts. In Proc. of 6th Asiacrypt Conference, volume 1976 of LNCS,
pages 162–177. Springer, 2000.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. of 20th
ACM STOC, pages 20–31. ACM Press, 1988.

[KO02] K. Kurosawa and W. Ogata. Bit-slice auction circuit. In Proc. of 7th Euro-
pean Symposium on Research in Computer Security (ESORICS), volume
2502 of LNCS, pages 24–38. Springer, 2002.

[Lin01] Y. Lindell. Parallel coin-tossing and constant-round secure two-party com-
putation. In Proc. of 21st CRYPTO Conference, volume 2139 of LNCS,
pages 171–189. Springer, 2001.

[LT05] H.-Y. Lin and W.-G. Tzeng. An efficient solution to the Millionaires’
Problem based on homomorphic encryption. In Proc. of 3rd International
Conference on Applied Cryptography and Network Security (ACNS), vol-
ume 3531 of LNCS, pages 456–466, 2005.

[NN01] M. Naor and K. Nissim. Communication preserving protocols for secure
function evaluation. In Proc. of 33rd STOC, pages 590–599. ACM Press,
2001.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In Proc. of 1st ACM Conference on E-Commerce,
pages 129–139. ACM Press, 1999.

Efficient Cryptographic Protocol Design 47

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Proc. of 16th Eurocrypt Conference, volume 1592 of LNCS,
pages 223–238. Springer, 1999.

[PBDL04] K. Peng, C. Boyd, E. Dawson, and B. Lee. An efficient and verifiable solu-
tion to the millionaire problem. In Proc. of 7th International Conference
on Information Security and Cryptology (ICISC), volume 3506 of LNCS,
pages 51–66. Springer, 2004.

[Ped91] T. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In J. Feigenbaum, editor, Proc. of 11th CRYPTO Confer-
ence, volume 576 of LNCS, pages 129–140. Springer, 1991.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[Sch96] B. Schneier. Applied Cryptography. John Wiley and Sons, Inc., 2nd edition,
1996.

[ST04] B. Schoenmakers and P. Tuyls. Practical two-party computation based on
the conditional gate. In Proc. of 10th Asiacrypt Conference, number 3329
in LNCS, pages 119–136. Springer, 2004.

[TY98] Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption.
In Proc. of 1st International Workshop on Practice and Theory in Public
Key Cryptography (PKC), volume 1431 of LNCS, pages 117–134. Springer,
1998.

[Yao82] A. C. Yao. Protocols for secure computation. In Proc. of 23th FOCS
Symposium, pages 160–164. IEEE Computer Society Press, 1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS
Symposium, pages 162–167. IEEE Computer Society Press, 1986.

	Introduction
	Related Work
	Building Blocks
	El Gamal Encryption
	Zero-Knowledge Proofs

	Basic Protocols
	Socialist Millionaires' Protocol
	Veto Protocol
	Maximum Protocol

	Counting Boolean Disjunctions of Literals
	Hamming Protocol
	Millionaires' Protocol

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

