
In-Network Processing of Nearest Neighbor Queries for
Wireless Sensor Networks

Yuxia Yao, Xueyan Tang, and Ee-Peng Lim

School of Computer Engineering,
Nanyang Technological University,

Singapore 639798
{yaoy0003, asxytang, aseplim}@ntu.edu.sg

Abstract. Wireless sensor networks have been widely used for civilian and mil-
itary applications, such as environmental monitoring and vehicle tracking. The
sensor nodes in the network have the abilities to sense, store, compute and com-
municate. To enable object tracking applications, spatial queries such as nearest
neighbor queries are to be supported in these networks. The queries can be in-
jected by the user at any sensor node. Due to the limited power supply for sensor
nodes, energy efficiency is the major concern in query processing. Centralized
data storage and query processing schemes do not favor energy efficiency. In this
paper, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries. A cost model is built to analyze the performance of
DNN. Experimental results show that DNN outperforms the centralized scheme
significantly in terms of energy consumption and network lifetime.

1 Introduction

A sensor network is a distributed ad-hoc network comprised of a large number of sen-
sor nodes equipped with capabilities of computing, storing and communicating [1].
The sensor nodes are usually battery operated and are deployed in an unattended man-
ner to gather and process information without human intervention. Therefore, energy
efficiency is the major concern in accessing the data captured by the sensor network.

A simple centralized method is to send all collected data to the base station for stor-
age [2, 3]. The queries are also forwarded to and processed at a central base station.
This approach involves unnecessary communication cost if only a portion of the data
are accessed by the user. Moreover, due to message relay, the energy consumed by the
sensor nodes closer to the base station is much higher than that by the nodes further
from the base station. Unbalanced energy consumption reduces network lifetime [4, 5].
To improve energy efficiency, it is desirable to store the data at the sensor nodes in a
distributed manner and apply in-network processing techniques to user queries [6, 7].
In this way, only the relevant data are extracted from the network and the communica-
tion cost is greatly reduced compared to the centralized scheme. Existing in-network
query processing techniques have focused on aggregation and join queries [7, 8, 9, 10].
However, not much work has been done on spatial queries.

Nearest neighbor queries are an important class of spatial queries in object tracking
applications [11]. In this paper, we consider in-network processing of nearest neighbor

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 35–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 Y. Yao, X. Tang, and E.-P. Lim

Query point

S1 S2

o1

o2

Fig. 1. Nearest Sensor Node vs. Nearest Object

queries. Our objective is to locate the nearest objects to a given query point. For exam-
ple, consider a sensor network tracking the movement of taxies. The pedestrians carry
devices, such as PDAs, to interact with the sensor network. Each PDA accepts from
its user queries for nearest taxies and their locations, and injects the queries into the
network by sending them to nearby sensor nodes. The data will be extracted from the
relevant sensor nodes to respond to the user.

Existing work on nearest neighbor queries has focused on finding the nearest sensor
nodes to a specified query point [12, 13]. This is different from our objective to locate
the nearest objects to the query point because the nearest object may not be detected by
the nearest sensor node. Figure 1 shows an example where S1 and S2 are two sensor
nodes that detect objects o1 and o2 respectively. S2 is closer to the query point than S1.
However, the nearest object to the query point is o1.

In this paper, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries in wireless sensor networks. A grid structure is constructed
for in-network storage of the collected data. Query processing in DNN proceeds in
four steps: query routing, preliminary search, expanded search and result routing. We
build a cost model to analyze the energy consumption of DNN and compare it with the
centralized scheme. Experimental results show that DNN achieves significant energy
saving over the centralized scheme.

The rest of the paper is organized as follows. Section 2 summarizes the related work.
Section 3 presents the DNN scheme for in-network processing of nearest neighbor
queries. Section 4 develops a cost model. Section 5 describes the experimental setup
and discusses the experimental results. Finally, Section 6 concludes the paper.

2 Related Work

R-tree is a widely used indexing structure to support spatial queries in these databases
[14]. M. Demirbas and Hakan [12] applied R-tree to locate the nearest sensor nodes
in wireless sensor networks. In their approach, the sensor nodes are organized into a
distributed R-tree in a bottom-up fashion. Each node keeps pointers to the lower level
children and the higher level parent in the tree. Queries may be injected at any sensor
node. However, to locate the nearest sensor nodes, the query has to trace back to the root
of the tree making it a hotspot in the network. In addition, the tree structure is difficult
to maintain in a dynamic environment.

Lee et al. [13] proposed an algorithm to locate k nearest sensor nodes in wireless
sensor networks. They first locate the nearest sensor node to the query point and a set
of perimeter nodes around the query point. A circle centered at the query point is then
determined and is further divided into a set of subspaces each containing a perimeter

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 37

node. The information of each subspace is collected by the perimeter node through a
tree structure. After the query is resolved, the perimeter tree is destroyed to avoid the
high cost of tree maintenance.

The above work has focused on locating the nearest sensor nodes. The locations of
sensor nodes usually do not change over time. Different from [12, 13], we focus on the
moving objects tracked by the sensor network. Our objective is to locate the nearest
objects to a given query point. Although a number of indexing schemes have been pro-
posed for moving object databases [15, 16], they targeted at centralized databases only
and therefore do not apply to in-network processing in wireless sensor networks.

3 In-Network Processing of Nearest Neighbor Queries

In this section, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries in wireless sensor networks.

3.1 Distributed Data Storage

We consider a sensor network with the sensor nodes spreading over a 2-dimensional
space. The sensor nodes are aware of their locations through GPS [17] or other lo-
calization algorithms [18]. The sensor nodes can sense the moving objects and collect
their location information. Instead of sending all collected data to a central repository,
we propose to store them at the sensor nodes in a distributed manner by partitioning the
sensor network into a set of grid cells.

As shown in Figure 2, each grid cell has an area of α × α, where α is a system
parameter known to all sensor nodes in the network. The grid structure is constructed
by designating a reference point (xr , yr) as the corner of a grid cell. Then, given any
point (x, y) on the plane, the centroid of the grid cell containing (x, y) is given by(
xr + (�x−xr

α � + 1
2) · α, yr + (� y−yr

α � + 1
2) · α

)
. The sensor node closest to the cen-

troid of a grid cell is called a grid index node (shown by a solid dot in Figure 2). It
is responsible for maintaining the location data of the objects detected in the grid cell.
The object locations are periodically sampled by the sensor nodes and reported to the

α

grid index node

(xr, yr)

centroid

Fig. 2. Grid Structure in Sensor Network

38 Y. Yao, X. Tang, and E.-P. Lim

G2

G1

S2

S1

(a)

G2

G1

Sb

Sa

(b)

Remove old
location data

Update with new
location data

Remove old
location data

Update with new
location data

Fig. 3. Update of Object Location

grid index node1. The location data can be sent to the corresponding grid index node
through GPSR routing2 [22] by setting the centroid position of the grid cell as the
destination.

To save communication cost, at each sampling, the location of an object is reported
to the grid index node only if its location has changed since the last sample. We shall
call it a location update. We assume that the objects being tracked are identifiable. They
are electronically tagged or are identified based on the pre-embedded object code table
in the sensor nodes [20, 21]. When the object location changes, at most two messages
are needed to update the data at the grid index nodes. One message is used to signal
the grid index node to remove the old location data and the other message is used to
update the grid index node with the new location data. For example, Figure 3(a) shows
the case where an object moves from one grid cell G1 to another cell G2. The location
of the object is detected by sensor nodes S1 and S2 at two successive samplings. At
the latter sampling, S1 sends a message to the grid index node in G1 to remove the
old location data. Meanwhile, S2 sends the new location data to the grid index node in
G2. Figure 3(b) shows another case where an object moves within a grid cell G1. The
location of the object is detected by sensor nodes Sa and Sb at two successive sam-
plings. At the latter sampling, both Sa and Sb send a message to the grid index node
in G1. Sa’s message signals the index node to remove the old location data while Sb’s
message feeds the index node with the new location data. If the object moves within a
grid cell and its location is detected by the same sensor node in two successive sam-
plings, only one message is sent from the sensor node to the grid index node for location
update.

1 Although the sensor nodes may work collaboratively to determine the location of an object in
their vicinity [19], we assume that for each object, only one sensor node (the sensing leader or
cluster head) is responsible for reporting its location at each sampling [20, 21]. For simplicity,
the detecting sensor node in the rest of this paper refers to this node.

2 GPSR is a greedy location-based routing scheme. Given the geographic locations of the source
and the destination, GPSR routes the message to the node closest to the destination location.
All message routing in this paper refers to GPSR routing.

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 39

3.2 Query Processing

In the preliminary search, we need a rule to determine the visiting order of grid cells.
Since the location of boundary object determines the search circle for expanded search,
to reduce the search cost, we would like the boundary object to be as close to the query
point as possible. Thus, it is intuitive to visit the grid cells based on their distances to
the cell G0 containing the query point. We propose a circle approach to determine the
visiting order of grid cells. Users issue queries for the locations of the nearest objects to
given query points. In this paper, we focus on one-shot queries which complete once the
results are returned. The queries can be injected into the sensor network at any sensor
node (e.g., depending on the locations of the users). Each query Q is characterized by
two locations (xs, ys) and (x0, y0), where (xs, ys) is the location where the query is
issued (called the query source), and (x0, y0) is the location of the query point. If a user
queries for the nearest object in his proximity, then (xs, ys) = (x0, y0).

Query processing in DNN proceeds in four steps: query routing, preliminary search,
expanded search and result routing. When a sensor node receives a query message, it
calculates the centroid position of the grid cell G0 containing the query point (x0, y0).
In the query routing step, the query message is routed to the grid index node in G0.
The purpose of preliminary search is to find an object (called the boundary object) and
define the search space. In this step, the grid cells surrounding G0 (more specifically,
the index nodes in these grid cells) are visited by message passing until a grid cell
containing at least one object is found. Among the objects detected in that grid cell,
the one closest to the query point is selected as the boundary object. A search circle
centered at the query point and with a radius of the distance between the query point
and the boundary object is defined as the search space. The nearest object to the query
point is guaranteed to be located within the circle. The next step is expanded search.
In this step, the grid cells within or intersecting with the circle, excluding those visited
in the preliminary search, are visited by message passing to locate the nearest object.
Finally, the query result is routed back to the user at (xs, ys).

Now, we discuss the preliminary search and the expanded search in detail.

Preliminary Search. The search is divided into rounds. In each round i, the unvisited
grid cells intersecting with the circle centered at the centroid of G0 and with a radius
of i · α are visited in clockwise order (see Figure 4(a)). This is done by sequentially
passing a message from the grid index node of one cell to that of another. The message
contains the locations of the query source and query point. Note that given the location
of the query point, each grid index node can determine autonomously which grid cell
to visit next. Figure 4(b) shows the route of the message in the preliminary search. The
preliminary search completes when a grid cell containing at least one object is found.

Expanded Search. On completion of the preliminary search, a search circle centered
at the query point and with a radius of the distance between the query point and the
boundary object is defined. Let d be the radius of the circle. Intuitively, if the minimum
distance between a grid cell and the query point is smaller than d, the grid cell is likely to
contain objects less than distance d away from the query point. Therefore, a search list
for the expanded search is given by all grid cells within or intersecting with the search
circle, excluding those visited in the preliminary search. Figure 5 shows an example.

40 Y. Yao, X. Tang, and E.-P. Lim

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G16

G15

G14

G24 G10

G13

G11 G12

G7

3 αi

α

2 αi

Round 1

Round 2

Round 3

(a) Overview

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G40 G39G41 G38

G16

G15

G14

G43

G42 G37

G44

G45

G46

G24G47 G10

G34

G26

G33

G25

G35

G27

G32G13

G11 G12 G31

G28 G29

G7

G30

G36

G48

(b) Routing Path

Fig. 4. Preliminary Search

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G40 G39G41 G38

G16

G15

G14

G43

G42 G37

G44

G45

G46

G24G47 G10

G34

G33

G35

G32G13

G11 G12 G31

G7

G36

Query
point

Boundary
object

b

Round in
preliminary

search

Round in
expanded

search

a

Fig. 5. Expanded Search

Suppose the query point (x0, y0) is in G0 and the boundary object a is found in grid
cell G13. The grid index node in G13 determines the search circle (shown by the outer
solid circle in Figure 5) and derives the set of grid cells within or intersecting with it:
Set1 = {G0 – G24, G33, G34, G38 – G41, G43 – G46}. The grid index node in G13 also
computes the set of grid cells that have been visited in the preliminary search (based
on the rounds shown by the dashed circles in Figure 5): Set2 = {G0 – G11, G13}3.
Therefore, the search list in the expanded search is given by Set3 = Set1 − Set2 =
{G12, G14 – G24, G33, G34, G38 – G41, G43 – G46}.

The message passed between cells in the expanded search contains the search list
and the locations of the boundary object, query source and query point. At each step,
the message is routed to the grid cell on the search list that is closest to the cell currently
holding the message. When a grid cell Gc receives the message, it first removes itself
from the search list. One of the following three cases can occur: (i) no object is detected
in Gc; (ii) all the objects detected in Gc are further away from the query point than

3 The preliminary search completes in the middle of round 2, so the sensor nodes G14– G15,
G17 – G19 and G21– G23 have not been visited in the preliminary search.

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 41

the boundary object; (iii) at least one object detected in Gc is closer to the query point
than the boundary object. In cases (i) and (ii), the search list is not updated and the
message is simply routed to the next grid cell on the search list that is closest to Gc. In
case (iii), the object detected in Gc that is closest to the query point is selected as the
new boundary object by updating the message content. A new search circle is derived
accordingly. The search list is then updated by removing all grid cells outside the new
search circle. The message is then routed to the next grid cell on the updated search
list that is closest to Gc. The expanded search continues until the search list becomes
empty. On completion of the expanded search, the message is routed to the query source
and the location of boundary object is returned to the user as the query result.

In the example of Figure 5, the message is first routed to cell G14 in the expanded
search (among the cells on the search list, G14 is closest to the grid cell G13 last visited
in the preliminary search). Object b detected in G14 is closer to the query point than
the current boundary object a. Thus, the search circle is shrunk and the search list is
updated by removing cells G16, G38, G39, G40, G41, G43, G44, G45, G46 and G24
from the search list because they are outside the new search circle (shown by the inner
solid circle in Figure 5). Among the cells on the updated search list, G15 is closest to
cell G14. So, the message is routed to G15 to continue the expanded search.

4 Cost Model and Analysis

In this section, we analyze the cost of the DNN scheme presented in Section 3. It is
known that the energy consumption in wireless sensor networks is dominated by the
communication cost [1]. We assume a dense network. In this case, the cost of message
routing, i.e., the number of hops on the route from a source to a destination, is propor-
tional to the Euclidean distance between the source and the destination. Therefore, we
shall analyze the distance travelled by messages. We consider a square sensor field of
size s × s. It is divided into grid cells of size α × α. A total number of N sensor nodes
are randomly deployed in the network. A total of n objects are tracked by the sensor
network.

4.1 Cost Model for DNN

In DNN, query processing and location update both involve communication.4 For query
processing, let Cquery , Cpre, Cexp and Cresult be the expected costs of query routing,
preliminary search, expanded search and result routing per query respectively. The ex-
pected cost of a location update shall be denoted by Cupdate.

Query Routing and Result Routing. The expected costs of query and result routing
are approximated by the distance between the query source and the query point. Assume
the query source and query point are both randomly distributed in the network. Then,
the expected routing distance is given by the average distance between any two points
in the sensor network:

4 Since this paper focuses on energy-efficient query processing, we do not include the communi-
cation overhead in sensing and data fusion. Such overhead is the same for the proposed DNN
scheme and the centralized scheme we shall compare.

42 Y. Yao, X. Tang, and E.-P. Lim

∫ s

0

∫ s

0

∫ s

0

∫ s

0

√
(xi − xj)2 + (yi − yj)2dxidxjdyidyj

(s · s)2
.

It follows from the mathematical results [23] that

Cquery = Cresult =
s

15
[
√

2 + 2 + 5ln(1 +
√

2)] = 0.5214 · s.

Preliminary Search. To derive the cost of preliminary search, we need to know the
number of grid cells visited. For simplicity, we assume that the probabilities of de-
tecting objects in different cells are identical and independent. We use p to denote the
probability that at least one object is detected in a grid cell. If the number of objects n
is much smaller than the number of grid cells (s × s)/(α × α), p is approximated by

n
(s×s)/(α×α) . Then, the probability that we need to visit i grid cells in the preliminary

search to locate a boundary object is p(1−p)i−1. Therefore, the average number of grid
cells visited in the preliminary search is given by

p + 2p(1 − p) + 3p(1 − p)2 + · · · =
1
p
.

Starting from the grid cell containing the query point, to visit i cells, the message needs
to be sent between i − 1 pairs of neighboring cells. Since the distance between a pair of
neighboring cells is bounded by

√
2α, the cost of preliminary search is bounded by

Cpre = (
1
p

− 1) ·
√

2α.

Expanded Search. Similar to the preliminary search, we need to derive the number of
grid cells visited in the expanded search. As described in Section 3.2, a search circle is
derived at the end of preliminary search. If we know the total number of grid cells in the
circle and the number of grid cells visited in the preliminary search, we can calculate
the upper bound on the number of grid cells to visit in the expanded search.

We start by analyzing the relationship between the radius of a circle and the number
of grid cells within or intersecting with the circle. It is intuitive that the number of
cells is proportional to the area of the circle. Therefore, we used quadratic regression.
The regression result shows that, given the circle radius r (r is a multiple of α), the
number of grid cells within or intersecting with the circle is: ar2 + br + c, where
a = 3.1417

α2 , b = 4.1178
α , c = 2.3241. Figure 6 shows that the regression result (i.e., the

number of grid cells computed by ar2 + br + c) well matches the empirical result (i.e.,
the actual number of grid cells within or intersecting with the circle).

Let i be the number of grid cells visited in the preliminary search. We assume that
the last grid cell visited in the preliminary search is in round xi, i.e., the circle with
radius ri = xi · α. Note that a(ri − α)2 + b(ri − α) + c indicates the number of grid
cells visited in the first xi − 1 rounds, and ar2

i + bri + c is the number of grid cells
visited if round xi completes. It follows that

a(ri − α)2 + b(ri − α) + c ≤ i ≤ ar2
i + bri + c.

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 43

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100
N

um
be

r
of

 G
ri

d
C

el
ls

Radius (× α)

Empirical Result
Regression Result

Fig. 6. Number of Grid Cells in a Circle

Therefore,

−b +
√

b2 − 4a(c − i)
2a

≤ ri ≤ −b +
√

b2 − 4a(c − i)
2a

+ α.

So, we approximate ri by

ri =
−b +

√
b2 − 4a(c − i)

2a
+

1
2
α.

We then derive the average number of grid cells visited in the expanded search as

∞∑

i=1

p(1 − p)i−1 · (ar2
i + bri + c − i), (1)

where p(1−p)i−1 is the probability that i cells are visited in the preliminary search, and
ar2

i +bri+c−i is the corresponding number of grid cells to visit in the expanded search.
Since the sum (1) converges when i approaches infinity, we can compute it numerically.

Similar to the preliminary search, we use
√

2α as a bound on the distance between
neighboring grid cells. Thus, the cost of expanded search is bounded by

Cexp =
∞∑

i=1

p(1 − p)i−1 · (ar2
i + bri + c − i) ·

√
2α.

Location Update. The communication cost of each location update is determined by
the following factors: average distance from any point in a grid cell to the centroid of the
grid cell; and the number of messages per location update. Following the mathematical
results [23], the average distance is given by

∫ α
2

0

∫ α
2

0

√
x2 + y2dxdy

α
2 · α

2
= 0.3825 · α.

As discussed in Section 3.1, at most two messages are required for each location
update. Therefore, the cost per location update is bounded by

Cupdate = 2 · 0.3825 · α = 0.7650 · α.

44 Y. Yao, X. Tang, and E.-P. Lim

Let q be the rate at which queries are injected into the network. Let u be the total
number of location updates per time unit for all objects in the network (it is obvious
that u depends on the movement pattern of objects). Then, to summarize, the total
communication cost of DNN is given by

CDNN = (Cquery + Cpre + Cexp + Cresult) · q + Cupdate · u

= (2 · 0.5214 · s +
1 − p

p
·
√

2α

+
∞∑

i=1

p(1 − p)i−1 ·
(
ar2

i + bri + c − i
)

·
√

2α) · q + 0.7650 · α · u.

4.2 Cost Model for Centralized Scheme

For comparison purpose, we also derive the communication cost of the centralized
scheme in which all sensor nodes send the collected data to the base station and all
queries are also forwarded to the base station for processing. We refer to this scheme
as CNN. We assume the base station is located at the centroid of the network.5 The cost
of CNN consists of three parts: query routing, result routing and location update. The
expected costs of query and result routing as well as the cost of per location update are
all given by the average distance between any point in the network and the centroid of
the network, i.e.,

Cquery = Cresult = Cupdate =

∫ s
2

0

∫ s
2

0

√
x2 + y2dxdy
s
2 · s

2
= 0.3825 · s.

In CNN, all collected data are maintained at the base station. Thus, only one message
needs to be sent from the detecting sensor node to the base station at each location
update. Therefore, the total communication cost of CNN is given by

CCNN = (Cquery + Cresult) · q + Cupdate · u = 2 · 0.3825 · s · q + 0.3825 · s · u.

5 Performance Evaluation

5.1 Experiment Setup

We conducted a wide range of experiments to evaluate the performance of the proposed
DNN scheme and compared it with CNN. Table 1 summarizes the system parameters
and their settings. We simulated a sensor network geographically covering a 50000m×
50000m area. The number of sensor nodes deployed in the sensor network was set at
4× 106, implying that on average, there is one sensor node in each 25m× 25m square.
The default size of a grid cell was set at 125m × 125m. The default number of objects
being tracked was set at 800. The object were initially placed in the network at random.
Their movement followed the random walk model. Specifically, time was divided into

5 We set the base station at the centroid of the network to favor the centralized scheme.

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 45

Table 1. System Parameters and Settings

Parameters Description Default Value Range
N Number of sensor nodes 4 × 106 —
R Communication range 40m —
s × s Size of sensor network 50000m × 50000m —
α × α Size of grid cell 125m × 125m [125m × 125m,

3125m × 3125m]
n Number of objects tracked 800 [160, 1600]
r Sampling rate of sensor nodes 1 per time unit —
v Object moving velocity 50m per time unit —
Pmove Probability of object moving

in each time interval
0.5 [0.1, 0.9]

q Query rate 50 per time unit [10, 100]

 0

 30

 60

 90

 120

 150

 180

 160 480 800 1120 1440C
os

t P
er

 T
im

e
U

ni
t (

×
10

5)

Number of Objects

DNN (Simulation)
CNN (Simulation)

DNN (Analysis)
CNN (Analysis)

Fig. 7. Cost vs. Number of Objects

intervals. At the beginning of each interval, the object decided whether to move or pause
according to the probabilities Pmove and Ppause (Pmove +Ppause = 1). If it decided to
move, the move direction was randomly selected between 0 and 2π. The moving speed
was set at 50m per time unit. The default length of the interval was set at 1 time unit.
The default value for Pmove was set at 0.5. The object locations were sampled by the
sensor network once every time unit. At each sampling, the sensor node closest to an
object was assumed to report the object location to the grid index node (in DNN) or
the base station (in CNN). The default query rate was set at 50 per time unit. Both the
query source and query point were randomly distributed in the network. The default
communication range of each sensor node is set at 40m.

5.2 Impact of Number of Objects

Figure 7 shows the simulation and analytical results of the Euclidean distance travelled
by messages6 as a function of number of objects. As seen from Figure 7(a), the ana-
lytical and simulation results match well. The analytical cost of DNN is slightly higher
than the simulation result. This is because the DNN cost analyzed in Section 4 is an
upper bound. As shall be explained soon, the cost of CNN increases with the num-
ber of objects, while that of DNN decreases with increasing number of objects. DNN
outperforms CNN over a wide range of object numbers.

6 We measured the total number of location updates per time unit in the simulation experiments
and plugged it into the analytical model presented in Section 4.

46 Y. Yao, X. Tang, and E.-P. Lim

 0

 20

 40

 60

 160 480 800 1120 1440

of

 M
es

sa
ge

s
(×

 1
04)

Number of Objects

DNN
CNN

(a) All Messages

 0

 20

 40

 60

 160 480 800 1120 1440

of

 M
es

sa
ge

s
(×

 1
04)

Number of Objects

DNN
CNN

(b) Query Processing Messages

 0

 10

 20

 30

 40

 50

 60

 160 480 800 1120 1440

of

 M
es

sa
ge

s(
×

10
4)

Number of Objects

DNN
CNN

(c) Location Update Messages

Fig. 8. Number of Messages vs. Number of Objects

Figure 8(a) shows the total number of messages sent by the sensor nodes in the sim-
ulation experiments. It is seen that the curves have the same trend as those in Figure 7.
This verifies that the cost defined using Euclidean distance (Section 4) is a good measure
of message complexity. Figures 8(b) and 8(c) show the breakdown of query processing
and location update messages. As shown in Figure 8(b), when the number of objects
increases, the number of query processing messages in CNN remains unchanged. This
is because in CNN, query processing consists of query routing and result routing only,
the cost of which are independent of the number of objects. For DNN, the number
of query processing messages reduces with increasing number of objects because the
boundary object is located closer to the query point. This not only cuts down the num-
ber of grid cells visited in the preliminary search but also reduces the size of the search
circle and hence the number of cells to visit in the expanded search. Figure 8(c) shows
that the number of location update messages in DNN is considerably lower than that
of CNN. It also grows much slower compared to that of CNN when the number of ob-
jects increases. With large number of objects, the overall message complexity of CNN
is dominated by the location update messages and is much higher than that of DNN.

Figure 9 shows the distribution of the number of messages sent by the sensor nodes
for DNN and CNN when the object number is 800. A point (x, y) on the curve means
that a fraction x of all sensor nodes send more than y messages each. As shown in
Figure 9, the workload distribution among the sensor nodes is highly unbalanced in
CNN. The top 0.1% of the nodes send substantially high numbers of messages than
the remaining nodes. On the other hand, the workload hence energy consumption is
much more balanced among the sensor nodes in DNN. The numbers of messages sent
by the top nodes are more than two orders of magnitude lower than those in CNN. If
we define the network lifetime as the time duration before the first sensor node runs out

 1

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

of

 M
es

sa
ge

s
(l

og
sc

al
e)

Node Distribution (logscale)

DNN
CNN

Fig. 9. Workload for Sensor Nodes

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 47

 0

 20

 40

 60

 0.2 0.4 0.6 0.8

of

 M
es

sa
ge

s
(×

 1
04)

Pmove

DNN
CNN

(a) All Messages

 0
 2
 4
 6
 8

 10
 12
 14

 0.2 0.4 0.6 0.8

of

 M
es

sa
ge

s
(×

 1
04)

Pmove

DNN
CNN

(b) Query Processing Messages

 0

 10

 20

 30

 40

 50

 0.2 0.4 0.6 0.8

of

 M
es

sa
ge

s
(×

 1
04)

Pmove

DNN
CNN

(c) Location Update Messages

Fig. 10. Number of Messages vs. Pmove

of energy [24], DNN would prolong the network lifetime by a factor of more than 100
over CNN.

5.3 Impact of Object Movement

Figure 10 shows the performance results for different Pmove values. It is intuitive that
the objects move faster and hence incur more location updates at larger Pmove values.
Since the number of location update messages in DNN is much lower than the number
of query processing messages (recall Figures 8(b) and (c)), the total number of messages
in DNN is not significantly affected by the increase in Pmove. The overall message
complexity of CNN, on the other hand, substantially increases with Pmove. This is
because the total number of messages in CNN is dominated by that of location update
messages. As shown in Figure 10(a), DNN considerably outperforms CNN over a wide
range of Pmove values.

5.4 Impact of Query Rate

Figure 11 shows the performance results for different query rates. The results indicate
that the overall message complexity increases with query rate for both DNN and CNN.
As shown in Figure 11(b), the number of location update messages is independent of
the query rate for both schemes. Figure 11(c) shows that the number of query process-
ing messages increases with query rate, leading to an increase in the overall message
complexity. DNN outperforms CNN over a wide range of query rates. In general, the
improvement of DNN over CNN is smaller for larger query rate.

 0

 20

 40

 60

 10 20 40 60 80 100

of

 M
es

sa
ge

s
(×

 1
04)

Query Rate (per time unit)

DNN
CNN

(a) All Messages

 0

 10

 20

 30

 40

 50

 10 20 40 60 80 100

of

 M
es

sa
ge

s(
×

10
4)

Query Rate (per time unit)

DNN
CNN

(b) Query Processing Mes-
sages

 0

 10

 20

 30

 10 20 40 60 80 100

of

 M
es

sa
ge

s
(×

 1
04)

Query Rate (per time unit)

DNN
CNN

(c) Location Update Messages

Fig. 11. Number of Messages vs. Query Rate

48 Y. Yao, X. Tang, and E.-P. Lim

 0

 10

 20

 30

 160 480 800 1120 1440

of

 M
es

sa
ge

s
(×

 1
04)

Number of Objects

DNN 125
DNN 500

DNN 2000
DNN 3125

(a) All Messages

 0

 10

 20

 30

 160 480 800 1120 1440

of

 M
es

sa
ge

s
(×

 1
04)

Number of Objects

DNN 125
DNN 500

DNN 2000
DNN 3125

(b) Query Processing Messages

 0

 2

 4

 6

 8

 10

 160 480 800 1120 1440

of

 M
es

sa
ge

s
(×

 1
04)

Number of Objects

DNN 125
DNN 500

DNN 2000
DNN 3125

(c) Location Update Messages

Fig. 12. Number of Messages vs. Grid Cell Size

5.5 Impact of Grid Cell Size

We also investigate the impact of grid cell size. Figure 12 shows the message complexity
for different α values 125m, 500m, 2000m and 3125m when the number of objects
increases from 160 to 1600. In general, the number of query processing messages in
DNN decreases with increasing grid cell size (see Figure 12(b)). On the other hand, the
number of location update messages increases with grid cell size (see Figure 12(c)).
When the number of objects is small, the location update messages take up a negligible
portion of the total number of messages. Therefore, the overall message complexity of
DNN decreases with increasing grid cell size. When the number of objects is large, the
location update messages take up a larger portion of the total number of messages. As a
result, the overall message complexity of DNN may increase with grid cell size beyond
certain value. For example, when there are more than 800 objects being tracked, the
cost for α = 3125 is higher than that for α = 2000.

6 Conclusion

In this paper, we have proposed a distributed scheme called DNN for in-network pro-
cessing of nearest neighbor queries in wireless sensor networks. To avoid sending data
to a central repository, a grid structure is constructed for in-network storage of the col-
lected data. By localizing the location updates, DNN eliminates hotspots in the system.
Query processing in DNN proceeds in four steps: query routing, preliminary search,
expanded search and result routing. Experimental results show that DNN can signifi-
cantly reduce and balance network-wide energy consumption compared to the central-
ized scheme.

References

1. G. Pottie. Wireless integrated network sensors. Communications of the ACM 43 (2000),
pages 51–58.

2. P. Bonnet, J. Gehrke, P. Seshadri. Towards sensor database systems. In Proceedings of IEEE
MDM’01, Hong Kong, China (2001), pages 3–14

3. R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin. Shenker, S.: The sensor
network as a database. Technical Report 02-771, Computer Science Department, University
of Southern California (2002).

In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 49

4. X. Tang, J. Xu. Extending network lifetime for precision-constrained data aggregation
in wireless sensor networks. Accepted to appear in Proceedings of IEEE INFOCOM’06,
Barcelona, Spain (2006).

5. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A survey on sensor networks. In
IEEE Communication Magazine 40 (2002), pages 102–114.

6. c. Intanagonwiwat, R. Govindan, D. Estrin. Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. In Proceedings of the 6th Annual ACM/IEEE
Mobicom’00, Boston, MA, USA (2000).

7. S. Madden, M. Franklin, J. Hellerstein, W. Hong. The design of an acquisitional query
processor for sensor networks. In Proceedings of ACM SIGMOD’03, San Diego, CA, USA
(2003).

8. N. Chowdhary, H. Gupta. Communication-efficient implementation of join in sensor net-
works. In Proceedings of DASFAA’05, Beijin, China (2005).

9. M. Sharaf, J. Beaver, A. Labrinidis, P. Chrysanthis. TiNA: A scheme for temporal
coherency-aware in-network aggregation. In Proceedings of the 3rd International ACM
Workshop on Data Engineering for Wireless and Mobile Access, San Diego, CA, USA
(2003), pages 69–76.

10. Y. Yao, J. Gehrke. Query processing for sensor networks. In Proceedings of the 1st
Conference on Innovative Data System Research, Asilomar, CA (2003).

11. N. Roussopoulos, S. Kelley, F. Vincent. Nearest neighbor queries. In Proceedings of ACM
SIGMOD’95, San Jose, CA, USA (1995).

12. M. Demirbas, H. Ferhatosmanoglus. Peer-to-peer spatial queries in sensor networks.
In Proceedings of the 3rd IEEE International Conference on Peer-to-Peer Computing,
Linkoping, Sweden (2003).

13. J. Winter, W.-C. Lee. KPT: A dynamic KNN query processing algorithm for location-aware
sensor networks. In The 1st VLDB Workshop DMSN’04, Toronto, Canada (2004).

14. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of
SIGMOD’84, Boston, Massachusetts (1984).

15. S. Saltenis, C. Jensen, S. Leutenegger, M. Lopez. Indexing the positions of continuously
moving objects. In Proceedings of the ACM SIGMOD’01, Santa Barbara, CA, USA (2001).

16. Y. Tao, D. Papadias, A. Shen. Continuous nearest neighbor search. In Proceedings of
VLDB’02, Hong Kong, China (2002).

17. B.H. Wellenhof, H. Lichtenegger and J. Collins. Gps theory and practice. 2nd Ed,
Springer-Verlag, New York.

18. D. Niculescu, B. Nathi. Ad hoc positioning system. In Proceedings of INFOCOM’03, San
Francisco, CA (2003).

19. D. Li, K. Wong, Y. Hu, A. Sayeed. Detection, classification and tracking of targets in
distributed sensor networks. IEEE Signal Processing Magazine 19 (2002).

20. J. Xu, X. Tang, W.-C. Lee. Ease: An energy-efficient in-network storage scheme for object
tracking in sensor networks. In Proceedings of IEEE SECON’05, Santa Clara, CA, USA
(2005).

21. Y. Xu, J. Winter, W.-C. Lee. Prediction-based strategies for energy saving in object tracking
sensor networks. In Proceedings of IEEE MDM’04, Berkeley, CA, USA (2004).

22. B. Karp, H. Kung. GPSR: Greey perimeter stateless routing for wireless networks. In
Proceedings of the 6th Annual ACM/IEEE Mobicom’00, Boston, MA, USA (2000).

23. E. Weisstein. Hypercube line picking. MathWorld–http://mathworld.wolfram.com/
HypercubeLinePicking.html.

24. C. Buragohain, D. Agrawal, S. Suri. Power aware routing for sensor databases. In
Proceedings of IEEE INFOCOM’05.

	Introduction
	Related Work
	In-Network Processing of Nearest Neighbor Queries
	Distributed Data Storage
	Query Processing

	Cost Model and Analysis
	Cost Model for DNN
	Cost Model for Centralized Scheme

	Performance Evaluation
	Experiment Setup
	Impact of Number of Objects
	Impact of Object Movement
	Impact of Query Rate
	Impact of Grid Cell Size

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

