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Abstract. At Eurocrypt 2005, Brent Waters proposed an efficient Iden-
tity Based Encryption scheme which is secure in the standard model.
One drawback of this scheme is that the number of elements in the pub-
lic parameter is rather large. Here we propose a generalisation of Waters
scheme. In particular, we show that there is an interesting trade-off be-
tween the tightness of the security reduction and smallness of the public
parameter. For a given security level, this implies that if one reduces
the number of elements in public parameter then there is a correspond-
ing increase in the computational cost due to the increase in group size.
This introduces a flexibility in choosing the public parameter size without
compromising in security. In concrete terms, to achieve 80-bit security for
160-bit identities we show that compared to Waters protocol the pub-
lic parameter size can be reduced by almost 90% while increasing the
computation cost by 30%. Our construction is proven secure in the stan-
dard model without random oracles. Additionally, we show that CCA
security can also be achieved through the reduction to oracle decision
bilinear Diffie-Hellman problem (OBDH).

Keywords: identity based encryption, standard model, security, param-
eter size.

1 Introduction

The area of public key cryptography called Identity Based Encryption (IBE) has
witnessed a rapid progress in recent times. Initially proposed by Shamir [23], it
was as well a challenge to the crypto community to come out with a practical IBE
scheme. Boneh and Franklin [6, 7] were first to define a security model for IBE
and gave an implementable solution based on the Bilinear Diffie-Hellman (BDH)
problem. There is another construction due to Cocks [13] that uses quadratic
residues modulo a composite. The security of these encryption schemes were
proved in the random oracle model [11], i.e., the security of these schemes requires
cryptographic hash functions that are modelled as random oracles. However,
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such hash functions do not exist in reality. Consequently, there were several
works such as [14, 2] to construct IBE schemes secure without the random oracle
model. They used a weaker notion of security called selective-ID model in which
an adversary has to commit in advance which identity it wants to attack.

Finally, Boneh and Boyen came out with a scheme for IBE [3] that is secure in
the standard model without random oracles. Their work was more of a feasibility
study. It solved the open problem but was not practical to be implemented. This
work was soon supplemented by that of Waters [24]. Using a method from [2]
and introducing a new trick, it provided an improved IBE scheme that is secure
in the standard model without random oracle.

However, one disadvantage of the scheme in [24] is the requirement of a rather
large public parameter file. If identities are represented by a bit string of length
n, then the scheme requires a vector of length n to be maintained as part of
public parameter, where each element of the vector is a point on a suitable
elliptic curve group.

our contribution: We provide a generalisation of the identity based encryp-
tion scheme of Waters [24]. This generalisation shows that if one tries to reduce
the number of elements in the public parameter then there is a corresponding
degradation in the security reduction. In other words, a trade-off is involved
in the tightness of security reduction and smallness of public parameter. The
trade-off between tightness and smallness can be converted to a trade-off be-
tween group size and smallness of public parameter. When desiring a specific
security level, the loss of security due to loss of tightness in the security reduc-
tion can be compensated by working in a larger group. This increses the bit
length of representation of the elements in the public parameter but the num-
ber of elements in the public parameters decreases so drastically that there is a
significant reduction in the overall size of the public parameter. The increse in
group size in turn affects the efficiency of the protocol. Thus, the trade-off is ac-
tually between the space required to store the parameters and the time required
to execute the protocol. For example, if identities are represented by 160-bit
strings, then Waters protocol require to store 160 extra elements (EC points)
as part of the public parameter. Alternatively, using our generalisation if one
wants to store 16 elements, then to achieve 80-bit security, compared to Waters
protocol the space requirement reduces by around 90% while the computation
cost increases by around 30%.

– Like Waters, applying Naor’s technique, our scheme can also be easily con-
verted to a signature scheme where the underlying security assumption is the
computational Diffie-Hellman problem.
– Our construction resembles closely the construction of Waters [24] and secu-
rity against the chosen ciphertext attack (i.e., the CCA security) of the former
follows from that of the later by constructing a 2 level hierarchical identity based
encryption scheme (HIBE) and applying the technique of [15]. As an alternative,
we show that CCA security can also be achieved by assuming the hardness of
the oracle bilinear decision Diffie-Hellman assumption (OBDH).
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2 Waters Construction

Waters has recently proposed an efficient identity based encryption scheme with-
out random oracle [24]. We first briefly describe his construction. The relevant
definitions of bilinear map, IBE protocol, its security model and hardness as-
sumption are given in Appendix A

Waters IBE: Let G1 = 〈P 〉, G2 and e() be as defined in Section A.1. Here,
identities are represented as bitstrings of length n.

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1
at random. Further, choose a random element U ′ ∈ G1 and a random n-length
vector −→

U = {U1, . . . , Un}, whose elements are from G1. The master secret is xP2

whereas the public parameters are 〈P, P1, P2, U
′, −→U 〉. Also e() is publicly known.

Key Generation: Let v = (v1, . . . , vn) ∈ {0, 1}n be any identity. A secret key
for v is generated as follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where
V = U ′ +

∑

{i:vi=1}
Ui.

Encryption: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)tM, tP, tV ),

where t is a random element of Zp and V is as defined in key generation algo-
rithm.

Decryption: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding
identity. Then we decrypt C using secret key Dv = (D1, D2) by computing
C1e(D2, C3)/e(D1, C2).

3 Our Generalisation

Here we describe our generalisation of Waters scheme. The groups G1 = 〈P 〉,
G2 and the map e() are as already defined in Section A.1. In the following, we
assume the message space M is G2, the cipher space C is G2 × G1 × G1.

Note that, in Waters scheme identities are represented as n-bit strings. Be-
cause of this representation, Waters requires to store n elements of G1 i.e., −→

U
in the public parameter. Depending upon the choice of representation of the
identities we can change the size of the public parameter.

Let N = 2n, then we can consider the identities as elements of ZN and
one extreme case would be to consider the identities just as elements of ZN . A
more moderate approach, however, is to fix a-priori a size parameter �, where
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1 < � ≤ n. In this case, an identity v is represented as v = (v1, v2, . . . , v�), where
vi ∈ ZN1/� i.e., each vi is an n/� bit string. (If identities are considered to be bit
strings of arbitrary length, then as in Waters protocol we hash them into ZN

using a collision resistant hash function.)
In this case the protocol is changed to the following, which we call IBE-SPP(�).

IBE-SPP(�) with 1 < � ≤ n

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1 at
random. Further, choose random elements U ′, U1, U2, . . . , U� ∈ G1. The master
secret is xP2 whereas the public parameters are 〈P, P1, P2, U

′, U1, U2, . . . , U�〉.
Also e() is publicly known.

Key Generation: Let v be any identity, a secret key for v is generated as
follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where V = U ′ +
∑�

i=1 viUi.

Encryption, Decryption: As in Waters IBE with the modified definition
of V .

Note that, for � = n this is exactly Waters protocol. For � = 1, some minor mod-
ifications in the above scheme give a protocol where the additional requirement
in the public parameter is just a single element of G1 as described below.

IBE-SPP(1)

Setup: Randomly choose a secret x ∈ ZN . Set P1 = xP , then choose P2 ∈ G1
at random. Further, choose a random element U ′ ∈ G1. The master secret is xP2
whereas the public parameters are 〈P, P1, P2, U

′〉. Also e() is publicly known.

Key Generation: Let v be any identity. A secret key for v is generated as
follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where V = U ′ + vP2.
Here also the Encryption and Decryption algorithms remain unaltered and

this is essentially the Boneh-Boyen scheme of [2] in the adaptive-ID model.

Efficiency: Consider IBE-SPP(�) with 1 < � ≤ n. Let cost(V ) be the cost of
computing V . The cost of key generation is two scalar multiplications over G1
plus cost(V ). By including e(P1, P2) instead of P1, P2 in the public parameter, we
can avoid the pairing computation during encryption. So the cost of encryption
is one exponentiation over G2, two scalar multiplications over G1 plus cost(V ).
The cost of decryption is two pairings, one multiplication and one inversion over
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G2. The effect of � is in cost(V ) and affects key generation and encryption costs
but does not affect decryption cost.

We first consider the costs of scalar multiplication over G1 and exponentiation
over G2. As mentioned earlier, G1 is an elliptic curve group. Let IFa denote the
base field over which G1 is defined. Then G2 is a subgroup of IFk

a, where k is
the MOV degree. Additions and doublings over G1 translate into a constant
number of multiplications over IFa. The actual number is slightly different for
addition and doubling, but we will ignore this difference. Let |IFa| be the size
of the representation of an element of IFa. Assuming the cost of multiplication
over G1 is approximately equal to |IFa|2, the cost of a scalar multiplication over
G1 is equal to c1|IFa|3 for some constant c1. One can also show that the cost
of exponentiation over G2 is equal to c2|IFa|3. Thus, the total cost of scalar
multiplication and exponentiation is equal to c|IFa|3.

The cost of computing V amounts to computing � scalar multiplications where
each multiplier is an (n/�)-bit string. On an average, the cost of each such
multiplication will be n/2� additions and (n/� − 1) doublings over G1. Hence,
the total cost of computing V is n/2 additions and (n − �) doublings over G1.
This cost is equal to d(3/2 − �/n)n|IFa|2 for some constant d.

We consider the cost of encryption. The total cost is

c|IFa|3 + d(3/2 − �/n)n|IFa|2 =
(

c + d × n

|IFa|

(
3
2

− �

n

))
|IFa|3. (1)

This cost is minimum when � = n (as in Waters protocol). The maximum value
of the coefficient of |IFa|3 is (c + (3nd)/(2|IFa|)) whereas the minimum value is
(c + (nd)/(2|IFa|)). The value of |IFa| is usually greater than n and hence the
value of (nd)/(2|IFa|) will be a small constant and hence there is not much effect
of � on the total cost of encryption. A similar analysis shows that the effect of �
is also not very significant on the cost of key generation. We note, however, that
key generation is essentially a one-time offline activity.

3.1 Security Reduction

In this section, we only consider the security of IBE − SPP(�) against chosen
plaintext attacks (IND-ID-CPA). (The extension to chosen ciphertext attack is
considered later.) The security (in the sense of IND-ID-CPA) of the identity based
encryption scheme (IBE-SPP(�)) developed above can be reduced from the hard-
ness of the DBDH problem as stated in the following theorem.

Theorem 1. For t ≥ 1, q ≥ 1 let ε = AdvIBE−SPP(�)(t, q). Then,

ε ≤ 16q(µ� + 1)AdvDBDH(t + O(τq) + χ),

where identities are chosen from ZN ; � is a size parameter with 1 < � ≤ lg N ;
µ� = �(N1/� − 1); χ = O(ε−2 ln(ε−1)λ−1 ln(λ−1)); λ = 1

4q(µ�+1) ; and τ is the
time for a scalar multiplication in G1.

Note that, for � = n we have µn = n and one gets the corresponding rela-
tionship for Waters protocol. The component χ in the time comes due to the



Trading Time for Space: Towards an Efficient IBE Scheme 429

so-called “artificial abort” technique. The proof of Theorem 1 essentially follows
the technique already developed by Boneh-Boyen [3] and Waters [24] and we
defer it to Section 5.

3.2 Signature

It is an observation of Naor that any identity based encryption scheme can be
converted to a signature scheme. Waters in his paper [24] has given a construction
of a signature scheme based on his IBE scheme. A similar construction is possible
for the generalised scheme IBE-SPP(�) which we detail here. The sketch of the
security reduction is provided in Appendix C.

Let G1 = 〈P 〉, G2 and e() be as defined in Section A.1. Messages are assumed
to be elements of ZN . Alternatively, if messages are assumed to be bit strings
of arbitrary length, then we use a collision resistant hash function to map the
messages into ZN .

Setup: Choose a random x in Zp. Let P1 = xP . Next, choose random points
P2, U

′, U1, . . . , Ul from G1. The public key is 〈P, P1, P2, U
′, U1, . . . , U�〉 and the

secret key is xP2.

Signing: Let M = (m1, m2, . . . , m�) is the message to be signed, where each
mi, 1 ≤ i ≤ � belongs to ZN1/� . To generate a signature on M , first choose a
random r ∈ Z∗

P . Then the signature is

σM = (xP2 + rV, rP ),

where V = U ′ +
∑�

i=1 miUi

Verification: Given a message M = (m1, m2, . . . , m�) and a signature σ =
(σ1, σ2) on M , one accepts σ as a valid siganture on M if

e(σ1, P ) = e(P1, P2)e(σ2, V )

where V = U ′ +
∑�

i=1 miUi.

4 Concrete Security

From the security reduction of previous section we observe that any (t, q, ε) ad-
versary A against IBE-SPP(�) can actually be used to build an algorithm B to
solve the DBDH problem over (G1, G2) which runs in time t′ and has a prob-
ability of success ε′. Then t′ = t + O(τq) + χ ≈ t + cτq + χ for some constant
c and ε′ ≈ ε/δ where τ is the time for a group operation in G1 and δ is the
corresponding degradation in the security reduction. Resistance of IBE-SPP(�)
against A can be quantified as ρ

(�)
|A = lg(t/ε). To assert that IBE-SPP(�) has at

least 80-bit security, we must have ρ
(�)
|A ≥ 80 for all possible A. Similarly, the

resistance of DBDH against B can be quantified as
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ρ|B = lg
(

t′

ε′

)
≈ lg

(
δ × t + cτq + χ

ε

)
= lg(δ(A1 + A2))

where A1 = t/ε and A2 = (cτq + χ)/ε. We now use max(A1, A2) ≤ A1 + A2 ≤
2 max(A1, A2). Since a factor of two does not significantly affect the analy-
sis we put ρ|B = lg(δ × max(A1, A2)). By our assumption, A1 = t/ε ≥ 280

and hence max(A1, A2) ≥ A1 ≥ 280. This results in the condition ρ|B ≥ 80 +
lg δ.

Thus, if we want IBE-SPP(�) to have 80-bit security, then we must choose
the group sizes of G1, G2 in such a way that the best possible algorithm for
solving DBDH in these groups takes time at least 280+lg δ. Hence, in particular
the currently best known algorithm for solving the DBDH should also take this
time. Currently the only method to solve the DBDH problem over (G1, G2) is
to solve the discrete log problem (DLP) over either G1 or G2. The best known
algorithm for the former is the Pollard’s rho method while that for the later is
number/function field sieve. Thus, if we want IBE-SPP(�) to have 80-bit security,
then we must choose the group sizes such that, 280+lg δ ≤ min(tG1 , tG2), where
tGi stands for the time to solve DLP in Gi for i ∈ {1, 2}.

We have assumed that G1 is a group of elliptic curve points of order p defined
over a finite field IFa (a is a prime power). Suppose G2 is a subgroup of order
p of the finite field IFak where k is the MOV degree. The Pollard’s rho algo-
rithm to solve ECDLP takes time tG1 = O(

√
p), while the number/function field

seive method to solve the DLP in IFak takes time tG2 = O(ec1/3 ln1/3 ak ln2/3(ln ak))
where c = 64/9 (resp. 32/9) in large characteristic fields (resp. small character-
istic fields).

4.1 Space/Time Trade-Off

In this section we parametrize the quantities by � wherever necessary. Let, δ(�)

denote the degradation factor in IBE-SPP(�). We have already noted in Section 3
that � = n stands for Waters protcol. δ(�) and hence ρ(�) is minimum when � = n
and we use this as a bench mark to compare with other values of �. Suppose
∆ρ(�) = ρ(�) − ρ(n) = lg(δ(�)/δ(n)) = (n/�)− lg(n/�). This parameter ∆ρ(�) gives
us an estimate of the extra bits required in case of IBE-SPP(�), to achieve the
same security level as that of IBE-SPP(n) i.e., Waters protocol.

Suppose, |p(�)| (resp. |G(�)
2 |) denotes the bit length of representation of p(�)

(resp. an element of G
(�)
2 ). Like [16], we assume that the adversary A is allowed to

make a maximum of q = 230 number of queries. For a given security level, we can
now find the values of |p(�)| and |G(�)

2 | for IBE-SPP(�) based on the bit length of
the identities (i.e., n), q and �. Note that, the value of |p(�)| (resp. |G(�)

2 |) thus ob-
tained is the minimum required to avoid the Pollards rho (resp. number/function
field seive) attack. In our comparison, the MOV degree k is taken to be same
for different values of � and |G(�)

2 | = k lg a (G(�)
2 is a multiplicative subgroup of

order p(�) of the finite field IFk
a). As already noted, the value of p(�) is given by

Pollard’s rho. On the other hand, the logarithm of the size of G
(�)
1 is equal to
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Table 1. Approximate group sizes for attaining 80-bit security for IBE-SPP(�) for
different values of � and relative space and time requirement. The first part corresponds
to n = 160 and the second to n = 256.

� ∆ρ(�) |p(�)| |G(�)
2 | α(�) β(�)

(a) (b) (a) (b) (a) (b)
160 – 246 1891(2225) 3284(3872) – – – –
4 34 314 3269(3730) 5721(6538) 4.3(4.2) 4.4(4.2) 5.17(4.71) 5.46(4.81)
8 15 276 2443(2831) 4258(4944) 6.5(6.4) 6.5(6.4) 2.16(2.06) 2.18(2.08)
16 6 258 2102(2457) 3655(4288) 11.1(11.0) 11.1(11.1) 1.37(1.35) 1.38(1.35)
32 2 250 1960(2300) 3405(4006) 20.7(20.7) 20.7(20.7) 1.11(1.11) 1.12(1.11)
80 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)
256 – 246 1891(2225) 3284(3872) – – - –
4 58 362 4530(5090) 7959(8954) 3.7(3.6) 3.8(3.6) 13.75(11.97) 14.24(12.37)
8 27 300 2948(3381) 5151(5919) 4.9(4.7) 4.9(4.8) 3.79(3.51) 3.86(3.57)
16 12 270 2326(2703) 4051(4717) 7.7(7.6) 7.7(7.6) 1.86(1.79) 1.88(1.81)
32 5 256 2066(2417) 3592(4212) 13.7(13.6) 13.7(13.6) 1.30(1.28) 1.31(1.29)
64 2 250 1960(2300) 3405(4006) 25.9(25.8) 25.9(25.9) 1.11(1.11) 1.11(1.11)
128 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

max(p(�), |G(�)
2 |/k). For relatively small MOV degree (i.e., k ≤ 6), |G(�)

2 |/k > |p(�)|
and so the logarithm of the size of G

(�)
1 is equal to |G(�)

2 |/k = |IF(�)
a |. For a given

�, we have to store � elements of G
(�)
1 in the public parameter file and a scalar

multiplication in G
(�)
1 takes time proportional to (|IF(�)

a |)3.
Now, we are in a position to compare the space requirement in the pub-

lic parameter file and the time requirement for a scalar multiplication in G
(�)
1

for different values of �. Let α(�) = �×|G(�)
1 |

n×|G(n)
1 | × 100 i.e., the relative amount of

space (expressed in percentage) required to store the public parameters in case
of IBE-SPP(�) with respect to IBE-SPP(n) and β(�) = |IF(�)

a |3/|IF(n)
a |3, i.e., the

relative increase in time for scalar multiplication in G
(�)
1 in the case of IBE-SPP(�)

with respect to IBE-SPP(n). Note that, β(�) can be computed from |G(�)
2 | and

|G(n)
2 | since k cancels out from both numerator and denominator. An analysis

similar to the efficiency consideration in Section 3 shows that pairing compu-
tation is also of order |IF(�)

a |3 (but with a larger constant factor). So, the ratio
β(�) also holds for pairing computation and exponentiation in case of IBE-SPP(�)
with respect to Waters protocol.

In Table 1 we sum-up these results for n = 160 and 256 for different values of
� ranging from 4 to n for 80-bit security. The subcolumns (a) and (b) under α(�)

and β(�) stand for the values obtained for general characteristic field and field
of characteristic three respectively. The values of |G(�)

2 |, α(�), β(�) are computed
using the formula as suggested in [16] (see Section 3); while in parenthesis we
give the corresponding values as computed from the formula obtained from [21]
(as given in Section 3 of [16]). Note that, the values of α(�) and β(�) being the
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ratio of two quantities remain more or less invariant whether the underlying field
is a general characteristic field or a field of characteristic three or which formula
(of [16] or of [21]) is used.

Public parameter consists of (� + 4) elements of G1. From Table 1, for 80-bit
security in general characteristic fields using EC with MOV degree 2, the public
parameter size for Waters protocol will be around 37 kilobyte (kb) for 160-bit
identities and 59 kb for 256-bit identities. The corresponding values in case of
IBE-SPP(�) with � = 16 will be around 4 kb and 4.5 kb respectively. Similarly,
in characteristic three field EC with MOV degree 6, the corresponding values
are respectively 21.5 kb and 34.2 kb and for IBE-SPP(�) with � = 16 these are
respectively 2.4 kb and 2.64 kb. There is an associated increase in computation
cost by 30%. In typical applications, the protocol will be used in a key encapsu-
lation mechanism (KEM). Thus the encryption and decryption algorithms will
be invoked once for a message irrespective of its length. Also the key generation
procedure is essentially an one-time offline activity. In view of this, the increase
in computation cost will not substantially affect the throughput. On the other
hand, the significant reduction in space requirement will be an advantage in
implementing the protocol and also in reducing the time for downloading or
transmitting the public parameter file over the net. Overall, we suggest � = 16
to be a good choice for implementing the protocol.

5 Security Proof

We prove Theorem 1 through a reductionist security argument. The proof is very
similar to that of Waters and we describe only the essential features.

Proof : Suppose A is a (t, q)-CPA adversary for IBE − SPP(�). Then we con-
struct an algorithm S for DBDH running in time (t + O(τq + χ) such that,
AdvIBE−SPP(�)

A ≤ 16q(µ� + 1)AdvDBDH
S , where µ� = �(N1/� − 1). S will take as

input a 5-tuple 〈P, aP, bP, cP, Z〉 where P is a generator of G1, aP, bP, cP ∈ G1
and Z ∈ G2. We define the following game between S and A.

Setup: S first chooses random x, x1, . . . , x� ∈ Zm where m = 4q (justified later);
random
y, y1, . . . , y� ∈ Zp and a random k ∈ {0, . . . , µ�}. It then defines three functions:
F (v) = p − mk + x +

∑�
i=1 xivi, J(v) = y +

∑�
i=1 yivi and

K(v) =
{

0 if x +
∑�

i=1 xivi ≡ 0 mod m
1 otherwise

Here, F (v) and K(v) are defined in such a way that K(v) 
= 0 implies F (v) 
≡
0 mod p. Next, S assigns P1 = aP, P2 = bP , U ′ = (p − mk + x)P2 + yP
and Ui = xiP2 + yiP for 1 ≤ i ≤ �. It provides A the public parameters
〈P, P1, P2, U

′, U1, . . . , U�〉. Everything else is internal to S. Note that from A’s
point of view the distribution of the public parameters is identical to the distri-
bution of the public parameters in an actual setup.
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Phase 1: The adversary A issues key extraction queries. Suppose, the adversary
asks for the private key corresponding to an identity v. S first checks whether
K(v) = 0 and aborts in that situation and outputs a random bit. Otherwise, it
gives A the pair

(D1, D2) =
(

− J(v)
F (v)

P1 + r(F (v)P2 + J(v)P ),
−1

F (v)
P1 + rP

)

where r is chosen at random from Zp. As in Waters proof it is possible to show
that (D1, D2) is a valid private key for v following the proper distribution. S will
be able to generate this pair (D1, D2) if and only if F (v) 
≡ 0, for which it suffices
to have K(v) 
= 0.

Challenge: At this stage the adversary A submits two messages M0, M1 ∈
G2 and an identity v∗ with the constraint that it has not asked for the pri-
vate key of v∗ in Phase 1. S aborts if F (v∗) 
= 0 and outputs a random bit.
Otherwise, S chooses a random bit γ ∈ {0, 1} and gives A the tuple C′ =
〈ZMγ , cP, J(v∗)cP 〉.

If 〈P, aP, bP, cP, Z〉 given to S is a valid DBDH tuple, i.e., Z = e(P, P )abc

then C′ is a valid encryption for Mγ . Since,

e(P, P )abc = e(aP, bP )c = e(P1, P2)c

and using F (v∗) = p−mk+x+
∑�

i=1 xiv∗i ≡ 0 mod p it is possible to show that
J(v∗)cP = cV . Note that, this condition is satisfied as long as F (v∗) ≡ 0 mod p,
which holds if x +

∑�
j=1 xjv∗j = km.

Otherwise, Z is a random element of G2 and C′ gives no information about
S’s choice of γ.

Phase 2: This phase is similar to Phase 1, with the obvious restriction that
A cannot ask for the private key of v∗. We note that the total number of key
extraction queries together in Phase 1 and 2 should not exceed q.

Guess: A outputs a guess γ′ of γ. Then S outputs 1 ⊕ γ ⊕ γ′.
Suppose the adversary has not aborted upto this point. Waters introduces a
technique whereby the simulator is allowed to abort under certain condition.
The simulator samples the transcript it received from the adversary during the
attack phase. Based on the sample, it decided whether to abort and output a
random string. The rationale for such “artificial abort” is the following: The
probability of abort during the attack phase depends on the adversarial tran-
script and can be different for different transcripts. The purpose of artificial
abort is to ensure that the simulator aborts with (almost) the same probability
for all adversarial queries. This ensures that the adversary’s success is inde-
pendent of whether the simulator aborts or not. The probability analysis per-
formed by Waters in [24] requires this independence. For details of this method
see [24]. Here we just note that the artificial abort stage requires an additional
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χ = O(ε−2 ln(ε−1)λ−1 ln(λ−1)) time. Further, it is independent of the parameter
� which defines the generalisation over Waters [24] that we introduce here.

Let abort be the probability of the simulator aborting during the actual at-
tack (as opposed to artificial abort) and let λ = Pr[abort]. In Appendix B, we
calculate the lower bound of λ to be 1

m(µ�+1) (1 − 2 q
m ). Using m = 4q gives

λ ≥ 1
4q(µ�+1) . Now using the analysis performed by Waters [24], we obtain

ε ≤ 16q(µ� + 1) AdvDBDH(t + O(τq) + χ).

The time component of O(τq) comes because of the scalar multiplications per-
formed in Phase 1 and 2 of Key Generation (these scalar multiplications are
the only computationally intensive part in the simulation). This completes the
proof. �

Remark 1: Note that, in the simulation, only the computation of F (v), J(v) ∈ Zp

depends on the size parameter �. Once F (v) and J(v) are obtained, the key gen-
eration in Phase 1 and 2 and cipher text generation in Challenge is done through
some scalar multiplications involving F (v) and J(v). Cost of computation of F (v)
and J(v) are insignificant compared to the cost of a scalar multiplication. So the
simulation time is independent of the size parameter �.

Remark 2: The technique of “artificial abort” is new to security proofs and was
introduced by Waters [24]. (It is not present in the security proof of Boneh and
Boyen [3] which is also an identity based encryption protocol which is secure in
the full model.) We feel that the technique of artificial abort can be avoided.
This technique only lowers the probability of not aborting. Hence, it should be
possible to directly work with the lower bound λ of not aborting, without actu-
ally going through the artificial abort step. Avoiding the artificial abort step will
require performing a new probability analysis. We hope to do that in the future.

6 CCA Security

Recent works of Boneh, Canetti, Halevi and Katz [5, 8, 15] show how to build
CCA secure encryption scheme from identity based encryption. One way to
achieve CCA-security for our scheme is to follow the strategy suggested in [24].
As our scheme closely resembles that of [24] it is possible to build a hybrid 2-level
HIBE [19, 18] in essentially the same way and the reduction follows.

We show that it is possible to take a different approach based on the oracle
bilinear decision Diffie-Hellman (OBDH) assumption which is a variation of the
ODH assumption used in [1]. The OBDH assumption is as follows [22].

– Instance : 〈P, aP, bP, cP, str〉 where a, b, c ∈ Zp and str ∈ {0, 1}k.
– Oracle : Ha(X, Y ), with X, Y ∈ G1. When invoked with (a1P, b1P ) returns

H(a1P, e(a1P, a2P )a), where H : G1 × G2 → {0, 1}k is a hash function.
– Restriction : Cannot query Ha(, ) on (cP, bP ).
– Task : Determine whether str = H(cP, e(cP, bP )a) or str is random.
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Any algorithm A for OBDH takes as input an instance (P, aP, bP, cP, str) of
OBDH and produces as output either zero or one. The advantage of an algorithm
A in solving OBDH is formally defined in the following manner.

AdvOBDH
A = |Pr[A outputs 1|E1] − Pr[A outputs 1|E2]|

where E1 is the event that str = H(cP, e(cP, bP )a) and E2 is the event that str
is random. The quantity AdvOBDH(t, q) denotes the maximum of AdvOBDH

A where
the maximum is taken over all adversaries running in time at most t and making
at most q queries to the oracle Ha(, ).

To suit into the OBDH assumption we modify our constructions of Section 3 as
follows: Setup and Key Generation remain unaltered. To encrypt a message,
we first generate a symmetric key sym.key = H(tP, e(P1, P2)t). Then the cipher
is C = 〈tP, tV, y)〉, where y is the encryption of the message using the symmetric
key sym.key. To decrypt, all that we need is e(P1, P2)t = e(D1, tP )/e(D2, tV )
and then find sym.key using H .

Security: Breaking the (modified) IBE implies either solving OBDH or break-
ing the symmetric encryption scheme. The later we assume to be unbreakable
under chosen ciphertext attack. CCA security under the OBDH assumption is
expressed in the following theorem proof of which will be provided in the full
version of the paper.

Theorem 2. For t ≥ 1, q ≥ 1; AdvIBE(t, q) ≤ 16q(µ�+1)AdvOBDH(t+O(τq)+χ),
where identities are chosen from ZN , 1 < � ≤ lg N is a size parameter, µ� =
�(N1/� − 1).

Note: Subsequent to the acceptance notification of this submission to ICISC
2005, we came to know that a paper describing a similar construction as ours
has been posted on the eprint archive by David Naccache. (We also note that
an earlier version of the present paper was submitted to Asiacrypt 2005, whose
submission deadline was May 30, 2005.) Though the construction is similar, the
paper by Naccache does not perform any concrete security analysis. In fact, the
paper mentions that the loss of security due to the generalisation is “insignifi-
cant”. As discussed in Section 4, this is not correct. In fact, the conversion of
security degradation into a trade-off between time and space is original to our
paper and is the most important feature of the generalisation of Waters scheme.
On the other hand, we would like to mention that Naccache’s paper presents a
better exposition of the security proof than that given in Waters.
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A Definitions

A.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we
write G1 additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is
called a cryptographic bilinear map if it satisfies the following properties:

– Bilinearity : e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Zp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability : There exists an efficient algorithm to compute e(P, Q) for

all P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. Modified Weil pairing [6] and Tate pairing [9, 17] are examples of crypto-
graphic bilinear maps.

A.2 IBE Protocol

Following [6] an identity based encryption scheme is specified by four algorithms:
Setup, Key Generation, Encryption and Decryption.

Setup: It takes input a security parameter and returns the system parameters
together with the master key. The system parameters include a description of
the message space, the ciphertext space and the identity space. They are publicly
known while the master key is known only to the private key generator (PKG).

Key Generation: It takes as input an identity v and returns a private key Dv,
using the master key. The identity v is used as the public key while Dv is the
corresponding private key.

Encryption: It takes as input the identity v and a message from the message
space and produces a ciphertext in the cipher space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

A.3 Security Model

Here we define indistinguishability under chosen ciphertext attack for identity
based encryption schemes under a chosen identity. In this model, an adversary
is allowed to choose adaptively the public key it wishes to attack. In concrete
terms, security of an IBE scheme can be defined using the following game.
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An adversary (whom we denote by A) is allowed to query two oracles – a
decryption oracle and a key-extraction oracle. At the initiation it is provided
with the system public parameters.

Phase 1: Adversary A makes a finite number of queries where each query is
addressed either to the decryption oracle or to the key-extraction oracle. In a
query to the decryption oracle it provides the ciphertext as well as the identity
under which it wants the decryption. Similarly, in a query to the key-extraction
oracle, it asks for the private key of the identity it provides. Further, A is allowed
to make these queries adaptively, i.e., any query may depend on the previous
queries as well as their answers.

Challenge: At this stage A fixes an identity, v∗ and two equal length messages
M0, M1 under the (obvious) constraint that it has not asked for the private key of
v∗ and gets a ciphertext (C∗) corresponding to Mγ , where γ is chosen uniformly
at random from {0, 1}.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious)
restriction that it cannot ask the decryption oracle for the decryption of C∗

under v∗ nor the key-extraction oracle for the private key of v∗.

Guess: A outputs a guess γ′ of γ.

The advantage of the adversary A in attacking the IBE scheme is defined as:

AdvIBE
A = 2|Pr[(γ = γ′)] − 1/2|

The quantity AdvIBE(t, qID, qC) denotes the maximum of AdvIBE
A where the maxi-

mum is taken over all adversaries running in time at most t and making at most
qC queries to the decryption oracle and qID queries to the key-extraction oracle.
Any IBE scheme secure against such an adversary is said to be secure against
chosen ciphertext attack (CCA).

In our security reduction of Theorem 1, we restrict the adversary A from mak-
ing any query to the decryption oracle. An IBE scheme secure against such an
adversary is said to be secure against chosen plaintext attack (CPA). AdvIBE(t, q)
in this context denotes the maximum advantage where the maximum is taken
over all adversaries running in time at most t and making at most q queries to
the key-extraction oracle.

A.4 Hardness Assumption

We define the security of our identity based encryption scheme in terms of the
decision bilinear Diffie-Hellman problem (DBDH). The DBDH problem [7] in
G1 is as follows: given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether
Z = e(P, P )abc which we denote as Z is real or Z is random. The advantage of
a probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 and
outputs a bit, in solving the DBDH problem is defined as
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AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

− Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|

where the probability is calculated over the random choice of a, b, c ∈ Zp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries running in time at
most t.

B Lower Bound of λ

We calculate a lower bound on λ for any set of q queries v(1), . . . , v(q) and a
challenge identity v∗ as:

λ = Pr[
q∧

i=1

(
K(v(i)) = 1

)
∧ (x +

�∑

j=1

xjv∗j = km)]

= Pr[
q∧

i=1

(
K(v(i)) = 1

)
]Pr[(x +

�∑

j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

= (1 − Pr[
q∨

i=1

(
K(v(i)) = 0

)
]Pr[(x +

�∑

j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

≥ (1 −
q∑

i=1

Pr[
(
K(v(i)) = 0

)
]Pr[(x +

�∑

j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

= (1 − q

m
)Pr[(x +

�∑

j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

=
1

µ� + 1
(1 − q

m
)Pr[K(v∗) = 0|

q∧

i=1

(
K(v(i)) = 1

)
]

=
1

µ� + 1
(1 − q

m
)

Pr[K(v∗) = 0]
Pr[

∧q
i=1 K(v(i) = 1)]

Pr[
q∧

i=1

(
K(v(i)) = 1

)
|K(v∗) = 0]

≥ 1
m(µ� + 1)

(1 − q

m
)Pr[

q∧

i=1

(
K(v(i)) = 1

)
|K(v∗) = 0]

=
1

m(µ� + 1)
(1 − q

m
)(1 − Pr[

q∨

i=1

(
K(v(i)) = 0

)
|K(v∗) = 0]

≥ 1
m(µ� + 1)

(1 − q

m
)(1 −

q∑

i=1

Pr[K(v(i)) = 0|K(v∗) = 0]

=
1

m(µ� + 1)
(1 − q

m
)2

≥ 1
m(µ� + 1)

(1 − 2
q

m
)
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In the above derivation the equality in the last but one step comes from the
fact that

Pr[K(v(i)) = 0|K(v∗) = 0] = Pr[K(v(i)) = 0] = 1/m

since K(v(i)) = 0 for 1 ≤ i ≤ q and K(v∗) = 0 are mutually independent events.

C Security of the Signature Scheme

Brief sketch: This proof also is a reduction. Suppose A is a CPA adversary for
the signature scheme. Then we construct an algorithm S for Comutational Diffie-
Hellman problem (CDH). S will take as input a 3-tuple 〈P, aP, bP 〉 where P is a
generator of G1 and aP, bP ∈ G1. We define the following game between S and
A.

The Setup and Signature Generation steps of this game is exactly same as
the Setup and Phase 1 of Section 5.

Forge: At this stage the adversary A submits a message M∗ ∈ ZN and a
signature σ∗ = (σ∗

1 , σ∗
2) with the constraint that it has not asked for the signature

of M∗ in the Signature Generation phase. A wins if σ∗ is a valid signature on
M∗.

If A is successful in forging the signature, S first checks whether F (M∗) 
= 0
and aborts in that situation. Otherwise, S first computes J(M∗)σ∗

2 and then
adds the inverse of this product with σ∗

1 . It returns the end result as the value
of abP .

Since F (M∗) = 0, then as in the Challenge part of proof of Theorem 1, we
have

J(M∗)σ∗
2 = rV.

Note that, this condition is satisfied as long as F (M∗) ≡ 0 mod p, which holds
if x +

∑�
j=1 xjm

∗
j = km.

Now, σ∗
1 = abP + rV and hence abP = σ∗

1 − rV .
Note that, the conditions under which S aborts this game is exacly the same

under which S aborts the game in Theorem 1. So the lower bound on the prob-
ability of not aborting remains exactly the same.
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