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Abstract. This paper describes a hybrid symmetric cipher that com-
bines a strongly-secure function, e.g., a pseudorandom function (PRF),
which is secure against any Chosen-Plaintext Attack, and a weak PRF,
which is only secure against any Known-Plaintext Attack. Although this
kind of composition is potentially faster than the modes of PRFs, it
has not been extensively studied. Our main contribution is in propos-
ing a new block cipher scheme that is suitable for hybrid composition.
We describe efficient hybrid constructions of pseudorandom permutation
and strong pseudorandom permutation for an arbitrarily large block size
using our new scheme.

1 Introduction

In 1988, Luby and Rackoff [13] began studying the secure composition of cryp-
tographic components. They showed that only a few iterations of a Feistel round
could be secure against any Chosen-Plaintext Attack (CPA) or Chosen-Ciphertext
Attack (CCA), if the underlying round functions were pseudorandom functions [8]
(PRFs), i.e., secure against any CPA. Following Luby and Rackoff’s work, many
researchers have studied the compositions of various cryptographic systems.

In this paper, we discuss hybrid1 symmetric encryptions combining a compo-
nent secure against any Known-Plaintext Attack (KPA), which is called a weak
PRF (WPRF), and a stronger component such as PRF. WPRFs were studied
by many researchers [1, 6, 23, 24] and widely accepted as one of the weak crypto-
graphic primitives. Since KPA is weaker attack than CPA, a WPRF is reasonably
assumed to be faster than a PRF. For example, it was pointed out [6] that the
WPRF based on the Decisional Diffie-Hellman (DDH) assumption could be more
efficient than the DDH-based PRF proposed by Naor and Reingold [22]. Con-
sider a mode that invokes a PRF. If almost all invocations of the PRF can be
securely substituted with those of a WPRF, then the resulting mode would be
much faster than the original mode based only on PRF. In practice, such hybrid
modes can be seen as modes of operation for multiple cryptographic components
that have different security-levels, such as a strongly secure block cipher and its
reduced-round version, or a (strong) block cipher and a (weak) stream cipher.

1 In this paper, “hybrid” means combining strong and weak primitives.
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Although the idea of using multiple components can be seen in previous studies,
for instance Bear and Lion [2], none of them used WPRFs as their components.

The basic idea is that the cascade of a PRF and a WPRF is PRF. This is
intuitively correct, since outputs of a PRF, which correspond to the WPRF’s
inputs, should be close to random in terms of computational indistinguishability.
We first prove that this idea actually holds true, and propose a hybrid construc-
tion of a PRF with large output (and small input) based on this idea. Such a
PRF can be used as a stream cipher accepting an initial vector (IV).

These results are also beneficial to hybrid block ciphers. We propose a new
scheme for block ciphers that slightly differs from Feistel. It provides a pseudo-
random permutation (PRP) that has double length (i.e., a 2n-bit block cipher
composed of n-bit block components) using one invocation of a PRP and a
WPRF, and universal hash function [32] (UH)-based mixing. As it might be
impossible to build a double length PRP using two WPRF invocations, our con-
struction is optimal (in terms of the number of n-bit PRP invocation). Moreover,
we show that such a hybrid composition is, in a sense, difficult with the original
Feistel. Double length PRP has been extensively studied and many schemes have
been proposed [13, 25, 27, 12, 19, 28]. However, to our knowledge, our scheme is
the first construction that does not need two invocations of a PRF (or PRP).

In addition, our scheme is useful for building a large block cipher. Using our
hybrid block cipher scheme combined with our hybrid large output PRF, we
build an mn-bit strong PRP (SPRP), which is secure against any combination
of CPA and Chosen-Ciphertext Attack (CCA). A large block SPRP has desirable
properties for storage encryption [35]. Our construction requires two invocations
of an n-bit SPRP, (m−2) invocations of an n-bit WPRF, and two Feistel rounds
with UHs, for all m > 2. Therefore, its throughput will be close to that of the
WPRF we intend to use, and the underlying n-bit SPRP’s throughput will not
be a problem with a large block size. For a comparison, NR mode [25], which is a
highly sophisticated mode to provide a large block SPRP, requires m invocations
of an n-bit SPRP and two mixing layers to provide a mn-bit block SPRP. These
examples illustrate that our hybrid block cipher construction is highly optimized
for both small and large block sizes.

All our security analyses are based on the standard security notions of sym-
metric cryptography introduced by Bellare et al. [3] and a natural extension of
this to deal with KPA, which is the same as the previous studies [1, 6, 22]. We
also use a framework that was proposed by Maurer [17] to perform a rigorous
security analysis.

2 Preliminaries

2.1 Random Functions and Their Composition

Definition 1. Let X and Y be finite sets. Random function (RF) F : X → Y
is a random variable distributed over all functions X to Y2. If F is distributed
2 If F has key K, uniformly distributed over K, then there is function f : K × X → Y

such that F(x) = f(K, x) and Pr[F(x) = y] = |{k ∈ K : f(k, x) = y}|/|K|.
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over all permutations on X , it is called a random permutation (RP) on X . A
uniform random function (URF) : {0, 1}n → {0, 1}m is an RF with uniform
distribution on all functions {0, 1}n to {0, 1}m and denoted by Rn,m. A uniform
random permutation (URP) on {0, 1}n is an RP with uniform distribution on
all n-bit permutations and denoted by Pn.

Note that, in this paper, the word “random” does not imply uniformity. It only
means it is probabilistic. We used bold symbols for RFs. When F and G are two
RFs that have the same input/output space, we say they are compatible.

For simplicity, most of our results deal with cases when n-bit block compo-
nents are used. We will use the following composition operators.

Definition 2. Let F : X → Y, and G : Y → Z. Let F ◦ G : X → Z such
that F ◦ G(x) = G(F(x))3 , and let F � G : X → Y × Z such that F � G(x) =
(F(x),G(F(x))) for all x ∈ X .

2.2 Security Measures and Their Properties

We breifly describe our security measures in a standard framework introduced
by Bellare et al.[3]. Let F,G be two compatible RFs. Let D be an attacker that
can access the encryption oracle (EO). Here, EO has implemented H, which
is equivalent to either F or G. D determines whether H is F or G after a
predetermined number of queries and answers. The advantage of D is defined as

V (F,G|D) def= |Pr[D’s guess is F|H = F] − Pr[D’s guess is F|H = G]|. (1)

Definition 3. The CPA-advantage (KPA-advantage) is defined as the maximal
advantage of all attackers using CPA (KPA). That is,

Advcpa
F,G(q, τ) def= max

D:(q,τ)-CPA
V (F,G|D), Advkpa

F,G(q, τ) def= max
D:(q,τ)-KPA

V (F,G|D).

Here, (q, τ)-CPA denotes a CPA that uses q queries with time complexity τ4.
Similarly, (q, τ)-KPA denotes a KPA that uses q independent and uniformly
random queries with time complexity τ . Especially, let R be a URF compatible
to F. Then, Advprf

F (q, τ) def= Advcpa
F,R(q, τ) and Advwprf

F (q, τ) def= Advkpa
F,R(q, τ). If

F is an RP, we have Advprp
F (q, τ) def= Advcpa

F,P(q, τ) where P is the URP.

Finally, we will define the CCA-advantage. This provides the security against an
attacker who can adaptively choose a plaintext (a ciphertext) and receive the ci-
phertext (the plaintext). It can be defined as a variant of the CPA-
advantage.

Definition 4. Let F and G be two RPs on X . The inverse of F is denoted
by F−1. Let 〈F〉 be the RF:X × {0, 1} → X such that 〈F〉(xi, di) = F(xi) if

3 Note that the definition of ◦ is different from the standard one.
4 The time complexity includes the worst case execution time and the program size,

in some fixed RAM computation model.
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di = 0 and F−1(xi) if di = 1. The CCA-advantage is defined as Advcca
F,G(q, τ) def=

Advcpa
〈F〉,〈G〉(q, τ) and we have Advsprp

F (q, τ) def= Advcca
F,P(q, τ).

If F has a small CPA-advantage for some sufficiently large q and τ in distin-
guishing F from URF, it is called a pseudorandom function (PRF). In addition,
if F is invertible, it is called a pseudorandom permutation (PRP). Similarly, if
F has a small KPA-advantage, it is called a weak PRF [24] (WPRF), and if F
is an RP and has a small CCA-advantage, it is called a strong PRP (SPRP).

It is well known that triangle inequality holds for the CPA, KPA, and CCA-
advantages. More precisely, we have Adv∗∗∗

F,H(q, τ) ≤ Adv∗∗∗
F,G(q, τ)+Adv∗∗∗

G,H(q, τ)
for ∗ ∗ ∗ ∈ {cpa, kpa, cca}.

Let F,G be compatible RFs with n-bit input, and let R be the URF with
n-bit output. The following equation plays an important role in our analysis.

Advkpa
F,G(q, τ) = Advcpa

R�F,R�G(q, τ ′), where τ = τ + O(nq). (2)

This is natural, since all adaptive attacks are useless in distinguishing R�F from
R�G. Actually, the difference between Advkpa

F,G(q, τ) and Advcpa
R�F,R�G(q, τ) only

depends on the time for generating uniformly random plaintexts (for F and G).
We assume that the time for generating q uniformly random plaintexts needs
O(nq) time. Hereafter, X denotes {0, 1}n and τ ′ denotes τ + O(nq).

Lemma 1. For any F and G , Advkpa
F,G(q, τ) ≤ Advcpa

F,G(q, τ). Moreover, let E
be an RF that can be cascaded to F and G, and R be the URF compatible with
E. Then, Advcpa

E�F,E�G(q, τ) ≤ 2Advcpa
E,R(q, τ) + Advkpa

F,G(q, τ ′).

Proof. The first claim is obvious. For the second, we have

Advcpa
E�F,E�G(q, τ) ≤ Advcpa

E�F,R�F(q, τ)+Advcpa
R�F,R�G(q, τ)+Advcpa

R�G,E�G(q, τ).

Combining the above inequality with Eq. (2) proves the second claim.

2.3 Monotone Event Sequence and Conditional Equivalences

We will use a methodology developed by Maurer [17, 18] to analyze information-
theoretic security, i.e., the maximum advantage without computational restric-
tions. Here, let us briefly describe his notations. Consider event ai defined for
i input/output pairs of F. Let ai be the negation of ai. We assumed ai was
monotone, i.e., ai never occurred if ai−1 occurred. For instance, ai is monotone
if this indicates that all i outputs are distinct. An infinite sequence of mono-
tone events A = a0a1 . . . is called a monotone event sequence (MES). Here, a0
denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . . is an
MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any sequence of
random variables, X1,X2, . . . , let Xi denote (X1, . . . , Xi). After this, dist(Xi)
will denote an event where X1,X2, . . . , Xi are distinct.

Let MESs A and B be defined for F : X → Y and G : X → Y, respectively.
Let Xi ∈ X and Yi ∈ Y be the i-th input and output. Let PF be the probability
space defined by F. For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi = yi|Xi =
xi, Y i−1 = yi−1] where Yj = F(Xj) for j = 1, . . . .
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Definition 5. Let us say F and G are equivalent and write F ≡ G if PF
Yi|XiY i−1

= PG
Yi|XiY i−1 , which means PF

Yi|XiY i−1(yi, xi) = PG
Yi|XiY i−1(yi, xi) for all xi ∈

X i, yi ∈ Yi and for all i ≥ 1.

Definition 6. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

5 holds,
which means PF

Yiai|XiY i−1ai−1
(yi, xi) = PG

Yibi|XiY i−1bi−1
(yi, xi) holds for all

(yi, xi) such that both PF
ai−1|Xi−1Y i−1(yi−1, xi−1) and PG

bi−1|Xi−1Y i−1(yi−1, xi−1)
are positive for all i ≥ 1.

Definition 7. We write F|A ≡ G|B if PF
Yi|XiY i−1ai

= PG
Yi|XiY i−1bi

holds. More-
over, let C = c0c1 . . . be an MES defined for F. We write FA|C ≡ GB if
PF

Yiai|XiY i−1ai−1ci
= PG

Yibi|XiY i−1bi−1
holds.

Note that if FA ≡ GB, then F|A ≡ G|B (but not vice versa).

Definition 8. For A defined for F, ν(F, aq) denotes the maximal probability
of aq for any (q,∞)-CPA that interacts with F. Similarly, µ(F, aq) denotes the
maximal probability of aq for any non-adaptive (q,∞)-CPA.

Clearly, µ(F, aq) ≤ ν(F, aq) holds. In addition, µ(F, aq) equals maxxq∈X q PF
aq|Xq ,

which often makes the analysis of µ(F, aq) much easier than that of ν(F, aq).
These equivalences are crucial to the proof of information-theoretic security.

For example, if FA ≡ GB, then Advcpa
F,G(q,∞) ≤ ν(F, aq) (Theorem 6 in Ap-

pendix A). Moreover, one can turn the analysis of adaptive attacks (i.e., ν(∗, ∗))
into that of non-adaptive attacks (i.e., µ(∗, ∗)) under some additional condi-
tions. We will use a number of Maurer’s results including Theorem 6, as these
often provide a rigorous security proof, which can not be obtained with other
methods6. For completeness, these results are cited in Appendix A.

Caveat. Maurer’s methodology [17] can only be applied to an information-
theoretic setting. In most cases information-theoretic proofs can be easily con-
verted into computational ones, but this is not always the case [18, 21]. However,
we do not encounter such difficulties in this paper. His methodology can also be
applied to random systems, i.e., stateful random functions. We will use some ran-
dom systems in our proofs for convenience, but in practice, none of our hybrid
modes require underlying components to be stateful.

2.4 Why We Should Care About Hybrid Modes?

As we mentioned, the focus of this paper is modes for a PRF combined with
a WPRF. However, why do we need such hybrid modes as we already have
PRFs? The main advantage of hybrid modes is throughput, since a WPRF is

5 Here, PF
Yiai|XiY i−1ai−1

(yi, xi) is Pr[Yi = yi, ai|ai−1, X
i−1 = xi−1, Y i−1 = yi−1] .

6 For example, let C be a 2n-bit 3-round Feistel with PRFs. Classical analysis requires
q2/22n as a term appearing in the upper bound of Advprp

C (q, τ), while Maurer [17]
showed this was redundant.
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naturally assumed to be faster than a compatible PRF. The following examples
demonstrate that this assumption actually holds true in some cases.

Example 1. Let M[F1,F2] denote a 2n-bit 2-round Feistel, where Fi is the i-th
round function:X → X for i = 1, 2 (recall that X denotes {0, 1}n). The first
round of M[F1,F2] is left-to-right. That is, the input to F1 is the left half of the
input to M[F1,F2]. It is well known that the 3-round Feistel where each round
function is an independent PRF is PRP. However, the following lemma shows
that the 2-round Feistel, which can never be a PRP, can be KPA-secure.

Lemma 2. Advkpa
M[F1,F2],P2n

(q, τ) ≤ Advprf
F1

(q, τ) + Advprf
F2

(q, τ) + q2

2n .

This lemma is proved by a simple non-adaptive analysis similar to Maurer [15].

Actually, a similar result can be obtained for a generalized Feistel. For example,
the type I transformation [33] on mn-bit block input requires 2m − 1 rounds to
achieve 2n/2-bit CPA-security [20] (i.e., the CPA-advantage is negligibly small
if q � 2n/2), whereas m rounds are sufficient to attain 2n/2-bit KPA-security.
However, we omitted the formal descriptions of these results here.

As another example, it was pointed out [6] that the WPRF based on the
DDH assumption could be more efficient than the DDH-based PRF construction
proposed by Naor and Reingold [22]. These examples illustrate that well-designed
hybrid modes can be faster than modes that only use PRFs.

Basically, we can only use WPRFs as building blocks. A mode proposed by
Damg̊ard and Nielsen [6] can convert any WPRF into a pseudorandom generator
(PRG), which implies that any WPRF can be converted into a PRF using the
PRG-to-PRF conversion [7]. However, this takes too much computation time
and hence is rather impractical. Still, our proposals can be seen as modes of
WPRF if this KPA-to-CPA conversion is incorporated into them7.

3 Hybrid Construction of Large Output PRF

The basic idea behind hybrid modes is that the cascade of a PRF and a WPRF
is a PRF. If the WPRF has large output, then the cascade would have almost the
same throughput as that of the WPRF. This idea is intuitively correct. Actually,
a similar idea was originally proposed by Aiello, Rajagopalan, and Venkatesan[1],
without complete security proof (in fact, they only proved Lemma 3). In this
section, we will describe our hybrid construction of a large output PRF called
ARV8, and prove it is secure.

Definition 9. Let F1 : X → X be a PRF and F2 : X → X be a WRPF. ARV
is defined as ARVm[F1,F2]

def= F1 ◦ LF2,m (see Def.2 for the def. of ◦) , where
LF2,m : X → X m is LF2,m(x) = (F2,1(x),F2,2(x), . . . ,F2,m(x)) for any x ∈ X .
Here, F2,1, . . . ,F2,m are independently-keyed m RFs that are equivalent to F2.
7 The term “KPA-to-CPA” conversion was also used in [6]. However, it was not in-

tended as a conversion of WPRF into PRF.
8 Even though Aiello et al.’s proposal was slightly different from ours, we still called

it ARV.
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Before analyzing ARV, we have to formally prove that the cascade of PRF and
WPRF is PRF.

Theorem 1. Let G = C ◦ F and G′ = C � F, where C : X → X , and F : X →
X m. Then,

Advprf
G (q, τ) ≤ Advprf

G′ (q, τ) ≤ Advprf
C (q, τ) + Advwprf

F (q, τ ′) +
q2

2n+1 . (3)

Proof. The first inequality is obvious. For the second inequality, let H1 and H2
be Rn,n � F, and Rn,n � Rn,mn, respectively. We then obtain Advprf

G′ (q, τ) ≤
Advcpa

G′,H1
(q, τ) + Advcpa

H1,H2
(q, τ) + Advprf

H2
(q, τ). It is easy to see that Advcpa

G′,H1

(q, τ) ≤ Advprf
C (q, τ) and Advprf

H2
(q, τ) ≤ Advprf

H2
(q,∞) < q2

2n+1 . Finally, Advcpa
H1,H2

(q, τ) ≤ Advwprf
F (q, τ ′) follows from Eq. (2).

Now, the remaining task is to show the KPA-advantage of LF2,m. This is
easily derived from triangle inequality.

Lemma 3. (in [1, 6]) Let F : X → X . Then, Advwprf
LF,m

(q, τ) ≤ m ·Advwprf
F (q, τ).

From Theorem 1 and Lemma 3, it is obvious that using F1(xi) as part of the
i-th output does not compromise the security of ARV. That is, we can use �
instead of ◦. We thus have the following corollary.

Corollary 1. Let ARV+
m[F1,F2]

def= F1 � LF2,m. Then, Advprf
ARVm[F1,F2]

(q, τ) ≤
Advprf

ARV+
m[F1,F2]

(q, τ) ≤ Advprf
F1

(q, τ) + m · Advwprf
F2

(q, τ ′) + q2

2n+1 .

An advantage of ARV+ over ARV is that the former guarantees an improved
throughput for any small m whenever F2 is faster than F1.

Smaller key size. Althought the key size of LF,m is large (i.e., m keys), a mode
of WPRF proposed by Damg̊ard and Nielsen [6] reduces the key size to 2 log2 m.
However, we will not discuss the key scheduling issue in this paper.

4 Hybrid Construction of PRP

4.1 Hybrid Double Length PRP is Difficult Within 3-Round Feistel

In this section, we deal with the hybrid construction of a PRP. Our first target
is a double length PRP (DLPRP). More specifically, we want to build a PRP
on X 2 using a PRF: X → X and a WPRF: X → X . It is well known that the
cascade of a light-weight mixing and two Feistel rounds where round functions
are two independent PRFs is a DLPRP (this was first pointed out by Lucks [14]).
To implement the light-weight mixing, no cryptographic functions are needed:
one Feistel round using ε-AXU [25] with an adequately small ε is enough. Here,
ε-AXU is defined as follows. There have been many proposals for practical and
efficient ε-AXUs, for instance MMH [9].
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Definition 10. Let F : X → Y. If F is ε-almost XOR universal (ε-AXU), then
Pr{F(x) ⊕ F(x′) = y} ≤ ε for all (x, x′) ∈ X 2 such that x �= x′ and all y ∈ Y.

Can we substitute one of two PRFs (in DLPRP described above) with some
WPRF and maintain the cipher’s security? If the answer is yes, we can build a
hybrid DLPRP using one invocation of a PRF and a WPRF, and a light-weight
mixing round9.

Unfortunately, the answer is not that clear. At least we found that, some
special WPRF could be used as the last round function. The following theorem
has a typical example.

Theorem 2. Let G be E◦M[F1,F2], where E is a 2n-bit RP and M[F1,F2] is a
2-round Feistel (see Ex. 1). Let Si be the i-th input to F1 and let ai be dist(Si).
Note that Si is also the left half of the i-th output of E. Let us assume that
F2(x) = H(x̂) holds for all x, where H : {0, 1}n−1 → X , and x̂ is the first n − 1
bits of x. Then, Advprp

G (q, τ) is at most µ(E, aq) + Advprf
F1

(q, τ) + Advprf
H (q, τ) +

q2/2n. If E is one right-to-left Feistel round with ε-AXU, then µ(E, aq) ≤ εq2/2.

Proof. The proof is an extension of 3-round Feistel’s proof. See Appendix B.

If H is a PRF, then F2 is obviously a WPRF, but not a PRF10. However, we
could not find a way of evaluating the CPA-advantage of the cipher unless F2
was such a special WPRF (or a PRF). The reason is, roughly saying, that the
information of Si, which is a key to find a collision among Si+1, may not be
sufficiently hidden unless F2 is a PRF or a special WPRF described above.
Moreover, the construction in Theorem 2 is not a hybrid one, but only a mode
of two PRFs. For now, we think a general security proof based only on the
CPA-advantage of F1 and KPA-advantage of F2 is intractable.

4.2 New Scheme Providing Hybrid DLPRP

Here, we propose a new block cipher scheme that slightly differs from Feistel.

Definition 11. For an RP on X , C, and F : X → X m−1, let Nm[C,F] be an
RP on X m defined as Nm[C,F](xl, xr) = (C(xl),F(C(xl)) ⊕ xr), where xl ∈ X
and xr ∈ X m−1.

Here, Nm[C,F] is clearly invertible if C is invertible. Note that Nm[∗, ∗] is
unbalanced (i.e., a message is divided into two submessages of unequal lengths)
for all m > 2. Let us say Nm[∗, ∗] is (n, (m − 1)n) unbalanced. Now, let us show
that the double length scheme, N2[∗, ∗], has quite a unique property: it provides
an efficient hybrid DLPRP that accepts any WPRF. The first step in proving
this is in analyzing an ideal setting (i.e., when N2[Pn,Rn,n] is used).

9 Building a DLPRP using two WPRF calls seems impossible, though we have not
formally proved this so far.

10 Interestingly, this kind of WPRF was proposed in Lucks’s “Faster Luby-Rackoff
Cipher” [14], although he only proved its non-adaptive CPA-security.
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Theorem 3. Let G be E◦N2[Pn,Rn,n], where E is an RP on X 2. Let Si denote
the i-th input to Pn, which corresponds to the left half of the i-th output of E.
We then obtain

Advprp
G (q,∞) ≤ µ(E, aq) +

q2

2n+2 , where aq denotes dist(Sq). (4)

Moreover, if E is one right-to-left Feistel round with ε-AXU, H : X → X (see
left of Fig. 1), then Advprp

G (q,∞) is at most q2

2

(
ε + 1

2n+1

)
.

Proof. The core of the proof is in the following lemma. This is proved in Ap-
pendix C.

Lemma 4. For any RF:X 2 → X 2, let (Si, Ti) be the i-th input, where Si, Ti ∈
X . Similarly, (Ui, Vi) denotes the i-th output, where Ui, Vi ∈ X . For the case of
N2[Pn,Rn,n], Ui = Pn(Si) and Vi = Rn,n(Pn(Si))⊕Ti. Let ai and bi be dist(Si)
and dist(U i), respectively. For two MESs, A = a0a1 . . . and B = b0b1 . . . ,

N2[Pn,Rn,n]A∧B∧C ≡ PA∧B
2n (5)

holds for some MES C = c0c1 . . . defined for N2[Pn,Rn,n].

Let us abbreviate N2[Pn,Rn,n] to N∗
2. Using Lemmas 4 and 5, we obtain

(E ◦ N∗
2)

A∧B∧C ≡ (E ◦ P2n)A∧B, (6)

where MESs are defined for N∗
2 and P2n (see the left of Fig. 1). Let P̂2n be

a random system compatible to P2n, which always behaves as if some distinct
inputs are given to P2n, no matter what the actual inputs are. We then have

Advprp
E◦N∗

2
(q,∞) ≤ ν(E ◦ P2n, aq ∨ bq) ≤ µ(E, aq) + µ(P̂2n, bq). (7)

In Eq. (7), the first inequality follows from the equivalence E ◦ P2n ≡ P2n, and
Lemma 4, and Theorem 6. For the last inequality, note that PB

2n|A ≡ P̂B
2n holds,

since A indicates that inputs to P2n are distinct and B is defined for outputs.
Applying PB

2n|A ≡ P̂B
2n to Lemma 10 proves the last inequality. Let us analyze

µ(P̂2n, bq), which corresponds to the probability of a collision occurring in the
left halves of P̂2n’s outputs. For any i �= j, we obtain

P P̂2n(Ui = Uj) =
∑

u,vi,vj∈X ,vi 	=vj

P P̂2n(Ui = Uj = u, Vi = vi, Vj = vj)

=
∑

u,vi,vj∈X ,vi 	=vj

1
22n

· 1
22n − 1

= 2n · 2n(2n − 1)
2 · 22n · 22n − 1

<
1

2n+1 .

This means µ(P̂2n, bq) is less than
(
q
2

) 1
2n+1 < q2

2n+2 . Substituting µ(P̂2n, bq) with
q2

2n+2 in Eq. (7) proves the first claim. As the proof of the second claim is easily
derived by the first claim and a trivial collision analysis of E, we omitted it.
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The CPA-security of E ◦ N2[C,F] is easy to prove, when both C and F are
CPA-secure. Here, we will present a stronger result: we only need the KPA-
security of F and CPA-security of C.

Theorem 4. Let G = E ◦ N2[C,F], where E is an RP on X 2, C is an RP on
X , and F : X → X . Then,

Advprp
G (q, τ) ≤ µ(E, aq) + Advprp

C (q, τ) + Advwprf
F (q, τ ′) +

5q2

2n+2 , (8)

where aq denotes an event where q inputs to C are distinct.

Proof. Using triangle inequality, Advprp
G (q, τ) is no more than Advcpa

G,G′(q, τ) +
Advcpa

G′,G∗(q, τ) + Advprp
G∗ (q, τ), where G′ and G∗ denote E ◦ N2[Pn,F] and E ◦

N2[Pn,Rn,n], respectively. Note that Advcpa
G′,G∗(q, τ) ≤ Advcpa

Pn�F,Pn�Rn,n
(q, τ)

and thus we can use Lemma 1. This observation and Theorem 3 complete the
proof.

As Theorem 4 shows, if C is a PRP and F is a WPRF, the cascade of light-
weight mixing and N2[C,F] is a DLPRP. Unlike a 3-round Feistel, no additional
conditions are needed for F.
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U
i
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b
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T
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U
i

V
i
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N2(Pn,Rn,n)

a
i

b
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Fig. 1. Our Double Length PRP (left) and Double Length SPRP (right)

4.3 Achieving Large Block Size

One notable property of our scheme is that it offers a very efficient way of
extending block size. We can use Nm[∗, ∗] to build an mn-bit block cipher. Here,
we need a WPRF:X → X m−1 for the second argument of Nm[∗, ∗]. Such an RF
can be composed from any WPRF:X → X , as shown in Lemma 3.

Corollary 2. Let C be an RP on X , and let F be an RF: X → X . Moreover, let
E be a right-to-left, (n, (m − 1)n) unbalanced Feistel round with ε-AXU. Then,

Advprp
E◦Nm[C,LF,m−1]

(q, τ)≤Advprp
C (q, τ)+(m−1)·Advwprf

F (q, τ ′)+q2
(

ε

2
+

5
2n+2

)
.
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Proof. The logic of the proof is the same as with DLPRP. Consider E◦G, where
G is an mn-bit RP. Assume Si is the leftmost n-bit of the i-th input to G, and
Ui is the leftmost n-bit of the i-th output of G. Let ai and bi denote dist(Si)
and dist(U i). We can then prove that Advprp

E◦Nm[Pn,Rn,(m−1)n](q,∞) is at most
µ(E, aq)+q2/2n+2 in almost the same way as with the proof of Theorem 3. From
this and Theorem 4,

Advprp
E◦Nm[C,LF,m−1]

(q, τ) ≤ µ(E, aq) + Advprp
C (q, τ) + Advwprf

LF,m−1
(q, τ ′) +

5q2

2n+2

(9)
is obtained. Here, µ(E, aq) ≤ εq2/2 holds, if E is an unbalanced Feistel with
ε-AXU. From this observation, and Eq. (9), and Lemma 3, Corollary 2 is proved.

To implement an efficient large block cipher with our scheme, the domain of
ε-AXU needs to be easily expanded. Most practical AXUs have this property.

5 Hybrid Construction of SPRP

Similar to the 3-round Feistel, our hybrid PRP is completely vulnerable to CCA.
However, small additions to our scheme can yield an SPRP. This is a very similar
approach to that presented by Naor and Reingold [25]. Our SPRP construction
is based on the following theorem.

Theorem 5. Let Q be E1 ◦N2[Pn,Rn,n] ◦E−1
2 , where E1 and E2 are indepen-

dent RPs on X 2. For any E1 ◦ G ◦ E−1
2 , where G is an RP on X 2, let (Si, Ti)

be the i-th input to G. Similarly, let (Ui, Vi) be the i-th output of G. Let ai and
bi denote dist(Si) and dist(U i), respectively. Then,

Advsprp
Q (q,∞) ≤ µ(E1, aq) + µ(E2, bq). (10)

In addition, let Q′ be E◦N2[Pn,Rn,n]◦E, where E is a 2n-bit right-to-left Feistel
with ε-AXU, H : X → X (see the right of Fig. 1). Then Advsprp

Q′ (q,∞) ≤ εq2.

Proof. See Appendix D.

As well as Sect. 4.3, Theorem 5 can easily be generalized to an mn-bit block size.
In this case, the second argument of Nm[∗, ∗] has to be a PRF:X → X m−1.

Corollary 3. Let G be E ◦ Nm[C,F] ◦ E, where E is an mn-bit right-to-left
(n, (m − 1)n) unbalanced Feistel with ε-AXU, H : X m−1 → X , and C is an RP
on X and F : X → X m−1. Then,

Advsprp
G (q, τ) ≤ Advsprp

C (q, τ) + Advprf
F (q, τ) + εq2. (11)

Proof. Let Q be E ◦ Nm[Pn,Rn,(m−1)n] ◦ E. Then, Advsprp
Q (q,∞) ≤ εq2 can be

proved in the same way as with the proof of Theorem 5, as we can use the same
MESs as Theorem 5 (i.e., collisions in the leftmost n-bit of Nm[Pn,Rn,(m−1)n]’s
inputs and outputs). Corollary 3 follows from this and triangle inequality.
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Suppose that an SPRP on X , C, and a WPRF, F : X → X , are available.
Here, we first generate two independent versions of C, C1 and C2, and build
an mn-bit hybrid block cipher E ◦ Nm[C1,ARV+

m−2[C2,F]] ◦ E, where E is
an (n, (m − 1)n) unbalanced Feistel with ε-AXU (see Fig. 2 in Appendix E).
From Corollaries 1 and 3, this cipher is proved to be SPRP. It only requires
two invocations of SPRP, (m − 2) invocations of WPRF, and two invocations of
ε-AXU:X m−1 → X for any m > 2.

6 Summary

For comparison, we considered the NR mode [26]. It uses m invocations of an
SPRP on X and two mixing layers on X m to provide an mn-bit block SPRP.
These mixing layers are composed of independent AXUs and slightly more com-
plicated than ours. For m > 2, NR mode is very close to the best if an n-bit
SPRP is the only cryptographic component available (and a fast AXU is avail-
able11), since it would be impossible to have an m-block pseudorandom output
without using m SPRP invocations. Furthermore, it is easily verified that if one
mixing layer is omitted from the NR mode, the resulting mode, which is denoted
by the NR− mode, is a PRP, if the underlying component is a PRP. This is a
highly optimized large block PRP construction based on small PRP and AXU.

Table 1. The number of component calls for hybrid and previous modes. All compo-
nents are n-bit block, except for AXU. AXUα,β denotes AXU: {0, 1}α → {0, 1}β .

DLPRP PRP WPRF AXU2n,n others
Hybrid (left of Fig.1) 1 1 1 -

3-round Feistel 2 0 1 -
mn-bit PRP (m > 2) PRP WPRF AXUn(m−1),n others
Hybrid (left of Fig.2) 1 m − 1 1 -

NR− mode m 0 1 some additional AXU calls
mn-bit SPRP (m > 2) SPRP WPRF AXUn(m−1),n others
Hybrid (right of Fig.2) 2 m − 2 2 -

NR mode m 0 2 some additional AXU calls

As Table 1 shows, our hybrid modes performs quite well for both small and
large blocks. In addition, they have comparable parallelism to that of the NR
(or NR−) mode, due to the high parallelism of LF,m. The implementation cost
of hybrid mode is naturally higher than that of the NR mode, but the additional
cost would be small, or, at least smaller than the implemention cost of another
PRF, since WPRF is a “cheaper” primitive than PRF.

Several options can be considered to implement our proposals. A promising
approach is to combine the AES and a stream cipher that accepts IVs and is

11 If a mode without AXU is desirable, EME or CMC modes [10, 11] are used.
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faster than AES. For example, some stream ciphers proposed for the recent
ECRYPT project [34] have this property. Such a stream cipher can be used as F
in the LF,t construction. We can even use it directly as a substitute for LF,t. In
addition, we can save the implementation cost if the stream cipher is based on
AES (an example of this is LEX [4]). Of course, we have to carefully check if our
stream cipher is adequately secure. In this case, stream ciphers must be secure
against attacks using many random IVs and corresponding (short) keystreams.
These attacks are classified as a kind of resynchronization attack [5] and well-
considered stream ciphers would be immune from them.
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A Theorems and Lemmas Proved by Maurer [17]

Let us now describe some of Maurer’s results [17]. They were used in our analysis.

Theorem 6. (Theorem 1 (i) of [17]) Let A and B be MESs defined for F and
G. If FA ≡ GB or F|A ≡ G, then Advcpa

F,G(q,∞) ≤ ν(F, aq).

Theorem 7. (Theorem 7 of [17]) Let G be E◦M[R(1),R(2)], where E is an RP
on X 2, R(1) and R(2) are independent URFs:X → X . Here, M[∗, ∗] is a 2n-bit
2-round Feistel, as described in Ex. 1. Let aq denote an event where q inputs to
R(1) are distinct. Then Advprp

G (q,∞) ≤ µ(E, aq) + q2

2n+1 .

Lemma 5. (A corollary from Lemma 4 (ii) of [17]) Let F and G be two compat-
ible RFs. If FA ≡ GB for MESs A and B, then (E1 ◦F ◦E2)A ≡ (E1 ◦G ◦E2)B

holds true, as long as (E1,E2) is independent of F and G. Here, E1 and E2 are
not necessarily independent of each other.

Lemma 6. (Lemma 1 (iv) of [17]) Let MESs A and B be defined for F and
G. Moreover, let Xi and Yi denote the i-th input and output of F (or G),
respectively. Assume F|A ≡ G|B. If PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
for i ≥

1, which means PF
ai|XiY i−1ai−1

(xi, yi−1) ≤ PG
bi|XiY i−1bi−1

(xi, yi−1) holds for all
(xi, yi−1) such that PF

ai−1|Xi−1Y i−1(xi−1, yi−1) and PG
bi−1|Xi−1Y i−1(xi−1, yi−1) are

positive, then there exists an MES C defined for G such that FA ≡ GB∧C.

Lemma 7. (Lemma 6 (ii) of [17]) If FA ≡ GB, then ν(F, aq) = ν(G, bq).

Lemma 8. (Lemma 6 (iii) of [17]) ν(F, aq ∨ bq) ≤ ν(F, aq) + ν(F, bq) if A and
B are defined for F.

Lemma 9. (Lemma 10 (iii) of [17]) For any two compatible RPs, F and G,
FA ≡ GB implies 〈F〉A ≡ 〈G〉B.

Lemma 10. (Corollary 1 (v) of [17]) If ai (bi) is defined on the inputs (outputs)
of F and FB|A ≡ UB for a source U compatible to F, then ν(E ◦ F, aq ∨ bq) ≤
µ(E, aq)+µ(U, bq) for any E. Here, a source is a random system that generates
outputs that are independent of corresponding inputs.

B Proof of Theorem 2

The proof of Theorem 2 is basically the same as the tight security proof of the
3-round Feistel demonstrated by Maurer (Theorem 7 of [17]). The only difference
is in the definitions of MESs. Let R̃n,n be the RF:X → X defined as R̃n,n(x) =
Rn−1,n(x̃), where x̃ denotes the first n − 1 bits of x. First, we prove

Advprp
E◦M[Rn,n,R̃n,n]

(q,∞) ≤ µ(E, aq) +
q2

2n
, (12)
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where aq denotes an event where q inputs to Rn,n (i.e., the left halves of E’s
outputs) are distinct. As well as Theorem 3, µ(E, aq) corresponds to the maximal
probability of a collision occurring in the left halves of E’s outputs, for all non-
adaptive attackers.

For any RF:X 2 → X 2, let (Si, Ti) be the i-th input and let (Ui, Vi) be the
i-th output, where Si, Ti, Ui, Vi ∈ X . Let ai and bi denote dist(Si) and dist(Ṽ i),
where Ṽ i denotes (Ṽ1, . . . , Ṽi) and Ṽi is the first n − 1 bits of Vi. The first step
is to show that

M[Rn,n, R̃n,n]A∧B ≡ R̂A∧B
2n,2n ≡ RA∧B

2n,2n ≡ PA∧B∧C
2n (13)

holds for some MES C defined for P2n. Here, R̂2n,2n behaves just like R2n,2n

taking some distinct inputs, independent of actual inputs (i.e., it always outputs
uniformly random and independent values). Recall that R̃n,n behaves just like
Rn,n, as long as the first n − 1 bits of the inputs do not include collisions. From
this, we observe that

P
M[Rn,n,R̃n,n]
UiVi|SiT iUi−1V i−1aibi

(14)

is a uniform distribution on X ×X̃ , where X̃ is a set of vi ∈ X satisfying dist(ṽi)
(i.e., the first n − 1 bits of vi are unique). We thus have

M[Rn,n, R̃n,n]|A ∧ B ≡ R̂2n,2n|A ∧ B ≡ R2n,2n|A ∧ B, (15)

which immediately means

M[Rn,n, R̃n,n]B|A ≡ R̂B
2n,2n|A ≡ RB

2n,2n|A. (16)

Using Eq. (16) and the fact that ai is defined on the inputs, we obtain Eq. (13)
except for the last equivalence. For the last equivalence, we observe that

P
R2n,2n

aibi|XiY i−1ai−1bi−1
≤ PP2n

aibi|XiY i−1ai−1bi−1
(17)

holds. The inequality above can easily be derived from the definitions of URF
and URP. Applying Lemma 6 to Eq. (17), we obtain the last equivalence of
Eq. (13).

Next, we apply Lemma 5 to Eq. (13). We then have

(E ◦ M[Rn,n, R̃n,n])A∧B ≡ (E ◦ R̂2n,2n)A∧B ≡ (E ◦ P2n)A∧B∧C (18)

for some MES C. Let G denote E ◦ M[Rn,n, R̃n,n]. We now have

Advprp
G (q,∞) = Advcpa

G,E◦P2n
(q,∞) ≤ ν(G, aq∨bq) = ν(E◦R̂2n,2n, aq∨bq), (19)

where the inequality follows from Eq. (18) and Theorem 6, and the last equality
follows from Eq. (18) and Lemma 7. From Corollary 10, ν(E ◦ R̂2n,2n, aq ∨ bq) ≤
µ(E, aq) + µ(R̂2n,2n, bq) is obtained. Note that µ(R̂2n,2n, bq) corresponds to the
probability of a collision among q uniform random variables of length n− 1 bits.
Thus, µ(B2n,2n, bq) ≤

(
q
2

) 1
2n−1 < q2

2n holds, proving Eq. (12). Theorem 2 is proved
using Eq. (12) and triangle inequality,
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C Proof of Lemma 4

Let us abbreviate N2[Pn,Rn,n] to N∗
2. Recall that for any RF:X 2 → X 2, (Si, Ti)

denotes the i-th input, where Si, Ti ∈ X . Similarly, (Ui, Vi) denotes the i-th
output, where Ui, Vi ∈ X . For example, if N2[Pn,Rn,n] is considered, then
Ui = Pn(Si) and Vi = Rn,n(Pn(Si))⊕Ti. We observe that ai (i.e., dist(Si)) and
bi (i.e., dist(U i)) are equivalent events if N∗

2 is considered, since Ui = Pn(Si).
Therefore, we have to prove that N∗

2
A∧C ≡ PA∧B

2n holds for some MES C. We
first prove N∗

2|A ≡ P2n|A ∧ B. To prove this, we have to verify that

P
N∗

2
UiVi|Ui−1V i−1SiT iai

= PP2n

UiVi|Ui−1V i−1SiT iaibi
(20)

holds, where Eq. (20) means the both sides are equal as functions of (si, ti, ui, vi)
(see Def. 6 for example). Note that both sides of Eq. (20) are defined for all
Si = si and U i−1 = ui−1 such that dist(si) and dist(ui−1) hold. If ui collides
with uj for some 1 ≤ j ≤ i − 1, then bi does not hold. Therefore, both sides are
0 for such ui (note that ai is equivalent to bi for N∗

2). Otherwise bi holds and
so, the lhs of Eq. (20) is 1/((2n − i + 1) · 2n) since Ui is uniformly distributed
on X \ {u1, . . . , ui−1} and Vi is uniformly random on X . Therefore, we have
to verify if the rhs of Eq. (20) is 1/((2n − i + 1) · 2n) in this case. Using simple
decomposition, we have

PP2n

UiVi|Ui−1V i−1SiT iaibi
=

PP2n

UiV i|SiT iaibi

PP2n

Ui−1V i−1|Si−1T i−1ai−1bi−1

. (21)

The numerator of the rhs of Eq. (21) is a uniform distribution on a set of all
(ui, vi) that satisfies dist(ui). The number of such (ui, vi) is (2n · (2n − 1) · · · ·
(2n − i + 1)) · (2n)i. Similarly, the denominator is a uniform distribution on the
set of size (2n · (2n − 1) · · · · (2n − i+2)) · (2n)i−1. Thus the rhs of Eq. (21) equals

(
(2n · (2n − 1) · · · · (2n − i + 1)) · (2n)i

(2n · (2n − 1) · · · · (2n − i + 2) · (2n)i−1

)−1

=
1

(2n − (i − 1)) · 2n
. (22)

Therefore, Eq. (20) holds true and hence we have N∗
2|A ≡ P2n|A ∧ B. To apply

Lemma 6, we need to check if

PP2n

aibi|Ui−1V i−1SiT iai−1bi−1
≤ P

N∗
2

ai|Ui−1V i−1SiT iai−1
(23)

holds true for all possible arguments (ui−1, vi−1, si, ti). When si does not satisfy
ai, clearly Eq. (23) holds, since both sides are 0. When si satisfies ai, the rhs of
Eq. (23) is 1. Thus, Eq. (23) is proved. Combining Eq. (23) and Lemma 6, we have
N∗

2
A∧C ≡ PA∧B

2n for some MES C defined for N∗
2. Therefore, N∗

2
A∧B∧C ≡ PA∧B

2n

is proved.

D Proof of Theorem 5

Let Q∗ be E1 ◦P2n ◦E−1
2 and let Q be E1 ◦N2[Pn,Rn,n] ◦E−1

2 . From Lemmas
4 and 5,

QA∧B∧C ≡ Q∗A∧B (24)
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holds, where A, B, and C are the MESs appearing in Lemma 4. From Eq. (24)
and Lemma 9, we obtain 〈Q〉A∧B∧C ≡ 〈Q∗〉A∧B. This conditional equivalence
and Theorem 6 indicate Advcca

Q,Q∗(q,∞) ≤ ν(〈Q∗〉, aq ∨bq), which corresponds to
the maximal probability of aq (i.e., a collision in the left halves of inputs to P2n)
or bq (i.e., a collision in the left halves of P2n’s outputs) for all (q,∞)-CCAs .
Therefore, we have

Advsprp
Q (q,∞) = Advcca

Q,Q∗(q,∞) ≤ ν(〈Q∗〉, aq ∨ bq) ≤ ν(〈Q∗〉, aq) + ν(〈Q∗〉, bq).
(25)

The first equality holds since Q∗ ≡ P2n, and the last inequality follows from
Lemma 8.

We next analyze ν(〈Q∗〉, aq). Let us use the following notations. The i-th
input and output of Q∗ are Xi and Yi, respectively. In addition, let X̂i denote
(Si, Ti) and Ŷi denote (Ui, Vi). Note that X̂i and Ŷi correspond to the i-th input
and output of P2n in Q∗. Observe that

ν(〈Q∗〉, aq) = max
D:(q,∞)-CCA

∑

xq,yq

PQ∗

aq|XqY q (xq, yq) · P
D�〈Q∗〉
XqY q (xq, yq)

≤ max
xq,yq

PQ∗

aq|XqY q (xq, yq) (26)

holds, where D � 〈Q∗〉 denotes an environment where D attacks Q∗ by means of
CCA, and the second maximum is taken over all xq and yq satisfying dist(xq) and
dist(yq). Let βq ⊂ (X 2)q be the set of x̂q = (sq, tq) such that aq (i.e., dist(sq))
does not hold but dist(x̂q) holds. Now we have

PQ∗

aq|XqY q (xq, yq) =

∑
x̂q∈βq

PE1

X̂q|Xq
(x̂q, xq) · PQ∗

Y q|X̂qXq
(yq, x̂q, xq)

(
∏q−1

i=0 22n − i)−1
. (27)

It is not difficult to verify that PQ∗

Y q|X̂qXq
(yq, x̂q, xq) equals to

∑

ŷq∈(X 2)q

PP2n

Ŷ q|X̂qXq
(ŷq, x̂q, xq) · P

E−1
2

Y q|Ŷ qX̂qXq
(yq, x̂q, xq) =

1
∏q−1

i=0 22n − i
. (28)

The last equality results from the fact that P2n is a URP and E2 is invertible.
From Eqs. (27) and (28), we have PQ∗

aq|XqY q (xq, yq) =
∑

x̂q∈βq
PE1

X̂q|Xq
(x̂q, xq),

which is at most µ(E1, aq) (see Def. 8). Similarly, ν(〈Q〉, bq) is no more than
µ(E2, bq). Thus, the first claim is proved. Note that the above proof is valid even
if E1 and E2 are dependent. Combining this observation and the fact that one
Feistel round, E, is an involution (i.e., E−1 ≡ E), the second claim is proved.
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E Figure of Hybrid Large Block PRP and SPRP

C

LF,m-1

H

…
C2 LF,m-2

H
…

H

C1
...

...
...

...
...

…

…

…

…

Fig. 2. Hybrid large block PRP (left) and SPRP (right)
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