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Abstract. In this paper, an efficient strategy for mining top-K non-trivial fault-
tolerant repeating patterns (FT-RPs in short) with lengths no less than min_len 
from data sequences is provided. By extending the idea of appearing bit se-
quences, fault-tolerant appearing bit sequences are defined to represent the loca-
tions where candidate patterns appear in a data sequence with insertion/deletion 
errors being allowed. Two algorithms, named TFTRP-Mine(Top-K non-trivial 
FT-RPs Mining) and RE-TFTRP-Mine (REfinement of TFTRP-Mine), re-
spectively, are proposed. Both of these two algorithms use the recursive formu-
las to obtain the fault-tolerant appearing bit sequence of a pattern systematically 
and then the fault-tolerant frequency of each candidate pattern could be counted 
quickly. Besides, RE-TFTRP-Mine adopts two additional strategies for pruning 
the searching space in order to improve the mining efficiency. The experimental 
results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when 
K and min_len are small. In addition, more important and implicit repeating pat-
terns could be found from real music objects by adopting fault tolerant mining. 

1   Introduction 

Repeating patterns represent the important sub-patterns in a data sequence because 
they appear repeatedly. There have been many approaches proposed for mining re-
peating patterns[1][3][4]. However, in most approaches, only exact pattern matching 
was considered during the mining process. It may cause some implicit repeating pat-
terns not being found because of insertion/deletion errors occurring. For example, 
suppose two data sequences: S1=“ACDE…ACEDE…”, and S2 =“ACD E… ADE…” 
are given. The pattern “ACEDE” approximately matches “ACDE” with one insertion 
error in S1. Besides, the pattern “ADE” approximately matches “ACDE” with one 
deletion error in S2. However, the exact matching approach will lost the implicit re-
peating pattern “ACDE” in these two sequences. 

To solve the above problem, this paper focuses on the strategy for mining “fault-
tolerant” repeating patterns, FT-RPs in short. In other words, the insertion/deletion 
errors are allowed when counting the appearing frequency of a pattern. Besides, to 
avoid duplicated information and many short patterns being found, only “non-trivial” 
FT-RPs, i.e., those FT-RPs containing no super-pattern with the same fault-tolerant 
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frequency, and their lengths no less than a given min_len are mined out. Moreover, by 
giving the desired number of non-trivial FT-RPs to be mined, we propose an approach 
of mining “top-K non-trivial fault-tolerant repeating patterns with length no less than 
min_len” to avoid finding a huge amount of non-representative patterns. 

A data structure called correlative matrix was proposed in [3] to aid the process for 
extracting repeating patterns in a music object. The main disadvantage of this ap-
proach is that the processing cost is proportional to the square of the length of the 
music object. To solve this problem, the same authors developed the String-Join algo-
rithm [1] to extract the non-trivial repeating patterns in a music object. In [4], the 
representation of bit index sequence was designed to characterize note sequences of 
music objects. In the mining process, the frequency of a candidate pattern was ob-
tained by performing shift and and operations on bit sequences and then counting the 
number of 1s in the resultant bit sequence. Therefore, frequency checking could be 
performed quickly.   

Fault-tolerant data mining would discover more general and useful information for 
real-world dirty data. The problem of fault-tolerant frequent patterns (itemsets) was 
defined and solved in [6] by proposing FT-Apriori algorithm. Similar to the Apriori-like 
algorithms, FT-Apriori algorithm suffered from generating a large number of candidates 
and scanning database repeatedly. This problem became worse when the fault tolerance 
was increasing or the support thresholds were decreasing. To speed up the mining of 
fault tolerant frequent patterns, we proposed an algorithm named FFT-Mine (Fast Fault 
Tolerant frequent patterns Mining) in [5]. By extending the form of appearing vectors, 
the fault-tolerant appearing vectors were defined to represent the distribution that the 
candidate patterns were contained in database with fault tolerance. FFT-Mine algorithm 
provided a systematically method to reduce the number of operations performed on bit 
vectors to get the fault-tolerant appearing vectors of candidates. Then whether a candi-
date is a fault-tolerant frequent itemset could be judged quickly. 

When mining frequent patterns, it is difficult for users to set an appropriate mini-
mum support threshold without knowing the distribution of data in the database. 
Moreover, if long patterns exist in a database, the mining result may return many 
short or tedious patterns with duplicated information. To prevent the above problems 
occurring, [2] proposed a TFP algorithm to discover top-K frequent closed patterns 
with length no less than min_l. For solving the similar problems when mining fre-
quent sequential patterns, TSP algorithm was proposed in [7]. It adopted the similar 
idea proposed in TFP algorithm to raise the minimum support during the mining 
process for discovering top-K closed sequential patterns. Then the searching space 
would be pruned dramatically to speed up the mining process. 

In summarizing the interesting strategies proposed in the related works, an efficient 
way of mining top-K non-trivial fault-tolerant repeating patterns (FT-RPs in short) 
with length no less than min_len for data sequences is proposed in this paper. By 
extending the idea of appearing bit sequences, fault-tolerant appearing bit sequences 
are defined to represent the locations where candidate patterns appear in a data se-
quence with insertion/deletion errors allowed. Then the fault-tolerant frequency of a 
candidate pattern could be counted from its fault-tolerant appearing bit sequence 
quickly. The recursive formulas are designed for obtaining the fault-tolerant appear-
ing bit sequence of a pattern systematically in order to eliminate the duplicate compu-
tations. Two algorithms, named TFTRP-Mine and RE-TFTRP-Mine, respectively, 
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are proposed. The TFTRP-Mine algorithm generates candidate patterns by performing 
a depth-first searching approach. The RE-TFTRP-Mine algorithm adopts two addi-
tional strategies to increase the mining efficiency. The first one is to assign priorities 
of found repeating patterns for generating candidates according to their fault-tolerant 
frequencies. Moreover, the minimum frequency is raised dynamically when K num-
bers of FT-RPs have been found. The experimental results show these two strategies 
will prune the searching space dramatically when K is small proportional to the num-
ber of whole FT-RPs. 

This paper is organized as follows.  Section 2 defines the relative terms used in this 
paper. The appearing bit sequences and the way of getting fault-tolerant appearing bit 
sequences are introduced in Section 3. Section 4 describes the whole processing steps 
of TFTRP-Mine and RE-TFTRP-Mine algorithms. The performance evaluation of 
proposed algorithms is shown in Section 5. Finally, in Section 6, we propose the con-
clusion and feature works of this paper. 

2   Preliminaries 

[Def. 2.1] Let E={l1, l2, …, lk} denote the set of data items in a specific application 
domain. DSeq=D1D2…Dn is a data sequence, where Di∈E( i=1…n) denoting the data 
item on the ith position of the sequence. The length of DSeq is denoted as |DSeq|. 

[Def. 2.2] Let S1 and S2 denote two data sequences, where S1=X1X2…Xm and 
S2=Y1Y2…Yn. S2 is a sub-sequence of S1 iff there exists an integer sequence i1, i2, …, in 

such that 1≤ i1≤ i2 … ≤ m and Xik = Yk for k = 1to n.  

[Def. 2.3] Given a data sequence DSeq=D1D2…Dn and another data sequence (also 
named a pattern) P=P1P2…Pm, P appears in DSeq on position i iff there exists an 
integer 1≤ i ≤ n, such that DiDi+1…Di+m-1= P1P2…Pm. It is also said DSeq contains P 
on position i and P is a sub-pattern of DSeq. The frequency of a pattern P in DSeq is 
the number of various positions in DSeq where DSeq contains P. 

[Def. 2.4] A data sequence DSeq=D1D2…Dn is said to FT-contain pattern 
P=P1P2…Pm (m≥2) on position i with δ insertion errors iff there exist an integer 1≤ i 
≤ n, such that Di=P1, D(i+m-1)+δ=Pm, and P is a sub-sequence of DiDi+1…D(i+m-1)+δ. 
Given a fault tolerance δI (δI >0), DSeq is said to insertion FT-contain pattern P 
under fault tolerance δI, denoted as IFT-contain in short, iff DSeq FT-contains P with 
δ insertion errors and δ≤δI. In other words, there exists a sub-pattern of DSeq starting 
from position i which is gotten by inserting at most δI data items in the middle of P. 
The pattern is also said to IFT-appear in DSeq. 

[Example 2.1] Suppose DSeq=ABCDABCA, and δI=2. Given patterns P1=ABCA, 
P2=BCAC, and P3=ABBC. According to [Def. 2.4], DSeq FT-contains P1 on position 
1 with 1 insertion error. Besides, DSeq FT-contains P1 on position 5 with 0 insertion 
error. Similarly, DSeq FT-contains P2 on position 2 with two insertion errors. There-
fore, DSeq IFT-contains P1 and P2. However, P3 doesn’t IFT-appear in DSeq. 

[Def. 2.5] A data sequence DSeq=D1D2…Dn is said to FT-contain a pattern 
P=P1P2…Pm  (m>δ) on position i with δ deletion errors iff there exist an integer  
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1≤ i≤ n, such that DiDi+1…D(i+m-1)-δ is a sub-sequence of P. Given a fault tolerance 
δD(δD > 0), DSeq is said to deletion FT-contain pattern P, denoted as DFT-contain 
in short, iff DSeq FT-contains P on position i with δ deletion errors, where Di=P1 and 
δ≤δD. That is, there exists a sub-pattern of DSeq starting from position i which is 
gotten by deleting at most δD data items from P except the first data item. The pattern 
P is also said to DFT-appear in DSeq.  

[Example 2.2] Suppose DSeq=ABCBCA, and δD=3. Given patterns P1=BCDA and 
P2=EFB. DSeq FT-contains P1 on position 4 with 1 deletion error (by deleting “D” 
from P1). Therefore, P1 DFT-appears in DSeq. Although DSeq FT-contains P2 on 
positions 2 and 4, respectively, with 2 deletion errors, P2 doesn’t DFT-appear in DSeq 
because the deletion error on the first data item of P2 is not allowed. 

[Def. 2.6] The fault tolerant frequency of a pattern P in DSeq, denoted as FT-
freqDSeq(P), is the number of various positions in DSeq where DSeq IFT/DFT-contains 
P. The pattern P is named a fault-tolerant repeating pattern, FT-RP in short, if and 
only if FT-freqDSeq(P) ≥ a required minimum frequency min_freq. 

[Def. 2.7] A  FT-RP P is a non-trivial FT-RP if there does not exist any FT-RP P’ 
such that P is a sub-pattern of P’, and FT-freqDSeq(P’) = FT-freqDSeq(P). 

3   Bit Sequence Representation 

In this section, section 3.1 will introduce the design of appearing bit sequences. How 
to apply the appearing bit sequences of patterns to compute the frequency of candi-
date patterns with fault tolerance quickly is introduced in section 3.2 and 3.3. 

3.1   Appearing Bit Sequences 

For each kind of data item N in the data sequence, N has a corresponding appearing 
bit sequence (denoted as AppearN). The length of each appearing bit sequence equals 
the length of the data sequence. The leftmost bit is numbered as bit 1 and the number-
ing increases to the rightmost bit. If some data item appears on the ith position of the 
data sequence, bit i in the appearance bit sequence of this data item is set to be 1; 
otherwise, it is set to be 0. A bit index table is used to store the appearing bit se-
quences for all the data items in the data sequence. Therefore, the frequency of a data 
item is obtained according to the number of bits with value 1 in its appearing bit se-
quence, without needing to scan the data sequence repeatedly. The idea is also appli-
cable for a longer pattern as explained in the following example. 

[Example 3.1] The bit index table of “ABCDABCACDEEABCCDEAC” is given as 
shown in Table 1.  

1) Suppose we would like to get AppearAB. A position i where “AB” appears implies 
“A” must appear on position i and “B” appears on the next position (i+1).  
Step1. Get AppearB=01000100000001000000 from Table 1. 
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Table 1. The bit index table of DSeq 

Data Item Appearing Bit Sequence 
A 10001001000010000010 
B 01000100000001000000 
C 00100010100000110001 
D 00010000010000001000 
E 00000000001100000100 

Step2. Perform left shift 1 (=|AB|-1) bit operation on AppearB (shift bit (i+1) to  
bit i, where 1≤i≤19, and set bit 20 to be 0), L_shift(AppearB, 1) = 
10001000000010000000. 

Step3. AppearAB = AppearA∧L_shift(AppearB, 1) = 10001000000010000000. 
 2) Suppose we would like to get AppearABC after getting AppearAB. A position i 

where “ABC” appears implies “AB” must appears on position i and “C” appears 
on position i+2.  
Step1. Obtain AppearC=00100010100000110001 from Table 1. 
Step2. Perform left shift 2 (=|ABC|-1) bits on AppearC, L_shift(AppearC, 2) = 

10001010000011000100.  
Step3. AppearABC = AppearAB∧L_shift(AppearC, 2) = 10001000000010000000.  

Accordingly, the frequency of “ABC” in DSeq equals the number of bits with 
value 1 in AppearABC (that is 3 in this case).  

Suppose pattern P=P1P2…Pm (m≥2), where Pi (i=1, …,m) is a data item. Let 
P’=P1P2…Pm-1 and X=Pm. Then AppearP could be deduced from AppearP’ and Ap-
pearX according to the recursive formula 3.1 shown below.  

If |P|=1, AppearP= AppearP ; 

Otherwise, AppearP= AppearP’ ∧L_shift(AppearX, |P|-1).          (3.1) 

The function L_shift(b, n, c) performs left shift n bits on b, and the rightmost bits on b 
are filled with constant c(c=0 or 1). If the parameter c is omitted from the function, 
the default value of c is set to be 0. 

3.2   Appearing Bit Sequences with Insertion Fault Tolerance 

By extending appearing bit sequences, the fault-tolerant appearing bit sequences are 
designed to represent the appearing positions of a pattern with fault tolerance. Given a 
fault-tolerance δ(δI or δD), the fault-tolerant appearing bit sequence of a pattern P in a 
data sequence, denoted as FT-AppearP

+(δ)/FT-Appear P
-(δ), represents the positions 

where the data sequence IFT/DFT-contains P.  
By considering the insertion fault tolerance, the appearing bit sequence of a pattern 

P with E numbers of insertion errors, denoted as AppearP
+(E), is defined. The bits 

with value 1 in AppearP
+(δ) represent those positions where the data sequence FT-

contains P with E insertion errors. According to [Def. 2.4], there are (δI+1) situations 
that a pattern P IFT-appears in DSeq under fault tolerance δI. That is, DSeq FT-
contains P with 0, 1, 2, …, or δI insertion errors. In other words, performing δI or 
operations on (δI+1) appearing bit sequences: AppearP

+(0), AppearP
+(1), AppearP

+(2), 
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…, and AppearP
+(δI), FT-AppearP

+(δI) could be obtained. According to the definition, 
AppearP

+(E) with |P|=1 is obtained from the following rule: 

[Rule 3.1] Suppose the insertion fault-tolerance is set to be δI. If |P|=1, AppearP
+(E) 

=0 for all 1≤E≤δI.             (3.2) 

The remaining problem is how to get AppearP
+(E) for |P|>1 and 0≤E≤δI. Since  

AppearP
+(0) represents the locations where DSeq FT-contains P with zero insertion 

error, the way of getting AppearP
+(0) is the same as getting AppearP. When 1≤E≤δI, 

AppearP
+(E) could be obtained by performing bit operations on appearing bit se-

quences of the prefix of P with length |P-1| and the last data item in P according to the 
following lemma.   

[Lemma 3.1] Given a pattern P=P1P2…Pm, where Pi (i=1,…,m) is a data item. Let P’ 
denote P1P2…Pm-1 and X denote Pm. DSeq FT-contains pattern P with E insertion er-
rors on position i, iff DSeq FT-contains pattern P’ with k insertion errors on position i 
(0 ≤ k ≤ E) and X appears on position i+(|P|+E)-1. 

Proof. P’ appears in DSeq from position i to (i+|P|-1)+k (with k insertion errors) and 
E-k insertion errors occurs between P’ and X. Besides, |P’|+1=|P|. It induces that X  
appears on position (i+|P|-1)+k+(E-k)+1=i+(|P’|+1)+E-1= i+(|P|+E)-1.  

In other words, X must appear on the (|P|+E-1)th position on the right hand side of 
position i. Therefore, the way of getting AppearP

+(E) is expressed as the following 
recursive formula for 0<E≤δI. 

If |P|=1,  AppearP
+(E)= 0;                        

Otherwise, AppearP
+(E)=( ∨

=

E

k 0

AppearP’
+(k))∧L_shift(AppearX,|P|+E-1).      (3.3) 

To combine Formulas (3.1) and (3.3), a recursive function of getting AppearP
+(E), 

where 0<E≤δI is defined as follows. 

[Def. 3.1] Recursive function of getting AppearP
+(E): Suppose a pattern P=P1P2…Pm 

is given, where Pi (i=1,…,m) is a data item. Let P’ denote P1P2…Pm-1 and X denote 
Pm. When insertion fault tolerance δI is given, AppearP

+(E) is obtained from the fol-
lowing recursive function for 0≤E≤δI. 

If |P|=1, then AppearP
+(0)= AppearP; ∀1≤E≤δI, AppearP

+(E)=0;  

Else AppearP
+(E)= ( ∨

=

E

k 0

AppearP’
+(k))∧L_shift(AppearX, |P|+E-1). 

[Example 3.2] Suppose δI is set to be 1. According to the bit index table shown in 
Table 1, the process of getting AppearAB

+(1) and AppearABC
+(1) is shown as follows. 

(1) AppearAB
+(1) 

Step1. Get AppearB = 01000100000001000000 from the bit index table. 
Step2. Perform an or operation on AppearA

+(0) and AppearA
+(1). According to 

formula (3.2), AppearA
+(1)=0, and AppearA

+(0)= AppearA.  
s = AppearA

+(0)∨ AppearA
+(1)=10001001000010000010. 
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Step3. Perform left shift 2 (= |AB|+1-1) bits on AppearB,  
t = L_shift(AppearB, 2) =  00010000000100000000. 

Step4. Perform an and operation on s and t to get AppearAB
+(1). Thus the resultant 

bit sequence: s∧t= 00000000000000000000. 
(2) AppearABC

+(1) 
Step1. Get AppearC = 00100010100000110001. 
Step2. Perform an or operation on AppearAB

+(0) and AppearAB
+(1). Since Ap-

pearAB
+(0) is gotten based on formula (3.1) and AppearAB

+(1) is known 
from the previous result of this example, the resultant appearing bit se-
quence: s=AppearAB

+(0) ∨AppearAB
+(1 )= 10001000000010000000. 

Step3. Perform left shift 3 (=|ABC|+1-1) bits on AppearC,  
t = L_shift(AppearC, 3) =  00010100000110001000. 

Step4. Perform an and operation on s and t to get AppearABC
+(1). Thus the resul-

tant bit sequence: s∧t= 00000000000010000000. 

Finally, FT-AppearP
+(δI) is obtained by performing ∨

=

I

i

δ

0

 AppearP
+(i). FT-freqDSeq(P) 

equals to the number of bits with value 1 in FT-AppearP
+(δI). Therefore, the insertion 

fault-tolerant frequency of a pattern P could be counted quickly.  

[Example 3.3] Follows the results shown in Example 3.1 and Example 3.2,  
FT-AppearABC

+(1) = AppearABC
+(0) ∨ AppearABC

+(1) = 10001000000010000000 and 
FT-freqDSeq(“ABC”) = 3.  

To avoid duplicate computations of or and left shift operations to get AppearP
+(E) for 

various E, the function of getting AppearP
+(E) is re-defined to use recurrent relations 

between temporary results for getting AppearP
+(E) and AppearP

+(E-1). 

[Def. 3.2] Modified recursive function of getting AppearP
+(E): Suppose a pattern 

P=P1P2…Pm is given. Let P’ =P1P2…Pm-1 and X denote Pm. AppearP
+(E) is obtained 

from the following recursive function for 0≤E≤δI. 

If |P|=1, then AppearP
+(0)= AppearP; ∀1≤E≤δI, AppearP

+(E)=0; 
Else If E =0, then temp1(E) = AppearP’

+(0); temp2(E) = L_shift(AppearX, |P|-1);  
Else temp1(E) = temp1(E-1)∨ AppearP’

+(E);  temp2(E) = L_shift(temp2(E-1), 1); 
AppearP

+(E)= temp1(E) ∧ temp2(E). 

3.3   Appearing Bit Sequences with Deletion Fault Tolerance 

The appearing bit sequence of a pattern P with E numbers of deletion errors is de-
noted as AppearP

-(E). The bits with value 1 in AppearP
-(E) represent those positions 

where the data sequence FT-contains P with E deletion errors.  
Suppose a pattern P=P1P2…Pm is given. Let Y denote the first data item P1 and P” 

denote P2P3…Pm. FT-AppearP
-(δI) represents the positions where Y appears and DSeq 

FT-contains P” on the next positions with at most δD deletion errors. Therefore, when 
finding a position j where DSeq FT-contains P” with 0, 1, 2, …, or δD deletion errors, 
if implies DSeq DFT-contains P on position (j-1) if position (j-1) contains Y. In other 
words, after performing or operations on (δD+1) appearing bit sequences:  
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AppearP’’
+(0), AppearP’’

+(1),…, AppearP’’
+(δD -1), and AppearP’’

+(δD), then performing 
a left shift operation on the previous result, and finally performing an and operation 
with AppearY, FT-AppearP

-(δD) could be obtained. Note that if |P| ≤ δD+1, when 
performing the left shift operation, the rightmost bit is filled with 1 because the bit is 
considered as “don’t care” bit on the next performed and operation. Otherwise, 0 is 
filled to the rightmost bit. According to the definition, AppearP”

-(E) is obtained from 
the following rule for all |P”|≤E≤δD: 

[Rule 3.2] Suppose the deletion fault-tolerance is set to be δD. If |P”| ≤δD, AppearP”
-

(E)=0 for all |P”|<E≤δD; AppearP”
-(E)=complement(AppearP”) for E=|P”|.      (3.4) 

Accordingly, the remaining problem is to get AppearP”
-(E) for 0 ≤ E < |P”|. Since 

AppearP
-(0) represents the positions where DSeq FT-contains P” with zero deletion 

error, it implies the same information represented in AppearP”.  Therefore, the way of 
getting AppearP

-(0) is the same as getting AppearP”. When 1 ≤ E ≤ |P”|, AppearP”
-(E) 

is obtained by performing bit operations on appearing bit sequences of the prefix of 
P” with length |P”-1| and the last data item in P” according to the following lemma.   

[Lemma 3.2] Given a pattern P”=P2P3…Pm, where (i=2 , …,m) is a data item.  Let Q 
denote P2P3…Pm-1 , and X denote the last data item Pm. DSeq FT-contains pattern 
P”with E deletion errors on position i, iff  

1) DSeq FT-contains pattern Q with E deletion errors on position i and X appears on 
position  i+(|P”|-1-E), or 

2) DSeq FT-contains pattern Q with (E-1) deletion errors on position i and FT-
contains X on position i+(|P”|-E) with 1 deletion error. 

Proof   
1) Q appears in DSeq from position i to i+(|Q|-E)-1 (with E deletion errors). If DSeq 

FT-contains P” on position i with E deletion errors, X must appear on position 
i+(|P”|-1-E) (because |Q|=|P”|-1).   

2) Q appears in DSeq from position i to i+(|Q|-(E-1))-1= i+(|Q|-E) (with E-1 deletion 
errors). Then X is forced to be absent on position i+(|Q|-E)+1. That is, DSeq FT-
contains X with 1 deletion error on position i+(|P”|-1-E)+1=i+(|P”|-E).                  

Therefore, the way of getting AppearP”
-(E) is expressed as the following recursive 

function for 0 < E ≤δD. 

If |P”| < E, AppearP”
-(E) = 0; 

Else if |P”| = E, AppearP”
-(E) = complement(AppearP” ); 

Else AppearP”
-(E)=(AppearQ

-(E) ∧ L_shift(Appearx, |P”|-E-1,0))∨ 
                             (AppearQ

-(E-1) ∧ L_shift(Appearx
-(1), |P”|-E,1)).                 (3.5) 

To combine Formulas (3.1) and (3.5), a recursive function of getting AppearP”
-(E), 

where 0 ≤ E ≤δD is defined as follows. 

[Def. 3.3] (Recursive function of getting AppearP”
-(E)): Suppose a pattern P”= 

P2P3…Pm is given. Let Q denote P2P3…Pm-1  and X denote Pm. When deletion fault 
tolerance δD is given, AppearP”

-(E) is obtained from the following recursive function 
for 0 ≤ E ≤δD. 
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IF |P”|=1, then AppearP”
-(0)= AppearP(E); AppearP”

-(1)=complement(AppearP); 
Else if E = 0, then  AppearP”

-(0)=AppearQ
-(0) ∧L_shift(Appearx , |P”|-1); 

Else if E >|P”|, then AppearP”
-(E) = 0;  

Else if E =|P”|, then AppearP”
-(E) = complement( AppearP”

-(0) ); 
Else AppearP”

-(E) = (AppearQ
-(E) ∧L_shift(Appearx , |P”|-E-1,0))∨ 

(AppearQ
-(E-1) ∧L_shift(Appearx

-(1), |P”|-E,1)). 

[Example 3.4] Suppose δD is set to be 1. According to the bit index table shown in 
Table 1, the process of getting AppearB

-(1), AppearBC
-(1) and AppearBCD

-(1) is de-
scribed as follows. 

(1) AppearB
-(1) = complement( AppearB). 

Step1. Get AppearB = 01000100000001000000.  

Step2. AppearB
-(1) = ¬AppearB = 10111011111110111111. 

(2) AppearBC
-(1) = (AppearB

-(1) ∧L_shift(AppearC,0,0) ∨ 
                          (AppearB

-(0) ∧L_shift(AppearC
-(1),1,1) 

Step1. Get AppearC = 00100010100000110001. 
Step2. Perform left shift 0 (=|BC|-1-1) bit on AppearC,  

s= L_shift(AppearC,0,0)=00100010100000110001. 
Step3. Perform an and operation on s and AppearB

-(1), where the result of AppearB
-

(1) has been obtained previously. u=s∧ AppearB
-(1)=00100010100000110001. 

Step4. AppearC
-(1)= ¬AppearC =11011101011111001110. 

Step5. Perform left shift 1 (=|BC|-1) bit on AppearC
-(1) (the rightmost bit is filled 

with 1). t= L_shift(AppearC
-(1),1,1) = 10111010111110011101. 

Step6. Perform an and operation on t and AppearB
-(0).   

v = t∧ AppearB=00000000000000000000.  
Step7. Perform an or operation on u and v.  Then the resultant bit sequence is w= u∨ v 

= 00100010100000110001.  
(3) AppearBCD

-(1) =  (AppearBC
-(1) ∧L_shift(AppearD,1,0) ∨ 

                      (AppearBC
-(0)∧L_shift(AppearD

-(1),2,1)  
Step1. Get AppearD = 00010000010000001000. 
Step2. Perform left shift 1 (=|BCD|-1-1) bit on AppearD.  

s= L_shift(AppearD(1),1,0) =00100000100000010000. 
Step3. Perform an and operation on s and AppearBC

-(1), where the result of AppearBC
-

(1)  has been obtained previously. 
u=s∧ AppearBC

-(1)=00100000100000010000      
Step4. AppearD

-(1)= ¬ AppearD=11101111101111110111. 
Step5. Perform left shift 2 (=|BCD|-1) bits on AppearD

-(1).  
t=L_shift(AppearD

-(1),2,1)=10111110111111011111.  
Step6. Perform an and operation on t and AppearBC

-(0). 
v = t∧ AppearBC

-(0)=00000100000001000000.  
Step7. Perform an or operation on u and v. Then the resultant bit sequence is w = u∧v 

= 00100100100001010000. 

Let temp(E) denote the results of ∨
=

E

k 0

Appearp”
-(k). To combine formulas 3.4 and 3.5, a 

recursive function of getting FT_AppearP
-(δD) is defined as follows. 



104 J.-L. Koh and Y.-T. Kung 

[Def. 3.4] (Recursive function of getting FT_AppearP
-(δD)): Suppose a pattern 

P=P1P2…Pm is given, where Pi (i=1,…,m) is a data item. Let Y denote P1, P’’ denote 
P2P3…Pm, Q denote P2P3…Pm-1 , and X denote Pm. When deletion fault tolerance δD is 
given, FT_AppearP

-(δD) is obtained from the following recursive function. 

If |P|≤ δD +1, then FT_AppearP
-(δD) = AppearY; 

Else  tempP’(δD-1) = AppearQ ∨ (AppearQ
-(δD -1) ∧ L_shift(AppearX, |P’’|-δD, 0));  

tempP’(δD)= tempQ(δD-1) ∨ (AppearQ
-(δD) ∧ L_shift(AppearX, |P’’|-δD-1, 0)); 

FT_AppearP
-(δD) = AppearY ∧ L_shift(tempP’(δD),1,0). 

FT_FreqDSeq
-(P) equals to the number of bits with value 1 in FT_AppearP

-(δD). There-
fore the deletion fault-tolerant frequency of a pattern P could be counted efficiently to 
evaluate whether P is a FT-RP or not. 

4   Mining Top-K Non-trivial FT-RPs with Min- ength Constraint 

In this section, two algorithms, called TFTRP-Mine and RE-TFTRP-Mine, are 
developed for finding Top-K non-trivial FT-RPs. These two algorithms are applica-
ble for both situations considering insertion/deletion fault tolerance by exchanging the 
function of generating fault-tolerant appearing bit sequences. 

4.1   TFTRP-Mine Algorithm 

TFTRP-Mine Algorithm is designed based on the representation of fault-tolerant 
appearing bit sequences to mine top-K non-trivial FT-RPs. First, the data sequence is 
scanned once to create the bit index table. Initially, the candidate pattern is a single 
data item in the data sequence. If the candidate is a FT-RP, an additional data item is 
appended to the FT-RP to generate a longer candidate pattern. In other words, the 
candidate patterns are generated in depth-firs order. So the fault-tolerant appearing bit 
sequence of a candidate pattern is obtained according to the recursive function de-
fined in the previous section. Then, the fault-tolerant frequency of a candidate pattern 
is counted efficiently to decide whether it is a FT-RP. According to the anti-
monotonic property, it is not necessary to generate candidate patterns by appending 
additional data items to a non-FT-RP. Moreover, a FT-RP must satisfy the minimum 
length and non-trivial constraints before being outputted to the mining result. Finally, 
after sorting the mining result according to the fault-tolerant frequencies, the top-K 
non-trivial FT-RPs satisfying the min_len constraints are obtained from the first K 
patterns in the result. In summarizing the above descriptions, the mining process of 
TFTRP-Mine algorithm consists of the following steps. 

Algorithm TFTRP-Mine: 
Input: a data sequence DSeq, fault tolerance δI /δD, min_len, and K. 
Output: Top-K non-trivial FT-RPs with length no less than min_len. 
Step1. Scan DSeq once to construct the bit index table. 

Let D = {D1, D2, …Dn}denote the set of data items in DSeq. 
Step2. Set P to be an empty data sequence. Set l = 1 and jl = 1. 

l
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Step3.Generate longer candidate patterns: 
Step3-1. Generate a new candidate P’ by appending data item Djl to P, and com-

pute FT-AppearP’
+(δI ) or FT-AppearP’

-(δD ).  
Step3-2. Count the number of bits with value 1 in FT-AppearP’

+(δI ) or FT-
AppearP’

-(δD) to get FT_freqDSeq(P’). If FT_freqDSeq(P’) < min_freq, pro-
ceed to Step3-6. 

Step3-3. Check whether P’satisfies the minimum length constraint. If |P’| ≥ 
min_len, insert P’ into Minlen set. 

Step3-4. Set P=P’, l = l + 1, jl = 1, and recursively call Step3. 
Step3-5. Check whether P’, is non-trivial by calling procedure Non_Trivial(P’, 

temporal results).   
Step3-6. Set jl = jl +1, If jl ≤ n, proceed to Step3-1. 
Step3-7. l = l-1.  If l > 0, return the recursive call; otherwise, proceed to Step4. 

Step4. Sort the temporal results in fault-tolerant frequency descending order. Extract 
the first K patterns from the temporal results. 

If S is non-trivial among the patterns found until now according to the results in 
Temp, the procedure Non_Trieval(S, Temp) will insert S into Temp. Moreover, all the 
sub-patterns of S in Temp, which have the same frequencies with S, will be removed. 

4.2   RE-TFTRP-Mine Algorithm 

In TFTRP-Mine algorithm, all the FT-RPs in the data sequence are found first.  Then, 
top-K non-trivial FT-RPs are extracted from the results. If huge amounts of FT-RPs 
exist, all FT-RPs still have to be mined out even only the top-K non-trivial FT-RPs 
need to be outputted. It causes the mining process costly even for a small K setting. 
Therefore, the refinement of TFTRP-Mine, RE-TFTRP-Mine algorithm is designed. 
In the refined algorithm, those FT-RPs which are not possible the top-K non-trivial 
FT-RPs are pruned as early as possible by raising min_freq during the mining process. 
The idea is to raise min_freq to be a higher value if the least frequency among the 
most updated top-K FT-RPs has became larger than min_freq. Then, the FT-RPs with 
fault-tolerant frequencies less than the new min_freq will not be used to generate 
longer candidate patterns in the following mining process. Moreover, in order to get 
the FT-RPs with high fault-tolerant frequencies as early as possible, among the FT-
RPs which have been discovered, the FT-RPs with higher frequencies are assigned 
higher priorities used to generate new candidates.  

The mining process of RE-TFTRP-Mine algorithm is shown below. Since the 
minimum length constraint is required, the two strategies described above are applied 
only after all the FT-RPs with length equal to min_len have been found and stored in 
Minlen_Heap. Then, the patterns in Minlen_Heap are sorted according to their fault-
tolerant frequencies to decide their priorities for generating the following candidates.   

Algorithm RE-TFTRP-Mine: 
Input: a data sequence DSeq, fault tolerance δI /δD, min_len, and K. 
Output: Top-K non-trivial FT-RPs with length no less than min_len. 
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Step1. Scan DSeq once to construct the bit index table. 
Let D = {D1, D2, …Dn }denote the set of data items in DSeq. 

Step2. Set P to be an empty data sequence. Set l = 1 and jl = 1. 
Step3. Generate longer candidate patterns: 

Step3-1. Generate a new candidate P’ by appending data item Djl to P, and compute 
FT-AppearP’

+(δI ) or FT-AppearP’
-(δD ).  

Step3-2. Count the number of bits with value 1 in FT-AppearP’
+(δI ) or FT-AppearP’

-

(δD) to get FT_freqDSeq(P’). If FT_freqDSeq(P’) < min_freq, proceed to Step3-5. 

Step3-3. Check whether P’ satisfies the minimum length constraint. If |P’| ≥ 
min_len, insert P′ into Minlen_Heap and proceed to Step3-5. 

Step3-4. If |P’| < min_len, set P=P’, l = l + 1, jl = 1, and recursively call Step3. 

Step3-5. Set jl = jl + 1. If  jl≤ n, go back to Step3-1. 
Step3-6. l = l -1, if l > 0, return the recursive call; else if l = 0, copy the K patterns in 

Minlen-Heap with top-K fault tolerant frequencies to temporal top-K set, and 
proceed to Step4. 

Step4. Select a FT-RP to generate candidates: 
Step4.1. Maintain the non-trivial FT-RPs patterns with Top-K fault tolerant  

frequencies in the temporal top-K set. Let S denote the pattern that has the least 
frequency among the Top-K patterns currently. If FT_freqDSeq(S)> min_freq, set 
min-freq = FT_freqDSeq(S). Remove those patterns with fault-tolerant frequencies 
being less than the new min_freq from Minlen_Heap. 

Step4.2. Set P={Q| Q has maximum fault-tolerant frequency in Minlen_Heap} and 
remove P from Minlen_heap. Set l=|P|, l = l+1, jl=1, and recursively call Step3. 

Step4.3. Check whether P is non-trivial by calling procedure Non_Trivial(P, tem-
poral top-K set).   

Step5. Repeat Step 4 until Minlen_Heap is empty. 
Step6. Extract the first K patterns from the temporal top-K set to be the mining result. 

5   Performance Study 

We implemented TFTRP-Mine and RE-TFTRP-Mine algorithms using Borland C++ 
Builder 5.0. The experiments are performed on a 2.4GHz Intel Pentium IV PC ma-
chine with 512 megabytes main memory and running Microsoft XP Professional. 

In the first five experiments, data sequences are produced from a synthesis data 
generator. Two input parameters are required when running the data generator, where 
L denotes the length and E denotes the number of various data items in the generated 
data sequence. The scalabilities of TFTRP-Mine and RE-TFTRP-Mine algorithms on 
execution time are compared under various parameters setting. Moreover, the results 
of mining repeating patterns in real music objects without fault tolerance and with 
fault tolerance are compared in the last experiment. According to theses experiment 
results, the effectiveness of mining with fault tolerance is observed. 

In addition to the data parameters L and E defined previously, δI(the insertion fault 
tolerance), min_len(the minimum length constraint) and K(the desired number of  
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non-trivial FT-RPs to be mined) also influence the mining results and execution time 
of  the proposed algorithms. By varying one of these five factors (L, E, δI, min_len, 
and K) in each experiment, the scalabilities of TFTRP-Mine and RE-TFTRP-Mine on 
execution time are observed. Besides, in order to show the pruning effect of  
RE-TFTRP-Mine, the numbers of generated candidate patterns of two algorithms are 
also illustrated. In the following five experiments, min_freq is fixed to be 10. 

[Experiment 1] Changing the size of a data sequence (L)  
In this experiment, δI = 2, min_len = 8, K = 5 and E = 5 are given. L is varied from 
1000 to 5000. The experimental results in Fig. 1 show the execution efficiency of RE-
TFTRP-Mine algorithm outperforms the one of TFTRP-Mine algorithm. The reason 
is that the former does not need to generate all candidate patterns when finding top-K 
non-trivial FT-RPs. Moreover, the number of generated candidate patterns increases 
as the value of L is raised. Therefore, when L increases, the execution efficiency of 
TFTRP-Mine is slower and slower than the one of RE-TFTRP-Mine algorithm.  

[Experiment 2] Changing the number of various data items (E)  
Fig. 2 shows the execution times of the proposed two algorithms on data sequences 
with L=2000, where δI=2, min_len=8 and K=5 are inputted. When E increases from 5 
to 25, the generated candidate patterns also increases. Thus, the performance efficien-
cies of two algorithms decrease in this range. However, when E=30, the numbers of 
generated candidates in both algorithms become less than the ones generated when 
E=25 and the corresponding execution time of both algorithms is also lowered down. 
The reason is that more various data items may cause the data sequence becomes 
more “sparse”. Therefore, fewer FT-RPs are found and fewer candidate patterns are 
generated even there are more various data items. 

[Experiment 3] Changing insertion fault tolerance (δI)  
This experiment is performed on data sequences with L=2000, where E=5, 
min_len=8 and K=5 are inputted. As the results shown in Fig. 3, when δI increases, 
the number of generated candidate patterns grows exponentially because much more 
FT-RPs are found due to the relaxed constraints. Therefore, the execution time of two 
algorithms also increases as δI increases. However, RE-TFTRP-Mine still prunes huge 
amount of unnecessary candidates dramatically.  

[Experiment 4] Changing the minimum length (min_le)  
This experiment is performed on data sequences with L=2000 and E=5, where δI=2 
and k=5 are inputted. For the same data sequence, no matter what value the min_len 
is, the number of generated candidate patterns in TFTRP-Mine algorithm is the same 
(41,730) and the curve of execution time keeps almost steady. On the other hand, RE-
TFTRP-Mine algorithm finds all the FT-RPs with lengths equal to min_len before 
tuning the min_freq. Therefore, the number of generated candidates of algorithm 
increases as min_len increases. In addition, because the longer patterns usually have 
lower frequencies, the larger min_len is, the less number of non-trivial FT-RPs are 
discovered. Thus, the number of non-trivial FT-RPs in the data sequence is less than 5 
when min_len = 45 and 50. It implies that the setting of min_freq was not raised dur-
ing the execution of RE-TFTRP-Mine algorithm. In this situation, RE-TFTRP-Mine  
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Fig. 3. Result of Experiment 3 

algorithm generates the same candidate patterns as TFTRP-Mine does and needs 
additional cost to maintain the sorted FT-RPs and the top-Ks. So the execution time of 
RE-TFTRP-Mine is over the one of TFTRP-Mine when min_len is 45 and 50. 

[Experiment 5] Changing the setting value of K  
In this experiment, data sequences with L=2000 and E=5 are used as test data, where 
the run time parameters δI=2 and min_len=8 are given. Let max_K denote the number  
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of total non-trivial FT-RPs with min_len constraints discovered in this test data se-
quence. K is varied from max_K×1% to max_K×100%. Fig. 5.5 shows that the num-
ber of generated candidates in RE-TFTRP-Mine is the same with the one generated in 
TFTRP-Mine when K/max_K is more than 80%. This case occurs because the least-
frequency in the top 80% non-trivial FT-RPs is the same with min_freq. Therefore, 
the pruning strategy does not work and more processing cost of RE-TFTRP-Mine is 
required than TFTRP-Mine. However, the execution time of RE-TFTRP-Mine is 
about half of the time of TFTRP-Mine because RE-TFTRP-Mine prunes about two 
third of the candidate patterns when K/max_K is 1%. 

[Experiment 6] Performance evaluation on effectiveness 
In this experiment, five popular songs are selected as test data, whose total playing-
times are between 4 and 5 minutes. The run-time parameters min_freq = 3, K = 2 and 
min_len =8 are given. We compare the found repeating patterns under various setting 
of δI or δD with the actual motifs in the music object. The results show that no non-
trivial FT-RPs satisfying the min_len constraint could be found among the five music 
objects if fault-tolerant mapping is not allowed. When at most two insertion/deletion 
errors are allowed (δI or δD = 2), the found patterns are most close to the motifs in the 
music objects. It shows that mining repeating patterns with fault tolerance is necessary. 



110 J.-L. Koh and Y.-T. Kung 

6   Conclusion and Future Works 

In this paper, two algorithms, named TFTRP-Mine and RE-TFTRP-Mine, are pro-
posed to mine top-K non-trivial fault-tolerant repeating patterns with lengths no less 
than minimum length constraints from data sequences. By extending the idea of ap-
pearing bit sequences, fault-tolerant appearing bit sequences are defined to represent 
the positions where candidate patterns appear in a data sequence with Inser-
tion/deletion errors. Both of two algorithms use the recursive formulas to obtain fault-
tolerant appearing bit sequences of a pattern systematically and then the fault-tolerant 
frequency of each candidate pattern could be obtained quickly. Besides, RE-TFTRP-
Mine adopts two additional strategies to improve the mining efficiency. The experi-
mental results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when 
K and min_len are small. In addition, when adopting fault tolerant mining, more im-
portant and implicit repeating patterns could be found for music objects.  
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