
M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 3 – 5, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dissemination of Dynamic Data: Semantics,
Algorithms, and Performance

(Extended Abstract)

Krithi Ramamritham

Indian Institute of Technology, Bombay
krithi@iitb.ac.in

The Internet and the Web are increasingly used to disseminate fast changing data such
as sensor data, traffic and weather information, stock prices, sports scores, and even
health monitoring information. These data items are highly dynamic, i.e., the data
changes continuously and rapidly, streamed in real-time, i.e., new data can be viewed
as being appended to the old or historical data, and aperiodic, i.e., the time between
the updates and the value of the updates are not known a priori. Increasingly, users are
interested in monitoring such data for online decision making. To provide users with
dynamic, interactive, and personalized experiences, websites are relying on dynamic
content generation applications, which build Web pages on the fly based on the run-time
state of the website and the user session on the site. These applications make use of
database backends. But, these benefits come at a cost, each request for a dynamic page
requires computation as well as communication across multiple components inside the
data dissemination and information processing infrastructure.

Consider the following scenario.

A company involved in developing IT enabled services responds to Request For pro-
posals (RFPs). Often RFPs are brought to its attention by customers, sometimes
through word of mouth. Won't it be convenient if the posting of a relevant RFP at a
(potential) customer's website is automatically brought to the attention of the
appropriate business unit or group within company? Our work is motivated by such
needs -- the need to constantly track and monitor the dynamics of information sources
-- some of which are identified through historical access patterns, others by monitor-
ing potentially useful sites judiciously. Also, often a company responding to RFPs is
looking to bolster its case by citing completed projects where the relevant skillsets
have been demonstrated. The needed information can be retrieved by maintaining a
knowledge repository and setting the following query that continuously sends
up-to-date information, as the knowledge base gets updated, to the proposal writer(s).

CQ RFP_tracker:

 SELECT project_name, contact_info

 FROM RFP_DB

 WHERE skill_set_required ⋐ available_skills

Such a knowledge repository can be seen as an aggregator of data from specific dy-
namic sources. As another example, consider a user who wants to track a portfolio of

4 K. Ramamritham

stocks, in different (brokerage) accounts. He or she might be using a third party data
aggregator which provides a unified view of financial information of interest by peri-
odically obtaining information from multiple independent sources.

These examples reflect applications which make use of information that experience
rapid and unpredictable changes for on-line decision making in time critical or value
critical environments. The growth of the Internet as well as Intranets has made the
problem of managing and disseminating such dynamic data both interesting and
challenging. Resource limitations at a source of dynamic data or within the
dissemination infrastructure will limit the number of users that can be served directly
by the source. As user load on a site increases, the computation and communication
costs can result in significant delays, leading to poor scalability and availability of
dynamic data. Solutions needed to mitigate these problems involve techniques from
multiple domains:

• WWW and the internet -- caching, replication, dynamic page generation tech-
niques, edge servers;

• Distributed systems -- replication, load balancing, distribution of data;
• Networking -- content distribution networks, application level multicasting,

peer-to-peer networks; and
• Databases -- active, real-time databases, caching.

There is a lot of excitement about this topic if the papers in conferences related to all
the above areas are any indication. As part of our work, we have contributed to this
excitement, but many questions remain. In this keynote talk, we will discuss the fol-
lowing issues, focusing on the open problems (see reference for details):

Specification of user QoS needs
The focus in many applications such as traffic monitoring, network fault management,
etc., has been on the dissemination of important events as opposed to data, and on the
execution of continuous queries. There are several alternative ways in which these
can be expressed; Event-condition-action rules have been used for situation monitor-
ing, profiles have been proposed for retrieving data or changes from the web and
other sources, and continuous SQL-like queries have been used for processing
dynamic data. In spite of the communication and computation overheads being
non-negligible, the system should provide temporally coherent responses to queries
over distributed data. So, in addition to specifying the queries, users’ QoS should also
be formulated to quantify the required coherency in the responses.

Caching-based approaches
Caching and replicating are widely used approaches to mitigate the performance de-
gradations due to content distribution and delivery. But, unless updates to the data are
carefully disseminated from sources to caches (to keep them coherent with the
sources), the communication and computation overheads involved can lead to further
losses of coherence in the results of queries executed over dynamic data.

Content Distribution Networks (CDNs) for dynamic data
Resource limitations at a source of dynamic data will limit the number of users that
can be served directly by the source. A natural solution to this is to have CDNs for
Dynamic Data, formed by a set of repositories which replicate the source data and

 Dissemination of Dynamic Data: Semantics, Algorithms, and Performance 5

serve it to geographically closer users. Services like Akamai and IBM’s edge server
technology are exemplars of such networks of repositories, which aim to provide
better services by shifting most of the work to the edge of the network (closer to the
end users). Although such systems scale quite well, when the data is changing rapidly,
the quality of service at a repository farther from the data source will deteriorate. In
general, replication can reduce the load on the sources, but replication of time-varying
data introduces new challenges. Unless updates to the data are carefully disseminated
from sources to repositories (to keep them coherent with the sources), the communi-
cation and computation overheads involved can result in delays as well as scalability,
further contributing to loss of data coherence.

Change detection and monitoring
This is a critical requirement for many dynamic data intensive applications. Timely
dissemination of changes to interested information sources is especially critical as
periodic pull by humans (current usage) is a waste of resources. Algorithms for de-
tecting changes to the contents of HTML and XML pages have been developed and
used in many systems. In general, it is important for the change tracking procedure to
be adaptive. Rather than having a periodic fetching of pages, the time of next fetch
needs to be determined depending on the observed trend of changes in fetched pages.
This would further reduce the amount of resources consumed for tracking and
monitoring.

While discussing solutions to the above topics, we will make connections to those
from peer-to-peer systems, stream processing, as well as sensor networks.

Reference

http://www.cse.iitb.ac.in/~krithi/ddd.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

