
Adapting Prime Number Labeling Scheme for
Directed Acyclic Graphs

Gang Wu, Kuo Zhang, Can Liu, and Juanzi Li

Knowledge Engineering Lab, Department of Computer Science,
Tsinghua University, Beijing 100084, P.R. China

Abstract. Directed Acyclic Graph(DAG) could be used for modeling
subsumption hierarchies. Several labeling schemes have been proposed
or tailored for indexing DAG in order to efficiently explore relationships
in such hierarchy. However few of them can satisfy all the requirements
in response time, space, and effect of updates simultaneously. In this
paper, the prime number labeling scheme is extended for DAG. The
scheme invests intrinsic mapping between integer divisibility and sub-
sumption hierarchy, which simplifies the transitive closure computations
and diminishes storage redundancy, as well as inherits the dynamic la-
beling ability from original scheme. Performance is further improved by
introducing some optimization techniques. Our extensive experimental
results show that prime number labeling scheme for DAG outperforms
interval-based and prefix-based labeling schemes in most cases.

1 Introduction

Directed Acyclic Graph(DAG) is an effective data structure for representing sub-
sumption hierarchies in applications, e.g. OO programming, software engineer-
ing, and knowledge representation. The growing number and volume of DAGs
in such systems inspire the demands for appropriate index structures for DAG.

Labeling schemes[8] are widely used in indexing tree or graph structured data
considering their avoiding expensive join operations for transitive closure com-
putations. Determinacy, compaction, dynamicity, and flexibility are factors for
labeling scheme design besides speedup [10]. However, the state of art labeling
schemes for DAG could not satisfy most above requirements simultaneously.

One major category of labeling schemes for DAG is spanning tree based.
Ordinarily, they first find a spanning tree and assign labels for vertices following
the tree’s edges, and then propagate additional labels to record relationships of
the non-tree edges. Christophides compared two such schemes [4], i.e. interval-
based [7] and prefix-based [3]. Evaluations to the non-tree edges relationships
cannot take advantage of the deterministic tree label characters. Non-tree labels
need not only additional storage but also special efforts in query processing. Also
interval-based scheme studied in [4] has a poor re-labeling ability for updates.

There are also labeling schemes having no concern with spanning tree, such
as bit vector [9] and 2-hops [5]. Though bit vector can process operations on
DAG more efficiently, it is static and requires global rebuilding of labels when

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 787–796, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

788 G. Wu et al.

updates happen. Moreover, studies show that recent 2-hops approach introduces
false positives in basic reachability testing.

A novel labeling scheme for XML tree depending on the properties of prime
number is proposed in [10]. Prime number labeling scheme associates each vertex
with a unique prime number, and labels each vertex by multiplying parents’
labels and the prime number owned by the vertex. Compared with prefix-based
scheme, the effect of updating is almost the same, and the query response time
and the size requirements are even smaller. However, no further work has been
performed on extending the idea to the case of DAG.

We extend the scheme by labeling each vertex with an integer which equals
to the arithmetic product of the prime numbers associating with the vertex and
all its ancestors. Independent of spanning tree, the scheme can efficiently explore
the subsumption hierarchies in a DAG by checking the divisibility among the
labels. It also inherits dynamic update ability and compact size feature from its
predecessor. Experimental results indicate that prime number labeling scheme is
an efficient and scalable scheme for indexing DAG with appropriate extensions
and optimizations. The major contributions are summarized as follows.

– Extend original prime number scheme[10] for labeling DAG and supporting
the processing of typical operations on DAG.

– Optimize the scheme on space and time requirements in terms of the char-
acteristics of DAG and prime numbers.

– A generator is implemented to generate arbitrary complex synthetic DAG for
the extensive experiments. Space requirement, construction time, scalability,
and the impact of selectivity and update are all studied in the experiments.

2 Prime Number Labeling Scheme for DAG

Given vertices v and w in DAG G, we will use parents(v), children(v),
ancestors(v), descendants(v), leaves(v), siblings(v) and nca(v, w) indicating
queries on those known typical operations related to reachability1 . (See [4] for
formal expressions). Vertex update is another kind of operation worthy of note
because it may bring reorganizations to the index structure.

2.1 Prime Number Labeling Scheme for DAG - Lite

Definition 1. Let G = (V, E) be a DAG. A Prime Number Labeling
Scheme for DAG - Lite (PLSD-Lite) associates each vertex v ∈ V with
an exclusive prime number p[v], and assigns to v a label Llite(v) = (c[v]), where

c[v] = p[v] ·
{�

v′∈parents(v) c[v′], in−degree(v)>0

1, in−degree(v)=0
(1)

In Figure 1, PLSD-Lite assigns each vertex an exclusive prime number increas-
ingly from “2” with a depth-first traversal of the DAG. The first multiplier factor
in the brackets of each vertex is the prime number assigned.
1 DAG(directed acyclic graph), and reachability are general definitions in graph theory.

Given two vertices v and w, v � w is used to indicate that w is reachable from v.

Adapting Prime Number Labeling Scheme for DAGs 789

(2 × 1 = 2)

(17 × 2 = 34)

(19 × 34 = 646)

(3 × 2 × 34 = 204) (23 × 34 = 782)

(5 × 204 = 1020) (11 × 204 × 646 × 782 = 1133605968)

(7 × 1020 × 1133605968 = 8093946611520) (13 × 1133605968 = 14736877584)

A

C

EB F

D G

H I

Fig. 1. PLSD-Lite Fig. 2. Updates in PLSD-Lite

Lemma 1. Let G = (V, E) be a DAG. Composite number c[v] in the Llite(v) =
(c[v]) of a vertex v ∈ V can be written in exactly one way as a product

c[v] = p[v] ·
∏

v′∈ancestors(v)

p[v′]mv′ (2)

where mv′ ∈ N.

Lemma 1 2 implies that for any vertex with PLSD-Lite, there is a bijection
between an ancestor of the vertex and a prime factor of the label value.

Theorem 1. Let G = (V, E) be a DAG. For any two vertices v, w ∈ V where
Llite(v) = (c[v]) and Llite(w) = (c[w]), v � w ⇐⇒ c[v]|c[w].

Consequently, whether two vertices have the relation of ancestor/descendant can
be simply determined with PLSD-Lite. For example, in Figure 1, we have A � D
because 2|1020. Finding out all the ancestors or descendants of a given vertex is
realizable by testing the divisibility of the vertex’s label with the other vertices’
labels in the DAG or conversely. Moreover, a vertex is a leaf if any other vertex’s
label value could not be divided by its label value. There is also a simple solution
to nca evaluating. First put all the common ancestors of both vertices into a set.
Then filter out vertices whose descendants are also within the set.

As stated in [10], re-labeling happens with the insertion or deletion of a vertex,
and only affects the descendants. After deleting vertex D, inserting leaf vertex
J and non-leaf vertex K, we have Figure 2. As a new leaf, J does not affect
other vertices in the DAG. Insertion of K only affects descendants G, H , I and
K itself. Vertex H is affected by the deletion of ancestor D too.

However, PLSD-Lite lacks enough information to identify parents/child rela-
tion. In order to support this operation, we need to separately record the prime
number that identifies the vertex and the additional information about parents.

2.2 Prime Number Labeling Scheme for DAG - Full

Definition 2. Let G = (V, E) be a DAG. A Prime Number Labeling
Scheme for DAG - Full (PLSD-Full) associates each vertex v ∈ V with an ex-
clusive prime number p[v], and assigns to v a label Lfull(v) = (p[v], ca[v], cp[v]),
where
2 All the proofs in this paper are omitted for the length limited.

(2 × 1 = 2)

(17 × 2 = 34)

(19 × 34 = 646)

(3 × 2 × 34 = 204) (23 × 34 = 782)

(5 × 204 = 1020)

(11 × 204 × 646 × 22678 = 32874573072)

(7 × 32874573072 = 230122011504) (13 × 32874573072 = 427369449936)

(31 × 204 = 6324)

(29 × 782 = 22678)

A

C

EB F

G

H I

K

DJ

790 G. Wu et al.

ca[v] = p[v] ·
{�

v′∈parents(v) ca[v′], in−degree(v)>0

1, in−degree(v)=0
(3)

and

cp[v] =
{�

v′∈parents(v) p[v′], in−degree(v)>0

1, in−degree(v)=0
(4)

We term p[v] as “self-label”, ca[v] (c[v] in Definition 1) as “ancestors-label”,
and cp[v] as “parents-label”. In Figure 3, three parts in one bracket is self-label,
ancestors-label, and parents-label. Theorem 1 is still applicable.

Theorem 2. Let G = (V, E) be a DAG, and vertex v ∈ V has Lfull(v) =
(p[v], ca[v], cp[v]). If the unique factorization of composite integer ca[v] results r
different prime numbers, p1 < ... < pr, then there is exactly one vertex w ∈ V
that takes pi as the self-label for 1 ≤ i ≤ r, and w is one of the ancestors of
v. If the unique factorization of composite integer cp[v] results s different prime
numbers, p′1 < ... < p′s, then there is exactly one vertex u ∈ V that takes p′i as
the self-label for 1 ≤ i ≤ s, and u is one of the parents of v.

Therefore, we can find out all the parents of any vertex by factorizing the parents-
label. For instance, since vertex G in Figure 3 has a parents-label 1311 = 3×19×
23, vertices B, E and F are considered to be all the parents of G. We still have
the rights to determine the parent/child relation of two vertices by checking
divisibility between one’s parents-label and the other’s self-label in terms of
Definition 2. Unique factorization also can be used to obtain ancestors. Three
ancestors A, B and C of vertex D could be identified by factoring “1020”. Though
trial division itself could be used to do integer factorization, we can choose faster
integer factorization algorithm alternately especially for small integers. Corollary
1 further expresses PLSD-Full’s sibling evaluation ability.

Corollary 1. Let G = (V, E) be a DAG. For any two vertices v, w ∈ V where
Lfull(v) = (p[v], ca[v], cp[v]) and Lfull(w) = (p[w], ca[w], cp[w]), w and v are
siblings if and only if the greatest common divisor gcd(cp[v], cp[w]) �= 1.

Corollary 1 enables us to discover the siblings of a vertex by testing whether the
greatest common divisor of the parents-labels equals 1. In Figure 3, vertex B
has two siblings E and F because gcd(34, 17) = 17 �= 1.

(2, 2, 1)

(17, 34, 2)

(19, 646, 17)

(3, 204, 2 × 17 = 34) (23, 782, 17)

(5, 1020, 3) (11, 1133605968, 3 × 19 × 23 = 1311)

(7, 8093946611520, 5 × 11 = 55) (13, 14736877584, 11)

A

C

EB F

D G

H I

Fig. 3. PLSD-Full

Adapting Prime Number Labeling Scheme for DAGs 791

3 Optimization Techniques

Elementary arithmetic operations employed by PLSD become time-consuming
when their inputs are large numbers. Some optimizations are introduced here.

Least Common Multiple. There is apparent redundancy in previous con-
struction of ancestors-label that power mv′ in Equation 2 magnifies the size of
ancestors-label exponentially, but it is helpless for evaluating the operations of
DAG. It is straightforward to remove the redundancy by simply setting mv′ to
1 in Equation 2. We have Equation 5.

c[v] = p[v] ·
∏

v′∈ancestors(v)

p[v′] (5)

Theorems 1 and 2 still hold. Define lcm(a1, a2, ..., an) to be the least common
multiple of n integers a1, a2, ..., an. In particular, we define lcm(a) = a here.

c[v] = p[v] ·
{lcm(c[v′

1],...,c[v
′
n]), in−degree(v)>0 and v′

1,...,v′
n∈parents(v)

1, in−degree(v)=0
(6)

Equation 6 implies that an ancestors-label can be simply constructed by multi-
plying self-label by the least common multiple of all the parents’ ancestors-labels.
Thereafter, Equation 5 holds. With this optimization technique, the max-length
of ancestors-label in DAG is only on terms with the total count of vertices and
the count of ancestors. Figure 4 has a smaller max-length of ancestors-label.

Topological Sort. Previous selection of prime number for the self-label is ar-
bitrary as long as any two vertices have different self-label. A naive approach is
assigning each vertex met in depth-first search of DAG a prime number ascend-
ingly. Unfortunately, Equation 5 and 2 imply that the size of a vertex’s self-label
has influence on all the ancestors-labels of its descendants. So vertices on the top
of the hierarchy should be assigned small prime numbers as early as possible.
Topological sort[6] of a DAG provides the character we need. One of the topolog-
ical sort of the DAG in Figure 1 is “A, C, E, F, B, D, G, H, I”. Let the self-labels
to be the first 9 prime numbers “2, 3, 5, 7, 11, 13, 17, 19, 23” respectively, then we
get Figure 5.

Leaves Marking. As an optimization for reducing label size, even numbers e.g.
21, 22, ..., 2n are used as self-labels for leaf vertices in [10], which gives us another

(2, 2 × 1 = 2, 1)

(17, 17 × lcm(2) = 34, 2)

(19, 19 × lcm(34) = 646, 17)

(3, 3 × lcm(2, 34) = 102, 34) (23, 23 × lcm(34) = 782, 17)

(5, 5 × lcm(102) = 510, 3) (11, 11 × lcm(102, 646, 782) = 490314, 1311)

(7, 7 × lcm(510, 490314) = 17160990, 55) (13, 13 × lcm(490314) = 6374082, 11)

A

C

EB F

D G

H I

Fig. 4. Least Common Multiple

(2, 2, 1)

(3, 3 × lcm(2) = 6, 2)

(5, 5 × lcm(6) = 30, 3)

(11, 11 × lcm(2, 6) = 66, 2 × 3 = 6) (7, 7 × lcm(6) = 42, 3)

(13, 13 × lcm(66) = 858, 11)

(17, 17 × lcm(66, 30, 42) = 39270, 3 × 5 × 11 = 165)

(19, 19 × lcm(39270, 858) = 9699690, 13 × 17 = 221) (23, 23 × lcm(39270) = 903210, 17)

A

C

EB F

D G

H I

Fig. 5. Topological Sort

792 G. Wu et al.

method to identify leaves. However, the prime number theorem indicates that
the growth of prime number is slower than that of power of 2, so self-labels of
even number leaves increase dramatically. An alternative is to follow the rule
of PLSD-FULL and simply set leaf’s ancestors-label to be negative. Whether a
vertex is a leaf could be determined by the sign of its ancestors-label. It is a
meaningful technique in the case of existing large number of leaves in a DAG.

Descendants-Label. In the same idea of ancestors-label, we can extend LDUP-
Full by adding the following so-called “descendants-label”.

ca[v] = p[v] ·
{�

v′∈children(v) ca[v′], out−degree(v)>0

1, out−degree(v)=0
(7)

Clearly, Equation 7 is a reverse version of Equation 3. Now, descendants(v), can
be evaluated by factoring descendants-label. In section 4 we will give empirical
results on querying descendants and leaves using this technique.

4 Performance Study

This section presents some results of our extensive experiments conducted to
study the effectiveness of prime number labeling scheme for DAG (PLSD).

4.1 Experiment Settings

Taking the queries on RDF class hierarchies as an application background for
DAG, we setup test bed on RSSDB v2.0 [2]. In this case, each vertex stands for a
class in the RDF metadata, and each edge stands for the hierarchy relationship
between a pair of classes in the RDF metadata. RDF metadata is parsed and
stored in PostgreSQL (win32 platform v8.0.2 with Unicode configuration).

Though least common multiple, topological sort, and leaves marking are op-
tional optimizations, they are integrated in our default PLSD-Full implemen-
tation. PLSD-Lite and PLSD-Full without these optimizations are ignored for
their apparent defects. Furthermore, descendants-label is employed to examine
its effects on descendants query. We also provide the Unicode Dewey prefix-
based scheme and the extended postorder interval-based scheme by Agrawal
et al. Hence, there are totally four competitors in our comparisons, namely,
default PLSD-Full (PLSDF), PLSD-Full with descendants-label (PLSDF-D), ex-
tended postorder interval-based scheme (PInterval) and Unicode Dewey prefix-
based scheme (UPrefix). All the implementations are developed with JDK1.5.0.
Database is connected through PostgreSQL 7.3.3 JDBC2 driver. All the experi-
ments are conducted on a PC with single 2.66GHz Intel Pentium 4 CPU, 1GB
DDR-SDRAM, 80GB IDE hard disk, and Microsoft Windows 2003 Server.

The relational representations of UPrefix and PInterval, including tables, in-
dexes, and buffer settings, are the same to [4]. As for PLSDF, we create a ta-
ble with four attributes: PLSDF(self-label: text, label: text, parent-label: text, uri:
text). It is not surprising that we use PostgreSQL data type text instead of

Adapting Prime Number Labeling Scheme for DAGs 793

the longest integer data type bigint to represent the first three attributes con-
sidering that a vertex with 15 ancestors has an ancestors-label value at least
32589158477190044730 which exceeds the bound of bigint (8 bytes, between
±9223372036854775808). The conversion from text to number is available on
host language Java. Thus the number-theoretic algorithms used for PLSDF could
be performed outside PostgreSQL in main memory. Similarly, we use PLSDF-
D(self-label: text, label: text, parent-label: text, descendants-label: text, uri: text) to
represent PLSDF-D. For PLSDF and PLSDF-D, we only build B-tree indexes
on self-labels. Buffer settings are the same to those of UPrefix and PInterval.

4.2 Data Sets

To simulate diverse cases of DAG, we implement a RDF metadata generator to
generate RDF file with arbitrary complexity and scale of RDF class hierarchies.
Generator’s input includes the count of vertices, the max depth of spanning tree,
the max fan-out of vertices, and the portion of fan-in (ancestors/precedings).
The output is a valid RDF file. We concatenate the values of above four param-
eters and the count of edges with hyphens to identify a DAG. Listed in Table 1,
two groups of DAGs are generated for evaluating the performance.

Table 1. Data Sets

RDF Metadata Size Classes/ SubClassOf/ Depth Fan-out Fan-in Fan-in
DAG (MB) Vertices Edges Max Max Portion Max

1300-8-4-0.2-50504 2.55 1300 50504 8 4 0.2 219
1300-8-4-0.4-100132 4.62 1300 100132 8 4 0.4 458
1300-8-4-0.6-149451 6.34 1300 149451 8 4 0.6 373
1300-8-4-0.8-199774 8.05 1300 199774 8 4 0.8 897
1300-8-4-1.0-250222 9.32 1300 250222 8 4 1.0 562

90000-16-2-0.000053-44946 16.3 90000 44946 16 2 0.000053 3

4.3 Space Requirement and Construction Time

As shown in Figure 6(a), PLSDF and PLSDF-D have much smaller average space
requirement and mild trend of increase. The underlying cause is twofold. First,
both are simply composed of only one table whose row size equals to the count of
vertices, and one B-tree index. In contrast, Interval and UPrefix consist of three
tables (and more indexes) to record additional information besides spanning
tree. Another cause is that all the data type in the table of PLSDF or PLSDF-D
are text which will be “compressed by the system automatically, so the physical
requirement on disk may be less”[1]. Figure 6(b) illustrates that PLSDF and
PLSFD-D have the same gentle tendency but less construction time to UPrefix,
whereas the construction time of Interval is the worst. It is obvious that the count
of non-spanning tree edges impacts the space requirement and label construction
time for UPrefix and Interval. Another observation is that PLSDF needs few
space and construction time relative to PLSDF-D. This is reasonable considering
that PLSDF-D equals to PLSDF plus descendants-label.

794 G. Wu et al.

Fig. 6. Label Size(a) & Construction Time(b)

Operation Type Selectivity
Q1 ancestors 2.53%
Q2 descendants 20.08%
Q3 siblings 2.98%
Q4 leaves 38.67%
Q5 nca 0.011%

Fig. 7. Test Typical Operations
for Overall Performance

Fig. 8. Overall Performance

4.4 Response Time of Typical Operations

Overall Performance. DAG “9000-8-4-0.004-45182” is used here. The opera-
tions are listed in Figure 7. The total elapsed time is shown in Figure 8. PLSDF-D
is applied only to Q2 and Q4 to examine the effectiveness of descendants-label,
because it is the same to PLSDF for the other three queries. For the given se-
lectivity, PLSDF processes all the operations faster than the others. PLSDF-D
exhibits accepted performance in Q2 and Q4 as well. The concise table structure
of PLSDF/PLSDF-D and computative elementary arithmetic operations avoid
massive database access. For instance, the evaluation of a vertex’s ancestors in-
cludes only two steps. Firstly retrieve the self-label and ancestors-label of the
vertex from the table. Then do factorization using the labels. The only database
access happens in the first step.

Impact of Varying Selectivity. Selectivity experiment result is shown in
Figure 9. Diagrams in the figure correspond to operations from Q1 to Q5 re-
spectively. The metric of X-axis is the results selectivity of the operation except
that the fifth diagram for nca uses X-axis to indicate the average length from
the spanning-tree root. The metric of Y-axis is the response time. PLSDF dis-
plays almost constant time performance for all operations. Though the change of
response time is indistinguishable in some extensions, PLSDF stays at a disad-
vantage at a very low selectivity especially for Q2 and Q4. Fortunately, PLSDF-D

Adapting Prime Number Labeling Scheme for DAGs 795

Fig. 9. Impact of varying selectivity Fig. 10. Scale-up Performance

counterbalances this with descendants-label. It is a better plan to choose PLSDF-
D at a low selectivity and switch to PLSDF when the selectivity exceeds some
threshold. However, no good solution is found for PLSDF in Q3 where it costs
more response time at a low selectivity. PLSDF has to traverse among the ver-
tices and compute greatest common divisor one at a time.

Scale-Up Performance. We carry out scalability tests with the first group
of DAGs in Table 1. Operations are made to have the equal selectivity (equal
length on path for nca) for each scale of DAG size. Five diagrams in Figure 10
corresponds to operations from Q1 to Q5 respectively. Interval and UPrefix are
affected by both the size of the DAG. Unlike the other two labeling schemes,
PLSDF and PLSDF-D perform good scalability in all cases.

4.5 Effect of Updates

The “Un-ordered Updates” experiments exhibited in [10] are repeated. Here
we only give the results of updates on non-leaf vertices (updates on leaf have
the same results to that of XML tree, see Section 2.1). Ten DAGs whose ver-
tices increase from 1000 to 10000 are generated. We insert a new vertex into
each DAG between bottom left leaf and the leaf’s parent in the spanning tree.
Figure 11 shows our experimental results which coincides with that of XML tree.
PLSDF has exactly the same effect of update as Uprefix. While additional label
of PLSDF-D questionless causes more vertices to be re-labeled.

796 G. Wu et al.

Fig. 11. Effect of Updates

5 Conclusion

Prime number labeling scheme for DAG takes advantage of the mapping between
integers divisibility and vertices reachability. No extra information is required
to be stored for non-spanning tree edges, and the utilizations of elementary
arithmetic operations avoid time-consuming database operations. Performance
is further improved with the optimization techniques. Analysis also indicates
that re-labeling only happens when a non-leaf vertex is inserted or removed.

References

[1] Postgresql 8.0.3 documentation. available at http://www.postgresql.org/docs/
8.0/interactive/index.html.

[2] D. Beckett. Scalability and storage: Survey of free software / open source rdf
storage systems. Technical Report 1016, ILRT, June 2003. http://www.w3.org/
2001/sw/Europe/reports/rdf scalable storage report/.

[3] O. C. L. Center. Dewey decimal classification. available at
http://www.oclc.org/dewey.

[4] V. Christophides, G. Karvounarakis, D. Plexousakis, M. Scholl, and S. Tourtounis.
Optimizing taxonomic semantic web queries using labeling schemes. Journal of
Web Semantics, 11(001):207–228, November 2003.

[5] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance
queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press, September 2001.

[7] Q. Li and B. Moon. Indexing and querying xml data for regular path expressions.
In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and
R. T. Snodgrass, editors, Proceedings of the 27th International Conference on Very
Large Data Bases, pages 361–370, Roma, Italy, 2001.

[8] N. Santoro and R. Khatib. Labelling and implicit routing in networks. Comput.
J., 28(1):5–8, 1985.

[9] N. Wirth. Type extensions. ACM Trans. Program. Lang. Syst., 10(2):204–214,
1988.

[10] X. Wu, M.-L. Lee, and W. Hsu. A prime number labeling scheme for dynamic
ordered xml trees. In ICDE, pages 66–78. IEEE Computer Society, 2004.

	Introduction
	Prime Number Labeling Scheme for DAG
	Prime Number Labeling Scheme for DAG - Lite
	Prime Number Labeling Scheme for DAG - Full

	Optimization Techniques
	Performance Study
	Experiment Settings
	Data Sets
	Space Requirement and Construction Time
	Response Time of Typical Operations
	Effect of Updates

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

