
Query Optimization for a Graph Database
with Visual Queries

Greg Butler, Guang Wang, Yue Wang, and Liqian Zou

Department of Computer Science and Software Engineering,
Concordia University,

1455 de Maisonneuve Blvd. West,
Montréal, Québec, H3G 1M8, Canada

{gregb, gwang 1, wang yue, l zou}@cse.concordia.ca

Abstract. We have constructed a graph database system where a query
can be expressed intuitively as a diagram. The query result is also vi-
sualized as a diagram based on the intrinsic relationship among the re-
turned data. In this database system, CORAL plays the role of a query
execution engine to evaluate queries and deduce results. In order to un-
derstand the effectiveness of CORAL optimization techniques on visual
query processing.We present and analyze the performance and scalabil-
ity of CORAL’s query rewriting strategies, which include Supplementary
Magic Templates, Magic Templates, Context Factoring, Näıve Backtrack-
ing, and Without Rewriting method. Our research surprisingly shows that
the Without Rewriting method takes the minimum total time to pro-
cess the benchmark queries. Furthermore, CORAL’s default optimiza-
tion method Supplementary Magic Templates is not uniformly the best
choice for every query. The “optimization” of visual queries is beneficial
if one could select the right optimization approach for each query.

1 Introduction

Scientific and industrial projects have been generating large volumes of data.
This tremendous amount of data need storage and analysis. A key issue is that
the data management software needs to be easy–to–use, yet provides fast re-
sponse time. It is not trivial to make a database system simple and intuitive
enough for the end-users to query in a sophisticated way. Our graph database
system [1] is toward solving this important problem. We believe that the dia-
grammatic query and visual result display will ease the task of data management
and data analysis. We have applied the benefits of deductive query language, di-
agrammatic queries, and data visualization so as to provide the end-users, who
are not familiar with or do not want to bother with writing SQL queries, a
helpful system to pose queries and represent query results in a diagram.

In brief, our graphical user interface allows the end–users to construct queries
by drawing diagrams. It is implemented in JAVA. The supported graphical query
language we have implemented is GraphLog [2]. The query result set is visualized
as diagrams with the same icon and style as in the query. CORAL [3] is the
system’s database engine. The raw data are stored in a MySQL [4] relational

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 602–616, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Query Optimization for a Graph Database with Visual Queries 603

database. The detailed description about our system’s query formulation and
result visualization mechanism can be found at [1].

In order to handle the huge size data in a real–world application, we need to
study the possible optimization techniques that are effective for diagrammatical
queries so as to speed up the query processing. There have been quite a num-
ber of graph database systems presented in the literature. In general, they have
been lack of full studies of the query language expressiveness, semantics and op-
timization. To the best of our knowledge, no performance studies of optimization
strategies for graph databases have been done prior to our work.

Our first step towards an optimization solution is to understand the effect of
CORAL’s optimization techniques on the diagrammatical queries in our context.
In this paper, we will present the study of CORAL’s query optimization tech-
niques in our context. We have used a benchmark of 24 queries across a range of
different data sizes. This query set on the University model are carefully chosen
and typical enough to evaluate our system’s ability to express queries at different
complex levels. The data sets used for our experiment range from 640,000 pieces
of ground facts to 5,100,000. The wide range of data sets are comprehensive
enough to examine our system’s capability to handle large data sets.

The capabilities of the system has been expanded to include all features of
GraphLog. Our tests and demonstration were performed with a system capable
of handling selection, projection, queries with negation, and transitive queries.
It also supports blobs, which help to modularize queries with hierarchical rela-
tionships and layout the results in the orthogonal shape.

The rest of this paper is organized as follows: Section 1.1 introduces the eval-
uation framework. Section 2 illustrates the structure of the Graph Database
System. Section 2.1 gives an example of query and its translations across the
system. Section 3 presents and analyzes the performance experiment results for
various CORAL query optimization strategies. Section 4 discusses the related
work and Section 5 concludes the paper.

1.1 Test Benchmark

The benchmark used in the test was a framework for object-oriented query lan-
guage evaluation [5]. It was built on a University Model. Originally, it was a
guideline for designing a new query language and improving the performance of
existing languages.

The University Model is a simplified version of a university administration
system that manages the personal and academic information of students and
staff members. The structural relationships among the classes defined in the
schema are given in Figure 1.

The class Person has two subclasses Staff and Student. Visiting staff
is the subclass of the Staff. Both an object of class Staff and an object of
class Student can be an object of class Tutor. A student may be supervised
by one or more staff members. A staff member may be a supervisor for one or
more students. However, some students do not have a supervisor and some staff
members do not supervise a student. Every staff member works in a Department

604 G. Butler et al.

Fig. 1. The university model structure

and every student studies a specific major in a department. Each department
offers Course for students. The staff members are lecturers for these courses. In
some cases, the students need to take and pass the prerequisite courses before
taking a course. Each course has an object of Assessment that specifies its credits
and schools terms that offer it. Every person lives in a place that is defined by
Address. Each department has a location, which is an object of class Address.

The benchmark contains four evaluation dimensions: expressive power, sup-
port of object-orientation, support of collections and usability. Each evaluation
dimension is composed of a set of criteria and each criteria is assessed by a
set of proposed queries on the University Model (Appendix A). The support
of object-orientation mainly concerns the object identity, method calling, com-
plex objects, class hierarchy and dynamic binding of the system. The expressive
power approach is to test the object manipulation features of the system, such
as nested queries and relational completeness. The support of collections tries to
find a set of operations on the system that can obtain consistent performance on
different collection classes. It is also used to test on the mixing of and conversion
between different collection classes. The usability aims at examining the ease of
using query notations.

2 System Architecture

Our Graph Database System takes up four subsystems. They are Graphical
User Interface, TGL Translator, Query Processing Engine and MySQL
Data Storage. The system architecture is shown in Figure 2.

The Graphical User Interface (GUI) is the system’s interface to end–
users. Users can draw a query diagram in the query editor. The GUI translates
the user’s query that is defined as a diagram into XML format and sends it to
the next layer of the system: TGL Translator. The GUI is also responsible to
visualize the query result set into a graph.

The TGL Translator consists of the query translation component and the
result translation component. The query translation component accepts the query

Query Optimization for a Graph Database with Visual Queries 605

Fig. 2. Graph database system architecture

diagram from the GUI and first translates it into the XML format with pre–
defined tags. Then it translates the XML–formatted query into a CORAL query
program. The result translation component translates the query result returned
by CORAL into XML and passes the XML–formatted query result to the upper
GUI layer.

The Query Processing Engine is responsible for evaluating the query and
deducing the result. It consists of two components: the CORAL client and the
CORAL server. The CORAL client interacts with the TGL Translator and the
MySQL Data Storage. It is responsible to receive the query plan from the TGL
Translator and the query result from the CORAL server. The CORAL client
terminates when the query finishes, whereas the CORAL server will live until
the user requires to shut it down.

The CORAL Server is the deductive engine to optimize the query and execute
the query. The query optimization part transforms the incoming queries to an
internal representation based on the optimization(rewriting) methods used in
the query. In the optimization strategies, several control annotations are added
to the original query program. This optimized program is transferred to the
query evaluation part. The query evaluation part takes the annotated program
and in-memory facts as input and executes the program under the direction of
annotations. The data management part is in charge of maintaining and manip-
ulating the facts for each query. It loads data from the client interface of MySQL
Data Storage and converts the data into CORAL facts on demand [11].

The MySQL Data Storage stores the data source physically in MySQL
database. The conventional data manipulations can be performed on data in
MySQL. The CORAL server initiates a connection with MySQL. All records in
the target database are loaded into the CORAL server’s computer main memory
as a runtime database for CORAL.

2.1 A Query Example

The translation of queries adds flexibility to the system. The transformation
of a query from a diagram to XML representation is a process of depicting

606 G. Butler et al.

(A) (B)

(D) (C)

(E)

Fig. 3. The query interface. The user posed a query which returns all of the Computer
Science and Engineering students who do part-time jobs across these two departments.
(A) Defining a new relation called works not majors in. All students who work part–
time in a department that is different from their major department satisfy this concept.
(B) Defining another new relation eng students. A blob is used, which is a container
containing all students in the Engineering department. (C) Similarly, defining a relation
called eng students for all the Computer Science students. (D) This is the query
diagram. It makes use of the relations defined in the first three windows. (E) An
overview of all the relations present in the database and the user–defined relations.

the query diagram in format of XML with pre–defined tags. The structure of
an XML representation for a query diagram follows the Transferable Graphic
Language (TGL) schema. The TGL translator builds up a mapping between an
XML document that conforms to the TGL schema and a CORAL program. The
detailed description about how this mapping is done can be found in [6].

In order to illustrate this procedure, we provide an example query, which re-
turns all of the Computer Science and Engineering students who are doing part–
time jobs across these two departments. Its query diagram in our graph database
system is shown in Figure 3. The detailed description about our system’s query
formulation and result visualization mechanism can be found at [1].

The TGL translator translates both the relation definition diagrams and the
query diagram into the XML–formatted documents. The following XML docu-
ment is translated from the query diagram in Figure 3. There are four elements
under the <distinguished-show> element, meaning that these four elements
should be returned as the query result. It consists of two <edge> elements for
works not majors in as well as two <blob> elements named cs students and

Query Optimization for a Graph Database with Visual Queries 607

eng students. In contrast, the nodes student(ID1), student(ID2), dept(ID1) and
dept(ID2) are under the <content> element. They make up the context of the
query diagram.

<graphlog>
<showGraphlog>
<id>tempQueryResult</id>
<distinguished-show>
<edge>

<id>EID3_0</id>
<predicate>works_not_majors_in</predicate>
<FromNodeID>NID0003</FromNodeID>
<ToNodeID>NID0000</ToNodeID>

</edge>
<edge>

<id>EID1_2</id>
<predicate>works_not_majors_in</predicate>
<FromNodeID>NID0001</FromNodeID>
<ToNodeID>NID0002</ToNodeID>

</edge>
<blob>

<id>BID0006</id>
<predicate>cs_students</predicate>
<outerNodeID>NID0000</outerNodeID>
<innerNodeID>NID0001</innerNodeID>

</blob>
<blob>

<id>BID0007</id>
<predicate>eng_students</predicate>
<outerNodeID>NID0002</outerNodeID>
<innerNodeID>NID0003</innerNodeID>

</blob>
</distinguished-show>
<content>
<node>

<id>NID0000</id>
<entity>

<name>dept</name>
<field>No1</field>

</entity>
</node>
<node>

<id>NID0001</id>
<entity>

<name>student</name>
<field>ID1</field>

</entity>
</node>
<node>

<id>NID0002</id>
<entity>

<name>dept</name>
<field>No2</field>

</entity>
</node>
<node>

<id>NID0003</id>
<entity>

<name>student</name>
<field>ID2</field>

</entity>
</node>

</content>
</showGraphlog>

</graphlog>

The following two CORAL program modules are generated by the TGL Trans-
lator. They are translated as the definition of relation works not majors in and
relation cs students. The TGL translator generates a similar CORAL query
program for eng students. The CORAL query program translated directly from
the XML query in the previous page makes use of these three CORAL relation
definitions in order to generate the final answer.

module cs_students.
export cs_students(ff).
eid1_0(ID,No1) :- majors_in(ID,No1).
cs_students (No1,ID) :-

dept(No1,"Computing Science"),
eid1_0(ID,No1).

end_module.

module works_not_majors_in.
export works_not_majors_in(ff).

eid0_3(ID,No2) :- works_in(ID,No2).
eid0_2(ID,No1) :- majors_in(ID,No1).
works_not_majors_in(ID , No3):-

eid0_3(ID,No2),
eid0_2(ID,No1),
No2 = No3, No1 <> No3.

end_module.

The CORAL query program translated directly from the XML query in the
pervious page makes use of these three CORAL relation definitions in order to
generate the final answer.

Figure 4 shows the query result for the example query. The diagram clearly
shows two clusters, one for CS department students and the other for Engineer-
ing department students. In addition, all of these students are working part-time

608 G. Butler et al.

Fig. 4. Query result for the example query

across these two departments: three Engineering students identified by their stu-
dent IDs are working in the CS department, and three CS students are working
in the Engineering department.

3 Optimization Experiment

Deductive databases allow a view to be defined using logical rules, and allow
logical queries against the view. Since the rules allow recursive definitions, the
resulting expressive power of the query language is greater than the relational
query languages. Graph query languages are even more expressive, and provide
a visual representation.

In our graph database system, CORAL works as the deductive engine to eval-
uate queries and deduce results. We chose CORAL for its flexibility to connect
to relational database, and its declarative nature for ease of translation from/to
a GraphLog query diagram. In order to find the possible optimization solutions
for our visual queries, we first test the effectiveness of CORAL’s optimization
strategies in our context.

3.1 Preliminaries

CORAL is a deductive database system that supports a declarative language.
Every CORAL program is a collection of modules, each of which can be sepa-
rately compiled into CORAL internal data structures. The modules may include
facts and rules. In a declarative environment, a fact is the same thing as a tuple
in a relation or a row in an SQL table. A rule is a way to derive new facts.
We can say the facts are the unconditional rules. The collection of all facts are
stored physically in the database, called the existential database. The set of all
facts that we can derive from the base set of facts are not stored physically in
the database, called the intensional database.

Modules are the units of optimization and also the units of evaluation. Evalua-
tion techniques can be chosen on a per-module basis, and different modules with
different evaluation techniques can interact in a transparent fashion. Although

Query Optimization for a Graph Database with Visual Queries 609

CORAL developed a number of query evaluation strategies, it still uses heuris-
tic programming rather than a cost estimation package to choose evaluation
methods.

The user can specify high-level annotations at the level of each module, to
guide the query optimization. User-level annotations can be added directly to
the source code and they give the programmer freedom to control query’s op-
timization as well as evaluation. CORAL’s user-level annotations are divided
into Rewriting Annotations, Execution Annotations, and Per-Predicate Annota-
tions. Presently, CORAL’s Rewriting Annotations, include Supplementary Magic
Templates [7], Magic Templates [8], Context Factoring [9], Näıve backtrack-
ing [10], and Without Rewriting method. CORAL’s default rewriting (optimiza-
tion) method is Supplementary Magic Templates.

3.2 Data Loading

The test platform was a SunFire 280R with two 900MHz UltraSparc-III+ CPUs
and 4GB physical memory. The operating system is Solaris 9. We tried the five
annotations mentioned above individually on each query and recorded the query
execution time on the CORAL server.

We have used eight data sets for our experiment to subjectively evaluate
CORAL’s optimization performance. Our script generates a MySQL program
which inserts the data records into MySQL database. The total number of
records in a data set is a function of the number of person records. The number
of courses and addresses are constants, which is 500 and 2000 respectively. The
size of the other tables depends on the number of person records, and(or) the
number of course records, and(or) the number of address records.

Figure 5 plots the data loading time from MySQL data storage to CORAL
run-time workspace for each data set. The x–axis shows the variable of number
of person records, and y–axis, shows the range of the variable of data loading
time in units of hours. Thus, the graph is showing us the change in loading

Fig. 5. MySQL to CORAL workspace data loading time

610 G. Butler et al.

time from MySQL to CORAL over the increasing data set size. The curve at
the bottom shows the time CORAL takes to load the person records. The curve
in the middle shows represents the time CORAL takes to load all of the rest
recodes. The curve at the top most of the graph demonstrates the total time
CORAL takes to load all of the records in the database.

On the graph, it is easy to see that the total time CORAL takes to load
MySQL data steadily rise over the data set size, from a low of about 0.2 hour in
the data set based on 100,000 person records to a level of about 37 hours in the
largest data set based on 800, 000 person records. It is observed that when the
data set size is doubled, the loading time is about six times longer. It is tolerable
for CORAL to spend hours loading in the data, as it is only the one- time cost
for loading all the data to the CORAL workspace.

3.3 Query Processing

In each test run, all five optimization techniques mentioned above were tried out
on each query. Figure 6 is showing CORAL total execution time for 24 queries
across five optimization methods at each test run by using the cluster columns.

In detail, the x–axis shows the variable of number of person records, and the
y–axis shows the range of the variable of CORAL execution time in units of
seconds. On the graph, there are altogether eight cluster columns representing
eight test runs. One cluster column is for one test run on a particular data
set. Each cluster is made up of six vertical bars, for six kinds of CORAL op-
timization methods, in sequence of No rewriting, Supplementary magic, Magic,
Factoring, Näıve backtracking, and Hypothetical method. The higher a vertical
bar, the longer time that CORAL takes to execute all of the 24 queries using
the optimization method the vertical bar represents.

CORAL has implemented the first five optimization methods. The sixth op-
timization method, as its name tells, is our assumption of such a method’s pres-
ence. This “hypothetical method” can intelligently choose a fastest optimization
method among CORAL’s five optimization methods. It is not implemented as
an optimization method in CORAL.

We have used 30 queries in the test benchmark for our experiment. However,
in Figure 6, we omitted some queries (Q12, Q15, Q16, Q28, Q29, Q30). For the
case of Q12, Q15 and Q16, CORAL does not return the query result after 15–20
minutes even for the smallest data set. We found out that the problem of Q12 is
that its translated CORAL program involves cycles on negation of a sub–query,
which is not supported by CORAL. Q15’s problem is that, it has to include the
same relation twice in the query program body. Q16 introduces a free variable
which makes the CORAL program unsafe. For the case of Q28, Q29, and Q30,
none of CORAL’s rewriting methods has a response after 15–20 minutes except
for the smallest data set.

3.4 Analysis

With the experiment results summarized in Figure 6, we have the following three
main findings:

Query Optimization for a Graph Database with Visual Queries 611

Fig. 6. CORAL response time for 8 test runs (24 queries in each run)

(A) There is neither sudden drop nor rise in terms of each vertical bar (repre-
senting a rewriting method). Regardless of the rewriting strategies, the CORAL’s
response time for all of 24 queries continually rise over the data set sizes, from a
low of about 29 seconds in the smallest data set to a level of 24,000 seconds (≈
6 hours). It is a reasonable growth as the larger data set consumes longer time
for CORAL to execute the queries.

(B) It is common for every test run that CORAL’s four rewriting methods
take much longer than its no–rewriting method. This implies that CORAL’s four
rewriting methods slow down the query processing in certain queries: namely Q11
and Q13, and Q19 (From Table 1). For these three queries, CORAL’s rewrit-
ing methods should not be used. Q11 asks for students taking a course given
by “Steve Johnson”. Q13 asks for all the names of the students. Q19 asks for
students living in the area of Hillhead, Kelvinside and Dowanhill.

(C) The“hypothetical method” significantly outperforms the other five opti-
mization techniques. Recall that this “hypothetical method” is one of our as-
sumptions about CORAL’s optimization strategies. It can intelligently pick the
fastest optimization method among CORAL’s five optimization methods.

A common behavior among CORAL’s optimization methods is that the
CORAL response time for each query of a certain optimization method con-
tinually rises up over the data set. Under an optimization method, the larger
the data set, the longer time that CORAL takes for a query. Table 1 shows the
CORAL response time particularly for the largest data set based on 800,000
person records. The numeric values in the table is in unit of seconds. Combin-
ing it with the other seven experiment results, we have discovered the following
interesting facts:

612 G. Butler et al.

Table 1. CORAL response time in unit of seconds with 5 rewriting strategies for the
data set of 800,000 persons, totally 5,000,000 records

No rewriting Sup. magic Magic Factoring Back tracking

Q1 3.000 1.570 1.600 1.570 1.560
Q2 13.550 13.850 14.700 14.180 14.480
Q3 105.550 0.040 0.030 0.030 0.040
Q4 492.950 1.270 0.810 0.830 0.830
Q5 0.010 0.020 0.010 0.020 0.030
Q6 1.320 1.320 1.340 1.320 1.320
Q7 527.690 105.980 113.650 114.740 114.880
Q8 6.160 6.380 6.410 6.430 6.450
Q9 12.330 12.290 12.720 12.620 12.620
Q10 16.480 18.760 20.060 20.180 20.240
Q11 11.540 18561.200 19013.000 19000.800 19022.400
Q13 791.740 1032.840 1216.960 1226.420 1229.840
Q14 0.150 0.190 0.180 0.200 0.190
Q17 12.490 13.090 13.610 13.050 13.380
Q18 9.650 0.001 0.001 0.001 0.010
Q19 109.110 994.400 662.670 1012.790 1007.290
Q20 2.370 2.440 2.440 2.460 2.450
Q21 0.110 0.110 0.110 0.100 0.100
Q22 233.650 1.110 0.110 0.130 0.130
Q23 134.740 17.500 11.690 17.040 17.070
Q24 0.150 0.160 0.160 0.150 0.160
Q25 0.100 0.110 0.120 0.110 0.110
Q26 0.810 0.800 0.810 0.800 0.800
Q27 235.600 3.900 3.390 3.390 3.440

(1) CORAL’s rewriting techniques have pronounced effect on 8 queries (Q1,
Q3, Q4, Q7, Q18, Q22, Q23, Q27), with the improvement from the low of 2
times faster in Q1 with Supplementary Magic method for the data set based
on 800,000 person records, to the level of 2500 times faster in Q18 for the same
data set. In contrast, the remaining 13 queries do not benefit or suffer when using
CORAL’s rewriting techniques in every experiment, since the improvement with
an optimization technique is marginal (≤ 20%).

(2) CORAL’s default optimization method Supplementary Magic is not guar-
anteed to defeat CORAL’s the other three optimization methods under all cir-
cumstances. The evidence is from Q3, Q4, Q22, Q23, and Q27 across all the
test runs. Due to the space limitation, we only discuss the case of 800,000 per-
son records data set as an evidence, as it is shown in Table 1. In Q3, both
Magic and Factoring takes only 75% of the time consumed by applying Sup-
plementary Magic method. In Q4 and Q22, Magic takes as low as 63% and
66% respectively of the time consumed by using Supplementary Magic method.
For Q22’s case, the Supplementary Magic method is even more worse: the other
three methods takes only around 10% of the time consumed by Supplementary
Magic.

(3) There is no universal best nor worst optimization technique. If one opti-
mization technique fails, so do the other three techniques.

We categorized the benchmark queries into three classes: queries that ben-
efit from optimization, queries that suffer from optimization, and queries that
keep neutral about optimization. We have summarized their CORAL query pro-
gram(s) characteristics in the Table 2.

Query Optimization for a Graph Database with Visual Queries 613

Table 2. Characterizing queries based upon their optimization effect

Optimization is beneficial Optimization is harmful

Q1 Q3 Q4 Q7 Q18 Q22 Q23 Q27 Q11 Q13 Q19 Q28 Q29 Q30

atomic values + + + + + o o o o
don’t care symbols + + o o
≥ 3 joins + + + + o o o o
recursion +
relations union + + o o
näıve o

4 Related Work

There have been numerous graph database systems presented in the litera-
ture [15, 16, 17, 18, 19, 20, 21, 22]. In general, they have been research prototypes
that lack full studies of the query language expressiveness, semantics and opti-
mization. The implementations have been limited. To the best of our knowledge
no performance studies of optimization strategies for graph databases have been
done prior to our work.

Our work builds upon the Hy+ system [2] developed by Alberto Mendelzon
in Toronto. They designed the GraphLog language, studied its expressive power,
and implemented a prototype system in Smalltalk. Their implementation trans-
lated GraphLog into several logic-based systems including CORAL. However,
the only performance study [23] that they did was a comparison of the näıve
translation to Datalog/CORAL with a translation to factored Datalog using
automata.

In the field of deductive databases there has been extensive research on the
optimization of queries for Datalog (and its variants). The major interest has
been the optimization of recursive queries. Ceri et al. [14] provide an excellent
summary of the field. The evaluation or comparison of optimization strategies
is typified by Bancilhon and Ramakrishnan [12, 13] who develop analytical cost
models for the optimization strategies when applied to four queries (related to
the parent and ancestor relations) and then generate numerical data from the an-
alytical models using synthetic data driven by three shapes — tree, inverted tree,
and cylinder — for the “family tree”. The state-of-the-art is perhaps best sum-
marized in a quote [24]: “Related work on the performance of recursive queries
and their evaluation algorithms has considered either worst case performance, or
performance over structured synthetic databases, or empirically measured perfor-
mance over randomly generated relations.” The community has not developed
extensive benchmarks nor carried out extensive performance comparisons.

5 Conclusion

In this paper, we have studied the optimization of visual queries for our graph
database using a benchmark of 24 queries across a range of different data sizes.
Our aim is to understand the effectiveness of CORAL’s optimization techniques

614 G. Butler et al.

on the diagrammatic queries. Recall that our database supports defining queries
in a diagrammatic form and visualization of the query results. With the exten-
sive experiment results, we are able to conclude that it is beneficial to optimize a
visual query. Nevertheless, within the scope of the 24 benchmark queries, apply-
ing one optimization technique uniformly in general was worse than applying no
optimization to the queries. It is important to utilize the optimization strategies
in CORAL when appropriate as there is very slow execution for some queries if
no optimization is used. Our research indicates that, a “smart” selection that
is able to determine which kind of rewriting method to apply on a given query
may profoundly improve the performance of the query execution engine.

References

1. Butler, G., Wang, G., Wang, Y., Zou, L.: A Graph Database with Visual Queries
for Genomics. Procs. of the 3rd Asia-Pacific Bioinformatics Conf. (2005) 31–40

2. Consens, M.P.,Eigler, F.Ch., Hasan, M.Z., Mendelzon, A.O., Noik, E.G., Ry-
man, A.G., Vista, D.: Architecture & Applications of the Hy+ Visualization Sys-
tem. IBM Systems Journal, Vol. 33, No. 3 (1994) 458–476

3. Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The CORAL De-
ductive System. VLDB Journal, Vol. 3, No. 2 (1994) 161–210

4. Widenjus, M., Axmark, D.: MySQL Reference Manual. O’Reilly (2002)
5. Chan, K.C., Trinder, P.W., Welland, R.: Evaluating Object-Oriented Query Lan-

guages. The Computer Journal, Vol 37, No. 10 (1994) 858–872
6. Zou, L.: GraphLog: Its Representation in XML & Translation to CORAL. Masters

Thesis. Dept. of Computer Science, Concordia University (2003)
7. Beeri, C., Ramakrishnan, R.: On the Power of Magic. Procs. of the ACM Symp.

on Principles of Database Systems (1987) 269–283
8. Ramakrishnam, R.: Magic Templates: A Spellbinding Approach to Logic Programs.

Procs. of the Intl. Conf. on Logic Programming (1988) 140–159
9. Naughton, J.F., Seshadri, S.: Argument Reduction Through Factoring. Procs. of

the 15th Intl. Conf. on Very Large Databases (1989) 173–182
10. Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Rule ordering in bottom-up fix-

point evaluation of logic programs. Procs of the 16th Intl. Conf. on Very Large
Databases (1990) 359–371

11. Wang, G.: Linking CORAL to MySQL & PostgreSQL. Master Thesis. Dept. of
Computer Science, Concordia University (2004)

12. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies. Procs. of ACM SIGMOD (1986) 16–52

13. Bancilhon, F., Ramakrishnan, R.: Performance evaluation of data intensive logic
programs. Foundations of Deductive Databases & Logic Programming. J. Minker
ed., Morgan Kaufmann (1988) 439–517

14. Ceri, S., Gottlob, G., Tanca, L.: What You Always Wanted to Know About Dat-
alog. IEEE Trans. on Knowledge & Data Eng., Vol. 1, No. 1. (1989) 146–166

15. Giugno, R., Shasha, D.: A Fast & Universal Method for Querying Graphs. Proc.
of the Intl. Conf. in Pattern Recognition. (2002) 112–115

16. Cruz, I.F., Leveille, P.S.: Implementation of a Constraint-Based Visualization Sys-
tem. Procs. of IEEE Intl. Symp. on Visual Languages (2000) 13–21

17. Gyssens, M., Paredaens, J., Gutch, D.V.: A graph-oriented object model for
database end-user interfaces. Procs. of ACM SIGMOD (1990) 24–33

Query Optimization for a Graph Database with Visual Queries 615

18. Paredaens, J., Peelman, P., Tanca, L.: G-Log: A Declarative Graphical Query Lan-
guage. Procs. of 2nd Intl. Conf. on Deductive & Object–oriented Databases (1991)
108–128

19. Poulovassilis, A., Hild, S.G.: Hyperlog: a graph-based system for database brows-
ing, querying & update. Trans. on Knowledge & Data Eng., Vol. 13, No. 2 (2001)

20. Olston, C.: VIQING: Visual Interactive QueryING. Procs. of 4th IEEE Symp. on
Visual Languages. (1998) 162–169

21. Erwig, M.: XING: a visual XML query language. Journal of Visual Languages &
Computing, Vol 14 (2003) 5–45

22. Ni, W., Ling, T.W.: GLASS: A Graphical Query Language for Semi-Structured
Data. Procs. of 8th Intl. Conf. on Database Systems for Advanced Applications
(2003) 362–369

23. Vista, D., Wood, P.T.: Efficient Evaluation of Visual Queries Using Deductive
Databases. Workshop on Programming with Logic Databases. (1993) 143–161

24. Seshadri S., Naughton, J.F.: On the expected size of recursive Datalog queries.
Procs. of ACM Symp. on Principles of Database Systems. (1991) 268–279

Appendix A: Benchmark Evaluation Dimensions and
Queries

1. Support of object-orientation
(a) Method calling

Q1. Return staff members
named Steve Johnson.

(b) Dynamic binding
Q2. Return staff members
earning more than 2000 per
month.

(c) Complex objects
Q3. Return tutors living in
Glasgow.

(d) Object identity
Q4 Return tutors working and
studying in the same depart-
ment.

(e) Class hierarchy
Q5 Return all visiting staff in
the university.
Q6 Return all visiting staff
members in the university who
earn more than 2000 per
month.

2. Expressive power
(a) Multiple generators

Q7 Return students studying
in the same department as
Steve Johnson.

(b) Dependent generators
Q8 Return courses taken by the
students.

(c) Returning new objects
Q9 Return students and the
courses taken by them.

(d) Nested queries
Q10 Return students and the
courses taken by them that
have more than one credit.

(e) Quantifiers
Q11 Return students taking a
course given by Steve Johnson.
Q12 Return students taking
only courses given by Steve
Johnson.

(f) Relational completeness
Q13 Return the names of stu-
dents.
Q14 Return all the possible
combinations between depart-
ments and courses.
Q15 Return staff members and
students in the Computing Sci-
ence Department.
Q16 Return areas where stu-
dents, but no staff live.

616 G. Butler et al.

(g) Nested relational extension
Q17 Return income tax of staff
as 40

(h) Recursion
Q18 Return all direct and indi-
rect prerequisite courses of the
“DB4” course.

3. Support of collections
(a) Collection literals

Q19 Return students living in
the following areas: Hillhead,
Kelvinside and Dowanhill.

(b) Collection equality
Q20 Return courses with no
prerequisite courses.

(c) Aggregate functions
Q21 Return courses with less
than two assessments.

(d) Positioning and ordering
Q22 Return the first and sec-
ond supervisors of Steve John-
son.
Q23 Return students hav-
ing Steve Johnson before Bob
Campbell in their supervisor
lists.

(e) Occurrences and counting
Q24 Return courses with 4 as-
sessments of the same percent-
age weight.
Q25 Return the number of as-
sessments worth 25

(f) Converting collections
Q26 Return the salary of tutors
and keep the possible duplicate
values.

(g) Combining collections
Q27 Return the students su-
pervised by Steve Johnson.

(h) Mixing collections
Q28 Return courses taught by
the supervisors of Steve John-
son

4. Usability
(a) Local definitions

Q29 Return students whose
major departments are in ei-
ther Hillhead Street or Univer-
sity Avenue.

(b) Query functions
Q30 Return students taking
some course run by their de-
partments.

	Introduction
	Test Benchmark

	System Architecture
	A Query Example

	Optimization Experiment
	Preliminaries
	Data Loading
	Query Processing
	Analysis

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

