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Abstract. In numerous applications that deal with similarity search, a
user may not have an exact specification of his information need and/or
may not be able to formulate a query that exactly captures his notion
of similarity. A promising approach to mitigate this problem is to enable
the user to submit a rough approximation of the desired query and use
relevance feedback on retrieved objects to refine the query. In this paper,
we explore such a refinement strategy for a general class of structured
similarity queries. Our approach casts the refinement problem as that of
learning concepts using the tuples on which the user provides feedback
as a labeled training set. Under this setup, similarity query refinement
consists of two learning tasks: learning the structure of the query and
learning the relative importance of query components. The paper devel-
ops machine learning approaches suitable for the two learning tasks. The
primary contribution of the paper is the Refinement Activation Frame-
work (RAF) that decides when each learner is invoked. Experimental
analysis over many real life datasets shows that our strategy significantly
outperforms existing approaches in terms of retrieval quality.

1 Introduction

With the proliferation of the web and emergence of applications requiring flexible
search over diverse data types, effective support for personalized similarity search
in database systems has emerged as an important research challenge. Similarity
based retrieval systems are also increasingly used for exploratory data analy-
sis and retrieval where a user may not initially have a clear mental model of
his exact information need [1]. A promising approach to overcome the “initial
query” and “subjectivity” problems is that of automatic query refinement via
user feedback. In such an approach, a user starts with an approximate initial
query and communicates his preferences to the system by providing feedback
(judgments on the relevance or quality of answers). The system then modifies
the query internally (e.g., changes the levels of importance of the different search
criteria, and adds/removes search criteria) to better focus on the distinguishing
features of tuples deemed relevant. The modified query is re-evaluated and the
cycle of refinement continues until the user is satisfied with the results.

Query refinement via feedback has been explored extensively in the context of
text document retrieval [16, 1]. More recently, its effectiveness in feature-based
image and multimedia similarity retrieval [14, 18, 7] as well as similarity search
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over metric spaces [20] has also been established. Authors in [13] considered the
problem of refining SQL queries from user interactions in an object relational
database. This paper explored a limited set of SQL queries and illustrated that
even simple extensions of refinement approaches studied in the IR literature can
significantly enhance users’ search experience.

This paper considers the problem of refining a general class of SQL queries.
In contrast to the ad-hoc approaches in [13], we postulate the SQL refinement
problem as that of concept learning from examples to which many existing ma-
chine learning solutions can be applied. A direct (naive) strategy to modify the
query is to view the records on which the user provides feedback as a labeled
training set and use a classifier (e.g., decision tree [15]) to learn a new query
representation that will replace the original query. However, such a naive strat-
egy does not perform well in practice. Reasons for this include the fact that
classifiers do not work well when the training set is very small as is the case
in our setting where a user may provide feedback on only a few records. Fur-
thermore, being purely based on training data, the naive strategy ignores the
initial query provided by the user. Consequently it may get trapped in a wrong
hypothesis simply because the hypothesis fits the few examples. In addition, it
is very difficult to incorporate user defined types and similarity functions into
existing classifiers. Consistency is also an important issue in the refinement task.
Many existing classifiers are sensitive to the inputs causing the models built at
different refinement iterations to excessively differ from each other.

We view query refinement from feedback as consisting of two interrelated
learning tasks – learning the query structure, and learning the query weights
that capture the relative importance of different query components. These two
learning tasks have different motivations and serve different purposes. For in-
stance, structural changes to the query are very useful when the initial user
query is incomplete which may happen if either a user is not familiar with the
database or finds it too laborious to postulate a proper query. In contrast, weight
adjustment serves the purpose of customizing/tuning the ranking of results to
reflect the subjective importance of the different query components to the user.
Thus, determining when to invoke the structure/weight learners becomes a key
issue in refining a query. We develop a formal basis for making such a decision
based on which the Refinement Activation Framework (RAF) is designed.

The main contributions of this paper are summarized as follows:

1. We provide a powerful framework for refining a general class of SQL similar-
ity queries that uses a multi-modal refinement activation procedure to adjust
both query predicate weights and query structure using learning techniques.

2. We provide and experimentally validate a novel query structure refinement
technique that is based on a decision tree learner.

The remainder of the paper is organized as follows. Section 2 describes back-
ground concepts that form the basis of our work. Section 3 discusses our approach
to query refinement. Section 4 presents our experiments. Section 5 discusses re-
lated work. We conclude with Section 6.
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2 Background

2.1 Similarity Queries

A similarity query consists of three components: a set of similarity predicates
structured in DNF form, a set of weights assigned to each similarity predicate
and a ranking function. In this section, we describe these components.

The search condition in a similarity query is represented as a Boolean DNF
(Disjunctive Normal Form) expression over similarity predicates. Formally a
query Q = C1 ∨ C2 ∨ . . . ∨ Cn is a DNF expression where Ci = Ci1 ∧ Ci2 . . . , Cin

is a conjunction, and each Cij is a similarity predicate. A similarity predicate
is defined over a domain of a given data type. It is a function with two inputs:
(1) an attribute value from a tuple, t, (2) a target value which can be a point or
a range. It returns a similarity score in the range [0,1]. Notice that restricting
ourselves to DNF queries does not limit the generality of our approach since
any query condition can be mapped to its DNF representation. As will become
evident later, using a DNF representation facilitates structural learning.

A DNF ranking function is a domain-specific function used to compute
the score of a tuple by aggregating scores from individual similarity predicates
according to the DNF structure of a search condition and its corresponding set
(template) of weights that indicate the importance of each similarity predicate.
The template of weights matches the structure of the search condition and asso-
ciates a weight to each predicate in a conjunction and also to each conjunction
in the overall disjunction.

A DNF Ranking Function first uses predicate weights to assign aggregate
scores for each conjunction, and it then uses conjunction weights to assign an
overall score for the query(disjunction). We aggregate the similarity scores of
predicates in a conjunction with a weighted L1 metric (weighted summation).
Using weighted L1 metric as a conjunction aggregation function has been widely
used in text IR query models where a query is typically expressed as a sin-
gle conjunction [16, 1]. To compute an overall score of a query (disjunction),
we use the MAX function over the weighted conjunction scores. MAX is one
of the most popular disjunction aggregation functions [4]. The weight learning
algorithm used in this paper is optimized for these settings. However, our over-
all refinement algorithm is extensible enough to take other alternative ranking
functions [19, 12] as long as a weight learning module is properly defined.

All predicate weights in a conjunction add up to 1. All conjunction weights
in a disjunction may not add up to 1. A conjunction weight is in the range of
[0, 1], and represents the importance of the conjunction to the user. For example,
a conjunction’s importance can be measured as the percentage of relevant tuples
covered by it. The final aggregated scores produced by a ranking function are
used for ranking the tuples. A similarity query returns a set of records with
score ≥ α (also called α cut or threshold).

Example 1. Table 1 shows an example data table to be used throughout this
paper to illustrate our approach. It is a contract job listing table containing four
attributes: location, salary, employment duration, and job description. Consider
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Table 1. Example data table

ID Loc Sal Dur(yr) Desc
1 SN 65K 1.5 DB Developer
2 LA 70K 1 DBA
3 SD 60K 1.5 DB Designer
4 SF 70K 1.5 DB Developer
5 ... ... ... ...

Table 2. Example feedback table

ID Loc Sal Dur Desc Feedback
1 SN 65K 1.5 DB Developer OK
2 LA 70K 1 DBA NOK
3 SD 60K 1.5 DB Designer OK
4 SF 70K 1.5 DB Developer OK
... ... ... ... ... ...

the following query that asks for jobs located near SN or that pay more than
65K and have a duration close to 2 years (expressed as a DNF search condition):

(LocNear (Loc, “SN”) AND DurClose(Dur, 2)) OR (SalGreater (Sal, 65000) AND DurClose(Dur, 2))

This search condition can be directly implemented on top of a RDBMS that
supports user-defined functions (UDFs) as follows:

WITH Score AS (SELECT ID,
LocNear (Loc, “SN”) AS ls,
DurClose(Dur, 2) AS Ds1,
SalGreater (Sal, 65000) AS Ss FROM Job)

SELECT RankV al(W1, Score.ls , w11, Score.Ds1, w12,
W2, Score.Ss, w21, Score.Ds1, w22) AS S,
Loc, Sal, Dur, Desc
FROM Job, Score WHERE Job.ID=Score.ID AND S ≥ α
ORDER BY S DESC

A corresponding weight template may be: (W1(w11, w12), W2(w21, w22)) =
(0.9(0.4, 0.6), 0.8(0.4, 0.6)). The ranking function RankV al uses this template to
aggregate similarity scores as: MAX [0.9 × (0.4 × ls + 0.6 × Ds1), 0.8 × (0.4 ×
Ss + 0.6 × Ds1)]. The condition includes three similarity predicates: LocNear,
SalGreater and DurClose with obvious semantics. For example, SalGreater
may return 1 if salary ≥ 65K. For 30K < salary < 65K, it returns(
1 − |sal−65K|

40K

)r

, where r is an integer. It returns 0 if salary < 30K. Such func-
tions are application specific and designed by domain experts and implemented
by database developers as UDFs. As indicated by the higher weight assigned to
the DurClose predicate, the user is more interested in a job that has duration
close to 2 years than one that is close to SN or pays more than 65K. Although
tuples with ID 1 and 4 receive the same conjunction scores from the first and
second conjunction, the first tuple is ranked higher since the weight for the first
conjunction is higher. Therefore, the tuple with ID 1 should be returned as the
top result.

2.2 Similarity Query Refinement

Given a search condition q, a set r of top-k records returned by q, and relevance
feedback f on these records (i.e., a triple 〈q, r, f〉), the similarity query refinement
problem is to modify the search condition q in such a way that, when re-executed,
it will rank more relevant records at the top. The interactive search process to
find satisfactory answers to a particular query is called a query session. A query
session can include one or more refinement iterations where the user provides
feedback and the system refines the query based on the feedback and returns
another set of ranked results. A query refinement in an iteration may involve
adapting the predicates, the DNF condition structure as well as the weights.
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Example 2. Before arriving at the condition given in example 1 that returns the
best results, suppose the user started the query session with the following query
that approximately captures his information need: ((LocNear(loc, “SN ′′) AND
DescClose(Desc, “DBA′′)), with a corresponding weight template of (1(0.5,
0.5)). At this point the user may, for example, be unfamiliar with the data
stored in the database. As a result, he used “Description similar to ‘DBA’ ” as
one of the search conditions. Then, after seeing a few records returned by the
initial query whose description matches “DBA” but whose other attributes do
not match his interest, he may use relevance feedback to invoke a refinement
iteration to guide the query away from this search condition eventually leading
to its removal in the final query shown in example 1.

3 Learning Queries from User Feedback

3.1 Problem Formulation

For each query session we maintain two tables: an answer table which contains
the ranked answer tuples along with the similarity scores assigned to these tuples,
and a feedback table that stores the relevance feedback 1 given by the user on
tuples in the answer table. Table 2 shows an example of such a table. The problem
of query refinement can now be cast as a problem of utilizing feedback table to
learn a classifier. In principle, any concept learning method can be employed
provided that it performs well on a small number of examples. However, to be
effective, query refinement requires a careful application of learning methods. In
particular, simply replacing the original query with the newly learned query can
have undesirable consequences. This leads to the important question of how to
modify the original query based on the learned classifier.

In this section, we consider two different types of learning algorithms
(classifiers). One focuses on query weight tuning, and another focuses on query
structure tuning. An activation algorithm is used to control the overall learning
process that consists of these two interrelated learning tasks.

3.2 Refinement Activation Framework (RAF)

Given a query and user feedback on its results, RAF determines which of the
two learning task to invoke. Structural changes result in addition (deletion)
of a new (old) conjunction to the DNF query or addition (deletion) of a new
(old) predicate within a conjunction. In contrast to gradual weight adjustment
that results in fine tuning of rank order, structural changes can dramatically
change the return set even causing objects deemed irrelevant to the original
query to be ranked at the top of the result set. Hence, structural changes to
the query must be made conservatively since an incorrect change may lead a
refinement along a wrong path. RAF invokes structural modifications only when

1 For simplicity, we assume binary relevance judgments (i.e. “Relevant” or “Not Rel-
evant”) although our approach can also support finer grained distinctions.
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ID ConjID=1:LocNear ConjID=2:DescClose Feed-
(Loc,“SN”) (Desc,“DBA”) back

1 1 0.8 OK
2 0.8 1 NOK
3 0.7 0.6 OK
4 0.5 0.8 OK

Fig. 1. Example CSS table
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Fig. 2. CSS for Fig 1

feedback provided by the user requires that such modifications be made and the
desired effect cannot be achieved by re-weighting query components. In order
to identifying situations where structural modifications are needed, below we
explore the limitations of weight learning in the context of refinement.

We begin by developing some notation. Consider a single conjunction Ci =
Ci1 ∧ Ci2 . . . , Cin of a DNF query. Since each predicate (i.e., Cij) in the con-
junction returns a similarity value in the range of [0,1], together they form a
Conjunction Similarity Space (CSS). Each dimension in the CSS represents a
predicate and a tuple can be mapped to a point in the CSS. We store these
mapped points in a table called CSS table. For example, figure 1 shows an exam-
ple CSS table for the tuples in the feedback table shown in table 2. This space
is also depicted in figure 2. Next, we define the notions of CSS domination and
CSS conflict as follows:

Definition 1 (CSS domination). In a given CSS, a tuple t1 dominates t2 if
t1 is as good or better (that is, t1 has an equal or higher similarity value) in all
dimensions and better in at least one dimension compared to t2.

For example, in the Figure 2, tuple 2 dominates tuples 3 and 4, but does not
dominate tuple 1. Similarly, tuple 1 dominates tuples 3 and 4, but not tuple 2.

Definition 2 (CSS conflict). In a given CSS, a pair of feedback tuples (t1, t2)
conflict with each other if t1 receives negative feedback, t2 receives positive feed-
back, and either t1 dominates t2 or t1 and t2 have equal values in all dimensions.

The conflicts in the CSS space in Figure 2 are between tuples 2 and 3, as well
as tuples 2 and 4, but not between tuples 2 and 1. Presence of conflicts in the
return set of a query means that the query is ranking an irrelevant tuple higher
than a tuple deemed relevant by the user. Hence, the query does not capture the
user’s information need and must be modified. Unfortunately, simply modifying
weights associated with the predicates can not resolve the conflict as is stated
in the following lemma.

Lemma 1. For a given CSS, if there is a conflicting tuple pair (t1, t2), there is
no monotonic aggregation function that can resolve this conflict by assigning a
larger score to t2.
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Proof. From [5], an aggregation function f is monotone if f(x1, . . . , xm) ≤
f(x′

1, . . . , x
′
m) whenever xi ≤ x′

i for every i. Recall that we use weighted summa-
tion, which is monotonic, to aggregate scores in a CSS. Let (t1, t2) be a conflicting
tuple pair where t1 receives negative and t2 receives positive feedback. Since t1
has as good or better value in all dimensions, it is not possible to assign a bigger
score to t2 since any weight assignment (done on predicates) applies to all tuples.
Note that, even without the last condition in definition 2 (i.e., t1 and t2 have
equal values in all dimensions), lemma 1 is still true. By adding this condition,
we capture cases that could not be resolved by weight tuning �

We have, thus far, established the limitation of the weight learning approach in
the context of refinement. Resolving conflicts requires structural modifications
to the query. The activation procedure we develop utilizes the above observation
to determine when to invoke such modifications.

Let Q = C1 ∨ C2 ∨ Cn be a DNF query where Ci = Ci1 ∧ Ci2 . . . , Cin is
a conjunction. To refine Q, first the activation procedure will decide how the
feedback on each tuple is used for refinement. Specifically, it decides, for each
tuple with a feedback, which conjunction should be refined by it. The activation
procedure attaches feedback to different conjunctions by assigning each feedback
to the highest scored conjunction2. For each conjunction Ci, it then determines
if the assigned feedback contains any conflict. If a conflict is identified, structural
modification to the query is invoked based on the conflicting set. For example,
in Figure 2 where empty circles represent positive feedback, tuple 2 conflicts
with tuples 3 and 4. To resolve these conflicts, the activation procedure invokes
structural learning using tuples 2, 3, and 4. The structure learning algorithm will
attempt to learn a predicate that, when added to the conjunction, will resolve
the conflict. In the current example, it may suggest the addition of a predicate
Duration ≥ 1.5 to the conjunction. In general, depending on the mechanism
used, the conjunction may be augmented by not only a single predicate but also
a logical formula F consisting of multiple predicates connected by logical connec-
tives. In the new formula (i.e., newConj = Ci ∧F ), most (or all) of the conflicts
associated with the original conjunction can be resolved. We temporarily treat F
as a pseudo-predicate so the new formula becomes a conjunction. The weights of
predicates in this conjunction are rebalanced using a predicate weight learning
method where, a predicate is dropped if its weight falls below a threshold. We
designate the assigned weight of F by WF .

In this paper, we assume a logic formula F = F1 ∨ F2 ∨ · · · ∨ Fk is itself in
DNF. The predicates in Ci of newConj can be distributed over the Fp, resulting
in a new candidate set of conjunctions (Ci ∧ F1) ∨ (Ci ∧ F2) ∨ · · · ∨ (Ci ∧ Fk).
Hence, when resolving conflict tuples in a conjunction Ci, we may potentially
learn new conjunctions. During this process, the actual predicate weight of Fp

in a conjunction is assigned to be WF . We also use the original conjunction (Ci)
weight to initialize the weights of candidate conjunctions (i.e., Ci ∧ Fp).
2 Since the disjunction aggregation function is MAX, assigning a feedback tuple to

the highest scored conjunction is appropriate. Different assignment schemes may be
needed for other aggregation functions.
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RAF-Algo()
1: Input: Query (Q), FeedbackTable (FT )
2: Output: New Query (Q′)
3: compute CSS tables(Q, FT )
4: New Conjunctions: newConjs = ∅; newConjsCunt = 0
5: for each conjunction Ci in a query Q do
6: CSST = get CSS table(Ci)
7: Conflicts= computeConflictSet(CSST )
8: F = ∅
9: if |Conflicts| ≥ 1 then
10: F= learnStructure(Ci, Conflicts)
11: newConj=Ci ∧ F
12: predicateWeightLearning (newConj, CSST )
13: drop any predicate Cij frome newConj, if Cij.weight < τp

14: if F �= ∅ then
15: for each conjunction Fp in F = F1 ∨ F2 ∨ · · · ∨ Fk do
16: if p == 1 then Ci = Ci ∧ F1
17: else newConjs[newConjsCunt + +] = Ci ∧ Fp

18: Q′ = Q
19: for each new conjunction Cnew i in newConjs do
20: Q′ = Q′ ∨ Cnew i

21: compute CSS tables(Q′, FT )
22: Q′ = assignConjunctionWeight (Q′)
23: drop any conjunction Ci frome Q′, if Ci.weight < τc

After all conjunctions are individually modified, their final conjunction weights
need to be determined. Again, we use the conjunction’s CSS table. Intuitively,
non-conflicting positive cases in the CSS boost the importance of the conjunc-
tion in the query. Given a set of tuples in the CSS, we can measure how well
the conjunction performed in the query after refinement by computing the ra-
tio of non-conflicting positive cases captured by this conjunction and the total
number of positive cases. We use this ratio as an overall conjunction weight mea-
sure. We specify our overall RAF query refinement algorithm in pseudo-code as
follows:

The algorithm takes the previous query and the feedback table as input
and generates a refined query. In the above algorithm, two things have been
left unspecified (1) the algorithm to resolve the conflict set of a conjunction
(line 10), and (2) the algorithm to learn the weight template for a given con-
junction (line 12). As RAF is an open framework, different approaches can be
used for the two learning tasks. Below, we provide algorithms we developed for
this purpose.

3.3 Learning Predicate Weights of a Conjunction

Learning predicate weights corresponds to learning their relative importance in
a conjunction. Since each dimension in the CSS corresponds to the similarity
value of a predicate in a conjunction, we can map the weight learning problem
to a classification problem over the CSS. Since we use the weighted summation
model, we seek a hyper-plane in the CSS that separates the set of tuples marked
deemed relevant, R, from the set of tuples deemed irrelevant, IR. We adapt
the linear optimization process described in [8] for this purpose. The average
complexity of this process is O(n× | p |), where n is the number of tuples with
feedback and |p| is the number of predicates in the conjunction.
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Table 3. Conjunction Scores table example

ID Loc Sal Dur Desc FB
“SD” “SF” “DB Dsger” “DB Dvper”

2 0.8 0.4 70K 1 0.7 0.8 NOK
3 1 0.3 60K 1.5 1 0.7 OK
4 0.3 1 70K 1.5 0.7 1 OK

3.4 Learning New Structure of a Conjunction

The purpose of modifying a conjunction is to resolve conflicts present in the
result set. Therefore, given a CSS table, we choose only the tuples that have
conflicts, and use them in structural learning. For example, tuples 2, 3 and 4 in
Figure 2 will be used in this learning. The original tuples in a feedback table
form a learning set (LSet). Before we can apply our learning algorithm to this
set, we need to convert it to a suitable format called a scores table. This
conversion is needed because performing query refinement directly on the LSet
is not always possible as database attributes can have complex and non-ordinal
(numeric) attributes. The scores table, which consists of conflicting tuples,
contains only ordinal values.

Data Preparation: Scores Table Generation.– This table is generated by
retaining columns for ordinal attributes from the conflicting tuples in the LSet
and converting complex and non-ordinal attributes into similarity measures. This
similarity measure is computed by taking every value of each complex attribute
in the LSet and calculating its similarity to all the other values of that attribute
in the LSet. For example, tuples 2, 3 and 4 (i.e., the conflicting set) in Figure 2
form the conjunction scores table shown in Table 3. In this example, columns for
ordinal attributes like Salary and Duration are identical to those in the feedback
table. For the remaining non-ordinal attributes we created a column for each
attribute–value pair. Each entry in these columns measures the similarity be-
tween the value in the heading and the attribute values from the tuples in the
feedback table. For instance, the first entry under the column Location=“SD”
(i.e. 0.8) is the similarity score of the value “SD” and the location value of tuple
2 which is “LA”. Since we want to learn predicates that focus on relevant tuples,
only attribute values from records that are marked “Relevant” are used to from
columns in the scores table. Consequently, no column is created for attribute
values like “LA” because the tuple having this value is marked “Not Relevant”.

Learning New Structures from a Scores Table.– Given a conjunction
scores table, we can use any DNF learner (see section 5 for a review) to ex-
tract a set of hypotheses that explains/classifies the scores table. In this paper,
we use a modified decision tree learner, namely C4.5 [15]. The original C4.5
employs a greedy divide-and-conquer strategy to build a decision tree. Given a
labeled data such as a scores table, the algorithm initializes a decision tree
with one leaf node that represents the whole data. It tests each attribute, and
chooses the best attribute (A) and value (v) pair, which, if used to split the
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data into two portions – one with values in attribute A ≥ v, another with values
< v – results in maximum entropy gain. It also records this split in the decision
tree by splitting the original leaf nodes to two new leaf nodes; the old leaf node
becomes the root of the two new leaf nodes. The algorithm recursively tests
and splits the leaves until either all points in each partition belongs to one class
(e.g., all marked with positive feedback or all marked with negative feedback),
or it becomes statistically insignificant to split further. C4.5 then generates DNF
rules/conjunctions from the decision tree.

Our main modification to C4.5 is an additional stopping condition. If we al-
low C4.5 to keep splitting its leaf nodes that represents a portion of data, the
leaf nodes will get purer and purer towards a class. We instead stop splitting
the node once a leaf node no longer has conflicts. Then, once the decision tree
is constructed, a set of rules/conjunctions are derived from it. We, then, fil-
ter out the conjunctions that do not have any associated feedback tuples. The
remaining conjunctions form the logical formula F used in the activation algo-
rithm. Note that these conjunctions are also similarity based conjunctions since
they are learned from the scores table. For example, from the scores table,
table 3, the classifier generates a predicate Dur ≥ 1.5, that removes the original
conflicts.

To improve efficiency, we push similarity computations into the tree building
process. This approach also avoids materialization of the scores table. Further-
more, we do not need to construct all scores table columns if we have already
obtained a reasonable split point. The worst case complexity of this algorithm
is O(| R | ×d × n × (log(n))2), in which | R | is the number of relevant cases, d
is the number of dimensions of the original feedback table, and n is the size of
the feedback table. In practice, the number of the distinct relevant values of an
attribute (e.g., Loc) is considerably smaller than | R |. Therefore, the complexity
is close to standard decision tree complexity, which is O(d × n × (log(n))2).

4 Experiments

In this section, evaluate the effectiveness of RAF. We first present our experi-
mental setup including the datasets we used and our synthetic query generator.
We then evaluate RAF against four well-known algorithms.

4.1 Experimental Setup

We ran all our experiments using a P3-800MHZ PC with 256MB RAM. The
similarity retrieval component is implemented using UDF features in IBM DB2.
The refinement component is implemented as a stored procedure in IBM DB2.
We use IBM OSL package [6] as our linear problem solver.

We used 12 datasets from the UCI machine learning repository [10], all of
which have class labels. These datasets represent different domains of interests.
For discrete attributes, we analyzed each pair of values of an attribute to de-
cide the similarity value between them. For continuous attributes, we used the
formula in section 2.1 to compute the similarity value of any two intervals.
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To evaluate our query refinement method, we formulate two related queries,
a target query qt which simulates a user’s real information need, and an initial
query qi which simulates his initial knowledge when starting the search. The
query qt can be more general or specific than qi in terms of its DNF structure.
We built a query generator that generates a set of query pairs 〈q1, q2〉, where q1
is more specific than q2. If we set qt = q1 and qi = q2 we evaluate our algorithms
on refining a general query to a specific query (i.e. G2S in our experiments).
Conversely, if qt = q2 and qi = q1, we evaluate our algorithms on refining a
specific query to a general query (i.e. S2G in our experiments). We generated 20
target and initial query pairs for each dataset getting a total of 240 pairs. Also,
to simulate a realistic query, the size of results from qt should be small compared
to the database size. We only take top 20 records from qt as its return set. The
largest dataset we tried has nearly 32,000 records; this makes the target size less
than 0.06% of the database size.

Algorithms Tested. We compare RAF with four existing methods. The first
method, which we refer to as OCM (from the authors’ last name initials) focuses
on learning conjunctions [13]. OCM is similar to our approach in that it also
refines the initial query structure using relevance feedback. The second method
is FALCON [20], which does not refine the initial query explicitly, but uses the
positive feedback to rank the data. The third method, Rocchio’s method [16], is
a standard vector based IR approach. In our experiment, we use attribute-value
pairs as the vectors. Hence, Rocchio’s method ignores the query structure and
also similarity measures on the attributes. Since our refinement task essentially
performs a classification based on the relevance feedback, one can directly apply
an existing classification package if the data types can be mapped to the required
types. This can be easily done for the 12 datasets we used, but not in general.
Hence, the fourth method we compare our approach to is a well-known decision
tree classifier C4.5 [15]. C4.5 takes the feedback data as a training set, and gen-
erates a classifier. It ignores the initial query structure, and predefined similarity
measures on the data attributes. The refinement system uses this classifier to
assign confidence levels as scores to the remaining data tuples.

Evaluation Process. The above algorithms are evaluated based on:

1. Efficiency: time taken to refine a query
2. Effectiveness: precision and recall measures
3. Simplicity of a refined query: number of the predicates in the query

To evaluate the effectiveness of a refinement algorithm, we simulate the desired
user concept by first executing a target query and placing the top 20 tuples that
satisfy the target query into a set R, the relevant records. Then, we execute the
initial query (i.e., iteration 1). We compute the precision level at every 5% of
recall interval (i.e. every relevant point retrieved) until all the relevant tuples are
retrieved. To study effectiveness, we form the first learning set L by adding the
top retrieved tuples containing exactly two relevant tuples from the initial query
result. If a refinement algorithm performs well at a refinement iteration, it should
have good precision level in all recall intervals. The refinement algorithm uses
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Fig. 3. Precision-Recall: RAF Vs. OCM

set L as the feedback table to learn a refined query. In subsequent iterations,
the learning set L is updated by adding the top ranked tuples of each iteration
that contain two new relevant tuples. Hence, L continues to grow accumulating
all the relevance feedback gathered starting from the initial iteration. In our
experiments, we execute the refinement algorithm four times (i.e., five iterations)
to evaluate its performance in different iterations.

4.2 Results

As shown in table 4, average execution time for a refinement cycle in our al-
gorithm averages around 0.5 seconds and ranges between 0.2 to 0.7 seconds.
Falcon and Rocchio algorithm are not included in this table since they do not
generate queries explicitly. RAF is consistently more efficient than OCM. This is
because OCM always starts structure tuning which is typically more expensive
than weight tuning. In RAF, the activation procedure does not choose structure
tuning if there are no conflicts. RAF runs slower than C4.5. This is expected
since the feature space (i.e., scores table) used in RAF is larger than the original
data’s feature space. Furthermore, RAF also performs weight tuning.

In Figure 3, we show the refinement effectiveness of RAF and OCM on the
dataset adult, which is the largest dataset in our experiment. In each of the two
graphs, each line represents average precision over 20 similarity queries at every
5% of recall interval. We use the average precision at each 5% recall interval as
a measure of retrieval quality. If a method does well in an iteration, this average
should be high. For example, average precision of RAF at iteration 1 is 11%,
and after one refinement cycle it increases to 40%. OCM still remains at 11%.
Hence, RAF outperforms OCM after the first refinement cycle.

Table 4. Average Refinement Time
per Query (sec.)

G2S Avg. S2G Avg.
Refine Time(sec.) Refine Time(sec.)
RAF OCM C4.5 RAF OCM C4.5
0.4 0.8 0.2 0.5 0.8 0.3

Table 5. Avg. Number of Predicates in
Query

Dataset G2S S2G
Init It2 It5 Target It2 It5

RAF 4.8 5.1 5.6 6.7 6.9 5.1
OCM 4.8 15.1 15.9 6.7 15.3 9.7
Rocchio 4.8 69.6 76.3 6.7 76.3 97.9
C4.5 4.8 1.1 1.8 6.7 0.8 1.5
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Fig. 4. Precision Average at Each Iteration

To further evaluate the learning behaviors of each algorithm in different it-
erations, Figure 4 plots the overall average over different iterations. We observe
that RAF has very good learning behaviors in both learning scenarios (i.e., G2S
and S2G), such that it has much better precision at each iteration. We also
notice that without learning, the initial query performs badly in general (i.e.,
iteration 1). Although OCM attempts to improve the retrieval quality by mod-
ifying the initial query concept, it performs worse than RAF. The main reason
is that RAF focuses directly on resolving the essential feedback conflicts, but
OCM simply tries to fit concepts (i.e., predicates) that match to the feedback.
Also, for some cases OCM may wrongly add a set of predicates while simple
weight modification can achieve the correct ranking. RAF outperforms OCM on
average by 24% in terms of average precision after first refinement cycle for G2S
learning. This average is computed over the 240 query pairs. RAF and OCM
outperform the other three methods in both G2S and S2G learning scenarios.
This clearly shows the merit of considering the initial query structure during
the refinement process. C4.5 and Rocchio perform the worst since they ignore
the initial query structure and the predefined attribute level similarity functions
during refinement cycles.

In addition to precision and recall measures, another interesting measure of a
refinement algorithm is the simplicity/complexity of its refined queries. Table 5
shows the average number of predicates over the 240 queries at different itera-
tions. The initial queries for G2S case contain 4.8 predicates on average, and target
queries have 6.7. For the S2G case, the number is reversed. As we observed, the
number of average predicates in RAF at different iterations lies in between the
average number of predicates in initial and target queries. This increases query
understandability since the refined query is not far away from the target query.
OCM has about twice as many predicates on average as the target. The main rea-
son of this is that OCM cannot represent disjunctive concepts explicitly; it uses
additional predicates to simulate disjuncts. We also report the average number of
vectors used by the Rocchio’s method at different iterations, and the number of
vectors used could be 10 times bigger than the number of target predicates. C4.5
is at another extreme, which, due to the small number of positive feedback avail-
able at each iteration, generates very small number of rules with only one or two
conditions. Falcon is not included because it does not produce queries.
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5 Related Work

The work most related to this paper is [13], which proposed a query refinement
framework on top of ORDBMSs for learning SQL queries from user interactions.
There are two major limitations in [13]. Firstly, it did not consider weight and
structure learning separately, and at each iteration both weight and structure
were modified while modification of only one of the two would have sufficed.
This resulted in, at times, an over aggressive policy that adds/drops wrong
predicates from the query. Secondly, [13] considered only learning a limited set
of conjunctive queries; it did not support learning disjuncts. If the optimal query
the user had in mind and the feedback was consistent with a disjunctive query
(e.g., Salary > 65K OR Duration > 2 years), the approach would attempt to
simulate a disjunction via a conjunction. That is, it would attempt to learn the
query of Salary > 65K AND Duration > 2 years. This results in a suboptimal
query with poor retrieval performance and poor interpretability.

Query refinement via feedback has been explored extensively in the context
of text document retrieval in the information retrieval literature [16, 1]. Gener-
ally, a vector space model is assumed (i.e., Rocchios method [16]). Refinement
tasks focus on how to weight the elements in the vector space. There is no ex-
plicit query formulation and attribute similarity measures. IR models have also
been generalized to multimedia domain. Query refinement techniques have also
been exploited in the multimedia domains, e.g., MARS [17, 9], Mindreader [7],
FALCON [20]. FALCON generalizes the refinement model to any suitably de-
fined metric distance function. As long as the distance between two tuples can
be properly defined, FALCON can be applied. It uses the relevant examples
as the query, and rank the database based on the aggregate distance measure.
However, since FALCON does not consider the original query formulation, it
performs poorly when the relevant set is very small.

Although not from the point of view of database queries, there is a
considerable body of work on learning DNF and CNF formulas from examples.
DNF learners in the literature can be grouped into two as divide-and-conquer
based (e.g. decision tree learners [15]) and separate-and-conquer based or cov-
ering algorithms. Among the large number of algorithms in the latter category,
the AQ family of algorithms [2], CN2 [3] and PFOIL [11] are popular. In these
approaches, predicates have no similarity semantics (i.e., are crisp conditions).
It is also unclear how to incorporate initial queries and similarity functions
into these approaches. Furthermore, these algorithms normally require large
amount of input (i.e., training and testing ratio) before deriving good hypothesis.

6 Conclusions

In many search environments, a user normally has imprecise specification of
what he wants. We provide a system to enable users express imprecise queries,
and refine it interactively by supplying relevance feedback. We identified two
distinct tasks of similarity query refinement: refining query structure and deter-
mining the relative importance of predicates and conjunctions. We proposed a
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set of novel algorithms to control weight and structure learning. We implemented
these algorithms and the extensive experiments we conducted showed that RAF
consistently outperforms previously suggested techniques both in terms of re-
trieval quality and query simplicity.
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