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Abstract. Conceptual Modelling plays a fundamental role in database
design since Chen’s Entity-Relationship (ER) model. In this paper we
consider a conceptual model capable of capturing classes of objects with
their attributes, relationships among classes, cardinality constraints in
the participation of entities to relationships, and is-a relations among
both classes and relationships. We provide a formal semantics for such
model in terms of predicates and constraints over their extensions. We
address the problem of containment of conjunctive queries over a con-
ceptual schema, and we show an algorithm for solving the problem, that
achieves better computational complexity than the techniques found
in the literature. The results presented here are directly applicable in
query answering on incomplete databases, and in data integration under
constraints.

1 Introduction

Conceptual models, and in particular the Entity-Relationship (ER) model [9],
play a fundamental role in database design. Conceptual schemata used in
database design have the necessary expressiveness and flexibility for effectively
representing the domain of interest, and are precise enough to allow the imple-
mentation on DBMSs.

In this paper we address the problem of query containment, where queries are
conjunctive queries expressed over a conceptual schema. As a conceptual model,
we adopt a formalism that we call Extended Entity-Relationship (EER) Model,
able to represent classes of objects with their attributes, relationships among
classes, cardinality constraints in the participation of entities to relationships,
and is-a relations among both classes and relationships. Since our conceptual
model deals with classes (entities) and relations (relationships) on classes, we
provide a formal semantics to our conceptual model in terms of the relational
database model. In our setting, conjunctive queries are expressed by using pred-
icates (relations) appearing in the relational representation of the conceptual
schema.

The problem of determining containment of queries is highly relevant for
query optimisation [8]; in general a query Q1 is contained in another query Q2
if for every database D the answers to Q1 evaluated over D are a subset of the
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answers to Q2 evaluated over D. The query containment problem is complicated,
in our setting, by the high expressiveness of the EER model. In fact, we represent
a conceptual schema by means of a relational schema, on whose predicates the
queries are formulated, and therefore we need to make use of integrity constraints
to capture the expressiveness of the EER model.

The problem of determining whether a query Q1 is contained in a query
Q2 under a set Σ of constraints, written Q1 ⊆Σ Q2, consists in determining
whether for every database D satisfying Σ the answers to Q1 evaluated over
D are a subset of the answers to Q2 evaluated over D. Consider the following
example, adapted from [11] and entirely based on the relational database model.
We have two relations

employee [emp no, emp name, salary , dept ]
dept [dept no, dept name, location ]

with a single integrity constraint employee[4] ⊆ dept[1], stating that every depart-
ment number appearing in the fourth column of employee must be the number
of some department, therefore it must appear in the first column of dept. Now,
consider the two conjunctive queries

Q1(U) ← employee(U, agenor , X, Y )
Q2(U) ← employee(U, agenor , X, Y ), dept(Y, Z, W )

Without constraints we have that Q1 is not contained in Q2, while in the presence
of the constraint the queries are equivalent, i.e. they are contained in each other.

In the rest of the paper we will present an algorithm that checks containment
of queries expressed over an EER schema, represented by means of a relational
schema with constraints. The class of constraints we deal with does not fall
in the class of IDs and FDs for which containment is known to be decidable
(see [4]); indeed, the decidability of the problem is already known from a work
that addresses containment in the context of a Description Logics that is able
to capture the EER model [6]. However, our technique, besides providing an
in-depth look at the issue of containment of queries over EER schemata, yelds
an upper bound for the complexity of the problem that is better than the one
of [6].

2 Preliminaries

In this section we give a formal definition of the relational data model, of
database constraints, of conjunctive queries, and of containment of conjunctive
queries under constraints.

The relational data model. In the relational data model [10], predicate sym-
bols are used to denote the relations in the database, whereas constant symbols
denote the objects and the values stored in relations. We assume to have two
distinct, fixed and infinite alphabets Γ and Γf of constants and fresh constants
respectively, and we consider only databases over Γ ∪Γf . We adopt the so-called
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unique name assumption, i.e. we assume that different constants denote different
objects.

A relational schema R consists of an alphabet of predicate (or relation) sym-
bols, each one with an associated arity denoting the number of arguments of the
predicate (or attributes of the relation). When a relation symbol R has arity n,
it can be denoted by R/n.

A relational database (or simply database) D over a schema R is a set of
relations with constants as atomic values. We have one relation of arity n for
each predicate symbol of arity n in the alphabet R. The relation RD in D
corresponding to the predicate symbol R consists of a set of tuples of constants,
that are the tuples satisfying the predicate R in D.

When, given a database D for a schema R, a tuple t = (c1, . . . , cn) is in RD,
where R ∈ R, we say that the fact R(c1, . . . , cn) holds in D. Henceforth, we will
use interchangeably the notion of fact and tuple.

Integrity constraints. Integrity constraints are assertions on the symbols of
the alphabet R that are intended to be satisfied in every database for the schema.
The notion of satisfaction depends on the type of constraints defined over the
schema. A database D over a schema R is said to satisfy a set of integrity
constraints Σ expressed over R, written D |= Σ, if every constraint in Σ is
satisfied by D.

The database constraints of our interest are functional dependencies (FDs),
inclusion dependencies (IDs) and key dependencies (KDs) (see e.g. [2]). We de-
note with boldface uppercase letters (e.g. X) both sequences and sets of at-
tributes of relations. Given a tuple t in relation RD, i.e. a fact R(t) in a database
D for a schema R, and a set of attributes X of R, we denote with t[X] the pro-
jection (see e.g. [2]) of t on the attributes in X.

(i) Functional dependencies (FDs). A functional dependency on a relation R is
denoted by R : X → Y. Such a constraint is satisfied in a database D iff for
each t1, t2 ∈ RD we have that if t1[X] = t2[X] then t1[Y] = t2[Y].

(ii) Inclusion dependencies (IDs). An inclusion dependency between relations
R1 and R2 is denoted by R1[X] ⊆ R2[Y]. Such a constraint is satisfied in
a database D iff for each tuple t1 in RD

1 there exists a tuple t2 in RD
2 such

that t1[X] = t2[Y].
(iii) Key dependencies (KDs). A key constraint over relation R is denoted by

key(R) = K, where K is a subset of the attributes of R. Such a constraint
is satisfied in a database D iff for each t1, t2 ∈ RD we have t1[K] �= t2[K].
Observe that this constraints is equivalent to the functional dependency
R : K → AR, where AR is the set of all attributes of R, therefore KDs are
a special case of FDs.

Queries. A relational query is a formula that specifies a set of data to be re-
trieved from a database. In the following we will refer to the class of conjunctive
queries. A conjunctive query (CQ) Q of arity n over a schema R is written in
the form Q(X) ← body(X , Y ) where:
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(1) Q belongs to a new alphabet Q (the alphabet of queries, that is disjoint
from both Γ , Γf and R);

(2) Q(X) is the head of the conjunctive query, denoted head(Q);
(3) body(X, Y ) is the body of the conjunctive query, denoted body(Q), and is

a conjunction of atoms involving the variables X = X1, . . . , Xn and Y =
Y1, . . . , Ym, and constants from Γ ;

(4) the predicate symbols of the atoms are in R,
(5) the number of variables of X is called the arity of Q.

Every variable appearing more than once in Q (more than once in the body,
or both in the body and in the head) is called distinguished variable (DV);
every othervariable is called non-distinguished variable (NDV). We denote with
Var(Q) the set of all variables of Q.

Given a database D, the answer to Q over D, denoted Q(D), is the set of
n-tuples of constants (c1, . . . , cn), such that, when substituting each xi with ci,
for 1 ≤ i ≤ n, the formula ∃Y .body(X, Y ) evaluates to true in D, where ∃Y is
a shorhand for ∃Y1 · · · ∃Ym.

Query containment. Given two CQs Q1, Q2 over a relational schema R, we
say that Q1 is contained in Q2, denoted Q1 ⊆ Q2, if for every database D for
R we have Q1(D) ⊆ Q2(D). Given two CQs Q1, Q2 over a relational schema R,
and a set Σ of constraints on R, we say that Q1 is contained in Q2 under Σ,
denoted Q1 ⊆Σ Q2, if for every database D for R we have that D |= Σ implies
Q1(D) ⊆ Q2(D).

3 The Conceptual Model

In this section we present the conceptual model we shall deal with in the rest
of the paper, and we give its semantics in terms of relational database schemata
with constraints.

Our model incorporates the basic features of the ER model [9] and OO models,
including subset (or is-a) constraints on both entities and relationships. It is an
extension of the one presented in [3], and here we use a notation analogous
to that of [3]. Henceforth, we will call our model Extended Entity-Relationship
(EER) model, and we will call schemata expressed in the EER model Extended
Entity-Relationship (EER) schemata.

An EER schema consists of a collection of entity, relationship, and attribute
definitions over an alphabet Sym of symbols. The alphabet Sym is partitioned
into a set of entity symbols (denoted by Ent), a set of relationship symbols
(denoted by Rel), and a set of attribute symbols (denoted by Att).

An entity definition has the form

entity E
isa: E1, . . . , Eh

participates(≥ 1): R1 : c1, . . . , R� : c�

participates(≤ 1): R′
1 : c′1, . . . , R′

�′ : c′�′
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where: (i) E ∈ Ent is the entity to be defined; (ii) the isa clause specifies a
set of entities to which E is related via is-a (i.e., the set of entities that are
supersets of E); (iii) the participates(≥ 1) clause specifies those relationships to
which an instance of E must necessarily participate; and for each relationship
Ri, the clause specifies that E participates as ci-th component to Ri; (iv) the
participates(≤ 1) clause specifies those relationships to which an instance of E
cannot participate more than once (components are specified as in the previous
case). The isa, participates(≥ 1) and participates(≤ 1) clauses are optional. A
relationship definition has the form

relationship R among E1, . . . , En

isa: R1[j1 1, . . . , j1 n], . . . , Rh[jh 1, . . . , jh n]

where: (i) R ∈ Rel is the relationship to be defined; (ii) the entities of Ent
listed in the among clause are those among which the relationship is defined
(i.e., component i of R is an instance of entity Ei); (iii) the isa clause specifies a
set of relationships to which R is related via is-a; for each relation Ri, we specify
in square brackets how the components [1, . . . , n] are related to those of Ei, by
specifying a permutation [ji 1, . . . , ji n] of the components of Ei; (iv) the number
n of entities in the among clause is the arity of R. The isa, clause is optional.
An attribute definition has the form

attribute A of X
qualification

where: (i) A ∈ Att is the attribute to be defined; (ii) X is the entity or relation-
ship to which the attribute is associated; (iii) qualification consists of none, one,
or both of the keywords functional and mandatory, specifying respectively that
each instance of X has a unique value for attribute A, and that each instance of
X needs to have at least a value for attribute A. If the functional or mandatory
keywords are missing, the attribute is assumed by default to be multivalued and
optional, respectively.

For the sake of simplicity, and without any loss of generality, we assume
that in our EER model different entities and relationships have disjoint sets
of attributes; also, we do not consider the domains of the attributes, i.e. the
specification of the domains to which values of attributes must belong.

The semantics of an EER schema is defined by specifying when a database
for that schema satisfies all constraints imposed by the constructs of the schema.
First of all, we formally define a database schema from an EER diagram. Such
a database schema is defined in terms of predicates, that represent the so-called
concepts (entities, relationships and attributes) of the conceptual schema. There-
fore, we define a relational database schema that encodes the properties of the
EER schema C.

(a) Each entity E in C has an associated predicate E of arity 1. Informally, a
fact of the form E(c) asserts that c is an instance of entity E.

(b) Each attribute A for an entity E in C has an associated predicate A of
arity 2. Informally, a fact of the form A(c, d) asserts that d is the value of
attribute A associated to c, where c is an instance of entity E.
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(c) Each relationship R among the entities E1, . . . , En in C has an associated
predicate R of arity n. Informally, a fact of the form R(c1, . . . , cn) asserts that
(c1, . . . , cn) is an instance of relationship R, where c1, . . . , cn are instances
of E1, . . . , En respectively.

(d) Each attribute A for a relationship R among the entities E1, . . . , En in C
has an associated predicate A of arity n + 1. Informally, a fact of the form
A(c1, . . . , cn, d) asserts that (c1, . . . , cn) is an instance of relationship R and
d is the value of attribute A associated to (c1, . . . , cn).

Once we have defined the database schema R for an EER schema C, we give
the semantics of each construct of the EER model; this is done by specifying
what databases (i.e. extension of the predicates of R) satisfy the constraints
imposed by the constructs of the EER diagram. We do that by making use of
the relational database constraints introduced in Section 2.

(1) For each attribute A/2 for an entity E in an attribute definition in C, we
have the ID A[1] ⊆ E[1].

(2) For each attribute A/(n+1) for a relationship R/n in an attribute definition
in C, we have the ID A[1, . . . , n] ⊆ R[a, . . . , n].

(3) For each relationship R involving an entity Ei as i-th component according
to the corresponding relationship definition in C, we have the ID R[i] ⊆ Ei[1].

(4) For each mandatory attribute A/2 of an entity E in an attribute definition
in C, we have the ID E[1] ⊆ A[1].

(5) For each mandatory attribute A/(n+1) of a relationship R/n in an attribute
definition in C, we have the ID R[1, . . . , n] ⊆ A[1, . . . , n].

(6) For each functional attribute A/2 of an entity E in an attribute definition
in C, we have the KD key(A) = {1}. In fact, there cannot be more than one
value for attribute A that is assigned to a single instance of E.

(7) For each functional attribute A/(n+1) of a relationship R/n in an attribute
definition of C, we have the KD key(A) = {1, . . . , n}. In fact, there cannot
be more than one value for attribute A that is assigned to a single instance
of R.

(8) For each is-a relation between entities E1 and E2, in an entity definition
in C, we have the ID E1[1] ⊆ E2[1]. In fact, the is-a relation specifies a set
containment between entities E1 and E2.

(9) For each is-a relation between relationships R1 and R2, where components
1, . . . , n of R1 correspond to components j1, . . . , jn, in a relationship defi-
nition in C, we have the ID: R1[1, . . . , n] ⊆ R2[j1, . . . , jn]. In fact, the is-a
relation specifies a set containment between relationships R1 and R2.

(10) For each mandatory participation (participation with minimum cardinality
1) as c-th component of an entity E in a relationship R, specified by a clause
participates≥ 1: R : c in an entity definition in C, we have the ID E[1] ⊆ R[c].

(11) For each participation with maximum cardinality 1 as c-th component of
an entity E in a relationship R, specified by a clause participates≤ 1: R : c
in an entity definition in C, we have the ID key(R) = {c}

The class of constraints we obtain, which is a subclass of key and inclusion
dependencies, is a novel class of relational database dependencies, that we shall
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Employee Works in Dept

Manager

since

dept nameemp name

1 2

Fig. 1. EER schema for Example 1

call conceptual dependencies (CDs) for obvious reasons. The conjunctive queries
we consider are formulated using the predicates in the relational schema we
obtain from the EER schema as described above.

Example 1. Consider the EER schema shown in Figure 1, depicted in the usual
graphical notation for the ER model (components are indicated for the rela-
tionship Works in). The elements of such a schema are manager/1, employee/1,
dept/1, works in/2, emp name/2, dept name/2, since/3. The schema describes em-
ployees working in departments of a firm, and managers that are also employees.
We omit the formal specification of the schema and the constraints on its rela-
tional representation. Suppose we want to know the names of the managers who
work in the toy department (named toy dept) since 1999. The corresponding
conjunctive query is

Q(Z) ← manager(X), emp name(X, Z), works in(X, Y ), since(X, Y, 1999)
dept(Y ), dept name(Y, toy dept)

4 Chase and Containment

In this section we first present the notion of chase, which is a fundamental tool
for dealing with database constraints; then we prove some relevant properties
of the chase under conceptual dependencies (CDs), by means of which we prove
the decidability of the problem of containment of conjunctive queries under such
dependencies.

The chase of a conjunctive query [13, 11] is a key concept in particular in the
context of functional and inclusion dependencies. Intuitively, given a conjunctive
query, its conjuncts are “frozen” and seen as facts in a database, where each
variable is associated to a distinct value. Since this collection of facts in general
does not satisfy the inclusion and functional dependencies, the idea is to convert
the initial facts into a new set of facts constituting a database that satisfies
the dependencies, possibly by collapsing facts (according to FDs) or adding new
facts (according to IDs). Since a frozen query is a database, as we will see in the
next section, we will define the notion of chase of a database having, in general,
fresh and non-fresh constants.

Construction of the chase. Consider a database instance D for a relational
schema R, and a set Σ of dependencies on R; in particular, Σ = ΣI ∪ΣF , where
ΣI is a set of inclusion dependencies and ΣF is a set of functional dependencies.



Containment of Conjunctive Queries over Conceptual Schemata 635

In general, D does not satisfy Σ, written D �|= Σ. In this case, we construct
the chase of D w.r.t. Σ, denoted chaseΣ(D), by repeatedly applying the rules
defined below. We denote with chase∗

Σ(D) the part of the chase that is already
constructed before the rule is applied.

Inclusion Dependency Chase Rule. Let R, S be relational symbols in R.
Suppose there is a tuple t in Rchase∗

Σ(D), and there is an ID σ ∈ ΣI of the form
R[YR] ⊆ S[YS ]. If there is no tuple t′ in SD such that t′[XS ] = t[XR] (in this
case we say the rule is applicable), then we add a new tuple tchase in SD such
that tchase [XS ] = t[XR], and for every attribute Ai of S, with 1 ≤ i ≤ m and
Ai /∈ XS , tchase [Ai] is a fresh value in Γf that follows, according to lexicographic
order, all the values already present in the chase.

Functional Dependency Chase Rule. Let R be a relational symbol in R.
Suppose there is a FD ϕ of the form R : X → Y. If there are two tuples
t, t′ ∈ Rchase∗

Σ(D) such that t[X] = t′[X] and t[Y] �= t′[Y] (in this case we say
the rule is applicable), make the symbols in t[Y] and t′[Y] equal in the following
way. Let Y = Y1, . . . , Y�; for all i ∈ {1, . . . , �}, make t[Yi] and t′[Yi] merge into a
combined symbol according to the following criterion: (i) if both are constants
in Γ , halt the process, since the initial database cannot be chased; (ii) if one
is in Γ and the other is a fresh constant in Γf , let the combined symbol be
the non-fresh constant; (iii) if both are fresh constants in Γf , let the combined
symbol be the one preceding the other in lexicographic order. Finally, replace
all occurrences in chase∗

Σ(D) of t[Yi] and t′[Yi] with their combined symbol.
In the following, we will need the notion of level of a tuple in the chase; intu-

itively, the lower the level of a tuple, the earlier the tuple has been constructed
in the chase.

Definition 1. Given a database instance D for a relational schema R, and a
set Σ of FDs and IDs, the level of a tuple t in chaseΣ(D), denoted by level (t),
is defined as follows:

(1) if t is in D then level(t) = 0;
(2) if t2 is generated from t1 by application of the ID chase rule, and level(t1)
= k, then level (t2) = k + 1;

(3) if a FD is applied on a pair of tuples t1, t2, they keep their level, except
when they are turned into the same tuple; in such a case, the new tuple gets
the minimum of the levels of t1 and t2.

Now we come to the formal definition of the chase.

Definition 2. We call chase of a relational database D for a schema R, accord-
ing to a set Σ of FDs and IDs, denoted chaseΣ(D), the database constructed from
the initial database D, by repeatedly executing the following steps, while the FD
and ID chase rules are applicable.

(1) while there are pairs of tuples on which the FD chase rule is applicable,
apply the FD chase rule on a pair, arbitrarily chosen;
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(2) if there are tuples on which the ID chase rule is applicable, choose the
one at the lowest level and apply the ID chase rule on it.

As we pointed out before, the aim of the construction of the chase is to make
the initial database satisfy the FDs and the IDs. This is formally stated by the
following result.

Theorem 1. Given a database schema R with a set Σ of FDs and IDs, and
given a database D for R, the database chaseΣ(D) satisfies Σ.

Proof. We prove the result by contradiction. We start from IDs; suppose a fact
R(c1, . . . , cm) in chaseΣI (D) violates an ID of the form R[XR] ⊆ S[XS ]. This
means that there is a tuple tR = (c1, . . . , cm) in RchaseΣ(D) and there is no tuple tS
in SchaseΣI

(D) such that tR[XR] = tS [XS ]. But this is a contradiction, since these
are exactly the conditions for the application of the chase rule for IDs, that has
already been applied during the construction of chaseΣI (D). As for FDs, suppose
that two tuples t, t′ in chaseΣ(D) violate a FD of the form R : X → Y, i.e.
t[X] = t′[X] and t[Y] �= t′[Y]; this is the condition of application of the FD chase
rule, therefore we have a contradiction, since the FD chase rule must have already
been applied during the construction of the chase. This proves the claim.

We remind the reader of the following definition (see e.g. [2]): a set ΣI of IDs
is cyclic if in ΣI there is a sequence of dependencies Ri[Xi] ⊆ Si[Yi], with
1 ≤ i ≤ n, where Ri+1 = Si for 1 ≤ i ≤ n, and R1 = Sn. Otherwise, ΣI is said
to be acyclic. It is easy to see that chaseΣ(D) can be infinite only if the set if
IDs in Σ is cyclic.

Associated to the chase, we have a chase graph that encodes the process of
construction of the chase itself.

Definition 3. Given a database D, and a set of inclusion dependencies ΣI, let
chaseΣI (D) be the (possibly infinite) chase of D according to ΣI . The chase
graph associated to chaseΣI (D) is a graph defined as follows.

(i) The set of the nodes is the set of facts in chaseΣI (D).
(ii) The edges are labelled with IDs in ΣI .
(iii) Given two facts f1, f2 of chaseΣI (D), the arc (f1, f2) is in the graph if
f2 is added to the chase in an application of the chase rule for a dependency
σ ∈ ΣI ; in this case, the arc (f1, f2) is labelled by σ.

(iv) If there is a fact f1 = R(c1, . . . , cn) and an ID of the form R[YR] ⊆
S[YS ], but the required fact f2 is already in the chase, then there is a special
arc from f1 to f2, that we will call cross-arc according to the notation of [11].

Notice that every chase graph, if we exclude the cross-arcs, is a forest of trees
whose roots are the facts in the original database D.

Example 2. Consider the relations R and S, both of arity 2, and a set of IDs
Σ = {σ1, σ2, σ3}, with:

σ1 : R[1] ⊆ S[1]
σ2 : S[2] ⊆ R[1]
σ3 : S[2] ⊆ S[1]
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Let D be a database containing the facts R(a, b) and R(a, c). The chase graph
associated to chaseΣ(D) is shown in Figure 2, where the newly introduced values
are αi (i = 1, 2, . . .) and the dashed arcs are cross-arcs.

The chase is a powerful tool for reasoning about dependencies [13, 14, 16, 11].
In the next following we will show how the chase can be used in testing the
containment of queries under database dependencies.

· · ·

σ3σ2

· · ·· · ·

σ2

S(α1, α2) R(α1, α3)

σ3

σ2σ3

σ1 σ1

R(a, c)R(a, b)

level 0

σ1

R(α2, α4)

S(a, α1)

S(α2, α5)

Fig. 2. Chase graph for Example 2

Testing query containment with
the chase. In their milestone paper
about query containment under func-
tional and inclusion dependencies [11],
Johnson and Klug proved that, under
FDs and IDs, a containment Q1 ⊆Σ Q2
between two conjunctive queries can be
tested by verifying whether there is a
query homomorphism from Q2 to the
chase of the database obtained by “freez-
ing” Q2, i.e. turning its conjuncts into
facts. A homomorphism from a conjunc-
tive query Q to a database D is a func-
tion f from the variables and constants
appearing in a query Q to Γ ∪ Γf such
that every conjunct R(X1, . . . , Xn) (where every Xi is a variable or constant)
is mapped to a fact of the form R(c1, . . . , cn) in D, where ci = f(Xi) for all
i ∈ {1, . . . , n}.

Definition 4. Consider a a conjunctive query Q; the frozen query Q, denoted
fr(Q), is a pair 〈fr (head(Q)), fr(bodyQ)〉, where 〈fr (head(Q)) is a fact and
fr(bodyQ)〉 is a database, that is obtained by choosing a homomorphism µ : Γ ∪
Var(Q) → Γ ∪ Γf such that µ sends each constant of Γ into itself, and each
variable in Var(Q) to a fresh constant in Γf . Each conjunct in body(Q) is sent
by µ to a fact in fr (body(Q)), and head(Q) to fr(head(Q)). For technical rea-
sons, the fresh constants to which µ maps the DVs must precede in lexicographic
order all the (fresh) constants to which µ maps the NDVs.

Theorem 2 (see [11]). Let Q1, Q2 be conjunctive queries, and Σ a set of FDs
and IDs. Then Q1 ⊆Σ Q2 if and only if there is a homomorphism that sends
each constant of Γ to itself, and maps body(Q2) to chaseΣ(fr(body(Q1))) and
head(Q2) to fr(head(Q1)).

To test containment of conjunctive queries under IDs alone or key-based depen-
dencies (a special class of FDs and IDs that is more general than the combination
of key and foreign key dependencies), Johnson and Klug proved that it is suffi-
cient to consider a finite portion of the chase; this leads to the decidability of the
problem of containment, and it is also shown that the complexity of the problem
of testing containment is pspace-complete. This result was extended in [4] to a
broader class of dependencies, namely key dependencies and non-key-conflicting
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1 2

(0, 1)
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Fig. 3. EER schema for Example 3

inclusion dependencies (NKCIDs), in the context of query answering on incom-
plete and inconsistent databases; the NKCIDs, in fact, behave like IDs alone
because they do not interfere with KDs in the construction of the chase. In our
case we are in the presence of CDs, i.e. a special class of key dependencies and in-
clusion dependencies; IDs are not non-key-conflicting (or better key-conflicting),
therefore the decidability of query containment is yet to be proved. In the pres-
ence of CDs, the construction of the chase presents some problems, as shown in
the following example.

Example 3. Consider the EER schema shown in Figure 3, derived from that
of Example 1, and depicted in the usual graphical notation for the ER model,
where the label [1, 2] in the is-a relation between the two relationships denotes
that the components of Manages correspond, in their order, to components 1, 2
(in this order) of Works in, and the cardinality constraint (0, 1) for Employee
denotes that each instance of Employee must participate a minimum of 0 times
and a mazimum of 1 times to Works in; the cardinality constraint for the par-
ticipation of Manager to Manages is analogous. We have an additional predicate
manages/2 with respect to Example 1. Suppose we have a database, obtained by
freezing a query, with the facts manager(m) and works in(m, d). If we construct
the chase, we obtain the facts employee(m), manages(m, α1), works in(m, α1),
dept(α1), where α1 is a fresh constant. Observe that m cannot participate more
than once to works in, so we deduce α1 = d. We must therefore replace α1 with
d in the rest of the chase, including the part that has been constructed so far.

Fortunately, also in the case of CDs, a finite portion of the chase is sufficient
to test conjunctive query containment. This result can be proved analogously
to the corresponding result in [11], but now things are complicated by the fact
that an application of the FD chase rule can lead to a sequence of cascading
applications of the same rule. This affects lower levels of the chase, so that we
cannot be sure, once we stop at a certain level, whether the collapse of a pair
of facts (due to the application of the FD chase rule) in a level that is far larger
than the limit level can affect the portion of the chase we have constructed. In
other words, in principle we do not know what the first portion of the chase
actually is, before we construct the rest of the possibly infinite chase, since the
application of the FD chase rule in a far level could propagate, like a crack in a
high wall, down to the first portion.

First, we show that, after a certain number of levels, it is impossible that the
construction of the chase of a frozen query Q1 w.r.t. a set of CDs fails (see the
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FD chase rule), leading to the conclusion that Q1 is contained in all queries. We
state our result for the chase of a database.

Lemma 1. Let D be a database and Σ a set of CDs. We have that if the con-
struction of chaseΣ(D) does not fail after level W !, where W is the maximum
width of an ID in Σ (i.e. the maximum number of attributes involved in an ID),
then it does not fail in any level greater than W !.

Proof (sketch). It is easy to see that the construction of the chase may fail only
if the FD chase rule is applied between two tuples, containing only non-fresh
constants in Γ , and belonging to a relation that represent a relationship of an
EER schema; in fact, all other tuples of the same kind contain at most one
non-fresh constant. Since tuples containing only constants in Γ propagate only
through IDs that represent is-a relations between two relationships, such tuples
do not “survive” after W ! levels.

Lemma 2. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ ΣI a set of CDs,
where ΣK and ΣI are sets of KDs and IDs respectively. If there exists a ho-
momorphism µ sending each constant of Γ to itself, and mapping body(Q2) to
facts of chaseΣ(fr(body(Q1))) and head(Q2) to fr(head(Q1)), then there exists
another homomorphism µ′ having the same properties, that sends all the facts
of body(Q2) to facts in chaseΣ(fr(body(Q1))) appearing at levels that are lower
than |Q2| · |Σ| · W !, where |Q2| is the number of conjuncts in Q2, |Σ| is the
number of dependencies in Σ, and W is the maximum width of an ID in Σ.

Proof (sketch). The proof of this theorem goes very much like the proof of the
analogous result for the case of IDs alone or key-based dependencies [11]: all the
results hold also in the presence of CDs. We do not provide the details here, due
to the fact that the proof is long and rather complicated. The only difference
between our result and the result of [11] is the term W !, that is replaced by
(W +1)W in the result of that paper. This is because W ! is the maximum length
of a path in the chase graph made up of ordinary arcs only, starting from a fact
θ, and such that there are no two equivalent facts in the path, where two facts
θ1, θ2 are said to be equivalent if: (i) they have the incoming arc labelled with
the same ID; (ii) for every attribute Ai, if either θ1[Ai] or θ2[Ai] appears in θ,
it holds θ1[Ai] = θ2[Ai]. In our case, differently from [11], the maximum length
of such a path is W !.

We now come to the decidability of query containment. Our plan of attack
consists in showing a principle of locality of KDs in the chase: in practice, we
show that collapses due to the application of the FD chase rule propagate their
effects at most δ levels back in the chase, where δ is a value depending on
the dependencies. Therefore, in order to test whether Q1 ⊆Σ Q2, we need to
construct the chase until level �JK = |Q2| · |Σ| · W !, and continue for extra δ
levels; after that point, no changes will occur in the first �JK levels of the chase.
We first need an auxiliary lemma.
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Lemma 3. Let D be a database instance (over Γ and Γf ) for a relational
schema R, and Σ = ΣK ∪ ΣI a set of CDs, where ΣK and ΣI are sets of
KDs and IDs respectively. Consider a fact θ containing a symbol c ∈ (Γ ∪ Γf ),
at level � in chaseΣ(D); then, c does not appear in any fact at levels greater than
� + |Σ| · W ! = � + δ.

Proof. First, observe that only the IDs encoding is-a arcs between relationships
are non-unary in Σ. Clearly, c can appear for |Σ| more levels, but also for
more, if there are cyclic non-unary IDs. If we consider a path of ordinary arcs
(non-cross-arcs) corresponding to the application of the ID chase rule w.r.t. IDs
σ1, . . . , σk that form a cycle, if σi is unary for some i ∈ {1, . . . , k}, c cannot
survive for more than |Σ| levels after �; instead, if σ1, . . . , σk are all non-unary,
and therefore forced to have the same width U , the cycle of IDs formed by
σ1, . . . , σk can be traversed (in the application of the ID chase rule) U ! times,
where all the generated facts are obtained by permutating the values in the U
positions of θ. After that, no further propagation of c is possible. Since k is
limited by |Σ| and U by W , the thesis follows.

Lemma 4. Let D be a database instance (over Γ and Γf ) for a relational
schema R, and Σ = ΣK ∪ ΣI a set of CDs, where ΣK and ΣI are sets of
KDs and IDs respectively. Suppose that, during the construction of chaseΣ(D),
we apply the FD chase rule to two facts θ1, θ2 in chaseΣ(D); then all the appli-
cations of the FD chase rule that are done in consequence of the first one involve
facts that are at level greater or equal than max(level(θ1), level (θ2)) − δ, where
δ = |Σ| · W !.

θc �c

�01

�02

�1

θ02

θ1

�2

σ

θ01

Ψ
Φ θ2

Fig. 4. Figure for the proof of Lemma 4

Proof. Let key(R) = {k} be a
KD in ΣK , θ1 =R(α1, . . . , αk−1,
c, αk+1, . . . , αn), and θ2 = R
(β1, . . . , βk−1, c, βk+1, . . . , βn).
We refer the reader to Figure 4,
that shows the chase graph for
chaseΣ(D) (higher levels are
below in the figure). We assume
that α1, . . . , αn, β1, . . . , βn are
fresh constants in Γf (at the
end of the proof we shall con-
sider the case where one of the
two facts θ1, θ2 is in D). In
the following we shall not con-
sider IDs and FDs regarding at-
tributes, since they are acyclic
and have a marginal role in the
construction of the chase. Also,
we assume �1 = level (θ1) ≥ level (θ2) = �2; this is done without loss of generality,
since the other case is symmetric to this one. Since θ1 and θ2 agree on the key,
we need to turn αi into βi for all i such that 1 ≤ i ≤ n and i �= k; in fact, since
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θ2 was generated earlier that θ1, its fresh constants have higher lexicographic
rank; as a consequence, θ1 is turned into θ2, so that the arc incoming into θ1
becomes a cross-arc incoming into θ2, labelled with the ID σ in Figure 4. Since
c appears both in θ1 and θ2, it must have appeared for the first time al level �c,
in the fact θc; then it propagated in the chase to θ1 and θ2.

Let θ01 and θ02 be the facts where the αi and βi appear for the first time,
respectively; notice that in general, when fresh constants appear for the first
time at levels greater than 0, they occupy all positions in a fact, except one,
that contains a constant appearing at the previous level. In the figure, the level
�01 of θ01 is lower than the level �02 of θ02: the other case is treated analogously,
since it is symmetrical. The shaded subgraphs Φ, Ψ in Figure 4 are the subtrees
(considering ordinary arcs only) rooted in θ01 and θ02 repectively. Therefore: in Φ
we find constants α1, . . . , αk−1, c, αk+1, . . . , αn, plus fresh constants introduced
in Φ for the first time; in Ψ we find constants β1, . . . , βk−1, c, βk+1, . . . , βn, plus
fresh constants introduced in Ψ for the first time; moreover, α1 and βi appear
only in Φ, Ψ respectively. By Lemma 3, �1 − �01 ≤ δ, where �1 = level (θ1);
therefore, changing αi into β1 (1 ≤ i ≤ n and i �= k) affects portions of the chase
that are less than δ levels far from θ1; moreover, applications of the FD chase
rule on facts in Φ ∪ Ψ will clearly affect only facts in Φ ∪ Ψ itself. Finally, in
the case where θ01 (or θ02) is in D, Lemma 3 show immediately that the thesis
holds. This proves the claim.

Lemma 5. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ ΣI a set of CDs,
where ΣK and ΣI are sets of KDs and IDs respectively. If there exists a ho-
momorphism µ sending each constant of Γ to itself, and mapping body(Q2) to
facts of chaseΣ(fr(body(Q1))) and head(Q2) to fr(head(Q1)), then there exists
another homomorphism µ′ having the same properties, that sends all the facts of
body(Q2) to facts of the database obtained by constructing the first (|Q2| + 1) · δ
levels of chaseΣ(fr (body(Q1))), where δ = |Σ| · W !, according to the given pro-
cedure of applications of the chase rules (Definition 2).

Proof. The proof descends straightforwardly from Lemmata 2 and 4, as discussed
above.

The following theorem is a direct consequence of the previous lemma.

Theorem 3. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ ΣI a set of
CDs, Where ΣK and ΣI are sets of KDs and IDs respectively. Checking whether
Q1 ⊆Σ Q2 is decidable, and can be done by constructing the first (|Q2|+1)·|Σ|·W !
levels of chaseΣ(fr(body(Q1))), and checking for the existence of a homomor-
phism µ′ as in Theorem 5.

As for the complexity of the algorithm for checking a containment Q1 ⊆Σ Q2
in case Σ is a set of CDs, we first focus on the complexity w.r.t. |Q1| and |Q2|
(number of atoms of Q1 and Q2 respectively); it is easy to see that our algorithm
can be run in time polynomial in |Q1|, and exponential in |Q2|. This because the
depth of our finite segment of chase does not depend on |Q1|, and it is linear in
|Q2|. The algorithm is also double exponential in W .
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The complexity w.r.t. |Q1| is especially important because, when consider-
ing the correspondence between query containment and query answering over a
knowledge base or incomplete data [1, 4], Q1 plays the role of the data, and the
complexity w.r.t. |Q1|, called data complexity, is highly relevant, since the size of
the data is usually much larger that that of the schema. Though decidability of
query containment in our case could be proved from the results in [6], our tech-
niques provides a better insight on the complexity of the problem, as discussed
in the following section.

5 Discussion

In this paper we have presented a conceptual model based on the ER model,
and we have given its semantics in terms of the relational database model with
integrity constraints. We have considered conjunctive queries expressed over con-
ceptual schemata, and we have shown that containment of such queries is decid-
able by means of an algorithm that performs better than all the known ones.

Containment of queries is a fundamental topic in database theory [7, 6, 11, 12].
[3] deals with conceptual schemata in the context of data integration, but the
cardinality constraints are more restricted than in our approach. Another work
that deals with dependencies similar to those presented here is [5], however the
is-a relation among relationships is not considered in it. Also [15] addresses the
problem of query containment using a formalism for the schema that is more
expressive than the one presented here; however, the problem here is proved to
be coNP-hard. In [6], the authors address the problem of query containment for
queries on schemata expressed in a formalism that is able to capture our EER
model; in this work it is shown that checking containment is decidable and its
complexity is exponential in the number of variables and constants of Q1 and
Q2, and double exponential in the number ov existentially quantified variables
that appear in a cycle of the tuple-graph of Q2 (we refer the reader to the paper
for further details). Since the complexity is studied by encoding the problem
in a different logic, it is not possible to analyse in detail the complexity w.r.t.
|Q1| and |Q2|, which by the technique of [6] is in general exponential. Our work
provides a more detailed analysis of the computational cost, showing a lower
complexity w.r.t. |Q1|.

The complexity results about query containment are directly applicable in
certain cases of answering queries on incomplete databases or knowledge bases,
and also in data integration under constraints; still, effective and efficient algo-
rithms are yet to be developed. As for future work, we plan to tackle the problem
of answering queries over data integration sytems where the schema is expressed
in the EER model, in a way that is similar to the one followed in [3].
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