
Document Decomposition for XML Compression:
A Heuristic Approach

Byron Choi

Nanyang Technological University
kkchoi@ntu.edu.sg

Abstract. Sharing of common subtrees has been reported useful not only for
XML compression but also for main-memory XML query processing. This method
compresses subtrees only when they exhibit identical structure. Even slight irreg-
ularities among subtrees dramatically reduce the performance of compression
algorithms of this kind. Furthermore, when XML documents are large, the chance
of having large number of identical subtrees is inherently low. In this paper, we
proposed a method of decomposing XML documents for better compression. We
proposed a heuristic method of locating minor irregularities in XML documents.
The irregularities are then projected out from the original XML document. We
refered this process to as document decomposition. We demonstrated that better
compression can be achieved by compressing the decomposed documents sepa-
rately. Experimental results demonstrated that the compressed skeletons, for all
real-world datasets, to our knowledge, fit comfortably into main memory of com-
modity computers nowadays. Preliminary results on querying compressed skele-
tons validate the effectiveness our approach.

1 Introduction

XML has been the defacto standard for data exchange on the web. While XML has been
useful for passing small messages between heterogeneous applications [15], XML has
also been used to represent large amount of data [19, 12, 8, 13]. However, a major draw-
back of this use of XML is the increase in the size of data, due to the verboseness of
XML syntax. What is desirable is an efficient compression technique for XML.

The main reason for storing data as XML is that (part of) the documents may need
to be queried efficiently later. The two kinds of compression techniques, “syntactic”
and “semantic”, perform differently regarding query processing. “Syntactic” compres-
sion (e.g., [22]) treats data as a sequence of bytes. While syntactic compression often
produces good compression performance on a wide range of datasets, the semantics
of data is often lost during compression. This often reduces query performance on the
compressed data. An alternative is to derive a “semantic” compression technique, e.g.,
[14, 4]. Typically, such technique compresses data based on its semantics. The seman-
tics embedded in the compressed data has been reported useful for query evaluation
[4, 3]. In this paper, we shall focus on semantic compression. It should also be remarked
[10] that applying semantic compression followed by syntactic compression often re-
sults in better overall compression and query performance.

At the core of the “semantic” XML compression technique [4], it is a procedure of
compressing/sharing identical subtrees. Its performance depends on the number and the

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 202–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Document Decomposition for XML Compression: A Heuristic Approach 203

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Medline

keywordauthorauthor author

SV

keywordkeyword

Biology Non−NASA

keyword author keyword

Alisttitleabstract KWlist

keywordauthor

JS

author

BCJC NASA ARC FG NASA

citation

Non−NASARH

Fig. 1. An XML tree T

citation citation citation citation

Medline

titleabstract KWlist

keyword

KWlist

keyword

Alist

author

Alist

author

(2) (2)

Fig. 2. Skeleton of T , G

size of identical subtrees being shared. However, when XML documents are large, the
chance of having large identical subtrees is inherently low. Unfortunately, in practice,
we encounter a case where the compressed instance produced by [4] is larger than the
size of the memory of a commodity computer nowadays. Worse still, query evaluation
on compressed XML [4, 3] assumed the compressed instance was stored in main mem-
ory. This necessitates further investigations on XML compression techniques.

To illustrate the problem studied in this paper, we present a real-world example and
show the result of our proposed solution. Consider the simplified MEDLINE bibliogra-
phy dataset [19] shown in Figure 1. A MEDLINE document contains a large number of
citations, although four citations are shown in the example. Each citation has an ab-
stract, a title, a list of authors and a list of keywords, among other things. We shall
illustrate the compression presented in [4, 3] with this document.

Consider a depth-first traversal on the document. Suppose that during this traversal
we also generate a tree in which each of the text nodes is replaced by a marker (#)
indicating the presence of text nodes in the original document. We refer this tree to
as the skeleton of the document. Consider the first two author (author) nodes. Once
we have replaced the text nodes by the markers, these nodes exhibit identical struc-
ture. Therefore we can replace them by a single structure and put multiple edges from
the citation/Alist node on top of the author node. Moreover, since these Alist-
author edges occur consecutively, we can indicate this with a single edge together
with a note of the number of occurrences. Thus, working bottom-up, we compress the
skeleton into a DAG as shown in Figure 2. Multiple consecutive edges are indicated
by an annotation (n), and an edge without annotation occurs once (in the DAG). This
technique has been known as subtree-sharing [4, 3].

The edges in the middle of Figure 2 illustrate the reason of inefficient subtree-
sharing. The citation nodes are not compressed because each citation node has
a slightly different author list and keyword list. In fact, the identical sub-structures in

204 B. Choi

Alisttitleabstract KWlist

citation

Medline

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

1 2 3 4 5 6 7 8

(a)

Alisttitleabstract KWlist

citation

Medline
(4)

(b)

Fig. 3. (a) The reduced document of Figure 1 and (b) its compressed skeleton

keywordauthor author

root

authorauthor authorauthor keywordkeyword

NASA ARC Non−NASA

keywordkeywordkeyword

Biology Non−NASA NASAFG SV

1 5 2 8 3 7 4 6

BCJC JS RH

r r r r r r r r

(a)

author keyword

rr r r

root

(2) (2) (2)(2)

(2) (2)

(b)

Fig. 4. (a) The outlier document of Figure 1 and (b) its compressed skeleton

citation dominate the others. Since the citation nodes are not compressed, the
dashed edges are also necessary.

In this paper, we proposed an improved compression algorithm for XML. Our
technique is inspired by projected clustering techniques for data mining applications
(see Section 4). Our technique projects out the subtrees which stop [3] from com-
pressing an input XML. The projected subtrees are grouped in an outlier document.
The remaining document formed the reduced document. We call this process document
decomposition.

Let us return to the simplified MEDLINE document. Suppose that we decompose the
document at P , where P = {/Medline/citation/Alist,/Medline/citation/
KWlist}. It means that we shall project out the subtrees underneath P and group them
in an outlier document. The reduced document and the outlier document are shown in
Figure 3 (a) and Figure 4 (a), respectively. We shall compress the reduced and the out-
lier documents by using [3] individually. The compressed skeletons of the reduced and
the outlier documents are presented in Figure 3 (b) and Figure 4 (b), respectively. Note
that the compressed skeletons contain neither the bold nor the dashed edges. The com-
plicated edges in the middle of Figure 1 are encoded by data values. That is, they are
no longer embedded in the compressed skeleton. Consequently, the decomposed docu-
ments can be compressed efficiently. However, we need to store these (uncompressed)
edges on disk. Furthermore, there is a tradeoff between skeleton compression and query
processing. Queries involving both the reduced and the outlier documents require extra
joins to recover the relationship between the two documents. In this paper, we proposed
a heuristic method to determine these edges.

The main contributions of this paper are listed as follows.

– We propose an algorithm for XML compression by decomposing an XML document
into a reduced and an outlier document. The decomposition causes irregular sub-
trees to be grouped in the outlier document and leaves the subtrees remaining in
the reduced document fairly similar. We noted that the decomposed-compressed
skeletons of real-world XML documents fit in main memory comfortably.

Document Decomposition for XML Compression: A Heuristic Approach 205

– We proposed a query-rewriting algorithm for evaluating queries on the decomposed
documents by leveraging existing query evaluation algorithms [3].

– We present experimental results on the effectiveness of the compression and pre-
liminary experimental results on query evaluation on decomposed skeletons.

The remainder of this paper is structured as follows. Section 2 contains notations
used and background information of this paper. Section 3 presents the representation,
the construction and query evaluation of decomposed XML. Section 4 presents our
heuristic algorithm for determining good decomposition. Section 5 shows an experi-
mental study of our proposed algorithm. We discuss some related work in Section 6.
Conclusions and future work are presented in Section 7.

2 Notations and Background

In this section, we list some notations used in the paper. We consider the compres-
sion algorithm VEC presented in [3] in this paper. Consider an XML document T .
VEC(T) ≡ (G, V), where G is the compressed skeleton of T and V is the represen-
tation for data nodes. A cut is the set of edges at where the decomposition occurs. We
consider the cut to be specified by a set of simple downward paths P , which can also be
considered as “projections” of subtrees. Thus, we may refer P to the cut. Suppose the
DTD of T is available. The possible variations in subtree structure will be essentially
1 indicated by stars “*”. Denote the set of stars in the DTD to be S. For identifying
irregularities, projections make sense at stars only. In addition, we assume that the cuts
in T are not nested. Justifications shall be provided followed by the discussion of our
solution in Section 4. Given a projection P , we decomposed an XML document into the
reduced document T P

r and the outlier document T P
o . We may omit P from the nota-

tion if it is clear from the context. Similarly, we denote the decomposed, compressed
document as DVEC: DVEC(T ,P) ≡ (VEC(Tr), VEC(To)) ≡ ((Gr, Vr), (Go, Vo)).

The main challenge of our problem is to determine P at which the document is
decomposed. The search space of the problem is O(2|S|). This daunting complex-
ity indicates that there is a need to develop heuristics for the problem. In addition,
the number of subtrees in the document is O(2|T |), where |T | is the number of
nodes in T .

3 Document Decomposition

Consider a projection P of an input document T determined by the heuristic proposed
in Section 4. We discussed the construction of the compressed reduced and outlier doc-
uments in one scan of T in Section 3.1 and Section 3.2. Section 3.2 contained no new
ideas but completed the discussions on compression VEC on our simplified MEDLINE

document. In Section 3.3, we re-write queries on T into queries on T P
r and T P

o and
discuss how [4, 3] is used for efficient query evaluation. Technique presented in this
section can be applied recursively to support multiple decompositions.

1 For simplicity, we skip the discussions on “?”.

206 B. Choi

3.1 Construction of the Reduced and the Outlier Documents

In this subsection, we present an algorithm for producing the reduced document Tr and
the outlier document To of a given P , shown in Figure 5. The algorithm consists of a
single depth first traversal of the original document T . The construction of To and Tr

and the compression algorithm VEC can be easily incorporated into a single traversal of
T . We decoupled the discussions of the two for simplicity.

The details of the algorithm is as follows. During the traversal of the document, we
maintained the parent n′ of the current node n and the path p from the root to n. We use
a boolean variable top to indicate whether the current node belongs to Tr and rlast to
record the last consecutive subtrees crossing the “boundary” of a path in P . A counter
#ordinal is used to record the number of cut edges encountered.

Initially, Tr and To are empty. Line 12-13 show the simplest case where the traversal
does not cross the cut: if top is true (resp. false), we continue to construct Tr (resp.
To). If the traversal crosses the boundary of the projection (Line 01-10), we modified
Tr (Line 02-06) and To (Line 07-10) as follows. First, we remove the cut edge from
Tr (Line 03). Denote n.l as the tag of a node. If n does not form consecutive l nodes

Procedure decompose(T , P)
Input: A doc. tree T and a projection P
Output: Tr and To

Tr = empty; To = empty; top = true; ordinal# = 0; rlast = null

Depth first traversal on T :
On entry of a node n:
Denote p to be the path from the root to n and (n′,n) to be an edge in T
01 if path to n′ ∈ P //across the boundary
02 top = false
03 remove (n′,n) from Tr //due to Line 14
04 if the last child of n′ is not an ordinal number

//for the reduced doc.
05 append a new ordinal node w. ordinal# o and the edge (n′, o) to Tr

06 ordinal#++; top = false
//for the outlier doc.

07 merge last subtree(rlast,To)
08 create o′ as a clone of o
09 create artificial nodes r; append o′ to olist of r; create an edge (r, n)
10 rlast = r

else
11 append n and (rlast, n) to To

else
12 if top == true append n and (n′, n) to Tr

13 else append n and (n′, n) to the rlast-subtree

On exit of a node n:
if p ∈ P then top = true

Fig. 5. Construction of T r
P and T o

P , the decompose procedure

Document Decomposition for XML Compression: A Heuristic Approach 207

with previously visited children of n′ (Line 04), we create a new ordinal (text) node o
with a unique ordinal number #ordinal (Line 05) and append o to Tr. The construc-
tion of the outlier To involves grouping subtrees based on their structure. If the guard
condition in Line 03 ensures that n does not form consecutive l-subtrees with rlast, this
implies rlast has been completely traversed. We use the merge last tree procedure
to append rlast to a group, in To, according to its structure. The grouping can be ef-
ficiently implemented by hashtables [4]. Then we create a new r node and append its
corresponding ordinal number to r. r is set to be the new rlast-subtree. If the guard
condition is satisfied, we continue to build the rlast-subtree (Line 11). The algorithm
requires exactly one scan on T and maintains one rlast-subtree in main memory during
the scan.

3.2 Compression of the Reduced and the Outlier Documents

The reduced and the outlier documents are yet another XML documents. Existing XML

compression techniques can be directly applied to compress these documents. We re-
sume our discussion on compressing the skeleton of XML [4]. Skeleton compression
is also implemented in a depth first traversal of T . The implementation requires a
main-memory hashtable of subtrees encountered during the traversal. On the exit of
a node n, i.e., the entire subtree rooted at n is traversed, we probe the hashtable and
check if such a subtree (structure) is encountered before. If this is the case, we com-
press/share the subtree by adding a reference to the existing subtree in G, the com-
pressed skeleton. Otherwise, we insert n into both G and the hashtable. For example,
the outlier document shown in Figure 4 (a) is compressed to the structure shown in
Figure 4 (b).

The data nodes are handled as follows. When a data node is encountered during the
traversal, we append the data node to a container (vector) which is uniquely identified
by the root-to-leaf path. For instance, at the end of the traversal, the data nodes in the
outlier document shown in Figure 4 (a) are listed below.

/root/r/author: [JC, BC, WF, FG, JS, RH, SV]
/root/r/keyword: [NASA,ARC,NASA,ARC,Non-NASA,Biology,Non-NASA]
/root/r/@olist: [1, 5, 2, 8, 3, 7, 4, 6]

We shall discuss the implementation of the containers for ordinal numbers together
with query processing in the next subsection. It should also be remarked that the com-
pression algorithm can be readily incorporated into the decompose procedure. Neither
the reduced document nor the outlier document is fully materialized.

3.3 Query Evaluation on Decomposed Documents

In this subsection, we illustrate how a query on a document is rewritten into a query on
its decomposed documents. Subsequently, query evaluation on compressed XML [3] is
reused for evaluating queries on decomposed documents.

Denote the query evaluation of [3] as eval. Consider a path query p, /e1/e2/.../en.
The evaluation of p on VEC(T) are rewritten into a query on DVEC(T ,P) as follows.

208 B. Choi

eval(p,VEC(T))
≡ eval(p, DVEC (T , P))
≡ eval(p, DVEC.1)

∪ eval(F (/e1, DVEC (T , P))/e2/.../en, DVEC.2),
∪ eval(F (/e1/e2, DVEC (T , P))/e3/.../en, DVEC.2), ...
∪ eval(F (/e1/e2/.../en−1, DVEC (T , P))/en, DVEC.2),

where F (p, DVEC (T , P)) = for $x in DVEC.2/root
where $x/@o = eval(DVEC.1,p/text())
return $x/r

≡ eval(p, DVEC.1)�
1..n−1 eval(F (/e1/../ei, DVEC (T , P))/ei+1/.../en, DVEC.2)

The rewritten query on the right hand side of the formula comprises two parts. The
first part states that the result of eval(p,VEC(T)) includes the results found in the re-
duced document, i.e., DVEC.1 while the second part states that the result of
eval(p,VEC(T)) also includes the ones found in (1) evaluating /e1/e2/.../ei in DVEC.1
followed by (2) evaluating /ei+1/ei+2/.../en on the outlier document, i.e., DVEC.2. This
requires joins, denoted as F , of the intermediate results from (1) and (2) on ordinal
numbers, which recover cross edges between DVEC.1 and DVEC.2.

Implementation. The overhead introduced by the rewriting involves exactly joins on
ordinal numbers and projections on $x/r. The joins are often needed, e.g., queries with
descendant steps “//”. Hence, it is desirable to pre-compute the joins as well as the
projection in F . A clustered index is built on the result of the joins [20]. That is, we
do not store the containers for ordinal numbers but the join result in F . Consequently,
F are implemented as a scan on the index, as opposed to a few joins on-the-fly. Cost
estimation techniques can be incorporated to further optimize the joins. We plan to
incorporate these techniques into our method in future.

4 Heuristic Algorithm for Determining a Cut

In previous sections, we illustrated the idea of document decomposition and showed
how decomposition may improve compression. The key of the problem is to determine
a good cut P of an input document T . The pseudo-code of our algorithm for this issue
is shown in Figure 6. The overall algorithm can be roughly divided into four phases.
(1) We infer a “schema” S from the input document T . (2) As we construct S, we
construct histograms N to summarize the structural property of T (Line 01). We reduce
the number of stars in S in this phase. (3) Based on the histograms on reduced S and
our cost function, we use a simulated-annealing procedure (Line 02) to progressively
search for a good cut. (4) Finally, we refine the solution obtained (Line 03).

Next, we present a detailed discussion on the four phases of our proposed solution.
The meaning of the parameters in Figure 6 are discussed as we proceed.

Phase 1. Schema inference phase. As remarked earlier, the major variations of the
structure are indicated by the stars in DTDs. We shall consider stars as “structural di-
mensions” of a subtree and subsequently represent a subtree as a data point in a multi-
dimensional space. In this phase, we shall determine all possible stars in a document.

Document Decomposition for XML Compression: A Heuristic Approach 209

Input: T , an XML tree; θsup θH , θC , θS , K
θsup: the minimum support of major stars; θH : the minimum entropy of major stars;
θC : the weight of the query part of Formula 1; θS : the weight of the storage part of Formula 1;
K: the number of scans used in the refinement phase
Output: S : a set of stars where decomposition occurs,
01 (S , N) = infer major stars(T , θsup, θH) //Phase 1 and 2
02 S = simulated annealing(S , N , θC , θS) //Phase 3
03 for i from 0 to K //Phase 4

N2i = recover order(S , 2i)
S = simulated annealing(S , N2i , θC , θS)

04 return S

Fig. 6. Algorithm determine cut(T)

When the DTD of a document is present, we obtain the stars for free. Otherwise,
we infer the probable stars from the document. First, we construct a prefix tree of the
document. (The prefix tree will also be used in later phases.) A node in a prefix tree
represents a prefix occurred in a document and is associated with the support, sup, of
the prefix in the document. Second, we define a support ratio between each pair of
parent-child nodes (A, B) to estimate the possible location of stars. There are three
possible cases for the support ratio:

1. The support ratio is between 0 to 1. This implies B is probably A’s optional child;
2. The support ratio is 1. This often implies a one-to-one relationship;
3. The support ratio is greater than one. This often indicates a one-to-many relation-

ship. We regard the edges in this class as star edges.

There are exceptions of the above implications. Consider a pathological document
in which half of the A nodes do not have B-child and half of the A nodes have exactly
two B-children. The support ratio indicates a false one-to-one relationship. However,
such exceptions are rare, in practice.

Example 1. We illustrate the support ratio with an example shown in Figure 7. The
prefix tree is derived from the XML document shown in Figure 1. The support of the
node is indicated inside the square bracket and the support ratio is indicated on the
edge. We use a “*” to indicate the location of stars.

Phase 2. Initialization phase. A subtree can be readily summarized by a vector: each
star is associated with an entry in the vector and the value of the entry is the number of
repetitions of the star edge in the subtree. For example, consider again the citation

Medline

citation

title [4] Alist [4]

author [6]

abstract KWlist[4]

keyword

[4]

[4]

[1]
*

* *

[6]

4

1 1 11

1.5 1.5

Fig. 7. The prefix tree of T in Figure 1

210 B. Choi

subtrees in the document shown in Figure 1. The vector of the subtrees are (2, 2), (1, 1),
(2, 1) and (1, 2), respectively. Alternatively, subtrees can be viewed as data points in a
structural-dimensional space.

Consider a depth first traversal on a given document T again. The vector of partially-
traversed subtrees are kept in main memory which requires O(d|S|) space. Typically,
the number of stars |S| in a prefix tree is small. However, large |S| causes problems:
(1) Summary structures are built for each stars later; when |S| is large, large amount of
memory is required; (2) A search in a high dimensional space is often inaccurate [2].
Unfortunately, we find a real-world case where S is large: The prefix tree of TREEBANK

(linguistic dataset) contains thousands of stars. This motivates us to distinguish major
and minor stars (dimensions) in the initialization phase. Subsequent search focuses on
the major stars only. This phase consists of two methods.

The first method is to skip processing the stars with small support. A star with small
support may lead to small impact on overall compression. Though simple, this method
has been found effective. For example when we considered the minor stars to be the
ones with a support smaller than 0.5% of the total number of edges in T , the method
prunes more than 95% stars in the prefix tree of TREEBANK.

Another method involves computing the information content of a star (structural
dimension). Specifically, we compute the entropy H of a (local) histogram N of a star s

∈ S as: -
∑

x∈B

pxlog(
1
px

), where B is the set of bins in the histogram, each bin represents

a class of subtrees, px is the probability of encountering x in N , where x ∈ B and
two s-subtrees belong to the same bin (class) if and only if they have the same number
of outgoing s-edges. We build such histogram of each star in S in one scan of T and
compute the entropy of such histograms at the end of the scan. Large entropy implies
the corresponding (star) edges in T are inherently incompressible and are considered
candidates of irregularities in T . The intuition is to project out these irregularities from
T which may leave the reduced subtree more compression-friendly. On the contrary, in
later phases, we skip the stars with an entropy smaller than a threshold.

Specifically, we use two parameters θsup and θH to specify the minimum support
and entropy of a major star. Any star with a support (resp. entropy) smaller than θsup

(resp. θH) is considered a minor star. We shall remove minor stars from S and pass
a reduced S to the next phase for determining good cuts. We refer this process to as
reduction of structural dimensions of subtrees.

We remark that the histograms constructed in this phase summarize local structural
information only. This method is sound: The entropy of histograms with global infor-
mation is at least as large as the one with local information. The reduction based on
local information, though space-efficient, may exclude some globally optimal cuts.

Phase 3. Simulated-annealing phase. Similar to most data-mining algorithms, our
algorithm consists of a simulated-annealing phase which progressively improves the
quality of the solution. We represent a subtree as a vector/data point in the reduced di-
mensions. For each star, a histogram of reduced vectors is constructed. Our search finds
a set of stars Pcur whose decomposition cost is minimized, in the reduced dimensions.

Initially, we randomly choose a Pcur. We assume that the stars in Pcur are not nested.
This property is preserved as the search proceeds. (Nested stars in Pcur are nested

Document Decomposition for XML Compression: A Heuristic Approach 211

cuts, which interact and cause a model inaccurate.) The simulated-annealing process is
guided by the cost (a.k.a. energy) function defined in Formula 1 and 2.

energy(T,P) = θC ×
�

s∈P∪{r}

s.sup + θS ×
�

s∈P∪{r}

|s.N | × s.sup × f(s, P), (1)

f(n, P) =

����
���

1 if n �= r�
s∈P (1 − f(s)) where
f(s) =

�
a∈A(s) a.sup/S(a).sup

where A(s) = s.ancestors and S(a) = a.siblings ∪ {a} if n = r
(2)

The cost function models the query cost and the storage cost of a cut P . The parameter
θC and θS are used to model the relative importance of the query cost and the storage
cost, respectively. Below describes the meaning of the formulae for these costs.

Query cost. The query cost is linearly proportional to the total number of edges across
the cut. The reason is that when a query involves multiple decomposed skeletons, joins
are required to reconstruct (part of) the skeletons. With modern join algorithms, the
joins can be implemented with runtime linear to the number of edges across the cut.
Hence, we have

∑

s∈P∪{r}
s.sup in Formula 1.

Storage cost. The storage cost models the size of the compressed skeletons after de-
composition. Assume that the size of compressed skeleton is proportional to the num-
ber of structurally distinct subtrees in T . Furthermore, as we shall see in experiments,
nested projections often lead to small advantages in compressions. Since such projec-
tions are typically hard to estimate accurately and indeed complicated our model, we
assume nested projections are not allowed. Based on these assumptions, we define the
storage cost as follows. (1) The space required to store s-subtrees is proportional to
the size of the histogram of s |s.N | and the number of s-subtrees sup. Hence we have∑

s∈P

|s.N | × s.sup. (2) To model the size of the reduced document (i.e., the r-subtree),

we need to model the effect of projecting out P on the r-subtree. We define an additional
function f for this purpose. Consider an edge (n1, n2) in a prefix tree. We assume the
storage required to store n2-subtrees is proportional to f (n2), the percentage of n2.sup
among all children of n1, i.e., n2.sup/S(n2).sup, where S(n2) is the siblings of n2
together with n2. We model the cost of storing n1 after projecting out n2-subtree to be
1 - f (n2). Since we want to compute the effect of projecting out s-subtrees on the root
r, we “propagate” the effect to the root by multiplying the value of f (a) for all a in the
ancestors of s. Therefore, we yield Formula 2.

The two costs described above interact in a non-trivial manner: (1) A star s with a
small depth often implies a small sup and a small query cost. (2) However, the number
of structurally distinct s-subtrees, |s.N |, could be large. (3) Projecting s has proximate
impact on the compression of r, modeled by f (r, P). The reverse of the three conditions
applies to stars with a large depth.

Phase 4. Refinement phase. In this phase, we handle the node order (Line 04 of
Figure 6). The order of nodes may cause (1) false negatives when the entropy of N

212 B. Choi

is small but identical subtrees occur mainly alternately or (2) false positive when the
entropy of N is large but consecutive identical subtrees are frequently found. Possi-
ble false positives/negatives can be detected by additional scans on T : Similar to string
compression, we construct histograms of k-consecutive s-subtrees. The order of XML

is recovered as the value of k increases. The stars with sharp increase (resp. decrease)
in entropy as k increases are the candidates of false positives (resp. negatives).

Complexities. The construction of prefix tree and the initialization phase are imple-
mented in one scan of T . The simulated-annealing phase requires a scan of T for
building histograms in the reduced dimension. Depending on the importance of the
ordered-ness in determining the cut for T , another K scans on T are needed in the
refinement phase. Hence, the I/O cost of the algorithm is (2 + K) × |T |.

5 Experimental Evaluation

We conducted an experimental evaluation on the proposed document decomposition
and the heuristic algorithm. We focused mainly on the quality of the cuts returned by the
heuristics presented in Section 4 and briefly studied query performance on decomposed
documents. To evaluate the query performance on decomposed documents, we used the
query modules in [3]. We have implemented a prototype of the heuristics and decom-
position algorithm in C/C++. The prototype is run on a LINUX box running REDHAT

9.0. The CPU was 1.8GHz PENTIUM 4, while the system had 2GB of physical memory.
We allowed the heuristics five tries and a maximum 100K search steps. We defined a
variable I , ranges from 0 to 1, whose value is directly proportional to the maximum
number of stars (paths) allowed in a cut. We considered the stars with the support less
than 0.5% of the total number of edges in the document as minor stars. θC and θS are the
weights of the query component and the storage component of Formula 1, respectively.

Experiments on different datasets. We have applied the heuristics/decomposition
algorithm on a few XML datasets: the Penn TREEBANK linguistic dataset, the XML

benchmark XMARK with scaling factor 1, the computer science bibliography dataset
DBLP, Shakespeare plays in XML, protein dataset SWISSPROT, MEDLINE biological
dataset, and the SKYSERVER astronomical dataset. I and θS /θC are 1. We summa-
rized our results in Table 1. T |V |, G|V | and, G

|V |
r,o are the number of nodes in skeleton

Table 1. Compression result

Doc T |V | G|V | G|E| G
|V |
r,o G

|E|
r,o

TREEBANK 7.1M 475K 1.3M 475K+0K 1.3M+0M
XMARK 1.7M 73K 381K 15K+45K 44K+272K

DBLP 2.6M 4.4K 225K 1.0K+0.4 83K+1K
Shakespr. 180K 1.5K 32K 0.5K+0.5K 2.6K+2.2K

SWISSPROT 3M 59K 778K 2K+7K 33K+241K
ML (3 yr) 36M 586K 5.8M 9.5K+219K 324K+2.1M
ML (all) NA NA NA 54K + 2.8M 6.9M + 66M

SKYSERVER 5.2G 372 371 372+0 371+0

Document Decomposition for XML Compression: A Heuristic Approach 213

without compression, compressed skeleton and decomposed-compressed skeletons, re-
spectively. Similarly, we use |E| to denote the number of edges in these three structures.

We begin our discussions with the simple cases. The results from TREEBANK and
SKYSERVER show that document decomposition produces negligible or no improve-
ment on compression. TREEBANK contains numerous linguistic trees, where each tree
often exhibits a unique structure. Almost all stars in the prefix tree of TREEBANK are
minor. Hence document decomposition does not yield more common subtrees, when it
is compared to the one without. In contrast, SKYSERVER dataset encodes a large rela-
tion; its prefix tree contains one star. The heuristics correctly returns an empty cut.

For the remaining datasets except XMARK, the heuristics returned cuts which im-
proved compression over already compressed skeletons by using five tries only. The
number of nodes in decomposed skeletons ranges from 15% (SWISSPROT) to 66%
(Shakespeare) of that of original compressed skeleton; And the number of the edges in
decomposed skeletons is reduced to 15% (Shakespeare) to 41% (MEDLINE) of the orig-
inal compressed skeleton. Furthermore, by decomposing (all) MEDLINE dataset (39G
bytes), we can store its compressed skeletons in main memory of a commodity com-
puter, which was impossible before.

When the heuristics is applied to XMARK, we observed that the heuristics hits false
local maxima frequently. The reason can be illustrated with the example shown in
Figure 8. Figure 8 (a) shows a simplified XMARK data, in which open and closed auc-
tions contain lists of paragraphs, specifically listpar-subtrees. Common subtree-sharing
does not perform efficiently on listpar-subtrees because there are many distinct para-
graph structures in XMARK. Hence, we encountered the complicated edges shown in
Figure 8 (b). The heuristics sometimes places /XMark/closed auction (alone) into
the cut because this would separate some problematic subtrees from the original doc-
ument. However, after this decomposition, both documents contain the problematic
subtrees (see Figure 8 (c)). To project out all listpar-subtrees from XMARK, a path like
//listpar is needed. Unfortunately, listpar is recursive. This means //listpar specifies
nested cuts, which is not modeled by our formulas. Worst still, listpar-subtrees appear
at a few places in XMARK’s prefix tree which lead to many false local maxima in the
search space. Since the current heuristics does not model correlation between stars, the
search skips such local maxima by chance only.

XMark

1 2 111

open_auction closed_auction

XMark

1’ 2’

listpar listpar

1’ 2’

closed_auction

1’ 2’

open_auction

XMark

listpar listpar listpar listpar

open_auction closed_auction

2

listparlistpar listpar listpar listpar listpar

(a) (b) (c)

Fig. 8. Problematic case in XMARK: (a) sketch of XMARK; (b) compressed skeleton without
decomposition; (c) compressed skeletons with decomposition

Experiments on parameters. We conducted another set of experiments to study the
effects of some parameters of our method on XMARK and DBLP datasets. We reported
the average of the local maxima returned by five tries of the heuristics. We fixed θC /θS

to be 1 and varied the cut size by varying I . When I is 0, there is no decomposition.

214 B. Choi

I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 73K 58K 66K 64K 58K 68K

G
|E|
r,o 381K 303K 339K 315K 300K 329K

Fig. 9. Dec. skeleton size vs cut size (XMark)

I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 4.4K 2.1K 1.5K 2.0K 1.2K 1.6K

G
|E|
r,o 225K 153K 65K 130K 59K 134K

Fig. 10. Dec. skeleton size vs cut size (DBLP)

θC /θS 0.01 0.1 1 10 100

G
|V |
r,o 71K 74K 70K 74K 71K

G
|E|
r,o 360K 370K 351K 372K 356K

|C| 35K 38K 35K 32K 32K

Fig. 11. Dec. skeleton size vs θC /θS (XMark)

θC/θS 0.01 0.1 1 10 100

G
|V |
r,o 3K 2.8K 2.9K 2.9K 3.6K

G
|E|
r,o 163K 156K 166K 164K 195K

|C| 1.2M 932K 944K 810K 808K

Fig. 12. Dec. skeleton size vs θC /θS (DBLP)

For both XMARK and DBLP datasets, we noted that the effectiveness of our approach
increases as the value of I increases until I is close to 1. The size of the search space
of the heuristics increases as I increases. Thus, the heuristics has a higher chance of
returning good cuts. However, when I is close to 1, the search space, hence the number
of local maxima, becomes too large. In such cases, the quality of cuts returned by the
heuristics reduces. The results from XMARK and DBLP datasets exhibited similar trends.
However, the average case of DBLP (Figure 10) is relatively closer to the results in
Figure 1, which were obtained from the best of the five tries. This can be explained by
the problematic case in XMARK discussed earlier.

Consider each pair of adjacent columns in Figure 9 and Figure 10. We obtained the
best compression improvement when I was switched from 0 to 0.2. The improvement
between other consecutive columns was relatively minor. This indicated that in practice,
if decomposition helped compression at all, a small number of stars was sufficient.

In the next experiment, we altered the value of θS and θC and observed the quality
of cuts returned by the heuristics. I has been set to 0.8. The numbers reported are the
average of local maxima returned by five tries. In addition, we reported the number
of edges across the cut |C|. The results were summarized in Figure 11 and Figure 12.
The heuristics reports better compression but worse |C| as θC /θS decreases. The trend
is not observable from the results of XMARK dataset as it contains poorly-compressed
subtrees (e.g.,listpar) not modeled by the cost function.

Figure 13 presented the effect of applying decomposition recursively on DBLP

dataset. Consider the first decomposition. The number of nodes and edges in the de-
composed skeletons are reduced to 23% and 37% of their original values. However,
extra storage is needed to store 359K edges crossing the cut in data vectors. When
decomposition is applied on the reduced document, further improvement on compres-
sion (40% for the nodes and 70% for the edges) can be achieved with an overhead of
storing 116K cross edges. Not surprisingly, when the outlier document is further de-
composed, the improvement on compression is negligible: The heuristics aimed at sep-
arating compression-unfriendly subtrees from the original skeleton and grouped them
in the outlier document. Furthermore, the decomposition of the outlier document re-
quires storing additional 153K edges. This experiment showed that the compression
improvement of our method reduces as more decompositions are applied.

Document Decomposition for XML Compression: A Heuristic Approach 215

dp. G
|V |
r,o G

|E|
r,o |C|

0 4.4K 225K 0
1 1.0K + 0.6K 83K + 2K 359K
3 (0.6K + 48) + (25K + 0.1K) + 359K +

(0.5K + 36) (2K + 67) (116K + 153K)

Fig. 13. Efficiency of recursive cuts on DBLP Fig. 14. Performance of XMark queries
involving cross edges

Experiments on XMARK queries. We conducted an experiment on querying XMARK

dataset with or without decomposition. The paths in the cut returned by our heuristics
are listed below.

/site/regions/europe/item/incategory

/site/regions/namerica/item/incategory

/site/people/person/watches/watch

/site/open auctions/open auction/annotation/description/parlist/listitem

/site/closed auctions/closed auction/annotation/description/parlist/listitem

Except Q6, Q7, Q15, Q19, all queries in XMARK benchmark [17] can be evaluated
by using the reduced document alone and hence query performance is improved by
evaluating the queries on smaller skeletons. We summarized the performance of the
queries involving cross edges in Figure 14. Q1, Q2 and Q3 are renaming of the relevant
path queries in Q6/Q19, Q15 and Q7 in [17], respectively.

Sort-merge join algorithm is used for the joins on data vectors encoding the cross
edges. The result of Q1 and Q3 are similar. The outlier skeleton participates the query
because of the descendant step in the path queries. The join on the cross edges intro-
duces a significant overhead on query processing. We noted retrospectively that the
outlier skeleton is small and the queries on the outlier skeletons are evaluated to empty
sets. In this case, the join could be eliminated by evaluating the corresponding path
queries on the two skeletons prior to the join. By doing so, query performance on skele-
tons with and without decomposition were comparable. The selectivity of Q2 is low.
The join in Q2 required less time than the joins in Q1 and Q3. In addition, path evalu-
ation on the decomposed skeletons is faster simply because smaller skeletons are being
processed.

6 Related Work

XML compression techniques can be roughly categorized into syntactic technique and
semantic technique. The compression technique considered in this paper is a semantic
compression technique derived from sharing of common subtrees [4, 3]. Semantic com-
pressions have also been proposed to support data mining applications [1, 10, 11]. The
objective of their schemes is to compute representative tuples of a relation. However,
[1, 10, 11] assumed relational data and their support on XML remains unexplored.

216 B. Choi

Closest to our work is the STORED system [7]. The system transforms XML into a
set of relations and subsequently, store, query and manage XML in a relational database
system. The major distinction between our scheme and STORED is that we shred XML

to XML, as opposed to relations. Note also that an extreme of our method, full decom-
position, yields the edge table of an input document, where skeleton compression is
no longer relevant. At the core of STORED is a data-mining algorithm for typical tree
structures [21] in a set of trees. However, without projections, as discussed in [7], [21]
would generate a relational schema that covers only a small portion of the data. Due to
the impedance mismatch of the tree model and the relational model, storing the outliers
(irregular or dissimilar structures) in relations can be space-inefficient. In comparison,
we treat the outliers as an XML document and compress them with XML compression.

There is a host of work on mining transactional data [9]. Typically, a database con-
sists of a set of transactions, each of which represents a set of items. There is a natural
connection between our algorithm and this class of algorithms. Subtrees can be readily
regarded as transactions. Unfortunately, the number of subtree structures in a document
is O(2|T |). We tackled this problem by pruning the minor subtrees (stars) through a
coarse estimation followed by a scalable way of summarizing the subtree structures.

Finally, efforts are spent on syntactic XML compressors [6, 16, 5, 18]. [6, 16, 18, 5]
treat XML data as tokens of elements, attributes and text. Customized syntactic com-
pression is derived for handling these data separately. These techniques (e.g., arithmetic
coding, dictionary-based static coding) are fundamentally different from ours.

7 Conclusions and Future Work

We have proposed a heuristic approach of decomposing XML document for yielding
better compression. By using our method, we have not encountered a real-world dataset
whose decomposed-compressed skeletons could not be fit into the main memory of a
commodity computer, which was not the case before. Despite the improvement on com-
pression, the new compressed representation may introduce overhead on query process-
ing. This paper presented an experimental study on the decomposition and the heuristic
algorithm and preliminary results on querying decomposed-compressed skeletons.

We have planed to extend our algorithm for optimizing compression in the presence
of query workload and statistics to optimize queries. We are investigating on applying
the decomposition as a data partition algorithm of distributed XML query processing.

References

1. S. Babu, M. N. Garofalakis, and R. Rastogi. Spartan: A model-based semantic compression
system for massive data tables. In SIGMOD, pages 283–294, 2001.

2. S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbor
search in high-dimensional data space. In PODS, pages 78–86, 1997.

3. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing and query-
ing large xml repositories. In ICDE, pages 261–272, 2005.

4. P. Buneman, M. Grohe, and C. Koch. Path Queries on Compressed XML. In VLDB, pages
141–152, 2003.

Document Decomposition for XML Compression: A Heuristic Approach 217

5. J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In Data Com-
pression Conference, pages 163–172, 2001.

6. J. Cheng and W. Ng. Xqzip: Querying compressed xml using structural indexing. In EDBT,
pages 219–236, 2004.

7. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with STORED. In
SIGMOD, pages 431–442. ACM Press, Jun. 1999.

8. J. Gray, D. Slutz, A. Szalay, A. Thakar, J. vandenBerg, P. Kunszt, and C. Stoughton. Data
mining the SDSS Skyserver database. Technical Report MSR-TR-2002-01, Microsoft, 2002.

9. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
10. H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compression and pattern extraction with

fascicles. In VLDB, pages 186–198, 1999.
11. H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung. Itcompress: An iterative semantic

compression algorithm. In ICDE, pages 646–657, 2004.
12. Language and Information in Computation at Penn. Penn treebank project. Available at

http://www.cis.upenn.edu/∼treebank/.
13. M. Ley. Dblp bibliography. Available at http://www.informatik.uni-trier.

de/˜ley/db/, Mar 2005.
14. H. Liefke and D. Suciu. XMill: an efficient compressor for XML data. In SIGMOD, pages

153–164, 2000.
15. E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler, G. Schreiber, and D. Connolly.

Semantic Web. W3C Working Group, August 2005. http://www.w3.org/2001/sw/.
16. J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a queriable compression for xml data. In

SIGMOD, pages 122–133, 2003.
17. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A

benchmark for XML data management. In VLDB, pages 974–985, 2002.
18. P. M. Tolani and J. R. Haritsa. Xgrind: A query-friendly xml compressor. In ICDE, pages

225–234, 2002.
19. U.S. National Library of Medicine. MEDLINE distributed in XML format. Available at

http://www.nlm.nih.gov/bsd/licensee/data elements doc.html.
20. P. Valduriez. Join indices. TODS, 12(2):218–246, 1987.
21. K. Wang and H. Liu. Discovering typical structures of documents: a road map approach. In

SIGIR, pages 146–154, 1998.
22. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE

Transactions on Information Theory, 23(3):337–343, May 1977.

http://www.cis.upenn.edu/~treebank/
http://www.informatik.uni-trier.de/~ley/db/
http://www.nlm.nih.gov/bsd/licensee/data_elements_doc.html

	Introduction
	Notations and Background
	Document Decomposition
	Construction of the Reduced and the Outlier Documents
	Compression of the Reduced and the Outlier Documents
	Query Evaluation on Decomposed Documents

	Heuristic Algorithm for Determining a Cut
	Experimental Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

