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Preface

The 8th International Conference on Information Security and Cryptology was
organized by the Korea Institute of Information Security and Cryptology (KI-
ISC) and sponsored by the Ministry of Information and Communication of Korea
(MIC). This conference aims at providing a forum for the presentation of new
results in research, development, and application in information security and
cryptology. This is also intended to be a place where research information can
be exchanged.

The conference received 192 submissions from 29 countries, and the Pro-
gram Committee selected 32 (from 15 countries) of these for presentation. The
conference program includes two invited lectures by David Naccache on “Na-
tional Security, Forensics and Mobile Communications” and by Shigeo Tsujii on
“Information Security as Interdisciplinary Science Based on Ethics”.

We would like to thank the many researchers from all over the world who
submitted their work to this conference. The submission review process had
two phases. In the first phase, Program Committee members compiled reports
and entered them, via Web interface, into Web Review software. In the second
phase, committee members used the software to browse each other’s reports,
discuss, and update their own reports. We are extremely grateful to the Program
Committee members for their enormous investment of time and effort in the
difficult and delicate process of review and selection. Moreover, we would like to
thank all the authors who submitted papers to ICISC 2005 and the authors of
accepted papers for their preparation of camera-ready manuscripts. Last but not
least, we thank our students, Junghyun Nam, Yunho Lee, Jin Kwak, Younggyo
Lee, and Seokhyang Cho, who helped us during the whole process of preparation
for the conference.

February 2006 Dongho Won
Seungjoo Kim
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National Security, Forensics and Mobile Communications 

David Naccache 

Ecole Normale Superieure, France 
david.naccache@ens.fr 

Abstract. There are nearly 1.5 billion handset users in the world. As the recent 
attacks in London illustrate, this proliferation of inexpensive mobile phones 
provides criminals and terrorists with flexible communication means. In this 
talk we will describe the forensic methodology used for analysing SIM cards 
and handsets within the French legal context. We will describe specific techni-
cal problems applicable to the analysis of cards (e.g., the impossibility to inter-
act with a SIM without altering its internal state), underline seizure details, 
demonstrate the tools allowing to extract the contents of a handset and a SIM 
knowing their associated PIN codes. We will overview some of the "heavy" 
analysis methods (physical reverse-engineering) used with various degrees of 
success when PIN codes are unknown and describe the protocol allowing to ne-
gotiate with the judiciary authorities an evidence destruction risk before under-
taking the actual analysis of the SIMs and handsets. 
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Information Security as Interdisciplinary Science Based 
on Ethics 

Shigeo Tsujii 

Institute of Information Security, Japan 
tsujii@iisec.ac.jp 

Abstract. In my definition, the concept of information security is “the dynamic 
process for establishing an integrated social infrastructure without infringing 
freedom broadened by information technology and with closer coordination 
among technologies, administration and management skills, legal and social 
systems and information morals in order to simultaneously attain efficiency, 
enhanced security, protected privacy and minimized surveillance over people.”  
I will discuss the paradigm of information security as an interdisciplinary com-
prehensive science based on information ethics and the way to develop human 
resources, showing an example of Institute of Information Security where I 
serve as the president. 

 



A Timed-Release Key Management Scheme
for Backward Recovery�

Maki Yoshida1, Shigeo Mitsunari2, and Toru Fujiwara1

1 Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{maki-yos, fujiwara}@ist.osaka-u.ac.jp

2 u10 Networks,
2-14-8 Fukazawa, Setagaya, Tokyo 158-0081, Japan

herumi@nifty.com

Abstract. The timed-release encryption scheme is to encrypt a message
so that a ciphertext can be decrypted when specific time in the future
comes. Recently, interesting constructions of the timed-release encryp-
tion scheme have been proposed. The central concept of the constructions
is a public agent which periodically broadcasts self-authenticated time
information, called a time token. A time token contains absolute time
information such as “08:09AM Dec. 1, 2005 GMT.” A sender encrypts
a message so that a receiver of the ciphertext can generate a decryp-
tion key from a time token of the designated release time. Although the
constructions have many advantages, resilience to missing time tokens is
not still satisfactory since a time token can be used only for computing
a decryption key of the corresponding time. A promising approach is to
construct decryption keys so that a decryption key (e.g., of 08:09AM)
can be computed not only from the corresponding time token but also
from decryption keys of later time instants (e.g., 08:10AM, 08:11AM and
so on). A trivial construction to realize such backward recovery is to use
keys, which constitute a hash chain, for encrypting messages and encrypt
these keys by using the timed-release encryption scheme. This construc-
tion is simple but requires the overhead of encryption. To reduce the
overhead, this paper introduces a timed-release key management scheme
in which decryption keys are related so that the backward property is
provided. The feature is that a sender can choose freely and flexibly the
time instants of which decryption keys have the backward property. The
paper also gives an efficient construction based on a bilinear map.

1 Introduction

1.1 Background and Motivation

The goal of timed-release encryption is to “send a message into the future,”
in other words, to encrypt a message so that the receiver cannot decrypt the
� A preliminary version of this paper was published as “Time-Capsule Encryption,”

IEICE Technical Report, ISEC2004-98, pp.1–5,2004.

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 3–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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ciphertext until specific time in the future [18]. The problem of timed-release
encryption was first mentioned by May in [12] and then discussed by Rivest et
al. in [18]. The existing approaches are categorised into two ways [16]:

Time-lock puzzle approach [1, 6, 8, 9, 11, 18]. A sender would encrypt his/
her message such that a receiver would have to perform non-parallelizable
computation without stopping for the required wait time in order to obtain
a decryption key;

Agent-based approach [3, 5, 10, 12, 13, 15, 16, 18, 19]. A sender could use
trusted agents and encrypt his/her message such that a receiver will need
some secret value, published by the agents on the required time in order to
compute a decryption key.

Previous constructions of agent-based approach in [3, 10, 15, 16, 19] are notewor-
thy. The trusted agent, called the time server , only broadcasts self-authenticated
time information, called a time token, periodically. The time token contains ab-
solute time information, for example “08:09AM Dec. 1, 2005 GMT.” A sender
encrypts a message by using public information so that the receiver of the ci-
phertext can generate a decryption key from a time token of the designated
time. To do so, the time server generates a time token in the similar way to
the short signature scheme proposed in [4], and a sender (resp. a receiver) com-
putes an encryption key (resp. the corresponding decryption key) by using a
bilinear map. These constructions have many advantages compared with the
others [5, 1, 6, 8, 9, 11, 12, 13, 18]. First, the time server does not need to know
who participates as a sender or a receiver, and does not interact with any partic-
ipant. Secondly, a sender does not need to make any trigger to control decryption
of received ciphertexts. Lastly, a receiver does not need computation until the
designated time.

However, as mentioned in [3], the constructions in [3, 10, 15, 16, 19] are not
resilient to missing time tokens since a time token could only be used to compute
the decryption key of the corresponding time. We aim to improve the resilience
while keeping the advantages.

Two approaches to the resilience to missing time tokens were given in [3]. One
approach is to store all the old time tokens at a public place for the receivers to
look up. Then, even if a receiver misses a time token, no problem would cause.
However, the overhead becomes large when a release time is designated in minute
detail. The other approach is to designate two or more time instants as a release
time. A receiver only needs to obtain a time token of one of the designated time
instants. However, the overhead of each ciphertext increases proportionally to the
number of the designated time instants. Then, the overhead can be also large.

Another promising approach to the resilience is to relate ciphertexts so that
ciphertexts could be decrypted when other ciphertexts with later release time
could be decrypted. For example, if a ciphertext with release time 08:10AM is
decrypted, then a ciphertext with release time 08:09AM received from the same
sender can be also decrypted. A receiver receives two or more ciphertexts from
the same sender, in many cases. Therefore, such backward recovery improves
resilience to missing time tokens enough for practical use.
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Compare these three approaches to the resilience to missing time tokens in
the point of the resilience and the overhead of required memory. The former two
approaches are more resilient, but are less efficient. On the other hand, the last
approach is less resilient, but is most efficient. Moreover, by combining the last
approach with another approach, we can improve the efficiency while keeping
the resilience. For example, by combining the last approach with the second
one, the sender only needs to designate additional release time instants for a
message with the latest release time. Thus, the overhead of other ciphertexts is
reduced.

1.2 Contribution of This Study

We follow the last approach to the resilience to missing time tokens, that is,
relating ciphertexts in the timed-release encryption scheme so that the back-
ward property is provided. We can relate ciphertext by combining so-called hash
chain technique straightforwardly. Keys which constitute a hash chain are used
for encrypting messages. Then, these keys, called message-encryption keys, are
encrypted by using the timed-release encryption scheme. This straightforward
construction is simple, but requires the overhead of message-encryption keys.

In this paper, to avoid the overhead of message-encryption keys, we relate
decryption keys directly so that, for example, a key of 08:09AM can be computed
not only from a time token at 08:09AM but also from another key of a later time
instant than 08:09AM directly where the related time instants can be freely
chosen by the sender.

For simplicity, we concentrate on an essential part of the timed-release en-
cryption scheme. The essential part is generation of time tokens and encryp-
tion/decryption keys, that is, management of keys. We give a formal model of
the key management scheme, called the backward timed-release key management
scheme, and define the security of the scheme by means of probabilistic polyno-
mial time algorithms. Then, we propose a construction to realize the backward
timed-release key management scheme, and prove the security formally.

In the proposed construction, decryption keys computed from time tokens
are related to constitute a chain structure. A bilinear map is used as in the
previous constructions [3, 10, 15, 16, 19], but time tokens are generated by using
a different technique. A similar technique is used for generating a signature
and a decryption key in the short signature scheme [2] and the traitor tracing
scheme [14], respectively.

The proposed construction avoids the overhead of message-encryption keys by
relating decryption keys to constitute the hash chain. Moreover, the overhead of
memory is the same as that required by the previous constructions which do not
provide the backward property.

2 Review of Previous Works

We show the key management part of the previous constructions [3, 10, 15, 16, 19],
and discuss the efficiency of relating decryption keys in the previous constructions.
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2.1 Preliminaries

The previous constructions [3, 10, 15, 16, 19] and the proposed construction use
a bilinear map. We briefly review the necessary facts about bilinear maps.

– (G1,+) and (G2, ·) are two cyclic groups of prime order m. The group action
in G1 and G2 can be computed efficiently.

– e : G1 × G1 → G2 is a bilinear map. The bilinear map e is a map with the
following properties:
• Bilinearity: For all P , Q, R ∈ G1,

e(P + Q,R) = e(P,R) · e(Q,R),
e(P,Q + R) = e(P,Q) · e(P,R).

From the bilinearity, it holds that for all a, b ∈ Zm, e(aP, bQ) = e(P,Q)ab.
• Non-degeneracy: For a generator of G1, denoted by P1, e(P1, P1) �= 1.
• Efficiency: For all P , Q ∈ G1, e(P,Q) can be computed efficiently.

2.2 Overview of the Previous Constructions

We show how to generate time tokens and keys of designated release time in
the previous constructions. The previous constructions use a collision-free full
domain hash function h : {time information} → G1.

The cryptographic key of the time server consists of a secret key sk = a ∈ Z
∗
m

and the corresponding public key pk = 〈P, aP 〉 where P is a generator of G1.
The time server generates a time token ttknt of time t by ttknt = 〈t, ah(t)〉.

A sender generates a key kt and a header headert of designated release time
t by

kt = e(r(aP ), h(t)), headert = rP,

where r is chosen randomly and uniformly from Z
∗
m. The header is used for com-

puting kt from the time token ttknt. The receiver computes kt from headert =
rP and ttknt = (t, ah(t)) by e(headert, ah(t)) = e(rP, ah(t)). The equality
e(r(aP ), h(t)) = e(rP, ah(t)) comes from the bilinearity of e.

In order to relate keys of any different time instants t1 and t2 where t1 is former
than t2, the sender needs to set r1 and r2 so that the receiver can compute kt1 =
e(r1P, ah(t1)) = e(P, ah(t1))r1 from kt2 = e(P, ah(t2))r2 but cannot compute
kt2 from kt1 . A possible way is to set r1 = h′(kt2) where h′ is a hash function
h′ : G2 → Zm. Since r1 can be computed from kt2 , the receiver can compute kt1

by the same way as the sender, that is, by kt1 = e(r1(aP ), h(t1)). In this way, the
sender can relate keys to constitute the chain structure. However, the receiver
needs to apply exponentiation functions defined by different bases e(aP, h(ti)).
Therefore, the complexity of computing keys of earlier time is large. This problem
comes from the generation of time tokens. Therefore, we generate time tokens
in a different way.
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3 The Model of the Backward Timed-Release Key
Management Scheme

In this section, a formal model and the formal security goal of the backward
timed-release key management scheme are defined.

In the formal discussion for security, we need to consider an algorithm which
“randomly and uniformly” chooses a time instant. The problem is that it is
not possible to choose an element “uniformly” from an infinite set. To avoid
this issue, we assume that the number of time instants is polynomially upper-
bounded. Let T be the set of time instants where |T| is in the polynomial-order
to the security parameter but large enough to realize applications. Under this
assumption, choosing a time instant corresponds to choosing an element from
T. For time instants t1, t2 ∈ T, we write t1 ≺ t2 if t1 is earlier than t2. We write
t1 � t2 if t1 ≺ t2 or t1 = t2.

Definition 1. A backward timed-release key management scheme is a 6-tuple of
polynomial-time algorithms BT R = (INIT, TGen, SSGen, SKGen,RKGen,
RKbGen). The algorithms INIT and TGen are used by the time server to gener-
ate time tokens. SSGen and SKGen are used by a sender to generate encryption
keys. RKGen and RKbGen are used by a receiver to compute decryption keys.
We assume that an encryption key and the corresponding decryption key are
symmetric, that is, identical.

– INIT is a probabilistic expected algorithm which takes an integer n (the
security parameter) as an input, and outputs a pair 〈pk, sk〉 where pk is the
public key and sk is the corresponding secret key for time tokens.

– TGen is an algorithm to determine time tokens. Formally, TGen is a de-
terministic algorithm which takes the key pair 〈pk, sk〉 and a time instant
t ∈ T, and outputs ttknt which is called the time token at t.

– SSGen is an algorithm to determine a seed for a sender to control the be-
haviour of the algorithms SKGen, RKGen, and RKbGen. Formally, SSGen
is a probabilistic expected algorithm which takes an integer n (the security
parameter) as an input, and outputs certain information σ which is called a
private seed . For example, σ may contain random seeds and/or some cryp-
tographic keys.

– SKGen is an algorithm to determine keys so that the keys can be computed
from time tokens and are related to constitute the chain structure. Formally,
SKGen is a deterministic algorithm which takes a private seed σ, a public
key pk, a set of time instants T ⊆ T, and a time instant t ∈ T , and out-
puts kt,T and headert,T . kt,T is called the key of release time t in chain T .
headert,T is called the header of release time t in chain T . headert,T is used
for computing kt,T from the time token ttknt. We assume that headert,T

contains information on t and T .
– RKGen is an algorithm to compute a key of release time t from a time token

at t and a header of release time t. Formally, RKGen is a deterministic
algorithm which takes a public key pk, a time token ttknt, and a header
headert,T , and outputs the key kt,T of release time t in chain T .
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– RKbGen is an algorithm to compute one key from another key in the same
chain backwardly. Formally RKbGen is a deterministic algorithm which
takes a public key pk, a set of time instants T ⊆ T, time instants t, t′ ∈ T ,
and a key kt′,T . If t � t′, then RKbGen outputs a key kt,T of release time
t in chain T . Otherwise RKbGen outputs a special symbol ⊥ meaning that
the key kt,T cannot be available.

The algorithms must satisfy the consistency: For any T ⊆ T and t, t′ ∈ T
with t � t′,

kt,T = RKGen(pk, ttknt, headert,T ) = RKbGen(pk, T, t, t′, kt′,T ),

where 〈kt,T , headert,T 〉= SKGen(σ, pk, T, t) and 〈kt′,T , headert′,T 〉 = SKGen(σ,
pk, T, t′).

Strictly saying, the integer input n for the above algorithms must be given
in a unary representation such as 1n (see [7], for example, for that reason). We
write INIT (n) instead of INIT (1n) just for a notational convenience.

By using the backward timed-release key management scheme, we can realize
the timed-release encryption scheme with the backward property as shown in

INITn TGen

,, 21 tt ,, 21 ttknttkn

Time server

1ttkn jttkn

it1t

RKGen

D RKbGen

RKGen

D RKbGen

RKGen

D RKbGen

Receiver
Ttheader ,1

1m im jm
Sender

SSGenn SKGen

,, 21 tt

,, ,, 21 TtTt headerheader
E

),(),( 21 ,2,1
mEmE

TtTt kk

)( 1,1
mE

Ttk

,, 21 mm

jt

Fig. 1. Usage of the backward timed-release key management scheme
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Fig. 1. The time server broadcasts the time token ttknt at time t. We assume
that Alice sends Bob u messages, m1, m2, ..., mu. The release time of mi with
1 ≤ i ≤ u is denoted by ti. Let T be {t1, t2, . . . , tu}. Alice generates keys kti,T

with 1 ≤ i ≤ u for a new private seed σ. Then, Alice encrypts mi by using
kti,T , and appends the header headerti,T to the ciphertext. Bob can decrypt mi

at time ti by computing kti,T from ttknti
and headerti,T . Even if Bob misses

ttknti
, Bob can compute kti,T from ktj ,T with ti ≺ tj , and can decrypt mi. It is

rather obvious that the timed-release encryption scheme without the backward
property can be realized by using INIT , TGen, SSGen, SKGen, and RKGen
with T = {t}.

Note that Bob does not need to use headertj ,T to compute kti,T with ti ≺ tj
from ktj ,T . This means that headertj ,T does not need to contain information to
compute kti,T with ti ≺ tj . This property reduces the size of the header.

A formal definition of the security of the backward timed-release key man-
agement scheme is then considered. Intuitively, the security means that even if
the receiver has all time tokens earlier than the last time instant t in chain T ,
he/she cannot compute the key kt,T .

Definition 2. For the backward timed-release key management scheme BT R =
(INIT, TGen, SSGen, SKGen,RKGen,RKbGen) and a pair of probabilistic
polynomial-time algorithms A = (A1,A2), denote the following probability by
AdvA,BT R:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k = kt,T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈pk, sk〉 ← INIT (n),
〈T, t, z〉 ← A1(T, pk) where t is the last time instant in T ,
TKN = {ttknt′ ← TGen(sk, pk, t′)|t′ ∈ T, t′ ≺ t},
σ ← SSGen(n),
HDR = {headert′,T |t′ ∈ T,

〈kt′,T , headert′,T 〉 ← SKGen(pk, σ, T, t′)},
k ← A2(TKN,HDR, T, t, z),
〈kt,T , headert,T 〉 ← SKGen(pk, σ, T, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The algorithm A1 outputs a set of time instants T , a time instant t with t ∈ T ,
and inner information z which is expected to include T and pk. If AdvA,BT R is
negligible for an arbitrary pair of probabilistic polynomial-time algorithms A,
then we say that BT R is secure.

4 Construction Using a Bilinear Map

In this section, we first show the construction of the backward timed-release key
management scheme. Then, we clarify the condition with which the construction
is secure.

Let G1, G2, and e be an additive cyclic group, a multiplicative cyclic group,
and a bilinear map defined in Sect. 2.1, respectively. Let P be a generator of G1.
Let h′ be a hash function h′ : G2 → Zm. For simplicity, we assume that the set
of time instants T is a subset of Z

∗
m.
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1t 2t 1−ut ut

Ttk ,1 Ttk ,2 Ttu
k ,1− Ttu

k ,

T

σ
f f ff f

Fig. 2. The chain structure of keys

Keys are elements of G2 and are related to constitute the chain structure
generated by the hash function f : G2 → G2 defined as f(x) = gh′(x) where
g = e(P, P )h′(x). Specifically, as shown in Fig. 2, for T = {t1, t2, . . . , tu} ⊆ T

where ti ≺ ti+1 with 1 ≤ i < u, kti,T = f(kti+1,T ). For t ∈ T , let it,T be the
integer such that t|T |+1−it,T

= t. That is, t is the it,T -th latest time instant in T .
A backward timed-release key management scheme BT R is constructed as

follows.

– INIT (n):
1. Choose a secret key sk = a ∈ Z

∗
m randomly and uniformly.

2. Compute the corresponding public key as pk = 〈P, aP 〉.
– TGen(sk, pk, t): Compute a time token ttknt at time t as

ttknt = 〈t, 1
a + t

P 〉.

– SSGen(n): Choose a private seed σ ∈ G2 randomly and uniformly.
– SKGen(pk, σ, T, t):

1. Compute the key kt,T of release time t in chain T as

kt,T = f it,T (σ).

2. Generate the header headert,T as

headert,T = 〈t, T, h′(f it,T −1(σ))(aP + tP )〉.

– RKGen(pk, ttknt, headert,T ): Compute the key kt,T of release time t in chain
T from the second component of ttknt and the third one of headert,T as

kt,T = e

(
1

a + t
P, h′(f it,T −1(σ))(aP + tP )

)
= e(P, P )h′(fit,T −1(σ))

= f(f it,T −1(σ)) = f it,T (σ).

– RKbGen(pk, T, t, t′, kt′,T ): If t′ ≺ t, then output ⊥. Otherwise compute kt,T

as

kt,T = f it,T −it′,T (kt′,T )
= f it,T −it′,T (f it′,T (σ)) = f it,T (σ).
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We show the condition with which the construction is secure. The condition,
called the bilinear q-DH-DL assumption, is a combination of the bilinear q-Diffie-
Hellman (DH) assumption and the discrete logarithm (DL) assumption. Let P
be a generator of G1. Roughly speaking, the bilinear q-DH assumption states
that the following problem is intractable: Given P , aP , {〈ti, 1

a+ti
P 〉}1≤i<q, t0 as

input, output g
1

a+t0 where g = e(P, P ). The combined DL assumption is the one
that the discrete logarithm is h′(g

1
a+t0 ) with respect to each of P and aP . That

is, information on the output is added to the input as follows.

Definition 3. The bilinear q-DH-DL problem in (G1,G2, e, h
′) where h′ : G2 →

Zm and m is the order of G1 and G2 is defined as follows: Given P , aP ,
{〈ti, 1

a+ti
P 〉}1≤i<q, t0, h′(g

1
a+t0 )P , and h′(g

1
a+t0 )aP , as input where P is a gen-

erator of G1, g = e(P, P ) ∈ G2, and a, ti ∈ Z
∗
m with 0 ≤ i < q, output

g
1

a+t0 . Here, ti with 0 ≤ i < q are different from each other. For a probabilistic
polynomial-time algorithm A, let AdvA,q denote the following probability.

Pr
[
A(P, aP, {(ti, 1

a+ti
P )}1≤i<q, t0, h

′(g
1

a+t0 )P, h′(g
1

a+t0 )aP )→ g
1

a+t0

]
.

If AdvA,q is negligible for any probabilistic polynomial-time algorithm A, then
we say that the bilinear q-DH-DL assumption in (G1,G2, e, h

′) holds.

It is obvious that the bilinear q-DH-DL assumption is not weaker than the bilin-
ear q-DH assumption. But we conjecture that the bilinear q-DH-DL assumption
is not so strong since the DL assumption in G1 is not stronger than the q-DH
assumption. The q-DH assumption has been first introduced in [14] and been
shown to be equivalent to the q-weak DH assumption in [14]. The q-weak DH
assumption states that the following problem is intractable: Given P , aP , a2P ,
. . . , aqP as the input, output a−1P . The following stronger version of the q-weak
DH assumption is often used as the reasonable one [2]: Given P , aP , a2P , . . . ,
aqP , output 〈t, (a + t)−1P 〉.

In the next theorem, we prove that the proposed construction is secure if the
bilinear q-DH-DL assumption holds.

Theorem 1. If the bilinear q-DH-DL assumption in 〈G1,G2, e, h
′〉 with h′ :

G2 → Zm holds, then the proposed construction is secure.

Proof: Let A = (A1,A2) be an adversary for the proposed construction. It is
shown that if AdvA,BT R is not negligible, then we can construct an adversary
B for the bilinear q-DH-DL problem such that AdvB,q is non-negligible. The
algorithm B, which is provided with

〈P, aP, {〈ti,
1

a + ti
P 〉}1≤i<q, t0, h

′(g
1

a+t0 )P, h′(g
1

a+t0 )aP 〉,

gives parameters to the algorithm A. The simulation is as follows:

1. Set T = {ti|0 ≤ i < q} so that ti ≺ t0 with 1 ≤ i < q.
2. Set pk = 〈P, aP 〉. This means that sk = a. Let f(x) = e(P, P )h′(x).
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3. Let 〈T, t, z〉 ← A1(T, pk). If t �= t0, then halt. In this case, the algorithm
fails. If t = t0, then proceed to the next step.

4. Set TKN = {〈ti, 1
a+ti

P 〉}1≤i<q.
5. Set HDR = {headert′,T |t′ ∈ T} where headert′,T is generated as follows.

– For t′ = t0, headert′,T = 〈t0, T, P 〉. This means that σ is set such that
f(σ) = g

1
a+t0 since kt0,T = e( 1

a+t0
P, P ) = g

1
a+t0 .

– For t′ �= t0, headert′,T = 〈t′, T, h′(f it′,T −1(σ))(aP + t′P )〉.
If it′,T = 2, then the third component of headert′,T is computed as

h′(f(σ))(aP + t′P ) = h′(g
1

a+t0 )aP + t′h′(g
1

a+t0 )P.

Otherwise, since it′,T > 2, h′(f it′,T −1(σ)) is computed as

h′(f it′,T −1(σ)) = h′(f it′,T −3(e(P, h′(g
1

a+t0 )P ))).

From the bilinearity and the definition of f , it holds that

h′(f it′,T −3(e(P, h′(g
1

a+t0 )P ))) = h′(f it′,T −3(e(P, P )h′(g
1

a+t0 )))

= h′(f it′,T −2(g
1

a+t0 ))
= h′(f it′,T −1(σ)).

6. Let k = A2(TKN,HDR, T, t, z). From the definition, if A2 outputs the
correct value, then k = kt,T = kt0,T = g

1
a+t0 .

Note that if A1 did not choose the time instant t = t0 in step 3, then B has
few chance to find g

1
a+t0 . Therefore, B has chance to compute g

1
a+t0 only if A1

chooses t = t0, this happens with probability 2q−2

2q−1−1 > 1
2 . Therefore we have

AdvB,q > 1
2AdvA,BT R. Thus, AdvB,q is negligible if and only if AdvA,BT R is

negligible. This completes the proof.

We also present a simpler but stronger assumption on which the proposed con-
struction is secure. The assumption, called the bilinear q-DH-OW assumption,
is a combination of the bilinear q-DH assumption in (G1,G2, e) and the one-
wayness of h′. Roughly speaking, the bilinear q-DH-OW assumption states that
the following problem is intractable: Given P , aP , {〈ti, 1

a+ti
P 〉}1≤i<q, t0, and

h′(g
1

a+t0 ) as input, output g
1

a+t0 where g = e(P, P ). The details are omitted
because of space limitation.

Lastly, we briefly compare the efficiency of the proposed construction with
that of the previous constructions [3, 10, 15, 16, 19] (see Sect. 2), which do not
have the backward property, in the point of the size of a time token, a key,
and a header. The essential element of a time token, a key, and a header is a
single element of G1, G2 and G1, respectively, in any construction. That is, the
backward property is realized without increasing the memory complexity. The
complexity of computing keys of earlier time instants is large because f is based
on exponentiation. However, compared with the construction shown in Sect. 2,
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k

Fig. 3. The tree structure of keys for T = {t1, t2, . . . , t7}

the proposed construction is more efficient because the receiver only needs to
apply the exponentiation function f defined by the single base g = e(P, P ) while
in the construction shown in Sect. 2, the receiver needs to apply exponentiation
functions defined by different bases e(aP, h(ti)).

5 Conclusion

The backward timed-release key management scheme has been proposed in this
paper. The backward property of keys improves resilience to missing time tokens.
The construction using a bilinear map has been proposed, and the condition
under which the construction is secure has been clarified. The backward property
is realized by relating keys to constitute the one-way chain structure.

Keys can be related in various ways such as a tree structure. The straightfor-
ward tree structure is shown in Fig. 3 where the key of the latest time instant,
which is associated with the root, can be used for computing any key of an
earlier time instant and the number of iterations of f is at most twice. That
is, the computational complexity of recovering a key of an earlier time instant
can be reduced. But the perfect backward property is not provided since keys
associated with internal nodes are used only for computing their descendents.
A possible direction to the future study is to provide preferable properties by
relating keys in various ways.
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Abstract. Most current Digital Rights Management (DRM) systems
rely on the doubtful assumption that all devices are equally trustwor-
thy. This allows a pirate to obtain access if he undetectedly breaks just
one arbitrary device. As there is a multitude of different devices, trust
assumptions and policies should depend on the security level of each de-
vice type. For each content item to be distributed, the content providers
should be able to base their access decision on various properties that the
devices might have, such as the devices’ tamper resistance, geographical
region, output interface or device model.

We propose a hierarchical property-based broadcast encryption
scheme enabling a variety of new business models. It operates with an
arbitrary number of properties, including one hierarchical property such
as tamper resistance. The scheme is secure and more efficient than exist-
ing Broadcast Encryption (BE) schemes in the hierarchical setting. As
the first building block, we formalize the notion of properties with re-
spect to BE and show an approach for representing them in a binary tree
structure. As the second building block, we use existing BE schemes to
achieve short ciphertexts. Specifically, we enhance the Complete Subtree
scheme with pseudo-random chains to embed the hierarchical property.

1 Introduction

The development of software and hardware architectures for Digital Rights Man-
agement (DRM) systems has enjoyed increasing interest in recent years. A DRM
system allows content providers to distribute digital content to users in such a
way that the associated usage rights are enforced. Current DRM systems perform
badly when a pirate, i.e., a malicious user, breaks a single device and remains
undetected. Consider the example of CD and DVD protection; as each compliant
device, e.g., DVD player or PC, obtains the same privileges, it is sufficient for
the pirate to steal the keys of one arbitrary device. Subsequently, he can use
these keys to illegally obtain access, e.g., to create copies of identical quality.
If he distributes them on a small scale, say to his family and friends, counter-
measures such as watermarking [2, 3, 4], traitor tracing [5, 6] and revocation [7, 8]
will fail because the incident will remain undetected. This weakness is due to the
� This paper is an extended abstract of a technical report [1].

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 15–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



16 A. Adelsbach, U. Huber, and A.-R. Sadeghi

doubtful assumption that all devices are equally trustworthy and comply with
the usage rights by construction.

In practice however, there is a multitude of different devices. In the CD ex-
ample, the device types include hi-fi CD players, portable players, PCs and car
radios. Similar examples hold for content on DVDs or MP3 files. Depending
on the use case and business model, different devices may have different re-
quirements. For example, the cost pressure on portable players is usually higher
than on hi-fi players, making it more difficult for a manufacturer to build secure
devices while maintaining competitive production costs. Therefore, it is highly
unlikely that all devices show the same resistance to attacks. Tamper resistance
always comes in different flavors [9, 10], and therefore trust assumptions should
be different for each type of device.

To avoid unconditional access through the weakest device, Popescu et al. pro-
pose multi-level security policies [11]. With such policies, the content providers
can base their access decision on the tamper resistance of devices. Consider
an example with weak, medium and strong tamper resistance; if the content
provider grants access to medium and strong devices, then the pirate cannot
obtain access by breaking a weak device. Tamper resistance is an example of a
hierarchical property that partitions the devices into hierarchical classes.

In addition to the hierarchical property, there may be other properties that
influence the content providers’ decision to grant access. One popular example
from current DVD encryption is the geographical region (e.g., country) in which
the device was sold. A DVD player may be intended for a specific region, such
that access to content of other regions is impossible. Some additional examples in
this context are the device’s output interface (e.g., digital vs. analogue or HDCP-
protected vs. DTCP-protected1), manufacturer name (a content provider’s trust
model may depend on the manufacturer), manufacture date (old devices may
have weaker security mechanisms), the device model (expensive models may be
more tamper-resistant) and the data format that a device understands (e.g.,
video vs. audio data).

Our Contribution We propose a hierarchical Property-Based Broadcast
Encryption (PBBE) scheme that allows content providers to base their access
decision on the devices’ properties, including one hierarchical property such as
their tamper resistance. In the hierarchical setting, i.e., when devices can be
partitioned into hierarchical classes, our PBBE scheme is more efficient than
existing Broadcast Encryption (BE) schemes. Specifically, we achieve a header
length reduction by a factor that is logarithmic in the number l of hierarchical
classes, e.g.,  12 · log2(l)�� compared to the Subset Difference (SD) scheme and
Inclusion Exclusion (IE) trees of [14]. In addition, we show that our PBBE
scheme is IND-CCA1-secure in the sense of [8].

As a first building block, we formalize the notion of properties with respect to
BE and show a detailed approach for representing them in a binary tree. Each
leaf of this tree represents one possible property combination of a device. The
content providers can formulate their access decision as a list of arbitrary Boolean

1 The HDCP scheme [12] is considered to be broken whereas DTCP [13] is not.
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expressions over the properties. Although properties have been mentioned in
related work (see Section 2), the notion of properties hasn’t been formalized in
this context. Existing schemes lack either flexibility in the handling of several
properties or efficiency in the context of a hierarchical property. We argue that
formalization of properties is necessary for any implementation, e.g., to allow a
security proof.

As the second building block, we use existing BE schemes to achieve efficiency.
If we assume that there is no hierarchical property, then the proposed scheme is
simply the Complete Subtree (CS) scheme of [8] enriched with guidelines on the
optimum assignment of property combinations to the leaves of the CS key tree.
Given a set of devices, their properties and possibly some a-priori information on
their decision relevance,2 we order the leaves of the CS tree such that the length
of an average message header is minimized. Although related work mentions that
this is possible, we are unaware of any specific proposal to achieve this. Now when
we add a hierarchical property, we achieve a logarithmic header length reduction
by embedding a computational key assignment using pseudo-random chains into
the CS key tree.

2 Related Work

Berkovits first used the notion of broadcasting a secret [15]. Fiat and Naor were
the first to formally define the functional requirements of a BE scheme [7]. Naor,
Naor and Lotspiech introduced a general class of BE schemes called Subset Cover
BE (SCBE) schemes which cover the set of non-revoked devices with a collec-
tion of well-defined subsets [8]. Specifically, they proposed two SCBE schemes
based on binary key trees: Complete Subtree (CS) and Subset Difference (SD).
Although they mentioned properties, they didn’t give a formal definition or an
analysis of their effect on efficiency. With the Layered SD (LSD) scheme, Halevy
and Shamir reduced the storage size of devices at the price of doubling the header
length [14]. In the same paper, they introduced Inclusion Exclusion (IE) trees,
but didn’t formalize the concept of properties. Using + and − signs as predicates
for the tree’s nodes, IE trees describe logical operations over properties. Dodis
and Fazio extended CS, SD and LSD to the public key setting using (hierarchical)
identity-based encryption [16]. A recent SCBE scheme based on one-way chains
is due to Jho et al. [17]. We give further references in the technical report [1].

3 Need for Property-Based BE

3.1 Underlying Scenario

We refer to a scenario where all devices are stateless, i.e., they can’t update
their key material after the setup phase, and have a fixed number of properties.

2 Decision relevance is the relative importance of properties to the content providers.
Some properties will influence their decisions more often than others.
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Before formally defining properties, we give an informal example. Let there be
three properties: the data format that a device understands (α or β), the region
in which it is sold (A, B or C) and its tamper resistance (between 0 and 3).
In this example, all devices which understand data format α, belong to region
B and have tamper resistance level 2, share the same combination of property
values or (property) configuration.

There may be a hierarchical relation between the devices which we model as a
hierarchical property. To give an example, let the tamper resistance levels above
be ordered in a meaningful way: 0 represents “minimum tamper resistance”,
and the values increase from 0 to 3 which represents “maximum resistance”. A
device with tamper resistance 2 automatically inherits the permission to receive
content which was addressed to devices with tamper resistance < 2.

We assume the number of such configurations to be significantly smaller
than the number of devices. In the above example, there are 24 configurations
(α,A, 0), . . ., (β,C, 3), but possibly millions of devices. The reason for our as-
sumption is two-fold: First, if there are more configurations than devices, then
some properties are redundant and can be removed or merged. Second, if there
are still as many configurations as devices, i.e., there is only 1 device per con-
figuration, then it is impossible to achieve any efficiency gains by considering
properties; configurations and devices are two names for the same thing.

3.2 Available Methods

CS, SD, LSD and the one-way chain based schemes of [17] are SCBE schemes
for stateless devices. To grant access, they cover the set of non-revoked devices
with the available subsets, hence their common name. To save bandwidth, the
center of any SCBE scheme encrypts the long broadcast message with a short
session key and subsequently encrypts the session key for every subset in the
cover. The broadcast message thus has the following elements: (i) the indexing
information, indicating which subsets are covered, (ii) the encryptions of the
session key with the subsets’ keys, and (iii) the encryption of the message with
the session key. (i) and (ii) are called the (message) header. In our proposed
solution in Section 5, we refer to any such scheme by using a generalized key
generation, key extraction, encryption and decryption algorithm of an SCBE
scheme: KeyGenSCBE(), KeyExtrSCBE(), EncSCBE() and DecSCBE().

3.3 Difficulties

The CS, SD and LSD schemes assume that all devices are equal at manufacture
time and assign the leaves of their key trees to devices in arbitrary order. If
we want to enhance the key assignment by considering device properties, there
are three straightforward possibilities. As an example, we look at the first 3
configurations of the above example; let there be 6 devices with configuration
(α,A, 0), 7 with (α,A, 1) and 3 with (α,A, 2).

The first possibility for considering properties is to assign devices to leaves
in the order of the property configurations. In Part 1 of Figure 1, we assign the
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first 6 leaves to the devices of configuration (α,A, 0), the next 7 to (α,A, 1), the
next 3 to (α,A, 2), and so forth.3 The disadvantage of this approach is obvious:
The devices of a particular configuration do not group below a common node in
the tree. Therefore, the cover algorithm of the aforementioned SCBE schemes
needs several subsets to cover them. For example, the devices of configuration
(α,A, 1) have no common ancestor to exclusively cover them.

(α,A,0) (α,A,1) (α,A,2)

1

(α,A,0) (α,A,1) (α,A,2)

2

(α,A,0) (α,A,1) (α,A,2)

Fig. 1. Disadvantages of conventional trees related to property configurations

The second possibility is to define a tree level in which each node corresponds
to a configuration. For the 24 configurations of our example, we need the fifth
level with 25 = 32 nodes as the tree is binary. Part 2 of Figure 1 shows the first
three such nodes. The corresponding devices are grouped below these nodes,
i.e., the 6 devices of (α,A, 0) below the first node, the 7 devices of (α,A, 1)
below the second and so forth. All leaves have the same distance to the root.
The disadvantage of this approach is that many leaves remain unassigned. For
example, the node of configuration (α,A, 2) has 5 unassigned leaves.

The third possibility is to allow varying height of the subtrees rooted at con-
figuration nodes. This modification is similar to Part 2 of Figure 1. The only
difference is that below each configuration node, the subtree has the minimum
number of levels allowing to assign a leaf to each property value. For exam-
ple, in contrast to the 3 additional tree levels below (α,A, 0) and (α,A, 1), we
only need 2 additional levels below (α,A, 2). This gives us 4 leaves, allowing
to assign each of the 3 property values its own leaf. This approach is already
close to our proposed solution. However, it still has a longer message header if
there is a hierarchical property as we will show in Section 5.7. Our proposed
solution extends the third possibility. However, we cut the resulting tree be-
low the configuration nodes and obtain separate subtrees for each configuration.
Figure 2 gives an impression of the approach, while we give further details in
Section 5.
3 We only show the left-most part of the tree which will continue to the right with the

remaining 21 configurations.
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4 Preliminaries

4.1 Notations

We recall some standard notations that will be used throughout the paper. First,
we denote objects with lower-case variables, e.g., o1, and roles with upper-case
variables, e.g., X1. When we summarize objects in set notation, we use an upper-
case calligraphic variable, e.g., O = {o1, o2, . . .}. Second, let A() be an algorithm.
By y ← A(x) we denote that y was obtained by running A() on input x. If A()
is deterministic, then y is a variable with a unique value; conversely, if A() is
probabilistic, then y is a random variable. Finally, ∧ and ∨ denote the logical
and- and or-operator, respectively.

4.2 Roles and Objects

After having introduced several terms informally, we now give their precise mean-
ing. A device d is capable of obtaining and processing digital content. D is the set
of all devices D := {dind |dind is a device}, where the device index ind := (k, ik)
is an unambiguous identifier consisting of the index k of configuration ck and
the running index ik of devices in ck. A content provider As distributes content
items, referred to as messages m, via the broadcast center. As selects an arbi-
trary set of privileged configurations that have access to m. The fully trusted
(broadcast) center manages the broadcast encryption infrastructure. The center’s
two main tasks are key management and encrypted broadcasting of messages. A
device manufacturer produces and distributes devices that contain key material
assigned by the center.

4.3 Properties

Definition 1. A property pj is an unambiguous quality of a device which we
represent as a function pj : D → Pj, where Pj is a finite set Pj := {0, 1, . . . , lj−
1} ⊂ N of property values.4 The number of properties is denoted with g, i.e.,
1 ≤ j ≤ g.

Definition 2. A (property) configuration ck is a g-tuple ck := (x1, . . . , xg)
of property values corresponding to the g properties (p1, . . . , pg) of a device. The
set of all configurations is C := {c1, c2, . . .}.
Definition 3. Let j be the index of the hierarchical property and ck = (x1, . . . ,

xj , . . . , xg) be a configuration. Configuration c
(1)
k is superior to c

(2)
k if it has (i)

a strictly greater value x
(1)
j > x

(2)
j of the hierarchical property and (ii) identical

values in all other properties: ∀ j′ �= j : x
(1)
j′ = x

(2)
j′ . Conversely, c(2)k is inferior

to c
(1)
k . Devices with configuration ck inherit access to all messages to which ck’s

inferior configurations have access.

Definition 4. A configuration is non-intact if it either (i) contains at least
one revoked device or (ii) is inferior to a non-intact configuration.
4 The choice of integers as elements of Pj is simply a design choice which facilitates

the notation. We might as well use sets of the form {α, β, . . .} as introduced before.
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4.4 Pseudo-random Chains

Definition 5. [8, Section 3.2] We say that G : {0, 1}λ → {0, 1}λ is a pseudo-
random chain generator (PRCG) if no probabilistic λ-polynomial-time adver-
sary can distinguish the output of G() on a randomly chosen seed from a truly
random string of identical length.

Definition 6. A pseudo-random chain (PRC) is a sequence of bit strings
(str0, str1, str2, . . .) that are derived from the random seed str0 by iteratively
applying a PRCG: str i+1 ← G(str i)

5 Proposed Solution

5.1 Overview

We propose a Property-Based Broadcast Encryption (PBBE) scheme for an
arbitrary number of properties, including one hierarchical property. A PBBE
scheme should allow content providers to grant access based on properties, i.e.,
the criteria in their business models, and revocation information for individual
devices. Our scheme uses existing SCBE schemes on two levels. The upper level
applies the CS scheme enhanced with pseudo-random chains; the lower level
independently applies an arbitrary SCBE scheme.

The upper level represents the properties of a device: Each leaf of the upper
tree stands for a single configuration ck, thus the name (property) configuration
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Fig. 2. Two levels of SCBE schemes
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tree. The lower level represents all devices that have the same configuration.
To illustrate the approach, we show an example with tree-based schemes on the
lower level (see Figure 2); we will call them device trees. Each leaf of the forrest of
device trees stands for one individual device dk,ik

. In Figure 2, devices d0,0−d0,3
possess configuration c0, while devices d3,0 − d3,7 have configuration c3.

In the setup phase, each device obtains all keys that are related to its config-
uration in the configuration tree. In addition, each device obtains key material
in its device tree. In the example of Figure 2, device d3,5 obtains all keys related
to configuration c3 in the configuration tree and all keys related to leaf d3,5 in
the device tree. When a device is compromised, i.e., its key material has been
misused for purposes such as key sharing, the center can remove its privileges
by performing revocation. When a device dk,ik

is revoked, the center no longer
uses any key known to this device. Therefore, it cannot use this device’s keys in
the configuration tree. However, the device tree of ck still allows to broadcast to
all non-revoked devices of ck.

5.2 Tree Arithmetic

Encoding of Property Values. In the above example, we have seen three
properties p1, p2 and p3 representing data format, region and tamper resistance.
They have l1 = 2, l2 = 3 and l3 = 4 property values each: P1 = {0, 1} := {α, β},
P2 = {0, 1, 2} := {A,B,C} and P3 := {0, 1, 2, 3}. These property values are
encoded into the configuration tree as follows.5 First, we calculate the number
Lj of tree levels that we need for representing a property with lj property values
in a binary tree: Lj := log2(lj)�. For example, we need L2 = log2(3)� = 2 tree
levels to encode the 3 property values of p2.

Second, we calculate how many nodes we obtain at the lowest level of this
property. Ideally, there would be lj nodes, i.e., just the number of property
values. However, as the tree is binary, we have lrealj = 2Lj nodes. In the example
of p2, we have lreal2 = 22 = 4 nodes although we use only l2 = 3 of them. Note
that lrealj = lj iff lj is a power of 2, and lrealj > lj otherwise.

We assign the values of a property to the nodes on the lowest level of this
property, going from left to right. The left-most node obtains the first value and
so on until we reach the lrealj -th node and start again. We repeat until each node
corresponds to a property value. A configuration ck = (x1, . . . , xg) therefore
easily translates into a path from the root to the leaf representing ck. We simply
use the binary representation of the property values and descend as follows:
When a 0 occurs, we descend to the left child, while a 1 implies the right child. For
example, the configuration (β,B, 2) corresponds to c = (1, 1, 2)10 = (1, 01, 10)2.

Often-used Parameters. In order to simplify the notation, we introduce some
often-used parameters of the configuration tree. All variables are a direct function
of the number of property values l1, . . . , lg . The calculations simply rely on the
fact that the tree is binary. First, we calculate the number nleaves of leaves of the
configuration tree. For g properties, we find nleaves =

∏g
j=1 l

real
j .

5 For a detailed example, we refer to the technical report [1].
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On several occasions, it will be useful to decompose nleaves into two factors
nleaves = nnodes

pg
· nleaves

pg
. The first is the number nnodes

pg
of nodes at the uppermost

level of property pg . This number is calculated as nnodes
pg

=
∏g−1

j=1 l
real
j . For the

second factor, note that there is a subtree rooted in each of these nodes. Each
of the subtrees has a number nleaves

pg
of leaves with nleaves

pg
= lrealg = 2Lg .

Indexing of Configurations. The indexing method for assigning the index k
to configuration ck is trivial: We start with index k = 0 for the configuration of
the left-most leaf in the tree. Then going from the left-most to the right-most
leaf or configuration, we increase k by 1 for each configuration and obtain nleaves

configurations. Therefore, k is an unambiguous index for ck = (x1, . . . , xg), and
we use them interchangeably.

5.3 Key Generation in the Tree Setup Phase

This section details our proposal for instantiating the key generation algorithm.
It will consist of three subroutines. We start with the first two subroutines, which
are related to the property configuration tree. The third subroutine, related to
the device trees, follows at the end of Section 5.3.

Property Configuration Tree. The (property) configuration tree is the up-
per tree in Figure 2 and allows the center to directly broadcast to intact con-
figurations. Before we can generate this tree, the parties need to agree on the
properties on which the content providers base their access decisions. As we do
not want to restrict the flexibility of the business model, we leave the details of
this agreement to the implementation.

The setup of the configuration tree consists of two subroutines. First, we gen-
erate a non-hierarchical configuration tree which we instantiate with a standard
CS tree. Second, we implant the hierarchical property into this tree by adding
pseudo-random chains. Note that for efficiency reasons, the center orders the g
properties according to their decision relevance to the content providers. The
most decision-relevant property appears on the uppermost levels of the config-
uration tree while the least decision-relevant property appears at the bottom.
This ensures that the important properties correspond to high-level nodes that
cover many leaves, thus reducing the header length.
1. (MKconf ,SK′conf) ← ConfTreeGen(P , 1λ): This subroutine generates a non-
hierarchical configuration tree. The tree’s leaves represent configurations instead
of devices. The input parameters are the ordered properties P := (p1, p2, . . . , pg)
and a security parameter 1λ. The output is the master keyMKconf of the configu-
ration tree and the set SK′conf of all keys in the tree. The center derives the num-
ber nleaves of configurations from the properties P as shown in Section 5.2. With
nleaves as the tree’s number of leaves, the non-hierarchical configuration tree is in-
stantiated with a standard CS tree: (MKconf ,SK′conf)← KeyGenCS(nleaves, 1λ).
2. SKconf ← HierarImplant(SK′conf ,P , 1λ): This subroutine implants the hierar-
chical property into the configuration tree by adding pseudo-random chains. The
input parameters are the keys SK′conf from Step 1, the ordered properties P and
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the security parameter 1λ. The output is the tree’s set of keys, this time with
pseudo-random chains. To simplify the notation, we always show the hierarchical
property on the lowest layer of the configuration tree and assign it the index g .
In the technical report [1], we release this restriction and allow the hierarchical
property to be in any tree layer.

The subroutine HierarImplant() alters the CS tree as follows. In a regular CS
tree, the center generates (pseudo-)independent keys. We modify this pattern
in exactly one level of the tree: In the lowest level of the hierarchical property,
we replace the CS keys by deriving them from right to left in the order of the
configurations’ superiority relation. To do so, we associate one pseudo-random
chain (see Definition 6) with all configurations that are inferior to each other.
The first string corresponds to the leaf of the most superior configuration, the
last string to that of the most inferior configuration.

Note that in Part (ii) of Definition 3, we require all non-hierarchical property
values to be identical. For two configurations to be superior/inferior, all property
values above the hierarchical property pg must match. As there are nnodes

pg
possible

combinations above pg, we obtain nnodes
pg

pseudo-random chains. Figure 3 shows
a configuration tree with nnodes

p3
= 8 implanted pseudo-random chains, indicated

with arrows (←). As an example for superiority, take c = (x1, x2, x3) = (2, 1, 2).6

It can follow its chain and derive the keys of the inferior configurations (2, 1, 1)
and (2, 1, 0) by evaluating the PRCG.

0 1
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Fig. 3. A configuration tree: The example shows three properties (p1, p2, p3) where p3

is hierarchical and l1 = 3, l2 = 2 and l3 = 4

We call the strings of the chain labels from which the actual keys are derived.
If cinf is inferior to csup with a distance of δ,7 then cinf ’s key is the result of two
independent PRCGs applied to csup’s label:

sk inf ← GK(Gδ
L(label

sup)) (1)

Like the SD scheme [8], we need more than one PRCG to ensure key indistin-
guishability: We use GL() to derive labels and GK() to derive the actual key from
6 To find the path from root to leaf, note that (2, 1, 2)10 = (10, 1, 10)2.
7 I.e., their values of the hierarchical property differ by δ.
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a label. The output SKconf of HierarImplant() contains the labels of the pseudo-
random chains on the lowest tree level. We denote with SK∗conf the actual key
set where labels are replaced with keys using GK().

Device Trees. As soon as an individual device is revoked, its configuration
becomes non-intact (see Definition 4). We cannot individually revoke this device
in the configuration tree because all other devices in its configuration obtained
the same keys. We therefore revoke the whole configuration8 in the configuration
tree and thereby also exclude all of its non-revoked devices. We thus need to use
the device trees to re-include the non-revoked devices of non-intact configura-
tions. For each device tree, a secure9 SCBE scheme can be chosen arbitrarily
and independently. If the center chooses a tree-based scheme from [8, 14], the in-
dividual devices correspond to the tree’s leaves. The center generates the device
trees as follows:

3. (MKdev,SKdev)← DevTreeGen(NC , 1λ) with NC := {nc0 , nc1 , . . .}: The input
parameters are the set NC containing the numbers nck

of devices in configura-
tion ck and the security parameter 1λ. The output parameters are the master
keysMKdev and the set SKdev of keys of all device trees. For each configuration
ck, the center invokes the key generation algorithm of an arbitrary secure SCBE
scheme: (MKdev

k ,SKdev
k )← KeyGenSCBE(nck

, 1λ).

5.4 Join and Leave Operations

Join = Key Extraction. In the setup phase, each device obtains an individual
set of keys. Before giving any details, we outline the approach for key extraction:
Each device obtains keys in the configuration tree and keys in its device tree. In
the configuration tree, the center provides the device with the keys related to its
configuration. In the device tree, the device obtains the key material of its leaf
node as defined in the underlying SCBE scheme.

The input parameters of the key extraction algorithm are the set of secret
keys and the device index (k, ik). The output is the set SKk,ik

of secret keys
of device dk,ik

in both trees. The algorithm proceeds as follows: It first extracts
the keys SKconf

k ← KeyExtrCS(SKconf , k) of configuration ck in the configuration
tree using the key extraction algorithm of the CS scheme. Then it extracts the
keys SKdev

k,ik
← KeyExtrSCBE(SKdev

k , ik) of device ik in device tree ck using the
key extraction algorithm of the selected SCBE scheme. The result is the device’s
secret key set SKk,ik

:= {SKconf
k ,SKdev

k,ik
}.10

Leave = Key Revocation. The center keeps track of revoked devices. When-
ever it learns that a device dk,ik

has been compromised, it adds it to the (initially
empty) set Rdev of revoked devices:

8 and, as we will soon see, all inferior configurations.
9 Specifically, we assume an SCBE scheme that fulfills the key-indistinguishability

property.
10 The update of the counter ik of devices in ck is straightforward: ik ← ik + 1.
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Rdev
k := {ik | dk,ik

is revoked} and Rdev := {Rdev
0 ,Rdev

1 , . . .}

The center maintains a similar revocation list for non-intact configurations:

Rconf := {ck | ck is non-intact},

After introduction of the notational elements, we now give the actual revoca-
tion algorithm R ← Revoke(R, k, ik), where R := {Rdev,Rconf}. When dk,ik

is
revoked, the center first performs the following two steps:

Rdev
k ← Rdev

k ∪ {ik} and Rconf ← Rconf ∪ {ck}

Then it needs to update the pseudo-random chain of the revoked configuration
ck and declare all inferior configurations non-intact. The reason for this step is
dk,ik

’s hierarchical position: The revoked device has the keys of configuration ck

and—by following the pseudo-random chain—it can derive the keys of all inferior
configurations. The center prevents this as follows: Each of the pseudo-random
chains has nleaves

pg
members (see Section 5.2). There are Δkmax = kmodnleaves

pg

inferior configurations from ck to the end of its pseudo-random chain. Each of
them is added to the list Rconf of non-intact configurations.

5.5 Encryption

The encryption of a message involves an access structure based on properties and
devices. The combination of both criteria and the cooperation of content provider
and center unambiguously defines this structure. While the provider derives the
allowed configurations from his business model, the center excludes all devices
in the revocation list. The access structure needs to be expressed in terms of
keys in the SCBE schemes. Obviously, this involves keys from configuration tree
and device trees. First, we show how the content provider’s business model
determines the selection of keys in the configuration tree. Then, we outline how
the center adds the selection of keys in the device trees which enforce revocation
of individual devices.

The Provider’s Access Rules. The content provider will be faced with the
following situation: He wants to distribute content according to his business
model in order to generate revenues. His business model will contain certain
textual rules, e.g., “only allow access to devices with output interface X”, “re-
strict access to a certain region” or “exclude insecure devices”. We show how
to combine these rules to arbitrary Boolean expressions of predicates over the
properties, i.e., expressions with ∧ and ∨ operators.

Consider a simple example where the content providers use three proper-
ties: region p1, device model p2 and data format p3. Let there be 2 regions, 2
models and 3 formats. If a content provider’s business model contains the two
or-connected textual rules “either region 0 and model 1 or region 1 and model 0”
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for a content item, independent of the format, we translate them into the fol-
lowing set of allowed configurations:

Callow = {(x1, x2, x3) |
(
x1 ∈ {0} ∧ x2 ∈ {1}

)
∨
(
x1 ∈ {1} ∧ x2 ∈ {0}

)
}

As the data format p3 wasn’t relevant, we obtain the following list of allowed
configurations ck:

(0, 1, 0) (0, 1, 1) (0, 1, 2) (1, 0, 0) (1, 0, 1) (1, 0, 2)

In general, each rule α translates into a tuple Pallow
α of allowed values:

Pallow
1 = ({0}, {1}, {0, 1, 2}) and Pallow

2 = ({1}, {0}, {0, 1, 2})

Each tuple Pallow
α represents an and-statement and defines a set of configurations

Callow
α as follows:

Pallow
α = (Pallow

α,1 , . . . ,Pallow
α,g ) s.t. Callow

α := {(x1, . . . , xg)|
∧g

j=1 xj ∈ Pallow
α,j }

Finally, we denote the or-connection between the rules Pallow
α in set notation:

Pallow := {Pallow
1 ,Pallow

2 , . . .} s.t. Callow := {ck|
∨|Pallow|

α=1 ck ∈ Callow
α }

The Center’s Revocation Lists. When the provider has chosen Pallow, the
center enhances this information with his revocation lists. If the provider un-
knowingly includes some non-intact configurations, then the center excludes
these configurations from the access structure, but includes the non-revoked de-
vices of these configurations. Remember that within a non-intact configuration,
usually only a few devices are revoked while all others are still privileged.

Encryption Overview. The encryption algorithm consists of four subroutines.
We first outline the approach before giving details: First, the center declares
all configurations to be excluded. The content provider chooses the rule for
allowed configurations in the form Pallow, thus defining Callow. The center removes
Callow from the exclusion list. Second, it adds all non-intact configurations to
the exclusion list. Third, it takes advantage of the hierarchy and excludes all
configurations that can descend in the hierarchy and follow a pseudo-random
chain. Fourth, it encrypts the message in the configuration tree and device trees.

Encryption Steps. We detail the four steps:

1. This subroutine excludes all but the allowed configurations: Cexcl ← C \ Callow

2. This subroutine adds all revoked configurations: Cexcl ← Cexcl ∪Rconf

3. This subroutine leverages the hierarchy which the pseudo-random chains in-
duce. Among the included configurations, only the most inferior configuration of
any chain needs to be covered, while all superior configurations can descend in
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the hierarchy. For each pseudo-random chain in the configuration tree, we first go
to the most inferior configuration, i.e., the left-most leaf. Moving to superior con-
figurations, we look for the first leaf corresponding to an included configuration.
We let this configuration be included, but exclude all superior configurations
because they can descend in the hierarchy and follow the pseudo-random chain.

After this subroutine, the excluded configurations contain all disallowed con-
figurations, the non-intact allowed configurations and the intact allowed config-
urations that are in a superior position.
4. This subroutine generates the message header in both the configuration tree
and the device trees. To do so, it encrypts the session key k sess with keys in both
trees. In the configuration tree, it addresses all intact allowed configurations

(Iconf ,Kconf)← EncCS(SK∗conf , C∗excl, k sess) ,

where C∗excl is the set of indices of Cexcl’s members like k is the index of ck.11

Although only the most inferior intact configurations are directly covered, all
intact configurations are addressed because they can use their superiority and
descend in the pseudo-random chain.

In the device trees, it addresses all non-intact allowed configurations. For each
configuration ck that is non-intact and allowed, the center covers the non-revoked
devices by invoking the SCBE scheme in this device tree:

(Idev
k ,Kdev

k )← EncSCBE(SKdev
k ,Rdev

k , k sess)

5.6 Decryption

Running the decryption algorithm, a non-revoked device dk,ik
of an allowed con-

figuration ck decrypts the session key k sess. The input variables are the device’s
index (k, ik), its set of secret keys SKk,ik

and the message header12 (I,K). The
output is the session key k sess if ck was allowed and dk,ik

was non-revoked at
encryption time.

The algorithm proceeds as follows: First, it checks whether ck is covered in
the configuration tree by evaluating the indexing information Iconf . Second, it
verifies whether it can reach one of the covered configurations by leveraging ck’s
hierarchical position and descending a pseudo-random chain. Third, it checks
whether ck was allowed, but non-intact:

1. k sess ← DecCS(k,SK∗conf
k , Iconf ,Kconf): This step succeeds if ck was among

the covered configurations. That is, ck is the most inferior of the intact allowed
configurations in its pseudo-random chain.
2. This step succeeds if ck is superior to a covered configuration. The algorithm
descends to all inferior configurations in ck’s pseudo-random chain. For each
inferior configuration ck′ , the algorithm derives the secret keys SKconf

k′ from its

11 For example, Cexcl = {c3, c9, c12} implies C∗excl = {3, 9, 12}.
12 The message header consists of I := {Iconf , Idev} with Idev :=

⋃
k{Idev

k } and K :=
{Kconf , Kdev} with Kdev :=

⋃
k{Kdev

k }.
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own secret keys SKconf
k by applying the generator GL() to ck’s label. This is

possible due to the construction of the pseudo-random chains according to (1).
Then it replaces the derived label with the actual key using the generator GK()
and obtains SK∗conf

k′ . Finally, the algorithm tries to decrypt with the derived
secret key: k sess ← DecCS(k′,SK∗conf

k′ , Iconf ,Kconf). Note that the first two steps
only affect the configuration tree and allow decryption in intact configurations.
3. k sess ← DecSCBE(ik,SKdev

k,ik
, Idev

k ,Kdev
k ): This step succeeds if dk,ik

is a non-
revoked device in a non-intact allowed configuration, i.e., ik /∈ Rdev

k and ck ∈
Rconf ∩ Callow. Although the keys in the configuration tree are compromised and
therefore cannot be used, a non-revoked device dk,ik

still has the keys in its
device tree. If the device is non-revoked and the configuration allowed (although
non-intact), then decryption succeeds in the device tree of configuration ck.

5.7 Efficiency Gains

The third possibility of Section 3.3 was to order a standard CS or SD tree ac-
cording to the configurations (Part 2 of Figure 1) and to allow each configuration
to have its own depth. Without a hierarchical property, this possibility still has
the shorter header, provided that it is instantiated with an SD tree. The reason
is that, without a hierarchical property, our proposed solution will not add any
pseudo-random chains and therefore be equivalent to the CS scheme. Obviously,
this leads to a longer header than that of the SD scheme [8].

However, as soon as one of the properties is hierarchical, our proposed so-
lution is more efficient than CS and SD. In the hierarchical setting, it reduces
the header length, while storage requirements and computational complexity are
identical. We discuss the header length reduction in two steps; in both steps we
assume that the content providers base their decision on properties and that one
of the properties is hierarchical. In the first step, we discuss the effect of having
a hierarchical property among the properties. We assume that revocation is un-
necessary, i.e., all devices are compliant and needn’t be revoked. In other words,
only the properties matter. In the second step, we release this assumption and
generalize by allowing revocation of arbitrary devices. In other words, properties
and revocation of individual devices matter.

1. As revocation depends merely on the properties, the proposed scheme per-
forms revocation in the configuration tree. Let lg be the number of hierarchy
levels induced by the hierarchical property. In this case, the proposed scheme
achieves a header length reduction of a factor between 1 and log2(lg)� compared
to CS and between 1 and  12 · log2(lg)�� compared to SD. For example, with
lg = 16 hierarchy levels our scheme reduces the header length by a factor of up
to 4 compared to CS and up to 2 compared to SD. Due to space constraints, we
give the proof of this claim in a technical report [1].

2. As revocation depends on properties and individual devices, the proposed
scheme performs revocation in both the configuration tree and the device trees.
The beneficial effect of ordering the devices according to their properties is lost.
In a non-intact configuration, the proposed scheme therefore degrades to the
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performance of the SCBE scheme with which the corresponding device tree is
instantiated. However, in intact configurations we can still address all devices
with the reduced header length discussed in Step 1.

5.8 Security

We only need to consider the effect of adding pseudo-random chains in the
configuration tree. Each device tree directly inherits the security of the SCBE
scheme with which it is instantiated. We assume the device trees’ keys to be
indistinguishable as defined in [8] because all candidate schemes [8, 14, 17] fulfill
this requirement. As for the pseudo-random chains in the configuration tree, we
show that even a coalition of all revoked devices in allowed configurations and
all devices in disallowed configurations cannot distinguish the encrypted session
key from a random key:

Theorem 1. If the generators GL and GK fulfill Definition 5, then our PBBE
scheme is IND-CCA1-secure.

We give the proof of this theorem in a technical report [1]. The definition of IND-
CCA1 security for SCBE schemes can be found in [8, Section 5.2, Definition 9].

5.9 Extensions and Future Work

We highlight some possible extensions of our proposed scheme in the technical
report [1]. They refer to the position of the hierarchical property, the intermedi-
ate levels within the layer of the hierarchical property, the use of several instances
of the configuration tree, and the use of lj-ary trees instead of binary trees.

6 Conclusion

We have formalized the concept of properties in the context of broadcast en-
cryption. In the presence of a hierarchical property such as tamper resistance,
we have proposed a property-based broadcast encryption scheme that reduces
the message header length compared to existing schemes by a factor that is
logarithmic in the number of hierarchy levels.
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Abstract. We propose a set of primitives based on El Gamal encryp-
tion that can be used to construct efficient multiparty computation pro-
tocols for certain low-complexity functions. In particular, we show how
to privately count the number of true Boolean disjunctions of literals
and pairwise exclusive disjunctions of literals. Applications include effi-
cient two-party protocols for computing the Hamming distance of two
bitstrings and the greater-than function. The resulting protocols only
require 6 rounds of interaction (in the random oracle model) and their
communication complexity is O(kQ) where k is the length of bit-strings
and Q is a security parameter. The protocols are secure against active
adversaries but do not provide fairness. Security relies on the decisional
Diffie-Hellman assumption and error probability is negligible in Q.

1 Introduction

Secure multiparty computation (MPC) deals with protocols that allow a group
of agents to jointly compute a function of their individual private inputs, so
that only the function value is revealed in the end. Since Yao’s and Goldreich
et al’s seminal completeness results [Yao86, GMW87], it is well known that any
function can be computed securely if trapdoor permutations exist. However, the
general constructions in [Yao86, GMW87] have proven to be rather inefficient and
unpractical. It has been shown that general MPC is feasible in a constant number
of rounds with polynomial communication complexity for various settings such
as 2-party MPC (without fairness) [Lin01] or n-party MPC (with an honest
majority) [BMR90]. Although theoretically interesting, the constructions of the
underlying proofs do not yield practical constant-round MPC schemes due to
the extensive use of generic proofs of knowledge.

In this paper, we propose a set of cryptographic techniques that enable the
efficient computation of “low-complexity” functions in the presence of active ad-
versaries. These techniques, some of which have been known for some time, can
be used straightforwardly to construct round-efficient protocols for the equal-
ity function (solving the so-called socialist millionaires’ problem), the Boolean
or function (e.g., for veto voting), or the maximum function. Furthermore, we
show how to privately count the number of true Boolean disjunctions of liter-
als and pairwise exclusive disjunctions of literals. Applications include efficient
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two-party protocols for computing the Hamming distance of two bitstrings and
the greater-than function (thus providing a solution to Yao’s millionaires’ prob-
lem [Yao82] in which two millionaires (Alice and Bob) want to find out who
is richer without revealing their wealth). Our primary objective when designing
these protocols was to minimize round complexity as interaction over a computer
network is usually the most time-consuming operation in distributed protocols.
Our protocol for the millionaires’ problem only requires 6 rounds of interaction
(in the random oracle model) and its communication complexity is O(kQ) where
k is the length of bit-strings to be compared and Q is a security parameter. To
the best of our knowledge, this is the most efficient constant-round protocol for
the millionaires’ problem. Under reasonable conditions (see Section 5.2), each
party only needs to communicate about 73 Kbytes of data. This is achieved by
exploiting the homomorphicity of the underlying encryption scheme when eval-
uating a modified Boolean formula for the greater-than function. The protocol
is correct with error probability O(2−Q). It does not provide fairness, i.e., one
party might learn the outcome and leave the other party uninformed by quitting
the protocol prematurely. However, fairness can be obtained by using known
standard techniques of gradual exchange (see e.g., [GMY04]). For this paper,
we assume that there is either a fairness-providing third-party, i.e., a party that
does not reveal information or quits prematurely,1 or that only one of the agents,
say Alice, is supposed to learn the function value.

Many representations for general secure MPC have been suggested in the
literature: Boolean circuits [Yao86], arithmetic circuits [GMW87], branching
programs [Kil88], low degree polynomials [BFKR90], randomizing polynomials
[IK00], etc. Our approach differs in that we provide a set of efficient building
blocks (distributed homomorphic encryption, random exponentiation, and veri-
fiable mixing) for which there exist efficient proofs of correctness and use these
to construct special-purpose protocols for a limited, but nevertheless relevant,
group of functions.

Our primitives are built around El Gamal encryption [El 85] because it allows
for the efficient generation of distributed keys and because encrypted values
can easily be exponentiated with jointly created random numbers. The building
blocks can be used for any number of parties. We consider full privacy, i.e.,
(n − 1)-privacy, rather than threshold privacy.2 Any party that deviates from
the prescribed protocol can be identified (because it fails to prove its correctness
in zero-knowledge) and removed from the set of participants. There are very
efficient (honest-verifier) zero-knowledge proofs to show the correctness of each
protocol step (see Section 3.2).

The remainder of this paper is structured as follows. In Section 2, we review
related work. Section 3 contains building blocks to be used in the protocols.
Basic protocols consisting of these primitives are presented in Section 4 whereas
more sophisticated protocols based on the evaluation of simple Boolean formulae

1 Please note that such a third-party will not be able to learn any information besides
the outcome.

2 Threshold privacy can easily be obtained by using standard secret sharing techniques.
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are proposed in Section 5. The paper concludes with a summary of the results
and a brief outlook in Section 6.

2 Related Work

Various recent advances in efficiency for cryptographic protocols build on homo-
morphic encryption (e.g., [JJ00, CDN01, Fis01, ST04, BGN05]). Most of these
protocols ([JJ00] and [ST04] are exceptions) use factorization-based encryption
schemes like Paillier encryption [Pai99] due to their versatility. However, these
schemes require the joint generation of an RSA modulus before the actual com-
putation begins. Even though protocols for this task improved over the years
[BF97, Gil99, DK01, ACS02], they remain inefficient and unpractical, especially
when having to tolerate active adversaries.3 Distributed key generation for dis-
crete logarithm based schemes like El Gamal, on the other hand, is straightfor-
ward and very efficient (see [Ped91, GJKR99, GJKR03]).

Our protocols bear some similarities to mix-and-match [JJ00] as distributed
El Gamal random exponentiation and the mixing of ciphertexts are also part of
the mix-and-match framework. However, in contrast to our work, mix-and-match
allows general MPC. As a consequence, their approach is more versatile but less
efficient in special cases. E.g., a straightforward mix-and-match implementation
of a millionaires’ protocol is considerably less efficient in both round complexity
and communication complexity than our protocol because mix-and-match does
not take advantage of El Gamal’s homomorphicity (except for the plaintext
equality test).

[BST01] give a protocol for the socialist millionaires’ problem in which two
parties compute whether their inputs are equal. Security is based on the deci-
sional Diffie-Hellman problem and a similar protocol (disregarding fairness) can
be constructed by using the techniques presented in this paper (see Section 4.1).

Since the publication of Yao’s original protocols in [Yao82], numerous solu-
tions to the millionaires’ problem have been proposed. While the complexity of
some protocols is exponential in k [Sch96], others do not consider active adver-
saries [Fis01, IG03, LT05] or have quadratic complexity [IG03]. The protocol
proposed in [Fis01] is quite efficient but also relies on the prior setup of a dis-
tributed RSA modulus which (even for just two parties) requires a large amount
of communication. Nevertheless, we adopted [Fis01]’s idea of securely evaluat-
ing the greater-than function by shuffling k equality tests. The efficiency of Lin
and Tzeng’s recent protocol [LT05], which can be based on El Gamal encryp-
tion, is similar to that of our protocol, although it is based on a quite different,
interesting idea. However, their model only allows passive adversaries and the
protocol cannot straightforwardly be turned into one that is secure against active
adversaries.
3 Communication complexity in these protocols always contains high orders of the

security parameter. For example, the 2-party key generation proposed in [Gil99]
requires about 42MB of data to be sent for setting up a 1024-bit key (while only
tolerating passive adversaries).
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There are randomized protocols for the millionaires’ problem (e.g., [NN01,
PBDL04]) whose communication complexity may be less than linear in the input
size [NN01]. However, these protocols cannot provide constant round complex-
ity.4 The same holds for recently proposed protocols based on evaluating circuits
that contain so-called conditional gates [ST04]. The communication complexity
of [ST04]’s solution for the Millionaires’ problem is comparable to ours but their
protocol requires k rounds of interaction.

It is difficult to compare our techniques with advanced two-party protocols
based on Yao’s “garbled circuit” construction [Yao86], e.g., [NPS99, CC00].
Naturally, these protocols have the advantage of being universally applicable.
However, [NPS99] relies on the inefficient “cut-and-choose” technique to prove
circuits correct and even [CC00], which uses zero-knowledge proofs instead of
cut-and-choose, is less efficient than our approach because the correctness of
every single gate has to be proven. Even for simple functions, like the greater-
than function, the number of gates is relatively high (at least 5k − 4 [KO02]),
resulting in substantially higher complexity than our protocol for the same func-
tion. Moreover, our techniques have the advantage of being applicable to settings
with any number of parties which is generally not possible with garbled circuit
protocols.

3 Building Blocks

This section contains building blocks to enable the construction of efficient pro-
tocols for simple functions. In the heart of the system lies El Gamal encryption
because it allows for the easy generation of distributed keys and because en-
crypted values can be exponentiated with a shared random number in a single
round. This random exponentiation will be used as a blinding step in our pro-
tocols as it transforms every plaintext, except 1, into a meaningless random
number.

We suggest the following general methodology for efficiently computing
low-complexity functions: All parties publish encryptions of their inputs in a
representation—e.g., binary (see Section 5) or unary (see Section 4.3)—that at
the same time allows efficient proofs of correctness and further processing in or-
der to compute the function outcome. By exploiting the homomorphic property
of the underlying encryption scheme, participants compute a vector of encrypted
values that contains the function outcome but may also contain additional, un-
wanted information. In order to get rid of this information, all agents jointly
execute random exponentiations for each vector component. Finally, if needed,
components can be shuffled to only reveal if (or how many) vector components
equal 1. We stress the fact the we do not rely on a strict Boolean or arithmetic
representation of the function. We rather suggest a bottom-up approach, i.e.,
trying to represent the function by using the mentioned limited set of primitives.

4 Furthermore, the protocol in [PBDL04] is flawed because the proposed primitive
“complex zero test” reveals statistical information.
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3.1 El Gamal Encryption

El Gamal cipher [El 85] is a probabilistic and homomorphic public-key cryp-
tosystem. Let p and q be large primes so that q divides p − 1. Gq denotes Z

∗
p’s

unique multiplicative subgroup of order q.5 All computations in the remainder
of this paper are modulo p unless otherwise noted. The private key is x ∈ Zq,
the public key is y = gx (g ∈ Gq is an arbitrary, publicly known element). A
message m ∈ Gq is encrypted by computing the ciphertext tuple

(α, β) = (myr, gr)

where r is an arbitrary random number in Zq, chosen by the encrypter. A message
is decrypted by computing

α

βx
=

myr

(gr)x
= m.

El Gamal is homomorphic as the component-wise product of two ciphertexts
(αα′, ββ′) = (mm′yr+r′

, gr+r′
) represents an encryption of the plaintexts’ prod-

uct mm′. It has been shown that El Gamal is semantical secure, i.e., it is com-
putationally infeasible to distinguish between the encryptions of any two given
messages, if the decisional Diffie-Hellman problem is intractable [TY98]. We will
use functions E(·) and D(·) to denote the encryption and the decryption of plain-
and ciphertexts, respectively.

In the following, we describe how to apply the El Gamal cryptosystem as a
fully private, i.e., non-threshold, MPC scheme for n agents.6 If a value represents
an additive share, this is denoted by a “+” in the index, whereas multiplicative
shares are denoted by “×”. Underlying zero-knowledge proofs will be presented
in the next section.

Distributed key generation [Ped91]: Each participant chooses x+i at ran-
dom and publishes y×i = gx+i along with a zero-knowledge proof of knowl-
edge of y×i’s discrete logarithm. The public key is y =

∏n
i=1 y×i, the private

key is x =
∑n

i=1 x+i. This requires n multiplications, but the computational
cost of multiplications is usually negligible in contrast to exponentiations.
Broadcast round complexity and exponentiation complexity of the key gen-
eration are O(1).7

Distributed decryption: Given an encrypted message (α, β), each participant
publishes β×i = βx+i and proves its correctness by showing the equality
of logarithms of y×i and β×i. The plaintext can be derived by computing

α∏n
i=1 β×i

. Like key generation, decryption can be performed in a constant
number of rounds, requiring n multiplications and one exponentiation.

5 We will focus on multiplicative subgroups of finite fields here, although El Gamal
can also be based on other groups such as elliptic curve groups.

6 Please note that this multiparty scheme is limited in the sense that it does not allow
the computation of arbitrary functions.

7 Finding “unbiased” parameters p and q requires no extra communication in the
random oracle model.
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Random Exponentiation: A given encrypted value (α, β) can easily be raised
to the power of an unknown random number M =

∑n
i=1 m+i whose addends

can be freely chosen by the participants if each bidder publishes (αm+i , βm+i)
and proves the equality of logarithms. The product of published ciphertexts
yields (αM , βM ) in a single step. The computational cost is two exponenti-
ations and 2n multiplications.

When adding a commitment round (e.g., using [Ped91]) during key generation
and random exponentiation, security of these primitives is evident. We pre-
sume that even without these commitment rounds, security is preserved (see
Proposition 1).

3.2 Zero-Knowledge Proofs

In order to obtain security against malicious or so-called active adversaries,
agents are required to prove the correctness of each protocol step. One of the
objectives when designing the protocols presented in Sections 4 and 5 was to
enable efficient proofs of correctness for protocol steps. In fact, the proposed
protocols can be proven correct by only using so-called Σ-protocols which just
need three rounds of interaction [Dam02, CDS94]. Σ-protocols are not known
to be zero-knowledge, but they satisfy the weaker property of honest-verifier
zero-knowledge. This suffices for our purposes as we can use the Fiat-Shamir
heuristic [FS87] to make these proofs non-interactive. As a consequence, the
obtained proofs are indeed zero-knowledge in the random oracle model and
only consist of a single message.8 We will make use of the following four
Σ-protocols.

Proof of knowledge of a discrete logarithm. This is a classic Σ-protocol
by Schnorr [Sch91]. Alice and Bob know v and g, but only Alice knows x, so
that v = gx.

1. Alice chooses z at random and sends a = gz to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr = avc.

Alice needs to send log p + log q bits.

Proof of equality of two discrete logarithms. When executing the previous
protocol in parallel, the equality of two discrete logarithms can be proven [CP92].
Alice and Bob know v, w, g1, and g2, but only Alice knows x, so that v = gx

1 and
w = gx

2 .

8 The additional assumption of a random oracle is only made for reasons of ef-
ficiency. Alternatively, we could employ non-interactive zero-knowledge proofs in
the common random string model (see [DDO+01] and references therein) to obtain
non-interactiveness. However, it has become common practice to use secure hash
functions like MD5 or SHA-1 as random oracles for practical applications.
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1. Alice chooses z at random and sends a = gz
1 and b = gz

2 to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr

1 = avc and that gr
2 = bwc.

Alice needs to send 2 log p+ log q bits. It is possible to show the equality of any
polynomial number of discrete logarithms in parallel. Thus, for showing that the
discrete logarithms of k values are equal, Alice only sends k log p + log q bits.

Proof that an encrypted value is one out of two values. The following
protocol was proposed by Cramer et al [CGS97]. Alice proves that an El Gamal
encrypted value (α, β) = (myr, gr) either decrypts to 1 or to a fixed value z ∈ Gq

without revealing which is the case, in other words, it is shown that m ∈ {1, z}.

1. If m = 1, Alice chooses r1, d1, w at random and sends (α, β), a1 = gr1βd1 ,
b1 = yr1

(
α
z

)d1 and a2 = gw, b2 = yw to Bob.
If m = z, Alice chooses r2, d2, w at random and sends (α, β), a1 = gw,
b1 = yw, a2 = gr2βd2 , and b2 = yr2αd2 to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.
3. If m = 1, Alice sends d1, d2 = c − d1 mod q, r1, and r2 = w − rd2 mod q

to Bob.
If m = z, Alice sends d1 = c − d2 mod q, d2, r1 = w − rd1 mod q, and r2
to Bob.

4. Bob checks that c = d1 + d2 mod q, a1 = gr1βd1 , b1 = yr1
(

α
z

)d1 , a2 =
gr2βd2 , and b2 = yr2αd2 .

The total amount of bits Alice sends to Bob is 4 log p + 4 log q.

Verifiable shuffle of k encrypted values. A shuffle is a rearrangement and
reencryption of input ciphertexts. By proving such a shuffle correct, a party
can verifiably rearrange a vector of ciphertexts without revealing the applied
permutation. [Gro03] proposed a very efficient way of proving the correctness
of a shuffle of El Gamal encryptions in honest-verifier zero-knowledge (in fact,
the proof is shorter than the vector itself). As the proof is public-coin honest-
verifier zero-knowledge, it can be executed in a single round in the random oracle
model. Alice needs to send k(log p + log q) + 6 log p + 3 log q bits to prove the
correctness of a shuffle consisting of k ciphertexts. This primitive will be used
as a 2-server mix-net in Section 5 in order to hide which component of a vector
equals 1.

4 Basic Protocols

In order to demonstrate the applicability of the proposed techniques, we briefly
sketch three 4-round protocols that compute the equality-, the or-, and the
maximum-function, respectively.
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4.1 Socialist Millionaires’ Protocol

Suppose Alice and Bob want to compute the equality function f(b1, b2) = [b1 =
b2]. This problem is also known as the socialist millionaires’ problem [BST01]
and can be solved by executing the following protocol.9

– Round 1: Alice and Bob generate a distributed pair of El Gamal keys
– Round 2: Both parties publish El Gamal encryptions of their inputs: E(b1)

and E(b2).

– Round 3: They jointly compute A =
(
E(b1)
E(b2)

)M

where M is a random

number not known to Alice or Bob (see Section 3.1).
– Round 4: Both parties jointly decrypt A. If D(A) = 1, both inputs were

equal. Otherwise, D(A) is a meaningless random number.

4.2 Veto Protocol

A variation of the previous protocol can be used for veto voting (in other words,
the Boolean or-function): f(b1, b2, . . . , bn) =

∨n
i=1 bi. Let Y ∈ Gq\{1} be a

publicly known constant. Now, each voter i submits E(bi) where bi is 1 if voter i
agrees with the issue at hand or Y if he does not agree. The correctness of each
vote, i.e., D(E(bi)) ∈ {1, Y }, can be proven by using the zero-knowledge proof
given in Section 3.2. Voters than jointly decrypt (

∏n
i=1 E(bi))

M and only learn
whether they unanimously agree or not. No other information is revealed, not
even to any (strict) subset of agents.

4.3 Maximum Protocol

Consider a group of n parties that wants to compute the maximum of their
private input values: f(b1, b2, . . . , bn) = max{b1, b2, . . . , bn}. By using a unary
representation of numbers, this task can be accomplished by the following pro-
tocol. Let {1, 2, . . . , k} denote the set of possible input values and let Y ∈ Gq\{1}
again be a publicly known constant. Each participant i publishes E(bij) where
bij = Y if bi = j or bij = 1 otherwise. Agent i can efficiently prove the cor-
rectness of his input by showing that ∀j ∈ {1, 2, . . . , k} : D(E(bij)) ∈ {1, Y }
(Section 3.2) and that

∏k
j=1 E(bij) = E(Y ) (Section 3.2). Then, all agents jointly

compute

Aj =

⎛⎝ n∏
i=1

k∏
d=j

E(bid)

⎞⎠Mj

∀j ∈ {1, 2, . . . , k}

where, as above, Mj are jointly created random numbers. For all j greater
than the maximum, D(Aj) is equal to 1. All other D(Aj) are random numbers.
Clearly, the drawback of this protocol is that its communication complexity is
linear in k, i.e., exponential in the length of bitstrings. Nevertheless, it can be
practical for small k.
9 Similar protocols previously appeared in various contexts, e.g., password authenti-

cation key exchange or the “plaintext equality test” in [JJ00].
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5 Counting Boolean Disjunctions of Literals

In this section, we will show how the primitives defined in Section 3 can be
used to evaluate simple Boolean expressions. Consider n parties whose inputs
are bitstrings bi of length k. We define E[b] to be an (El Gamal) encryption of
bit b if E[0] decrypts to 1 and E[1] decrypts to any other number in Gq:

D[E[b]] ∈
{
{1} if b = 0
Gq\{1} otherwise

.

As in Section 4.3, let Y be an arbitrary, publicly known, fixed element of Gq\{1}.
Before the actual protocol starts each agent publishes encryptions of his indi-
vidual input bits so that

E[bij ] =

{
E(1) if bij = 0
E(Y ) otherwise

.

The correctness of inputs can be efficiently proven by showing that each cipher-
text either decrypts to 1 or to Y without revealing which case holds (Section 3.2).
Based on this representation, we can count the number of true Boolean disjunc-
tions of literals and pairwise exclusive disjunctions of literals by computing

f(b1, b2, . . . , bn) = #

(∨
r

Lr ∨
∨
s,t

(Ls ⊕ Lt)

)
(1)

where Lr, Ls, Lt ∈ {bij ,¬bij} for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k} and #
is a count operator that counts the number of true expressions. The individual
operators can be implemented as follows.

– Negations
The Boolean negation of input bits can be computed by dividing Y by the
input bit’s encryption, i.e.,

E[¬bij ] =
Y

E[bij ]
.

– Disjunctions
As in Section 4.2, the product of ciphertexts yields the logical or of the
corresponding plaintext bits:

E

[∨
r

Lr

]
=
∏
r

E[Lr].

– Exclusive Disjunctions
The exclusive or of pairs of literals can be computed by dividing the en-
cryptions of these bits,

E [Ls ⊕ Lt] =
E[Ls]
E[Lt]

.
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When combining these exclusive ors via the disjunction operator, it has to
be made sure that two encryptions that represent E[1] do not “accidently”
multiply to E[0]. This can be achieved by raising the dth factor to the 2d−1th
power:

E

[
k∨

d=1

(Lsd
⊕ Ltd

)

]
=

k∏
d=1

(
E[Lsd

]
E[Ltd

]

)2d−1

.

– Count Operator
Finally, we can count the number of true bits in a vector of encrypted bits by
consecutively letting each party verifiably shuffle its vector of bits (see Sec-
tion 3.2), thus effectively emulating a mix-net. After exponentiating each
component with a jointly created random number (as described in Sec-
tion 3.1) and decrypting all components, the number of true bits is exactly
the number of components not equal to 1.

5.1 Hamming Protocol

A simple function that can be expressed as an arithmetic formula fitting Equa-
tion 1 is the Hamming distance of two bitstrings. The Hamming distance is
defined as the number of corresponding bits that are not equal. In other words,

f(b1, b2) = #k
j=1

(
b1j ⊕ b2j

)
.

An efficient 6-round protocol for computing this function can be designed based
on the constructions proposed in the beginning of this section. For reasons of
limited space, we just spell out the similar, but more sophisticated, protocol for
computing the greater-than function in the following section.

5.2 Millionaires’ Protocol

A protocol for the millionaires’ problem can be obtained by reformulating the
greater-than function f(b1, b2) = [b1 > b2] to fit Equation 1. Let Alice’s and
Bob’s inputs, b1 and b2, be k-bit numbers so that bi =

∑k
j=1 bij2j−1, i.e., the

least significant bit is bi1 and the most significant bit is bik. Consider the following
Boolean expression for computing b1 > b2 given in [Fis01].

[b1 > b2] ⇐⇒
k∨

j=1

(
b1j ∧ ¬b2j ∧

k∧
d=j+1

(¬(b1d ⊕ b2d))

)
. (2)

The outer disjunction is exclusive, i.e., at most one of the k terms can be satisfied.
By applying De Morgan’s laws, the right expression in Implication 2 can be
rewritten as

k∨
j=1

(
¬
(
¬b1j ∨ b2j ∨

k∨
d=j+1

(b1d ⊕ b2d)︸ ︷︷ ︸
Bj :=

))
.
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Using the techniques proposed at the beginning of this section, the inner term
Bj can be computed as follows.

E[Bj ] =
Y · E[b2j ]
E[b1j ]

·
k∏

d=j+1

(
E[b1d]
E[b2d]

)2d−2

.

Recall that the outer disjunction is exclusive, i.e., counting the number of false
Bj ’s will yield either 0 or 1. This implies that b1 > b2 holds if and only if #(Bj) =
k − 1. For this reason, the following procedure suffices: Alice sends a verifiable
shuffle of all E[Bj ] to Bob who verifiably shuffles the resulting ciphertexts himself
and sends them back to Alice. Finally, both parties raise each E[Bj ] to a jointly
created random exponent Mj and decrypt all (E[Bj ])Mj . If any of these values
equals 1, then b1 > b2, i.e., Alice is richer than Bob. The detailed 6-round
protocol is given in Figure 1.

In the remainder of this section, we use the millionaires’ protocol as an ex-
ample to analyze security and efficiency of our proposed techniques.

Proposition 1. The millionaires’ protocol is correct with negligible error prob-
ability and secure if the decisional Diffie-Hellman problem is intractable.

Proof. (sketch)

Correctness: The protocol only fails when the random exponentiation for any
outcome vector “accidently” yields a one, i.e.,

∑n
h=1 m

+h
ij = 0 mod q for any i

and j. Due to the exponential size of Gq and the polynomial number of output
components, the probability of this event is negligible. Error probability of the
protocol is (1 − (1 − 2−Q)k) = O(2−Q) where Q = log q. The malleability of
El Gamal encryption does not pose a problem because bidders prove that they
know each plaintext using non-malleable zero-knowledge proofs.

Security : The security of El Gamal cipher as well as the applied zero-knowledge
proofs can be based on the intractability of the decisional Diffie-Hellman assump-
tion [TY98]. The security of distributed El Gamal cipher, in particular Pedersen’s
straightforward key generation [Ped91] which might result in non-uniformly dis-
tributed keys, follows from a recent argument by Gennaro et al [GJKR03]. Since
encryption keys are essentially distributed by using 2-out-of-2 secret sharing,
privacy can not be breached (unless Alice and Bob collude). ��

We now investigate the computation and communication complexity of the mil-
lionaires’ protocol. Typically, the computational cost of performing multiplica-
tions is negligible. Exponentiation and communication complexity are identical
in the proposed protocol. Zero-knowledge proofs we apply in the protocol are
non-interactive and have low constant overhead. Table 1 shows the communi-
cation complexity of each protocol step and also gives the complexity of the
accompanying zero-knowledge proofs.



Efficient Cryptographic Protocol Design 43

Depending on i ∈ {1, 2}, the directions address Alice (i = 1) or Bob (i = 2)).

Round 1: Generate public key

– Choose x+i ∈ Zq and m+i
j , rij ∈ Zq for each j at random.

– Publish y×a = gx+i along with a zero-knowledge proof of knowledge of y×a’s
discrete logarithm (Section 3.2).

– Compute y = y×1 · y×2.

Round 2: Encrypt input

– Publish αij = Y bij · yrij and βij = grij for each j.

– Prove that ∀j : logg(βij) equals logy(αij) or logy

(αij

Y

)
(Section 3.2)

Round 3: Mix output (1/2)

– Compute for each j:

γj =
Y · α2j

α1j
·

k∏
d=j+1

(
α1d

α2d

)2d−2

and δj =
β2j

β1j
·

k∏
d=j+1

(
β1d

β2d

)2d−2

– Alice (i = 1): Verifiably shuffle k vectors (γj , δj) by index j (Section 3.2).

Round 4: Mix output (2/2)

– Bob (i = 2): Verifiably shuffle k vectors (γj , δj) by index j (Section 3.2).

Round 5: Randomize output

– Compute and publish γ×i
j = (γj)

m+i
j and δ×i

j = (δj)
m+i

j for each j with a proof
of logarithm equality (Section 3.2).

Round 6: Decrypt output

– Publish ϕ×i
j =

(
δ×1

ij · δ×2
ij

)x+a for each j with an accompanying proof of correct-
ness (Section 3.2).

– Compute vj =
γ×1

j · γ×2
j

ϕ×1
j · ϕ×2

j

for each j. If vj = 1 for any j, then b1 is greater than

b2.

Fig. 1. Millionaires’ Protocol

The total number of bits each party needs to communicate in the protocol
is (15k + 9)P + (6k + 5)Q where P = log p� and Q = log q�. To achieve
an appropriate level of security today, 1024 bits for p and 160 bits for q are
reasonable settings. Then, in order to compare two 36-bit numbers,10 each party
only needs to send around 73 Kbytes of data.

10 36 bits are currently sufficient to compare the wealth of any given pair of human
beings with a precision of one US dollar.
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Table 1. Communication complexity (number of bits each party sends)

Body Zero-Knowledge Proofs

Round 1 P P + Q

Round 2 2kP 4k(P + Q)

Round 3/4 2kP k(P + Q) + 6P + 3Q

Round 5 2kP k(2P + Q)

Round 6 kP (k + 1)P + Q

Σ (7k + 1)P (8k + 8)P + (6k + 5)Q

Σ Body+ZK (15k + 9)P + (6k + 5)Q

P = �log p�, Q = �log q�

6 Conclusion

We have presented a set of primitives based on El Gamal encryption that
can be used to construct efficient MPC protocols for certain low-complexity
functions. Due to underlying efficient honest-verifier zero-knowledge proofs,
the resulting protocols are secure against active adversaries. Security relies on
the decisional Diffie-Hellman assumption. To demonstrate the applicability of
the proposed techniques, we constructed protocols to compute the equality, the
or, the maximum, the Hamming and the greater-than functions. The latter
requires only 6 rounds of interaction in the random oracle model while com-
munication complexity is linear in the length of bitstrings to be compared,
and error probability is exponentially small in the security parameter. To the
best of our knowledge, this is the most efficient constant-round protocol for
the greater-than function to date. The protocol can serve as a building block
for the secure computation of more sophisticated functions such as the me-
dian [AMP04].

Future work includes the investigation of a more complete algebraic
characterization of functions that can be efficiently computed using the
proposed primitives. Furthermore, it might be possible to construct a
sub-protocol for checking whether a vector of El Gamal ciphertexts contains
an encrypted 1 which is considerably more efficient than consecutive mixing and
decrypting.
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Abstract. Fingerprint Recognition Technologies are becoming more popular to 
be used as a representative of biometrics nowadays. As all electronics devices 
tends to be smaller and smaller, people pays more attention to “linear sensor” 
method. The most important factor for securing the reliable Fingerprint Recog-
nition Technology is pursuing the enhancement of the captured fingerprint im-
age from sensors. This paper presents an algorithm that uses Image Estimation 
and Reconstruction Method in order to embody precisely the image captured 
from Linear Sensors. The proposed algorithm is verified theoretically and ex-
perimentally that the image can be perfectly reconstructed from the fingerprint 
on the linear sensor even though the finger position is displaced vertically, hori-
zontally, and/or rotationally. Also this system demonstrates much higher recog-
nition and authentication rates than any other existing systems. 

1   Introduction 

Fingerprint Linear Sensor captures a moving object on the sensor, generates consecu-
tive image stripes and reconstructs the image by assorting and combining the stripes 
into one. Fax machine uses the same logic when scanning documents, in which the 
image of an object is reconstructed by combining the generated stripes from the mov-
ing object.  Scanners or copy machines however obtain the image from the moving 
laser or sensor[4,5]. 

A clear difference between the logics that are used in the scanner and those in the 
fingerprint linear sensor is that the moving speed of the object in the scanner is uni-
form, but the speed of the finger is not constant because the force applied to the linear 
sensor is not uniform. These factors such as pressure, speed, and direction make the 
scanned image vertically, horizontally, and even slightly rotationally displaced. 
Therefore to acquire the image of the real fingers in the best quality, an algorithm for 
image estimating and reconstructing the image is necessary[3]. 
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The algorithm only performs an vertical speed estimation and reconstructs the im-
age since the moving speed of the finger is not uniform[7]. However distortion of the 
image can occurs in acquiring fingerprint image because the algorithm does not per-
form any correction to the possible horizontal and rotational displacements. Also, the 
algorithm limits the number of the stripes to four rows, and can not be applied to the 
images obtained from the Thomson-csf sensor. 

2   Theory 

An image capture optical sensor needs to have light source on. External device (PC or 
matching board) may make a solution to switch to the standby mode. In standby mode 
the sensor does not turn on the light and do not respond any users’ actions. In image 
capturing mode the sensor turn on the light and try to capture the image. It might be 
useful to have one more (sleep) mode in the middle of standby and image capturing. 
The reason to do that is to avoid the light flushing before user places the finger onto 
the sensor and providing rough (non-optical) finger detection to switch sensor to the 
image-capturing mode to start grabbing the image. Estimation algorithm deals with 
the stripes capturing and used only in image capturing mode. Estimation algorithm 
estimate stripes shifts values to provide “Reconstructor” with the data to reconstruct 
the entire image. 

Once decision is made to try capturing the fingerprint image, estimation algorithm 
will perform the following steps: wait for the image presence using “no image” test, 
then perform actual stripe-by-stripe image capturing and finally stop the image cap-
turing (this is also based on “no image” test)[3]. 

< Chat 1 > Enroll of Fingerprint 

 

Actual stripe-by-stripe image capturing is performed with adaptive time delay 
changes and with “no overlapping” tests. Coordinate shift values (dy1, dy2) of one 
stripe compare with another are calculated using minimum determination of differ-
ence function on each segment with parabolic three-points approximation and linear 
mean squire approximation with weight coefficients across the segments. Scale value 
is used to rescale dy1and dy2 to avoid of float point values data transfers. Amount of 
the segments is equal to the stripe’s height (later: <m>). The reason is that for the 
maximum rotation angle, which we are able to capture (zero on one side and <m> on 
another), we will have the real minimum value line located within one discrete on 
each segment, so three point parabolic approximation is applicable nearby the mini-
mum of the difference function. 

Estimator acquires stripes form the Model and estimates the relative position of 
each next stripe compare with the previous one. The full set of the parameters include 
vertical, horizontal shifts and angle, also this parameters might be expressed in some 
other form. The value of this parameters are different, the most valuable is vertical 
shift (in sweep direction), then angle and then horizontal shift.  

Standby 
Mode 

Sleep Mode ( in case of simple non-
optical Finger detector presence ) 

Image Captur-
ing mode 
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The estimation made for the ordinary set of the image parameters and usual kinds 
of finger sweeps shows that the average angle between two consecutive stripes is 
small, it’s about 0.006 radians and that is the same as about 3-pixel vertical shift on a 
length of 512 pixels. We need to estimate that as soon as the sum of those small an-
gles may lead to some significant value on a full sweep length[5]. 

n
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Fig. 1. Represent all of the algorithm’s processes (1) 

dy1 
All segments, linear approximation of position values 

with weights  
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Fig. 2.  Represent all of the algorithm’s processes(2) 

We have no precise estimation of horizontal shift value, just some rough analysis 
of the sweep process as the physical process (mechanics). To sweep the finger needs 
to use some force and this force might be irregular which will also lead to sweep 
speed irregularities both in absolute value and the angle (in certain limits).  The direc-
tion of the force is about the same as the direction of the finger (just different sign). 
The closer those directions will be the less absolute force user will need to use for 
sweeping. That means that horizontal shifts might happen only if the user makes it 
intentionally. 

Hence considering vertical translation and a small rotational angle, the movement 
of the finger can be estimated. When the finger moves rotation maximum 45 degrees, 
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2N stripes (when half of stripes are overlapped each other) are necessary to recon-
struct the whole image. The angle of each strip[11].  

αΔΩ
~

2N

n
 (1) 

where 4π=Ω  (45°) , n is the length of the strip, and N is the length of the whole 

image. For example, when N=513 pixel and n=8 pixel, the rotational angle of the strip 
is approximately 0.006 radian. 

Once decision is made to try capturing the fingerprint image, estimation algorithm 
will perform the following steps: wait for the image presence using “no image” test, 
then perform actual stripe-by-stripe image capturing and finally to stop the image 
capturing (this is also based on “No image” test). Actual stripe-by-stripe image cap-
turing is performed with adaptive time delay changes and with “no overlapping” tests. 
Coordinate shift values (dy1, dy2) of one stripe compare with another are calculated 
using minimum determination of difference function on each segment with parabolic 
three-points approximation and linear mean squire approximation with weight coeffi-
cients across the segments. Scale value is used to rescale dy1 and dy2 to avoid of float  
point  values  data  transfers.  Amount  of  the  segments  is  equal to the stripe’s 
height (later: <m>). The reason is that for the maximum rotation angle, which we are 
able to capture (zero on one side and <m> on another), we will have the real mini-
mum value line located within one discrete on each segment, so three point parabolic 
approximation is applicable nearby the minimum of the difference function. 

3   Experiments 

we proposed the technology which we can reconstruct the perfect image no matter the 
input image with various directions, vertical, horizontal and rotating. With this pro-
posed technologies, we can reconstruct the image from estimation and compensation 
the scanned image through Fingerprint Sensor. And the recognition rate can be highly 
improved.  

Term Model is used to indicate that this application simulates the linear sensor im-
age capture process and assume some variations in sweeping object behavior, like 
speed or rotations.  Also Model application panel provides the visualization of the 
process and provide the user with the controls to check the other applications for the 
variations of speed and rotations and even for some “sideway jitter”. 

 

Fig. 3. Object moving of Linear Sensor 
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Linear sensor and strip comparison principle assume partial stripes overlapping, so 
in some extreme cases, when there is not such overlapping or the area of it is too 
small, or the data in overlapping area is “flat”, there is no way to get the correct coor-
dinate values and to place this stripe into the proper place of entire image. Partially to 
overcome that “Estimator” algorithm uses “No overlapping” check and proper reset 
after such an event. Also big angles in most of the cases just can not be estimated 
because of small stripe overlapping at this case. 

Linear Type Sensor requires the reconstructing technologies with estimating the 
speed of finer object on the sensor  (see Fig. 4). We have tested the algorithm with 
‘Reconstructor’ which is generating the one combined image and ‘Estimator’ which is 
estimate the speed of constant outputs from sensor. 

Fig. 3 shows the reconstructed image using stripes acquired from linear sensor by 
using vertical image estimation only, which is the image obtained using existing  
algorithms. 

Fig. 4 shows the reconstructed image without any distortion using the proposed 
method that estimates vertically, horizontally, and rotationally. 

Fig. 5 shows the reconstructed image using stripes acquired from linear sensor by 
using vertical image estimation only, which is the image obtained using existing  
algorithms. 

Fig. 6 shows the reconstructed image without any distortion using the proposed 
method that estimates vertically, horizontally, and rotationally.  
 

 
 
 
 
 
 
 
 
 
 

Fig. 4.  Reconstructed fingerprint image through proposed algorithm  
 

 
 
 
 
 
 
 
 
                Fig. 5.                                Fig. 6. 
 

The below Fig. 7 is example for captured fingerprint image on 515dpi through our 
algorithm.  
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Fig. 7. Reconstructed fingerprint image through proposed algorithm 

4   Conclusion 

Most of  linear sensors have inferior image restoration than the general optical sensor 
due to the skill of user and negligence. However, with the price and slim shape of the 
sensors, it has been applied in several fields such as mobile phone and others, and if 
the ensuing research could improve the image restoration for even more, there would 
be slim shape and the economic benefit to contribute to the development of  bio-
recognition industry[11].   

On a final stage tests must be performed to make a conclusion about FAR/FRR 
values. Those tests might be performed on a large fingerprint database. Optimizing, 
speed and memory estimation needs to be performed for the hardware implementation 
(matching board). Depending on the desired fingerprint database size different algo-
rithms might be used to achieve the balance between FAR/FRR, speed and memory 
requirements. 
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Abstract. Utilities of wireless sensor networks are standing out in bold
relief in various fields such as home environmental, industrial, and mil-
itary applications. Compared with the vivid applications of the sensor
networks, however, the security and privacy issues of the sensor networks
are still in their infancy because unique features of the sensor networks
make it difficult to adopt conventional security policies. Especially, false
reports are critical threats because they can drain out the finite amount
of energy resources in a battery-powered sensor networks; thus, a novel
trust management scheme is necessary to make resilient wireless sensor
networks. Cryptographic authentication mechanisms and key manage-
ment schemes cannot suggest solutions for the real root of the problem.
In this paper, we propose a trust management scheme which can iden-
tify trustworthiness of sensor nodes and suggest a defensible approach
against insider attacks beyond conventional cryptographic approaches.

1 Introduction

Wireless sensor networks are emerging technologies that have a variety of po-
tential applications such as battlefield surveillance and emergency response [1].
A major feature of these systems is that sensor nodes in networks assist each
other by passing data, in-network process and control packets from one node to
another. It is often termed an infrastructure-less, self-organized, or spontaneous
network [2].

Research on sensor networks generally assumes a trusted environment, but
in many sensor network applications, the network tends to be deployed in envi-
ronments where an adversary may be motivated to disrupt the function of the
network. An adversary may be able to position several intruder nodes within
the network or compromise sensor nodes in the network in order to use them
to transmit false messages [4]. So, to differentiate false data from legal ones is
an essential process for a normal and effective function of the sensor network,
because false reports can drain out the finite amount of energy resources in a
battery-powered sensor networks and even a small amount of compromised nodes
can influence the whole sensor networks critically [18].

Several researches have proposed authentication mechanisms for sensor net-
works to prevent false data injection by an outsider attacker [15], [16], [17].
Their basic approaches for security are to use Message Authentication Codes

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 56–68, 2006.
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(MACs) and probabilistic key pre-distribution schemes such as [12], [13]. These
approaches prevent naive impersonation of a sensor node, however, they can-
not prevent the injection of false data from malicious or compromised insider
nodes which have already been authenticated as legal ones in the networks.
Once authenticated as a legitimate node, broadcasting data from that node are
also adjudicated to be trusted in the networks without any question. Therefore,
a smart trust management scheme is necessary for wireless sensor networks to
identify trustworthiness of sensor nodes.

Here, we propose a trust management scheme for resilient wireless sensor net-
works, which helps the networks to operate robustly although some nodes or
data would be compromised. To be more specific, the best we can hope for in
the presence of insider adversaries is graceful degradation of the wireless sensor
networks. A direction for resilience of our scheme is to gather multiple and redun-
dant sensed data, and crosscheck them for consistency. For a reasonable cross-
checking, each sensor node compares sensed data of its neighbor nodes with the
expected sensing results within the consistently-acceptable sensing range and es-
timates its neighbor nodes’ trust values based on the result of that crosschecking.

The rest of the paper is organized as follows. Section 2 describes goals and
assumptions of the trust management scheme. Section 3 details an overall process
of the trust management scheme. Section 4 analyzes the performance evaluation.
Section 5 shows the simulation results, and Section 6 remarks conclusion of the
paper.

2 Goals and Assumptions

2.1 Threat Model

Sensor nodes are deployed in open areas and have many opportunities to interact
closely with anonymous adversaries, so that deceitful data from them can be
easily accepted as legal data in the networks. In addition, because each sensor
node is confronting the added risk of physical attacks such as node capture, some
private information for secure communication in the networks could be snatched
by active attackers.

2.2 Goals

We focus on making resilient wireless sensor networks which work normally even
though some sensor nodes might be compromised. For the purpose of making
resilient networks, the adversaries should have only a limited influence on the
result of the data aggregation. In other words, if x denotes the aggregated result
of sensing data in the absence of an adversary and y denotes the result after
attackers intervene, then we wish |x − y| to be bounded by some small value.
To make resilient wireless sensor networks, we direct our approaches to evaluate
trustworthiness of sensor nodes accumulatively. As a result of the evaluated
trust values of sensor nodes, we can filter out inconsistently-forged data from
the malicious or compromised nodes in the sensor networks.
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2.3 Assumptions

We have some assumptions in our trust management scheme as follows: (1)
The network consists of a set of sensor nodes of unknown location and a set of
specially equipped nodes, anchor nodes, with known location and orientation.
Anchor nodes are trusted during localization step. (2) Sensor nodes are deployed
densely enough to be able to sense some identical events redundantly with their
neighbor nodes. (3) Malicious nodes do not collude with each other. That is,
they do not manipulate or intentionally increase trust values for each other, but
just try to inject spurious data into the networks.

3 Trust Management Scheme

We describe our trust management scheme which consists of four steps: First, we
divide sensing areas into some logical grids and assign a unique identification to
each grid (Section 3.1). Second, sensor nodes estimates their deployed location
and a corresponding grid (Section 3.2). Third, each node evaluates trustwor-
thiness of its neighbor nodes by crosschecking the neighbor nodes’ redundant
sensing data with its own result. Inconsistent data from malicious or compro-
mised nodes can be detected in this step (Section 3.3). Fourth, special nodes,
aggregators, aggregate sensing data from their grids and transmit the computed
results to the destination node, or sink. Inconsistent data from malicious nodes
can be excluded in this step (Section 3.4).

3.1 Step 1: Grid Definition

In this step, consider first sensing areas in which sensor nodes will be deployed
and ready for some events. Then, we divide the sensing areas into several logical
grids in proportion to the sensing range s of a sensor device so that one sensor
device’s sensing range can cover a grid entirely it belongs to regardless of its
deployed location.

Although there can be so many choices, in our model, we intend to use as
many redundant sensing data from multiple sensor nodes as possible to identify
inconsistent data among them. So, for the higher correctness of the crosscheck,
we set one grid size to r√

2
× r√

2
as in Figure 1.

After dividing sensing areas into some logical grids, we assign a unique iden-
tification to each grid.

Fig. 1. Grid Definition



Trust Management for Resilient Wireless Sensor Networks 59

3.2 Step 2: Localization

In this localization step, each sensor node determines its own location and a
corresponding grid in which it is deployed by adapting a localization scheme
such as triangulation or trilateration using more than three anchor nodes.

After estimating its own deployed location, each sensor node broadcasts a
HELLO message including location information to its neighbor nodes. Then,
sensor nodes who received the HELLO messages can verify the location claims
using a location verification protocol such as [6]. Although several secure local-
ization schemes such as [20], [21], [22] have been proposed, in this paper, we
would not propose an additional novel localization scheme for wireless sensor
networks because it is out of our research focus.

3.3 Step 3: Trust Evaluation

In this step, we propose a trust evaluation process. The trust defined in our
model is the confidence of a node on another node. The trust value means the
level of trustworthiness of a node, which is computed based upon several trust
evaluation factors. In our scheme, sensor nodes do not compute all the other
nodes’ trust values in the networks, but compute only their neighbor nodes’
trust values accumulatively.

Trust Evaluation Factor. Each sensor node has k trust evaluation matrices
which stores the trust evaluation factors for its k neighbor nodes. The trust
evaluation matrix consists of several trust evaluation factors as follows:

1. Identification: This factor contains an unique identification of a node.
– IDi =< GridID, Positioni >, where 1 ≤ i ≤ k

2. Distance: This factor contains distance information between two nodes. xi

means x coordinate and yi means y coordinate of node i.
– Di,j =

√
(xi − xj)2 + (yi − yj)2, where 0 ≤ i, j ≤ k and i �= j

3. Sensing communication: This factor contains communication ratio informa-
tion. This factor represents the level of selfishness and normality of a node.

– Si: sensing communication value of node i, where 1 ≤ i ≤ k
– ssi: sensing success count of node i
– sfi: sensing failure count of node i

4. Sensing result: This factor represents sensing result information for detected
events. This factor consists of sensing data and sensing time for the events.

– Ri =< sri, sti >: sensing result value of node i, where 1 ≤ i ≤ k
– sri: sensing data of node i
– sti: sensing time of node i

5. Consistency: This factor represents consistency level of a node. Based on this
factor, each node can identify malicious nodes in the networks.

– Ci: consistency value of node i, where 1 ≤ i ≤ k
– csi: consistent sensing count of node i
– isi: inconsistent sensing count of node i
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6. Battery: This factor represents remained lifetime of a sensor node.
– Bi: battery value of node i, where 1 ≤ i ≤ k

7. Trust value: This factor represents a total trustworthiness of a node, which
is evaluated based on the other trust evaluation factors.

– Ti: trust value of node i, where 1 ≤ i ≤ k

Next, we propose a consistency check mechanism, trust quantification method,
and trust computation method.

Consistency Check. In brief, to check consistency of neighbor nodes’ broad-
casted data, sensor nodes compute the acceptable region (AR) of an event first,
and put boundary to the legally acceptable range of neighbor nodes’ sensing
data based on the AR and their own sensed data. When node j checks the con-
sistency of its neighbor node i’s sensing results, if the results are out of legally
acceptable bound of node j, node j estimates the results to be inconsistent or
deceitful data. Such an estimation for its neighbor, node i, affects the value of
the consistency factor, Ci, in the trust evaluation matrix of node j.

To compute the legally acceptable range of the sensed data, sensor nodes
should have a knowledge of the distance between an event and sensor nodes,
and the distance between sensor nodes. Because each sensor node knows its
neighbor nodes’ location, it is enough to know the distance information between
sensor nodes and an event to check the consistency of the neighbor nodes’ sensed
data. As even an event-sensed sensor node can hardly identify the location of the
event exactly, however, we can just expect to limit the approximately possible
AR of the event.

We can considerate two cases of event sensing of sensor nodes: inside the
event-happened grid, and outside the event-happened grid as we described in
Figure 2. When we define r as the distance between an event and a sensor node,
r follows the condition:

rMIN ≤ r ≤ rMAX ,

where rMIN and rMAX are possible minimum and maximum range of r, respec-
tively. To be more specific, rMIN means the shortest distance to the AR of the
event, and rMAX means the longest distance to the AR of the event.

(a) Sensor Inside (b) Sensor Outside
the Event-happened Grid the Event-happened Grid

Fig. 2. Two Cases of Event Sensing
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Next, we define a reverse sense function, RSF , which outputs the expected
sensing value of a node based on the distance between a node and an event, the
distance between sensor nodes, and a sensing result of a node. In our model,
every sensor node knows this reverse sense function and makes use of it to check
legality of its neighbor nodes’ sensed data. Proposed reverse sense function is
the following:

sr∗j = RSF (sri, r,Di,j), (1)

where sr∗j is the expected sensing result of node j, which node i computed based
on its own sensing result, sri. The sr∗j relies on the deployed location of sensor
nodes.

When a sensor node senses an event, it broadcasts its identification and sens-
ing data, < ID,R >, to its neighbor nodes. If a node receives information of the
sensing data and sensing time from its neighbor nodes, it can check whether the
received data from neighbor nodes can be acceptable as consistent data or unac-
ceptable as inconsistent data based on its own sensing data for the same event.

We can consider two main cases in sensing environment from a local point
of view. First case is that two neighbor nodes, ni and nj , succeed in sensing a
same event. In this case, from a ni’s point of view, ni increases sensing success
count value for nj by 1, that is ssj = ssj + 1, and checks consistency of the nj ’s
sensing data and assigns the checking result to its corresponding trust evaluation
factor for nj . If ni is closer to the event than nj , one of the possible AR of
the events could be described pictorially like a Figure 3. In Figure 3, the gray
region means the AR of the event. Of course, the AR of the events can be
described variously based on the deployed location of the sensor nodes. If we
define RSFMIN and RSFMAX as minimum and maximum RSF output of a
node, respectively, the consistency check processes of ni for nj ’s data can be
defined as follows:

Fig. 3. Acceptable Region of an Event
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csj = csj + 1 if RSFMIN (sri, r,Di,j) ≤ srj and

srj ≤ RSFMAX(sri, r,Di,j),
icj = icj + 1 otherwise,

where sti ≤ stj and rMIN ≤ r ≤ rMAX .
On the other hand, when the nj checks ni’s data for consistency in the same

environment, the legally acceptable boundary of sr∗i would be [RSFMIN (srj , r,
Di,j), RSFMAX(sri, r,Di,j)]. For example, in the temperature sensing environ-
ment, as the receiving radiation energy is proportional to 1

r2 , RSFMIN (sri, r,
Di,j) in the above process would output the expected sr∗j based on the as-
sumption that the position of the event is PA in Figure 3. RSFMAX(sri, r,Di,j)
would output the expected sr∗j based on the assumption that the position of
the event is PC . Likewise, the RSFMIN (srj , r,Di,j) and RSFMAX(srj , r,Di,j)
would output the expected sr∗i based on the assumption that the position of
the event is PC and PB, respectively.

Second case is that two neighbor nodes fail to sense a same event. In this case,
on equal terms, ni and nj increase sensing failure count value for each other by
1, that is sfj = sfj + 1 and sfi = sfi + 1.

As we described a RSF in equation (1), we proposed the RSF as an abstract
function. It is because the reverse sensing function may have to be dynamic for
the applications it is adopted. Of course, parameters of the function could be
changed dynamically according to its application.

Trust Quantification. Trust quantification process is to transform individ-
ually discrete values of trust evaluation factors into continuous values from -1
to +1. -1 and +1 mean complete distrust and complete trust, respectively. As
a node communicates and revalues trust factor values for their neighbor nodes
continuously, trust quantification process is imperative to impartial comparison
among each node’s trust values. Trust quantification processes for each trust
evaluation factor are as follows:

1. Consistency value

Ci =
csi − isi

csi + isi
, where − 1 ≤ Ci ≤ 1. (2)

2. Sensing communication value

Si =
ssi − sfi

ssi + sfi
, where − 1 ≤ Si ≤ 1. (3)

3. Battery value

Bi : −1 ≤ Bi ≤ 1,

where each sensor node is supposed to broadcast quantification value of its
own Bi.
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Fig. 4. Data Aggregation Process

Trust Computation. Trust computation involves an assignment of weights to
the trust factors which were evaluated and quantified in trust quantification step.
We define Wi as a weight which represents importance of a particular factor from
0, unimportant, to +1, most important. The weight is dynamic and dependent
on the application.

When Bi �= −1, trust value for node i is computed by the following equation:

Ti =
W1Ci + W2Si + W3Bi∑3

i=1 Wi

, (4)

where 0 ≤ Wi ≤ 1 and Wis are not all zero. In case of Bi = −1, we just assign
-1 to Ti and exclude the node from the networks because it totally cannot work
in the networks.

3.4 Step 4: Data Aggregation

In this step, we propose a data aggregation scheme. Data aggregation is an
essential process in wireless sensor networks to eliminate redundancy of sensing
data, to minimize communication overhead, and to save energy. In addition to
energy benefits, aggregation can help the networks to reduce the effects of error
in sensor readings [19]. This aggregation scheme is best-suited to systems where
there is plenty of redundancy in the data, so that the systems can cross-check
sensor readings for consistency.

To aggregate data, sensor nodes elect one node as an aggregator per each
grid, which has the highest trust value among all the nodes in an identical grid
by the majority of vote. Then, the aggregator obtains sensing data from the
other member nodes in its grid and aggregates them to a representative value in
consideration of the trust values of member nodes by this equation:

SRGridID =
∑m

i=1(Ti + 1)sri∑m
i=1(Ti + 1)

, (5)
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where m is the number of nodes in a grid including the aggregator itself and Tis
are not all -1.

After that, an aggregator header, node h, one of the aggregators which is
the nearest aggregator among them to the sink node on the routing path as in
Figure 4, calculates the median Medh among the representative values from each
grid and sends it to the sink node in the form of < Medh, (IDa, IDb, ..., IDu) >,
where u is the number of participant grids.

4 Analysis

We analyze the resilience of our trust-based aggregation scheme compared with
conventional aggregation schemes, especially median and average, under the k-
node attack inspired from [18]. A k-node attack is an algorithm that try to forge
k of the sensed data into false values.

When the sensor readings come from a Gaussian distribution N (θ, σ2), and
n is the number of sensor nodes, Table 1 shows aggregation schemes, their mean
square error (MSE) term in the absence of attacks, their resilience against k-node
attack, and their breakdown point. The resilience factor means the deviation
value which can be skewed by k compromised nodes, and the breakdown point
means the fraction of nodes that can be compromised before security breaks
down. The resilience and breakdown point of average and median were analyzed
in [18].

Note that the breakdown point of the trust-based aggregation scheme ranges
from ε∗ = 1/2m to ε∗ = (2m − 1)/2m based on the estimated trust values of
adversaries in the network, where m is the average number of nodes per grid.
In the case of that the estimated trust values of adversaries is 1, that is to say
that the system cannot evaluate trustworthiness of the nodes at all, the security
of the trust-based scheme is worse than the median as long as m > 1. On the
other hand, in the case of that the estimated trust values of adversaries is -1,
that is the system can perfectly distinguish adversaries from normal nodes all
the time, the security of the trust-based aggregation scheme is much better than
the median as long as m > 1.

Table 1. Resilience of the Aggregation Schemes

Aggregation MSE(f) Resilience Breakdown Trust values
(f) point (ε∗) of adversaries

average σ2

n
∞ 0

median π
2 · σ2

n
if k < n

2 : π
2 + k2

2π
1/2

if k > n
2 : ∞

trust-based mπ
2 · σ2

n
if k < n

2m
: mπ

2 + mk2

2π
1/2m 1

median if k > n
2m

: ∞
if k < (2m−1)n

2m
: mπ

2 + mk2

2π
(2m − 1)/2m -1

if k > (2m−1)n
2m

: ∞
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5 Simulation

We implement a temperature sensing system and simulate our trust evaluation
scheme in C. The environments of the simulation system are as follows: 300 sensor
nodes are uniformly distributed at the sensing area whose size is 500m× 500m.
Sensing range of a sensor device is 70m and a grid size is 50m×50m. In this sim-
ulation, we assume that all sensor nodes have a same amount of battery power
and participate in communication positively regardless of their roles; thus, W2 =
W3 = 0 in the equation (4). So, we consider only a consistency evaluation factor.
To make a practical simulation, temperature sensing data in our simulation are
modeled by Stefan-Boltzman Law whose property is that the receiving radiation
energy is proportional to 1

r2 , where r is the distance between two objects.
In this simulation, total number of sensor nodes who sensed the event is 39

and attackers notify their neighbor nodes of sensed temperature values 10 times
as high as the original sensed one. Adversaries are randomly chosen among the
39 participant nodes, and the range of k is from 0 to total 39 under k-node
attack. The adversaries’ trust values range from -1 to 1, especially we choose
three trust values -1, 0, and 1 for simulation.

The simulation result under k-node attack is shown in Figure 5. As we ana-
lyzed the resilience of the aggregation functions, average is not a robust estimator
which cannot be computed meaningfully in the presence of a malicious sensor
nodes. In this simulation environment, n = 39 and m = 3, so approximate break-
down numbers of k of each aggregation scheme can be derived from the analysis
in Table 1: In the case of average, the breakdown number of k is 0. In the case
of median, the breakdown number of k is 20. In the case of trust-based median,
the breakdown number of k is 7 when the adversaries’ trust values are 1, and 33
when the adversaries’ trust values are -1. The Figure 5 shows that the analysis
matches well with the simulation results.

Next simulation is to measure the resilience of the proposed trust-based aggre-
gation scheme under k-node attack as the trust values of the nodes are evaluated

Fig. 5. Aggregation Results under k-node Attack with Static Trust Values
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(a) Trust-based Aggregation Results

(b) Median

Fig. 6. Aggregation Results under k-node Attack with Dynamic Trust Values

dynamically by the system. Unlike the previous simulation, the same event oc-
curs every 10 seconds. Attackers start to broadcast false data from 20 second and
their trust values are evaluated continuously as the time elapses. Based on these
trust values of attackers, aggregated data of the system can be computed as in
Figure 6. The dotted lines represent the error rate from the original aggregated
data to every increasing 20 percent.

In the case of the trust-based aggregation scheme of Figure 6(a), when k=0,
the aggregated data represent 41.81895◦C. Under 5-node and 10-node attack, the
compromised data can converge to 47.51624◦C whose errors from the original
data are about 10 percent in 200 seconds. Under 15-node attack, the compro-
mised data can converge to 51.44236◦C whose errors are about 20 percent in
200 seconds. Under 20-node and 25-node attack, the compromised data can
converge to 74.94018◦C and 82.59066◦C whose errors are approximately 70
percent and 90 percent, respectively, in 200 seconds. In the case of the median of
Figure 6(b), when k=0, the original median values represent 26.014568◦C. Un-
der 5-node attack and 10-node attack, errors of the compromised medians are
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larger than 30 percent and 50 percent from the original data, respectively. When
k=15, the errors exceed 140 percent. Consequently, the trust-based aggregation
scheme shows higher robustness than median in the same environment.

6 Conclusion

We proposed a trust management scheme for wireless sensor networks to make
the sensor networks resilient against false data injection. Our trust evaluation
scheme is best-suited to settings where there is plenty of redundancy in the data
of sensor nodes, so that we can crosscheck sensor readings for consistency. Wire-
less sensor networks tend to consist of a large scale of cheap and crude sensors,
which are exactly where our trust evaluation scheme is most appropriate. As
the degree of redundancy in the sensing data increases, proposed trust manage-
ment scheme would be more applicable in an increasing variety of applications
in wireless sensor networks.

Our trust management scheme does not employ cryptographic approaches or
certification mechanisms, so it is light enough to fit well with wireless sensor
networks without great overheads. In addition, as we analyzed, under the con-
dition that the trustworthiness of the sensor nodes are estimated precisely, the
proposed trust-based aggregation scheme could be more resilient alternatives to
median, which is known to be the most robust conventional aggregation scheme.

To the best of our knowledge, our approach is one of the incipient researches
on the trust management scheme for wireless sensor networks. The proposed
scheme can make the wireless sensor networks be able to detect malicious or
compromised sensor nodes, and filter out the false data of them. We expect our
trust management scheme to enhance the resilience of wireless sensor networks.
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Abstract. A provably secure protocol for remote authentication is presented. 
Only public information is stored at the verifying host that makes our scheme 
resistant to server compromise. We use one time signatures coupled with offline 
transcripts for synchronization. Due to sole usage of fast cryptographic hash 
functions, our method is appropriate for low cost user authentication. Our con-
struction improves over the previously proposed technique of Mitchell to over-
come its problem of Denial of Service (DoS) attacks. 

1   Introduction 

Authentication is the process by which a system can determine whether or not a given 
user is who she claims to be. Authentication is the key for information security since 
if the authentication mechanism is compromised, the rest of the security measures are 
bypassed as well.  

Authentication protocols using asymmetric key cryptography generally suffer from 
performance limitations. Recall that asymmetric key cryptography is typically hun-
dreds of times slower than symmetric key cryptography. This increases the cost of 
authentication servers several times and renders the protocol impractical for clients 
with limited computational resources. On the other hand, authentication protocols 
using symmetric1 key cryptography are vulnerable to either server compromise or 
network attacks (passive and active). One particularly widespread attack is to pas-
sively capture and replay passwords used for user authentication. A solution to this 
problem is to encode the passwords in such a way that it can be used exactly once and 
cannot be used to generate any other encoded password. Such an encoding is called a 
one-time password. A one-time password scheme was first designed by Lamport [16]. 
Later it was standardized [11,12,13] and implemented [10,17]. However, Lamport’s 
scheme remains vulnerable to an active adversary who intercepts and traps (or imper-
sonates the host in order to extract) an as yet unused one time password so that he can 
generate a list of valid unspent OTPs by using the hash chain's one-way property. This 

                                                           
1  To avoid confusion, we collectively refer to protocols using (a) Symmetric key encryption 

(b) One-way Hash functions as symmetric key authentication protocols in this paper. 
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has been pointed out by a number of authors [8,14,18]. Besides, the number of times a 
user may authenticate to the server is limited. 

A symmetric key-based unilateral authentication protocol was recently proposed 
by Mitchell [21,22] requiring only public information to be stored at the 
authentication server. Message Authentication codes (MAC) [1,2] were used to 
maintain storage and computational feasibility for low cost user authentication 
devices. The scheme has formed part of the Software Based Systems area of the Core 
2 Research Programme of the Mobile VCE [24]. However, as acknowledged by the 
author, the scheme is vulnerable to a DoS attack. Besides, the protocol lacks proofs of 
security. We discuss this scheme and the associated vulnerabilities in detail in the 
next subsection. 

We present a new key-based remote user authentication protocol using one-time 
signatures coupled with offline transcripts for synchronization. In our attempt to im-
prove over Mitchell’s scheme [22], the relevant goals we wish to achieve are –  

• Provable security against server compromise. 
• Provable security against passive and active adversaries.  
• Practical solution for low cost user authentication devices.  
• Unlimited authentications without system re-initialization. 

The rest of the paper is organized as follows. Section 2 provides a background on 
one-time signatures. We present our scheme in Section 3. In section 4, we discuss the 
security and performance issues of the proposed scheme and provide a comparison 
with [22]. An enhancement to our scheme is discussed in Section 5. We conclude in 
Section 6. 

Throughout the paper, ,A B (Alice, Bob) are used to represent system principals, 
where Alice plays the role of client while Bob plays the role of server. We denote 

concatenation of two values by ( ),X Y . By { } 1

n
i i

a =  we denote the set { }1,..., na a  of n  

entities (e.g. secret keys, MAC values etc). Notations specific to a system are  intro-
duced as and when required. 

1.1   Related Works 

Here we discuss the scheme proposed by Mitchell [21,22]. The scheme is divided into 
two phases, Setup and Operation. A MAC computation over a string X  is denoted as 

( )KM X  where K  is the secret key.  

 
Protocol.  Mitchell’s remote user authentication scheme 
I. Setup 

1. A  performs the following operations. 

• Choose an integer constant t, key set { } 1

t
i i

K =  and a random data 

string X . 
• Compute ( ) [ ], 1,

ii KV M X i t= ∀ ∈ . 
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• Transfer X , { } 1

t
i i

V =  to B  in a manner guaranteeing their 

authenticity. 
2. B  stores the received data. Note that data integrity is the only 

assumption. 
II. Operation 

1. A  sends login request to B . 
2. B  sends X  to A . 
3. A  performs the following operations. 

• Verify X  against the stored value (A mismatch signifies a loss of 
synchronization between A  and B . We discuss this situation later 
on). 

• Compute a new key set { } 1

t
i i

K =
′ , random string X ′ , MAC values 

( )
ii KV M X′′ ′=  and ( )1,...,

ii K tW M V V′ ′ ′= , [ ]1,i t∀ ∈ . 

• Send { } 1

t
i i

W =
′  to B . 

4. B  sends a random r  subset of { } 1

t

i
i = , say { } 1

r
i i

c = . 

5. A  sends { }
1i

r

c i
K

=
, X ′ ,{ } 1

t
i i

V =
′  to B and replaces X ,{ } 1

t
i i

K =  with 

X ′ ,{ } 1

t
i i

K =
′  respectively. (In some cases, the old values may be retained 

as discussed below). 

6. B  first verifies the stored MAC subset { }
1i

r

c i
V

=
 using key subset { }

1i

r

c i
K

=
 

and the stored value X . If the entire MAC subset is correct, then B  

verifies the MAC subset { }
1i

r

c i
W

=
′ . If this is also correct, B  authenticates 

A  and replaces X ,{ } 1

t
i i

V =  with X ′ ,{ } 1

t
i i

V =
′ . 

 
As acknowledged in [22], the scheme is vulnerable to a simple and effective DoS at-

tack. An adversary may first capture the random string X  sent by A  to B  during a 
protocol execution (step 5 in the above protocol) and then later impersonate B  to A  
using X . Although the login attempt would fail, a single protocol execution between 
the adversary and A  would result in a new random string at A  for the next login 
protocol while that stored at B  is still the old one. This results in a loss of synchroni-
zation between A  and B . Further, this protocol execution would also enable the 
adversary to learn a chosen subset of r  keys sent out by the user in step 4. The adver-
sary may possibly use these keys later to impersonate A  to B . Thus, the scheme re-
quires careful choice of t  and r  so that the probability of an adversary successfully 

guessing the subset { } 1

r
i i

c =  in advance is negligible (see Section 3.1 in [22] for details). 

When A  later tries to authenticate herself to B , step 2 of the protocol would en-
able her to learn about the loss of synchronization. Here two options are possible, 
re-initialize the system manually or use the same key set that was used with the  
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adversary, again for authentication to B . However, there is a potential danger in 
using the same key set again as the adversary may again impersonate B  to A  to 
learn another chosen set of keys. The adversary may choose the new r  subset such 
that it is disjoint with the old key set she already has; she may keep impersonating B  
to A  until she has a significant portion of keys out of t  thus enabling her to imper-
sonate A  to B . 

[22] proposes to increase t  to enable the user to securely use the same key set a 
number of times. For example, to use the same key set s  times, t  may be set to 
64 s×  with 32r =  to ensure that the probability of a successful attack remains less 

than 322− . Thus, security may be increased at the cost of performance. However, it is 
clear that irrespective of how big s  may be, the adversary may keep impersonating 
B  to A  up to s  times so that the key set expires and re-synchronization becomes 
impossible by using the same key set. In cases where it is possible, the system may be 
re-initialized by manual means. In other cases, there is no way for the user to authen-
ticate any further. Thus, the DoS attack succeeds. 

2   Preliminaries and Notations 

Hash Functions. Throughout the paper, { } { }*
: 0,1 0,1

k
H →  is a k -bit cryptographic 

hash function (informally known as a one-way hash function [3]) that is hard to invert 
and collision resistant.  

One time Signatures. The concept of one time signatures was initially proposed by 
Lamport [15]. It was subsequently enhanced by Merkle [19,20], Winternitz [21], 
Bicakci et. al. [4] and Bleichenbacher et. al. [5,6,7]. 

Signing a one bit message. The signer chooses as the secret key two values 1X  and 

2X  (representing ‘0’ and ‘1’) and publishes their images under a one-way function 

( )1 1Y H X=  and ( )2 2Y H X=  as the public key. These X’s and Y’s are called the 

secret key components and the public key components, respectively. To sign a single 
bit message, reveal the pre-image corresponding to the actual ‘0’ or ‘1’ i.e., reveal 1X  

or 2X  based upon whether the message to be signed is ‘0’ or ‘1’. 

For signing longer messages, several instances of this basic scheme may be used. 
Thus we note that to sign an N  bit message, 2N  X’s and thus 2N  Y’s are required and 
the size of signatures generated is equal to N  times the size of secret key components. 

There are several improvements to this basic scheme. Merkle [19,20] proposed an 
improvement which reduces the number of public as well as secret key components in 
Lamport’s method by almost two-fold. Instead of generating two X’s and two Y’s for 
each bit of the message, the signer generates only one X and one Y for each bit of the 
message to be signed. When one of the bits in the message to be signed is a ‘1’,  
the signer releases the corresponding value of X; but when the bit to be signed is a ‘0’, 
the signer releases nothing. Because this allows the receiver to pretend that he did not 
receive some of the X’s and therefore to pretend that some of the ‘1’ bits in the signed 
message were ‘0’, the signer must also sign the count of the ‘0’ bits in the message. 
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Now, when the receiver pretends that a ‘1’ bit was actually a ‘0’ bit, he must also 
increase the value of the count field, which can't be done. Because the count field has 
only 2log N  bits in it, the number of public and secret key components is decreased 

by almost a factor of two i.e., from 2N  to 2N log N+  (or to 2 1N log N+ +  if N  is 

not a power of 2). This also results in the decrease of signature size by almost a factor 
of two. 

Winternitz [20] proposed an improvement that reduces the signature size by sev-
eral folds at the expense of increased computational effort. In Winternitz’s method, 
the one-way function is applied to two secret key components iteratively for a fixed 
number of times, resulting in a two-component public key. 

We now introduce some basic notations associated with one-time signatures used 
throughout the paper. 

m  Number of public/secret key components used in the OTS scheme; 
equal to ( )2k log k+  for Merkle’s construction if the output of the 

hash function is k -bit. 
p  Average number of secret key components revealed in an OTS; 

usually equal to / 2m . 

sk  A one-time secret key; equal to the collection of m  secret key com-
ponents. 

pk  A one-time public key; equal to the collection of m  public key com-
ponents. 

( ),S sk M

 

One-time signature computed over message M  with sk ; equal to 
the collection of the relevant secret key components required to sign 
M . 

 

Calculation of a one-time key pair. Given a secret key AK  and an integer counter 

value i , a one-time key pair ( ),A A
i isk pk  for a system principal A  is computed as per 

the following definition. 

( ) ( ){ }, ,1 ,..., , ,A A A
isk H K i H K i m=  

( ) ( ){ }2 2, ,1 ,..., , ,A A A
ipk H K i H K i m=  

For a given integer value i , the corresponding one-time key pair for a system 
principal may be computed whenever required. 

3   The Proposed Scheme 

Our scheme is divided into two phases, Setup and Operation. Offline transcripts are 
computed during the operation phase to restore synchronization whenever required. 
We use an integer i  as a counter for protocol executions. 
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Protocol.  Remote Authentication using One-Time Signatures 
I. Setup 

1. A  initializes a counter 1Ai ←  and performs the following operations. 

• Choose a secret key AK , compute a one-time key pair ( )1 1,A Ask pk . 

• Transfer 1
Apk  to B  in a manner guaranteeing its authenticity. This 

may be done using a certificate issued by a trusted authority. 

2. B  stores the received value and initializes his counter 1Bi ← .  
II. Operation 

1. A  identifies herself to B  with her login name. 

2. B  computes a random string B
ir  and sends ( ),B B

ii r  to A . 

3. A  performs the following operations. 

• Verify Bi  against Ai (In case of a mismatch, compute offline 
transcript) 

• Compute A
isk , a new one-time key pair ( )1 1,A A

i isk pk+ + , hash value 

( )1,B A
i iH r pk +  and the OTS ( )( )1, ,A B A

i i iS sk H r pk + . 

• Send ( )( )1 1, , ,A A B A
i i i ipk S sk H r pk+ +  to B . Store B

ir  and set counter 

1A Ai i← + . 
4. B  verifies the correctness of the received OTS. If the OTS is correct, A  

is authenticated. B  replaces A
ipk  with 1

A
ipk +  and sets the counter 

1B Bi i← + . 

At any point of time, A  stores an integer counter and a set of challenge strings sent 
to her by B , while B  stores an integer counter and a one-time public key.  

Offline Transcript. In case of a mismatch between the counter values in step 3 of the 
operation phase, A  computes an offline transcript. Further actions remain the same as 
explained in the protocol. We suppose that the counter value at A  is ( )i d+  while 

that received from B  is i . Then the offline transcript is the set 

( )( ){ } 1

1 1, , , ,
i d

B A A B A
j j j j j

j i
r pk S sk H r pk

+ −

+ +
=

 consisting of d  entries. To compute the 

offline transcript, A  performs the following operations. 

• Compute the one-time key pair ( ),A A
j jsk pk , [ ],j i i d∀ ∈ + .  

• Locate challenge string B
jr , [ ),j i i d∀ ∈ +  from the database. 

• Compute the OTS ( )( )1, ,A B A
j j jS sk H r pk + , [ ),j i i d∀ ∈ + .  

Now to authenticate herself to B , A  sends the offline transcript along with the 

current OTS ( )( )1, ,A B A
i d i d i dS sk H r pk+ + + +  and one-time public key 1

A
i dpk + + . B  uses 
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the offline transcript to first update his state from A
ipk  to A

i dpk + . Now he is in a posi-

tion to verify the current OTS and hence allow A  to log in. It is worth noting here 
that the offline transcript itself is insufficient for authentication. We stress that the 
current OTS be sent along with it. This is because the OTS in the transcript are based 
on old challenge strings that are more likely to have been generated by an adversary 
impersonating B  to A  during earlier protocol executions (This will be more clear 
after we discuss DoS attack in Section 4.1). Further, the content of the offline tran-
script is just a collection of the regular authentication data sent during previous au-
thentication sessions and may be known to an adversary. Hence the transcripts are just 
a method of catch-up for the host. 

4   Security Analysis 

In the security proofs given in this section, we refer to the pair 

( )( ){ }1 1, , ,i i i ipk S sk H r pk+ +  as a one-time password (OTP). The superscripts refer-

ring to a system principal have been omitted in both the security proofs. 

Theorem 1. If the underlying one-time signature scheme is secure, then for any inte-
ger counter value i , given access to all the one-time passwords sent by the client up 

to login ( )1i −  and the current server state ipk  , an adversary cannot compute the 

correct thi  one-time password. 

Proof. Assume that the thesis is false i.e., there is an algorithm F  that succeeds in 
computing the correct one-time signature for some login (without the knowledge of 
the one-time secret key) with non-negligible probability. That is, for ‘some’ integer 
value i , F  runs on the current server state ipk  and the OTP set  

( )( ){ } 1

1 1
1

, , ,
i

j j j j
j

pk S sk H r pk
−

+ +
=

, takes a random string ir  and one-time public key 

1ipk +  as input and outputs a valid one-time signature over their hashed value. (On all 

other inputs, it outputs zero). We show how F  can be used to build an algorithm 1F  

which forges signatures for the underlying one-time signature scheme. 

1F  is allowed to query an oracle Ο which works in the following manner. On be-

ing queried with an integer value i  as input, it computes a one-time key pair 

( ),i isk pk  and outputs ipk ; when queried with an integer i  and some string as input, 

it outputs the one-time signature computed over the input string using isk . 1F  exe-

cutes the following algorithm.  

Algorithm 1   
1. Set counter 1i =  
2. Query Ο  with input i . Receive and store ipk  

3. Query Ο  with input 1i + . Receive and store 1ipk +  
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4. Compute a random string ir  and the hash value ( )1,i iH r pk +  

5. Transfer the OTP set ( )( ){ } 1

1 1
1

, , ,
i

j j j j
j

pk S sk H r pk
−

+ +
=

 and current server 

state ipk  to F  and execute it on input ( )1,i iH r pk + . If  F  outputs non-

zero then Stop. 

Else Query Ο  with input ( ){ }1, ,i ii H r pk + . Receive and store 

( )( )1, ,i i iS sk H r pk +  

6. Set 1i i← + , go to step 3  
 
With non-negligible probability, for some integer counter value i , F  outputs a 

valid signature S ′  over the given input. Now, 1F  stops and outputs S ′  as a valid one-

time signature without the knowledge of the one-time secret key and without having 
made a query to the oracle Ο  for the new one-time signature. This contradicts the 
assumption that the underlying one-time signature scheme is secure. Hence our theo-
rem is proved.  

Denial of Service Attacks. We now discuss the effect of DoS attack on our protocol. 
Observe that an unsuccessful authentication is likely to be caused due to an adversary 
impersonating B  to A . We suppose that since the last successful login, the adversary 
has engaged in d  protocol executions with A  impersonating B  to A  each time. 
This implies that d  is the difference between the counter value stored by the system 
principals. Hence, if the counter value at A  was i  when the adversary started the 

attack, it must be ( )i d+  at this point.  

Assume that during ( )th
i d+  protocol execution, A  receives ( )B

i d+ , B
i dr +  from 

B . After the failure of the counter value verification, A  computes an offline tran-
script which is a set of cardinality d  as explained in Section 3. Now A  sends this 
offline transcript to B  along with the usual generated current OTS and one-time 
public key. B  verifies each OTS in the transcript one by one and keeps updating its 
state. If the verification of all the one-time signatures in the transcript is successful, 

the state of B  is updated to A
i dpk + , the counter value being ( )i d+ . Now he is in a 

position to verify the regular OTS sent along with the offline transcript. If it is found 
correct, A  is logged in and counter is updated to ( )1i d+ + .  

Again, it may be the adversary impersonating B  to A  and exchanging messages 
with A . In that case, during the next login attempt, A  will add the current OTS, one-
time public key and the challenge string to the offline transcript to be sent to B . 
Hence it is clear that though, higher the number of consecutive attacks, higher the size 
of offline transcript; despite any number of attacks, synchronization can still be re-
stored between A  and B . Further, A  may not need to store all the challenge strings 
sent to him so far. When she is sure that the login attempt was successful and she is 
logged into the genuine server (e.g. on seeing her files or e-mails), she may delete all 
the challenge strings stored until that point. In section 6, we propose an enhancement 
to the scheme which does not require such manual intervention on the client side. 
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Security of offline transcripts. Recall that though both Message Authentication 
Codes [1,2] and Digital Signatures [9,23] are used for authentication purposes, digital 
signatures provide non-repudiation whereas MACs are repudiable. The reason being 
that the verification data released to the verifier in case of digital signatures does not 
give him the power to modify or create a signature while the secret key released to the 
verifier in case of MAC gives him modification power. We now discuss the security of 
the offline transcript mechanism. We claim that this mechanism which employs only 
one-time signatures is secure and possesses the property of offline verification due to 
the same reason as discussed above i.e., the verification data does not give modifica-
tion power to the verifier.  

Theorem 2. If the underlying one-time signature scheme is secure and H  is a colli-
sion resistant hash function, then given access to the current server state ipk , an 

adversary cannot modify an offline transcript and the attached current one-time 
password to his advantage.  

Proof. Assume that the thesis is false i.e., there is an algorithm F  that succeeds in 
modifying an offline transcript with non-negligible probability. That is, for some 
integer values i  and d , F  runs on current server state ipk , takes as input set 

( )( ){ }1 1, , , ,
i d

j j j j j
j i

Z r pk S sk H r pk
+

+ +
=

=  (the current one time password being 

( )( ){ }1 1, , ,i d i d i d i dpk S sk H r pk+ + + + + + ) and outputs a modified valid set Z ′ . We show 

how F  can be used to build an algorithm 1F  which either forges signatures for the 

underlying one-time signature scheme or finds collisions in the hash function. 

1F  is allowed to query an oracle Ο  which works in the same manner as discussed 

in the Proof of Theorem 1. 1F  first executes Algorithm 2 with input ( ),i d .  

Algorithm 2.  Prepare Transcript (i, d) 
1. Set j i=  

2. Query Ο  with input j . Receive and store jpk  

3. Query Ο  with input 1j + . Receive and store 1jpk +  

4. Compute a random string jr  and the hash value ( )1,j jH r pk +  

5. If j i d= +  Stop  

 Else Query Ο  with input ( ){ }1, ,j jj H r pk + . Receive and store   

( )( )1, ,j j jS sk H r pk +  

6. Set 1j j← + , go to step 3 

It now runs F  on current server state ipk  with the offline transcript 

( )( ){ }1 1, , , ,
i d

j j j j j
j i

Z r pk S sk H r pk
+

+ +
=

= as input. With non-negligible probability, F  
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outputs a modified valid set  Z ′ . 1F  now compares Z  and Z ′ for each corresponding 

entry. On finding the first mismatch, it stops. Suppose that the mismatch occurs at 

some j . Now, if ( ) ( )1 1, ,
Z Z

j j j jH r pk H r pk
′

+ +=  and ( ) ( )1 1, ,
Z Z

j j j jr pk r pk
′

+ +≠ ; 

this means 1F  has found a collision in the hash function. Otherwise, 1F  outputs the 

one-time signature from the thj  entry in  Z ′  as a valid one-time signature, thus con-

tradicting the assumption that the underlying one-time signature scheme is secure. 
Hence our theorem is proved. 

5   An Enhancement to the Scheme 

Mutual Authentication is a desired feature of a two-party authentication protocol. 
Both A  and B  must authenticate each other to prevent an adversary from imperson-
ating either of them. 

In the proposed scheme, an adversary is able to disturb the synchronization be-
tween the system principals due to lack of mutual authentication. Though offline 
transcripts successfully counter such attacks, it would be appropriate to eradicate such 
an attack in the first place. To support mutual authentication, the basic protocol can be 
extended by making A  authenticate B  in exactly the same manner as B  authenti-
cates A . The extended scheme consists of two phases, Setup and Operation. Offline 
transcripts are no longer required since loss of synchronization is no longer possible. 

Protocol.  Remote Authentication using One-Time Signatures (Extended Version) 
I. Setup 

1. A  initializes a counter 1Ai ←  and performs the following operations. 

a. Choose a secret key AK , compute a one-time key pair ( )1 1,A Ask pk . 

b. Transfer 1
Apk  to B  in a manner guaranteeing its authenticity. This 

may be done using a certificate issued by a trusted authority. 

2. B  stores the received value and initializes his counter 1Bi ← . He then 
performs the following operations. 

a. Choose a secret key BK , compute a one-time key pair ( )1 1,B Bsk pk . 

b. Transfer 1
Bpk  to A  in a manner guaranteeing its authenticity.  

II. Operation 

1. A  computes a random string A
ir  and sends { }, ,A A

iA i r  to B . 

2. B  performs the following operations. 

• Verify Ai  against Bi . Stop if mismatch occurs. 

• Compute B
isk , a new one-time key pair ( )1 1,B B

i isk pk+ + , hash value 

( )1,A B
i iH r pk +  and the OTS ( )( )1, ,B A B

i i iS sk H r pk + . 
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• Compute a random string B
ir  and send 

( )( )1 1, , , ,B B B A B
i i i i ir pk S sk H r pk+ +  to A . 

3. A  performs the following operations. 
• Verify the received OTS. Stop if verification fails. 

• Compute A
isk , a new one-time key pair ( )1 1,A A

i isk pk+ + , hash value 

( )1,B A
i iH r pk +  and the OTS ( )( )1, ,A B A

i i iS sk H r pk + . 

• Send ( )( )1 1, , ,A A B A
i i i ipk S sk H r pk+ +  to B . Replace B

ipk  with 1
B
ipk +  

and set counter 1A Ai i← + . 
4. B  verifies the correctness of the received OTS. If it is correct, A  is 

authenticated. B  replaces A
ipk  with 1

A
ipk +  and sets the counter 

1B Bi i← + . 

6   Conclusions 

A new key-based authentication protocol has been presented that uses one-time signa-
tures coupled with offline transcripts for synchronization. The proposed scheme is 
provably secure against server compromise as well as both passive and active adver-
saries. The mechanism of offline transcripts provides immunity against DoS attacks 
and thus improves over Mitchell’s scheme [21,22]. The extended protocol supports 
mutual authentication and eliminates any possibility of loss of synchronization in the 
first place. Due to the sole usage of fast cryptographic hash functions, the proposed 
scheme maintains trivial computational and storage requirements to be a practical 
solution for low cost user authentication devices where the complexity of implement-
ing public key cryptography should be avoided.  
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Abstract. The notion of authenticator, proposed by Bellare et al., is to
transform a protocol secure in the authenticated-link model to a new one
secure in the unauthenticated-link model. This notion admits a modular
design and analysis of cryptographic protocols and thus greatly simplifies
the underlying tasks. However, all previous authenticators are constructed
via a so called MT-authenticator. This kind of authenticator authenticates
each message independently. Thus, the round complexity of the resulting
protocol is amplified by a multiplicative factor. In this paper, we propose
two efficient authenticators which authenticate the protocol as a whole
and the round complexity of the resulting protocol increases only by at
most an additively small number. We also construct a very efficient key
exchange protocol. Our protocol is provably secure under the general cryp-
tographic assumption (especially without a concrete hardness assumption
such as DDH or RSA). Of an independent interest, our security proof lies
in the emulation based ideal-real model, instead of the widely adopted
(seemingly weaker) SK-security. To our knowledge, this is the first pro-
tocol of its kind. It is worth mentioning that all our constructions are ob-
tained by improving the related protocols of Bellare et al. [1].

1 Introduction

Authentication is one of the most important issues in the area of secure commu-
nication. It requires that all the messages in transmission should not be modified
or changed improperly. This is not an easy cryptographic task since protocols
typically are executed concurrently. In addition, an adversary could compromise
a party at any time. He also could arbitrarily delete, block, inject, modify the
messages over the channel. The topic of authentication has been extensively
studied in the literature [2, 16]. Authentication is closely related to the problem
of authenticated key exchange. Authenticated key exchange is a procedure that
enables two or more parties to jointly compute a common secret in an authenti-
cated and secure manner. The rigorous treatment of key exchange protocol was
first due to Bellare al. [2, 3] and was later developed by many authors [21, 7, 6].
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1.1 Related Work

Bellare et al. [1] formalized the authenticated-link model (AM) and the
unauthenticated-link model (UM). The former essentially requires the messages
in the channel be faithfully delivered while the latter does not have this require-
ment. They introduced a notation of authenticator, which transforms a protocol
secure in the AM to a new one secure in the UM. This notion admits a modular
design and analysis of cryptographic protocols. They then constructed several
authenticators. In their authenticator, each message is authenticated indepen-
dently via a MT-authenticator. Since their work, many authors work in this
direction. Canetti and Krawczyk [5] slightly extended AM and UM so that the
security (called SK-security) of a key exchange protocol can be defined directly
(i.e., without the real-ideal emulation paradigm), and then proposed several
secure key exchange protocols following the modular approach. Boyd et al. [4]
constructed two static Diffie-Hellman MT-authenticators and then proposed two
static Diffie-Hellman based key exchange protocols using these authenticators.
Boyd et al. [22] applied the modular approach to the key exchange protocol in
the wireless network. Raimondo and Gennaro [18] constructed deniable authen-
ticators, in which the sender can later deny the fact of authentication. Although
the modular approach greatly simplifies both the design and analysis of pro-
tocols, all the previous authenticators are constructed by simply applying an
MT-authenticator to each message independently. As a result, the transformed
protocol is very inefficient as its round complexity is amplified by a multiplicative
factor.

1.2 Contribution

In this paper, we first construct two efficient authenticators, which authenticate
the protocol as a whole (instead of the message-by-message manner). As a result,
the round complexity of the transformed protocol increases by at most a small
additive number. One authenticator preserves the round complexity, which is
technically similar to the compiler designated for the group key exchange [15].
Then, we design two very efficient and secure key exchange protocols by first de-
signing an AM-secure protocol and then applying our authenticators to it. Our
protocols are only based on the existence of trapdoor permutation (especially, not
assuming any concrete harness assumption, e.g. DDH or RSA). We stress that
this is important as no one knows when a hardness assumption will be broken
later. Our protocols are provably secure in the ideal-real emulation paradigm
instead of SK-security [5]. SK-security seems weaker than the security in the
real-ideal emulation paradigm. A sound evidence is, the plain Diffie-Hellman
key exchange protocol is SK-secure in the AM while it can not be proven secure
in the real-ideal emulation paradigm (as mentioned in Appendix A of [5], the
security proof for plain DH key exchange protocol in [1] is invalid). To our best of
knowledge, our protocols are the first that are provably secure in the emulation
paradigm and without a concrete hardness assumption (Note that as mentioned
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in Appendix A of [5], the proof of encryption-based key exchange protocol in [1]
is invalid). It is worth mentioning our constructions are obtained by improving
the related protocols of Bellare et al. [1].

2 Model

Bellare et al. [1, 5] formalized two security models for n-party protocols:
unauthenticated-link model (UM) and authenticated-link model (AM). These
models are quite useful in security analysis of protocols. In the following, we
overview them. For details, please refer to [5].

Assume P1, · · · , Pn are n-parties. π is an arbitrary cryptographic protocol.
We consider the execution of π among these parties. We model each party as a
probabilistic polynomial time interactive Turning machine. Initially, Pi is invoked
with secret input, identity and random input. Then he waits for an activation.
Pi can be activated by either incoming messages from other parties or external
request from other programs within Pi itself. Once activated, Pi follows the
specification of π by computing

π(secret input, internal state, incoming message, external request)
= (new state, outgoing messages, external requests, output).

Initial internal state is the party’s identity and random input. After each acti-
vation, the internal state is updated by new state. The internal state does not
contain the secret input. Each activation could generate outgoing messages for
other parties, external requests for other programs in the same party. It also
generates a local output and labels the sensitive part as ‘secret’.

Each Pi could invoke many copies of π. An invocation is called a session.
Each session has a session ID. The only requirement for a session ID is its
uniqueness in Pi. In order of delivery (also for security), each message sent into
the channel is assumed to contain information (sender, sender session ID, receiver,
receiver session ID). Note that in a multiparty protocol, a session in Pi might
need to communicate with many parties. If session sidi in Pi is interacting with
session sidj in Pj , we call sidi in Pi and sidj in Pj is a paired session.

Unauthenticated-link Model. To introduce the security model, we must in-
clude an adversary. We first consider the unauthenticated-link model. In this
model, the scheduling of events are determined by adversary U . Such scheduling
consists of a sequence of activations in different parties. U can invoke a party
with arbitrary incoming message or external request. Especially, he is not as-
sumed to deliver an message faithfully. He can delete, block, modify and insert
any message in the channel. Once a party completes an activation, the outgoing
message, outgoing request as well as the local output, except the part labelled as
‘secret’, are available to U . U can corrupt a party at any time. When one party
gets corrupted, the secret input and the whole internal state within this party
is available to U . A special note “corrupted” is appended to the output of this
party. Later, this party will not produce an output any more. In addition, this
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party’s future action is fully taken by U . U can also corrupt a particular session
in Pi. In this case, he obtains the current internal state for this session. A special
note of corruption is appended to this session’s output. Later, it will not produce
an output any more. In the future, the execution of this session is fully taken
by U . A session can produce an output at any time (according to the protocol
specification). We define an party’s final output to be the concatenation of his
output history from all sessions.

Let x = (x1, · · · , xn), where xi is the input for Pi. Let r = (r0, · · · , rn) be the
random input, where r0 for U and ri for Pi. We use Advπ,U (x, r) to denote the
output of U , and use UnAuthπ,U (x, r)i to denote the output of Pi. Let

UnAuthπ,U (x, r)=Advπ,U (x, r), UnAuthπ,U (x, r)1, · · · , UnAuthπ,U (x, r)n.

Let UnAuthπ,U (x) be the random variable describing UnAuthπ,U (x, r).

Authenticated-link Model. Authenticated-link model is similar to unauthen-
ticated-link model but with some restrictions. Any outgoing message sent by an
uncorrupted session will be faithfully delivered. Each message will be delivered
only at most once (note that the messages may be delayed or even undelivered.
This reflects the nature of an asynchronous network). This implicitly assumes
that a sender never sends an identical message twice. By default, if the receiver
is corrupted, we assume the message is delivered faithfully (recall the delivery is
controlled by the adversary himself and thus the delivery of this kind of message
is essentially the adversary’s internal computation). In addition, the delivery
order of messages to an uncorrupted session must obey the protocol specification.
Whenever a message is received by an uncorrupted session, it must be indeed sent
from the indicated sender session. Note here by default, if the indicated sender
session is corrupted, we assume the message is indeed sent from this sender
session. Let x = (x1, · · · , xn), where xi is the input for Pi. Let r = (r0, · · · , rn)
be the random input, where r0 for A and ri for Pi. Analogous to UM, we can
define Advπ,A(x, r), Authπ,A(x, r)i, Authπ,A(x, r), and Authπ,A(x).

With the above models, we can define the notion of emulation as follows.

Definition 1. Let π and π′ be two protocols. We say π′ emulates π in the
UM, if for any UM-adversary U there exists an AM-adversary A such that for
all input x,

Authπ,A(x)
c≡ UnAuthπ′,U(x), (1)

where
c≡ denotes computational indistinguishability.

3 Protocol Authenticators

Bellare et al. [1] proposed a notion of authenticator. Essentially, an authenticator
is a transformation, which, given a protocol π secure in the AM, outputs a
protocol π′ secure in the UM. Formally,
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Definition 2. Let C be a transformation on cryptographic protocols. We say C
is an authenticator if for any protocol π, π′ = C(π) emulates π in the UM.

Given an authenticator, one can construct a UM-secure protocol as follows: first
construct an AM-secure protocol, then apply the authenticator to it. Bellare et
al. constructed authenticators as follows: first construct a MT-authenticator,
which essentially is a protocol emulating a one-flow protocol in the UM; then
an authenticator is defined by applying the MT-authenticator to each message
independently. Although the authenticators constructed in this way is secure, it
is not efficient since the round complexity of a transformed protocol will increases
by a multiplicative factor. In the following two sections, we will introduce our
efficient authenticators overcoming this problem.

4 An Encryption-Based Authenticator E-Auth

In this section, we propose an efficient authenticator, denoted by E-Auth. Our
authenticator makes use of the modified encryption based MT-authenticator [1].
The original MT-authenticator is flawed [8] but can be easily fixed by adding the
message into the encryption. Essentially, since we require the encryption scheme
is IND-CCA2 secure, the adversary is unable to mall the ciphertext to a new
one with an identical MAC key but a different plaintext. Thus, the receiver’s
reply ciphertext is tied to a unique session. Notice usually the message is length
variable thus the encryption has to be length variable. So, this solution seems
inefficient since it might require to compute a ciphertext for a long message. We
remark that this is not a problem. Indeed, we can choose to use the hash value
of the message into the encryption instead of the message itself. As long as the
hash function is collision resistant, the security remains. This technique has been
previously employed in [13]. For simplicity, in this work, we do not bother to
consider this issue. Our protocol E-Auth only applies this MT-authenticator to
the first two messages between a pair of parties while the authenticator in [1]
applied the MT-authenticator to every message in the protocol. Now we formally
describe E-Auth.

Let π be any protocol. Assume P1, · · · , Pn are n parties. Let m1,m2, · · · be
the message flows in π exchanged between Pi and Pj . Without loss of generality,
suppose m1 is sent from Pi to Pj . Let π′ = E-Auth(π). We use P ′

i to denote
Party i in protocol π′. π′ is augmented with an initialization stage, in which
each P ′

i received a public/private key pair (ei, di) for encryption scheme E.
As in π, P ′

i will be provided an initial secret input Ii. Let the public input
I ′0 be the public input in π concatenated with {ei}n1 . Let MAC be a message
authentication code with a key space K. In π′, the communication between
P ′

i and P ′
j is defined as follows. P ′

i first sends m1 to P ′
j , who takes Nj ← K,

responds with message m1 and C1 = Eei(Nj |m1). Next, P ′
i verifies whether C1

is decrypted to Nj |m1 for some Nj ∈ K. If no, he rejects; otherwise, P ′
i sends

back m1||MACNj (1,m1, P
′
j) and in addition generates a local output ‘P ′

i sent
message m1 to P ′

j ’. When receiving this message, P ′
j verifies if the authentication

tag is valid. If yes, he generates a local output ‘P ′
j received message m1 from
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P ′
i

m1 �� P ′
j

m1,Eei
(Nj |m1)

��
m1,MACNj

(1,m1,P ′
j)

��

m2��
m2,Eej

(Ni|m2)
��

m2,MACNi
(2,m2,P ′

i )
��

m3,MACNj
(3,m3,P ′

j)
��

m4,MACNi
(4,m4,P ′

i )
��

··· ��

Fig. 1. An encryption-based authenticator E-Auth

P ′
i ’, and follows the execution of Pj in π with incoming message m1 which in

turn generates the outgoing message m2, and he then uses a similar procedure
(as for m1) to send m2 to P ′

i . Assume P ′
i chooses the challenge number Ni in

this process. Then for t > 1, whenever Pi wishes to send m2t−1 in π to Pj , P ′
i

appends a tag MACNj (2t−1,m2t−1, P
′
j) to m2t−1, and sends the resultant to P ′

j .
In addition, he generates a local output ‘P ′

i sent message m2t−1 to P ′
j ’. Receiving

the message m2t−1 and τ2t−1, P
′
j verifies whether the tag τ2t−1 is valid. If no, he

rejects; otherwise, he outputs ‘P ′
j received message m2t−1 from P ′

i ’ and follows a
similar procedure to send m2t (if any) in π to P ′

i . This completes the description
of π′.

For the description, E-Auth only increases the round complexity by 4 for
each pair of parties. In the original authenticator of Bellare et al., each message
is applied the encryption-based MT-authenticator independently. We observes
that as long as the paired sessions are both uncorrupted, the receiver-chosen
number Ni (resp. Nj) will remain cryptographically secure. Thus, each sender
only need to invoke the MT-authenticator once and later re-use the receiver-
chosen number to authenticate the subsequent messages. To disable reordering
and repaying attacks, we include the flow id into the mac tag. In the following
theorem, we will show that E-Auth is indeed an authenticator. The proof can be
found in the full version [14].

Theorem 1. Let E be IND-CCA2 secure public key cryptosystem, and MAC
be existentially unforgeable message authentication code. Then E-Auth is an au-
thenticator.

5 A Signature-Based Authenticator: Sig-Auth

In this section, we construct our signature-based authenticator (denoted by Sig-
Auth) without MT-authenticator.
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Sig-Auth authenticator is constructed as follows. Let P1, · · · , Pn be n parties
and π be any protocol. Let π′ = Sig-Auth(π). Let P ′

i denote Party i in π′. Let
m1,m2, · · · be the messages exchanged between Pi and Pj in π, where w.l.o.g,
assume Pi sends m1. Then the execution between P ′

i and P ′
j is as follows. Initially,

P ′
i gets the secret input Ii of Pi in π and signing key si of digital signature

scheme (G,S, V ) (i.e., Key Generation, Signing and Verification Algorithms). In
addition, each participant obtains the public-key I0 in π as well as {vi}ni=1, where
vi is the verification key corresponding to the signing key si. The communication
between P ′

i and P ′
j is as follows. Whenever Pi in π wishes to send message mt to

Pj , P ′
i sends mt together with Ssi(t,mt, P

′
j) and then generates a local output

‘P ′
i sent mt to P ′

j ’. Whenever P ′
j receives a message mt||τt from P ′

i , he verifies
if τt = Vvi(t,mt, P

′
j , τt) (note the flow index t is indicated in the internal state

of P ′
j). If the verification is successful, then P ′

j generates a local output ‘P ′
j

received mt from P ′
i ’ and then activates π with incoming message mt to simulate

the outgoing message mt+1 (if any). If this is the case, then P ′
j prepares and

sends out mt+1||Ssj (t + 1,mt+1, P
′
i ). If the activation generates any output, P ′

j

outputs it directly. This completes the description of π′. A graphic interpretation
is presented in Figure 2.

Essentially, by signature on message m and flow id, we are guaranteed that
the message is authentic and as the correct flow from the right sender session.
In the protocol of Bellare et al., correctness of the flow is guaranteed by using
a receiver’s challenge. Here we authenticate π as a whole and the state of flow
id suffices for this purpose since the flow id for the protocol between two parties
is labeled sequentially thus is unique. In the following theorem, we show that
Sig-Auth is an authenticator. The proof can be found in the full paper [14].

P ′
i

m1,Ssi
(1,m1,P ′

j)
�� P ′

j

m2,Ssj
(2,m2,P ′

i )
��

m3,Ssi
(3,m3,P ′

j)
��

m4,Ssj
(4,m4,P ′

i )
��

··· ��

Fig. 2. A digital signature-based authenticator Sig-Auth

Theorem 2. Let (G, V, S) be a digital signature scheme secure against chosen
message attack. Then Sig-Auth is an authenticator.

6 Key Exchange

In this section, we apply our authenticators to the key exchange protocol. We
only need to consider the AM-secure construction. In the following, we will first
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introduce the ideal process of key exchange. Then, we will introduce our new
protocol. Our protocol does not assume any concrete hardness assumption (e.g.
Diffie-Hellman [10] or RSA [19]).

6.1 Ideal Process

In the ideal process (See Table 1), we formalize an idealized world for key ex-
change. The model is concerned with an adaptive malicious adversary under con-
current executions. In this process, parties P1, · · · , Pn, adversary S and a trustee
T are involved. The output of ideal process, denoted by IDEALS(rS , rT ), is de-
fined to be the joint output of P1, · · · , Pn and the output of S, where rS and rT are
the random input for S and T respectively. In the future, we use AdvS(rS , rT ),
IDEALS(rS , rT )i to denote the output of S and Pi respectively. With the ideal
process, we define the security of a key exchange protocol as follows.

Table 1. Ideal Process of 2-Party Key Exchange

Participants: P1, · · · , Pn, trustee T and adversary S .

1. Invoked with input (Pi, Pj , s, I), Pi forwards it to T , where s is the session id
which is locally unique and determined by the higher level calling program, I
means initiator.

2. Upon receiving (Pi, Pj , s, I), T checks if it was recorded before. If yes, he ignores
it; otherwise, he records it.

3. Invoked with (Pj , Pi, s, R), Pj forwards it to T , where R means responder.
4. Upon receiving (Pj , Pi, s, R), if (Pi, Pj , s, I) was not recorded or if (Pj , Pi, s, R)

was previously received, T ignores it. Otherwise, if Pi, Pj , session s in Pi, or
session s in Pj , is corrupted, he asks S to choose a session key sk ∈ K. If no
such corruption happened, T takes sk ← K (session key domain). Finally, T
requests S to send (Pi, Pj , s, sk) to both Pi and Pj (but sk is invisible to S).

5. Receiving (Pi, Pj , s, sk) from T , Pi (resp. Pj) outputs ‘(Pi, Pj , s, sk)’ directly
and labels sk as ‘secret’.

6. Upon corruption to session s in Pi, the underlying session key (if any) is provided
to S . In addition, a note ‘session s in Pi is corrupted’ is appended to the output
of Pi. Since that time, this session will not generate an output any more and its
future action will be fully taken by S .

7. Upon corruption to Pi, S learns the entire internal state of Pi including those
labelled as ‘secret’. A note ‘Pi is corrupted’ is appended to the output of Pi.
Since that time, Pi will not generate an output any more and his future action
will be fully taken by S .

Definition 3. Let π be a 2-party key exchange protocol. We say that π is secure
in the UM if for any UM-adversary U , there exists an ideal adversary S such
that
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UnAuthπ,U ()
c≡ IDEALS().

We say that π is secure in the AM if for any AM adversary A, there exists an
ideal adversary S such that

Authπ,A()
c≡ IDEALS().

6.2 Our Protocol Encr-KE

In this subsection, we introduce our new key exchange protocol. Our construction
only assumes the existence of trapdoor permutation (i.e., without a concrete
hardness assumption such as DDH or RSA).

Let (G, E ,D) be a public key cryptosystem, where given input 1κ, G outputs a
public/private key pair (ek, dk). The protocol is specified as follows. The graphic
interpretation is presented in Figure 3.

Pi Pj

(eki, dki) ← G(1κ)
(Pi,Pj,s,I,eki) ��

k = Ddki(C)
Output k

k ← K, C = Eeki(k)
(Pj ,Pi,s,R,C)��

(Pi,Pj,s,ok) �� Output k

Fig. 3. Our Key Exchange Protocol Encr-KE in the AM
Note: Erasing the intermediate data is important but not presented in the figure

1. Initiator Pi takes a temporary key pair (eki, dki) ← G(1κ) and sends
(Pi, Pj , s, I, eki) to the responder Pj , where s is the session id and I means
initiator.

2. Pj takes k ← K and computes C = Eeki(k), where K is the key domain. Then
he sends (Pj , Pi, s, R,C) to Pi, where R means responder. Finally, Pj defines
the session state to be (Pi, Pj , s, k) and erases all the other intermediate data
(e.g., random bits in computing C).

3. Pi decrypts C and obtains k. If k =⊥, he rejects. Otherwise, he defines the
session state to be (Pi, Pj , s, k) and erases all the other intermediate data
(e.g., dki). Finally, he outputs (Pi, Pj , s, k) and sends (Pi, Pj , s, ok) to Pj .

4. When Pj receives (Pi, Pj , s, ok), he accepts and outputs (Pi, Pj , s, k).

In the following theorem, we show our Encr-KE is secure. The proof can be found
in the full paper [14].

Theorem 3. Assume (G, E ,D) is a semantically secure public-key encryption
scheme. Then Encr-KE is secure in the AM.
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Let EE-KE=E-Auth(Encr-KE) and SigE-KE=Sig-Auth(Encr-KE). Note IND-CCA2
secure public key encryption [17] exists if trapdoor permutation [11] exists, See
[9, 11]. Unforgeable message authentication code and digital signature scheme
both exist, assuming the existence of one-way function, See [12] for the former
and [20] for the latter. Note that the existence of trapdoor permutation im-
plies the existence of one-way function. From Theorem 1 and Theorem 2, we
immediately have the following result.

Corollary 1. EE-KE and SigE-KE are both secure in the UM. Furthermore, they
can be implemented if the trapdoor permutation exists.
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Benes and Butterfly Schemes Revisited
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Abstract. In [1], W. Aiello and R. Venkatesan have shown how to
construct pseudo-random functions of 2n bits → 2n bits from pseudo-
random functions of n bits → n bits. They claimed that their construc-
tion, called “Benes”, reaches the optimal bound (m 
 2n) of security
against adversaries with unlimited computing power but limited by m
queries in an Adaptive Chosen Plaintext Attack (CPA-2). However a
complete proof of this result is not given in [1] since one of the assertions
of [1] is wrong. Due to this, the proof given in [1] is valid for most attacks,
but not for all the possible Chosen Plaintext Attacks. In this paper we
will in a way fix this problem since for all ε > 0, we will prove CPA-2
security when m 
 2n(1−ε). However we will also see that the proba-
bility to distinguish Benes functions from random functions is sometime

larger than the term in m2

22n given in [1]. One of the key idea in our proof

will be to notice that, when m � 22n/3 and m 
 2n, for large number
of variables linked with some critical equalities, the average number of
solutions may be large (i.e. � 1) while, at the same time, the probability
to have at least one such critical equalities is negligible (i.e. 
 1).

Keywords: Pseudo-random functions, unconditional security, informa-
tion-theoretic primitive, design of keyed hash functions. (An extended
version of this paper is available from the authors).

1 Introduction

In [6], M. Luby and C. Rackoff have published their famous theorem: a 3-round
Feistel scheme with three independent random round functions f1, f2, f3 of n
bits→ n bits gives a pseudo-random function of 2n bits→ 2n bits with security
against all Adaptive Chosen Plaintext Attacks (CPA-2) when the number m
of cleartext/ciphertext pairs chosen by the adversary satisfies m � 2n/2 (even
if the adversary has unbounded computing power). Since this paper [6], these
constructions, or similar constructions, have inspired a considerable amount of
research. In [11] a summary of existing works on this topic is given. The bound
m� 2n/2 is called the “birthday bound”, i.e. it is about the square root of the
optimal bound against an adversary with unbounded computing power. In [12]
and [1] it was proved that for 3 or 4-round Feistel schemes this bound m� 2n/2

is the best we can get. One direction of research is to design or study various
schemes where we have a better proved security than the birthday bound. This is

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 92–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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what W. Aiello and R. Venkatesan have done in [1]: they have found a construc-
tion of locally random functions, called “Benes” (back-to-back Butterfly), where
the optimal bound (m� 2n) is obtained instead of the birthday bound. Here the
functions are not permutations. Similarly, in [7] U. Maurer has found some other
constructions of locally random functions (not permutations) where he can get
as close as wanted to the optimal bound (i.e. m � 2n(1−ε) and for all ε > 0 he
has a construction). In [11] the security of unbalanced Feistel schemes is studied
and a security proof in 2n(1−ε) is obtained, instead of 2n/2, but for much larger
round functions (from 2n bits to ε bits, instead of n bits to n bits). However
here this bound is basically again the birthday bound for this functions. In [15]
J. Patarin obtained a security when m� 2n for 5-round Feistel scheme against
all CPA-2. But even though Benes needs 8 pseudo-random functions application
and 5-round Feistel needs 5 of them, Benes can be done in two parallel rounds
while the Feistel will need 5 rounds, so in many cases Benes will still be actually
2.5 times better. In [2], Bellare, Goldreich and Krawczyk’s construction is simi-
lar to the Butterfly construction and provide length-doubling for the input. The
difference is that their construction is secure only against random queries and
not adaptively chosen queries. Benes, in contrast, is actually a pseudo-random
function, so the Bellare, Goldreich and Krawczyk’s construction does not su-
percede Benes unless for all purposes a KPA (Known Plaintext Attack) secure
random function is enough and length-doubling pseudo-random function is never
needed.

In this paper we will study again the “Benes” schemes of [1]. First, we will
notice that the proof of security given in [1] is valid for most chosen plaintext
attacks, but is not valid for all chosen plaintext attacks. We will then in a way fix
this problem. For known plaintext attacks (KPA), we will see that one Butterfly
is enough to get security when m � 2n (Benes schemes and Butterfly schemes
are defined in section 2). Then, for adaptive chosen plaintext attacks and for
all ε > 0, we will prove CPA-2 security when m � 2n(1−ε) for sufficiently large
n. However our proved security bound in this case will be larger than the term
given in [1]. We will also mention what appears for a variant of Benes called
“modified Benes”, and we will give some examples of applications.

2 Notations

• In = {0, 1}n is the set of the 2n binary strings of length n.
• Fn is the set of all functions f : In → In. Thus |Fn| = 2n·2n

.
• For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.
• For a, b ∈ In, a||b stands for the concatenation of a and b.
• For a, b ∈ In, we also denote by [a, b] the concatenation a||b of a and b.
• Given four functions from n bits to n bits, f1, . . . , f4, we use them to define

the Butterfly transformation (see [1]) from 2n bits to 2n bits. On input
[Li, Ri], the output is given by [Xi, Yi], with:

Xi = f1(Li)⊕ f2(Ri) and Yi = f3(Li)⊕ f4(Ri).
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Fig. 1. Butterfly transformation

• Given eight functions from n bits to n bits, f1, . . . , f8, we use them to define
the Benes transformation (see [1]) (back-to-back Butterfly) as the com-
position of two Butterfly transformations. On input [Li, Ri], the output is
given by [Si, Ti], with:

Si = f5(f1(Li)⊕ f2(Ri))⊕ f6(f3(Li)⊕ f4(Ri)) = f5(Xi)⊕ f6(Yi)

Ti = f7(f1(Li)⊕ f2(Ri))⊕ f8(f3(Li)⊕ f4(Ri)) = f7(Xi)⊕ f8(Yi).
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Fig. 2. Benes transformation (back-to-back Butterfly)

3 A Problem in the Proof of [1]

Definition 1. We will say that we have “a circle in X,Y of length k” if we
have k pairwise distinct indices such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 ,. . .,
Xik−1 = Xik

, Yik
= Yi1 . We will say that we have “a circle in X,Y ” if there is

an even integer k, k ≥ 2, such that we have a circle in X,Y of length k.

Let [L1, R1], [L2, R2], [L3, R3] and [L4, R4] be four chosen inputs such that L1 =
L2, R2 = R3, L3 = L4 and R4 = R1 (and R1 �= R2 and L1 �= L3). (Here we will
say that we have “a circle in L,R” of length 4). Let p be the probability for these
inputs to produce “a circle in X,Y ” (or, in the language of [1], an “alternating
cycle”) after a Butterfly. In [1], page 318, it is claimed that “the probability that
the top Butterfly produces an alternating cycle of length 2j is ≤ 2−2jn”. So here
this means p ≤ 1

24n . However we will see that p ≥ 1
22n . We have:
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X1 = f1(L1) ⊕ f2(R1)
X2 = f1(L2) ⊕ f2(R2) = f1(L1) ⊕ f2(R2)
X3 = f1(L3) ⊕ f2(R3) = f1(L3) ⊕ f2(R2)
X4 = f1(L4) ⊕ f2(R4) = f1(L3) ⊕ f2(R1)

Y1 = f3(L1) ⊕ f4(R1)
Y2 = f3(L2) ⊕ f4(R2) = f3(L1) ⊕ f4(R2)
Y3 = f3(L3) ⊕ f4(R3) = f3(L3) ⊕ f4(R2)
Y4 = f3(L4) ⊕ f4(R4) = f3(L3) ⊕ f4(R1)

First possible circle in X,Y . We will get the circle X1 = X2, Y2 = Y3,
X3 = X4 and Y4 = Y1 if and only if f2(R1) = f2(R2) and f3(L1) = f3(L3) and
the probability for this is exactly 1

22n (since R1 �= R2 and L1 �= L3).

Conclusion. The probability p to have a circle in X,Y of length 4 (i.e. the
probability that the top Butterfly produces an alternating cycle of length 4 in
the language of [1]) is ≥ 1

22n , so it is not ≤ 1
24n as claimed in [1]. As we will see

in this paper, this problem is not easily solved: a precise analysis will be needed
in order to prove the security result m� 2n(1−ε) for all ε > 0.

Remark. It is possible to show that 6 different circles in X,Y are possible here,
with a probability 1

22n . So the probability p to have a circle in X,Y of length
4 will be between 1

22n and 6
22n here. One part of the work of this paper will be

to see if 1
22n instead of 1

24n can create a problem or not, and another part of
the work will be to evaluate the effect of the number of cases, 6 here, and the
analysis will have to be done for circles of any length, not only length 4 as here.

4 One Butterfly: Proof of KPA Security When m � 2n

Here we will prove KPA (Known Plaintext Attack) security by using the “coeffi-
cient H technique” of [14] (more precisely theorem 3.1 p.516 of [14]). Let [Li, Ri],
1 ≤ i ≤ m, be the inputs. With one round of Butterfly, the outputs are [Xi, Yi]
with:

∀i, 1 ≤ i ≤ m,

{
Xi = f1(Li)⊕ f2(Ri)
Yi = f3(Li)⊕ f4(Ri)

(#)

Now when the values Li, Ri, Xi, Yi are given, 1 ≤ i ≤ m, let H be the number
of f1, f2, f3, f4 of Fn such that we have (#). If we have no circle in L,R (cf.
Definition 1) then each new equation (#) fixes f1 (or f2) and f3 (or f4) in a new
point. So if we have no circle in L,R we will have exactly: H = |Fn|4

22nm . Moreover,
since we are in KPA, with m random cleartext/ciphertext pairs, we will now see
that we can indeed assume, when m� 2n, that there are no circle in L, R.

1. Circle on 2 indices i, j, i �= j, are impossible because Li = Lj and Ri = Rj

implies that i = j.
2. Without loosing generality, we can study only circles on r indices, with r

even (L1 = L2, L2 = L3 and R3 = R1 for example gives the circle L1 = L3,
R3 = R1). We will first study the case of circle on 4 indices. Here, we have
some pairwise distinct indices i, j, k, l such that: Li = Lj , Lk = Ll, Ri = Rk

and Rj = Rl. The probability to have such a circle, when the Lα, Rα are
randomly chosen, is ≤ m4

4·24n (Proof: we have here m4

4 possible choices for
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i, j, k, l since we can start the circle in i, j, k or l and each of the 4 equations
have a probability 1

2n to be satisfied if the Lα, Rα are randomly chosen).
3. More generally the probability to have a circle on r indices, when the Li, Ri

are randomly chosen, is ≤ mr

r·2nr . So the probability p to have at least one
circle in L,R, when the values Lα and Rα are randomly chosen satisfies:
p ≤ 1

4

∑∞
i=2

m2i

22in = 1
4 ·

m4

24n · 1
1− m2

22n

.

Conclusion. By using theorem 3.1 p.516 of [14], we obtain (with α = 0 and
β = 1

4 ·
m4

24n · 1
1− m2

22n

): for all algorithm A taking m values [Li, Ri] on input,

|E(P1−P ∗
1 )| ≤ 1

4 ·
m4

24n · 1
1− m2

22n

(where E is the expectancy on the [Li, Ri] randomly

chosen).
So one Butterfly resist all KPA attacks when m� 2n.

Remark 1. For Benes (i.e. two independent rounds of Butterfly), a similar KPA
analysis would give security in O( m2

22n ) instead of O( m4

24n ) here for only one round
of Butterfly. As we will see in appendix C for Benes, and more generally for λ

rounds of Benes, λ ≥ 1, the KPA security in O( m2

22n ) is tight: there is an explicit
ciphertext only attack in O( m2

22n ). So for KPA security and for ciphertext only
security one round of Butterfly is slightly better than two rounds (or λ rounds)
when m � 2n. This is due to the fact that for two rounds of Butterfly we can
have Xi = Xj and Yi = Yj with i < j, and for one round we cannot have
Li = Lj and Ri = Rj with i < j (two rounds of independent pseudo-random
permutations cannot be less secure than one, but with pseudo-random functions,
as here, it can be).

Remark 2. For CPA-1 (non-Adaptive Chosen Plaintext Attack) security how-
ever, unlike KPA security or ciphertext only attacks, Benes (i.e. two indepen-
dent rounds of Butterfly) is clearly much better than one. We will see that when
m� 2n(1−ε), ε > 0, Benes is secure against all CPA-2 (so also CPA-1). For one
round of Butterfly there is a CPA-1 with m = 4: just choose two values Li and Lj ,
Li �= Lj and two values Ri and Rj , Ri �= Rj , and ask for the outputs of [Li, Ri],
[Lj , Rj ], [Li, Rj ] and [Lj , Ri]. With Benes we will have X1 ⊕X2 ⊕X3 ⊕X4 = 0
and Y1⊕Y2⊕Y3⊕Y4 = 0 with probability 1, and for random function this occurs
with probability only 1

22n .

5 Benes: First Results on Circles in X, Y

5.1 Circles in X, Y and CPA-2 Security

With Benes, we have:

∀i, 1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti] ⇔
{

Si = f5(Xi) ⊕ f6(Yi)
Ti = f7(Xi) ⊕ f8(Yi)

(1)

with
{
Xi = f1(Li)⊕ f2(Ri)
Yi = f3(Li)⊕ f4(Ri)
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When some Li, Ri, Si, Ti values are given, 1 ≤ i ≤ m, let H be the number of
f1, . . . , f8 such that: ∀i, 1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti].

Theorem 1. If the Xi and Yi values are such that there are no “circles in X,Y ”
then the number of f5, f6, f7, f8 solution of (1) is exactly |Fn|4

22nm .

Proof. Let A be a set of equations Si = f5(Xi) ⊕ f6(Yi). So, if the equations
of A are not all independent, then we have a subset of λ equations in A where
all the Xi values and all the Yi values are identical two by two (Proof: if this
property does not occur we can associate a new variable f5(Xα) or f6(Yβ) to
each new equation Si = f5(Xi)⊕f6(Yi), where α and β are found by looking the
equations where we have f5(Xi) or f6(Yi)). We will have some indices i1, . . . , ik,
k even, where all the Xi values and all the Yi values are identical two by two,
i ∈ {i1, . . . , ik}. There is at least one index j2 ∈ {i1, . . . , ik}, j2 �= i1, such that
Xi1 = Xj2 . There is at least one index j3, j3 �= j2, such that Yj2 = Yj3 . If j3 = i1
we have a circle in X,Y . If not, we can continue: there is at least one index j4,
j4 �= j3, such that Xj4 = Xj3 . If j4 ∈ {i1, j2} we have a circle in X,Y . If not,
we can continue. Like this we will obtain a circle in X,Y of length < k, or at
the end we have an index jk, jk �= jk−1, such that Yjk

= Yi1 and this gives a
circle in X,Y of length k. So, if we have no circle in X,Y , then all the equations
Si = f5(Xi)⊕ f6(Yi) of (1) are independent, so we have exactly |Fn|2

2nm functions

f5, f6 solution. Similarly, we have exactly |Fn|2
2nm functions f7, f8 solution of the

equation Ti = f7(Xi) ⊕ f8(Yi) of (1). So if we have no circle in X,Y we have
exactly |Fn|4

22nm functions f5, f6, f7, f8 solution of (1), as claimed.
Let p be the probability to get at least one circle in X,Y in a CPA-2 (when

f1, f2, f3, f4 are randomly chosen). From theorem 1, we have H ≥ (1 − p) |Fn|8
22nm .

So with theorem 3.2 p.517 of [14] (with α = 0 and β = p) we get:

Theorem 2. The probability to distinguish Benes functions from random func-
tions of 2n bits→ 2n bits in a CPA-2 is always ≤ p, when f1, . . . , f8 are randomly
and independently chosen in Fn, and where p is the probability to have a circle
in X,Y .

Remark 1. This result was already in [1], written in the language of “alternating
cycles”. In fact, this result can be obtained directly, without using theorem
3.2 of [14]: when there are no circles in X,Y in each equation (1), we have
a new variable f5(Xi) or f6(Yi), and a new variable f7(Xi) or f8(Yi), so if
f5, f6, f7, f8 are random functions, the outputs Si and Ti are perfectly random
and independent from the previous Sj , Tj , i < j.

Remark 2. In this paper we will evaluate p. One difficulty is the fact that in
a CPA-2 we cannot assume that the variables Xi and Yi are random, so we
cannot use the same proof as we did in section 4 for KPA security. For example
if we choose L1 = L2, L3 = L4, R1 = R3 and R2 = R4, then we will have:
X4 = X1⊕X2⊕X3 and Y4 = Y1⊕Y2⊕Y3, so the Xi (and Yi) variables are not
independent random variables.
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Remark3. In this paper we will analyze when p is small, since p small is a sufficient
condition for CPA-2 security. We can notice, however, that this is not a necessary
condition. Let us assume that we can, with a non negligible probability p generate
A circles in X,Y with k variables. For each such circles we will have:

Si1 ⊕ . . . Sik
= 0 and Ti1 ⊕ . . . Tik

= 0. (2)

For random functions, we will have about mk

k!22n indices i1, . . . , ik such (2), with a

standard deviation of about
√

mk

k!22n for this number. So even if p is not negligible,
we may not be able to distinguish Benes functions from random functions if the

probability to have A ≥
√

mk

k!22n is negligible (instead of A �= 0). Now we will
study the probability to have a circle in X,Y of length k. We will first study the
cases k = 2 and k = 4 to better understand the proof of the general case.

5.2 Circles in X, Y with k = 2

Theorem 3. The probability p2 to have a circle in X,Y of length 2, when
f1, f2, f3, f4 are randomly chosen in Fn satisfies: p2 ≤ m(m−1)

2·22n . So p2 is neg-
ligible when m� 2n.

Proof. Here we want i < j such that Xi = Xj and Yj = Yi, i.e. such that:{
f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj) (3)
f3(Li)⊕ f4(Ri) = f3(Lj)⊕ f4(Rj) (4)

First case: Ri �= Rj. Then when f1 is fixed, we have exactly |Fn|
2n functions f2

such that (3) is satisfied, and when f3 is fixed, we have exactly |Fn|
2n functions f4

such that (4) is satisfied.

Second case: Ri = Rj. Then we have Li �= Lj (since i < j so i �= j), so we have
exactly |Fn|

2n functions f1 such that (3) is satisfied and exactly |Fn|
2n functions f3

such that (4) is satisfied.

Conclusion. Whatever Li, Lj , Ri, Rj are, when i and j are fixed, we have
exactly |Fn|4

22n functions f1, f2, f3, f4 such that (3) and (4) are satisfied. So, since
we have m(m−1)

2 indices i, j, i < j, we have p2 ≤ m(m−1)
2·22n , as claimed.

5.3 Circles in X, Y with k = 4

(As already said in section 4, without loosing generality we can study only circles
with k even. X1 = X2, X2 = X3 and Y3 = Y1 for example gives the circle
X1 = X3, Y3 = Y1 with k = 2).

Theorem 4. The probability p4 to have a circle in X,Y of length 4, when
f1, f2, f3, f4 are randomly chosen in Fn satisfies: p4 ≤ m4

4·24n + 3m2

22n . So p4 is
negligible when m� 2n.

Proof. Here we want 4 pairwise distinct i, j, k, l such that: Xi = Xj , Yj = Yk,
Xk = Xl and Yl = Yi, i.e. such that:
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(5)

⎧⎪⎪⎨⎪⎪⎩
f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj)
f1(Lk)⊕ f2(Rk) = f1(Ll)⊕ f2(Rl)
f3(Lj)⊕ f4(Rj) = f3(Lk)⊕ f4(Rk)
f3(Li)⊕ f4(Ri) = f3(Ll)⊕ f4(Rl)

For i, j, k, l, we have ≤ m(m−1)(m−2)(m−3)
4 possibilities (since when i, j, k, l is a

solution we can start the circle in X,Y with i, j, k or l. For example, we can
decide that i is the smallest index: i < j and i < k and i < l).

– If in (5) the four equations are independent, the probability to obtain (5)
will be ≤ m(m−1)(m−2)(m−3)

4·24n .
– Now in (5), as we will see, there are 6 cases where the four equations are not

independent (they come from only two independent equations). For example
(case 1), if Li = Lj , Lk = Ll, Ri = Rk and Rj = Rl, then

(5)⇔
{
f2(Ri) = f2(Rj)
f3(Li) = f3(Lk)

The equations number 1 and 3 of (5) are always independent , since f3 and
f4 are randomly chosen independently from f1 and f2. However the equation
number 2 can be equivalent with the equation number 1 if Li = Lj , Lk =
Ll, Ri = Rk, Rj = Rl or Li = Lj , Lk = Ll, Ri = Rl, Rj = Rk or Li =
Lk, Lj = Ll, Ri = Rj , Rk = Rl or Li = Lk, Lj = Ll, Ri = Rl, Rj = Rk or
Li = Ll, Lj = Lk, Ri = Rj , Rk = Rl or Li = Ll, Lj = Lk, Ri = Rk, Rj = Rl.

These 6 cases are also the conditions for the equations number 5 and 6 to
be equivalent. However, in all of these 6 cases, 2 indices are fixed when two
other indices are given. For example with case 1, if i and l are given, then j
and k are fixed, since Lj = Li and Rj = Rl (this fixes at most one j), and
since Lk = Ll and Rk = Ri (this fixes at most one k).

R

R

L L

i

j

k

l

�

�

Case 1

�
�

�
�

�
��

�
�

�
�

�
R

R

L L

i

j

k

l

� �

Case 2

Fig. 3. Case 1: if i and l are given, then j and k are fixed. As i < l, here we have
≤ m(m−1)

2 possibilities for i, l. Case 2: if i and k are given, then j and l are fixed. As

i < k, here we have ≤ m(m−1)
2 possibilities for i, k too. (And we do the same thing for

the other cases.)

Conclusion. p4 ≤ m(m−1)(m−2)(m−3)
4·24n + 6 · m(m−1)

2·22n , so p4 ≤ m4

4·24n + 3m2

22n , as
claimed.
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5.4 Circles in X, Y , the General Case

Theorem 5. Let k be an even integer. The probability pk to have a circle in X,Y

of length k, when f1, f2, f3, f4 are randomly chosen in Fn satisfies: pk ≤ k2k m2

22n .

Proof. We have a circle of length k in X,Y if and only if there are some pairwise
distinct indices i1, . . . , ik such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Yik

=
Yi1 , i.e. such that:

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(Li1) ⊕ f2(Ri1) = f1(Li2) ⊕ f2(Ri2)
f1(Li3) ⊕ f2(Ri3) = f1(Li4) ⊕ f2(Ri4)
...
f1(Lik−1) ⊕ f2(Rik−1) = f1(Lik ) ⊕ f2(Rik)

and (9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f3(Li2) ⊕ f4(Ri2) = f3(Li3) ⊕ f4(Ri3)
f3(Li4) ⊕ f4(Ri4) = f3(Li5) ⊕ f4(Ri5)
...
f3(Lik) ⊕ f4(Rik) = f3(Li1) ⊕ f4(Ri1)

For {i1, . . . , ik} we have ≤ mk

k possibilities (since we can start the circle with
i1, or i2 ,. . ., or ik). If in (8) and (9) the k

2 + k
2 = k equations are independent,

the probability to obtain (8) and (9) will be ≤ mk

k·2kn .

To study the general case, where the equations may be dependent, we will in-
troduce the equations of the circle in X,Y one by one.

• The first equation is: Xi1 = Xi2 . Here we have m(m−1) possible choices for
i1 and i2, and when i1 and i2 are given, the probability to have Xi1 = Xi2

is exactly 1
2n .

• The second equation is: Yi2 = Yi3 . Here, when i1 and i2 are given, we have
≤ m − 2 possible choices for i3, and this equation Yi2 = Yi3 is independent
from the equation Xi1 = Xi2 (since with Y we use f3 and f4 and with X
we use f1 and f2), so the probability to have Yi2 = Yi3 when Xi1 = Xi2 and
when i1, i2 and i3 are given is exactly 1

2n .
• The equation number 3 is: Xi3 = Xi4 . Here, there are two cases.

Case 1. Xi3 = Xi4 is independent from Xi1 = Xi2 . Then for i4 we have m− 3
possible choices (when i1, i2 and i3 are given), and the probability to have
Xi3 = Xi4 when Xi1 = Xi2 and Yi2 = Yi3 is 1

2n .
Case 2. Xi3 = Xi4 is dependent fromXi1 = Xi2 . Then the indices i1, i2, i3 and i4

can be associated two by two with equalities in R, and two by two with equali-
ties in L (for example Li4 = Li3 , Li1 = Li2 , Ri3 = Ri2 , and Ri4 = Ri1). So we
have Li4 = Liα

, α = 1, 2 or 3, and Ri4 = Riβ
, β = 1, 2 or 3, and α �= β (since

α < 4, and since Li4 = Liα
and Ri4 = Riβ

would imply i4 = iα and α = 4). So
in this case 2, i4 is fixed when i1, i2 and i3 are fixed, and when the equalities in
L and R are given. For these equalities in L and R we have here ≤ 3 × 2 = 6
possibilities (3 for α and 2 for β when α is fixed).

• For equation number μ, 3 ≤ μ < k, we have two cases.

Case 1. This equation number μ is independent from the other equations. Then
for iμ+1 we have m− μ possible choices (when i1, i2, . . ., iμ are given), and
the probability to have this equation number μ when the other equations
are satisfied is 1

2n .
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Case 2. This equation number μ is dependent from the other equations. Then
∃α, β, α �= β, α ≤ μ, β ≤ μ, such that Liμ+1 = Liα

and Riμ+1 = Riβ
. So

(since the [Li, Ri], 1 ≤ i ≤ m are pairwise distinct), iμ+1 is fixed when i1,
i2, . . ., iμ are fixed, and when the equalities in L and R are given. For α and
β we have ≤ μ(μ− 1) possibilities.

If equation number μ is the first in this case 2. If μ is the first integer
such that equation number μ is in this case 2 (i.e. such that equation number μ
is dependent from the other equations) then we will see now that not only one
but at least two indices can be fixed from the other indices.

L L

L L

R R RCircle 1 Circle 2

� �

�

Only one more fixed index

after the first dependency

Two fixed indices

for the first dependency

�
�

�
�

��

Fig. 4. Example: after the first time one more dependency can fix only one more index

Proof: since equation number μ is dependent from the previous equations, there
is a subset S of the equations such that all the equations in S have a number
≤ μ, such that all the Li variables in the equations of S can be associated two
by two with equalities, and such that all the Ri variables in the equations of S
can be associated two by two with equalities, and such that equation number μ
is in S. So we have an index α, α ≤ μ such that Liμ+1 = Liα

and an index β,
β ≤ μ, α �= β, such that Riμ+1 = Riβ

, as said above, but we also have an index
γ, γ ≤ μ, γ �= α and an index δ, δ ≤ μ, δ �= γ such that Riα

= Riγ
and Liγ

= Liδ

(see figure 5). Here we see that iμ+1 and iγ can be fixed from the other indices
≤ μ (since Liγ

= Liδ
and Riγ

= Riα
, and Liμ+1 = Liα

and Riμ+1 = Riβ
) and

here for α, β, γ, δ,

�
�

�
��

R

L

L

iβiμ+1

iα

iδ

�

�

Fig. 5. First time dependency: at least two indices can be fixed

Remark. Alternatively it is also possible to show that since equation number
μ is dependent from the previous equations, we will have one, or more than
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one circles in L,R (there is an index α1 such that Liμ+1 = Liα1
, and an index

α2 �= α1 such that Riα1
= Riα2

, and an index α3 �= α2 such that Liα2
=

Liα3
, etc. and since the number of indices is finite, we get like this a circle in

L,R. If not all the indices of the dependencies are covered, we can continue
to get some other circles in L,R). Since in a circle in L,R, 50% of the indices
can be fixed from the other indices, and since a circle in L,R has a length
≥ 4 (since Li = Lj and Ri = Rj imply i = j), we see again that at least 2
indices will be fixed with the first dependency. For the second dependency it
may occur, however, that only one new index is fixed. For example if L1 =
L2 = L3, L4 = L5 = L6, R1 = R4, R2 = R5 and R3 = R6, then X1 = X4
implies X2 = X5 (this fixes 2 indices) and X3 = X6 (this fixes only one more
index).
• For equation number k, the last equation, it can be dependent or not from
the previous equations, but here, unlike before, we do not introduce a new index
(since we have a circle in the indices).

Conclusion for pk. If we have no dependencies in the equations, the probability
to have all the equations is≤ mk

k·2nk . If we have a dependency, for equations number
1 and 2 and for indices i1, i2, i3 we have a probability ≤ m3

22n . Then each new equa-
tion different from the last one, say equation number μ, μ < k, either introduces a
new index iμ+1 with a condition in 1

2n (it gives a term ≤ m
2n ) or we have less than

μ(μ − 1) possibilities for this index iμ+1. Moreover, the first time that we have a
dependency, say with equation number μ, μ < k, then we can fix two indices, iμ+1
and iγ for γ ≤ μ, fromthe other indices ij , j ≤ μ, and after less thanμ(μ−1)(μ−1)2

possibilities for the equalities in L and R these two indices will be fixed. So we get:
pk ≤ mk

k·2nk +
[

m(m−1)
2n · (m−2)

2n ·
(

(k−1)2

m ·
∏k−1

μ=3(μ(μ− 1)) + m−μ
2n

)]
. (Note: the

term (k−1)2

m comes from the second fixed index when we get the first dependency).

pk ≤ mk

k·2nk + m3

22n

(k−1)2

m · (2 · 3 + m
2n ) · (4 · 5 + m

2n ) . . . ((k − 2)(k − 1) + m
2n ). So if

m ≤ 2n, pk ≤ mk

k·2nk + m2(k−1)2

22n · (2 · 3 + 1) · (4 · 5 + 1) . . . ((k − 2)(k − 1) + 1) so
pk ≤ mk

k·2nk + m2

22n · (k − 1)2(k2)k−2 so since mk

k·2nk ≤ m2

k·22n if m ≤ 2n and k ≥ 2, we
get pk ≤ k2k · m2

22n as claimed.

Remark. In appendix F we will show a slightly different way to prove this
theorem 5 (by looking differently at all the possible equalities in L and R). In
appendix F we will see that instead of the coefficient k2k, we can get a coefficient
near kk. We can notice however that this coefficient can really be very large. For
example, if we start from a fixed circle of length k in L,R:

• For equalities in X,Y such that we have a circle of length k in X,Y , we have
potentially (k − 1)! possibilities.

• For equalities in X,Y such that all the indices can be associated two by two
with equalities in X, and associated two by two with equalities in Y , we
have potentially (3 · 5 · 7 . . . (k − 1))2 possibilities (this is ≤ (kk/2)2).



Benes and Butterfly Schemes Revisited 103

6 Benes: Proof of CPA-2 Security When m � 2n(1−ε)

In order to introduce the complexity of the proofs progressively, we will first
prove security when m � 2n/2, when m � 22n/3, when m � 23n/4 and finally
when m� 2n(1−ε), for all ε > 0.

6.1 Security When m � 2n/2

When f1, f2, f3, f4 are randomly and independently chosen in Fn, the probability
q1 to have i, j, 1 ≤ i < j ≤ m, such that Xi = Xj satisfies q1 ≤ m(m−1)

2·2n . So the
probability p to have a circle in X,Y (of any length) satisfies p ≤ q1 ≤ m(m−1)

2·2n

(since in any circle in X,Y we will have i < j such that Xi = Xj). So from
theorem 2 we get:

Theorem 6. The probability to distinguish Benes functions from random func-
tions of 2n bits → 2n bits in any CPA-2 with m chosen messages is always
≤ m(m−1)

2·2n (when f1, . . . , f8 are randomly and independently chosen in Fn). This
gives security when m2 � 2n, i.e. when m� 2n/2.

6.2 Security When m � 22n/3

When f1, f2, f3, f4 are randomly and independently chosen in Fn, the probability
q2 to have 3 pairwise distinct indices i, j, k, such that Xi = Xj and Yj = Yk satis-
fies q2 ≤ m(m−1)(m−2)

22n (Proof: when i, j, k are fixed Xi = Xj is a condition with
probability 1

2n on f1 and f2 and Yj = Yk is a condition with probability 1
2n on f3

and f4, and f1, f2, f3, f4 are independently chosen). So the probability p to have a
circle in X,Y (of any length) satisfies p ≤ q2 ≤ m3

22n . So from theorem 2 we get:

Theorem 7. The probability to distinguish Benes functions from random func-
tions of 2n bits→ 2n bits in any CPA-2 with m chosen messages is always ≤ m3

22n

(when f1, . . . , f8 are randomly and independently chosen in Fn).

6.3 Security When m � 23n/4

Theorem 8. When f1, f2, f3, f4 are randomly and independently chosen in Fn,
the probability q3 to have 4 pairwise distinct indices i, j, k, l, such that Xi = Xj,
Yj = Yk, Xk = Xl satisfies q3 ≤ m4

23n + 3m2

22n .

Proof. If the two equations in X are independent, the probability to obtain
these 3 independent equations on 4 indices is ≤ m4

23n . If f1(Li) ⊕ f2(Ri) =
f1(Lj) ⊕ f2(Rj) and f1(Lk) ⊕ f2(Rk) = f1(Ll) ⊕ f2(Rl) are dependent, then
the values Li, Lj , Lk, Ll can be linked two by two with equalities, and the
valuesRi, Rj , Rk, Rl can be linked two by two with equalities (for example: Li =
Lj , Lk = Ll, Ri = Rk and Rj = Rl). These equations in L,R can be written as
some circles of equalities inL,R (in the example above we have the circle:Li = Lj ,
Rj = Rl, Ll = Lk, Rk = Ri). (Remark: here, with 2 equations in X, we can
have only one circle, of length 4, since circles in L,R of length 2 cannot exist since
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Li = Lj andRi = Rj implies i = j). So two indices will be fixed from the two other
indices from these equations in L,R of the circle (in the example above, j and k
are fixed when i and l are given, since Lj = Li, Rj = Rl, Lk = Ll and Rk = Ri).
Moreover, for the equalities in L and R we have here ≤ 6 possibilities (for α such
that Rk = Rα we can take α = i, j or l, then for β such that Lk = Lβ we can take
β = i, j or l and we need α �= β). Conclusion: q3 ≤ m4

23n + 3m2

22n , as claimed.

Theorem 9. The probability p to have a circle in X,Y (of any length) satisfies
p ≤ m2

2·22n + m4

23n + 3m2

22n .

Proof. The probability to have a circle inX,Y is≤ [the probability to have a circle
in X,Y of length 2 + the probability to have a circle in X,Y of length > 2].

We have seen in section 5.2 that the probability to have a circle in X,Y of
length 2 is ≤ m2

2·22n . Circles in X,Y of length > 2 always have 4 pairwise distinct
indices i, j, k, l such that Xi = Xj , Yj = Yk and Xk = Xl. So from theorem 8,
we have p ≤ m2

2·22n + ( m4

23n + 3m2

22n ), as claimed.

Now from theorem 2 we get immediately the CPA-2 security of Benes schemes
when m� 23n/4:

Theorem 10. The probability to distinguish Benes functions from random func-
tions of 2n bits→ 2n bits in any CPA-2 with m chosen messages is always ≤ m4

23n

(when f1, . . . , f8 are randomly and independently chosen in Fn).

6.4 Security When m � 2n(1−ε)

The probability to have a circle in X,Y is ≤ [the probability to have a circle in
X,Y of length 2 + the probability to have a circle in X,Y of length 4 + the
probability to have a circle in X,Y of length between 6 and k + the probability
to have a circle in X,Y of length > k].

We have here an infinite sum. The trick to have just to calculate a finite sum
is to fix k and to use the fact that the probability to have a circle in X,Y of
length > k is ≤ the probability to have a line in X,Y of length k. We give here
the definition of a line in X,Y :

Definition 2. If k is odd, we will say that we have “a line in X,Y of length
k” if we have k + 1 pairwise distinct indices such that Xi1 = Xi2 , Yi2 = Yi3 ,
Xi3 = Xi4 , . . ., Yik−1 = Yik

, Xik
= Xik+1 . Similarly, if k is even, we will say that

we have “a line in X,Y of length k” if we have k + 1 pairwise distinct indices
such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Xik−1 = Xik

, Yik
= Yik+1 . So in

a line in X,Y we have k + 1 indices, and k equations, in X or in Y , and these
equations can be written “in a line” from the indices.

Let k be an integer, k ≥ 1.

Theorem 11. When f1, f2, f3, f4 are randomly and independently chosen in Fn,
the probability qk to have a line in X,Y of length k satisfies qk ≤ mk+1

2nk + k2km2

22n ,
when k ≥ 4 (or qk ≤ mk+1

2nk + k2km4

24n , when k ≥ 6).
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Remark. This decrease can be improved in different ways, for example if k ≥ 6
we can get k2km4

24n instead of k2km2

22n , and the value k2k can be improved (see
appendix F). However, this result will be enough to get security in 2n(1−ε) for
all fixed ε > 0.

Proof of theorem 11. The proof is exactly the same as the proof of theorem 5 of
section 5.4. The proof is even slightly simpler here, since the last equation does
not have to be treated differently from the other equations (each equation in X
or Y introduces a new index and a new equation).

Theorem 12. For all fixed integer k, k ≥ 1, when f1, . . . , f8 are randomly and
independently chosen in Fn, the probability p to have a circle in X,Y (of any
length) satisfies p ≤ m2

2·22n +
(

m4

4·24n + 3m2

22n

)
+
∑k

λ=6
λ2λm2

22n +
(

mk+1

2nk + k2km2

22n

)
.

Proof. If we have a circle in X,Y , then we have a circle of length 2 (probability
≤ m2

2·22n from theorem 3), or a circle of length 4 (probability ≤ m4

4·24n + 3m2

22n

from theorem 4), or we have a circle of length between 6 and k (probability
≤
∑k

λ=6
λ2λm2

22n from theorem 5), or we have a line in X,Y of length k (probability
≤ mk+1

2nk + k2km2

22n from theorem 11).

Theorem 13. For all fixed integer k, k ≥ 1, the probability p to distinguish
Benes functions from random functions of 2n bits → 2n bits in any CPA-2 with
m chosen messages always satisfies p ≤ (3+ 1

2+
∑k

λ=6 λ
2λ+k2k) m2

22n + 1
4

m4

24n + mk+1

2nk

(when f1, . . . , f8 are randomly and independently chosen in Fn). So if k is fixed,
n → ∞ and mk+1 � 2nk, then p will be � 1. So, for any k, for sufficiently
large n, m � 2nk/(k+1) gives CPA-2 security for Benes. So, for any ε > 0, for
sufficiently large n, m� 2n(1−ε) gives CPA-2 security for Benes.

Proof. Theorem 13 follows immediately from theorem 12 and theorem 2.

7 Examples of Applications

Keyed hash functions. In [1] it is explained how Benes schemes can be used for
the design of keyed hash function. From an input [Li, Ri] of 2n bits, the Benes
transformation gives a keyed hash function of n bits (the key is the functions
f1, f2, f3, f4). By combining this construction with the scheme of [3] it is also
possible to obtain a keyed hash function where the inputs can have any length
and the outputs will have n bits.
Information-theoretic application. Let us first describe a problem. Alice wants
to send many encrypted messages to Bob (for example 1 million messages) with
a stream cipher. Charlie is an adversary of Alice and Bob. He has “dynamic”
access to m messages. “Dynamic” means that he can choose a message, get the
corresponding ciphertext and then adaptively choose the next message and get
the corresponding ciphertext, etc., m times. Moreover, Charlie has unlimited
computing power: he has access to only m messages but he can perform an
infinite number of computations. Alice and Bob know a secret K. We want to
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design an encryption function that will “resist” Charlie’s attacks. “Resist” means
that, even if Charlie uses the m cleartext/ciphertext pairs he has access to, he has
no practical information on the other cleartexts. Benes functions offer a solution
for these problems with a length of the key (i.e. the functions f1, f2, f3, f4) not far
from the optimal. The idea is to use the Benes functions to create a stream cipher
like this: the message number i, says mi, will be encrypted as ci = Benes(i)⊕mi

(since this is a stream cipher, we do not need here Benes to be invertible). Here
i can be any value between 0 and 22n− 1, so we can encrypt N = 22n messages.
So here Charlie can choose m values i between 0 and 22n − 1 and he will get
Benes(i). The length of the key is here K = 4 · n · 2n bits and the scheme will
be secure as long as m� 2n(1−ε) for any fixed ε and sufficiently large n.

8 Conclusion

William Aiello and Ramarathnam Venkatesan did a wonderful work by pointing
out the great potentialities of theBenes schemes andby giving somevery important
parts of a possible proof. Unfortunately, the complete proof of security when m�
2n for CPA-2 is more complex than what they published in [1] due to some possible
attacks with circles inL,R. However, a careful analysis of these attacks shows that
∀ε > 0, for large values n the probability p to distinguish Benes schemes from truly
random functions satisfies for all CPA-2: p� 1 when m� 2n(1−ε) (but we do not
have always p ≤ m2

22n as claimed in [1]), so the final security is in a way similar, at
least for large n. One of the key point in our proof was to notice the fact that the
expectancy of the number of circles in X,Y may be large (when m 22n/3) while
the probability to have at least one such circle is generally negligible (when m �
2n). The security bound in m � 2n is also the security bound for the complexity,
since we have shown in this paper how to distinguish Benes (and more generally λ
rounds of independent Benes schemes for all integer λ ≥ 1) from random functions
with a cyphertext only attack of about 2n messages with about 2n computations
(for Feistel schemes we do not have a similar result).
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Appendices

A Summary of the Security Results for Benes and
Butterfly Schemes

We summarize the security results on Benes and Butterfly schemes on figure 3
and figure 4 below. We also compare them with Feistel schemes. For large values
of n the minimum number of computations is always ≥ m, where m is the
number of messages used in the attack.

Random Ciphertext only attack KPA CPA-2

One round of Butterfly 2n 2n 4

Benes 2n 2n ≥ 2n(1−ε)

λ rounds of Benes λ ≥ 1 2n 2n ≥ 2n(1−ε)

3 rounds of Feistel Does not exist * 2n/2 ** 2n/2 **
λ rounds of Feistel λ ≥ 6 Does not exist * 2n ** 2n **

Fig. 6. Minimum number m of queries needed to distinguish the schemes from random
functions of 2n bits → 2n bits (or from random permutations for Feistel schemes),
even if we have access to unbounded computing power. For simplicity we denote 2α for
O(2α), i.e. we have security if m 
 2α.
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Random Ciphertext only attack KPA CPA-2

One round of Butterfly 2n 2n 4

Benes 2n 2n ≥ 2n(1−ε) ≤ 2n

λ rounds of Benes λ ≥ 1 2n 2n ≥ 2n(1−ε) ≤ 2n

3 rounds of Feistel Does not exist * 2n/2 ** 2n/2 **

λ rounds of Feistel λ ≥ 6 Does not exist * ≥ 2n ≤ 2(λ−4)n ** ≥ 2n ≤ 2(λ−4)n **

Fig. 7. Minimum number of computations needed to distinguish the schemes from
random functions of 2n bits → 2n bits (or from random permutations for Feistel
schemes)

≥: best proved security. ≤: best known attack.
* Feistel schemes are permutations, so the ciphertext of m random messages gives m
random values. So there are no ciphertext only attacks from random cleartexts.
**cf [15].

B Benes: Example of CPA-1 with k = 2 Where p � m2

4·22n

Here we will see a simple ciphertext only attack and simple CPA-1 with m ! 2·2n

messages, and about 2 · 2n computations. The CPA-1 is not better than the
ciphertext only attack that we will see in appendix C, but we will improve this
CPA-1 in appendix D with k = 2 and k = 4. These attacks illustrate the fact that
for Benes the security with the number of computations is not larger than the
security with the number of messages: these attacks are with 2·2n computations.
These attacks will also illustrates a difference (by a factor only 2 here) between
the expectancy of the number of critical “circles” and the probability that at
least such circles exist.

• We choose m such that
√
m is an integer.

• We choose a set L of
√
m possible values for the Li values.

• We choose a set R of
√
m possible values for the Ri values.

• So our messages are all the
√
m×

√
m = m values [Li, Ri], where Li ∈ L and

Ri ∈ R.

(This is a non adaptive chosen plaintext attack, i.e. CPA-1, with m messages).
Now we count the number N of (i, j), i < j, such that: Si = Sj and Ti = Tj .

First case: Random functions. For random functions, the average value of
N is m(m−1)

2·22n , since we have m(m−1)
2 values (i, j), i < j, and when i and j

are fixed, we have a probability 1
22n to have Si = Sj and Ti = Tj .

Remark: It can also be shown that the standard deviation from the average

value is about
√

m(m−1)
2·22n , i.e. about m√

2·2n
.

Second case: Benes functions. For Benes functions,{
Si = Sj

Ti = Tj
⇔

{
f5(Xi)⊕ f6(Yi) = f5(Xj)⊕ f6(Yj)
f7(Xi)⊕ f8(Yi) = f7(Xj)⊕ f8(Yj)

(1)

This can occur either if (Xi �= Xj or Yi �= Yj) and (1) is satisfied with
probability 1

22n , or if (Xi = Xj) and (Yi = Yj), i.e. if
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f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj)
f3(Li)⊕ f4(Ri) = f3(Lj)⊕ f4(Rj)

(2)

since i < j, we have Li �= Lj or Ri �= Rj , so (2) occurs with probability 1
22n .

So for Benes functions, the average value of N is about 2 · m(m−1)
2·22n , instead

of about m(m−1)
2·22n for random functions.

Probability to get at least one such value Now let i, j, i < j, be two indices such
that Xi = Xj and Yi = Yj .

Case a: Li �= Lj and Ri �= Rj. Then let i′ be the index such that: [Li′ , Ri′ ] =
[Li, Rj ], and let j′ be the index such that: [Lj′ , Rj′ ] = [Lj , Ri]. Then {i′, j′} �=
{i, j} (because Li �= Lj and Ri �= Rj) and Xi′ = Xj′ , Yi′ = Yj′ (this comes
immediately from (2)), so we will have: Si′ = Sj′ and Ti′ = Tj′ . So, if (i, j),
i < j, are such that Si = Sj and Ti = Tj and Li �= Lj and Ri �= Rj , we will
have Si′ = Sj′ and Ti′ = Tj′ with probability about 1

2 if we have a Benes
function, and with probability 1

22n if we have a random function.
Case b: Li = Lj (we can analyze similarly Ri = Rj). Then (2) becomes:{

f2(Ri) = f2(Rj)
f4(Ri) = f4(Rj)

(3)

Now, let i′, j′ be two indices such that Ri′ = Ri and Rj′ = Rj . For i′, j′, we
have m possibilities (since for Li′ we have

√
m choices and for Lj′ we have√

m choices).
From (3), we get Xi′ = Xj′ and Yi′ = Yj′ , so Si′ = Sj′ and Ti′ = Tj′ . So

if (i, j), i < j, is such that Si = Sj and Ti = Tj and Li = Lj , we will have
Si′ = Sj′ and Ti′ = Tj′ for all these (i′, j′) values with probability about 1

2
if we have a Benes function, and with probability 1

22n for each (i′, j′) if we
have a random function.

Conclusion. While analyzing a Benes function, if we get two indices i, j, i < j
such that Xi = Xj and Yi = Yj , we will easily be able to certify with a very high
probability that we have a Benes function by testing the i′ and j′ inputs/outputs.
We can notice that the probability to obtain such indices is ≤ m(m−1)

4·2n since each
time we get one such index we have in fact immediately 2 or m such indices, and
since the average number of such indices is exactly m(m−1)

2·2n for Benes functions.

Remark. For large values of m such that m(m − 1) < 4 · 2n, the probability to
obtain such indices can be as near as wanted to m(m−1)

4·2n , since for large values of
m, the number of (i, j), i < j, such that Li = Lj or Ri = Rj becomes negligible
compared with the number of (i, j), i < j, such that Li �= Lj and Ri �= Rj (i.e.
m
√
m becomes negligible compared with m(m−1)

2 −m
√
m).

Conclusion. With k = 2, we have obtained here an attack with a probability
to distinguish Benes functions from random functions of about m(m−1)

4·22n , and an
average number of critical values i, j, i < j, with Xi = Xj and Yi = Yj (i.e. an
average number of circles in X,Y of length 2) of about m(m−1)

2·22n .
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C Benes and λ Rounds of Benes: Example of Ciphertext
Only Attack with About 2 · 2n Computations

Let [Li, Ri] be m random messages. Let N be the number of i, j, i < j, such that:
Si = Sj and Ti = Tj . With a similar analysis as done in appendix B for the CPA-
1, we can easily show that for random functions N ! m(m−1)

2·22n , and for Benes
functions the average value of N is about N ! 2 · m(m−1)

2·22n (since Si = Sj and
Ti = Tj can occur if Xi = Xj and Yi = Yj with probability ! 1

22n , or if Xi �= Xj

or Yi �= Yj with probability ! 1
2n , when i and j are fixed). The probability

to distinguish Benes functions from random functions with this ciphertext only
attack is about m(m−1)

2·22n (when this value is < 1). (So this ciphertext only attack
is slightly better than the CPA-1 of appendix B. We have introduced the CPA-1
because it illustrates what we will do in appendix D).

Remark. More generally, for all integer λ ≥ 1, this ciphertext only attack (i.e.
counting the number N of i, j such that Si = Sj and Ti = Tj) distinguishes λ
independent rounds of Butterfly from random functions with about m random
messages and about 2n complexity. So, unlike what appears with Feistel schemes
(see [15] or appendix A), the number of computations to be done to distinguish
λ Butterfly from random functions with our best known attacks do not increase
with λ. For some applications Benes schemes may therefore be less useful than
Feistel schemes, even if the permutations are not required.

Complexity. The number of computations needed in these attacks (KPA or CPA-
1) is about 2 · 2n (with the same memory) since we can store the [Si, Ti] values
and look for collisions.

Remark. It is also possible to need only 2·2n

λ memory with λ(2·2n) computations
with the usual time/memory tradeoff algorithm (storing 2·2n

λ values [Si, Ti] at
each time).

D Benes: Example of CPA-1 with k = 2 and k = 4

Where p � 7m2

4·22n

Here we will see an attack where the probability p to distinguish a random
function from a Benes function can be as near as wanted to 7m(m−1)

4·22n (for large
values m and when 7m(m−1)

4·22n is < 1). This shows that the result claimed in [1]
(page 318 it is written: p ≤ m2

22n ) is not always true (since 7
4 > 1). Moreover this

example illustrates with k = 4 many things that we consider in this paper for
general values of k.

The beginning of the attack is similar with the attack given in appendix B:

• We choose m such that
√
m is an integer.

• We choose a set L of
√
m possible values for the Li values.

• We choose a set R of
√
m possible values for the Ri values.

• Our messages are all the
√
m ×

√
m = m values [Li, Ri], where Li ∈ L and

Ri ∈ R.
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(This is a CPA-1 with m messages).Now we count the number N of {i, j, k, l},
i, j, k, l pairwise distinct, such that: Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl,
Si ⊕ Sj ⊕ Sk ⊕ Sl = 0, Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0 and such that we do not have two
indices α and β, α �= β, such that α, β ∈ {i, j, k, l} and: Sα = Sβ Tα = Tβ (∗)
This extra condition (∗) is here to guarantee that this attack of appendix D is
really different from the attack of appendix B. At the end we will be able, if we
want, to combine the two attacks.

First case: random functions. For random functions, the average value of N
is about A

22n , where A is the number of circles in L,R of length 4, i.e. the
number of {i, j, k, l}, i, j, k, l pairwise distinct, such that Li = Lj , Lk = Ll,
Ri = Rk, Rj = Rl. We can find the exact value of A: we have A = m

4 (
√
m−

1)2 (Proof: For i we have m possibilities.Then for j such that Li = Lj and
i �= j we have

√
m− 1 possibilities. Then for k such that Rk = Ri and k �= i

(i.e. Lk �= Li) we have
√
m − 1 possibilities. Then for l such that Ll = Lk

and Rl = Rj we have exactly one possibility when i, j, k are fixed. Like this
we have counted all the circles exactly 4 times (we can start the circle with
i, j, k or l), so A = m

4 (
√
m− 1)2as claimed).

Second case: Benes functions. For Benes functions,{
Si ⊕ Sj ⊕ Sk ⊕ Sl = 0
Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0

⇔{
f5(Xi) ⊕ f5(Xj) ⊕ f5(Xk) ⊕ f5(Xl) = f6(Yi) ⊕ f6(Yj) ⊕ f6(Yk) ⊕ f6(Yl)
f7(Xi) ⊕ f7(Xj) ⊕ f7(Xk) ⊕ f7(Xl) = f8(Yi) ⊕ f8(Yj) ⊕ f8(Yk) ⊕ f8(Yl)

(1)

This can occur either if the Xi values and the Yi values can be eliminated
two by two (for example if Xi = Xj , Xk = Xl, Yi = Yk and Yj = Yl),
or with probability 1

22n when i, j, k, l are fixed if the Xi values and the Yi

values cannot be eliminated two by two. However we do not want to have
two indices α and β, α �= β, such that α, β ∈ {i, j, k, l} and Xα = Xβ and
Yα = Yβ because this would imply Sα = Sβ and Tα = Tβ in contradiction
with the condition (∗) above. So the Xi values and the Yi values can be
eliminated two by two if and only if we have a circle in X,Y of length 4 (i.e.
if we can chose i1, i2, i3, i4 pairwise distinct in {i, j, k, l} with Xi1 = Xi2 ,
Yi2 = Yi3 , Xi3 = Xi4 and Yi4 = Yi1). We have here 6 possible circles:

1. Xi = Xj , Yj = Yk, Xk = Xl and Yl = Yi

2. Xi = Xj , Yj = Yl, Xl = Xk and Yk = Yi

3. Xi = Xk, Yk = Yj , Xj = Xl and Yl = Yi

4. Xi = Xk, Yk = Yl, Xl = Xj and Yj = Yi

5. Xi = Xl, Yl = Yj , Xj = Xk and Yk = Yi

6. Xi = Xl, Yl = Yk, Xk = Xj and Yj = Yi

Moreover, since we have Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl, we always
have Xi⊕Xj⊕Xk⊕Xl = 0 and Yi⊕Yj⊕Yk⊕Yl = 0 (because Xi⊕Xj⊕Xk⊕
Xl = f1(Li)⊕ f2(Ri)⊕ f1(Lj)⊕ f2(Rj)⊕ f1(Lk)⊕ f2(Rk)⊕ f1(Ll)⊕ f2(Rl)
and similarly for Y ).

So each of the 6 possible circles have a probability 1
22n to be true when

f1, f2, f3, f4 are randomly chosen (since 2 of the 4 equalities are implied by
the 2 other equalities). For example, we have Xi = Xj , Yj = Yk, Xk = Xl,
Yl = Yi if and only if f1(Li)⊕f2(Ri) = f1(Lj)⊕f2(Rj) and f3(Lj)⊕f4(Rj) =
f3(Lk) ⊕ f4(Rk) i.e. if and only if f2(Ri) = f2(Rj) and f3(Li) ⊕ f4(Rj) =
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f3(Lk) ⊕ f4(Ri). So for Benes functions, the average value of N is about
7A
22n , where A is the number of “4-circles in L,R” (7=6+1 since we have 6
possible circles and a probability 1

22n to have (1) if we have no such circles).

Remark: Moreover unlike what appeared with Xα = Xβ and Yα = Yβ in
appendix B, none of these 6 conditions is equivalent to another of these 6
conditions, so the probability that at least one of these conditions is satisfied
is really near 6A

22n (for large values of m and when 6A
22n < 1).

Conclusion. With k = 4, we have obtained here an attack with a probability
to distinguish Benes functions from random functions of about 6m2

4·22n and an
average number of about also 6m2

4·22n critical values {i, j, k, l}. This attack can
also be combined with the attack with k = 2 given in appendix B. Then we
obtain an attack with a probability of success of about 7m2

4·22n (with an average
number of 8m2

4·22n critical values).

E Why Fixing the Proof of [1] Was Not Easy When
m � 22n/3

It may seem difficult to use the results of section 5 to get a security in 2n(1−ε)

for all ε > 0, since k can be (a priori) as large as m, and then k2km3

24n is not
at all negligible when m � 2n(1−ε). Moreover, we can choose m as a square
of an integer, and choose all the [Li, Ri], 1 ≤ i ≤ m, such that Li ∈ L and
Ri ∈ R where L and R are sets of only

√
m values. Then let A be the set of

all the circles in L,R of length k that we can generate such that two different
circles of A have at least one different index. If we consider one such circle C,
the probability p that we will get a circle in X,Y between the indices of C can
be evaluated as p ≥ about (k−1)!

2n(k−2) , since we have potentially (k − 1)! possible
circles in X,Y on the m indices, and since at least two equations (one in X and
one in Y ) are implied by the other equations in X and Y due to the circle in
L,R. So the expectancy for the number of circles in X,Y of A that we will find
can be evaluated as ≥ about |A|(k−1)!

2n(k−2) . Moreover, with our very specific chosen

values Li and Ri, we can show that |A| will be ! mk/2

k (for k = 4 the exact
value is |A| = m

4 · (
√
m− 1)2 ! m2

4 ). Here, we can have mk/2

k (k − 1)! 2n(k−2),
with m � 2n. For example, with k = m

2 , it is possible to show that this may
indeed happen when m  22n/3. So the expectancy of the number N of circles
in X,Y may be large. Nevertheless the probability to obtain at least one such
circle will be always negligible when m� 2n, as we have seen in section 6. One
reason for this is that in a line of equations in X,Y (i.e. Xi1 = Xi2 , Yi2 = Yi3 ,
. . ., Yik−1 = Yik

) the value k is not bounded by a fixed integer when m � 2n,
but the probability to have k ≥ 2n

2 for example is negligible. We can also notice
that all the circles of A are not independent, since we have about mk/2

k circles
in A and they are all built from k points chosen in the same set of m points.
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The expectancy of N is the sum of the expectancies on all the elements of A
(the expectancy of a sum is the sum of the expectancies, even if the variables
are not independent). However the probability for N to be �= 0 is not the sum
on all the elements of A of the probability to be �= 0 (they are not independent).
So we cannot hope to fix the proof of [1] just by computing the expectancy of
the number of circles of length k and by summing them. We need to introduce
the probability to obtain a line of length k in X,Y . This is what we have done
in section 6.

F Improvements of Theorem 5

The value |Ck| Let Ck be the set of all possible non equivalent equalities in
L and R between the indices {i1, . . . , ik}. We have |Ck| ≤ k2k. Proof: We can
find all the equalities in L and R if we know all the (l(i), r(i)), i ∈ {i1, . . . , ik},
where l(i) is the smallest j ≤ i such that Lj = Li and r(i) is the smallest
j ≤ i such that Rj = Ri. Since we have ≤ k2 possibilities for (l(i), r(i)) we have
immediately |Ck| ≤ k2k. However more precise evaluations of |Ck| are possible.

For example we can prove that |Ck| ≤
(∑k/2

λ=1
(λ+1)k

λ!

)2
and we can show that

this value is near kk instead of k2k (the evaluation k2k was enough for our
theorems but the coefficient k2k can be improved). Proof: we look first for the
possibilities for the equations in L. Let R be the relation such that for i, j ∈
{i1, . . . , ik}, iRj ⇔ Li = Lj . This is a relation of equivalence. Let λ be the
number of equivalence classes with at least 2 different elements in the classes.
We have λ ≤ k/2. Now let B be a set of λ + 1 boxes, B = {B0, . . . , Bλ+1}.
From an application f of {i1, . . . , ik} → B we can associate equalities in L like
this:

• if f(i) ∈ B0 then there is no j �= i such that Li = Lj .
• if f(i) ∈ Bk, k �= 0 then the indices j such that Lj = Li will be exactly all
the indices j such that f(j) ∈ Bk. We have ≤ (λ + 1)k possibilities for f such
that ∀α, 1 ≤ α ≤ λ + 1, ∃j ∈ {i1, . . . , ik} / f(j) ∈ Bα, and each set of possible
equations in L can be associate with λ! such functions f since we can permute
B1, . . . , Bλ (but not B0). So the number of non equivalent possibilities for the
equations in L is ≤

∑k/2
λ=1

(λ+1)k

λ! (the only case with λ = 0 can be included with
λ = 1), and similarly for the equations in R. So for the equations in L and R we

get |Ck| ≤
(∑k/2

λ=1
(λ+1)k

λ!

)2
as claimed.

Conclusion for pk. Let A ∈ Ck. Let α(A) be the number of dependent equations
of (8) and (9) when the equalities in L and R are those of A. Let β(A) be
the number of indices of {i1, . . . , ik} that we can fix from the other indices
of {i1, . . . , ik} due to the equalities in L and R of A. Our analysis done in
section 5.4 of the equalities of (8) and (9) taken one by one shows that we
always have α(A) ≤ β(A) + 1 (the +1 comes from the last equation). Moreover,
if α(A) �= 0, then when we will consider the first equation of (8) or (9) that gives
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a dependency, this dependency comes from one or more than one circle in L,R
between the indices (these circles are not necessary disjoints). Now a circle in
L,R has always a length ≥ 4. Moreover in a circle in L,R we can fix at least
50% of the indices from the other indices (we just need to know one over two
indices and recover the other with the equalities in L and R of the circle). So
the first time where we will get a dependency in X or Y we will have at least
2 indices fixed from the others to get this first dependency. So we always have
α(A) ≤ β(A).

We have pk ≤ mk

k·2nk +
∑

A∈Ck

mk−β(A)

2n(k−α(A)) since we have k − α(A) independent
equations and ≤ mk−β(A) possibilities for the indices. Since α(A) ≤ β(A), we
get pk ≤ mk

k·2nk + |Ck|m
2

22n . Moreover if k ≥ 6 it is possible to show that we will
have at least 4 independent equations in a circle of length k in X,Y . Then
we get : pk ≤ mk

k·2nk + |Ck|m
4

24n , with |Ck| ≤ (
∑k/2

λ=1
(λ+1)k

λ! )2 for example, when
k ≥ 6.

G An Example for Theorem 5

In the proof of theorem 5, terms in O( mα

2nα ), for some values α, appear for in-
dependent equations of (8) and (9) (we then have a term in O( mk

2nk )) or with
dependent equations. For dependent equations, all the terms are ≤ O( m2

22n ) when
k is fixed, as proved in theorem 5. Is it really possible to have a term in O( mα

2nα )
or is it possible to prove that all the terms are in O(mα−1

2nα ) for some values α
when we have at least one dependent equation? In fact, as we will see now, it
is really possible to have a term in O( mα

2nα ) with some dependent equations. We
give such an example in figure 5, with k = 8 indices, 4 equations in X and 4
equations in Y . In this example the term is in O( m4

24n ).

L, X L, Y L, X

L, X L, Y L, X

R R R R

Y

Y

1

5 8

42

6

3

7

Fig. 8. A line shows an equality between two indices. Here 4 indices can be fixed from
the other 4 indices and 4 equations are dependent (2 in X and 2 in Y since the ⊕ of
all the Y is 0, since the Li variables are identical two by two and the Ri variables are
identical two by two).
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H Modified Benes, i.e. Benes with f2 = f3 = Id

H.1 First Comments on Modified Benes

If we take f2 = f3 = Id in the Benes schemes, we obtain a scheme called “Modified
Benes” (see [1]). Then we have: Xi = f1(Li) ⊕ Ri, Yi = Li ⊕ f4(Ri) and the
output [Si, Ti] is such that: Si = f5(Xi)⊕ f6(Yi) and Ti = f7(Xi)⊕ f8(Yi). In [1]
it is said that the probability p to distinguish this modified Benes from a random
function of 2n bits→ 2n bits satisfies p ≤ m2

22n since we can proceed as for Benes.
This evaluation is too optimistic. First, we have at least the same attack with p !
7m2

4·22n as done for Benes in appendix D. Second, modified Benes require a specific
analysis since it behaves not exactly as Benes. For example, let us evaluate p4, the
probability to have a circle in X,Y of length 4 for modified Benes. We have: Xi =
Xj andXk = Xl if and only if f1(Li)⊕Ri = f1(Lj)⊕Rj and f1(Lk)⊕Rk = f1(Ll)⊕
Rl. This can occur for example for Li = Lk, Lj = Ll and Ri ⊕Rj ⊕Rk ⊕Rl = 0.
Here only one index is fixed (for example l)unlike forBeneswherewe have seen that
at least two indices were fixed for the first dependency. So in p4 we will get a term in
m3

23n that did not exist in the original Benes. Similarly, if we consider the probability
q3 to have a line Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , we will get q3 ≤ m4

23n + 2m3

22n

(unlike q3 ≤ m4

23n + 6m2

22n for the original Benes). So here we have a term in m3

22n , and
therefore we will have to consider longer lines inX,Y to get a security inm� 23n/4

for modified Benes compared with the original Benes. As we will see below, it is
however possible toprove that formodifiedBenes, when ε is fixed andn→∞, there
are no CPA-2 if m � 2n(1−ε). However the evaluation of the security parameter
in k that we have obtained is larger for modified Benes compared with the original
Benes schemes.

H.2 Ideas of the Proof of Security When m � 2n(1−ε) for Modified
Benes

We give here only the main ideas.

Theorem 14. Let us consider a line of λ+α equations in X, Y such that the λ
first equations may be dependent or independent, and the other α equations are
all dependent from the λ first equations. Then we always have: α ≤ (λ + 1)2.

Proof. We have: Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Yiλ
= Yiλ+1 (and these

λ equations (A) are dependent or independent), and we have: Xiλ+1 = Xiλ+2 ,
Yiλ+2 = Yiλ+3 , . . ., Yiλ+α

= Yiλ+α+1 (and these α equations (B) are dependent
from the λ equations of (A)). If an equation Xi = Xj is dependent from previous
equations, then Li and Lj are values that have appeared before, since Xi = Xj ⇔
f1(Li)⊕Ri = f1(Lj)⊕Rj , and here we see that i �= j implies Li �= Lj . Similarly,
if an equation Yk = Yl is dependent from previous equations, then Rk and Rl are
values that have appeared before, since Yk = Yl ⇔ Lk ⊕ f4(Rk) = Ll ⊕ f4(Rl),
and here we see that k �= l implies Rk �= Rl. Now from the λ equations of (A)
we have at most λ+ 1 values Li and λ+ 1 values Rj , so at most (λ+ 1)2 values
(Li, Rj) are possible in (B).
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Circles in X,Y In a circle (C) in X,Y , we can analyze the equations in X and
in Y as we did with theorem 14 in a line, if we can put at the end an equation
in X or Y which is independent from the others. If not, then this means that all
the equations in X and Y are dependent from the other equations in X or Y .
However in this case all index i of the circle (C) is such that there is an index
j in (C), j �= i such that Li = Lj and similarly there is an index k in (C) such
that k �= i and Ri = Rk. In this case we will have at least one circle in L,R
(with indices from the circle (C) in X,Y ) so at least 2 indices can be fixed from
the other indices (as we have seen for the original Benes). So for the modified
Benes, we will get a security in m� 2n(1−ε) as for the original Benes (but with
slightly different security coefficients).
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Abstract. Highly regular execution and the cleverly included redun-
dant computation make the square-multiply-always exponentiation al-
gorithm well known as a good countermeasure against the conventional
simple power analysis (SPA). However, the doubling attack threatens the
square-multiply-always exponentiation by fully exploiting the existence
of such redundant computation. The Montgomery ladder is also recog-
nized as a good countermeasure against the conventional SPA due to its
highly regular execution. Most importantly, no redundant computation
is introduced into the Montgomery ladder. In this paper, immunity of
the Montgomery ladder against the doubling attack is investigated. One
straightforward result is that the Montgomery ladder can be free from
the original doubling attack. However, a non-trivial result obtained in
this research is that a relative doubling attack proposed in this paper
threatens the Montgomery ladder. The proposed relative doubling at-
tack uses a totally different approach to derive the private key in which
the relationship between two adjacent private key bits can be obtained as
either di = di−1 or di �= di−1. Finally, a remark is given to the problem
of whether the upward (right-to-left) regular exponentiation algorithm is
necessary against the original doubling attack and the proposed relative
doubling attack.

Keywords: Chosen-message attack, Cryptography, Doubling attack,
Exponentiation, Scalar multiplication, Side-channel attack, Simple power
analysis (SPA), Smart card.

1 Introduction

Cryptographic hardware devices like smart cards are widely used nowadays. Dur-
ing the past few years many research results have been published on considering
� This work was supported by University IT Research Center Project.

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 117–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



118 S.-M. Yen et al.

smart card side-channel attacks because of the popular usage of smart cards on
implementing cryptosystems. This new branch of cryptanalysis is usually called
the side-channel attack. The power analysis attack is an important category of
side-channel attack originally pointed out by Kocher [1] in which both simple
power analysis (SPA) and differential power analysis (DPA) were considered.

In a SPA, the attacker observes on one or a few collected power traces of the
smart card executing an algorithm and tries to identify the occurrence of an
instruction execution or a specific operand/data access which are driven by a
part of the private key. Through the above observation, if precise enough, the
private key can be derived. In a DPA, the attacker tries to verify his guess on a
part of the private key by analyzing on only some specific bits of the result of a
specific intermediate step of an algorithm which is a function of the private key.
In order to largely enhance the signal to noise ratio to mount a successful DPA,
it usually collects much more1 power traces than in a SPA and partitions the
power traces into some groups according to the guessed key bits and a underlying
attack design. Difference of the above power traces of different groups is therefore
used to verify the guess on key bits. Usually, a DPA is mounted by analyzing
on many executions of the same algorithm with different random inputs, and
theoretically those inputs will be better if statistically unrelated.

Exponentiation and its analogy, point scalar multiplication on elliptic curve,
are of central importance in modern cryptosystems implementation as they are of
the basic operation of almost all modern public-key cryptosystems, e.g., the RSA
system [2], the ElGamal system [3], and the elliptic curve cryptography [4, 5].
Therefore, many side-channel attacks and also the related countermeasures on
implementing exponentiation and point scalar multiplication have been reported
in the literature.

The square-multiply-always exponentiation (or point scalar multiplication)
algorithm [6] is a well-known SPA countermeasure which exploits a simple and
useful trick to design a regularly executing algorithm by introducing redundant
computation into each loop iteration when necessary. Unfortunately, Fouque and
Valette proposed the doubling attack [7] to threaten the square-multiply-always
algorithm (more precisely, the left-to-right version of the algorithm) by exploiting
the existence of redundant computation in a novel approach.

Joye and Yen proposed an enhanced SPA countermeasure based on the Mont-
gomery ladder [8] which was demonstrated to be also regularly executed but
based on a totally different idea from the original square-multiply-always ex-
ponentiation. The most special thing about the Montgomery ladder is that no
redundant computation exists in the algorithm which is also helpful to be im-
mune from some hardware fault attacks [9, 10].

However, no research has been reported on whether the Montgomery ladder
can be immune from the doubling attack or any doubling-like attack in the
light of the fact of no redundant computation within the algorithm. The main
contribution of this paper is that a totally different approach of doubling attack

1 It usually collects a few thousands or more power traces in order to obtain a mean-
ingful average power trace.
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(called the relative doubling attack) is proposed which can successfully threaten
the Montgomery ladder with the same attack assumption as the original doubling
attack. The lesson learned is that redundant computation removing in a regular
exponentiation algorithm may not be sufficient against doubling-like attack.

2 Exponentiation Algorithm and Simple Power Analysis

2.1 Exponentiation Algorithm

In this paper, we consider the problem of computing modular exponentiation.
In the context of RSA private computation (e.g., decryption), we consider the
computation of S = Md mod n where M , d, and n are the input datum, the
private key, and the modulus integer, respectively.

Let
∑m−1

i=0 di 2i be the binary expansion of exponent d. The computation
S = Md mod n needs efficient exponentiation algorithms to speedup its imple-
mentation. Although numerous exponentiation algorithms have been developed
for computing Md mod n (see [11] for a survey), practical solutions for devices
with constrained computation and storage capabilities (e.g., smart cards) are
usually restricted to the basic square-multiply algorithms in Fig. 1 and some
slightly modified ones. The left-to-right (MSB-to-LSB) version in Fig. 1 (a) is
especially preferable to implementations in smart cards because this algorithm
needs only one temporary memory R0 if the input data M is also stored inside
the smart cards.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1
02 for i = m − 1 downto 0 do
03 R0 ← (R0)

2 mod n
04 if (di = 1) then

R0 ← R0 × M mod n
05 return R0

(a) Left-to-right binary algorithm.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R1 ← M
02 for i = 0 to m − 1 do
03 if (di = 1) then

R0 ← R0 × R1 mod n
04 R1 ← (R1)

2 mod n
05 return R0

(b) Right-to-left binary algorithm.

Fig. 1. Classical binary exponentiation algorithms

2.2 Simple Power Analysis and Countermeasures

Side-channel attacks are developed based on the fact that in most real implemen-
tations some side-channel information (e.g., timing or power consumption) will
depend on the private key related instructions being executed and/or the data
being manipulated. Therefore, the side-channel information may be exploited to
mount a successful attack to retrieve the embedded private key, e.g., the private
exponent d in Md mod n.

The classical binary exponentiation algorithm in Fig. 1 (a) includes a con-
ditional branch (i.e., the Step (04)) that is driven by the secret data di. If the
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two possible branches behave differently (or the branch decision operation it-
self behaves distinguishably), then some side-channel analysis (e.g., the simple
power analysis–SPA) may be employed to retrieve the secret data di. So, further
enhancement on the algorithms is necessary.

A novel idea of introducing redundant operations and eliminating secret data
dependent statements was proposed previously to enhance the basic algorithms
such that the improved versions behave more regularly. Some square-multiply-
always (or its counterpart called the double-add-always for point scalar multipli-
cation) based algorithms were already developed [6] by employing this
observation. Two of these square-multiply-always algorithms are shown in Fig. 2.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1
02 for i = m − 1 downto 0 do
03 b ← ¬di

04 R0 ← (R0)
2 mod n

05 Rb ← R0 × M mod n
06 return R0

(a) SPA-protected left-to-right
algorithm.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R2 ← M
02 for i = 0 to m − 1 do
03 b ← ¬di

04 Rb ← R0 × R2 mod n
05 R2 ← (R2)

2 mod n
06 return R0

(b) SPA-protected right-to-left
algorithm.

Fig. 2. SPA-protected square-multiply-always countermeasures

2.3 Doubling Attack

The doubling attack2 [7] is a special category of SPA with chosen message as-
sumption and it has been shown to be useful to thwart the well-known SPA-
protected left-to-right (downward) square-multiply-always countermeasure (see
Fig. 2 (a)). The main idea is to choose two strongly related inputs M and
M2 mod n (so being a chosen-message attack) and to observe the collision of
two computations for M2(2x+di) mod n and M4x mod n if di = 0. In the dou-
bling attack, even if the attacker cannot decide whether a computation being
performed is squaring or multiplication, the attacker can still detect collision of
two operations (basically the squaring operation) within two related computa-
tions. More precisely, for two computations A2 mod n and B2 mod n, even if the
attacker cannot tell the values of A and/or B, however the attacker can detect
the collision if A = B.

The following example given in Table 1 provides the details of the doubling
attack. Let the private exponent d be 75 = (1, 0, 0, 1, 0, 1, 1)2 and the two related
input data be M and M2, respectively. The computational process of raising Md

and (M2)d using the left-to-right square-multiply-always algorithm reveals the
fact that if di = 0, then both the first computations (both are squarings) of

2 It can also be called the squaring attack for the scenario of exponentiation.
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iteration3 i − 1 for Md and iteration i for (M2)d will be exactly the same. So,
observing collisions (observation on the existence of same instruction with same
operand) within computations of two collected power consumption traces enables
the attacker to identify all private key bits of zero value except the LSB of d. In
the scenario of RSA private computation, it is assumed that d0 = 1.

The assumption made (was claimed in [7] to be correct by experiment) is
very reasonable since the target computations usually take many machine clock
cycles (thus more easy to measure and to observe) and depend greatly on the
operands, so the collision is more easy to detect.

Table 1. Computations of Md and (M2)d in the square-multiply-always algorithm

i di Process of Md Process of (M2)d

6 1 12 12

1 × M 1 × M2

5 0 M2 (M2)2

M2 × M M4 × M2

4 0 (M2)2 (M4)2

M4 × M M8 × M2

3 1 (M4)2 (M8)2

M8 × M M16 × M2

2 0 (M9)2 (M18)2

M18 × M M36 × M2

1 1 (M18)2 (M36)2

M36 × M M72 × M2

0 1 (M37)2 (M74)2

M74 × M M148 × M2

Return M75 M150

2.4 Montgomery Ladder as Enhanced Countermeasure Against
SPA

Montgomery ladder is originally due to Peter Montgomery [12] as a means to
speed up scalar multiplication in the context of elliptic curves. It has been re-
discovered in [13] in another context and applied to Lucas sequences.

In [8], an exponentiation algorithm based on Montgomery ladder was con-
sidered such that it can resist some side-channel attacks, e.g., SPA and timing
attack, and also the safe-error attacks [9, 10] (a category of hardware fault at-
tack). The algorithm is given in Fig. 3. This algorithm is only SPA resistant and
is used to simplify the description of the proposed attack. However, an enhanced
version in [8] meant to be immune from the safe-error attacks with Step 04 re-
placed by (Rb ← Rb × Rdi

mod n) is still vulnerable to the relative doubling
attack proposed in this paper.

It is evident that the Montgomery ladder (and its enhanced version) behave
regularly and most specially that there is no redundant computation within the
algorithm.

3 Here, the iteration number is denoted decreasingly from m − 1 downward towards
zero.
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Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R1 ← M
02 for i = m − 1 downto 0 do
03 b ← ¬di

04 Rb ← R0 × R1 mod n
05 Rdi ← (Rdi)

2 mod n
06 return R0

Fig. 3. SPA-protected Montgomery ladder

3 The Proposed Attack

3.1 Attack Assumption

The assumption made in this paper is basically the same as what considered in
the doubling attack [7] and that in an attack reported in [14]. The assumption
is that an adversary can distinguish collision of power trace segments (within
a single or more power traces) when the smart card performs twice the same
computation even if the adversary is not able to tell which exact computation
is done. The collision instance to be distinguished in [7] and in our proposed
attack is the modular squaring computation. An adversary is assumed to be
able to detect the collision of A2 mod n and B2 mod n if A = B even though A
and B are unknown.

3.2 Relative Doubling Attack on Montgomery Ladder

Let
∑m−1

j=0 dj 2j be the binary expansion of the exponent d. The Montgomery
ladder (see Fig. 3) was designed based on the following observation [8]. Let
Li =

∑m−1
j=i dj 2j−i and Hi = Li + 1, then we have

Li = 2Li+1 + di = Li+1 + Hi+1 − 1 + di,

Hi = Li+1 + Hi+1 + di = 2Hi+1 − 1 + di.

Based on the above observation, we obtain

(Li,Hi) =
{

(2Li+1, Li+1 + Hi+1) if di = 0 ,
(Li+1 + Hi+1, 2Hi+1) if di = 1 . (1)

In the algorithm (Fig. 3), the register R0 is used to store the value of MLi and
the register R1 is used to store MHi . In order to develop an execution regular
and SPA immune algorithm, the operations of Step 04 and Step 05 are designed
to be as follows

(R1 = MHi , R0 = MLi) =
(
MLi+1 ×MHi+1 , (MLi+1)2

)
if di = 0, (2)

and

(R0 = MLi , R1 = MHi) =
(
MLi+1 ×MHi+1 , (MHi+1)2

)
if di = 1. (3)
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The above statements clearly demonstrate that the Montgomery ladder ex-
ecutes highly regular and there is no redundant computation within the algo-
rithm. Whatever the processed bit di, there is always a multiplication followed
by a squaring. On the contrary, we want to emphasize that in the left-to-right
square-multiply-always algorithm (see Fig. 2 (a)), redundant computation (i.e.,
Step 05: Rb ← R0 ×M mod n) does exist when di = 0. The original doubling
attack on the algorithm in Fig. 2 (a) exploits the existence of this redundant
computation.

However, no research has been reported on whether the Montgomery ladder
can be immune from the doubling attack or any doubling-like attack in the light
of the fact of no redundant computation within the algorithm. A straightforward
result can be obtained easily is that the original doubling attack does not apply
to the Montgomery ladder. However, the following result will show that another
doubling-like attack can still be applicable to the Montgomery ladder.

Fact 1. Given di = 0, then we have Li = 2Li+1.

Proof. This can be obtained directly from the definition of Li =
∑m−1

j=i dj 2j−i

since di = 0. ��

Fact 2. Given di = 1, then we have Hi = 2Hi+1.

Proof. From the definitions of Li =
∑m−1

j=i dj 2j−i, Hi = Li +1, and also di = 1,
we have Hi = Li + 1 = (2Li+1 + 1) + 1 = 2(Li+1 + 1) = 2Hi+1. ��

From Eq.(2), we understand that if di = di−1 = 0 then both{
R0 ← (MLi)2 : Step 05 of iteration i− 1 when evaluating Md

R0 ← ((M2)Li+1)2 : Step 05 of iteration i when evaluating (M2)d,
(4)

will perform the same computation because of Li = 2Li+1 (see Fact 1). Due to
this observation of collision on computation, a new doubling-like attack can be
mounted to derive the knowledge of di = di−1 = 0.

On the other hand, from Eq.(3), we also observe that if di = di−1 = 1 then
both{

R1 ← (MHi)2 : Step 05 of iteration i− 1 when evaluating Md

R1 ← ((M2)Hi+1)2 : Step 05 of iteration i when evaluating (M2)d,
(5)

will perform the same computation because of Hi = 2Hi+1 (see Fact 2). This
observation of collision on computation leads to the knowledge of di = di−1 = 1.

All other cases, say di �= di−1, will lead to either one of the following results

case (1): di = 0 and di−1 = 1{
R1 ← (MHi)2 : Step 05 of iteration i− 1 when evaluating Md

R0 ← ((M2)Li+1)2 : Step 05 of iteration i when evaluating (M2)d,
(6)
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case (2): di = 1 and di−1 = 0{
R0 ← (MLi)2 : Step 05 of iteration i− 1 when evaluating Md

R1 ← ((M2)Hi+1)2 : Step 05 of iteration i when evaluating (M2)d.
(7)

Based on the definition of Montgomery ladder, it is evident that in the case (1)
we have Hi �= 2Li+1 and no collision of computation can be detected. Similarly,
in the case (2) no collision of computation can be detected since Li �= 2Hi+1.

The Relative Doubling Attack. Recall that collision of two computations
will not reveal the value of the operand. So, in the proposed attack, a collision
of computations detected by the property of Eq.(4) and another collision of
computations detected by the property of Eq.(5) cannot be distinguished. The
only knowledge obtained is that di = di−1 if a collision is detected. On the other
hand, the properties in Eq.(6) and Eq.(7) tell us that di �= di−1 if no collision
is detected. Due to its special property of the derived knowledge, the proposed
attack is called the relative doubling attack to manifest the difference to the
original doubling attack [7].

Based on the derived relationship between every two adjacent private key bits
(either di = di−1 or di �= di−1) and a given bit (e.g., d0 or dm−1), all other private
key bits can be derived uniquely. For example, in RSA private computation it is
assumed that d0 = 1 under the same assumption made in the original doubling
attack mentioned previously. Most importantly, we observed that it is sufficient
to derive all the private key bits when given any di (0 ≤ i ≤ m− 1).

An Example of Attack. Following the same example of assuming the private
exponent d to be 75 = (1, 0, 0, 1, 0, 1, 1)2 and the two related input data to be
M and M2 respectively, Table 2 provides the details of the proposed relative
doubling attack on Montgomery ladder. The computational process of raising
Md and (M2)d reveals the fact that given4 d0 = 1 and the observation of collision
on Step 05 of the iteration 1 of (M2)d and Step 05 of the iteration 0 of Md will
lead to the result of d1 = d0 = 1. Given d0 = 1, if no collision is detected, then
d1 = 0 since in this case d1 should be different from d0.

3.3 Comparison of Doubling Attack and Relative Doubling Attack

The original doubling attack (against square-multiply-always algorithm) focuses
on deriving the private key bit di by checking whether di = 0. So, the original
doubling attack tries to obtain the knowledge of absolute value of each di. On
the contrary, the proposed relative doubling attack (against Montgomery ladder)
focuses on deriving the knowledge of whether di = di−1 (relationship between
every two adjacent key bits), but not the knowledge of either di or di−1 directly.
Nonetheless, given the value of either di or di−1 will provide the exact value of
the other one indirectly.
4 The RSA private exponent d is an odd integer. The original doubling attack also

exploits this knowledge in order to obtain d0.



Relative Doubling Attack Against Montgomery Ladder 125

Table 2. Computations of Md and (M2)d in the Montgomery ladder

Furthermore, the original doubling attack fully exploits the existence of re-
dundant computation. But the proposed relative doubling attack on the Mont-
gomery ladder does not exploit the existence of any redundant computation.
Evidently, in this paper, we showed a totally different approach of deriving the
private key. The primary similarity of these two attacks is that both of them use
(M,M2) as the chosen input data.

3.4 Applicability of the Proposed Attack

Most published research results on side-channel attack considered the poten-
tial vulnerability on the computational algorithm (e.g., modular exponentia-
tion) but not on a real cryptosystem and under a specific cryptographic stan-
dard (e.g., some padding or message format). This is basically reasonable since
the computational algorithm itself is generic and can be employed as imple-
mentation to many different cryptosystems (or some cryptosystems to be de-
signed in the future) each may have different padding or message format. So,
to point out potential attacks to the computational algorithm is still
important.

Nonetheless, we still wish to point out clearly that the proposed relative dou-
bling attack is applicable at least to the following systems if they are implemented
based on the Montgomery ladder or its enhanced version in [8].

(1) Traditional textbook RSA decryption and signature.
(2) The RSA-OAEP decryption [15, 16]. It should be noted that the proposed

attack does work on RSA-OAEP decryption since the ciphertext validity
checking is performed after the RSA private exponentiation computation.
So, the attacker still can collect the necessary power traces.

(3) ElGamal decryption [3].

i di Process of Md Process of (M2)d

6 1 R0 = 1 × M R0 = 1 × M2

R1 = M2 R1 = (M2)2

5 0 R1 = M2 × M R1 = M4 × M2

R0 = M2 R0 = (M2)2

4 0 R1 = M3 × M2 R1 = M6 × M4

R0 = (M2)2 R0 = (M4)2

3 1 R0 = M4 × M5 R0 = M8 × M10

R1 = (M5)2 R1 = (M10)2

2 0 R1 = M10 × M9 R1 = M20 × M18

R0 = (M9)2 R0 = (M18)2

1 1 R0 = M18 × M19 R0 = M36 × M38

R1 = (M19)2 R1 = (M38)2

0 1 R0 = M37 × M38 R0 = M74 × M76

R1 = (M38)2 R1 = (M76)2

Return R0 = M75 R0 = M150
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4 Possible Enhancement Against Relative Doubling
Attack

4.1 Remarks on Random Blinding Technique

One may argue that the standard blinding technique can easily prevent the
proposed relative doubling as well as the original doubling attacks. However, we
have some remarks on this claim.

The first disagreement is that the standard blinding technique is well known
as a countermeasure against DPA. The second disagreement is that in a standard
blinding technique the input data should be protected by a random mask which
will then be removed from the result. However, it has been pointed out clearly in
[7] that a regular mask updating (meant to be efficient), e.g., the one mentioned
in [6], will be vulnerable to the doubling attack. It can be verified easily that the
regular mask updating in [6] is also vulnerable to the proposed relative doubling
attack. It was suggested eventually that it had better use a real random mask
to avoid the attack. Unfortunately, the computational overhead of employing a
real random mask is usually very high.

4.2 Is Upward Exponentiation Necessary Against Doubling Attack

The work and especially the title of [7] imply that upward (right-to-left) expo-
nentiation could be better than downward (left-to-right) exponentiation when
considering vulnerability from the doubling attack. This is also the case for the
proposed relative doubling attack. However, the above mentioned superiority of
the upward exponentiation is not obtained without any additional cost. It is evi-
dent that the upward square-multiply-always exponentiation in Fig. 2 (b) needs
one more temporary memory than the downward exponentiation does.

Purpose of the following discussion is to clarify that upward exponentiation
is not a necessary requirement meant to be immune from the doubling attack
and the proposed relative doubling attack. The following SPA-protected and
safe-error-protected exponentiation algorithm [17] in Fig. 4 is a downward expo-
nentiation algorithm. A limitation of this algorithm is that dm−1 = 1 is assumed.
It can be verified easily that this algorithm is secure against the doubling and
the relative doubling attacks.

Notice that the algorithm (Fig. 4) needs only two temporary memory (same
as that in Fig. 2 (a)) and this leads to one less temporary memory requirement
than the doubling attack immune upward algorithm in Fig. 2 (b). Recall that
if we take into account the fact that the input datum M is also stored inside
the smart card (as already described previously), then the algorithm in Fig. 4
needs only one temporary memory which leads to two less temporary memory
requirement than the doubling attack immune upward algorithm in Fig. 2 (b).
However, it is worth noting that protection against relative doubling attack does
not necessarily ward off other potential attacks.
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Input: M, d = (dm−1, dm−2 · · · d0)2, dm−1=1, n

Output: Md mod n

01 R0 ← 1; R1 ← M; d−1 ← 1
02 for i = m − 1 downto 0 do
03 b ← ¬di; c ← di−1

04 R0 ← R0 × Rb mod n
05 R0 ← R0 × Rc mod n
06 return R0

Fig. 4. SPA-protected and safe-error-protected downward exponentiation

5 Conclusions

The Montgomery ladder can be secure against both the ordinary SPA and the
ordinary doubling attack. But, in this paper we showed that the Montgomery
ladder is vulnerable to the proposed relative doubling attack. Both the ordi-
nary doubling attack and the proposed relative doubling attack share the same
reasonable attack assumption of observing collision on computations. One differ-
ence is that the original doubling attack (against square-multiply-always algo-
rithm) fully exploits the existence of redundant computation, while the proposed
relative doubling attack (against Montgomery ladder) does not exploit any re-
dundant computation. Our relative doubling attack uses a different approach to
derive the private key.
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Abstract. In EUROCRYPT2005, a collision attack on MD4 was pro-
posed by Wang, Lai, Chen, and Yu. They claimed that collision messages
were found with probability 2−6 to 2−2, and the complexity was less than
28 MD4 hash operations. However, there were some tyops and oversights
in their paper. In this paper, first, we reevaluate the exact success prob-
ability. Second, we point out the typos and oversights in the paper of
Wang et al, and we show how to improve them. Third, we propose a new
message modification method for the third round of MD4. From the first
result, we reevaluate that the method of Wang et al. can find collision
messages with success probability 2−5.61. From the second result, we can
find collision messages with success probability 2−2. Also by combining
the second result and the third result, our improved method is able to
find collision messages with probability almost 1. This complexity is less
than 3 repetitions of MD4 hash operations. Our improved method is
about 85 times as fast as the method of Wang et al.

1 Introduction

MD4 is a hash function which was proposed by Rivest in CRYPTO’90 [7]. After
MD4 was proposed, various hash functions based on MD4 were proposed such
as MD5, RIPEMD, SHA-family, and so on. MD4 consists of addition, XOR and
bit-rotation, and thus can be calculated fast.

In EUROCRYPT 2005, Wang et al. proposed an efficient attack for MD4 [9].
This attack is a differential attack. While differential attacks before [9], such as
[2] or [3] used XOR to calculate differential, the method of Wang et al. uses
modular subtraction.

In this method, input differential is decided in advance. Then, the attack will
succeed if output differential is 0. The method in [9] makes conditions on chaining
variables in order to cancel the input differential. In this paper, we call these
conditions on chaining variables introduced to cancel the input differential as
“sufficient condition”. If an inputted message into MD4 satisfies all the sufficient
condition, the output differential becomes 0, and we can generate a collision
message. However, the probability that a randomly chosen message satisfies the
sufficient condition is very small, and we need more effort to raise this probability.

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 129–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Message modification methods were proposed in [9] in order to generate a mes-
sage satisfying the sufficient condition. By applying the combination of these
methods, the probability where a message satisfies the sufficient condition is
greatly improved. Consequently, Wang et al. claimed that their attack will suc-
ceed with probability 2−6 to 2−2.

In this paper, we verify the efficiency of [9]. As a result, we found that there
were three types of typos and oversights related to success probability.

1. Some messages are appropriately modified if they are modified solely, how-
ever, they are modified incorrectly if other specific messages are modified
(Discussed in section 4.1.1).

2. Our modification method defined in [9] always fails (Discussed in section
4.1.2).

3. The sufficient condition proposed by Wang et al. does not cover all necessary
conditions (Discussed in section 4.2).

Next, we consider these three situations and more precisely evaluate the success
probability of their attack. We show that the success probability of the attack by
Wang et al. is about 2−5.61 (Discussed in section 4.3.1). Second, we correct these
typos and oversights, and then, we show this attack succeeds with probability
2−2 (Discussed in section 4.3.2). Third, we propose new message modification
methods to satisfy the sufficient condition in the third round (Discussed in sec-
tion 5). By combining these improvement, the success probability can be almost
1. The complexity of our attack can be reduced to 3 repetitions of MD4 hash
operations. Our improved method is 85 times as fast as the attack by Wang et
al. As far as we know, our attack is the most efficient attack of all the attacks
proposed so far.

In EUROCRYPT 2005, Wang et al. proposed the collision attack for MD5,
which is the similar attack for MD4 [10]. Since MD5 and MD4 have the similar
structure, we expect that our improved method can also be applied to MD5. We
will present details of the attack for MD5 later.

2 Description of MD4

MD4 is a function which compresses an arbitrary length message into a 128-bit
hash value. The hash value of MD4 is calculated by following procedure:

1. Message M is divided into plural words M1,M2, ...,Mn, where the length of
each message block is 512.

2. Let hi be an output value of ith block. hi is calculated by using a compres-
sion function with hi−1 and Mi. This process is repeated until all Mi are
calculated. The initial value h0 is defined as follows;

h0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476).

3. An output value of the last message block hn will be the hash value of MD4.
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Compression Function. A 512-bit word Mi inputted into the compression
function is divided into 32-bit words m0, ...,m15. The compression function con-
sists of 48 steps. Step1 to step16 are called as the first round, similarly, step17
to step32 are the second round and step33 to step48 are the third round. In each
step, one of chaining variables a, b, c, d is calculated in order of a1, d1, c1, b1, a2, ....
Only one variable is newly calculated in each step. The output of the compression
function is hj = (a0 + a16, b0 + b16, c0 + c16, d0 + d16).

We define a function φ as follows:

φ(x, y, z, w,m, s, t) = ((x + f(y, z, w) + m + t) mod 232) ≪ s,

where m is a input message in each step, and which mi is used is defined in
advance. s is a number of bit rotation defined in each step. t is a constant defined
in each round. In the first round, t = 0, in the second round, t = 0x5a827999 and
in the third round, t = 0x10325476. The function f is defined as f(y, z, w) =
F (y, z, w) in the first round, f(y, z, w) = G(y, z, w) in the second round and
f(y, z, w) = H(y, z, w) in the third round. The function F (y, z, w), G(y, z, w)
and H(y, z, w) are defined by,

F (y, z, w) = (y ∧ z) ∨ (¬y ∧ w),
G(y, z, w) = (y ∧ z) ∨ (y ∧ w) ∨ (z ∧ w),
H(y, z, w) = y ⊕ z ⊕ w.

Chaining variables ai, bi, ci, di are calculated as follows:

ai = φ(ai−1, bi−1, ci−1, di−1,m, s, t)
di = φ(di−1, ai, bi−1, ci−1,m, s, t)
ci = φ(ci−1, di, ai, bi−1,m, s, t)
bi = φ(bi−1, ci, di, ai,m, s, t)

3 Attack of Wang et al. on MD4

An attack of Wang et al. is a differential attack using modular subtraction to cal-
culate differential. This method makes a collision message by canceling input dif-
ferential ΔM and making output differential be 0. Usually, the probability that
the output differential of two different messages is 0 is very small. In [9], condi-
tions are introduced to chaining variables in order to cancel the input differential.

For example, we consider the case that Δm1 = 132 is given as differential of
m1. Here, 1i denotes a 32-bit binary number whose i-th bit is 1 and other bits
are 0. Because of this differential, the differential 0 → 1 occurs on the 7th bit
of d1, which is a variable calculated in step 2. In this paper, we describe the
resulting value of d1 as d1[7]. In case that the 7th bit would change from 1 to 0,
we describe it as d1[−7].

d1 is used for calculation of a2. The calculation for a2 is as follows.

a2 = (a1 + F (b1, c1, d1) + m4) ≪ 3
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Therefore, the differential may be transmitted to a2. Since this differential
should be canceled, we focus on a property of F function. Since the expression
of F in this step is F (b1, c1, d1) = (b1 ∧ c1) ∨ (¬b1 ∧ d1), if b1,7 = 1, the ex-
pression F (b1, c1, d1) = F (b1, c1, d1[7]) is true, and thus the change of d1 can be
ignored. Therefore, the differential can be canceled by introducing b1,7 = 1 in
the sufficient condition.

By repeating this process for every differential to introduce all sufficient con-
ditions, the input differential can be canceled. However, the probability that a
randomly chosen message satisfies all sufficient conditions is very small. There-
fore, it is necessary to try to raise the probability by message modification. In
the next section, we explain the message modification.

3.1 Technique of Attack of Wang et al.

The attack of Wang et al uses following values as input differential:

ΔM = M∗ −M ′ = (Δm0,Δm1, ...,Δm15)
Δm1 = 132,Δm2 = 132 − 128,Δm12 = −117

Δmi = 0, 0 ≤ i ≤ 15, i �= 1, 2, 12

The number of sufficient conditions is 122. Almost all sufficient conditions
are satisfied by message modification. However, message modification is adapted
only in both the first round and the second round. Therefore, the sufficient con-
dition in the third round is not always satisfied. In this case, it is necessary
to rechoose random messages, and start message modification again. Recho-
sen messages are only m14 and m15, and thus operations from step 1 to step
14 are saved. A procedure to generate a collision message pair (M ′,M∗) is as
follows.

1. Select a 512-bit random message M .
2. Modify message M by using message modification to satisfy the sufficient

condition.
3. If all sufficient conditions are satisfied, message M ′ which is a modified mes-

sage from M is outputted, otherwise m14 and m15 are rechosen and go back
to step 2.

4. Calculate a message M∗ = M ′ + ΔM , and output (M ′,M∗).

Procedure of Message Modification
In this section, we explain the process of step 2. The purpose of message modifi-
cation is satisfying the sufficient condition. There are two types of modification
techniques. One is single-step modification and the other is multi-step modifica-
tion. Single-step modification is message modification for the first round. Since
this modification does not affect other chaining variables, the single-step modi-
fication can be easily done. Multi-step modification is message modification for
the second round. Since message modification in the second round affects not
only the second round but also the first round, it is necessary to cancel the effect
to the first round.
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Single-Step Modification
Single-step modification modifies messages in order to satisfy the sufficient con-
dition in the first round. We show an example of the single-step modifica-
tion. Now, we consider the way to satisfy sufficient conditions in the third step
(c1,7 = 1, c1,8 = 1, c1,11 = 0 and c1,26 = d1,26). The calculation for c1 is
c1 = (c0 +F (d1, a1, b0) +m2) ≪ 11. In this calculation, m2 is the only variable
which can be changed directly. Therefore, we satisfy sufficient conditions for the
third step by modifying m2 as follows;

cnew
1 ← c1 ⊕ (c1,7 ⊕ 17)⊕ (c1,8 ⊕ 18)⊕ c1,11 ⊕ (c1,26 ⊕ d1,26)
m2 ← (cnew

1 ≫ 11)− c0 − F (d1, a1, b0).

Multi-Step Modification
Multi-step modification modifies messages in the second round in order to satisfy
the sufficient condition in the second round. We show an example of the multi-
step modification. Now, we consider the way to satisfy a5,19 = c4,19 which is
a sufficient condition in the 17th step. The calculation for a5 is a5 = (a4 +
G(b4, c4, d4)+m0+0x5a827999) ≪ 3. In this calculation, m0 is the only variable
which can be changed directly. Therefore, if a5,19 = c4,19 is not satisfied, we
modify m0 in order to satisfy this condition in the following way;

m0 ← m0 ± 116.

The condition a5,19 = c4,19 is satisfied by this modification. However, the change
of m0 causes changes of chaining variables in the first round because m0 is used
not only in the second round but also in the first round. The influence to the
first round by modifying m0 is shown as follows.

m0 ← m0 ± 116 ⇒ anew
1 = a1[±19]

This influence causes changes of variables which have already satisfied the suffi-
cient condition. Therefore, it is necessary to add following modifications in order
to prevent the influence of the change from transmitting to variables in the first
round.

m0 ← m0 ± 116 ⇒ anew
1 = a1[±19]

m1 ← (d1 ≫ 7)− d0 − F (anew
1 , b0, c0)

m2 ← (c1 ≫ 11)− c0 − F (d1, a
new
1 , b0)

m3 ← (b1 ≫ 19)− b0 − F (c1, d1, a
new
1 )

m4 ← (a2 ≫ 3)− anew
1 − F (b1, c1, d1)

By this modification, the influence to the first round is canceled. In this paper,
we call this modification as multi-step modification(1).

However, there exists some sufficient conditions in the second round which
are failed to be satisfied by the multi-step modification(1). We show an example
of this situation. Now, we consider c5,26 = d5,26 which is a sufficient condition
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Table 1. Correction method of C5,27

step shift Modify mi Chaining value after Extra Conditions
message modification

6 7 m5 ← m5 + 111 d2[18], a2, b1, c1 d2,18 = 0

7 11 c2, d2[18], a2, b1 a2,18 = b1,18

8 19 b2, c2, d2[18], a2 c2,18 = 0

9 3 m8 ← m8 − 118 a3, b2, c2, d2[18] b2,18 = 0

10 7 m9 ← m9 − 118 d3, a3, b2, c2

in step 19. If we try to apply the multi-step modification(1), the change of the
message affects the first round as follows;

m8 ← m8 ± 118 ⇒ anew
3 = a3[±21].

Since there exists a sufficient condition about a3,21, this modification method
breaks the sufficient condition on a3,21, and thus we failed to find collision mes-
sages. Therefore, we try to apply another message modification method shown
in Table 1 in order to keep a3,21 unchanged. In Table 1, “extra condition” means
conditions of chaining variables introduced to stop the influence in the second
round from transmitting to the first round. The extra condition is set to be
satisfied when the first round is calculated.

If this modification is applied, the value of the 18th bit of function F in step
9 is changed as follows;

F (b2,18, c2,18, d2,18) = 0→ 1.

The influence to a3 caused by modifying message m8 can be canceled by the
change of F (b2,18, c2,18, d2,18). Therefore, the condition on c5,26 is satisfied and
the value of a3,20 is unchanged by this modification. In this paper, we call this
type of modification as multi-step modification(2).

4 Exact Evaluation of the Method of Wang et al.

In [9], Wang et al. claimed that success probability of their collision attack on
MD4 is 2−6 to 2−2. However, this success probability is not enough precise.
First, we examined details of the method of Wang et al, and evaluate precise
probability.

4.1 Oversights in the Method of Wang et al.

Wang et al. proposed various message modification methods. However, as a result
of our analysis, we found some of their modifications could not satisfy the suffi-
cient condition. We describe the reason why they could not satisfy the sufficient
condition and how to improve the method of Wang et al.
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Exclusive Modifications
If some messages are simultaneously modified in order to satisfy specific two
sufficient conditions, one modification can conflict the other modification. These
cases are a pair of corrections for d5,19 = a5,19 and c5,26 = d5,26 and a pair of
corrections for c5,32 = d5,32 and c6,32 = d6,32. We describe the reason why these
corrections are failed, and propose an improved method. .

(1) Problems
First, we explain correction of d5,19 = a5,19 and c5,26 = d5,26. Wang et al. used
the multi-step modification(1) to correct the condition on d5,19. In this case, m4
is modified such as m4 ← m4 +114. This modification causes change of the value
of a2,17. Whereas, Wang et al. used the multi-step modification(2) to correct
the condition on c5,26. In this case, it is necessary to add an extra condition
a2,17 = b1,17. However, if both modification is done, the value of a2,17 is changed
because of the correction of d5,19, and then the extra condition a2,17 = b1,17 is
broken. This extra condition is added in order to cancel the influence of change
in the second round. Therefore, if the extra condition is broken, the value of c2
may change into the different value from desired one.

(2) Success Probability of the Correction
The above problem occurs when both of d5,19 and c5,26 are corrected. This
probability is 1/4. However, if d6,26 is corrected additionally, the correction of
d5,19 and c5,26 works appropriately. We explain this mechanism.

When d5,19 and c5,26 are corrected, and additionally, d6,26 is corrected, c5,26
is appropriately corrected. The problem is that extra condition a2,17 = b1,17 is
broken, and c2 will be unexpectedly changed from this influence. However, while
d6,26 is corrected, m6 is modified as follows;

m6 ← (c2 ≫ 11)− c1 − f(d′2, a2, b1).

The purpose of this modification is keeping the value of c2 unchanged. There-
fore, the value of c2 is kept unchanged even if the extra condition a2,17 = b1,17
is broken. Therefore, if d5,19 and c5,26 are corrected and furthermore d6,26 is
corrected, c5,26 is appropriately corrected. Therefore, the success probability of
the correction of both d5,19 and c5,26 is given by

Table 2. Correction method of d5,19

step shift Modify mi Chaining value after Extra Conditions
message modification

2 7 m1 ← m1 + 17 d1[14], a1, b0, c0 d1,14 = 0

3 11 c1, d1[14], a1, b0 a1,14 = b0,14

4 19 b1, c1, d1[14], a1 c1,14 = 0

5 3 m4 ← m4 − 114 a2, b1, c1, d1[14] b1,14 = 0

6 7 m5 ← m5 − 114 d2, a2, b1, c1
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Table 3. Correction method of c5,32

step Modify mi Chaining value after Extra Conditions
message modification

15 m14 ← m14 + 111 c4[22], d4, a4, b3 c4,22 = 0

16 b4, c4[22], d4, a4 d4,22 = a4,22

17 a5, b4, c4[22], d4 b4,22 = d4,22

18 d5, a5, b4, c4[22] a5,22 = b4,22

19 cnew
5 = c5 + 131, d5, a5, b4 c5,31 = 1

1− (
1
4
× 1

2
) =

7
8
.

Similar situation occurs when both of c5,32 and c6,32 are corrected. In this
situation, the success probability is 1/4.

(3) Improve Method
Improved Correction Methods of d5,19 and c5,26
Since the method of Wang et al. contains problems explained above, we propose
the method modifying d5,19 by the multi-step modification(2) in order to avoid
the problems. Details of this modification method is shown in Table 2. As a
result, the correction of d5,19 does not break the extra condition a2,17 = b1,17,
and thus, the success probability of corrections of d5,19 and c5,26 becomes 1.

Improved Correction Methods of c5,32 and c6,32
Since the method of Wang et al. contains problems explained above, we change
the correction method of c5,32 as shown in Table 3 so that this correction method
does not cause problems when both of c5,32 and c6,32 are corrected.

In the case we change the correction method of c5,32, other changes except
for Table 3 seem to be possible, for example, modifying message used in 19th
step. However, all of other changes which we tried caused influence to other
conditions. Therefore, we decided to use carry in the 31st bit in order to change
the value of c5,32. This modification does not break other conditions. Therefore,
the success probability of the corrections of c5,32 and c6,32 becomes 1.

A Modification Breaking the Sufficient Condition

(1) Problems
In [10], c5,29 is modified by using the multi-step modification(2). This modifi-
cation changes the value of d2,20 from 0 to 1. However, there exists a sufficient
condition d2,20 = a2,20. Therefore, the modification of c5,29 breaks this condition
and we fail to get collision messages.

(2) Improved method
c5 is calculated as follows.

c5 = (c4 + G(d5, a5, b4) + m8 + 0x5a827999) ≪ 9
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Table 4. Correction of c5,29

step Modify mi Chaining value after Extra Conditions
message modification

15 m14 ← m14 + 19 c4[20], d4, a4, b3 c4,20 = 0

16 b4, c4[20], d4, a4 d4,20 = a4,20

17 a5, b4, c4[20], d4 b4,20 = d4,20

18 d5, a5, b4, c4[20] a5,20 = b4,20

19 cnew
5 = c5 + 129, d5, a5, b4

If we modify m8 in order to satisfy a sufficient condition c3,29 = 1, it causes
influence to other variables. Therefore, we change the value of c4,20 instead. c4
is calculated by following expression,

c4 = (c3 + F (d4, a4, b3) + m14) ≪ 11.

Therefore, we can change c4,20 by changing m14,9. This correction does not cause
influence to other variables, and thus the success probability of the correction of
c5,29 becomes 1. Table 4 shows details of the correction of c5,29

4.2 Lack of the Sufficient Condition

We carefully checked the sufficient condition from input differential, and found
that conditions a6,30 = 0 and b4,32 = c4,32 are lacked in the table 5 written in
[9]. In this section, we show how we found these conditions.

Table 5. Introduction of “a6,30 = 0”

Step Shift Δmi The i-th output for M ′

21 3 231 a6[−29, 30, −32]

Introduction of a Sufficient Condition “a6,30 = 0”
At the first,we explain how to find “a6,30 = 0”. Table 5 is a part of table 5
written in [9]. a6[30] in the Table 5 means that the value of a6,30 changes from
0 to 1 because of differential. Therefore, we need to set the sufficient condition
a6,30 = 0 in advance. The correction method of a6,30 is the same with other
correction methods of a6.

Introduction of a Sufficient Condition “b4,32 = c4,32”
Table 6 shows that the value of a5,32 is changed because of differential, but d5
is not affected by differential. Therefore, when a5 is calculated, the differential
a5[−32] has to be canceled. We explain how to cancel this differential. d5 is
calculated by

d5 =((d4 + G(a5, b4, c4) + m4 + 0x5a827999) mod 232) ≪ 5,
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Table 6. Introduction of “b4,32 = c4,32”

Step Shift Δmi The i-th output for M ′

14 7 d4[−27, −29, 30]

15 11 c4

16 19 b4[19]

17 3 a5[−26, 27, −29, −32]

18 5 d5

where the function G is defined as G(y, z, w) = (y ∧ z)∨ (y ∧w)∨ (z ∧w). Since
the function G uses a5, we can cancel differential by arranging other variables
used in G. Since G is a majority function, the differential a5,32 is canceled by
constructing condition b4,32 = c4,32.

4.3 Reevaluation of Success Probability of the Method of Wang
et al. and Our Improved Method

Precise Probability Evaluation of the Method of Wang et al.
Considered all the problems explained so far, precise probability of [9] is as
follows,

– Success probability considered lack of sufficient conditions b4,32 = c4,32 and
a6,30 = 0 (section4.2):

( 1
2

)2
– Success probability considered wrong correction of c5,29(section4.2): 12
– Success probability considered problems of corrections of d5,19 and c5,26 and

corrections of c5,32 and c6,32(section4.1.2): 78 ×
3
4

– Probability satisfying the sufficient condition in the third round
(section4.1.1):

( 1
2

)2
By combining above analyses, the precise success probability of [9] is given as
follows:

Pr[success] =
3
4
× 7

8
× 1

2
×
(

1
2

)2

×
(

1
2

)2

= 2−5.61

Furthermore, we experimentally verified this evaluation. In our experiment, we
generated 5,000 collision messages by the method of Wang et al, and the average
number where we needed to rechoose random messages to find a collision was
48.76 times(� 25.60 times). Therefore, the theoretical result is consistent with
the experimental result.

Our Improved Method
We improved oversights and typos of [9] as follows,

– Add two sufficient conditions b4,32 = c4,32 and a6,30 = 0
– Change the modification method of d5,19 so that both of d5,19 = a5,19 and

c5,26 = d5,26 can be corrected.
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– Change the modification method of c5,32 so that both of c5,32 = d5,32 and
c6,32 = d6,32 + 1 can be corrected.

By our improvement, all sufficient conditions in both the first round and the sec-
ond round can be corrected with probability 1. Therefore, the success probability
becomes exactly 2−2.

In [9], details of the multi-step modification is not written. In this paper, we
attach the list of all multi-step modification methods in appendix.

Table 7. Shortcut Modification

step Modify mj Chaining value after Extra Conditions
message modification in 1st round

12 m11 ← m11 ± 1i b3[±(i + 19)], c3, d3, a3

13 a4, b3[±(i + 19)], c3, d3 c3,i+19 = d3,i+19

14 d4, a4, b3[±(i + 19)], c3 a4,i+19 = 0

15 c4, d4, a4, b3[±(i + 19)] d4,19 = 0

16 m15 ← (b4 o 19) − b3[±(i + 19)] − F (c4, d4, a4) b4, c4, d4, a4

5 Shortcut Modification

5.1 Our Idea

In the case of multi-step modification, only the first round is affected by message
modifications. Therefore, to make the multi-step modification succeed, only the
first round has to be considered. If we try to apply same approach to modify
messages in the third round, we have to consider the influence of the modification
about both the first round and the second round. This is very difficult. Actually,
the message modification for the third round is not mentioned in [9]. To overcome
this difficulty, we randomly modify messages in the second round many times
in order to satisfy the sufficient condition in the third round. In the method
of Wang et al, if collision message cannot be generated, algorithm returns to
the calculation for the first round, rechooses m14 and m15 and apply the multi-
step modification in the second round. In the proposed method, we change few
bits of a message in the second round instead of rechoosing random messages.
Therefore, the complexity of each repetition is reduced by the complexity for the
multi-step modification.

5.2 Consideration

Here, we consider to modify m11. To begin with, we experimentally found prob-
ability that the sufficient condition in the third round is satisfied by modifying
m11 with 1 bit. Hence, we can assume that conditions are satisfied with probabil-
ity about 1/4 for all single bit change. When we modify m11 in the second round,
we have to cancel the influence to the first round caused by modification of m11.
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We apply message modification shown in Table 7 to cancel the influence from
m11. The number of i, where the extra conditions does not break the sufficient
condition is 19. If we simultaneously change several bits of m11, we can similarly
assume that conditions are satisfied with probability 1/4. Therefore, the number
of repetition by modifying m11 is equal to the number of all combination of
19 bits, that is, 219. If we modify m11 many times, probability to satisfy the
sufficient conditions in the third round becomes very high. This probability is
given by

1−
(

1− 1
4

)219

� 1.

Therefore, the probability that the sufficient condition in the third round be-
comes almost 1. Since this probability 1/4 for each m11, the average number
that we change m11 to satisfy conditions in the third round is three. (First time,
we calculate m11 in the standard way. Then, if we repeat the process three times,
four of different m11 would be tried.)

Remark 1
The reason we chose m11 is that since m11 is the second last message in the
second round, the number of steps of each repetition is small compared to other
messages. The reason we did not choose m15 is that we could not cancel the
influence to the first round caused by m15.

6 Our Improvement

In section 4 and 5, we proposed the message modification which satisfies the
sufficient condition with probability almost 1. The followings are our
improvement,

– We add the sufficient condition b4,32 = c4,32 and a6,30 = 0
– We change the message modification method of d5,19 in order to enable both

d5,19 = a5,19 and c5,26 = d5,26 to be modified.
– We change the message modification method of c5,32 in order to enable both

c5,32 = d5,32 and c6,32 = d6,32 + 1 to be modified.
– We propose the shortcut modification which raise the probability satisfying

the sufficient condition in the third round.

In our improved method, collision message can be generated with probability
almost 1. The complexity of our method is given by,

– 1 MD4 operation to get hash value of the message in standard calculation
– Few steps for the single-step modification
– 26 steps for the multi-step modification and 13 steps for recalculation of

chaining variables after the multi-step modification is applied
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– 24 steps for modification of m11 to satisfy the sufficient condition in the third
round (the average number of repetition of changing m11 is 3 (section5.2)
and each repetition needs 8 steps)

– Few steps to cancel the influence of m11

Therefore, total complexity is 1 MD4 + 26 steps + 13 steps + 24 steps + few
steps = 1 MD4 + (63 + few) steps. Since one MD4 operation consists of 48 steps,
This complexity is less than three repetitions of MD4 operations. Consequently,
collision messages can be generated with less than three repetitions of MD4
operations.

The method of Wang et al. finds collision with complexity less than 28 MD4
operations. Whereas, the complexity of our method is 3 MD4 operations. There-
fore, our method is 28/3 � 85 times as fast as the method of Wang et al.

Remark 2
It is possible to reduce the complexity of the first round by randomly generating
chaining variables in the first round instead of messages. First, set each chaining
variables in the first round to satisfy the sufficient condition. Second, randomly
generate other bits. Finally, calculate the message from generated chaining vari-
ables. This process reduces the complexity of the first round.

Table 8. An example of generated collision pair

M 0x24ce9d37de4dfca0a3b88fc39c9f9e5c92ee86ada2c9e8b088f3a020c5368a69
0e503cc80c2368f978ff57bf21a1762ad018afb8daa431e9308bf382806a18a1

M ′ 0x368b9d377e2dfc60b5b88fcb0c8fbe5601a6662d9ecc3929aa35aabf887f929f
2740a2c8c8c12039bbb401bdc1983331e45e1f61c150d565ee27d04af1dfec4c

M∗ 0x368b9d37fe2dfc6025b88fcb0c8fbe5601a6662d9ecc3929aa35aabf887f929f
2740a2c8c8c12039bbb401bdc1983331e45d1f61c150d565ee27d04af1dfec4c

H(M ′) 0x26a280327c3068532de33b679d022e59

H(M∗) 0x26a280327c3068532de33b679d022e59

7 Conclusion

Wang et al. claimed that collisions of MD4 can be generated with complexity less
than 28 MD4 hash operations. However, this evaluation was not enough precise.
In this paper, we reevaluated the success probability of the method of Wang et
al. Then, we correct typos and oversights of [9]. As a result, the attack succeeded
with probability 2−2. At the last, we proposed the method to satisfy the sufficient
condition in the third round. As a result, the complexity to generate collision
messages was reduced to 3 repetitions of MD4 operations.

We show a message, where the method of Wang et al. cannot generate a
collision pair. In Table 8, M is the message before modified, M ′ is the message
after modified and M∗ is calculated by M∗ = M ′ + ΔM . H(M ′) is the hash
value of M ′ and H(M∗) is the hash value of M∗.
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Appendix(List of Multi-step Modification Methods)

Table 9. Modification of “a5,i” (i = 19, 26, 27, 29, 32)

step shift Modify mi Chaining value after
after message modification

1 3 m0 ← m0 ± 1i−3 anew
1 = a1[±i], b0, c0, d0

2 7 m1 ← (d1 ≫ 7) − d0 − F (anew
1 , b0, c0) d1, a

new
1 , b0, c0

3 11 m2 ← (c1 ≫ 11) − c0 − F (d1, a
new
1 , b0) c1, d1, a

new
1 , b0

4 19 m3 ← (b1 ≫ 19) − b0 − F (c1, d1, a
new
1 ) b1, c1, d1, a

new
1

5 3 m4 ← (a2 ≫ 3) − anew
1 − F (b1, c1, d1) a2, b1, c1, d1

Table 10. Modification of “d5,19”

step shift Modify mi Chaining value after Extra Conditions
message modification

2 7 m1 ← m1 + 17 d1[14], a1, b0, c0 d1,14 = 0

3 11 c1, d1[14], a1, b0 a1,14 = b0,14

4 19 b1, c1, d1[14], a1 c1,14 = 0

5 3 m4 ← m4 − 114 a2, b1, c1, d1[14] b1,14 = 0

6 7 m5 ← m5 − 114 d2, a2, b1, c1
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Table 11. Modification of “d5,i” i = 16, 17, 29, 32

step shift Modify mi Chaining value after
message modification

5 3 m4 ← m4 ± 1i−5 anew
2 = a2[±(i − 2)], b1, c1, d1

6 7 m5 ← (d2 ≫ 7) − d1 − F (anew
2 , b1, c1) d2, a

new
2 , b1, c1

7 11 m6 ← (c2 ≫ 11) − c1 − F (d2, a
new
2 , b1) c2, d2, a

new
2 , b1

8 19 m7 ← (b2 ≫ 19) − b1 − F (c2, d2, a
new
2 ) b2, c2, d2, a

new
2

9 3 m8 ← (a3 ≫ 3) − anew
2 − F (b2, c2, d2) a3, b2, c2, d2

Table 12. Modification of “c5,i” i = 26, 27

step shift Modify mi Chaining value after Extra Conditions
message modification

6 7 m5 ← m5 + 1i−16 d2[i − 9], a2, b1, c1 d2,i−9 = 0

7 11 c2, d2[i − 9], a2, b1 a2,i−9 = b1,i−9

8 19 b2, c2, d2[i − 9], a2 c2,i−9 = 0

9 3 m8 ← m8 − 1i−9 a3, b2, c2, d2[i − 9] b2,i−9 = 0

10 7 m9 ← m9 − 1i−9 d3, a3, b2, c2

Table 13. Modification of “c5,29”

step shift Modify mi Chaining value after Extra Conditions
message modification

15 11 m14 ← m14 + 19 c4[20], d4, a4, b3 c4,20 = 0

16 19 b4, c4[20], d4, a4 d4,20 = a4,20

17 3 a5, b4, c4[20], d4 b4,20 = d4,20

18 5 d5, a5, b4, c4[20] a5,20 = b4,20

19 9 cnew
5 = c5 + 129, d5, a5, b4

Table 14. Modification of “c5,30”

step shift Modify mi Chaining value after
after message modification

9 3 m8 ← m8 ± 121 anew
3 = a3[±24], b2, c2, d2

10 7 m9 ← (d3 ≫ 7) − d2 − F (anew
3 , b2, c2) d3, a

new
3 , b2, c2

11 11 m10 ← (c3 ≫ 11) − c2 − F (d3, a
new
3 , b2) c3, d3, a

new
3 , b2

12 19 m11 ← (b3 ≫ 19) − b2 − F (c3, d3, a
new
3 ) b3, c3, d3, a

new
3

13 3 m12 ← (a4 ≫ 3) − anew
3 − F (b3, c3, d3) a3, b3, c3, d3
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Table 15. Modification of “c5,31”

step shift Modify mi Chaining value after Extra Conditions
message modification

15 11 m14 ← m14 + 111 c4[22], d4, a4, b3 c4,22 = 0

16 19 b4, c4[22], d4, a4 d4,22 = a4,22

17 3 a5, b4, c4[22], d4 b4,22 = d4,22

18 5 d5, a5, b4, c4[22] a5,22 = b4,22

19 9 cnew
5 = c5 + 131, d5, a5, b4 c5,31 = 1

Table 16. Modification of “b5,i” i = 29, 32

step shift Modify mi Chaining value after Extra Conditions
message modification

11 11 m10 ← m10 + 1i−24 c3[−(i − 13)], d3, a3, b2 c3,i−13 = 0

12 19 b3, c3[−(i − 13)], d3, a3 d3,i−13 = a3,i−13

13 3 m12 ← m12 − 1i−13 a4, b3, c3[−(i − 13)], d3 b3,i−13 = 1

14 7 d4, a4, b3, c3[−(i − 13)] a4,i−13 = 1

15 11 m14 ← m14 − 1i−13 c4, d4, a4, b3

Table 17. Modification of “b5,30”

step shift Modify mi Chaining value after Extra Conditions
message modification

12 19 m11 ← m11 + 130 b3[17], c3, d3, a3 b3,17 = 0

13 3 m12 ← m12 − 117 a4, b3[17], c3, d3

14 7 d4, a4, b3[17], c3 a4,17 = 0

15 11 c4, d4, a4, b3[17] d4,17 = 1

16 19 m15 ← m15 − 117 b4, c4, d4, a4

Table 18. Modification of “a6,i” i = 29, 30, 32

step shift Modify mi Chaining value after Extra Conditions
after message modification

2 7 m1 ← m1 ± 1i−3 dnew
1 = d1[±(i + 4)], a1, b0, c0

3 11 m2 ← (c1 ≫ 11) − c0 − F (dnew
1 , a1, b0) c1, d

new
1 , a1, b0

4 19 m3 ← (b1 ≫ 19) − b0 − F (c1, d
new
1 , a1) b1, c1, d

new
1 , a1

5 3 a2, b1, c1, d
new
1 b1,i+4 = 1

6 7 m5 ← (d2 ≫ 7) − dnew
1 − F (a2, b1, c1) d2, a2, b1, c1
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Table 19. Modification of “d6,29”

step shift Modify mi Chaining value after Extra Conditions
after message modification

6 7 m5 ← m5 ± 124 dnew
2 = d2[±31], a2, b1, c1

7 11 m6 ← (c2 ≫ 11) − c1 − F (dnew
2 , a2, b1) c2, d

new
2 , a2, b1

8 19 m7 ← (b2 ≫ 19) − b1 − F (c2, d
new
2 , a2) b2, c2, d

new
2 , a2

9 3 a3, b2, c2, d
new
2 b2,31 = 1

10 7 m9 ← (d3 ≫ 7) − dnew
2 − F (a3, b2, c2) d3, a3, b2, c2

Table 20. Modification of “c6,i” i = 29, 30

step shift Modify mi Chaining value after Extra Conditions
after message modification

10 7 m9 ← m9 ± 1i−9 dnew
3 = d3[±(i − 2)], a3, b2, c2

11 11 m10 ← (c3 ≫ 11) − c2 − F (dnew
3 , a3, b2) c3, d

new
3 , a3, b2

12 19 m11 ← (b3 ≫ 19) − b2 − F (c3, d
new
3 , a3) b3, c3, d

new
3 , a3

13 3 a4, b3, c3, d
new
3 b3,i−2 = 1

14 7 m13 ← (d4 ≫ 7) − dnew
3 − F (a4, b3, c3) d4, a4, b3, c3

Table 21. Modification of “c6,32”

step shift Modify mi Chaining value after Extra Conditions
after message modification

7 11 m6 ← m6 ± 112 c2[23], d2, a2, b1 c2,23 = 0

8 19 b2, c2[23], d2, a2 d2,23 = a2,23

9 3 a3, b2, c2[23], d2 b2,23 = 0

10 7 m9 ← m9 − 123 d3, a3, b2, c2[23]

11 11 m10 ← m10 − 123 c3, d3, a3, b2
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Abstract. HAS-160 is a cryptographic hash function designed and used
widely in Korea. While similar in structure to SHA-1, up to now there
was no published attack or security analysis of the algorithm. Applying
techniques introduced by Wang et al.[1], we have found collision in the
first 45 steps of HAS-160, with complexity 212.

1 Introduction

HAS-160 is a cryptographic hash function standardized by Korean government
(TTAS.KO-12.0011/R1)[3]. It is a Merkle-Damg̊ard hash function, having a com-
pression function whose input length is 512 and output length 160. The overall
structure is similar to SHA-1, with some modifications, like simpler message
scheduling and variable amounts of bit rotation.

Despite its wide use in Korea, so far there was no published evaluation of
its cryptographic strength. In the light of the recent advances of analysis of
dedicated hash functions by Wang et al.[1, 2, 5, 6], we feel that it is important to
analyze the strength of HAS-160, especially since HAS-160 shares many design
elements of MD5 and SHA-1.

In this paper we apply the techniques introduced in [1] to HAS-160, and
produce collision pairs for the first 45 steps (out of the total 80) of HAS-160.
We believe that this could serve as a starting point for further cryptographic
analysis of the hash function.

2 Structure of HAS-160

HAS-160 is a dedicated hash algorithm following the Merkle-Damg̊ard construc-
tion. Therefore, for our purposes here we are going to omit other non-relevantl
definitions and describe only the compression function

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 146–155, 2006.
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(a′, b′, c′, d′, e′) = H
(
a, b, c, d, e, (xi)15i=0

)
.

– Input/output: the compression function H takes five 32-bit values a, b, c, d,
e, and sixteen 32-bit words x0, x1, . . . , x15 as input, and produces five 32-bit
values a′, b′, c′, d′, e′ as output.

– Initial values: the compression functionH takes as initial values the following:

• a=0x67452301
• b=0xefcdab89
• c=0x98badcfe
• d=0x10325476
• e=0xc3d2e1f0

If the 512-bit message block X = (xi)15i=0 is not the first block to process,
then the previous output of H is used as input.

– Rounds and steps: starting with the original input a, b, c, d, e, and (xi)15i=0,
H takes 80 steps of transformations to the variables a, . . . , e to produce the
output. The steps are organized into four rounds, where one round consists
of 20 steps. Steps are indexed from 0, and we denote by ai, bi, ci, di, ei the
values of the variables a, . . . , e at the beginning of the step i. a80, . . . , e80
are the values at the end of the step 79.

– Output: after undergoing the 80 steps, the final output of H, (a′, b′, c′, d′, e′),
is computed by (a0 + a80, b0 + b80, . . . , e0 + e80), where + is the addition
modulo 232.

– Message scheduling: each step of transformation involves a message word.
20 words x0, . . . , x19 are used in a round which consists of 20 steps. Since
there are only sixteen words x0, . . . , x15 in the original input message, in
each round the four words x16, x17, x18, x19 are defined as an XOR of some
four words in xi (i = 0, . . . , 15). Table 1 defines the definition used in each
round.
And the Table 2 summarizes the message scheduling.

– Boolean functions: for each round, a boolean function f is assigned. The
boolean function is used in the steps belonging to the round. The boolean
functions are as follows:

• Round 1: f(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
• Round 2: f(x, y, z) = x⊕ y ⊕ z
• Round 3: f(x, y, z) = (x ∨ ¬z)⊕ y
• Round 4: f(x, y, z) = x⊕ y ⊕ z

– Constants: similarly, for each round, a constant k is assigned. They are as
follows:

Table 1. Message Expansion of HAS-160

Round 1 Round 2 Round 3 Round 4

x16 x0 ⊕ x1 ⊕ x2 ⊕ x3 x3 ⊕ x6 ⊕ x9 ⊕ x12 x12 ⊕ x5 ⊕ x14 ⊕ x7 x7 ⊕ x2 ⊕ x13 ⊕ x8
x17 x4 ⊕ x5 ⊕ x6 ⊕ x7 x15 ⊕ x2 ⊕ x5 ⊕ x8 x0 ⊕ x9 ⊕ x2 ⊕ x11 x3 ⊕ x14 ⊕ x9 ⊕ x4
x18 x8 ⊕ x9 ⊕ x10 ⊕ x11 x11 ⊕ x14 ⊕ x1 ⊕ x4 x4 ⊕ x13 ⊕ x6 ⊕ x15 x15 ⊕ x10 ⊕ x5 ⊕ x0
x19 x12 ⊕ x13 ⊕ x14 ⊕ x15 x7 ⊕ x10 ⊕ x13 ⊕ x0 x8 ⊕ x1 ⊕ x10 ⊕ x3 x11 ⊕ x6 ⊕ x1 ⊕ x12
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Table 2. Message Scheduling of HAS-160

Step Round 1 Round 2 Round 3 Round 4

0 x18 x18 x18 x18

1 x0 x3 x12 x7

2 x1 x6 x5 x2

3 x2 x9 x14 x13

4 x3 x12 x7 x8

5 x19 x19 x19 x19

6 x4 x15 x0 x3

7 x5 x2 x9 x14

8 x6 x5 x2 x9

9 x7 x8 x11 x4

10 x16 x16 x16 x16

11 x8 x11 x4 x15

12 x9 x14 x13 x10

13 x10 x1 x6 x5

14 x11 x4 x15 x0

15 x17 x17 x17 x17

16 x12 x7 x8 x11

17 x13 x10 x1 x6

18 x14 x13 x10 x1

19 x15 x0 x3 x12

• Round 1: 0x00000000
• Round 2: 0x5a827999
• Round 3: 0x6ed9eba1
• Round 4: 0x8f1bbcdc

– Rotation: each step involves two bit rotations. The amount of the rotations,
s1 and s2 are dependent on the step. These are as follows: first, s1 is given
as follows.

step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

The sequence for s1 is the same for other rounds. Next, s2 is dependent on
the round:

• Round 1: s2 = 10
• Round 2: s2 = 17
• Round 3: s2 = 25
• Round 4: s2 = 30

– Transformation: at each step, from the given values of the variables ai, bi,
. . . , ei, the updated values ai+1, bi+1, . . . , ei+1 are calculated as follows:

• ai+1 ← (ai � s1) + f(bi, ci, di) + ei + x + k
• bi+1 ← ai
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• ci+1 ← (bi � s2)
• di+1 ← ci

• ei+1 ← di

where f , x, k are the boolean function, the message, and the constant for the
step as described before, and s1, s2 are amounts of left bit rotations. + is the
addition modulo 232.

3 Collision Pair for 45-Step HAS-160

3.1 Notation

In this article we follow notations of Wang et al.[1] for keeping track of the
modular differences.

Definition 1. For any v representing a bit sequence of length 32, and any in-
dex j (j=1, . . . , 32), v[j] (or sometimes v[+j]) denotes the value obtained by
changing the j-th bit of v from 0 to 1. This notation implicitly states that j-th
position of v is 0.

Similarly v[−j] denotes the value obtained by changing the j-th bit of v from
1 to 0. Also this implicitly means that the j-th position of v is 1.

Finally, for l distinct indices j1, . . . , jl, the notation v[±j1,±j2, . . . ,±jl] is
a shorthand for

v[±j1][±j2] · · · [±jl] = (· · · ((v[±j1])[±j2]) · · ·) [±jl].

We are going to find a collision pair of messages X = (xi)15i=0 and X ′ = (x′
i)

15
i=0.

Then ai, bi, ci, di, ei will denote the values of a, b, c, d, e at the beginning of
the step i when the message is X, and a′i, b

′
i, c

′
i, d

′
i, e

′
i will denote the values of

a, b, c, d, e corresponding to the message X ′. At each step, the difference of the
variables a, . . . , e will be represented by writing a′, . . . , e′ in terms of a, . . . , e
using the notation of the Definition 1.

3.2 The Differential Path

The Table 4 at the Appendix A represents the differential path we have used in
order to find the 45-step collision of HAS-160.

The message differences are at x3 and x9:

x′
3 − x3 = 231, x′

9 − x9 = 231, and x′
i = xi for i �= 3, 9.

The differences of the variables ai, bi, ci, di, ei vanishes at the step 24 and
it continues to do so up until the step 46, by the influence of the message word
difference at the step 45.

We have chosen the message differences due to the following reasons; The
boolean function x⊕y⊕ z, for rounds 2 and 4, is not very nice, in the sense that
if we have a difference at one of the input variables, then it is not possible to
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cancel the difference at the output, so the difference propagates. And the same
is true for the boolean function (x ∨ ¬z) ⊕ y for the input y. Due to the step-
dependent bit rotations and the message scheduling which is basically just word
re-ordering, it is difficult to find message word differences which give the full
collision with high probability. Therefore, by giving differences only to message
words x3 and x9 at the same bit position 32, we can produce an inner collision
between steps 24 and 45, essentially avoiding most of the round 2, where the
boolean function is x⊕ y ⊕ z.

The next table in the Appendix A, Table 5, shows the sufficient conditions for
the differential path in the Table 4. The differential table was found essentially by
trial-and-error search, the guideline of the search being minimizing the Hamming
weight of the modular difference of the words. Since actual bit position where the
difference occurs can be modified without affecting the modular difference, we
can modify the path by expanding the differing bit positions of variables appro-
priately. For example, at the step 13, instead of using a13[−12,−26] to represent
a modular difference of −211 − 225, we have used a13[12, 13,−14, 26, 27,−28] so
that the differential path above the step 13 becomes simpler.

3.3 The Collision Search Algorithm

Since in the Table 5 there are 233 equations in total, we cannot efficiently search
the correct collision pair simply by choosing messages randomly. Therefore we
use the message modification technique introduced in [1].

For example, suppose that all the equations for ai are already satisfied for
some step i. if x is the word involved in the transformation at step i, we many
modify the word x in order to ‘correct’ the next variable ai+1 as follows: since
we have the defining relation

ai+1 = (ai � s1) + f(bi, ci, di) + ei + x + k,

instead of ai+1, we substitute the ‘correct’ value α which satisfies all the required
equations for ai+1, then we redefine the message word x as α − (ai � s1) −
f(bi, ci, di)− ei − k.

Contrary to MD5 and SHA-1, HAS-160 doesn’t use the original message words
directly in the first round; It is interspersed with ‘synthesized’ words x16, . . . ,
x19 so that the words in the first round are no longer independent. Therefore, we
need to be a little more careful in applying the message modification technique.

One simple observation is that we can reverse the roles of the defined words
and the independently chosen words: for example, in the round 1 the relation
x18 = x8 ⊕ x9 ⊕ x10 ⊕ x11 holds, and this can be rewritten as x11 = x18 ⊕ x8 ⊕
x9 ⊕ x10. Now we may regard x18, x8, x9, and x10 are the independently given
input and x11 is defined in terms of the other four.

Therefore, in the first round we may consider the 16 words x18, x0, x1, x2,
x3, x19, x4, x5, x6, x7, x8, x9, x10, x12, x13, x14 are independent words and
x16 = x0 ⊕ x1 ⊕ x2 ⊕ x3, x11 = x18 ⊕ x8 ⊕ x9 ⊕ x10, x17 = x4 ⊕ x5 ⊕ x6 ⊕ x7,
and x15 = x19⊕ x12⊕ x13⊕ x14 defined in terms of other words, i.e., among the
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linearly dependent five words, the word which appears at the last is considered
as dependent.

Then the search algorithm works as follows:

1. Choose the message words (xi)15i=0 randomly.
2. In the round 1 compute x16, . . . , x19 following the definition for them.
3. Prepare the other message words (x′

i)
15
i=0 so that the two messages have the

prescribed difference: x′
3 − x3 = 231, x′

9 − x9 = 231.
4. In the round 1, at each step if the involved message word is considered

independent, then rewrite the message to correct the next ai. Since the first
(now redefined) dependent word, x16, occurs at step 10, all the equations
occuring at step 0 to step 10 may be forced to be satisfied by the message
modification technique.

5. Since x16 is a dependent word, we cannot apply the message modification
technique to this word. Since at the step 11, there are 14 equations in total
for the variable a11 to be satisfied, heuristically the probability that all the
equations for a11 are satisfied is 2−14. If any of the equations for a11 is not
satisfied, go to 1 again to choose random message words. Proceed to next if
all the equations for a11 are satisfied.

6. Correct independent words x8, x9, and x10 to satisfy all the equations for
steps 12, 13, and 14.

7. Now the next two words, x11 and x17 are dependent words. There are 8
equations for a15 and 4 equations for a16. Therefore the probability that all
the 12 equations are satisfied is 2−12. If any of the equations is not satisfied,
then randomly choose x8, x9, and x10 again, go to 6, define dependent words,
and continue the message modification process for the newly chosen words,
until all the 12 equations are satisfied. Proceed to next.

8. Now all the equations for steps up to 16 are satisfied. After this all the
remaining words, except the last word x15, are independent. For these we
can use the message modification technique to correct all the remaining
equations. This will produce a inner collision between step 24 and 45.

Therefore, the complexity of the above algorithm is dominated by the number
of expected trial-and-errors involved. In terms of the number of 45-step hash
operations, the complexity in finding messages for step 0 to 10 is bounded by

214 · 11
45
≤ 212,

and the complexity for step 11 to 15 is bounded by

212 · 5
45
≤ 29.

So the total complixity can be estimated to be 212.

3.4 The Actual Collision Found

Table 3 is a collision for 45-step HAS-160 we have found. For both messages
X and X ′, the 45-th output (that is, the output of the step 44) is equal to
b4b01f8e. It took less than a second on a PC with a 2.66 GHz Pentium 4 CPU.
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Table 3. A collision pair for 45-step HAS-160

X value X ′ value

x0 cf31e167 x′
0 cf31e167

x1 0568c383 x′
1 0568c383

x2 5b04edde x′
2 5b04edde

x3 9583016e x′
3 1583016e

x4 2e351a4b x′
4 2e351a4b

x5 74049b4f x′
5 74049b4f

x6 41839df9 x′
6 41839df9

x7 68e50c1a x′
7 68e50c1a

x8 745148dc x′
8 745148dc

x9 611f2697 x′
9 e11f2697

x10 0ee6ca41 x′
10 0ee6ca41

x11 b9b3f627 x′
11 b9b3f627

x12 237aec88 x′
12 237aec88

x13 bc1f3ac9 x′
13 bc1f3ac9

x14 397e6fd8 x′
14 397e6fd8

x15 506a788c x′
15 506a788c

4 Conclusion

In this paper, we have described an 212 algorithm to find collisions of 45-step
HAS-160, and actually presented a collision pair. It seems difficult to extend this
method directly to the full HAS-160, or even beyond the round 3. Further study
is needed to refine the attack to evaluate the strength of the algorithm more
fully.
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A The Differential Path and the Equations

In this section we present the differential path we used to find the collision and
the sufficient conditions for the path.

The Table 4 represents the differential path. The column x displays the mes-
sage words used at each step, and the column Δx means the index of the bit
where the difference is introduced. Note that we have introduced the differences
only at the bit position 32.

In the table, · means that the difference is zero. The empty boxes in steps 4–20
are intentionally left blank because they contain values that can be mechanically
determined based on the column a′; for example the blanks on the column b′ are
simply translates of the corresponding spaces on the column a′, and the blanks
on the column c′ can be determined by simple rotation from the corresponding
values on the column b′.

The Table 5 represents the sufficient conditions for the path. Similarly, we
used the simple relations between the variables to standardize most equations
in Table 5 so that they are written in terms of the variables ai.
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Table 4. The differential path used in the paper

Step x Δx s1 a′ b′ c′ d′ e′

0 x18 32 5 · · · · ·

1 x0 11 a1[−32] · · · ·

2 x1 7 a2[−11] b2[−32] · · ·

3 x2 15 a3[18,−19] b3[−11] c3[−10] · ·

4 x3 32 6 a4[1, . . . , 12,−13] c4[−21] d4[−10] ·

5 x19 13 a5[−7,−32] d5[−21] e5[−10]

6 x4 8 a6[−20] e6[−21]

7 x5 14 a7[14, 22]

8 x6 7 a8[4, 10, 15, . . . , 21,−22]

9 x7 12 ·

10 x16 32 9 a10[−4,−16, . . . ,−21, 22]

11 x8 11 a11[−13, 14, 20]

12 x9 32 8 a12[4, . . . , 8,−9,−17]

13 x10 15 a13[12, 13,−14, 26, 27,−28]

14 x11 6 a14[17]

15 x17 12 a15[−18]

16 x12 9 a16[5]

17 x13 14 a17[22]

18 x14 5 a18[−22] b18[22]

19 x15 13 a19[15] b19[−22] c19[32]

20 5 · b20[15] c20[−32] d20[32]

21 32 11 · · c21[32] d21[−32] e21[32]

22 7 · · · d22[32] e22[−32]

23 32 15 · · · · e23[32]

24 6 · · · · ·

25 13 · · · · ·

26 8 · · · · ·

27 14 · · · · ·

28 7 · · · · ·

29 12 · · · · ·

30 9 · · · · ·

31 11 · · · · ·

32 8 · · · · ·

33 15 · · · · ·

34 6 · · · · ·

35 12 · · · · ·

36 9 · · · · ·

37 14 · · · · ·

38 5 · · · · ·

39 13 · · · · ·

40 5 · · · · ·

41 11 · · · · ·

42 7 · · · · ·

43 15 · · · · ·

44 6 · · · · ·

45 32 13 · · · · ·

46 8 a46[±32] · · · ·
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Table 5. The equations for the differential path

sufficient conditions

a0 a0,22 = b0,22

a1 a1,1 = a0,1, a1,32 = 1

a2 a2,3 = 1, a2,8 = a1,8, a2,9 = a1,9, a2,10 = 0, a2,11 = 1, a2,29 = 0, a2,32 = 0

a3 a3,1 = a2,1, a3,2 = a2,2, a3,3 = 0, a3,10 = 1, a3,18 = 0, a3,19 = 1, a3,21 = 0,
a3,23 = a2,23, . . . , a3,31 = a2,31, a3,32 = 1

a4 a4,1 = 0, . . . , a4,12 = 0, a4,13 = 1, a4,21 = 1, a4,22 = a3,22, a4,28 = 0, a4,29 = 0

a5 a5,7 = 1, a5,10 = 1, a5,11 = 0, a5,12 = 0, a5,13 = 0, a5,14 = 1, a5,15 = 0, . . . ,
a5,20 = 0, a5,21 = 1, a5,22 = 1, a5,23 = 0, a5,28 = 0, a5,29 = 1, a5,32 = 1

a6 a6,4 = a5,4, a6,6 = 0, a6,7 = 0, a6,10 = 0, a6,11 = 0, a6,12 = 1, a6,13 = 1, a6,14 = 1,
a6,15 = 0, a6,16 = 0, a6,17 = 1, . . . , a6,23 = 1, a6,26 = 1, a6,32 = 0

a7 a7,5 = a6,5, a7,6 = 1, a7,7 = 1, a7,8 = a6,8, a7,9 = a6,9, a7,10 = 1, a7,11 = a6,11,
a7,12 = a6,12, a7,14 = 0, a7,17 = 0, a7,22 = 0, a7,26 = 0, a7,30 = 0, a7,32 = 1

a8 a8,4 = 0, a8,7 = 0, a8,10 = 0, a8,15 = 0, . . . , a8,21 = 0, a8,22 = 1, a8,24 = 0,
a8,26 = 0, a8,30 = 1, a8,32 = 0

a9 a9,4 = 1, a9,6 = a8,6, a9,7 = 1, a9,8 = a8,8, a9,9 = a8,9, a9,10 = 1, a9,11 = a8,11,
a9,12 = a8,12, a9,14 = 1, a9,20 = 1, a9,24 = 1, . . . , a9,29 = 1, a9,30 = 0, a9,31 = 0

a10 a10,3 = a9,3, a10,4 = 1, a10,7 = 1, a10,10 = 0, a10,14 = 1, a10,16 = 1, . . . , a10,21 = 1,
a10,22 = 0, a10,25 = 0, . . . , a10,30 = 0, a10,31 = 1, a10,32 = 1

a11 a11,4 = 1, a11,7 = 0, a11,13 = 1, a11,14 = 0, a11,16 = 1, a11,17 = 0, a11,20 = 0,
a11,26 = 0, . . . , a11,31 = 0, a11,32 = 1

a12 a12,2 = a11,2, a12,3 = a11,3, a12,4 = 0, . . . , a12,8 = 0, a12,9 = 1, a12,14 = 1,
a12,16 = 0, a12,17 = 1, a12,18 = a11,18, a12,23 = 0, a12,24 = 0, a12,26 = 1, a12,27 = 0,
a12,28 = 0, a12,29 = 0, a12,30 = 1, a12,31 = 1, a12,32 = 1

a13 a13,7 = 0, a13,12 = 0, a13,13 = 0, a13,14 = 1, a13,15 = 0, a13,16 = 0, a13,17 = 0,
a13,18 = 1, a13,19 = 1, a13,23 = 0, a13,24 = 1, a13,26 = 0, a13,27 = 0, a13,28 = 1,
a13,30 = 1

a14 a14,4 = 0, a14,5 = 1, a14,6 = 0, a14,8 = a13,8, a14,14 = 1, a14,15 = 1, a14,16 = 1,
a14,17 = 0, a14,18 = 1, a14,19 = 1, a14,22 = 0, a14,23 = 1, a14,24 = 1, a14,27 = 1

a15 a15,4 = 1, a15,5 = 1, a15,6 = 1, a15,18 = 1, a15,22 = 0, a15,23 = 1, a15,24 = 1,
a15,27 = 1

a16 a16,5 = 0, a16,12 = a15,12, a16,27 = 1, a16,28 = 0

a17 a17,12 = a16,12, a17,15 = 1, a17,22 = 0, a17,28 = 1

a18 a18,5 = a17,5 ⊕ 1, a18,15 = 1, a18,22 = 1, a18,32 = 0

a19 a19,15 = 0
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Abstract. We introduce new methods for detecting control-flow side
channel attacks, transforming C source code to eliminate such attacks, and
checking that the transformed code is free of control-flow side channels.
We model control-flow side channels with a program counter transcript, in
which the value of the program counter at each step is leaked to an adver-
sary. The program counter transcript model captures a class of side chan-
nel attacks that includes timing attacks and error disclosure attacks.

Further, we propose a generic source-to-source transformation that
produces programs provably secure against control-flow side channel at-
tacks. We implemented this transform for C together with a static checker
that conservatively checks x86 assembly for violations of program counter
security; our checker allows us to compile with optimizations while re-
taining assurance the resulting code is secure. We then measured our
technique’s effect on the performance of binary modular exponentiation
and real-world implementations in C of RC5 and IDEA: we found it has
a performance overhead of at most 5× and a stack space overhead of
at most 2×. Our approach to side channel security is practical, gener-
ally applicable, and provably secure against an interesting class of side
channel attacks.

1 Introduction

The last decade has seen a growing realization that side channel attacks pose a
significant threat to the security of both embedded and networked cryptographic
systems. The issue of information leakage via covert channels was first described
by Lampson [19] in the context of timesharing systems, but the implications for
cryptosystem implementations were not recognized at the time. In his seminal
paper, Kocher showed that careful timing measurements of RSA operations could
be used to discover the RSA private key through “timing analysis” [17]. Kocher,
Jaffe, and Jun showed how careful power measurements could reveal private keys
through “power analysis” [18]. Since then, side channel attacks have been used to
break numerous smart card implementations of both symmetric and public-key
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cryptography [10, 22, 21, 23]. Later, Boneh and Brumley showed that a timing
attack could be mounted against a remote web server [9]. Other recent attacks on
SSL/TLS web servers make use of bad version oracles or padding check oracles;
remote timing attacks can reveal error conditions enabling such attacks even if
no explicit error messages are returned [20, 6, 32, 7, 15, 16, 25].

Defending against side channels requires a combination of software and hard-
ware techniques. We believe a principled solution should extend the hardware/
software interface by disclosing the side-channel properties of the hardware. Just
as an instruction set architecture specifies the behavior of the hardware to suf-
ficient fidelity that a compiler can rely on this specification, for side-channel
security we advocate that this architecture should specify precisely what in-
formation the hardware might leak when executing by each instruction. This
boundary forms a “contract” between hardware and software countermeaures
as to who will protect what; the role of the hardware is to ensure that what is
leaked is nothing more than what is permitted by the instruction set specifica-
tion, and the role of the software countermeasures is to ensure that the software
can tolerate leakage of this information without loss of security.

Our main technical contribution is an exploration of one simple but useful
contract, the program counter transcript model, where the only information the
hardware leaks is the value of the program counter at each step of the computa-
tion. The intuition behind our model is that it captures an adversary that can
see the entire control flow behavior of the program, so it captures a non-trivial
class of side-channel attacks. This paper develops methods for detecting such
attacks on C programs and shows how to secure software against these attacks
using a C-to-C code transformation.

We introduce a source-to-source program transformation that takes a pro-
gram P and produces a transformed program P ′ with the same input-output
behavior and with a guarantee that P ′ will be program counter secure. We built
a prototype implementation of this transformation that works on C source code.
We applied our implementation to implementations of RC5 and IDEA written in
C, as well as an implementation of binary modular exponentiation. The resulting
code is within a factor of at most 5 in performance and a factor of 2 in stack
usage of untransformed code (§ 5.1).

Because our transform works at the C source level, we must be careful that
the compiler does not break our security property. We build a static analysis tool
that conservatively checks x86 assembly code for violations of program counter
security. For example, we were able to show that our transformed code, when
compiled with the Intel optimizing C compiler, retains the security properties.

The program counter model does not cover all side channel attacks. In par-
ticular, data dependent side channels (such as DPA or cache timing attacks [5])
are not eliminated by our transform. Nevertheless, we still believe the model is
of value. We do not expect software countermeasures alone to solve the problem
of side channels.

In short, we show how to discover and defend against a class of attacks, while
leaving defenses against some important attacks as an open question. Our work



158 D. Molnar et al.

opens the way to exploring a wide range of options for the the interface between
hardware and software side channel countermeasures, as formalized by different
transcript models. As such, our work is a first step towards efficient, principled
countermeasures against side channel attacks.

2 A Transcript Model for Side Channel Attacks

We formalize the notion of side information by a transcript. We view program ex-
ecution as a sequence of n steps. A transcript is then a sequence T = (T1, . . . , Tn),
where Ti represents the adversary’s observation of the side channel at the ith step
of the computation. We will then write Pk(x) to mean the program P running
on secret input k and non-secret input x. Informally, a program is secure if the
adversary “learns nothing” about k even given access to the side-channel tran-
script produced during execution of Pk(x) for x values of its choice. Our model
can be thought of as a “single-program” case of the Micali-Reyzin model, in
which their “leakage function” corresponds to our notion of a transcript [24].

The transcript is the way we formalize the contract between hardware and
software. It is the job of hardware designers to ensure that the hardware leaks
nothing more than what is specified in the transcript, and the rest of this paper
assumes that this has been done.

We write D ∼ D′ if D and D′ have the same distribution (perfect in-
distinguishability). Programs will take two inputs, a key k and an input x;
we write Pk(x) for the result of evaluating P on key k and input x. Define
#Pk(x)# def= (y, T ), where y = Pk(x) is the result of executing P on (k, x) and
T denotes the transcript produced during that execution. If P is randomized,
Pk(x) and #Pk(x)# are random variables. We abuse notation and write #Pk#
for the map #Pk#(x) = #Pk(x)#. We can then define transcript security as
follows:

Definition 1 (transcript security). A program P is said to be transcript-secure
(for a particular choice of transcript) if for all probabilistic polynomial time
adversaries A, there exists a probabilistic polynomial time simulator S, which
for all keys k satisfies SPk ∼ A#Pk#.

3 Program Counter Security: Security Against Certain
Side-Channel Attacks

In the PC model, the transcript T conveys the sequence of values taken on by
the processor’s program counter during the computation. To be specific, our
concrete notion of security is as follows:

Definition 2 (PC-security). A program P is PC-secure if P is transcript-secure
when the transcript T = (T1, . . . , Tn) is defined so that Ti represents the value
of the program counter at the ith step of the execution.
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Consequently, in the PC model, the attacker learns everything about the pro-
gram’s control-flow behavior but nothing about other intermediate values com-
puted during execution of the program. In the remainder of this work, we make
two assumptions about the hardware used to execute the program: first, that
the the program text is known to the attacker. This implies that the program
counter at time i reveals the opcode that was executed at time i. Second, the
side-channel signal observed by the attacker depends only on the sequence of
program counter values, e.g., on the opcode executed. For example, we assume
that the execution time of each machine instruction can be predicted without
knowledge of the values of its operands, so that its timing behavior is not data-
dependent in any way. Warning: This is not true on some architectures, due to,
among other things, cache effects [5], data-dependent instruction timing, and
speculation.

We stress that our transcript model is intended as an idealization of the
information leaked by the hardware; it may be that no existing system meets the
transcript precisely. Nonetheless, we believe these assumptions are reasonable for
some embedded devices, namely those which do not have caches or sophisticated
arithmetic units. With these assumptions, PC-security subsumes the attacks
mentioned above. Given a transcript of PC values, the attacker can infer the
total number of machine cycles used during the execution of the program, and
thus the total time taken to run this program; consequently, any program that
is PC-secure will also be secure against timing attacks.

4 Example: Error Disclosure Side Channels

Some implementation attacks exploit information leaks from the disclosure of
decryption failures. Consider a decryption routine that can return several dif-
ferent types of error messages, depending upon which stage of decryption failed
(e.g., improper PKCS formatting, invalid padding, MAC verification failure). It
turns out that, in many cases, revealing which kind of failure occurred leaks
information about the key [6, 32, 7, 15, 16, 25].

Näıvely, one might expect that attacks can be avoided if the implementation
always returns the same error message, no matter what kind of decryption failure
occurred. Unfortunately, this simple countermeasure does not go far enough.
Surprisingly, in many cases timing attacks can be used to learn which kind of
failure occurred, even if the implementation does not disclose this information
explicitly [6, 32, 7, 15, 16, 25, 20]. See, for instance, Fig. 1(a). The existence of
such attacks can be viewed as a consequence of the lack of PC-security. Thus, a
better way to defend against error disclosure attacks is to ensure that all failures
result in the same error message and that the implementation is PC-secure. We
show several similar applications of PC-security in the full paper [26].

Suppose we had a subroutine Cond(e, t, f) that returns t or f according to
whether e is true or false. Using this subroutine, we propose in Fig. 1(b) one
possible implementation strategy for securing the code in Fig. 1(a) against error
disclosure attacks. If there is an error in Line 1, we generate a dummy value
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OAEP-Insecure(d, x):

1. (e, y) ← IntToOctet(xd mod n)
2. if e then return Error
3. (e′, z) ← OAEPDecode(y)
4. if e′ then return Error
5. return z

(a) Näıve code (insecure)

OAEP-Secure(d, x):

1. (e, y) ← IntToOctet(xd mod n)
2. y ← Cond(e, dummy value, y)
3. (e′, z) ← OAEPDecode(y)
4. return Cond(e ∨ e′, Error, z)

(b) A transformed version (PC-secure)

Fig. 1. Two implementations of OAEP decryption. We assume that each subroutine
returns a pair (e, y), where e is a boolean flag indicating whether any error occurred,
and y is the value returned by the subroutine if no error occurred. The code on the
left is insecure against Manger’s attack, because timing analysis allows to distinguish
an error on Line 2 from an error on Line 3. The code in the right is PC-secure and
hence not vulnerable to timing attacks, assuming that the subroutines are themselves
implemented in a PC-secure form.

(which can be selected arbitrarily from the domain of OAEPDecode) to replace
the output of Line 1. If all subroutines are implemented in a PC-secure way and
we can generate a dummy value in a PC-secure way, then our transformed code
will be PC-secure and thus secure against error disclosure attacks.

There is one challenge: we need a PC-secure implementation of Cond. We
propose one way to meet this requirement through logical masking:

Cond(e, t, f):
1. m←Mask(e)
2. return (m ∧ t) ∨ (¬m ∧ f)

Here ¬,∨,∧ represent the bitwise logical negation, OR, AND (respectively). This
approach requires a PC-secure subroutine Mask satisfying Mask(false) = 0 and
Mask(true) = 2� − 1 = 11 · · ·12, assuming t and f are �-bit values. The Mask
subroutine can be implemented in many ways. For instance, assuming true and
false are encoded as values 1 and 0, we could use Mask(e) = (2� − 1) × e;
Mask(e) = −e (on two’s-complement machines); Mask(e) = (e � (� − 1)) ≫
(�− 1) (using a sign-extending arithmetic right shift); or several other methods.
With the natural translation to machine code, these instantiations of Mask and
Cond will be PC-secure.

4.1 Straight-Line Code is PC-Secure

The key property we have used to show PC-security of code in the previous
section is that the code is straight-line, by which we mean that the flow of control
through the code does not depend on the data in any way. We now encapsulate
this in a theorem.

Theorem 1. (PC-security of straight-line code). Suppose the program P has no
branches, i.e., it has no instructions that modify the PC. Then P is PC-secure.
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Proof. Since P is branch-free, for all inputs x and all keys k the program counter
transcript T of Pk(x) will be the same. For any adversary A, consider the simula-
tor S that runs A, outputting whatever A does and answering each query x that
A makes to its oracle with the value (Pk(x), T ). Then SPk ∼ A#Pk# for all k.

In fact, it suffices for P to be free of key-dependent branches. We can use this
to show that some looping programs are PC-secure.

Theorem 2. (PC-security of some looping programs). Suppose the program P
consists of straight-line code and loops that always run the same code body for a
fixed constant number of iterations in the same order (i.e., the loop body contains
no break statements and no assignments to the loop counter; there are no if
statements). Then P is PC-secure.

Proof. As before, for all inputs x and all keys k, the program counter transcript
T of Pk(x) will be the same, so we can use the same simulation strategy.

5 Code Transformation for PC-Security

The examples we have seen so far illustrate the relevance of PC-security, but en-
forcing PC-security by hand is highly application-dependent and labor-intensive.
We describe a generic method for transforming code to be PC-secure. Given a
program P , the transformed program P ′ is PC-secure and has the same input-
output behavior as P on all inputs (i.e., Pk(x) ∼ P ′

k(x) for all k, x). It may be
surprising that almost all code can be transformed in this way, but we show in
the full paper that this can be done for any fragment of code where all loops
executed for a bounded number of iterations [26].

Transforming conditional statements. An if statement containing only assign-
ment expressions can be handled in a fairly simple way. To provide PC-security,
we execute both branches of the if, but only retain the results from the branch
that would have been executed in the original program. The mechanism we use
to nullify the side-effects of either the consequent or the alternative is conditional
assignment. We have already seen one way to implement PC-secure conditional
assignment using logical masking and the Cond subroutine. For example, the
C statement if (p) { a = b; } can be transformed to a = Cond(m, b, a),
where m = Mask(p). If p represents a 0-or-1-valued boolean variable1, this
might expand to the C code m = -p; a = (m & b) | (~m & a).

Loops. Loops present difficulties because the number of iterations they will per-
form may not be known statically, and in particular, the number of iterations
may depend on sensitive data. Fortunately, in many cases a constant upper
bound can be established on the number of iterations. We transform the loop so
that it always executes for the full number of iterations, but the results of any
iterations that would not have occurred in the original program are discarded.
A specification of our entire transform may be found in Appendix A
1 If p is not guaranteed to be 0-or-1-valued, this definition of m does not work. We use
m = !p - 1 instead.
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Fig. 2. The speed, code size, and stack size overhead of our transform, as applied to
modular exponentiation, IDEA, and RC5. The -xf suffix indicates the automatic appli-
cation of our transform, while the -hand suffix indicates a hand-optimized application
of our transform. Values are normalized: the untransformed version of a program takes
unit time by definition, while the transformed version of the same program is shown
with the relative multiplicative overhead compared to the untransformed version.

5.1 Transform Implementation

We applied our transform to implementations of the IDEA and RC5 block ci-
phers, which are known to be susceptible to timing attacks unless implemented
carefully [14, 12]. We also applied our transform to a simple binary modular ex-
ponentiation implementation built on top of the GNU Multiprecision Library.
We chose x86 as our reference platform due to its widespread popularity, and we
used the Intel C Compiler, Version 8.1 for our performance results. Our tests were
run on a 2.8 GHz Pentium 4 running FreeBSD 6-CURRENT (April 17, 2005).

We first optimized our transform by hand on IDEA’s multiplication routine
to determine how fast our transform can be in principle. Our hand-optimized
transformation achieves a factor of 2× slowdown compared to untransformed
code, when both are compiled using the Intel C compiler with -O3.

We then implemented an automatic C source-to-source transformation using
the C Intermediate Language package [27]. Our implementation was intended
as an early prototype to demonstrate the feasibility of applying our transfor-
mation automatically. With more careful attention, better performance from an
automatic transform may be possible.

Performance results. Our performance results for modular exponentiation,
IDEA, and RC5 are presented in Fig. 2. For IDEA, we transformed only the
mul routine, which we identified as the main candidate for timing and power
attacks. For RC5, we performed the transformation on the rotate routine, for
similar reasons. For modexp, we transformed only the main loop, but did not
transform GnuMP library functions.

The performance of untransformed, optimized code is set to 1, and the per-
formance of transformed code is reported relative to this value; for example, the
bar with height “2” for idea-hand indicates that our hand-transformed IDEA
code took 2 times as long as untransformed code. We also found that code size
increased by at most a factor of 2. Finally, we considered the stack usage of
transformed code; this is the most relevant metric of memory usage for systems
without dynamically allocated memory.
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We can see that both our automatic transform is within a factor of 5 in perfor-
mance of the optimized untransformed code in all cases. Again, our implemen-
tation is a prototype intended to test feasibility; with more work, more efficient
code may be possible. Further, our stack size and code size increase by at most
a factor of 2, showing that the transformed code may still be reasonable even in
constrained environments. Our results suggest that a fully automatic transfor-
mation with slowdown acceptable for many applications is possible with care.

A static analysis for PC-security. We cannot guarantee that the compiler will
preserve our transform’s straight-line + restricted-loop guarantee when it gener-
ates assembly language. We addressed this problem by building a simple static
checker for x86 assembly code that detects violations of PC-security. If the com-
piler does introduce assembly constructs that violate PC-security, these con-
structs will be flagged by the checker. We can then revise the code or improve
our transform. Our checker is sound, but not complete: it will catch all violations
of PC-security, but may also report false positives.

In fact, our checker caught unsafe constructs in the gcc 3.3.2 compilation of
our transformed C code to x86 assembly. In certain expression contexts, gcc
compiles the logical negation (!) operator into an assembly sequence involving a
conditional branch. Further experimentation reveals that this idiom is not limited
to the x86; the Sun C compiler on an UltraSPARC-60 machine exhibits similar
behavior. We discovered, however, that the Intel C compiler does not compile
! using conditional jumps, so we used the Intel compiler for our performance
experiments. One alternative would be to change the transform to avoid the
! operator, but we did not find a portable and efficient replacement. Another
alternative would be to modify gcc to add an extra mode that respects the PC-
security of compiled code; we found it easier, however, to simply use the Intel
compiler for our tests. Our experience shows the merely turning off optimizations
does not guarantee that transformed C code will be PC-secure after compilation.
Details of our checker’s construction and operation may be found in the full
version of the paper [26].

6 Related Work

Many previous side channel defenses are application-specific. For example, blind-
ing can be used to prevent timing attacks against RSA [17, 9]. The major advan-
tage of an application-specific defense is that it can be efficient. Experimental
measurements show that blinding only adds a 2–10% overhead; contrast this
with the overhead we measured in § 5.1.

Unfortunately, no proof of security for blinding against side channel attacks
is known. In the absence of proof, it is difficult to assess whether the de-
fense works. For example, defenses were designed for the five AES finalists [21].
These defenses had no formal model of information leaked to the adversary
and hence no way to verify security. In fact, Coron and Goubin later pointed
out a subtle flaw in one of the techniques [11]. Blömer, et al., give several
more examples of techniques that were thought to be secure but failed, and
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of cases where innocent-looking “simplifications” failed. These examples moti-
vate their study of provably secure defenses against side channels [8]. We note
that Hevia and Kiwi showed that conditional branches in some implementations
of DES leak information about the secret key; this is another motivation for
PC-security.

Chevallier-Mames, Ciet, and Joye show a clever construction for performing
modular exponentiation without incurring undue overhead. They show that,
under an appropriate physical assumption, only the Hamming weight of the
exponent is leaked by their algorithm. Blömer, et al., also define a model for
provable security against side channel attacks and show how to implement AES
securely in this model [8]. While these methods are a step forward, they still
require a great deal of new effort for each new application.

The programming languages community has studied the problem of secure
information flow extensively, but most work regarding C code has focused on
detecting covert channels and side channels [29], not on eliminating them via
code transformation. One exception is Agat’s work, which transforms out timing
leaks by inserting dummy instructions to balance out the branches in a program’s
control-flow graph [1, 2]. His work is focuses primarily on timing attacks, while
our approach is more general. There are also languages such as Jif and Flowcaml
that include information flow support as part of the language [33, 31].

Micali and Reyzin examine “physically observable cryptography” through a
framework that is closely related to ours. Their model specifies a “leakage func-
tion” (analogous to our notion of transcript) and allows the adversary to measure
the outputs of this leakage function on a “physical machine” which may be ex-
ecuting some number of “virtual Turing Machines.” Our model, in contrast, is
simpler since we consider only a single program executing at a time. Also, Mi-
cali and Reyzin focus more on how side channel attacks affect basic theorems
of cryptography, while we are interested in automatic transforms that improve
security against such attacks [24].

The above defenses focus on software; there are also promising solutions that
focus on hardware [30, 3, 4, 28]. To coordinate these defenses, we need a contract
between hardware researchers and software researchers as to who will protect
what. Our transcript is exactly this: a contract specifying what information the
software can expect the hardware to leak to the adversary.

7 Conclusion and Open Problems

We presented a program counter model for reasoning about side channel attacks,
a system that transforms code to increase resistance against attacks, and a static
verifier that checks the code output by our compiler is PC-secure. This framework
allows us to prove transformed code is secure against an interesting class of side
channels. With enough work, an even more efficient automatic transformation
for PC-security may be possible.

Looking forward, it is an interesting open problem to extend these methods
to handle a larger class of side-channel attacks. We have argued that specifying
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a transcript model as part of the hardware/software interface simplifies devel-
opment of both hardware and software countermeasures. We leave it as an open
problem to find the “right” contract between these two worlds.
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A Specifying the Transform

We are now ready to specify the transform more precisely. As we discussed, our
implementation handles all of the C language. However, the lack of a formal
semantics for C makes it difficult to prove anything about C, so we focus on
a subset of C that contains most of the language features that are relevant to
our analysis. For this subset, we can prove that the transform is semantically
preserving and that it produces PC-secure code.

To precisely capture this subset of C, we introduce IncredibL, a simple im-
perative language with restricted control flow. IncredibL is our own invention,
but it is derived from Hennessy’s WhileL [13]. The grammar for IncredibL can
be found in Fig. 3.

Roughly, IncredibL captures a memory-safe subset of C with only bounded
loops, if statements, and straight-line assignments. Note that we do not al-
low any forms of recursion or unstructured control flow, as these may introduce
unbounded iteration. We also disallow calls to untransformed subroutines, in-
cluding I/O primitives. Note that because loop bounds are known statically in
IncredibL, we can in principle unroll all loops in any IncredibL program to obtain
code with no branches.

Our transformation TProgram is specified in Fig. 4. We state the main theorems
here. Proofs can be found in full version [26].

C ∈ Com = Program
E ∈ Exp
B ∈ BoolExp ⊂ Exp
I ∈ Identifier

arithop ∈ AOp = {+, -, *, &, |}
relop ∈ RelOp = {>, <, =}

boolop ∈ BoolOp = {and, or}
n ∈ Num

(a) Syntactic
domains.

C ::=
I := E | C′; C′′ | if B then C′ else C′′

| for I := n to n′ do C′ | break

E ::= I | n | B | E′ arithop E′′ | ~E′

B ::=
0 | 1 | B′ boolop B′′ | E′ relop E′′ | !B′

(b) Grammar.

Fig. 3. The abstract syntax of IncredibL

Theorem 3. TProgram is semantics-preserving. for every IncredibL program P ,
TProgram[[P ]] consists only of straight-line code and loops with straight-line code
bodies that run for a fixed constant number of iterations with no assignments to
induction variables.

Corollary 1. TProgram enforces PC-security. for every IncredibL program P ,
TProgram[[P ]] is PC-secure.
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TProgram[[C]] = I0 := -1; TCom[[C]](I0, I0) where I0 is a fresh identifier

TCom[[I := E]](Iif, Ibrk) = conditional-assign(I, (Iif & Ibrk), E, I)

TCom[[C; C′]](Iif, Ibrk) = TCom[[C]](Iif, Ibrk); TCom[[C′]](Iif, Ibrk)

TCom[[if B then C else C′]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), (0-B), 0); TCom[[C]](I0, Ibrk);
conditional-assign(I0, (Iif & Ibrk), ~I0, 0); TCom[[C′]](I0, Ibrk)

where I0 is a fresh identifier

TCom[[for I := n to n′ do C]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), -1, 0);
for I := n to n′ do TCom[[C]](Iif, I0)

where I0 is a fresh identifier

TCom[[break]](Iif, Ibrk) = conditional-assign(Ibrk, (Iif & Ibrk), 0, Ibrk)

conditional-assign(I, Em, Et, Ef ) = I := (Et & Em) | (Ef & ~Em)

Fig. 4. A formal specification of our transform
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Abstract. Covert channel is a famous drawback exists in most of multilevel 
security systems. Both TESEC and CC standards need covert channel analysis 
when secure software tries to get the certification of some security levels, i.e. 
B2 and EAL5 or above in TCSEC and CC, respectively. Search method is one 
of the most important works with ad hoc characters in covert channels analysis. 
Though some semi auto tools have been built, peoples who work in this area are 
eager to develop an auto search tool to find all of covert channels since it was 
first known in 1973. This paper proves that willingness is a kind of undecidable 
problems, by which illustrates it’s impossible to build a program which can 
identify all of covert channels in a security computer system automatically. 

1   Introduction 

Security computer system use both mandatory and discretionary access controls to 
restrict the flow of information through legitimate communication channels such as 
files, shared memory, and process signals. Unfortunately, in practice one finds that 
computer systems are built such that users are not limited to communicating only 
through the intented communication channels. These illegitimate channels are known 
as covert channels [1]. From this point of view, covert channels can be defined as 
those that use entities not normally viewed as data objects to transfer information 
from one subject to another [2]. 

Covert channel analysis is a necessary work required by both TCSEC and CC 
when secure software tries to get the certification of some security levels, i.e. B2 and 
EAL5 or above in TCSEC and CC, respectively. Covert channel analysis can be 
categorized as three parts, viz. search, audit and elimination, in which search is the 
most booming research area. Although some search methods provide semi automatic 
tools to help analyzers to identify covert channels, all of these methods need human 
intervention [3]. Can an automatic tool that can find all of the covert channels within 
a security computer system be built? This paper discusses the relationship between 
covert channels searching and undecidable problem, by which to illustrate theoretic- 
cally that’s impossible.  
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In the following pages, what characters should a covert channels’ searching 
program has is discussed. Section 3 proves that searching covert channels is a kind of 
undecidable problem. In section 4, the relationship between covert channels and 
ambiguous of context-free grammar is discussed. It provides another point of view to 
understand the conclusion in section 3.  Finally, section 5 concludes the paper and 
gives some advices on covert channels searching. 

2   The Characters of Searching Program 

Before going further we should understand why covert channels use entities not 
normally viewed as data objects to transfer information from one subject to another? 
Why don’t they communicate directly?  

Generally, in a multilevel security system, classified information is only permitted 
flows from low security level to higher. By this weird method, actually, even under 
the supervision of security model, covert channels can be used to leak sensitive 
information from high security level to lower [4, 5]. Most of multilevel security 
models have the problem of covert channels, e.g. BLP (Bell-La Padula) model. 

Provided an amazing program that can identify covert channels automatically in 
multilevel security system has been built, what characters should it has? 

Lemma 1: If a program can identify covert channels automatically in multilevel 
security system, it has the ability to tell the difference among security levels. 

Proof: If a program can identify covert channels automatically, that is to say, this 
program knows there is a channel by which information flows from high security 
level to lower, i.e. this program can distinguish the security levels difference.   

Lemma 2: If a program can tell the difference among security levels, this program is 
a covert channel. 

Proof: Assumes that subject A has higher security level than that of B. Under BLP 
model, sensitive information only can flow from low security level to higher, i.e. from 
B to A.  

If B has a program can tell difference among security levels, then B and A can 
establish a covert channel by following method, 

 A creates an object with security level L, by which send “1” to B 
 A creates an object with security level L’(L ≠  L’), by which send “0” to B 

Because B has the program which knows security levels difference, so B can 
decode the content sent by A.  

Theorem 1: If a program can identify covert channels automatically in multilevel 
security system, this program is a covert channel. 

Proof: By Lemma 1 and Lemma 2. 

Corollary 1: None of programs can illustrate itself doesn’t contain covert channels. 

Now we knew that a program can identify covert channels automatically in a 
multilevel security system if and only if this program is a covert channel. From this 
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point of view, embed a program into operating system by which to search covert 
channels [4] will introduce a new covert channel into the whole system. 

3   Halting Problem vs. Covert Channels Searching  

At first glance, it’s so disappointed that an auto searching program itself is a covert 
channel. It seems embed an auto searching program will do nothing but introduce a 
new covert channel into the whole system. Is that true? Yes, but don’t forget it’s a 
program can be used to search covert channels automatically. Just like a double-edged 
sword, the usage depends on user and so does auto searching program.  

If only trusted subjects have rights to access the searching program, i.e. the 
malicious subjects can’t use it to construct covert channels, which will be very useful 
for security administrator to identify covert channels in a multilevel security system. 
Can an auto covert channels searching program be built?  

Theorem 2: None of programs can identify covert channels total automatically in a 
multilevel security computer system. 

Proof: Assumes CC_Detector ( ) is an auto covert channels searching program. 
CC_Detector ( ) will stop if and only if it finds a covert channel. 

Bool CC_Detector (Char *program, Char *input) { 

If (Covert channel detected) 

           Return TRUE; //Stop 

       Else  

           Return FALSE; 

} 

Detect_in_Self ( ) is a program that can detect covert channels in itself. 

  Bool Detect_in_Self (Char * program) { 

       Return CC_Detector (program, program); 

} 

Thinks the flowing program,  

Prog_Is_CC (Char *program) { 

   If (Detect_in_Self (program)) { 

       While (TRUE) {}; 

       Return FALSE; 

} Else { 

        Return TRUE;  //Stop 

} 

} 
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What happens when we try Prog_Is_CC ( ) on itself? Well, clearly one of two 
things can happen: either it runs forever, or it stops and returns true, depending on 
whether the call to Detect_in_Self ( ) returns true or false. 

If Prog_Is_CC (Prog_is_cc) goes into an infinite loop, it is because Detect_in_Self 
(Prog_is_cc) returned true, which means that CC_Detector (Prog_is_cc, Prog_is_cc ) 
returned true. But this means that Prog_Is_CC ( ) would stop when fed itself as input. 
This contradicts the assumption that is goes into an infinite loop. 

If Prog_Is_CC (Prog_is_cc) stops and returns true, it’s because Detect_in_Self 
(Prog_is_cc) returned false, which means that CC_Detector (Prog_is_cc, Prog_is_cc)  
returned false. But this means that Prog_Is_CC ( ) would run forever when fed itself 
as input. This contradicts the assumption that is terminates. 

We have therefore led ourselves to a contradiction. Prog_Is_CC ( ) stops if and 
only if it runs forever. Since this impossible, one of our assumptions must be invalid. 
By tracing our reasoning backwards, we find that it is therefore impossible to have 
written CC_Detector ( ) in the first place, i.e. CC_Detector ( ) doesn’t exist. That is to 
say, auto covert channels searching program can’t be built. 

Actually, A. Turing used similar method to prove that halting problem is 
undecidable. The same idea is used in here, by which you can understand the difficulty 
of building such a program is equal to solve halting problem, viz. it’s impossible.  

4   Covert Channels vs. Ambiguous Grammar 

Although an auto searching program can’t be built has proved in previous section, the 
relationship between covert channels and ambiguous context-free grammar will be 
discussed as follows, by which gives another way to understand the same question. 

4.1   The Strategy of Covert Channels  

Before going further we should understand how covert channels can leak sensitive 
information from high security level to lower under the supervision of security 
models. Each security model builds on the foundation of a smaller trusted code, i.e. 
Trust Compute Base (TCB). All information flows are inspected by security model 
according to security policy except some carried by TCB [5]. That is to say, in a 
multilevel security system, e.g. a system applying BLP model, some information can 
flow from high security level to lower even that prohibited by security policy. It’s 
worth mentioning that most of this degrade information is Ack signals or something 
like that. Without these signals the system will be unstable and fragile.  

From this point of view, it’s not easy to send classified information from high 
security level to lower. Covert channels make duplicity use of Ack signals to leak 
sensitive information, i.e. via dominates some shared resource to frustrate or not 
frustrate the operations from a subject Receiver, which has low security level, 
subject Sender with higher security level can send any digital information to 
Receiver. For instance, if Sender frustrates the operation from Receiver send “1”, 
and whereas send “0”, any digital information can be sent from high security level 
to lower. Furthermore, if there is a coding book between Sender and Receiver, the 
communications content would be scrambled, which will frustrate most of works 
that try to identify covert channels by semantic analysis. 
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4.2   The Similarity Between Covert Channels and Ambiguous Grammar 

A context-free grammar G is ambiguous if there is a word in L(G) possessing two 
leftmost derivations from the initial letter [6]. Otherwise, G is unambiguous. 

As mentioned above, via covert channel, a subject sends classified information to 
another subject with lower security level, some Ack signals are carriers. So the sender 
and receiver of the same covert channel look these Ack signals as a serials of “1” and 
“0”, whereas the security model believes there are nothing but Ack signals. This 
provides the foundation of ambiguous. 

Assumes grammar CBASG ||: →   

                               nmA |→   & bB →  & cC →  

Where, the security model and covert channel look A  as m  and n ( nm ≠ ), 
respectively. For instance, A  can be looked as an Ack signal in multilevel security 
system. 

So for any sentence generates by grammar G include A , e.g. ABC , it has two 

leftmost derivations, i.e. mBC  and nBC .  
Actually, none methodology can prove a grammar isn’t an ambiguous one [6]. That 

is to say, the difficulty of auto covert channels searching is equal to an unsolvable 
problem. Although auto covert channels searching are not proved equal to the 
ambiguous problem in context-free grammar, if ambiguous grammar can be solved, it 
will provide a new way to conquer auto covert channels searching.   

5   Conclusions 

The dilemma of covert channels searching is discussed with different point of views. 
Build an auto searching program for covert channels is impossible. Furthermore, even 
this program can be built, it will introduce a new covert channel into the whole 
system. 

Although many researches have been done in this area and some semi-auto tools 
were built for covert channels searching [1, 2, 7, 8], none of them is a total automatic 
searching program. Human intervention is a permanent part of every covert channel 
searching programs; the difference among them is how much does it depend on 
human being. In short, we should pay more attention on how to decrease the bald 
work for covert channel analyst instead of dreaming a total automatic searching tool.   
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Abstract. With rapid development in the Internet technology, business 
management in an organization becomes dependent on network dependency and 
cohesiveness in a critical information and communications infrastructure. 
However, the occurrence of cyber attacks has increased, targeted against 
vulnerable resources in information systems. Hence, in order to protect private 
information and computer resources, risk analysis and damage propagation need 
to be studied. However, the existing models present mechanisms for risk 
management, and these models can only be applied to specified threats such as 
a virus or a worm. Therefore, a probabilistic model for damage propagation 
based on Markov process is proposed, which can be applied to diverse threats in 
information systems. The proposed model enables us to predict the occurrence 
probability and occurrence frequency of each threat in the information systems. 

1   Introduction 

With rapid development of the Internet technology, business management in an 
organization or an enterprise depends the Internet-based technology for critical 
operations. Furthermore, as the occurrence of cyber attacks against vulnerable 
resources in information systems has also increased, damage is increasing. Hence, in 
order to protect critical information and computer resources, damage propagation 
need to be researched. Damage propagation models are used to select appropriate 
security policies through risk analysis [1] and estimate future damages of the attacks 
to protect critical assets of an organization effectively.  

A few damage propagation models have been proposed, whereas quite a few risk 
analysis models have been studied in [1][2][3]. However, the existing damage 
propagation models are limited and inadequate in analyzing cyber attacks caused by 
various threats, because it has focus on only a specific threat such as a virus or a 
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worm. Therefore, it is difficult to holistically analyze the scope and velocity of 
damage propagation caused by various threats. Therefore, in this paper, a probabilistic 
model for damage propagation based on the Markov process [4][5] is proposed for the 
holistic analysis based on past data. Using our proposed model, the occurrence 
probability and occurrence frequency of each threat in information systems can be 
estimated holistically, and applied to establish countermeasures against those threats. 

The sebsequent sections of this paper are organized as follows: In Section 2, the 
background relating to the Markov process is presented. Section 3 shows the approach 
method to design the probabilistic model of damage propagation. Section 4 presents 
the probabilistic model of damage propagation based on the Markov process, and 
explains the detailed procedures of the model. In addition, a case study to show the 
creation of the model is presented. Section 5 shows the related work, including the 
worm propagation model. Section 6 concludes this paper. 

2   Background  

In this section, a Markov process is explained, and applied to design the proposed 
damage propagation model. A Markov process is a stochastic process that the next 
states are determined by only the current state itself, not by a set of the states (history) 
reaching to the current state [4]. It is called a memoryless process because it does not 
memorize the past states. If X(t) is a Markov process at time step t1 < t2 < … < tk < 
tk+1 , the Markov property can be succinctly stated as following: 

P[a<X(tk+1) =  xk+1| X(tk) = xk , … , X(t1) = x1] 
= P[X(tk+1) = xk+1 | X(tk) = xk ] 

If a value of the Markov process is a discrete-value, it is called a Markov chain. 
Depending on whether the time t is discrete or continuous in the Markov chain, the 
Markov chain can be divided into a discrete-time Markov process and a continuous-
time Markov chain.  

The Markov process is a system, can be explained as consisting of the following 
elements: 

 A set of states: the set of all possible values from the process 
  vector (initial probability): the initial probability of each state 
 State transition matrix: the probabilities of moving from an state to another in a 

dynamic system 

In this paper, the damage propagation model is designed by defining the elements 
of the Markov process. That is, a set of states, the initial probability and the state 
transition matrix are defined clearly. 

3   The Overview of the Proposed Damage Propagation Model 

Types of damage propagation are formed based on the a kind of threats (that is, T1, T2, 
… ,T8), the relationship among each other, and the organization countermeasures 
against threat behavior as shown in Fig.1. 
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Fig. 1. Types of damage propagation 

The probability model proposed in this paper can apply to many kinds of threats. 
Therefore, it is possible to analyze the relationship among the threats. To design the 
probabilistic model of damage propagation based on the Markov process, several 
assumptions are required: First, the past data are sufficient and credible. The collec-
tion of the past data is very important to design the Markov process-based model. 
Second, the damage propagation of an information asset is spread by the discrete 
time event. That is, unlike biological infection, the spread of damage in information 
systems is propagated by specific events or discrete time. Third, the information 
system has more than one threat. Therefore the damage propagation model should 
be able to calculate the damage of each threat. Finally, the organization or people 
can establish countermeasures against threats and deal it with them dynamically. 

A probabilistic (Markov-based) model of damage propagation estimates a degree 
of the spreading damage from a single system to its dependent systems. The damage 
is determined by the speed and scope of its propagation, which are changed over the 
time or by a kind of threat. However, the existing damage propagation models 
especially has limited to only the speed of damage propagation over the time. To 
overcome this limitation, the Markov process is applied to estimate not only the speed 
but also the scope of its propagation. In our proposed damage propagation model, the 
frequency and probability of threat-occurrence are used to estimate the speed and 
scope. In this paper, the following formula (1) is used to express the damage propaga-
tion quantitatively. 

RISK(s, t) = Loss(s, t) × Probability(s, t)              (1) 

RISK means a damage amount when assets are damaged by threats in a vulnerable 
system. Furthermore consideration is given scope s, and time t in this formula. The 
scope means the size of damage propagation, and is decided by the propagation 
speed or frequency of each threat. The time s is an element for considering over 
time, this also affects the scope of damage propagation. As a result, damage 
propagation is calculated as multiplication of loss, which means the degree of 
shrinkage in the asset-value caused by threats, and the probability, which is the 
probability of threat occurrence. In this paper, the focus is on calculating the 
probability of threat occurrence. 
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4   The Proposed Damage Propagation Model Based on the Markov 
Process 

In this section, the procedure to construct the probabilistic model for damage propaga-
tion is explained in detail. The proposed model in this paper is created as presented 
Fig. 2, and is composed of 4 steps: State Definition, Threat-state Transition Matrix, 
Initial Vector, and Threat Prediction. 

State Definition
- Gathering of occurrence 
data for threats
- Threats Analysis
- Definition of a set of 
threat- states

Threat-State Transition 
Matrix
- Mapping the  occurrence 
data  to the threat-states
- Computation of the state 
transition matrix

Initial Vector
- Examination of the most 
recent threat-occurrence 
- Computation of initial 
probability for each threat-
state

Threat Prediction
- Prediction of occurrence 
probability for the threat
- Prediction of frequency of 
threat-occurrence for each 
threat  

Fig. 2. Procedure for creation of probabilistic model for damage propagation 

In the ‘State Definition’ step, the threat-states, which can occur in the critical 
information and communication infrastructure, are defined. A set of the states is 
defined as scopes of a threat-state or combination of many threat-states. In the 
‘Threat-State Transition Matrix’ step, a transition matrix is calculated among the 
threat-states using the threat-occurrence data and the defined threat-states in the 
previous step. In the ‘Initial Vector’ step, the initial probability is calculated against 
the threat-state’s occurrence. Finally, in the ‘Threat Prediction’ step, the probability 
and frequency of threat-occurrence using the threat-state transition matrix and the 
initial vector calculated in previous steps are estimated. A more detailed description 
will be presented in the following subsections. 

4.1   State Definition (Step 1) 

In the ‘States Definition’ step, three tasks are performed to define the threat-states: The 
gathering of occurrence data of threats, threat analysis, and definition of a set of threat-
state. That is, in this step, all kinds of threats are looked for, the threat-occurrence data 
are collected and analyzed in information systems, and finally the possible threat-states 
can be defined. If S is a set of threat-sate, S can be defined as formula (2). 

S= {S1, S2, … , Sn}               (2) 

Especially it is very important the collection of the reliable and huge past data re-
lated with the threats because the past data are more important than other elements in 
the probability model based on the Markov process. Therefore, in this paper, a case 
study in the subsection 4.5, the statistics of hacking and virus published by the Korea 
Information Security Agency (KISA) were used for 54 months, from January 2001 to 
June 2005, for trust in the past data [6].  

The threat analysis task is an important process to analyze potential threats, which 
can damage an information system. Through this task, the threats are classified into 
several kinds of threats, and a threat-occurrence is investigated. Furthermore the pri-
ority for each threat is given, considering the criticalness of threat. This helps prepare 
the effective countermeasures for critical threats, which must take the priority.  
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The definition of a threat-states task decides the threat-states by analyzing threat-
occurrence, and establishing a threshold that means the range of the frequency of 
threat-occurrence. How to define the set of threat-state can be divided into two meth-
ods, according to the dependency among threats. That is, when a threat occurs inde-
pendently of others, the set of threat-state is composed of as a number of several 
thresholds. Conversely, when a threat occurs that relates with other threats, the set of 
threat-state is created with the combination of thresholds for each threat. Therefore, in 
the case of the latter, the number of threat-state and the complexity of transition ma-
trix, which describes the probabilities of moving from one state to another, will in-
crease in proportion with the number of threat-states. 

4.2   Transition Matrix of Threat-State (Step 2) 

In Step 2, the threat-state transition matrix is calculated, which is a square matrix 
describing the probabilities of moving from one threat-state to another. To obtain the 
transition matrix, two tasks are performed: First, threat-states are listed by mapping 
the threat-occurrence data of each threat into the threat-state defined in the previous 
step. Second, the number from one threat-state to another is counted, and finally the 
matrix is constructed. 

Like Step 1, the method of creating a transition matrix is divided into two, accord-
ing to the dependency among threats. In the case of a threat occurring independently, 
the transition matrix can be created simply with the two tasks mentioned previously. 
However, in the case a threat occurs that relates to others, the size and complexity of 
the threat-transition matrix are increased, depending on the number of related threats 
and the threat-state defined in Step1. Therefore, to reduce complexity and the size of 
the transition matrix, it is very important to decide the proper number of threat-states 
in Step 1. 

If P is the transition probability matrix created in this step, it is compactly specified 
as the form of (3). Furthermore the entries of the matrix P satisfy the property (4). 
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In each row, the probabilities of moving from the state represented by that row, to the 
other states, are shown. Thus the rows of a Markov transition matrix each add up to one. 

4.3   Initial Probability (  Vector) (Step 3) 

Step 3 is a process to obtain the initial probability vector, which represents the occur-
rence possibility of each threat-state in the initial state. To obtain the initial probabil-
ity, the most recent threat-occurrence data are used, which can be divided by the unit 
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of month such as three months, six months, nine months and one year. Through ana-
lyzing the most recent data, the initial probability vector is calculated using the for-
mula (5) satisfied by the condition (6). 
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where , ,  and  represent the number of threat-occurrence for each state, S1, S2, Sk 
and Sn. Furthermore the initial probability P(Si) for each state Si satisfy the formula (7) 
because the sum of initial probability must add up to one.  
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4.4   Prediction of Threats (Step 4) 

In Step 4, the probability and frequency of threat-occurrence is estimated, which will 
occur in the future, using the transition matrix created in Step 2 and the initial prob-
ability vector created in Step 3. Formula (8) depicts the computation of probability of 
threat-occurrence.  
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where n is the number of threat-state, P(Si) is the initial probability for each threat-
state, and P’(Si) is the next probability of threat-occurrence. 

Furthermore, the occurrence probability for specific threat-state can be calculated 
using the formula (9). 
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where k is the specific threat-state.  
Finally, the Expected Frequency (EF) of threat-occurrence is estimated using the 

probability of threat-occurrence and the median for each threat-state as formula (10). 
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where n is the number of threat-states, P(Si) is the probability of threat-occurrence for 
each threat-state, and M(Si) is the median of each threat-state.  
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4.5   A Case Study 

A case study presents how to make the damage propagation model. Especially, one case 
that a threat occurs independently from others is presented. In addition, the result from 
the model will be compared with the frequency of threat-occurrence.  As mentioned 
previously, in this case study, the statistics for hacking and virus published by the KISA, 
are used for 54 months, from January 2001 to June 2005, for trust in the past data.  

First, threat-occurrence data are gathered and analyzed, and the priority is given to 
threats. After this step, the frequency and statistics of threat for each month is ob-
tained, as presented in Table 1.  

Table 1. Frequency and statistics of threat T1 for each month 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 
2001 85 125 70 89 85 64 65 495 268 77 51 97 1571 
2002 401 119 82 59 286 417 313 298 210 465 472 990 4112 
2003 1148 557 1132 934 306 450 185 544 119 137 129 96 5837 
2004 154 148 118 1066 493 181 72 22 16 24 125 90 2509 
2005 29 20 15 3 15 36 - - - - - - 118 

T1 is one of hacking threats in information system that is an ‘Illegal Intrusion using 
malicious applications such as Netbus and Subseven’ as one of the hacking threats in 
information systems. This threat leaks information and interrupts the normal process 
in information systems.  

First of all, in order to define the threat-state, several thresholds are created, con-
sidering the frequency of threat-occurrence of T1 as follows: 

 S1: 0~300, S2: 301~600, S3: 601~900, S4: 901~1200  

As mentioned in Subsection 4.1, the threat-state is defined as the threshold when 
threats occur independently. Therefore, the threat-sate can be defined as formula (11). 

S = {S1, S2, S3, S4}       (11) 

Next, in order to calculate the transition matrix of threat-state, the threat-states are 
listed by mapping the threat-occurrence data into threat-state defined in (11). 

S1, S1, S1, S1, S1, S1, S1, S2, S1, S1, S1, S1, S2, S1, S1, S1, S1, S2, S2, S1, S1, S2, 
S2, S4, S4, S2, S4, S4, S2, S2, S1, S2, S1, S1, S1, S1, S1, S1, S1, S4, S2, S1, S1, S1, 
S1, S1, S1, S1, S1, S1, S1, S1, S1, S1 

From the above listing of threat-states, the transition number from a threat-state  
(S1 ~ S4) is counted to another, and the transition matrix is made in the following for-
mula (12): 
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S1 S2 S40.84

0.03

0.40

0.13 0.18

0.55 0.60
0.27  

Fig. 3. Threat-State diagram for T1 

As shown in formula (12), the entries of transition matrix satisfy formula (4) that 
the rows of transition matrix add to one. Furthermore, the transition matrix can be 
translated as a threat-state diagram shown in Fig.3. 

To calculate the initial probability for T1, the most recent threat-occurrence data, in 
this case study, are used for six months, from January 2005 to June 2005. The initial 
probability can be calculated using formulas (5), (6) and (7) as follows: 

 Frequency: 29, 20, 15, 3, 15, 36 =  S1, S1, S1, S1, S1, S1 
 Initial Probability: P(S1   S2   S3   S4) =  P(1   0   0   0)           (13) 

Finally, the probability and frequency of threat-occurrence can be estimated using 
the transition matrix and the initial probability, that is, formulas (12) and (13). First of 
all, the probability of threat-occurrence can be calculated by formula (14). 
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From the above result, the probability of threat-occurrence issue to be 0.84 in S1, 
0.13 in S2 and 0.03 in S4 in next month. That is, the frequency of threat-occurrence will 
be from 0 to 300. In order to obtain the detail frequency, the formula (10) is used. First 
of all, the median M(Si) for each threat-state defined in (11) is calculated as follows: 

 M(S1): 36, M(S2) : 0, M(S3) :0, M(S4):0 

In this case study, in order to calculate the median, the frequency of threat-
occurrence of the previous month is used.  

The frequency of threat-occurrence can be calculated using the formula (10), where 
n is 4 as follows: 
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From the result, the frequency of threat-occurrence can be predicted at approxi-
mately 30 in the next month. However, there is a result gap between the expected 
frequency and the real frequency reported by KISA because the real frequency of the 
next month is 76. In order to obtain a more precise estimation in the proposed model, 
some requirements must be considered. First, the estimation, which is close to the real 
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occurrence of a threat, is decided by the subdivision of threshold. That is, the larger 
the number of thresholds, the more precise data can be obtained. However the com-
plexity of the threat-state and transition matrix increases, depending on the number of 
thresholds. Therefore, it is necessary to define appropriate thresholds of each threat to 
define the set of threat-state. Second, the scope of the most recent data to define the 
Initial Probability should be considered. The scope of the most recent occurrence data 
also affects the probability and frequency of threat-occurrence. Third, in the proposed 
model, it is very important to analyze the past data, which are reliable and holds large 
amounts of data relating to the threats. It is impossible to predict the probability and 
frequency of threat-occurrence without the reliable data of threats. Therefore, making 
process of statistics is required.  In this paper, although the past data of each month 
are used, a more precise result can be obtained than if past data are used relative to the 
date or week. 

The proposed model in this paper has different advantages from existing models. 
First, the proposed model estimates the probability or frequency of threat-occurrence 
unlike the worm or virus propagation model, which obtains the number of damaged 
systems, in particular, the number of infected computers in the system. This probabil-
istic approach can be applied to diverse kinds of information systems, making useful 
countermeasures. Second, the proposed model can be applied for the diverse threats. 
Therefore the threats can be analyzed synthetically with an analysis of the relationship 
among the threats. 

5   Related Work 

Quite a few damage propagation models, especially about virus and worm, have pro-
posed. Two classical epidemic models were introduced: A simple epidemic model 
and the Kermack-Mckendrick epidemic model. A simple epidemic model is an epi-
demic model of an infectious disease in a population without the removing state 
[7][8][9]. It is assumed that the population consists of two types of individuals: the 
susceptible individuals (denoted “S”) and the infective individuals (denoted “I”). The 
susceptible ones do not have the disease but could be infected by the disease. The 
infective ones have the disease and can infect others. Each host stays in one of these 
two states: susceptible or infective, with a function of time. The Kermack-Mckendrick 
epidemic model [7][8][10] adds “R” (removed) state into the simple epidemic model. 
The R state cannot be infected by the disease or infect others with the disease. This is 
called an SIR model due to the state transition can be S I R. In addition to these 
two epidemic models, there are various propagation models. Although the Kermack-
Mckendrick model improved the simple model by considering a factor that some 
infectious hosts either recover or die after some time, this model is not suitable for 
modeling worm propagation because it does not consider the human countermeasures 
and so on. Two-factor worm model considers the effect of human countermeasures 
and the congestions caused by the worm scan traffic [10][11]. In the Internet, coun-
termeasures such as cleaning, patching, and filtering against worms will both remove 
susceptible hosts and infectious hosts from circulation in the Kermack-Mckendrick 
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model. The effect of quarantine on the Internet level to constrain worm propagation 
was presented in [11][12]. They showed that an infectious host had a number of paths 
to a target due to the high connectivity of the Internet. Therefore they could prevent 
the widespread of a worm on the Internet level by analyzing the quarantine on the 
Internet. A discrete-time worm model, which considers the patching and cleaning 
erect during worm propagation, was presented in [13][14]. As shown previously, most 
of damage propagation models focus on virus and worm. Therefore these models 
cannot be applied to the diverse threats creating in information systems. To overcome 
this limitation, a new damage propagation model based on Markov process, was pro-
posed in this paper.  

6   Conclusion and Future Work 

In this paper, a probabilistic model of damage propagation is proposed based on the 
Markov process. The proposed model can estimate the spread of damage due to not 
only virus or worm attacks but also diverse threats. Furthermore, a case study is pre-
sented using the reliable past data from KISA. However, more research is needed to 
improve the computation efficiency, such as: ‘Which threat should be applied first 
among the many threats?’ and  ‘How should the appropriate threshold for threat-state 
be decided?’. Finally, in order to design the Markov-based model, it is required to 
compile accurate data when threats actually occur. 
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Abstract. Attack trees have found their way to practice because they
have proved to be an intuitive aid in threat analysis. Despite, or perhaps
thanks to, their apparent simplicity, they have not yet been provided
with an unambiguous semantics. We argue that such a formal interpre-
tation is indispensable to precisely understand how attack trees can be
manipulated during construction and analysis. We provide a denotational
semantics, based on a mapping to attack suites, which abstracts from the
internal structure of an attack tree, we study transformations between at-
tack trees, and we study the attribution and projection of an attack tree.

Keywords: attack trees, semantics, threat analysis.

1 Introduction

Attack trees (the term is introduced by Schneier in [10, 11]) form a convenient
way to systematically categorize the different ways in which a system can be
attacked. The graphical, structured tree notation is appealing to practitioners,
yet also seems promising for tool builders attempting to partially automate the
threat analysis process. As such, attack trees may turn out to be of interest
to the security community at large as a standard notation for threat analysis
documents.

An attack tree is a tree in which the nodes represent attacks. The root node
of the tree is the global goal of an attacker. Children of a node are refinements
of this goal, and leafs therefore represent attacks that can no longer be refined.
A refinement can be conjunctive (aggregation) or disjunctive (choice). Figure 1
shows an example of an attack tree. In this tree, the goal of the attacker is to
obtain a free lunch. The tree lists three possible ways to reach this goal. Lower
levels in the tree explain how these sub-goals are refined as well. For instance,
the “Eat-n-run” attack requires the attacker to order a meal and to leave the
restaurant without paying. The arc connecting these two components expresses
that this is a conjunctive refinement, which means that all sub-goals have to be
fulfilled. Refinements without such a connecting arc are disjunctive, expressing
that satisfying one sub-goal suffices.

Once the possible attacks on a system have been modeled in an attack tree,
the tree can be used to analyze attributes of the security of the system. Schneier

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 186–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Promise to
pay back later

“Man-in-middle” attack
(aka “Dumb & Dumber”)

to buy you lunch
Get legit customer

Free Lunch

“Eat-n-run”

Leave restaurantOrder meal,
ask for bill

Sneak out through
bathroom window

at restaurant
Pretend to work

Wait on
customers

Find quiet
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“Salami”
attack

Ask the chef to
prepare a meal

for table n

Just run...
Go to counter
tell waiter legit
customer will
pay for you Wave at

customer
(will wave back
in agreement)

you will pick up
their bill

Tell customer
Collect from

each customer’s plate
a little bit of food

Fig. 1. Example attack tree

suggests several such attributes, for example the (im)possibility, the cost, and
whether special tools are needed. The analysis proceeds in two steps: First, the
value for each leaf node is determined. Second, the value in non-leaf nodes is
synthesized from the value of its children. Thus, creativity on the part of the
analyst is only needed in figuring out good values for the leaf nodes, as the
rules for synthesis in both the conjunctive and the disjunctive case is usually
determined by the nature of the attribute.

The result of an analysis can be the value of an attribute in the root node (for
example the cost of the cheapest attack), but it could also be a sub-tree consisting
of nodes adhering to some predicate (for example those attacks costing less
than 100K Euro or those attacks that do not require use of special equipment).
Also, values of different attributes can be defined (for example to determine the
cheapest attack not using special equipment).

At a conceptual level attack trees are well understood and the above descrip-
tion is enough to work with them and even develop tool support. However, there
are some questions that require a more fundamental answer: What is an attack?
Is it just a collection of steps that should be performed or does it have some
internal structure? Which conditions should an attribute satisfy before it allows
to be synthesized bottom-up? Under what conditions may a projection of a pred-
icate be executed bottom-up? When do two attack trees represent the same set
of attacks? How should combined attributes be treated? And which extensions
of the formalism (forests, directed acyclic graphs, attack graphs) are possible?

In order to be able to answer these questions, and in order to determine what
computer aided threat analysis tools could look like, it is necessary to provide
attack trees with foundations. Specifically, this paper provides attack trees with
a semantics in terms of attack suites and defines valuations and projections in a
formal way. Furthermore we show which algebraic conditions on attributes are
sufficient to allow correct inference of values.

Related work. While the foundations of other sub-disciplines of computer secu-
rity have had plenty of attention from formal methods researchers (e.g. access
control [4], cryptographic protocols [7]), the sub-discipline of threat analysis has
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had little attention thus far. Attack trees are usually attributed to Schneier.
They seem, however, to have a much longer tradition. Witnessed, for instance,
by work on fault trees [16, 2]. Other research considers attack graphs [9, 13], in
which event sequences are the central topic of research, rather than event ab-
stractions. This seems to be an entirely different field with no cross-references to
the kind of structures we study in the current paper. This field has its own set of
tools (reachability analysis, etc.) In fact, the risk analysis community seems to
have brought forth many such event based formalisms, for example cause-effect
diagrams. Although mostly used to describe system-internal events, these can be
applied to active external attacker scenarios as well. See for instance [3]. In [12]
attack trees are compared to attack nets (a threat analysis formalism based on
petri nets, described in [6]) with regard to sharing of security knowledge between
collaborators. As far as collaborative attack modeling is concerned, the authors
prefer attack nets over attack trees. Much of their criticism on attack trees seems
to be based on a lack of semantics of the formalism. Tidwell et al. extend the
attack tree formalism with parameters in [15], and successfully apply these trees
to model multi-stage Internet attacks. The trees are used inside intrusion detec-
tion systems. A commercial tool [5] and some rudimentary tools [1, 8] are already
available for Schneier’s attack trees.

Outline. This paper is structured as follows. In Section 2 we introduce the notions
of attack suites and attack trees and define a mapping from attack trees to
attack suites, expressing the semantics of an attack tree. Section 3 provides an
alternative characterization of the semantics through rewriting. This makes it
possible to transform equivalent attack trees into each other. In Section 4 we
define attributes on attack trees and discuss under which conditions they can
be synthesized bottom-up. Finally, we consider how attacks can be singled out
that satisfy some given property. Such projections are discussed in Section 5.

2 Attack Suites and Attack Trees

The purpose of an attack tree is to define and analyze possible attacks on a
system in a structured way. This structure is expressed in the node hierarchy,
allowing one to decompose an abstract attack or attack goal into a number of
more concrete attacks or sub-goals. Although this structure carries information
on the interpretation and grouping of attacks, we will discard it when determin-
ing the meaning of an attack tree. An attack tree simply defines a collection
of possible attacks which we call an attack suite. Each attack consists of the
components required to perform this attack. A component may occur more than
once in an attack, so an attack is a multi-set of attack components. These attack
components are at the lowest level of abstraction that we consider and thus have
no internal structure. By describing an attack as a set of attack components we
will also abstract from any causal relations between the components, such as
being ordered in time.

First we introduce some common notation. We use P(V ) to denote the power
set of a set V and P+(V ) to denote the set of all non-empty subsets of V .
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Likewise, we use M(V ) and M+(V ) for multi-sets. The multi-set consisting of
elements a, a and b is denoted by {|a, a, b|}. The difference of (multi-)sets V and
W is denoted by V \W . The substitution of element x for y in (multi-)set V is
denoted by V [x/y]. The distributed product of two sets of multi-sets V and W is
the set defined by V ⊗W = {v&w | v ∈ V,w ∈ W}, where & denotes multi-set
union. The operator

⊗
i∈I is the generalization of ⊗ (with unit element {∅}).

The set of end nodes of a tree T is denoted by E(T ).

Definition 1. Let C denote a set of attack components. An attack is a finite
non-empty multi-set of C and an attack suite is a finite set of attacks. The
universe of attacks is denoted by A =M+(C) and the universe of attack suites
is denoted by S = P(A).

Example 1. If we have C = {open door, steal key, force lock, pick lock} then the
following attack suite defines three ways to illegally enter a building
{{|steal key, open door|}, {|force lock, open door|}, {|pick lock, open door|}}.

Attack trees as defined by Schneier have two types of nodes: and-nodes and
or-nodes. The children of an and-node should all be executed to reach the goal
represented by the and-node, while execution of any child of an or-node suffices
to reach the goal of the or-node. By considering only one type of nodes, we will
follow a slightly different, but equivalent, approach. Rather than considering
edges from a node to its children, we consider connections from a node to a
multi-set of nodes. Such a connection is called a bundle. A node may contain
several such bundles. The nodes in a bundle must all be executed to form an
attack. Execution of any bundle of a node will suffice to reach the goal of that
node. Our approach differs in one more aspect from Schneier’s attack trees. We
allow sharing of nodes as a means to express that a sub-attack occurs more than
once. Although a node may be contained in several bundles, we will not allow
the construction of cycles. So, formally speaking, we study rooted directed acyclic
bundle graphs, but we will still call them attack trees.

Definition 2. An attack tree is a 3-tuple (N,→, n0), where N is a finite set of
nodes, → is a finite acyclic relation of type →⊆ N ×M+(N) and n0 ∈ N is
the root node, such that every node in N is reachable from n0. The universe of
attack trees is denoted by T.

We will use the informal terminology “A is a bundle of m” to express that
m→ A. Whenever we speak of attack suites in the context of some attack tree
T , we will identify the universe of attack components C with T ’s end nodes,
E(T ).

Next, we define the semantics of attack trees by interpreting them in the
domain of attack suites. As stated before, the internal branching structure of
an attack tree will not be expressed in the attack suite. The semantics only
expresses which combinations of attack components (i.e. end nodes of the tree)
form an attack. The attack suite defined by a node in the tree can be determined
recursively from its bundles. Since the bundles define alternative attacks, the
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attack suite defined by a node consists of the union of the attack suites defined
by its bundles. The attack suite defined by a single bundle is determined by the
attack suites of the nodes contained in the bundle. In order to construct an attack
in a bundle, we must take an attack from each of the nodes in the bundle and
join these together. The definition below formalizes this recursive construction.
We use the distributed product, as defined above, to join the attacks within a
bundle and we use the normal set union to join the bundles. The base case of the
recursive definition considers the end nodes of the tree. They define an attack
suite consisting of one attack which contains a single attack component.

Definition 3. Let T be an attack tree (N,→, n0), then the semantics of a node
[[ ]] : N → S is defined recursively by

[[n]] =

⎧⎪⎪⎨⎪⎪⎩
{{|n|}} if n ∈ E(T )⋃
n→A

⊗
m∈A

[[m]] if n �∈ E(T )

The semantics of an attack tree is defined as the semantics of its root node,
[[T ]] = [[n0]].

3 Transformations

Figure 2 illustrates that two structurally different attack trees may intuitively
capture the same information. The difference in structuring can arise from a
different approach towards partitioning the attacks. One may also want to sim-
plify or rebalance an attack tree in order to change the view on the described
attack suite, without changing its meaning. These two observations lead to the
definition of semantics-preserving transformations of attack trees. The class of
allowed transformations can be characterized by just two reduction rules. These
rules are illustrated in Figure 3 and formalized in Definition 4. In the figure we
consider a node which has a bundle A and possibly some other bundles (illus-
trated by W ). Bundle A contains node m, which has a bundle B. We make a
distinction between the two cases that B is the only bundle of m and that m
has more bundles.

surfing
shoulder

surfing
shoulder

victim
prepare

victim
approach

shorttalk
some

keystrokes
observe

victim
approach

password
collect

shorttalk
some

keystrokes
observe

Fig. 2. Two equivalent trees



Foundations of Attack Trees 191

W

W

A

A

B

m

W1

A

B

m

B

A
A

B

m′

W1

m′′

W

W

�

�

Fig. 3. Two reduction rules for attack trees (cf. Definition 4)

The first rule is based on the associativity of conjunction. If a bundle contains
a node with only one sub-bundle, then this node can be deleted and its sub-
bundle can be lifted one level, so as to become part of the bundle. Intuitively,
this captures the fact that if we want to perform an attack that contains one
sub-attack, we can simply take the components of the sub-attack and add them
to the attack.

The second rule is based on the distributivity of conjunction over disjunction.
If a bundle contains a node with two (or more) sub-bundles, then we can replace
the bundle by two copies with the difference that the first copy only contains
the first sub-bundle and the second copy only contains the second sub-bundle.
Intuitively, this captures the fact that if we want to perform an attack that
contains a sub-attack which can be performed in two ways, we have actually
described two attacks. Please notice that the duplication of attack A in the
figure is displayed in a somewhat misleading way. The picture suggests that the
nodes in bundle A are also copied, but it is our intention that common nodes
are shared, without duplicating nodes.

The next definition of an Abstract Reduction System on attack trees formally
captures this intuition. We use the function reachable to remove all nodes and
bundles that through rewriting become unreachable from the root node. The
definition of this function is straightforward and will be omitted.

Definition 4. The reduction relation �: T → T is defined by the following
two reduction rules. Let T be an attack tree (N,→, n0), n,m ∈ N and A,B ∈
M+(N) such that n→ A, m ∈ A, m→ B.

1. if B is the only bundle in m (i.e. ∀C:m→C · C = B), then
(N,→, n) � reachable(N,→′, n), where



192 S. Mauw and M. Oostdijk

→′ = (→ \{(n,A)}) ∪
{
(n, (A \ {|m|})&B)

}
2. if B is not the only bundle in m (i.e. ∃C:m→C · B �= C), then

(N,→, n) � reachable(N ′,→′, n), where

→′ =
(
→ \{(n,A)}

)
∪
{
(n,A[m′/m]), (n,A[m′′/m]), (m′, B)

}
∪{(m′′, B′) | m→ B′, B �= B′},

N ′ = N ∪ {m′,m′′} where m′,m′′ �∈ N

Because we are interested in transformations (without a preferred direction), we
introduce the reflexive, transitive, symmetric closure of �, denoted by ≡.

Later we will prove that these reduction rules are sound with respect to the se-
mantics. Interestingly enough, the rules turn out to be complete as well. There-
fore, the reduction rules defined above are not only useful for manipulating attack
trees; they also provide an alternative characterization of the semantics of an at-
tack tree. It can be easily seen that the normal forms are the “one-level attack
trees” which are in one-to-one correspondence to the universe of attack suites.
In order to obtain these results, we first we have to show that the reduction
rules are well-behaved, i.e. that there are no infinite reduction sequences and,
roughly speaking, that any two diverging reductions can be reduced to a common
attack tree.

Lemma 1. The reduction relation on attack trees is strongly terminating.

Proof. The proof is not given here because of space restrictions.

Lemma 2. The reduction relation on attack trees is weakly confluent.

Proof. This follows by observing that all critical pairs are convergent. (The rules
are not overlapping anyway.)

As a standard corollary of the above lemmas we have the unique normal forms
property (see e.g. [14]). The set of normal forms can be determined easily.

Lemma 3. If we denote the set of attack trees with depth ≤ d by T≤d, then the
set of normal forms of � is T≤1.

Proof. This follows easily by inspection of the left-hand sides of the reduction
rules. An attack tree with depth ≥ 2 still has a redex and, conversely, to have a
redex an attack tree must have depth ≥ 2.

Example 2. The tree presented in Figure 1 has a normal form consisting of
six bundles, each of depth one, corresponding to the following attack suite.
(The lengthy attack component descriptions of Figure 1 have been replaced by
mnemonic names.)

{{|promise pay later |}, {|tell victim , go counter ,wave |}, {|order , bathroom |},
{|order , just run|}, {|ask chef |}, {|wait , collect little, quiet place |}}
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By verifying that the reduction rules preserve the semantics of an attack tree,
we obtain their soundness. However, we will postpone the soundness proof until
Section 4, where we will prove a more general soundness property of which this
is an instantiation.

Theorem 1 (Soundness). If T1 ≡ T2, then [[T1]] = [[T2]].

Proof. Postponed until Corollary 1.

The following lemma helps in proving completeness. It establishes the one-to-one
correspondence between normal forms and attack suites.

Lemma 4. Let T1, T2 ∈ T≤1 such that [[T1]] = [[T2]] then T1 = T2.

Proof. It follows easily from the definitions that an attack suite has a unique
representation in T≤1. Every attack in the attack suite gives rise to a bundle
from the root node.

Theorem 2 (Completeness). If [[T1]] = [[T2]], then T1 ≡ T2.

Proof. If we have [[T1]] = [[T2]], then we can reduce T1 and T2 to normal form,
denoted by nf(T1) and nf(T2), and obtain

[[nf(T1)]] = [[T1]] = [[T2]] = [[nf(T2)]]

Now, Lemma 4 yields equality of the normal forms: nf(T1) = nf(T2). So, T1 ≡ T2.

4 Attributes

In order to calculate e.g. the cost or impact of an attack, an attack tree can be
decorated with attributes. The attribute value of an attack tree can be calcu-
lated by first determining the semantics of the tree followed by calculating the
attribute value of the defined attack suite. However, under some conditions it is
possible to synthesize the attribute value of the attack tree without first having
to reduce the tree to normal form. This can be done by calculating the attribute
values of the nodes in a bottom-up way.

Before defining attributes in an attack tree, we will first define the attribution
of attack suites.

Given a set V of attribute values, an attribute α is a function that assigns a
value to every attack component, α : C→ V . An attack consists of a number of
attack components that must all be executed, so we assume that the attribution
of an attack can be calculated from the attributions of its attack components.
Therefore, we extend α to attacks, α :M+(C) → V . In the same way, because
an attack suite consists of a number of attacks, we extend attributions to attack
suites, α : P(M+(C)) → V . In order to calculate the attribution of an attack
from the attributions of its attack components we use a conjunctive combinator
�, while for determining the value of an attack suite from its attacks we use a
disjunctive combinator �. We require that the combinators are associative and
commutative and that the conjunctive combinator distributes over the disjunc-
tive combinator. These properties follow from the structure of attack trees.
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Definition 5. Let C be a set of attack components. An attribute domain is a
structure (V,�,�) where V is the set of attribute values, � : V × V → V is the
disjunctive combinator for attribute values and � : V ×V → V is the conjunctive
combinator for attribute values. We require that the combinators are associative
and commutative:

(x � y) � z = x � (y � z)
x � y = y � x

(x � y) � z = x � (y � z)
x � y = y � x

Given an attribute domain (V,�,�), an attribute α is a function from C to V .
An attribute domain is distributive if the following property holds:

x � (y � z) = (x � y) � (x � z)

Generalization of the combinators to M+(V ) → V is defined in the usual way.
An attribute domain is often called a semi-ring. However in published literature,
the notion of a semi-ring often occurs with the additional requirement of a unit
element for one or both operators. In the setting of attack trees this is not
required, since we assumed that bundles are not empty.

Definition 6. Let S be an attack suite and α an attribute with attribute domain
(V,�,�) then the value attributed by α to S is

α(S) =
�

A∈S

�

c∈A

α(c)

Example 3. The structure (N,min,+) is an example of a distributive attribute
domain. An attribute with this attribute domain could be interpreted as “cost of
the cheapest attack”. Other examples: (N,max,+) “maximal damage”, (N,min,
max) “minimum skill level required to perform attack”, (B,∧,∨) “is the attack
possible”, (B,∨,∧) “special equipment needed”.

It is interesting to see that there are also examples of attributes that do not
satisfy the requirements. Consider, for instance, the structure (N,+,min). This
could express the costs to defend against all attacks from an attack suite: to
defend against one attack one only has to find the cheapest defense against any
of its attack components, and to defend against an attack suite, one has to add
the defense costs to all its attacks. However, this structure is not a distributive
attribute domain because it does not satisfy the required distribution property.
At the end of this section we will come back to this counter example.

Now that we have defined the calculation of an attribute for attack suites, we
will define the attribution of an attack tree.

Definition 7. Let T be an attack tree (N,→, n0) and let α : E(T ) → V be an
attribute with a distributive attribute domain. Then we define the extension of α
to the nodes of the attack tree, α : N → V , inductively by
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α(n) =
�

n→A

�

m∈A

α(m) for n �∈ E(T ).

The value of an attack tree is determined by the value of its root node: α(T ) =
α(n0).

This clearly defines a unique attribution of the attack tree. Moreover, the value
attributed to an attack tree is respected by the rewrite rules.

Theorem 3. Let T1 and T2 be attack trees and let α : E(T )→ V be an attribute
with distributive attribute domain, then T1 ≡ T2 implies that α(T1) = α(T2).

Proof. The proof is not given here because of space restrictions.

It is notable that Definition 7 looks similar to Definition 3. In fact semantics
can be seen as an attribute, since (P(M+(C)),∪,⊗) is a distributive attribute
domain. Associativity and commutativity are standard, while x⊗(y ∪ z) =
(x⊗ y) ∪ (x⊗ z) can be verified easily. Thus, the postponed soundness proof
of Theorem 1 is a corollary of Theorem 3.

Corollary 1. The reduction rules are sound with respect to the semantics, i.e.
if T1 ≡ T2, then [[T1]] = [[T2]].

Finally, we observe that the value of a tree is equal to the value of the attack
suite that is formed by taking the semantics of the tree.

Corollary 2. Given attribute α and attack tree T , we have α(T ) = α([[T ]]).

Proof. From Theorem 3 it follows that α(T ) = α(nf(T )). The required equality
now follows from the observed correspondence between normal forms and attack
suites (Lemma 4), and by comparing Definitions 6 and 7.

Clearly, all reasonable attributes encountered in practice satisfy the require-
ments. However, as shown in Example 3, there are also attributes that make
sense at first sight, but which are not consistent with the semantics. The in-
consistency shows when comparing the value of the attribute calculated on the
original tree to the value of the attribute calculated on the normal form of this
tree. These values can differ if e.g. the law of distributivity does not hold. Thus
we can conclude that there are attributes which cannot be synthesized bottom
up. The counter example shows the usefulness of our formalization. We are now
able to make the distinction between sound attributes and attributes that are
inconsistent with the algorithms intuitively sketched by Schneier (which form
the basis of our semantics).

5 Projections

By manipulating attack trees one can get answers to questions like “Show all at-
tacks that do not require special equipment”, or “Which attacks incur a damage
over 1000 dollars”? The last question e.g. requires an attribute incurred damage
and a predicate on its domain, P (n) ≡ n ≥ 1000. Taking the projection of an
attack suite boils down to selecting the attacks that satisfy the predicate.
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Definition 8. Let α be an attribute with distributive attribute domain (V,�,�)
and let P ⊆ V be a predicate. Then the projection of attack suite S ∈ S onto P
is defined by Πα

P (S) = {A ∈ S | P (α(A))}.

The definition of projections on attack trees follows from the algorithm sketched
by Schneier: remove all attacks that do not satisfy the predicate.

Definition 9. Let α be an attribute with distributive attribute domain (V,�,�)
and let P ⊆ V be a predicate. Then the projection of attack tree T = (N,→, n0)
onto P is defined by Πα

P (T ) = reachable((N ′,→′, n0)), where N ′ = {n ∈ N |
P (α(n))} ∪ {n0} and →′= {(n,A) ∈→| P (α(A))}.

Again we want to know under which conditions these two definitions are consis-
tent with each other. More precisely, we want to know if the projection of the
semantics of an attack tree is equal to the semantics of the projection of that
tree. Phrased in terms of the rewriting rules, we want to know if rewriting and
projection commute.

A simple example shows that this does not hold in general. Consider the
attribute domain (N,min,+) to calculate the cost of an attack and look at the
first tree of Figure 2. Suppose that all leafs have cost 5, which implies cost 10
for the intermediate node and cost 15 for the root. Now, if we take predicate
P (n) ≡ n �= 10, then for the projection of this tree we have to remove the
intermediate node (and its dangling leaf nodes) which gives a tree with a single
attack component. However, if we first reduce the tree to normal form, the
projection would not affect the tree. Clearly, this cannot be a reduct of the first
projected tree.

Monotonicity of predicate P suffices to prevent such problems. We say that
predicate P ⊆ V is monotonic with respect to attribute domain (V,�,�) iff

P (x � y)⇒ P (x) ∧ P (y)
P (x � y)⇒ P (x) ∨ P (y)

We first prove an auxiliary lemma, where we denote a sequence of zero or
more reductions by �∗. After that, we state the main result for projections.

Lemma 5. Let α be an attribute with distributive attribute domain (V,�,�)
and let P ⊆ V be a monotonic predicate. If T and T ′ are attack trees such that
T � T ′, then Πα

P (T ) �∗ Πα
P (T ′).

Proof. The proof proceeds by inspecting the two rewrite rules, while looking at
the possible values of P for the nodes of interest. If P is false in the top node,
then the sub-trees are all removed and the lemma trivially holds. If P is true in
the top node of the first redex, then monotonicity with respect to conjunction
implies that the predicate is also true in all sub-nodes, making the same reduction
step possible on the projected trees. If P is true in the top node of the second
redex, then monotonicity with respect to conjunction and disjunction yields the
same reasoning as for the first redex.
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Theorem 4. Let α be an attribute with distributive attribute domain (V,�,�)
and let P ⊆ V be a monotonic predicate. Then we have for T ∈ T that [[Πα

P (T )]] =
Πα

P ([[T ]]).

Proof. Due to the correspondence between attack suites and normal forms, it
suffices to prove that nf(Πα

P (T )) = Πα
P (nf(T )). Now, suppose that T reduces to

nf(T ) via the sequence T � T ′ � . . . � nf(T ). Then by applying Lemma 5 we
obtain the reduction sequence Πα

P (T ) �∗ Πα
P (T ′) �∗ . . . �∗ Πα

P (nf(T )). From
the fact that nf(T ) is a normal form, we can derive that Πα

P (nf(T )) is a normal
form as well. Because normal forms are unique, we have the desired property
nf(Πα

P (T )) = Πα
P (nf(T )).

Summarizing, we have found that the projection algorithm informally pre-
sented by Schneier can only be applied to a restricted class of predicates. Mono-
tonicity of predicate P suffices, but it is easy to see that monotonicity of ¬P is
also sufficient.

6 Conclusions

The main result of our work is a formalization of the concepts informally in-
troduced by Schneier. This formalization clarifies which manipulations of attack
trees are allowed under which conditions. Such an understanding is a prereq-
uisite for building adequate tool support. A simple experiment with building a
prototype tool confirmed the feasibility of our approach.

Central to our work is the observation that an attack tree describes an at-
tack suite. We argue that the structural information that we lose in this way
is a residual of the modeling strategy, rather than an intrinsic property of the
described set of attacks. Therefore, attack suites form the appropriate level of
abstraction. This semantics can be characterized in two ways: by traversing the
tree from the leaves to the root and by rewriting the tree to normal form. Both
strategies can be easily implemented, but in practice it is more interesting to
build and manipulate attack trees than to calculate their semantics. Rewrit-
ing is more suited for this purpose. The rewrite rules can be used e.g. to add
structure to an unstructured attack suite or to rebalance an attack tree.

It turns out that in order to recursively calculate attributes and projections,
as introduced by Schneier, certain conditions have to be met. The condition for
attributes (the combination operators form a semi-ring) is rather natural and
no serious restriction. The condition for sound projections is somewhat stronger,
but still satisfied by Schneier’s examples. As mentioned before, our formalization
motivates why certain attributes and predicates are not compatible with the
informal algorithms presented by Schneier.

Having formalized the basic concepts of attack trees, it is of interest to study
the extension with e.g. cycles, ordered attacks and pre- and post-conditions.
Furthermore, our experience with using attack trees in practice indicated the
need for defense trees and attack forests (i.e. attack libraries). Finally, we mention
that although we have represented an attack as a multi-set, we could have used
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normal sets as well. The main difference would be the following extra requirement
for attributes: x� x = x.
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Abstract. The central question in constructing a secure and efficient
masking method for AES is to address the interaction between additive
masking and the inverse S-box of Rijndael. All recently proposed meth-
ods to protect AES against power attacks try to avoid this problem and
work by decomposing the inverse in terms of simpler operations that are
more easily protected against DPA by generic methods.

In this paper, for the first time, we look at the problem in the face,
and show that this interaction is not as intricate as it seems. In fact,
any operation, even complex, can be directly protected against DPA of
any given order, if it can be embedded in a group that has a compact
representation. We show that a secure computation of a whole masked
inverse can be done directly in this way, using the group of homographic
transformations over the projective space (but not exactly, with some
non-trivial technicalities).

Keywords: Rijndael, AES, inverse S-box, homographic transforma-
tions, linear fractional transformations, Möbius transformations, the
zero-masking problem, Differential Power analysis, higher-order DPA.

1 Introduction

A secure implementation of (even a very secure) cryptographic algorithm, is by
no means easy to achieve in portable cryptographic devices such as a smart cards.
Indeed, it is hard to protect a secret that is entirely in the hands of a potential
attacker. The nature of cryptography makes that all kinds of additional infor-
mation, even very remotely correlated with the secret quantities manipulated in
the cryptographic algorithm, are very likely to either directly leak information
on the secret quantities, or indirectly, will help to improve some cryptographic
attack. Moreover, in cryptographic devices such as smart cards, the performance
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and cost considerations make that there is little or no margin between the re-
quired level of security and the best known attack. Thus all kind of side channels
are potentially fatal to the security.

The idea of side-channel attacks is very old and well known, for example it is
possible to break many implementations of one-time pad by studying the output
not in terms of zeros and ones, but with an oscilloscope... In 1998 practical side
channel attacks for smart cards have been demonstrated by Kocher, Jaffe and
Jun. They introduce a class of attacks called Power Analysis, using the power
consumption traces to recover the key of an encryption scheme implemented in
a smart card. The Power Analysis of first and higher order is already described
by the authors in the original paper [23], and also in [24]. These attacks have
been later applied to attack (and protect against such attacks) many secret key
schemes, see for example [23, 29] and in particular to AES in [10, 5, 16, 1, 20, 35].
Before 2000, only first order attacks were demonstrated in practice.

In order to protect the secret key schemes against first order power attacks,
two generic methods have been proposed: the transformed masking method
[27, 1] and the duplication method [21, 22, 10, 11]. Moreover, in the particular
case of AES, specific methods have been proposed [1, 39, 20, 6, 38, 36, 37, 31, 32].
In particular, with the progressive replacement of DES by AES as a universal
encryption standard, and with slow advances in hardware protections, efficient
software protections of AES against higher order side-channel attacks have be-
come a hot topic.

In this paper we propose a new algebraic AES-specific masking method that
may appear complex, yet it allows to achieve the same (very ambitious) goal
without tables, and thus is suitable for both hardware and software implemen-
tations. The main contribution of this paper can be summarised as follows: a
fully masked non-linear S-box of Rijndael can still be “embedded” (in a spe-
cial way) in an algebraic group that has a compact representation. This allows
to construct efficient and somewhat mathematically elegant protections against
power analysis.

2 AES and Side-Channel Attacks

2.1 Known Side-Channel Attacks

In this paper we limit to passive non-intrusive attacks against implementations
of cryptographic algorithms, such as DPA, or any other passive side-channel
attack.

The Differential Power Analysis (first order) attack works as follows:
one records the power consumption of several runs of a cryptographic algorithm
implemented on a smart card. Then one guesses a few bits of the secret or
derived key, which allows to compute for each curve, some intermediate bit(s)
that appear inside the cryptographic algorithm. For example the first bit of the
entry of the first S-box. Then one separates the curves in two classes, these for
which this bit is expected to be 0, and those for which this bit is expected to be 1.
If the guess on the key is correct, one will be able to distinguish the two classes
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by various statistical techniques, if the guess was incorrect, both classes should
look the same. An algorithm is susceptible to be attacked by DPA if there is an
intermediate value that depends on the plaintext and on key bits or derived bits.

Higher Order DPA (of order k) just generalizes the above attack: we will
use up to k points on the curves, or equivalently, up to k intermediate variables.
The information obtained on each of these values (e.g. it’s power trace) should
be efficiently combined in order to produce an output, that is correlated to some
internal value/combination of values that again depends on the plaintext and on
key or derived bits.

2.2 Adversarial Model for General Side-Channel Attacks

In order to prevent all possible side-channel attacks, whatever is the leakage
model, it is possible to assume that the (passive) adversary has full access to
some of the intermediate results of the computation. This cannot hold for all
values, and Blömer, Merchan and Krummel do define on Fig. 1. in [6] a minimal
set of two assumptions that are judged necessary to be able to protect the
implementation of a cryptographic algorithm against side-channel attacks. We
adapt and comment on these assumptions.

1. First of all, a random number generator must be available (that unlike what
we read in [6] does not have to be really random and can be pseudo-random
as long as it is not resettable, i.e. at least some real entropy is gathered
and used by the device). This random generator must be protected against
manipulation/perturbation (not necessarily against reading).

2. The secret key (and part of it) K can be securely combined by a group
operation with this random number R. This operation that manipulates K
should be secure both for reading and manipulation (!). Then both R and
R⊕K can go further unprotected.

We observe that this assumption of [6] is not sufficient to protect against
DPA of higher order. Our corrected assumption is as follows. One can chose
random R1, . . . , Rk, then securely compute K ′ = K⊕R1⊕ . . .⊕Rk and then
the values K ′, R1, . . . , Rk can go further unprotected.

These assumptions seem to be acceptable and realistic, because:

0. smart cards may indeed protect some basic operations very carefully in hard-
ware at the gate level,

1. it is difficult to produce really precise perturbations to random numbers that
will not be removed by more randomisation,

2. we assumed that we manipulate the key only once with a random mask, and
in a way that is independent of the plaintext. This makes DPA impossible
and SPA can again probably be prevented by classical noise/randomisation
techniques (without DPA the noise should cover the signal to recover),

3. finally even if the attacker were able to read R (which is permitted by the
model), we can have again DPA attacks on R⊕K, the only place the key is
exposed. This is linear and as such, it is known to be fundamentally much
more resistant to DPA than non-linear operations, see [34].
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We will assume that the power of the attacker is restricted to observing at
most k intermediate values that appear during the computation. Usually and in
[6] it is also implicitly assumed that some “atomic” computations are secure and
the only “observable” data are intermediate data at some level of abstraction.
This assumption seems strong but we claim that as far as protecting against
power attacks of any given order can be achieved, it is not necessary and can
be relaxed. If we assume that the code of the algorithm is public, each part of
computation is some deterministic function of a small number of intermediate
values, and will be secure if k is high enough.

2.3 A Representation of Rijndael

In this paper we will view AES (and other versions of Rijndael) in an abstract
way, as a functional composition of three kind of operations denoted by X, I
and L:

X In Rijndael we simply XOR a byte of an expanded key with a byte of the
current state. We assume that the expanded key is also computed by a
composition of basic operations X,I and L.

I Special substitution S-box that is called Inv. Many authors identify this
function with the inverse X (→ 1/X in the finite field. We will see that Inv
is not exactly the same thing as 1/X in GF (256).

L Linear operations (and more precisely linear or affine transformations over
GF (2), that are fixed and do not depend on the key or on the data).

Typically a DPA counter-measure for Rijndael is designed to protect an im-
plementation of any cipher that is a composition of these operations.

2.4 Previously Proposed Masking Methods for AES

A natural method to protect (against side-channel attacks) a cipher using oper-
ations of type X and L is the transformed masking method [27, 1] in which any
value inside the computation of the enciphering algorithm is masked with XOR
by some random value. This masking method can also resist to higher-order
DPA if the mask is split into several sub-masks as follows R = R1⊕ . . .⊕Rk, R
is never computed but all sub-masks are used one after another.

The main question that arises in all proposed masking methods for AES is how
to protect the AES S-box, and more precisely how to protect the Inv operation.
In the past, the question has been answered with more or less success as follows:

1. Transformed Multiplicative Masking (TMM) of Akkar and Giraud [1].
Switching from additive (XOR) to multiplicative masking and back is possi-
ble and easy due to the ring structure of GF (256). Unluckily, a multiplicative
masking with respect to the multiplication in GF (256) cannot be secure, be-
cause there is a special value 0 ∈ GF (256) that for any mask remains the
same (i.e. is never masked).

2. In [39] Trichina et al proposed a simplified version of this method, which is
not secure for exactly the same reason, see [20, 31].
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3. Embedded Multiplicative Masking (EMM) of Golić and Tymen.
One solution to the “zero-masking problem” is proposed in [20]. The method
consists of a randomised embedding of GF (256) in a larger ring in which zero
can be represented by several possible elements (on two bytes). Then each
byte taken separately has a uniform distribution.

4. A method based on univariate polynomials of Blömer, Merchan and Krum-
mel [6]. This can be seen as a perfectly general method that can be applied
to any S-box, as any function over a finite field can be seen as a univariate
polynomial. Luckily, the polynomial representation Inv(x) = x254 for any x
(including 0) has only one monomial. This makes the method more efficient
than in the general case and suitable for Rijndael.

5. In [38] Trichina and Korkishko propose a software-oriented masking method
based on log tables.

6. In [33] Rostovtsev and Shemyakina propose to use isomorphisms of the un-
derlying finite field.

7. Tower Fields Methods by Oswald, Trichina, et al [36, 37, 31, 32] are designed
for hardware implementations. In these methods, the computing of Inv in
GF (22k) is reduced to a secure computation with masked values of multi-
plications and inverses in GF (2k), by representing GF (22k) as a quadratic
extension of GF (2k). Multiplications can be computed with additive mask-
ing and we are left with the problem of a secure computation of Inv at the
lower level. Two versions have been proposed:

– In [36, 37] Trichina, Korkishko and Hee Lee go down to the field GF (16).
At this level the problem is solved by a completely general method, as
a masked computation of a combinatorial circuit with XOR and AND
gates.

– In [31, 32] Oswald, Mangard, Pramstaller and Rijmen go down to GF (4)
on which Inv is multivariate linear (linear over GF (2), not over GF (4))
and easy to protect.

2.5 New Method - Defining the Target

In this paper we present a novel algebraic masking method for Inv. Our method
is strictly more powerful and somewhat mathematically more elegant that all
the other known methods. After the initial (insecure) proposal of multiplicative
masking all the methods subsequently proposed have become more and more
generic in a sense that had to decompose the Rijndael S-box in simpler oper-
ations and protect each of them separately. On the contrary in our new method
we operate at higher level, and protect directly more complex operations by
representing them as elements of some group. This is made possible by exhibit-
ing a new algebraic structure that though a bit tricky to use, allows to protect
Rijndael against side-channel analysis.

In our method, we will be able to make masked computations of Inv in one
single step without “mask switching”. We wish to go directly from a masked
input to a masked output. Thus the operation that we wish to protect is - a
fully masked Rijndael inversion defined as:
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F(R,R′) : X (→ Inv(X ⊕R)⊕R′

Though complex, this operation can be directly protected. The basic idea is
as follows: if we can embed this operation in some group, we can protect it
against DPA of any fixed order: we represent it as a composition of several
transformations, for example k, out of which any subset of k−1 transformations
are just a set of random uniformly distributed operations.

We will exploit the group of homographic transformations with some non-
trivial mathematical and implementation technicalities: strictly speaking Inv
does not belong to this group (while the real inverse in GF (256) does). In our
solution we will represent F(R,R′) as a combination of a homographic trans-
formation and of mapping that exchanges two points. This representation has
a very interesting feature: these two type of mappings do “almost” commute
(except that the two points to exchange are different). Thus we will also be
able to mask completely the exchange of two points by additional homographic
mappings.

3 Homographic Functions

In this paper we will work in GF (2n), for Rijndael S-boxes we have n = 8. The
function Inv can be defined over GF (2n) in the same way as in Rijndael with
the usual 0 (→ 0:

Inv(X) =
{
X−1 in GF (2n) if X �= 0
0 otherwise

We also have the real inverse function that can be either defined as

– a function GF (256)∗ → GF (256)∗ or
– as a projective function GF (256) → GF (256) with GF (256) = GF (256) ∪
{∞}. This is our preferred version that will be used in this paper.

In mathematics the functions of the form X (→ aX+b
cX+d are called homographic

functions (a.k.a. linear fractional transformations or Möbius transformations, see
[41]). It is well known that they can be represented by 2 × 2 matrices

(
a b
c d

)
.

The composition of these functions is equivalent to multiplying their matrices.
A cross-ratio of 4 pairwise different points R(t, u, v, w) = t−u

t−w/ v−u
v−w is known to

be an invariant for such transformations, see [12, 4].

3.1 What Is the Difference Between Inv and 1/X ?

Unfortunately the function Inv of Rijndael is not strictly speaking a homo-
graphic function. It is equal to a function of the form X (→ aX+b

cX+d except in
one point, when 0 is mapped to 0. This “completion” with 0 (→ 0 has many
important and non-trivial properties, see [12]. There are three ways of defining
a practical “inverse” function for the finite field GF (256):
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1. We can have a bijection on 255 elements GF (256)∗ → GF (256)∗.
2. We can have a bijection on 256 elements Inv : GF (256)→ GF (256) that is

used in Rijndael.
3. We can have a bijection on 257 elements GF (256)→ GF (256) with GF (256)

= GF (256) ∪ {∞}. The “real” inverse is defined as:

Inv(X) =

{
X−1 if X /∈ {0,∞}
0 (→ ∞
∞ (→ 0

.

This is an eminently interesting version that is of central interest to us. We can
compose this function with other homographic permutations defined as follows:

Ha,b,c,d(X)
def
=

⎧⎪⎪⎨⎪⎪⎩
aX+b
cX+d if X /∈ {−d

c ,∞}

− d
c (→ ∞
∞ (→ a

c

with det
(

a b
c d

)
�= 0.

The set of such invertible homographic mappings forms a group H under the
usual composition law ◦. The matrix representation

(
a b
c d

)
in GL2(GF (2n)) is

redundant and our group H is in fact isomorphic to a subgroup SL2(GF (2n))
of GL2(GF (2n)) in which all matrices are of determinant 1. Each element of H
can be represented by “essentially” three elements of GF (2n).

3.2 Composition / Group Properties and Subtleties

We call an Almost-Invariant, any property that is invariant with a probability
close to one. We have the following theorem:

Theorem 3.3 (Jakobsen-Knudsen-Courtois, cf. [12]). For any function
Y = F (X) that composes in any order

(a) N applications of Inv in GF (2n),
(b) any number of XORs with different subkeys or constants,

there exist (a, b, c, d) ∈ GF (2n)4 such that:

IPX∈GF (2n)

[
Y =

aX + b

cX + d
| Y = F (X)

]
≥
(

1− 1
2n

)N

≥
(

1− N

2n

)

4 The New Masking Method

Let τab, be a function that that swaps two points a �= b:

τab(X) =

{
X if X /∈ {a, b}
a (→ b
b (→ a

.
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We observe that Inv is a restriction to GF (256) of Inv ◦ τO∞. We have

∀x ∈ GF (256) Inv (x) = Inv ◦ τO∞ (x) = τO∞ ◦ Inv (x)

Now, our target is to protect the whole operation as follows:

F(R,R′) : X (→ Inv(X ⊕R)⊕R′

Though it is defined over GF (2n), nothing prevents us from extending it
by deciding that F(R,R′)(∞) = ∞. We will be using operations in GF (2n) to
implement operations in GF (2n) and if we are able to securely implement F(R,R′)
we obtain also a secure implementation of F(R,R′).

Our new target is F(R,R′) and it can also be seen as a composition of an
invertible homographic transformation and another mapping that swaps two
points:

F(R,R′) = Ha,b,c,d ◦ τ∞R = τ∞R′ ◦Ha,b,c,d

With a, b, c, d that can be computed explicitly as:(
a b
c d

)
=
(
R′ RR′ + 1
1 R

)
with det

(
R′ RR′ + 1
1 R

)
= 1.

We will use the second decomposition (the first might be used as well). We
have:

F(R,R′) = τ∞R′ ◦Ha,b,c,d

It is important to see that it is not sufficient to find a secure implementation of
Ha,b,c,d and a secure implementation of τ∞R′ . This is because when the (real, not
masked) value of the input of the Rijndael S-box is equal to 0, the output value
of Ha,b,c,d is always ∞ (∞ is not masked by R′). This is a projective version of
the “zero-masking problem”. In a secure implementation both operations have
to be “jointly” protected. In particular the implementation of τ∞R′ ◦ Ha,b,c,d

must hide both points that are exchanged ∞ and R′, not only the point R′.

4.1 Joint Secure Implementation

At this level we will describe a method for usual DPA (1st order). We assume
that in the implementation of Rijndael each entry and each output of the Inv
function are protected by a couple of masks R and R′ that vary from one S-box
to another. We omit the description of how to protect the linear parts of the
algorithm.

1. We pick a random α ∈ H.
2. We compute α−1 ∈ H.
3. By evaluating α−1 on R′ and∞, we compute two points g, h ∈ GF (2n) such

that:
τ∞R′ = α ◦ τgh ◦ α−1

It is possible to show that they are a random and uniformly distributed
couple of distinct points in GF (2n).
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4. We compute H ′ = α−1 ◦Ha,b,c,d.
5. We store the sequence α, τgh, H

′ in RAM as matrices of SL2(GF (2n)), except
τgh that is stored as a couple of points in GF (2n).

6. Our secure implementation of F(R,R′) is defined as the following sequence of
transformations to be applied to X in order from right to left:

α, τgh, H ′

Security of our countermeasure against DPA. Observing each of the three
transformations specified above is just a random transformation of some type
that gives no information to the attacker. It is also the case for H ′ and τgh ◦H ′.
This allows to see that all the intermediate values H ′(X) and τgh(H ′(X)) before
the final masked output are fully de-correlated from X , from the real values
inside the AES, and from the key.

5 Conclusion and Further Research

In this paper we studied the interaction between additive masking and the inverse
S-box of Rijndael the happens to be less complex than it seems. It allows to
construct a method to protect in one single step the whole masked inverse against
all passive side-channel attacks (e.g. DPA, DEMA, etc.). This is achieved by
embedding (with additional non-trivial technicalities) this operation in a group
of homographic transformations over the projective space that happens to have
a compact representation (essentially 3 bytes).

Further Developments. This paper is a proof of concept for a new non-trivial
algebraic masking method. We develop it more in the extended version of this
paper that can be found at eprint.iacr.org/2005/204/. The topic requires
further research.
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9. Vincent Carlier, Hervé Chabanne, Emmanuelle Dottax, Hervé Pelletier:
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Abstract. New criteria of extended resiliency and extended immunity
of vectorial Boolean functions, such as S-boxes for stream or block ci-
phers, were recently introduced. They are related to a divide-and-conquer
approach to algebraic attacks by conditional or unconditional equations.
Classical resiliency turns out to be a special case of extended resiliency
and as such requires more conditions to be satisfied. In particular, the
algebraic degrees of classically resilient S-boxes are restricted to lower
values. In this paper, extended immunity and extended resiliency of S-
boxes are studied and many characterisations and properties of such
S-boxes are established. The new criteria are shown to be necessary and
sufficient for resistance against the divide-and-conquer algebraic attacks
by conditional or unconditional equations.

Keywords: Extended Resiliency, Extended Immunity, Divide-and-
Conquer Algebraic Attacks.

1 Introduction

The concept of divide-and-conquer algebraic attacks by the conditional or un-
conditional equations induced from a cipher was introduced recently by Golić in
[15]. The basic idea behind the resistance against the new attacks is to design
the ciphers so that an attacker cannot induce non-constant equations involv-
ing certain subsets of variables within the cipher. For this reason, the notions
of extended resiliency along with extended immunity as a special case were in-
troduced in [15].1 As a special case of extended resiliency, classical resiliency
(see for instance [1, 2, 5, 6, 16, 20, 21, 23, 24]) requires additional conditions that
are not necessary for resistance against the algebraic attacks by conditional or

1 The name ‘extended resiliency (immunity)’ in this paper corresponds to ‘algebraic
immunity (resiliency)’ in [15]. The name is changed in order to avoid confusion with
[4, 12, 13], where ‘algebraic immunity’ was defined differently.
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unconditional equations. Furthermore, the additional conditions restrict the al-
gebraic degrees [3, 21, 22]. Therefore, although possibly useful to resist other
types of attacks, such as correlation attacks, classically resilient S-boxes are not
good candidates for cryptographic blocks that should resist algebraic attacks
by conditional or unconditional equations. The extended resiliency (immunity)
thus seems to be an appropriate platform for a study of S-boxes that are used
in stream or block ciphers. These S-boxes are “provably” immune against the
divide-and-conquer algebraic attacks by conditional (unconditional) equations
and, unlike classically resilient S-boxes, can have high algebraic degrees.

The aim of the paper is to characterise extended resiliency and extended
immunity. More precisely, in Section 2, we recall and describe the divide-and-
conquer algebraic attacks by unconditional (conditional) equations induced from
an S-box. The algebraic properties of S-boxes to be used in the rest of the paper
are provided in Section 3. The extended resiliency and the extended immunity
are characterised in Sections 4 and 5, respectively. In Section 6, the extended
resiliency (immunity) is characterised in terms of the resistance against alge-
braic attacks by unconditional (conditional) equations. The relations between
the extended immunity, the extended resiliency and the classical resiliency are
summarised in Section 7. In Section 8, we demonstrate that algebraic degrees of
extended resilient (immune) S-boxes can be as high as n−1, where n denotes the
input size, and provide the corresponding constructions. In Section 9, an upper
bound on extended immunity (resiliency) is analysed. Conclusions and sugges-
tions for future work are given in Section 10. Proofs of mathematical results are
provided in the Appendix.

2 Divide-and-Conquer Algebraic Attacks Based on
Conditional and Unconditional Equations

Algebraic attacks [5, 7, 9, 10, 11, 12, 13, 15, 18] have recently been shown to be
very powerful against certain types of both stream and block ciphers. Typically,
an algebraic attack consists of the following two stages. In the first stage, the
attacker finds a collection of equations that holds for some specific input, inter-
mediate, and output variables for the cipher. In the second stage, the attacker
observes the accessible variables, fixes the known variables to the observed val-
ues, and solves the resulting system of equations. The solution normally reduces
the uncertainty of the unknown variables such as the secret key and in some
circumstances, the attacker can determine all unknown variables breaking the
cipher. The amount of work involved in this attack depends on the algebraic
degree of the equations derived by the adversary. The smaller the degree of the
equations the more efficient the attack is. To prevent ciphers against algebraic
attacks, one would expect that the internal structure of the ciphers does not
permit the adversary to derive low degree non-constant equations.

A concept of divide-and-conquer algebraic attacks is recently proposed in [15].
It suggests that algebraic attacks can be based on equations involving only sub-
sets of input or output variables for individual nonlinear components of a cipher
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such as S-boxes or lookup tables. The equations can be unconditional, involving
both input and output variables, or conditioned on the output, involving only the
input variables. The conditional scenario is shown to be useful for stream ciphers
(e.g., based on linear feedback shift registers), while the unconditional scenario
may possibly be used for both block ciphers and stream ciphers. More precisely,
in iterated constructions, such equations may possibly reduce the number of
intermediate variables involved in the equations and hence also the complex-
ity of algebraic attacks. The two scenarios of induced algebraic equations are
described next.

Let F (x) = y be an n×m S-box, where x = (x1, . . . , xn) ∈ GF (2)n and y ∈
GF (2)m. 2 For a fixed integer t, 0 ≤ t ≤ n, let T = {j1, . . . , jt} be fixed ordered
t-subset of {1, . . . , n} and {i1, . . . , in−t}= {1, . . . , n} \ {j1, . . . , jt}, where j1 <
· · · < jt and i1 < · · · < in−t. Set x′ = (xj1 , . . . , xjt

) and x′′ = (xi1 , . . . , xin−t
).

We define a subset W (F, T ) of GF (2)t+m as follows.

W (F, T ) = {(α′, β) | α′ ∈ GF (2)t, β ∈ GF (2)m,
(∃α′′ ∈ GF (2)n−t, x′ = α′, x′′ = α′′, F (x) = β)}. (1)

Let a function h on GF (2)t+m satisfy

h(x′, y) = 0, for all (x′, y) ∈W (F, T ). (2)

Then the equation (2), over x′ and y, is called an unconditional algebraic equation
induced from F (x) = y (for the fixed T ). Of course, such h always exists as h
can be the constant zero function. However the attackers try to find a non-
constant h so as to eliminate x′′ and involve only the variables in x′ and y. To
make this divide-and-conquer strategy ineffective, it is desirable that F does not
induce non-constant unconditional algebraic equations, e.g., for relatively small
values of t.

In particular, when β ∈ F (GF (2)n) in (1) is fixed, we define a subset
W (F, T, β) of GF (2)t as follows.

W (F, T, β) = {α′ | α′ ∈ GF (2)t,
(∃α′′ ∈ GF (2)n−t, x′ = α′, x′′ = α′′, F (x) = β)}. (3)

Let a function h on GF (2)t satisfy

h(x′) = 0, for all x′ ∈W (F, T, β). (4)

Then the equation (4), over x′ only, is called a conditional algebraic equation
induced from F (x) = β. Similarly, it may be desirable that F does not induce
non-constant conditional algebraic equations, e.g., for relatively small values of
t. The extended immunity (resiliency) of vectorial Boolean functions is defined
in [15] in order to describe the divide-and-conquer effect of induced algebraic
equations. This will be studied in more detail in Section 6 and provides a practical
2 Here and throughout, we use a simplified notation GF (2)n for (GF (2))n.
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motivation for our work. On the other hand, the extended resiliency (immunity)
naturally generalises the well-known notion of classical resiliency (immunity)
and it is thus theoretically interesting to investigate its properties and propose
new constructions.

3 Algebraic Properties of S-Boxes

In this section, we provide the necessary background including notations that are
used in the next sections. We write all vectors in GF (2)n as (0, . . . , 0, 0) = α0,
(0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and call αi the binary representation
of integer i, i = 0, 1, . . . , 2n−1. A Boolean function f is a mapping from GF (2)n

to GF (2). We express f as f(x) = f(x1, . . . , xn) where x = (x1, . . . , xn) ∈
GF (2)n. The truth table of f is defined as (f(α0), f(α1), . . ., f(α2n−1)), and the
sequence of f is defined as ((−1)f(α0), (−1)f(α1), . . ., (−1)f(α2n−1)). The scalar
product of α = (a1, . . . , an), β = (b1, . . . , bn) ∈ GF (2)n, denoted by 〈α, β〉, is
defined as 〈α, β〉= a1b1 ⊕ · · · ⊕ anbn where ⊕ denotes the binary addition. We
call h(x) = 〈α, x〉 ⊕ c an affine function, where α, x ∈ GF (2)n and c ∈ GF (2).
In particular, h is called a linear function if c = 0.

Consider a mapping F = (f1, . . . , fm) from GF (2)n to GF (2)m, where each
fj is a Boolean function on GF (2)n and is called a coordinate or component
function of F . We express F as F (x) = F (x1, . . . , xn) where x = (x1, . . . , xn) ∈
GF (2)n. F is also called an S-box or a vectorial Boolean function. From now, we
call F an n ×m S-box. F is said to be affine if all its coordinate functions are
affine, and in particular, F is said to be linear if all its coordinate functions are
linear. For any k, 1 ≤ k ≤ m, and any k-subset {j1, . . . , jk} of {1, . . . ,m}, where
j1 < · · · < jt, the mapping F̂ = (fj1 , . . . , fjk

) from GF (2)n to GF (2)k is called
a k-subfunction of F .

Notation 1. Let αi ∈ GF (2)n be the binary representation of integer i,
i = 0, . . . , 2n − 1, and γj ∈ GF (2)m be the binary representation of integer
j, j = 0, . . . , 2m − 1. For an n×m S-box F , we define a 2n × 2m (1,−1) matrix
DF = (dij): dij = (−1)〈F (αi),γj〉. Also we define a 2n × 2m real-valued (0, 1)
matrix CF = (cij): cij = 1 if and only if F (αi) = γj.

Recall that a k×k (1,−1)-matrix M is called a Hadamard matrix if MMT = kIk,
where MT is the transpose of M and Ik is the k×k identity matrix [17]. A 2s×2s

Sylvester-Hadamard matrix, denoted by Hs, is defined by the following recursive

relation: H0 = 1, Hs =
[
Hs−1 Hs−1
Hs−1 −Hs−1

]
, s = 1, 2, . . .. Clearly Hs is a symmetric

matrix. Denote the jth row (column) of Hm by �j (�Tj ), j = 0, 1, . . . .2m − 1.
It is known that �j is the sequence of a linear function ψj(y) = 〈γj , y〉 where
y ∈ GF (2)m.

Lemma 1. Let F be an n×m S-box. Then DFHm = 2mCF .
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Lemma 2. Let F be an n × m S-box. Let diag(λ0, λ1, . . . , λ2m−1) be a diago-
nal matrix, where λj denotes the number of times that F takes value γj. Then
DT

FDF = Hmdiag(λ0, λ1, . . . , λ2m−1)Hm.

Recall the basic facts from linear algebra, for instance, from [19]. If an s × s
matrix A with real entries, a nonzero s-dimensional column vector η with real
coordinates and a real number κ satisfy Aη = κη, then κ is called the eigenvalue
of matrix A corresponding to the eigenvector η or, alternatively, η is called an
eigenvector of matrix A corresponding to the eigenvalue κ. For a fixed matrix A,
each eigenvector corresponds to only one eigenvalue, whereas an eigenvalue does
not necessarily correspond to only one eigenvector. Usually, a real square matrix
does not necessarily have a real eigenvector. However, any real symmetric s× s
matrix must have s linearly independent real eigenvectors.

Corollary 1. Let F be an n ×m S-box. Then the jth column �Tj of Hm is the
eigenvector of DT

FDF corresponding to the eigenvalue 2mλj, where λj denotes
the number of times that F takes value γj.

4 Extended Resilient S-Boxes

The concept of extended resiliency was originally proposed by Golić [15]. In this
section, we derive various characterisations of the extended resiliency.

4.1 Surjective S-Boxes

Before defining the extended resiliency, we introduce necessary notations.

Notation 2. Let F be an n × m S-box. For a subset S of GF (2)n, we write
{F (x) | x ∈ S} = F (S).

Definition 1. Let F be an n × m S-box. F is said to be surjective (or onto
GF (2)m) if F (GF (2)n) = GF (2)m.

Lemma 3. Let F be an n×m S-box. Then the following statements are equiva-
lent: (i) F is surjective, (ii) all eigenvalues of DT

FDF are nonzero, and (iii) the
rank of DF is 2m.

Definition 2. Functions f1, . . . , fm on GF (2)n are said to be functionally inde-
pendent if for any non-constant Boolean function h on GF (2)m, h(f1, . . . , fm)
is non-constant.

Clearly linear independence is a special case of functional independence.

Lemma 4. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is surjective, (ii) for any integer k, 1 ≤ k ≤ m, and any surjective
m × k S-box P , the n × k S-box P (F (x)) is surjective, and (iii) the coordinate
functions of F are functionally independent.
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4.2 Extended Resiliency and Its Properties

Notation 3. For a fixed t-subset T = {j1, . . . , jt} of {1, . . . , n} and a fixed
vector α = (a1, . . . , at) ∈ GF (2)t, we define a subset S(n, T, α) of GF (2)n:
S(n, T, α) = {x = (x1, . . . , xn) | x ∈ GF (2)n, xj1 = a1, . . . , xjt

= at}. 3 For-
mally, for t = 0, a 0-subset T is the empty set, i.e., T = ∅ and α is not defined,
then S(n, T, α) becomes GF (2)n.

Let #X denote the number of elements in a set X. Then #S(n, T, α) = 2n−t.

Lemma 5. For fixed subsets T = {j1, . . . , jt}, T ′ = {j1, . . . , jt−1} and fixed
vectors α = (a1, . . . , at) ∈ GF (2)t and α′ = (a1, . . . , at−1) ∈ GF (2)t−1, we have
S(n, T, α) ⊆ S(n, T ′, α′).

Definition 3. Let F be an n×m S-box. Then F is said to be (n,m, t)-extended
resilient if for any t-subset T of {1, . . . , n} and any α ∈ GF (2)t, we have
F (S(n, T, α)) = GF (2)m. An (n,m, t)-extended resilient S-box is also said to
be t-extended resilient if we ignore the particular values of n and m.

It follows that any (n,m, t)-extended resilient S-box is surjective, in particular,
any (n,m, 0)-extended resilient S-box is equivalent to a surjective n×m S-box.

Proposition 1. For any (n,m, t)-extended resilient S-box, it is necessary that
t ≤ n−m.

The following claim directly follows from Lemma 5.

Lemma 6. Let F be an n ×m S-box. Then F is (n,m, t)-extended resilient if
and only if F is (n,m, k)-extended resilient for k = 0, . . . , t.

Due to Lemma 6, we are able to introduce the following definition.

Definition 4. If F is an (n,m, t)-extended resilient S-box, but is not (n,m, t+
1)-extended resilient, then t is called the extended resiliency order of F .

Proposition 2. Let F be an (n,m, t)-extended resilient S-box. Then F (x) runs
through each vector in GF (2)m at least 2t times while x runs through GF (2)n

once.

4.3 Characterisations of Extended Resilient S-Boxes

Definition 5. Let S be a subset of GF (2)n. Then the characteristic function of
S, denoted by χS, is a Boolean function on GF (2)n defined as χS(α) = 1 if and
only if α ∈ S.

Theorem 1. Let F be an n × m S-box. Then the following statements are
equivalent: (i) F is an (n,m, t)-extended resilient, (ii) for any fixed t-subset
T of {1, . . . , n} and any fixed α ∈ GF (2)t, all eigenvalues of DT

F diag(b0, b1, . . . ,

3 Here and throughout, a t-subset {j1, . . . , jt} is assumed to be ordered so that j1 <
· · · < jt.
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b2n−1)DF are nonzero, where (b0, b1, . . . , b2n−1) denotes the truth table of the
characteristic function of S(n, T, α) and each bj is regarded a real number, and
(iii) the rank of diag(b0, b1, . . . , b2n−1)DF is 2m.

The next claim follows from Lemma 4 and Definition 3.

Theorem 2. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended resilient, (ii) for any integer k, 1 ≤ k ≤ m, and
any surjective m × k S-box P , the n × k S-box P (F (x)) is (n, k, t)-extended re-
silient, and (iii) for any t-subset T = {j1, . . . , jt} of {1, . . . , n} and any α =
(a1, . . . , at) ∈ GF (2)t, the coordinate functions of F (x)|xj1=a1,...,xjt=at

, i.e., the
restriction of F to S(n, T, α), are functionally independent.

The necessity in the following statement holds due to Theorem 2 and the suffi-
ciency is obvious.

Corollary 2. Let F be an n×m S-box. Then F is (n,m, t)-extended resilient if
and only if for any k, 1 ≤ k ≤ m, every k-subfunction F̂ of F is (n, k, t)-extended
resilient.

Theorem 3. Let F be an n × m S-box. Then F is (n,m, t)-extended resilient
if and only if for any fixed r, 1 ≤ r ≤ t, any fixed r-subset T = {j1, . . . , jr} of
{1, . . . , n} and every nonzero Boolean function g on GF (2)r, g(xj1 , . . . , xjr

)F (x)
is surjective, i.e., {g(xj1 , . . . , xjt

)F (x)|x ∈ GF (2)n} = GF (2)m.

The next theorem is helpful for understanding the extended resiliency.

Theorem 4. Let F be an n×m S-box. Then the following statements are equva-
lent: (i) F is (n,m, t)-extended resilient, (ii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α ∈ GF (2)t0 , the restriction of F (x) to
S(n, T0, α) is (t− t0)-extended resilient, and (iii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α ∈ GF (2)t0 , F (x) runs through each
vector in GF (2)m at least 2t−t0 times while x runs through S(n, T0, α) once.

The following statement follows from Theorem 4.

Corollary 3. Let F be an (n,m, t)-extended resilient S-box. For any integer
k ≥ 1, define an (n+ k)×m S-box F ∗ as F ∗(α, β) = F (α) for each α ∈ GF (2)n

and β ∈ GF (2)k. Then F ∗ is (n + k,m, t)-extended resilient.

5 Extended Immune S-Boxes

The extended immunity proposed by Golić [15] is more general than the extended
resiliency. In this section, we derive characterisations of the extended immunity.

5.1 Extended Immunity and Its Properties

Definition 6. Let F be an n×m S-box. Then F is said to be (n,m, t)-extended
immune if for any t-subset T of {1, . . . , n} and any α ∈ GF (2)t, we have
F (S(n, T, α)) = F (GF (2)n). An (n,m, t)-extended immune S-box is also said
to be t-extended immune if we ignore the particular values of n and m.
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An (n,m, t)-extended immune S-box is (n,m, t)-extended resilient if and only if
F (GF (2)n) = GF (2)m. Recall that S(n, T, α) with #T = 0 denotes GF (2)n.
Thus any n×m S-box is (n,m, 0)-extended immune.

Proposition 3. For any (n,m, t)-extended immune S-box F , it is necessary that
t ≤ n− log2 #F (GF (2)n).

In particular, if F is an (n,m, t)-extended immune S-box, then the inequality
t ≤ n− log2 #F (GF (2)n) becomes t ≤ n−m, as in Proposition 1.

Lemma 5 and Definition 6 imply the following lemma.

Lemma 7. Let F be an n ×m S-box. Then F is (n,m, t)-extended immune if
and only if F is (n,m, k)-extended immune for k = 0, . . . , t.

According to Lemma 7, we are able to introduce the following definition.

Definition 7. If F is an (n,m, t)-extended immune S-box, but is not (n,m, t+
1)-extended immune, then t is called the extended immunity order of F .

Similarly to Proposition 2, we have the following more general statement.

Proposition 4. Let F be an (n,m, t)-extended immune S-box. Then F (x) runs
through each vector in F (GF (2)n) at least 2t times while x runs through GF (2)n

once.

5.2 Characterisations of Extended Immune S-Boxes

We start with the following simple result.

Theorem 5. Let F be an n × m S-box. Then the following statements are
equivalent: (i) F is (n,m, t)-extended immune and (ii) for any fixed t-subset
T of {1, . . . , n} and any two vectors α, α′ ∈ GF (2)t, we have F (S(n, T, α)) =
F (S(n, T, α′)).

By using a similar argument in the proof of Theorem 1, we can prove Theorem
6, whereas Theorem 7 and Corollary 4 correspond to Theorem 2 and Corollary
2, respectively.

Theorem 6. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune and (ii) for any fixed t-subset T of
of {1, . . . , n} and any fixed α ∈ GF (2)t, the eigenvalue corresponding to the
eigenvector �Tj of DT

F diag(b0, b1, . . . , b2n−1)DF is nonzero if and only if the the
eigenvalue corresponding to the eigenvector �Tj of DT

FDF is nonzero, where �Tj is
the jth column of Hm, j = 0, 1, . . . , 2m − 1, (b0, b1, . . . , b2n−1) denotes the truth
table of the characteristic function of S(n, T, α) and each bj is regarded as a real
number.

Theorem 7. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune, (ii) for any integer k, 1 ≤ k ≤ m,
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and any m×k S-box P (not necessarily surjective), P (F (x)) is (n, k, t)-extended
immune, and (iii) for any t-subset T = {j1, . . . , jt} of {1, . . . , n}, any α =
(a1, . . . , at) ∈ GF (2)t, and any Boolean function h on GF (2)m, if h(F ) is non-
constant, then h(G) is non-constant, where G(x)= F (x)|xj1=a1,...,xjt=at

.

Corollary 4. Let F be an n× n S-box. Then F is (n,m, t)-extended immune if
and only if for any k, 1 ≤ k ≤ m, every k-subfunction F̂ of F is (n, k, t)-extended
immune.

By using a similar argument as in the proof of Theorem 3, we can prove the
following characterisation.

Theorem 8. Let F be an n ×m S-box. Then F is (n,m, t)-extended immune
if and only if for any fixed r, 1 ≤ r ≤ t, any fixed r-subset T = {j1, . . . , jr} of
{1, . . . , n} and every nonzero Boolean function g on GF (2)r,
{g(xj1 , . . . , xjr

)F (x)|x = (x1, . . . , xn) ∈ GF (2)n} = F (GF (2)n).

By the same reasoning as for Theorem 4, we can also prove the following theorem,
whereas Corollary 5 corresponds to Corollary 3.

Theorem 9. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune, (ii) for any integer t0, 0 ≤ t0 ≤ t, any
t0-subset T0 of {1, . . . , n} and any α0 ∈ GF (2)t0 , the restriction of F (x) to
S(n, T0, α0) is (t− t0)-extended immune, and (iii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α0 ∈ GF (2)t0 , F (x) runs through each
vector in F (GF (2)n) at least 2t−t0 times while x runs through S(n, T0, α) once.

Corollary 5. Let F be an (n,m, t)-extended immune S-box. For any integer
k ≥ 1, define an (n+ k)×m S-box F ∗ as F ∗(α, β) = F (α) for each α ∈ GF (2)n

and β ∈ GF (2)k. Then F ∗ is (n + k,m, t)-extended immune.

6 Characterisation of Extended Resiliency (Immunity)
in Terms of Existence of Unconditional (Conditional)
Equations

In this section, we characterise the extended resiliency (immunity) in terms of the
resistance against divide-and-conquer algebraic attacks by unconditional (con-
ditional) equations. For completeness, we first give a new proof for a result from
[15] about the existence of conditional algebraic equations. Then, we prove a
new result about the existence of unconditional algebraic equations.

Lemma 8. For a fixed t-subset T = {j1, . . . , jt} ⊆ {1, . . . , n}, there is no non-
constant conditional algebraic equation over x′ = (xj1 , . . . , xjt

) induced from
F (x1, . . . , xn) = β for any value of β ∈ F (GF (2)n) if and only if F (S(n, T, x′))
= F (GF (2)n), for every x′ ∈ GF (2)t.
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Theorem 10. There is no non-constant conditional algebraic equation over
x′ = (xj1 , . . . , xjt

) induced from F (x1, . . . , xn) = β for any t-subset T =
{j1, . . . , jt} ⊆ {1, . . . , n} and any value of β ∈ F (GF (2)n) if and only if F
is (n,m, t)-extended immune.

Accordingly, for a (n,m, t)-extended immune S-box F , if the attackers want to
establish a non-constant conditional algebraic equation induced from F , they
have to choose x′ with dimension higher than the extended immunity order
defined in Definition 7.

Lemma 9. For a fixed t-subset T = {j1, . . . , jt} ⊆ {1, . . . , n}, there is no non-
constant unconditional algebraic equation over x′ = (xj1 , . . . , xjt

) and y induced
from F (x1, . . . , xn) = y if and only if F (S(n, T, x′)) = GF (2)m, for every x′ ∈
GF (2)t.

Theorem 11. There is no non-constant unconditional algebraic equation over
x′ = (xj1 , . . . , xjt

) and y induced from F (x1, . . . , xn) = y for any t-subset T =
{j1, . . . , jt} ⊆ {1, . . . , n} if and only if F is (n,m, t)-extended resilient.

Therefore, for an (n,m, t)-extended resilient S-box F , if the attackers want to
establish a non-constant unconditional algebraic equation induced from F , they
have to choose x′ with dimension higher than the extended resiliency order
defined in Definition 4.

7 Relations Between Extended Immunity, Extended
Resiliency and Classical Resiliency

Classically resilient S-boxes (see for instance [1, 2, 5, 6, 8, 16, 20, 21, 23, 24]) were
studied previously. The following is the definition of classical resiliency.

Definition 8. Let F be an n×m S-box. If for any t-subset T of {1, . . . , n} and
any α ∈ GF (2)t, F (x) runs through each vector in GF (2)m exactly 2n−m−t times
while x runs through S(n, T, α) once, then F is said to be (n,m, t)-classically
resilient.

Classical resiliency in Definition 8 was usually called resiliency. In this paper, we
call it classical resiliency so as to avoid confusion. Summarily, classical resiliency
is a special case of extended resiliency and extended resiliency is a special case
of extended immunity. We next establish some relations among the three.

Proposition 5. Any affine (n,m, t)-extended resilient S-box is also (n,m, t)-
classically resilient.

Theorem 12. Let F be an affine (n,m, t)-extended immune S-box. Then
#F (GF (2)n) = 2k, where k is an integer, and there exist a vector β ∈ GF (2)m

and an m× k matrix B over GF (2) such that the mapping P (x) = (F (x)⊕β)B
is an (n, k, t)-classically resilient S-box.
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According to Theorem 12, any affine extended immune S-box can be used to
construct a classically resilient S-box by an appropriate affine transformation of
the output.

Theorem 13. Let Q be an (n,m, t)-extended immune S-box and let k be an inte-
ger satisfying k = *log2 #Q(GF (2)n)+, where *r+ denotes the maximum integer
less than or equal to r. For any mapping P from Q(GF (2)n) onto GF (2)k, de-
fine a mapping F = P (Q(x)) where x ∈ GF (2)n. Then F is an (n, k, t)-extended
resilient S-box.

According to Theorem 13, any extended immune S-box can be transformed into
an extended resilient S-box by an appropriate mapping of the output.

8 Algebraic Degree of Extended Resilient S-Boxes

The algebraic degree of n × m S-box F = (f1, . . . , fm), denoted by deg(F ), is
defined as deg(F ) = ming{deg(g)|g =

⊕m
j=1 cjfj , (c1, . . . , cm) �= (0, . . . , 0)}. S-

boxes with high algebraic degrees are desirable for resistance against algebraic
attacks.

Lemma 10. The algebraic degree of any n × m S-box F is at most n − 1 if
m ≥ 2.

From [24], an n × m S-box is (n,m, t)-classically resilient if and only if each
nonzero linear combination of its coordinate functions is (n, 1, t)-classically re-
silient. Due to [22], the algebraic degree of an (n, 1, t)-classically resilient function
is less than n− t unless t = n− 1 (Siegenthaler’s inequality). Therefore, the al-
gebraic degree of any (n,m, t)-classically resilient S-box is less than n− t (when
m ≥ 2). We will show that unlike the classical resiliency order, the extended
immunity (resiliency) order does not restrict the algebraic degree.

Notation 4. Let βj denote the vector in GF (2)n whose jth component is zero
and all other components are one, and β0 = (1, . . . , 1) ∈ GF (2)n. Let (x1 · · ·xn)
/xj denote the product x1 · · ·xj−1xj+1 · · ·xn of n− 1 variables.

Lemma 11. Let f be a Boolean function on GF (2)n. For any integer j, 1 ≤
j ≤ n, let f ′(x1, . . . , xn) = f(x1, . . . , xn) ⊕ (x1 · · ·xn)/xj. Then f ′ differs from
f only for x = β0 and x = βj. If deg(f) < n− 1 then deg(f ′) = n− 1.

Theorem 14. Let F = (f1, . . . , fm) be an (n,m, t)-extended resilient S-box,
deg(fj) < n− 1, j = 1, . . . ,m, and t > *log2(m+ 1)++ 1. Let F ′ = (f ′

1, . . . , f
′
m)

be an n×m S-box, where f ′
j(x1, . . . , xn) = fj(x1, . . . , xn)⊕ (x1 · · ·xn)/xj. Then

F ′ is an (n,m, t0)-extended resilient S-box such that t0 = t− *log2(m + 1)+ − 1
and deg(F ′) = n− 1.

Therefore, an (n,m, t0)-extended resilient S-box F ′ achieves the maximum de-
gree n − 1. In contrast with F ′, if there exists an (n,m, t0)-classically resilient



Characterisations of Extended Resiliency and Extended Immunity of S-Boxes 221

S-box, due to Siegenthaler’s inequality, its algebraic degree is less than n − t0
(when m ≥ 2). Furthermore, there is another problem: it is unknown whether
this upper bound on the algebraic degree of classically resilient S-boxes can be
reached except for special cases. For these reasons, classically resilient S-boxes
may not be desirable with respect to algebraic attacks.

In the proof of Theorem 15, we construct (n,m, t)-extended resilient S-boxes
with maximum algebraic degree n − 1, for any given m and t, but the number
of inputs, n, has to be sufficiently large.

Theorem 15. For any given m and t and r ≥ t+*log2(m+1)++2, there exists
an (rm,m, t)-extended resilient S-box with algebraic degree rm− 1.

9 Upper Bound on Extended Immunity (Resiliency)

Recall that the classical resiliency t of an (n,m, t)-resilient function is upper-
bounded by t ≤ * 2m−1n

2m−1 +−1 [14] and t ≤ 2* 2
m−2(n+1)

2m−1 +−1 [2]. In this section, we
indicate that the upper bound on extended immunity (resiliency) order is differ-
ent from the bound on the classical resiliency order. According to Proposition
3, any (n,m, t)-extended immune S-box F satisfies t ≤ n − log2 #F (GF (2)n).
We next show that this upper bound is tight for large t. We first provide a new
proof of a result from [15] concerning Boolean functions, i.e., m = 1. Then we
generalise this result to an arbitrary m.

Lemma 12. Let f be a Boolean function on GF (2)n with an extended immunity
order t. Then (i) t = n if and only if f is constant and (ii) t = n− 1 if and only
if f(x) = x1 ⊕ · · · ⊕ xn ⊕ c, where c ∈ GF (2) is constant.

Theorem 16. Let F = (f1, . . . , fm) be an n × m S-box with an extended im-
munity order t. Then (i) t = n if and only if F is constant and (ii) t = n − 1
if and only if fj(x) = x1 ⊕ · · · ⊕ xn ⊕ cj or cj, where cj ∈ GF (2) is constant,
j = 1, . . . ,m, and there exists a value j = j0 such that fj0 = x1 ⊕ · · · ⊕ xn⊕ cj0 .
(iii) For both t = n and t = n − 1, the upper bound t ≤ n − log2 #F (GF (2)n)
holds with equality.

According to Theorem 16, the extended immunity of non-constant n×m S-boxes
can be higher than classical resiliency. However, except for t ≤ n−m, we do not
know any other upper bound on the extended resiliency t of (n,m, t)-extended
resilient S-boxes. This is an interesting problem to be studied in the future.

10 Conclusions and Future Work

In this paper, we provided different mathematical characterisations of the ex-
tended immunity and its special case - the extended resiliency. A characterisation
of the extended resiliency (immunity) in terms of the existence of unconditional
(conditional) equations is also provided. Relations between the extended im-
munity, extended resiliency and classical resiliency are examined. Constructions
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showing that the extended resiliency does not restrict the algebraic degree if the
number of inputs is sufficiently large are given too. More efficient constructions
and the nonlinearity of extended resilient (immune) S-boxes will be studied in
future work. It is also interesting to derive other, possibly sharper bounds on
the extended resiliency and extended immunity. Other criteria related to alge-
braic attacks, such as the minimum degree of algebraic equations induced from
S-boxes, in the conditional or unconditional scenarios, can also be taken into
consideration.
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15. J. Dj. Golić. Vectorial Boolean functions and induced algebraic equations.
(http://eprint.iacr.org/2004/225/), 2004.

16. K. C. Gupta and P. Sarkar. Improved construction of nonlinear resilient s-boxes.
In Advances in Cryptology - ASIACRYPT ’02, volume 2501 of Lecture Notes in
Computer Science, pages 466–483. Springer-Verlag, Berlin, Heidelberg, New York,
2002.

17. M. Hall, Jr. Combinatorial Theory. Ginn-Blaisdell, Waltham, 1967.

18. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
Boolean functions. In Advances in Cryptology - EUROCRYPT ’04, volume 3027
of Lecture Notes in Computer Science, pages 474–491. Springer-Verlag, Berlin,
Heidelberg, New York, 2004.

19. M. O’Nan. Linear Algebra. Harcourt Brace Jovanovich, New York, 1976.

20. E. Pasalic and S. Maitra. Further constructions of resilient Boolean functions with
very high nonlinearity. IEEE Transactions on Information Theory, 48(7):1825–
1834, 2002.

21. P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean
functions. In Advances in Cryptology - CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 515–532. Springer-Verlag, Berlin, Heidelberg,
New York, 2000.

22. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, 30(5):776–779,
1984.

23. D. R. Stinson. Resilient functions and large sets of orthogonal arrays. Congressus
Numerantium, 92:105–110, 1993.

24. X. M. Zhang and Y. Zheng. Cryptographically resilient functions. IEEE Transac-
tions on Information Theory, 43(5):1740–1747, 1997.

Appendix: Proofs of Mathematical Results

Proof of Lemma 1. From the structure of DF , the ith row vector li of DF is
the sequence of linear function ψ(y) = 〈F (αi), y〉. On the other hand, the jthe
column of Hm is �Tj - the sequence of a linear function ψj(y) = 〈γj , y〉. Note
that the sequences of different linear functions are orthogonal. Thus, li and �j
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will be orthogonal if F (αi) �= γj , while li and �j will be identical if F (αi) = γj .
According to the definition of CF , this proves the lemma. ��

Proof of Lemma 2. Due to Lemma 1, we have HmDT
FDFHm = 22mCT

F CF .
Due to the definition of CF , each row of CF has precisely one nonzero entry.
Thus any two columns of CF are orthogonal. On the other hand, the number
of ones in the jth column is equal to the number of times that F takes γj .
Thus CT

F CF = diag(λ0, λ1, . . . , λ2m−1). Summarising the above, we have proved
HmDT

FDFHm = 22mdiag(λ0, λ1, . . . , λ2m−1). Since Hm is a 2m× 2m Hadamard
matrix, it follows that DT

FDF = Hmdiag(λ0, λ1, . . . , λ2m−1)Hm. ��

Proof of Corollary 1. Since Hm is a 2m × 2m Hadamard matrix, due to
Lemma 2, we have DT

FDFHm = 2mHmdiag(λ0, λ1, . . . , λ2m−1) or, equivalently,
DT

FDF �
T
j = 2mλj�

T
j , j = 0, 1, . . . , 2m − 1. ��

Proof of Lemma 3. According to Corollary 1, (i) and (ii) are equivalent.
According to the well known fact from linear algebra, (ii) holds if and only if the
rank of DT

FDF is 2m. Further, DT
FDF and DF have the same rank. This proves

the equivalence of (ii) and (iii). ��

Proof of Lemma 4. Assume that (i) holds. Consequently, P (F (GF (2)n))=
P (GF (2)m)= GF (2)k. This proves (i) =⇒ (ii). Assume that (ii) holds. Clearly,
any non-constant function h on GF (2)m is a surjective m× 1 S-box. Due to (ii),
h(F ) is a surjective n× 1 S-box and then non-constant. By virtue of Definition
2, we thus proved (ii) =⇒ (iii). Assume that (iii) holds. We now prove (i) by
contradiction. Assume that F does not take a value β ∈ GF (2)m. Define a
non-constant function h on GF (2)m as h(y) = 1 if and only if y = β. Clearly,
h(F (x)) is the constant zero function. This contradicts (iii), so that (i) is true.
This proves (iii) =⇒ (i). ��

Proof of Proposition 2. Fix a t-subset T of {1, . . . , n}. The 2t sets S(n, T, α),
α ∈ GF (2)t, are disjoint and partition GF (2)n. When x runs once through
S(n, T, α) for any fixed α ∈ GF (2)t, F (x) runs at least once through each vector
in GF (2)m. Accordingly, F (x) runs through each vector in GF (2)m at least 2t

times when x runs once through GF (2)n. ��

Proof of Theorem 1. Let a column vector ζ be the sequence of a Boolean func-
tion g on GF (2)n. It is easy to verify that diag(b0, b1, . . . , b2n−1)ζ is the sequence
of the restriction g(x1, . . . , xn)|xj1=a1,...,xjt=at

. For this reason, the matrix, from
Notation 1, corresponding to the restriction F (x1, . . . , xn)|xj1=a1,...,xjt=at

is iden-
tical with diag(b0, b1, . . . , b2n−1)DF . The theorem then follows from Lemma 3.

��
Proof of Theorem 3. We only need to prove the theorem for r = t be-
cause a function g on GF (2)r with 1 ≤ r < t can be regarded as a function
on GF (2)t that does not depend on some t − r variables. Assume that F is
(n,m, t)-extended resilient. For any fixed t-subset T = {j1, . . . , jt} of {1, . . . , n}
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and any given nonzero Boolean function g on GF (2)t, there exists a vector
α ∈ GF (2)t satisfying g(α) = 1. Then {g(xj1 , . . . , xjt

)F (x)|x ∈ S(n, T, α)}
=F (S(n, T, α)). Since F is (n,m, t)-extended resilient, F (S(n, T, α)) = GF (2)m.
Thus g(xj1 , . . . , xjt

)F (x) is surjective. Conversely, assume that F satisfies the
property from the theorem. We now prove that F is (n,m, t)-extended resilient.
For a given t-subset T = {j1, . . . , jt} of {1, . . . , n} and any given α = (a1, . . . , at)
∈ GF (2)t, we define a nonzero Boolean function g on GF (2)t such that g(y) = 1
if and only if y = α. Therefore, {g(xj1 , . . . , xjt

)F (x)|x ∈ GF (2)n} ={g(xj1 ,
. . . , xjt

)F (x)|x ∈ S(n, T, α)}= F (S(n, T, α)). Due to the assumption,
{g(xj1 , . . . , xjt

)F (x)|x ∈ GF (2)n} = GF (2)m. Hence F (S(n, T, α)) = GF (2)m.
Since both T with #T = t and α ∈ GF (2)t are arbitrary, we have proved that
F is (n,m, t)-extended resilient. ��

Proof of Theorem 4. By Definition 3, it is easy to see that (i) =⇒ (ii). Due
to Proposition 2, (ii) =⇒ (iii). Assume that (iii) holds. We let t0 = t. Then it
follows that F is (n,m, t)-extended resilient. This proves (iii) =⇒ (i). ��

Proof of Theorem 7. Assume that (i) holds. For any subset S(n, T, α) of
GF (2)n with #T = t, since F is (n, k, t)-extended immune, P (F (S(n, T, α)))
= P (F (GF (2)n)). Thus P (F (x)) is (n, k, t)-extended immune. We have thus
proved (i) =⇒ (ii). Assume now that (ii) holds. Let h be a function on GF (2)m

such that h(F ) is non-constant, i.e., #h(F (GF (2)n)) = 2. As, due to (ii), h(F ) is
(n, 1, t)-extended immune, for any subset S(n, T, α) of GF (2)n with #T = t and
α ∈ GF (2)t, we have #h(F (S(n, T, α))=#h(F (GF (2)n)) = 2. This means that
h(G) is non-constant, where G is defined in the Theorem. We have thus proved
that (ii) =⇒ (iii). Finally, assume that (iii) holds. We prove (i) by contradiction.
Assume that (i) does not hold. Then there exists a subset S(n, T, α) of GF (2)n

with #T = t and α ∈ GF (2)t such that F (S(n, T, α)) �= F (GF (2)n). This
implies that F is non-constant. Let β ∈ F (GF (2)n)\ F (S(n, T, α)). We choose
a non-constant function h on GF (2)m such that h(y) = 1 if and only if y = β.
Since F takes value β and F is non-constant, from the definition of h, it follows
that h(F ) takes both values 1 and 0. However, since β �∈ F (S(n, T, α)), h(G) is
the zero function, where G is defined in the Theorem. This contradicts (iii), so
that (i) is true. Thus we have proved (iii) =⇒ (i). ��

Proof of Lemma 8. For a fixed t-subset T and any given value of β ∈
F (GF (2)n), due to (4), there exists a non-constant algebraic equation over x′

induced from F (x) = β if and only if #W (F, T, β) < 2t. Consequently, there
is no non-constant algebraic equation over x′ induced from F (x) = β if and
only if #W (F, T, β) = 2t, or equivalently, for each x′ ∈ GF (2)t, there exists
x′′ ∈ GF (2)n−t such that F (x) = β. Since this is true for an arbitrary β ∈
F (GF (2)n), it then follows that there is no non-constant algebraic equation over
x′ induced from F (x) = β for any β ∈ F (GF (2)n) if and only if F (S(n, T, x′)) =
F (GF (2)n), for every x′ ∈ GF (2)t. ��

Proof of Theorem 10. As a t-subset T is arbitrary, the theorem directly
follows from Lemma 8 and Definition 6. ��



226 J. Pieprzyk, X.-M. Zhang, and J.Dj. Golić

Proof of Lemma 9. For a fixed t-subset T , due to (2), there is no non-
constant algebraic equation over x′ and y induced from F (x) = y if and only if
#W (F, T ) = 2t+m, or equivalently, for each x′ ∈ GF (2)t, #F (S(n, T, x′)) = 2m,
that is, F (S(n, T, x′)) = GF (2)m, for every x′ ∈ GF (2)t. ��

Proof of Theorem 11. As a t-subset T is arbitrary, the theorem directly
follows from Lemma 9 and Definition 3. ��

Proof of Proposition 5. Let F be an affine (n,m, t)-extended resilient S-box.
Let T = {j1, . . . , jt} be a subset of {1, . . . , n} and α = (a1, . . . , at) ∈ GF (2)t. Due
to Theorem 2, all the coordinate functions of F (x)|xj1=a1,...,xjt=at

are function-
ally independent and then also linearly independent. Since F (x)|xj1=a1,...,xjt=at

is affine, due to linear algebra, F (x)|xj1=a1,...,xjt=at
runs through each vector in

GF (2)m exactly 2n−m−t times while x runs through S(n, T, α) once. This proves
that F is (n,m, t)-classically resilient. ��

Proof of Theorem 12. Since F is affine, there exists a vector β ∈ GF (2)m such
that F (x)⊕β is linear. By linear algebra, #F (GF (2)n) = 2k for an integer k and
F (GF (2)n)⊕β is a k-dimensional subspace U of GF (2)m. Therefore, there exists
an m× k matrix B over GF (2) such that {γB|γ ∈ U} is identical with GF (2)k.
Set P (x) = (F (x) ⊕ β)B. According to Theorem 7, P is an (n, k, t)-extended
resilient S-box. On the other hand, P (GF (2)n) = {γB|γ ∈ U} = GF (2)k. Thus
P is a linear (n, k, t)-extended resilient S-box. According to Proposition 5, P is
an (n, k, t)-classically resilient S-box. ��

Proof of Theorem 13. Clearly, the condition #Q(GF (2)n) ≥ 2k guarantees
the existence of a mapping from Q(GF (2)n) onto GF (2)k. Accordingly, if P is
such a mapping, then P (Q(GF (2)n))= GF (2)k. For any t-subset T of {1, . . . , n}
and any α ∈ GF (2)t, since Q is (n,m, t)-extended immune, Q(S(n, T, α)) =
Q(GF (2)n). As P is a mapping from Q(GF (2)n) onto GF (2)k, P (Q(S(n, T, α)))
= P (Q(GF (2)n))= GF (2)k. ��

Proof of Lemma 10. We prove the lemma by contradiction. Assume for
contradiction that there exists an n × m S-box F = (f1, . . . , fm) with m ≥ 2
such that deg(F ) = n. Then we have deg(f1) = deg(f2) = n and hence both f1
and f2 contain the product term x1 · · ·xn. This term cancels out in f1 ⊕ f2 and
therefore deg(f1 ⊕ f2) < n. Further, by definition, this implies that deg(F ) < n,
so that we have a contradiction. ��

Proof of Lemma 11. The first part is straightforward to verify. Secondly, if
deg(f) < n − 1, then the term (x1 · · ·xn)/xj remains in the algebraic normal
form of f ′ and hence deg(f ′) = n− 1. ��

Proof of Theorem 14. Due to Lemma 11, each f ′
j contains exactly one term

of degree n − 1, i.e., (x1 · · ·xn)/xj . Since m ≤ n and {(x1 · · ·xn)/xj | 1 ≤ j ≤
m} are linearly independent Boolean functions, any nonzero linear combination
of f ′

1, . . . , f
′
m must contain a nonzero linear combination of (x1 · · ·xn)/xj , j
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= 1, . . . ,m, that cannot be eliminated. This implies that deg(F ′) = n−1. For any
fixed subset T0 = {j1, . . . , jt0} of {1, . . . , n} and any fixed vector α0 ∈ GF (2)t0 ,
due to Theorem 4, F (x) runs through each vector in GF (2)m at least 2t−t0 times
while x runs through S(n, T0, α0) once. According to Lemma 11, F ′ is obtained
from F by changing exactly m+1 of its values, F (βj), j = 1, . . . ,m, and F (β∗).
Since t−t0 = *log2(m+1)++1, we have t−t0 > log2(m+1). Thus 2t−t0−(m+1) >
0 and hence F ′(x) runs through each vector in GF (2)m at least once while x runs
through S(n, T0, α0) once, or in other words, F ′(S(n, T0, α0)) = GF (2)m. ��

Proof of Theorem 15. Let P be a permutation on GF (2)m and let r ≥ 1. Let
F (x) = P (z1) ⊕ · · · ⊕ P (zr), where z1, . . . , zr ∈ GF (2)m and x = (z1, . . . , zr) ∈
GF (2)rm. We first prove that F is (rm,m, r−1)-extended resilient with deg(F ) ≤
m. We note that F is a surjective rm×m S-box. Rewrite x as x = (x1, . . . , xrm).
Choose any subset T = {j1, . . . , jr−1} of {1, . . . , rm} and any α ∈ GF (2)r−1.
Then there must exist an index i, 1 ≤ i ≤ r, such that the sets of variables in zi

and (xj1 , . . . , xjr−1) are disjoint. Since P is a permutation on GF (2)m, then we
have GF (2)m ⊇ F (S(rm, T, α)) ⊇ P (GF (2)m)= GF (2)m. This proves that F is
(rm,m, r − 1)-extended resilient. Due to the construction, the algebraic degree
of F cannot exceed m.

In particular, we choose r satisfying r − 1 ≥ t + *log2(m + 1)+ + 1. Let F ′

be an rm × m S-box obtained from F as in Theorem 14. Then according to
Theorem 14, deg(F ′) = rm − 1 and F ′ is (rm,m, t0)-extended resilient with
t0 = (r − 1) − *log2(m + 1)+ − 1 ≥ t. By virtue of Lemma 6, F ′ is then also
(rm,m, t)-extended resilient. ��

Proof of Lemma 12. If f is constant, then t = n by the definition of extended
immunity. If t = n, then the upper bound t ≤ n− log2 #f(GF (2)n) implies that
#f(GF (2)n) = 1, which means that f is constant. This proves (i).

As for (ii), to prove the sufficiency, note that the restriction of f to any set
S(n, Ti, α), where Ti = {1, . . . , n} \ {i} and α ∈ GF (2)n−1, is a non-constant
affine function of the remaining variable xi, so that f(S(n, Ti, α)) = GF (2). This
means that t ≥ n− 1. However, as f is non-constant, (i) implies that t = n− 1.

To prove the necessity in (ii), assume that t = n − 1. Then, firstly, from (i)
it follows that f(GF (2)n) = GF (2). For any fixed i, 1 ≤ i ≤ n, f can be ex-
pressed as f(x) = xig(x1, . . . , xi−1, xi+1, . . . , xn) ⊕ h(x1, . . . , xi−1, xi+1, . . . , xn)
where both g and h are Boolean functions on GF (2)n−1. We next prove that
g is the constant one by contradiction. Assume that there exists some vec-
totr α ∈ GF (2)n−1 such that g(α) = 0. Since h does not depend on xi, we
have #f(S(n, Ti, α)) = 1, where Ti is as above. This contradicts the fact that
f(S(n, Ti, α)) = f(GF (2)n) = GF (2) and hence proves that g is the constant
one. Thus f(x) = xi ⊕ h(x1, . . . , xi−1, xi+1, . . . , xn), which means that the al-
gebraic normal form of f contains the linear term xi and xi appears as a lin-
ear term only. Since this holds for each i ∈ {1, . . . , n}, f can be expressed as
f(x)=x1 ⊕ · · · ⊕ xn ⊕c, where c ∈ GF (2) is constant. ��
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Proof of Theorem 16. The claim (i) is proved in the same way as for m = 1
in Lemma 12.

As for (ii), to prove the sufficiency, assume that F has the form specified. Since fj

is either constant or identical to l or l⊕1, where l(x) = x1⊕· · ·⊕xn, and fj0 is not
constant, it follows that, for each x ∈ GF (2)n, the value of fj0(x) uniquely deter-
mines the values of the remaining functions fj(x). Therefore, #F (GF (2)n) = 2.
By the same argument, we also obtain that #F (S(n, T, α)) = 2, for any (n− 1)-
subset T of {1, . . . , n}, because the restriction of fj0 to S(n, T, α) is a non-
constant affine function of xi. Consequently, F (S(n, T, α)) = F (GF (2)n) and
#F (GF (2)n) = 2. Hence, in view of (i), we get t = n− 1.

To prove the necessity in (ii), assume that t = n−1. In view of (i), this means
that F is a non-constant (n,m, n − 1)-extended immune function. Corollary 4
then implies that each fj is (n, 1, n− 1)-extended immune, i.e., has an extended
immunity order n − 1 or n. According to Lemma 12, each fj has the form
fj = x1 ⊕ · · · ⊕ xn ⊕ cj or cj , where cj ∈ GF (2) is constant. Since F is non-
constant, there must exist a value j = j0 such that fj0 is non-constant.

Finally, as for (iii), (i) and (ii) imply that for t = n and t = n − 1, we have
#F (GF (2)n) = 1 and #F (GF (2)n) = 2, respectively, so that the upper bound
holds with equality in both cases. ��
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Abstract. FOX is a family of block ciphers presented recently, which is
based upon some results of provable security and has high performances
on various platforms. In this paper, we construct some distinguishers be-
tween 3-round FOX and a random permutation of the blocks space. By
using integral attack and collision-searching techniques, the distinguish-
ers are used to attack 4, 5, 6 and 7-round FOX64, 4 and 5-round FOX128.
The attack is more efficient than previous integral attacks on FOX. The
complexity of improved integral attack is 277.6 on 4-round FOX128, 2205.6

against 5-round FOX128 respectively. For FOX64, the complexity of im-
proved integral attack is 245.4 on 4-round FOX64, 2109.4 against 5-round
FOX64, 2173.4 against 6-round FOX64, 2237.4 against 7-round FOX64 re-
spectively. Therefore, 4-round FOX64/64, 5-round FOX64/128, 6-round
FOX64/192, 7-round FOX64/256 and 5-round FOX128/256 are not im-
mune to the attack in this paper.

1 Introduction

FOX [9] is a new family of block ciphers, which is designed upon the request of
the MediaCrypt AG company. The high level of FOX adopts a modified struc-
ture of Lai-Massey Scheme [14], which has been proven to have good pseu-
dorandomness properties in the Luby-Rackoff paradigm [15] and decorrelation
inheritance properties proposed by Vaudenay [19]. The round function of FOX
uses SPS (Substitution-Permutation-Substitution) structure with three layers
of subkey addition, SPS structure has already been proven to have power-
ful ability to resist differential and linear cryptanalysis. The design rationale
of diffusion primitives in FOX is presented in [10]. The key schedule of FOX
is very complex compared with other existing block ciphers, each subkey of
FOX is related to the seed key and it’s very difficult to acquire information
about seed key or other subkeys from some certain subkeys. The complex key
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schedule, high-level structure with provable security and powerful round func-
tion make FOX appear to be a strong block cipher. Since FOX is a new ci-
pher published last year, all we know about its security analysis are limited to
the designer’s results and the integral cryptanalysis presented in [17]. The se-
curity of FOX against differential and linear cryptanalysis is easy to estimate
for the good property of its S-box, SPS transformation and high level struc-
tures. The designers also analyze the security of FOX against differential-linear
cryptanalysis [1,16], boomerang [20] and rectangle attacks [2], truncated and
higher-order differentials [12], impossible differentials [3], partitioning cryptanal-
ysis [7] and interpolation attack [11], algebraic attack [6,18], slide attack [4,5]
and related-cipher attacks [21]. Integral attack [13] is one of the most effective
attack method against AES, which had been used to analyze the security of
other ciphers [8,23]. It’s pointed in [9] that integral attack has a complexity
of 272 encryptions against 4-round FOX64, 2136 against 5-round FOX64, 2200

against 6-round FOX64. The authors also claimed that integral attack has a
complexity of 2136 encryptions against 4-round FOX128, and 5-round FOX128
is immune to integral attack. In this paper, we combine collision technique [22]
and integral attack to analyze the security of FOX. The improved integral attack
on FOX is more efficient than known integral attacks. The improved integral
attack has a complexity of 277.6 encryptions against 4-round FOX128, 2205.6

against 5-round FOX128 respectively. For FOX64, the improved integral attack
has a complexity of 245.4 encryptions against 4-round FOX64, 2109.4 against
5-round FOX64, 2173.4 against 6-round FOX64, 2237.4 against 7-round FOX64
respectively.

This paper is organized as follows: Section 2 briefly introduces the structure
of FOX128. 3-round distinguishers are presented in Section 3. In Section 4, we
show how to use the 3-round distinguishers to attack 4 and 5 rounds of FOX128.
In Section 5, we briefly introduce the attacks on 4, 5, 6 and 7 rounds of FOX64.
and Section 6 concludes the paper.

2 Description of FOX

FOX has two versions, both have a variable number of rounds which depends
on keysize: the first one FOX64/k/r has a 64-bit blocksize with a variable key
length which is a multiple of 8 and up to 256 bits. The second one FOX128/k/r
uses a 128-bit blocksize with the same possible key lengths. For FOX64 with
k=128 and FOX128 with k=256, the designers advise that round number are
both 16. Due to space limitation, we only introduce FOX128 briefly. Details are
shown in [9].

2.1 Round Function f64

The round function f64 consists of three main parts: a substitution part
denoted sigma8, a diffusion part denoted MU8, and a round key addition
part (see Fig.1). Formally, the i-th round function f64i takes a 64-bit input
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Fig. 1. The i-th round function
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Fig. 2. The i-th round transformation

X i
(64) = X i

0(8)||X i
1(8)|| · · · ||X i

7(8), a 128-bit round key RKi
(128) = RK0i

(64)||RK1i
(64)

and returns

Y i
(64) = Y i

0(8)|| · · · ||Y i
7(8) = sigma8(MU8(sigma8(X i

(64)⊕RK0i
(64)))

⊕RK1i
(64))⊕RK0i

(64).

The mapping sigma8 consists of 8 parallel computations of a non-linear bi-
jective mapping (see Ref.[9]). MU8 considers an input (Z0(8)|| · · · ||Z7(8)) as a
vector (Z0(8)|| · · · ||Z7(8))T over GF (28) and multiply it with a matrix to obtain
an output vector of the same size. The matrix is the following:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 a
1 a b c d e f 1
a b c d e f 1 1
b c d e f 1 a 1
c d e f 1 a b 1
d e f 1 a b c 1
e f 1 a b c d 1
f 1 a b c d e 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where a = α + 1, b = α7 + α, c = α, d = α2, e = α7 + α6 + α5 + α4 + α3 + α2

and f = α6 + α5 + α4 + α3 + α2 + α. α is a root of the irreducible polynomial
m(x) = x8 + x7 + x6 + x5 + x4 + x3 + 1.

2.2 Encryption of FOX128

FOX128 is the 15-times iteration of round transformation elmor128, followed
by the application of last round transformation called elmid128. elmor128
(illustrated in Fig.2) is built as an Extended Lai-Massey scheme combined with
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two transformations or. The i-th round transformation—elmor128 transforms
a 128-bit input LLi

(32)||LRi
(32)||RLi

(32)||RRi
(32) and a 128-bit round key RKi

(128)

in a 128-bit output LLi+1
(32)||LR

i+1
(32)||RL

i+1
(32)||RR

i+1
(32). Let LLi

(32)⊕LRi
(32)||RLi

(32)⊕
RRi

(32) = X i
(64) = X i

0(8)||X i
1(8)|| · · · ||X i

7(8)) and f64i(X i
(64), RK

i
(128)) = φL||φR.

Then,

LLi+1
(32)||LR

i+1
(32)||RL

i+1
(32)||RR

i+1
(32) = or(LLi

(32) ⊕ φL)||LRi
(32) ⊕ φL||or

(RLi
(32) ⊕ φR)||RRi

(32) ⊕ φR.

The elmid128 function is a slightly modified version of elmor128, namely
the two transformations or are replaced by two identity transformations. The
transformation or is a function taking a 32-bit input X(32) = X0(16)||X1(16)
and returning a 32-bit output Y(32) = Y0(16)||Y1(16) which is in fact a one-round
Feistel scheme with the identity function as round function; it is defined as
Y0(16)||Y1(16) = X1(16)||(X0(16) ⊕X1(16)). The encryption C128 by FOX128 of a
128-bit plaintext P128 is defined as:

C128 = elmid128(elmor128(. . . elmor128(P128, RK
1
(128)), . . . , RK

15
(128))RK

16
(128)).

where RK1
(128), . . . , RK

16
(128) are round subkeys produced by the key schedule al-

gorithm from the user key. In this paper, subkeys are assumed to be independent
of each other.

3 3-Round Distinguishers

Choose plaintexts P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32) as follows:

LL1
(32) = LR1

(32) = c||c||c||c, RL1
(32) = RR1

(32) = c||c||c||x.

where x take values in {0, 1}8, c is a constant in {0, 1}8. Thus, the input of
the first round function f641 is X1

(64) = 0||0 . . . ||0. Let f641(0||0 . . . ||0) =
(a0||a1 . . . a7), where ai(0 ≤ i ≤ 7) are entirely determined by round subkey
RK1

(128), so ai(0 ≤ i ≤ 7) are constants when the user key is fixed. Then the
output of the 1st round transformation can be represented as follows:

LL2
(32) = a2 ⊕ c||a3 ⊕ c||a0 ⊕ a2||a1 ⊕ a3,

LR2
(32) = a0 ⊕ c||a1 ⊕ c||a2 ⊕ c||a3 ⊕ c,

RL2
(32) = a6 ⊕ c||a7 ⊕ x||a4 ⊕ a6||a5 ⊕ a7 ⊕ x⊕ c,

RR2
(32) = a4 ⊕ c||a5 ⊕ c||a6 ⊕ c||a7 ⊕ x.

Therefore, we have the input of the 2nd round function f642 is X2
(64) = X2

0(8)

||X2
1(8) . . . ||X2

7(8), where each byte of the input can be expressed as:
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X2
0(8) = a0 ⊕ a2, X2

4(8) = a4 ⊕ a6,

X2
1(8) = a1 ⊕ a3, X2

5(8) = a5 ⊕ a7 ⊕ c⊕ x,

X2
2(8) = a0 ⊕ c, X2

6(8) = a4 ⊕ c,

X2
3(8) = a1 ⊕ c, X2

7(8) = a5 ⊕ c.
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Fig. 3. 3-Round Distinguishers of FOX128
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Let f642(X2
(64)) = (y0||y1 . . . y7), then the output of the 2nd round transforma-

tion can be represented as follows:

LL3
(32) = y2 ⊕ a0 ⊕ a2||y3 ⊕ a1 ⊕ a3||y0 ⊕ y2 ⊕ a0 ⊕ c||y1 ⊕ y3 ⊕ a1 ⊕ c,

LR3
(32) = y0 ⊕ a0 ⊕ c||y1 ⊕ a1 ⊕ c||y2 ⊕ a2 ⊕ c||y3 ⊕ a3 ⊕ c,

RL3
(32) = y6 ⊕ a4 ⊕ a6||y7 ⊕ a5 ⊕ a7 ⊕ c⊕ x||y4 ⊕ y6 ⊕ a4 ⊕ c||y5 ⊕ y7 ⊕ a5 ⊕ c,

RR3
(32) = y4 ⊕ a4 ⊕ c||y5 ⊕ a5 ⊕ c||y6 ⊕ a6 ⊕ c||y7 ⊕ a7 ⊕ x.

Thus, we have the input of the 3rd round function f643 is X3
(64) = X3

0(8)||X3
1(8) . . .

||X3
7(8), where each byte of the input can be expressed as:

X3
0(8) = y0 ⊕ y2 ⊕ a2 ⊕ c, X3

4(8) = y4 ⊕ y6 ⊕ a6 ⊕ c,

X3
1(8) = y1 ⊕ y3 ⊕ a3 ⊕ c, X3

5(8) = y5 ⊕ y7 ⊕ a7 ⊕ x,

X3
2(8) = y0 ⊕ a0 ⊕ a2, X3

6(8) = y4 ⊕ a4 ⊕ a6,

X3
3(8) = y1 ⊕ a1 ⊕ a3, X3

7(8) = y5 ⊕ x⊕ a5 ⊕ a7 ⊕ c.

By observing the high-level structure of FOX128, we get

or−1(LL4
(32))⊕ LR4

(32) = X3
0(8)||X3

1(8)||X3
2(8)||X3

3(8),

or−1(RL4
(32))⊕RR4

(32) = X3
4(8)||X3

5(8)||X3
6(8)||X3

7(8).

From the definition of or−1, we have

or−1(LL4
(32)) = LL4

0(8) ⊕ LL4
2(8)||LL4

1(8) ⊕ LL4
3(8)||LL4

0(8)||LL4
1(8),

or−1(RL4
(32)) = RL4

0(8) ⊕RL4
2(8)||RL4

1(8) ⊕RL4
3(8)||RL4

0(8)||RL4
1(8).

Thus, we have the following from the above equations.

LL4
0(8) ⊕ LL4

2(8) ⊕ LR4
0(8) = y0 ⊕ y2 ⊕ a2 ⊕ c,

LL4
1(8) ⊕ LL4

3(8) ⊕ LR4
1(8) = y1 ⊕ y3 ⊕ a3 ⊕ c,

LL4
0(8) ⊕ LR4

2(8) = y0 ⊕ a0 ⊕ a2,

LL4
1(8) ⊕ LR4

3(8) = y1 ⊕ a1 ⊕ a3,

RL4
0(8) ⊕RL4

2(8) ⊕RR4
0(8) = y4 ⊕ y6 ⊕ a6 ⊕ c,

RL4
1(8) ⊕RL4

3(8) ⊕RR4
1(8) = y5 ⊕ y7 ⊕ a7 ⊕ x,

RL4
0(8) ⊕RR4

2(8) = y4 ⊕ a4 ⊕ a6,

RL4
1(8) ⊕RR4

3(8) = y5 ⊕ x⊕ a5 ⊕ a7 ⊕ c.
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Further we have the following:

LL4
2(8) ⊕ LR4

0(8) ⊕ LR4
2(8) = y2 ⊕ a0 ⊕ c,

LL4
3(8) ⊕ LR4

1(8) ⊕ LR4
3(8) = y3 ⊕ a1 ⊕ c,

LL4
0(8) ⊕ LR4

2(8) = y0 ⊕ a0 ⊕ a2,

LL4
1(8) ⊕ LR4

3(8) = y1 ⊕ a1 ⊕ a3,

RL4
2(8) ⊕RR4

0(8) ⊕RR4
2(8) = y6 ⊕ a4 ⊕ c,

RL4
3(8) ⊕RR4

1(8) ⊕RR4
3(8) = y7 ⊕ a5 ⊕ c,

RL4
0(8) ⊕RR4

2(8) = y4 ⊕ a4 ⊕ a6,

Now we analyze the property of yi(0 ≤ i ≤ 7). Let y = s(x ⊕ a5 ⊕ a7 ⊕
c ⊕ RK02

5(8)), then yi = s(y ⊕ bi) ⊕ RK02
i(8), here bi(0 ≤ i ≤ 7) are entirely

determined by ai(0 ≤ i ≤ 7), c and RK2
(128), so bi(0 ≤ i ≤ 7) are constants when

the user key is fixed.
Since s is a permutation, y = s(x⊕a5⊕a7⊕c⊕RK02

5(8)) differs when x takes
different values and the user key is fixed. As a consequence, yi = s(y ⊕ bi) ⊕
RK02

i(8) will have different values when x takes different values and the user key
is fixed. Thus, from the above discussion we know that LL4

2(8)⊕LR4
0(8)⊕LR4

2(8),
LL4

3(8) ⊕LR4
1(8) ⊕LR4

3(8), LL
4
0(8) ⊕LR4

2(8), LL
4
1(8)⊕LR4

3(8), RL
4
2(8) ⊕RR4

0(8) ⊕
RR4

2(8), RL
4
3(8) ⊕RR4

1(8) ⊕RR4
3(8) and RL4

0(8) ⊕RR4
2(8) each will have different

values when x takes different values. Therefore, we get the following theorem.

Theorem 1. Let P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32) and P ∗
(128) = LL1∗

(32)

||LR1∗
(32)||RL1∗

(32)||RR1∗
(32) be two plaintexts of 3-round FOX128, C(128) = LL4

(32)

||LR4
(32)||RL4

(32)||RR4
(32) and C∗

(128) = LL4∗
(32)||LR4∗

(32)||RL4∗
(32)||RR4∗

(32) be the corre-
sponding ciphertexts. RRi

l(8)(0 � l � 3) denotes the (l + 1)th byte of RRi
(32). If

LL1
(32) = LR1

(32) = LL1∗
(32) = LR1∗

(32), RL1
(32) = RR1

(32), RL
1∗
(32) = RR1∗

(32), RR1
j(8) =

RR1∗
j(8)(j = 0, 1, 2), RR1

3(8) �= RR1∗
3(8), then C(128) and C∗

(128) satisfy the following
inequalities:

LL4
2(8) ⊕ LR4

0(8) ⊕ LR4
2(8) �= LL4∗

2(8) ⊕ LR4∗
0(8) ⊕ LR4∗

2(8) (1)

LL4
3(8) ⊕ LR4

1(8) ⊕ LR4
3(8) �= LL4∗

3(8) ⊕ LR4∗
1(8) ⊕ LR4∗

3(8) (2)

LL4
0(8) ⊕ LR4

2(8) �= LL4∗
0(8) ⊕ LR4∗

2(8) (3)

LL4
1(8) ⊕ LR4

3(8) �= LL4∗
1(8) ⊕ LR4∗

3(8) (4)

RL4
2(8) ⊕ RR4

0(8) ⊕ RR4
2(8) �= RL4∗

2(8) ⊕ RR4∗
0(8) ⊕ RR4∗

2(8) (5)

RL4
3(8) ⊕ RR4

1(8) ⊕ RR4
3(8) �= RL4∗

3(8) ⊕ RR4∗
1(8) ⊕ RR4∗

3(8) (6)

RL4
0(8) ⊕ RR4

2(8) �= RL4∗
0(8) ⊕ RR4∗

2(8) (7)

From the above discussion, we have RL4
1(8) ⊕ RR4

3(8) = y5 ⊕ x ⊕ a5 ⊕ a7 ⊕ c,
and y5 will have different values when x take different values. So we can get the
following corollary, which is similar to the integral distinguisher presented in [9]
and [17].
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Corollary 1. Let Pj(128) = LLj1
(32)||LRj1

(32)||RLj1
(32)||RRj1

(32)(0 ≤ j ≤ 255) be 256
plaintexts of 3-round FOX128, Cj(128) = LLj4

(32)||LRj4
(32)||RLj4

(32)||RRj4
(32) be the

corresponding ciphertexts. If LLj1
(32) = LRj1

(32), RLj1
(32) = RRj1

(32), RLjl(8)(l =
0, 1, 2) are constants, and RLj3(8) take all possible values between 0 and 255,
then Cj(128)(0 ≤ j ≤ 255) satisfy:

255⊕
j=0

(RLj4
1(8) ⊕ RRj4

3(8)) = 0 (8)

4 Attacks on Reduced-Round FOX128

4.1 Attacking 4-Round FOX128

This section explains the attack on 4-round FOX128 in detail. The last round
omit the or transformation. First we recover 72 bits subkeyRK04

(64) and RK14
0(8).

Choose plaintext P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32), and let C(128) = LL5
(32)||

LR5
(32)||RL5

(32)||RR5
(32) be the corresponding ciphertext. The input of the fourth

round function f644 is LL5
(32) ⊕ LR5

(32)||RL5
(32) ⊕ RR5

(32). We can calculate the
value of LL4

2(8) ⊕ LR4
2(8), because LL4

2(8) ⊕ LR4
2(8) = LL5

2(8) ⊕ LR5
2(8). If we

guess the value of LR4
0(8), then we can guess LL4

2(8)⊕LR4
2(8)⊕LR4

0(8). From the
structure of f644, it is known that the value of LR4

0(8) is entirely determined by
the input LL5

(32)⊕LR5
(32)||RL5

(32)⊕RR5
(32) and subkey RK04

(64), RK14
0(8). Thus

using the inequality (1) of Theorem 1, we construct the following algorithm to
recover RK04

(64) and RK14
0(8).

Algorithm 1
Step 1. Choose 166 plaintexts Pj(128) = LLj1

(32)||LRj1
(32)||RLj1

(32)||RRj1
(32)(0 ≤

j ≤ 165) as follows:

LLj1
(32) = (c||c||c||c),

LRj1
(32) = (c||c||c||c),

RLj1
(32) = (c||c||c||j),

RRj1
(32) = (c||c||c||j).

where c is a constant, 0 ≤ j ≤ 165. The corresponding ciphertexts are Cj(128) =
LLj5

(32)||LRj5
(32)||RLj5

(32)||RRj5
(32).

Step 2. For each possible value of RK04
(64)||RK14

0(8), first compute the first
output byte Y j4

0(8) of f644(LLj5
(32) ⊕ LRj5

(32)||RLj5
(32) ⊕ RRj5

(32)), and then
compute

-j = Y j4
0(8) ⊕ LLj5

2(8) ⊕ LRj5
2(8) ⊕ LRj5

0(8).

Check if there is a collision among 	j . If so, discard the value ofRK04
(64)||RK14

0(8).

Otherwise, output RK04
(64)||RK14

0(8).



Integral Cryptanalysis of Reduced FOX Block Cipher 237

Step 3. For the output values of RK04
(64)||RK14

0(8) in Step 2, choose some other
plaintexts, and repeat Step 2.

The probability of at least one collision occurs when we throw 166 balls into
256 buckets at random is larger than 1 − e−166(166−1)/2×28 ≥ 1 − 2−76. So the
probability of passing the test of Step 2 is less than 2−76. Because the right
subkey candidates must pass the test of Step 2, the number of subkey candidates
passing Step 2 is about 1 + (272 × 2−76) ≈ 1.06. Then, only two plaintexts
are needed in Step 3. The data complexity of this attack is about 168 chosen
plaintexts. And the main time complexity of Algorithm 1 is in Step 2, the time
of computing each -j is less than 1-round encryption, so the time complexity is
less than 272 × 168/4 = 42× 272 encryptions.

Next we recover RK14
1(8). The steps are very similar to Algorithm 1, ex-

cept RK04
(64) is known here. So the number of candidates is 28, only 64 chosen

plaintexts are needed (we can use the data chosen in Algorithm 1). Using the
inequality (2) in Theorem 1, we can recover RK14

1(8) by computing

-j = Y j4
1(8) ⊕ LLj5

3(8) ⊕ LRj5
3(8) ⊕ LRj5

1(8).

and the attack requires 28 × 64/4 = 212 encryptions.
Knowing RK04

(64) and RK14
0(8), using inequality (3) in Theorem 1 and the

plaintexts chosen in Algorithm 1, we can recover RK14
2(8) by computing

-j = Y j4
0(8) ⊕ Y j4

2(8) ⊕ LLj5
0(8) ⊕ LRj5

2(8)

and the attack requires 212 encryptions.
Similarly, knowing RK04

(64) and RK14
1(8), using inequality (4) in Theorem 1

and the plaintexts chosen in Algorithm 1, we can recover RK14
3(8) by computing

-j = Y j4
1(8) ⊕ Y j4

3(8) ⊕ LLj5
1(8) ⊕ LRj5

3(8)

and the attack requires 212 encryptions.
Furthermore, using inequality (5) in Theorem 1 and the plaintexts chosen in

Algorithm 1, we can recover RK14
4(8) by computing

-j = Y j4
4(8) ⊕RLj5

2(8) ⊕RRj5
2(8) ⊕RRj5

0(8)

and the attack requires 212 encryptions.
And using inequality (6) in Theorem 1 and the plaintexts chosen in

Algorithm 1, we can recover RK14
5(8) by computing

-j = Y j4
5(8) ⊕RLj5

3(8) ⊕RRj5
3(8) ⊕RRj5

1(8)

and the attack requires 212 encryptions.
Knowing RK04

(64) and RK14
4(8), using inequality(7) in Theorem 1 and the

plaintexts chosen in Algorithm 1, we can recover RK14
6(8) by computing

-j = Y j4
4(8) ⊕RLj5

0(8) ⊕ Y j5
6(8) ⊕RRj5

2(8)

and the attack requires 212 encryptions.
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We can’t use similar approach to recover RK14
7(8), fortunately integral tech-

nique can be used here. Knowing RK04
(64)) and RK14

5(8), using equation (8) of
Corollary 1, we can construct the following algorithm to recover RK14

7(8).

Algorithm 2
Step 1. Choose 256 plaintexts Pj(128) = LLj1

(32)||LRj1
(32)||RLj1

(32)||RRj1
(32)(0 ≤

j ≤ 255) as follows:

LLj1
(32) = (c||c||c||c),

LRj1
(32) = (c||c||c||c),

RLj1
(32) = (c||c||c||j),

RRj1
(32) = (c||c||c||j).

where c is a constant, 0 ≤ j ≤ 255. The corresponding ciphertexts are Cj(128) =
LLj5

(32)||LRj5
(32)||RLj5

(32)||RRj5
(32).

Step 2. For each possible value of RK14
7(8), first compute Y j4

7(8), and then
compute

Δ =
255⊕
j=0

(RL5
1(8) ⊕RR5

3(8) ⊕ Y j4
5(8) ⊕ Y j4

7(8)).

Check if Δ = 0. If not, discard the value of RK14
7(8). Otherwise, output RK14

7(8).

Step 3. For the output values of RK14
7(8) in Step 2, choose another group of

plaintexts, and repeat Step 2 until the key candidate is unique.
Wrong values will pass Step 2 successfully with probability 2−8. Thus Algo-

rithm 2 requires about 29 chosen plaintexts, and the time complexity is less than
29 × 28/4 = 215 encryptions. The data in Algorithm 1 can be repeatedly used
here, so the data complexity for recovering RK4

(128)) is about 29, and the time
complexity is about 42× 272 + 6× 212 + 215.

Now we have recovered RK4
(128) using 29 chosen plaintexts and 42 × 272 +

6× 212 + 215 encryptions. By decrypting the 4th round, we can recover RK3
(128),

the time complexity is less than 273 + 6 × 212 + 215. Similarly, we can recover
RK2

(128)) and RK1
(128)), the time complexity are both less than 273+6×212+215.

Therefore, the attack on the 4-round FOX128 requires 29 chosen plaintexts and
about 277.6 encryptions.

4.2 Attacking 5-Round FOX128

We could extend the previous attack on 5-round FOX128, using a key exhaustive
search on the fifth subkey RK5

(128). The attack requires about 2205.6 encryptions,
which is less expensive than a key exhaustive search.
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5 Attacks on Reduced-Round FOX64

Similar to FOX128, we can get the following theorem for FOX64.

Theorem 2. Let P(64) = L1
(32)||R1

(32) and P ∗
(64) = L1∗

(32)||R1∗
(32) be two plaintexts of

3-round FOX64, C(64) = L4
(32)||R4

(32) and C∗
(64) = L4∗

(32)||R4∗
(32) be the corresponding

ciphertexts, Ll(8) denote the (l + 1)th byte of L(32). If L1
(32) = R1

(32), L
1∗
(32) = R1∗

(32),
and L1

l8) = L1∗
l(8)(l = 0, 1, 2), L1

3(8) �= L1∗
3(8), then C(64) and C∗

(64) satisfy:

L4
2(8) ⊕ R4

2(8) ⊕ R4
0(8) �= L4∗

2(8) ⊕ R4∗
2(8) ⊕ R4∗

0(8), (9)

L4
3(8) ⊕ R4

3(8) ⊕ R4
1(8) �= L4∗

3(8) ⊕ R4∗
3(8) ⊕ R4∗

1(8) (10)

L4
0(8) ⊕ R4

2(8) �= L4∗
0(8) ⊕ R4∗

2(8) (11)

Corollary 2. Let Pj(64) = Lj1
(32)||Rj1

(32)(0 ≤ j ≤ 255) be 256 plaintexts of 3-round
FOX64, Cj(64) = Lj4

(32)||Rj4
(32) be the corresponding ciphertexts. If Lj1

(32) = Rj1
(32),

Ljl(8)(l = 0, 1, 2) are constants, and Lj3(8) take all possible values between 0 and
255, then Cj(64)(0 ≤ j ≤ 255) satisfy:

255⊕
j=0

(Lj4
1(8) ⊕ Rj4

3(8)) = 0 (12)

Using Theorem 2 and Corollary 2, we can construct algorithms similar to those
in Section 4, and get four subkeys of 4-round FOX64. The attack requires 29

chosen plaintexts, and the time complexity is about 245.4 4-round FOX64 en-
cryptions.

Similarly, we can get subkeys of 5 (6,7)-round FOX64 just through guessing
the overall key bits behind the fourth round, then using the attack procedure
for 4-round FOX64. The time complexity on 5, 6 and 7-round FOX64 is about
2109.4, 2173.4 and 2237.4 respectively.

6 Concluding Remarks

Since FOX is a new cipher published last year, all we know about its secu-
rity analysis are limited to [9] and [17]. In this paper, we combine collision
technique and integral attack to analyze the security of FOX. The improved
integral attack on FOX is more efficient than known integral attacks. The com-
plexity of improved integral attack is 277.6 on 4-round FOX128, 2205.6 against
5-round FOX128, respectively. For FOX64, the complexity of improved integral
attack is about 245.4 on 4-round FOX64, 2109.4 against 5-round FOX64, 2173.4

against 6-round FOX64, 2237.4 against 7-round FOX64, respectively. The re-
sults show that 4-round FOX64/64, 5-round FOX64/128, 6-round FOX64/192,
7-round FOX64/256 and 5-round FOX128/256 are not immune to improved in-
tegral attack presented in this paper.

In Section 4 of [17], the author claim if we test all the 232 possible values
for X0

0(32), the probability to distinguish the four rounds FOX64 from a random
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permutation is 1. This result is not correct, so the 4-round distinguisher pre-
sented in [17] is not as effective as that claimed. Hence, we only compare the
performance of known integral attacks on FOX in [9] and that of this paper in
the following table.

Table 1. The summary of known integral attacks on FOX

Name round Time Notes

FOX64 4 272 Ref.[9]

FOX64 4 245.4 this paper

FOX64 5 2136 Ref.[9]

FOX64 5 2109.4 this paper

FOX64 6 2200 Ref.[9]

FOX64 6 2173.4 this paper

FOX64 7 2237.4 this paper

FOX128 4 2136 Ref.[9]

FOX128 4 277.6 this paper

FOX128 5 2205.6 this paper
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Abstract. This paper describes a hybrid symmetric cipher that com-
bines a strongly-secure function, e.g., a pseudorandom function (PRF),
which is secure against any Chosen-Plaintext Attack, and a weak PRF,
which is only secure against any Known-Plaintext Attack. Although this
kind of composition is potentially faster than the modes of PRFs, it
has not been extensively studied. Our main contribution is in propos-
ing a new block cipher scheme that is suitable for hybrid composition.
We describe efficient hybrid constructions of pseudorandom permutation
and strong pseudorandom permutation for an arbitrarily large block size
using our new scheme.

1 Introduction

In 1988, Luby and Rackoff [13] began studying the secure composition of cryp-
tographic components. They showed that only a few iterations of a Feistel round
could be secure against any Chosen-Plaintext Attack (CPA) or Chosen-Ciphertext
Attack (CCA), if the underlying round functions were pseudorandom functions [8]
(PRFs), i.e., secure against any CPA. Following Luby and Rackoff’s work, many
researchers have studied the compositions of various cryptographic systems.

In this paper, we discuss hybrid1 symmetric encryptions combining a compo-
nent secure against any Known-Plaintext Attack (KPA), which is called a weak
PRF (WPRF), and a stronger component such as PRF. WPRFs were studied
by many researchers [1, 6, 23, 24] and widely accepted as one of the weak crypto-
graphic primitives. Since KPA is weaker attack than CPA, a WPRF is reasonably
assumed to be faster than a PRF. For example, it was pointed out [6] that the
WPRF based on the Decisional Diffie-Hellman (DDH) assumption could be more
efficient than the DDH-based PRF proposed by Naor and Reingold [22]. Con-
sider a mode that invokes a PRF. If almost all invocations of the PRF can be
securely substituted with those of a WPRF, then the resulting mode would be
much faster than the original mode based only on PRF. In practice, such hybrid
modes can be seen as modes of operation for multiple cryptographic components
that have different security-levels, such as a strongly secure block cipher and its
reduced-round version, or a (strong) block cipher and a (weak) stream cipher.

1 In this paper, “hybrid” means combining strong and weak primitives.

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 242–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Although the idea of using multiple components can be seen in previous studies,
for instance Bear and Lion [2], none of them used WPRFs as their components.

The basic idea is that the cascade of a PRF and a WPRF is PRF. This is
intuitively correct, since outputs of a PRF, which correspond to the WPRF’s
inputs, should be close to random in terms of computational indistinguishability.
We first prove that this idea actually holds true, and propose a hybrid construc-
tion of a PRF with large output (and small input) based on this idea. Such a
PRF can be used as a stream cipher accepting an initial vector (IV).

These results are also beneficial to hybrid block ciphers. We propose a new
scheme for block ciphers that slightly differs from Feistel. It provides a pseudo-
random permutation (PRP) that has double length (i.e., a 2n-bit block cipher
composed of n-bit block components) using one invocation of a PRP and a
WPRF, and universal hash function [32] (UH)-based mixing. As it might be
impossible to build a double length PRP using two WPRF invocations, our con-
struction is optimal (in terms of the number of n-bit PRP invocation). Moreover,
we show that such a hybrid composition is, in a sense, difficult with the original
Feistel. Double length PRP has been extensively studied and many schemes have
been proposed [13, 25, 27, 12, 19, 28]. However, to our knowledge, our scheme is
the first construction that does not need two invocations of a PRF (or PRP).

In addition, our scheme is useful for building a large block cipher. Using our
hybrid block cipher scheme combined with our hybrid large output PRF, we
build an mn-bit strong PRP (SPRP), which is secure against any combination
of CPA and Chosen-Ciphertext Attack (CCA). A large block SPRP has desirable
properties for storage encryption [35]. Our construction requires two invocations
of an n-bit SPRP, (m−2) invocations of an n-bit WPRF, and two Feistel rounds
with UHs, for all m > 2. Therefore, its throughput will be close to that of the
WPRF we intend to use, and the underlying n-bit SPRP’s throughput will not
be a problem with a large block size. For a comparison, NR mode [25], which is a
highly sophisticated mode to provide a large block SPRP, requires m invocations
of an n-bit SPRP and two mixing layers to provide a mn-bit block SPRP. These
examples illustrate that our hybrid block cipher construction is highly optimized
for both small and large block sizes.

All our security analyses are based on the standard security notions of sym-
metric cryptography introduced by Bellare et al. [3] and a natural extension of
this to deal with KPA, which is the same as the previous studies [1, 6, 22]. We
also use a framework that was proposed by Maurer [17] to perform a rigorous
security analysis.

2 Preliminaries

2.1 Random Functions and Their Composition

Definition 1. Let X and Y be finite sets. Random function (RF) F : X → Y
is a random variable distributed over all functions X to Y2. If F is distributed
2 If F has key K, uniformly distributed over K, then there is function f : K × X → Y

such that F(x) = f(K, x) and Pr[F(x) = y] = |{k ∈ K : f(k, x) = y}|/|K|.
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over all permutations on X , it is called a random permutation (RP) on X . A
uniform random function (URF) : {0, 1}n → {0, 1}m is an RF with uniform
distribution on all functions {0, 1}n to {0, 1}m and denoted by Rn,m. A uniform
random permutation (URP) on {0, 1}n is an RP with uniform distribution on
all n-bit permutations and denoted by Pn.

Note that, in this paper, the word “random” does not imply uniformity. It only
means it is probabilistic. We used bold symbols for RFs. When F and G are two
RFs that have the same input/output space, we say they are compatible.

For simplicity, most of our results deal with cases when n-bit block compo-
nents are used. We will use the following composition operators.

Definition 2. Let F : X → Y, and G : Y → Z. Let F ◦ G : X → Z such
that F ◦G(x) = G(F(x))3 , and let F � G : X → Y × Z such that F � G(x) =
(F(x),G(F(x))) for all x ∈ X .

2.2 Security Measures and Their Properties

We breifly describe our security measures in a standard framework introduced
by Bellare et al.[3]. Let F,G be two compatible RFs. Let D be an attacker that
can access the encryption oracle (EO). Here, EO has implemented H, which
is equivalent to either F or G. D determines whether H is F or G after a
predetermined number of queries and answers. The advantage of D is defined as

V (F,G|D) def= |Pr[D’s guess is F|H = F]− Pr[D’s guess is F|H = G]|. (1)

Definition 3. The CPA-advantage (KPA-advantage) is defined as the maximal
advantage of all attackers using CPA (KPA). That is,

Advcpa
F,G(q, τ) def= max

D:(q,τ)-CPA
V (F,G|D), Advkpa

F,G(q, τ) def= max
D:(q,τ)-KPA

V (F,G|D).

Here, (q, τ)-CPA denotes a CPA that uses q queries with time complexity τ4.
Similarly, (q, τ)-KPA denotes a KPA that uses q independent and uniformly
random queries with time complexity τ . Especially, let R be a URF compatible
to F. Then, Advprf

F (q, τ) def= Advcpa
F,R(q, τ) and Advwprf

F (q, τ) def= Advkpa
F,R(q, τ). If

F is an RP, we have Advprp
F (q, τ) def= Advcpa

F,P(q, τ) where P is the URP.

Finally, we will define the CCA-advantage. This provides the security against an
attacker who can adaptively choose a plaintext (a ciphertext) and receive the ci-
phertext (the plaintext). It can be defined as a variant of the CPA-
advantage.

Definition 4. Let F and G be two RPs on X . The inverse of F is denoted
by F−1. Let 〈F〉 be the RF:X × {0, 1} → X such that 〈F〉(xi, di) = F(xi) if

3 Note that the definition of ◦ is different from the standard one.
4 The time complexity includes the worst case execution time and the program size,

in some fixed RAM computation model.
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di = 0 and F−1(xi) if di = 1. The CCA-advantage is defined as Advcca
F,G(q, τ) def=

Advcpa
〈F〉,〈G〉(q, τ) and we have Advsprp

F (q, τ) def= Advcca
F,P(q, τ).

If F has a small CPA-advantage for some sufficiently large q and τ in distin-
guishing F from URF, it is called a pseudorandom function (PRF). In addition,
if F is invertible, it is called a pseudorandom permutation (PRP). Similarly, if
F has a small KPA-advantage, it is called a weak PRF [24] (WPRF), and if F
is an RP and has a small CCA-advantage, it is called a strong PRP (SPRP).

It is well known that triangle inequality holds for the CPA, KPA, and CCA-
advantages. More precisely, we have Adv∗∗∗

F,H(q, τ) ≤ Adv∗∗∗
F,G(q, τ)+Adv∗∗∗

G,H(q, τ)
for ∗ ∗ ∗ ∈ {cpa, kpa, cca}.

Let F,G be compatible RFs with n-bit input, and let R be the URF with
n-bit output. The following equation plays an important role in our analysis.

Advkpa
F,G(q, τ) = Advcpa

RF,RG(q, τ ′), where τ = τ + O(nq). (2)

This is natural, since all adaptive attacks are useless in distinguishing R�F from
R�G. Actually, the difference between Advkpa

F,G(q, τ) and Advcpa
RF,RG(q, τ) only

depends on the time for generating uniformly random plaintexts (for F and G).
We assume that the time for generating q uniformly random plaintexts needs
O(nq) time. Hereafter, X denotes {0, 1}n and τ ′ denotes τ + O(nq).

Lemma 1. For any F and G , Advkpa
F,G(q, τ) ≤ Advcpa

F,G(q, τ). Moreover, let E
be an RF that can be cascaded to F and G, and R be the URF compatible with
E. Then, Advcpa

EF,EG(q, τ) ≤ 2Advcpa
E,R(q, τ) + Advkpa

F,G(q, τ ′).

Proof. The first claim is obvious. For the second, we have

Advcpa
EF,EG(q, τ) ≤ Advcpa

EF,RF(q, τ)+Advcpa
RF,RG(q, τ)+Advcpa

RG,EG(q, τ).

Combining the above inequality with Eq. (2) proves the second claim.

2.3 Monotone Event Sequence and Conditional Equivalences

We will use a methodology developed by Maurer [17, 18] to analyze information-
theoretic security, i.e., the maximum advantage without computational restric-
tions. Here, let us briefly describe his notations. Consider event ai defined for
i input/output pairs of F. Let ai be the negation of ai. We assumed ai was
monotone, i.e., ai never occurred if ai−1 occurred. For instance, ai is monotone
if this indicates that all i outputs are distinct. An infinite sequence of mono-
tone events A = a0a1 . . . is called a monotone event sequence (MES). Here, a0
denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . . is an
MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any sequence of
random variables, X1, X2, . . . , let Xi denote (X1, . . . , Xi). After this, dist(Xi)
will denote an event where X1, X2, . . . , Xi are distinct.

Let MESs A and B be defined for F : X → Y and G : X → Y, respectively.
Let Xi ∈ X and Yi ∈ Y be the i-th input and output. Let PF be the probability
space defined by F. For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi = yi|Xi =
xi, Y i−1 = yi−1] where Yj = F(Xj) for j = 1, . . . .
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Definition 5. Let us say F and G are equivalent and write F ≡ G if PF
Yi|XiY i−1

= PG
Yi|XiY i−1 , which means PF

Yi|XiY i−1(yi, xi) = PG
Yi|XiY i−1(yi, xi) for all xi ∈

X i, yi ∈ Yi and for all i ≥ 1.

Definition 6. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

5 holds,
which means PF

Yiai|XiY i−1ai−1
(yi, xi) = PG

Yibi|XiY i−1bi−1
(yi, xi) holds for all

(yi, xi) such that both PF
ai−1|Xi−1Y i−1(yi−1, xi−1) and PG

bi−1|Xi−1Y i−1(yi−1, xi−1)
are positive for all i ≥ 1.

Definition 7. We write F|A ≡ G|B if PF
Yi|XiY i−1ai

= PG
Yi|XiY i−1bi

holds. More-
over, let C = c0c1 . . . be an MES defined for F. We write FA|C ≡ GB if
PF

Yiai|XiY i−1ai−1ci
= PG

Yibi|XiY i−1bi−1
holds.

Note that if FA ≡ GB, then F|A ≡ G|B (but not vice versa).

Definition 8. For A defined for F, ν(F, aq) denotes the maximal probability
of aq for any (q,∞)-CPA that interacts with F. Similarly, μ(F, aq) denotes the
maximal probability of aq for any non-adaptive (q,∞)-CPA.

Clearly, μ(F, aq) ≤ ν(F, aq) holds. In addition, μ(F, aq) equals maxxq∈X q PF
aq|Xq ,

which often makes the analysis of μ(F, aq) much easier than that of ν(F, aq).
These equivalences are crucial to the proof of information-theoretic security.

For example, if FA ≡ GB, then Advcpa
F,G(q,∞) ≤ ν(F, aq) (Theorem 6 in Ap-

pendix A). Moreover, one can turn the analysis of adaptive attacks (i.e., ν(∗, ∗))
into that of non-adaptive attacks (i.e., μ(∗, ∗)) under some additional condi-
tions. We will use a number of Maurer’s results including Theorem 6, as these
often provide a rigorous security proof, which can not be obtained with other
methods6. For completeness, these results are cited in Appendix A.

Caveat. Maurer’s methodology [17] can only be applied to an information-
theoretic setting. In most cases information-theoretic proofs can be easily con-
verted into computational ones, but this is not always the case [18, 21]. However,
we do not encounter such difficulties in this paper. His methodology can also be
applied to random systems, i.e., stateful random functions. We will use some ran-
dom systems in our proofs for convenience, but in practice, none of our hybrid
modes require underlying components to be stateful.

2.4 Why We Should Care About Hybrid Modes?

As we mentioned, the focus of this paper is modes for a PRF combined with
a WPRF. However, why do we need such hybrid modes as we already have
PRFs? The main advantage of hybrid modes is throughput, since a WPRF is

5 Here, PF
Yiai|XiY i−1ai−1

(yi, xi) is Pr[Yi = yi, ai|ai−1, X
i−1 = xi−1, Y i−1 = yi−1] .

6 For example, let C be a 2n-bit 3-round Feistel with PRFs. Classical analysis requires
q2/22n as a term appearing in the upper bound of Advprp

C (q, τ), while Maurer [17]
showed this was redundant.
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naturally assumed to be faster than a compatible PRF. The following examples
demonstrate that this assumption actually holds true in some cases.

Example 1. Let M[F1,F2] denote a 2n-bit 2-round Feistel, where Fi is the i-th
round function:X → X for i = 1, 2 (recall that X denotes {0, 1}n). The first
round of M[F1,F2] is left-to-right. That is, the input to F1 is the left half of the
input to M[F1,F2]. It is well known that the 3-round Feistel where each round
function is an independent PRF is PRP. However, the following lemma shows
that the 2-round Feistel, which can never be a PRP, can be KPA-secure.

Lemma 2. Advkpa
M[F1,F2],P2n

(q, τ) ≤ Advprf
F1

(q, τ) + Advprf
F2

(q, τ) + q2

2n .

This lemma is proved by a simple non-adaptive analysis similar to Maurer [15].

Actually, a similar result can be obtained for a generalized Feistel. For example,
the type I transformation [33] on mn-bit block input requires 2m− 1 rounds to
achieve 2n/2-bit CPA-security [20] (i.e., the CPA-advantage is negligibly small
if q � 2n/2), whereas m rounds are sufficient to attain 2n/2-bit KPA-security.
However, we omitted the formal descriptions of these results here.

As another example, it was pointed out [6] that the WPRF based on the
DDH assumption could be more efficient than the DDH-based PRF construction
proposed by Naor and Reingold [22]. These examples illustrate that well-designed
hybrid modes can be faster than modes that only use PRFs.

Basically, we can only use WPRFs as building blocks. A mode proposed by
Damg̊ard and Nielsen [6] can convert any WPRF into a pseudorandom generator
(PRG), which implies that any WPRF can be converted into a PRF using the
PRG-to-PRF conversion [7]. However, this takes too much computation time
and hence is rather impractical. Still, our proposals can be seen as modes of
WPRF if this KPA-to-CPA conversion is incorporated into them7.

3 Hybrid Construction of Large Output PRF

The basic idea behind hybrid modes is that the cascade of a PRF and a WPRF
is a PRF. If the WPRF has large output, then the cascade would have almost the
same throughput as that of the WPRF. This idea is intuitively correct. Actually,
a similar idea was originally proposed by Aiello, Rajagopalan, and Venkatesan[1],
without complete security proof (in fact, they only proved Lemma 3). In this
section, we will describe our hybrid construction of a large output PRF called
ARV8, and prove it is secure.

Definition 9. Let F1 : X → X be a PRF and F2 : X → X be a WRPF. ARV
is defined as ARVm[F1,F2]

def= F1 ◦ LF2,m (see Def.2 for the def. of ◦) , where
LF2,m : X → Xm is LF2,m(x) = (F2,1(x),F2,2(x), . . . ,F2,m(x)) for any x ∈ X .
Here, F2,1, . . . ,F2,m are independently-keyed m RFs that are equivalent to F2.
7 The term “KPA-to-CPA” conversion was also used in [6]. However, it was not in-

tended as a conversion of WPRF into PRF.
8 Even though Aiello et al.’s proposal was slightly different from ours, we still called

it ARV.
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Before analyzing ARV, we have to formally prove that the cascade of PRF and
WPRF is PRF.

Theorem 1. Let G = C ◦F and G′ = C �F, where C : X → X , and F : X →
Xm. Then,

Advprf
G (q, τ) ≤ Advprf

G′ (q, τ) ≤ Advprf
C (q, τ) + Advwprf

F (q, τ ′) +
q2

2n+1 . (3)

Proof. The first inequality is obvious. For the second inequality, let H1 and H2
be Rn,n � F, and Rn,n � Rn,mn, respectively. We then obtain Advprf

G′ (q, τ) ≤
Advcpa

G′,H1
(q, τ) + Advcpa

H1,H2
(q, τ) + Advprf

H2
(q, τ). It is easy to see that Advcpa

G′,H1

(q, τ) ≤ Advprf
C (q, τ) and Advprf

H2
(q, τ) ≤ Advprf

H2
(q,∞) < q2

2n+1 . Finally, Advcpa
H1,H2

(q, τ) ≤ Advwprf
F (q, τ ′) follows from Eq. (2).

Now, the remaining task is to show the KPA-advantage of LF2,m. This is
easily derived from triangle inequality.

Lemma 3. (in [1, 6]) Let F : X → X . Then, Advwprf
LF,m

(q, τ) ≤ m ·Advwprf
F (q, τ).

From Theorem 1 and Lemma 3, it is obvious that using F1(xi) as part of the
i-th output does not compromise the security of ARV. That is, we can use �
instead of ◦. We thus have the following corollary.

Corollary 1. Let ARV+
m[F1,F2]

def= F1 � LF2,m. Then, Advprf
ARVm[F1,F2]

(q, τ) ≤
Advprf

ARV+
m[F1,F2]

(q, τ) ≤ Advprf
F1

(q, τ) + m ·Advwprf
F2

(q, τ ′) + q2

2n+1 .

An advantage of ARV+ over ARV is that the former guarantees an improved
throughput for any small m whenever F2 is faster than F1.

Smaller key size. Althought the key size of LF,m is large (i.e., m keys), a mode
of WPRF proposed by Damg̊ard and Nielsen [6] reduces the key size to 2 log2 m.
However, we will not discuss the key scheduling issue in this paper.

4 Hybrid Construction of PRP

4.1 Hybrid Double Length PRP is Difficult Within 3-Round Feistel

In this section, we deal with the hybrid construction of a PRP. Our first target
is a double length PRP (DLPRP). More specifically, we want to build a PRP
on X 2 using a PRF: X → X and a WPRF: X → X . It is well known that the
cascade of a light-weight mixing and two Feistel rounds where round functions
are two independent PRFs is a DLPRP (this was first pointed out by Lucks [14]).
To implement the light-weight mixing, no cryptographic functions are needed:
one Feistel round using ε-AXU [25] with an adequately small ε is enough. Here,
ε-AXU is defined as follows. There have been many proposals for practical and
efficient ε-AXUs, for instance MMH [9].
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Definition 10. Let F : X → Y. If F is ε-almost XOR universal (ε-AXU), then
Pr{F(x)⊕ F(x′) = y} ≤ ε for all (x, x′) ∈ X 2 such that x �= x′ and all y ∈ Y.

Can we substitute one of two PRFs (in DLPRP described above) with some
WPRF and maintain the cipher’s security? If the answer is yes, we can build a
hybrid DLPRP using one invocation of a PRF and a WPRF, and a light-weight
mixing round9.

Unfortunately, the answer is not that clear. At least we found that, some
special WPRF could be used as the last round function. The following theorem
has a typical example.

Theorem 2. Let G be E◦M[F1,F2], where E is a 2n-bit RP and M[F1,F2] is a
2-round Feistel (see Ex. 1). Let Si be the i-th input to F1 and let ai be dist(Si).
Note that Si is also the left half of the i-th output of E. Let us assume that
F2(x) = H(x̂) holds for all x, where H : {0, 1}n−1 → X , and x̂ is the first n− 1
bits of x. Then, Advprp

G (q, τ) is at most μ(E, aq) + Advprf
F1

(q, τ) + Advprf
H (q, τ) +

q2/2n. If E is one right-to-left Feistel round with ε-AXU, then μ(E, aq) ≤ εq2/2.

Proof. The proof is an extension of 3-round Feistel’s proof. See Appendix B.

If H is a PRF, then F2 is obviously a WPRF, but not a PRF10. However, we
could not find a way of evaluating the CPA-advantage of the cipher unless F2
was such a special WPRF (or a PRF). The reason is, roughly saying, that the
information of Si, which is a key to find a collision among Si+1, may not be
sufficiently hidden unless F2 is a PRF or a special WPRF described above.
Moreover, the construction in Theorem 2 is not a hybrid one, but only a mode
of two PRFs. For now, we think a general security proof based only on the
CPA-advantage of F1 and KPA-advantage of F2 is intractable.

4.2 New Scheme Providing Hybrid DLPRP

Here, we propose a new block cipher scheme that slightly differs from Feistel.

Definition 11. For an RP on X , C, and F : X → Xm−1, let Nm[C,F] be an
RP on Xm defined as Nm[C,F](xl, xr) = (C(xl),F(C(xl))⊕ xr), where xl ∈ X
and xr ∈ Xm−1.

Here, Nm[C,F] is clearly invertible if C is invertible. Note that Nm[∗, ∗] is
unbalanced (i.e., a message is divided into two submessages of unequal lengths)
for all m > 2. Let us say Nm[∗, ∗] is (n, (m− 1)n) unbalanced. Now, let us show
that the double length scheme, N2[∗, ∗], has quite a unique property: it provides
an efficient hybrid DLPRP that accepts any WPRF. The first step in proving
this is in analyzing an ideal setting (i.e., when N2[Pn,Rn,n] is used).

9 Building a DLPRP using two WPRF calls seems impossible, though we have not
formally proved this so far.

10 Interestingly, this kind of WPRF was proposed in Lucks’s “Faster Luby-Rackoff
Cipher” [14], although he only proved its non-adaptive CPA-security.
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Theorem 3. Let G be E◦N2[Pn,Rn,n], where E is an RP on X 2. Let Si denote
the i-th input to Pn, which corresponds to the left half of the i-th output of E.
We then obtain

Advprp
G (q,∞) ≤ μ(E, aq) +

q2

2n+2 , where aq denotes dist(Sq). (4)

Moreover, if E is one right-to-left Feistel round with ε-AXU, H : X → X (see
left of Fig. 1), then Advprp

G (q,∞) is at most q2

2

(
ε + 1

2n+1

)
.

Proof. The core of the proof is in the following lemma. This is proved in Ap-
pendix C.

Lemma 4. For any RF:X 2 → X 2, let (Si, Ti) be the i-th input, where Si, Ti ∈
X . Similarly, (Ui, Vi) denotes the i-th output, where Ui, Vi ∈ X . For the case of
N2[Pn,Rn,n], Ui = Pn(Si) and Vi = Rn,n(Pn(Si))⊕Ti. Let ai and bi be dist(Si)
and dist(U i), respectively. For two MESs, A = a0a1 . . . and B = b0b1 . . . ,

N2[Pn,Rn,n]A∧B∧C ≡ PA∧B
2n (5)

holds for some MES C = c0c1 . . . defined for N2[Pn,Rn,n].

Let us abbreviate N2[Pn,Rn,n] to N∗
2. Using Lemmas 4 and 5, we obtain

(E ◦N∗
2)

A∧B∧C ≡ (E ◦P2n)A∧B, (6)

where MESs are defined for N∗
2 and P2n (see the left of Fig. 1). Let P̂2n be

a random system compatible to P2n, which always behaves as if some distinct
inputs are given to P2n, no matter what the actual inputs are. We then have

Advprp
E◦N∗

2
(q,∞) ≤ ν(E ◦P2n, aq ∨ bq) ≤ μ(E, aq) + μ(P̂2n, bq). (7)

In Eq. (7), the first inequality follows from the equivalence E ◦P2n ≡ P2n, and
Lemma 4, and Theorem 6. For the last inequality, note that PB

2n|A ≡ P̂B
2n holds,

since A indicates that inputs to P2n are distinct and B is defined for outputs.
Applying PB

2n|A ≡ P̂B
2n to Lemma 10 proves the last inequality. Let us analyze

μ(P̂2n, bq), which corresponds to the probability of a collision occurring in the
left halves of P̂2n’s outputs. For any i �= j, we obtain

P P̂2n(Ui = Uj) =
∑

u,vi,vj∈X ,vi �=vj

P P̂2n(Ui = Uj = u, Vi = vi, Vj = vj)

=
∑

u,vi,vj∈X ,vi �=vj

1
22n
· 1
22n − 1

= 2n · 2n(2n − 1)
2 · 22n · 22n − 1

<
1

2n+1 .

This means μ(P̂2n, bq) is less than
(
q
2

) 1
2n+1 < q2

2n+2 . Substituting μ(P̂2n, bq) with
q2

2n+2 in Eq. (7) proves the first claim. As the proof of the second claim is easily
derived by the first claim and a trivial collision analysis of E, we omitted it.
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The CPA-security of E ◦N2[C,F] is easy to prove, when both C and F are
CPA-secure. Here, we will present a stronger result: we only need the KPA-
security of F and CPA-security of C.

Theorem 4. Let G = E ◦N2[C,F], where E is an RP on X 2, C is an RP on
X , and F : X → X . Then,

Advprp
G (q, τ) ≤ μ(E, aq) + Advprp

C (q, τ) + Advwprf
F (q, τ ′) +

5q2

2n+2 , (8)

where aq denotes an event where q inputs to C are distinct.

Proof. Using triangle inequality, Advprp
G (q, τ) is no more than Advcpa

G,G′(q, τ) +
Advcpa

G′,G∗(q, τ) + Advprp
G∗ (q, τ), where G′ and G∗ denote E ◦N2[Pn,F] and E ◦

N2[Pn,Rn,n], respectively. Note that Advcpa
G′,G∗(q, τ) ≤ Advcpa

PnF,PnRn,n
(q, τ)

and thus we can use Lemma 1. This observation and Theorem 3 complete the
proof.

As Theorem 4 shows, if C is a PRP and F is a WPRF, the cascade of light-
weight mixing and N2[C,F] is a DLPRP. Unlike a 3-round Feistel, no additional
conditions are needed for F.
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Fig. 1. Our Double Length PRP (left) and Double Length SPRP (right)

4.3 Achieving Large Block Size

One notable property of our scheme is that it offers a very efficient way of
extending block size. We can use Nm[∗, ∗] to build an mn-bit block cipher. Here,
we need a WPRF:X → Xm−1 for the second argument of Nm[∗, ∗]. Such an RF
can be composed from any WPRF:X → X , as shown in Lemma 3.

Corollary 2. Let C be an RP on X , and let F be an RF: X → X . Moreover, let
E be a right-to-left, (n, (m− 1)n) unbalanced Feistel round with ε-AXU. Then,

Advprp
E◦Nm[C,LF,m−1]

(q, τ)≤Advprp
C (q, τ)+(m−1)·Advwprf

F (q, τ ′)+q2
(
ε

2
+

5
2n+2

)
.
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Proof. The logic of the proof is the same as with DLPRP. Consider E◦G, where
G is an mn-bit RP. Assume Si is the leftmost n-bit of the i-th input to G, and
Ui is the leftmost n-bit of the i-th output of G. Let ai and bi denote dist(Si)
and dist(U i). We can then prove that Advprp

E◦Nm[Pn,Rn,(m−1)n](q,∞) is at most
μ(E, aq)+q2/2n+2 in almost the same way as with the proof of Theorem 3. From
this and Theorem 4,

Advprp
E◦Nm[C,LF,m−1]

(q, τ) ≤ μ(E, aq) + Advprp
C (q, τ) + Advwprf

LF,m−1
(q, τ ′) +

5q2

2n+2

(9)
is obtained. Here, μ(E, aq) ≤ εq2/2 holds, if E is an unbalanced Feistel with
ε-AXU. From this observation, and Eq. (9), and Lemma 3, Corollary 2 is proved.

To implement an efficient large block cipher with our scheme, the domain of
ε-AXU needs to be easily expanded. Most practical AXUs have this property.

5 Hybrid Construction of SPRP

Similar to the 3-round Feistel, our hybrid PRP is completely vulnerable to CCA.
However, small additions to our scheme can yield an SPRP. This is a very similar
approach to that presented by Naor and Reingold [25]. Our SPRP construction
is based on the following theorem.

Theorem 5. Let Q be E1 ◦N2[Pn,Rn,n] ◦E−1
2 , where E1 and E2 are indepen-

dent RPs on X 2. For any E1 ◦G ◦ E−1
2 , where G is an RP on X 2, let (Si, Ti)

be the i-th input to G. Similarly, let (Ui, Vi) be the i-th output of G. Let ai and
bi denote dist(Si) and dist(U i), respectively. Then,

Advsprp
Q (q,∞) ≤ μ(E1, aq) + μ(E2, bq). (10)

In addition, let Q′ be E◦N2[Pn,Rn,n]◦E, where E is a 2n-bit right-to-left Feistel
with ε-AXU, H : X → X (see the right of Fig. 1). Then Advsprp

Q′ (q,∞) ≤ εq2.

Proof. See Appendix D.

As well as Sect. 4.3, Theorem 5 can easily be generalized to an mn-bit block size.
In this case, the second argument of Nm[∗, ∗] has to be a PRF:X → Xm−1.

Corollary 3. Let G be E ◦ Nm[C,F] ◦ E, where E is an mn-bit right-to-left
(n, (m− 1)n) unbalanced Feistel with ε-AXU, H : Xm−1 → X , and C is an RP
on X and F : X → Xm−1. Then,

Advsprp
G (q, τ) ≤ Advsprp

C (q, τ) + Advprf
F (q, τ) + εq2. (11)

Proof. Let Q be E ◦Nm[Pn,Rn,(m−1)n] ◦E. Then, Advsprp
Q (q,∞) ≤ εq2 can be

proved in the same way as with the proof of Theorem 5, as we can use the same
MESs as Theorem 5 (i.e., collisions in the leftmost n-bit of Nm[Pn,Rn,(m−1)n]’s
inputs and outputs). Corollary 3 follows from this and triangle inequality.
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Suppose that an SPRP on X , C, and a WPRF, F : X → X , are available.
Here, we first generate two independent versions of C, C1 and C2, and build
an mn-bit hybrid block cipher E ◦ Nm[C1,ARV+

m−2[C2,F]] ◦ E, where E is
an (n, (m − 1)n) unbalanced Feistel with ε-AXU (see Fig. 2 in Appendix E).
From Corollaries 1 and 3, this cipher is proved to be SPRP. It only requires
two invocations of SPRP, (m− 2) invocations of WPRF, and two invocations of
ε-AXU:Xm−1 → X for any m > 2.

6 Summary

For comparison, we considered the NR mode [26]. It uses m invocations of an
SPRP on X and two mixing layers on Xm to provide an mn-bit block SPRP.
These mixing layers are composed of independent AXUs and slightly more com-
plicated than ours. For m > 2, NR mode is very close to the best if an n-bit
SPRP is the only cryptographic component available (and a fast AXU is avail-
able11), since it would be impossible to have an m-block pseudorandom output
without using m SPRP invocations. Furthermore, it is easily verified that if one
mixing layer is omitted from the NR mode, the resulting mode, which is denoted
by the NR− mode, is a PRP, if the underlying component is a PRP. This is a
highly optimized large block PRP construction based on small PRP and AXU.

Table 1. The number of component calls for hybrid and previous modes. All compo-
nents are n-bit block, except for AXU. AXUα,β denotes AXU: {0, 1}α → {0, 1}β .

DLPRP PRP WPRF AXU2n,n others

Hybrid (left of Fig.1) 1 1 1 -
3-round Feistel 2 0 1 -

mn-bit PRP (m > 2) PRP WPRF AXUn(m−1),n others

Hybrid (left of Fig.2) 1 m − 1 1 -
NR− mode m 0 1 some additional AXU calls

mn-bit SPRP (m > 2) SPRP WPRF AXUn(m−1),n others

Hybrid (right of Fig.2) 2 m − 2 2 -
NR mode m 0 2 some additional AXU calls

As Table 1 shows, our hybrid modes performs quite well for both small and
large blocks. In addition, they have comparable parallelism to that of the NR
(or NR−) mode, due to the high parallelism of LF,m. The implementation cost
of hybrid mode is naturally higher than that of the NR mode, but the additional
cost would be small, or, at least smaller than the implemention cost of another
PRF, since WPRF is a “cheaper” primitive than PRF.

Several options can be considered to implement our proposals. A promising
approach is to combine the AES and a stream cipher that accepts IVs and is

11 If a mode without AXU is desirable, EME or CMC modes [10, 11] are used.
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faster than AES. For example, some stream ciphers proposed for the recent
ECRYPT project [34] have this property. Such a stream cipher can be used as F
in the LF,t construction. We can even use it directly as a substitute for LF,t. In
addition, we can save the implementation cost if the stream cipher is based on
AES (an example of this is LEX [4]). Of course, we have to carefully check if our
stream cipher is adequately secure. In this case, stream ciphers must be secure
against attacks using many random IVs and corresponding (short) keystreams.
These attacks are classified as a kind of resynchronization attack [5] and well-
considered stream ciphers would be immune from them.
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A Theorems and Lemmas Proved by Maurer [17]

Let us now describe some of Maurer’s results [17]. They were used in our analysis.

Theorem 6. (Theorem 1 (i) of [17]) Let A and B be MESs defined for F and
G. If FA ≡ GB or F|A ≡ G, then Advcpa

F,G(q,∞) ≤ ν(F, aq).

Theorem 7. (Theorem 7 of [17]) Let G be E◦M[R(1),R(2)], where E is an RP
on X 2, R(1) and R(2) are independent URFs:X → X . Here, M[∗, ∗] is a 2n-bit
2-round Feistel, as described in Ex. 1. Let aq denote an event where q inputs to
R(1) are distinct. Then Advprp

G (q,∞) ≤ μ(E, aq) + q2

2n+1 .

Lemma 5. (A corollary from Lemma 4 (ii) of [17]) Let F and G be two compat-
ible RFs. If FA ≡ GB for MESs A and B, then (E1 ◦F ◦E2)A ≡ (E1 ◦G ◦E2)B

holds true, as long as (E1,E2) is independent of F and G. Here, E1 and E2 are
not necessarily independent of each other.

Lemma 6. (Lemma 1 (iv) of [17]) Let MESs A and B be defined for F and
G. Moreover, let Xi and Yi denote the i-th input and output of F (or G),
respectively. Assume F|A ≡ G|B. If PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
for i ≥

1, which means PF
ai|XiY i−1ai−1

(xi, yi−1) ≤ PG
bi|XiY i−1bi−1

(xi, yi−1) holds for all
(xi, yi−1) such that PF

ai−1|Xi−1Y i−1(xi−1, yi−1) and PG
bi−1|Xi−1Y i−1(xi−1, yi−1) are

positive, then there exists an MES C defined for G such that FA ≡ GB∧C.

Lemma 7. (Lemma 6 (ii) of [17]) If FA ≡ GB, then ν(F, aq) = ν(G, bq).

Lemma 8. (Lemma 6 (iii) of [17]) ν(F, aq ∨ bq) ≤ ν(F, aq) + ν(F, bq) if A and
B are defined for F.

Lemma 9. (Lemma 10 (iii) of [17]) For any two compatible RPs, F and G,
FA ≡ GB implies 〈F〉A ≡ 〈G〉B.

Lemma 10. (Corollary 1 (v) of [17]) If ai (bi) is defined on the inputs (outputs)
of F and FB|A ≡ UB for a source U compatible to F, then ν(E ◦ F, aq ∨ bq) ≤
μ(E, aq)+μ(U, bq) for any E. Here, a source is a random system that generates
outputs that are independent of corresponding inputs.

B Proof of Theorem 2

The proof of Theorem 2 is basically the same as the tight security proof of the
3-round Feistel demonstrated by Maurer (Theorem 7 of [17]). The only difference
is in the definitions of MESs. Let R̃n,n be the RF:X → X defined as R̃n,n(x) =
Rn−1,n(x̃), where x̃ denotes the first n− 1 bits of x. First, we prove

Advprp
E◦M[Rn,n,R̃n,n]

(q,∞) ≤ μ(E, aq) +
q2

2n
, (12)
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where aq denotes an event where q inputs to Rn,n (i.e., the left halves of E’s
outputs) are distinct. As well as Theorem 3, μ(E, aq) corresponds to the maximal
probability of a collision occurring in the left halves of E’s outputs, for all non-
adaptive attackers.

For any RF:X 2 → X 2, let (Si, Ti) be the i-th input and let (Ui, Vi) be the
i-th output, where Si, Ti, Ui, Vi ∈ X . Let ai and bi denote dist(Si) and dist(Ṽ i),
where Ṽ i denotes (Ṽ1, . . . , Ṽi) and Ṽi is the first n − 1 bits of Vi. The first step
is to show that

M[Rn,n, R̃n,n]A∧B ≡ R̂A∧B
2n,2n ≡ RA∧B

2n,2n ≡ PA∧B∧C
2n (13)

holds for some MES C defined for P2n. Here, R̂2n,2n behaves just like R2n,2n

taking some distinct inputs, independent of actual inputs (i.e., it always outputs
uniformly random and independent values). Recall that R̃n,n behaves just like
Rn,n, as long as the first n− 1 bits of the inputs do not include collisions. From
this, we observe that

P
M[Rn,n,R̃n,n]
UiVi|SiT iUi−1V i−1aibi

(14)

is a uniform distribution on X ×X̃ , where X̃ is a set of vi ∈ X satisfying dist(ṽi)
(i.e., the first n− 1 bits of vi are unique). We thus have

M[Rn,n, R̃n,n]|A ∧ B ≡ R̂2n,2n|A ∧ B ≡ R2n,2n|A ∧ B, (15)

which immediately means

M[Rn,n, R̃n,n]B|A ≡ R̂B
2n,2n|A ≡ RB

2n,2n|A. (16)

Using Eq. (16) and the fact that ai is defined on the inputs, we obtain Eq. (13)
except for the last equivalence. For the last equivalence, we observe that

P
R2n,2n

aibi|XiY i−1ai−1bi−1
≤ PP2n

aibi|XiY i−1ai−1bi−1
(17)

holds. The inequality above can easily be derived from the definitions of URF
and URP. Applying Lemma 6 to Eq. (17), we obtain the last equivalence of
Eq. (13).

Next, we apply Lemma 5 to Eq. (13). We then have

(E ◦M[Rn,n, R̃n,n])A∧B ≡ (E ◦ R̂2n,2n)A∧B ≡ (E ◦P2n)A∧B∧C (18)

for some MES C. Let G denote E ◦M[Rn,n, R̃n,n]. We now have

Advprp
G (q,∞) = Advcpa

G,E◦P2n
(q,∞) ≤ ν(G, aq∨bq) = ν(E◦R̂2n,2n, aq∨bq), (19)

where the inequality follows from Eq. (18) and Theorem 6, and the last equality
follows from Eq. (18) and Lemma 7. From Corollary 10, ν(E ◦ R̂2n,2n, aq ∨ bq) ≤
μ(E, aq) + μ(R̂2n,2n, bq) is obtained. Note that μ(R̂2n,2n, bq) corresponds to the
probability of a collision among q uniform random variables of length n− 1 bits.
Thus, μ(B2n,2n, bq) ≤

(
q
2

) 1
2n−1 < q2

2n holds, proving Eq. (12). Theorem 2 is proved
using Eq. (12) and triangle inequality,
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C Proof of Lemma 4

Let us abbreviate N2[Pn,Rn,n] to N∗
2. Recall that for any RF:X 2 → X 2, (Si, Ti)

denotes the i-th input, where Si, Ti ∈ X . Similarly, (Ui, Vi) denotes the i-th
output, where Ui, Vi ∈ X . For example, if N2[Pn,Rn,n] is considered, then
Ui = Pn(Si) and Vi = Rn,n(Pn(Si))⊕Ti. We observe that ai (i.e., dist(Si)) and
bi (i.e., dist(U i)) are equivalent events if N∗

2 is considered, since Ui = Pn(Si).
Therefore, we have to prove that N∗

2
A∧C ≡ PA∧B

2n holds for some MES C. We
first prove N∗

2|A ≡ P2n|A ∧ B. To prove this, we have to verify that

P
N∗

2
UiVi|Ui−1V i−1SiT iai

= PP2n

UiVi|Ui−1V i−1SiT iaibi
(20)

holds, where Eq. (20) means the both sides are equal as functions of (si, ti, ui, vi)
(see Def. 6 for example). Note that both sides of Eq. (20) are defined for all
Si = si and U i−1 = ui−1 such that dist(si) and dist(ui−1) hold. If ui collides
with uj for some 1 ≤ j ≤ i− 1, then bi does not hold. Therefore, both sides are
0 for such ui (note that ai is equivalent to bi for N∗

2). Otherwise bi holds and
so, the lhs of Eq. (20) is 1/((2n − i + 1) · 2n) since Ui is uniformly distributed
on X \ {u1, . . . , ui−1} and Vi is uniformly random on X . Therefore, we have
to verify if the rhs of Eq. (20) is 1/((2n − i + 1) · 2n) in this case. Using simple
decomposition, we have

PP2n

UiVi|Ui−1V i−1SiT iaibi
=

PP2n

UiV i|SiT iaibi

PP2n

Ui−1V i−1|Si−1T i−1ai−1bi−1

. (21)

The numerator of the rhs of Eq. (21) is a uniform distribution on a set of all
(ui, vi) that satisfies dist(ui). The number of such (ui, vi) is (2n · (2n − 1) · · · ·
(2n − i + 1)) · (2n)i. Similarly, the denominator is a uniform distribution on the
set of size (2n · (2n− 1) · · · · (2n− i+ 2)) · (2n)i−1. Thus the rhs of Eq. (21) equals(

(2n · (2n − 1) · · · · (2n − i + 1)) · (2n)i

(2n · (2n − 1) · · · · (2n − i + 2) · (2n)i−1

)−1

=
1

(2n − (i− 1)) · 2n
. (22)

Therefore, Eq. (20) holds true and hence we have N∗
2|A ≡ P2n|A ∧ B. To apply

Lemma 6, we need to check if

PP2n

aibi|Ui−1V i−1SiT iai−1bi−1
≤ P

N∗
2

ai|Ui−1V i−1SiT iai−1
(23)

holds true for all possible arguments (ui−1, vi−1, si, ti). When si does not satisfy
ai, clearly Eq. (23) holds, since both sides are 0. When si satisfies ai, the rhs of
Eq. (23) is 1. Thus, Eq. (23) is proved. Combining Eq. (23) and Lemma 6, we have
N∗

2
A∧C ≡ PA∧B

2n for some MES C defined for N∗
2. Therefore, N∗

2
A∧B∧C ≡ PA∧B

2n

is proved.

D Proof of Theorem 5

Let Q∗ be E1 ◦P2n ◦E−1
2 and let Q be E1 ◦N2[Pn,Rn,n] ◦E−1

2 . From Lemmas
4 and 5,

QA∧B∧C ≡ Q∗A∧B (24)
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holds, where A, B, and C are the MESs appearing in Lemma 4. From Eq. (24)
and Lemma 9, we obtain 〈Q〉A∧B∧C ≡ 〈Q∗〉A∧B. This conditional equivalence
and Theorem 6 indicate Advcca

Q,Q∗(q,∞) ≤ ν(〈Q∗〉, aq∨bq), which corresponds to
the maximal probability of aq (i.e., a collision in the left halves of inputs to P2n)
or bq (i.e., a collision in the left halves of P2n’s outputs) for all (q,∞)-CCAs .
Therefore, we have

Advsprp
Q (q,∞) = Advcca

Q,Q∗(q,∞) ≤ ν(〈Q∗〉, aq ∨ bq) ≤ ν(〈Q∗〉, aq) + ν(〈Q∗〉, bq).
(25)

The first equality holds since Q∗ ≡ P2n, and the last inequality follows from
Lemma 8.

We next analyze ν(〈Q∗〉, aq). Let us use the following notations. The i-th
input and output of Q∗ are Xi and Yi, respectively. In addition, let X̂i denote
(Si, Ti) and Ŷi denote (Ui, Vi). Note that X̂i and Ŷi correspond to the i-th input
and output of P2n in Q∗. Observe that

ν(〈Q∗〉, aq) = max
D:(q,∞)-CCA

∑
xq,yq

PQ∗

aq|XqY q (xq, yq) · PD�〈Q∗〉
XqY q (xq, yq)

≤ max
xq,yq

PQ∗

aq|XqY q (xq, yq) (26)

holds, where D / 〈Q∗〉 denotes an environment where D attacks Q∗ by means of
CCA, and the second maximum is taken over all xq and yq satisfying dist(xq) and
dist(yq). Let βq ⊂ (X 2)q be the set of x̂q = (sq, tq) such that aq (i.e., dist(sq))
does not hold but dist(x̂q) holds. Now we have

PQ∗

aq|XqY q (xq, yq) =

∑
x̂q∈βq

PE1

X̂q|Xq
(x̂q, xq) · PQ∗

Y q|X̂qXq
(yq, x̂q, xq)

(
∏q−1

i=0 22n − i)−1
. (27)

It is not difficult to verify that PQ∗

Y q|X̂qXq
(yq, x̂q, xq) equals to

∑
ŷq∈(X 2)q

PP2n

Ŷ q|X̂qXq
(ŷq, x̂q, xq) · PE−1

2

Y q|Ŷ qX̂qXq
(yq, x̂q, xq) =

1∏q−1
i=0 22n − i

. (28)

The last equality results from the fact that P2n is a URP and E2 is invertible.
From Eqs. (27) and (28), we have PQ∗

aq|XqY q (xq, yq) =
∑

x̂q∈βq
PE1

X̂q|Xq
(x̂q, xq),

which is at most μ(E1, aq) (see Def. 8). Similarly, ν(〈Q〉, bq) is no more than
μ(E2, bq). Thus, the first claim is proved. Note that the above proof is valid even
if E1 and E2 are dependent. Combining this observation and the fact that one
Feistel round, E, is an involution (i.e., E−1 ≡ E), the second claim is proved.
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E Figure of Hybrid Large Block PRP and SPRP
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Fig. 2. Hybrid large block PRP (left) and SPRP (right)
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Abstract. Sfinks is an LFSR-based stream cipher submitted to
ECRYPT call for stream ciphers by Braeken, Lano, Preneel et al. The
designers of Sfinks do not include any real protection against algebraic
attacks other than the so called “Algebraic Immunity”, that relates to
the complexity of a simple algebraic attack, and ignores more elaborate
attacks. As a result, Sfinks is insecure.
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1 Introduction

Sfinks is a new stream cipher that has been submitted in April 2005 to ECRYPT
call for stream cipher proposals, by Braeken, Lano, Mentens, Preneel and Var-
bauwhede [6]. It is a hardware-oriented stream cipher with associated authenti-
cation method (Profile 2A in ECRYPT project).

Sfinks is a very simple and elegant stream cipher, built following a very clas-
sical formula: a single maximum-period LFSR filtered by a Boolean function.
Several large families of ciphers of this type (and even much more complex
ones) have been in the recent years, quite badly broken by algebraic attacks, see
for exemple [12, 13, 1, 14, 15, 2, 18]. Nevertheless the specialists of these ciphers
counter-attacked by defining and applying the concept of Algebraic Immunity [7]
to claim that some designs are “secure”. Unfortunately, as we will see later, the
notion of Algebraic Immunity protects against only one simple algebraic attack
and ignores other algebraic attacks. More realistic (but also more complex to
apply) security criteria for stream ciphers have been proposed in [13, 16].

We note that it is possible to design stream ciphers that would be in some
sense “protected” against algebraic attacks (and also in a similar way against
other known attacks, such as correlation and fast correlation attacks). It is even
a common practice to add to the stream cipher some components that would
make all these attacks less efficient (cf. [26, 13]), or even clearly impractical (e.g.
[8]) to apply. This can be done, for example, with irregular clocking and/or a
� This work was partially supported by the French Ministry of Research RNRT X-

CRYPT project and by the European Commission via ECRYPT network of excel-
lence IST-2002-507932.

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 261–269, 2006.
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final compression component that would combine several consecutive outputs of
the Boolean function in a complex way. The drawback of this is (possibly) some
loss in speed and an important loss in hardware footprint (for example, irregular
clocking would require a large buffer). It would make the design less elegant, and
also much more vulnerable to timing and side-channel attacks.

Finally, the designers of Sfinks choose to stick to this simple and elegant design
that is easy to study (and for which we would like to thank the authors as it
helps the cryptanalysts too !). We have a simple filtered LFSR on which most
of the known attacks can be applied directly and the only thing that prevents
these attacks so far, is the parameters of Sfinks [6] were chosen so that the attack
complexity is close to 280, without even any margin for (frequent) algorithmic
improvements. Consequently, it is possible to say that Sfinks has been designed
with no “protection” whatsoever against known attacks.

2 Short Description of Sfinks

A regularly clocked 256-bit binary LFSR provides, at each clock, 17 out of 256 its
state bits, that are supplied to a Boolean function. The keystream is composed
of successive output bits of this Boolean function.
The LFSR used in Sfinks is described by the following recursion formula:

st+256 = st+212 ⊕ st+194 ⊕ st+192 ⊕ st+187 ⊕ st+163 ⊕ st+151 ⊕ st+125 ⊕
st+115 ⊕ st+107 ⊕ st+85 ⊕ st+66 ⊕ st+64 ⊕ st+52 ⊕ st+48 ⊕ st+14 ⊕ st

The Boolean Function Used in Sfinks
We call f(x16

t , . . . x0
t ) the output filtering function of Sfinks [6]. The 17 variables

used are selected as follows among the state bits of the LFSR:(
x16

t , . . . , x0
t

) def
= (st+255, st+244, st+227, st+193, st+161, st+134, st+105, st+98, st+74,

st+58, st+44, st+21, st+19, st+9, st+6, st+1, st).

We define as P the corresponding projection mapping GF (2256)→ GF (217). P
is a multivariate linear transformation.
The function f is a highly non-linear Boolean function of degree 15, with 17
variables. It is defined as follows:

zt = f(x̄t) = f(x16
t , . . . , x0

t ) = (INV (x16
t , . . . , x1

t )&1)⊕ x0
t .

with INV being the inverse in GF (216) defined as follows. Let GF (216) be defined
as GF (2)[Z]/Z16 + Z5 + Z3 + Z2 + 1. We define INV as inverse in GF (216)
complemented by 0 (→ 0 as in Rijndael, implemented as a table operating on
16-bit words, in such a way that the least significative bit of the input is x1

t ,
and it corresponds to the coefficient of Z1 in polynomial arithmetic modulo
Z16 +Z5 +Z3 +Z2 + 1. At the output, f is defined by the least significative bit
of the output word of INV (which again corresponds to Z1).
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3 Algebraic Attacks on Sfinks

Algebraic attacks on stream ciphers are based on the following observation. Let
L : GF (2n)→: GF (2n) be a multivariate linear transformation that corresponds
to clocking the LFSR. For each i, Li is a known multivariate linear transforma-
tion. At any moment t in the cipher history, all bits of the internal state are
known linear combinations of the bits of the initial state s0, . . . , sn (for Sfinks
n = 256).

Let zt, t = 0, 1, 2, . . . be the keystream generated by Sfinks and let f be its
output Boolean function. We recall that f ◦ P is the version of f defined from
GF (2n) → GF (2) and takes all n bits as inputs, 17 of which are used and the
other are ignored. Then we can write the problem of key recovery in Sfinks as
follows. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z0 = f( P (s0, . . . , sn−1) )
z1 = f( P (L (s0, . . . , sn−1)) )

...
zt = f( P (Lt (s0, . . . , sn−1)) )

...

(#)

Algebraic attacks on stream cipher work by solving, (by more or less sophisti-
cated methods) the above system equations (or a part of it). They use exten-
sively the fact that the degree of these and other derived algebraic equations is
preserved by the linear operation P ◦ Lt, at any moment t.

In this paper we use the terminology of [13] to classify algebraic attacks on
stream ciphers as S1, S2, S3, S4, S5 and S6. In addition we will give a complete
description of all proposed attacks on Sfinks.

3.1 First Basic Algebraic Attacks on Sfinks (S1 and S2)

A Simplistic Algebraic Attack. The simplest attack scenario we can think of
is known as direct linearization attack or S1, see [12, 13, 3]. It works as follows: the
equations are of degree 15, and if we dispose of about T =

(
n
15

)
+
(

n
14

)
+. . .+

(
n
0

)
≈

279.2 keystream bits, than we can rewrite the system (#) as a system of T linear
equations with T variables - all monomials are treated as new variables. The
system is the solved with the complexity of Tω, with ω being the exponent of
the Gaussian reduction. In theory it is at most ω ≤ 2.376, see [9]. However
the (neglected) constant factor in this algorithm is expected to be very big.
Thus, in this paper we will systematically estimate the complexity of solving
linear systems as about T log27 operations, which is believed to be achievable in
practice with the Strassen’s algorithm [29].

With this S1 attack we get a very large complexity: T log27 ≈ 2222.

Probabilistic Variant. In scenario S2, introduced in [12], the Boolean function
is approximated by a function of a lower degree to get a lower attack complexity.
We do not develop tools to find good low-degree approximations of f . Never-
theless we believe that it is very unlikely that f used in Sfinks has very good
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approximations that would lead to efficient algebraic attacks. The approxima-
tion to be interesting must hold with probability very close to 1, and in [12] such
approximations existed because there were very few monomials of high degree.
In Sfinks, f has many monomials of very high degree.

3.2 The S3 Algebraic Attack on Sfinks

In the scenario S3 introduced by Courtois and Meier in [13] and also studied by
Carlet et al in [7], the degree of the equations (#) is substantially reduced.

This is possible due to the existence of a low-degree algebraic relation that
relates input and output bits of f . For example, we assume that there exists an
equation of the type:

zXd + Xd.

This notation is very compact and convenient and is taken from [10]. It means
that there is (at least one) equation of type

z · g(x16, . . . , x0) + h(x16, . . . , x0) = 0 with z = f(x16
t , . . . , x0

t ).

with g and h being some multivariate polynomials of degree up to d. The equation
has to be true with probability 1, i.e. for every choice of (x16, . . . , x0). In [7] it
is shown1 that equations of such type exist if and only if either f or f + 1 have
an annihilator of degree ≤ d, i.e. ∃g′ of degree ≤ d s.t. fg′ = 0 or (f + 1)g′ = 0.

Given the existence of one equation of type zXd +Xd for f (or of an annihi-
lator of degree d), the cipher can be broken with complexity of

(
n
d

)ω as follows.
Each equation of the system (#) as follows:

zt = f( P
(
Lt (s0, . . . , sn−1)

)
)

is multiplied by the polynomial g( P (Lt (s0, . . . , sn−1)) and since fg = h it gives
an equation of degree d:

zt = h( P
(
Lt (s0, . . . , sn−1)

)
)

Then the system is solved by linearization exactly as described in Section 3.1.
For Sfinks, as we will se later (and as already remarked by the designers of

Sfinks [6]) we can have d = 6 and the complexity of the attack is about 2108. The
keystream required in this attack is T/4 ≈ 236.5 bits, as 4 linearly independent
equations of type zX6 + X6 do exist.
1 In fact this equivalent formulation of algebraic attacks were already introduced one

year earlier in the appendix of the extended version of the original paper [13], under
a different name of scenarios S30 and S31. There are many other equivalent for-
mulations of the S3 attack, for example instead of annihilators we can talk about
absorbing elements: g is the annihilator for f if and only if it is an absorbing ele-
ment for f +1. We can also speak (as we do a lot in this paper) about algebraic I/O
relations, see [11, 10, 16], that generalise the notion of Affine Multiples, known since
1992 [5, 27].
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Theory vs. practice. It should be noted that in this attack some equations
might become linearly dependent, however unlike in [11], this is not a problem
at all in algebraic attacks on stream ciphers. This is because the attack method
allows to produce as many new equations as may be necessary. In practice, it
has been tested for LILI [26] by the authors of [13] in the extended version of
this paper. The simulations show clearly that, the number of equations that
are not linearly independent in this attack (that could be tolerated with little
impact on the complexity) turns out to be really negligible. (See also [2].) Thus
the complexity evaluations on algebraic attacks on stream ciphers are expected
to be very tight and even rather conservative. It is in fact likely that applying
the F5/2 Gröbner bases algorithm [17] to a subset of the resulting equations of
degree d, combined with fast linear algebra, should allow to solve the systems
with even lower complexity and/or with even less known keystream.

3.3 Fast Algebraic Attacks on Sfinks

Let D =
(
n
d

)
+
(

n
d−1

)
+ . . .+ 1. Fast algebraic attacks on stream ciphers [14] are

based on equations of type zXe +Xd with e < d. They instantiate the scenario
S5 according to the terminology of [13]. The principle is as follows: we combine
some D consecutive equations from (#) for some D consecutive positions t in
such a way that the parts of degree d are eliminated. The equation obtained will
be of degree “only” e and will be as follows:

t+D∑
i=t

αt+i ·zi ·g( P
(
Li (s0, . . . , sn−1)

)
) (∗)

for some linear combination (α0, . . . , αD−1) ∈ GF (2)D. The same equation ap-
plies to each window of D consecutive steps and we will write (and use) it E
times, for E overlapping intervals, with E =

(
n
e

)
+
(

n
e−1

)
+ . . .+1. This is because

we need to get the final system of degree e that is solvable by linearization (with
complexity Eω).

How to Compute α. The equation above (∗) will be true for a proper choice
of α, that by definition is such that all the monomials of degree d are eliminated,
which can be written as:

∀t 0 =
t+D∑
i=t

αt+i·h( P
(
Li (s0, . . . , sn−1)

)
) (∗∗)

In other words, α is a linear combination of D consecutive bits, such that if in our
cipher the output Boolean function were h, for any consecutive D steps applying
α to bits output by the cipher would give always the sum equal to 0, (i.e. with
h instead of f we would have

∑
αt+izt+i = 0). Following this observation, in

[14] Courtois proposed to use the Berlekamp-Massey algorithm to find this α.
This idea has been validated by Armknecht in [2] but later it turned out that
there is a much simpler, faster, and more powerful method. Hawkes and Rose,
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inspired by the invited talk by Massey at FSE 2003 and by an old paper by Key
[19], have shown in [18] that it is possible to compute in time of D log2 D one
single linear combination α that is “universal” for degree up to d, in the sense
that it eliminates any Boolean function of degree ≤ d (and in particular for our
function h), see [18]. This is the method we will adopt.

Substitution Step. In [14] it was claimed that the substitution step in the fast
algebraic attacks should take about E ·D steps. In [18] Hawkes and Rose explain
that the simple substitution takes in fact DE2 operations, and propose an im-
proved FFT-based method that manages (after all) to do it in about 2ED logD
operations.

3.4 Summary - Complexity of Fast Algebraic Attacks

Following the work of Courtois, Hawkes and Rose [14, 18], and for any given
(e, d), e < d such that there is an equation of type zXe + Xd for f , we need to
perform the following steps in order to perform an algebraic attack on any filter
generator such as Sfinks:

0. Relation Search Step. Computing the equation[s] of type zXe + Xd for
f . Since we have already handled this step (in few days on a PC) for all
interesting cases, we will neglect the complexity of it in this paper (it is at
most

(17
d

)ω
and can be improved).

1. Pre-computation Step. Given the characteristic polynomial of the LFSR,
compute the (“universal”) α for the degree d. This step requires according
to [18] D log2 D operations.

2. Substitution Step. Write the equations (∗) for E consecutive values of t, for
example t = 1, . . . , E. This step requires according to [18] about 2ED logD
operations.

3. Solving Step. Solve these equations by linearization. It requires Eω oper-
ations.

Keystream complexity. The keystream required in the whole attack is D +
E − 1 which is in general very close to D as if e < d we have E << D. We note
that in general the dimension of the space of I/O relations of type zXe + Xd

for f is A > 0, but unlike in [13] it seems that when A > 1 it does not help to
improve the attack. In S3 attack scenario [13] if the dimension of the space of I/O
relations of type zXe +Xe for f is A > 0, then the keystream required in attack
will be E/A. Here, the keystream complexity is dominated by D and there is
little we can do to improve it. In fact, it can degrade the attack complexity, if we
wanted to use several equations out of A, we need to repeat the substitution step
A times, which in our best attack on Sfinks is the dominating step (in different
cases and for other cryptosystems another step may be dominating, see Table
1 and [18]). Therefore for all our attacks we will use only one out of these A
equations.
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3.5 Our Results

In order to apply the fast algebraic attacks we need to search for suitable equa-
tions by computer simulations on the Boolean function of Sfinks. Finding such
equations allows to execute the fast algebraic attack and there is very little the-
ory2 that would help to predict whether they do exist for a particular function.
One has to check by running a series of simulations. Here are our results:

Table 1. Simulations on the dimension of the space of equations of type zXe + Xd

for the Boolean function of Sfinks, i.e. the number of linearly independent functions g
of degree ≤ e such that h = fg is of degree ≤ d. The resulting complexity of the fast
algebraic attack (following [18]) is computed.

degree e of g
degree d of h = fg

dimension A of these g
out of which we used

complexity of the fast
algebraic attack [14, 18]:

pre-computation step

substitution step

solving step

keystream required

0 1 2 2 3 3 3 4 4 4 5 5
15 14 7 8 6 7 8 5 6 7 5 6

1 0 0 6 0 32 136 0 4 204 0 4
− − − 1 − 1 1 − 1 1 − 1

− − − 259.8 − 254.5 259.8 − 249.0 254.5 − 249.0

− − − 269.7 − 271 276 − 271.6 276.9 − 277.3

− − − 242.1 − 260.1 260.1 − 276.9 276.9 − 292.8

− − − 248.6 − 243.6 248.5 − 238.5 243.6 − 238.5

The designers of Sfinks do mention fast algebraic attacks but did not analyse
them in due details. Our fastest attack is in the column 4. We need 270 com-
putations and 249 keystream bits. In column 6 we need 271 computations and
243 keystream bits. In both these cases, the substitution step dominates all the
other steps of the attack.

We note that the attack in column 9 should also break Sfinks slightly faster
than the claimed security level of 280. It requires only about 238.5 keystream
bits, (about 50 Giga-bytes), which can be seen as a realistic attack on Sfinks.

4 Summary and Conclusion

Sfinks is not equipped with neither a protection against, nor a sufficient security
margin against algebraic attacks on stream ciphers [12, 13, 14, 18]. The result is
an insecure cipher that can be broken with complexity of about 271 computations
and with 243 keystream bits. We also present another attack slightly faster than
280 that requires only 50 Giga-bytes of keystream which is realistic.
2 There is a theory of worse-case attacks that show that some equations always exist

for any component of a given size, see [15], however for a specific fixed Boolean
function, better equations frequently do exist (e.g. for LILI-128, see [13]). This is
maybe because as already suggested by the authors of [13] and [1], one should expect
that there are trade-offs between (classical) non-linearity notions, and the resistance
against (more recent) algebraic attacks.
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Remark. In the design of block ciphers, Lars Knudsen (and others) have for
a long time promoted the following: see how many rounds we need to make it
secure, then double it (or even multiply by 4). We believe that stream ciphers
should also be designed with such a comfortable security margin. Sfinks demon-
strates that it is indeed very hard to design a fast and secure cipher with a very
small hardware footprint. Finally, maybe stream ciphers cannot really be much
faster than, e.g. AES in the counter mode.

Warning. It is hard to see if a cipher is already broken, or not, by already known
algebraic attacks. The so called “Algebraic Immunity” of a Boolean function [7]
does not solve the problem and it is unclear if it can give any guaranteed lower-
bound on the complexity of algebraic attacks on stream ciphers (it basically only
pertains to the simple attack scenario S3). Equations that lead to better attacks
can be found at any moment. According to [14] it seems very hard to expect to
explore systematically all the possibilities offered by the scenario S5 from [13].
The probabilistic versions S4 and S6 proposed in [13] are even more difficult to
explore. Thus, even better algebraic attacks on Sfinks may remain uncovered.
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Abstract. The COSvd (2,128) cipher was proposed at the ECRYPT
SASC’2004 workshop by Filiol et. al to strengthen the past COS (2,128)
stream cipher. It uses clock-controlled non-linear feedback registers
filtered by a highly non-linear output function and was claimed to
prevent any existing attacks. However, as we will show in this paper,
there are some serious security weaknesses in COSvd (2,128). The poorly
designed S-box generates biased keystream and the message could be re-
stored by a ciphertext-only attack in some broadcast applications . Be-
sides, we launch a divide-and-conquer attack to recover the secret keys
from O(226)-byte known plaintext with high success rate and complex-
ity O(2113), which is much lower than 2512, the complexity of exhaustive
search.

Keywords: Stream cipher, COS cipher, Divide-and-Conquer, Non-
linear feedback shift register.

1 Introduction

With the progress of the ECRYPT project, a lot of new stream ciphers emerge
recently. The COSvd (2,128) stream cipher was proposed by Filiol et. al at the
ECRYPT SASC’2004 workshop [3] and was claimed to resist against any existing
attacks. It uses two non-linear feedback shift registers and a highly non-linear
output function to generate keystream block-by-block. Compared to the original
COS (2,128) stream cipher [2], there are two major improvements in the new
design. First, at each step both the NLFSRs will update according to a clocking
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manner. Second, the 128-bit blocks generated via the crossing over mechanism
from the NLFSRs will go through a highly non-linear filter (consisting of a
chaotic layer and a S-box) to generate a 128-bit keystream block. Hence, the
previous efficient attacks on the weaker version COS (2,128) no longer work
[8, 9, 10]. It seems that the COSvd (2,128) stream cipher has been adopted for
at least one commercial standard. The designers claimed that this new version
can prevent any existing attacks.

However, as we will show below, there are still some serious flaws in COSvd
(2,128) stream cipher. The poorly designed S-box generates a biased keystream,
resulting in the retrieval of the plaintext messages in some broadcast appli-
cations. Moreover, there are strong correlations between the non-linear filter
function and the output keystream, which facilitates a divide-and-conquer at-
tack on the COSvd (2,128) stream cipher. Assume the chaotic layer uses double
precision floating-point real numbers (which is an important case in practice), a
divide-and-conquer attack is developed to restore the secret keys from O(226)-
byte keystream with success rate 93.4597% and complexity O(2113) , which is
much lower than 2512, the complexity of exhaustive search. Further, our attack
can be easily modified to work for any precision implementation of the chaotic
layer. The corresponding increase of complexity is very limited.

The rest of this paper is organized as follows. A description of the COSvd
(2,128) stream cipher is given in Section 2. Section 3 deals with the security
weaknesses in the design of the COSvd (2,128) stream cipher and presents a
divide-and-conquer attack based on these flaws. Finally, some conclusions are
given in Section 4.

2 Description of the COSvd (2,128) Stream Cipher

Since the key setup of the COSvd (2,128) has nothing to do with our analysis, we
ignore it here and only focus on the keystream generation process. The COSvd
(2,128) stream cipher uses two 128-bit non-linear feedback shift registers L1 and
L2 as basic building blocks. The feedback functions of L1 and L2 are available
from [3], they use bits 2, 5, 8, 15, 26, 38, 44, 47, 57 of L1 and L2 as inputs. Let
L1 = L10 ‖ L11 ‖ L12 ‖ L13 and L2 = L20 ‖ L21 ‖ L22 ‖ L23, where ‖ denotes
concatenation and Lij is a 32-bit word for i = 1, 2, j = 0, 1, 2, 3. At ith step, the
output keystream is generated as follows:

1. Compute clocking value d and d′.
(a) Compute clk = 2 ∗ lsb(L2) + lsb(L1), where lsb(·) denotes the least

significant bit.
(b) d = C[clk], where C[0, . . . , 3] = {64, 65, 66, 64}.
(c) Compute clk = 2 ∗msb(L1) + msb(L2), where msb(·) denotes the most

significant bit.
(d) d′ = C ′[clk], where C ′[0, . . . , 3] = {41, 43, 47, 51}.

2. If i is even, clock L1 d times and L2 d′ times. If i is odd, clock L1 d′ times
and L2 d times.
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3. Produce a 128-bit block Bi as Bi = Bi0 ‖ Bi1 ‖ Bi2 ‖ Bi3, where Bi0 =
L20 ⊕ L12, Bi1 = L21 ⊕ L13, Bi2 = L22 ⊕ L10 and Bi3 = L23 ⊕ L11, ⊕ is
bitwise exclusive or.

4. Divide Bi into 16 bytes Bj
i , 0 ≤ j < 16, then pass Bi byte-by-byte to the fol-

lowing HNLL (Highly Non-Linear Layer) to generate the output keystream.

Highly Non-Linear Layer (HNLL). This module aims at hiding the inter-
nal states of the NLFSRs and forbids the previous attacks against the COS
(2,128) cipher [8, 9, 10]. First, a 10-bit segment of a chaotic sequence is applied
to Bj

i . Then feed the outcome to a S-box to generate one byte keystream. More
precisely, The henon map [4, 5] is used to construct the chaotic sequence, i.e.
for an initial point (x−2, x−1), generate a binary sequence zi as follows. Let
xn = 1 + 0.3xn−2 − 1.4x2

n−1, then zn = 1 if xn > 0.39912. Otherwise zn = 0.
Generate another binary sequence z′i from (x′

−2, x
′
−1) in the same way, Xor zi

and z′i to get a binary sequence h0, h1, . . .. For each Bj
i = bj

i7, b
j
i6, . . . , b

j
i0, trun-

cate two chaotic segments Hj
i = h10(16i+j) ‖ h10(16i+j)+1 ‖ . . . ‖ h10(16i+j)+7 and

Kj
i = h10(16i+j)+8 ‖ h10(16i+j)+9, generate one byte keystream as Tabkey2[Bj

i ⊕
Hj

i ][Kj
i ], where Tabkey2 is a F

8
2 × F

2
2 to F

8
2 S-box given in Appendix A.

The key of the COSvd (2,128) consists of the initial states of the two non-linear
feedback shift registers and the initial values (x−2, x−1), (x′

−2, x
′
−1). In [3], the

designers do not specify the accuracy of the latter four real numbers. Although
our attack works for any precision implementation of the chaotic layer, we focus
on the case that these four real numbers are all in double precision floating-
point form in our analysis, which is an important case in practical applications.
Following the IEEE 754 floating-point standard [6], a double precision floating-
point number is represented as a 64-bit word, thus the key space of the COSvd
(2,128) stream cipher in our analysis is 2512.

3 Our Analysis

In this section, we will show that there are some serious security flaws in COSvd
(2,128) stream cipher. First, the output keystream of this cipher is biased due
to the poorly designed S-box. It is easy to distinguish the keystream of COSvd
(2,128) from a truly random binary sequence. In some broadcast applications
where a message is encrypted many times with different segments of keystream,
we can restore the message easily from the ciphertexts. Second, there are strong
correlations between the keystream and the non-linear filter function. It is a
typical case to launch a divide-and-conquer attack.

3.1 Some Weaknesses

According to the specification of the S-box Tabkey2 in Appendix A, the distri-
bution of each integer in [0, 256) can be computed easily. The results are listed
in Table 1. We can see from Table 1 that though 238 elements appear 4 times
as expected, 18 elements appear more or less than 4 times, which can be used
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Table 1. Distribution of integers [0, 256) in Tabkey2

Times Number Element
2 1 {0}
3 8 {2, 11, 50, 52, 65, 104, 160, 208}
5 8 {4, 5, 19, 32, 37, 75, 174, 151}
6 1 {17}
4 238 Others

to distinguish the keystream. For example, the byte 17 appears with probability
6/(256 ·4) = 3/29. In the keystream, byte 17 appears about 1.5 times more than
it appears in a random binary sequence. We verified the above statement with
experiments. We generated 218-byte keystream and found that the probability
that 17 appears in it is 2−8 + 1.05 · 2−9, which is very close to 3/29.

Due to the large biases in the keystream, the plaintext message could be recov-
ered in some broadcast applications when one message is encrypted many times
with different segments of keystream [7]. Assume the message m = m1 . . .ml

(consisting of l bytes) is encrypted for N times. For each mi, the corresponding
ciphertext byte sequence is mi ⊕ cj (1 ≤ j ≤ N). Byte 17 ⊕ mi appears in
the ciphertext byte sequence with probability p = 2−8 + 2−9 and is expected
to be the most frequently appearing element. In N samples, byte 17 has bino-
mial distribution (N, p) rather than (N, p′ = 2−8) in the random case. We ap-
proximate the binomial distribution with the normal distribution. Let u = Np,
σ =

√
Np(1− p) be mean and the standard deviation, respectively. Let u′ and

σ′ be the corresponding parameters in random case. If |u − u′| > 2(σ + σ′),
i.e. N > 216.31, the byte sequence mi ⊕ cj can be distinguished from random
byte sequence m′

i ⊕ cj with probability 0.9772. Hence, we can recover the mes-
sage m byte-by-byte in this way. In our experiments, we encrypted the message
by COSvd(2,128) for 217 times and successfully recovered the message byte by
xoring the most frequently appearing byte in the ciphertext with 17.

Except for the above flaws, there are still some other weaknesses in the S-box.
For example, if byte 50 appears in the output keystream, then from the array
in Appendix A (it is in C language-like notation), we know that there are three
candidate positions generating 50, i.e. (68, 0), (108, 2) and (115, 3). Transform
the coordinates into binary form, we have:

68→ 01000100, 0→ 00
108→ 01101100, 2→ 10
115→ 01110011, 3→ 11. (1)

Let our eyes go down each column, we can see From (1) that

bj
i7 ⊕ h10(16i+j)+7 = bj

i6 ⊕ h10(16i+j)+6 ⊕ 1 = 0

bj
i0 ⊕ h10(16i+j) = bj

i1 ⊕ h10(16i+j)+1 = h10(16i+j)+9

bj
i0 ⊕ h10(16i+j) = bj

i4 ⊕ h10(16i+j)+4
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bj
i2 ⊕ h10(16i+j)+2 = bj

i4 ⊕ h10(16i+j)+4 ⊕ 1

bj
i5 ⊕ h10(16i+j)+5 = h10(16i+j)+8

bj
i4 ⊕ h10(16i+j)+4 ⊕ bj

i5 ⊕ h10(16i+j)+5 = bj
i3 ⊕ h10(16i+j)+3

bj
i2 ⊕ h10(16i+j)+2 ⊕ bj

i3 ⊕ h10(16i+j)+3 = 1⊕ bj
i5 ⊕ h10(16i+j)+5, (2)

and

P (h10(16i+j)+8 = 1) = 2/3
P (h10(16i+j)+9 = 0) = 2/3. (3)

From (2) and (3), we can see that there are strong correlations between the
inputs and the outputs of the S-box. In fact, we tested all the bytes in [0, 256)
and our experimental results show that the linear equations in (2) exist for every
byte (for the sake of limited space, we omit the results here), the only difference
is that in some cases we get less equations than in the above example. Hence,
from the keystream, we can deduce a lot of linear equations in terms of the bits
in Bj

i ⊕H
j
i and Kj

i . One may expect to launch a known plaintext attack based on
these linear equations to break this cipher. However, the existence of the chaotic
sequence makes such efforts fail.

3.2 A Divide-and-Conquer Attack

Instead, we develop a divide-and-conquer attack to remove the HNLL from the
non-linear feedback shift registers first, after which the internal states of the
NLFSRs could be easily recovered.

First note that although the single bit distribution of the henon map is
balanced due to the careful choice of the threshold value 0.39912, the two-
bit distribution of the henon map is heavily biased. By generating 230 output
bits with different starting points within the convergence quadrilateral Q de-
fined by (−1.33, 0.42), (1.32, 0.133), (1.245,−0.14) and (−1.06,−0.5), we ob-
tain that (zi, zi+1) would be (0, 0), (0, 1), (1, 0) and (1, 1) with probability
0.25 − 2−3.2811, 0.25 + 2−3.36745, 0.25 + 2−3.36745 and 0.25 − 2−3.45931, respec-
tively. These large biases form the basis of our divide-and-conquer attack. Be-
sides, the henon map has another security weakness under the double preci-
sion floating-point assumption. According to the IEEE 754 floating-point stan-
dard [6], a double precision floating-point real number is represented as a 64-bit
word: 1 bit for sign, 11 bits for the exponent and a 52-bit mantissa. There is
an implied high-order 1-bit which is always set to 1. Let e = e10e9, . . . , e0 be
the 11-bit exponent and d1d2 . . . d52 denote the 52-bit mantissa, where di(1 ≤
i ≤ 52) are binary numbers. Then the absolute value of a double precision
floating-point number is (1 +

∑52
i=1 di · 2−i) · 2e−1023. Here comes our obser-

vation, see Figure 1. Let e = e10e9, . . . , e0, if we only search e2e1e0 and let
(e10, e9 . . . , e3) = (0, 1, 1, . . . , 1), then the points that we do not cover by this
method are those with the absolute value of at least one coordinate less than
2−7 + 2−7 · (1 − 2−52) < 2−6 = 0.015625. Thus the probability that we guess
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x

y

Fig. 1. Convergence quadrilateral Q and the guessed area

correctly is very high, i.e. the area covered by the internal points with the abso-
lute value of either y-coordinate or x-coordinate less than 0.015625 is quite small
compared to the whole area Q. We use Helen formula to compute the area of
triangles involved in Figure 1. The proportion that the dashed area vs the whole
area Q is (0.00953758 + 0.0389093 − 0.000244141)/1.48139 = 3.25389%. Hence,
if we exhaustively search the initial point (x−2, x−1) of one henon map sequence
in this way, the complexity is only O(2112), while with success rate 96.7461%.

Now we are ready to present our divide-and-conquer attack. The basic idea
of our attack is as follows. If we guess the initial point (x−2, x−1) of one henon
map sequence and deduce partial information of Kj

i from the keystream and zi

generated from (x−2, x−1) by the specified correlation, then we can determine
the two-bit distribution of the xored sequence of Kj

i and zi. If the resulted
sequence behaves like a henon map sequence under the circumstance, we accept
the guess. Otherwise, discard it.

More precisely, let f : GF (2)2 → R be a distribution for x ∈ GF (2)2,
it is well known that [1] the distribution of the xor of 2 i.i.d. (independent
and identical distribution) random vectors with distribution f is f⊗2, where
f⊗2 = (f ⊗ f)(x) =

∑
y∈GF (2)2 f(y) · f(x ⊕ y). For a henon map sequence zi,

its two-bit distribution is f(0) = 1/4− 2−3.2811, f(1) = 1/4 + 2−3.36745, f(2) =
1/4 + 2−3.36745, f(3) = 1/4− 2−3.45931 (here we use quaternary representation).
Thus the two-bit distribution of the xor of two henon map sequences is:

f⊗2(0) =
3∑

i=0

f(i) · f(i) = 0.287625, f⊗2(1) =
3∑

i=0

f(i⊕ 1) · f(i) = 0.212447

f⊗2(2) =
3∑

i=0

f(i⊕ 2) · f(i) = 0.212447, f⊗2(3) =
3∑

i=0

f(i⊕ 3) · f(i) = 0.287482.

Now the mountain in front of us is that from the output keystream we can not
uniquely determine the value of Kj

i , which seems to frustrate the consequent
procedures. However, due to the poorly designed S-box Tabkey2, this difficulty
can be overcome by the following method. Note that byte 0 appears in the
keystream only when Kj

i = 01 or 10, which implies that if we guess (x−2, x−1),
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Fig. 2. Guess process

generate zi and xor the corresponding z10(16i+j)+8 ‖ z10(16i+j)+9 whenever the
output byte is 0 with 01 and 10 respectively, we actually xor z10(16i+j)+8 ‖
z10(16i+j)+9 by Kj

i and Kj
i ⊕ 11 respectively, since 01⊕ 10 = 11 is commutative.

Figure 2 shows the process. In Figure 2, the dashed route represents the actual
value of Kj

i . Then we can count the two-bit probability of the resulted sequence
to see if the guess is correct.

If the byte 0 in the keystream corresponds to Kj
i = 10, the two-bit distribution

of the corresponding sequence z′i is as follows.

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 00 |Kj
i = 10)

=
P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 00, z10(16i+j)+8 ‖ z10(16i+j)+9 = 10)

P (Kj
i = 10)

=
(1/4− 2−3.2811)(1/4 + 2−3.36745)

0.212447
= 0.24024

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 01 |Kj
i = 10)

=
P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 01, z10(16i+j)+8 ‖ z10(16i+j)+9 = 11)

P (Kj
i = 10)

=
(1/4− 2−3.45931)(1/4 + 2−3.36745)

0.212447
= 0.259759

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 10 |Kj
i = 10) = 0.24024

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 11 |Kj
i = 10) = 0.259759.

If the byte 0 in the keystream corresponds to Kj
i = 01, the two-bit distribution

of the corresponding z′i can be computed similarly and we just list the results
here.

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 00 |Kj
i = 01) = 0.24024

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 01 |Kj
i = 01) = 0.24024

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 10 |Kj
i = 01) = 0.259759

P (z′10(16i+j)+8 ‖ z′10(16i+j)+9 = 11 |Kj
i = 01) = 0.259759.

Hence, if (x−2, x−1) is correctly guessed, then each two-bit pattern appears in
the resulted sequence with probability:

(0.24024 · l
2

+ 0.24024 · l
2

+ 0.259759 · l
2

+ 0.259759 · l
2
)/2l

= (0.24024 + 0.259759)/2 = 0.25, (4)
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i.e. uniform distribution, where l is the number of 0 byte in the keystream. If
the initial point is wrongly guessed and sequence z′′i is generated, then

(z′′10(16i+j)+8, z
′′
10(16i+j)+9)⊕ (z10(16i+j)+8, z10(16i+j)+9)

⊕(z′10(16i+j)+8, z
′
10(16i+j)+9)

= (z′′10(16i+j)+8, z
′′
10(16i+j)+9)⊕ (10) or

= (z′′10(16i+j)+8, z
′′
10(16i+j)+9)⊕ (01),

i.e. pair (00) of z′′ maps to (10), (01) to (11), (10) to (00) and (11) to (01) if
Kj

i = 10; pair (00) maps to 01, (01) to (00), (10) to (11) and (11) to (10) if
Kj

i = 01. Hence, the two-bit distribution of the resulted sequence is:

00 :
l
2 ( 1

4 + 2−3.36745) + l
2 ( 1

4 + 2−3.36745) + l
2 ( 1

4 + 2−3.36745) + l
2 ( 1

4 + 2−3.36745)
2l

=
1
4

+ 2−3.36745

01 :
l
2 ( 1

4 − 2−3.45931) + l
2 ( 1

4 − 2−3.2811) + l
2 ( 1

4 − 2−3.2811) + l
2 ( 1

4 − 2−3.45931)
2l

=
1
4
− 2−3.36746

10 :
1
4
− 2−3.36746, 11 :

1
4

+ 2−3.36745. (5)

It is obvious that the distribution in (5) is different from that in (4), which
can be used to filter out the wrong guesses. We made experiments to verify the
above analysis. We generated 230-bit chaotic sequence of zi ⊕ z′i. If (x−2, x−1)
is correctly guessed, the distribution of 00 in (zi, zi+1) ⊕ 01 and (zi, zi+1) ⊕ 10
whenever (zi, zi+1)⊕ (z′i, z

′
i+1) = 01 or 10 is 0.25016676 as expected. Otherwise,

this value is 1/4 + 2−3.36799, which is very close to the theoretical result.
Assume (28 · n)-byte keystream are available, then n/2 non-consecutive 0-

byte keystream are known to a cryptanalyst. Randomly guess the initial point
(x−2, x−1) and generate sequence zi. For each byte 0 in the keystream, xor the
corresponding pair (z10(16i+j)+8, z10(16i+j)+9) with (01) and (10), respectively.
Let G = {(z10(16i+j)+8, z10(16i+j)+9)⊕ (01), (z10(16i+j)+8, z10(16i+j)+9)⊕ (10)}i,j
be the resulting sequence. Let a0, a1, a2 and a3 be the number of (00), (01),
(10) and (11) in the resulting sequence G, respectively. If (x−2, x−1) is correctly
guessed, (00), (01), (10) and (11) would appear with uniform distribution in the
resulting sequence. Let

A = {(a0, a1, a2, a3) | n · (
1
4
− x) ≤ a0, a1, a2, a3 ≤ n · (1

4
+ x)

and a0 + a1 + a2 + a3 = n}, (6)
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where x is a parameter to be determined later so that if the correct point is
guessed, (a0, a1, a2, a3) ∈ A with the following probability P1 very close to 1.

P1 =
∑

(a0,a1,a2,a3)∈A

n!
a0!a1!a2!a3!

· (1
4
)n

P2 =
∑

(a0,a1,a2,a3)∈A

n!
a0!a1!a2!a3!

· (1
4

+ 2−3.36745)a0+a3 · (1
4
− 2−3.36746)a1+a2 ,

where P2 is the probability that a wrong guess will result in (a0, a1, a2, a3) ∈ A.
Instead of computing P1 and P2 directly, we approximate P1 and P2 with the
multivariate normal distribution:

P1 ⇀

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

f(y1, y2, y3)dy1dy2dy3 (7)

P2 ⇀

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

∫ n( 1
4+x)+0.5

n( 1
4−x)−0.5

g(y1, y2, y3)dy1dy2dy3, (8)

where f(y1, y2, y3) = 1√
(2π)3(|B|)

e−(y−u)T B−1(y−u)/2, y = (y1, y2, y3)T and u =

(n/4, n/4, n/4)T , matrix B is given as follows:⎛⎝ 3
16n −

1
16n −

1
16n

− 1
16n

3
16n −

1
16n

− 1
16n −

1
16n

3
16n

⎞⎠ .

Similarly, in (8), g(y1, y2, y3) = 1√
(2π)3(|B′|)

e−(y−u′)T B′−1(y−u′)/2, u′ = ((1/4 −
2−3.36746)n, (1/4 + 2−3.36745)n, (1/4 + 2−3.36745)n)T and B′ is:⎛⎝ 0.129665n −0.0531118n −0.0531118n

−0.0531118n 0.226559n −0.120335n
−0.0531118n −0.120335n 0.226559n

⎞⎠ .

We use Mathematica to compute P1 and P2 for different values of n and x in our
experiments. We found that when n = 212 and x = 96/212, P1 = 0.998521 and
P2 = 2−193.725 < 2−112. Since byte 0 appears in the keystream with probability
2−9, we can restore (x−2, x−1) with success rate 0.967461 · 0.998521 = 96.603%
and complexity O(2112) from O(220)-byte keystream.

So far, we have recovered the initial point (x−2, x−1) of one henon map se-
quence. The remaining problems are to get the initial point (x′

−2, x
′
−1) of the

other henon map sequence and the initial states of the NLFSRs. As can be seen
below, it is much easier to fulfill the remaining tasks.

When targeting (x′
−2, x

′
−1), it suffices to note that if we exhaustively search

(x′
−2, x

′
−1) and generate z′i, then h10(16i+j)+8 = 1⊕ h10(16i+j)+9 hold with prob-

ability 1 whenever the corresponding output byte is 0. Therefore, given 216-byte
keystream, the wrong guesses of (x′

−2, x
′
−1) would pass the filter process with
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probability 2−128. The overall complexity till now is O(2112 + 2112) = O(2113)
and the success rate is 0.9674612 · 0.998521 = 93.4597%.

After getting (x′
−2, x

′
−1), we know exactly the values of Kj

i , which implies
that we can remove the HNLL from the output of two NLFSRs in almost all
cases (except for those 9 bytes appear ≥ 5 times in S-box: in each case only 1 or
2 Kj

i values cause little uncertainty because of large correlations specified above
and this will cause the increase of complexity only by a constant factor), i.e.
from the output keystream and Kj

i , we know the corresponding inputs Bj
i ⊕Hj

i

to the S-box. Since the two henon map sequences have been recovered already,
we know exactly Bj

i . Consider any seven consecutive steps starting from an odd
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40ω
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Fig. 3. 7 consecutive steps

step, as shown in Figure 3. L1 is clocked d times at the second, fourth and
sixth steps and d′ times at the other steps. L2 is the opposite. In Figure 3, a,
b, c, x, ω, y, S, U , ki (1 ≤ i ≤ 13) and W are 64-bit words. Here we use the
notations ki (1 ≤ i ≤ 13) to represent the outcomes of the two NLFSRs through
the cross over mechanism. Without loss of generality, we assume in these seven
steps, d = 64 and d′ = 41. This case occurs with probability (2−3)6 = 2−18 and
other cases can be treated similarly. Thus the lengths of strings ω′, ω′′, x1, x2,
b′, b′′, c1, c2, y1, y2, T , V , S1, S2, Z, U1, U2, W1 and W2 can be determined
accordingly. According to the clocking rule of COSvd(2,128) and the cross over
mechanism, we have: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b63 ⊕ ω63 = k1,63
· · ·

b0 ⊕ ω0 = k1,0
a63 ⊕ x63 = k2,63
· · ·

a0 ⊕ x0 = k2,0
b63 = 0
x63 = 0
a0 ⊕ ω0 = 0,
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where b = b63 . . . b0, ω = ω63 . . . ω0, a = a63 . . . a0, x = x63 . . . x0 and ki =
ki,63 . . . ki,0. We have 256 unknown bits (involved in a, b, x and ω), while we
already get 131 linear equations. This is the flaw of the cross over mechanism.
If we forward to step 2, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c63 ⊕ x40 = k3,63
· · ·

c23 ⊕ x0 = k3,23
c22 ⊕ ω63 = k3,22
· · ·

c0 ⊕ ω41 = k3,0
b63 ⊕ ω′′

40 = k4,63
· · ·

b23 ⊕ ω′′
0 = k4,23

c63 = 0
ω′′

40 = 0
b0 ⊕ ω41 = 0,

especially, ⎧⎨⎩
b22 ⊕ x63 = k4,22
· · ·

b0 ⊕ x41 = k4,0,

i.e. we get 23 more linear equations on a, b, x and ω. Besides, the new added
bits in c and ω′′ can be represented as linear combinations of the keystream bits
and the bits involved in b, x and ω. With the steps forwarding, the new added
variables can all be represented as linear combinations of keystream bits and the
bits involved in b, x and ω and we can get 23 more linear equations on the initial
states every one more step. For example, in step 3, we get:⎧⎨⎩

c63 ⊕ x63 = k3,63 ⊕ x40 ⊕ x63 = k5,22
· · ·

c41 ⊕ x41 = k3,41 ⊕ x18 ⊕ x41 = k5,0,

and so on. In step 7, we get:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W41 ⊕ U41 = k11,41 ⊕ k10,18 ⊕ k5,59 ⊕ k4,59 ⊕ b59 ⊕ k12,0 ⊕ k9,0 ⊕ k8,0 ⊕ c41

= k13,0
· · ·

W63 ⊕ U63 = k11,63 ⊕ k10,40 ⊕ k7,17 ⊕ k4,58 ⊕ b58 ⊕ k12,22 ⊕ k9,22 ⊕ k8,22 ⊕ c63
= k13,22.

At the end of the seventh step, we can get at least 128 + 23 · 6 = 266 linear
equations on the bits of a, b, x and ω. Hence, we can verify the consistency of
the linear system to filter out the wrong positions and solve the linear system
whenever the consistency is satisfied to get the values of a, b, x and ω. The
required keystream length is 7 · 218 · 2 · 24 → O(226) bytes, while the complexity
is O(224 + (225 − 1) · 224) = O(249).
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So far, we have completely recovered the secret keys of COSvd(2,128) with
complexity O(2113) and success rate 93.4597% from O(226)-byte keystream. Our
analysis shows that it is hard to say the design of COSvd(2,128) is success-
ful. There are quite a number of security flaws in it, although several methods
have been used to strengthen the security of this cipher. The main strength of
COSvd(2,128) lies in the chaotic layer, other parts of this cipher is quite weak in
cryptographic sense. Although the attack parameters are determined under the
double precision floating-point assumption, our attack actually works for any
precision implementation of the chaotic layer. The only difference is the slightly
increased complexity contributing to search the initial point (x−2, x−1) of one
henon map. The vital weakness of this cipher is the poorly designed S-box, which
is the basis of our divide-and-conquer attack.

4 Conclusion

In this paper, we showed that although several methods have been used to
strengthen the security of COS(2,128), the stream cipher COSvd(2,128) is still
insecure. There are some serious security weaknesses in this cipher. We devel-
oped a divide-and-conquer attack to recover the secret keys much faster than the
exhaustive search. We suggest that this cipher should not be used in practice.
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A Function Tabkey2 [3]

unsigned char Tabkey2[256][4] = {
{17,198,0,37},{210,240,183,153},{228,85,222,214},{130,147,36,201},
{217,169,187,173},{80,238,162,101},{135,12,178,219},{6,13,48,93},
{132,8,152,196},{227,86,199,249},{161,220,69,202},{147,53,185,244},
{241,226,101,158},{151,25,145,8},{13,27,26,186},{174,10,133,55},
{200,26,139,241},{12,17,24,180},{138,22,170,226},{213,209,166,178},
{186,247,22,193},{2,5,241,17},{167,213,104,236},{187,245,72,61},
{221,105,236,91},{29,49,33,16},{75,17,34,17},{126,156,76,74},
{26,54,52,28},{88,249,193,246},{115,187,214,110},{232,218,119,146},
{156,42,59,154},{16,33,51,24},{25,35,49,30},{207,76,217,167},
{168,103,83,212},{175,91,126,253},{211,254,77,59},{74,202,229,40},
{199,211,45,184},{134,196,23,4},{5,5,227,5},{1,3,118,159},
{155,36,15,224},{76,214,100,230},{106,136,254,122},{94,246,54,68},
{165,192,74,183},{202,31,150,123},{58,99,67,33},{154,38,97,216},
{35,100,224,34},{64,193,28,116},{252,57,153,149},{216,24,146,240},
{52,108,105,57},{85,177,252,232},{177,243,130,223},{51,102,155,44},
{230,119,175,221},{21,43,17,137},{142,183,30,25},{40,114,80,121},
{180,124,109,166},{54,106,110,43},{33,66,102,49},{60,120,198,39},
{50,70,98,60},{128,1,60,211},{55,90,8,22},{198,140,159,189},
{39,74,78,38},{42,89,84,53},{49,116,186,46},{38,73,3,56},
{41,112,82,119},{215,175,71,203},{149,148,161,81},{113,172,107,251},
{45,95,91,41},{235,64,212,78},{9,9,19,9},{10,28,255,82},
{11,23,201,10},{247,185,85,237},{3,7,237,42},{87,227,249,213},
{15,30,31,168},{159,231,163,215},{153,173,200,252,},{231,94,203,139},
{212,16,253,245},{239,215,32,58},{188,237,108,136},{14,20,29,85},
{61,122,125,54,},{253,166,225,160},{218,34,148,247},{117,210,61,66},
{116,199,134,67},{124,184,223,64},{89,163,195,248},{169,82,68,197},
{70,200,192,69},{102,207,138,199},{129,131,86,233},{190,127,238,90},
{95,252,50,6},{183,123,189,47},{246,109,124,152},{179,101,209,135},
{104,217,210,114},{32,32,65,140},{170,98,248,195},{91,165,14,50},
{146,133,38,235},{152,32,129,148},{103,205,42,89},{18,18,37,18},
{254,60,177,208},{242,96,115,32},{43,87,35,62},{140,135,47,228},
{56,83,116,51},{143,21,220,72},{81,228,160,243},{201,152,44,182},
{244,232,245,217},{114,170,239,107},{108,212,221,86},{67,134,89,109},
{66,132,204,98},{192,206,142,128},{120,241,140,79},{150,62,13,225},
{100,141,197,120},{69,139,213,113},{93,251,11,96},{83,234,180,118},
{110,180,246,45},{144,48,234,157},{203,44,63,14},{57,93,235,162},
{78,149,157,77},{160,157,79,15},{84,179,169,106},{105,255,81,29},
{99,233,117,92},{189,110,251,187},{77,146,7,112},{53,68,127,142},
{82,224,165,238},{219,46,55,144},{214,51,112,177},{173,250,111,192},
{136,189,16,163},{166,72,158,111},{226,88,215,210},{71,219,143,12},
{90,190,182,83},{176,115,99,227},{145,186,53,156},{27,45,132,11},
{19,19,39,19},{24,58,93,23},{20,56,41,164},{225,195,208,155},
{22,47,88,20},{4,4,9,133},{193,2,228,161},{250,203,66,21},
{7,15,219,84},{248,253,10,126},{174,133,242,198},{240,225,90,220},
{30,61,62,27},{109,145,202,206},{243,204,87,175},{44,81,173,124},
{195,55,144,188},{223,239,43,194},{47,126,181,3},{123,182,190,76},
{151,8,46,151},{185,181,240,97},{73,194,147,117},{194,19,149,172},
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{127,158,216,104},{204,151,106,31},{28,41,58,170},{157,40,167,234},
{122,244,250,108},{148,59,40,222},{184,229,113,190},{237,6,137,130},
{131,4,6,254},{46,125,5,48},{234,164,123,132},{101,150,179,7},
{233,143,12,134},{171,137,95,191},{249,113,191,129},{220,171,25,185},
{178,71,135,200},{107,153,56,88},{68,222,136,231},{209,176,4,105},
{141,144,27,138},{72,221,154,242},{205,159,21,141},{181,107,20,255},
{251,80,172,147},{96,129,114,80},{197,121,232,181},{255,117,194,99},
{191,248,120,13},{121,230,171,87},{97,155,205,94},{23,63,218,1},
{75,0,151,75},{36,97,73,165},{63,79,92,52},{163,69,247,204},
{208,178,164,229},{92,242,184,95},{65,130,131,127},{164,235,122,239},
{236,216,231,131},{229,128,207,174},{182,75,196,100},{34,111,103,115},
{172,92,141,250},{196,14,128,70},{125,168,2,73},{98,188,244,209},
{206,154,188,179},{48,77,230,176},{37,37,75,37},{31,39,174,26},
{224,78,211,205},{139,223,1,63},{118,236,243,65},{245,191,226,150},
{86,174,70,125},{62,84,168,36},{158,138,94,207},{137,162,18,169},
{112,167,233,102},{59,118,121,171},{238,67,96,145},{79,197,57,103},
{162,201,64,143},{119,161,176,218},{222,29,156,71},{111,142,206,35}};
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Abstract. We propose modes for weakly-secure block ciphers that take
one block input to provide output of arbitrary length. Damg̊ard and
Nielsen proposed such a mode called the Pseudorandom Tree (PRT)
mode, and demonstrated that PRT could be used to establish a commu-
nication channel that is secure against Chosen-Plaintext Attacks, if the
underlying block cipher is secure against any Known-Plaintext Attacks.
We present a mode that reduces the key size of PRT to about 60% with-
out any additional computation. We call this the Extended PRT (ERT)
mode and prove its security. One drawback of PRT and ERT is that their
key sizes are not much small under small expansion, since functions with
small expansion are important from practical point of view. We also
present a mode that greatly reduces the key size under small expansion.

1 Introduction

Known-Plaintext Attack (KPA) is a weaker cryptographic attack than Chosen-
Plaintext Attack (CPA), as KPA requires the attacker to use uniformly random
and independent plaintexts, whereas CPA allows adaptive strategies for choosing
plaintexts. KPA-secure functions and their applications have been studied by
many researchers [1, 12, 13]. Modes of KPA-secure function can offer ways of
using such weakly-secure functions or provide some extra security if they are
used with strongly-secure functions, e.g., AES.

One excellent work on this topic was done by Damg̊ard and Nielsen [4]. They
proposed the Pseudorandom Tree (PRT) mode, which turns a KPA-secure n-bit
block cipher into a KPA-secure function with n-bit input and nθ-bit output for
some positive integer θ where θ is the expansion rate. The PRT mode was shown
to be KPA-secure if the underlying block cipher was KPA-secure. Damg̊ard and
Nielsen demonstrated that the PRT could be securely used as an additive stream
cipher using a random initial vector (IV). Their proposal was simple: generate
uniformly random input to the PRT and use it as a header. The ciphertext
consisted of the header and the XOR of the plaintext and the PRT’s output.
This protocol was apparently secure against CPA, since a CPA cannot manipu-
late the header. Moreover, they showed that standard modes such as CTR and
CBC could not be used as a mode for KPA-secure block cipher to provide com-
munication secure against CPAs. Therefore, these standard modes cannot be a
substitute for PRT. While a naive approach requires θ keys of a KPA-secure

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 284–298, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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block cipher if we want to expand the output θ times, PRT uses only a constant
(1 or 2) number of block cipher keys, which we call master keys, and expands
them to obtain 2 log2 θ expanded keys. These expanded keys, that hereafter we
will simply call keys, are used to form a binary tree.

In this paper, we propose two provably-secure approaches to reducing the
(expanded) key size of PRT. Specifically, our focus is not on the order, but on
the constant of key size, since it seems extremely difficult to improve the key
size of PRT to O(1) (which implies a mode with a constant-time keyscheduling),
as pointed out by Damg̊ard and Nielsen. Nonetheless, we demonstrate that the
constant of key size can be greatly reduced for practical expansion rate with-
out any additional computation. To our knowledge, this is the first attempt to
improve the PRT.

The first approach, which we will call the Extended PRT (ERT) mode, is a
natural extension of PRT. ERT mode inherits all the beneficial characteristics of
PRT, such as optimal throughput (c block cipher invocations produce c blocks of
output) and log-time random access to an output block in an arbitrary position.
The key observation with ERT is that the composition operator used by PRT
is not fully optimized. A simple change to the composition operator yields a
mode using 2 log3 θ keys, where θ is the expansion rate. This is about 60% of
the PRT’s key size. Since ERT merely changes the composition operator, no
additional computation is needed. Although the ERT’s key size is still O(log θ),
it is a very simple and practical solution to reduce the key size.

One drawback of PRT and ERT is poor performance (with respect to key
size) under small expansion. This originates from the overhead involved in PRT
and ERT. To solve this problem, we employed quite a different approach from
them. In our second proposal, which was called the Factorial Tree (FCT) mode,
we utilized all possible cascades of d distinct elements among r independent
block ciphers (d ≤ r). Here, r indicates the key size and d is a parameter called
depth. FCT’s throughput is optimal and random access requires at most d block
cipher calls. The expansion rate of FCT is O(rd) and hence FCT’s key size is
asymptotically larger than that of PRT or ERT if d is a constant. However,
FCT provides a smaller key size than those of PRT and ERT under a small
expansion rate even if the depth is a very small constant, since FCT has no
overhead. For example, if the target expansion rate is 4, PRT requires 4 keys,
i.e., it achieves no improvement, while FCT with depth 2 requires only 2 keys.
Moreover, FCT with depth 3 is better than PRT or ERT for expansion rate
up to about 2500, which might be large enough for some practical applications.
We emphasize that the expansion rate need not be much large in practice and
hence the key size for small expansion is an important performance measure. For
example, in the encrypted communication described before, the expansion rate
need not correspond to the length of a plaintext: if the length of a plaintext is
longer than the output length of a KPA-secure function, we simply issue another
random IV and concatenate two outputs to get a longer keystream. The header
of the ciphertext is a concatenation of two IVs. Obviously, there is a trade-off
between the expansion rate and the maximum length of a header.
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This paper is organized as follows. First, we give some definitions on provable
security against CPA and KPA in Sect. 2. Then, we describe basic compositions
for building a KPA-secure function in Sections 3.1 and 3.2. We also describe
the PRT mode and its security in Sect. 3.3. In Sect. 4, we define the ERT mode
and demonstrate that it effectively reduces the key size. Then we show the FCT
mode, which works better than PRT or ERT for small expansion. We summarize
our results and conclude in Sect. 5.

2 Preliminaries

2.1 Random Functions and Their Compositions

Definition 1. A set of functions indexed with a random key is called a random
function (RF). If F : X → Y is an RF, it is distributed over {f : X → Y}. If
we want to emphasize F’s key is K, FK is written. Moreover, an RF: {0, 1}n →
{0, 1}m with uniform distribution is called a uniform random function (URF)
and denoted by Rn,m. An RF with uniform distribution on all n-bit permutations
is called a uniform random permutation (URP) and denoted by Pn.

Note that the word “random” does not imply uniformity in our definition. A
random function only means that it is probabilistic. As they were in Def. 1, RFs
will be written in bold symbols. If F and G have common input/output spaces,
they are called compatible. Moreover, if their input/output distributions are
identical, we say they are equivalent (even if their key spaces are incompatible).

Definition 2. Let F : X → Y, and G : Y → Z, and H : X ×Y → Z. We define
two operators, F �G : X → Y ×Z and F �H : X → Y ×Z, as follows.

F �G(x) def= (F(x),G(F(x))), and F �H(x) def= (F(x),H(x,F(x))).

2.2 Notions of Security and Their Properties

We will now describe the notions of security against CPA and KPA. All our
security definitions are the same as the standard ones [2, 4]. Consider an attacker,
D, that can access the encryption oracle (EO). Here, EO has implemented H,
which is equivalent to either F or G. D determines whether H is F or G after
the interaction with EO. The advantage of D is defined as

V(F,G|D)def= |Pr[D’s guess is F|H=F]− Pr[D’s guess is F|H=G]|. (1)

Definition 3. The CPA-advantage (KPA-advantage) is defined as the maximal
advantage of all attackers using CPA (KPA). That is,

Advcpa
F,G(q, t) def= max

D:(q,t)-CPA
V(F,G|D),Advkpa

F,G(q, t) def= max
D:(q,t)-KPA

V(F,G|D).
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Here, (q, t)-CPA denotes a CPA that uses q queries with time complexity t1.
Similarly, (q, t)-KPA denotes a KPA that uses q independent and uniformly
random queries with time complexity t. Especially, let

Advprf
F (q, t) def= Advcpa

F,R(q, t), Advwprf
F (q, t) def= Advkpa

F,R(q, t), (2)

where R is a URF compatible to F.

If Advprf
F (q, t) (Advwprf

F (q, t)) is negligible for any practical (q, t), we say F is a
pseudorandom function (PRF) (a weak pseudorandom function, WPRF).

Let F,G be compatible RFs with n-bit input, and let R be the URF with
n-bit output. The following equation will play an important role in our analysis.

Advcpa
RF,RG(q, t) = Advkpa

F,G(q, t + O(nq)). (3)

This is natural, since all adaptive strategies are useless in distinguishing R � F
from R � G. The only difference is in the way they generate uniformly random
inputs for F and G. We assume the time for generating q uniformly random
inputs needs O(nq) computation time. Hereafter, t + O(nq) is denoted by t′.

It is well known that triangle inequality holds for the CPA-advantage. That
is, for any F, G, and H, Advcpa

F,H(q, t) is at most Advcpa
F,G(q, t) + Advcpa

G,H(q, t). It
is easy to see that triangle inequality also holds for the KPA-advantage. Here,
we will present a lemma that is useful for the analysis of the KPA-advantage.

Lemma 1. For any RFs with n-bit input, F and G, we have Advkpa
F,G(q, t) ≤

Advcpa
F,G(q, t). Moreover, let E be a random function with n-bit output, and R be

the URF compatible with E. Then,

Advcpa
EF,EG(q, t) ≤ 2Advprf

E (q, t) + Advkpa
F,G(q, t′). (4)

Proof. The first claim is obvious. For the second, we have

Advcpa
EF,EG(q, t) ≤ Advcpa

EF,RF(q, t) + Advcpa
RF,RG(q, t) + Advcpa

RG,EG(q, t).

Combining the above inequality with Eq. (3) proves the second claim.

2.3 Applications of WPRF

From the definition of the KPA-advantage, it is clear that any WPRF can be
used for secure encrypted communications. That is, to encrypt an n-bit mes-
sage, m, we first generate a uniformly random input to F, denoted by X, then
(X,F(X)[1,...,n]⊕m) is sent to the receiver. Here, F is a WPRF with an output
length that is longer than n-bit and F(X)[1,...,n] is the first n-bit of F(X). F’s
key is assumed to be shared in advance of the communication. Therefore, the
receiver can compute F(X) and then recover m. This was proposed by Damg̊ard
and Nielsen [4]. Intuitively, this encrypted communication is secure against any
CPA against the communication channel (note that CPAs are not allowed to

1 Here, the time complexity includes the worst case execution time and the program
size, in some fixed RAM computation model.
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manipulate the header) as long as F is a WPRF. Note that we can use a WPRF
that has a shorter output length than the length of a plaintext by using multiple
headers, as explained in Introduction.

3 PRT

3.1 Basic Expansion Operations

We describe the Damg̊ard and Nielsen’s PRT mode [4]. Its keyscheduling will not
be presented since we will not discuss the keyscheduling issue. The PRT mode
turns F : {0, 1}n → {0, 1}n into an RF: {0, 1}n → {0, 1}nθ for some positive
integer θ. To describe the PRT, we need some definitions of basic expansion
operations and lemmas on KPA-security of these operations.

Definition 4. Let F : X → Y. We assume F has a key, K. Then, F→d : X →
Yd and Fd→d : X d → Yd are defined as follows.

F→d(x) = (FK1(x),FK2(x), . . . ,FKd
(x)),

Fd→d(x1,. . ., xd)=(FK(x1),FK(x2),. . .,FK(xd)), (5)

where K1, . . . ,Kd are independent and uniform keys for F. The key for F→d is
a set of d keys of F.

3.2 Lemmas on KPA-Security of Basic Operations

The following two lemmas were shown by Damg̊ard and Nielsen.

Lemma 2. Let F : {0, 1}n → {0, 1}n. Then, Advwprf
F→d(q, t) ≤ d ·Advwprf

F (q, t).

Lemma 3. Let F : {0, 1}m → {0, 1}n. Then, Advwprf
Fd→d(q, t) ≤ Advwprf

F (dq, t) +
(d2q2)/2m+1.

We will now prove the security for � and � composition operators. The security
for the � operator is entirely original.

Lemma 4. Let F : {0, 1}m → {0, 1}n, and G : {0, 1}n → {0, 1}n′
, and H :

{0, 1}n+m → {0, 1}n′
. Let us assume m = O(n). Then,

Advwprf
FG(q, t) ≤ Advwprf

F (q, t) + Advwprf
G (q, t′) +

q2

2n+1 , (6)

Advwprf
F  H(q, t) ≤ Advwprf

F (q, t) + Advwprf
H (q, t′) +

q2

2m
. (7)

Proof. The first claim was proved in Lemma 2 of Damg̊ard and Nielsen [4]. For
the second, We have

Advwprf
F  H(q, t) ≤ Advkpa

F  H,Rm,n  H(q, t) + Advkpa
Rm,n  H,Rm,n  Rn+m,n′ (q, t), (8)
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since Rm,n �Rn+m,n′ is equivalent to Rm,n+n′ . Clearly, the first term at the rhs
of Eq. (8) equals Advwprf

F (q, t). Let us analyze the second term. Since a collision
among inputs is useless for an attacker, Advkpa

Rm,n  H,Rm,n  Rn+m,n′ (q, t) is at
most the maximum advantage in distinguishing Rm,n �H from Rm,n �Rn+m,n′

under an input distribution that is uniform on all elements in ({0, 1}m)q with no
colliding inputs (i.e., the uniform distribution on the set of (x1, . . . , xq), where
xi ∈ {0, 1}m and xi �= xj if i �= j). This input distribution is denoted by Pdq

m.
Similarly, the uniform distribution on ({0, 1}m)q is denoted by Puq

m. For both
Rm,n � H and Rm,n � Rn+m,n′ , if inputs have no collisions, then the leftmost
m-bit of outputs are independent and uniform. This implies that we only have
to evaluate the maximum advantage in distinguishing H and Rn+m,n′ under
the input distribution such that the leftmost n-bits (the rightmost m-bits) are
distributed according to Puq

n (Pdq
m). Note that this input distribution can be

simulated with Rm,n‖Pm, which denotes RF: {0, 1}m → {0, 1}n+m such that
Rm,n‖Pm(x) = (Rm,n(x),Pm(x)). From these observations, we obtain

Advkpa
Rm,n  H,Rm,n  Rn+m,n′ (q, t) ≤ Advkpa

(Rm,n‖Pm)H,(Rm,n‖Pm)Rn+m,n′ (q, t)

≤ 2 ·Advprf
Rm,n‖Pm

(q, t) + Advwprf
H (q, t′). (9)

where the second inequality comes from Eq. (4) and the fact that t′ = t+O(nq).
Then, Advprf

Rm,n‖Pm
(q, t) is clearly no more than

(
q
2

) 1
2m ≤ q2

2m . This concludes
the proof.

3.3 Description of PRT and Its KPA-Security

Definition 5. Let G be F→2, where F : {0, 1}n → {0, 1}n has an n-bit key.
Therefore G has a 2n-bit key. The PRT mode of G with depth d is defined
as PRT[G]d

def= G1 � G2→2
2 � G4→4

3 � . . . � G2d−1→2d−1

d . Here, G1, . . .Gd are d
independent versions of G = F→2. The key of PRT[G]d is 2nd-bit (i.e. 2d keys
of F). In PRT, the composition operators are treated in descending order. For
example, G1 �G2→2

2 �G4→4
3 denotes (G1 � (G2→2

2 �G4→4
3 )) (see left of Fig.1).

The proof of security for PRT is as follows.

Theorem 1. (Theorem 2 of Damg̊ard and Nielsen [4])

Advwprf
PRT[G]d

(q, t) ≤ 2d ·Advwprf
F (2d−1q, t′) +

q222d

2n+2 +
dq2

22n+1 . (10)

The PRT mode has various attractive properties. Its throughput is optimal,
as it requires only one invocation of F to generate one block output. In addition,
random access to an arbitrary block of an output sequence can be done with at
most log2 θ invocations of F, where θ is the expansion rate. Finally, PRT requires
2d = 2(log2(θ + 2)− 1) keys of F.
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4 Our Proposal

4.1 On the Difficulty of Achieving Constant Expanded Key Size

As mentioned earlier, our purpose is to reduce the (expanded) key size. Since
PRT’s key size is O(log θ), it is natural to ask whether this can be efficiently
reduced to O(1), i.e., a constant. However, we found that this was very hard to
achieve. For example, if a mode uses feedback (i.e. if there are always two out-
put blocks such as (FK(x),FK(FK(x))), we can provide an example that makes
the mode completely vulnerable to KPA. That is, the uniformly random invo-
lution (URI), which is distributed uniformly over all involutions2. URI is secure
against non-adaptive CPAs and therefore WPRF. However, URI can easily be
distinguished from URF when feedback has occurred3.

If we could efficiently convert a WPRF into a compatible PRF using constant
keys of the WPRF, then the OFB mode of the resulting PRF would provide a
desirable solution (it is easy to verify that the OFB mode of a PRF is a WPRF
with a large output). For some special WPRFs, such as two-round random Feis-
tel4, we have an efficient WPRF-to-PRF conversion: a cascade of these special
WPRFs actually yields a PRF [8, 14]. However, cascading does not work for
all WPRFs. For instance, a random function that has one fixed I/O point and
behaves as URF for other inputs. Although this random function is clearly a
WPRF, a cascade of it can never be a PRF. In principle, WPRF-to-PRF con-
version is generally possible by combining the keyscheduling of Damg̊ard and
Nielsen, which turns a WPRF into a pseudorandom generator (PRG), and a
PRG-to-PRF conversion (e.g., Goldreich-Goldwasser-Micali [6]). One can also
use the Naor-Reingolds’ approach [15]. However, they will take much computa-
tion and hence is impractical.

Consequently, the order of key size seems difficult to be improved efficiently.
However, in the next section we demonstrate that the constant of key size can
be greatly reduced without any additional computation.

4.2 ERT: Reduced Key Size for Free

In the tree defining PRT, the output made by the i-th layer is delivered to the
(i + 1)-th layer as input. This composition is not fully optimized and there is
a room for improvement to reduce the key size (or, equivalently, expand the
output length with the same key size). We changed the composition operator
so that the concatenation of input and output for the i-th layer was delivered to
the (i + 1)-th layer. That is, we used � instead of �. We will now describe the
Extended Pseudorandom Tree (ERT) mode.

Definition 6. (ERT) Let G be F→2, where F : {0, 1}n → {0, 1}n. The ERT of
G with depth d is denoted by ERT[G]d. It is defined as follows.
2 f is a involution if f(f(x)) = x for all input x.
3 We also tried similar modes such as (FK(x),FK(FK(x)⊕x)) and found some variants

of URI to be counterexamples.
4 Two-round random Feistel has two round functions that are independent PRFs.
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ERT[G]d
def= G1�G3→3

2 �G9→9
3 � . . . �G3d−1→3d−1

d , (11)

where the operators have been processed in ascending order.
For example, G1 � G3→3

2 � G9→9
3 denotes ((G1 � G3→3

2 ) � G9→9
3 ) (see right of

Fig.1). The key for ERT[G]d is the 2d keys of F.

To achieve expansion rate θ, PRT needs 2(log2(θ + 2) − 1) keys of F, while
ERT needs 2 log3(θ + 1) keys. Thus, ERT successfully reduces the key size to
about log3 2 ∼ 63%. The following theorem proves the KPA-advantage of ERT.

Theorem 2. Let G be F→2, where F : {0, 1}n → {0, 1}n with an n-bit key.

Advwprf
ERT[G]d

(q, t) ≤ 2dAdvwprf
F (3d−1q, t′) +

q232d

2n+4 +
dq2

2n
.

Proof.

Advwprf
ERT[G]d

(q, t) ≤
d−1∑
i=0

Advwprf
G3i→3i

i+1

(q, t′) +
q2

23in

≤
d−1∑
i=0

(
Advwprf

Gi+1
(3iq, t′) +

q232i

2n+1

)
+

dq2

2n
, (12)

≤ d ·Advwprf
G (3d−1q, t′) +

q2

2n+1

(
d−1∑
i=0

9i

)
+

dq2

2n
, (13)

≤ 2d ·Advwprf
F (3d−1q, t′) +

32dq2

2n+4 +
dq2

2n
, (14)

where the first inequality follows from the second claim of Lemma 4, the second
from Lemma 3, and the last from 2.

ERT inherits all the beneficial properties of PRT, such as optimal throughput
and log-time random access to outputs. In addition, the KPA-security of ERT
is comparable to that of PRT, as demonstrated by Theorems 1 and 2. Although
the ERT’s key size is still O(log θ), ERT is a very simple and practical solution
to reduce the key size for an arbitrarily large expansion rate.

4.3 FCT: A Mode Without Overhead

Although ERT provides a simple and effective improvement, it does not provide
a great improvement for small expansion (say, less than 20). For example, PRT
and ERT requires 4 keys to achieve the expansion rate 4. This is because both
PRT and ERT are based on F→2 operation. As mentioned, a WPRF with a
small expansion is often sufficient for practical applications. This is particularly
true for a communication system where most plaintexts are very short (e.g., for
typical IP networks, roughly 40% of the packets are 40 bytes long [7]). Therefore,
it would be better if any improvement is possible for a small expansion rate. In
this section, we propose a different concept from PRT and ERT as a solution to
this problem. Let r and d be positive integers such that d ≤ r. Let σ(r, d) def=
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Fig. 1. PRT (left) and ERT (right) with depth 3. Note that every output of Gi for
i = 1, 2, 3 is a part of the global output. The output length of PRT is 14-block, whereas
that of ERT is 26-block.

∑d
i=1 r!/(r − i)!. Here, 0! is defined as 1. We propose a mode that requires r

keys of F : {0, 1}n → {0, 1}n and achieves expansion rate σ(r, d). Here d is a
parameter and is called depth.

Definition 7. Let F1, . . . ,Fr be r independent versions of F : {0, 1}n → {0, 1}n.
The Factorial Tree (FCT) of F with r keys and depth d is defined as follows.
Generate all possible cascades consisting of at most d elements of {F1, . . . ,Fr}
(there are σ(r, d) cascades). When an n-bit input, x, is given, the FCT sends x
to all cascades as their input. All outputs of these cascades are concatenated to
form the output for the FCT.

For example, the FCT of F with setting (r, d) = (3, 3), is shown in Fig. 2. FCT’s
throughput is optimal, and the key of FCT can be generated by the keyscheduling
of Damg̊ard and Nielsen’s with a slight degradation in KPA-advantage.

In principle, the FCT with the maximum depth (i.e., d = r) outperforms any
of other modes and seems to be the best we can (with respect to the key size).
However, if the depth is too much large, it might be difficult to implement it.
Nevertheless, we found that the FCT with a small constant depth was useful if
the target expansion rate was not so large. For example, FCT with depth two
requires only two keys to achieve expansion rate 4 (remember that 4 keys are
needed for PRT and ERT). Moreover, FCT with depth three works better than
PRT and ERT for expansion rate up to 2500, which might be practically large
enough for some applications.
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Fig. 2. FCT with three keys and depth three
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4.4 KPA-Security of FCT

Analyzing the security of FCT becomes more complicated, as depth d increases.
Therefore, we present a theorem in this section describing the KPA-advantage of
FCT in recursive form with respect to d. With this theorem, proving the KPA-
advantage for a small d is easy. In principle, however, we can derive the proof
for any d up to r using the theorem.

Before stating the theorem, let us informally explain why FCT is a WPRF.
The key idea behind FCT is to remove feedback caused by one RF (see Sect. 4.1).
We therefore designed FCT so that such feedback could not occur with high
probability with any KPA. In contrast, feedback involving two or more RFs
with independent keys (e.g., (FK1(x),FK2(FK1(x)))) is not a problem. FCT
effectively uses feedback involving independent components. Note that a cascade
of WPRFs can not generally be a PRF, as mentioned earlier. We can nevertheless
prove that FCT is a WPRF.

The general theorem for KPA-security with FCT is as follows.

Theorem 3. Let FCTr,d[F] denote the FCT of F : {0, 1}n → {0, 1}n with depth
d and r keys. Consider the substitution F1, . . . ,Fi−1 in FCTr,d[F] with i − 1
independent URFs, denoted by R(1), . . . ,R(i−1), compatible to F. With this sub-
stitution, the resulting RF compatible to FCTr,d[F] is denoted by FCT(i)

r,d[F].

Clearly, FCT(1)
r,d[F] corresponds to FCTr,d[F] and FCT(r+1)

r,d [F] corresponds to
FCTr,d[Rn,n]. Then, Advwprf

FCTr,d[F](q, t) is at most

2
r∑

i=1

Advwprf
FCT(i)

r−1,d−1[F]
(q, t′) + rAdvwprf

F (q(σ′ + 1), t′) +
rq2(3(σ′)2 + 1)

2n
, (15)

where σ and σ′ denote σ(r, d) and σ(r − 1, d− 1), respectively.

Proof. Let us abbreviate FCT(i)
r,d[F] to L(i)

r,d. From triangle inequality, we have

Advwprf
FCTr,d[F](q, t) ≤

r∑
i=1

Advkpa
L(i)

r,d,L(i+1)
r,d

(q, t) + Advwprf
L(r+1)

r,d

(q, t). (16)

Note that the difference between L(i)
r,d and L(i+1)

r,d is only in their i-th component,
and when x is a global input issued by the attacker, the inputs to their i-th com-
ponents are (x,L(i)

r−1,d−1(x)) for both L(i)
r,d and L(i+1)

r,d (note that (x,L(i)
r−1,d−1(x))

is σ′ +1 blocks). Therefore, Advkpa
L(i)

r,d,L(i+1)
r,d

(q, t) corresponds to the maximum ad-

vantage in distinguishing Fi and R(i) under the condition that the inputs are
generated by Rn,n �L(i)

r−1,d−1. The outputs of Rn,n �L(i)
r−1,d−1, which consists of

σ′ + 1 blocks, may not be uniform. However, Eq. (4) shows us how to evaluate
the maximum advantage under non-uniform inputs. Combining Eq. (4) and the
above observation, we obtain

Advkpa
L(i)

r,d,L(i+1)
r,d

(q, t) ≤ 2Advprf
Rn,nL(i)

r−1,d−1

(q, t) + Advwprf
Fi

(q(σ′ + 1), t′). (17)
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Then, we have

Advkpa
L(i)

r,d,L(i+1)
r,d

(q, t) ≤ 2Advcpa
Rn,nL(i)

r−1,d−1,Rn,nRn,σ′n

(q, t)

+ 2Advprf
Rn,nRn,σ′n

(q, t) + Advwprf
Fi

(q(σ′ + 1), t′), (18)

≤ 2Advwprf
L(i)

r−1,d−1

(q, t′) + Advwprf
F (q(σ′ + 1), t′) + q2/2n, (19)

where the first inequality results from triangle inequality and Eq. (17), and the
second inequality results from Eq. (3) and trivial collision analysis of Rn,n �

Rn,σ′n and Rn,n(σ′+1). Then, the remaining task is to analyze L(r+1)
r,d . We have

the following lemma, which is proved in Appendix A.

Lemma 5

Advwprf
L(r+1)

r,d

(q, t) ≤ Advwprf
L(r+1)

r,d

(q,∞) ≤ 3rq2(σ′)2

2n
. (20)

Combining Eqs. (16) and (19) and lemma 5 proves the theorem.

Theorem 3 may not be intuitive. Roughly speaking, it tells us that we can
prove the KPA-advantage of FCTr,d[F] based on that of FCTr−1,d−1[F]. Since
d is at most r, an iterated use of Theorem 3 will yield term FCTr−d,1[F], which
is equivalent to F→(r−d) and hence we can easily prove its KPA-advantage
using Lemma 2. From Theorem 3, we derive corollaries to prove the secu-
rity of FCT with depths of 2 and 3. Although it is theoretically possible to
demonstrate proofs with depths greater than 3, they would be too long to
describe here.

Corollary 1

Advwprf
FCTr,2[F](q, t) ≤ r2Advwprf

F (q, t′) + rAdvwprf
F (rq, t′) +

3r3q2

2n
.

Proof. Let us abbreviate FCT(i)
r,d[F] to L(i)

r,d. Note that L(i)
r−1,1 is RF: {0, 1}n →

{0, 1}(r−1)n that consists of r − i independent Fs and i− 1 independent URFs.
This indicates that Advwprf

L(i)
r−1,1

(q, t) is at most (r−i)Advwprf
F (q, t). Thus, Theorem

3 tells us that Advwprf
FCTr,2[F](q, t) is at most

2
r∑

i=1

(r − i)Advwprf
F (q, t′) + rAdvwprf

F (rq, t′) +
rq2(3(r−1)2 + 1)

2n

≤ r2Advwprf
F (q, t′) + rAdvwprf

F (rq, t′) +
3r3q2

2n
. (21)

This proves Corollary 1.

A proof of the security for FCTr,3[F] is similarly obtained. The proof of Corollary
2 is in Appendix B.
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Corollary 2

Advwprf
FCTr,3[F](q, t)≤r

3Advwprf
F (q, t′)+r2Advwprf

F (rq, t′)+rAdvwprf
F (r2q, t′)+

3r5q2

2n
.

5 Conclusion

We presented two proposals to reduce the key size of the PRT. All our proposed
modes inherited the beneficial features of PRT, such as optimal throughput and
fast random access with no additional computation. Although they do not improve
the order of key size, they perform much better than PRT for practical expansion
rate. Table 1 shows key sizes and expansion rates of PRT and our proposals.

Table 1. Expansion rate of PRT and our proposed modes

key size PRT ERT FCTr,2 FCTr,3

2 2 2 4 4
4 6 8 16 40
6 14 26 36 156
8 30 80 64 400
10 62 242 100 820
12 126 728 144 1464
14 254 2186 196 2380

As shown by Table 1, FCT with a small depth works better than PRT or
ERT for small expansion. If a larger expansion rate is required, ERT is the best
among these four modes. We can further reduce the key size by combining FCT
with ERT (e.g., ERT[FCTr,2[F]]d), though the key size will be still O(log θ).

If we fix expansion rate θ, the KPA-advantages of PRT and ERT are roughly
the same (they are about 2 log2 θ · Advwprf

F (θq, t′) + q2θ2

2n ). In contrast, a strict
security comparison between PRT and FCT is difficult even if the FCT’s depth
is limited. We only confirmed that all the KPA-advantages of PRT, ERT, and
FCT with a depth 2 or 3 were close to 1 when q was about 2(n/2) − log2 θ. That
is, all modes can be vulnerable to the birthday attack.

PRT and ERT seem to be a PRF if the underlying block cipher is also a
PRF. In contrast, FCT is totally vulnerable to CPA even if independent URFs
are used as components. This difference may originate from the FCT’s optimized
design as a mode of WPRF. It would be interesting to prove the CPA-advantages
of PRT and ERT when they use PRFs. Some CPA-secure modes of PRF that
provides an arbitrary large expansion rate using only one key are already known
(e.g., Gilbert’s modified counter mode [5]), so it is interesting to investigate
whether PRT and ERT can offer significantly higher CPA-security than the
previous modes. Also, it would be interesting to investigate if we could build a
KPA-secure mode with the optimal throughput that requires fewer keys than
that required for the FCT with the maximal depth.
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A Proof of Lemma 5

Let us evaluate Advwprf
L(r+1)

r,d

(q,∞). For 1 ≤ i ≤ r, let Ji denote the event that all

inputs to Fi are distinct throughout the (q, t)-KPA. Note that Ji is defined on
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the q input/output pairs of L(r+1)
r,d and hence, we can define Ji for any random

function {0, 1}n → {0, 1}σn. It is not difficult to see that L(r+1)
r,d and Rn,σ(r,d)n

are equivalent given J
def= J1 ∧ J2 ∧ · · · ∧ Jr. More precisely, note that

Pr[L(r+1)
r,d (xj) = yj , j = 1, . . . , q |J ] = Pr[Rn,σn(xj) = yj , j = 1, . . . , q |J ] (22)

holds for any xq ∈ ({0, 1}n)q and yq ∈ ({0, 1}σn)q satisfying J (i.e., both sides
are 0 if (xq, yq) fails to satisfy J , and |{yq ∈ ({0, 1}σn)q : (xq, yq) satisfies J}|−1

otherwise). This equation enables us to analyze the non-adaptive CPA-advantage
between L(r+1)

r,d and Rn,σn. For events A and B defined for both L(r+1)
r,d and

Rn,σn, let PA|B,xq and QA|B,xq be the conditional probabilities of A when B is
given and q inputs, denoted by xq, are fed into L(r+1)

r,d and Rn,σn, respectively.

Let gue be the event that the attacker’s guess is L(r+1)
r,d . The maximum non-

adaptive CPA-advantage without computational restriction is written as

max
xq

(
|Pgue|J,xq ·PJ|xq − Pgue|J,xq ·QJ|xq |+ |Pgue|J,xq · PJ|xq − Pgue|J,xq ·QJ|xq |

)
≤max

xq

(
|PJ|xq−QJ|xq |+max{PJ|xq , QJ|xq}

)
= 2max

{
max

xq
PJ|xq ,max

xq
QJ|xq

}
,

(23)

where the maximums are taken over all xqs that have no collisions. Since the
optimal non-adaptive CPA is stronger than any KPA, Eq. (23) is also the up-
per bound for the KPA-advantage without the computational restriction. The
remaining task is to evaluate Eq. (23).

Using an inductive analysis, we can verify that PJ|xq consists of collision
events that have a success probability of 1

2n . Therefore, what we have to do is
to count the number of collision events defining J . Let us consider the events
defining J1. The events are classified into two types: (I) a collision between two
output blocks and (II) a collision between an output block and an input. The
number of type (I) collision events in J1 is

(
qσ′

2

)
(recall that there are qσ′ output

blocks that are fed into R(i) for each i), and the number of type (II) collision
events is q2σ′. Using a symmetrical argument, it follows that the total number
of collision events in J is at most r(

(
qσ′

2

)
+ q2σ′) and thus,

PJ|xq ≤
r

2n

((
qσ′

2

)
+ q2σ′

)
≤ 3rq2σ′2

2n+1 . (24)

A similar analysis can be done on QJ|xq , and QJ|xq is shown to have the same
upper bound as the rhs of Eq. (24). Applying these upper bounds to Eq. (23),
we have

Advwprf
L(r+1)

r,d

(q, t) ≤ Advwprf
L(r+1)

r,d

(q,∞) ≤ 3rq2σ′2

2n
. (25)

This proves Lemma 5.
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B Proof of Corollary 2

Let us abbreviate FCT(i)
r,d[F] to L(i)

r,d. Let σ def= σ(r, 3) = r3 − 2r2 + 2r and σ′ def=

σ(r−1, 2) = (r−1)2 and σ′′ def= σ(r−2, 1) = r−2 and σ′′′ def= σ(r−3, 1) = r−3.
To apply Theorem 3 to FCTr,3[F] , we have to analyze Advwprf

L(i)
r−1,2

(q, t). It is done
as

Advwprf
L(i)

r−1,2

(q, t)

≤
r−2∑
j=i

Advkpa
L(j)

r−2,1,L(j+1)
r−2,1

(q, t) + Advwprf
L(r−1)

r−2,1

(q, t) (26)

≤
r−2∑
j=i

(
2Advwprf

L(j)
r−3,1

(q, t′) + Advwprf
F ((σ′′′ + 1)q, t′)

)
+

q2

2n
(27)

=
r−2∑
j=i

2(r − j − 2)Advwprf
F (q, t′) + (r − i− 1)Advwprf

F ((r − 2)q, t′) +
q2

2n
, (28)

where inequalities follows from the same analysis we used in derivating Eqs. (17),
(18) and (19) and equality results from the trivial fact that Advwprf

L(j)
r−3,1

(q, t′) =

(r − j − 2)Advwprf
F (q, t′). Combining Eq. (28) and Theorem 3, we obtain

Advwprf
FCTr,3[F](q, t)

≤ 2
r∑

i=1

[
(i2 + (3−2r)i + (r2−3r+ 2))Advwprf

F (q, t′)+(r−i−1)Advwprf
F (σ′′q, t′)

]
+ rAdvwprf

F ((σ′ + 1)q, t′) +
rq2

2n
+

rq2(3(σ′)2 + 1)
2n

(29)

≤ 2r
3

(r2 − 6r + 11)Advwprf
F (q, t′) + r(r − 3)Advwprf

F (rq, t′)

+ rAdvwprf
F (r2q, t′) +

rq2

2n
+

rq2(3(r − 1)4 + 1)
2n

. (30)

Using the above inequality and the assumption that r ≥ 3, we conclude the
proof.
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Abstract. In this paper we will prove the Conjecture 8.1. of [7]. We call
it “Conjecture Pi ⊕ Pj”. It is a purely combinatorial conjecture that has
however some cryptographic consequence. For example, from this result
we can improve the proven security bounds on random Feistel schemes
with 5 rounds: we will prove that no adaptive chosen plaintext/chosen
ciphertext attack can exist on 5 rounds Random Feistel Schemes when
m � 2n. This result reach the optimal bound of security against an
adversary with unlimited computing power (but limited by m queries)
with the minimum number of rounds. It solves the last case of a famous
open problem (cf [8]).

An extended version of this paper is available from the author.

Part I - Introduction, first example

1 Introduction

A “Luby-Rackoff construction with k rounds”, which is also known as a “ran-
dom Feistel cipher” is a Feistel cipher in which the round functions f1, · · · , fk

are independently chosen as truly random functions. Since the famous original
paper [2] of M. Luby and C. Rackoff, these constructions have inspired a con-
siderable amount of research. In [5] and [7] a summary of existing works on
this topic is given. In [2] it was proved that the probability p to distinguish a
3-round random Feistel cipher from a random permutation with an adaptive
chosen plaintext attack (CPA-2) is always such that p ≤ m(m−1)

2n , where m is
the number of queries, and where the permutations are from 2n bits → 2n bits.
So p is negligible when m � 2n/2. Similarly the probability p to distinguish
a 4-round random Feistel cipher from a random permutation with an adaptive
chosen plaintext/ciphertext attack (CPCA-2) is always such that p ≤ m(m−1)

2n .
One way of research is to study security of random Feistel schemes when m� 2n

instead of m� 2n/2. The bound m� 2n/2 is called the “birthday bound”, and
it was proved (cf [1], [6]) that this bound is optimal for ≤ 4 rounds. The bound

D. Won and S. Kim (Eds.): ICISC 2005, LNCS 3935, pp. 299–321, 2006.
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m� 2n is the larger bound that we can get against an adversary with unlimited
computing power but limited to m queries, since such an adversary can try all
the possible round functions. In [1], W. Aiello and R. Venkatesan have found
a construction of locally random functions (“Benes”) where the optimal bound
(m� 2n) is obtained instead of the birthday bound. However here the functions
are not permutations. In [4], U. Maurer and K. Pietrzak have proved that we
can get as close as wanted to m � 2n when the number of rounds tends to in-
finity. In [7] and [8], J. Patarin has proved that for ≥ 6 rounds we have CPCA-2
security when m� 2n. For 5 rounds the CPCA-2 security was still unclear.

In this paper, we will prove the conjecture 8.1 of [7] p. 525, and from this
conjecture, we will solve this open problem of 5 rounds: for 5 rounds, as for more
rounds, we will show that we have CPCA-2 security when m� 2n. We get here
the optimal bound of security against an adversary with unlimited computing
power (but limited to m queries) with the minimum number of rounds. Moreover,
conjecture 8.1 (called “Conjecture Pi ⊕ Pj” in this paper) is very general and
may have many other applications.

2 First Example to Illustrate the “Theorem Pi ⊕ Pj”

(In section 3, we will define precisely what we call the “Theorem Pi ⊕ Pj”. We
will here illustrate a very specific case of this conjecture, where the proof is
already not so easy).

• Let In = {0, 1}n, where n is an integer.
• Let P1, P2, · · · , Pα be α pairwise distinct values of In, randomly chosen.
• Let λ0 = P1 ⊕ P2, λ1 = P3 ⊕ P4, · · ·, λα/2−1 = Pα−1 ⊕ Pα.

Theorem 1. If α � 2n, then the probability to distinguish λ0, λ1, · · · , λα/2−1
from α/2 − 1 random values of In (or of In − {0}, it changes nothing essen-
tially) is negligible (we are also interested in finding an explicit majoration of
this probability).

Despite its apparent simplicity, this theorem is not very easy to prove. In this pa-
per, we will prove it, and more generally we will prove a stronger theorem about
sets of equations like this, that we call “Theorem Pi ⊕ Pj”. In this “Theorem
Pi ⊕ Pj”, we will study more generally some systems where:

1. The equations are more general than 2 by 2 equations on the Pi: we will
study cases of at most ξmax values Pi linked in the same block, when ξmax

is a constant, or when ξmaxα� 2n.
2. When the λi values are fixed to any values �= 0, we will evaluate the minimum

number of pairwise distinct Pi solution of the equations.

3 What Is the “Theorem Pi ⊕ Pj”

Definition 1. Let (A) be a set of equations Pi ⊕ Pj = λk, with Pi, Pj , λk ∈ In.
If by linearity from (A) we cannot generate an equation in only the λk, we will
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say that (A) has “no circle in P”, or that the equations of (A) are “linearly
independent in P”.

Let a be the number of equations in (A), and α be the number of variables Pi

in (A). So we have parameters λ1, λ2, · · · , λa and a + 1 ≤ α ≤ 2a.

Definition 2. We will say that two indices i and j are “in the same block” if
by linearity from the equations of (A) we can obtain Pi ⊕ Pj = an expression in
λ1, λ2, · · · , λa.

Definition 3. We will denote by ξmax the maximum number of indices that are
in the same block.

Example 1. If A = {P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P4 ⊕ P5 = λ3}, here we have
two blocks of indices {1, 2, 3} and {4, 5}, and ξmax = 3.

Definition 4. For such a system (A), when λ1, λ2, · · · , λa are fixed, we will
denote by hα the number of P1, P2, · · · , Pα solutions of (A) such that: ∀i, j, i �= j
⇒ Pi �= Pj. We will also denote Hα = 2nahα.

Remark. hα and Hα are a concise notations for hα(A) and Hα(A). For a given
value α, hα and Hα can have different values for different systems A.

Definition 5. We will denote by Jα the number of P1, P2, · · · , Pα in In such
that: ∀i, j, i �= j ⇒ Pi �= Pj . So Jα = 2n · (2n − 1) · · · (2n − α + 1).

Theorem 2 (“Theorem Pi ⊕ Pj” when ξmax is fixed). Let ξmax be a fixed
integer, ξmax ≥ 2. Let (A) be a set of equations Pi ⊕ Pj = λk with no circle in
P , with α variables Pi, such that:

1. We have no more than ξmax indices in the same block.
2. The λ1, λ2, · · · , λa have any fixed values such that: for all i and j in the same

block, i �= j, the equation of Pi⊕Pj in λ1, λ2, · · · , λa is �= 0 (i.e. by linearity
from (A) we cannot generate an equation Pi = Pj with i �= j).

Then we have for sufficient large n: Hα ≥ Jα. (This means: for all fixed ξmax,
∃n0 ∈ N/∀n ≥ n0, for all system A that satisfies 1. and 2., we have: Hα(A) ≥
Jα).

Remark. This theorem was proved in [7] if we add the condition α3 � 22n (and
also ξmaxα

3 � 22n since ξmax is here a fixed integer).

Theorem 3 (“Theorem Pi⊕Pj” when ξmaxα� 2n ). With the same nota-
tions, we have the same result, with the hypothesis ξmaxα� 2n (instead of ξmax

a fixed integer).

Remark. For cryptographic use, or for the problem given in section 2, weaker
version of this theorem will be enough. For example, instead of Hα ≥ Jα for suf-
ficiently large n, Hα ≥ Jα

(
1− f( ξα

2n )
)
, where f is a function such that f(x)→ 0

when x→ 0, is enough.
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Another variant of this Theorem Pi ⊕ Pj is:

Theorem 4 (“Theorem Pi ⊕ Pj when ξmax ≤ O(n) and ξaverage ≤ 3). Let
ξaverage be the average value of ξ, where ξ is the number of variables Pj that
are fixed from the equations (A) when we fix a variable Pi. If ξmax ≤ O(n) and
ξaverage ≤ 3, then for sufficient large n, Hα ≥ Jα.

	




Number Hα of solutions

0

Jα

J ′
α

variables (λ1, · · ·λα)

that generates by linearity

an equation Pi = Pj , i �= j

variables (λ1, · · ·λα)

that do not generate by linearity

an equation Pi = Pj , i �= j

Fig. 1.

Generalizations of the “Theorem Pi ⊕ Pj”. This theorem may have many gen-
eralizations. For example:

• Generalization 1: the theorem is still true in any group G (instead of In).
• Generalization 2: we have a similar property for equations with 3, 4, · · ·, or
k variables, i.e. each equation is Pi1 ⊕ Pi2 · · ·Pik

= λl with pairwise distinct
Pi variables.

However in this paper we will only study the original “Theorem Pi ⊕ Pj” (i.e.
theorems 2 and 3) since it is this one that is needed to study random Feistel
schemes.

Part II - Analysis with ξmax = 2

We will first study the cases where ξmax = 2.

4 First Results When ξmax = 2 and α2 � 2n or α3 � 22n

We start with this section since here we will illustrate the general strategy that
we will follow to prove the “Theorem Pi⊕Pj”. This general strategy is to compute
Hα and Jα by induction on α, by adding one more block of (≤ ξmax) variables
at each time.
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We have: Jα = 2n(2n − 1) · · · (2n − α + 1).
So Jα+2 = (2n − α)(2n − α− 1)Jα.
Jα+2 = (22n − 2n(2α + 1) + α(α − 1))Jα. (1)
We also have: Hα+2 ≥ 2n(2n − 2α)Hα. (2)

Remark. Here Hα+2 and Hα are concise notations for Hα+2(A′) and Hα(A),
where (A′) is any system of equations obtained from (A) by addition of one
more block: Pα+1 ⊕ Pα+2 = λα/2.

Proof of (2). When P1, · · · , Pα are fixed pairwise distinct, we look for solutions
Pα+1, Pα+2 such that: Pα+1 ⊕ Pα+2 = λα/2, and such that P1, · · · , Pα, Pα+1,
Pα+2 are pairwise distinct. So Pα+2 is fixed when Pα+1 is fixed, and we want
Pα+1 /∈ {P1, · · · , Pα, λα/2 ⊕ P1, · · · , λα/2 ⊕ Pα}. So for (Pα+1, Pα+2) we have
between 2n − 2α and 2n − α solutions when P1, · · · , Pα are fixed.

Now from (1) and (2) we have:

Hα+2

Jα+2
≥ 22n − 2α · 2n

22n − 2n(2α + 1) + α(α + 1)

Hα

Jα
= 1 +

2n − α(α + 1)

22n − 2n(2α + 1) + α(α + 1)

Hα

Jα

We have also H2 > J2 since H2 = 22n > J2 = 2n(2n − 1). So if α2 � 2n, we
have Hα ≥ Jα by induction on α. (3)
Moreover,

Hα+2

Jα+2
≥
(

1 +
−α(α + 1)

22n −O(α2n)

)
Hα

Jα

So we have:
Hα+2

Jα+2
≥
(

1− α(α + 1)
22n −O(α2n)

)α/2
H2

J2

So:
Hα+2

Jα+2
≥ 1−O

(
α3

22n

)
and so Hα ≥ Jα

(
1−O

(
α3

22n

))
So if α3 � 22n, Hα ≥ Jα(1− ε), where ε is very small. (4)

Now to extend the result (3) with the condition α� 2n instead of α2 � 2n,
or to extend the result (4) with the condition α � 2n instead of α3 � 22n, we
will improve the evaluation (2) of Hα+2 from Hα.

5 General Properties When ξmax = 2

Here, since ξmax = 2, our set of equations is:

(A)

⎧⎪⎪⎨⎪⎪⎩
P2 = P1 ⊕ λ0
P4 = P3 ⊕ λ1
...
Pα = Pα−1 ⊕ λα/2−1
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hα is by definition the number of P1, · · · , Pα pairwise distinct, elements of In,
and solution of (A). We want to evaluate hα by induction on α, i.e. we want to
evaluate hα+2 from hα. We will say that (P1, · · · , Pα) are solution of hα, when
they are solution of (A). We will denote β = α/2− 1. For hα+2 we have (A) and
one more equation: Pα+1 ⊕ Pα+2 = λβ+1 (see figure 2)

hα+2

	�x

α + 2

α + 1

1

2

3

4

α − 1

α

λβ+1

λ0

λ1

λβ

•
•

•
•

•
•
...

•
•

hα

1

2

3

4

α − 1

α

λ0

λ1

λβ

•
•

•
•
...

•
•

Fig. 2. We want to evaluate hα+2 from hα

Remark. We start from a solution P1, · · · , Pα of hα and we want to complete it
to get the solutions of hα+2. For this we have to choose x = Pα+1⊕P1 such that
x will not create a collision Pj = Pα+1 or Pj = Pα+2, 1 ≤ j ≤ α. This means:
x⊕ P1 �= Pj and λβ+1 ⊕ x ⊕ P1 �= Pj , ∀j, 1 ≤ j ≤ α. So this means x /∈ V with
V = V1 ∪V2, with V1 = {P1⊕Pj , 1 ≤ j ≤ α} and V2 = {λβ+1⊕P1⊕Pj , 1 ≤ j ≤
α}. We have |V | = |V1 ∪ V2| = |V1|+ |V2| − |V1 ∩ V2|, and we have |V1| = α and
|V2| = α (since the Pj values, 1 ≤ j ≤ α, are pairwise distinct). So

hα+2 =
∑

(P1,···,Pα) solution of hα

(2n − |V |)

hα+2 =
∑

(P1,···,Pα) solution of hα

(2n − 2α + |V1 ∩ V2|)

hα+2 = (2n − 2α)hα

∑
1≤i≤α,1≤j≤α

Number of P1, · · · , Pα solution of hα

plus the equation λβ+1 = Pi ⊕ Pj

Now when we add the equality λβ+1 = Pi ⊕Pj to the system of equation (A) of
hα, 3 cases can occur:

Case 1. λβ+1 = Pi ⊕ Pj was already an equation of (A). Here this means
λβ+1 = λi for a value i, 1 ≤ i ≤ α. Remark: λβ+1 = λi creates 2 collisions in
V1 ∩ V2: it creates λβ+1 ⊕ P1 ⊕ Pi = P1 ⊕ Pj and λβ+1 ⊕ P1 ⊕ Pj = P1 ⊕ Pi.
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i′

i

j

j′

λi′′

λβ+1

λj′′

•
•

•
•

Fig. 3. Here λβ+1 = λi′′ , λβ+1 = λj′′ and λβ+1 = λi′′ ⊕ λj′′ are impossible if the Pj

are pairwise distinct

Case 2. λβ+1 = Pi ⊕ Pj is in contradiction with the equations of (A). This can
come from the fact that Pi ⊕ Pj = λk is in (A) and λβ+1 �= λk. Or this can
come from the fact that Pi⊕Pi′ = λi′′ is in (A) and Pj⊕Pj′ = λj′′ is in (A),
so from Pi⊕Pj = λβ+1 we get Pj′ = λj′′ ⊕λβ+1⊕Pi, Pi′ = λi′′ ⊕λβ+1⊕Pj ,
and Pi′⊕Pj′ = λi′′⊕λj′′⊕λβ+1. This is impossible if λβ+1 = λj′′ , λβ+1 = λi′′

or λβ+1 = λi′′ ⊕ λj′′ , since the Pk values are pairwise distinct (see figure 3).
Case 3. The equation λβ+1 = Pi⊕Pj is not in contradiction with the equations

of (A), and is not a consequence of the equations of (A). We will say that this
case is the “generic” case, and we will denote by h′

α the number of P1, · · · , Pα

solution of (A) and λβ+1 = Pi ⊕ Pj when we are in such “generic” case.

Remark. The value of h′
α is dependent on the λi values. However we will see in

section 6 that all the values h′
α are very near.

From (1) and from the 3 cases above we get immediately:

Theorem 5.

hα+2

2n
= hα

[
1− 2α

2n
+

2 Number of equations λβ+1 = λi

2n

]
+

∑
(i,j)∈M

(Number of P1, · · · , Pα solution of hα

plus the equation λβ+1 = Pi ⊕ Pj)

where M = {(i, j), 1 ≤ i < j ≤ α, such that if i is odd, then j �= i + 1, and such
that λβ+1 �= λi, λβ+1 �= λj and λβ+1 �= λi ⊕ λj}

We have |M | = α(α−2)− Number of (i, j), 1 ≤ i ≤ α, 1 ≤ j ≤ α/λβ+1 = λi or
λj or λi⊕λj . If (i, j) ∈M , we are in case 3, the “generic” case, and the number
of P1, · · · , Pα solution of hα plus the equation λβ+1 = Pi ⊕ Pj is denoted by h′

α.
We will now (in section 6) compare h′

α and hα in order to get from theorem 5 a
relation between hα+2 and hα.

6 Relations Between h′
α and hα When ξmax = 2

The aim of this section is to prove that h′
α ≥ hα(1−O( α

22n )) (we are here in the
generic case 3, as seen is section 5). Notice that here we look for an evaluation
in 1

22n , not only in 1
2n (because |M | = O(α2), where M is the set of theorem 5).

For this, the idea is to evaluate hα and h′
α from hα−4 (see figure 4).
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Notations. We have P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ3. For h′
α, we will denote

λ′ = P2 ⊕ P4 and x = P4 ⊕ P5 (see figure 4).

Theorem 6. We have:

h′
α =

∑
(P5,···,Pα) solution of hα−4

(2n − (|W1|+ |W2|) + |W1 ∩W2|) (1)

and
hα ≤

∑
(P5,···,Pα) solution of hα−4

(2n − |W1|)(2n − |W2|) (2)

with W1 = {λ1 ⊕ λ′ ⊕ Pj , λ
′ ⊕ Pj , 5 ≤ j ≤ α}

and W2 = {λ3 ⊕ Pj , Pj , 5 ≤ j ≤ α}.

Proof of (1). We start from a solution P5, · · · , Pα of hα−4 and we want to
complete it to get the solutions of h′

α. For this we have to choose x = P4 ⊕ P5
such that x will not create a collision Pj = P1 or Pj = P2, 5 ≤ j ≤ α (#) and
x will not create a collision Pj = P3 or Pj = P4, 5 ≤ j ≤ α (##).

We have: P1 = λ1 ⊕ λ′ ⊕ x ⊕ P5, and P2 = λ′ ⊕ x ⊕ P5. So (#) means
x /∈ W ′

1 where W ′
1 = {P5 ⊕ λ1 ⊕ λ′ ⊕ Pj , P5 ⊕ λ′ ⊕ Pj , 5 ≤ j ≤ α}. Similarly,

we have: P3 = λ3 ⊕ x ⊕ P5, and P4 = x ⊕ P5. So (##) means x /∈ W ′
2 where

W ′
2 = {P5 ⊕ λ3 ⊕ Pj , P5 ⊕ Pj , 5 ≤ j ≤ α}. So

h′
α =

∑
(P5,···,Pα) solution of hα−4

(2n − |W ′
1 ∪W ′

2|).

hα+2

•
•

•
•

•
•

•
•

•
•
...

•
•

hα

1

2

3

4

5

6

7

α

	
�x

	

�

y

•
•

•
•

•
•

•
•
...

•
•

h′
α

	
�x

	

�

λ′

•
•
•

•
•

•

•
•
...

•
•

λ3

λ1

hα−4

5

6

7

α

•
•

•
•

...

•
•

Fig. 4. We want to compare hα and h′
α. This figure illustrates that we will do this by

evaluating hα from hα−4 and h′
α from hα−4.
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Now W1 and W2 are just the translation of W ′
1 and W ′

2 by P5, so |W ′
1 ∪W ′

2| =
|W1 ∪W2| = |W1|+ |W2|+ |W1 ∩W2|, so we have (1) as claimed.

Proof of (2). We start from a solution P5, · · · , Pα of hα−4 and we want to
complete it to get the solutions of hα. For this we have to choose x = P4 ⊕ P5
and y = P2 ⊕ P5 such that x will not create a collision Pj = P3 or Pj = P4,
5 ≤ j ≤ α (3), y will not create a collision Pj = P1 or Pj = P2, 5 ≤ j ≤ α (4),
and x and y will not create a collision P1 = P3, P1 = P4, P2 = P3 or P2 = P4
(5). So

hα ≤
∑

(P5,···,Pα) solution of hα−4

(2n −Number of x that create (3))

·(2n −Number of y that create (4)).
(We have here ≤ and not = since we removed condition (5)). So

hα ≤
∑

(P5,···,Pα) solution of hα−4

(2n − |W1|)(2n − |W2|)

as claimed.
In order to compare h′

α and hα, we see from theorem 6 that we want to
evaluate

χ =
∑

(P5,···,Pα) solution of hα−4

(
|W1 ∩W2|

2n
− |W1||W2|

22n

)
.

Let A1 = {Pj ⊕ λ′, 5 ≤ j ≤ α}
A2 = {Pj ⊕ λ1 ⊕ λ′, 5 ≤ j ≤ α}
A′

1 = {Pj , 5 ≤ j ≤ α}
A′

2 = {Pj ⊕ λ3, 5 ≤ j ≤ α}.

We have W1 = A1 ∪ A2, and W2 = A′
1 ∪ A′

2. We have |A1| = |A2| = |A′
1| =

|A′
2| = α − 4 (because the Pj solutions of hα−4 are pairwise distinct). We have

W1 ∩W2 = (A1 ∪A2) ∩ (A′
1 ∪A′

2).

Theorem 7. We have:
|W1 ∩W2| = |(A1 ∪A2) ∩ (A′

1 ∪A′
2)|

= |A1 ∩A′
1|+ |A1 ∩A′

2|+ |A2 ∩A′
1|+ |A2 ∩A′

2|
−|A1∩A′

1∩A′
2|− |A2∩A′

1 ∩A′
2|− |A1∩A2∩A′

1|− |A1∩A2 ∩A′
2|

+|A1 ∩A2 ∩A′
1 ∩A′

2|.

Proof. This is a classical result on sets.

Theorem 8. We have:

|W1||W2| = |A1||A′
1|+ |A1||A′

2|+ |A2||A′
1|+ |A2||A′

2|
−|A1∩A2||A′

1|−|A1∩A2||A′
2|−|A1||A′

1∩A′
2|−|A2||A′

1∩A′
2|

+|A1 ∩A2||A′
1 ∩A′

2|.
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Proof. |W1||W2| = |A1 ∪A2||A′
1 ∪A′

2| = (|A1|+ |A2| − |A1 ∩A2|)(|A′
1|+ |A′

2| −
|A′

1 ∩A′
2|) and by developing this expression, we get theorem 8.

Theorem 9. χ = O
(

α
22n

)
hα−4

Proof. We have:∑
(P5,···,Pα) solution of hα−4

|A1 ∩A2| = α2+O(α)
2n hα−4∑

(P5,···,Pα) solution of hα−4
|A′

1 ∩A′
2| =

α2+O(α)
2n hα−4∑

(P5,···,Pα) solution of hα−4
|A1 ∩A′

1| =
α2+O(α)

2n hα−4∑
(P5,···,Pα) solution of hα−4

|A1 ∩A′
2| =

α2+O(α)
2n hα−4∑

(P5,···,Pα) solution of hα−4
|A2 ∩A′

1| =
α2+O(α)

2n hα−4∑
(P5,···,Pα) solution of hα−4

|A2 ∩A′
2| =

α2+O(α)
2n hα−4∑

(P5,···,Pα) solution of hα−4
|A1 ∩A′

1 ∩A′
2| =

α3+O(α2)
22n hα−4∑

(P5,···,Pα) solution of hα−4
|A2 ∩A′

1 ∩A′
2| =

α3+O(α2)
22n hα−4∑

(P5,···,Pα) solution of hα−4
|A1 ∩A2 ∩A′

1| =
α3+O(α2)

22n hα−4∑
(P5,···,Pα) solution of hα−4

|A1 ∩A2 ∩A′
2| =

α3+O(α2)
22n hα−4∑

(P5,···,Pα) solution of hα−4
|A1 ∩A2 ∩A′

1 ∩A′
2| =

α4+O(α3)
23n hα−4

So from theorem 7 and theorem 8 and from the definition of χ, we get:

χ =
hα−4

2n

[
4α2 + O(α)

2n
− 4α3 + O(α2)

22n
+

α4 + O(α3)
23n

]

−hα−4

22n

[
4(α− 4)2 − 4

(
α2 + O(α)

2n

)
(α− 4) +

(
α2 + O(α)

2n

)(
α2 + O(α)

2n

)]

χ =
(
O(α)
22n

+
O(α2)
23n

+
O(α3)
24n

)
hα−4

So χ = O
(

α
22n

)
hα−4 as claimed.

Theorem 10. h′
α ≥ hα

2n

[
1−O

(
α

22n

)]
.

Proof. We have:

hα ≤
∑

(P5,···,Pα) solution of hα−4

(2n − |W1|)(2n − |W2|)

and

h′
α = 2n

∑
(P5,···,Pα) solution of hα−4

(
1− |W1|+ |W2|

2n
+
|W1 ∩W2|

2n

)
.
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So

h′
α ≥ 2n

∑
(P5,···,Pα) solution of hα−4

(
1− |W1|+ |W2|

2n
+
|W1||W2|

2n

)
+ 2nχ

So
h′

α ≥
hα

2n
+ 2nhα−4O

( α

22n

)
.

Moreover, hα−4 = hα

2n (1 + O(α)), so

h′
α ≥

hα

2n
+

hα

2n
O
( α

22n

)
(1 + O(α))

So h′
α ≥ hα

2n

(
1−O

(
α

22n

))
as claimed.

7 Number of Indices i1, · · · , ik/λi1 ⊕ · · · ⊕ λik
= 0

Let λ1, · · · , λα be α elements of In.
Let N1 be the number of (i, j), 1 ≤ i < j ≤ α, such that λi = λj .
Let N2 be the number of (i, j, k), 1 ≤ i ≤ α, 1 ≤ j ≤ α, 1 ≤ k ≤ α such that
λi ⊕ λj ⊕ λk = 0.

More generally, for all integer l ≥ 2, let Nl be the number of (i1, · · · , il+1),
1 ≤ i1 ≤ α, 1 ≤ i2 ≤ α, · · ·, 1 ≤ il+1 ≤ α such that λi1 ⊕ · · · ⊕ λil+1 = 0.

In this section we will prove some results on the Nk values. (These results will
be useful when we will compare H with special values λi from H with random
values λi).

Theorem 11. We always have: N2 ≤ 2αN1 + α2.

Remark

1. If the λi values are pairwise distinct, we have N1 = 0 and N2 ≤ α2 (since
when i and j are fixed there is here at most one k such that λi ⊕ λj = λk).

2. If ∀i, 1 ≤ i ≤ α, λi = 0, we have: N1 = α(α−1)
2 ! α2

2 , and N2 = α3.
3. It is easy to prove that N2 ≤ α2(N1 + 1) (since when i and j are fixed, and

we have at most α2 possibilities for i and j, for k such that λi ⊕ λj = λk

we have at most 1 + N1 possibilities). However we will prove that we have
N2 ≤ 2αN1 + α2, not only N2 ≤ α2(N1 + 1).

Proof of theorem 11. For all β ∈ In, let nβ be the number of indices i, 1 ≤ i ≤ α,
such that λi = β. We have: ∑

β∈In

nβ = α (1)

∑
β∈In

nβ(nβ − 1)
2

= N1 (2)
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So

N1 =
∑
β∈In

n2
β

2
− α

2
(3)

We also have:
N2 = Number of (i, j, k)/λi ⊕ λj ⊕ λk = 0

N2 =
α∑

i=1

⎡⎣∑
β∈In

(Number of j/λi ⊕ λj = β) · (Number of k/λk = β)

⎤⎦
N2 =

α∑
i=1

⎡⎣∑
β∈In

nβ⊕λi · nβ

⎤⎦
The function ϕ : In → In, x (→ x⊕ λi is a bijection. So here we have

N2 =
α∑

i=1

⎡⎣∑
β∈In

nϕ(β) · nβ

⎤⎦
where ϕ is a bijection (4). If

$\vec{v}\left(\icvec[\gamma]{l}\right)$ and
$\vec{v’}\left(\begin{array}{c} l_{\varphi(1)}\\ \vdots\\
l_{\varphi(\gamma)}
\end{array}\right)$

where ϕ is a bijection, we have (Cauchy-Schwartz theorem):
||v · v′|| ≤ ||v|| · ||v′||, but here ||v|| = ||v′||, so ||v · v′|| ≤ ||v||2. So from (4)

we have:

N2 ≤
α∑

i=1

∑
β∈In

n2
β.

So from (3) we have:

N2 ≤
α∑

i=1

[2N1 + α].

So N2 ≤ 2αN1 + α2, as claimed.
More generally we have:

Theorem 12. For all integer l ≥ 2, we have: Nl ≤ 2αl−1N1 + αl.

Proof.

Nl =
α∑

i1=1

α∑
i2=1

· · ·
α∑

il−1=1

(
∑
β∈In

[Number of il/λi1 ⊕ . . .⊕ λil
= β]

·[Number of il+l/λil+1 = β])
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So

Nl =
α∑

i1=1

α∑
i2=1

· · ·
α∑

il−1=1

(
∑
β∈In

nβ⊕λi1⊕...⊕λil−1
· nβ) (1)

The function ϕ : In → In, x (→ x ⊕ λi1 ⊕ . . . ⊕ λil−1 is a bijection. So from
Cauchy-Schwartz theorem we have:

Nl ≤ αl−1(
∑
β∈In

n2
β)

so Nl ≤ 2αl−1N1 + αl as claimed.

8 Conclusion for ξmax = 2

From section 7 and theorem 5 we get that the minimal values for Hα are obtained
when the λi are pairwise distinct. Then for such values from theorem 5, we get

hα+2

2n
≥ hα(1− 2α

2n
) + (α(α− 2)−O(α))h′

α

≥ hα

(
1− 2α

2n
+

α2 −O(α)
22n

)
So

Hα+2 ≥ (22n − 2n(2α) + (α2 −O(α)))Hα (1)

and
Jα+2 = (22n − 2n(2α + 1) + (α(α − 1)))Jα (2)

From (1) and (2) and H2 > J2, we get by induction on α that for sufficiently

large n, Hα ≥ Jα, as claimed: Hα+2
Jα+2

=
1+ −2α

2n + α2−O(α)
22n

1+ −2α−1
2n + α(α−1)

22n

Hα

Jα
so as long as α� 2n

we have Hα+2
Jα+2

≥ Hα

Jα
≥ 1 by induction on α (since 1 + −2α

2n + α2−O(α)
22n >

1 + −2α−1
2n + α(α−1)

22n when 2n > O(α) − α and this holds when α� 2n).

Part III - Analysis for any ξmax

We can proceed for any ξmax in a similar way as we did for ξmax = 2. This is
done in appendix B

9 Conclusion

In this paper we have proved the conjecture 8.1 of [7]. As already mentioned
in [7], from this conjecture we can prove that there does not exist any adaptive
chosen plaintex/ciphertext attack against a random Feistel scheme of 2n bits
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→ 2n bits with ≥ 5 rounds when the number m of queries is small compared
with 2n. This number of rounds, 5, is minimal since chosen plaintext attacks with
m !

√
2n are known against 4-round random Feistel schemes (see [1] or [6]). This

result on 5-round random Feistel schemes solves an open problem of [6] and [1].
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A Appendix: An Example with an Unusual Value for H

The Theorem Pi ⊕ Pj says that when H(A) �= 0, when ξmax is fixed, and when
α� 2n, then H(A) is always ≥ Jα (where Jα can be seen as the average value of
H(A) over all the λi). Moreover, sometimes H(A) is much larger than this average
value Jα, even when ξmax = 2, as we will see in this example.
Let λ be an element of In, λ �= 0. We want to compute the number h(A) of
pairwise distinct P1, P2, . . . , Pα such that: P2 = P1 ⊕ λ, P4 = P3 ⊕ λ, P6 =
P5 ⊕ λ,· · ·, Pα = Pα−1 ⊕ λ (for this system we have ξmax = 2 and all the λi are
equal). Let x1 = P3 ⊕ P1, x2 = P5 ⊕ P1, . . . , xα/2−1 = Pα−1 ⊕ P1.
Since we have 2n possibilities for P1, here h(A) is exactly 2n times the number
of x1, . . . , xα/2−1 such that:

x1 /∈ {0, λ}
x2 /∈ {0, λ, x1, x1 ⊕ λ}
x3 /∈ {0, λ, x1, x1 ⊕ λ, x2, x2 ⊕ λ}
· · ·
xα/2−1 /∈

{
0, λ, x1, x1 ⊕ λ, x2, x2 ⊕ λ, · · · , xα/2−2, xα/2−2 ⊕ λ

}
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For x1 we have exactly 2n − 2 possibilities. Then, when x1 is fixed, we have
exactly 2n− 4 solutions for x2, then if (x1, x2) are fixed, we have exactly 2n − 6
solutions for x3 etc. Thus, since we have α/2 equations, here H(A) = 2α/2nh(A)
(because we have α/2 equations), so here we have:

H(A) = 2(α/2)n2n(2n − 2)(2n − 4)(2n − 6) · · · (2n − α + 2)

J(A) = 2n(2n − 1)(2n − 2)(2n − 3) · · · (2n − α + 1)

J(A)

H(A)
=
(

1− 1
2n

)(
1− 3

2n

)(
1− 5

2n

)
· · ·

(
1− α− 1

2n

)
When α  2n/2 (but still α � 2n) this expression can be arbitrarily small. So
H(A) can be much larger the Jα (even when ξmax = 2 and α� 2n).

B Appendix: Analysis for Any ξmax

B.1 First Results for Any ξmax When α2 � 2n, or α3 � 22n

Our general strategy is to compare Hα and Jα by induction on α, by adding
one more block of ξ variables at each time (ξ ≤ ξmax). We have Jα = 2n(2n −
1) · · · (2n − α + 1).

So Jα+ξ = (2n − α)(2n − α− 1) · · · (2n − α− ξ + 1)Jα.

So Jα+ξ = (2ξn + 2(ξ−1)n(−ξα − ξ(ξ−1)
2 ) + 2(ξ−2)n( ξ(ξ−1)

2 α2 + O(α))
+ O(2(ξ−3)nα3))Jα (1)

We also have: Hα+ξ ≥ 2(ξ−1)n(2n − ξα)Hα (2)

Proof of (2). When P1, · · · , Pα are fixed pairwise distinct, we look for solutions
Pα+1, · · · , Pα+ξ such that: Pα+1 ⊕ Pα+2 = λα/2, Pα+1 ⊕ Pα+3 = λα/2+1, · · ·,
Pα+1 ⊕ Pα+ξ = λα/2+(ξ−2). So Pα+2, Pα+3, · · · , Pα+ξ are fixed when Pα+1 is
fixed, and we want

Pα+1 /∈ {P1, · · · , Pα,
λα/2 ⊕ P1, · · · , λα/2 ⊕ Pα,
· · ·,
λα/2+(ξ−2) ⊕ P1, · · · , λα/2+(ξ−2) ⊕ Pα}.

So for (Pα+1, Pα+2, · · · , Pα+ξ) we have between 2n − ξα and 2n − α solutions
when P1, · · · , Pα are fixed. Now from (1) and (2) we have:

Hα+ξ

Jα+ξ
≥ 1 +

2(ξ−1)n ξ(ξ−1)
2 + 2(ξ−2)n −ξ(ξ−1)

2 α2 + O(α) + O 2(ξ−3)nα3

2ξn + o(2ξn)

Hα

Jα
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So we have:

Hα+ξ

Jα+ξ
≥

⎡⎣1−
2(ξ−2)n

(
ξ(ξ−1)

2 α2 +O(α)
)

2ξn + o(2ξn)

⎤⎦α

Hξ

Jξ

We also have Hξ > Jξ since Hξ = 2ξn > Jξ = 2n(2n − 1) · · · (2n − ξ + 1). So

Hα+ξ ≥ Jα+ξ

[
1−

ξ(ξ−1)
2 α3 +O(α2)
22n + o(22n)

]

So if ξ2α3 � 22n, Hα ≥ Jα(1 − ε), where ε is very small. (3)
Now to extend this result (3) with the condition ξα� 2n instead of ξ2α3 � 22n,
we will improve the evaluation (2) of Hα+ξ from Hα.

B.2 General Properties for Any ξmax

hα is by definition the number of P1, · · · , Pα pairwise distinct, elements of In,
and solution of (A), where (a) is a system of equations Pi⊕Pj = λk. We say that
Pi and Pj are “in the same block” if when Pi is fixed, then Pj is fixed from the
equations of (A). We denote by ξmax the maximum number of Pi in the same
block. The idea is to evaluate hα by induction on the number of blocks, i.e. to
evaluate hα+ξ from hα, where hα+ξ is the number of P1, · · · , Pα, Pα+1, · · · , Pα+ξ

pairwise distinct, elements of In, solution of (A) and solution of this block of
(ξ − 1) equations Pα+1, · · · , Pα+ξ:

Pα+2 = Pα+1 ⊕ λ′
2,

Pα+3 = Pα+1 ⊕ λ′
3,

. . .
Pα+ξ = Pα+1 ⊕ λ′

ξ

(ξ ≤ ξmax).

We will say that P1, · · · , Pα are solution of hα when they are solution of (A).
We start from a solution P1, · · · , Pα of (A) and we want to complete it to get
the solution of hα+ξ. For this we have to choose x = Pα+1 ⊕ P1 such that x will
not create a collision Pj = Pα+1 or Pj = Pα+2, · · ·, Pj = Pα+ξ, 1 ≤ j ≤ α. This
means: x ⊕ P1 �= Pj , x ⊕ λ′

2 ⊕ P1 �= Pj , · · ·, x ⊕ λ′
ξ ⊕ P1 �= Pj , 1 ≤ j ≤ α. So

this means x /∈ V with V =
⋃ξ

i=1 Vi, with Vi = {P1 ⊕ λ′
i ⊕ Pj , 1 ≤ j ≤ α} (by

convention we define λ′
1 = 0). We have ∀i, 1 ≤ i ≤ ξ, |Vi| = α (since the Pj

values, 1 ≤ j ≤ α, are pairwise distinct).

|V | = |
⋃ξ

i=1 Vi| =
∑ξ

i=1 |Vi| −
∑ξ

i<j |Vi ∩ Vj | +
∑ξ

i<j<k |Vi ∩ Vj ∩ Vk| + · · · +
(−1)ξ+1|V1 ∩ · · · ∩ Vξ|
So

hα+ξ =
∑

(P1,···,Pα) solution of hα

(2n − |V |)

So we have:
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Theorem 13

hα+ξ =
∑

(P1,···,Pα) solution of hα

(2n − ξα +
ξ∑

i1<i2

|Vi1 ∩ Vi2 |

−
ξ∑

i1<i2<i3

|Vi1 ∩ Vi2 ∩ Vi3 |+ · · ·+ (−1)ξ|V1 ∩ · · · ∩ Vξ|)

When i1 and i2 are fixed,

|Vi1 ∩ Vi2 | =
∑

1≤j≤α,1≤j′≤α

Number of P1, · · · , Pα solution of hα

plus equation Pj ⊕ Pj′ = λ′
i1 ⊕ λ′

i2

Now when we add to (A) the equality Pj ⊕ Pj′ = λ′
i1 ⊕ λ′

i2 , 3 cases can occur:

Case 1. λ′
i1
⊕ λ′

i2
= Pi ⊕ Pj was already an equation of (A). Here this means

λ′
i1 ⊕ λ′

i2 = λi for all value i, 1 ≤ i ≤ α. Remark: λ′
i1 ⊕ λ′

i2 = λi creates 2
collisions in Vi1∩Vi2 : it creates λ′

i1
⊕P1⊕Pi = λ′

i2
⊕P1⊕Pj and λ′

i1
⊕P1⊕Pj =

λ′
i2
⊕ P1 ⊕ Pi.

Case 2. λ′
i1 ⊕ λ′

i2 = Pi ⊕ Pj is in contradiction with the equations of (A). This
can come from the fact that Pi ⊕ Pj = λk is in (A) and λk �= λ′

i1
⊕ λ′

i2
. Or

this can come from the fact that Pi ⊕ Pi′ = λi′′ is in (A), Pj ⊕ Pj′ = λj′′

is in (A), so from Pi ⊕ Pj = λ′
i1 ⊕ λ′

i2 we get Pj′ = λj′′ ⊕ λ′
i1 ⊕ λ′

i2 ⊕ Pi,
Pi′ = λi′′ ⊕ λ′

i1
⊕ λ′

i2
⊕ Pj , and Pi′ ⊕ Pj′ = λi′′ ⊕ λj′′ ⊕ λ′

i1
⊕ λ′

i2
. This is

impossible if λ′
i1 ⊕ λ′

i2 = λj′′ , λ′
i1 ⊕ λ′

i2 = λi′′ or λ′
i1 ⊕ λ′

i2 = λi′′ ⊕ λj′′ , since
the Pk values are pairwise distinct.

Case 3. The equation λ′
i1
⊕ λ′

i2
= Pi ⊕ Pj is not in contradiction with the

equations of (A), and is not a consequence of the equations of (A). We will
say that this case is the “generic” case, and we will denote by h′

α the number
of P1, · · · , Pα solution of (A) and λ′

i1
⊕ λ′

i2
= Pi ⊕ Pj when we are in such

“generic” case.

The value of h′
α is dependent on the λi values. However we will see in sec-

tion B.3 that all the values h′
α are very near. In this section B.3, we will compare

h′
α and hα in order to get from theorem 13 a relation between hα+ξ and hα.

B.3 Relations Between h′
α and hα for Any ξmax

The sets W1 and W2. The aim of this section is to prove that h′
α ≥ hα(1 −

O( ξ2
maxα
22n )) (by hypothesis here all the equations are independent and compatible,

as explained in the definition of h′
α). Notice that here we look for an evaluation

in 1
22n , not only in 1

2n . For this, the idea is to evaluate hα and h′
α from hα−ξ−ξ′

(see figure 5).
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Notations. We denote by ξ the number of variables Pi of the first block, and by
ξ′ the number of variables Pi of the second block. A “block” of variables Pi is
a set of variables Pi such that when one variable Pi of this block is fixed, then
the other variables Pj of the block are fixed from the equations (A). We have:
ξ ≤ ξmax and ξ′ ≤ ξmax. The ξ equations of the first block will be denoted like
this: ∀i, 1 ≤ i ≤ ξ, Pi = Pξ ⊕ λi (1). So by convention, we denote λξ = 0. The
ξ′ equations of the second block will be denoted like this: ∀i, ξ + 1 ≤ i ≤ ξ + ξ′,
Pi = Pξ+ξ′ ⊕ λi (2). So by convention, we denote λξ+ξ′ = 0. We denote by
λ′ = Pξ ⊕ Pξ+ξ′ (3) and x = Pξ+ξ′ ⊕ Pξ+ξ′+1 (4).

Theorem 14. We have:

h′
α =

∑
(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

(2n − (|W1|+ |W2|) + |W1 ∩W2|) (5)

and
hα ≤

∑
(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

(2n − |W1|)(2n − |W2|) (6)

with W1 =
⋃ξ

i=1 Ai with ∀i, 1 ≤ i ≤ ξ, Ai = {Pj ⊕ λi ⊕ λ′, ξ + ξ′ + 1 ≤ j ≤ α}
and W2 =

⋃ξ′

i=1 A
′
i with ∀i, 1 ≤ i ≤ ξ′, A′

i = {Pj ⊕ λξ+i, ξ + ξ′ + 1 ≤ j ≤ α}.

Proof of (5). We start from a solution Pξ+ξ′+1, · · · , Pα of hα−ξ−ξ′ and we want
to complete it to get the solutions of h′

α. For this we have to choose x = Pξ+ξ′ ⊕

hα+ξ

•
•
•

•
•
•

•
•

•
•
...

•
• α

hα

	
�x

	

�

y

•
•
•

•
•

•
•
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•
•
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ξ

ξ + 1

ξ + ξ′

ξ + ξ′ + 1

h′
α

	
�x

	

�

λ′•
•
•

•
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•
•
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•
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hα−ξ−ξ′

α
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•
...
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•

Fig. 5. We want to compare hα and h′
α. This figure illustrates that we will do this by

evaluating hα from h
α−2 blocks(= hα−ξ−ξ′ ) and h′

α from h
α−2 blocks(= hα−ξ−ξ′ ).
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Pξ+ξ′+1 such that x will not create a collision Pj = Pi, ξ + ξ′ + 1 ≤ j ≤ α,
1 ≤ i ≤ ξ + ξ′.

So from (1) and (2) and (5), we want x such that: ∀i, 1 ≤ i ≤ ξ, ∀j, ξ+ξ′+1 ≤
j ≤ α, Pξ ⊕ λi �= Pj , i.e. Pξ+ξ′+1 ⊕ x⊕ λ′ ⊕ λi �= Pj and ∀i, ξ + 1 ≤ i ≤ ξ + ξ′,
∀j, ξ + ξ′ + 1 ≤ j ≤ α, Pξ+ξ′ ⊕ λi �= Pj , i.e. Pξ+ξ′+1 ⊕ x⊕ λi �= Pj .

So we want x /∈ W ′
1 and x /∈ W ′

2 with W ′
1 = {Pξ+ξ′+1 ⊕ λ′ ⊕ λi ⊕ Pj , 1 ≤ i ≤

ξ, ξ+ξ′+1 ≤ j ≤ α} and W ′
2 = {Pξ+ξ′+1⊕λi⊕Pj , ξ+1 ≤ i ≤ ξ+ξ′, ξ+ξ′+1 ≤

j ≤ α} and

h′
α =

∑
(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

(2n − |W ′
1 ∪W ′

2|)

Now |W ′
1∪W ′

2| = |W ′
1|+ |W ′

2|−|W ′
1∩W ′

2|, and we have |W ′
1| = |W1|, |W ′

2| = |W2|
and |W ′

1 ∩W ′
2| = |W1 ∩W2|, since a translation by Pξ+ξ′+1 does not change the

number of elements. So we have (5) as claimed.

Proof of (6). We start from a solution Pξ+ξ′+1, · · · , Pα of hα−ξ−ξ′ and we want
to complete it to get the solutions of hα. For this we have to choose x = Pξ+ξ′ ⊕
Pξ+ξ′+1 and y = Pξ ⊕ Pξ+ξ′+1 such that x will not create a collision Pj = Pi,
ξ + ξ′ + 1 ≤ j ≤ α, ξ + 1 ≤ i ≤ ξ + ξ′ (7), y will not create a collision Pj = Pi,
ξ+ξ′+1 ≤ j ≤ α, 1 ≤ i ≤ ξ (8), and x and y will not create a collision Pi = Pk,
1 ≤ i ≤ ξ, ξ + 1 ≤ k ≤ ξ + ξ′ (9). So

hα ≤
∑

(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

(2n − |W1|)(2n − |W2|)

as claimed. (We have here ≤ and not = since we removed condition (9)).
In order to compare h′

α and hα, we see from theorem 14 that we want to
evaluate

χ =
∑

(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

(
|W1 ∩W2|

2n
− |W1||W2|

22n

)
.

We have W1 =
⋃ξ

i=1 Ai, W2 =
⋃ξ′

i=1 A
′
i, and we have ∀i, 1 ≤ i ≤ ξ, |Ai| =

α − ξ − ξ′ and ∀i, 1 ≤ i ≤ ξ′, |A′
i| = α − ξ − ξ′ (because the Pj solutions of

hα−ξ−ξ′ are pairwise distinct).

Evaluation of
∑

P
|W1||W2|

22n . For simplicity, we will denote from now on:
∑

P

for ∑
(Pξ+ξ′+1,···,Pα) solution of hα−ξ−ξ′

.

We have W1 =
⋃ξ

i=1 Ai. So

|W1| =
ξ∑

i=1

|Ai|−
ξ∑

i<j

|Ai∩Aj |+
ξ∑

i<j<k

|Ai∩Aj∩Ak|+ · · ·+(−1)ξ+1|A1∩· · ·∩Aξ|.
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= ξ(α−ξ−ξ′)−
ξ∑

i<j

|Ai∩Aj |+
ξ∑

i<j<k

|Ai∩Aj ∩Ak|+ · · ·+(−1)ξ+1|A1∩· · ·∩Aξ |.

Similarly, |W2| = ξ′(α− ξ − ξ′)−
ξ′∑

i<j

|A′
i ∩A′

j |+
ξ′∑

i<j<k

|A′
i ∩A′

j ∩A′
k|+ · · ·+

(−1)ξ′+1|A′
1 ∩ · · · ∩A′

ξ|.

|W1||W2|
22n

=
1

22n
[ξ(α− ξ − ξ′)−

ξ∑
i<j

|Ai ∩Aj |+
ξ∑

i<j<k

|Ai ∩Aj ∩Ak|

+ · · ·+ (−1)ξ+1|A1 ∩ · · · ∩Aξ|] · [ξ′(α− ξ − ξ′)−
ξ′∑

i<j

|A′
i ∩A′

j |

+
ξ′∑

i<j<k

|A′
i ∩A′

j ∩A′
k|+ · · ·+ (−1)ξ′+1|A′

1 ∩ · · · ∩A′
ξ|]

Now when i1, · · · , ik are pairwise distinct, since here we have by hypothesis a
system of independent equalities with no contradiction, we have:∑

P

|Ai1 ∩ · · · ∩Aik
| = hα−ξ−ξ′

(
αk

2n(k−1) + O

(
αk−1

2n(k−1)

))
.

Similarly ∑
P

|A′
i1 ∩ · · · ∩A

′
ik
| = hα−ξ−ξ′

(
αl

2n(l−1) + O

(
αl−1

2n(l−1)

))
.

So we have:

P

|W1||W2|
22n

=
1

22n
[ξ(α− ξ− ξ′)−

ξ(ξ − 1)
2

α2 + O(α)
2n

+
ξ(ξ − 1)(ξ − 2)

6
α3 + O(α2)

22n
+ · · ·

+
ξ(ξ − 1) · · · (ξ − i + 1)

i!
αi + O(αi−1)

2n(i−1)
+ · · ·] · [ξ′(α − ξ − ξ′) −

ξ′(ξ′ − 1)
2

α2 + O(α)
2n

+
ξ′(ξ′ − 1)(ξ′ − 2)

6
α3 + O(α2)

22n
+· · ·+

ξ′(ξ′ − 1) · · · (ξ′ − i + 1)
i!

αi + O(αi−1)
2n(i−1)

+· · ·]hα−ξ−ξ′

So we have: ∑
P

|W1||W2|
22n · hα−ξ−ξ′

=
ξξ′(α2 − 2(ξ + ξ′)α + (ξ + ξ′)2)

22n

.

−α3 + O(α2)
23n

(
ξ′(ξ′ − 1)ξ

2
+

ξ(ξ − 1)ξ′

2

)
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+
α4 + O(α3)

24n

(
ξξ′(ξ′ − 1)(ξ′ − 2)

6
+

ξ(ξ − 1)ξ′(ξ′ − 1)
4

+
ξξ′(ξ − 1)(ξ − 2)

6

)

+ · · ·+ αi + O(αi−1)
2in

(
ξξ′(ξ′ − 1) · · · (ξ′ − i + 2)

(i− 1)!

+
ξ(ξ − 1)ξ′(ξ′ − 1) · · · (ξ′ − i + 3)

2!(i− 2)!
+ · · ·

+
ξ(ξ − 1) · · · (ξ − j + 1)ξ′(ξ′ − 1) · · · (ξ′ − i + j + 1)

j!(i− j)!
+ · · ·

)
(10)

Let μi =
∑i−1

j=1
ξ(ξ−1)···(ξ−j+1)ξ′(ξ′−1)···(ξ′−i+j+1)

j!(i−j)! (with by convention each prod-
uct here is equal to 0 if its value is < 0). Then (10) can be written like this:

∑
P

|W1||W2|
22n · hα−ξ−ξ′

=
ξξ′

22n
(α2 − 2(ξ + ξ′)α+ (ξ + ξ′)2) +

ξξ′∑
i=3

(−1)iμi
αi + O(αi−1)

2in
.

Remark. A simple approximation of μi is μi ≤ ξi.
Proof.

μi ≤ ξ · ξi−1

(i− 1)!
+

ξ2ξi−2

2!(i− 2)!
+

ξ3ξi−3

3!(i− 3)!
+ · · ·+ ξi−1ξ

(i− 1)!
.

Now if 1 ≤ x ≤ i − 1, 2
x!(i−x)! ≤

2
2x−1·2i−x−1 ≤ 2

2i−2 ≤ 8
2i . So μi ≤ ξi · 4 · i

2i , so
if i ≥ 4, μi ≤ ξi · 4 · i

2i ≤ ξi. Moreover μi ≤ ξi is also true for i = 1, 2, 3 since:
μ1 = 0, μ2 = ξ2, μ3 ≤ ξ2(ξ − 1) ≤ ξ3 (μ4 ≤ ξ4(1

4 + 2
6 ) ≤ ξ4).

Evaluation of
∑

P
|W1∩W2|

2n . We have W1 =
⋃ξ

i=1 Ai and W2 =
⋃ξ′

i=1 A
′
i. So

W1 ∩W2 = (
⋃ξ

i=1 Ai) ∩ (
⋃ξ′

i=1 A
′
i).

Theorem 15.

|W1 ∩W2| = |(
ξ⋃

i=1

Ai) ∩ (
ξ′⋃

i=1

A′
i)|

=
ξ′∑

g=1

ξ∑
f=1

(−1)f+g

∑
1≤i1<i2<···<if≤ξ,1≤j1<j2<···<jg≤ξ′

|(Ai1 ∩ · · ·Aif
) ∩ (A′

j1 ∩ · · ·A
′
jg

)|
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Proof. This is a classical result on sets (the proof is very easy by induction on ξ
and ξ′).

Let νi =
∑i−1

j=1
ξ(ξ−1)···(ξ−j+1)

j! · ξ′(ξ′−1)···(ξ′−i+j+1)
(i−j)! . From theorem 15 we get:∑

P

|W1 ∩W2|
2n

= hα−ξ−ξ′

⎛⎝ ξξ′∑
i=2

(−1)i νiα
i + O(αi−1)

2ni

⎞⎠
Moreover, we have for all integer i, μi = νi (μi was defined in section B.3).
So we have:|χ| ≤ O

(
ξξ′α
22n

)
hα−ξ−ξ′ so we have |χ| ≤ O

(
ξ2

maxα
22n

)
hα−ξ−ξ′ so

h′
α ≥ hα

(
1−O

(
ξ2

maxα
22n

))
as wanted.

C Proof of Security for ψ5

As mentioned in [7], from the Theorem Pi⊕Pj we can prove that there does not
exist any adaptive chosen plaintext/ciphertext attack against a random Feistel
scheme of 2n bits → 2n bits with ≤ 5 rounds when the number of queries is
small compared with 2n. We give here the main ideas to prove this results on 5
rounds random Feistel scheme from the Theorem Pi ⊕ Pj .

An exact formula for H with 5 rounds. Let us define a “framework” as a set of
equations Xi = Xj or Yi = Yj or Zi = Zj , i < j, where the Xi, Yi, Zi values
are in In. We will say that two frameworks are equal if they imply exactly the
same set of equalities in X , Y and Z. Let H be the number of (f1, · · · , f5) ∈ F 5

n

(where Fn is the set of all functions of In → In) such that ∀i, 1 ≤ i ≤ m,
ψ5(f1, · · · , f5)[Li, Ri] = [Si, Ti] where ψ5(f1, · · · , f5) is a Feistel scheme with
f1, · · · , f5 as round functions. Then from [7] we know that the exact value of H is:

H =
|Fn|5 · 2n(r+s)

25nm
·

all frameworksF
2n(x+y+z)[Number of Xi, Zi satisfying (C1)]

·[Number of Yi satisfying (C2)]

where r (respectively s, x, y, z) is the number of independent equalities Ri = Rj ,
i < j (respectively Si = Sj , Xi = Xj , Yi = Yj , Zi = Zj) and with

(C1) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj

Yi = Yj is in F ⇒ Xi ⊕Xj = Zi ⊕ Zj

Si = Sj ⇒ Zi ⊕ Zj = Ti ⊕ Tj

The only equations Xi = Xj , i < j, are exactly those implied by F
The only equations Zi = Zj , i < j, are exactly those implied by F .

(C2) :

⎧⎨⎩
Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕Rj

Zi = Zj is in F ⇒ Yi ⊕ Yj = Si ⊕ Sj

The only equations Yi = Yj , i < j, are exactly those implied by F .
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How to use this formula and Theorem Pi ⊕ Pj. We know that with 5 rounds
(unlike what will happen with 6 rounds) we can have [Li, Ri], [Si, Ti] values with
H much larger or much smallest than the average value of H (see [8] pp.120–
122). However in these examples we have a small H only when we have large
chains of equations in R and S that cannot be generated in CPCA-2.

In CPCA-2 we have two types of queries: direct and inverse.
In a direct query, [Li, Ri] can be chosen from the values [Lj, Rj , Sj , Tj], j < i,

but then [Si, Ti] is almost perfectly random if we analyze a random permutation
f of 2n bits → 2n bits. In this case, the number of indices j < i such that
Sj = Si is very small: about m

2n in average, so the number N of (i, j) such that

j < i and i is an index of a direct query and Sj = Si is N ≤ O
(

m2

2n

)
.

In an inverse query, [Si, Ti] can be chosen from the values [Lj , Rj, Sj , Tj ],
j < i, but then [Li, Ri] is almost perfectly random if we analyze a random
permutation f of 2n bits → 2n bits. In this case, the number of indices j < i
such that Rj = Ri is very small: about m

2n in average, so the number N of
(i, j) such that j < i and i is an index of an inverse query and Rj = Ri is

N ≤ O
(

m2

2n

)
.

In the formula for H above, the condition (C2) will not create any problem:
most of the frameworks will generate in (C2) a system in Yi variables with
ξmaxα� 2n, and we will use on it the Theorem Pi ⊕ Pj .

The analysis of (C1) is a bit more complex since we can have large lines
of equalities in R, or in S. Let ξ be a fixed integer. Let E be the set of all
[Li, Ri, Si, Ti], 1 ≤ i ≤ m, such that for most of the frameworks F we have: for
all index k, 1 ≤ k ≤ m, [The length of the lines in R, Y arriving in k is ≤ ξ]
or [The length of the lines in S, Y arriving in k is ≤ ξ]. By “the length of the
lines in R, Y arriving in k”, we mean the maximum number of pairwise distinct
indices i1, · · · , iξ such that iξ = k and ∀j, 1 ≤ j ≤ ξ− 1, we have Rij = Rij+1 or
Yij = Yij+1 is in F (similar definition for lines in S, Y ).

From our analysis above of direct and inverse queries, we can prove:

Theorem 16. For all super distinguishing circuit φ with m oracle gates, the
probability that [Li, Ri, Si, Ti](φ), 1 ≤ i ≤ m, be in this set E is ≥ 1−β, when φ
acts on a random permutation of I2n → I2n, where β can be chosen � 1 when
m� 2n.

Now we will analyze (C1) like this:

Case 1. When k is an index such that the length of the lines in R, Y arriving
in k is ≤ ξ, then we keep Xk as a variable, and we fix Zk.

Case 2. If we are not in Case 1, then k is an index such that the length of the lines
in S, Y arriving in k is ≤ ξ. Then we keep Zk as a variable, and we fix Xk.

Then the condition (C1) will be analyzed by introducing pairwise distinct
variables Pi of In, and here (C1) will give a system with αξ � 2n in these
variables, so we can use the Theorem Pi⊕Pj , to prove that H is always near the
average value for all [Li, Ri, Si, Ti] that can be generated in CPCA-2. This proves
CPCA-2 by using theorem 3.4 of [7] p.518 (called “coefficient H technique”).
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Abstract. Due to the exponential growth of wireless and mobile appli-
cations, security has become a paramount design aspect. New techniques
have been proposed for replacing the broken Wired Equivalent Privacy
(WEP) protocol, which arguably is the most widely security tool used
up to now in wireless environments. Under this scenario, AES in CCM
(Counter with CBC-MAC) mode has been included in the IEEE 802.11i
wireless standard as a promising alternative to the compromised WEP
protocol. In this contribution, we present an FPGA implementation of
the CCM mode of operation using AES as its block cipher. Our design
achieves a throughput of 1.05 Gbits/Sec with reasonable area require-
ments.

1 Introduction

Over the years, the Wired Equivalent Privacy (WEP) protocol has been the most
widely security tool used for protecting information in wireless environments.
However, this protocol was broken in 2001 by Fluhrer et al. [1]. Based on that
attack, nowadays there exist a variety of programs that can be downloaded from
Internet to break the WEP Protocol in few seconds and with almost no effort.
This situation has led to a search for new security mechanisms for guaranteeing
reliable ways of protecting information in wireless mobile environments.

Under this scenario, AES in CCM (Counter with CBC-MAC) mode has be-
come one of the most promising solutions for achieving security in wireless net-
works. This mode simultaneously offers two key security services, namely, data
Authentication and Encryption. In this contribution, we present an efficient re-
configurable hardware implementation of AES in CCM mode. We discuss main
implementation aspects as well as the experimental results obtained.

The rest of this paper is organized as follows. Section 2 includes a brief in-
troduction to the CCM Mode. Then, in Section 3 a short description of the
AES encryption process is given. Section 4 presents main design considerations
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for the CCM Mode and AES Encryptor Core architectures. In section 5, imple-
mentation results are summarized and then compared with other similar designs
previously reported. Finally, concluding remarks are given in Section 6.

2 The CCM Mode

Proposed by Whiting et. al. [2], CCM stands for Counter with CBC-MAC. This
means that two different modes are combined into one, namely, the CTR mode
and the CBC-MAC. CCM is a generic authenticate-and-encrypt block cipher
scheme that has been specifically designed for being use in combination with
a 128-bit block cipher, such as AES. Presently, CCM mode has become part
of the new 802.11i IEEE standard. In the rest of this section we give a short
summary of the CCM Mode and the corresponding Authentication, Encryption,
Verification and Decryption algorithms associated to it.

2.1 CCM Primitives

Before sending a message, a sender must provide the following information [2]:
(1) A suitable encryption key K for the block cipher to be used. (2) A nonce N of
15−L bytes. Nonce value must be unique, meaning that the set of nonce values
used with any given key shall not contain duplicate values. (3) The message
m, consisting of a string of l(m) bytes where 0 ≤ l(m) < 28L. (4) Additional
authenticated data a, consisting of a string of l(a) bytes where 0 ≤ l(a) < 264.
This additional data is authenticated but not encrypted, and it is not included
in the output of this mode.

Figure 2 shows CCM Authentication and Verification processes dataflow. No-
tice that because of the CBC feedback nature of the CCM mode, a pipeline
approach for implementing AES is not possible. Therefore we have no option
but to implement AES encryption core in an iterative fashion.

CCM Authentication starts by defining a sequence of blocks B0, B1, ..., Bn

and thereafter CBC-MAC is applied to those blocks so that the authentication
field T can be obtained. Blocks Bis are defined as explained below.

First, the authentication data a is formatted by concatenating the string that
encodes l(a) with a itself, followed by organizing the resulting string in chunks
of 16-byte blocks. The blocks so constructed are appended to the first configu-
ration block B0 [2]. Then, message blocks are added right after the (optional)
authentication blocks a. Message blocks are formatted by splitting the message
m into 16-byte blocks which will be the main part of the sequence of blocks
B0, B1, ..., Bn needed by the authentication mode. Finally, the CBC-MAC is
computed as,

X1 := AESE(K,B0)
Xi+1 := AESE(K,Xi ⊕Bi) for i = 1, ..., n (1)

T := firstMbytes(Xn+1)
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Fig. 1. Encryption and Decryption Process for the CCM Mode

Fig. 2. Authentication and Verification Process for the CCM Mode

Where AESE is the AES block cipher selected for encryption, and T is the MAC
value defined as above. If it is needed, the ciphertext would be truncated in order
to obtain T .

Figure 1 shows the CCM Encryption/Decryption process dataflow. CCM en-
cryption is achieved by means of Counter (CTR) mode as,

Si := AESE(K,Ai) for i = 0, 1, 2, ..., (2)
Ci := Si ⊕mi

See [2] for details about the construction of the Ai blocks. Plaintext m is en-
crypted by XORing each of its bytes with the first l(m) bytes of the sequence
produced by concatenating the cipher blocks S1, S2, S3, ..., produced by Eq. 2.
The authentication value is computed by encrypting T with the key stream block
S0 truncated to the desired length as,

U := T ⊕ firstMbytes(S0) (3)

The final result c consists of the encrypted message m, followed by the encrypted
authentication value U .
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At the receiver side, the decryption process starts by recomputing the key
stream to recover the message m and the MAC value T . Figure 1 shows how the
Decryption Process is made in the CCM Mode.

Message and additional authentication data is then used to recompute the
CBC-MAC value and check T . If the T value is not correct, the receiver should
not reveal the decrypted message, the value T , or any other information. Figure
2 describes how the Verification Process is done.

It is important to notice that the Encryption Function of AES is used in
Encryption as well as in Decryption. Therefore, AES Decryption functionality
is not necessary in CCM-mode, which redounds in valuable hardware resources
saving. That is why in this paper we only report the AES’s implementation of
the Encryption Function only.

3 AES Encryption

In this section we give a brief summary of the AES Encryption process. We
describe the basic ideas for producing a ciphertext as well as some algorithmic
shortcuts based on the work in [3].

3.1 Brief Description of the AES

The basic structure of AES consist of a message input (128 bits), a secret user key
(128 bits) and a cipher message (128 bits) as the output. The AES cipher treats
the input 128 bit block as a group of 16 bytes organized in a 4× 4 matrix called
State matrix. The algorithm consists of an initial transformation, followed by a
main loop where nine iterations called rounds are executed. Each round trans-
formation is composed of a sequence of four transformations: ByteSubstitution
(BS), ShiftRows (SR), MixColumns (MC) and AddRoundKey (ARK). For each
round of the main loop, a round key is derived from the original key through
a process called Key Scheduling. Finally, a last round consisting of three trans-
formations BS, SR and ARK is executed. Figure 3 shows the AES encryption
process. See [4] for more details about the AES steps.

It is worth to remark that although an AES complete implementation includes
the decryptor core, in our case, as we are interested in CCM mode only, which
does not require the AES decryption we did not cover it (see [4] for a complete
AES explanation).

Fig. 3. AES Encryption Process
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4 Implementation

In this Section we discuss design details utilized for CCM Mode and AES En-
cryptor Core implementations.

4.1 CCM Mode Implementation

In this Subsection we describe the rationale and main design considerations be-
hind our implementation. We assumed that the user must provide the additional
authentication data a as two blocks of 16 bytes each. This size was selected con-
sidering the typical length of a TCP/IP header information. Furthermore, it
was assumed that the message m to be processed has a maximum length of 1024
bytes. Above design considerations are assumed in order to make our architecture
simpler without loosing the main aspects of the Mode.

Figure 4 shows the CCM-mode general architecture, which comprises three
main building modules, namely, Authentication module, Encryption module and
a Control Unit module. All those three blocks together perform necessary oper-
ations for generating a valid cipher text and an encrypted authentication value.
Notice that extra hardware is needed for the Verification and Decryption phases.
In the rest of this Section we will explain how those three blocks were imple-
mented, as well as experimental performance results in terms of time and hard-
ware area.

CCM Authentication: Figure 5.A depicts the CCM Authentication mod-
ule architecture. This module consists of an Authentication Block Generator,
a CBC-MAC module and a Control Unit.

Authentication Block Generator: Authentication Block Generator is the
architecture component responsible of generating the Bi blocks, (see [2] for de-
tails). Those blocks are generated according to the instructions indicated in the
Control Word that the Control Unit sends in the “CW” line. That Control Word
stipulates which block should be generated, either the B0 block or the blocks

Fig. 4. CCM Mode General Architecture
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Fig. 5. Authentication Block

that corresponds to the additional data a or the ones corresponding to the mes-
sage m. Each block is generated only when the previous block has already been
ciphered by the CBC-MAC module described below.

CBC-MAC: Blocks Bi that were generated by the Block Generator are the
inputs for the CBC-MAC. Any input block Bi (except for the block B0) is
XORed with the Xi that was computed previously. The result of this operation
is encrypted using AES, and the resulting cipher text Xi+1 is fed back to the
next block Bi+1. Figure 5.B depicts the CBC-MAC process just outlined.

Authentication Control Unit: This Control Unit orchestrates the authenti-
cation process by receiving control signals from the General Control Unit. This
block generates the appropriate Control Word for the Block Generator module
and the one that indicates to the CBC-MAC Encryptor that a new Bi block can
be processed. A 5-bit control word is utilized, where the LSB is used for con-
trolling the CBC-MAC’s latch. The second bit is used to start encryption with
the AES block; the third bit controls which input will be selected by the MUX
included in the CBC-MAC component, and finally, the last two bits indicate
which type of block should be generated.

Authentication control Unit receives a signal when a Bi block has been pro-
cessed within the CBC-MAC module. Thereafter, the control unit module pro-
duces the appropriate Control Word to generate the next block Bi+1 and pro-
cess it. Control Unit runs a counter that indicates which control word should
be generated. The process of authentication begins when the General Control
Unit indicates so with the “ACW” word. After receiving this signal, the whole
process is controlled by the local Control Unit.

CCM Encryption: Figure 6.A shows the CCM encryption architecture. This
module consists of an Encryption Block Generator, a CTR block and a Control
Unit.

Encryption Block Generator: This module is responsible of generating the Ai

blocks, (see section 2 for details), generated according to the Counter Function.
In this implementation, the counter begins in 0 and it is incremented one by
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Fig. 6. Encryption Block

one. The blocks are formed with the Nonce and the counter value. Each block is
generated when the CTR module has finished processing the previous one. Let us
recall that Encryption begins only when the Authentication module is processing
the second block with the additional data a. Based on this observation, we can
parallelize the process of Authentication and Encryption by generating the A1
Block first and all subsequent Ai blocks but the first one (A0). When the CCM
Authentication module has finished processing the last block, encryption Block
Generator may proceed to generate the A0 block in order to get S0 (see figure
7.A for details).

The CTR Mode: The CTR Mode is the last step in the Encryption process. It
encrypts Ai blocks using AES as block cipher in order to generate the Si stream
blocks. In our implementation, when a Si block is ready, it is XORed with the
appropriate message m block. Figure 6.B shows the internal composition of the
CTR Mode. Notice that the U0 value shown in Figure 6.B corresponds to the
S0 block. U0 is not XORed with any block message, but instead, this value
is used for encrypting the authentication value T computed as a part of the
Authentication Process as it was shown in figure 2

Encryption Control Unit: The Implementation of this module is quite sim-
ilar to the one described for the Authentication process. This Control Block is
responsible of counting while indicates which block is the next to be generated.
At the same time, it starts the CTR Mode by processing a block so that a valid
ciphertext can be obtained. When a ciphertext is ready, it indicates to the Gen-
eral Control Unit that a new ciphertext can be stored. The implementation is
based on the counter process that begins when the General Control Unit signals
that is time to Encrypt the Message m and it keeps counting until the General
Control Unit indicates to stop. This Control Unit receives a 2 bit Control Word
that can select 4 different actions: “00” or “10” do nothing, remains in initial
state, “01” Generate the S0 Block, and “11” begin and continue counting.

General Control Unit: This module is the one that controls the Authentica-
tion and Encryption Processes. It synchronizes the information flow in order to
parallelize the entire process and to achieve a good performance. The Control
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Fig. 7. Implementation Time line

Unit orders the Authentication Process to begin. The Encryption Process begins
only after that the Authentication process has processed the first block (B0) and
has started processing the second of the two Additional Data a blocks.

Notice that the Authentication Process must authenticate the other a block
and all message blocks. The Encryption Process, on the other hand, must en-
crypt only the message blocks and since it starts first, one could think that the
Encryption process will finish first. However, since it is necessary the extra pro-
cessing of the block S0, our architecture manages to accomplish the execution
of both processes at the same time. In this way we can compute the Encrypted
Authentication Data U wich is done with extra hardware placed right after
the Authentication and Encryption processes. Figure 7.A shows this process
dataflow. Every unit in the time line represents 12 clock cycles.

Decryption and Verification: In our design, additional hardware is used to
select if the input data is going to be authenticated and encrypted or decrypted
and verified. In figure 4 it is shown that extra hardware as a MUX before the
Authentication Process. This MUX is used to select if the source message is the
one provided by the user (in case of authentication) or if it is the message that
has been decrypted (when verifying). This way, when the input signal Mode is
’0’ the architecture performs authentication and encryption. When Mode=’1’,
it decrypts and verifies.

The second Mux is used for selecting the output for the U value; when au-
thenticating, the selection should be the computed value U , this is done with
the function firstMBytes and the XOR operation between the computed T
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value and the S0 Block. When Verifying, computed U value is XORed with
the Ureceived (sent by the transmitter entity) in order to verify whether the
message integrity has been corrupted or not, if the XOR output is equal to zero,
then the message is correct, otherwise, it is assumed that the received message
is corrupted.

As in the case of the Authentication and Encryption the Verification process
begins first, and the Decryption process starts after the Verification Process has
processed two blocks. In this way, Verification can certify the received message
that was just decrypted. Figure 7.B shows the dataflow of this process, every
unit in time line represents 12 clock cycles.

4.2 AES Encryptor Core Implementation

In this Section we describe the AES encryptor core used for implementing the
CCM mode just described in the previous Section. The General Architecture of
an AES Encryptor core is shown in figure 8.

Fig. 8. General Architecture of an AES Encryptor Core

AES Rounds Implementation

– The Initial Round ARK: ARK step implementation is quite easy, as it
only requires bitwise XOR operation.

– Round 1 to 9. We implemented AES main nine rounds in an iterative way.
Therefore, only one round was designed, and that one was replicated eight
more times. Figure 9 shows the block diagram of this process. This circuit
uses a multiplexor to select if we are going to process the first round or
the other eight ones. At the end of the circuit we use a Latch to store the
current computed state matrix. As shown in Figure 9, in order to improve
performance the new state matrix is fed back before the latch.

Byte Substitution and Shift Rows Steps Implementations. As it is
shown in Figure 9, rounds 1 to 9, were implemented using two main building
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Fig. 9. Block Diagram of the rounds 1 to 9

blocks. The first one is the BS/SR block that was instrumented by using
the BRAMs (BlockRAMs) embedded in the targeted FPGA device. Sixteen
8× 256 BRAMs were configured for implementing AES S-BOX as a look-up
table. By doing so, we are able to compute 16 byte substitutions at the same
time.

Mix Columns and AddRoundKey Steps Implementation. Mix
Columns and AddRoundKey Steps can be implemented jointly by doing
some modifications. In fact, the implementation of the MC and ARK steps
is very simple as it only uses XOR gates. For polynomial multiplication the
xtime(v) look up table method described in [4] was used . The table is im-
plemented using an array of 16 8 × 256 BRAMs. By consulting that table,
we can compute 02× v in a fast way.

– Implementation of the Last Round: AES final round was implemented
using separated resources, so another sixteen 8×256 BRAMs were necessary
for implementing the BS step.

Key Scheduling Implementation. In [3] several optimizations based on re-
dundant computation for parallelizing the Key Scheduling process were imple-
mented. As a result, it takes us two steps to compute a new round key [3].

AES Control Unit. The AES Control Unit synchronizes the whole process
and controls the information flow. In addition, it produces the signals to con-
trol the multiplexors and latches that are used in the AES components. These
synchronization signals are crucial because each component should select the
correct state matrix.

The signal generated to control the Final Round Latch is also used as an
indicator that the ciphertext is ready. This is done by a change in the CE output
of the AES block. When the plaintext is being processed, the CE output value
is ’0’, but when a ciphertext is ready, this value changes to ’1’. In addition, the
AES block has an extra input called “Encrypt” that indicates to the Control
Unit that a new plaintext is given and that a new process has to begin. This
control signal must be high by one single CLK’s cycle and after that it must be
set to low.
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5 Results

In this section we discuss the results obtained by our design. Moreover, we com-
pare our results with other similar implementations found on open literature.

All implementations reported in this paper were realized on a 3s4000fg900-4
Spartan 3 device using VHDL Language and Xilinx’s development tools. We
used the Xilinx ISE 6.3i, and the Model Sim Xilinx Edition II v5.8c to simulate
and synthesize our design.

Table 1 summarizes the hardware resources required by design’s main building
blocks. As it can be seen, our design is efficient in terms of hardware resources. It

Table 1. Results of our Design

Block Slices BRAMs

Authentication 1031 53

Encryption 713 53

Control Unit and extra Hw 410 0

CCM-Mode 2154 106

Table 2. Comparasion Table of different CCM implementations

Product Company Architecture Throughput(Mbps)
HTRU Aerolink Ntru VHDL/Software 0.25
SCAES-CCM SiWorks RTL, ASIC, FPGAs 582 at 100MHz

192 at 33 MHz
AES-CCM core Helion FPGAs and ASIC Tiny Version 15,

Standard 200
AES-CCM Our design VHDL - FPGA 1,051

Table 3. AES Comparasion

Author Device Mode Slices(BRAMs) Throughput(Mbps) T/A
Charot et al. [5] Altera APEX CTR N/A 512 N/A
Weaver et al. [6] XVE600-8 ECB 460(10) 690 1.5
Labbé et al. [7] XCV1000-4 ECB 2151(4) 390 0.18
Saggese et al. [8] XCVE2000-8 ECB 446(10) 1000 2.3

Chodwiec et al. [9] XC2530-5 ECB 222(3) 139 0.62
Chodwiec et al. [9] XC2530-6 ECB 222(3) 166 0.74
Standaert et al. [10] VIRTEX2300E ECB 542(10) 1450 2.6

Gaj et al. [11] XCV1000 ECB 2902 331.5 0.11
Saqib [3] XCV812E ECB 2744 258.5 0.09

Amphion CS5220 [12] XVE-8 ECB 421(4) 290 0.69
Amphion CS5230 [12] XVE-8 ECB 573(10) 1060 1.9

Segredo et al. [13] XCV-100-4 ECB 496(10) 417 0.84
Segredo et al. [13] XCV600E-8 ECB 496(10) 743 1.49
Calder et al. [14] Altera EPF10K ECB 1584 637.24 0.40

Our Design Spartan 3 3s4000 ECB 633(53) 1067 1.68
Our Design Spartan 3 3s4000 CBC 1031(53) 1067 1.03
Our Design Spartan 3 3s4000 CTR 731(53) 1067 1.45
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only occupies 2154 slices, but it requires 106 BRAMS, mainly because of the AES
module which uses BRAMs arrays for implementing some of the Steps in the
Encryption Process. The Throughput achieved is high and therefore allows us
to process information in an efficient way. Throughput was computed as follows.

As it was mentioned before, we considered that the additional information a
consisted of a fixed two 16-bytes blocks. The maximum length of the plaintext is
1024 bytes which results in 64 blocks of 16 bytes each. Then, we have to compute
67 effective blocks (we add the B0 block, but this is an overhead in the process,
so it was omitted from the throughput computation). The processing of a total
of 67 blocks can be accomplished by our design in 804 clock cycles, (each block
is computed in 12 cycles). Since design’s achieved clock frequency is of about
100.08MHz (9.992ns) we can compute the throughput as:

Throughput =
66 ∗ 128bits

804 ∗ 9.992ns
= 1.05158Gbits/s

5.1 Result Comparison

There exist few reported implementations of CCM mode of operation. In Table 2
we present some commercial implementations from which our design showed
the fastest throughput. A more comprehensive comparison can be obtained by
comparing reported AES designs implemented using an iterative architecture in
different modes. It makes sense to do such a comparison since an overwhelming
part of the CCM Mode processing is computed by the AES block. As it can be
seen in Table 3, our design is the second fastest throughput for iterative AES
architectures. Furthermore, our design is economical yielding the fourth best
throughput/area coefficient among compared designs. Notice that the perfor-
mance achieved by our design was obtained in a Xilinx Spartan FPGA which
is technologically inferior to the powerful Xilinx Virtex FPGAs used in most
designs featured in Table 3.

6 Conclusions

In this paper an end-to-end design of the CCM Mode using AES as a block cipher
was presented. Taking advantage of the potential of reconfigurable hardware
platforms for obtaining high parallelism we were able to obtain a parallel version
of the CCM mode, which yielded competitive results in terms of both, time and
area performances.

The AES in CCM mode is going to be a crucial piece for the next generation
of wireless network cards, so it is worth to study it so that faster and more
efficient implementations can be achieved. As many of future CCM mode designs
are going to be Hardware based, we believe that competitive implementations
of this mode in reconfigurable hardware platforms have an enormous potential
that should not be neglected.
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1 Introduction

For every cryptographic application, efficient arithmetic of finite field is a critical
factor for a fast implementation of cryptographic hardware or software. Finite
field multiplication is one of the most basic arithmetic operations and it is used in
many cryptographic algorithms such as ECC or AES. Though one may design a
finite field multiplier in a software implementation, a hardware arrangement has
a strong advantage when one wants a high speed multiplier. Moreover arithmetic
of GF (2m) is easily realized in a circuit design using a few logical gates. A good
multiplication algorithm depends on the choice of basis for a given finite field.

There are three major types of basis being used, which are polynomial, dual,
and normal basis. For many applications, a polynomial basis [18,19] is usually
preferred over a normal or a dual basis because of its simple field arithmetic and
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flexibility of the many available algorithms. Moreover the multiplication algo-
rithms with LSB (least significant bit) first scheme or MSB (most significant bit)
first scheme give straightforward realization of a hardware architecture [18] for
a linear multiplier over GF (2m). It should be mentioned that, for cryptographic
purposes, one should use a linear multiplier because a two dimensional (or bit
parallel) multiplier is impractical in current state of technology due to the huge
amount of gate counts. Massy-Omura multiplier is also one of the most popular
multipliers these days because of simple squaring operation. Since the original
suggestion of Massey and Omura [1], many new normal basis multipliers have
been proposed [2,4,5,13,15]. There is another type of multiplier called Berlekamp
dual basis bit serial multiplier [7]. Though considerable improvements have been
made [3,8,9,10,11] on this multiplier, it does not seem to get much attention
these days for cryptographic purposes because of long critical path delay and
inconvenient basis conversion process. The multipliers in [3,7,10] do not consider
basis conversion and therefore have different bases for input and output values,
which make it complicated for practical applications in cryptography.

Our aim in this paper is to show that a suitably modified multiplier from [7]
is excellent also for cryptographic purposes. Our proposed multiplier uses single
basis consistently for input and output values and has a sequential structure
(i.e. parallel in parallel out), which are our salient features that distinguish from
previous results in [7,10]. Consequently our multiplier has a significantly reduced
critical path delay and a low area complexity which are superior or comparable
to those of normal or polynomial basis multipliers. We will give a very detailed
comparison of our multiplier with other proposed multipliers for the five binary
fields GF (2m),m = 163, 233, 283, 409, 571, recommended by NIST for ECDSA
(elliptic curve digital signature algorithm).

2 Review of Previous Works

Let {α0, α1, · · · , αm−1} be a basis for GF (2m), which is a finite field with char-
acteristic two. We will now briefly discuss Berlekamp’s idea [7] on bit serial
multiplication. We will give a modified version in [8,9] for generality and clarity.

Definition 1. We say that two bases {α0, α1, · · · , αm−1} and {β0, β1, · · · ,
βm−1} of GF (2m) are dual to each other if the trace map, Tr : GF (2m)→ GF (2)
with Tr(α) = α+α2+· · ·+α2m−1

, satisfies Tr(αiβj) = δij for all 0 ≤ i, j ≤ m−1,
where δij = 1 if i = j, and zero if i �= j.

It is easy [6] to see that a unique dual basis exists for a given basis. Also if
{β0, β1, · · · , βm−1} is the dual basis of {α0, α1, · · · , αm−1}, then for any nonzero
β ∈ GF (2m), {β−1β0, β

−1β1, · · · , β−1βm−1} is dual to {βα0, βα1, · · · , βαm−1}.
Let {1, α, α2, · · · , αm−1} be a polynomial basis for GF (2m) and let

f(X) = f0 + f1X + f2X
2 + · · ·+ fm−1X

m−1 + Xm ∈ GF (2)[X ] (1)

be the unique irreducible polynomial of α over GF (2). Then the dual basis of
the polynomial basis is well known and it is expressed as follows [6].
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Fig. 1. A bit serial dual basis multiplier of Berlekamp

Lemma 2. Let f(X) = (X − α)(g0 + g1X + · · · + gm−1X
m−1) where gi, 0 ≤

i ≤ m − 1, are in GF (2m). Then the dual basis of {1, α, α2, · · · , αm−1} is{
g0

f ′(α) ,
g1

f ′(α) , · · · ,
gm−1
f ′(α)

}
.

Let {γ0, γ1, · · · , γm−1} be the dual basis of {β, βα, βα2, · · · , βαm−1} where β �=
0 ∈ GF (2m). For given x, y ∈ GF (2m), we may express x and the product xy
with respect to the basis {γ0, γ1, · · · , γm−1} and we write y with respect to the
basis {1, α, α2, · · · , αm−1},

x =
m−1∑
i=0

[x]iγi, y =
m−1∑
i=0

yiα
i, xy =

m−1∑
k=0

[xy]kγk. (2)

Using the duality between {γ0, γ1, · · · , γm−1} and {β, βα, βα2, · · · , βαm−1}, we
have

[xy]k = Tr(βαkxy) =
m−1∑
i=0

yiTr(βαi+kx) =
m−1∑
i=0

yi[αkx]i, (3)

where [αkx]i is the ith coefficient of the expression of αkx with respect to the
basis {γ0, γ1, · · · , γm−1}. Moreover we have

[αkx]i = Tr(βαiαkx) = Tr(βαi+1αk−1x) = [αk−1x]i+1, 0 ≤ i ≤ m− 2. (4)

Also since f(X) = Xm +
∑m−1

i=0 fiX
i is the irreducible polynomial of α over

GF (2),

[αkx]m−1 = Tr(βαm−1αkx) = Tr(β
m−1∑
i=0

fiα
iαk−1x) =

m−1∑
i=0

fi[αk−1x]i. (5)

Therefore the coefficients of x, αx, α2x, · · · , αm−1x with respect to the basis
{γ0, γ1, · · · , γm−1} are recursively computed by the above relations (4) and (5)
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and the multiplication [xy]k =
∑m−1

i=0 yi[αkx]i is realized in the shift register
arrangement shown in Fig. 1. After k clock cycles, we get [xy]k, the kth co-
efficient of xy with respect to {γ0, γ1, · · · , γm−1} which is the dual basis of
{β, βα, βα2, · · · , βαm−1}.

3 New Linear Multiplier with Reduced Critical Path
Delay and Lower Hardware Complexity

The dual basis bit serial multiplier discussed in previous section has two seri-
ous drawbacks. First it needs a basis conversion which requires extra circuitry.
Second it has a long critical path delay which is rather unsuitable for crypto-
graphic purposes, especially for elliptic curve cryptography where one should
choose m large enough so that m ≥ 163 [12]. We will show that these two prob-
lems are in fact minor and can be easily modified. The first problem can be
solved using the method of Stinson [11], which is a generalization of the basis
conversion using trinomials Xm + Xk + 1 [8] and special types of pentanomials
Xm+Xk+1+Xk+Xk−1+1 [9]. Our idea is to stick to the basis {γ0, γ1, · · · , γm−1}
which is dual to {β, βα, βα2, · · · , βαm−1} for some β so that the basis conver-
sion costs only few XOR gates but no extra flip-flop. The number of necessary
XOR gates depends on the weight of the given polynomial f(X) and the cost is
negligible from a cryptographic point of view. For example, this method can be
applied to all five binary fields GF (2m) with m = 163, 233, 283, 409, 571, recom-
mended by NIST [12] for elliptic curve cryptography. The suggested polynomials
in [12] are either trinomials (m = 233, 409) or pentanomials (m = 163, 283, 571)
and our method is easily applicable to these polynomials. The problem of long
critical path delay can also be solved. By rearranging the summation of the coef-
ficients of xy with respect to the basis {γ0, γ1, · · · , γm−1}, we will derive a linear
multiplier for ECC whose critical path delay is comparable to polynomial basis
multipliers and is shorter than previously known linear normal basis multipliers
for the five fields GF (2m) with m = 163, 233, 283, 409, 571.

3.1 Techniques of Basis Conversion

Let f(X) = 1 + Xn1 + Xn2 + · · ·+ Xnt + Xm be the irreducible polynomial of
α ∈ GF (2m) with 0 = n0 < n1 < n2 < · · · < nt < m. Let {γ0, γ1, · · · , γm−1} be
the dual basis of {β, βα, βα2, · · · , βαm−1} for some β ∈ GF (2m). Recall that,
from the expression of f(X) in Lemma 2,

f(X) = (X − α)
m−1∑
i=0

giX
i =

m−1∑
i=0

giX
i+1 −

m−1∑
i=0

αgiX
i

=
m−2∑
i=0

giX
i+1 −

m−2∑
i=0

αgi+1X
i+1 + gm−1X

m − αg0

(6)
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=
m−2∑
i=0

(gi − αgi+1)X i+1 + gm−1X
m − αg0.

From the above equations, it is not difficult to see [11] that

gi = α−i−1
∑
nj≤i

αnj = αm−i−1 + α−i−1
∑
nj>i

αnj . (7)

This is because

g0 = α−1, gm−1 = 1 = α−m
∑

nj≤m−1

αnj = α−m(1 + αn1 + · · ·+ αnt), (8)

and

gi − αgi+1 = α−i−1
∑
nj≤i

αnj − αα−i−2
∑

nj≤i+1

αnj = α−i−1
∑

i<nj≤i+1

αnj . (9)

Thus gi−αgi+1 is 1 if there exists nj such that nj = i+ 1 and is zero if there is
no such nj . In other words, gi−αgi+1 is the coefficient of X i+1 of the polynomial
f(X) = 1 + Xn1 + Xn2 + · · ·+ Xnt + Xm.

Since one should choose only one basis for the consistency of the field arith-
metic, we will choose the basis {γ0, γ1, · · · , γm−1} for our multiplication of x and
y. Therefore, in view of Fig. 1, we need a basis conversion from {γ0, γ1, · · · , γm−1}
to {1, α, α2, · · · , αm−1} to express y in terms of {1, α, α2, · · · , αm−1} from our
initial choice of the basis {γ0, γ1, · · · , γm−1}. Let

γi =
m−1∑
j=0

cijα
j (10)

for all 0 ≤ i ≤ m − 1 and let y =
∑m−1

i=0 yiα
i =

∑m−1
i=0 [y]iγi be the expression

of y with respect to {1, α, α2, · · · , αm−1} and {γ0, γ1, · · · , γm−1}, respectively.
Then

m−1∑
i=0

[y]iγi = ([y]0, [y]1, · · · , [y]m−1)(γ0, γ1, · · · , γm−1)T

= ([y]0, [y]1, · · · , [y]m−1)(cij)(1, α, α2, · · · , αm−1)T

= (y0, y1, · · · , ym−1)(1, α, α2, · · · , αm−1)T =
m−1∑
i=0

yiα
i,

(11)

where (cij) is the m by m matrix defined by the equation (10) and (γ0, γ1, · · · ,
γm−1)T (resp. (1, α, α2, · · · , αm−1)T ) is the transposition of the row vector
(γ0, γ1, · · · , γm−1) (resp. (1, α, α2, · · · , αm−1)). Thus we have

(y0, y1, · · · , ym−1) = ([y]0, [y]1, · · · , [y]m−1)(cij) (12)



340 S. Kwon, T. Kwon, and Y.-H. Park

and (cij) can be regarded as the basis conversion matrix from {γ0, γ1, · · · , γm−1}
to {1, α, α2, · · · , αm−1}. We define the excess number of the basis conversion to
be ‘the number of nonzero entries of the matrix (cij) minus m’. As long as the
excess number is small, we can get a fairly simple basis conversion. For exam-
ple, if the excess number is zero, then the rows of (cij) are the permutated
ones of the identity matrix so that the basis conversion is just a permutation.
Note that from Lemma 2, we have the dual basis of {1, α, α2, · · · , αm−1} as{

g0
f ′(α) ,

g1
f ′(α) , · · · ,

gm−1
f ′(α)

}
. Now choose the mysterious constant β ∈ GF (2m) as

β = (αnsf ′(α))−1 where s = t+1
2 , i.e. ns is the power of the exact middle

term of the irreducible f(X) = 1 + Xn1 + · · · + Xns + · · · + Xnt + Xm. Then
{αnsg0, α

nsg1, · · · , αnsgm−1} is the dual basis of {β, βα, βα2, · · · , βαm−1}. Us-
ing this technique, Stinson [11] clarified and generalized previous results on basis
conversion of Wang and Blake [8] using trinomials Xm +Xk +1 and of Morii et
al. [9] using special pentanomials Xm + Xk+1 + Xk + Xk−1 + 1 to the case of
general irreducible polynomials f(X) = Xm +

∑t
i=0 X

ni as follows.

Theorem 3. [11] Let {1, α, α2, · · · , αm−1} be a polynomial basis for GF (2m)
and let f(X) = Xm +

∑t
i=0 X

ni be the irreducible polynomial of α over GF (2)
with 0 = n0 < n1 < · · · < nt < m. Write s = t+1

2 , β = (αnsf ′(α))−1 and
f(X) = (X − α)(

∑m−1
i=0 giX

i). Then {αnsg0, α
nsg1, · · · , αnsgm−1} is the dual

basis of {β, βα, βα2, · · · , βαm−1} and the excess number of the basis conversion
is
∑t

i=s+1 ni −
∑s−1

i=1 ni.

Sketch of Proof. The duality is clear from Lemma 2. Also from the equation (7),
write αnsgi as (because this expression produces minimal number of summands
since ns is the power of the exact middle term of f(X).)

αnsgi =
∑
nj≤i

αns−i−1+nj if i < ns

= αns−i−1+m +
∑
nj>i

αns−i−1+nj if i ≥ ns.
(13)

Then in all cases we have

0 ≤ ns − i− 1 + nj ≤ m− 1 (14)

and a counting argument [11] on the number of summands of the equations in
(13) shows that the number of nonzero entries of the basis conversion matrix is
m +

∑t
i=s+1 ni −

∑s−1
i=1 ni, i.e. the excess number is

∑t
i=s+1 ni −

∑s−1
i=1 ni. ��

For example, as is showed in [8], when f(X) = Xm + Xk + 1 is an irre-
ducible trinomial, then the excess number is zero and the basis conversion
from {αnsg0, α

nsg1, · · · , αnsgm−1} to {1, α, α2, · · · , αm−1} is just a permuta-
tion. Thus no extra circuitry is needed in this case. Also when irreducible f(X)
is the following special pentanomial Xm +Xk+1 +Xk +Xk−1 +1, then we have
t = 3, s = t+1

2 = 2 and thus the excess number is 2 = (k+1)− (k−1) which was
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already shown in [9]. However for a general irreducible polynomial, the excess
number may not be small and in that case, for each yi which is a linear combina-
tion of the signals [y]0, [y]1, · · · , [y]m−1, the depth and the number of necessary
XOR gates of the XOR tree with respect to yi should be determined precisely.

Lemma 4. Let γi = αnsgi for all 0 ≤ i ≤ m − 1. Let y =
∑m−1

i=0 [y]iγi =∑m−1
i=0 yiα

i be the expression of y with respect to the bases {γ0, γ1, · · · , γm−1}
and {1, α, α2, · · · , αm−1}, respectively. Then for each 0 ≤ i ≤ m − 1, yi is the
sum of at most s elements of [y]j with 0 ≤ j ≤ m−1. Thus each coefficient yi is
obtained by using an XOR tree of depth at most log2 s� with at most s−1 XOR
gates. Also the total number of necessary XOR gates to generate y0, y1, · · · , ym−1
using the signals [y]0, [y]1, · · · , [y]m−1 is exactly

∑t
i=s+1 ni −

∑s−1
i=1 ni.

Proof. By Theorem 3 and the equation (7), it is clear that
∑t

i=s+1 ni−
∑s−1

i=1 ni

is the total number of necessary XOR gates to generate all y0, y1, · · · , ym−1 using
the signals [y]0, [y]1, · · · , [y]m−1. Also, since

y =
m−1∑
k=0

ykα
k =

m−1∑
i=0

[y]iγi =
m−1∑
i=0

[y]iαnsgi

=
ns−1∑
i=0

[y]i(
∑
nj≤i

αns−i−1+nj ) +
m−1∑
i=ns

[y]i(αns−i−1+m +
∑
nj>i

αns−i−1+nj ),

(15)

we find that, for a fixed 0 ≤ k ≤ m − 1, [y]i appears as a summand of yk if
there is nj with nj ≤ i < ns or nj > i ≥ ns such that k = ns − i − 1 + nj

or if k = ns − i − 1 + m with i ≥ ns. Suppose that there exists a pair nj , i
with nj ≤ i < ns such that k = ns − i − 1 + nj . Then for any pair nj′ , i′ with
nj′ > i′ ≥ ns, we have k �= ns − i′ − 1 + nj′ because if this is an equality then
we have 0 ≥ nj − i = nj′ − i′ > 0 which is a contradiction. Also the number
of pairs nj′ , i′ with nj′ ≤ i′ < ns satisfying k = ns − i′ − 1 + nj′ is at most
s because j′ is in the range 0 ≤ j′ < s and i′ is uniquely determined by the
condition nj − i = nj′ − i′. Thus yk is the sum of at most s terms of [y]i′ with
0 ≤ i′ ≤ m − 1. The other case when there exists a pair nj , i with nj > i ≥ ns

such that k = ns− i− 1 +nj can be dealt in the same manner. Finally, suppose
that there is i ≥ ns such that k = ns − i − 1 + m. If there is another i′ ≥ ns

such that k = ns − i′ − 1 +m, then from ns − i− 1 +m = k = ns − i′ − 1 + m,
we have i = i′. Note that there is no pair nj′ , i′ with nj′ ≤ i′ < ns such that
k = ns − i′ − 1 + nj′ , because this implies 0 < m − i = nj′ − i′ ≤ 0 which is a
contradiction. Also the number of the pairs nj′ , i′ with nj′ > i′ ≥ ns satisfying
k = ns − i′ − 1 + nj′ is at most s− 1 because i′ is uniquely determined by the
condition m − i = nj′ − i′ and j′ is in the range s < j′ ≤ t, i.e. the number of
possible j′ is t− s = s− 1. Counting the pair m, i, we have at most s terms of
[y]i′ which appears as a summand of yk. ��

Because of Lemma 4 and Theorem 3, we can now precisely describe the basis
conversion using XOR trees. The necessary XOR gates for each tree can also
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be determined easily. For example, when one has an irreducible pentanomial
f(X) = Xm + Xn3 + Xn2 + Xn1 + 1 with 0 = n0 < n1 < n2 < n3 < m, the
total number of necessary XOR gates for the basis conversion is n3 − n1 and
each XOR tree, if it exists, is just a single XOR gate with depth one because
t = 3 and s = t+1

2 = 2. That is, among all coefficients y0, y1, · · · , ym−1 of
y =

∑m−1
i=0 yiα

i =
∑m−1

i=0 [y]iγi, exactly n3 − n1 number of yi are the sum of two
elements from the set {[y]0, [y]1, · · · , [y]m−1} and exactly m − n3 + n1 number
of yi are same to some members in {[y]0, [y]1, · · · , [y]m−1}.

3.2 Reducing the Critical Path Delay

Let us now explain the second problem of reducing the critical path delay of
Berlekamp multiplier. Since a bit serial architecture usually has a long critical
path delay, we want to modify the architecture to the sequential architecture
using the symmetry of the multiplication table Tr(βαi+kx) in (3). As usual,
let {γ0, γ1, · · · , γm−1} be the dual basis of {β, βα, βα2, · · · , βαm−1} with β =
(αnsf ′(α))−1. Write x, y ∈ GF (2m) as x =

∑m−1
i=0 [x]iγi and y =

∑m−1
i=0 yiα

i. Let-
ting xy =

∑m−1
k=0 [xy]kγk, the equation (3) says that[xy]k =

∑m−1
i=0 yiTr(βαi+kx).

That is,

[xy]0 = y0Tr(βx) + y1Tr(βαx) + · · ·+ ym−1Tr(βαm−1x),

[xy]1 = y0Tr(βαx) + y1Tr(βα2x) + · · ·+ ym−1Tr(βαmx),
· · ·
· · ·

[xy]m−1 = y0Tr(βαm−1x) + y1Tr(βαmx) + · · ·+ ym−1Tr(βα2m−2x).

(16)

By defining the column vectors Y = (y0, y1, · · · , ym−1)T , Z = ([xy]0, [xy]1, · · · ,
[xy]m−1)T , we have Z = AY where the m by m matrix A = (aij) is defined as
aij = Tr(βαi+jx), 0 ≤ i, j ≤ m−1. The crucial property of the matrix A is that
it is symmetric. Note that in the bit serial construction of Berlekamp, each row
vector of A is computed by a feedback shift register using the equations (4,5).
Since A is symmetric, the column vectors of A are generated by the same shift
register. Therefore we may compute the product xy sequentially. In other words,
letting Aj = (Tr(βαjx), T r(βαj+1x), · · · , T r(βαj+m−1x))T be the jth column
vector of A with 0 ≤ j ≤ m− 1, we compute the multiplication as follows,

Z = (· · · (((A0y0) + A1y1) + A2y2) + · · · ) + Am−1ym−1. (17)

Note that at the jth clock cycle (0 ≤ j ≤ m−1), Aj is multiplied to the constant
yj and the value Ajyj is added to the partial sum A0y0 + · · ·+Aj−1yj−1 to get
the result A0y0 + · · ·+Ajyj which is stored in the register Di, 0 ≤ i ≤ m−1, for
a partial summation. At the same time, the upper shift register is loaded with
the vector Aj+1 via the relations (4,5) and the lower shift register is loaded with
the vector (yj+1, yj+2, · · · , yj) via left cyclic shifting, and the loaded values wait
for the next cycle.
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3.3 Main Result with Hardware Architecture

All these explanations on the critical path delay and the basis conversion are
realized in the circuit arrangement shown in Fig. 2. In the figure, every input
of our multiplier is expressed with respect to the basis {γ0, γ1, · · · , γm−1} =
{αnsg0, · · · , αnsgm−1}. The input y =

∑m−1
i=0 [y]iγi is loaded via XOR trees to the

lower shift register so that the vector in the register has the value (y0, · · · , ym−1),
and this vector is cyclically shifted to the left by one position at every cycle.
The area complexity and the critical path delay of the proposed multiplier are
explained in our main Theorem 5.

Theorem 5. Let f(X) = Xm +
∑t

i=0 X
ni be an irreducible polynomial over

GF (2) with 0 = n0 < n1 < · · · < nt < m and let α be a zero of f(X).
Write s = t+1

2 and f(X) = (X − α)(
∑m−1

i=0 giX
i). Then, by using the basis

{αnsg0, α
nsg1, · · · , αnsgm−1}, we can construct a sequential multiplier for the

multiplication of x and y in GF (2m) with 3m flip-flops, m AND gates, and
m + t +

∑t
i=s+1 ni −

∑s−1
i=1 ni XOR gates such that

1. An XOR tree for the feed back shift register for the input x needs t XOR gates
with depth of the tree log2(t + 1)�. Also the basis conversion of the input
y costs

∑t
i=s+1 ni −

∑s−1
i=1 ni XOR gates with m XOR trees such that each

XOR tree consists of at most t−1
2 XOR gates with depth log2(t + 1)� − 1.

2. Our multiplier has a parallel-in parallel-out structure and produces an output
of xy at a rate of one every m clock cycle. The critical path delay of our
multiplier is TA + TX if t = 1 (i.e. trinomial case) and it is log2(t+ 1)�TX

if t > 1, where TA and TX are the delay time of a two input AND gate and
a two input XOR gate, respectively.

Fig. 2. A new linear multiplier using the basis {αnsg0, · · · , αnsgm−1} in GF (2m) with
s = t+1

2 and f(X) = Xm +
∑t

i=0 Xni = (X − α)(
∑m−1

i=0 giX
i)
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Fig. 3. A multiplication circuit using the basis {α2g0, · · · , α2g4} in GF (25) with
f(X) = X5 + X2 + 1 = (X − α)(

∑4
i=0 giX

i)

Example 1. For a simple example, let us explain our multiplier for the case
m = 5. Fig. 3 shows the circuit of our multiplier using f(X) = X5 + X2 + 1.
Since f(X) is a trinomial, the basis conversion of y is just a permutation. Note
that our circuit in this case is quite similar to the circuit with a polynomial basis
[18].

4 Comparison with Other Linear Normal and Polynomial
Basis Multipliers for Elliptic Curve Cryptography

In view of the result in Theorem 5, we may now claim that our proposed mul-
tiplier is, in terms of the time and area complexity, superior to most of normal
basis multipliers currently used. The lowest complexity normal basis multipliers
which are cryptographically meaningful are the multipliers using type II ONB
(optimal normal basis). Previously known normal basis multipliers using type II
ONB have the critical path delay either TA + 2TX [2,5,13] or TA + 3TX [4]. On
the other hand, Theorem 5 says that the critical path delay of our multiplier is
TA+TX when f(X) is a trinomial and 2TX when f(X) is a pentanomial. Thus our
multiplier using either trinomial or pentanomial has a shorter critical path delay
than the normal basis multipliers [2,4,5,13] using type II ONB. Moreover type II
ONB are pretty rare [6] compared with trinomial or pentanomial bases [16,17].
For example, all the five binary fields GF (2m),m = 163, 233, 283, 409, 571, rec-
ommended by NIST [12] have either irreducible trinomials (when m = 233, 409)
or pentanomials (when m = 163, 283, 571) while there is only one field GF (2233)
which has a type II ONB.

If one looks for the next possible low complexity normal basis after type II
ONB, it is generally believed that a low complexity normal basis is a Gaussian
normal basis of type k for some k. A Gaussian normal basis of type k in GF (2m)
is a normal basis {α, α2, · · · , α2m−1} with

α =
k−1∑
j=0

βτ j

, (18)
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where β is a primitive pth root of unity in GF (2mk) with p = mk+1 a prime, and
τ is an element of order k in GF (p)×. It is well known [6] that such Gaussian
normal basis exists if and only if gcd(mk/ordp2,m) = 1. Note that a type II
ONB is a Gaussian normal basis of type k = 2. NIST [12] suggested that, when
one uses a normal basis, one uses the lowest complexity Gaussian normal basis
for each binary field. That is, a Gaussian normal basis of type 2 when m = 233,
type 4 when m = 163, 409, type 6 when m = 283, and type 10 when m = 571. To
the authors’ knowledge, there is no known normal basis (which is not Gaussian)
whose complexity is lower than the recommended (by NIST) Gaussian normal
basis for each field at this moment. Therefore it seems that the corresponding
Gaussian normal basis for each GF (2m),m = 163, 233, 283, 409, 571, is the lowest
complexity normal basis for that field.

Table 1. Comparison with previously proposed linear multipliers

Basis Critical path delay AND XOR
[1] normal TA + �log2 (mk)�TX C C − 1
[2, 13∗] normal TA + (1 + �log2 k�)TX m C

[4] normal TA + (1 + �log2 (k + 2)�)TX m 1
2 (C + 1) + �m

2 �
[5] normal TA + (1 + �log2 k�)TX m k

2 (m − 1) + m+1
2

[7, 10∗∗] dual TA + �log2 m�TX m m + t − 1
[18, 20] polynomial (LSB) TA + TX m m + t

[18] polynomial (MSB) TA + 2TX m m + t

This paper {αnsgi|0 ≤ i ≤ m−1} TA + TX or �log2 (t + 1)�TX m m + t +
t∑

i=s+1

ni −
s−1∑
i=1

ni

Remark : In the table, C is defined as C = km−k+1 if k is even and C = (k+1)m−3k+2
if k is odd. One has the lowest possible C = 2m − 1 when k = 1 or 2. Also, ∗the paper
[13] is applicable only for the case of type II ONB, and ∗∗[10] considers only the basis
conversion with regard to Xm +Xk +1 and Xm +Xk+1 +Xk +Xk−1 +1 and examples
are given only for the values m ≤ 10.

Compared with normal basis multipliers, there are not so many kinds of linear
polynomial basis multipliers partly because of its relatively simple field arith-
metic. There are two standard ways of computing multiplications in GF (2m).
One is LSB (least significant bit) first scheme and the other is MSB (most signif-
icant bit) first scheme. Namely, LSB first scheme computes the least significant
bit of the operand first and MSB first scheme computes the most significant bit
of the operand first. One can easily construct a linear multiplier [18,20] following
either LSB or MSB first scheme and the resulting circuits have almost the same
area complexity and critical path delay.

Remark : NIST [12] recommends to use the lowest complexity Gaussian normal
basis for the above fields and they are of type 4, 2, 6, 4, 10, respectively. For
irreducible polynomials, NIST recommends to use X163 + X7 + X6 + X3 +
1, X233 + X74 + 1, X283 + X12 + X7 + X5 + 1, X409 + X87 + 1, X571 + X10 +
X5 + X2 + 1, respectively.
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Table 2. Comparison of the critical path delay for the five binary fields

GF (2m) GF (2163) GF (2233) GF (2283) GF (2409) GF (2571)
type k k = 4 k = 2 k = 6 k = 4 k = 10
[1] TA + 10TX TA + 9TX TA + 11TX TA + 11TX TA + 13TX

[2, 13] TA + 3TX TA + 2TX TA + 4TX TA + 3TX TA + 5TX

[4] TA + 4TX TA + 3TX TA + 4TX TA + 4TX TA + 5TX

[5] TA + 3TX TA + 2TX TA + 4TX TA + 3TX TA + 5TX

[7, 10] TA + 8TX TA + 8TX TA + 9TX TA + 9TX TA + 10TX

[18, 20] LSB TA + TX TA + TX TA + TX TA + TX TA + TX

[18] MSB TA + 2TX TA + 2TX TA + 2TX TA + 2TX TA + 2TX

This paper 2TX TA + TX 2TX TA + TX 2TX

From Table 1, the critical path delay of [2,5] using a Gaussian normal basis of
type k is TA + (1 + log2 k�)TX . Also the critical path delay of the polynomial
basis multipliers is TA + TX with LSB first scheme and is TA + 2TX with MSB
first scheme. On the other hand, our multiplier has a critical path delay TA +TX

if f(X) is a trinomial and 2TX if f(X) is a pentanomial. This implies that the
critical path delay of our multiplier is significantly reduced from that of normal
basis multipliers and is comparable to that of polynomial basis multipliers. See
the difference of the critical path delay for m = 163, 233, 283, 409, 571 shown
in Table 2. It should be mentioned that, since we are dealing with a linear
multiplier, even a small increment of the critical path delay such as TX results
in a total delay of mTX where m is the size of a field.

Table 3. Comparison of the number of necessary XOR gates for the five binary fields

GF (2m) GF (2163) GF (2233) GF (2283) GF (2409) GF (2571)
type k k = 4 k = 2 k = 6 k = 4 k = 10
[1] 648 464 1692 1632 5700
[2, 13] 649 465 1693 1633 5701
[4] 406 349 988 1021 3136
[5] 406 349 988 1021 3136
[7, 10] 165 233 285 409 573
[18, 20] LSB 166 234 286 410 574
[18] MSB 166 234 286 410 574
This paper 170 234 293 410 582

The area complexity of our multiplier is also far lower than that of Massey-
Omura multipliers [1,2,4,5] and is comparable to that of polynomial basis multi-
pliers. For a binary field GF (2m) with odd m (i.e. with even k), Table 1,3 shows
that the normal basis multipliers in [4,5] need C+1

2 + *m
2 + = k+1

2 m− k−1
2 XOR

gates, which is 3
2m−

1
2 for a type II ONB and k+1

2 m− k−1
2 > 5

2m− 5 for other
Gaussian normal bases of type k = 4, 6, 10. On the other hand, our multiplier
needs m + 1 XOR gates when trinomial is used and needs m + 3 + n3 − n1
(< 2m + 3) XOR gates when pentanomial is used. Note that the difference of
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the number of necessary XOR gates between our multiplier and the polynomial
basis multipliers comes from the base change of our multiplier and is practically
negligible.

5 Explicit Circuits of Our Multiplier for the NIST
Recommended Binary Fields

Let us explain how to construct a multiplication circuit for each binary field
GF (2m), m = 163, 233, 283, 409, 571, using Theorem 5. The recommended irre-
ducible polynomials [12] for these fields are X163 + X7 + X6 + X3 + 1, X233 +
X74 + 1, X283 +X12 +X7 +X5 + 1, X409 +X87 + 1, X571 +X10 +X5 +X2 + 1,
respectively. Since these polynomials are either trinomials or pentanomials, we
will discuss basis conversion of these polynomials and derive explicit multipli-
cation architectures. First let us consider the trinomial f(X) = Xm + Xk + 1.
Then we get the exact middle term αns = αk and from the equations (7) or (13),
we have

αkgi = αk−i−1
∑
nj≤i

αnj = αk−i−1 if 0 ≤ i < k

= αk−i−1(1 + αk) = αk−i−1+m if k ≤ i < m.

(19)

Therefore the basis of our multiplier for the trinomial f(X) = Xm + Xk + 1 is

{αkg0, · · · , αkgm−1} = {αk−1, αk−2, · · · , α0, αm−1, αm−2, · · · , αk}. (20)

Next let us consider the pentanomial f(X) = Xm +Xn3 +Xn2 +Xn1 +1. Then
αns = αn2 and again using the equations (7) or (13),

αn2gi = αn2−i−1 if 0 ≤ i < n1

= αn2−i−1(1 + αn1) = αn2−i−1 + αn2−i−1+n1 if n1 ≤ i < n2

= αn2−i−1(αn3 + αm) = αn2−i−1+n3 + αn2−i−1+m if n2 ≤ i < n3

= αn2−i−1αm = αn2−i−1+m if n3 ≤ i < m.

(21)

Thus the basis {γ0, · · · , γm−1} = {αn2g0, · · · , αn2gm−1} of our multiplier for the
pentanomial f(X) = Xm + Xn3 + Xn2 + Xn1 + 1 is

{αn2−1, · · · , αn2−n1 , αn2−n1−1 + αn2−1, · · · , α0 + αn1 ,

αn3−1 + αm−1, · · · , αn2 + αn2−n3+m, αn2−n3+m−1, · · · , αn2}.
(22)

Example 2. Multiplication in GF (2163) using f(X) = X163+X7+X6+X3+1:
From the equations (21,22), we have the following basis {γ0, · · · , γ162} for the
field GF (2163),
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Fig. 4. A multiplication circuit using the basis {γ0, · · · , γm−1} = {α6g0, · · · , α6g162}
in GF (2163) with f(X) = X163 + X7 + X6 + X3 + 1 = (X − α)(

∑162
i=0 giX

i)

{α5, α4, α3, α2 + α5, α + α4, α0 + α3, α6 + α162, α161, α160, · · · , α6}. (23)

Therefore letting y =
∑162

i=0[y]iγi =
∑162

i=0 yiα
i, the basis conversion is

y = [y]0α5 + [y]1α4 + [y]2α3 + [y]3(α2 + α5) + [y]4(α + α4) + [y]5(α0 + α3)

+ [y]6(α6 + α162) + [y]7α161 + [y]8α160 + · · ·+ [y]162α6

= [y]5α0 + [y]4α + [y]3α2 + ([y]2 + [y]5)α3 + ([y]1 + [y]4)α4 + ([y]0 + [y]3)α5

+ ([y]6 + [y]162)α6 + [y]161α7 + [y]160α8 + · · ·+ [y]6α162,

and the corresponding circuit for the multiplication is shown in Fig. 4.

Example 3. Multiplication in GF (2233) using f(X) = X233 + X74 + 1: From
the equation (20), we have the following basis {γ0, · · · , γ232} for the field
GF (2233),

{α73, α72, · · · , α0, α232, α231, · · · , α74}. (24)

Thus the multiplication is easily realized in the shift register arrangement shown
in Fig. 5. Note that one can construct a similar circuit for the case GF (2409)
with NIST recommended trinomial f(X) = X409 + X87 + 1.

Example 4. Multiplication in GF (2283) using f(X) = X283+X12+X7+X5+1:
From the equations (21,22), we have the following basis {γ0, · · · , γ282} for the
field GF (2283),

{α6, · · · , α2, α + α6, α0 + α5, α11 + α282, · · · , α7 + α278, α277, · · · , α7}. (25)
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Fig. 5. A multiplication circuit using the basis {α74g0, · · · , α74g232} in GF (2233) with
f(X) = X233 + X74 + 1 = (X − α)(

∑232
i=0 giX

i)

Thus we have

y = [y]0α6 + · · ·+ [y]4α2 + [y]5(α + α6) + [y]6(α0 + α5)

+ [y]7(α11 + α282) + · · ·+ [y]11(α7 + α278) + [y]12α277 + · · ·+ [y]282α7

= [y]6α0 + · · ·+ [y]2α4 + ([y]1 + [y]6)α5 + ([y]0 + [y]5)α6

+ ([y]11 + [y]282)α7 + · · ·+ ([y]7 + [y]278)α11 + [y]277α12 + · · ·+ [y]7α282,

and the multiplication circuit is shown in Fig. 6, where the omitted cell Ri is
same to the cell in Fig. 2. Also note that the other field GF (2507) with NIST
recommended f(X) = X571 + X10 + X5 + X2 + 1 can be dealt in the same
manner.

Fig. 6. A multiplication circuit using the basis {α7g0, · · · , α7g282} in GF (2283) with
f(X) = X283 + X12 + X7 + X5 + 1 = (X − α)(

∑282
i=0 giX

i)
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6 Conclusions

In this paper, we proposed a new linear multiplier and constructed explicit mul-
tiplication circuits for the five NIST recommended binary fields GF (2m),m =
163, 233, 283,
409, 571, for ECC purpose. Our new linear multiplier has a reduced critical path
delay and a simple basis conversion process compared with the dual basis mul-
tipliers in [7,10]. Compared with linear normal basis multipliers [2,4,5,13], our
multiplier has a significantly reduced critical path delay and a lower hardware
complexity as is explained in Table 1,2,3. Compared with linear polynomial basis
multipliers [18,20] with LSB or MSB first scheme, the same tables also show that
our proposed multiplier has almost the same hardware complexity and critical
path delay. Although a normal basis has a simple squaring with no extra cost,
it is not difficult to show that a squaring in our basis (or in a polynomial basis)
needs a negligible cost as long as we choose a low weight irreducible polynomial
such as a trinomial or a pentanomial. Computational evidence [16,17] shows
that there are plenty of such low weight polynomials compared with low com-
plexity normal bases. Therefore our proposed multiplier can be used in many
cryptographic applications where a low cost and a high speed arithmetic unit is
needed.
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Abstract. For high data rate, new mechanisms such as Block Ack and frame 
aggregation are currently being discussed in IEEE 802.11e and IEEE 802.11n, 
respectively. These mechanisms need a short response time in each MPDU 
processing. In this paper, we propose an efficient design of CCMP for IEEE 
802.11i to support these new MAC mechanisms. The proposed design adopts 
the mode toggling approach, in which MIC calculation and data encryption 
are sequentially performed for each 128 bits of the packet in only one AES-
CCM core. In our design, the response time is reduced to a short constant pe-
riod, which takes only 44 clock cycles. In addition, we can reduce hardware 
complexity and power consumption, because our design uses one AES-CCM 
core and obtains the reasonable data throughput and response time at even 
low clock frequency. We have implemented the proposed design, which is 
targeted to Altera Stratix FPGA device. As a result of the experiments, the 
CCMP features 285 Mbps data throughput and 0.88  response time at 50 
MHz frequency. 

1   Introduction 

When the IEEE 802.11 standard was published, it included an optional security proto-
col called WEP. However, as the IEEE and Wi-Fi Alliance realized that WEP is not 
safe against attacks, IEEE 802.11 task group I presented the RSN (Robust Security 
Network) architecture that uses WEP (Wired Equivalent Privacy), TKIP (Temporal 
Key Integrity Protocol), and CCMP (Counter with CBC-MAC Protocol) to protect 
WLAN (Wireless Local Area Network) traffic in MAC (Medium Access Control) 
layer [1][2]. 

In CCMP, AES-CCM (Advanced Encryption Standard Counter with CBC-MAC) 
block cipher algorithm [2] is used to provide the data privacy. In order to guarantee 
crypto acceleration and satisfy the MAC layer data throughput, secure operation, and 
interoperability, CCMP operation should be embedded in WLAN device [3]. 
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On the other hand, the drive for high data rate and QoS support in wireless LANs 
has pushed the IEEE to develop IEEE 802.11n and IEEE 802.11e. For high data rate, 
new MAC mechanisms, such as Block Ack in IEEE 802.11e and frame aggregation in 
IEEE 802.11n, are currently being discussed in other IEEE 802.11 task group [4-6]. 
Because these aforementioned mechanisms have a short interval among MPDUs, the 
response time in a cipher core should be short. In this paper, we define the response 
time as an interval between the first data input time and the first processed data output 
time, where each data is of 128 bits. We may reduce the response time by increasing a 
clock frequency in the cipher core. But power consumption is a critical factor espe-
cially to wireless communication device of mobile terminal. As a clock frequency 
become faster, dynamic power consumption in circuit will increase. If we adopt faster 
clock frequency to reduce the response time, power consumption in the cipher core 
may increase. Our proposed design is motivated by the need to reduce the response 
time even without increasing the clock frequency. 

Some works have been presented on hardware implementation of the AES algo-
rithm. In [7-9], most of them are based on pipelining, sub-pipelining and loop unroll-
ing to speed up the AES algorithm in non-feedback modes by duplicating hardware 
for implementing each round in order to increase data throughput and get the cost to 
be effective. But they required more logics than feedback modes, because of using 
pipeline registers in each round and duplicating hardware. In WLAN security, high 
data throughput is not needed because the MAC data processing speed is 11 Mbps in 
IEEE 802.11b and 54Mbps in IEEE 802.11a and IEEE 802.11g. So, it is important to 
make the cipher core for IEEE 802.11 fast in speed and simple architecture enough to 
still stay within performance constraints to reduce power consumption in wireless 
communication device. 

AES-CCM algorithm consists of two processes: One is MIC calculation with CBC-
MAC (Cipher Block Chaining-Message Authentication Code) and the other is data 
encryption with counter mode. In AES-CCM, almost the same structure can be used 
to both MIC (Message Integrity Code) calculation and data encryption [10]. So, in 
general, there are two methods in designing CCMP core in hardware: a sequential 
method and a parallel method. In the sequential method, its MIC calculation com-
pletes the MIC data for the overall payload and then the payload and the MIC data are 
encrypted in the same AES module. In [3], CCMP was implemented in this way. In 
CCMP encapsulation process, the AES module calculates the MIC data in CBC-MAC 
mode and then performs data encryption in counter mode. In the method, it can lead 
to a significant savings in code and hardware size because it uses only one AES mod-
ule. However, its response time is directly proportional to the payload size. In the 
parallel one, it computes the MIC data in an AES module and performs encryption 
simultaneously in another one. It can reduce the total computing time to almost a half 
and the response time to short constant interval. However, it uses logic gates two 
times more than the sequential structure. 

In this paper, we present an efficient hardware design for the CCMP. Instead of 
sequential and parallel structure approaches, we implement the CCMP core that 
calculates the MIC data and performs data encryption by turn. The proposed design is 
much more cost-effective than the parallel structure and its response time takes only 
44 clock cycles in encapsulation and decapsulation processes. 
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2   Design Considerations 

In the IEEE 802.11 task group E, the Block Acknowledgement (Block Ack) mecha-
nism is currently being discussed to reduce the acknowledgement overhead. The mes-
sage sequence chart for Block Ack mechanism in the 802.11e is illustrated in Fig. 1.  

 

Fig. 1. Message Sequence Chart for Block Ack Mechanism in IEEE 802.11e[4] 

The Block Ack mechanism allows a burst of frames to be transmitted before any ac-
knowledgement. After sending the block of frames, the sender sends a block acknowl-
edgement request (Block Ack Req) frame. The receiver sends a block acknowledgement 
(Block Ack) containing the information about which frames have been correctly re-
ceived. Each frame is separated by a short interframe space (SIFS) period [4]. 

In the IEEE 802.11n task group, single and multiple destination frame aggrega-
tion is being discussed. Some proposals specify a standardized frame aggregation 
for both single and multiple destinations to improve network efficiency and interop-
erability. Frame aggregation mechanism is important for streaming applications 
including wireless voice over IP and multimedia content [5]. For example, frame 
aggregation in TGnSync proposal [5] bundles several MAC frames into a single 
PLCP (Physical Layer Convergence Procedure) frame for transmission. The frame 
aggregation process in TGnSync proposal is illustrated in Fig. 2. Several MAC 
frames are put into the same PLCP frame and are separated with an appropriate 
delimiter between them. In this mechanism, the time interval among MAC frames 
in an aggregation frame is very short and each frame in the frame aggregation proc-
ess is separated by a SIFS period. 
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Fig. 2. Frame Aggregation Process in TGnSync Proposal [5] 

In 802.11i, the encapsulation process is performed per MPDU. Because the two new 
mechanisms in IEEE 802.11e and IEEE 802.11n have short interval among MPDUs, the 
response time in the cipher core must be short. If the sender latency between the end 
time of a MPDU encapsulation and the start time of the next MPDU encapsulation is 
not much smaller than SIFS too large to be acceptable in IEEE 802.11e and IEEE 
802.11n, neither Block Ack nor frame aggregation can work properly. 

The response time may be reduced by increasing a clock frequency in the cipher 
core. But in wireless device, which are usually resource-constrained, power 
consumption is a critical factor especially to mobile terminal. In general, as a clock 
frequency becomes faster, the dynamic power consumption will increase. If we adopt 
faster clock frequency to reduce the response time, power consumption in the cipher 
core will increase. In our proposed design, we reduce the response time even without 
increasing the clock frequency, keeping high data throughput. 

We use SIFS as a factor to consider the maximum allowable response time. The total 
delay in MAC, PHY, and the cipher core must be within the SIFS. Thus, the delay in the 
cipher core must be much smaller than the SIFS specified in other 802.11 standards. 
SIFS is 10  in 802.11b and 16  in 802.11a and 802.11n. In this paper, we assume the 
maximum allowable response time in the cipher core to about 3 . 

3   CCMP Protocol and Previous Designs 

3.1   CCMP Protocol Overview 

CCMP operations are illustrated in Fig. 3 and Fig. 4. CCMP is based upon the CCM 
mode of the AES encryption algorithm. CCMP utilizes 128-bit keys, with a 48-bit 
packet number (PN) for replay attack detection. The counter mode of CCMP is the 
algorithm providing data privacy. The Cipher Block Chaining Message Authentica-
tion Code (CBC-MAC) of CCMP provides authentication and data integrity [1]. 

In CBC-MAC mode, NONCE and Additional Authentication Data (AAD) is 
calculated firstly and then Framebody is computed. In counter mode, a count value is 
encrypted by AES core and this result is XORed with 128-bit block data. 
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Fig. 3. CCMP MIC data calculation with CBC-MAC 

 

Fig. 4. CCMP data encryption with counter mode 

3.2   CCMP Design in Sequential Structure 

As mentioned in Section 1, CCMP can be implemented in the sequential structure. Its 
MIC data are calculated for the overall payload and then the payload and the MIC 
data are encrypted in the same AES module. The encapsulation timing diagram of a 
sequential CCMP core is shown in Fig. 5. 

In this structure, as a payload size becomes larger, the response time increases line-
arly. For example, if the payload size is 1024 bytes and AES module takes 11 clock 
cycles for MIC calculation of 128 bit data, the total MIC calculation will take 748 
clock cycles as described in Fig. 5. At 100 MHz clock frequency, it will take 7.48 
If 2048 bytes is a payload size, the total MIC calculation will take 14.52 , which is 
larger than SIFS in IEEE 802.11b. Therefore, the sequential structure can not support 
new MAC mechanisms because of long response time. 



 An Efficient Design of CCMP for Robust Security Network 357 

 

Fig. 5. The encapsulation timing diagram of a sequential CCMP core 

3.3   CCMP Design in Parallel Structure 

A parallel structure CCMP core uses two AES modules. One AES module is used for 
MIC calculation in CBC-MAC mode and the other is used for data encryption in counter 
mode. The encapsulation timing diagram of a parallel CCMP core is illustrated in Fig. 6.  

In the parallel structure, it takes only 44 clock cycles to obtain the first 128-bits 
cipher data and the response time doesn’t depend on the payload size. The data 
  

 

Fig. 6. The encapsulation timing diagram of a parallel CCMP core 
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throughput is improved nearly 2 times than the CCMP core in the sequential structure. 
However, the parallel structure uses logic gates as 2 times more than the sequential 
structure. 

4   Efficient Architecture of CCMP 

In our proposed design, we calculate the MIC data and perform data encryption with 
one AES module by controlling input data to an AES module. An CCMP calculates 
the MIC data in CBC-MAC mode and performs data encryption in counter mode by 
turn. The encapsulation timing diagram of the CCMP is illustrated in Fig. 7. 

 

Fig. 7. The encapsulation timing diagram of the CCMP 

Firstly, our CCMP core operates in CBC-MAC mode to compute NONCE, Addi-
tional Authentication Data 1 (AAD1), and AAD2 during 3 phases. Secondly, it oper-
ates in counter mode for data encryption and operates in CBC-MAC mode for MIC 
calculation by turn. Each phase in our CCMP core takes 11 clock cycles. Thus, it 
takes only 44 clock cycles to obtain first 128-bits cipher data and it is the same as the 
response time in the parallel structure. The proposed architecture of CCMP is illus-
trated in Fig. 8.  

It consists of 6 blocks AES module, Round Key Generator, Construction Block, 
Counter, Mode Controller, I/O Interface. Construction Block generates NONCE and 
AAD from PN and MAC header. Round Key Generator generates round keys on the 
fly. Mode Controller controls the operation mode of the AES module, control signals, 
and input data to the AES module. Counter block is a simple 16-bits counter and 
generates proper counter value for each data block.  



 An Efficient Design of CCMP for Robust Security Network 359 

 

Fig. 8. The architecture of the implemented CCMP 

5   Implementation Results and Comparisons 

Our architecture was synthesized and implemented using Quartus  compiler and 
targeted to Altera Stratix FPGA (Field Programmable Gate Array) device, which was 
supported by IDEC (IC Design Education Center). 

Table 1 shows clock cycles for each phase in the implemented CCMP. Table 2 
shows the performance comparison with other structures. When we obtained  
 

Table 1. Clock cycles for each phase in the implemented CCMP 

Category Cycles 

CBC mode encryption 11 cycles 
CBC mode MIC encryption 11 cycles 
Counter mode encryption 11 cycles 
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performance results, initialization cycles in CCMP core are not considered because 
their overheads are small. 

In Table 2, we can figure out that the data throughput of our design is the same as 
that of the sequential structure and the response time has been improved significantly. 
The response time is not dependant on the payload size but only dependant on a clock 
frequency. 

Table 2. Performances for 1024 bytes payload at 50 MHz clock frequency 

Category 
Sequential 
Structure 

Parallel  
Structure 

Proposed 
Design 

Data Throughput (Mbps) 285 562 285 
Response Time ( ) 14.96 0.88 0.88 

Table 3 shows the design comparison with other structures. Considering the ratio 
of throughput over logic usage, our design is nearly the same as others. But in the 
ratio of logic usage over the response time for 1024 bytes frame size at 50 MHz 
frequency, our design is nearly 2 times better than the parallel structure and 16 times 
better than the sequential structure. 

Table 3. Comparison with other implementation approaches 

Category 
Sequential 
Structure 

Parallel  
Structure 

Proposed 
Design 

Logic Used 
( # : number of logic cells ) 

5437 9702 5605 

Throughput / Logic usage 
( Kbps / # ) 

53.68 59.32 52.07 

1 / Logic usage / Response Time 
( 1 /  # / sec ) 

12.29 117.13 202.74 

Our design can support up to 285 Mbps at 50 MHz clock frequency. This satisfies 
MAC data processing speed of all standards. The data speed of MAC layer is 11 
Mbps in IEEE 802.11b and 54 Mbps in IEEE 802.11a and 802.11g. Our design can 
support all these standards [6]. The response time in our design is 0.88  at 50 MHz 
clock frequency. It is sufficient to support new MAC mechanisms in other 802.11 
standards. 

6   Conclusion 

To support new MAC mechanisms, the response time in the cipher core should have a 
short interval. In addition, hardware complexity should be considered for low power 
consumption and manufacturing cost. In this paper, we propose an efficient design of 
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CCMP which supports new MAC mechanisms such as Block Ack in 802.11e and 
frame aggregation in other 802.11 standards by adopting the mode toggling approach.  

As a result, our design can support up to 285 Mbps at 50 MHz clock frequency and 
the response time in our design is 44 clock cycles and it is not dependent on the 
payload size but only dependent on a clock frequency. We can conclude that our 
design can support new MAC mechanisms and reduce power consumption because 
our design has the short response time and the data throughput achievable even at the 
low clock frequency. 
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Abstract. We present a software-based protection mechanism to prevent unau-
thorized copying of media documents during their presentation on a clients host.
Our solution enforces the execution and continuous replacement of security
mechanisms on the clients host. Each protection mechanism is only used for a
short time interval before it is replaced. The short duration of the time interval
prevents a successful analysis and attack of the mechanism. In this way we solve
a shortcoming of current solutions. As those employ fixed protection mechanisms
they will eventually be circumvented because attackers have virtually unlimited
time to analyze them.

1 Introduction

Digital distribution of media documents over networks like the Internet provides both
users and content owners with a number of benefits. From the users perspective the
new distribution channels provide the opportunity to access the content the user wants
from almost any place at any time. The content providers on the other hand benefit from
cheap distribution channels that reach the worlds probably largest audience. Despite its
obvious advantages, digital distribution of media has presently not been fully embraced.
The reason for this is related to the digital dilemma [11]. The term digital dilemma refers
to the fact, that the same technology that offers new opportunities to content providers
and users can be abused to create and illegally distribute unauthorized digital copies of
media documents without compensating the content owner.

The problem of unauthorized copies arises from the fact that media documents have
to be digitally copied to the users environment in order to be presented. Any mecha-
nism that protects the media document from being copied has to perform its function
in the users environment. But this environment is under complete control of the user
and a malicious user can attack the protection mechanisms in various ways in order to
circumvent them. Many protection mechanisms have been successfully attacked, e. g.
Microsoft’s digital rights management [12] or Apples FairPlay [18].

Current solutions suffer from two conceptual problems. First, they are usually based
on a single, fixed set of mechanisms. Second, the protection mechanisms are integrated
in the presentation device and together with the device, they are fully exposed to an
attacker. This enables the attacker to analyze and eventually circumvent the mechanisms
by modifying the presentation device. Therefore none of the current solutions is capable
of solving the problem of unauthorized copying.
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It is a common belief that secure protection mechanisms can only be implemented by
hardware-based systems. This is not necessarily true, the deployment of hardware based
mechanisms is not guaranteed to increase the security of presentation devices. The ef-
fectiveness of hardware-based mechanisms is often not proven. In the past Mod-chips
were built to circumvent region code restrictions in DVD-players or copy-protection
mechanisms in game consoles. Even advanced protection mechanisms have been suc-
cessfully attacked, e. g. Microsoft’s XBox protection [15]. The biggest drawback of
hardware-based solutions is that it is almost impossible to recover from a successful
attack. The best known breach is probably the circumvention of CSS [3], which com-
pletely disabled the protection of all DVDs.

In this paper, we present a new purely software-based solution to prevent unautho-
rized copying of media documents in a hostile environment. Our solution solves two
conceptual problems that exist in current solutions. We enforce a continuous exchange
of protection mechanisms. Each individual protection mechanism is only employed for
a brief time interval that is too short to successfully analyze the mechanism.

Our solution allows to quickly detect modifications of presentation devices and to
stop the presentation of media documents before more than a few seconds of a media
document are copied. Attacks that are based on execution traces and memory dumps
become infeasible because our solution makes such attempts very costly in terms of
computational and human resources.

The remainder of the paper is structured as follows. In section 2 we identify the
threats to media distribution in an untrusted environment. Section 3 describes the basic
ideas of our solution. Two main concepts of our approach, the mobile guard and the
key exchange protocol, are described in section 4 and section 5 respectively. The archi-
tecture of our prototype system is presented in section 6. Related work is discussed in
section 7. Section 8 concludes the paper.

2 The Problem with Dissemination and Playback

A media document is owned by a content owner. The media document is encoded, for
example using an MPEG4 compliant codec, in order to facilitate handling and distri-
bution. The encoded media document is of high value to the content owner. It is made
available to customers by a content provider. The content provider hosts the encoded
media document in his environment, the provider environment. The provider environ-
ment is secure, i. e. the content provider has full control over the data that leaves the
provider environment.

The content provider distributes the media document through a distribution channel
so that the media document becomes accessible to a presentation program, that is run
on the user’s host. We refer to this presentation program as a viewer. The distribution
channel might be a network connection or a tangible media that is shipped to the user.

Our main goal is to protect the encoded media document against unauthorized access
from the user or from third parties. This means it should not be possible to create a copy
of the encoded media document outside of the provider environment.

In order to prevent third parties from gaining unauthorized access to the encoded
media document during the distribution process, the encoded media document is usu-
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ally encrypted before it is distributed. The encryption is performed in the provider en-
vironment, yielding an encrypted, encoded media document (EEMD). The encryption
effectively protects the encoded media document against unauthorized access by third
parties, allowing it to be safely transported through public distribution channels, e. g.
the Internet.

2.1 Presentation Is a Vulnerable Process

While encryption protects the encoded media document from being accessed by third
parties, it alone does not guarantee that the encoded media document is protected from
an malicious user. The reason for this is, that the EEMD has to be decrypted in the user
environment in order to decode the encoded media document and present it to the user.
In current systems, the viewer usually receives a decryption key in form of a license.
Alternatively, the decryption key might be embedded in the viewer code, or partly in
the viewer code and partly in the transport media, e. g. DVD.

Decryption

Multimedia
data Encoded media

document
Decoding

Viewer

EEMD

Fig. 1. Decoding of the EEMD

The presentation process is illustrated in figure 1. The viewer first decrypts the
EEMD yielding an encoded media document. The encoded media document is then
processed by a decoder yielding multimedia data, e. g. video- and audio-frames. Con-
sequently, the following sensitive data exists in the context of the viewer, i. e. in the
memory image of the viewer, during the presentation process:

The encoded media document. During the presentation the media document has to be
accessed by the viewer. Consequently the unencrypted encoded media document
will be present in the viewer’s memory, usually distributed in time, because the
viewer will only decrypt and decode a part of the EEMD at once.

The decryption key. In order to perform the decryption, the memory image of the
viewer has to contain the decryption key for the EEMD.

None of this information is to be disclosed to the user. The encoded media document
itself is the data we intend to protect. The possession of the decryption key would allow
the user to decrypt the EEMD and so gain access to the encoded media document.

2.2 Threats to the Presentation Process

During the presentation the encoded media document and the decryption keys are ac-
cessible to the viewer. If the viewer is executed in the user environment, this data might
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be spied out by the user. This problem is analog to the malicious host problem for mo-
bile agents [19]. The problem arises from the fact that the user has full control over
the environment in which the viewer is executed. This gives the user the opportunity to
change one or more of the following aspects of the environment:

Hardware. The user could change the semantics of opcodes, for example, by running
specialized hardware or by executing the viewer on a virtual machine.

Host residual software. The user can change software that is residing on his host and
that the viewer depends on. This software includes for example the operating sys-
tem and dynamically linked libraries. Host residual software includes also the ser-
vices and processes that are necessary for the execution of programs, for example
an X-Windows server.

The viewer code. The user might analyze and change the viewer code before the viewer
is executed or during its execution.

The possibility to change these aspects of the environment together with the opportunity
for the user to analyze the viewer executable enables different attacks on the viewer. The
following attacks can be performed individually or in combination, in order to retrieve
the encoded media document or the decryption keys:

Analyzation attack. Since the viewer code is not protected against inspection, a user
might analyze the code. Any sensible analysis of code will eventually uncover all
secrets embedded in the code.

Modification attack. Since the viewer code is not protected against modifications, a
malicious user might change the data- and/or control flow of the viewer in order to
retrieve confidential information. This change might be performed statically before
the viewer is executed or dynamically during execution of the viewer. Modification
attacks can be implemented by changing the viewer code itself or by changing code
that is executed in the viewer’s context, for example, dynamically linked libraries
or operating system code.

Spying attack. A spying attack aims at extracting confidential data from the viewer.
Spying attacks might for example be performed by changes in the operating sys-
tem, e. g. running the viewer process with hardware-trace enabled or by changes in
the environment of the viewer, e. g. instantiating programs that monitor changes in
the viewers memory, or by building specialized hardware that records every state
change in the viewer during the presentation process.

In order to protect the encoded media document against unauthorized access, we have
to prevent the user from successfully carrying out any of these attacks, in isolation or in
any combination.

3 Copy Protection for Temporal Media

Our copy protection solution is based on continuously downloading code into the viewer.
This code is itself protected against attacks and implements security measures against
modification and spying attacks on the viewer. The implemented protection mechanisms
have the following properties:
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Difficult to break. It should be very resource intensive to break the protection mecha-
nism. The cost of breaking should be in the same magnitude as the value of the pro-
tected media document. In other words, it has to be so high that only professional
distribution of unauthorized copies would earn the costs. In this case non-technical
means can be used to detect and stop the distribution.

Break once, break everywhere resistance. An attack to the protection mechanism
should not be generalizable. Even if a part of an encoded media document was
copied, the same attack should not be applicable to other parts of the same document,
to other documents or to other viewer instances.

Facilitate detection. The protection method should support the detection of attacks.
This allows the content provider to react on attacks, for example by exchanging
compromised encryption keys and protection mechanisms, or by taking legal steps
against an attacker.

In the remainder of this section, we will describe specific properties of temporal media
and how these can be leveraged to enforce a cooperation between the user and the con-
tent provider in order to implement a protection mechanism with the desired properties.

3.1 Temporal Media

With temporal media we refer to media that has a temporal dimension, e. g. audio and
video documents. Temporal media exhibits the following important properties:

– Temporal media contains a number of elementary presentation steps that all have
to be performed in a given sequence in order to present the whole document.

– The elementary presentation steps are computationally independent from each other
and can be processed independently.

– The presentation takes a considerable amount of time, e. g. minutes to hours and
elementary presentation steps are performed at a typical rate, e. g. 24 frames per
seconds for video documents.

We strive to protect video and audio documents created by the entertainment industry,
e. g. movies and TV-series. The value of these media documents arises from perform-
ing all, or almost all, elementary presentation steps. A ten minute fraction of a movie
document is usually of no considerable value to a costumer. Even getting nearly all
presentation steps can be insufficient, as an incomplete movie is usually not of much
value.

3.2 Enforcing Continuous Cooperation Through Media Keys

The properties of temporal media allow us to enforce a continuous cooperation between
the user and the content provider. This is possible because:

– The content provider controls the data that the user wants to access, and
– The properties of temporal media allow the content provider to give this informa-

tion in small parts to the user, requiring him to cooperate in order to receive the
following part.
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In order to control the access on the level of presentation steps, we partition the docu-
ment into a large number of sets, each containing a few presentation steps. Every set is
encrypted with an individual key. We refer to these keys as media keys. A typical media
document, e. g. a movie, will be encrypted with thousands of different media keys, as
illustrated in figure 2. In this model, the user is forced to cooperate in order to receive
the media key for the next presentation steps.

#1 #2 #3 #n

Media document

#i Set encrypted with key #i

#4 #5 #6 #8#7 ...

Presentation time

Fig. 2. Encrypting a Temporal Media
Document with a Large Number of Me-
dia Keys

The use of media keys allows for fine grained
control over the access to media documents. This
is in contrast to current protection systems, e. g.
DRM systems, where access to a media docu-
ment is controlled by a single piece of infor-
mation, e. g. a license [12]. The use of a single
license to unlock the complete media document
effectively neutralizes the temporal property of
the media and leaves no possibility for enforced
cooperation.

3.3 Establishing and Maintaining Trust
Through Mobile Guards

We use the enforced cooperation to establish pro-
tection mechanisms in the viewer and to conti-
nously replace them with updated protection mechanisms. To present a document, the
viewer has to request media keys from the content provider. In order for these requests
to be fulfilled, the content provider requests the execution of protection mechanisms in
the viewer. These protection mechanisms are implemented through code that is down-
loaded from the content provider into the viewer. We refer to this code as a mobile
guard. The concept of the mobile guard allows a continuous update of the mechanisms
that protect the viewer. The task of the mobile guard is twofold:

– It reconfigures the viewer and verifies its new configuration in order to prevent and
detect modification attacks.

– It shields the viewer image against the environment in order to make spying attacks
difficult.

Each mobile guard reconfigures the viewer and performs a checksum calculation on
the new viewer configuration in order to verify that the viewer is unmodified (see sec-
tion 4.1). Every request for a media key contains this verification information. The con-
tent provider will only deliver a new media key to the viewer, if the viewer’s integrity
is verified. If the checksum indicates that the viewer has been compromised, no fur-
ther media keys will be sent to the viewer. In addition, the content provider is informed
about a possible attack.

The mobile guard itself is obfuscated to protect it against tampering (see section 4.2).
Obfuscation protects a mobile guard for a certain time interval. After this time interval
has expired, we can not be sure that the mobile guard is performing its task correctly.
Therefore every mobile guard protects the viewer only for the duration of this time in-
terval. We refer to this interval as trust interval. If the trust interval has expired, we
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download the next mobile guard to the viewer and extend the trust into the viewer for
another trust interval. Figure 3 illustrates the concept of trust intervals. By downloading
new mobile guards before the end of the current trust interval, we ensure that an uncom-
promised mobile guard is executed on the user’s host at all times during a presentation.

Viewer

Security
server

Mobile
guard #n

Viewer

Security
server

Mobile
guard #n+1

Viewer
Security
server

Viewer
Security
server

Viewer
Security
server

Viewer
Security
server

Key request #m/
verification

verification
Key request #m+1/

verification
Key request #m−1/

Time

Key request #m+2/
verification

Trust Interval #n

Trust Interval #n−1

Trust Interval #n+1

Fig. 3. Mobile guards and trust intervals

4 Mobile Guards

A mobile guard consists of machine code that is downloaded to the viewer during the
presentation process. This code does not rely on external code, e. g. dynamically linked
libraries, to implement its algorithms. The mobile guard implements the verification of
the viewer code, the reconfiguration of the viewer and the shielding algorithms.

4.1 Protecting the Mobile Guard

As the mobile guard executes in the same environment as the viewer, the mobile guard
itself is vulnerable to attacks. A malicious user might try to modify the mobile guard in
order to circumvent the protection methods implemented by it. It is a fair assumption
that a malicious user will apply all automated tools available to him in order to perform
an attack efficiently. If we make sure, that a completely automated attack is virtually
impossible, we force an attacker to perform intellectual work in order to complete the
attack.
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Preventing Automated Attacks on the Mobile Guard. To prevent automated attacks
from succeeding, we make sure that the mobile guards differ from one another. That
is, no two mobile guards have the same code structure. We achieve this by two means.
First the algorithms in the mobile guard are partly randomly created, which yields a
different control and data flow for each mobile guard. Secondly, we apply obfuscation
transformations to the mobile guards.

Obfuscation and randomization prevent a fully automated attack because of the se-
mantic gap between program code and the mental model of the program, as Hohl de-
scribed in [13]. While the program code specifies how operations on data are performed,
it alone does not reveal the purpose of the set of operations that are executed in the mo-
bile guard. The purpose of the set of operations is determined by the mental model that
describes the function of the mobile guard. The mental model can only by reconstructed
from the code by applying intellectual reasoning. In order to make sensible changes to a
mobile guard, an attacker has to reconstruct the model and map it to the machine code.
Therefore he has to perform an intellectual analysis of the mobile guard.

Preventing Intellectual Attacks on the Mobile Guard. The only possible attack to the
obfuscated randomized mobile guard is an attack that requires intellectual work. While
it is possible for an attacker to eventually reverse engineer the software, it is a complex
and time consuming process. This allows us to effectively prevent intellectual attacks by
selecting an appropriate duration for the trust interval. By restricting the trust interval
to a few seconds, we ensure that it is virtually impossible to perform an intellectual
attack before the trust interval expires and before the mobile guard is replaced with a
new mobile guard.

4.2 Protecting and Verifying the Viewer

Protection against Static Modification Attacks. We use randomly created check-
sum algorithms to protect the viewer against static modification attacks. A new check-
sum algorithm is embedded in every mobile guard. Due to the protection of the mobile
guard and the random nature of the checksum algorithm, the correct checksum is un-
predictable to an attacker. Therefore an attacker is forced to actually execute the mobile
guard in order to obtain the correct checksum. As a consequence any static modification
of the viewer, i. e. change of the program text before it is loaded and executed, would
be detected at the next key request.

Protection against Dynamic Modification Attacks. Due to the obfuscation of the
mobile guard, the checksum algorithm itself can not be modified by an attacker. But an
attacker might try to deceive the checksum algorithm by modifying its input. An attacker
could, for example, exchange modified and unmodified code every time the checksum
algorithm might be executed, i. e. every time the control flow enters the mobile guard.
The obfuscation of the mobile guard ensures that such an attack has to be performed
automatically because the trust interval is much too short to allow for intellectual anal-
ysis and sensible modification of the current mobile guard. Therefore the attack has to
be based on information like position of control flow, executed instruction, etc.
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In order to counter these attacks we randomly reconfigure the viewer. This recon-
figuration process consists of rearranging and modifying the viewers instructions. The
viewers text segment is partitioned into small parts that are then relocated to randomly
selected positions. The code is modified to account for the relocation. We refer to this
process as runtime obfuscation. It should be noted that runtime obfuscation has to be
performed in order to calculate the right checksum.

Runtime obfuscation makes it very difficult for an attacker to provide the checksum
algorithm with faked data because it interleaves data reads that are due to the checksum
calculation with data reads that are due to runtime obfuscation. A successful attack
would require an automated analysis that distinguishes between checksum related and
reconfiguration related computations.

Runtime obfuscation makes it also very difficult to automatically replace parts of
the viewer, when the control flow leaves the mobile guard. The reason for this is that
an attacker would need automated means to identify the corresponding instructions in
two different configurations. This can be made even harder through modification of the
code [1] and through randomizing the control flow by randomly changing the order in
which the mobile guard calls independent functions.

Protection against Spying Attacks. To prevent spying attacks the runtime obfusca-
tion also includes the relocation and disguising of sensitive data areas, e. g. the buffer
for decrypted encoded media data and the buffer for transport keys (see section 5).
The obfuscation process adjusts instructions that access sensitive data to account for
the modifications. This makes an automated extraction of sensitive data very difficult,
because it would require to automatically locate the sensitive data, to track it, and to
identify the moment in which the data is undisguised. This is very difficult in an auto-
mated attack.

An intellectual attack would require an attacker to dump all state changes and in-
tellectually process the dumped memory image in order to identify the undisguised
sensitive data.

5 The key Exchange Protocol

The media keys that are needed to decrypt the media document have to be made avail-
able to the viewer. In order to retain the temporal property of the media document only
one media key should be made available to the viewer at once. The media key will be
transported from the security server (see section 6) to the viewer upon request from the
viewer. To ensure that the keys are kept confidential during distribution we designed the
key exchange protocol which enables the viewer to safely obtain the media key of the
next segment.

A central element of the key exchange protocol is the transport key. Transport keys
are generated by the viewer and they are used to protect the media keys while they are
sent from the security server to the viewer. The key exchange protocol is illustrated in
figure 4. It can be divided into two phases, the request phase, in which the viewer sends
a request to the security server and a reply phase, in which the security server sends the
requested key to the viewer. The request phase starts with the viewer generating a new
transport key (TKi in figure 4). The transport key is encrypted with the public key of
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Fig. 4. The Key Exchange

the security server (yielding EP (TKi) in figure 4). The encrypted transport key is then
transmitted to the security server, together with the identifier of the requested media key
(shown as (1) in figure 4).

The reply phase starts when the security server receives the key request message
from the viewer. Upon reception of the message, the security server decrypts the trans-
port key and uses it to encrypt the requested media key (yielding ETKi(MediaKey)
in figure 4). The encrypted media key is then transmitted to viewer (shown as (2) in
figure 4). By using the previously generated transport key, the viewer is able to decrypt
the received data and obtain the requested media key.

5.1 Generation and Protection of Transport Keys

It is crucial to our system, that transport keys are kept hidden from the user because
knowledge of the transport key would enable him to retrieve the media key directly from
the communication between the viewer and the security server. That means we can not
rely on secrets in the viewer or the mobile guard since a malicious user will eventually
reveal all secrets in the viewer and the mobile guard, such an approach would make the
transport keys available to the user. Consequently the viewer has to generate transport
keys on demand. To keep the transport keys secret the following two requirements have
to be fulfilled:

1. The generated transport keys have to be unpredictable to a user.
2. The transport keys have to be kept secret from the user.

Generation of Unpredictable Transport Keys. Our solution to this problem is to
implement a pseudo-random generator that incorporates information about the system
state into the creation of transport keys. The core of this random generator is provided
by the mobile guard. Entropy is gathered from the system scheduler, i. e. from the way
tasks are scheduled and interrupted. It is very difficult to predict or enforce scheduling
orders and times, especially if the mobile guards differ in the numbers and structure
of the threads they implement. The use of the scheduler as an entropy source ensures
that transport keys are unpredictable. In addition they are virtually unreproducable by
rerunning the generation process. This holds because it is nearly impossible to restart
the generation process in an identical system state.

The random generation process consists of creating several threads that work on dif-
ferent computational tasks. When a transport key is required, data from the different
computational tasks are used as input to a secure hash algorithm along with data from
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the current state of the viewer and the executing mobile guard. The result from the
secure hash algorithm is then used as transport key.

Hiding of Transport Keys. Since the user can not predict the generated transport keys,
his only chance to retrieve a transport key is to dump all state changes in the environ-
ment of the viewer in order to retrieve the transport key from this memory image. Due
to runtime obfuscation the number of state changes is quite large and due to the random
way of generating the transport key it is not possible to determine a priori at which time
and/or memory location the transport key is created. The only way to retrieve the trans-
port key would be to analyze the complete memory dump. This is theoretically possible,
but requires a large amount of intellectual work. Also if this attack succeeds, it reveals
one media key out of thousands. We therefore believe that this attack is unfeasible.

5.2 Reverse Authentication and Man-in-the-Middle Attacks

A potential problem with our solution so far is that the viewer generating the transport
key might not be the same as the one checked by our mobile guard. To ensure that the
viewer checked by our mobile guard is the same as the one generating the transport key,
we extend the input to the checksum calculation to include the transport key that is used
in the request for a media key.

Host Memory
MG

Public key

Transport Key

Checksum Result

Program
Text Stack/Heap...

Fig. 5. Input to the Checksum Calculation

The input to the checksum cal-
culation is shown in figure 5. It
consists of the instructions of the
viewer, the public key of the se-
curity server, and the transport key
used in the request for a media key.
The checksum is included with ev-
ery key request. This allows the
security server to verify that the
viewer that created the transport
key and sent the key request is ac-
tually the viewer which integrity
was checked by the mobile guard. As the security server knows the memory layout
of the viewer, the transport key and the random algorithm used to compute the check-
sum, the server can compute the expected checksum and compare it with the checksum
it received in the key request. If the checksums match, the security server sends the
requested media key, that is encrypted with the transport key, to the viewer. Since the
transport key is randomly created, only the viewer that sent the original key request will
be able to decrypt the reply and obtain the media key.

6 System Architecture

We have designed a system that implements our protection solution. The main compo-
nents of our design are shown in figure 6. These are the viewer on the client side and the
security server, the streaming server, and the protection tool on the side of the content
provider, respectively of the content owner.
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The trusted environment is the only domain in which the encoded media document
is available in plaintext as a single access unit. This environment is controlled by the
instance that controls the access to the media document, i. e. by the content owner. Be-
fore a media document leaves the trusted environment, it is processed by the protection
tool. The protection tool creates a large number of media keys and encrypts the encoded
media document with the media keys, as described in the previous section, resulting in
an EEMD.

Since the EEMD is protected by the media keys, it can be safely made available to
third parties. In our architecture it is transfered to a streaming server, that is outside the
trusted environment. The task of the streaming server is to distribute EEMDs to users,
i. e. to viewers that are executed by users.

The security server has two main tasks. First, it creates mobile guards and delivers
them to viewers that are presenting media documents. Second it fulfills requests for
media keys from viewers. A requested media key is only sent from the security server
to a viewer, if the mobile guard has successfully verified this viewer.

It should be noted, that our architecture allows to separate the security related as-
pects, i. e. handling of media keys and mobile guards, from the delivery related aspect,
i. e. the transport of the EEMD to viewers. Since the encryption effectively protects the
EEMD against unauthorized access, the employed distribution channel does not need
to be trusted. In our current design, the EEMD is delivered by a streaming server, but it
could as well be delivered through, for example, a peer-to-peer network or by the means
of a tangible medium.

6.1 Scalability of the Security Server

The security server has three tasks that each requires considerable amount of compu-
tational resources. These tasks are the creation of mobile guards, verification of the
checksum and decryption of the transport key. In order for our solution to be feasible
these tasks need to be computed efficiently.

To minimize the computational load of creating mobile guards, mobile guards are not
created for every individual viewer. Instead the security server creates mobile guards for
individual trust-intervals. A mobile guard for the current trust interval is then distributed
to all viewers that are connected to the security server. In this way the security server
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only needs to create a few mobile guards per minute. Only minor changes have to be
made to a mobile guard when it is sent to an individual viewer.

Although a common mobile guard is created for each trust-interval, each viewer
will return a unique checksum as a result of the reverse authentication. By including
the transport key in the last part of the checksum, most of the checksum can be pre-
computed. Then only the received transport key needs to be added to the pre-computed
checksum before the security server can compare the two checksums.

With these modifications of the creation and handling of the mobile guard, it is clear
that the decryption of the transport key is by far the most resource intensive task per-
formed by the security server. To estimate the required resources, we ran some per-
formance measures on our prototype running on a standard 2.5 GHz Pentium4 system
using the RSA algorithm with different key lengths. During this test the system per-
formed 1250 decryption operation with a 512 bit keys, 500 decryption operations with
a 768 bit keys, and 200 decryption operations with a 1024 bit key each second. From
these results it is clear that, although the key exchange is resources intensive, it is in fact
possible to serve a significant amount of users on standard hardware.

7 Related Work

Preventing unauthorized access to sensitive data is at the core of any DRM-system.
Current systems employ encryption together with software-based protection mecha-
nisms, to protect sensitive data. While little is known about the inner workings of these
systems, the protection mechanisms are mainly based on two following techniques,
tamper-proofing —sometimes also referred to as self-checking— and obfuscation.

Tamper-proofing aims at preventing modification attacks. It consists of a set of al-
gorithms which verify that the program code in question has not been modified. Auc-
smith [2] presents a self-checking method based on encryption and self-modification. In
his approach, the program is divided into encrypted segments. During execution a seg-
ment is decrypted and later encrypted as the execution jumps to a new segment along
with the execution of an accumulator function verifying the correct execution of the
program. Other tamper-resistant solutions are described in [4, 14, 5]. All of them use
various forms of checksum calculation to verify the integrity of the executing program.

Obfuscation attempts to make analyzation attacks difficult. Obfuscation is based on
software transformations, aimed at increasing the time, skill and effort needed to suc-
cessfully reverse engineer a program. The transformations are designed in such a way
that the functionality of the original program is preserved, but the complexity of the
program provided to the users is increased. For more details see some of the following
articles [10, 9, 8, 21, 20, 6, 17, 7].

The basic techniques tamper-proofing and obfuscation are used in our approach as
well as in currently existing protection systems. But currently existing solutions differ
from our approach in one crucial point, they can not be dynamically updated. After a
program is installed at a users computer the protection mechanisms are fixed and does
not change. Even though some of the solutions are self-modifying during execution, the
start-state is given. This enables an attacker to replay the execution arbitrarily often in
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order to examine the mechanism. Consequently currently existing protection systems
will eventually fall to a determined attacker given enough time and effort.

The use of dynamic code to protect media documents is discussed in [16]. Their
idea behind using dynamic code is twofold. First, it enables the content owner to take
responsibility for protecting their own documents. Secondly, it adds a dynamic dimen-
sion to protection mechanism as a whole, making it possible to update the protection
mechanism if attacks are discovered. Although they use dynamic code to improve the
protection mechanism they still require tamper-proof hardware to store keys and per-
form decryption. The need for special tamper-proof hardware to store keys and decrypt
media documents is exactly what we avoid by combining the use of dynamic code con-
taining randomly generated checksum algorithms and runtime obfuscation with our key
exchange protocol.

8 Conclusion and Further Work

We presented a solution to protect encoded media documents during dissemination and
playback. A cornerstone of our protection mechanism is to take advantage of the tempo-
ral property of audio and video documents. We introduced the concept of media keys,
which give us fine grained control over the media document. This control is used to
force the user to continuously update the protection mechanisms in the viewer during
the presentation of a media document. The lifetime of the protection mechanisms is
so short, e. g. 60 seconds, that an intellectual attack to circumvent the mechanisms is
not feasible. In this way we solved a major problem that current software protection
mechanisms suffer from.

The protection mechanisms enable the detection of modification attacks. Although
they can not guarantee that no loss occurs, we achieve that only a small fraction of data
is lost before counter measures can be initiated. The possibility of detection is a clear
advantage of our system because it discourages modifications attacks, as it leaves traces
to the identity of the attacker. The risk of being caught is a powerful deterrence.

Like all pure software solutions, our protection mechanism can not prevent spying
attack. But we designed the key exchange protocol and the shielding mechanisms in
the mobile guard in such a way, that this attack would require a huge amount of com-
putational and intellectual resources. The media keys together with the key exchange
protocol ensure that at no time the viewer’s memory contains enough information to ob-
tain the complete encoded media document. In addition the runtime obfuscation makes
static spying attacks impossible and dynamic spying attacks difficult. The major recon-
figurations force an attacker to continuously dump large parts of the viewers memory.
This yields a huge amount of data that has to be intellectually processed to identify
sensitive data.

Our approach requires an online communication channel between the viewer and
the security server during presentation. This can be a drawback, for example, when
considering music services because the user expects to be able to playback music in a
mobile environment. For media documents like movies or TV-shows, which are usually
consumed at home, the missing mobility is of no concern.

We do not strive to compete with hardware-based solution. In the contrary, our
system can be used to protect hardware-based solutions, e. g. Set-top-boxes, against
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hardware and software errors and catastrophic breaches by adding a dynamic dimen-
sion to the hardware-based mechanisms.

Further work includes the completion of our prototype system and the further investi-
gation of additional runtime obfuscation methods. In addition we would like to optimize
the mobile guard obfuscation by leveraging the fact that the randomized mobile guard
creation adds another degree of freedom to the structure of the mobile guard.
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Abstract. We consider the security of a DWT-SVD robust watermark-
ing scheme for images due to Ganic and Eskicioglu. We show that al-
though the scheme has been proven to be robust, it falls to ambiguity
attacks, namely that both the image owner and an attacker can extract
their watermarks from what appear to be originally watermarked im-
ages, causing an unresolveable dispute on the ownership claims of the
image. The underlying problem is that the designers concentrated solely
on robustness but overlooked the equally important issue of rightful
ownership first defined by Craver et al. Without providing rightful own-
ership, a watermarking scheme cannot be used for proofs of ownership
applications. To the best of our knowledge, these are first known attacks
on this scheme.

Keywords: Information hiding, watermarking, SVD, DWT, rightful
ownership, ambiguity.

1 Introduction

As we move from paper to digital media, the ease with which people can generate
identical duplicate copies of originals in digital form is partly contributing to the
alarming rate of software piracy these days. Add to that the fact that these digital
duplicates are exactly identical to their originals, thus once duplicated there is
no way to differentiate a copy from its original.

One way to combat against this and so to protect the right of content owners
is to use digital watermarking. A digital watermark [4] is commonly a message
embedded into the digital (cover) content to prove who owns it. Another ap-
plication of digital watermarks is in digital fingerprinting [4] where each copy
of digital content sold to buyers are embedded with a unique digital fingerprint
to enable enforcement authorities to trace buyers who distribute the contents
illegally.
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Among the most popular contents where digital watermarking is applied on
are images. An example scenario is where a reknowned photographer puts his
photo collection online, i.e. creates an art gallery on his website to share with
the rest of the world, but at the same time he would want to lay claim to those
photos and not want anyone who downloads his photos to claim them for his
own. Digital watermarking schemes typically require two phases: watermark em-
bedding and watermark detection, and they are often designed to ensure that
the scheme is robust against various types of attacks. The robustness [4] of a
watermarking scheme is the ability of the watermarked content to survive signal
processing operations and also intentional tampering. On the other hand, some
watermarking schemes are fragile [4], in that the watermark easily becomes un-
detectable after even minor modifications of the watermarked content in which
it is embedded. Though this is normally undesirable for most applications, this
fragility property can be useful for content authentication, i.e. checking the con-
tent’s integrity against unauthorized tampering.

Nowadays, the concept of wavelets [9] has become popular for image com-
pression mainly because of its use in the JPEG2000 compression standard for
images. Due to this fact, Discrete Wavelet Transform (DWT) is increasingly
being commonly used for image watermarking. Meanwhile, the Singular Value
Decomposition (SVD) [3] is a numerical tool applied in the field of digital signal
and image processing, for example in image compression. In recent years [11, 8],
it has also been applied to image watermarking. Quite recently, Ganic and Eski-
cioglu have also proposed a combination of DWT and SVD techniques for image
watermarking [6, 7].

Our paper studies the Ganic-Eskicioglu DWT-SVD scheme, first proposed
and later revised in [6, 7], respectively. We show that the scheme falls to two
ambiguity attacks, and hence do not provide rightful ownership. Rightful own-
ership was first highlighted by Craver et al. [5] and deals with the problem of
whether an embedded watermark in a content can unambiguously prove that
the watermark owner is the only person laying rightful claims to the content,
or are there other watermarks that can be extracted from the content leading
to others laying equally rightful claims to the content. Clearly, this is of major
concern in the case of using watermarking to provide proof of ownership.

The outline of this paper is as follows: In Section 2, we briefly review concepts
of DWT and SVD for a better understanding of why they are used in water-
marking and of how our attacks work. In Section 3, we describe the DWT-SVD
watermarking scheme proposed by Ganic-Eskicioglu. In Section 4, we present
two ambiguity attacks on the scheme. Section 5 concludes this paper.

2 Preliminaries

In Discrete Wavelet Transforms (DWT) [9], an image is decomposed into a set of
basis functions (wavelets) namely low frequency band (LL), high-low frequency
band (HL), low-high frequency (LH) and high frequency band (HH); of varying
frequency and limitation duration, in contrast to other transforms such as the
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Fourier Transform that only provides frequency information. DWT has applica-
tions in image processing, where typically the approach is to DWT an image,
alter the transform coefficients (by thresholding or zeroing), and inverse DWT
to regain an altered image that has denoised, or its edges either sharpened or
blurred. DWT is also used for image compression since most DWT coefficients
are very small thus can be zeroed nicely for compression. In view that DWT
is well suited for image processing operations, it is natural to use DWT-based
approaches in image watermarking such that when watermarked images are put
through image processing transformations (as is common for a typical image),
the embedded watermark remains robust (still detectable).

Meanwhile, every real matrix A (as is an image) can be decomposed into a
product of three matrices, A = U ·Σ ·V T where U and V are orthogonal matrices,
UT · U = I, V T · V = I, and Σ = diagonal(λ1, λ2, . . .); where UT denotes the
conjugate tranpose of U . This is known as singular value decomposition (SVD)
[3], and the diagonal entries of Σ are called the singular values (SVs) of A, the
columns of U (respectively V ) are called the left (respectively right) singular
vectors of A. Applying SVD in watermarking [11] takes advantage of the fact
that large singular values do not vary much after going through common image
processing transformations, thus are used to embed watermark information. This
complicates the task of an attacker in trying to distort, modify or remove the
watermark as it will affect the singular values which would in turn result in a
seriously distorted image.

3 Ganic-Eskicioglu DWT-SVD Watermarking Scheme

The DWT-SVD based watermarking scheme by Ganic and Eskicioglu [6, 7] per-
forms watermark embedding with following steps:

A1. Decompose the cover image A into four sub-bands (LL, HL, LH, and HH)
by using DWT to obtain Ak, where k = 1, 2, 3, 4 denotes LL, HL, LH, HH
sub-bands.

A2. Do SVD on each sub-band image:

Ak = Uk
A ·Σk

A · V kT
A ; k = 1, 2, 3, 4, (1)

and let λk
i , i = 1, . . . , n denote the singular values of Σk

A.
A3. Do SVD on the watermark image:

W = UW ·ΣW · V T
W , (2)

and let λWi, i = 1, . . . , n denote the singular values of ΣW .
A4. Modify the singular values λk

i in each sub-band with scaled singular values
of the watermark λWi:

λ∗k
i = λk

i + αkλWi; i = 1, . . . , n; k = 1, 2, 3, 4. (3)

where αk are the corresponding scaling factors. Let Σ∗k
A denote the diagonal

matrix comprising the singular values λ∗k
i ; i = 1, . . . , n; k = 1, 2, 3, 4.
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A5. Obtain the four sets of modified DWT coefficients:

A∗k = Uk
A ·Σ∗k

A · V kT
A ; k = 1, 2, 3, 4. (4)

A6. Obtain the watermarked image A∗
W by performing the inverse DWT using

the four sets of modified DWT coefficients.

Meanwhile, the watermark extraction comprises the following steps:

B1. Use DWT to decompose the watermarked image A∗
W into four sub-bands:

LL, HL, LH, and HH.
B2. Do SVD on each sub-band image:

A∗k = Uk
A ·Σ∗k

A · V kT
A ; k = 1, 2, 3, 4. (5)

B3. Extract the singular values of the watermark from each sub-band:

λk
Wi = (λ∗k

i − λk
i )/αk; i = 1, . . . , n; k = 1, 2, 3, 4. (6)

B4. Combine the four singular values with corresponding singular vectors
UW , VW to obtain the embedded watermark:

W k = UW ·Σk
W · V T

W ; k = 1, 2, 3, 4. (7)

4 Ambiguity Attacks

An ambiguity attack [1] is caused by the rightful ownership problem [5], where an
attacker causes the confusion on who the actual owner of the content (image) is.
In particular, this means that besides the original owner being able to extract
his watermark from the watermarked content, the attacker similarly is able to
extract his own watermark too, and neither can prove who is more right than the
other, thus the ambiguity situation and thus none is able to rightfully claim own-
ership. In this section, we describe two attacks on the Ganic-Eskicioglu scheme
that cause ambiguity. Both our attacks have been implemented in Matlab.

4.1 Our First Attack

Consider that the owner has performed the embedding steps A1 to A6 (see
Figure 1) to embed his original watermark WO into his (cover) image A, obtain-
ing the watermarked image AWO. During this embedding process, UWO, VWO

were used.
To lay ownership claims to A, the owner performs the extracting steps B1

to B4. If his watermark WO is successfully extracted, he is deemed the rightful
owner.

However, if we suppose that the attacker has access to the singular values λk
i in

Σk
A (which is disclosed during normal watermark extraction - see equation (6)),

then he can choose his own fake watermark,WF instead ofWO and do embedding
step A3, i.e. SVD on WF , to get the singular values λWFi, i = 1, . . . , n, and
corresponding singular vectors UWF and VWF .
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To prove ownership of the watermarked image A∗
WO , he performs extraction

steps B1 to B4 (Figure 2) as follows:

C1. Steps B1 and B2 can be done easily.
C2. Step B3 requires λk

i (which is assumed as above to be known by the attacker),
and λ∗k

i obtained from step [C1] above. This allows to compute:

λk
Wi = (λ∗k

i − λk
i )/αk; i = 1, . . . , n; k = 1, 2, 3, 4. (8)

C3. By supplying UWF and VWF , step B4 can be done:

W k
F = UWF ·Σk

W · V T
WF ; k = 1, 2, 3, 4; (9)

thus the attacker’s watermark WF is successfully extracted from the water-
marked image AWO, which is not supposed to contain it.

Fig. 1. Steps by the Owner (Watermark Embedding)

Fig. 2. Steps by the Attacker (Watermark Extraction)

This creates a false positive problem, since only the owner’s watermark WO was
embedded but we have just shown that the attacker’s watermark, WF can be
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successfully extracted. An ambiguity occurs as both the owner and attacker lay
seemingly rightful claims to AWO.

Comparison with Related Work. This attack is similar to [14], but the
difference is that the attack in [14] assumed that the attacker is able to embed
his watermark WF directly into the original cover image A. Nevertheless, this
assumption is impractical because SVD-based watermarking schemes are semi-
blind [11], thus the original cover image is not made public during watermark
extraction but only the singular values are.

In [13], an ambiguity attack was considered on the Liu-Tan SVD scheme [11]
that requires creating a fake original cover image and a meaningful but very
constrained watermark, in the form of an ’X’. The existence of such a small class
of weak (constrained) watermarks out of the entire watermark space is akin to
the existence of weak keys in ciphers [12] which can be easily avoided by requiring
that this small class of watermarks not be used. In contrast, both our attacks
do not require any infeasible constraints on the attacker’s watermark, nor that
watermark be specially computed.

4.2 Our Second Attack

Our first attack supposed that the attacker has access to singular values λk
i in

Σk
A, which means for the attack to work, the owner must have previously made

at least one ownership claim such that during watermark extraction Σk
A was

disclosed.
We can do away with this requirement. Consider that the owner (as per

Figure 1) has embedded his watermark WO (Figure 3) into his cover image A
(Figure 4) to obtain AWO (Figure 5).

Fig. 3. Real Watermark WO

Fig. 4. Original Cover Image A
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Fig. 5. Watermarked Image AWO

Fig. 6. Steps by the Attacker (Watermark Embedding)

Fig. 7. Fake Watermark AF

The attacker can directly take AWO, and then performs embedding steps A1
to A6 (see Figure 6) to embed his watermark WF (Figure 7) onto the original
watermarked image AWO to get the fake watermarked image, AWOF (Figure 8):

D1. Decompose the original watermarked image AWO into four sub-bands (LL,
HL, LH, and HH) by using DWT to obtain Ak

WO, where k = 1, 2, 3, 4 denotes
LL, HL, LH, HH sub-bands.

D2. Do SVD on each sub-band image:

Ak
WO = Uk

AWO
·Σk

AWO
· V kT

AW O
; k = 1, 2, 3, 4, (10)

and let λk
WOi, i = 1, . . . , n denote the singular values of Σk

AWO
.

D3. Do SVD on the fake watermark image:

WF = UWF ·ΣWF · V T
WF , (11)

and let λWFi, i = 1, . . . , n denote the singular values of ΣWF .
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Fig. 8. Fake (Double) Watermarked Image AWOF

D4. Modify the singular values λk
WOi in each sub-band with scaled singular values

of the watermark λWFi:

λ∗k
Fi = λk

WOi + αkλWFi; i = 1, . . . , n; k = 1, 2, 3, 4. (12)

where αk are the corresponding scaling factors. Let Σ∗k
AWOF

denote the di-
agonal matrix comprising the singular values λ∗k

Fi; i = 1, . . . , n; k =
1, 2, 3, 4.

D5. Obtain the four sets of modified DWT coefficients:

A∗k
WOF = Uk

AWO
·Σ∗k

AWOF
· V kT

AW O
; k = 1, 2, 3, 4. (13)

D6. Obtain the watermarked image A∗
WOF by performing the inverse DWT using

the four sets of modified DWT coefficients.

Note that A∗
WOF is now embedded with two watermarks, first with WO by the

owner, and second with WF by the attacker.

Ambiguity. If the owner wishes to claim ownership of A, he performs
extraction steps B1 to B4 to extract the original watermark WO from the
original watermarked image AWO (see Figure 9) by supplying Σk

A, UWO and
VWO.

An attacker could equally lay claim to A by doing extraction steps B1 to
B4 to extract his watermark WF by claiming AWOF to be the original water-
marked image, instead of AWO (see Figure 10). He supplies Σk

AWO
, UWF and

VWF .
This creates ambiguity because both the owner and attacker can equally claim

that the original cover image belong to each, respectively since each can extract
his own watermark. In this situation, no one would know which party is telling
the truth. One limitation of this attack compared to that in Section 4.1 is that it
appears to be possible for the owner to recover WO from AWOF while an attacker
does not seem to be able to recover WF from AWO. The attack in Section 4.1
does not exhibit this problem because there is only one copy of the watermarked
image AWO.
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Fig. 9. Recovered Real Watermark WO

Fig. 10. Recovered Fake Watermark WF
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5 Concluding Remarks

We have shown that the Ganic-Eskicioglu DWT-SVD scheme falls to ambiguity
attacks. The authors concentrated only in proving the robustness of their scheme,
but neglected to consider the problem of rightful ownership which should be pro-
vided by any watermarking scheme since it is commonly used for proofs of own-
ership. We conclude that the scheme should not be used for proving ownership
of content.

At the time of writing, we are unaware of any suitable countermeasure to
protect SVD-based watermarking schemes against ambiguity attacks. We leave
this as an open problem.
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Abstract. We introduce the notion of Universal Custodian-Hiding Ver-
ifiable Encryption (UCH-VE) and propose a scheme of this type for dis-
crete logarithms. A UCH-VE scheme allows an encryptor to designate
t out of a group of n users and prepare a publicly verifiable ciphertext
in such a way that any k of these t designated users can recover the
message. The values of k and t are set arbitrarily by the encryptor. The
anonymity of these t designated users will also be preserved. The UCH-
VE scheme captures the notions of various types of verifiable encryp-
tion schemes that include conventional one-decryptor type, conventional
threshold type, designated-1-out-of-n custodian-hiding type and desig-
nated group custodian-hiding type. On efficiency, the new scheme avoids
using inefficient cut-and-choose proofs and compares favourably with the
state-of-the-art verifiable encryption schemes for discrete logarithms.

1 Introduction

A verifiable encryption (VE) scheme [15, 1, 2, 6, 9] for a relation R is a protocol
that allows a prover to convince a verifier that a ciphertext is an encryption of
a value w under a given public key such that (w, δ) ∈ R for a given δ, while
no more information about w is leaked. We call this type of VE schemes as
conventional one-decryptor type. For all the schemes of this type cited above,
the verifier knows the identity of the receiver.
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A threshold VE scheme [6] extends the conventional one-decryptor VE in
such a way that, instead of having one receiver (or decryptor), it has a group
of n receivers (or decryptors) and the ciphertext requires at least k of these n
receivers to work together for decrypting it. We call this type of VE schemes as
conventional threshold type.

A custodian-hiding VE scheme [12] also works on a group of n receivers. But
unlike a threshold VE scheme, a custodian-hiding VE scheme only allows one
designated receiver out of n receivers to recover the message from the cipher-
text. No other receivers in the group, even they collaborate, can decrypt the
ciphertext. Also the anonymity of the designated receiver is provided so that the
public verifier does not know the identity of the designated receiver. We call this
type of VE schemes as designated-1-out-of-n custodian-hiding type. Notice that
this is the first time that receiver anonymity is considered in VE schemes.

In [12], there are two extensions to the designated-1-out-of-n custodian-hiding
type. One extension replaces the designated receiver with a t-element set of
designated receivers. It requires the t designated receivers to work jointly for
decrypting a ciphertext. Anonymity requirement is also changed to maintain
the anonymity of all the t designated receivers. By convention, we call it the
designated-t-out-of-n custodian-hiding type. Another extension modifies the re-
quirement of designated-t-out-of-n custodian-hiding type slightly so that anyone
of the t designated receivers can decrypt a ciphertext. Anonymity requirement
is the same as that of the first extension. These two extensions are closely inter-
related. Consider the threshold setting of the t-element subgroup of designated
receivers. The first extension is actually the (t, t)-threshold type while the second
extension is the (1, t)-threshold type. Due to this inter-relationship, we put these
two extensions into the same type of VE schemes and call the type as designated
group custodian-hiding type.

Universal Custodian-Hiding Verifiable Encryption (UCH-VE). In this
paper, we extend the notion of custodian-hiding VE and introduce the universal
custodian-hiding VE (UCH-VE). A UCH-VE scheme allows an encryptor to
designate t out of a group of n users and prepare a publicly verifiable ciphertext
in such a way that any k of these t designated users can recover the message.
The values of k and t are set arbitrarily by the encryptor. In addition, the
anonymity of these t designated users will be preserved. Obviously, we require
that 1 ≤ k ≤ t ≤ n. Our notion is universal as it includes all the current notions
of VE reviewed above.

To see this, we have a UCH-VE scheme of conventional one-decryptor type
when n = 1; a UCH-VE scheme of conventional threshold type when t = n; a
UCH-VE scheme of designated-1-out-of-n custodian-hiding type when t = 1; a
UCH-VE scheme of the first extension of designated group custodian-hiding type
when k = t; and a UCH-VE scheme of the second extension of designated group
custodian-hiding type when k = 1. Essentially, we would like to propose the idea
of having one single scheme support all possible values of (k, t, n) provided that
the condition 1 ≤ k ≤ t ≤ n holds.
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Our Contributions. We introduce the notion of (k, t, n) UCH-VE and pro-
pose a scheme of this type for discrete logarithms. The scheme is universal as
it supports various types of VE that include conventional one-decryptor type,
conventional threshold type, designated-1-out-of-n custodian-hiding type and
designated group custodian-hiding type by adjusting the values of k, t and n.

Not only our scheme is the first one of this type, the efficiency of our scheme
also compares favourably with the state-of-the-art VE schemes. In particular, it
gives the same order of performance when compared with the conventional one-
decryptor type VE scheme proposed by Camenisch and Shoup [9]. Our scheme
can be considered as an extension of theirs to the UCH-VE setting. Our scheme
also avoids using inefficient cut-and-choose proofs and is much more efficient than
the designated-1-out-of-n custodian-hiding type scheme and the two extensions
for designated group custodian-hiding type proposed by Liu et al. in [12]. Our
scheme is also non-interactive. That is, the encryptor generates a ciphertext
without the participation of the public verifier. In [12], all of their schemes require
the verifier to get involved.

Applications. There are numerous applications of verifiable encryption. Exam-
ples include publicly verifiable secret sharing [15], optimistic fair exchange [1],
revokable anonymous credential [7], and encrypted message gateway [12].

In a key escrow application, a user Alice encrypts her secret key under the
public key of a custodian and sends to a verifier (e.g. an organization or a
government) together with a proof that the ciphertext is indeed an encryption
of her own secret key. In order to increase the level of trust, n custodians may
be called in rather than only one single custodian. The key is then split and
shared among a designated set of t out of these n custodians. For the interest of
Alice, she may not want the verifier to find out which particular t custodians are
holding shares of her secret key. To increase reliability of this key escrow system,
we may also want Alice’s secret key to be able to recover as long as there are at
least k of these t designated custodians are in service. In other words, even some
(at most t− k) of the designated custodians have gone offline, Alice’s secret key
can still be recovered.

1.1 Scheme Outline

To construct a UCH-VE scheme for a relation R, we divide our work into two
phases. In the first phase, we construct an encryption scheme called Universal
Custodian-Hiding Encryption (UCH-Enc). In the second phase, we add in a
proof system which allows the encryptor of the UCH-Enc scheme (now acts as a
prover) to convince a verifier that a ciphertext can be decrypted jointly by any k
out of t designated receivers of a group of n receivers (or decryptors) to a value
w such that (w, δ) ∈ R for a given δ. The (public) verifier is a party who only
has the public system information such as the public keys of all the receivers.

For a group of n receivers, a UCH-Enc scheme allows anyone who has the
public keys of the n receivers to arbitrarily choose and specify integers k, t and a
t-element subset of the receiver group provided that 1 ≤ k ≤ t ≤ n, then generate
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a ciphertext on a message. The t-element subset is called the designated decryptor
group. To recover the message, at least k members of the designated decryptor
group have to work jointly on the ciphertext using their private keys. Any k−
1 receivers (or fewer) cannot recover the message. We define a secure UCH-
Enc scheme to be semantically secure against adaptive chosen ciphertext and
public key attacks. The scheme should also provide anonymity to the designated
decryptor group. A secure UCH-VE scheme built on a secure UCH-Enc scheme
should also be Sound and Special Honest-Verifier Zero Knowledge.

Notations. For positive real numbers a and b, let *a+ be the largest integer
smaller or equal to a, and a+ be the largest integer smaller or equal to a+ 1/2.
Let [a] = {0, · · · , *a+−1}, [a, b] = {*a+, · · · , *b+}, and [−a, b] = {−*a+, · · · , *b+}.

Let ℘t(S) be the collection of all t-element subsets of the power set of S, i.e.
℘t(S) = {T ∈ 2S : |T | = t}. By ℘t(S)[j], we mean the j-th element of ℘t(S)
for some arbitrary order.

By |X |, we denote the length of X in binary form; or the cardinality if X is a
set. By neg(�), we denote a negligible function where neg(�) < 1/poly(�) holds
for all polynomial poly(�) and all sufficiently large �.

Paper Organization. We define a secure UCH-Enc in Sec. 2 and propose a
scheme of this type in Sec. 3. We then define a secure UCH-VE in Sec. 4 and
describe our UCH-VE scheme in Sec. 5.

2 UCH-Enc: Definition and Security Model

A (k, t, n) UCH-Enc (Universal Custodian-Hiding Encryption) scheme, where
1 ≤ k ≤ t ≤ n, allows an encryptor to arbitrarily set up a group of n receivers
(or decryptors), designate t (or more) members of the group and encrypt a
message m to a ciphertext ψ under the public keys of the n group members.
To recover m from ψ, at least k of the t designated group members have to
cooperate. For non-designated group members, they cannot recover m even they
collaborate with each other. In addition, we require that the public cannot tell
who is a designated member or who is not. We call this additional property the
Designated Decryptor Anonymity.

Note that when t = n, the UCH-Enc scheme becomes a conventional threshold
encryption scheme [11, 14, 10]. However, when k = t, it is not alike a threshold
scheme. Instead, in the special case when k = t = 1 and consider n to be the
total number of public keys in the entire system, a UCH-Enc scheme becomes
reminiscent to a public key encryption with key privacy scheme [3]. A public key
encryption with key privacy scheme allows an encryptor to generate a ciphertext
without leaking any information about the identity of the decryptor.

A UCH-Enc scheme is defined as a tuple of four probabilistic polynomial-time
(PPT) algorithms which correspond to System Setup, Key Generation, Encryption
and Decryption. For every PPT algorithm discussed in this paper, its running
time is assumed to be some polynomial of a system-wide security parameter
�0 ∈ N. For simplicity, we sometimes omit 1�0 from the description of the input
specification of an algorithm.
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System Setup: On input a security parameter �0 ∈ N (in the form of 1�0), the
algorithm outputs the specification of a message space M, a group size n,
and some auxiliary security parameters �i (1 ≤ i ≤ n) such that each of n
and �i (1 ≤ i ≤ n) is some polynomial in �0.

Key Generation: On input a security parameter �i ∈ N and the specification of
a message spaceM, a public/private key pair (PKi, SKi) is generated.

Encryption: On input a set {PKi}1≤i≤n of n public keys, some integer k, t such
that 1 ≤ k ≤ t ≤ n, some set T ∈ ℘t([1, n]) called designated decryptor
group, and some message m ∈ M with label L ∈ {0, 1}∗, the algorithm
outputs a ciphertext ψ.

Decryption: On input a set {PKi}1≤i≤n of n public keys, a k-element set K ∈
℘k([1, n]), a set {SKi}i∈K of private keys, the specification of a message space
M, and a ciphertext ψ with label L ∈ {0, 1}∗, the algorithm outputs either
reject for failure of decryption or some message m′ ∈M.

Remark: The specification of the message space M is generated in the System
Setup phase. An alternative approach of specifying M is to remove its specifi-
cation from the System Setup and let it be determined by the set of public keys
used in the Encryption algorithm. Each of these two approaches has its advan-
tages and tradeoffs. Although we pick the current one in our paper, one can
readily convert ours to the alternative approach if preferred.

2.1 Security Model

We require a secure UCH-Enc scheme to be correct, indistinguishable against
adaptive chosen ciphertext and public key attacks and designated decryptor
anonymous.

Decryption Correctness. For all n, �i (1 ≤ i ≤ n) and the specification ofM
generated by System Setup with input �0; for all key pairs (PKi, SKi), 1 ≤ i ≤ n,
generated by Key Generation with corresponding inputs; for any message m ∈M
with label L ∈ {0, 1}∗; and for any designated decryptor group T ∈ ℘t([1, n]),
we have the following holds with probability at least 1− neg(�0).

If ψ is generated by Encryption with inputs {PKi}1≤i≤n, k, t, T , and
(m,L), such that 1 ≤ k ≤ t ≤ n, then Decryption outputs m on input
{PKi}1≤i≤n, any K such that |K∩T | ≥ k, {SKi}i∈K, the specification of
M, and (ψ,L).

Indistinguishability Against Adaptive Chosen Ciphertext and Pub-
lic Key Attacks. Different from a conventional threshold decryption scheme,
a UCH-Enc scheme has the additional component called designated decryptor
group. We require that at least k members in this designated decryptor group
are working together before being able to recover the message. Also, any other
receivers who do not belong to the designated decryptor group cannot obtain
the message, even they collaborate. We follow the notion of IND-CCA2 security
by Rackoff and Simon [13] to set up a game called Game Confidentiality. The
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game captures both the threshold setting and the notion of designated decryp-
tor group. It also captures the idea of adaptive chosen public key attack. Details
of the formalization are given in Appendix A.

Designated Decryptor Anonymity. Along with the new notion of designated
decryptor group, we also want to provide anonymity to the members of the
group. In particular, we require that no one can tell from a ciphertext about
who is a designated decryptor or who is not if he does not have corresponding
private keys. In Appendix A, we describe an indistinguishability-based game
called Game Anonymity for this.

3 A UCH-Enc Scheme

The main technique is based on Camenisch-Shoup encryption scheme [9]. Their
scheme can be shown to be IND-CCA2 secure without the random oracle model
[5]. The scheme below extends their scheme by adding the ingredients of desig-
nated decryptor group as well as threshold decryption.

System Setup: On input a system-wide security parameter, �0 ∈ N, a group size
n, auxiliary security parameters �i (1 ≤ i ≤ n) and the specification of a message
spaceM = [N0] are generated where N0 is a prime and each of n, �i, 1 ≤ i ≤ n,
and |N0| is some polynomial in �0.

Key Generation: For i = 1, · · · , n, a public key pair (PKi, SKi) is generated as
follows:

1. Select two random �i-bit Sophie Germain primes p′i and q′i, with p′i �= q′i, and
compute pi = 2p′i + 1, qi = 2q′i + 1, Ni = piqi and N ′

i = p′iq
′
i.

2. Randomly choose xi,1, xi,2, xi,3 ∈R [N2
i /4], g′i ∈R Z∗

N2
i
, and compute gi =

(g′i)
2Ni , yi,1 = g

xi,1
i , yi,2 = g

xi,2
i and yi,3 = g

xi,3
i .

3. Select a keyed hash function [4] Hi and randomly choose a key hki ∈R

{0, 1}�i. The resulting keyed hash function Hi,hki : {0, 1}∗ → [2�i] should be
collision-resistant.

4. Compute hi = (1 + Ni mod N2
i ) ∈ Z∗

N2
i
. Set function absi : Z∗

N2
i
→ Z∗

N2
i

to
map (a mod N2

i ) for 0 < a < N2
i , to (N2

i − a mod N2
i ) if a > N2

i /2, and to
(a mod N2

i ), otherwise. Notice that the order of hi is Ni and v2 = (absi(v))2

for all v ∈ Z∗
N2

i
.

The public key is PKi = (Ni, hi, gi, yi,1, yi,2, yi,3, Hi, hki) and the private key is
SKi = (xi,1, xi,2, xi,3). We require that N0 < Ni.

Encryption: For a set {PKi}1≤i≤n of n public keys generated as above, given
some integers k, t such that 1 ≤ k ≤ t ≤ n and t < N0, and some designated
decryptor group T ∈ ℘t([1, n]), a message m ∈ [N0] with label L ∈ {0, 1}∗ is
encrypted as follows:

1. (Secret Sharing) Generate a random polynomial f(x) =
∑k−1

j=0 ajx
j of degree

(k − 1) over GF (N0) such that f(0) = m (i.e. a0 = m). Compute mi = f(i)
for all i ∈ T .
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2. (Generating Ciphertext Components) For each i ∈ T , choose a random
ri ∈R [Ni/4] and compute ctxti = (ui, ei, vi) as

ui = gri

i , ei = yri

i,1h
mi

i , and vi = absi

(
(yi,2y

Hi,hki
(ui,ei,L,k,t,n)

i,3 )ri

)
.

Note that ui, ei and vi are in Z∗
N2

i
but vi ≤ N2

i /2. For each i ∈ [1, n]\T ,
generate ctxti = (ui, ei, vi) by picking each of its components at random
from its corresponding domain.

3. The ciphertext is ψ = (k, t, ctxt1, · · · , ctxtn).

Decryption: Let K, with |K| = k, be a subset of the designated decryptor group
T . To decrypt a ciphertext ψ = (k, t, ctxt1, · · · , ctxtn) with label L under the set
{SKi}i∈K of k private keys, the following steps are carried out:

1. (Recovering Shares) For each i ∈ K, ctxti = (ui, ei, vi) is decrypted under
SKi as follows:
(a) Check if absi(vi) = vi and u

2(xi,2+Hi,hki
(ui,ei,L,k,t,n)xi,3)

i = v2
i . Output

reject and halt if any of them does not hold.
(b) Let ti = 2−1 mod Ni. Compute m̂i = (ei/u

xi,1
i )2ti . If m̂i is of the form

hmi

i for some mi ∈ [Ni], output a share (i,mi); otherwise, output reject
and halt.

2. (Recovering Message) Check that k shares (i,mi) have been collected. If this
does not hold, output reject and halt. Otherwise, interpolate a polynomial
over GF (N0) of degree no greater than k−1 by requiring f to pass through
the points (i,mi mod N0). Output f(0) as the recovered message.

It is easy for a group member to tell whether he is designated or not as the
non-designated members output reject during the Recovering Shares phase of
decryption with an overwhelming probability.

In the Recovering Message phase of decryption, the k shares (i,mi) have to
be collected. To do this, the cooperating members can broadcast their shares
securely to one another, or send their shares to a trusted party. Yet another way
to do so is to compute f(0) interactively over many rounds. To add robustness,
one may require the members to submit their shares together with proofs that
the shares are decrypted correctly. Details omitted.

Proposition 1. The scheme above is indistinguishable against adaptive chosen
ciphertext and public key attacks provided that the DCR assumption holds and
all keyed hash functions Hi’s are collision resistant.

The DCR assumption is reviewed in Appendix B. This proposition follows di-
rectly from [8, Theorem 1]. To see this, notice that every ciphertext compo-
nent ctxti, i ∈ T for some designated decryptor group, of a ciphertext ψ is
the Camenisch-Shoup encryption [9] of a share of the message. In addition, for
i ∈ [1, n] \ T , the ciphertext component ctxti does not contain any information
of the message.
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Theorem 1. The scheme above is designated decryptor anonymous provided
that the DCR assumption holds.

Proof is given in Appendix C.

4 UCH-VE: Definition and Security Model

Let R be a relation defined by a generation algorithm G′ which on input 1�0

outputs a description Ψ = Ψ [R,W,Δ] of a binary relation R on W × Δ. We
require that the sets R, W and Δ are easy to recognize by given Ψ . For δ ∈ Δ,
an element w ∈W such that (w, δ) ∈ R is called a witness for δ.

A Universal Custodian-Hiding Verifiable Encryption (UCH-VE) proceeds as
follows. Given a value δ, a witness w for δ and a label L, an encryptor chooses
a set {PKi}1≤i≤n of n public keys, two integers k, t such that 1 ≤ k ≤ t ≤ n,
and a t-element designated decryptor group T ∈ ℘t([1, n]), and encrypts w with
L to a ciphertext ψ. Similar to a conventional UCH-Enc scheme, ψ decrypts to
w when k (or more) private keys corresponding to decryptors in T are given.

In addition to the encryption and decryption of a witness for an element δ ∈ Δ,
the encryptor can also prove to a public verifier that the pair of ciphertext and
label (ψ,L) decrypts to a witness for δ under k (or more) private keys of some
designated t (or more) private keys corresponding to {PKi}1≤i≤n. For carrying
out the proof, the verifier is given the value of δ, the label L, a set {PKi}1≤i≤n

of n public keys and a ciphertext ψ. The verifier will output accept or reject at
the end of the proof. When the verifier outputs accept, we say that the verifier is
convinced that the proofing statement made by the encryptor above (also known
as the prover) is correct.

Formally, a UCH-VE consists of a tuple of four PPT algorithms and one
protocol. The four PPT algorithms are System Setup, Key Generation, Encryption
and Decryption. They are similar to that of a UCH-Enc scheme specified in
Sec. 2. There are only a few changes need to be made: First, in the System
Setup phase, there may be some auxiliary parameters generated for carrying out
the Verification Protocol described below. Note that auxiliary parameters can be
null if they are not needed. Second, the message now becomes a witness in W .
Therefore, it is required that W ⊆M whereM is the message space.

The protocol called Verification Protocol is carried out between two interactive
PPT algorithms: a prover and a verifier.

Verification Protocol: The common inputs of the prover and the verifier are
1. the system-wide security parameter �0 and auxiliary parameters gener-

ated in the System Setup phase,
2. a relation description Ψ = Ψ [R,W,Δ],
3. an element δ ∈ Δ,
4. the set {PKi}1≤i≤n of n public keys,
5. two integers k, t such that 1 ≤ k ≤ t ≤ n, and
6. a ciphertext ψ with label L ∈ {0, 1}∗.
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The prover has the following additional inputs:
1. a witness w for δ, such that (w, δ) ∈ R,
2. a designated decryptor group T ∈ ℘t([1, n]), and
3. the random coins coins that were used by the Encryption algorithm for

generating ψ.
At the end of the protocol, the verifier outputs either accept or reject while
the prover has no output.

The security requirements of the underlying encryption scheme composed by
System Setup, Key Generation, Encryption and Decryption are the same as that of
a secure UCH-Enc scheme specified in Sec. 2.1. For the Verification Protocol, the
additional requirements are (1) Verification Correctness, (2) Soundness and (3)
Special Honest-Verifier Zero Knowledge. Details are given in Appendix D.

5 A UCH-VE Scheme for Discrete Logarithms

We start with the UCH-Enc scheme described in Sec. 3 and design a suitable
proof of knowledge system as the Verification Protocol. Let Γ be a cyclic group
of prime order ρ generated by γ. We assume that γ and ρ are publicly known.
Let W = [ρ] and Δ = Γ , and let R = {(w, δ) ∈W ×Δ : γw = δ}.

We now slightly modify our UCH-Enc scheme given in Sec. 3 by adding some
additional parameters. These parameters will solely be used in the Verification
Protocol. They do not affect the encryption and decryption processes of the
original scheme, and the security claims on the encryption namely correctness,
indistinguishability against adaptive chosen ciphertext and public key attacks,
and designated decryptor anonymity, still hold.

System Setup: Let �0 be the system-wide security parameter. There are two
parts in this phase. The first part is the same as that of the UCH-Enc scheme. We
run the SystemSetup algorithm described in Sec. 3 on input 1�0 to generate the
group size n, auxiliary security parameters �i (1 ≤ i ≤ n) and the specification
of a message spaceM. We require thatM = [ρ] (i.e. set N0 = ρ).

In the second part, two additional parameters, κ′ and κ′′, are generated from
κ′(�0) and κ′′(�0), where 2−κ′(�0) and 2−κ′′(�0) are negligible functions. {0, 1}κ′

is going to be the “challenge space” of the verifier in the Verification Protocol
and κ′′ controls the quality of the zero-knowledge property.

Key Generation: In addition to the key generation steps described in the UCH-
Enc scheme, the following steps are added for generating some auxiliary param-
eters: ni, gi and hi, for i = 1, · · · , n.

1. Generate ni in the same way as generating Ni in Sec. 3. That is, randomly
select two �0-bit Sophie Germain primes p′i and q′i, with p′i �= q′i, and compute
pi = 2p′i + 1, qi = 2q′i + 1, ni = piqi and n′

i = p′iq
′
i.

2. Set gi and hi to be two distinct generators of Gn′
i
⊂ Z∗

ni
where Gn′

i
is the

subgroup of Z
∗
ni

of order n′
i.
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We may simply put ni = Ni. In any event, it is required that the prover (in the
Verification Protocol below) does not know the factorization of ni. The public key
of group member i now becomes PKi = (ni, gi, hi, Ni, hi, gi, yi,1, yi,2, yi,3, Hi, hki)
and the private key remains the same, that is, SKi = (xi,1, xi,2, xi,3).

We require that 2κ′
< min(p′i, q

′
i, p

′
i, q

′
i, ρ). This means the value of the chal-

lenge (denoted by ci in the Verification Protocol) will “fit” in all the possible
orders of the involved elements (i.e. ui, ei, vi, δ, δi and ti in the Verification
Protocol) of their corresponding groups.

We also require that ρ < min(Ni2−κ′−κ′′−1, ni2−κ′−κ′′−3). It is obvious that
we need ρ < Ni in order to allow proper encryption of ρ (more accurately,
encrypting its t shares) under the public keys of the group members. In order to
make sure that ρ also fits in the auxiliary group (ni, gi, hi), we also need ρ < n′

i.
Since the factorization of ni is unknown to the prover, the prover does not know
the value of n′

i. The prover therefore makes an approximation of the group order
by observing that n′

i is always greater than ni/8. Hence we need to restrict that
ρ < ni2−3 holds. Further note that in the Verification Protocol below, we require
the value of m′

i, which is in the range of [−ρ2κ′+κ′′
, ρ2κ′+κ′′

], to fit in the order of
gi. This implies that we need to further restrict that ρ < ni2−κ′−κ′′−3. Similarly,
we should also restrict the value of ρ such that ρ < Ni2−κ′−κ′′−1 for fitting m′

i

into the order of hi.

Encryption: For a message m = w with label L ∈ {0, 1}∗ where w ∈ [ρ] is a
witness of a group element δ ∈ Γ , namely δ = γw, the encryptor picks two
integers k, t such that 1 ≤ k ≤ t ≤ n, and a t-element designated decryptor group
T ∈ ℘t([1, n]). Then the encryption scheme of the UCH-Enc scheme described
in Sec. 3 is invoked by ignoring the auxiliary parameters (ni, gi, hi) in each of the
public keys PKi’s, 1 ≤ i ≤ n. Notice that the polynomial f(x) in the encryption
scheme is now over GF (ρ).

Decryption: This is same as that of the UCH-Enc scheme described in Sec. 3.

This completes the modification of the encryption scheme. Essentially, in the
modification above, we have only added the auxiliary parameters (ni, gi, hi) to
each of the public keys PKi, 1 ≤ i ≤ n, and made several checks of the relations
among several domains. These changes are for carrying out the Verification Pro-
tocol and have no effect on the encryption scheme above in terms of its security.

We now describe the protocol which contributes to the verification part of the
UCH-VE scheme. The protocol is carried out between a prover and a verifier.

Verification Protocol: The common inputs of the prover and the verifier are
(1) the system-wide security parameter �0 and additional security parameters κ′

and κ′′, (2) group domain parameters (Γ, γ, ρ), (3) group element δ ∈ Γ , (4) the
set {PKi}1≤i≤n of n public keys, and (5) ciphertext ψ = (k, t, ctxt1, · · · , ctxtn)
with label L. Note that each ctxti = (ui, ei, vi), 1 ≤ i ≤ n.

The prover has the following additional inputs: (1) m ∈ [ρ], (2) T ∈ ℘t([1, n]),
(3) ri ∈ [Ni/4] for i ∈ T , and (4) polynomial f(x) =

∑k−1
j=0 ajx

j of degree (k−1)
over GF (ρ) such that δ = γm, f(0) = m, and the following are satisfied for all
i ∈ T :
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ui = gri

i , ei = yri

i,1h
f(i)
i , and vi = absi

(
(yi,2y

Hi,hki
(ui,ei,L,k,t,n)

i,3 )ri

)
.

The protocol proceeds as follows.

1. (Auxiliary Commitment) For i = 1, · · · , n, the prover chooses at random
si ∈R [ni/4], and computes ti = g

f(i)
i hsi

i and δi = γf(i). The prover further
computes Aj = γaj for 1 ≤ j ≤ k−1. The prover sends 〈(δ1, t1), · · · , (δn, tn)〉
and 〈A1, · · · , Ak−1〉 to the verifier.

2. (Auxiliary Verification) For i = 1, · · · , n, the verifier checks if

δi = δ

k−1∏
j=1

Aij

j .

If any of them does not hold, the verifier stops and outputs reject.
3. (Commitment)

(a) For i = 1, · · · , n, the prover chooses random

r′i ∈R [−Ni2κ′+κ′′−2, Ni2κ′+κ′′−2], s′i ∈R [−ni2κ′+κ′′−2, ni2κ′+κ′′−2],

m′
i ∈R [−ρ2κ′+κ′′

, ρ2κ′+κ′′
].

(b) For i ∈ T , the prover computes

u′
i = g

2r′
i

i , e′i = y
2r′

i

i,1 h
2m′

i

i , v′i = (yi,2y
Hi,hki

(ui,ei,L,k,t,n)
i,3 )2r′

i ,

δ′i = γm′
i , t′i = g

m′
i

i h
s′

i

i .

(c) For i ∈ [1, n]\T , the prover chooses random ci ∈R {0, 1}κ
′
, ri ∈ [Ni/4],

computes r̃i = r′i−ciri, s̃i = s′i−cisi, m̃i = m′
i−cimi in Z, and computes

u′
i = u2ci

i g2r̃i

i , e′i = e2ci

i y2r̃i

i,1 h
2m̃i

i , v′i = v2ci

i (yi,2y
Hi,hki

(ui,ei,L,k,t,n)
i,3 )2r̃i ,

δ′i = δci

i γm̃i , t′i = tcig
m̃i

i hs̃i

i .

The prover sends 〈(u′
1, e

′
1, v

′
1, δ

′
1, t

′
1), · · · , (u′

n, e
′
n, v

′
n, δ

′
n, t

′
n)〉 to the verifier.

4. (Challenge) The verifier chooses a random challenge c ∈R {0, 1}κ
′
and sends

〈c〉 to the prover.
5. (Response) The prover generates a polynomial f̂ of degree at most (n − t)

over GF (2κ′
) such that f̂(0) = c, f̂(i) = ci for i ∈ [1, n]\T . For each i ∈ T ,

the prover computes the following in Z:

r̃i = r′i − f̂(i)ri, s̃i = s′i − f̂(i)si, m̃i = m′
i − f̂(i)mi (1)

The prover replies with 〈f̂ , (r̃1, s̃1, m̃1), · · · , (r̃n, s̃n, m̃n)〉.
6. (Verification)

(a) The verifier checks if f̂ is a polynomial of degree at most (n − t) over
GF (2κ′

), f̂(0) = c, and check, for all i = 1, · · · , n, if −Ni/4 < m̃i <
Ni/4. If any of them does not hold, the verifier stops and outputs reject.
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(b) For each i = 1, · · · , n, the verifier checks whether the relations

u′
i = u

2f̂(i)
i g2r̃i

i , e′
i = e

2f̂(i)
i y2r̃i

i,1 h2m̃i
i , v′

i = v
2f̂(i)
i (yi,2y

Hi,hki
(ui,ei,L,k,t,n)

i,3 )2r̃i ,

δ′
i = δ

f̂(i)
i γm̃i , t′i = t

f̂(i)
i g

m̃i
i h

s̃i
i .

hold. If any of them does not hold, the verifier stops and outputs reject.
If all the checks above go through, the verifier outputs accept.

Discussions. In the Verification Protocol above, Steps (1) and (2) establish the
evidence of f(i) = logγ δi, 1 ≤ i ≤ n, and f(0) = logγ δ to the verifier. Since the
degree of f is k − 1, one can find the value of f(0), that is a witness for δ, once
at least k out of the n shares (f(1), · · · , f(n)) are known. Also note that these
two steps can be combined with Step (3) and (4), respectively, for making the
proof system a truly three-move one.

Steps (3) to (6) contribute to the construction of the following proof system:

PK[ ((ri,mi, si),i∈[1,n]) :
∨

T ∈℘t([1,n])(
∧

i∈T (

u2
i = g2ri

i ∧ e2
i = y2ri

i,1 h
2mi

i ∧ v2
i = (yi,2y

Hi,hki
(ui,ei,L,k,t,n)

i,3 )2ri ∧
δi = γmi ∧ ti = gmihsi ∧ −Ni/2 < mi < Ni/2))].

This protocol can also be thought as the generalization of the following:

PK[ (r,m, s) : u2 = g2r ∧ e2 = y2r
1 h2m ∧ v2 = (y2y

Hhk(u,e,L)
3 )2r ∧

δ = γm ∧ t = gmhs ∧ −n/2 < mi < n/2))],

which appears as Step 2 of the protocol for verifiable encryption of discrete
logarithms in [8].

These four steps allow the prover to convince the verifier that there is at least
one designated t-element set T ∈ ℘t([1, n]) whose corresponding ciphertext com-
ponents {ctxti}i∈T decrypt to {f(i) = logγ δi}i∈T . Combining with the evidence
established in Steps (1) and (2), the verifier is convinced that from the ciphertext
ψ = (k, t, ctxt1, · · · , ctxtn), any k (or more) out of some designated t members
of a group of n members decrypt their corresponding ciphertext components to
get k (or more) (k, t)-shares of a witness of δ.

The entire Verification Protocol can be represented by:

PK[ ((ri,mi, si),i∈[1,n]) :
∨

T ∈℘t([1,n])(∧
i∈T ( u2

i = g2ri

i ∧ e2
i = y2ri

i,1 h
2mi

i ∧ v2
i = (yi,2y

Hi,hki
(ui,ei,L,k,t,n)

i,3 )2ri ∧
δi = γmi ∧ ti = gmihsi ∧ −Ni/2 < mi < Ni/2)∧

K∈℘kT (δ = γ i∈K mi j∈K,j �=i

mj
mj−mi ))].

To implement the UCH-VE scheme, one can set ni = Ni for all 1 ≤ i ≤ n, set
|Ni| = 2048, |ρ| = 1024, κ′ = 512 and κ′′ = 80.

Theorem 2. The UCH-VE scheme above satisfies the soundness definition if
the Strong RSA problem is hard.
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The Strong RSA problem is reviewed in Appendix B and the proof is given in
Appendix E.

Theorem 3. The UCH-VE scheme above is Special HVZK.

Proof is given in Appendix F.
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A Games for Defining a Secure UCH-Enc Scheme

Game Confidentiality: “For a UCH-Enc scheme, consider the following game which
is played by a simulator SA against a PPT adversary A.

1. (System Setup and Key Generation) Let �0 ∈ N be the system-wide security
parameter. SA implements the System Setup algorithm and the Key Gener-
ation algorithm accordingly, and generates N public key pairs (PKi, SKi),
1 ≤ i ≤ N , and the specification of a message space M, where N is some
polynomial in �0. In the rest of the game, we consider that all involved keys
belong to this N pairs of keys.

2. (Oracle Simulation) SA equips two oracles which behave as follows.
– Decryption Oracle takes a set {PKi1 , · · · ,PKin} of n public keys where
{i1, · · · , in} ⊆ [1,N ], a set K ∈ ℘k({i1, · · · , in}), a ciphertext ψ with
label L ∈ {0, 1}∗ and returns either reject for failure of decryption or a
message m ∈M by decrypting ψ under the set {SKi}i∈K of private keys,

– Corruption Oracle takes an integer i, 1 ≤ i ≤ N and returns SKi.
3. (Probing Phase I ) A interacts with the decryption oracle and the corruption

oracle in an arbitrary, adaptive fashion. This phase goes on for a polynomial
amount of time, specified by A.

4. (Target-Selection Phase) A selects two messages m0 and m1 fromM, along
with a label L∗ ∈ {0, 1}∗, a set PK1..n = {PKi1 , · · · ,PKin} of n public keys
where {i1, · · · , in} ⊆ [1,N ], two integers k, t such that 1 ≤ k ≤ t ≤ n and
a set T ∈ ℘t({i1, · · · , in}), and sends (m0,m1, L

∗,PK1..n, k, t, T ) to SA. SA
selects a random b ∈R {0, 1} and encrypts mb with label L∗. The resulting
ciphertext ψ∗ is presented to A.

5. (Probing Phase II ) This phase is similar to Probing Phase I. The only
difference is that the decryption oracle only responds to queries of which
the pair of ciphertext and label is not (ψ∗, L∗) and the public key set is not
PK1..n.

6. (Guessing Phase) A outputs a bit b̂.”

Let CT ,k = {i | i ∈ T ∧ SKi has been corrupted}. We say that “SKi has been
corrupted” if A has queried the corruption oracle with i before. A wins the game
if b̂ = b and |CT ,k| < k. Define

AdvA(�0) = |Pr[A wins the game]− 1
2
|

to be the advantage of A over random guessing. A UCH-Enc scheme is indis-
tinguishable against adaptive chosen ciphertext and public key attacks if for all
PPT adversary A, AdvA(�0) = neg(�0).

Game Anonymity: “For a UCH-Enc scheme, consider the following game which
is played by a simulator SB against a PPT adversary B.
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1. (System Setup and Key Generation)
2. (Oracle Simulation)
3. (Probing Phase I )

The above three phases are the same as that of Game Confidentiality.
4. (Target-Selection Phase) B picks the following:

– a set PK1..n = {PKi1 , · · · ,PKin} of n public keys where {i1, · · · , in} ⊆
[1,N ],

– two integers k, t such that 1 ≤ k ≤ t ≤ n,
– two sets T0, T1 ∈ ℘t({i1, · · · , in}) such that |T0 ∩ T1| < t,
– a message m fromM, along with a label L∗ ∈ {0, 1}∗,

and sends (m,L∗,PK1..n, k, t, T0, T1) to SB. SB selects a random b ∈R {0, 1}
and encrypts m with label L∗ with respect to the designated decryptor group
Tb. The resulting ciphertext ψ∗ is presented to B.

5. (Probing Phase II ) This phase is as that of Game Confidentiality. Essentially,
B cannot query the decryption oracle with the pair of ciphertext and label
(ψ∗, L∗) along with the public key set PK1..n.

6. (Guessing Phase) A outputs a bit b̂.”

Let Ci1..in = {j | j ∈ {i1, · · · , in ∧ SKj has been corrupted}. B wins the game if
b̂ = b and Ci1..in ∩ (T0 ∪ T1) = ∅ where ∅ denotes the empty set. Define

AdvB(�0) = |Pr[B wins the game]− 1
2
|

to be the advantage of B over random guessing. A UCH-Enc scheme is designated
decryptor anonymous if for all PPT adversary B, AdvB(�0) = neg(�0).

B Assumptions

Paillier’s Decision Composite Residuosity (DCR) Problem. Randomly
select two �0-bit Sophie Germain primes p′ and q′, with p′ �= q′, and set N =
(2p′+1)(2q′+1). Consider the group Z∗

N2 and the subgroup P of Z∗
N2 consisting

of all N -th powers of elements in Z∗
N2 . Given N and a random element u ∈ Z∗

N2 ,
determine if u ∈ P.

Strong RSA Problem. Randomly select two �0-bit Sophie Germain primes p′

and q′, with p′ �= q′, and set N = (2p′ + 1)(2q′ + 1). Given N and a random
element g ∈ Z∗

N , find an element h ∈ Z∗
n and an integer e > 1 such that he = g.

Fact 1. If the Strong RSA Problem is hard, then given N with random elements
g, h ∈R (Z∗

N )2, it is hard to compute w ∈ Z∗
N and integers a, b, c such that

wc = gahb and (c � | a or c � | b).

The proof of Fact 1 can be found in the proof of [8, Theorem 3].
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C Proof of Theorem 1 (Designated Decryptor
Anonymity)

Proof. For contradiction, suppose an adversary B has non-negligible advantage
of winning Game Anonymity. We show that the simulator SB of Game Anonymity
can be used to solve the DCR problem.

Given a DCR problem instance u∗ ∈ Z
∗
N2 , SB sets Ni = N for all i = 1, · · · ,N .

Then all public key pairs are generated according to the scheme and all oracles
are simulated properly according to Game Anonymity.

During the Target-Selection Phase, the ciphertext ψ∗ is prepared such that
u∗ is used as the first component of ctxtj′ for some j′ randomly chosen from
T ∗

1−b = T1−b − Tb. The remaining two components of ctxtj′ are generated just
like as j′ is also in the designated decryptor group Tb. For other j ∈ T ∗

1−b \ {j′},
the first component of ctxtj is generated just like as j is also in the designated
decryptor group Tb.

As we can see, all ciphertext components corresponding to receivers indexed
by Tb and T1−b, except the one containing u∗ (i.e. ctxtj′ ), are generated in iden-
tically the same way. If u∗ ∈ P, the adversary B has no advantage in guessing
b as there is actually no difference between the ciphertext ensembles generated
with respect to T0 or T1. The difference would only exist if u∗ /∈ P. In this
case, the ciphertext component with u∗ as the first component in T1−b is the
only difference from other ciphertext components as the first components of all
other ciphertext components are in P. Hence if the adversary has non-negligible
advantage, SB has non-negligible advantage of telling that u∗ is not in P. ��

D The Security Models of a UCH-VE Scheme

Verification Correctness. For all n, �i (1 ≤ i ≤ n), auxiliary parameters
(if any), and the specification of M generated by System Setup with input �0;
Ψ [R,W,Δ] generated by G′(1�0); (w, δ) ∈ R; key pairs (PKi, SKi), 1 ≤ i ≤ n,
generated by the Key Generation; integers k, t such that 1 ≤ k ≤ t ≤ n; T ∈
℘t([1, n]); random coins coins; and ciphertext ψ generated by Encryption with
respect to w as the message and label L ∈ {0, 1}∗ with the random coins coins
during the encryption process, we have the following holds with probability at
least 1− neg(�0).

“Given common inputs of �0, auxiliary parameters (if any), Ψ [R,W,Δ],
δ, {PKi}1≤i≤n, k, t and ψ to the prover and the verifier; given secret
inputs of w, T and random coins coins to the prover, if the prover and
the verifier interacts honestly, the verifier outputs accept and the prover
outputs nothing at the end of the Verification Protocol.”

Soundness. If a ciphertext is verified to be valid by an honest verifier, we
require that there exists a designated decryptor group of t members, in which
any k members can jointly recover a witness for δ from the ciphertext. On the
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other hand, any k−1 (or less) members of the group cannot recover the witness.
For ensuring that the prover cannot cheat, we define the following game and give
the definition of soundness.

Game Soundness: “For a UCH-VE scheme, consider the following game, played
by a simulator SP against two PPT adversaries A∗ and P∗.

1. (System Setup and Key Generation) Let �0 ∈ N be the system-wide security
parameter. SP invokes G′(1�0) for a relation description Ψ [R,W,Δ]. Then,
SP implements the System Setup algorithm and the Key Generation algorithm
accordingly, and generates n public key pairs (PKi, SKi), 1 ≤ i ≤ n, auxiliary
parameters (if any), and the specification of a message spaceM, where n is
some polynomial number of �0. In the remaining of the game, we consider
that all involved keys belong to this n pairs of keys.

2. (Target Generation Phase) A∗ takes all key pairs {(PKi, SKi)}1≤i≤n and
relation description Ψ , and produces an element δ ∈ Δ, a ciphertext ψ, a
label L, two integers k, t such that 1 ≤ k ≤ t ≤ n and some auxiliary string
aux.

3. (Interact With Malicious Prover) P∗ takes the auxiliary string aux as an in-
put and interacts with the game simulator SP as in one run of the Verification
Protocol. In this phase, SP simulates the verifier accordingly.

4. (Verifier Output) After completing the run of Verification Protocol, SP
outputs what a honest verifier should output.”

The adversaries A∗ and P∗ win the game if the game output is accept but

– (w′, δ) /∈ R for all w′ that is the decryption of ψ with respect to L under a
set {SKi}i∈Ki,j of private keys where Ki,j = ℘k(Ti)[j], for all i ∈ [1, (n

t )] and
j ∈ [1, (t

k)], or
– (w′′, δ) ∈ R where w′′ is the decryption of ψ with respect to L under the set
{SKi}i∈K where K ⊆ [1, n] and |K| < k.

A UCH-VE scheme is Sound if for all PPT adversariesA∗ and P∗, the probability
that the adversaries win the game is equal to neg(�0).

The model also captures the scenario that the prover and all decryptors are
colluding. This is captured using the parameter aux as it can be used to pass all
the secrets of the decryptors obtained in phase 2 (Target Generation Phase) to
adversary P∗ in phase 3 (Interact With Malicious Prover).

Special Honest-Verifier Zero Knowledge. For preventing the verifier from
getting any useful information from the Verification Protocol, we require the
protocol to be special honest-verifier zero knowledge (Special HVZK).

A Special HVZK protocol has two parties, a prover and a verifier. They have
a common input y and the prover has an additional secret input x. The protocol
is restricted to three moves. In the first move, the prover sends a ‘commitment’
t to the verifier. In the second move, the verifier sends a ‘challenge’ c back to the
prover. In the third move, the prover sends a ‘response’ s to the prover. Also,
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there must exist a simulator Sim that on input y and any ‘challenge’ c̃, outputs a
‘commitment’ t̃ and a ‘response’ s̃ such that the distribution of the triple (t̃, c̃, s̃)
is indistinguishable from a triple (t, c, s) obtained from a real interaction between
the prover and the verifier for which c = c̃.

We define the following game to capture the corresponding security require-
ment of UCH-VE schemes.

Game SHVZK: “For a UCH-VE scheme, consider the following game, played
by a simulator SV against three PPT adversaries A∗, C∗ and D∗.

1. (System Setup and Key Generation) This phase is the same as that of
Game Soundness.

2. (Target Selection Phase) A∗ takes all key pairs {(PKi, SKi)}1≤i≤n and
relation description Ψ , and produces a pair (w, δ) ∈ R, a label L, two integers
k, t such that 1 ≤ k ≤ t ≤ n and some auxiliary string aux.

3. (Target Generation Phase) SV selects random coins coins and a t-element
designated decryptor group T ∈ ℘t([1, n]), and prepares a ciphertext ψ under
{PKi}1≤i≤n, k, t, T and w with L using coins during the encryption process.

4. (Challenge Phase) C∗ takes aux and ψ, and outputs a ‘challenge’ c.
5. (Simulation Phase) SV picks a random bit b ∈R {0, 1}.

– If b = 0, then set α ← Trans(〈common inputs〉, w, coins) where Trans
denotes the transcript seen by the verifier in a real interaction when c
is used as the ‘challenge’. 〈common inputs〉 denotes a list of public keys
PK1, · · · ,PKn, auxiliary parameters (if any), Ψ , δ, k, t, ψ, L and c.

– If b = 1, then set α← Sim(〈common inputs〉) when the ‘challenge’ is c.
6. (Guessing Phase) Given aux, ψ and α, D∗ is to output a bit b̂.

The adversaries A∗, C∗ and D∗ win the game if b = b̂. A UCH-VE scheme is
Special HVZK if for all PPT adversaries A∗, C∗ and D∗, the probability that
the adversaries win the game is equal to 1

2 + neg(�0).

E Proof of Theorem 2 (Soundness)

Proof. If there exists some PPT adversariesA∗ and P∗ who win the Game Sound-
ness with non-negligible probability, then there exists a Knowledge Extractor
which produces (with overwhelming probability) two responses:

(f̂ (1), (r̃(1)
1 , s̃

(1)
1 , m̃

(1)
1 ), . . . , (r̃(1)

n , s̃(1)
n , m̃(1)

n )),

(f̂ (2), (r̃(2)
1 , s̃

(2)
1 , m̃

(2)
1 ), . . . , (r̃(2)

n , s̃(2)
n , m̃(2)

n ))

on two different challenges: c(1), c(2) with respect to the same commitment:

〈(δ1, t1), · · · , (δn, tn), A1, · · · , Ak−1, (u′
1, e

′
1, v

′
1, δ

′
1, t

′
1), · · · , (u′

n, e
′
n, v

′
n, δ

′
n, t

′
n)〉.

If f̂ (1) and f̂ (2) have more than (n−t) points in common, then they must be equal
as they are of degree at most (n−t). Therefore c(1) �= c(2) implies f̂ (1) �= f̂ (2)
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which in turn implies that there are at least t distinct indices π1, · · · , πt ∈ [1, n]
for which f̂ (1)(πi) �= f̂ (2)(πi) for all i ∈ [1, t].

For i = 1, · · · , t, let Δrπi = r̃
(1)
πi −r̃

(2)
πi , Δsπi = s̃

(1)
πi −s̃

(2)
πi , Δmπi = m̃

(1)
πi −m̃

(2)
πi ,

and Δcπi = f̂ (1)(πi) − f̂ (2)(πi). From the verification equations, one can derive
the following equations.

u
2Δcπi
πi = g

2Δrπi
πi , e

2Δcπi
πi = y

2Δrπi
πi,1 h

2Δmπi
πi ,

v
2Δcπi
πi = (yπi,2y

Hπi,hkπi
(uπi

,eπi
,L,k,t,n)

πi,3 )2Δrπi ,

δ
Δcπi
πi = γΔmπi , t

Δcπi
πi = g

Δmπi
πi h

Δsπi
πi .

By Fact 1 (Appendix B), since the Knowledge Extractor has computed tπi ,
Δcπi , Δmπi , and Δsπi such that t

Δcπi
πi = g

Δmπi
πi h

Δsπi
πi , then Δcπi |Δmπi and

Δcπi |Δsπi .
By construction, we have the length of Δcπi to be at most κ′ and 2κ′

<
min(p′πi

, q′πi
, p′πi

, q′πi
, ρ). This implies that Δcπi is relatively prime to NπiN

′
πi

. Let
ĉπi = Δc−1

πi
mod NπiN

′
πi

. Since φ(N2
πi

) = 4NπiN
′
πi

and u2
πi

has order dividing

NπiN
′
πi

, we have u2
πi

= g
2Δrπi

ĉπi
πi . That is,

uπi = wπi,1g
Δrπi

ĉπi
πi (2)

for some w1 of order 2. Similarly, we get

eπi = w2y
Δrπi

ĉπi
πi,1 h

Δmπi
/Δcπi

πi (3)

vπi = w3(yπi,2y
Hπi,hkπi

(uπi
,eπi

,L,k,t,n)
πi,3 )Δrπi

ĉπi (4)

δπi = γΔmπi
/Δcπi (5)

for some w2 and w3 of order 2.
Notice that from vπi = absπi(vπi) and Eqns. (2) - (4), we can see that the

decryption of (uπi , eπi , vπi) will provide the integer m̄πi ∈ [Nπi ], which is equal to
Δmπi/Δcπi mod Nπi . The terms of w1, w2 and w3 are gone due to the squarings
in the decryption algorithm.

As −Nπi/4 < m̃
(1)
πi , m̃

(2)
πi < Nπi/4 and Δcπi |Δmπi , we must have −Nπi/2 <

Δmπi/Δcπi < Nπi/2. Note that logγ δπi = Δmπi/Δcπi . Hence the relation be-
tween logγ δπi and the plaintext m̄πi encrypted in (uπi , eπi , vπi) is that logγ δπi =
m̄πi rem Nπi , where m̄πi rem Nπi = m̄πi − m̄πi/Nπi+Nπi , which is called the
balanced remainder.

In other words, based on Fact 1 in Appendix B (due to the assumption that
the Strong RSA Problem is hard), there exists a Knowledge Extractor which
can compute, the plaintext of the encryption (uπi , eπi , vπi) and ensure that its
balanced remainder is equal to mπi = logγ δπi , for all i ∈ [1, t], provided that A∗

and P∗ win Game Soundness.
We have only shown that the adversaries have to know at least t discrete log-

arithms of the n committed δi’s and these values are encrypted in the ciphertext
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components properly. Next, we show that any k of these t values can be used to
reconstruct the discrete logarithm of δ.

Now δπi =
∏k−1

j=0 A
πj

i

j implies that logγ δπi =
∑k−1

j=0 π
j
i logγ Aj . Hence for

i = 1, · · · , t, (πi,mπi) are points of some polynomial f̄(x) =
∑k−1

j=0 x
j logγ Aj

of degree (k−1) over GF (ρ). Therefore, any k of the t mπi ’s can be used to
reconstruct f̄(0) = logγ A0 = logγ δ ∈ [ρ]. This completes the proof. ��

F Proof of Theorem 3 (Special Honest-Verifier
Zero-Knowledge)

Proof. In the following, we consider that Step (1) and (2) of our Verification
Protocol are combined with Step (3) and (4), respectively. This follows that the
protocol is three-move. In the first move, the prover sends the commitment

〈(δ1, t1), · · · , (δn, tn), A1, · · · , Ak−1, (u′
1, e

′
1, v

′
1, δ

′
1, t

′
1), · · · , (u′

n, e
′
n, v

′
n, δ

′
n, t

′
n)〉

to the verifier. In the second move, the verifier sends the challenge, 〈c〉, back to
the prover. In the third move, the prover sends the response

〈f̂ , (r̃1, s̃1, m̃1), · · · , (r̃n, s̃n, m̃n)〉

to the prover.
We now construct a simulator Sim which simulates an equated protocol tran-

script as follows.
The input of Sim is the set of common inputs specified in our Verification

Protocol on page 398. For a ‘fixed’ challenge c ∈ {0, 1}κ′
, Sim randomly picks

Aj ∈R Γ for 1 ≤ j ≤ k−1, computes δi = δ
∏k−1

j=1 A
ij

j for i = 1, · · · , n, randomly
picks ti from its corresponding domain for i = 1, · · · , n, randomly generates a
polynomial f̂ of degree at most (n − t) over GF (2κ′

) provided that f̂(0) = c
(that is, sets a0 = c and randomly picks aj ∈R [ρ] for j = 1, · · · , k−1), and
computes ci = f̂(i) for all i = 1, · · · , n. For all i = 1, · · · , n, randomly picks

r′i ∈R [−Ni2κ′+κ′′−2, Ni2κ′+κ′′−2], s′i ∈R [−ni2κ′+κ′′−2, ni2κ′+κ′′−2],

m′
i ∈R [−ρ2κ′+κ′′

, ρ2κ′+κ′′
], si ∈R [ni/4], mi ∈R [ρ],

computes r̃i = r′i − ciri, s̃i = s′i − cisi, m̃i = m′
i − cimi, and computes

u′
i := u2ci

i g2r̃i

i , e′i := e2ci

i y2r̃i

i,1 h
2m̃i

i , v′i := v2ci

i (yi,2y
Hi,hki

(ui,ei,L,k,t,n)
i,3 )2r̃i ,

δ′i := δci

i γm̃i, t′i := tci

i gm̃i

i hs̃i

i .

The simulated transcript is:

〈(δ1, t1), · · · , (δn, tn), A1, · · · , Ak−1, (u′
1, e

′
1, v

′
1, δ

′
1, t

′
1), · · · , (u′

n, e
′
n, v

′
n, δ

′
n, t

′
n),

c, f̂ , (r̃1, s̃1, m̃1), · · · , (r̃n, s̃n, m̃n)〉.
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We finally proceed to show that the simulated transcript is indistinguishable
from the real protocol transcript. We compare the distribution of the simulated
transcript with that of the transcript of a real interaction.

Note that the coefficients ai, 1 ≤ i ≤ k−1, of f are randomly chosen over [ρ].
Ai, 1 ≤ i ≤ k−1, are uniformly distributed over Γ in a real transcript. The distri-
butions of Ai’s in a simulated transcript are therefore identical to that in a real
transcript. Since the generations of δi’s in the simulated transcript are the same
as that in the real transcript and they are functions of Ai’s, the distributions
of δi’s in both simulated and real transcripts are also identical. Similarly, the
generations of ti’s in the simulated transcript can also be an identical copycat
of that in the real transcript. Hence the distributions are also identical.

For each i = 1, · · · , n, (u′
i, e

′
i, v

′
i, δ

′
i, t

′
i) are all distributed over their corre-

sponding domains with negligible derivation from uniform distribution in a real
transcript. Next, we show that f̂ is a random polynomial of degree at most (n−t)
over GF (2κ′

) with f̂(0) = c. Note that f̂ is uniquely determined by the fixed
challenge c and n−t values of ci’s. As each ci is randomly chosen from {0, 1}κ′

,
for i ∈ [1, n]\T , f̂ is a random polynomial of degree at most (n−t) over GF (2κ′

)
provided that f̂(0) = c. Finally, we can see that (r̃i, s̃i, m̃i) are also identically
simulated in the simulated transcript.

Since the simulated transcript has identical distribution to that of a real tran-
script, we can easily implement Game SHVZK with a PPT which completes the
game with non-negligible probability in such a way that for any PPT adversaries
A∗, C∗ and D∗, the chance of winning Game SHVZK is 1

2 . ��
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Abstract. Blind group/ring signatures are useful for applications such
as e-cash and e-voting systems. In this paper, we show that the blindness
of some existing blind group/ring signature schemes is easy to break by
a malicious anonymous signer of dynamic groups. However, this risk has
not been pointed out in these proposals, which may cause misuse of the
schemes. Fortunately, for static groups, it is possible to integrate the
blindness of message into group/ring signatures. An efficient static blind
ring signature is proposed with its security provable under the extended
ROS assumptions in the random oracle model plus the generic group
model. After the group public key is generated, the space, time, and
communication complexities of the relevant parameters and operations
are constant.

1 Introduction

1.1 Group Signatures

In a group signature scheme, the members of a given group are allowed to sign
on behalf of the entire group. The signatures can be verified using a single
group public key. Once a document is signed, no one, except a designated group
manager, can determine which member of the group signed it.

Group signatures were first introduced and implemented by Chaum and van
Heyst [8]. Camenisch and Stadler [12] presented the first group signature scheme
in which the size of the group public key remains independent of the group size, as
do the time, space, and, communication complexities of the necessary operations.
Some recent proposals support revocation ([11], [24]) where group membership
can be selectively disabled without affecting the signing ability of unrevoked
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members. Currently, the most efficient constructions ([1], [11]) are based on the
Strong-RSA assumption introduced by Baric and Pfitzman [4], except that the
schemes in [3] are based on the newly introduced DLP-related assumptions from
bilinear pairings.

1.2 Ring Signatures

Compared with group signatures, in a ring signature scheme, there exists no
third trusted party such as a group manager to setup the system or trace the
identity of a group signer, but it is assumed that every user has a PKI-based
public key correctly generated following the specifications of the system. A ring
signature convinces one that the signature is anonymously generated by at least
one member in an ad hoc group.

The notion of ring signatures was introduced by Rivest, et al. [21] in 2001. It
has attracted a lot of attentions since its inception([2], [5], [17], [27]). The ring
signatures in [13] and [26] are the first constant-sized ring signature schemes in-
dependently proposed by Dodis et al and Wu et al, respectively. The threshold
ring signature is a natural extension of ring signatures [5]. In a (t, n)-threshold
ring signature scheme, the generation of a ring signature for a group of n mem-
bers requires the involvement of at least t members/signers, and yet the signature
reveals nothing about the identities of the signers. For special applications, link-
able ring signatures are proposed [17] so that anyone can determine whether two
anonymous ring signatures are signed by the same group member (in which case
the two signatures are said to be linked). If a user signs only once on behalf of
a group, the user still enjoys anonymity similar to that in the conventional ring
signature schemes. If the user signs multiple times, anyone can tell that these
signatures have been generated by the same group member.

1.3 Blind Signatures

Blind digital signatures were introduced by Chaum [9]. It has been used in nu-
merous applications, most prominently in anonymous voting schemes and anony-
mous e-cash systems. In the electronic cash scenario, a document corresponds
to an electronic coin, and the signer represents a bank. The spender retains
anonymity in any transaction that involves electronic coins since they are blindly
signed.

Informally speaking, blind signature schemes allow a user to obtain signatures
from an authority on any document, in such a way that the authority learns
nothing about the message that is being signed. A bit more formally, a signer
S with public key pk and secret key sk interacts with user U having m as its
private input. At the end of the interaction, the user obtains a signature σ on
m. Two seemingly contradictory properties must be satisfied. The first property,
termed blindness, requires that after interacting with various users, the signer
S is not able to link a valid message-signature pair (m,σ) obtained by some
user, with the protocol session during which σ was created. The second security
property, termed unforgeability, requires that it be impossible for any malicious
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user that engages in k runs of the protocol with the signer, to obtain strictly more
than k valid message-signature pairs. These security notions were formalized in
[22] building on previous work [31], [20]. Most of the blind signatures base their
security on the random oracle model. The scheme in [10] is the provably secure
blind signature scheme in the standard model which is also efficient.

1.4 Comment on Dynamic Blind Group/Ring Signatures

Several blind group signatures [16], [19] and blind ring signatures [6] have been
proposed. They have been shown as a powerful tool for applications such as
multi-bank electronic cash or e-voting systems. However, we point out all these
schemes are subject to the following chosen group-public-key attack if they are
implemented for dynamic groups. The blindness can be easily broken and the
user who submits blind messages to be anonymously signed can be traced.

Our comment is based on the following simple observation. In the group/ring
signature schemes applying to dynamic groups, the group public keys, i.e., the
verification keys, contain some dynamic information related to the change of the
group members. When innocent users broadcast blind messages to be signed to
dynamic groups, a malicious anonymous group/ring signer can interact with the
users and generate valid blind group/ring signatures from different groups, in
the meanwhile, the malicious signer creates a secret local database of the cor-
responding pairs (group-public-key, user, blind-message) to link the users who
submitted the messages. Finally, the users remove the blind factors and obtain
their resulting group/ring signatures. Notice that the verification of these signa-
tures requires some dynamic information (It is often a part of the group public
key) related to the change of the group. Hence, by checking whether or not
this information is in its local database of pairs (group-public-key, user, blind-
message), the malicious signer can now trace its signed message and the user
who submitted the blind message.

In the schemes in [16] and [19], the public key of the underlying group signa-
ture keeps unchanged when a member joins the group while the public key will
change when some members leave. Hence, the implementation of their schemes
will be insecure if the members frequently leave. The case is more serious for the
schemes in [6] designed for blind spontaneous anonymous group signatures for ad
hoc groups since the final verification key changes if any member joins or leaves
the group. Indeed, an anonymous signer can freely determine the verification key
so that it can link it with the signed message and the user more easily. However,
the above attack and risks from malicious signers have not been pointed out
in these schemes, which may cause misuse of the schemes and serious security
concerns in practice.

1.5 Our Contributions

Consider the following scenario. Many banks compete for their services in one
country. Some of the banks tend to ally to improve their competition capacity,
and they will share their responsibility and interests from the ally. These allied
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banks now want to anonymously issue e-cash so that the competitors out of the
ally cannot trace them. Meanwhile, the privacy of spender who has e-cash from
the allied banks should be protected. What can they do in this case?

Fortunately, the above attack does not apply to static groups. To address
the problems such as those of the allied banks, an efficient static blind ring
signature is proposed, in which the message to be signed is blind and the signer
is anonymous. Furthermore, it is infeasible to determine whether two blind ring
signatures are generated by a same signer. The security of the proposed schemes
is provable under the extended ROS assumptions in the random oracle model and
the generic group model. After the group public key is generated, the space, time,
and communication complexities of the relevant parameters and operations are
constant, while the complexity of the schemes in [6] linearly increases regarding
the group size. Our scheme appears to be the first blind ring signature enjoying
constant complexity.

The rest of the paper is organized as follows. In Section 2, we provide some
preliminaries of our proposals. Section 3 defines the security model of static
blind ring signatures. We propose our static blind ring signature and detail its
performance in Section 4, followed by concluding remarks in the last section.

2 Preliminaries

2.1 Generic Group Model

Generic algorithms for group G do not use the binary encodings of the group
elements, as they access group elements only for group operations and equality
tests. The data of a generic algorithm is partitioned into group elements in
G and non-group data. The generic steps for group elements are multivariate
exponentiations. The restriction of the generic model is that A can use group
elements only for generic group operations, equality tests and for queries to the
hash oracle, whereas non-group data can be arbitrarily used without charge.
The computed group elements are given as explicit multiplicative combinations
of given group elements. Nechaev [18] proved that the discrete logarithm problem
is hard in such a model. The generic model of algorithms was further elaborated
on by Shoup [23].

2.2 Computational Assumptions

In this section we review the strong RSA assumption [4] and ROS assumption
[22].

A number N is an RSA integer if N=PQ where P and Q are safe primes:
P=2P ′+1, Q=2Q′+1, where both P ′ and Q′ are also primes. Let RSAλ be the
set of RSA integers of size λ.

Strong RSA Assumption. Given λ, for any polynomial time adversary Ad:

Pr[N ← RSAλ; y ← Z
∗
N ; (u, x)←Ad(1λ, N , y)|x �= ±1 ∧ ux = y] < ε(λ)
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the probability being over the random choice of N and y, and Ad’s random coin
flips, where ε(λ) is a function such that for all polynomials p(λ), 1/ε(λ) < 1/p(λ)
holds for all sufficient large λ.
ROS-problem. Given a prime q and an oracle random function F : Zl

q → Zq,
find coefficients ai,j ∈ Zq for i = 1, · · · , t, j = 1, ..., l, and a solvable system of
l + 1 distinct equations in the unknowns c1, · · · , cl over Zq:

ai,1c1 + ... + ai,lcl = F (ai,1, ..., ai,l) mod q .

The ROS-assumption in the general group model means that any PPT ad-
versary can solve ROS-problem with only negligible probability if the adversary
can access only group operations as specified in Section 2.1.
Extended ROS-problem. Given an oracle random function F : ×l

j=1{0, 1}∗
→ {0, 1}λ1, find coefficients ai,j ∈ {0, 1}∗ for i = 1, · · · , t, j = 1, ..., l, and a
solvable system of l+1 distinct equations in the unknowns c1, · · · , cl over {0, 1}λ1 :

ai,1c1 + . . . + ai,lcl = F (ai,1, . . . , ai,l) mod q̃,

where q̃ is unknown.
The Extended ROS-assumption in the general group model means that any

PPT adversary can solve Extended ROS-problem with only negligible probability
if the adversary can access only group operations as specified in Section 2.1.

Schnorr evaluated the expected time O(
√
q) to solve ROS problem and as-

sumed that ROS problem is infeasible in the generic group model [22] when
q > 2160. However, the further analysis in [25] shew that it only requires subex-
ponential running time O(22

√
log q) to break ROS problem with the generalized

birthday attack. Hence, to achieve a popular level of security O(280), one should
set q > 21600. So the existing generalized birthday attack on Schnorr’s ROS
problem makes the Schnorr and Okamoto-Schnorr blind signatures over elliptic
curve groups disadvantaged.

Clearly, for any solution of the Extended ROS-problem, it is also a solution to
the corresponding ROS-problem. Hence, the Extended ROS-problem is at least
as difficult as the the original ROS-problem. For the the generalized birthday
attack, the Extended ROS-problem makes it more difficult as the modular re-
duction is not available. Hence, we assume that the Extended ROS-assumption
holds if appropriately setting the security parameters.

2.3 Proof of Range of Discrete Logarithm

In this section, we recall the zero-knowledge proof of discrete logarithm lying
in a specific interval [7]. For a general proof of discrete logarithm relation in a
specific interval, see [15].

Let λ1, λ2, λ3 be security parameters and a hash function output λ1-bit strings.
The protocol proves that a committed number x ∈ I belongs to J , where the
expansion rate !J/!I is equal to 2λ1+λ2+1. Let n be a large composite number
whose factorization is unknown by Alice and Bob, g an element of large order
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in Zn and h be an element of the group generated by g such that the discrete
logarithm of h in base g is unknown by Alice. y = gxhr mod n is a commitment
to x ∈ [0, b], where r is randomly selected over [−2λ3n+1, 2λ3n− 1]. Denote the
following protocol by ZK{x, r|y = gxhr mod n ∧ x ∈ [−2λ1+λ2b, 2λ1+λ2b]}.

– Alice picks at random ω ∈ (0, 2λ1+λ2b − 1) and η ∈ (−2λ1+λ2+λ3n + 1,
2λ1+λ2+λ3n −1), and then computes W = gωhη mod n, c = H(W ). Finally,
she computes D1 = ω+cx and D2 = η+cr (in Z). If D1 ∈ [cb, 2λ1+λ2b− 1],
she sends (c, D1, D2) to Bob, otherwise she starts again the protocol.

– Bob checks that D1 ∈ [cb, 2λ1+λ2b−1] and c= H(gD1hD2y−c). This convinces
Bob that x ∈ [−2λ1+λ2b, 2λ1+λ2b].

The proof succeeds with probability greater than 1 − 2−λ2 if x ∈ [0, b]. The
verifier is convinced that x ∈ [−2λ1+λ2b, 2λ1+λ2b]. A cheating prover can succeed
with probability less than 2−λ1+1.

3 Definitions of Security

3.1 Static Blind Ring Signatures

In this paper, we only consider the static blind ring signatures, that is, although
the willing members can form a group freely, it will keep unchanged for a long
term once the ad hoc group forms, for instance, the application of some banks
to ally.

A static blind ring signature is a tuple BRS=(MKGBRS(1λ), GKGBRS(·),
SBRS(·), V BRS(·, ·, ·)).

– (ski; pki) ←MKGBRS(1λ) is a PPT algorithm which, on input a security
parameter λ, outputs the ring members’ private/public key pairs (ski; pki).
We denote by PK the list of the public keys forming the static group and
SK the corresponding private keys.

– pk ←GKGBRS(PK ) is a PPT algorithm which, on input all the possible
public keys PK of the group members, outputs pk as the group public key.

– σ ← SBRS
ski;m(pk) is a two-party protocol between an anonymous ring Signer

and a User. They have common input pk, which is the group public key.
The anonymous ring Signer has private input ski, which is its secret key,
and its inner random coin flips. The User has private input m, which is
the message to be signed, and its inner random coin flips. At the end of
the interaction between the two parties, the Signer outputs one of the two
messages: completed, not− completed, and the User outputs either fail or
a signature σ on m.

– 0/1← V BRS(m,σ, pk) is a polynomial-time deterministic algorithm which,
on input a message-signature pair (m,σ) and the group public key pk returns
1 or 0 for accept or reject, respectively. If accept, the message-signature pair
is valid.
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The security of static blind ring signature schemes has four critical aspects:
completeness, anonymity, blindness, (l, l+1)-Unforgeability as well as an optional
aspect: linkability. The are formally defined as follows.

Definition 1. (Completeness.) If the ring Signer and the User honestly fol-
low the protocol SBRS(·), the User will output a signature σ on m accepted by
VBRS(·, ·, ·) with a dominant probability.

Definition 2. (Signer Anonymity.) Let PK = {pk1, · · · , pkI}, where each
key is generated as (ski, pki) ← MKGBRS(1λ). A BRS scheme is anonymous
if, for any message m, and the transcript "� of interaction due to σ ← SBRS

ski;m(pk),
where i← {1, . . . , I}, given (PK,m, "�), any PPT adversary Ad outputs i′ such
that i = i′ with probability AdvAnon

Ad (λ), where |AdvAnon
Ad (λ) − 1/I| is negligible

in λ.

Definition 3. (Linkability/Uninkability.) A BRS scheme is linkable if there
exists a PPT algorithm Link(·, ·), for any two transcripts "�1, "�2, which outputs
1 or 0 with non-negligible probability, representing that the same ring Signer
produces "�1 and "�2 or not, no matter whether or not the User is the same one.
Else if there exists no such PPT algorithm, the BRS scheme is unlinkable.

Definition 4. (Blindness.) The blindness is defined via an experiment involv-
ing an adversarial ring signer Ad. The experiment is parameterized by a bit b and
security parameter λ. First MKGBRS(1λ) and GKGBRS(PK) are correctly run
to generate the adversarial ring signer Ad’s secret key/public key pair (ski, pki)
and the group public key pk. Then, Ad outputs a pair of messages (m0,m1) lex-
icographically ordered. In the next stage of the experiment Ad engages in two
(possibly correlated and interleaved) runs with two honest users, with inputs mb

and mb′ , respectively. If both users obtain valid signatures, on their respective
message, Ad is also given these two signatures; otherwise there is no extra input
to Ad; in either case, Ad is required to output a bit b′′. The advantage of Ad is
defined by:

AdvBld
BRS,Ad(λ) =2Pr[b = b′′]− 1

A BRS scheme satisfies the blindness property, if for any PPT Ad, the func-
tion AdvBld

BRS,Ad(λ) is negligible in λ.

Definition 5. ((l,l+1)-Unforgeability.) The (l,l+1 )-Unforgeability of a BRS
scheme is defined via an experiment parameterized by security parameters l and
λ. The experiment involves an adversarial user Ad and is as follows. First
MKGBRS(1λ) and GKGBRS(1λ) are run to generate the adversarial ring signer’s
secret/public key pair (ski, pki) and the group public key pk. Then, Ad engages
in polynomially many (parallel) runs of the protocol with a ring Signer. Finally,
Ad outputs a list of message-signature pairs {(m1, σ1), (m2, σ2), ..., (mt, σt)}
with mi �= mj. Let l be the number of runs successfully completed by the signer.
Define the advantage of Ad

AdvUnf
BRS,Ad(λ) =Pr[∀1 ≤ i ≤ t, V erBRS(mi, σi, pk) = 1 ∧ (l < t)]
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and say that the BRS scheme is (l, l+1)-unforgeable if AdvUnf
BRS,Ad(λ) is negligible

for any PPT adversary user Ad.

4 Proposed Blind Ring Signature

4.1 Basic Ideas

We provide here our basic ideas to make the following scheme more readable.
The underlying is a knowledge proof that the signer knows x in a certain range
and v ∈ Z∗

N such that y = vx mod N , where N is an RSA modulus with
unknown factorization and y is the public key. To achieve a ring signature, each
ring member contributes to the public key y = gn1n2···nI mod N , where g is an
agreed quadratic residue modulo N and member i knows only the factorization of
its RSA public key ni. Finally, the blindness is achieved by exploiting the classical
Schnorr-transformation with additional attention to blind the component v. The
rest is to carefully set the security parameters so that the required security
properties can be achieved.

4.2 The Scheme

Let λ, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 be security parameters. They are all polyno-
mials of λ. H(·) is a hash function which outputs λ1-bit strings. In the following,
we detail the blind unlinkable ring signature for static groups.

[Member key generation]: Primes pi, qi satisfy 2λ4 < pi < 2λ4 +2λ5 , 2λ6 < qi.
Set PK = {ni}Ii=1, where ni = piqi is signer i’s (i = 1, 2, · · · , I) public key and
pi, qi its private key. The security parameters satisfy that 2λ1+λ2+λ7+λ8 < 2λ4 −
2λ1+λ2+λ5 , 2λ4 + 2λ1+λ2+λ5 < 2λ6 , λ4 ≤ 2λ5. Notice that 2λ4 < pi < 2λ4 + 2λ5

implies that λ4 − λ5 + 1(> 0) bits of pi are leaked. Since efficient factorization
techniques are known when at least logni/3 bits of the prime factors of n are
known [14], we need set the security parameters such that the leaked bits of
pi are less than λ4/2 < lg ni/4. As most ring signatures, we assume that all
members’ pulbic/private key pairs are PKI-based and correctly generated as the
specification.

[Group key generation]: Let N be randomly from RSAλ with its factorization
unknown, and a generator g ∈ (Z∗

N )2 with unknown order. Anyone can compute
y = gn1n2···nI mod N . Hereafter in this paper, the modular exponentiations are
computed with modulo N . We omit it without confusion. The group public key
is {λ,H(·), N, g, y}.

[Signing procedure]: A ring member computes u = gqi
I
j �=i nj in advance (In

the implementation, the ring member can compute and secretly save u before y
so that less computation is required). It produces a blind ring signature σ on a
blind message M with a user as follows.
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– The signer randomly selects δ ← (0, 2λ7), and computes z = yδ, v = uδ. The
signer randomly selects β ← (0, 2λ1+λ2+λ7), ω ← (2λ1+λ2+λ5−1 + 2λ1+λ5 ,
2λ1+λ2+λ5), computes a = yβ , b = vω, and anonymously sends (z,v,a,b) to
the user.

– The user randomly selects ξ ← ±(0, 2λ1+λ2+λ7+λ8), η ← ±(0, 2λ1+λ2+λ5),
ρ ← ±(0, 2λ1), φ ← (2λ8−1,2λ8), γ ← (0, 2λ1), where 2λ1+λ2+λ7+λ8 < 2λ4 −
2λ1+λ2+λ5 and 2λ4 +2λ1+λ2+λ5 < 2λ6 , and computes m = H(M ||γ), Z = zφ,
V = vφ, c = H(m||aφy−ξZρ|| bφZρV −η−ρ2λ4 ), and checks whether or not
0 < c + ρ < 2λ1 . If not, it repeats this step. It broadcasts c′ = c + ρ to the
group.

– The signer computes r′ = β + c′δ, s′ = ω + c′(pi − 2λ4). It checks whether
or not 2λ1+λ2+λ7−1 + 2λ1+λ7 < r′ < 2λ1+λ2+λ7 and 2λ1+λ2+λ5−1 + 2λ1+λ5 <
s′ < 2λ1+λ2+λ5 . If not, it and the user repeat the above steps. It anonymously
sends r′, s′ to the user.

– The user checks whether or not 2λ1+λ2+λ7−1 + 2λ1+λ7+1 < r′ < 2λ1+λ2+λ7 ,
2λ1+λ2+λ5−1 + 2λ1+λ5 < s′ < 2λ1+λ2+λ5 , a = yr′

z−c′
, b = vs′+c′2λ4

z−c′
.

If not, the user outputs failure and aborts the protocol. Else it computes
r = φr′ − ξ, s = s′ − η, and outputs (Z, V , c, r, s). It checks whether
c2λ7+λ8 < r < 2λ1+λ2+λ7+λ8 , c2λ5 < s < 2λ1+λ2+λ5 . If not, it invalidates
and broadcasts (m, Z, V , c, r, s). The anonymous signer repeats the above
protocol with the user if c = H(m||yrZ−c||V s+c2λ4

Z−c) and r, s are in
incorrect ranges. Finally, the user outputs (γ, Z, V , c, r, s) as the resulting
ring signature on blind message M .

[Verification procedure]: Compute m = H(M ||γ). Check that

c2λ7+λ8 < r < 2λ1+λ2+λ7+λ8 , c2λ5 < s < 2λ1+λ2+λ5 ,
c = H(m||yrZ−c||V s+c2λ4

Z−c).

Output accept if and only if all the checks hold.

4.3 Security Analysis of the Scheme

In this section, we analyze the security of the scheme following the definitions.
Notice that m = H(M ||γ) is used to (unconditionally) mask the real message
M in the last step of signing procedure if the output r or s of the user is not in
the right range. In this case, the user can publish (m, Z, V , c, r, s) to show that
this is really a part of the invalid resulting signatures due to incorrect ranges
of r or/and s. The anonymous signer can validate the honesty of the user by
checking c = H(m||yrZ−c||V s+c2λ4

Z−c) but r and/or s are in incorrect ranges.
The public (m, Z, V , c, r, s) will not leak any information of the involved
blind message M in case of unsuccessful interactions, where γ is unknown and
m = H(M ||γ). Hence, a successful interaction is the interaction in which a valid
resulting ring signature (γ, Z, V , c, r, s) on blind message M is output. As
M is masked by m = H(M ||γ) and the invalid pairs (m, Z, V , c, r, s) will be
published, a successful interaction is also the interaction in which a valid pair
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(m, Z, V , c, r, s) is output. So in the following analysis, we will view (m, Z, V ,
c, r, s) as the resulting blind ring message-signature pairs without confusion in
case of successful interactions.

Theorem 1. (Completeness.) If the signer and user follow the protocol, the
output will be accepted by the verification procedure.

Proof. From the protocol, we have that
aφy−ξZρ = (yr′

z−c′
)φy−ξZρ = yφr′−ξz−c′φZρ

= yrZρ−c′
= yrZ−c,

bφZρV −η−ρ2λ4 = (vs′+c′2λ4
z−c′

)φV −η−ρ2λ4
Zρ

= (V s+η+c′2λ4
z−c′φ)V −η−ρ2λ4 (Z−c′

Zρ)
= V s+(c′−ρ)2λ4

Zρ−c′
= V s+c2λ4

Z−c.
It follows that

c = H(m||aφy−ξZρ ||bφZρV −η−ρ2λ4 )
= H(m||yrZ−c|| V s+c2λ4Z−c).

Theorem 2. (Unforgeability.)In the random oracle model plus the generic
group model, the above BRS scheme is (l,l+1)-unforgeable if the extended ROS
problem is infeasible.

Proof. Appendix A.

Theorem 3. The above BRS scheme is anonymous, unlinkable and blind.

Proof. For the anonymity, it is sufficient to consider that the involved user as
the adversary. Note that the transcript from the ring signer (z, v, a, b, r′, s′) is a
knowledge proof ZK{ui, pi|y = upi

i ∧−2λ1+λ2+λ5 < pi−2λ4 < 2λ1+λ2+λ5}, where
pi|n1n2 · · ·nI and ui = gqi

I
j �=i nj . Under the Strong RSA assumption and DLP

assumption over (Z∗
N )2, the witnesses (ui, pi) and (uk, pk) are indistinguishable,

where pk|n1n2 · · ·nI and uk = gqk
I
j �=k nj . Hence, the transcripts (z, v, a, b, r′, s′)

from different ring members are indistinguishable if the Strong RSA assumption
and the DLP problem over (Z∗

N )2 are infeasible and the anonymity follows.
Furthermore, due the witness indistinguishability, an adversary user cannot de-
termine whether or not the witnesses (ui, pi) and (uk, pk) involved different in-
teractions are the same. Therefore, the blind ring signature is unlinkable.

For the blindness, for any view (δ, z, v;β, a;ω, b; c′, r′, s′) and any valid message-
signature pair (m,Z, V, c, r, s), a tuple (ρ̃, φ̃, ξ̃, η̃) in the corresponding ranges is a
valid blind factor if and only if c = H(m||yrZ−c||V s+c2λ4Z−c) = H(m||aφ̃y−ξ̃Z ρ̃

||bφZ ρ̃V −η̃−ρ̃2λ4 ), φ̃ ∈ (2λ8−1,2λ8), Z = zφ̃ and V = vφ̃.
Let ρ̃ = c′ − c. Randomly select φ̃← (2λ8−1,2λ8). Set ξ̃ = φ̃r′ − r, η̃ = s′ − s.

It follows that
c = H(m||yrZ−c|| V s+c2λ4Z−c)
= H(m||yrZ ρ̃−c′ || V s+(c′−ρ̃)2λ4

Z ρ̃−c′
)

= H(m||yφ̃r′−ξ̃z−c′φ̃Z ρ̃|| (V s+η̃+c′2λ4
z−c′φ̃)V −η̃−ρ̃2λ4 (Z−c′

Z ρ̃))
= H(m||yφ̃r′−ξ̃z−c′φ̃Z ρ̃|| (V s+η̃+c′2λ4

z−c′φ̃)V −η̃−ρ̃2λ4 (Z−c′
Z ρ̃))
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= H(m||(yr′
z−c′

)φ̃y−ξZ ρ̃|| (vs′+c′2λ4
z−c′

)φ̃V −η̃−ρ̃2λ4
Z ρ̃)

= H(m||aφ̃y−ξ̃Z ρ̃ ||bφZ ρ̃V −η̃−ρ̃2λ4 )
For the range checks, they will clearly hold. Hence, these equations show that

(ρ̃, φ̃, ξ̃, η̃) is a valid blind factor tuple if and only if there exists φ̃ ∈ (2λ8−1, 2λ8)
such that Z = zφ̃, V = vφ̃. If λ8 is sufficiently large, it is difficult to determine
whether there exists such a solution under the DLP assumption over (Z∗

N )2,
where the factorization of N is unknown [15]. Hence, the BRS scheme is blind.

4.4 Performance Analysis and Comparison

In the above blind unlinkable ring signature, the signer, the user and the verifier
respectively requires 4, 10 and 4 modular exponentiations. Here and hereafter in
this paper, the modular exponentiation with t bases are calculated as t modular
exponentiations for a coarse efficiency analysis. But one should notice that the
speeding-up algorithm to the computation of exponentiations with multiple bases
is widely known. It requires 2λ+4λ1+2λ2+λ5+λ7+λ8 bits. Set λ = 1600, λ1 =
160, λ2 = 80, λ5 = 600, λ7 = 160, λ8 = 160. The resulting signature needs 0.597
KB, independent of the group size. In the state-of-the-art blind ring signature
schemes [6], the signer, the user and the verifier respectively requires I, 2I and
2I modular exponentiations, where I is the number of the ring members. Its
resulting blind ring signature requires at least 0.4IKB. Hence, our scheme is
more efficient.

5 Conclusion

We commented that it is impossible to construct blind group/ring signatures
for dynamic groups if the the group public key changes when a member joins
or leaves the group. The blindness of such schemes will be easily broken by a
malicious anonymous signer of the dynamic groups. We also pointed out that it
is possible to integrate the blindness of message into group/ring signatures for
static groups and give some potential applications of such schemes. Then an effi-
cient static blind ring signature was proposed with their security provable under
the extended ROS assumption in the random oracle model and the generic group
model. After the group public key is generated, the space, time, and communi-
cation complexities of the relevant parameters and operations keep independent
of the group size. It is also the first scheme satisfying such properties, and hence
very practical.
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Appendix A: Proof of Theorem 2

Sketch of Proof. Since a solution of the extended ROS-problem is not related to
the public key and thus it cannot be used to solve the signer’s secrete key. So the
signing oracle is allowed to know the secret key and it can work as a true ring
signer. The random oracle is not controlled by the signer in a blind ring signature
scheme. After an (l, l + 1)-forger Ad submits a query Qj to the random oracle,
it will respond with a random λ1-bit string cj = H(Qj). In the general group
model, Ad is allowed to execute t general steps, including l interactions with
the signing oracle and generating ts group elements and th interactions with the
random oracles, where 0 < ts + th < t.

Now we describe the game between the signing oracle (signer for short) and
the forger Ad.

First, the signer and Ad are given the public parameters correctly generated.
The signer is additionally allowed to get a secret p, which is a factor of ni, so
that the signer can complete the signing procedure.

Then the signer computes u as the protocol, and randomly selects δ� ←
(0, 2λ7) for � = 1, · · · , l, and computes z� = yδ
 , v� = uδ
 . The signer ran-
domly selects β� ← (0, 2λ1+λ2+λ7), ω� ← (2λ1+λ2+λ5−1 + 2λ1+λ5 , 2λ1+λ2+λ5),
computes a� = yβ, b� = vω , and anonymously sends (z�, v�, a�, b�) to Ad.

Then Ad selects integers di,−1, di,0, and di,1,1, di,1,2, di,1,3, di,1,4, · · · , di,l,1,
di,l,2, di,l,3, di,l,4, and ei,1,1, ei,1,2, ei,1,3, ei,1,4, · · · , ei,l,1, ei,l,2, ei,l,3, ei,l,4, and mes-
sages mi for i = 1, · · · , th. Ad computes

φi = gdi,−1ydi,0z
di,1,1
1 v

di,1,2
1 a

di,1,3
1 b

di,1,4
1 · · · zdi,l,1

l v
di,l,2
l a

di,l,3
l b

di,l,4
l

and

ψi = gei,−1yei,0z
ei,1,1
1 v

ei,1,2
1 a

ei,1,3
1 b

ei,1,4
1 · · · zei,l,1

l v
ei,l,2
l e

ei,l,3
l b

ei,l,4
l .

Notice that group elements φi, ψi can always be written in this form. Ad asks
the random oracle with its query Qi = (mi||φi||ψi) and the random oracle re-
sponds with random values Hi = H(mi||φi||ψi). Now Ad computes its challenges
c1, · · · , cl in arbitrary way from Hi and broadcasts them to the signer.

Then, the signer honestly and anonymously responds with r′� = β� + c′�δ�,
s′� = ω� + c′�x, where x = p− 2λ4 . r′� and s′� will be in the right range.

Finally, Ad is required to forge l+1 valid message signature pairs (mk, Zk, Vk,
ck, rk, sk) in the corresponding right ranges for k = 1, · · · , l + 1.
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From the verification equation ck = H(mk||yrkZ−ck

k ||V sk+ck2λ4

k Z−ck

k ) required
for message signature pairs, in the ROM this equation necessitates that Ad
selects ck from the given hash values Hπk

= H(mk||φπk
||ψπk

), where πk ∈
{1, · · · , th} is an arbitrary function k (→ πk that selects φπk

, ψπk
from the com-

puted group elements φi, ψi. Otherwise, the equality only holds with probability
1/2λ1 as the hash value is random.

Let cj = H(mj ||φπj ||ψπj ) where φπj = yrjZ
−cj

j and ψπj = V
sj+cj2λ4

j Z
−cj

j

holds for the output (mj , Zj , Vj , cj , rj , sj), which determines πj except that there
is a collision H(mi||φπi ||ψπi) = H(mj ||φπj ||ψπj ) with mi = mj . However, the
collision probability is at most C2

th/2λ1 + 4C2
ts/Φ(N) and negligible.

Let n = n1 · · ·nI , logzj
Zj = θj , logvj

Vj = ϑj , where θj and ϑj are controlled
by Ad. The equations r′� = β� + c′�δ�, s′� = ω� + c′�(p− 2λ4), yrjZ

−cj

j = φπj and

V
sj+cj2λ4

j Z
−cj

j = ψπj imply

(1) nrj = dπj ,−1 + ndπj ,0 + n
∑l

�=1 dπj ,�,3r
′
� + n

∑l
�=1(dπj ,�,1 − dπj ,�,3c

′
� +

θjcj)δ + n
∑l

�=1(dπj ,�,2δ + dπj ,�,4s
′
� − dπj ,�,4(p− 2λ4))/p mod Φ(N)/4;

(2) nϑj(sj + cj2λ4) = (eπj ,−1 + neπj,0 + n
∑l

�=1 eπj,�,3r
′
� + n

∑l
�=1(eπj ,�,1 −

eπj ,�,3c
′
� + θjcj)δ − eπj ,�,4)p + n

∑l
�=1 eπj,�,2δ + n

∑l
�=1(eπj ,�,4s

′
� + eπj ,�,42λ4))

mod Φ(N)/4.

If
∑l

�=1(dπj ,�,1 − dπj ,�,3c
′
� + θjcj)δ +

∑l
�=1(dπj ,�,2δ + dπj ,�,4s

′
� − dπj ,�,4(p −

2λ4))/p = 0, then Ad can easily compute the correct rj be setting n|dπj ,−1.
In this case, the equation (1) does not depend on the secret values δ, p and we
have dπj ,−1+ndπj,0+n

∑l
�=1 dπj ,�,3r

′
�, where the signers’ responses r′1, · · · , r′l are

known and the coefficients and dπj ,−1, dπj ,0, dπj ,�,3 are controlled by Ad. Con-
versely, Ad must select c′1, · · · , c′l, θj to respectively zero the values

∑l
�=1(dπj ,�,1−

dπj ,�,3c
′
� + θjcj)δ and

∑l
�=1(dπj ,�,2δ + dπj ,�,4s

′
� − dπj ,�,4(p− 2λ4))/p in (1). Oth-

erwise, the equations hold with negligible probability, as δ, p are statistically
independent of the non-group data dπj ,�,1, dπj ,�,2, dπj ,�,3, dπj ,�,4, and thus Ad’s
probability of success is also negligible. This shows that Ad must solve the equa-
tion (1) for each valid message signature pair, which implies a solution c′1, · · · , c′l
of an extended ROS problem

∑l
�=1(dπj ,�,1 − dπj ,�,3c

′
� + θjcj) = 0. Similarly, to

make equations (2) to hold with a non-negligible probability, the solution of the
extended ROS problems in (1) must be a solution of the extend ROS problem∑l

�=1(eπj,�,1 − eπj ,�,3c
′
� + θjcj) = 0 in (2). This completes the proof.
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Abstract. At Eurocrypt 2005, Brent Waters proposed an efficient Iden-
tity Based Encryption scheme which is secure in the standard model.
One drawback of this scheme is that the number of elements in the pub-
lic parameter is rather large. Here we propose a generalisation of Waters
scheme. In particular, we show that there is an interesting trade-off be-
tween the tightness of the security reduction and smallness of the public
parameter. For a given security level, this implies that if one reduces
the number of elements in public parameter then there is a correspond-
ing increase in the computational cost due to the increase in group size.
This introduces a flexibility in choosing the public parameter size without
compromising in security. In concrete terms, to achieve 80-bit security for
160-bit identities we show that compared to Waters protocol the pub-
lic parameter size can be reduced by almost 90% while increasing the
computation cost by 30%. Our construction is proven secure in the stan-
dard model without random oracles. Additionally, we show that CCA
security can also be achieved through the reduction to oracle decision
bilinear Diffie-Hellman problem (OBDH).

Keywords: identity based encryption, standard model, security, param-
eter size.

1 Introduction

The area of public key cryptography called Identity Based Encryption (IBE) has
witnessed a rapid progress in recent times. Initially proposed by Shamir [23], it
was as well a challenge to the crypto community to come out with a practical IBE
scheme. Boneh and Franklin [6, 7] were first to define a security model for IBE
and gave an implementable solution based on the Bilinear Diffie-Hellman (BDH)
problem. There is another construction due to Cocks [13] that uses quadratic
residues modulo a composite. The security of these encryption schemes were
proved in the random oracle model [11], i.e., the security of these schemes requires
cryptographic hash functions that are modelled as random oracles. However,
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such hash functions do not exist in reality. Consequently, there were several
works such as [14, 2] to construct IBE schemes secure without the random oracle
model. They used a weaker notion of security called selective-ID model in which
an adversary has to commit in advance which identity it wants to attack.

Finally, Boneh and Boyen came out with a scheme for IBE [3] that is secure in
the standard model without random oracles. Their work was more of a feasibility
study. It solved the open problem but was not practical to be implemented. This
work was soon supplemented by that of Waters [24]. Using a method from [2]
and introducing a new trick, it provided an improved IBE scheme that is secure
in the standard model without random oracle.

However, one disadvantage of the scheme in [24] is the requirement of a rather
large public parameter file. If identities are represented by a bit string of length
n, then the scheme requires a vector of length n to be maintained as part of
public parameter, where each element of the vector is a point on a suitable
elliptic curve group.

our contribution: We provide a generalisation of the identity based encryp-
tion scheme of Waters [24]. This generalisation shows that if one tries to reduce
the number of elements in the public parameter then there is a corresponding
degradation in the security reduction. In other words, a trade-off is involved
in the tightness of security reduction and smallness of public parameter. The
trade-off between tightness and smallness can be converted to a trade-off be-
tween group size and smallness of public parameter. When desiring a specific
security level, the loss of security due to loss of tightness in the security reduc-
tion can be compensated by working in a larger group. This increses the bit
length of representation of the elements in the public parameter but the num-
ber of elements in the public parameters decreases so drastically that there is a
significant reduction in the overall size of the public parameter. The increse in
group size in turn affects the efficiency of the protocol. Thus, the trade-off is ac-
tually between the space required to store the parameters and the time required
to execute the protocol. For example, if identities are represented by 160-bit
strings, then Waters protocol require to store 160 extra elements (EC points)
as part of the public parameter. Alternatively, using our generalisation if one
wants to store 16 elements, then to achieve 80-bit security, compared to Waters
protocol the space requirement reduces by around 90% while the computation
cost increases by around 30%.

– Like Waters, applying Naor’s technique, our scheme can also be easily con-
verted to a signature scheme where the underlying security assumption is the
computational Diffie-Hellman problem.
– Our construction resembles closely the construction of Waters [24] and secu-
rity against the chosen ciphertext attack (i.e., the CCA security) of the former
follows from that of the later by constructing a 2 level hierarchical identity based
encryption scheme (HIBE) and applying the technique of [15]. As an alternative,
we show that CCA security can also be achieved by assuming the hardness of
the oracle bilinear decision Diffie-Hellman assumption (OBDH).
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2 Waters Construction

Waters has recently proposed an efficient identity based encryption scheme with-
out random oracle [24]. We first briefly describe his construction. The relevant
definitions of bilinear map, IBE protocol, its security model and hardness as-
sumption are given in Appendix A

Waters IBE: Let G1 = 〈P 〉, G2 and e() be as defined in Section A.1. Here,
identities are represented as bitstrings of length n.

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1
at random. Further, choose a random element U ′ ∈ G1 and a random n-length
vector −→U = {U1, . . . , Un}, whose elements are from G1. The master secret is xP2

whereas the public parameters are 〈P, P1, P2, U
′,
−→
U 〉. Also e() is publicly known.

Key Generation: Let v = (v1, . . . , vn) ∈ {0, 1}n be any identity. A secret key
for v is generated as follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where
V = U ′ +

∑
{i:vi=1}

Ui.

Encryption: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)tM, tP, tV ),

where t is a random element of Zp and V is as defined in key generation algo-
rithm.

Decryption: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding
identity. Then we decrypt C using secret key Dv = (D1, D2) by computing
C1e(D2, C3)/e(D1, C2).

3 Our Generalisation

Here we describe our generalisation of Waters scheme. The groups G1 = 〈P 〉,
G2 and the map e() are as already defined in Section A.1. In the following, we
assume the message spaceM is G2, the cipher space C is G2 ×G1 ×G1.

Note that, in Waters scheme identities are represented as n-bit strings. Be-
cause of this representation, Waters requires to store n elements of G1 i.e., −→U
in the public parameter. Depending upon the choice of representation of the
identities we can change the size of the public parameter.

Let N = 2n, then we can consider the identities as elements of ZN and
one extreme case would be to consider the identities just as elements of ZN . A
more moderate approach, however, is to fix a-priori a size parameter �, where
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1 < � ≤ n. In this case, an identity v is represented as v = (v1, v2, . . . , v�), where
vi ∈ ZN1/
 i.e., each vi is an n/� bit string. (If identities are considered to be bit
strings of arbitrary length, then as in Waters protocol we hash them into ZN

using a collision resistant hash function.)
In this case the protocol is changed to the following, which we call IBE-SPP(�).

IBE-SPP(�) with 1 < � ≤ n

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1 at
random. Further, choose random elements U ′, U1, U2, . . . , U� ∈ G1. The master
secret is xP2 whereas the public parameters are 〈P, P1, P2, U

′, U1, U2, . . . , U�〉.
Also e() is publicly known.

Key Generation: Let v be any identity, a secret key for v is generated as
follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where V = U ′ +
∑�

i=1 viUi.

Encryption, Decryption: As in Waters IBE with the modified definition
of V .

Note that, for � = n this is exactly Waters protocol. For � = 1, some minor mod-
ifications in the above scheme give a protocol where the additional requirement
in the public parameter is just a single element of G1 as described below.

IBE-SPP(1)

Setup: Randomly choose a secret x ∈ ZN . Set P1 = xP , then choose P2 ∈ G1
at random. Further, choose a random element U ′ ∈ G1. The master secret is xP2
whereas the public parameters are 〈P, P1, P2, U

′〉. Also e() is publicly known.

Key Generation: Let v be any identity. A secret key for v is generated as
follows. Choose a random r ∈ Z∗

p , then the private key for v is

Dv = (xP2 + rV, rP ).

where V = U ′ + vP2.
Here also the Encryption and Decryption algorithms remain unaltered and

this is essentially the Boneh-Boyen scheme of [2] in the adaptive-ID model.

Efficiency: Consider IBE-SPP(�) with 1 < � ≤ n. Let cost(V ) be the cost of
computing V . The cost of key generation is two scalar multiplications over G1
plus cost(V ). By including e(P1, P2) instead of P1, P2 in the public parameter, we
can avoid the pairing computation during encryption. So the cost of encryption
is one exponentiation over G2, two scalar multiplications over G1 plus cost(V ).
The cost of decryption is two pairings, one multiplication and one inversion over
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G2. The effect of � is in cost(V ) and affects key generation and encryption costs
but does not affect decryption cost.

We first consider the costs of scalar multiplication over G1 and exponentiation
over G2. As mentioned earlier, G1 is an elliptic curve group. Let IFa denote the
base field over which G1 is defined. Then G2 is a subgroup of IFk

a, where k is
the MOV degree. Additions and doublings over G1 translate into a constant
number of multiplications over IFa. The actual number is slightly different for
addition and doubling, but we will ignore this difference. Let |IFa| be the size
of the representation of an element of IFa. Assuming the cost of multiplication
over G1 is approximately equal to |IFa|2, the cost of a scalar multiplication over
G1 is equal to c1|IFa|3 for some constant c1. One can also show that the cost
of exponentiation over G2 is equal to c2|IFa|3. Thus, the total cost of scalar
multiplication and exponentiation is equal to c|IFa|3.

The cost of computing V amounts to computing � scalar multiplications where
each multiplier is an (n/�)-bit string. On an average, the cost of each such
multiplication will be n/2� additions and (n/� − 1) doublings over G1. Hence,
the total cost of computing V is n/2 additions and (n − �) doublings over G1.
This cost is equal to d(3/2− �/n)n|IFa|2 for some constant d.

We consider the cost of encryption. The total cost is

c|IFa|3 + d(3/2− �/n)n|IFa|2 =
(
c + d× n

|IFa|

(
3
2
− �

n

))
|IFa|3. (1)

This cost is minimum when � = n (as in Waters protocol). The maximum value
of the coefficient of |IFa|3 is (c + (3nd)/(2|IFa|)) whereas the minimum value is
(c + (nd)/(2|IFa|)). The value of |IFa| is usually greater than n and hence the
value of (nd)/(2|IFa|) will be a small constant and hence there is not much effect
of � on the total cost of encryption. A similar analysis shows that the effect of �
is also not very significant on the cost of key generation. We note, however, that
key generation is essentially a one-time offline activity.

3.1 Security Reduction

In this section, we only consider the security of IBE− SPP(�) against chosen
plaintext attacks (IND-ID-CPA). (The extension to chosen ciphertext attack is
considered later.) The security (in the sense of IND-ID-CPA) of the identity based
encryption scheme (IBE-SPP(�)) developed above can be reduced from the hard-
ness of the DBDH problem as stated in the following theorem.

Theorem 1. For t ≥ 1, q ≥ 1 let ε = AdvIBE−SPP(�)(t, q). Then,

ε ≤ 16q(μ� + 1)AdvDBDH(t + O(τq) + χ),

where identities are chosen from ZN ; � is a size parameter with 1 < � ≤ lgN ;
μ� = �(N1/� − 1); χ = O(ε−2 ln(ε−1)λ−1 ln(λ−1)); λ = 1

4q(μ
+1) ; and τ is the
time for a scalar multiplication in G1.

Note that, for � = n we have μn = n and one gets the corresponding rela-
tionship for Waters protocol. The component χ in the time comes due to the
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so-called “artificial abort” technique. The proof of Theorem 1 essentially follows
the technique already developed by Boneh-Boyen [3] and Waters [24] and we
defer it to Section 5.

3.2 Signature

It is an observation of Naor that any identity based encryption scheme can be
converted to a signature scheme. Waters in his paper [24] has given a construction
of a signature scheme based on his IBE scheme. A similar construction is possible
for the generalised scheme IBE-SPP(�) which we detail here. The sketch of the
security reduction is provided in Appendix C.

Let G1 = 〈P 〉, G2 and e() be as defined in Section A.1. Messages are assumed
to be elements of ZN . Alternatively, if messages are assumed to be bit strings
of arbitrary length, then we use a collision resistant hash function to map the
messages into ZN .

Setup: Choose a random x in Zp. Let P1 = xP . Next, choose random points
P2, U

′, U1, . . . , Ul from G1. The public key is 〈P, P1, P2, U
′, U1, . . . , U�〉 and the

secret key is xP2.

Signing: Let M = (m1,m2, . . . ,m�) is the message to be signed, where each
mi, 1 ≤ i ≤ � belongs to ZN1/
 . To generate a signature on M , first choose a
random r ∈ Z∗

P . Then the signature is

σM = (xP2 + rV, rP ),

where V = U ′ +
∑�

i=1 miUi

Verification: Given a message M = (m1,m2, . . . ,m�) and a signature σ =
(σ1, σ2) on M , one accepts σ as a valid siganture on M if

e(σ1, P ) = e(P1, P2)e(σ2, V )

where V = U ′ +
∑�

i=1 miUi.

4 Concrete Security

From the security reduction of previous section we observe that any (t, q, ε) ad-
versary A against IBE-SPP(�) can actually be used to build an algorithm B to
solve the DBDH problem over (G1, G2) which runs in time t′ and has a prob-
ability of success ε′. Then t′ = t + O(τq) + χ ≈ t + cτq + χ for some constant
c and ε′ ≈ ε/δ where τ is the time for a group operation in G1 and δ is the
corresponding degradation in the security reduction. Resistance of IBE-SPP(�)
against A can be quantified as ρ

(�)
|A = lg(t/ε). To assert that IBE-SPP(�) has at

least 80-bit security, we must have ρ
(�)
|A ≥ 80 for all possible A. Similarly, the

resistance of DBDH against B can be quantified as
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ρ|B = lg
(
t′

ε′

)
≈ lg

(
δ × t + cτq + χ

ε

)
= lg(δ(A1 + A2))

where A1 = t/ε and A2 = (cτq + χ)/ε. We now use max(A1, A2) ≤ A1 + A2 ≤
2 max(A1, A2). Since a factor of two does not significantly affect the analy-
sis we put ρ|B = lg(δ × max(A1, A2)). By our assumption, A1 = t/ε ≥ 280

and hence max(A1, A2) ≥ A1 ≥ 280. This results in the condition ρ|B ≥ 80 +
lg δ.

Thus, if we want IBE-SPP(�) to have 80-bit security, then we must choose
the group sizes of G1, G2 in such a way that the best possible algorithm for
solving DBDH in these groups takes time at least 280+lg δ. Hence, in particular
the currently best known algorithm for solving the DBDH should also take this
time. Currently the only method to solve the DBDH problem over (G1, G2) is
to solve the discrete log problem (DLP) over either G1 or G2. The best known
algorithm for the former is the Pollard’s rho method while that for the later is
number/function field sieve. Thus, if we want IBE-SPP(�) to have 80-bit security,
then we must choose the group sizes such that, 280+lg δ ≤ min(tG1 , tG2), where
tGi stands for the time to solve DLP in Gi for i ∈ {1, 2}.

We have assumed that G1 is a group of elliptic curve points of order p defined
over a finite field IFa (a is a prime power). Suppose G2 is a subgroup of order
p of the finite field IFak where k is the MOV degree. The Pollard’s rho algo-
rithm to solve ECDLP takes time tG1 = O(

√
p), while the number/function field

seive method to solve the DLP in IFak takes time tG2 = O(ec1/3 ln1/3 ak ln2/3(ln ak))
where c = 64/9 (resp. 32/9) in large characteristic fields (resp. small character-
istic fields).

4.1 Space/Time Trade-Off

In this section we parametrize the quantities by � wherever necessary. Let, δ(�)

denote the degradation factor in IBE-SPP(�). We have already noted in Section 3
that � = n stands for Waters protcol. δ(�) and hence ρ(�) is minimum when � = n
and we use this as a bench mark to compare with other values of �. Suppose
Δρ(�) = ρ(�)− ρ(n) = lg(δ(�)/δ(n)) = (n/�)− lg(n/�). This parameter Δρ(�) gives
us an estimate of the extra bits required in case of IBE-SPP(�), to achieve the
same security level as that of IBE-SPP(n) i.e., Waters protocol.

Suppose, |p(�)| (resp. |G(�)
2 |) denotes the bit length of representation of p(�)

(resp. an element of G(�)
2 ). Like [16], we assume that the adversaryA is allowed to

make a maximum of q = 230 number of queries. For a given security level, we can
now find the values of |p(�)| and |G(�)

2 | for IBE-SPP(�) based on the bit length of
the identities (i.e., n), q and �. Note that, the value of |p(�)| (resp. |G(�)

2 |) thus ob-
tained is the minimum required to avoid the Pollards rho (resp. number/function
field seive) attack. In our comparison, the MOV degree k is taken to be same
for different values of � and |G(�)

2 | = k lg a (G(�)
2 is a multiplicative subgroup of

order p(�) of the finite field IFk
a). As already noted, the value of p(�) is given by

Pollard’s rho. On the other hand, the logarithm of the size of G(�)
1 is equal to
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Table 1. Approximate group sizes for attaining 80-bit security for IBE-SPP(�) for
different values of � and relative space and time requirement. The first part corresponds
to n = 160 and the second to n = 256.

� Δρ(
) |p(
)| |G(
)
2 | α(
) β(
)

(a) (b) (a) (b) (a) (b)

160 – 246 1891(2225) 3284(3872) – – – –

4 34 314 3269(3730) 5721(6538) 4.3(4.2) 4.4(4.2) 5.17(4.71) 5.46(4.81)

8 15 276 2443(2831) 4258(4944) 6.5(6.4) 6.5(6.4) 2.16(2.06) 2.18(2.08)

16 6 258 2102(2457) 3655(4288) 11.1(11.0) 11.1(11.1) 1.37(1.35) 1.38(1.35)

32 2 250 1960(2300) 3405(4006) 20.7(20.7) 20.7(20.7) 1.11(1.11) 1.12(1.11)

80 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

256 – 246 1891(2225) 3284(3872) – – - –

4 58 362 4530(5090) 7959(8954) 3.7(3.6) 3.8(3.6) 13.75(11.97) 14.24(12.37)

8 27 300 2948(3381) 5151(5919) 4.9(4.7) 4.9(4.8) 3.79(3.51) 3.86(3.57)

16 12 270 2326(2703) 4051(4717) 7.7(7.6) 7.7(7.6) 1.86(1.79) 1.88(1.81)

32 5 256 2066(2417) 3592(4212) 13.7(13.6) 13.7(13.6) 1.30(1.28) 1.31(1.29)

64 2 250 1960(2300) 3405(4006) 25.9(25.8) 25.9(25.9) 1.11(1.11) 1.11(1.11)

128 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

max(p(�), |G(�)
2 |/k). For relatively small MOV degree (i.e., k ≤ 6), |G(�)

2 |/k > |p(�)|
and so the logarithm of the size of G(�)

1 is equal to |G(�)
2 |/k = |IF(�)

a |. For a given
�, we have to store � elements of G(�)

1 in the public parameter file and a scalar
multiplication in G

(�)
1 takes time proportional to (|IF(�)

a |)3.
Now, we are in a position to compare the space requirement in the pub-

lic parameter file and the time requirement for a scalar multiplication in G
(�)
1

for different values of �. Let α(�) = �×|G(
)
1 |

n×|G(n)
1 |
× 100 i.e., the relative amount of

space (expressed in percentage) required to store the public parameters in case
of IBE-SPP(�) with respect to IBE-SPP(n) and β(�) = |IF(�)

a |3/|IF(n)
a |3, i.e., the

relative increase in time for scalar multiplication in G
(�)
1 in the case of IBE-SPP(�)

with respect to IBE-SPP(n). Note that, β(�) can be computed from |G(�)
2 | and

|G(n)
2 | since k cancels out from both numerator and denominator. An analysis

similar to the efficiency consideration in Section 3 shows that pairing compu-
tation is also of order |IF(�)

a |3 (but with a larger constant factor). So, the ratio
β(�) also holds for pairing computation and exponentiation in case of IBE-SPP(�)
with respect to Waters protocol.

In Table 1 we sum-up these results for n = 160 and 256 for different values of
� ranging from 4 to n for 80-bit security. The subcolumns (a) and (b) under α(�)

and β(�) stand for the values obtained for general characteristic field and field
of characteristic three respectively. The values of |G(�)

2 |, α(�), β(�) are computed
using the formula as suggested in [16] (see Section 3); while in parenthesis we
give the corresponding values as computed from the formula obtained from [21]
(as given in Section 3 of [16]). Note that, the values of α(�) and β(�) being the
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ratio of two quantities remain more or less invariant whether the underlying field
is a general characteristic field or a field of characteristic three or which formula
(of [16] or of [21]) is used.

Public parameter consists of (�+ 4) elements of G1. From Table 1, for 80-bit
security in general characteristic fields using EC with MOV degree 2, the public
parameter size for Waters protocol will be around 37 kilobyte (kb) for 160-bit
identities and 59 kb for 256-bit identities. The corresponding values in case of
IBE-SPP(�) with � = 16 will be around 4 kb and 4.5 kb respectively. Similarly,
in characteristic three field EC with MOV degree 6, the corresponding values
are respectively 21.5 kb and 34.2 kb and for IBE-SPP(�) with � = 16 these are
respectively 2.4 kb and 2.64 kb. There is an associated increase in computation
cost by 30%. In typical applications, the protocol will be used in a key encapsu-
lation mechanism (KEM). Thus the encryption and decryption algorithms will
be invoked once for a message irrespective of its length. Also the key generation
procedure is essentially an one-time offline activity. In view of this, the increase
in computation cost will not substantially affect the throughput. On the other
hand, the significant reduction in space requirement will be an advantage in
implementing the protocol and also in reducing the time for downloading or
transmitting the public parameter file over the net. Overall, we suggest � = 16
to be a good choice for implementing the protocol.

5 Security Proof

We prove Theorem 1 through a reductionist security argument. The proof is very
similar to that of Waters and we describe only the essential features.

Proof : Suppose A is a (t, q)-CPA adversary for IBE− SPP(�). Then we con-
struct an algorithm S for DBDH running in time (t + O(τq + χ) such that,
AdvIBE−SPP(�)

A ≤ 16q(μ� + 1)AdvDBDH
S , where μ� = �(N1/� − 1). S will take as

input a 5-tuple 〈P, aP, bP, cP, Z〉 where P is a generator of G1, aP, bP, cP ∈ G1
and Z ∈ G2. We define the following game between S and A.

Setup: S first chooses random x, x1, . . . , x� ∈ Zm where m = 4q (justified later);
random
y, y1, . . . , y� ∈ Zp and a random k ∈ {0, . . . , μ�}. It then defines three functions:
F (v) = p−mk + x +

∑�
i=1 xivi, J(v) = y +

∑�
i=1 yivi and

K(v) =
{

0 if x +
∑�

i=1 xivi ≡ 0 mod m
1 otherwise

Here, F (v) and K(v) are defined in such a way that K(v) �= 0 implies F (v) �≡
0 mod p. Next, S assigns P1 = aP, P2 = bP , U ′ = (p − mk + x)P2 + yP
and Ui = xiP2 + yiP for 1 ≤ i ≤ �. It provides A the public parameters
〈P, P1, P2, U

′, U1, . . . , U�〉. Everything else is internal to S. Note that from A’s
point of view the distribution of the public parameters is identical to the distri-
bution of the public parameters in an actual setup.
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Phase 1: The adversaryA issues key extraction queries. Suppose, the adversary
asks for the private key corresponding to an identity v. S first checks whether
K(v) = 0 and aborts in that situation and outputs a random bit. Otherwise, it
gives A the pair

(D1, D2) =
(
− J(v)
F (v)

P1 + r(F (v)P2 + J(v)P ),
−1
F (v)

P1 + rP

)
where r is chosen at random from Zp. As in Waters proof it is possible to show
that (D1, D2) is a valid private key for v following the proper distribution. S will
be able to generate this pair (D1, D2) if and only if F (v) �≡ 0, for which it suffices
to have K(v) �= 0.

Challenge: At this stage the adversary A submits two messages M0,M1 ∈
G2 and an identity v∗ with the constraint that it has not asked for the pri-
vate key of v∗ in Phase 1. S aborts if F (v∗) �= 0 and outputs a random bit.
Otherwise, S chooses a random bit γ ∈ {0, 1} and gives A the tuple C′ =
〈ZMγ , cP, J(v∗)cP 〉.

If 〈P, aP, bP, cP, Z〉 given to S is a valid DBDH tuple, i.e., Z = e(P, P )abc

then C′ is a valid encryption for Mγ . Since,

e(P, P )abc = e(aP, bP )c = e(P1, P2)c

and using F (v∗) = p−mk+x+
∑�

i=1 xiv∗i ≡ 0 mod p it is possible to show that
J(v∗)cP = cV . Note that, this condition is satisfied as long as F (v∗) ≡ 0 mod p,
which holds if x +

∑�
j=1 xjv∗j = km.

Otherwise, Z is a random element of G2 and C′ gives no information about
S’s choice of γ.

Phase 2: This phase is similar to Phase 1, with the obvious restriction that
A cannot ask for the private key of v∗. We note that the total number of key
extraction queries together in Phase 1 and 2 should not exceed q.

Guess: A outputs a guess γ′ of γ. Then S outputs 1⊕ γ ⊕ γ′.
Suppose the adversary has not aborted upto this point. Waters introduces a
technique whereby the simulator is allowed to abort under certain condition.
The simulator samples the transcript it received from the adversary during the
attack phase. Based on the sample, it decided whether to abort and output a
random string. The rationale for such “artificial abort” is the following: The
probability of abort during the attack phase depends on the adversarial tran-
script and can be different for different transcripts. The purpose of artificial
abort is to ensure that the simulator aborts with (almost) the same probability
for all adversarial queries. This ensures that the adversary’s success is inde-
pendent of whether the simulator aborts or not. The probability analysis per-
formed by Waters in [24] requires this independence. For details of this method
see [24]. Here we just note that the artificial abort stage requires an additional
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χ = O(ε−2 ln(ε−1)λ−1 ln(λ−1)) time. Further, it is independent of the parameter
� which defines the generalisation over Waters [24] that we introduce here.

Let abort be the probability of the simulator aborting during the actual at-
tack (as opposed to artificial abort) and let λ = Pr[abort]. In Appendix B, we
calculate the lower bound of λ to be 1

m(μ
+1) (1 − 2 q
m ). Using m = 4q gives

λ ≥ 1
4q(μ
+1) . Now using the analysis performed by Waters [24], we obtain

ε ≤ 16q(μ� + 1) AdvDBDH(t + O(τq) + χ).

The time component of O(τq) comes because of the scalar multiplications per-
formed in Phase 1 and 2 of Key Generation (these scalar multiplications are
the only computationally intensive part in the simulation). This completes the
proof. ��

Remark 1: Note that, in the simulation, only the computation of F (v), J(v) ∈ Zp

depends on the size parameter �. Once F (v) and J(v) are obtained, the key gen-
eration in Phase 1 and 2 and cipher text generation in Challenge is done through
some scalar multiplications involving F (v) and J(v). Cost of computation of F (v)
and J(v) are insignificant compared to the cost of a scalar multiplication. So the
simulation time is independent of the size parameter �.

Remark 2: The technique of “artificial abort” is new to security proofs and was
introduced by Waters [24]. (It is not present in the security proof of Boneh and
Boyen [3] which is also an identity based encryption protocol which is secure in
the full model.) We feel that the technique of artificial abort can be avoided.
This technique only lowers the probability of not aborting. Hence, it should be
possible to directly work with the lower bound λ of not aborting, without actu-
ally going through the artificial abort step. Avoiding the artificial abort step will
require performing a new probability analysis. We hope to do that in the future.

6 CCA Security

Recent works of Boneh, Canetti, Halevi and Katz [5, 8, 15] show how to build
CCA secure encryption scheme from identity based encryption. One way to
achieve CCA-security for our scheme is to follow the strategy suggested in [24].
As our scheme closely resembles that of [24] it is possible to build a hybrid 2-level
HIBE [19, 18] in essentially the same way and the reduction follows.

We show that it is possible to take a different approach based on the oracle
bilinear decision Diffie-Hellman (OBDH) assumption which is a variation of the
ODH assumption used in [1]. The OBDH assumption is as follows [22].

– Instance : 〈P, aP, bP, cP, str〉 where a, b, c ∈ Zp and str ∈ {0, 1}k.
– Oracle : Ha(X,Y ), with X,Y ∈ G1. When invoked with (a1P, b1P ) returns

H(a1P, e(a1P, a2P )a), where H : G1 ×G2 → {0, 1}k is a hash function.
– Restriction : Cannot query Ha(, ) on (cP, bP ).
– Task : Determine whether str = H(cP, e(cP, bP )a) or str is random.
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Any algorithm A for OBDH takes as input an instance (P, aP, bP, cP, str) of
OBDH and produces as output either zero or one. The advantage of an algorithm
A in solving OBDH is formally defined in the following manner.

AdvOBDH
A = |Pr[A outputs 1|E1]− Pr[A outputs 1|E2]|

where E1 is the event that str = H(cP, e(cP, bP )a) and E2 is the event that str
is random. The quantity AdvOBDH(t, q) denotes the maximum of AdvOBDH

A where
the maximum is taken over all adversaries running in time at most t and making
at most q queries to the oracle Ha(, ).

To suit into the OBDH assumption we modify our constructions of Section 3 as
follows: Setup and Key Generation remain unaltered. To encrypt a message,
we first generate a symmetric key sym.key = H(tP, e(P1, P2)t). Then the cipher
is C = 〈tP, tV, y)〉, where y is the encryption of the message using the symmetric
key sym.key. To decrypt, all that we need is e(P1, P2)t = e(D1, tP )/e(D2, tV )
and then find sym.key using H .

Security: Breaking the (modified) IBE implies either solving OBDH or break-
ing the symmetric encryption scheme. The later we assume to be unbreakable
under chosen ciphertext attack. CCA security under the OBDH assumption is
expressed in the following theorem proof of which will be provided in the full
version of the paper.

Theorem 2. For t ≥ 1, q ≥ 1; AdvIBE(t, q) ≤ 16q(μ�+1)AdvOBDH(t+O(τq)+χ),
where identities are chosen from ZN , 1 < � ≤ lgN is a size parameter, μ� =
�(N1/� − 1).

Note: Subsequent to the acceptance notification of this submission to ICISC
2005, we came to know that a paper describing a similar construction as ours
has been posted on the eprint archive by David Naccache. (We also note that
an earlier version of the present paper was submitted to Asiacrypt 2005, whose
submission deadline was May 30, 2005.) Though the construction is similar, the
paper by Naccache does not perform any concrete security analysis. In fact, the
paper mentions that the loss of security due to the generalisation is “insignifi-
cant”. As discussed in Section 4, this is not correct. In fact, the conversion of
security degradation into a trade-off between time and space is original to our
paper and is the most important feature of the generalisation of Waters scheme.
On the other hand, we would like to mention that Naccache’s paper presents a
better exposition of the security proof than that given in Waters.
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A Definitions

A.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we
write G1 additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is
called a cryptographic bilinear map if it satisfies the following properties:

– Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Zp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability : There exists an efficient algorithm to compute e(P,Q) for

all P,Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. Modified Weil pairing [6] and Tate pairing [9, 17] are examples of crypto-
graphic bilinear maps.

A.2 IBE Protocol

Following [6] an identity based encryption scheme is specified by four algorithms:
Setup, Key Generation, Encryption and Decryption.

Setup: It takes input a security parameter and returns the system parameters
together with the master key. The system parameters include a description of
the message space, the ciphertext space and the identity space. They are publicly
known while the master key is known only to the private key generator (PKG).

Key Generation: It takes as input an identity v and returns a private key Dv,
using the master key. The identity v is used as the public key while Dv is the
corresponding private key.

Encryption: It takes as input the identity v and a message from the message
space and produces a ciphertext in the cipher space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

A.3 Security Model

Here we define indistinguishability under chosen ciphertext attack for identity
based encryption schemes under a chosen identity. In this model, an adversary
is allowed to choose adaptively the public key it wishes to attack. In concrete
terms, security of an IBE scheme can be defined using the following game.
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An adversary (whom we denote by A) is allowed to query two oracles – a
decryption oracle and a key-extraction oracle. At the initiation it is provided
with the system public parameters.

Phase 1: Adversary A makes a finite number of queries where each query is
addressed either to the decryption oracle or to the key-extraction oracle. In a
query to the decryption oracle it provides the ciphertext as well as the identity
under which it wants the decryption. Similarly, in a query to the key-extraction
oracle, it asks for the private key of the identity it provides. Further, A is allowed
to make these queries adaptively, i.e., any query may depend on the previous
queries as well as their answers.

Challenge: At this stage A fixes an identity, v∗ and two equal length messages
M0,M1 under the (obvious) constraint that it has not asked for the private key of
v∗ and gets a ciphertext (C∗) corresponding to Mγ , where γ is chosen uniformly
at random from {0, 1}.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious)
restriction that it cannot ask the decryption oracle for the decryption of C∗

under v∗ nor the key-extraction oracle for the private key of v∗.

Guess: A outputs a guess γ′ of γ.

The advantage of the adversary A in attacking the IBE scheme is defined as:

AdvIBE
A = 2|Pr[(γ = γ′)]− 1/2|

The quantity AdvIBE(t, qID, qC) denotes the maximum of AdvIBE
A where the maxi-

mum is taken over all adversaries running in time at most t and making at most
qC queries to the decryption oracle and qID queries to the key-extraction oracle.
Any IBE scheme secure against such an adversary is said to be secure against
chosen ciphertext attack (CCA).

In our security reduction of Theorem 1, we restrict the adversaryA from mak-
ing any query to the decryption oracle. An IBE scheme secure against such an
adversary is said to be secure against chosen plaintext attack (CPA). AdvIBE(t, q)
in this context denotes the maximum advantage where the maximum is taken
over all adversaries running in time at most t and making at most q queries to
the key-extraction oracle.

A.4 Hardness Assumption

We define the security of our identity based encryption scheme in terms of the
decision bilinear Diffie-Hellman problem (DBDH). The DBDH problem [7] in
G1 is as follows: given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether
Z = e(P, P )abc which we denote as Z is real or Z is random. The advantage of
a probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 and
outputs a bit, in solving the DBDH problem is defined as
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AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

− Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|

where the probability is calculated over the random choice of a, b, c ∈ Zp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries running in time at
most t.

B Lower Bound of λ

We calculate a lower bound on λ for any set of q queries v(1), . . . , v(q) and a
challenge identity v∗ as:

λ = Pr[
q∧

i=1

(
K(v(i)) = 1

)
∧ (x +

�∑
j=1

xjv∗j = km)]

= Pr[
q∧

i=1

(
K(v(i)) = 1

)
]Pr[(x +

�∑
j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

= (1− Pr[
q∨

i=1

(
K(v(i)) = 0

)
]Pr[(x +

�∑
j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

≥ (1−
q∑

i=1

Pr[
(
K(v(i)) = 0

)
]Pr[(x +

�∑
j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

= (1− q

m
)Pr[(x +

�∑
j=1

xjv∗j = km)|
q∧

i=1

(
K(v(i)) = 1

)
]

=
1
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(1− q
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)Pr[K(v∗) = 0|
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(1− q

m
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Pr[
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In the above derivation the equality in the last but one step comes from the
fact that

Pr[K(v(i)) = 0|K(v∗) = 0] = Pr[K(v(i)) = 0] = 1/m

since K(v(i)) = 0 for 1 ≤ i ≤ q and K(v∗) = 0 are mutually independent events.

C Security of the Signature Scheme

Brief sketch: This proof also is a reduction. Suppose A is a CPA adversary for
the signature scheme. Then we construct an algorithm S for Comutational Diffie-
Hellman problem (CDH). S will take as input a 3-tuple 〈P, aP, bP 〉 where P is a
generator of G1 and aP, bP ∈ G1. We define the following game between S and
A.

The Setup and Signature Generation steps of this game is exactly same as
the Setup and Phase 1 of Section 5.

Forge: At this stage the adversary A submits a message M∗ ∈ ZN and a
signature σ∗ = (σ∗

1 , σ
∗
2) with the constraint that it has not asked for the signature

of M∗ in the Signature Generation phase. A wins if σ∗ is a valid signature on
M∗.

If A is successful in forging the signature, S first checks whether F (M∗) �= 0
and aborts in that situation. Otherwise, S first computes J(M∗)σ∗

2 and then
adds the inverse of this product with σ∗

1 . It returns the end result as the value
of abP .

Since F (M∗) = 0, then as in the Challenge part of proof of Theorem 1, we
have

J(M∗)σ∗
2 = rV.

Note that, this condition is satisfied as long as F (M∗) ≡ 0 mod p, which holds
if x +

∑�
j=1 xjm

∗
j = km.

Now, σ∗
1 = abP + rV and hence abP = σ∗

1 − rV .
Note that, the conditions under which S aborts this game is exacly the same

under which S aborts the game in Theorem 1. So the lower bound on the prob-
ability of not aborting remains exactly the same.
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Abstract. In this work, we have proposed yet another forward secure
signature based on bilinear pairings. Our forward secure signature re-
quires the general security parameters only independent to the total num-
ber of time periods. The scheme can perform key evolving for unlimited
time periods while maintaining sizes of keys and signature fixed. In ad-
dition, the signing algorithm is very efficient with the simple verification
algorithm. We also provide a formal definition along with a detailed
security proof of our signature scheme under the assumption of Compu-
tational Diffie-Hellman problem.

Keywords: Forward security, pairings, key exposure, key evolution.

1 Introduction

Key Exposure Problem and Forward Secure Signatures. Digital sig-
natures are very essential components in cryptography as well as in various
applications nowadays. Using a digital signature, a signer can prove whether an
electronic document is produced by him/her or not. Clearly, the signing ability
must be restricted to the authorized people (signers), and the signing keys (or
private keys) should be kept secret. Compromise of the private keys will cause
severe damage to the applications using the digital signatures. In such cases,
we cannot believe in any signature that will be produced in the future by the
compromised key. Moreover, the signatures generated by that key in the past
are suspicious too. We can imagine how serious this kind of damage can bring to
the systems that rely on digital signatures such as banking systems, certificate
authorities (CAs), and so on. Once a bank’s private key is compromised, no one
can be sure that given money (digitally signed by the bank) is true or forged
one, hence for the safety reason, the bank may revoke those signatures issued
previously, making some people lose their money. Obviously, reissuing all past
signatures also is a burden to the bank. The similar devastation can be occurred
if the CA’s root private key is compromised. All certificates issued by this CA
become unverifiable until new certificates are reissued with a new root key, and
clients are updated this new key. This situation is more serious since the damage
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may happen widely over the Internet and it may take an unexpected time to
recover from the damage completely.

To deal with the key exposure problem, there are several solutions. The first
one may think is to use key revocation mechanism by certificate revocation.
This method can prevent the forgery of the signatures in the future (i.e., after
key is compromised), however, it cannot protect for the past signatures. Time-
stamp service, introduced in [14], is another way to certify the creation date of
a document. Anderson [3] suggested a new method for constructing signature
scheme in which the private key is updated periodically while the public key
is kept unchanged. With this approach, the compromise of a private key in a
certain period does not affect to the past signatures signed by the previously
updated private key. From the Anderson’s proposal, there are many researches
on this type of signature schemes including its formalization and applications.

In [5], Bellare and Miner formalized Anderson’s idea by the concepts of the
forward secure signature scheme and presented their construction of this signa-
ture using a key evolution scheme. This construction is based on a binary tree
model in which the total life time of the scheme is divided into a small period.
The total periods equal to the number of a binary tree’s leaves. In each period, a
different private key is used for signing messages and deriving a new private key
for the next time period. The public key remains unchanged for all time periods.
An adversary, who has the private key in a time period, can produce the next
time period’s private key but has no way to forge any signature of the previous
time periods. Therefore, the signature scheme is forward secure.

From this work, a variety of the forward secure signature schemes has been
proposed with many improvements. A new forward signature scheme with shorter
keys and more practical was suggested by Abdalla and Reyzin [1]. Krawczyk [19]
suggested further improvement by presenting a method to construct a forward se-
cure signature scheme from any signature scheme, such as RSA or DSA signature
scheme. Itkis and Reyzin [16] proposed another forward secure signature based
on Guillou-Quisquater’s signature scheme. Although this scheme is efficient in
signing and verifying, it increases the size of key and signature. Malkin et al. [20]
proposed a new construction of a forward secure signature scheme based on a
product and sum composition method. Utilizing this method, one can construct
a new forward signature scheme with more time periods from any two forward
digital signature schemes. The combining of the sum and product compositions
leads to a MMM [20] tree construction of a forward secure signature scheme.
The advantage of MMM tree construction is that the maximal number of time
periods needs not to be fixed in advance. F. Hu et al. [15] suggested a new
forward secure signature scheme from bilinear maps influenced by the forward
secure public key encryption schemes [9, 11]; Hu’s construction was based on the
scheme in [13]. The scheme achieved the small size of key and signature due to
the property of an elliptic curve.

Along with these contributions, many valuable researches on other aspects
of the forward secure signature have been carried out. Kozlov and Reyzin [18]
proposed a forward signature scheme with fast key update; Song [21] suggested
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a forward secure group signature scheme; Duc et al. [10] proposed a forward
secure blind signature scheme based on the strong RSA problem. The researches
on threshold signature scheme with forward secrecy are presented in [1] and [22].
Recently, key insulated and intrusion resilience mechanisms are also explored to
provide high level of security. However, these mechanisms require interaction
between the devices and the server for each time period. In some cases, these
methods are not suitable.

Our Contribution. Clearly, the forward secure signature provides stronger se-
curity than the traditional signature. Nevertheless, the forward secure signature
scheme requires additional computation as well as storage for the key updating
processes. In addition, some schemes are limited in the number of time periods.
When all time periods are over, the key generation process is invoked to create
new keys and new time periods. The new public key needs to be republished too.
To overcome this limitation, we have proposed a new forward secure signature
scheme which has unlimited time periods using bilinear pairings. In fact, the
proposed scheme does not utilize the total number of time periods as an input
parameter. The proposed scheme also exhibits good properties: the private key
has a fixed size through the key update process, and the public key is kept un-
changed. Furthermore, since our signature scheme is based on bilinear pairings,
which can be constructed from Weil or Tate pairings on an elliptic curve, the
scheme achieves efficiency in terms of the size in key and signature.

Organization. We first introduced the background about key exposure problem
and forward security concept in the digital signature paradigm. In Section 2,
we will provide the mathematical treatment in bilinear pairings and definitions
about the forward secure signature scheme. The details of our signature scheme
are presented in Section 3 and its security analysis is discussed in Section 4. The
complexity comparative with other schemes is discussed in Section 5. Finally,
the conclusion and suggestion for future work are given.

2 Backgrounds

Like almost other forward secure signature schemes, the definitions of our for-
ward secure signature scheme follow the formal definition from [1, 5].

2.1 Definitions

Forward Secure Signature Scheme. The basic idea of the forward secure
signature scheme is to use the key evolution technique to update the private key
periodically while keeping the public key unchanged. To do so, one can divide the
lifetime of the signature scheme into a small period in which a different private
key is used to sign messages. The Key Generation algorithm will initialize the
lifetime of the signature scheme by creating the first period key pairs. However,
the public key has to be fixed for whole lifetime of the signature scheme for
convenience as well as keeping the Verification algorithm simple. The Signing
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algorithm has to indicate time period in which the private key is used to pro-
duce signatures. In the forward secure signature scheme, there is an additional
algorithm used to update private keys of the scheme. The Key Update algorithm
takes the current private key as input and generates a new private key for the
next period. Of course, after generating a new private key, the old private key
must be erased immediately. Forward security is ensured by the fact that the
Key Update algorithm is a kind of one-way functions, therefore given the current
private key, it is hard to compute any previously used private key. The detailed
definition of the forward secure signature scheme is given below:

Definition 1 (Key-evolving Signature Scheme). A key-evolving digital sig-
nature scheme is a quadruple of algorithms, FSIG = (FSIG.KeyGen; FSIG.KeyUp;
FSIG.Sign; FSIG.Verify), where:

– FSIG.KeyGen, the Key Generation algorithm, is a probabilistic algorithm
which takes as input a security parameter k ∈ N (given in unary as 1k)
and returns a pair (SK0;PK), the initial secret key and the public key;

– FSIG.Sign, the (possibly probabilistic) Signing algorithm, takes as input the
secret key SKi of the current time period i and a message M , and returns
a pair 〈i, σ〉, the signature of M for time period i;

– FSIG.KeyUp, the (possibly probabilistic) Secret Key Update algorithm, takes
the secret key for the current period SKi as input and returns the new secret
key SKi+1 for the next time period;

– FSIG.Verify, the (deterministic) Verification algorithm, takes the public key
PK, a message M , and a candidate signature 〈i, σ〉 as input, and returns 1 if
σ is a valid signature of M or 0, otherwise. It is required that FSIG.VerifyPK

(M ; FSIG.SignSKi
(M)) = 1 for every message M and time period i.

Security Analysis Using Random Oracle Model. We analyze our signature
scheme in the random oracle model [6]. The security of the signature scheme
means that it is computational infeasible for any adversary to forge a signature
with respect to any of the previously used secret keys even if the exposure of
the current secret key happens. We use the security model introduced by Bellare
and Miner [5] with some modification.

In our model, besides knowing the user’s public key PK, the adversary also
gets to know the current time period. The adversary runs in three phases. In
the first phase, the chosen message attack phase (cma), the adversary has access
to a signing oracle, which it can query to obtain signatures of messages of its
choice with respect to the current secret key. At the end of each time period,
the adversary can choose whether to stay in the same phase or switch to the
break-in phase (breakin). In the break-in phase, which models the possibility of
a key exposure, we give the adversary the secret key SKj for the specific time
period j it decided to break in. In the last phase, the forgery phase (forge), the
adversary outputs a pair signature message, that is, a forgery. The adversary is
considered to be successful if it forges a signature of some new message (that is,
not previously queried to the signing oracle) for some time period prior to j. In
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order to capture the notion of forward security of a key-evolving signature scheme
FSIG = (FSIG.KeyGen; FSIG.KeyUp; FSIG.Sign; FSIG.Verify) more formally, let F
be an adversary for this scheme. To assess the success probability of F breaking
the forward security of FSIG, consider the following experiment. Throughout this
paper, k, . . . indicates that the arguments of the key generation algorithm could
be more than k.

Experiment F-Forge-RO(FSIG, F)
Select H : {0, 1}∗ → {0, 1}l at random

(SK0, PK) R← FSIG.KeyGenH(k, . . .)
i← 0
Repeat

d← FH,FSIG.SignH
SKi

(•)(cma, PK);
SKi+1 ← FSIG.KeyUpH(SKi);i← i + 1

Until (d = breakin)
i← i− 1
(M, 〈b, σ〉)← FH(forge, SKi)
If FSIG.VerifyH

SKi
(M, 〈b, σ〉) = 1 and 0 ≤ b ≤ i− 1

and M was not queried of FSIG.SignH
SKi

in period b
then return 1 else return 0

With the above forger, we can define the notion of security of the forward secure
signature scheme in the random oracle model.

Definition 2 (Forward-security in the Random Oracle Model). Let
FSIG = (FSIG.KeyGen; FSIG.KeyUp; FSIG.Sign; FSIG.Verify) be a key-evolving sig-
nature scheme, H be a random oracle and F be an adversary as described
above. We let Succfwsig(FSIG[k, . . .];F) denote the probability that the experi-
ment F-Forge-RO(FSIG[k, . . .];F) returns 1. Then the insecurity of FSIG is the
function

InSecfwsig(FSIG[k, . . .]; t; qsig; qhash) = max
F
{Succfwsig(FSIG[k, . . .];F)},

where the maximum here is taken over all adversaries F making a total of at
most qsig queries to the signing oracles across all the stages and for which the
running time of the above experiment is at most t and at most qhash queries are
made to the random oracle H.

2.2 Bilinear Pairings

We summarize some concepts of bilinear pairings using similar notations used
by Zhang and Kim [23] which was used to design ID-based blind signature and
ring signature based on pairings.

Let G1 and G2 be additive and multiplicative groups of the same prime order
q, respectively. Let P is a generator of G1. Assume that the discrete logarithm
problems in both G1 and G2 are hard. Let e : G1×G1 → G2 be a pairing which
satisfies the following properties:
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1. Bilinear : e(aP, bP ′) = e(P, P ′)ab for all P, P ′ ∈ G1 and all a, b ∈ Z.
2. Non-degenerate: If e(P, P ′) = 1 ∀P ′ ∈ G1 then P = O.
3. Computable: There is an efficient algorithm such as [4] to compute e(P, P ′)

for any P, P ′ ∈ G1.

To construct the bilinear pairing, we can use the Weil pairing or Tate pairing
associated with supersingular elliptic curves. Under such group G1, we can define
the following hard cryptographic problems:

– Discrete Logarithm (DL) Problem: Given P, P ′ ∈ G1, find an integer n such
that P = nP ′ whenever such integer exists.

– Computational Diffie-Hellman (CDH) Problem: Given a triple (P, aP, bP ) ∈
G1 for a, b ∈ Z∗

q , find the element abP .
– Decision Diffie-Hellman (DDH) Problem: Given a quadruple (P, aP, bP, cP )
∈ G1 for a, b, c ∈ Z

∗
q , decide whether c = ab (mod q) or not.

A group, where the CDH problem is hard but the DDH problem is easy,
is called Gap Diffie-Hellman (GDH ) group. Details about GDH groups can be
found in [7], [8], and [17].

For the sake of comparison, we assume that, as in [15], there is a parameter
generator IG takes input k, and outputs G1,G2 of order q, and pairing e. The
computational complexity of IG is O(kn). Also the computational complexity
in groups G1,G2, and pairings e are at most O(kn1), O(kn2), and O(ke), respec-
tively. We have n, n1, n2, e ∈ N are order of the polynomial time algorithm.

The definition of the CDH assumption which is used for our security analysis
as follows:

Definition 3 (CDH Assumption). A probabilistic algorithm A is said to be
(t, ε)-break-CDH in a cyclic group G if A runs at most time t, computes the
Diffie-Hellman function DHP,q(aP, bP ) = abP , with input (P, q) and (aP, bP ),
with a probability of at least ε, where the probability is over the coins of A and
(a, b) is chosen uniformly from Zq × Zq. The group G is a (t, ε)-CDH group if
no algorithm (t, ε)-break-CDH in this group.

3 Our Scheme

As mentioned previously, our forward secure signature scheme FSIG consists of
four algorithms. Our purpose in designing this scheme need not to define the total
number of time periods in advance, hence we can have unlimited time periods
forward signature scheme. In other words, the key evolution process can run
forever.

Key Generation Algorithm. The Key Generation algorithm takes a secure
parameter k and returns the initial key pair (SK0;PK). Our Key Generation
algorithm uses the same strategy like [15] in order to generate system parameters:
groups G1,G2 of the same prime order q; a generator P of G1; a bilinear pairing
e : G1 × G1 → G2. Let H1 be a collision-free hash function which converts an
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arbitrary string {0, 1}∗ into Z∗
q . We also assume that there is a collision-free hash

function H2 : {0, 1}∗ → G1. This hash function can be considered as a part of
the Key Generation algorithm.
FSIG.KeyGen(1k)

Run IG to get groups G1,G2 (prime order q), bilinear map e.

Select random generator P ← G1; s, t, r0
R← Z∗

q .
Compute: Q = sP, T = tP

Set PK ← (G1,G2, e, P,Q, T )
Compute:

s0 = s + r0H1(0); t0 = t− r0H1(0)
Q0 = r0H1(0)P ;
V0 = t0Q0;
Erase s, t, r0, t0

Set SK0 ← (s0, V0, Q0)
Output (SK0;PK)

Key Update Algorithm. The Key Update algorithm is the core part of the
key evolution scheme. It refreshes the private key of the current time period to
the new value corresponding to the new time period, then erases the previous
private key. The Key Update algorithm is given below:
FSIG.KeyUp(i, SKi−1)

Pick a random element ri ∈ Z∗
q ;

Parse SKi−1 as (si−1, Vi−1, Qi−1)
Compute:

si = si−1 + riH1(i);
Qi = Qi−1 + riH1(i)P ;
Vi = Vi−1 + riH1(i) (T −Qi−1 −Qi) ;
Erase si−1, ri, Vi−1, Qi−1

Set SKi ← (si, Vi, Qi)
Output SKi

Signing Algorithm. The Signing algorithm produces a signature at the current
time period using the private key of the considered time period.
FSIG.Sign(i,M, SKi):

Parse SKi as (si, Vi, Qi)
Set U = Qi;
Compute α = siQi + Vi; and β = siH2(i,M,U);
Set σ = (U, α, β)

Output signature for M as 〈i, σ〉

Verification Algorithm. The Verification algorithm tests if a given signature
on a message at a specific time period is valid or not. The output of the test is
1 if the signature is valid and 0 otherwise.
FSIG.VerifyPK(i,M, σ):

Parse σ as (U, α, β) Verify
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e(α, P ) ?= e(U, T + Q) (1)

e(β, P ) ?= e(H2(i,M,U), U + Q) (2)

Output 1 if Eqs (1) and (2) are correct, otherwise output 0.
The first equation (1) verifies the value of U and the second one (2) verifies

the signature on the message M . The time period value is embedded in the
signature too.

Correctness. The correctness of the proposed signature scheme comes from
the correctness of Eqs (1) and (2). The correctness of Eq (1) is shown bellow:

e(α,P ) = e (siQi + Vi, P ) = e ([si−1 + riH1(i)] Qi + Vi, P )

= e

([
s +

i∑
k=0

rkH1(k)

]
Qi + Vi, P

)
= e

(
sQi +

i∑
k=0

rkH1(k)Qi + Vi, P

)
= e

(
sQi +

i∑
k=0

rkH1(k)Qi + Vi−1 + riH1(i) [T − Qi−1 − Qi] , P

)
= e

(
sQi +

∑
k=0

0i−1rkH1(k)Qi + Vi−1 + riH1(i) [T − Qi−1] , P

)
= e

(
sQi +

i−1∑
k=0

rkH1(k) [Qi−1 + riH1(i)P ] + Vi−1 + riH1(i) [T − Qi−1] , P

)
= e

(
sQi +

i−1∑
k=0

rkH1(k)Qi−1 + riH1(i)
i−1∑
k=0

rkH1(k)P + Vi−1 + riH1(i) [T − Qi−1] , P

)
= e

(
sQi +

i−1∑
k=0

rkH1(k)Qi−1 + Vi−1 + riH1(i)T, P

)
...
= e (sQi + r0H1(0)Q0 + V0 + r1H1(1)T + ... + riH1(i)T, P )
= e (sQi + r0H1(0)Q0 + t0Q0 + r1H1(1)T + ... + riH1(i)T, P )
= e (sQi + tQ0 + r1H1(1)T + ... + riH1(i)T, P )
= e (sQi + r0H1(0)T + r1H1(1)T + ... + riH1(i)T, P )

= e

(
sQi +

i∑
k=0

rkH1(k)T, P

)
= e

(
sQi + t

i∑
k=0

rkH1(k)P, P

)
= e ([s + t]Qi, P ) = e (Qi, P )s+t = e (Qi, T + Q)

The correctness of this equation ensures that the value of U is correct. The
validity of the signature is guaranteed by the correctness of Eq (2).

e(β, P ) = e(siH2(i,M,U), P ) = e ([si−1 + riH1(i)]H2(i,M,U), P )
...

= e

([
s +

i∑
k=0

rkH1(k)
]
H2(i,M,U), P

)
= e (sH2(i,M,U), P ) e (H2(i,M,U), P )

i∑
k=0

rkH1(k)

= e (H2(i,M,U), Q) e
(
H2(i,M,U),

i∑
k=0

H1(k)rkP

)
= e (H2(i,M,U), Q) e (H2(i,M,U), Qi)
= e (H2(i,M,U), Q) e (H2(i,M,U), U) = e (H2(i,M,U), Q+ U)
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Efficiency. Our proposed forward secure signature scheme exhibits new prop-
erties. Firstly, our scheme does not have the total number of time periods pa-
rameter. The Key Update algorithm can perform infinite and stop only when a
private key in a certain time period is compromised. At that time, we need to
run the Key Generation algorithm again to initialize a new key pair.

Secondly, the key pair produced by the Key Generation algorithm has a fixed
length. The sizes of the private key and public key do not grow after running
the Key Update algorithm. In addition, the public key remains unchanged since
after produced once at the first time by the Key Generation algorithm.

The Signing and Verifying algorithms also require the fixed amount of compu-
tational time. The signing algorithm of our scheme is very unique. For a certain
time period, one can compute value of α once, then stores it for future signature
issuing. From the next time, the signature issuing algorithm is just to compute
one point multiplication over an elliptic curve.

4 Security Analysis

We analyze the security of our forward secure signature scheme used technique
like in [1, 5, 15]. In addition, we assume that, partial key exposure also leads to
key exposure problem. This is obviously since we may derive the remained part
from exposed part of the private key. The following theorem shows the security
of our scheme.

Theorem 1. If there exists a forger F that runs in time at most t, asking at
most qhash hash queries and qsig signing queries, such that Succfwsig(FSIG[k, . . .];
F) > ε then there exists a adversary A that (t′, ε′)-break CDH in group G1 where:

t′ = t + O (kn1) ; and ε′ =
(

1− 1
qsig + 1

)qsig+1

· 1
qsig (qhash + qsig + 1)

· ε

Proof (Sketch). To break CDH problem in the additive group G1 of the order
q, an adversary A is given P (a random generator of G1), P ′ = aP , Q′ = bP ,
where a, b ∈ Z∗

q are randomly chosen and remain unknown to A. The task of A
is to derive S′ = abP with the help of the forger F . A provides the public key
to F and answers its hash queries, signing queries, and breakin query. First, A
guesses a random i at which F will ask for the breakin query. Then A set the
public key PK = (G1,G2, e, P,Q, T ), where Q = Q′. A provides PK to F and
runs it. A can answer the hash queries and the signing queries since it controls
the hash oracle. During execution, A guesses a random index g′, and hopes the
forgery will base on g′-th hash query. A makes this hash value special, i.e., P ′.
Suppose F outputs a signature on message Mg′ for time period i′ < i. From
this signature A can derive S′ = abP , hence solves CDH problem. The detailed
proof is given in Appendix.

Theorem 2. Let FSIG[k; . . .] represent our key-evolving signature scheme with
modulus size k. Then for any t, qhash and qsig,
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InSecfwsig(FSIG[k; . . .]; t; qsig; qhash) ≤

qsig(qhash + qsig + 1)
(

1− 1
qsig + 1

)−(qsig+1)

InSeccdh(k, t′)

where t′ = t + O(kn1)

Proof. From Definition 2 and Theorem 1, the insecurity function is computed
simply by solving function in Theorem 1 and express ε′ in terms of ε we have:

ε′ =
(

1− 1
qsig + 1

)qsig+1

· 1
qsig (qhash + qsig + 1)

· ε

=⇒ qsig (qhash + qsig + 1)ε′
/(

1− 1
qsig + 1

)qsig+1

= ε

This completes the proof of Theorem 2. ��

5 Evaluation

In this section, we compare our proposed signature scheme with the previous
signature scheme [15] which has the same computational assumption. Compu-
tational complexity, the sizes of keys and signature are examined.

Table 1. Computational complexity of our signature scheme

Algorithm Ours Hu et al.[15]

Key generation O (kn + kn1) O (kn + kn1 + kn1 log T )

Signing O (kn1) O (kn1)

Verification O (ke + kn1) O (ke log T + kn1 log T )

Key Update O (kn1) O (kn1)

Public key size O (k) O(k)

Private key size O (k) O (k log T + k)

Signature size O (k) O (k log T + k)

Table 2. Computational complexity of other schemes

Algorithm BM[5] AR[1] IR[16] MMM [20]

Key generation lk2T lk2T k5 + (k + l3)lT k2l2

Signing (T + l)k2 lk2T k2l k2l

Verification (T + l)k2 k2l k2l k2l + l2 log l

Key Update lk2 lk2 (k2 + l3)lT k2l + (k + l2) log t

Public key size lk k k k + l log l

Private key size lk k k l

Signature size k k k k + l log l
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In Table 1, T is total number of time periods and in Table 2, l is a security
parameter of conventional cryptographic operation as explained in [20].

As we can see from Tables 1 and 2, our signature scheme is very efficient in
terms of computation as well as performance. The signature and key sizes do
not depend on the total number of time periods. Moreover, comparing with the
schemes [1, 5, 16], the signature size is shorter for the same security level since
our scheme is operating over an elliptic curve (so in the security parameter k
is different). The signing algorithm will be similar to that of [8] if we store the
fixed part in the signature for later use. Although MMM scheme has unbounded
time periods, it still depends on the current time period parameter in the key
update algorithm.

The verification of the signature just requires four pairing operations. This
can be considered to be the same as that of [8]. For verifying multiple signatures
of the same time period, the result of verification equation (1) can be saved for
later use. In this case, the verifying process remains just two pairing computa-
tions. Although pairing computation is expensive, there are many improvements
in implementation of the pairings as in [4, 12]. Utilizing those good implemen-
tations, our scheme can be efficient in performance. Considering above features,
our signature scheme can be applied in the application where storage and com-
putation power are limited like mobile devices. Forward secure properties will
strengthen the security of the applications.

6 Concluding Remarks

We have proposed yet another forward signature scheme using bilinear pairings.
Our signature scheme has a specific property, namely unlimited time periods.
Under the assumption of the hardness of Computational Diffie-Hellman problem,
we have presented the security proof of the signature scheme in the random oracle
model. Moreover, the proposed signature scheme is very efficient in terms the
signature size as well as performance compared to the previous schemes. The
scheme’s public and private key sizes are unchanged through the key evolving
processes. With a good pairing computation algorithm, we can have an efficient
signature verifying algorithm.

For further work, we consider integration of our scheme with other crypto-
graphic techniques to have new applications.
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A Proof of Theorem 1

Proof. Using the same technique in [15], we describe the details procedure ofA as
follows. As in [1], first we assume that if F outputs a forgery of 〈i, σ〉 for message
M , then the hash oracle has been queried on (i,M,Qi). Any adversary can be
modified to do that. Because of this, the number of hash queries may increase to
qhash + 1. We also assume that if F asks for the signing query for some message
M in some time period i, then the hash query on (i,M,Qi) must also be request
simultaneously. Any adversary can be modified to do so and therefore, the number
of hash queries may increase to qhash + qsig + 1. Assume that F maintains all
necessary bookkeeping and does not ask for the same hash query twice. Note that,
the number of hash queries on the hash oracleH1 can be included in qhash without
any effect since it only happens in Key Update procedure.

First of all, A has to guess the time period i at which F will ask for the breakin
query. It randomly selects i > 0, hoping that the breakin query will occur at this
time period. A then generates the public key PK ← (G1,G2, e, P,Q, T ) but A
sets Q = Q′ = bP directly. A also randomly picks k ∈ Z

∗
q then sets T = kP −Q.

At this moment, s = b is unknown to both A and F . A gives the public key to
forger F , and runs until there is a breakin query.

To answer the hash query and the signing query of F , A maintains two tables:
a signature query table and a hash query table.

Signing queries are answered at random since A controls the hash oracle.
In order to answer a signature query number n on a message M ′

n during time
period j′n < i (breakin happens), A selects randomly: xj′

n
, yj′

n
∈R Z∗

q . A then
selects randomly sj′

n
∈R Z∗

q and computes U ′
n = yj′

n
P ; α′

n = yj′
n
(Q + T );

β′
n = xj′

n
(U ′

n + Q); V ′
n = α′

n − sj′
n
P , h′

n = xj′
n
P . A checks in its signature

query table to see if a signature query on M ′
n during time period j′n has al-

ready been asked, and if there is, j′n, U
′
n, α

′
n, β

′
n used in answering. If not, A
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answers the query as j′n, U
′
n, α

′
n, β

′
n and also records the signature query entry

as
(
n, j′n, xj′

n
, yj′

n
, sj′

n
, U ′

n, α
′
n, β

′
n, V

′
n, h

′
n,M

′
n

)
. This setting satisfies the Verify

algorithm:

e (α′
n, P ) = e

(
yj′

n
(Q + T ), P

)
= e

(
yj′

n
(s + t)P, P

)
= e

(
yj′

n
P, P

)s+t = e
(
yj′

n
P, (s + t)P

)
= e (U ′

n, T + Q)
e (β′

n, P ) = e
(
xj′

n
(U ′

n + Q), P
)

= e
(
xj′

n
(yj′

n
+ s)P, P

)
= e

(
xj′

n
P, P

)yj′
n

+s = e
(
xj′

n
P, (yj′

n
+ s)P

)
= e (h′

n, U
′
n + Q)

For a signing query n on a message M ′
n during time period j′n ≥ i, A

picks randomly sj′
n
, xj′

n
∈R Z∗

q and computes U ′
n = sj′

n
P − Q; α′

n = kU ′
n;

β′
n = sj′

n
xj′

n
P ; V ′

n = α′
n − sj′

n
U ′

n, h′
n = xj′

n
P . Again, A also checks in its

signature query table to see if a signature query on M ′
n during time period j′n

has already been asked, and if there is, j′n, U
′
n, α

′
n, β

′
n used in answering. If not, A

answers the query as j′n, U ′
n, α

′
n, β

′
n and also records the signature query entry as(

n, j′n, xj′
n
, yj′

n
, sj′

n
, U ′

n, α
′
n, β

′
n, V

′
n, h

′
n,M

′
n

)
. The yj′

n
can be set to 0 in this case.

This setting also satisfies the Verify algorithm:

e (α′
n, P ) = e (kU ′

n, P ) = e (U ′
n, kP )

= e (U ′
n, Q + T )

e (β′
n, P ) = e

(
xj′

n
sj′

n
P, P

)
= e

(
xj′

n
P, sj′

n
P
)

= e (h′
n, U

′
n + Q)

The triple (sj′
n
, U ′

n, V
′
n) also is valid if F checks it in this breakin phase.

Hash queries are answered at random. To answer the t -th hashing query for
(jt,Mt, Ut), A first checks the signature query table to see if there is an entry(
n, j′n, xj′

n
, yj′

n
, sj′

n
, U ′

n, α
′
n, β

′
n, V

′
n, h

′
n,M

′
n

)
such that (jt,Mt, Ut) = (j′n,M

′
n, U

′
n).

If so, it just outputs h′
n. Otherwise, A picks randomly xjt ∈R Z∗

q , and set the
output to ht = xjtP . It also records value (t, jt, xjt , Ut, ht,Mt). During execution,
A has to guess a random index g′-th, with hope that forgery will happen. A sets
it as special value P ′ = aP .

At the breakin occurs in the time period i, A simply outputs the secret key
SKi, which is an entry in the signing query table. The validity of SKi is easy
to check. If breakin occurs not in time period i, A will abort.

Suppose A’s guesses for the time period breakin and the hash index are correct,
and F outputs a forgery 〈i′, σ′〉 on a message Mg′ , where σ′ = (U ′, α′, β′), and
i′ < i. If the verification holds, A can derive S′ = abP as follows:

We have:

e(β′, P ) = e(H2(i′,Mg′ , U ′), U ′ + Q)
= e(H2(i′,Mg′ , U ′), U ′)e(H2(i′,Mg′ , U ′), Q)

⇒ e(β′, P )
e(H2(i′,Mg′ , U ′), U ′)

= e(H2(i′,Mg′ , U ′), Q)



Yet Another Forward Secure Signature 455

A controls the hash oracle and the forger F does not have ability to alter or
verify the hash oracle. We may assume that U ′ equals to the one in time period
i′ < i, in which A has queried for signatures and A has value U ′ = y′P in that
time period, otherwise A fails. Then we have:

⇒ e(β′, P )
e(H2(i′,Mg′ , U ′), y′P )

= e(H2(i′,M,U ′), Q)

⇒ e(β′, P )
e(y−1H2(i′,Mg′ , U ′), P )

= e(H2(i′,M,U ′), Q)

⇒ e(β′, P )
e(y′−1H2(i′,Mg′ , U ′), P )

= e(H2(i′,M,U ′), Q)

⇒ e(β′ − y′−1P ′, P ) = e(P ′, Q) = e(aP, bP ) = e(abP, P )

Therefore we can set S′ = abP = β′ − y−1P ′. We can have this since non-
degenerate property of the bilinear pairings.

Run time. Suppose that bit operations in G1 is at most O(kn1 ) as in [15],
to run F , A needs to perform some key generation and some group operations.
Therefore, we have the time running betweenA and F is different: t′ = t+O(kn1)

Probability. First, we can see that, A always acts as a real signer to the F
from F ’s point of view except one case when A answers the hash query with
other value. There are totally two guesses performed by A.

The probability that A guesses the correct time period F sends the breakin
query after qsig signing queries is calculated as follows. Call the event in which
breakin occurs Eb and ω is a probability constant which Eb depends on. ω will
distribute over {0, 1}, where 1 is drawn with probability ω and 0 with probability
1−ω. We need to calculate the probability of Eb in a certain time period. Suppose
that at each time period 1, 2, . . . i, the number of signatures has been queried
is q1, q2, . . . qi, respectively. If Eb happens at time period i, probability of such
event is calculated as Pr = (1 − ω)q1(1 − ω)q2 . . . (1 − ω)qiω Notice that, at the
breakin period, there are total qsig queries have been done, so qsig =

∑i
k=1 qk.

And the probability of guessing break-in at time period i correctly will be Pr =
(1− ω)qsigω. This value is maximized at ω = 1/(qsig + 1) and we have

Pr =
(

1− 1
qsig + 1

)qsig

· 1
qsig + 1

=
1
qsig
·
(

1− 1
qsig + 1

)qsig+1

The probability to guess the correct hash query on which the forgery is based
is Pr ≥ 1/(1 + qsig + qhash). Therefore the probability of A’s success in deriving
S′ = abP is at least:

ε′ =
1
qsig
·
(

1− 1
qsig + 1

)qsig+1

· 1
qhash + qsig + 1

· ε

where ε is the minimum probability with which F to successfully forge a
signature. ��
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