
Authentication of Outsourced Databases Using
Signature Aggregation and Chaining

Maithili Narasimha and Gene Tsudik

Computer Science Department,
School of Information and Computer Science,

University of California, Irvine
{mnarasim, gts}@ics.uci.edu

Abstract. Database outsourcing is an important emerging trend which
involves data owners delegating their data management needs to an ex-
ternal service provider. Since a service provider is almost never fully
trusted, security and privacy of outsourced data are important concerns.
A core security requirement is the integrity and authenticity of out-
sourced databases. Whenever someone queries a hosted database, the
results must be demonstrably authentic (with respect to the actual data
owner) to ensure that the data has not been tampered with. Further-
more, the results must carry a proof of completeness which will allow
the querier to verify that the server has not omitted any valid tuples
that match the query predicate. Notable prior work ([4][9][15]) focused
on various types of Authenticated Data Structures. Another prior ap-
proach involved the use of specialized digital signature schemes. In this
paper, we extend the state-of-the-art to provide both authenticity and
completeness guarantees of query replies. Our work analyzes the new ap-
proach for various base query types and compares it with Authenticated
Data Structures. We also point out some possible security flaws in the
approach suggested in the recent work of [15].

1 Introduction

Database outsourcing [7] is a prominent example of the general commercial
trend of outsourcing non-core competencies. In the Outsourced Database (ODB)
Model, a third-party database service provider offers adequate software, hard-
ware and network resources to host its clients’ databases as well as mechanisms
to efficiently create, update and access outsourced data.

The ODB model poses numerous research challenges which influence overall
performance, usability and scalability. One of the biggest challenges is the se-
curity of hosted data. A client stores its data (which is usually a critical asset)
at an external, and potentially untrusted, database service provider. It is thus
important to secure outsourced data from potential attacks not only by mali-
cious outsiders but also from the service provider itself. The two pillars of data
security are secrecy and integrity. The central problem in the context of secrecy
[5, 8] is how to allow a client to efficiently query its own data – which is hosted

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 420–436, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Authentication of Outsourced Databases Using Signature Aggregation 421

by a third-party service provider – while revealing to the provider neither the
actual query nor the data over which the query is executed. In contrast, this
paper focuses on the integrity of query replies for queries posed for outsourced
databases. We want to ensure that query results returned by the server are:
(i) correct - the tuples in the result set have not been tampered with, and (ii)
complete - no valid tuples have been omitted from the result set.

Other relevant prior work [4][15][6] examined integrity issues in outsourced
databases and suggested solutions using Authenticated Data Structures. Another
recent paper [12] investigated the notion of signature aggregation which enables
bandwidth- and computation-efficient integrity verification of query replies. How-
ever, signature aggregation mechanism ensures only correctness of query replies.
In this paper, we extend [12] by proposing new techniques to provide complete-
ness guarantees. We provide a detailed study of the applicability of our tech-
niques for various base type queries. We also compare our approach with prior
results which use Authenticated Data Structures.

Scope. We assume the relational data model, i.e., data owners and service
providers manage data using a typical RDBMS and that queries are formu-
lated using SQL. We want to provide efficient mechanisms to ensure correctness
and completeness (to be defined shortly) of range selection queries, projections,
joins and set operation queries. We specifically do not address queries that
involve data aggregation (exemplified by arithmetic operations, such as SUM
or AVERAGE) which usually return a single value as the answer to the posed
query.

Organization. The rest of this paper is organized as follows: Section 2 moti-
vates our work. Section 3 discusses Authenticated Data Structures approach,
followed by Section 4 which describes signature aggregation. This section also
proposes the extensions to achieve completeness guarantees. Section 5 describes
our approach by considering various query types. Section 6 presents the analy-
sis. We outline some directions for future work and conclude in sections 7 and 8
respectively.

2 Motivation

This paper addresses the integrity of outsourced data in the ODB model. (We
note that data secrecy in ODB is orthogonal to integrity.) Specifically, we focus
on integrity-critical databases which are outsourced to untrusted servers and are
accessed over insecure public networks. We assume that servers can be malicious
and/or incompetent and, thus, might be processing and storing hosted data
incorrectly. Furthermore, since it is difficult, in general, to guarantee absolute
security of large on-line systems, we assume that the server can be compromised,
e.g., by a worm or virus attack. Therefore, we need efficient mechanisms to
reduce the level of trust placed in the server and provide integrity guarantees to
the clients. From a technical perspective, candidate solutions must include the
following properties:

422 M. Narasimha and G. Tsudik

Correctness. Whenever a client queries outsourced data, it expects a set of
tuples satisfying all query predicates. It also needs assurance that the results
have been originated by the actual data owner and have not been tampered
with either by an outside attacker or by the server itself. Note that the reply size
(in terms of tuples) can vary between zero and n, where n is the total number of
tuples in the database. Thus, a query reply can potentially be any one of the 2n

tuple subsets. Correctness enables secure and efficient authentication of tuples
contained in all possible query replies.

Completeness. Whenever a client queries outsourced data, it expects to obtain
all tuples satisfying query predicates. Completeness implies that the querier can
verify that the server returned all such tuples. Note that, a server, which is
either malicious or lazy, might not execute the query over the entire database
and return no – or only partial – results.

3 Prior Work

We now summarize the general approach of using authenticated data structures
to provide authentication of query replies and discuss two related bodies of work
that use this approach, in the contexts of “Third-Party Publication” and “Edge
Computing”, respectively.

The basis for these two bodies of work is the seminal work by Merkle [11].
This work introduced a data structure called a “Merkle Hash Tree” (MHT)
which is intended to authenticate a set of n values x1, x2, ..., xn. MHT is con-
structed as a binary tree where the leaves correspond to the hashes of the n
values. Thus, a leaf associated with element xi contains h(xi), where h() is a
cryptographic one-way hash function, such as SHA [13]. The values of non-leaf
nodes correspond to the hash of the concatenation of its two children (main-
taining their order). A node with children v1 and v2 is assigned h(v1||v2). The
tree root is signed using a public key signature scheme (e.g., RSA or DSA).
An MHT can be used to securely and efficiently prove that an element (leaf)
is in the set with the help of a verification object (VO). A VO is a collec-
tion of log(n) internal tree nodes which allow the verifier to re-compute the
root of the MHT the signature of which can be verified. Although an MHT
can be very large, one only needs the signed root and a short (logarithmic in
the number of leaves) VO in order to verify that a particular leaf element is
part of the tree. For example, the VO for leaf node 5 in Figure 1 contains
5, h1andh34 as well as the root signature. The verifier computes: h′

2 = h(5),
h′

12 = h(h1||h2) and h′
1234 = h(h′

12||h34) and then checks the root by verifies its
signature.

3.1 Authentic Third Party Data Publication

In [4] and several related publications, Devanbu, et al. focus on Third-Party
Publication. We refer to this approach as the Authenticated Data Structures
(or AuthDS) approach. In this setting, like in ODB, data owners publish their

Authentication of Outsourced Databases Using Signature Aggregation 423

h1 h2 h4h3

h12=h(h1 ||h2) h34=h(h3 ||h4)

root =h1234=h(h12 ||h34)

3 5 96

Fig. 1. MHT Example: shaded nodes represent the verification object for leaf value 5

content at untrusted third-party service providers. Notable contributions of this
work are two-fold: (1) It demonstrates how to construct efficient and compact
verification objects if a pre-computed authenticated data structure for that type
of query exists. The terms efficient and compact generally mean logarithmic com-
plexity in terms of the database size. (2) Instead of using standard binary tree
MHTs as authenticated dictionaries, balanced and I/O efficient data structures,
such as B-trees, are used.

Discussion. One limitation of the AuthDS approach is the need to pre-compute
and store a potentially large number of authenticated data structures, in
order to efficiently answer queries. Without pre-computed trees, the AuthDS
approach cannot provide small verification objects. More importantly, without
pre-computed trees for each sort-order, it becomes impossible to prove complete-
ness of query replies. This results in significant setup costs for the owner and
high storage overhead for the server. Also, storing multiple trees for the same
relation increases the cost of updates.

3.2 Authenticating Query Results in Edge Computing

In a recent paper, Pang, et al. [15] focused on authentication in edge computing
applications. In it, a trusted central server outsources parts of the database to
proxy servers situated at the edge of the network. The data structure used here
is a VB-tree, which is basically a modified MHT built using a B-Tree where –
instead of signing only the root – all leaf nodes as well as all internal nodes are
also signed. (We refer to this work as the VB-tree approach). As a result, ver-
ification objects are independent of the database size and hence, “potentially”
much smaller. In comparison, the most efficient VO in the AuthDS approach [4]
is logarithmic in the size of the entire database.

Discussion. The VB-tree approach does not address the completeness problem.
Also, since a single VB-tree is used, there is no easy way to extend this scheme to
provide completeness guarantees. The proposed scheme replaces a conventional
cryptographic hash function used to compute the digests of individual values in
a MHT with a computationally more expensive, homomorphic function which

424 M. Narasimha and G. Tsudik

essentially computes a discrete exponentiation in a finite field. This function is
insecure and can lead to forgery attacks as shown below:

The digest is computed as h(x) = gx mod q. The modulus q is chosen
as q = 2r for some random r. This choice is insecure because computing
discrete logs in multiplicative, algebraic groups (thus reversing the func-
tion h) is known to be hard if q is a large prime of at least 512 bits. If q,
however, is a composite integer, then the problem of computing discrete
logarithms is polynomially reducible to the combination of integer fac-
torization of q and computing discrete logarithms in Z

∗
p for each prime

factor p of q. Now in the current context, since q is chosen as 2r, h()
can be reversed efficiently which can lead to forgery attacks. We refer
the interested readers to [10] for details on solving discrete-logarithm
problems.

Also, the experimental analysis of [15] assumes that the size of a signed digest
is 16 bytes. It demonstrates that, with this overhead, the overall approach is
efficient in terms of storage and VO size. However, a 16-byte signed digest is
insecure, since there is no cryptographically strong digital signature scheme
that produces signatures of only 16 bytes in size. For example, RSA, which is
the most well-known signature scheme, has a signature size of at least 128 bytes
(1024 bits). 1 If we repeat the calculations with a digest size of 128 bytes and
recompute storage overheads, the VB-tree approach becomes quite expensive in
terms of both computation and storage.

Furthermore, VB-tree approach can be very expensive in terms of VO veri-
fication time for queriers, especially, for projection queries. This is because the
verification object includes signed digests for all the attributes that are filtered
out as well as all the tuples that do not belong to the query result set but
do fall inside the enveloping tree 2 for a given query. In order to authenticate
the query results, the scheme requires the querier to verify the signatures of
all these filtered attributes and tuples that are not part of the actual result
set. Clearly, receiving (recall that a signature is at least 128 bytes long) and
verifying (a single RSA signature verification takes 0.16 msec on P3-977 MHz
machine) all these signatures can be computationally very expensive for the
querier.

Finally, VB-tree approach builds a single B-tree for each table (which is com-
puted on the sorted order of the primary key of that table). If the query predicate
requires searching on a non-key attribute, then the result set is no longer a set of
contiguous tuples. This translates to an increase in the height of the enveloping
tree and can result in extremely high bandwidth and computation overheads.
1 A DSA signature is at least 40 bytes (320 bits) long, but verification of a DSA

signature is more expensive computationally (It takes 0.16 msec to verify a RSA
signature whereas it takes 8.52 msec to verify a DSA signature on a P3-977 MHz
machine).

2 The enveloping tree is the smallest subtree within the VB-tree that envelops all the
result tuples of the query

Authentication of Outsourced Databases Using Signature Aggregation 425

Recall that the VO verification involves verifying the signatures of all the tuples
that are not part of the actual result set but do fall inside the enveloping tree.

4 Digital Signature Aggregation and Chaining (DSAC)

The main disadvantage of AuthDS is the relatively high overhead associated
with building, storing and updating complex index structures. We now propose
an alternative approach that is efficient for most base-level queries, without
requiring any complex data structures. We refer to our approach as the Digital
Signature Aggregation and Chaining - DSAC.

A natural and näıve alternative to AuthDS is to use digital signatures at the
granularity of individual tuples. The data owner signs each tuple before storing
it at the server’s site. The server stores the tuple signature along with each
tuple. In response to a query, the server simply sends the matching tuples and
their signatures to prove integrity and authenticity of the result. Although this
näıve solution provides a proof of correctness, it has some drawbacks: first and
foremost, the resultant VO (which contains a set of signatures corresponding to
each tuple in the result set) is neither bandwidth- nor computation-efficient for
the querier. Further, there is no easy way to provide a proof of completeness. In
the remainder of this section, we develop modifications and enhancements that
address the drawbacks of the näıve strategy described above.

Remark. If the outsourced data is static or archival in nature, correctness and
completeness can be provided easily, as described in Appendix A. However, in
this paper, we focus on the more general (and challenging) case of dynamic
databases.

4.1 Correctness

The ideal VO for providing correctness would involve minimal querier compu-
tation overhead and constant (in terms of integrity information) querier band-
width overhead. The work in [12] proposed two signature schemes that enable
such ideal (or near-ideal) solutions. These signature schemes allow us to aggre-
gate multiple individual signatures into one unified signature, verifying which
is equivalent to verifying ALL individual component signatures. The size of the
aggregated signature equals that of a single plain digital signature (which is
constant), irrespective of either the database size or the query reply size. In the
ODB model, when the server receives a query, it executes the query to obtain the
tuples matching the query predicate as well as their corresponding signatures.
The server combines these individual signatures into a single aggregated signa-
ture and returns the result set comprised of the tuples along with the aggregated
signature. Upon receipt, the querier simply verifies the latter.

The first signature scheme proposed in [12] is the Condensed-RSA signature
scheme. Condensed-RSA allows aggregation of a single signer’s signatures which
is possible due to the fact that RSA is multiplicatively homomorphic. The second
is the Aggregated-BGLS scheme due to Boneh, et al. [3] which allows signatures

426 M. Narasimha and G. Tsudik

produced by multiple signers to be aggregated into a single quantity. Appendix B
discusses these schemes briefly.

4.2 Completeness

Both signature schemes in [12] offer efficient proofs of correctness, however, they
provide no completeness guarantees. In this section, we propose novel extensions
to achieve query completeness. To achieve this goal, we propose secure linking of
tuple-level signatures to form a so-called signature chain.3 In order to construct
the signature chains, we modify the tuple signature generation algorithm in the
following way:

Definition 1. Signature of a tuple r is computed as:

Sign(r) = h(h(r)||h(IPR1(r))|| . . . h(IPRl(r)))SK

where h() is a cryptographic hash function such as SHA, || denotes concatena-
tion, IPRi denotes the immediate predecessor tuple along dimension i, l is the
number of searchable dimensions of that relation and SK is the private signing
key of the data owner.

The immediate predecessors of a tuple are computed as follows: (1) Sort the
tuples in increasing order along each searchable dimension (i.e., according to the
attribute value for each searchable attribute); (2) The immediate predecessor of
a given tuple along a given dimension is a tuple with the highest value for that
attribute that is less than the value of the given tuple (highest lower bound)
along that attribute.4 Thus, each tuple has as many immediate predecessors as
there are searchable attributes, i.e., l.

To provide completeness, a tuple signature is computed by including the
hashes of all immediate predecessor tuples, thereby explicitly chaining (link-
ing) the signatures. We illustrate this with an example in figure 2. Suppose
that there are three searchable attributes. First, the tuples are sorted along
each dimension. Consider tuple R5. According to the figure, the immediate pre-
decessors of R5 along dimensions A1, A2 and A3 are: R6, R2 and R7, respec-
tively. Now, compute the signature of R5 as:5 Sign(R5) = h(h(R5)||h(R6)||h(R2)
||h(R7))SK .

With signatures chained in the above fashion, the server answers a range query
by releasing all matching tuples, the two boundary tuples which are just beyond
the query range (to provide a proof of completeness) as well as the aggregated
signature corresponding to the result set. The signature chain proves to the
querier that the server has indeed returned all tuples in the query range. For
range (or exact value) queries that result in no matches, the server composes
3 Not to be confused with hash chains.
4 If the attribute values of two tuples are the same, it is necessary to use an additional

mechanism (for example: use the tuple id) to break the tie.
5 The signature scheme here can be either condensed-RSA or aggregated-BGLS.

Therefore, we do not specify the details of the SIGN algorithm.

Authentication of Outsourced Databases Using Signature Aggregation 427

− +R6 R5 R7 A1

− +R2 R5 R6 A2

− +R7 R5 R12 A3

Fig. 2. Signature Chain

an Empty Proof by returning only the two boundary tuples that subsume the
non-existent value or range.

5 Operational Details

We now describe the overall procedure for computing authentic replies.

5.1 Selection

A selection query σC(R) is denoted as follows: σC(R) = {t|t ∈ R and C(t)}
where R is a relation, C is a condition of the form Aiθc, Ai is an attribute of R,
c is a constant value and θ ∈ {=, �=, <, ≤, >, ≥}.

Given a selection query, the server computes a result set which is a set of
contiguous (along that dimension) tuples. (It could also be an empty set.) Below,
we outline our technique for composing a VO for selection queries.

+Ra-1 Ra Rb+1 Ai− Rb

TsTn Tn

Ru Rv

The server composes the query reply as follows:

1. computes the tuple set Ts consisting of all the tuples that match the query
posed. Ts = {Ra, . . . , Rb}

2. computes the set Tn consisting of immediate predecessor and successor nodes
of the first and last nodes respectively along the search dimension (i.e., the
boundary tuples). Tn = {Ra−1, Rb+1}. These values are required to prove
completeness. We note that the server needs to release only the relevant
attributes’ value in plain text and simply send the hashes of the remaining
attributes. We assume that the relation R has r attributes {A1, ..., Ar} and
C is a condition on attribute Ai. In this case, the server only needs to reveal
Ra−1.Ai and Rb+1.Ai in plaintext and send the hashes h(Aj) for the other
(r − 1) attributes of Ra−1 and Rj+1. Thus it is possible to prevent exposure
of data (i.e., pertaining to the tuples that are beyond the query result set)
to potentially unauthorized queriers.

428 M. Narasimha and G. Tsudik

3. obtains the corresponding signatures {Sign(Ra), . . . , Sign(Rb+1)}6

4. aggregates individual signatures: σ=Aggregate(Sign(Ra), . . . , Sign(Rb+1))
5. for each tuple in Ts and tuple Rb+1, collects the hashes of immediate pre-

decessor tuples along all other searchable dimensions {A1, . . . , Ai−1, Ai+1,
. . . , Al}, where l is the number of searchable attributes. Then for each tuple
Ri, server computes 2 values: H1(Ri) = h(IPR1(Ri))|| . . . h(IPRi−1(Ri))) and
H2(Ri) = h(IPRi+1(Ri))|| . . . h(IPRl(Ri))) Therefore, Tm = {H1(Ra), H2(Ra),
. . . , H1(Rb+1), H2(Rb+1)} Specifically, the size of Tm is ((l − 1) ∗ (b + 1 − a) ∗
|hash|) where |hash| is the hash value of each of these tuples and is usually
160 bits long. Thus the result set contains {Ts, Tn, Tm, σ}.

5.2 Join

A basic join operation R ��C S involves two relations R and S where C is a condi-
tion of the form AiθAj , Ai and Aj are attributes of relation R and S respectively
and θ ∈ {=, �=, <, ≤, >, ≥}. Both AuthDS and VB-tree approaches assume that
all join queries are known a priori and require additional pre-computed B-trees
to ensure authentication.

In the discussion that follows, we focus mainly on the equi-join operation.
Given a query of the type R ��Ar=As S, proving correctness is relatively simple
using our approach. The server executes the join query and computes the list
of tuples (t ∈ R and s ∈ S) that match the equality predicate and obtains the
corresponding signatures of t and s from R and S respectively. Server combines
all individual signatures of tuples in the result set to compute the aggregated
signature of the entire result set. Note that the aggregated signature is sufficient
to prove correctness.

However, proving completeness of a join query is not straight-forward. The
querier needs to be assured that all tuples matching the equality predicate from
R and S are present in the result set Ts. One way, albeit quite inefficient,
to accomplish this is to pick the smaller relation (say S) and for each tuple
s (or each contiguous set of tuples) in the set S − Ts, show an empty proof
that s (more precisely s.As) does not exist in R. Note that if the server needs
to show empty proofs for m tuples, server, instead of releasing m individual
signatures, aggregates the m signatures into a single condensed/aggregated sig-
nature. Such a proof is clearly linear in the size of S. It remains an interesting
open problem to modify the signature chaining mechanism to yield efficient com-
pleteness proofs which are linear in the size of the result set for arbitrary Join
queries.

Using DSAC approach, it is possible to construct more efficient proofs of
completeness if the join queries are known a priori. Then, while computing the
signature of a tuple that is part of a join query result set, the hash of its imme-
diate predecessor which is also in result set of the same join query is included
in the tuple signature. This creates an explicit signature chain corresponding

6 Note that it is necessary to include Sign(Rb+1) to check for completeness. However,
Sign(Ra−1) is not required since hash of Ra−1 is included in Sign(Ra).

Authentication of Outsourced Databases Using Signature Aggregation 429

to the join query. Now, when a pre-computed A �� B query is executed, the
server simply sends an aggregated signature that represents the signature chain
of A �� B. Note that, unlike the other two approaches, pre-computing a join
query in our approach does not entail additional storage overhead.

5.3 Set Operations

Union: Ts = U ∪ V . Server aggregate individual signatures for all tuples of
U and all tuples of V to obtain a single signature for U ∪ V ; if U and V are
intermediate results of a query evaluation or subsets of some other relations
R and S, collects boundary tuples for U and V ; finally constructs the VO as
described above for selection queries.

Intersection: Ts = U ∩ V . To prove completeness and correctness, the server
needs to convince the querier that each tuple in Ts is present in both U and V .
Our approach is similar to that of AuthDS: the server picks the smaller of the
two sets (say U) and for each element in U − Ts the server sends back empty
proof that that element (tuple) does not exist in V . This proof is linear in the
size of U . It shows that the result is correct and every element in (U − (U ∩ V))
is not in V ; thus, the result is complete.

5.4 Projections

πL(R) is the projection of relation R onto the list L where L is typically a list
of (some of the) attributes of R. πL(R) = {< t.Aj , ..., t.Ak > |t ∈ R} where
Ai’s are attributes of relation R. In order to support projections, a tuple hash
is computed as: h(t) = h(h(t.A1)||h(t.A2)|| . . . ||t.h(Ak)). In other words, instead
of hashing the entire tuple, we hash each attribute, concatenate the resulting
hashes and hash them once again. Then, we compute a tuple signature of tuple
as described in section 4.2. This way, the server needs to send only the hashes
(instead of actual plaintext values) for each filtered attribute. Unfortunately,
this basic solution is not very efficient in terms of bandwidth since it requires
us to send individual hashes for each filtered attribute (It is necessary to send
individual values to allow the querier to recompute the tuple signature since
the tuple hash is computed by concatenating these individual attribute hash
values.).

One way to lower bandwidth overhead involves the owner generating
attribute-level, instead of tuple-level, signatures. Although this increases the
owner’s load, projection queries become more efficient. We give a brief description
of this variant below. However, the full details are beyond the scope of this paper.
The owner generates the hash of attribute Ai of tuple t as h(t.Ai) = h(t.ID||t.Ai)
where t.ID denotes the unique identifier of tuple t. Moreover, the owner gener-
ates individual signature chains along each searchable attribute as before. Since
the signatures are generated at the attribute level, in response to a projection
query, only the requested attribute values along with the relevant signatures
chains will be returned by the server.

430 M. Narasimha and G. Tsudik

Owner Server

stmt = Insert tuple r into table T stmt−−−−−→
Tins = {(Rik , Rik+1),

∀i ∈ {1, l}, Th, σ}
Tins←−−−−− Rik .Ai < r.Ai < Rik+1 .Ai

Verify σ,
Tsig = Sign(r), Sign(Rik+1)∀i ∈ {1, l}

Tsig−−−−−→
Update T with r and Tsig

Fig. 3. Protocol to insert a new tuple into a table

5.5 Database Updates

Insertion. To insert a tuple r into table T (refer to figure 3), the owner sends
the new tuple to the server. The server calculates the actual position of insertion
along all l chains (where l is the number of searchable attributes) by examining
the values of the individual attributes. The server computes the set of pairs of
adjacent tuples {(Rik

, Rik+1)} for inserting the new tuple, collects the signatures
of all successor nodes Rik+1 , aggregates these individual signatures to obtain
σ and sends back these values (Tins) to the data owner. Note that since the
server returns pairs of adjacent tuples {(Rik

, Rik+1)} along all l dimensions along
with the signatures of all Rik+1 nodes, the owner can verify for herself that the
position for inserting the new tuple is indeed the correct one. Th contains the
additional hashes required to recompute the signatures of the successor nodes7.
Upon successful verification of σ, the owner computes the tuple signature for
r by including the immediate predecessors’ (i.e., all Rik

) hash values and also
updates the signature chains for the successor nodes (i.e., all Rik+1) by including
r’s hash value (along with the other appropriate hashes from Th). The owner
then sends back all l + 1 new signatures Tsig.
Deletion. Performing a delete is similar to insert operation and is a multi-round
protocol. Due to space restrictions, we only present a high-level description of
the protocol. Owner specifies the tuple(s) to be deleted. Server isolates parts
of all the l signature chains that get affected by this operation and sends back
sets of tuples that surround the tuple to be deleted back to the owner. Once
again, since the signatures are all linked the owner can verify that the server
indeed has returned the relevant parts of all the signature chains. The owner
recomputes the signatures of the successor node of the node to be deleted, along
each dimension, by replacing the hash of the node to be deleted with the hash
of its predecessor and returns the l new signatures back to the server.
7 Note that each of the successor node Rik+1 has l “immediate predecessor nodes”.

When the predecessor along one dimension changes due to the new insertion, it
becomes necessary to recompute the signatures of each of Rik+1 . In order to do this,
the hashes corresponding to the other l − 1 dimensions need to be sent back to the
owner.

Authentication of Outsourced Databases Using Signature Aggregation 431

6 Analysis

In this section, we analyze costs and overhead factors associated with DSAC and
then compare its performance with AuthDS and VB-tree approaches. We begin
by summarizing the notation used in this section.

n Total number of tuples in the relation
s Number of tuples in the result set
t Total number of attributes in the relation
l Total number of searchable attributes; 1 ≤ l ≤ t

|sign| Size of a digital signature: 128 bytes for RSA,
64 bytes for BGLS

|hash| Size of a hash. Default = 20 bytes

We first illustrate the bandwidth and computation advantages of DSAC over
the näıve approach of sending and verifying individual tuple signatures. In our
experiments, tuples are signed with the RSA signature scheme using a 1024-bit
public modulus. The experiments were conducted on a P3-977MHz Linux PC.
We used the popular OpenSSL library[14] to implement all cryptographic func-
tions. Figure 4(a) compares the time (in msec) for query verification for varying
size of the result set. We can see that signature aggregation greatly reduces the
computational overhead required to verify the integrity of the result set.

Figure 4(b) contrasts measured bandwidth overhead for the näıve approach
with that in DSAC. Recall that the näıve approach does not provide complete-
ness guarantees. In DSAC, since the signatures are chained, we need to send
additional hashes. Specifically, when the search predicate involves a particular
attribute Ai, for each tuple in the result set, we need to send additional hashes
corresponding to the immediate predecessor tuples along the remaining (l − 1)
searchable attributes. We show the overhead for varying sizes of the result set
(in records), for l = 5. It is easy to see that although DSAC incurs additional
overhead to provide completeness, it still is much more bandwidth efficient than
the näıve approach.

Storage Costs. In AuthDS scheme, to obtain an efficient VO on the order of
O(log|n|) in size and, more importantly, to prove completeness of a range query,

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

V
er

if
ic

at
io

nT
im

e
(m

Se
c)

Result Set

Naive
DSac

0

5

10

15

20

25

20 40 60 80 100

V
O

 S
iz

e
(k

B
yt

es
)

Result Set

Naive
DSac

Fig. 4. (a) Query Verification Costs compared to näıve, (b) Bandwidth Costs compared
to näıve

432 M. Narasimha and G. Tsudik

a separate B-tree for each search order is required. Therefore, for l searchable
attributes, a total of l separate B-trees need to be pre-computed and stored at
the server. Furthermore, to support other, more advanced queries, such as joins,
the scheme requires separate data structures for each possible query. Storing
these trees can result in enormous storage overhead. Also, storing multiple trees
for the same relation increases the cost and complexity of the update operations
since each update operation results in recomputing the tree hashes and the root
signatures for all the trees and potentially some tree re-balancing operations.

In VB-tree scheme, each attribute value of a tuple is signed by the owner and
each tuple is also signed in its entirety. Finally, a single VB-tree is constructed per
table where individual nodes of the tree are also signed. This incurs a substantial
storage overhead of O(n ∗ t ∗ |sign|+ t ∗ |sign|) in addition to the cost of storing
the VB tree itself. Thus, VB-tree is significantly more expensive than DSAC
in terms of storage. Furthermore, as with AuthDS approach, VB-tree requires
separate pre-computed data structures in order to support Join queries.

In comparison, DSAC incurs fixed storage overhead of one signature per tuple
irrespective of the number of searchable attributes or the number of queries to
be supported.

VO Size. In AuthDS, the VO size for a selection/projection query is:V Osize =
|s| ×

∑k
i |hash| + (2 log |n| − 1) × |hash| + |sign| + 2(|tuple|) where {Ai . . . Ak} are

the filtered attributes of each tuple. 2(|tuple|) corresponds to 2 boundary tuples
which are released to prove completeness and |sign| corresponds to the size
of the signature of the root. Note that |s| ×

∑k
i |hash| measures the hashes

corresponding to filtered attributes and (2 log |n|−1)×|hash| measures additional
hashes that must be sent to re-compute the root of the B-tree.

In VB-tree, the VO size for a selection/projection query is: V Osize = |s| ×
∑k

i |sign| + (2 log |s| − 1) × |sign| where log |s| is the height of the enveloping
tree and {Ai . . . Ak} are the filtered attributes of each tuple. Note that this VO
cost assumes that the search is being done on the primary key. In this case,
a set of contiguous tuples is returned and the additional overhead is O(log|s|)
signed digests. However, if the search is on a non-primary key attribute, then
the enveloping tree can become quite large and signed digests corresponding to
all tuples that are not part of the result set need to be returned.

For the proposed DSAC approach, the VO size is expressed as: V Osize =
|sign| + |s| × (

∑k
i |hash| +

∑l−1
1 |hash|) + 2(|tuple|). We send back a condensed/

aggregated signature to verify the correctness and completeness of the result
set. Figure 5 shows the VO size overheads for the AuthDS, VB-tree and DSAC
approaches. As can be seen from the figure, VB-tree approach incurs very high
bandwidth overheads. DSAC approach is as efficient as the AuthDS approach
while requiring the storage of a single signature per record.

Our scheme incurs an overhead of (|s| ×
∑l−1

1 |hash|) for guaranteeing com-
pleteness. This is because we need to include the hashes of the immediate pre-
decessor tuples along every searchable attribute while computing the signature
of a tuple. It is possible to reduce this overhead by trading storage efficiency to

Authentication of Outsourced Databases Using Signature Aggregation 433

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 15 14 13 12 11 10 9 8
V

O
 S

iz
e

(K
B

yt
es

)
log2 Result Set(in Records)

AuthDS
VB-tree

DSAC

Fig. 5. VO Size Costs compared to AuthDS and VB-tree

gain bandwidth efficiency by using multiple signature chains. Another way to
reduce this overhead would be to generate attribute level signatures as outlined
in the prior section. We note that it is possible to reduce the VO size while
maintaining a single signature chain by utilizing secure hashing techniques de-
scribed in [1][2]. These incremental hashing techniques compute the hash of a
message by breaking the message into smaller blocks and combining the hashes
of individual blocks by using a “compression function”. We would like to men-
tion that this family of hash functions may be adapted for use in our scheme in
order to send back a single “compressed” hash for each tuple. Furthermore, the
same technique can also be used to reduce the bandwidth overhead associated
with Projection queries. The detailed description of this technique is out of the
scope of the current work.

Query Verification Costs. Query verification in both AuthDS and DSAC ap-
proaches involve computing simple hashes and combining them and verifying a
single signature to verify the correctness and completeness of the result set. In com-
parison, VB-tree involves performing a number of signature verifications
(since the scheme returns “signed” digests). Since signature verification is very ex-
pensive as compared to hashing, this scheme is computationally more expensive.

In summary, as compared to the VB-tree approach, the proposed DSAC
scheme is clearly more efficient in terms of computation, storage, bandwidth
and also provides a richer set of features. When compared to AuthDS, DSAC
is more efficient in terms of storage and is similar in efficiency for VO size and
verification costs. Both AuthDS and DSAC handle same set of queries and both
require expensive signature recomputations for tuple inserts and deletes. How-
ever, as tuples are inserted and deleted over time, AuthDS involves additional
intensive operations, such as re-balancing (one or more) b-trees in addition to
re-calculating signatures for all roots.

7 Future Directions

Another desired property of ODB integrity is to ensure freshness of query replies.
Freshness means the assurance that the query reply was generated with respect

434 M. Narasimha and G. Tsudik

to the most recent snapshot of the database. One possible mechanism to provide
freshness involves using a single Merkle Hash Tree – referred to as an FTree –
for the entire relation. The root of the FTree is signed by the data owner and
is assumed to be published and/or sent to all the queriers. Querier can verify
freshness by verifying the owner’s signature. The signature of the root is refreshed
periodically (by the owner) in accordance with a system-wide freshness policy,
thus ensuring that the data is fairly recent. As part of our future work, we plan
to study this problem in depth. We also plan to conduct a detailed study of the
applicability of our approach to other more advanced query types.

8 Conclusions

This work explored the problem of authenticity and integrity of query replies
in outsourced databases. In particular, we developed a new approach (DSAC)
based of signature aggregation and chaining which achieves authentication of
query replies. The main contributions of this work are the proposed signature
chaining mechanism which provides evidence of completeness of query result set
and the analysis which sheds light on the applicability of our scheme for various
query types in the relational model. We also compared our approach to the
state-of-the-art in authenticated publishing.

References

1. M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and ap-
plication to virus protection. In 27th Annual Symposium of Theory of Computing,
1995.

2. M. Bellare and D. Micciancio. A new paradigm for collsion-free hashing: Incre-
mentality at reduced cost. In EUROCRYPT ’1997.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In EUROCRYPT ’2003, 2003.

4. P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic third-party
data publication. In 14th IFIP Working Conference in Database Security, 2000.

5. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted
Data in the Database-Service-Provider Model. In SIGMOD, 2002.

6. H. Hacigümüş, B. Iyer, and S. Mehrotra. Encrypted Database Integrity in Database
Service Provider Model. In CSES’02 IFIP WCC, 2002.

7. H. Hacigümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In
ICDE, 2002.

8. B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for Range
Queries. In VLDB, 2004.

9. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine.
A general model for authenticated data structures. Algorithmica, 39(1), January
2004.

10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, 1997. ISBN 0-8493-8523-7.

11. R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Re-
search in Security and Privacy, 1980.

Authentication of Outsourced Databases Using Signature Aggregation 435

12. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and Integrity in
Outsourced Databases. In Network and Distributed Systems Security, 2004.

13. National Institute of Standards and Technology (NIST). Secure Hash Standard.
FIPS PUB 180-1, April 1995.

14. OpenSSL Project, http://www.openssl.org.
15. H. Pang and K-L Tan. Authenticating Query Results in Edge Computing. In

ICDE, 2004.
16. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2),
1978.

A Static Data

If the outsourced data is static or archival in nature, e.g., a census database,
proofs of completeness can be provided quite easily as follows:

(1)Sort all tuples in increasing order along each searchable dimension, i.e.,
according to the attribute value for each searchable attribute. (2) Compute a
signature of each tuple by signing the “Running Hash” of all the tuples in the
chain from the starting node to the current tuple as described below.

Assume that there is only one searchable dimension. (This solution is appli-
cable for multi-dimensional queries as well.) The owner sorts tuples in ascending
order along this dimension to obtain: {R1, R2, . . . , Rn}. Owner then includes
two boundary values: (−∞, +∞) in the table and computes the signatures of
R1 through Rn as: Sign(Ri) = h(Ri||h(Ri−1|| . . . ||h(−∞) . . .))SK . At the end,
it computes the signature of +∞. The tuples and their signatures are stored at
the server as before. Now, in order to prove both completeness and correctness
of a range {Ri, Rj}, the server simply releases tuples {Ri, Rj}, running hash of
Ri−1, and Sign(Rj). Since the signatures are computed on running hashes, it
can be easily seen that the reply set provides a concise proof of correctness and
completeness. Note that, we do not require any signature aggregation in this
scenario.

B Signature Aggregation

B.1 Condensed-RSA

The RSA [16] signature scheme is multiplicatively homomorphic which makes it
suitable for combining multiple signatures generated by a single signer into one
condensed signature. We use the term condensed in the context of a single signer
and aggregated in the context of multiple signers. Clearly, former is a special
case of the latter. A valid condensed signature signifies to the verifier that each
individual signature contained in the condensed signature is valid, i.e., generated
by the purported signer. Aggregation of single-signer RSA signatures can be
performed incrementally by anyone in possession of individual RSA signatures.
By incrementally, we mean that the signatures can be combined in any order
and the aggregation need not be carried out in a single operation. In standard

http://www.openssl.org

436 M. Narasimha and G. Tsudik

RSA signature scheme, a party has a public key pk = (n, e) and a secret key
sk = (n, d). A standard RSA signature on message m is computed as: σ = h(m)d

(mod n) where h() denotes a cryptographically strong hash function (such as,
SHA-1). Verifying a signature involves checking that σe ≡ h(m) mod n.

Condensed-RSA Signature Scheme. Given t different messages {m1, ..., mt}
and their corresponding signatures {σ1, ..., σt} generated by the same signer, a
Condensed-RSA signature is computed as the product of all t individual signa-
tures: σ1,t =

∏t
i=1 σi (mod n) The resulting aggregated (or condensed) signature

σ1,t is of the same size as a single standard RSA signature. Verifying an aggre-
gated signature requires the verifier to multiply the hashes of all t messages and
checking that: (σ1,t)

e ≡
∏t

i=1 h(mi) (mod n).

B.2 BGLS

Boneh, et al. in [3] construct an interesting aggregated signature scheme that
allows aggregation of signatures generated by multiple signers on different mes-
sages into one short signature based on elliptic curves and bilinear mappings.
This scheme (BGLS) operates in a Gap Diffie-Hellman group (GDH). Refer to
[3] for a detailed discussion on the signature scheme and its proof of security.

	Introduction
	Motivation
	Prior Work
	Authentic Third Party Data Publication
	Authenticating Query Results in Edge Computing

	Digital Signature Aggregation and Chaining (DSAC)
	Correctness
	Completeness

	Operational Details
	Selection
	Join
	Set Operations
	Projections
	Database Updates

	Analysis
	Future Directions
	Conclusions
	Static Data
	Signature Aggregation
	Condensed-RSA
	BGLS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

