# **An Efficient Approach for Mining Top-K Fault-Tolerant Repeating Patterns\***

Jia-Ling Koh and Yu-Ting Kung

Department of Information and Computer Education, National Taiwan Normal University, Taipei, Taiwan 106, R.O.C jlkoh@ice.ntnu.edu.tw

**Abstract.** In this paper, an efficient strategy for mining top-K non-trivial faulttolerant repeating patterns (FT-RPs in short) with lengths no less than *min\_len* from data sequences is provided. By extending the idea of appearing bit sequences, fault-tolerant appearing bit sequences are defined to represent the locations where candidate patterns appear in a data sequence with insertion/deletion errors being allowed. Two algorithms, named **TFTRP-Mine**(**T**op-K non-trivial **FT-RP**s **Mining**) and **RE-TFTRP-Mine** (**RE**finement of **TFTRP-Mine**), respectively, are proposed. Both of these two algorithms use the recursive formulas to obtain the fault-tolerant appearing bit sequence of a pattern systematically and then the fault-tolerant frequency of each candidate pattern could be counted quickly. Besides, RE-TFTRP-Mine adopts two additional strategies for pruning the searching space in order to improve the mining efficiency. The experimental results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when *K* and *min\_len* are small. In addition, more important and implicit repeating patterns could be found from real music objects by adopting fault tolerant mining.

## **1 Introduction**

-

*Repeating patterns* represent the important sub-patterns in a data sequence because they appear repeatedly. There have been many approaches proposed for mining repeating patterns[1][3][4]. However, in most approaches, only exact pattern matching was considered during the mining process. It may cause some implicit repeating patterns not being found because of insertion/deletion errors occurring. For example, suppose two data sequences: S1="ACDE...ACEDE...", and S2 = "ACD E... ADE..." are given. The pattern "ACEDE" approximately matches "ACDE" with one insertion error in S1. Besides, the pattern "ADE" approximately matches "ACDE" with one deletion error in S2. However, the exact matching approach will lost the implicit repeating pattern "ACDE" in these two sequences.

To solve the above problem, this paper focuses on the strategy for mining "*faulttolerant*" repeating patterns, *FT-RP*s in short. [In o](#page-15-0)ther words, the insertion/deletion errors are allowed when counting the appearing frequency of a pattern. Besides, to avoid duplicated information and many short patterns being found, only "non-trivial" FT-RPs, i.e., those FT-RPs containing no super-pattern with the same fault-tolerant

<sup>\*</sup> This work was partially supported by the R.O.C. N.S.C. under Contract No. 94-2213- E-003-010.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 95 – 110, 2006. © Springer-Verlag Berlin Heidelberg 2006

frequency, and their lengths no less than a given *min\_len* are mined out. Moreover, by giving the desired number of non-trivial FT-RPs to be mined, we propose an approach of mining "top-K non-trivial fault-tolerant repeating patterns with length no less than min\_len" to avoid finding a huge amount of non-representative patterns.

A data structure called *correlative matrix* was proposed in [3] to aid the process for extracting repeating patterns in a music object. The main disadvantage of this approach is that the processing cost is proportional to the square of the length of the music object. To solve this problem, the same authors developed the *String-Join* algorithm [1] to extract the *non-trivial* repeating patterns in a music object. In [4], the representation of *bit index sequence* was designed to characterize note sequences of music objects. In the mining process, the frequency of a candidate pattern was obtained by performing **shift** and **and** operations on bit sequences and then counting the number of 1s in the resultant bit sequence. Therefore, frequency checking could be performed quickly.

Fault-tolerant data mining would discover more general and useful information for real-world dirty data. The problem of fault-tolerant frequent patterns (itemsets) was defined and solved in [6] by proposing FT-Apriori algorithm. Similar to the Apriori-like algorithms, FT-Apriori algorithm suffered from generating a large number of candidates and scanning database repeatedly. This problem became worse when the fault tolerance was increasing or the support thresholds were decreasing. To speed up the mining of fault tolerant frequent patterns, we proposed an algorithm named FFT-Mine (Fast Fault Tolerant frequent patterns Mining) in [5]. By extending the form of appearing vectors, the fault-tolerant appearing vectors were defined to represent the distribution that the candidate patterns were contained in database with fault tolerance. FFT-Mine algorithm provided a systematically method to reduce the number of operations performed on bit vectors to get the fault-tolerant appearing vectors of candidates. Then whether a candidate is a fault-tolerant frequent itemset could be judged quickly.

When mining frequent patterns, it is difficult for users to set an appropriate minimum support threshold without knowing the distribution of data in the database. Moreover, if long patterns exist in a database, the mining result may return many short or tedious patterns with duplicated information. To prevent the above problems occurring, [2] proposed a TFP algorithm to discover top-K frequent closed patterns with length no less than *min\_l*. For solving the similar problems when mining frequent sequential patterns, TSP algorithm was proposed in [7]. It adopted the similar idea proposed in TFP algorithm to raise the minimum support during the mining process for discovering top-K closed sequential patterns. Then the searching space would be pruned dramatically to speed up the mining process.

In summarizing the interesting strategies proposed in the related works, an efficient way of mining top-K non-trivial fault-tolerant repeating patterns (FT-RPs in short) with length no less than *min\_len* for data sequences is proposed in this paper. By extending the idea of appearing bit sequences, fault-tolerant appearing bit sequences are defined to represent the locations where candidate patterns appear in a data sequence with insertion/deletion errors allowed. Then the fault-tolerant frequency of a candidate pattern could be counted from its fault-tolerant appearing bit sequence quickly. The recursive formulas are designed for obtaining the fault-tolerant appearing bit sequence of a pattern systematically in order to eliminate the duplicate computations. Two algorithms, named **TFTRP-Mine** and **RE-TFTRP-Mine**, respectively,

are proposed. The TFTRP-Mine algorithm generates candidate patterns by performing a depth-first searching approach. The RE-TFTRP-Mine algorithm adopts two additional strategies to increase the mining efficiency. The first one is to assign priorities of found repeating patterns for generating candidates according to their fault-tolerant frequencies. Moreover, the minimum frequency is raised dynamically when K numbers of FT-RPs have been found. The experimental results show these two strategies will prune the searching space dramatically when K is small proportional to the number of whole FT-RPs.

This paper is organized as follows. Section 2 defines the relative terms used in this paper. The appearing bit sequences and the way of getting fault-tolerant appearing bit sequences are introduced in Section 3. Section 4 describes the whole processing steps of TFTRP-Mine and RE-TFTRP-Mine algorithms. The performance evaluation of proposed algorithms is shown in Section 5. Finally, in Section 6, we propose the conclusion and feature works of this paper.

## **2 Preliminaries**

**[Def. 2.1]** Let  $E = \{l_1, l_2, ..., l_k\}$  denote the set of data items in a specific application domain. *DSeq*= $D_1D_2...D_n$  is a **data sequence**, where  $D_i \in E$  ( $i=1...n$ ) denoting the data item on the *i*th position of the sequence. The length of *DSeq* is denoted as |*DSeq*|.

**[Def.** 2.2] Let  $S_1$  and  $S_2$  denote two data sequences, where  $S_1 = X_1 X_2 ... X_m$  and  $S_2 = Y_1 Y_2$   $Y_n$ .  $S_2$  is a **sub-sequence** of  $S_1$  iff there exists an integer sequence  $i_1, i_2, \ldots, i_n$ such that  $1 \le i_1 \le i_2 \le m$  and  $X_{ik} = Y_k$  for  $k = 1$ to *n*.

**[Def.** 2.3] Given a data sequence  $DSeq=D_1D_2...D_n$  and another data sequence (also named a pattern)  $P = P_1 P_2 P_m$ , *P* appears in *DSeq* on position *i* iff there exists an integer 1≤ *i* ≤ n, such that *D*i*D*i+1…*D*i+m-1= *P*1*P*2…*P*m. It is also said *DSeq* **contains** *P* on position *i* and *P* is a **sub-pattern** of *DSeq*. The **frequency** of a pattern *P* in *DSeq* is the number of various positions in *DSeq* where *DSeq* contains *P*.

**[Def. 2.4]** A data sequence  $DSeq=D_1D_2...D_n$  is said to **FT-contain** pattern  $P = P_1 P_2 ... P_m$  (m≥2) on position *i* **with**  $\delta$  **insertion errors** iff there exist an integer 1≤ *i*  $\leq$  n, such that  $D_i = P_1$ ,  $D_{(i+m-1)+\delta} = P_m$ , and *P* is a sub-sequence of  $D_i D_{i+1} \dots D_{(i+m-1)+\delta}$ . Given a fault tolerance  $\delta_{I}$  ( $\delta_{I}$  >0), *DSeq* is said to **insertion FT-contain** pattern *P* under fault tolerance  $\delta$ <sub>**I**</sub>, denoted as **IFT-contain** in short, iff *DSeq* FT-contains *P* with **δ** insertion errors and **δ**≤**δI**. In other words, there exists a sub-pattern of *DSeq* starting from position *i* which is gotten by inserting at most  $\delta_I$  data items in the *middle* of *P*. The pattern is also said to **IFT-appear** in *DSeq*.

**[Example 2.1]** Suppose *DSeq*=ABCDABCA, and  $\delta$ **<sub><b>I=2**</sub>. Given patterns *P*<sub>1</sub>=ABCA,  $P_2$ =BCAC, and  $P_3$ =ABBC. According to [Def. 2.4], *DSeq* FT-contains  $P_1$  on position 1 with 1 insertion error. Besides, *DSeq* FT-contains *P*1 on position 5 with 0 insertion error. Similarly, *DSeq* FT-contains  $P_2$  on position 2 with two insertion errors. Therefore, *DSeq* IFT-contains *P*1 and *P*2. However, *P*3 doesn't IFT-appear in *DSeq.* 

**[Def.** 2.5] A data sequence  $DSeq=D_1D_2...D_n$  is said to **FT-contain** a pattern  $P = P_1 P_2 \dots P_m$  (m>δ) on position *i* with **δ** deletion errors iff there exist an integer

1≤ *i*≤ n, such that  $D_iD_{i+1}...D_{(i+m-1)-\delta}$  is a sub-sequence of *P*. Given a fault tolerance  $\delta_{\bf p}(\delta_{\bf p} > 0)$ , *DSeq* is said to **deletion FT-contain** pattern *P*, denoted as **DFT-contain** in short, iff *DSeq* FT-contains *P* on position *i* with  $\delta$  deletion errors, where  $D_i = P_1$  and **δ**≤**δD**. That is, there exists a sub-pattern of *DSeq* starting from position *i* which is gotten by deleting *at most*  $\delta_{\bf p}$  data items from *P* except the first data item. The pattern *P* is also said to **DFT-appear** in *DSeq*.

**[Example 2.2]** Suppose *DSeq*=ABCBCA, and  $\delta_{p}$ =3. Given patterns *P*<sub>1</sub>=BCDA and  $P_2$ =EFB. *DSeq* FT-contains  $P_1$  on position 4 with 1 deletion error (by deleting "D" from *P*1). Therefore, *P*1 DFT-appears in *DSeq*. Although *DSeq* FT-contains *P*2 on positions 2 and 4, respectively, with 2 deletion errors,  $P_2$  doesn't DFT-appear in *DSeq* because the deletion error on the first data item of  $P_2$  is not allowed.

**[***Def.* **2.6]** The **fault tolerant frequency** of a pattern *P* in *DSeq*, denoted as *FT* $freq_{DSeq}(P)$ , is the number of various positions in *DSeq* where *DSeq IFT/DFT*-contains *P*. The pattern *P* is named a **fault-tolerant repeating pattern, FT-RP** in short, if and only if *FT-freq<sub>DSeq</sub>*(*P*) ≥ a required minimum frequency *min\_freq*.

**[***Def.* **2.7]** A FT-RP *P* is a **non-trivial FT-RP** if there does not exist any FT-RP *P'*  such that *P* is a sub-pattern of *P'*, and  $FT$ -freq<sub>DSeq</sub>(*P'*) =  $FT$ -freq<sub>DSeq</sub>(*P*).

# **3 Bit Sequence Representation**

In this section, section 3.1 will introduce the design of appearing bit sequences. How to apply the *appearing bit sequences* of patterns to compute the frequency of candidate patterns with fault tolerance quickly is introduced in section 3.2 and 3.3.

# **3.1 Appearing Bit Sequences**

For each kind of data item *N* in the data sequence, *N* has a corresponding *appearing bit sequence* (denoted as *Appear<sub>N</sub>*). The length of each appearing bit sequence equals the length of the data sequence. The leftmost bit is numbered as bit 1 and the numbering increases to the rightmost bit. If some data item appears on the *i*th position of the data sequence, bit *i* in the appearance bit sequence of this data item is set to be 1; otherwise, it is set to be 0. A bit index table is used to store the appearing bit sequences for all the data items in the data sequence. Therefore, the frequency of a data item is obtained according to the number of bits with value 1 in its appearing bit sequence, without needing to scan the data sequence repeatedly. The idea is also applicable for a longer pattern as explained in the following example.

**[Example 3.1]** The bit index table of "ABCDABCACDEEABCCDEAC" is given as shown in Table 1.

1) Suppose we would like to get *Appear*<sub>AB</sub>. A position *i* where "AB" appears implies "A" must appear on position *i* and "B" appears on the next position (*i*+1). *Step1.* Get *Appear*<sub>B</sub>=01000100000001000000 from Table 1.

| Data Item | <b>Appearing Bit Sequence</b> |
|-----------|-------------------------------|
|           | 10001001000010000010          |
|           | 01000100000001000000          |
|           | 00100010100000110001          |
|           | 00010000010000001000          |
|           | 00000000001100000100          |

**Table 1.** The bit index table of *DSeq*

*Step2.* Perform **left shift** 1 (=|AB|-1) bit operation on *Appear*<sub>B</sub> (shift bit (*i*+1) to bit *i*, where  $1 \le i \le 19$ , and set bit 20 to be 0), *L* shift(*Appear<sub>B</sub>*, 1) = 10001000000010000000.

 $Step 3. \, Appendix = Appendix A \, p \, p \, \text{and} \, f(A \, p \, p \, \text{and} \, r_B, 1) = 100010000000100000000.$ 

- 2) Suppose we would like to get  $Appear_{ABC}$  after getting  $Appear_{AB}$ . A position *i* where "ABC" appears implies "AB" must appears on position *i* and "C" appears on position *i*+2.
	- *Step1.* Obtain *Appear*<sub>C</sub>=00100010100000110001 from Table 1.
	- *Step2.* Perform **left shift** 2 (= $|ABC|-1$ ) bits on *Appear<sub>C</sub>*, *L\_shift*(*Appear<sub>C</sub>*, 2) = 10001010000011000100.

 $Step 3. \, Appendix = Appendix 2. \, Appendix 2. \, Shift(AppearC, 2) = 1000100000010000000.$ 

Accordingly, the frequency of "ABC" in *DSeq* equals the number of bits with value 1 in  *(that is 3 in this case).* 

Suppose pattern  $P = P_1 P_2 P_m$  (m≥2), where  $P_i$  (i=1, …,m) is a data item. Let  $P' = P_1 P_2 P_{m-1}$  and  $X = P_m$ . Then *Appear*<sub>P</sub> could be deduced from *Appear<sub>P'</sub>* and *Appear*<sub>X</sub> according to the recursive formula 3.1 shown below.

If  $|P|=1$ , *Appear*<sub>p</sub>= *Appear*<sub>p</sub>; Otherwise,  $\text{A} \text{p} \text{p} \text{e} \text{a} \text{r}_{\text{P}} = \text{A} \text{p} \text{p} \text{e} \text{a} \text{r}_{\text{P}} \wedge L_{\text{B}} \text{h} \text{f} \text{f} (\text{A} \text{p} \text{p} \text{e} \text{a} \text{r}_{\text{X}}, \text{ } |P|-1).$  (3.1)

The function  $L\_shift(b, n, c)$  performs **left shift** *n* bits on *b*, and the rightmost bits on *b* are filled with constant  $c(c=0 \text{ or } 1)$ . If the parameter c is omitted from the function, the default value of *c* is set to be 0.

### **3.2 Appearing Bit Sequences with Insertion Fault Tolerance**

By extending appearing bit sequences, the fault-tolerant appearing bit sequences are designed to represent the appearing positions of a pattern with fault tolerance. Given a fault-tolerance  $\delta(\delta_1$  or  $\delta_D$ ), the fault-tolerant appearing bit sequence of a pattern *P* in a data sequence, denoted as  $FT\text{-} Appendix$   $\delta$ )/*FT*-Appear  $\bar{P}(\delta)$ , represents the positions where the data sequence IFT/DFT-contains *P*.

By considering the insertion fault tolerance, the appearing bit sequence of a pattern *P* with *E* numbers of insertion errors, denoted as  $AppearP^+(E)$ , is defined. The bits with value 1 in  $Append_{\text{P}}(δ)$  represent those positions where the data sequence FTcontains *P* with *E* insertion errors. According to [*Def*. 2.4], there are  $(\delta_1+1)$  situations that a pattern *P* IFT-appears in *DSeq* under fault tolerance  $\delta_I$ . That is, *DSeq* FTcontains *P* with 0, 1, 2, ..., or  $\delta_I$  insertion errors. In other words, performing  $\delta_I$  or operations on  $(\delta_1+1)$  appearing bit sequences:  $Append_{\text{P}}(0)$ ,  $Append_{\text{P}}(1)$ ,  $Append_{\text{P}}(2)$ , ..., and  $Append_{\text{p}}( \delta_{\text{l}} )$ , FT-Appear<sub>P</sub><sup>+</sup>( $\delta_{\text{l}}$ ) could be obtained. According to the definition,  $$ 

**[Rule 3.1]** Suppose the insertion fault-tolerance is set to be  $\delta_I$ . If  $|P|=1$ , *Appear*<sup>+</sup>(E)  $=0$  for all  $1 \le E \le \delta_1$ . (3.2)

The remaining problem is how to get  $Append_{P}^{+}(E)$  for  $|P| > 1$  and  $0 \leq E \leq \delta_{I}$ . Since  $Appear_{P}^{+}(0)$  represents the locations where *DSeq* FT-contains *P* with *zero* insertion error, the way of getting  *is the same as getting*  $*Appear*<sub>P</sub>$ *. When*  $1 \le E \le \delta_{I}$ *,* Appear<sub>p</sub><sup>+</sup>(E) could be obtained by performing bit operations on appearing bit sequences of the prefix of *P* with length  $|P-1|$  and the last data item in P according to the following lemma.

**[Lemma 3.1]** Given a pattern  $P = P_1 P_2 P_m$ , where  $P_i$  (i=1,…,m) is a data item. Let P' denote  $P_1P_2...P_{m-1}$  and *X* denote  $P_m$ . *DSeq* FT-contains pattern *P* with *E* insertion errors on position *i*, iff *DSeq* FT-contains pattern P' with *k* insertion errors on position *i*  $(0 \le k \le E)$  and *X* appears on position i+( $|P|$ +E)-1.

*Proof.* P' appears in *DSeq* from position *i* to (i+|P|-1)+k (with k insertion errors) and E-k insertion errors occurs between P' and *X*. Besides, |P'|+1=|P|. It induces that *X* appears on position  $(i+|P|-1)+k+(E-k)+1=i+(|P'|+1)+E-1=i+(|P|+E)-1$ .

In other words, *X* must appear on the (|P|+E-1)*th* position on the right hand side of position *i*. Therefore, the way of getting  $AppearP^+(E)$  is expressed as the following recursive formula for  $0 \le E \le \delta_I$ .

If 
$$
|P|=1
$$
,  $Appear_{P}^{+}(E)=0$ ;  
\nOtherwise,  $Appear_{P}^{+}(E)=(\bigvee_{k=0}^{E} Appear_{P}^{+}(k)) \wedge L\_shift(Appear_{X}, |P|+E-1).$  (3.3)

To combine Formulas  $(3.1)$  and  $(3.3)$ , a recursive function of getting  $Appendipearp^+(E)$ , where  $0 \leq E \leq \delta_I$  is defined as follows.

[*Def***. 3.1**] **Recursive function of getting**  $Appear_p^+(E)$ : Suppose a pattern  $P = P_1 P_{2...} P_m$ is given, where  $P_i$  (i=1,…,m) is a data item. Let P' denote  $P_1P_2$ ,  $P_{m-1}$  and X denote  $P_{\rm m}$ . When insertion fault tolerance  $\delta_{\rm I}$  is given, *Appear*<sub>P</sub><sup>+</sup>(E) is obtained from the following recursive function for  $0 \le E \le \delta_I$ .

If 
$$
|P|=1
$$
, then  $Appear_{P}^{+}(0) = Appear_{P}; \forall 1 \leq E \leq \delta_{I},$   $Appear_{P}^{+}(E)=0;$   
Else  $Appear_{P}^{+}(E) = (\bigvee_{k=0}^{E} Appear_{P}^{+}(k)) \wedge L\_shift(Appear_{X}, |P|+E-1).$ 

**[Example 3.2]** Suppose  $\delta_I$  is set to be 1. According to the bit index table shown in Table 1, the process of getting  $Append_{AB}^+ (1)$  and  $Append_{ABC}^+ (1)$  is shown as follows.

 $(1)$  *Appear*<sub>AB</sub><sup>+</sup> $(1)$ 

*Step1*. Get Appear<sub>B</sub> =  $01000100000001000000$  from the bit index table.

*Step2*. Perform an or operation on  $Append_{\pi}(0)$  and  $Append_{\pi}(1)$ . According to formula (3.2),  $Append_{\Lambda}^+(1)=0$ , and  $Append_{\Lambda}^+(0)=Append_{\Lambda}^+(0)$ .  $s = Appendix(0) \vee Appendix(1) = 10001001000010000010.$ 

*Step3.* Perform **left shift**  $2 (= |AB|+1-1)$  bits on *Appear*<sub>B</sub>,

 $t = L$  shift(*Appear<sub>B</sub>*, 2) = 00010000000100000000.

*Step4*. Perform an **and** operation on s and *t* to get  $Append_{AB}^{+}(1)$ . Thus the resultant bit sequence: *s*∧*t*= 00000000000000000000.

 $(2)$  *Appear*<sub>ABC</sub><sup>+</sup>(1)

*Step1.* Get  $Appear_C = 00100010100000110001$ .

- *Step2*. Perform an **or** operation on  $Appear_{AB}^{+}(0)$  and  $Appear_{AB}^{+}(1)$ . Since  $Ap$  $pear_{AB}^{+}(0)$  is gotten based on formula (3.1) and  $Appear_{AB}^{+}(1)$  is known from the previous result of this example, the resultant appearing bit sequence:  $s = A p \cdot \text{p}a r_{AB}^{\dagger}(0) \vee A p \cdot \text{p}a r_{AB}^{\dagger}(1) = 100010000000100000000$ .
- *Step3.* Perform **left shift** 3 (= $|ABC|+1-1$ ) bits on *Appear*<sub>C</sub>,

 $t = L\_shift(Appear<sub>C</sub>, 3) = 00010100000110001000.$ 

*Step4*. Perform an **and** operation on s and *t* to get  $Append_{ABC}^{-1}(1)$ . Thus the resultant bit sequence: *s*∧*t*= 00000000000010000000.

Finally, *FT-Appear*<sup>+</sup>( $\delta$ <sub>I</sub>) is obtained by performing  $\bigvee_{i=0}^{\delta_i}$ *i* δ  $\mathbf{0}$  $Appear_{P}^{+}(i)$ . *FT-freq<sub>DSeq</sub>*(P)

equals to the number of bits with value 1 in  $FT-Appear_{\rho}^{+}(\delta_{I})$ . Therefore, the insertion fault-tolerant frequency of a pattern *P* could be counted quickly.

**[Example 3.3]** Follows the results shown in Example 3.1 and Example 3.2, *FT-Appear*<sub>ABC</sub><sup>+</sup>(1) = *Appear*<sub>ABC</sub><sup>+</sup>(0) ∨ *Appear*<sub>ABC</sub><sup>+</sup>(1) = 10001000000010000000 and  $FT-freeq_{DSeq}$ <sup>("</sup>ABC") = 3.

To avoid duplicate computations of **or** and **left shift** operations to get  $\text{Appear}_{P}^{+}(E)$  for various  $E$ , the function of getting  $Appendir<sub>P</sub><sup>+</sup>(E)$  is re-defined to use recurrent relations between temporary results for getting  $Append_{PP}^+(E)$  and  $Append_{PP}^+(E-1)$ .

[*Def***.** 3.2] Modified recursive function of getting  $Appearp^+(E)$ : Suppose a pattern  $P = P_1 P_2 \dots P_m$  is given. Let  $P' = P_1 P_2 \dots P_{m-1}$  and *X* denote  $P_m$ . *Appear*<sub>P</sub><sup>+</sup>(E) is obtained from the following recursive function for  $0 \le E \le \delta_L$ .

**If**  $|P|=1$ , **then**  $Append_{P}^{+}(0)= Appendix \forall 1 \leq E \leq \delta_{I}$ ,  $Append_{P}^{+}(E)=0$ ; **Else If** E = 0, **then**  $temp_1(E) = Appear_{\mathbf{P}}^+(0)$ ;  $temp_2(E) = L\_shift(Append_X, |\mathbf{P}|-1)$ ; **Else**  $temp_1(E) = temp_1(E-1) \vee Appear_{P}^{+}(E); temp_2(E) = L\_shifttemp_2(E-1), 1);$  $Append_{P}^{+}(E)= temp_{1}(E) \wedge temp_{2}(E).$ 

### **3.3 Appearing Bit Sequences with Deletion Fault Tolerance**

The appearing bit sequence of a pattern *P* with *E* numbers of deletion errors is denoted as *Appear*<sub>P</sub><sup>(</sup>E). The bits with value 1 in *Appear*<sub>P</sub><sup>(</sup>E) represent those positions where the data sequence FT-contains *P* with *E* deletion errors.

Suppose a pattern  $P = P_1 P_2 \dots P_m$  is given. Let *Y* denote the first data item  $P_1$  and P" denote  $P_2P_3...P_m$ . *FT-Appear*<sub>P</sub> ( $\delta$ <sub>I</sub>) represents the positions where *Y* appears and *DSeq* FT-contains P" on the next positions with at most  $\delta_{\rm D}$  deletion errors. Therefore, when finding a position *j* where *DSeq* FT-contains P" with 0, 1, 2, ..., or  $\delta_{\rm D}$  deletion errors, if implies *DSeq* DFT-contains *P* on position (j-1) if position (j-1) contains *Y*. In other words, after performing or operations on  $(\delta_D+1)$  appearing bit sequences:

 $\Delta ppear_{P'}^+(0)$ ,  $\Delta ppear_{P'}^+(1)$ ,...,  $\Delta ppear_{P'}^+( \delta_D -1)$ , and  $\Delta ppear_{P'}^+( \delta_D)$ , then performing a **left shift** operation on the previous result, and finally performing an **and** operation with *Appear<sub>Y</sub>*, FT-Appear<sub>P</sub> ( $\delta_D$ ) could be obtained. Note that if  $|P| \leq \delta_D + 1$ , when performing the left shift operation, the rightmost bit is filled with 1 because the bit is considered as "don't care" bit on the next performed **and** operation. Otherwise, 0 is filled to the rightmost bit. According to the definition, *Appear*<sub>P"</sub>(E) is obtained from the following rule for all  $|P^{\prime\prime}| \leq E \leq \delta_D$ :

**[Rule 3.2]** Suppose the deletion fault-tolerance is set to be  $\delta_{D}$ . If  $|P''| \leq \delta_{D}$ , *Appear*<sub>P"</sub>  $(E)=0$  for all  $|P''| \le E \le \delta_D$ ; *Appear*<sub>P"</sub> $(E)=$ complement(*Appear*<sub>P"</sub>) for  $E=|P''|$ . (3.4)

Accordingly, the remaining problem is to get  *for*  $0 \le E < |P^{\prime\prime}|$ *. Since Appear*<sub>P</sub><sup>(0)</sup> represents the positions where *DSeq* FT-contains P" with *zero* deletion error, it implies the same information represented in *Appear*<sub>P"</sub>. Therefore, the way of getting *Appear*<sub>P</sub><sup>-</sup>(0) is the same as getting *Appear*<sub>P"</sub>. When  $1 \le E \le |P''|$ , *Appear*<sub>P"</sub><sup>-</sup>(E) is obtained by performing bit operations on appearing bit sequences of the prefix of P" with length |P"-1| and the last data item in P" according to the following lemma.

**[Lemma 3.2]** Given a pattern  $P''=P_2P_3...P_m$ , where  $(i=2, ..., m)$  is a data item. Let Q denote  $P_2P_3...P_{m-1}$ , and *X* denote the last data item  $P_m$ . *DSeq* FT-contains pattern P"with *E* deletion errors on position *i*, iff

- 1) *DSeq* FT-contains pattern *Q* with *E* deletion errors on position *i* and *X* appears on position  $i+(|P"|-1-E)$ , or
- 2) *DSeq* FT-contains pattern *Q* with (*E*-1) deletion errors on position *i* and FTcontains *X* on position  $i+(P"I-E)$  with 1 deletion error.

## *Proof*

- 1) *Q* appears in *DSeq* from position *i* to *i*+(|Q|-E)-1 (with *E* deletion errors). If *DSeq* FT-contains P" on position *i* with *E* deletion errors, *X* must appear on position  $i+(|P"|-1-E)$  (because  $|O|=|P"|-1$ ).
- 2) *Q* appears in *DSeq* from position *i* to *i*+( $|Q|- (E-1)$ )-1= *i*+( $|Q|-E$ ) (with *E*-1 deletion errors). Then *X* is forced to be absent on position *i*+(|Q|-E)+1. That is, *DSeq* FTcontains *X* with 1 deletion error on position  $i+(|P"|-1-E)+1=i+(|P"|-E)$ .

Therefore, the way of getting *Appear*<sub>P"</sub>(E) is expressed as the following recursive function for  $0 < E \leq \delta_D$ .

If  $|P''| < E$ , *Appear*<sub>P"</sub> (E) = 0; Else if  $|P''| = E$ , *Appear*<sub>P"</sub> (E) = complement(*Appear*<sub>P"</sub>); Else *Appear*<sub>P"</sub> (E)=(*Appear*<sub>Q</sub> (E)  $\wedge$  L\_shift(*Appear*<sub>x</sub>, |P"|-E-1,0)) $\vee$  $(Appear_{Q}(E-1) \wedge L_{shift}(Appear_{x}(1), |P"|-E,1)).$  (3.5)

To combine Formulas (3.1) and (3.5), a recursive function of getting *Appear*<sub>P"</sub>(E), where  $0 \le E \le \delta_D$  is defined as follows.

[*Def***. 3.3**] (Recursive function of getting  $Appear_{P}$ <sup>\*</sup>(E)): Suppose a pattern P<sup>\*\*</sup>=  $P_2P_3...P_m$  is given. Let Q denote  $P_2P_3...P_{m-1}$  and *X* denote  $P_m$ . When deletion fault tolerance  $\delta_{\rm D}$  is given, *Appear*<sub>P"</sub>(E) is obtained from the following recursive function for  $0 \leq E \leq \delta_D$ .

**IF**  $|P''|=1$ , **then**  $Appear_{P''}(0)= Appear_{P}(E)$ ;  $Appear_{P''}(1)=complement(Appear_{P})$ ; **Else if**  $E = 0$ , **then**  $Appear_{\mathbf{P}}(0) = Appear_{\mathbf{Q}}(0) \wedge L\_shift(Appear_{\mathbf{x}}, \mathbf{P}^{\prime\prime}|-1);$ **Else if**  $E > |P''|$ , **then**  $\overrightarrow{Appear_{P''}}(E) = 0$ ; **Else if**  $E = |P''|$ , **then**  $\overline{Appear_{P''}}(E) = \text{complement}(\overline{Appear_{P''}}(0));$ **Else**  $Appear_{P'}(E) = (Appear_{Q}(E) \wedge L\_shift(Appear_{x}, |P''|-E-1,0)) \vee$  $(A \nperp Q^T(E-1) ∧ L_s \nleft( A \nperp Q^T(X) | P''| - E, 1 \right)).$ 

**[Example 3.4]** Suppose  $\delta_{\rm D}$  is set to be 1. According to the bit index table shown in Table 1, the process of getting  $Appear_{\rm B} (1)$ ,  $Appear_{\rm BC} (1)$  and  $Appear_{\rm BCD} (1)$  is described as follows.

 $(1)$  *Appear*<sub>B</sub><sup> $\cdot$ </sup> $(1)$  = complement( *Appear*<sub>B</sub> $)$ .  $Step 1.$  Get  $Append_{\text{B}} = 01000100000001000000$ .  $Step 2. \, Appendix(1) = -Append_B = 1011101111110111111.$  $(2)$  *Appear*<sub>BC</sub><sup> $\cdot$ </sup> $(1) = (Append_{B}f)(1) \wedge L$ <sub>\_</sub>shift(*Appear*<sub>C</sub>,0,0) ∨  $(A \nperp^n(0) \wedge L\_shift(A \nperp^n(1),1,1))$ *Step1.* Get  $Appear_C = 00100010100000110001$ . *Step2.* Perform **left shift**  $0$  (=|BC|-1-1) bit on  $\text{A} \text{p} \text{p} \text{e} \text{a} \text{r}$ <sub>C</sub>,  $s=L$  shift(*Appear*<sub>C</sub>,0,0)=00100010100000110001. Step3. Perform an **and** operation on *s* and *Appear*<sub>B</sub><sup>(1)</sup>, where the result of *Appear*<sub>B</sub><sup>-</sup> (1) has been obtained previously.  $u = s \land Appear_{B}(1) = 00100010100000110001$ .  $Step 4. \, Appearc(1) = -A \, ppearc = 11011101011111001110.$ *Step5*. Perform **left shift** 1 (= $|BC|-1$ ) bit on  $Appearc(1)$  (the rightmost bit is filled with 1).  $t = L\_shift(Appear_C(1),1,1) = 10111010111110011101$ . Step6. Perform an **and** operation on *t* and *Appear*<sub>B</sub><sup>(0)</sup>. *v* = *t*∧ *Appear*B=00000000000000000000. *Step7*. Perform an **or** operation on *u* and *v*. Then the resultant bit sequence is  $w = u \vee v$  $= 00100010100000110001.$  $(3)$  *Appear*<sub>BCD</sub><sup>(1)</sup> = (*Appear*<sub>BC</sub><sup>(1</sup>) ∧*L\_shift*(*Appear*<sub>D</sub>,1,0) ∨  $(\text{Appear}_{\text{BC}}(0) \wedge L\_shift(\text{Appear}_{\text{D}}(1),2,1))$ *Step1.* Get  $Append_{D} = 00010000010000001000$ . *Step2.* Perform **left shift** 1 (=|BCD|-1-1) bit on *Appear*<sub>D</sub>.  $s=L\_shift(Appear_D(1),1,0) = 0010000010000010000$ . Step3. Perform an **and** operation on *s* and *Appear*<sub>BC</sub><sup>(1)</sup>, where the result of *Appear*<sub>BC</sub><sup>-</sup> (1) has been obtained previously. *u*=*s*∧ *Appear*<sub>BC</sub><sup>-</sup>(1)=00100000100000010000  $Step 4. \, Appendix 1) = - \, Appendix 1110111110111110111.$ *Step5*. Perform **left shift** 2 (= |BCD|-1) bits on *Appear*<sub>D</sub><sup>(1)</sup>. *t*=*L\_shift*(*Appear*<sub>D</sub><sup>-</sup>(1),2,1)=10111110111111111111. Step6. Perform an **and** operation on *t* and  $Appear_{BC}(0)$ . *v* = *t*∧ *Appear*<sub>BC</sub><sup>-</sup>(0)=0000010000001000000. *Step7*. Perform an **or** operation on *u* and *v*. Then the resultant bit sequence is  $w = u \wedge v$  $= 00100100100001010000.$ Let *temp*(*E*) denote the results of  $\bigvee_{k=0}^{E}$  $k = 0$  $$ recursive function of getting  $FT\_Appear_P(\delta_D)$  is defined as follows.

**[Def. 3.4] (Recursive function of getting**  $FT\_Appear_P^{\bullet}(\delta_D)$ ): Suppose a pattern  $P = P_1 P_2 ... P_m$  is given, where  $P_i$  (i=1,…,m) is a data item. Let *Y* denote  $P_i$ , *P*" denote  $P_2P_3...P_m$ , Q denote  $P_2P_3...P_{m-1}$ , and *X* denote  $P_m$ . When deletion fault tolerance  $\delta_D$  is given,  $FT\_Appear_P(\delta_D)$  is obtained from the following recursive function.

**If**  $|P| \leq \delta_D + 1$ , **then**  $FT\_Appear_P(\delta_D) = Appear_Y;$ **Else**  $temp_P(\delta_D-1) = Appear_Q \vee (Appear_Q(\delta_D-1) \wedge L\_shift(Appear_X, [P''] - \delta_D, 0));$  $temp_P(\delta_D) = temp_Q(\delta_D-1) \vee (Append_P) \wedge L\_shift(Append_R) \wedge P'') - \delta_D-1, 0);$ *FT\_Appear<sub>P</sub>* ( $\delta_D$ ) = *Appear<sub>Y</sub>*  $\wedge$  L\_shift(temp<sub>P'</sub>( $\delta_D$ ),1,0).

*FT\_Freq<sub>DSeq</sub>* (*P*) equals to the number of bits with value 1 in *FT\_Appear<sub>P</sub>* ( $\delta$ <sub>*D*</sub>). Therefore the deletion fault-tolerant frequency of a pattern *P* could be counted efficiently to evaluate whether *P* is a FT-RP or not.

# 4 Mining Top-K Non-trivial FT-RPs with Min-length Constraint

In this section, two algorithms, called **TFTRP-Mine** and **RE-TFTRP-Mine,** are developed for finding **T**op-K non-trivial **FT-RP**s. These two algorithms are applicable for both situations considering insertion/deletion fault tolerance by exchanging the function of generating fault-tolerant appearing bit sequences.

# **4.1 TFTRP-Mine Algorithm**

TFTRP-Mine Algorithm is designed based on the representation of fault-tolerant appearing bit sequences to mine top-K non-trivial FT-RPs. First, the data sequence is scanned once to create the bit index table. Initially, the candidate pattern is a single data item in the data sequence. If the candidate is a FT-RP, an additional data item is appended to the FT-RP to generate a longer candidate pattern. In other words, the candidate patterns are generated in *depth-firs* order. So the fault-tolerant appearing bit sequence of a candidate pattern is obtained according to the recursive function defined in the previous section. Then, the fault-tolerant frequency of a candidate pattern is counted efficiently to decide whether it is a FT-RP. According to the *antimonotonic* property, it is not necessary to generate candidate patterns by appending additional data items to a non-FT-RP. Moreover, a FT-RP must satisfy the minimum length and non-trivial constraints before being outputted to the mining result. Finally, after sorting the mining result according to the fault-tolerant frequencies, the top-K non-trivial FT-RPs satisfying the *min\_len* constraints are obtained from the first K patterns in the result. In summarizing the above descriptions, the mining process of TFTRP-Mine algorithm consists of the following steps.

# **Algorithm TFTRP-Mine:**

Input: a data sequence  $DSeq$ , fault tolerance  $\delta_l/\delta_p$ , *min\_len*, and *K*. Output: Top-K non-trivial FT-RPs with length no less than *min\_len*. **Step1.** Scan *DSeq* once to construct the bit index table.

Let  $D = \{D_1, D_2, ... D_n\}$  denote the set of data items in *DSeq.* **Step2.** Set *P* to be an empty data sequence. Set  $l = 1$  and  $j_l = 1$ .

**Step3.**Generate longer candidate patterns:

- **Step3-1.** Generate a new candidate P' by appending data item  $D_{il}$  to  $P$ , and compute *FT*-Appear<sub>P'</sub><sup>+</sup>( $\delta$ <sub>*I*</sub>) or *FT*-Appear<sub>P'</sub><sup>-</sup>( $\delta$ <sub>*D*</sub>).
- **Step3-2.** Count the number of bits with value 1 in  $FT\text{-}Appear_{P}^{+}(\delta_{I})$  or  $FT\text{-}$  $\Delta$ *Appear<sub>P'</sub>* ( $\delta$ <sub>*D*</sub>) to get *FT\_freq<sub>DSeq</sub>*(**P**'). If *FT\_freq<sub>DSeq</sub>*(*P*') < *min\_freq*, proceed to **Step3-6**.
- **Step3-3.** Check whether *P*'satisfies the minimum length constraint. If  $|P'| \ge$ *min\_len*, insert *P'* into Minlen set.
- **Step3-4.** Set  $P = P'$ ,  $l = l + 1$ ,  $j_l = 1$ , and recursively call **Step3**.
- **Step3-5.** Check whether *P'*, is non-trivial by calling procedure **Non\_Trivial**(*P'*, temporal results).

**Step3-6.** Set  $j_l = j_l + 1$ , If  $j_l \le n$ , proceed to **Step3-1**.

**Step3-7.** *l* = *l*-1. If *l* > 0, return the recursive call; otherwise, proceed to **Step4**.

**Step4.** Sort the temporal results in fault-tolerant frequency descending order. Extract the first *K* patterns from the temporal results.

If S is non-trivial among the patterns found until now according to the results in *Temp*, the procedure Non\_Trieval(*S*, *Temp*) will insert S into *Temp.* Moreover, all the sub-patterns of S in Temp, which have the same frequencies with S, will be removed.

#### **4.2 RE-TFTRP-Mine Algorithm**

In TFTRP-Mine algorithm, all the FT-RPs in the data sequence are found first. Then, top-K non-trivial FT-RPs are extracted from the results. If huge amounts of FT-RPs exist, all FT-RPs still have to be mined out even only the top-K non-trivial FT-RPs need to be outputted. It causes the mining process costly even for a small K setting. Therefore, the refinement of TFTRP-Mine, RE-TFTRP-Mine algorithm is designed. In the refined algorithm, those FT-RPs which are not possible the top-K non-trivial FT-RPs are pruned as early as possible by raising *min\_freq* during the mining process. The idea is to raise *min\_freq* to be a higher value if the least frequency among the most updated top-K FT-RPs has became larger than *min\_freq*. Then, the FT-RPs with fault-tolerant frequencies less than the new *min\_freq* will not be used to generate longer candidate patterns in the following mining process. Moreover, in order to get the FT-RPs with high fault-tolerant frequencies as early as possible, among the FT-RPs which have been discovered, the FT-RPs with higher frequencies are assigned higher priorities used to generate new candidates.

The mining process of RE-TFTRP-Mine algorithm is shown below. Since the minimum length constraint is required, the two strategies described above are applied only after all the FT-RPs with length equal to *min\_len* have been found and stored in Minlen\_Heap. Then, the patterns in Minlen\_Heap are sorted according to their faulttolerant frequencies to decide their priorities for generating the following candidates.

#### **Algorithm RE-TFTRP-Mine:**

Input: a data sequence  $DSeq$ , fault tolerance  $\delta_l/\delta_p$ , *min\_len*, and *K*. Output: Top-K non-trivial FT-RPs with length no less than *min\_len*.

**Step1.** Scan *DSeq* once to construct the bit index table.

Let  $D = \{D_1, D_2, \ldots, D_n\}$  denote the set of data items in *DSeq.* 

- **Step2.** Set *P* to be an empty data sequence. Set  $l = 1$  and  $j_l = 1$ .
- **Step3.** Generate longer candidate patterns:
	- **Step3-1.** Generate a new candidate P' by appending data item  $D_{il}$  to  $P$ , and compute *FT-Appear<sub>P'</sub>*<sup>+</sup>( $\delta$ <sub>*I*</sub>) or *FT-Appear<sub>P'</sub>*<sup>-</sup>( $\delta$ <sub>*D*</sub>).
	- **Step3-2.** Count the number of bits with value 1 in  $FT\text{-}Appear_{P}^{+}(\delta_{I})$  or  $FT\text{-}Appear_{P}^{+}$  $(\delta_D)$  to get  $FT\_freq_{DSeq}(P')$ . If  $FT\_freq_{DSeq}(P')$  < min\_freq, proceed to **Step3-5**.
	- **Step3-3.** Check whether *P'* satisfies the minimum length constraint. If  $|P'| \ge$ *min len*, insert  $P'$  into Minlen Heap and proceed to **Step3-5**.
	- **Step3-4.** If  $|P'|\leq min\_len$ , set  $P=P'$ ,  $l = l + 1$ ,  $j_l = 1$ , and recursively call **Step3**.
	- **Step3-5.** Set  $j_l = j_l + 1$ . If  $j_l \le n$ , go back to **Step3-1.**
	- **Step3-6.**  $l = l 1$ , if  $l > 0$ , return the recursive call; else if  $l = 0$ , copy the *K* patterns in Minlen-Heap with top-K fault tolerant frequencies to temporal top-K set, and proceed to **Step4**.
- **Step4.** Select a FT-RP to generate candidates:
- **Step4.1.** Maintain the non-trivial FT-RPs patterns with Top-K fault tolerant frequencies in the temporal top-K set. Let *S* denote the pattern that has the least frequency among the Top-K patterns currently. If  $FT\_freq_{DSeq}(S)$  *min\_freq*, set *min-freq* =  $FT\_freq_{DSeq}(S)$ . Remove those patterns with fault-tolerant frequencies being less than the new *min\_freq* from Minlen\_Heap.
- **Step4.2.** Set *P*={*Q*| *Q* has maximum fault-tolerant frequency in Minlen\_Heap} and remove *P* from Minlen\_heap. Set  $l=|P|$ ,  $l = l+1$ ,  $j=1$ , and recursively call **Step3**.
- **Step4.3.** Check whether P is non-trivial by calling procedure **Non** Trivial(*P*, temporal top-K set).

**Step5.** Repeat **Step 4** until Minlen\_Heap is empty.

**Step6.** Extract the first *K* patterns from the temporal top-K set to be the mining result.

# **5 Performance Study**

We implemented TFTRP-Mine and RE-TFTRP-Mine algorithms using Borland C++ Builder 5.0. The experiments are performed on a 2.4GHz Intel Pentium IV PC machine with 512 megabytes main memory and running Microsoft XP Professional.

In the first five experiments, data sequences are produced from a synthesis data generator. Two input parameters are required when running the data generator, where *L* denotes the length and *E* denotes the number of various data items in the generated data sequence. The scalabilities of TFTRP-Mine and RE-TFTRP-Mine algorithms on execution time are compared under various parameters setting. Moreover, the results of mining repeating patterns in real music objects without fault tolerance and with fault tolerance are compared in the last experiment. According to theses experiment results, the effectiveness of mining with fault tolerance is observed.

In addition to the data parameters *L* and *E* defined previously,  $\delta$ <sub>I</sub>(the insertion fault tolerance), *min\_len*(the minimum length constraint) and *K*(the desired number of non-trivial FT-RPs to be mined) also influence the mining results and execution time of the proposed algorithms. By varying one of these five factors  $(L, E, \delta_{\rm I}, min\_len,$ and *K*) in each experiment, the scalabilities of TFTRP-Mine and RE-TFTRP-Mine on execution time are observed. Besides, in order to show the pruning effect of RE-TFTRP-Mine, the numbers of generated candidate patterns of two algorithms are also illustrated. In the following five experiments, *min\_freq* is fixed to be 10.

#### **[Experiment 1] Changing the size of a data sequence (L)**

In this experiment,  $\delta_1 = 2$ ,  $min\_len = 8$ ,  $K = 5$  and  $E = 5$  are given. *L* is varied from 1000 to 5000. The experimental results in Fig. 1 show the execution efficiency of RE-TFTRP-Mine algorithm outperforms the one of TFTRP-Mine algorithm. The reason is that the former does not need to generate all candidate patterns when finding top-K non-trivial FT-RPs. Moreover, the number of generated candidate patterns increases as the value of *L* is raised. Therefore, when *L* increases, the execution efficiency of TFTRP-Mine is slower and slower than the one of RE-TFTRP-Mine algorithm.

#### **[Experiment 2] Changing the number of various data items (E)**

Fig. 2 shows the execution times of the proposed two algorithms on data sequences with *L*=2000, where  $\delta$ <sub>i</sub>=2, *min\_len*=8 and *K*=5 are inputted. When *E* increases from 5 to 25, the generated candidate patterns also increases. Thus, the performance efficiencies of two algorithms decrease in this range. However, when *E*=30, the numbers of generated candidates in both algorithms become less than the ones generated when *E*=25 and the corresponding execution time of both algorithms is also lowered down. The reason is that more various data items may cause the data sequence becomes more "sparse". Therefore, fewer FT-RPs are found and fewer candidate patterns are generated even there are more various data items.

### **[Experiment 3] Changing insertion fault tolerance**  $(\delta_1)$

This experiment is performed on data sequences with *L=*2000, where *E=*5, *min\_len*=8 and *K*=5 are inputted. As the results shown in Fig. 3, when  $\delta_I$  increases, the number of generated candidate patterns grows exponentially because much more FT-RPs are found due to the relaxed constraints. Therefore, the execution time of two algorithms also increases as  $\delta_I$  increases. However, RE-TFTRP-Mine still prunes huge amount of unnecessary candidates dramatically.

### **[Experiment 4] Changing the minimum length (***min\_le***)**

This experiment is performed on data sequences with  $L=2000$  and  $E=5$ , where  $\delta_1=2$ and *k*=5 are inputted. For the same data sequence, no matter what value the *min\_len* is, the number of generated candidate patterns in TFTRP-Mine algorithm is the same (41,730) and the curve of execution time keeps almost steady. On the other hand, RE-TFTRP-Mine algorithm finds all the FT-RPs with lengths equal to *min\_len* before tuning the *min\_freq*. Therefore, the number of generated candidates of algorithm increases as *min\_len* increases. In addition, because the longer patterns usually have lower frequencies, the larger *min\_len* is, the less number of non-trivial FT-RPs are discovered. Thus, the number of non-trivial FT-RPs in the data sequence is less than 5 when *min*  $len = 45$  and 50. It implies that the setting of *min* freq was not raised during the execution of RE-TFTRP-Mine algorithm. In this situation, RE-TFTRP-Mine





Number of generated candidates

**Fig. 1.** Result of Experiment 1





Number of generated candidates

**Fig. 2.** Result of Experiment 2



Number of generated candidates

**Fig. 3.** Result of Experiment 3

algorithm generates the same candidate patterns as TFTRP-Mine does and needs additional cost to maintain the sorted FT-RPs and the top-Ks. So the execution time of RE-TFTRP-Mine is over the one of TFTRP-Mine when min len is 45 and 50.

### **[Experiment 5] Changing the setting value of** *K*

In this experiment, data sequences with *L=*2000 and *E=*5 are used as test data, where the run time parameters  $\delta_1 = 2$  and *min\_len*=8 are given. Let *max\_K* denote the number





Number of generated candidates

**Fig. 4.** Result of Experiment 4





Number of generated candidates

**Fig. 5.** Result of Experiment 5

of total non-trivial FT-RPs with *min\_len* constraints discovered in this test data sequence. *K* is varied from *max\_K*×1% to *max\_K*×100%. Fig. 5.5 shows that the number of generated candidates in RE-TFTRP-Mine is the same with the one generated in TFTRP-Mine when K/max  $K$  is more than 80%. This case occurs because the leastfrequency in the top 80% non-trivial FT-RPs is the same with *min\_freq*. Therefore, the pruning strategy does not work and more processing cost of RE-TFTRP-Mine is required than TFTRP-Mine. However, the execution time of RE-TFTRP-Mine is about half of the time of TFTRP-Mine because RE-TFTRP-Mine prunes about two third of the candidate patterns when K/max\_K is 1%.

#### **[Experiment 6] Performance evaluation on effectiveness**

In this experiment, five popular songs are selected as test data, whose total playingtimes are between 4 and 5 minutes. The run-time parameters  $min\_freq = 3$ ,  $K = 2$  and *min\_len* =8 are given. We compare the found repeating patterns under various setting of  $\delta_{I}$  or  $\delta_{D}$  with the actual motifs in the music object. The results show that no nontrivial FT-RPs satisfying the *min\_len* constraint could be found among the five music objects if fault-tolerant mapping is not allowed. When at most two insertion/deletion errors are allowed ( $\delta$ <sub>0</sub> or  $\delta$ <sub>D</sub> = 2), the found patterns are most close to the motifs in the music objects. It shows that mining repeating patterns with fault tolerance is necessary.

# <span id="page-15-0"></span>**6 Conclusion and Future Works**

In this paper, two algorithms, named TFTRP-Mine and RE-TFTRP-Mine, are proposed to mine top-K non-trivial fault-tolerant repeating patterns with lengths no less than minimum length constraints from data sequences. By extending the idea of appearing bit sequences, fault-tolerant appearing bit sequences are defined to represent the positions where candidate patterns appear in a data sequence with Insertion/deletion errors. Both of two algorithms use the recursive formulas to obtain faulttolerant appearing bit sequences of a pattern systematically and then the fault-tolerant frequency of each candidate pattern could be obtained quickly. Besides, RE-TFTRP-Mine adopts two additional strategies to improve the mining efficiency. The experimental results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when *K* and *min\_len* are small. In addition, when adopting fault tolerant mining, more important and implicit repeating patterns could be found for music objects.

# **References**

- 1. C. C. Liu, J. L. Hsu, and A. L. P. Chen, "Efficient Theme and Non-Trivial Repeating Pattern Discovering in Music Databases," in Proceedings of the 15<sup>th</sup> International Conference on Data Engineering (ICDE'99), 1999.
- 2. J. Han, J. Wang, Y. Lu, and P. Tzvetkov, "Mining Top-K Frequent Closed Patterns without Minimum Support", in Proceedings of 2002 International Conference on Data Mining (ICDM'02), 2002.
- 3. J. L. Hsu, C. C. Liu, and A. L.P. Chen, "Efficient Repeating Pattern Finding in Music Databases," in Proceedings of the Seventh International Conference on Information and Knowledge Management(ACM CIKM'98), 1998.
- 4. J. L. Koh and W. D. C. Yu, "Efficient Feature Mining in Music Objects," Lecture Notes in Computer Science: DEXA'01: Database and Expert Systems Applications, pp. 221-231, Springer-Verlag, 2001.
- 5. J. L. Koh and P. W. Yo, "An Efficient Approach for Mining Fault-Tolerant Frequent Itemsets based on Bit Sequences," Lecture Notes in Computer Science: DASFAA'05: Database Systems for Advanced Applications, Springer-Verlag, 2005.
- 6. J. Pei, A. K.H. Tung, and J. Han, "Fault-Tolerant Frequent Pattern Mining: Problem and Challenges," in Proceedings of ACM-SIGMOD International Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'01), 2001.
- 7. P. Tzvetkov, X. Yan, and J. Han, "TSP: Mining Top-K Closed Sequential Patterns", in Proceedings of 2003 International Conference on Data Mining (ICDM'03), 2003.