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Abstract. In this paper we present a quality model highlighting the complete-
ness of sensor data with respect to its application. The model allows consis-
tent handling of information loss as data propagates through a sensor network.
The tradeoffs between various factors that influence completeness are quantified
thereby allowing an integrated view of completeness at various levels in a sys-
tem. The paper is presented in the context of the fast emerging field of smart
spaces. All concepts in the paper have a foundation in real-life problems arising
in this context. Preliminary implementation results are presented to illustrate the
value of the completeness based approach versus one that does not use complete-
ness.

1 Introduction and Motivation

Applications in the fast emerging field of smart spaces [1,12] use data collected and
aggregated from sensors of many modalities to monitor entities and environments and
assist in decision making. Information rich sensor data, such as image and audio, is
used in conjunction with basic context information such as location, identity, and time
to carry out classification, inferencing, and other categories of recognition tasks.

A major problem in such systems is information- or data-loss. Data may be lost at
many stations from the sensor to the application. Besides the sensors themselves, losses
may arise from the transmission medium, e.g., radio attenuation or network congestion.
In this paper we present a quantitative model for such loss. The model is based on an
intuitive notion of sensor data completeness that measures the amount of data reaching
a point of consumption compared to the maximum amount of data possible at that point.
In related work [3] we have investigated data loss that arises from delay or congestion
within the networking layer, and present an admission control scheme for regulation of
such loss.

1.1 A Smart Home Application

We consider as an example, an application that analyzes the pacing behavior of elderly
dementia patients in their homes [4]]. This application relies on sensor readings that
need to be updated and reasoned about rapidly, while at the same time analyzing the
knowledge thus generated to answer complex high level queries about the patient. For
example, in connection with the home of a dementia patient (Fig. 1), a doctor might
ask “Does the person become highly agitated while he is exhibiting abnormal pacing
behavior in the living room?” [5]. An answer to this query involves accessing a set of
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(Fig. D), whether a person is in that room.

Because we assume only a single person in the house, the proxy translates this data
into a single attribute stating the room in which the person is. In addition, each room
is equipped with two ultrasound distance sensors (Dg, Dy, ..., D), which measure
the distance of some object to the sensor. Usually, the distance of the opposite wall is
reported, but when the person is in the room, the sensors report the distance to that
person. The data from the two sensors of each room are passed to the proxy, which
derives the position of the person in the room. Finally, the person is equipped with an
on-body sensor, namely a 2D body worn accelerometer, which generates two readings
BWAX and BWAy.
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Fig. 2. An Example Sensor Query System Scenario showing the Virtual Table

Tab. [] (Ieft) shows the raw data as produced by the sensors. We assume that the
smallest granularity time period (system data rate) for this application is 1 second. We
will measure completeness as the ability of the overall system to produce data values
for each relevant measure in each time period. The following completeness-relevant
observations can be made from Tab. [T}
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Table 1. Raw data from sensors (left) and data produced by the set of proxies (right)

Living Reomn  Dining Reom  Kitchen

1 05689 1,5335 25045 19656 21119 19637
21,2045 15846

31,7001 16560 29945 19656 2,110 1,9637
4 21087 17537

5 25114 18717 20045 10658 2,110 10637
6 28170 20120

7 1,157 16198 20045 19658 2,110 1,9637
8 1,2830 18500

91,4089 20045 1,065 2,110 10637
10 1,5848

11 16607 2,0045

12 1,7866 1,0658
13 28170 25245

14 29170 2M20 19656
15 29170 220 2,8295

16 29170 20120 1,0656
1T 20170 22X 25245

18 29170 20120

10 29170 20120 2,6245 1,9656 0,6782 15246
20 297 2

21 28170 2MN0 25245 1965 0,6201 1,515
22 28170 2NN

23 29170 2120 05816 14057 2,119 1,9637
24 28170 220

25 28170 20N 1,193 1,1078 2,119 1,9637
2 28170 21N

27 20170 220 1,155 15800 2,110 1,637
28 20170 2

20 28170 220 1,1787 1,5850 2,119 1,9637

21110 19637
0,8526 1,5616
0,785 15480

0,7363 15357
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The ultrasound sensors have long stretches of almost constant data. During those

periods they are measuring their distance to the opposite wall.

Sensor Dy, stopped working for seconds 9 - 13.
At second 22 no passive infrared sensor detects a person. This can happen during
transition of the person from one room to the other.
Sensor Dy has a too fast internal clock. Originally it was synchronized with sensor
D, to deliver distance data simultaneously. This is important to derive exact posi-
tion data at the proxy. After a while, D, reports data for second 12, even though the
measurement actually occurred in second 11. After corrective actions of the proxy

in second 19, the two sensors are in synch again.

Tab. [1] (right) shows the data produced by the set of proxies. The following com-
pleteness relevant observations can be made:

The system data rate remains (by definition) at 1 second. This rate is globally set
and true at all levels, except for the query data rate as specified in the user require-

ments.

The distance data was used to derive positional information for each room. Accord-
ingly, as soon as one of the two distance values was missing, no positional value

can be derives (lines 9-13).
Some rounding has taken place.

Both the accelerometer readings have undergone PCA (Piecewise Constant Ap-

proximation) compression. Thus, only a few values remain.

The passive infra-red (PIR) data was aggregated to form the “Room” attribute val-
ues. In cases where the PIR values conflict (line 16) or give no information (line
22) no value is provided.
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1.2 Sample Queries with Completeness Awareness

In this section we present three sample queries that illustrate how completeness may be
used in the system. The high level queries are as follows: a) “Is there a person in one
of the three rooms?”, b) “Is the person in the room pacing abnormally?” and c) “Is the
person highly agitated?”

Passive infrared sensors are used to determine the presence of a person in one of
the three rooms. Upon detection, ultrasound sensors are used to get accurate pacing
trajectories to classify them as normal or abnormal. Once abnormal pacing is identified,
body worn accelerometer readings are taken to detect the onset of agitation.

Query 1: “Every 10 seconds generate a PIR sensor reading for each room.”

The above sample query indicates whether a person is present in one of the rooms.
The completeness level of the information provided could be increased by upgrading to
a greater requirement of completeness to get precise position information once a person
is detected to have entered a given room.

Query 2: “Every second generate the position of the person in the Living Room.”

The previous sample query gathers position information through external observa-
tion, with a high degree of completeness. Once the pacing is detected to be abnormal,
an additional query at a still higher level of completeness is issued to the body worn ac-
celerometer to gather data and collect it for fine grained motion analysis at the analyst’s
workstation.

Query 3: “Every 0.1 second generate a set of accelerometer readings.”

In a typical sensor query system, sensors can switch between sleep, idle, and active
states to prolong battery life. Due to lack of any well defined conventions, sensors are
generally operating at a predefined constant sampling rate while switching into a active
state. In addition, to meet the requirements of a certain range of applications, sensors
are easily to be operated at a sampling rate that is higher than necessary for some ap-
plications. Such over-fed data unnecessarily reduces the query processing performance
and wastes system resources in terms of transmission bandwidth and battery power.

1.3 Contributions and Paper Structure

The main contribution of this paper is a model highlighting the completeness of sensor
data: (i) The model allows consistent handling of information content losses as data
propagates through a sensor network. (ii) The model considers factors that influence
completeness and allows trade-offs between the sensor data completeness and system
resource consumption to be configured based on application requirements. (iii) An im-
plementation of the model in a “smart home” application context demonstrates all the
concepts introduced in the paper. Our implementation results illustrate the value of the
completeness based approach versus one that does not use completeness. Query run-
ning times are greatly reduced and system resources are conserved as over-fed data are
cleared from the data operation and transmission paths.

We have presented thus far, a simple example of a “smart home” that is able to
monitor the health and well-being of its resident. We have emphasized the importance
of information completeness in such an application. We have also put together the con-
cepts discussed in this paper into an example system that illustrates various types of
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processing taking place, and some sample queries in this environment. In order to keep
the presentation and analysis simple, we have only introduced only three modalities
of sensors. In our current deployment of sensors in a hospital ward ([S]]) we have a
much richer diversity of sensing modalities including pressure sensors, microphones
and video cameras. Feature extraction allows us to filter massive amounts of source
data into streams of relevant information which are then stored in a relational database.
The remainder of the paper is structured as follows. In Sec.[2l we present a completeness
model for sensor data. The model permits us to express query completeness as well as
data completeness in a unified framework. Sec. [3 introduces the notion of predicting
quality highlighting the fact that such predictions allow fine-tuning and optimization of
sensor configuration. Sec. [ discusses a proof of concept implementation set up in our
laboratory, and introduces preliminary results. Sec. [3l discusses related work; conclu-
sions and future work are discussed in Sec.

2 A Completeness Model for Sensor Data

Completeness is but one of several information quality criteria, albeit an important one.
It is a measure for how much data reaches a point of consumption compared to the max-
imum amount of data possible at that point. The more complete some data is, the higher
the quality of conclusions on that data are. Examples for conclusions are aggregations
on the data, which again have a completeness value, and medical diagnosis, which are
not measured by their completeness but by their clinical success.

In this section we lay the foundation of our completeness model for sensor data
by first defining what the maximum amount of data is, i.e., our reference point. Then
we formally define completeness and show in the following sections how it is affected
by different operations along the sensor query system components and operations per-
formed by them.

2.1 Data Rates in Sensor Systems

Given a component, the rate at which data is produced by the component is called its data
rate. Rates are defined as the average number of data items produced within some fixed
duration, usually millisecond. There are five types of data rates that are important for us:

System data rate (SysDR). The system data rate is the maximum data rate that pre-
vails for all sources and end users in a system. The system rate should be at least the
maximum of all other data rates. It is fixed once at setup and merely serves as a point of
reference. SysDR is chosen so that all other rates can be defined as multiples of SysDR.

A system producing data at system data rate is the maximum a system can produce.
Typical rates at the user-end of a sensor system are much lower. The typical system
data rate of a monitoring system, such as the one described in Sec.[[.1] is 1/msec (or
1000/sec), i.e., no component produces data at a higher rate than that.

Sampling data rate (SampDR). The sampling data rate is the rate at which a sensor
obtains samples from its environment, as determined by physical limitations or by con-
figuration settings. The sampling rate may be set during setup or changed dynamically
by an application or by the sensor itself.
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Typical sampling data rates are 0.1/sec for the IR sensors, 0.1/sec for idle distance
sensors, and 1/sec for active distance sensors.

Sensor data rate (SensDR). The sensor data rate is the rate at which a sensor com-
municates data to the outside world—usually to a base station, or to the next hop in a
multi-hop sensor network. Sensor data rate can be lower than the sample data rate to
save energy. For instance, a sensor might measure temperature once per second, but is
configured to only communicate if there is a change in temperature.

Operator data rate (OpDR). The operator data rate is the rate at which a logical op-
erator in the sensor network produces data. Usually the operation is an aggregation, but
could also be a selection, projection, transformation, or even a dispatch-type operation.
Operator data rate can be lower or higher than the data rates of its input. For instance,
an aggregation operator might aggregate groups of ten data items received from a sen-
sor, and thus have an operator data rate of on tenth of the sensor data rate. On the other
hand, an operator might produce data at a higher rate than its input if it fills input gaps
with data. In the temperature example above, an operator might receive data only if the
temperature changes but produces a constant stream of data, using the last available
input data. Also note that input is not necessarily sensor data, but can in turn be data
from another operator.

Query data rate (QDR). The query data rate is
the rate at which the end user or application would
like to see data delivered in a query response. It is
dictated by the application requirements. For in-
stance, an clinician might be satisfied with a av-
eraged temperature data for a patient that is based
on a temperature reading every minute: The query
datarate is 1/60000 per millisecond. On the other
hand, an application tracking fast objects, such
as automobiles, can only produce reliable results
with a data rate of 1/100, i.e., 10 readings per
second.

We use the query data rate to measure the qual-
ity of the system. If the operator data rate of the
final operator is at least as high as the query data
rate, the setup and configuration of the sensor sys- Fig-3. Different data rates in a sensor
tem is acceptable. If it is lower, the overall quality ~SYStem (Wide arrows indicate high data
is diminished. rate)

For brevity from here on, we omit the term
“data” from the different data rates. Fig. 3 shows the points in a sensor system where
the individual data rates are defined. The system itself has an overall system rate. Two
sensors measure the environment at different sampling rates and produce data at dif-
ferent sensor rates. A transformation operator leaves the data rate unchanged; a filter
operator reduces the data rate and thus has a lower operator rate. An aggregation again
produces data at some operator rate, which is consumed by two applications, each with
different requirements, expressed as query rate. Application 1 has a lower query rate

Application 1 Application 2

query
data rate

\ ’Operator
I data rate
tOperator data rate I

Sensor data rate

4.‘Sampling data raﬁ'
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and is thus adequately supplied by the sensor system. Application 2 has higher query
rate than the incoming operator rate. Thus, its overall quality is diminished.

The mentioned data rates are determined by different means: Data rates of sen-
sors (SampDR and SensDR) are usually determined by the manufacturer and can be
configured using embedded software. The operator data rate is dynamically set during
runtime. It depends on the algorithms involved and their internal parameters. Finally,
and most important is a means to determine the query data rate QDR. This involves two
subproblems: First determining the “right” QDR for the application at hand, and second
specifying the QDR in a query. We leave the first problem to the expert and provide a
model for the second.

2.2 Completeness

In this section we describe how we translate actual data rates of a running system into
a single completeness value measured over a certain period, which can be compared
with the requirements of the query. To this end we construct one virtual relation V R
for each data transfer level of the system. The first column of V' R always represents the
time-dimension. Time increments are determined by the system data rate, i.e., if SysDR
is 1 /sec, there is a row for each second. The other columns represent different sensors
or operators producing data at that level of the system.
We distinguish two kinds of completeness for columns (see definitions later):

— System completeness: Completeness with respect to the system data rate.
— Query completeness: Completeness with respect to the query data rate.

Tab. [[l show the virtual tables of the smart home scenario as described in Sec. [[1] If
we regard each data item in a relation as a cell, some of the cells could be unoccupied
or occupied by null value, i.e., SensDR and OpDR are less that SyDR. The proportion
of data bearing cells to null valued cells in a set of cells indicates the completeness
of the group of cells. Regard the Dist;, column of Tab.[Il The sensor stopped produc-
ing output values for five second, thus, the system completeness of this column for the
overall period of 29 seconds is 24/29 or 0.83. Regarding the entire table, we calculate
its completeness as 29+24+15+14+15+1o+29+29+29+29+29 _ :23% ~ 0.81. Due to ag-
gregation, some columns of Tab. [I] naturally contains less values. To account for this
effect, completeness for aggregated columns is calculated differently as we explain in
the following paragraphs.

Definition 1 (System completeness). Let n be the number of sensors represented in
the virtual relation V R, let d be the duration of measurement for a given application
or query, and let v be the number of non-null values in V R. Then system completeness
of VR is SysComp(VR) := * ..

In the previous and the next definition we assume all sensors represented in V R to be
relevant for a query. Next, query completeness reflects the fact that the usually very high
system rate is higher than the requirement of the query. Thus for query completeness,

we take as a basis the query rate QDR and not the system rate SysDR.

Definition 2 (Query Completeness). Corresponding to Definition 1, query complete-

ness is defined QComp(VR) := Sygcom%(g? SysDR



724 J. Biswas, F. Naumann, and Q. Qiu

Consider for instance a system data rate of 1 per millisecond and a query data rate of 1
per min or 1/60000 per millisecond. Consider further a series of sensors and operators
producing a final system completeness of 1/1000 (1 per second) at the querying site.
Then query completeness is |0/ o000 = 60 i-€., the query requirements are well
met. In fact, completeness is 60 times higher than necessary, indicating potential to
decrease sensor data rates. A QDR of 2 per second on the other hand evaluates to a query
completeness of 10100 / 5(1)0 = 1/2, i.e., the query requirements are not met indicating a
need to increase sensor data rates or operator data rates.

In Sec.[3lwe show how to calculate system completeness without knowing the pre-
cise value of v, thus utilizing the completeness measure to gauge the effectiveness of
the sensor networks for different applications.

3 Predicting Quality

The main idea of calculating completeness and propagating its scores from the sensors
over proxies to the final application is to model the information using a virtual table
between each level of nodes. The schema of this table represents the data that is passed
between the nodes. This schema includes columns for the “split” values for different
sensors. The completeness of this virtual table can easily and formally be defined by
counting NULL-values. In real-world scenarios, this virtual table is never materialized,
so one cannot count values. Instead, it is necessary to predict the number of null-values
based on setup of sensor data rates, properties of the sensors themselves, and opera-
tions at the proxy levels. This calculation should be performed bottom up: Given the
completeness of the sensor data, completeness values at various higher levels (proxies,
application, and query) can be mathematically predicted.

The following paragraphs list formulas to calculate completeness through various
operations. Together, these formulas build a completeness model, similar to the known
cost-models of conventional DBMS optimizers.

3.1 Completeness of Sensor Output

Sensors output data at their individual sensors data rate, thus “filling” the virtual rela-

tion. If SensDR(s;) is the sensor data rate of sensor s;, the output data completeness of

s; is, SysComp(s;) = Seg;f gg"’). By ignoring for now various factors that influence

completeness, the system completeness of VR that is filled with only raw sensor data

from n sensors is SysComp(VR) = > 5;;;2?80

As SensDR of a sensor closely depends on its SampDR, which can generally be set
to a wide range of different values on the fly, one possible dimension to manipulate data
completeness is through dynamically configuring SampDR of a sensor.

3.2 Completeness Through Several Typical Sensor System Operations

Virtual relations are not only filled with raw sensor data, but, at higher levels, by var-
ious operations. A comprehensive algebra to manipulate data completeness through
every possible sensor system operation is left for further work. In this section we con-
sider a few logical data operators that are most commonly encountered in typical smart
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home systems of the type described in Sec. [[LT] and their effects on completeness are
characterized. It is noted that the formulas listed below for completeness calculation
are not necessarily unique, nor the most precise ones, but based on our experience they
are simple and effective to provide a good estimation on completeness in real systems.
A more general discussion on the completeness influence of data operations is left to
future work.

Logic-OR Data Operator: This type of data operation can be abstracted as an operation
that integrates N time series inputs,{s1, $2, ..., S, }, into one time series output, Sy,
and the integration logic is OR, that is, for each time, a non-null value reading from
any among the N inputs lead to a non-null value in the output. This type of operation
is mainly to describe in-network data aggregation ([6]), which is essential for wireless
sensor networks where resources such as bandwidth and energy are limited. In such
in-network data aggregation, intermediate nodes may aggregate several events reported
from different sources into one event as sensor readings can be correlated, e.g., detection
of the same phenomenon. Based on our experience, a good estimation of OpDR for this
type of operation is OpD R, (s1,82,...,8,) = max(SensDR(s1), SensDR(s2),
..., SensDR(sy)).

Therefore, the system completeness of the aggregated output can be estimated as
SysComp(ser) = max(SysComp(s1), SysComp(sa), ..., SysComp(sy)).

Logic-AND Data Operator: This type of data operation can be abstracted as an opera-
tion that integrates N time series inputs, {s1, s2, ..., S, }, into one time series output,
Sand, and the integration logic is AND, that is, for each time, a null value reading from
any among the N inputs lead to a null value in the output. The operation is mainly to
describe that columns in VR can possibly be the results by fusing raw sensor data from
multiple sources. For example, in an object tracking system, the position data can be the
integrated results of fusing the distance readings from two nearby ultrasonic sensors. A
typical join operation on sensor data based on only the timestamp can also be described
as this type of operation. Based on our experience, a good estimation of OpDR for this
type of operation is

OpDRana(s1,52;---,5n) = min(SensDR(s1), SensDR(sz2), ..., SensDR(sy))
Therefore, the system completeness of the fused output can be estimated as,
SysComp(sena) = min(SysComp(s1), SysComp(sz), ..., SysComp(sy))

Compression Operator: In sensor networks, wireless communication is the key fac-
tor to consume resources in terms of bandwidth and energy. It is common for sen-
sors to compress time series readings instead of sending them in raw form. One of
simplest yet effective sensor data compression method is Piecewise Constant Approx-
imation (PCA) ([7]), which is adopted in the system we built. In PCA, the time data
series D to be processed is represented as a sequence of n segments, PCA(D) =
(v1,€1), (v, €2),. .., (vn,e,), where e, is the end point of a segment and v,, is a con-
stant value for time in [e,,_1 + 1, e,,]. Here we assume the value at e,,_; + 1 is used for
vy,. With such approximation, d(i) is estimated as

N (%} if’i§€1
d(l) B {Um ife7n—1+1gi§em
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Let £ = e, — em—1, that is, every k samples share a constant, and Scomypr be the com-
pressed output, OpDR for this type of data compression is, OpD Rcompr = S“mkp DR
Therefore, the system completeness of the compressed output can be estimated as,

SySCOmp(Scompr) _ SySCO]:ﬂP(D).

Aggregation Query Operator: Aggregation queries, such as COUNT, MIN, MAX and
SUM, occur frequently in such systems and their completeness handling requires a slight
twist. By definition, an aggregation operator has multiple values, {s1, s2,...,8,}, as
input and a single value, 5444, as output. Completeness associated with such operators
should reflect the completeness of the input, i.e., relatively how much data went into
the calculation of the aggregate, and not the single output value. Therefore, the system
completeness of the single aggregated output value is defined as,

SysComp(sqggr) = avg(SysComp(s1), SysComp(sa),. .., SysComp(sy))

4 Prototype and Experimental Results

In this section, a preliminary prototype implementation of the concepts discussed in this
paper is presented. The prototype demonstrates the value of the proposed completeness
model through an experimental implementation of the patient behavior monitoring sys-
tem described in Sec. [T}

4.1 A Sensor Query Engine with Completeness Awareness

A sensor query engine with completeness awareness is built to perform a preliminary
evaluation of the proposed data completeness model. This sensor query engine is imple-
mented by introducing a middleware layer on top of the relational SQL engine, MySQL.
The main functions of this layer include,

Self-discovery of the available sensors in the system,

Maintenance of a relational table in MySQL for each sensor with real-time update,
Generation of appropriate views of the full Virtual Relation, by full-outer-join op-
eration on all the relevant tables within a particular time window,

Adjustment of the sampling rate of each sensor on the fly, based on data complete-
ness.

In the prototype, original SQL queries are supported with two new clauses, COMP
and TIME, as shown in Fig. 4. The COMP clause enables the possibility to explicitly in-
dicate the completeness requirement of any available attribute in the VR. The complete-
ness requirement indicated may be used for both configuring the system and accessing
the quality of query results. In this initial version of our prototype, completeness is
closely coupled with sampling rate adjustment of related sensors for future queries and
PCA [7] compression ratio selection for past queries. The TIME clause is used to sup-
port simple continuous queries by specifying the beginning and end of the monitoring
duration as well as the frequency at which the query is to be executed.
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4.2 Experimental Setup and Measurements

A replica of the home layout shown in Fig. 1 fgirememg oo oo
is set up in the lab. Each of the three rooms— [ [ == om =

kitchen, dining room and living room—is |
equipped with two ultrasonic sensors and one |5 H s oo, = —
passive infra (PIR) sensor. A person with body |wa=" mewe i =5 Fwecwve <[
worn accelerometer is assumed to be wander-  |Tumm =
ing inside the house. All sensors are installed |
on the CrossBow MicaZ mote platform. The
data gathering process is shown in Fig.[2l Due
to the small number of sensors used, and also
the small spatial separation among sensors, a
very simple network topology is employed,
in which each sensor directly communicates
through a wireless link with a common proxy attached to a PC. Thus, all proxies and
the user node of Fig.2lare actually co-located at the same node. To emphasize the effect
of the completeness model, no additional sensor management scheme is employed; in
other words, all sensors are kept active during the monitoring period.

As discussed above, in such patient behavior monitoring systems, a wide range of
factors are available for us, e.g., sensor sampling rate, data operation or sensor schedul-
ing, to explore the flexibility of meeting query completeness requirements but simul-
taneously reducing system resource consumption and increasing query performance.
In our experiments, we wished to see how the completeness model could help in im-
proving query performance and system resource planning for future queries through the
selection of appropriate sensor sampling rate. Without completeness awareness, to sat-
isfy the requirements of all three queries described in Sec.[.2] the predefined constant
sampling rates for PIRs, ultrasonic sensors and BWA needed to be set to at least 0.1, 1,
and 10 samples per second continuously. The system with such a set of minimal con-
stant sampling rate settings is used as a comparison against a system with completeness
awareness, where the sampling rate of each sensor is dynamically selected based on
query completeness requirement, while answering Query 2.

The VR for Query 2, shown in Tab.[I] is generated as a view of combining the output
of all five proxies:

Fig.4. Sensor Query Engine with Com-
pleteness Awareness

CREATE VIEW HOUSEHOLD
SELECT * FROM P1, P2, P3, P4, P5
FULL OUTERJOIN ON Time

The SysDR is defined here as 1 per millisecond. As indicated, the required QDR
in Query 2 for position data, which are represented as X and Y coordinates (PosX 45,
PosYyy), is 1 per second. To achieve full query completeness, the following condition
should be satisfied:
QComp(PosXap) > 1.

Based on the definition of query completeness,

SysComp(PosXap) - SysDR

QComp(PosXap) = ODR
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The SysComp requirement to be specified in the query is,

D
SysComp(PosXap) > ScjsDRR

With the new completeness clause COMP, Query 2 can be posed as:

SELECT PosX_ab, PosY_ab FROM HOUSEHOLD
WHERE Room = "Living Room"
AND COMP (PosX_ab) >= 0.001

As shown here, the required QDR for the application, which may be provided by ex-
perts, is implicitly specified in the query through the indication of system completeness
requirement. For attributes without any completeness requirements a default system
completeness value, 0.0001 in this experiment, is assumed.

As a logic-AND type operator is used to derive the position information by fus-
ing distance data from two ultrasonic sensors Dist, and Disty, based on the algebra
discussed in Sec.[3 we have,

SysComp(PosX ) = min(SysComp(Dist,), SysComp(Disty)),

Based on the discussion in Sec.[3] we have

) _ SensDR(Dist,) ) _
SysComp(Dist,) = SysDR ,  SysComp(Disty) =

SensDR(Distp)
SysDR

and
SensDR(Dist,) = SampDR(Dist,), SensDR(Disty) = SampDR(Disty)
As specified in the query, to satisfy the query completeness we should have
SysComp(PosXap) > 0.001

With the set of equations above, we found such completeness requirement can be satis-
fied with

SampDR(Dist,) > 1 persecond, SampDR(Disty) > 1 per second

Results were collected by posing Query 2 over our sensor query system with and
without completeness awareness respectively. The query period, which is the duration
of measurement for a query each time, is varied in experiments.

From the experimental results, we observe that by satisfying just the necessary
query completeness, through our completeness planning, we can achieve much bet-
ter query response performance as shown on the left of Fig. [5l This is the case, even
though the overall system completeness is low as shown on the right. In addition, there
is greater system resource saving, in terms of bandwidth and energy, as shown on the
left of Fig.l6land better query completeness satisfaction as shown on the right.
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Fig. 5. Running Time (left) and System Compl. of VR (right) of Query 2
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Fig. 6. Amount of Data Processed (left) and Query Completeness of Position Data (right) for
Query 2

5 Related Work

There are two major areas of related work, namely information quality and Data Stream
Management Systems (DSMS). A systematic and formal approach to the measurement
of information quality, and the combination of such measurements for information inte-
gration are presented in [8]. These approaches are based on notions of coverage, density
of information, ranking of information sources, query-specific attribute weightings, and
a number of ways of selecting between multiple sources of data. IQ bounds are dis-
cussed in [9]] and related to the notion of query completeness in this paper. Determining
the “size” of a data source, i.e., its coverage, its not a new problem. Most notably,
Motro and Rakov define a “completeness” criterion, which matches our coverage crite-
rion [10]. Motro suggests to add “completeness assertions” to the query result, adding
more meaning to the result [11]. Completeness assertions are statements, such as “the
data contains all recordings on the CBS label”. These assertions are aggregated along
query plans in a similar fashion to our coverage along mapping paths. Thus, the author
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can give qualitative statements about the completeness of results, but not quantitative
statements as we do. Finally, Florescu et al. quantitatively describe the content of dis-
tributed autonomous document sources using probabilistic measures [[12]. Their model
calculates two values: “Coverage” of data sources, determining the probability that a
matching document is found in the source, and “overlap” between two data sources,
determining the probability that an arbitrary document is found in both sources. These
probabilities are calculated with the help of word-count statistics.

The early work in the area of continuous queries led to the identification of stream
processing as as new problem [13L[14,[15[16]]. It is found in [15/[16] that a key chal-
lenge for the design of a DSMS is to provide approximation and adaptivity in executing
continuous queries, because data rates and query load may exceed available resource.
Our proposed completeness model can provide a quantitative approach to handle the
interaction between resource management and query approximation in such DSMS by
simply treating those approximation techniques [[16}/17]], such as synopsis compression,
sampling and load shedding, as various knobs in our model.

The most well known and distributed sensor based system is the Berkeley MOTE.
In [[18]] the authors describe the query language for the MOTE, the database TinyDB
and its support for continuous queries. In [[19]] is presented ideas on tree-based pro-
cessing of in-network aggregation and the subtleties of its cost-benefit analysis, and
wave scheduling. In [20] the authors discuss the main issues that apply to sensor based
query processing. High level approaches have been outlined in [21]] and [22]. Finally,
[23] discusses continuously adaptive queries over streams in the face of changing query
workloads and data rates.

6 Conclusions

As a first step we have introduced a simple model for information completeness, which
is a criterion for information quality. The model is evaluated in a unique application set-
ting that is based primarily on sensor data sources. Factors affecting completeness are
characterized and a simple analytical model illustrates how a trade-off can be made be-
tween avoidable and unavoidable factors that affect completeness, thereby giving some
means for achieving desired completeness levels without paying too high a price. Al-
though a system should contain components such as reasoning systems, knowledge-
bases, databases, and stream management, only the lower portion of such a system has
actually been modeled and analyzed in this paper. Higher level components of such
systems must be integrated to gauge the effectiveness of the entire scheme of dealing
with information completeness.

On the positive side, query completeness is a notion that can be used in many ways
and to many ends. This paper illustrates how query completeness can be used to al-
leviate sensors from unnecessarily high sampling rates. Other uses are conceivable,
such as sensor selection and sensor management as well as resource management. In
future work we shall be continuing to develop a sound understanding of important cri-
teria for information quality such as completeness. Our aim is to apply these ideas in a
manner that permits easy development of context aware applications for smart spaces.
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We also intend to develop a formal model for completeness based on the informal model
presented herein.
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