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Abstract. Time-series subsequence matching is an operation that
searches for such data subsequences whose changing patterns are similar
to a query sequence from a time-series database. This paper addresses a
performance issue of time-series subsequence matching. First, we quan-
titatively examine the performance degradation caused by the window
size effect, and then show that the performance of subsequence matching
with a single index is not satisfactory in real applications. We claim that
index interpolation is a fairly effective tool to resolve this problem. In-
dex interpolation performs subsequence matching by selecting the most
appropriate one from multiple indexes built on windows of their distinct
sizes. For index interpolation, we need to decide the sizes of windows for
multiple indexes to be built. In this paper, we solve the problem of select-
ing optimal window sizes in the perspective of physical database design.
For this, given a set of pairs 〈length, frequency〉 of query sequences to
be performed in a target application and a set of window sizes for build-
ing multiple indexes, we devise a formula that estimates the overall cost
of all the subsequence matchings. By using this formula, we propose an
algorithm that determines the optimal window sizes for maximizing the
performance of entire subsequence matchings. We formally prove the op-
timality as well as the effectiveness of the algorithm. Finally, we perform
a series of experiments with a real-life stock data set and a large volume
of a synthetic data set to show the superiority of our approach.

1 Introduction

Around us, there are a variety of objects such as stock prices, temperature val-
ues, and money exchange rates whose values change as time goes by. The list
of such changing values sampled at a time interval is called a data sequence
for the object[1, 2, 7]. For example, a list of temperature values in New York,
which were measured at every 1:00 AM during a year, could be a data se-
quence. Also, a set of data sequences stored in a database is called a time-series
database[1, 2, 6, 7, 9, 10, 12].

In a time-series database, it is possible to predict future values of an object
by analyzing its past values. Let us assume that we have a time-series database
consisting of stock price sequences of several companies for past 10 years. We
can predict how the stock price of our company will fluctuate next week by
referencing to sequences whose changing patterns are similar to that of our
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company’s in the last week. Similar sequence matching is an operation that finds
such sequences whose changing patterns are similar to that of a given query
sequence from a time-series database[1, 2, 7, 12]. Similar sequence matching is
classified into two categories as follows[7, 12]:

(1) Whole matching : Given N data sequences S1, . . . , SN , a query sequence Q,
and a tolerance ε, we find such data sequences Si that are similar to Q. Here,
we note that the data and query sequences should be of the same length.

(2) Subsequence matching: Given N data sequences S1, . . . , SN , a query se-
quence Q, and a tolerance ε, we find all the sequences Si, one or more
subsequences of which are similar to Q, and the offsets in Si of those subse-
quences.

Since subsequence matching is a generalization of whole matching, it is ap-
plicable to practical applications more than whole matching. In this paper, we
focus our attention on subsequence matching.

As a measure for determining the similarity for arbitrary two sequences
X(=[x0, x1, . . . , xn−1]) and Y (=[y0, y1, . . . , yn−1]) of the same length n, the
Euclidean distance D(X , Y ) defined below is widely used as a basic similarity
measure[1, 4, 5, 7, 8, 13, 14]1. Two sequences X and Y whose D(X , Y ) is below
a user-specified tolerance value ε are regarded similar and are also said to be in
ε-match[12].

D (X, Y ) =

√
√
√
√

n−1∑

i=0

(xi − yi)
2 (1)

There have been two basic methods proposed in references [7] and [12] for
subsequence matching. Following reference[12], we call them FRM [7] and Dual-
Match[12], respectively. Both of them use an index for efficient processing of
subsequence matching. Also, they employ the concept of a window as an indexing
unit. The window is a subsequence of a fixed-size w extracted from query and
data sequences. Their common idea for performing subsequence matching is
summarized as follows.

For indexing, windows of size w are extracted from every data sequence. Then,
each window is transformed into a point in f(� w)-dimensional space by using
the Discrete Fourier transform(DFT) or wavelet transform. All these points are
stored into an R*-tree[3], a multidimensional index structure.

For subsequence matching with a tolerance ε, windows of size w are extracted
from a query sequence of length l(≥ w), and are transformed into points in
f -dimensional space. For each point, a range query of a range ε�

√
p(p = �l�w�)

is performed on the R*-tree built in the indexing stage. This process is called
an index searching step. As a result, candidate subsequences, each of which

1 In addition to the Euclidean distance, the Manhattan distance, the maximum dis-
tance in any pair elements[2], and the time warping distance can be also used as a
similarity measure.
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has a high possibility to be in ε-match with a query sequence, are found. For
resolving false alarms[1, 7], which are recommended as the candidates but not
true answers, each candidate subsequence is accessed from disk, and its actual
Euclidean distance to the query sequence is computed. This process is called a
post-processing step.

In both methods, the performance of subsequence matching is highly depen-
dent on the window size. That is, the performance tends to deteriorate as the
difference between the size of a window and the length of a query sequence gets
larger. This phenomenon is called a window size effect [12]. In FRM and Dual-
Match, the size of a window is determined by the minimum among lengths of
query sequences to be issued, and subsequence matching performs by using only
one R*-tree. This approach, however, has a problem that the performance of
subsequence matching degrades seriously as the length of a query sequence in-
creases. We can consider building of indexes for all the lengths of query sequences
to be issued in a target application. This requires a large cost of maintaining a
large number of indexes, thereby being infeasible in real applications.

In this paper, we propose a novel subsequence matching method based on
the concept of index interpolation[11]. Index interpolation constructs multiple
indexes on different sizes of windows and processes subsequence matching by
selecting the most appropriate one for a given query sequence. Index interpola-
tion is applicable to both FRM and Dual-Match, and is expected to enhance the
performance of subsequence matching significantly.

In index interpolation, more indexes provide better performance, but require
a higher cost for their maintenance. This paper mainly focuses on the selection
of the sizes for multiple windows that maximize the performance of subsequence
matching when the number of indexes is given.

We summarize the contributions of the paper in the following. First, we quan-
titatively show the performance degradation of subsequence matching due to the
window size effect, and then reveal that the overall performance of subsequence
matchings using a single index is not satisfactory in real applications. We claim
that the concept of index interpolation is quite useful for solving this problem.
For subsequence matching by using index interpolation, we need to determine
the sizes of windows on which multiple indexes are built. We employ the physi-
cal database design methodology to select optimal sizes of windows. That is, we
devise a formula that estimates the entire cost of performing all the subsequence
matchings when there are a set of pairs 〈length, frequency〉 of query sequences to
be issued and a set of sizes of windows on which indexes are built. By using this
formula, we propose an algorithm that decides the optimal sizes of windows that
maximize the overall performance of all the subsequence matchings. We also for-
mally verify the optimality and effectiveness of the proposed algorithm. Finally,
we show the effect of performance enhancement by the proposed algorithm over
previous ones via extensive experiments.

The paper is organized as follows. Section 2 briefly introduces previous meth-
ods for subsequence matching, and discusses their advantages and disadvantages.
Section 3 presents a result of preliminary experiments that show how the gap
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between the length of a query sequence and the size of a window affects the
performance of subsequence matching. Section 4 proposes a new method based
on index interpolation, and addresses the selection of multiple window sizes for
optimizing the performance of subsequence matching. Section 5 verifies the su-
periority of the proposed method via a series of experiments. Finally, Section 6
summarizes and concludes the paper.

2 Related Work

2.1 FRM

Reference [7] proposed a subsequence matching method that allows data and
query sequences of arbitrary lengths. Following reference [12], we call this method
FRM. FRM uses the concept of a window of a fixed length for R*-tree indexing.

For indexing, FRM extracts sliding windows of size w from every possible
position inside each data sequence S of length len(S)(≥ w), and then it converts
every sliding window into a point in f(� w)-dimensional space by using DFT.
The number of points extracted from each data sequence S is (len(S)−w+1). As
a result, a large number of points appear in this way, and thus storage overhead
for storing these points individually also gets large. For alleviating this problem,
FRM forms the minimum bounding rectangles(MBR) enclosing multiple points
and builds an R*-tree[3] on these MBRs instead of points.

For subsequence matching, FRM extracts p disjoint windows of size w from a
query sequence of length len(Q)(≥ w) where p = �len(Q)/w�, and then converts
every disjoint window into a point in f -dimensional space by using DFT. For
each point, FRM performs a range query on an R*-tree by using the point
as a center and ε/

√
p as a range. This index searching step finds the points

that correspond to the candidate subsequences that are highly likely to be true
answers. To discard false alarms, it performs the post-processing step; i.e., it
accesses all the sequences containing the candidate subsequences from the disk,
and computes their Euclidean distance to the query sequence. Finally, it returns
the final result set containing only the true answers after leaving out the false
alarms.

2.2 Dual-Match

In order to reduce storage overhead, FRM stores the MBRs, each of which
encloses multiple points, instead of storing individual points in an R*-tree. In-
herently, these MBRs have dead space[3] inside. This dead space is the primary
cause of false alarms, and thus degrades the overall performance of subsequence
matching[12]. Moon et al.[12] proposed a method called Dual-Match to overcome
this problem.

In contrast to FRM that locates sliding windows on data sequences and dis-
joint windows on a query sequence, Dual-Match extracts disjoint windows from
data sequences and sliding windows from a query sequence. By this simple role
exchange, Dual-Match reduces the number of points to be stored in the R*-tree
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by the ratio of 1/w. This makes it possible to store individual points themselves
rather than MBRs in an R*-tree. As a result, Dual-Match does not suffer from
the problem caused by the dead space inside MBRs any longer, and thus achieves
considerable performance improvement.

3 Motivation

3.1 Window Size Effect

Given a query sequence, subsequence matching with FRM or Dual-Match tends
to incur more false alarms as the window size gets smaller. For example, the win-
dow size for an R*-tree R1 is larger than that for an R*-tree R2. In this case, the
candidate set returned by searching R2 would contain extra false alarms, which
do not exist in the set returned by searching R1. More false alarms require more
time in the post processing step, thereby degrading the overall performance of
subsequence matching. This phenomenon is called window size effect [12]. There-
fore, the choice of a large window in R*-tree construction is so beneficial to
efficient processing of subsequence matching.

On the other hand, the R*-tree thus built is useless in subsequence matching
when its window size is larger than the length of (in FRM ) and half the length
of (in Dual-Match) a query sequence[7, 12]. In this case, subsequence match-
ing takes much time since the sequential scan should be employed for finding
matched subsequences. Therefore, it is crucial to choose a proper size of windows
in the indexing stage for efficient processing of subsequence matchings.

Let us denote minQLen as the minimum among the lengths of query se-
quences to be used in a target application. The previous methods determine
the window size for indexing as minQLen (in FRM ) or �(minQLen + 1)/2� (in
Dual-Match). In real applications, however, query sequences of various lengths
are issued regardless of the window size employed in indexing. Thus, the perfor-
mance degradation of subsequence matching becomes fairly serious in case the
difference between the length of a query sequence and the size of window is large.

3.2 Preliminary Experiments

We used 620 Korean stock price sequences of length 1,024 in experiments. Other
experiment environments such as hardware and software settings, extraction of
windows from data sequences, the lower-dimensional transform, and construction
of indexes are the same as those explained in detail in Section 5.

We performed two preliminary experiments. The first experiment used only a
single index of the fixed window size and observed the performance tendency of
subsequence matching while changing the length of query sequences. The window
size was set to w = 64 and the lengths of query sequences were set to Len(Q) =
64, 128, 256, 512, and 1,024. The second experiment used query sequences of the
fixed length and observed the performance tendency of subsequence matching
while changing the window size. The length of query sequences used was Len(Q)
= 1,024, and the window sizes were w = 64, 128, 256, 512, and 1,024.
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Fig. 1. Variation of Total Execution Time According to Query Sequence Lengths

 0

 50

 100

 150

 200

 250

 300

 350

 1024 512 256 128 64

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Window Size

 0

 50

 100

 150

 200

 250

 300

 350

 1024 512 256 128 64

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Window Size

(a) FRM (b) Dual-Match

Fig. 2. Variation of Total Execution Time According to Window Sizes

We used the total execution time of subsequence matchings for all the query
sequences as a performance factor. For every query, we adjusted a tolerance ε so
that 20 subsequences should be returned as a final result set.

Figures 1(a) and 1(b) show the results of the first experiment for FRM and
Dual-Match, respectively. In the figures, the horizontal axes represent the length
of query sequences, and the vertical axes the total execution time in the unit of
seconds. The results show that the total execution time increases as the query
sequence gets longer for both FRM and Dual-Match. The rationale of the results
is that, as the difference between the length of query sequences and the size of
windows increases, the number of candidate subsequences obtained from the
index searching step also increases due to the window size effect.

Figures 2(a) and 2(b) show the results of the second experiment. The horizon-
tal axes represent the window size, and the vertical axes the total execution time.
The results show that the total execution time rapidly decreases as the window
size increases for both FRM and Dual-Match. The rationale of the results is the
same as that of the first experiment.

In summary, the performance of subsequence matching dramatically dete-
riorates as the gap of the length of query sequences and the size of windows
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increases. This implies that the performance of subsequence matchings is not
satisfactory to users when their processing is done with only a single R*-tree
built on windows whose size is determined by considering the minimum length
of query sequences as in the prior work.

4 The Proposed Method

In this section, we propose a novel method based on the concept of index inter-
polation to overcome the performance degradation caused by the window size
effect. In index interpolation, we build multiple indexes on windows of different
window sizes, and then use an index whose window size is the most appropriate
for a given query sequence in subsequence matching.

As the number of indexes increases, the cost for maintaining indexes also
increases while subsequence matching performs better. The cost includes not
only the storage space for storing indexes but also the time for updating indexes
when data is inserted, deleted, or modified. Thus, it is necessary to build as few
indexes as possible.

In this section, we consider determining a list of optimal window sizes for a
given set of pairs 〈lengths and its frequencies〉 of query sequences. The lengths
and frequencies of query sequences can be easily obtained by analyzing a target
application, which is a widely-accepted assumption in physical database design.

4.1 Optimal Window Size

For further presentation, we first introduce some notations and definitions. We
denote the length of a query sequence by li, i ≥ 1, and do the list of n query
sequence lengths by 〈l1, l2, . . . , ln〉 where l1 < l2 < · · · < ln. Similarly, we
denote the frequency of a query sequence length li by fi and do accordingly
the frequency list of 〈l1, l2, . . . , ln〉 by 〈f1, f2, . . . , fn〉. We denote a window size
by wi, i ≥ 1, and do the list of m window sizes by 〈w1, w2, . . . , wm〉 where
w1 < w2 < · · · < wm. In index interpolation, we perform subsequence matching
by selecting the most appropriate one from 〈w1, w2, . . . , wm〉 and by using its
corresponding index. We call this window size an optimal one for the length of
the query sequence, lk, and denote it by wopt(lk).

We show that the optimal window size wopt(lk) for a query sequence length
lk in a window list 〈w1, w2, . . . , wm〉 is computed by

wp = max{wi|wi ≤ lk (1 ≤ i ≤ m)} for FRM and (2)

wq = max{wi|wi ≤ �(lk + 1)/2� (1 ≤ i ≤ m)} for Dual-Match (3)

We show that wp is the optimal window size for FRM. (One can show wq is the
optimal window size for Dual-Match in a similar way.) We first show any window
size in 〈wp+1, . . ., wm〉 cannot be the optimal one for query sequence length lk.
By definition of wp, windows sizes wp+1, . . . , wm are all larger than lk and the
indexes for those window sizes cannot be used in subsequence matching for a
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query sequence of length lk[7]. Thus, in this case, we have to perform sequential
scan for a query sequence of length lk, which shows as poor performance as no
indexes are built.

Now, we show that wp is the optimal window size for lk among 〈w1, . . . , wp〉.
Every window in 〈w1, . . . , wp〉 is not larger than lk and thus an index built for
any window size in 〈w1, . . . , wp〉 can be used for processing a query sequence
of length lk without any concern of false dismissal[7]. According to the window
size effect, as a window size is nearer to lk, the performance becomes better.
Therefor, it is hold that wp is wopt(lk) the optimal window size for lk.

4.2 Cost Function

Given a query sequence length lk and its frequency fk, the cost of processing a
query sequence of length lk over the list of window sizes W = 〈w1, w2, . . . , wm〉,
denoted by C(lk, fk, W ), is defined as follows.

C(lk, fk, W ) = fklk/wopt(k)

This cost function is inferred from the observation from our preliminary experi-
ments in Section 3: The cost of subsequence matching was found to be roughly
proportional to the query sequence length and to be inversely proportional to
the window size.

Now, we extend the cost function to a more general case. Given a list of
query sequence lengths L = 〈l1, l2, . . . , ln〉 and a list of their frequencies F =
〈f1, f2, . . . , fn〉, the processing cost of subsequence matchings using W , denoted
by C(L, F, W ), is the sum of C(lk, fk, W )’s for all 1 ≤ k ≤ n, i.e.,

C(L, F, W ) =
n∑

k=1

fklk/wopt(k). (4)

Also, the cost function for a sublist L[i..j]=〈li, . . . , lj〉 and F [i..j]=〈fi, . . . , fj〉
over W is defined analogously.

C(L[i..j], F [i..j], W ) =
j

∑

k=i

fklk/wopt(k). (5)

4.3 Computing of Optimal Window Size List

In this section, we present an algorithm for determining a list of optimal window
sizes W when L and F are given. First, we give a formal definition of W , the
optimal window size list.

Definition 1. For L = 〈l1, l2, . . . , ln〉, F = 〈f1, f2, . . . , fn〉, and m, a window
size list W = 〈w1, w2, . . . , wm〉 is considered optimal if and only if C(L, F, W ) ≤
C(L, F, W ′) for any window size list W ′ of length m. The cost C(L, F, W ) is
called the optimal cost of L and F over the window size lists of length m and
also denoted by Om(L, F ).
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We show that every window size in W , the optimal window size list, corresponds
to some query sequence length lj in the next lemma. This implies that, for
determining W , we just need to consider nCm, instead of lnCm, lists of windows
sizes, where C represents combination.

Lemma 1. If a window size list 〈w1, w2, . . . , wm〉 is an optimal window size list
of length m(≤ n) for L=〈l1, l2, . . . , ln〉 and F =〈f1, f2, . . . , fn〉, 〈w1, w2, . . . , wm〉
= 〈lg(1), lg(2), . . ., lg(m)〉 for some 1 ≤ g(1) < g(2) < · · · < g(m) ≤ n.

Proof. We only need to show that each window size wi for 1 ≤ i ≤ m is the
same as lj for some 1 ≤ j ≤ n. We prove it by contradiction. Assume that w′

i

is a window size that is not same as any lj for 1 ≤ j ≤ n. Then, there exist
two consecutive query sequence lengths la−1 and la satisfying la−1 < w′

i < la.
One can show that the cost of subsequence matchings of L and F by using
〈w1, . . . , w

′
i, . . . , wm〉 is larger than that by using 〈w1, . . . , la, . . . , wm〉, which

contradicts that 〈w1, w2, . . . , wm〉 is optimal. Hence, every window size wi is
the same as some lj .

Next, we show how to compute the optimal cost Om(L, F ) for L=〈l1, l2, . . . , ln〉
and F = 〈f1, f2, . . . , fn〉. We note that we can obtain the optimal window size list
of length m as a result of computing the optimal cost Om(L, F ). One can con-
sider a naive approach that computes the costs over all possible window size lists
of length m and then gets the minimum of them. However, this approach should
compute O(nm) values, which are too much. In this paper, we present an algo-
rithm that computes the optimal cost Om(L, F ) in O(mn2) time using dynamic
programming. The main idea is that we first compute the optimal costs for query
sequence sublists and then extend them to get the optimal cost for the whole query
sequence list.

The computation of the optimal cost Om(L, F ) consists of two steps. In step 1,
we compute an n×n array NC where each entry NC(i, j) for 1 ≤ i ≤ j ≤ n stores
C(L[i..j], F [i..j], 〈li〉), i.e., the cost of the sublists 〈li, . . . , lj〉 and 〈fi, . . . , fj〉 over
the window size list 〈li〉. In step 2, we compute the optimal cost Om(L, F ) using
the array NC.

Step 1. Compute the array NC: We compute C(L[i..j], F [i..j], 〈li〉) for each
1 ≤ i ≤ j ≤ n and store it into NC(i, j). We show how to compute all NC(i, j)’s
in O(n2) time. By equation (5), NC(i, j) =

∑j
k=i fklk/li. Thus, NC(i, i) = fi

and NC(i, j) = NC(i, j −1)+fjlj/li for all 1 ≤ i < j ≤ n, which means that we
can compute NC(i, i) in O(1) time, and we also can compute NC(i, j) in O(1)
time from NC(i, j − 1). Hence, we get the following lemma.

Lemma 2. We can compute all NC(i, j)’s for 1 ≤ i ≤ j ≤ n in O(n2) time.

Step 2. We compute the optimal cost Om(L, F ): Let C′(i, j) for 1 ≤ i ≤ n and
1 ≤ j ≤ m denote the optimal cost of the sublists 〈li, . . . , ln〉 and 〈fi, . . . , fn〉 over
the list of j window sizes whose smallest window size w1 is li. Then, Om(L, F ) =
C′(1, m). We show that we can compute C′(1, m) by dynamic programming. We
first show the following recurrence is satisfied for C′(i, j) for 1 ≤ i ≤ n and
1 ≤ j ≤ m.
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Lemma 3. C′(i, j) = minn−j+2
k=i+1 {NC(i, k − 1) + C′(k, j − 1)}.

Proof. By definition of C′(i, j), the smallest window size w1 is li. Consider the
second smallest window size w2. The window size w2 can be one of the query
sequence lengths li+1, . . . , ln−i+1 by Lemma 1. If w2 is lk, C′(i, j) = NC(i, k−1)
+ C′(k, j − 1) ≤ NC(i, k′ − 1) + C′(k′, j − 1) for any i + 1 ≤ k′ ≤ n − i + 1.
Hence, the recurrence is satisfied for C′(i, j).

Finally, we show we can compute C′(1, m) in O(mn2) time. Since we can
compute C′(i, j) in O(n) time by Lemma 3, and we compute at most mn values
of C′(i, j)’s, we can compute C′(1, m) in O(mn2) time and we get the following
lemma.

Lemma 4. We can compute the optimal cost Om(L, F ) in O(mn2) time.

The pseudo-code for computing C′(1, m) is depicted in Figure 3. In lines 1-4,
we compute the array NC. In lines 5-10, we initialize some elements of the C′

array. In lines 11-15, we compute all the elements of the C′ array.

1: for i := 1 to n do
2: NC[i][i] := fi

3: for j := i + 1 to n do
4: NC[i][j] := NC[i][j − 1] + fj lj/li
5: for i := 1 to n do
6: C[i][1] := NC[i][n]
7: for j := 2 to n − i do
8: C[i][j] := ∞
9: for j := n − i + 1 to m do
10: C[i][j] := 0
11: for i := n − 2 downto 1 do
12: for j := 2 to min{m, n − i} do
13: for k := i + 1 to n − j + 2 do
14: temp := NC[i][k − 1] + C[k][j − 1]
15: if (temp < C[i][j]) C[i][j] := temp

Fig. 3. Pseudo-code for computing C′(1, m)

5 Performance Evaluation

5.1 Experiment Environment

We used a real-life data set called K Stock Data and a synthetic data called
Syn Data. K Stock Data, the same one used for our preliminary experiments
presented in Section 3, consists of 620 stock price sequences whose length is
1,024. Syn Data is a synthetic data set comprising random walk data sequences
s = <s1, s2, . . . , sn> generated as follows[1].

si+1 = si + zi (6)



Using Multiple Indexes for Efficient Subsequence Matching 75

Here, zi is a random variable that takes an arbitrary value from an interval
[-0.1, 0.1] and s1, the first element of a sequence, is a special value obtained
randomly from the interval [1, 10]. For performing our experiments extensively,
we generated five sets of Syn Data that comprise 2,000, 3,000, 4,000, and 5,000
data sequences of length 1,024, respectively and another five sets of Syn Data
that consist of 1,000 data sequences whose lengths are 2,000, 3,000, 4,000, and
5,000, respectively. On all these data sets, we built R*-trees in the same way as
in our preliminary experiments.

Table 1. Number of Query Sequences in Each Group

Number of query Number of query Sub-total number of
sequence sequences query
groups in each group sequences

4 30 120
5 10 50
6 5 30
16 1 16

Total: 31 216

Also, query sequences have their lengths of multiples of 32 in the range [64,
1,024], and each query sequence belongs to a group by its length. The total
number of groups is 31. We generated query sequences over groups as in Table 1,
which follow the features in real applications. We see that query sequences in
four groups frequently appear, and those in 16 groups do not. As a performance
factor, we used the average execution time for subsequence matchings with the
total of 216 query sequences. We also adjusted a tolerance ε so that 20 final
answers are returned.

The hardware platform used in our experiments is a 2.8 GHz Pentium 4 PC
equipped with 512MB RAM and 9GB hard disk. The software platform is MS
Windows 2000 Server. The language used in development is Microsoft Visual
C++. We set the size of a page for storing both data and R*-trees to 1KB.
For dimensionality reduction, we used the DFT, and extracted six features for
indexing. Since reference [12] already verified that Dual-Match performs much
better than FRM, we only used Dual-Match in our experiments.

We compared the performance of the three methods: (A) Dual-Match with
only one index (as in the original approach), (B) Dual-Match with multiple
indexes whose window sizes are evenly chosen in the range of the minimum and
maximum query sequence lengths, (C) Dual-Match with multiple indexes whose
window sizes are chosen by our approach as shown in Section 4. Hereafter, we
shortly call them methods (A), (B), and (C), respectively.

5.2 Results and Analyses

We ran three types of experiments for performance evaluation. In Experiment 1,
we compared the performance of the three methods (A), (B), and (C) using
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K Stock Data with different numbers of indexes. In Experiment 2 and Exper-
iment 3, we compared the performance of the three methods using Syn Data
while changing the number and the length of data sequences, respectively.
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Fig. 4. Performance with Different Numbers of Data Sequences

Figure 4 shows the results of Experiment 1. The horizontal axis represents
the number of R*-trees employed for subsequence matchings, and the vertical
axis does the average execution time in the unit of seconds. As shown in the
figure, method (A) showed the worst performance, and method (C) showed the
best performance. When using five R*-trees, method (C) performs 7.8 times and
1.5 times better than methods (A) and (C), respectively. Also, it showed perfor-
mance 5.6 times and 3.2 times better than methods (A) and (C), respectively.
The performance gain tends to get larger with a smaller number of R*-trees
employed in methods (B) and (C).

In Experiment 2, we examined the performance tendency of the three methods
while changing the number of data sequences of length 1,024 to 2,000, 3,000,
4,000, and 5,000. We built four R*-trees for methods (B) and (C).

Figure 5 shows the results of Experiment 2. The horizontal axis represents the
number of data sequences, and the vertical axis does the average execution time.
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Fig. 6. Performance with Different Lengths of Data Sequences

In all cases, the performance of method (C) was shown to be better than that
of method (B), which was shown to have better performance than method (A).
Also, the performance gain of method (C) was shown to be about 5.7 times to
6.1 times when compared with method (A), and about 1.9 to 2.1 when compared
with method (B).

In Experiment 3, we investigated the performance change of the three methods
with 1,000 synthetic data sequences of length 2,000, 3,000, 4,000, and 5,000. As
in Experiment 2, we employed four R*-trees for methods (B) and (C).

Figure 6 shows the results of Experiment 3. The horizontal axis represents the
length of data sequences, and the vertical axis does the average execution time.
The results appeared to be quite similar to that of Experiment 2. Regardless
of the length of data sequences, method (C) showed the best performance, and
achieved significant speedup about 6.2 times and 2.0 times over methods (A)
and (B), respectively.

In summary, by employing the concept of index interpolation, we could im-
prove the performance of subsequence matching significantly compared with the
prior approach that uses only a single R*-tree. Also, our method for selecting the
optimal window sizes for multiple R*-trees was shown to be fairly effective when
compared with the simple one that chooses window sizes from even positions
within a possible range.

6 Conclusions

In this paper, we have proposed a novel method for time-series subsequence
matching based on index interpolation[11] that resolves the performance degra-
dation caused by the window size effect.

The main contributions can be summarized as follows.

(1) Via preliminary experiments, we have first verified that the performance of
subsequence matching by previous methods that employ only one R*-tree is
not satisfactory to users. Then, we have claimed that index interpolation is
a good choice to resolve this performance problem.
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(2) We have derived a formula that estimates the cost for all the subsequence
matchings when a set of pairs 〈length, frequency〉 of query sequences to be
issued and a set of windows sizes for the R*-tree building are provided.

(3) Using the cost formula, we have proposed an efficient algorithm that deter-
mines an optimal set of window sizes that maximize the overall performance
of all the subsequence matchings performed in a target application. We have
formally shown the optimality and effectiveness of the proposed algorithm.

(4) We have quantitatively verified the effect of performance improvement ob-
tained from the proposed method through a series of experiments.

The results reveal that the proposed approach outperforms the previous one
up to 7.8 times. Currently, the proposed method provides the optimal list of
window sizes, but not the optimal number of indexes. As a future study, we are
considering tackling this issue by reflecting the update costs as well as subse-
quence matching costs.
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