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Abstract. Frequent pattern mining is an important data mining problem with
wide applications. The huge number of discovered frequent patterns pose great
challenge for users to explore and understand them. It is desirable to accurately
summarizing the set of frequent patterns into a small number of patterns or pro-
files so that users can easily explore them. In this paper, we employ a probability
model to represent a set of frequent patterns and give two methods of estimating
the support of a pattern from the model. Based on the model, we develop an ap-
proach to grouping a set of frequent patterns into k profiles and the support of
frequent pattern can be estimated fairly accurately from a relative small number
of profiles. Empirical studies show that our method can achieve compact and ac-
curate summarization in real-life data and the support of frequent patterns can be
restored much more accurately than the previous method.

1 Introduction

Mining frequent patterns or itemsets is a fundamental and essential problem in many
data mining applications, such as association rule mining, classification, and clustering
(e.g. [3, 7, 17]). There are a host of frequent pattern mining algorithms (e.g. [3, 9]) that
discover the complete set of patterns that occur in at least ξ (minimum support) fraction
of a dataset. The complete set of frequent patterns is often huge in number, which
makes the interpretability of frequent patterns very difficult. The concepts of closed
frequent patterns and maximal frequent patterns usually can help in reducing the output
size. However, they can only partly alleviate the problem. The size of closed frequent
patterns (or maximal frequent patterns) often remains to be very large and thus it is still
difficult for users to examine and understand them.

Recently, several proposals were made to discover k patterns or profiles. This allows
users to specify the value of k and thus only discover a small number of patterns or
approximation. The concept of top-k patterns is proposed by Han et al [10]. Although
this provides users the option to discover only the k most frequent patterns, this is not
a generalization of all frequent patterns satisfying a support threshold. k covering sets
was proposed by Afrati et al. [1] to approximate a collection of frequent patterns, i.e.
each frequent pattern is covered by at least one of the k sets. The proposal is interesting
in generalizing the collection of patterns into k sets. However, the support information is
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ignored in the approximation and it is unknown how to recover the support of a pattern
from the k sets. Support is a very important property of a pattern and plays a key role
in distinguishing patterns.

Yan et al [19] proposed an approach to summarizing patterns into k profiles by con-
sidering both pattern information and support information; each cluster (profile) is rep-
resented with three elements: the master pattern, i.e. the union of the patterns in the
cluster, the number of transactions supporting the clusters, the probability of items of
the master pattern in the set of transactions supporting the pattern. The supports of fre-
quent patterns can be estimated from the k clusters. It is assumed in [19] that the items
in the master pattern are independent in each profile. The independence model is sim-
ple and easy to learn, but it is fairly inaccurate since items are usually not independent.
However, it is too expensive to consider n-dimensional probability distribution, where
n is the number of items.

In this paper, we adopt an alternative probability model to represent a profile com-
posed of a set of frequent patterns. Instead of assuming the independence among items
in [19], we consider the pairwise probabilities that are still easy to compute. From
the pairwise probabilities, we build simple Bayesian Network to estimate the
n- dimensional probability distribution, and thus can estimate the supports of the pat-
terns. Alternatively, we can also compute a rough support estimation for the patterns
directly from the pairwise probability. With the model, we can measure the similarity
between two profiles (and patterns) using Killback-Leibler divergence and a comple-
mentary distance score, and thus arrange all patterns into a set of (hierarchial) groups.
In the hierarchical tree, users can explore the frequent patterns in a top-down man-
ner as suggested in [19]. Our methods can successfully summarize patterns into tens
of profiles while the support of patterns can be recovered accurately. We conduct ex-
tensive experiments on several real datasets. Our method can summarize thousands of
patterns accurately using only tens of profiles on all real datasets we tested. Compared
with method in [19], our methods make great improvement in summarization quality
measured by restoration error.

The rest of this paper is organized as follows: Section 2 will give the problem state-
ment. In Section 3, we present the probability model ro represent profiles and methods
of estimating the supports of frequent patterns from the profiles. We introduce algo-
rithms for grouping frequent patterns into profiles in Section 4. The experimental results
are reported in Section 5. Section 6 discusses the related work. Finally we conclude this
paper in Section 7.

2 Problem Statement

Let I = {i1, i2, ..., in} be a set of items which represent attribute values in a transaction
database DB. A pattern (or itemset) X is a non-empty subset of I. Given a DB, the
support of a pattern X , denoted as sup(X), is the fraction of tuples in the DB which
contains X .

Definition 1. Frequent Pattern: Given a minimum support threshold ξ (0 ≤ ξ ≤ 1)
and a database DB, a pattern X is frequent if sup(X) ≥ ξ.
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Definition 2. Closed Frequent Pattern: A frequent pattern X is closed if there does not
exits a pattern X ′ such that X ⊂ X ′ and X is contained by the same set of tuples as X ′.

Closed frequent patterns are a lossless compression of frequent patterns and the com-
plete set of frequent patterns and their supports can be derived from the set of closed
frequent patterns. The size of closed frequent patterns is usually (much) smaller than the
size of frequent patterns. Hence, in this paper we summarize closed frequent patterns
as [19] while the proposed method equally applies to summarize frequent patterns.

Table 1. An example of database transactions

Transaction Number of transactions
acd 100
bcd 100
abcd 800

Table 1 shows a sample dataset, where the first column represents the transactions
and the second the number of transactions. For example, 100 transactions have only
items a, c, and d; and 100 transactions have only items b, c, and d. There are totally
1000 transactions in this example. If we set the minimum support at 50%, clearly pattern
< abcd > is frequent. Additionally, we know that all its subsets are frequent as well, i.e.
< a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd >. Among these 15 frequent
patterns, we can find 4 closed patterns according to the definition 2, which are <
cd, acd, bcd, abcd >. As one can see, the number of closed frequent patterns is much
less than that of frequent patterns.

We observe that in this example the supports of all the 4 closed patterns are very
close to each other and they are similar in terms of their items. We could summarize the
4 patterns into one fermentative pattern < abcd >.

Problem statement. Given a set of frequent closed patterns CP = X1, X2, ..., Xm that
are mined from database DB = t1, t2, ...tn, pattern summarization is to group the m
closed frequent patterns into k pattern profiles, each of which is represented with a
probability model.

3 Model of Profiles

Suppose that patterns X1, ... Xs are grouped together to form a profile. The profile can
be characterized with two important properties: one is master pattern χ = X1 ∪ X2 ∪
... ∪ Xs generated by the union of the m patterns in the group; the other is the set of
transactions DBu = DBX1 ∪ DBX2 ∪ ... ∪ DBXs . Consider these information, we
propose a probability model to represent the profile.

Definition 3. Profile Model: Let X1, X2, ..., Xs be a set of patterns and DB′ =
∪iDBXi , i = 1, ..., s. A summarization profile over X1, X2, ..., Xs is a triple
Φ =< χ, ρ, θ >. χ = X1 ∪ X2 ∪ ... ∪ Xs is the master pattern of X1, X2, ..., Xm; ρ =
|DB′|/|DB| is defined as the support of the profile; suppose that χ = {x1, x2, ..., xt},
θ is composed of two parts:
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1. p(xi = 1) = |DBxi |/|DB′|, where xi ∈ χ and DBxi is the set of tuples in DB′

that contain item xi.
2. p(xi = 1, xj = 1) = |DBxi∪xj |/|DB′|, where xi, xj ∈ χ ∧ i �= j and DBxi∪xj is

the set of tuples in DB′ that contain items xi and xj .

Given p(xi = 1), p(xj = 1) and p(xi = 1, xj = 1), one can obtain the probability
distribution of p(xi, xj) in the set of tuples DB′ using the inclusion-exclusion principle:
p(xi = 1, xj = 0) = p(xi = 1) − p(xi = 1, xj = 1); p(xi = 0, xj = 1) = p(xj = 1)
− p(xi = 1, xj = 1); and p(xi = 0, xj = 0) = 1− p(xi = 1) − p(xj = 1) +
p(xi = 1, xj = 1).

Table 2. An example of profile

a b c d ab ac ad bc bd cd
probability 0.9 0.9 1 1 0.8 0.9 0.9 0.9 0.9 1

Using the dataset in Table 1, we can build a pattern profile for < abcd >. Table 2
shows the profiles by deriving the distribution vectors for the sample datasets. For ex-
ample, p(a) = 100+800

1000 = 0.9. In addition, without accessing the original dataset, we
can infer that < abd > is less frequent than the < acd >. Pattern profile actually
provides more information than the master pattern itself; it encodes the distribution of
sub-patterns.

The k-set model in [1] represents the collection of patterns only with a master pattern
χ = X1 ∪ X2 ∪ ... ∪ Xs, and thus the support information is lost. In [1], the profile
is represented not only by the master pattern but also by the probability distribution of
items in χ in the set of transactions DB′ = DBX1 ∪ DBX2 ∪ ... ∪ DBXs . The key
difference of our model from that in [19] is that we include the pair-wise probability
distribution of items in DB′, while it is assumed that items are independent boolean
random variables in [19]. As to be shown, the pair-wise probability not only allows us
to build more accurate probability model to characterize the patterns in a profile, but
also provides better measures to group patterns into profiles.

3.1 Estimate Support Using Profiles

In this subsection, we will present two methods of estimating the support of a pattern
given a profile. The first is based on a simple Bayesian model derived from the pairwise
probability and then applies on chain rule to compute the joint probability of items in a
pattern; the second is simplified version of the first method.

Before presenting our methods, we first give some background on estimating the
probability. The support of a pattern in dataset DB can be regarded as the summary of
the probability that the pattern occurs in each transaction.

p(X |DB) =
∑

t∈DB

p(X |t) ∗ p(t)

where p(t) = 1/|DB| and p(X |t) = 1 if X ∈ t, 0 otherwise.
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We regard the probability of observing a pattern as the probability that the pattern is
generated by its profile times the probability of observing the profile from a transaction.

p(X |t) ≈ p(X |Φ, t) ∗ p(Φ|t) ≈ p(X |Φ) ∗ p(Φ|t),

where we assume the conditional independence p(X |Φ, t) = p(X |Φ). According to the
model, one can estimate the support for a given pattern X from the profile that it belongs
to. Given a profile Φ over a set of patterns X1, X2, ..., Xs, the estimated support for X
based on the profile Φ is

ŝ(X) = Φ.ρ ∗ p(X |Φ) (1)

where Φ.ρ = |DBX1 ∪ ... ∪ DBXs |/|DB|.
The problem here is how to estimate the p(X |Φ). Our first approach to estimating

probability p(X |Φ) is to build a simple Bayesian network, a Chow-Liu tree model, for
each profile using the pairwise probability. We first compute the mutual information
between each pair of items in a profile, and then compute the minimum spanning tree
from the full graph whose nodes are the items and edges are the mutual information.
After obtaining the minimum spanning tree, i.e. a polytree Bayesian network, we can
use the Pearls’ belief propagation algorithm [15] to compute p(X |Φ).

The Chow-Liu tree approximates an nth-order distribution by a product of n -1 sec-
ond order component distributions. The Chow-Liu Tree structure is proved to be the
optimal one in the sense of Maximum Likelihood criterion [6]. Before introducing the
algorithm for building Chow-Liu tree model [6], we first give the formula to compute
mutual information between two variables:

I(X, Y ) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)
(2)

Intuitively, I(X, Y ) measures the amount of information that random variable X con-
tains about Y (and vice versa). The higher of the value, the more correlated are the two
variables; I(X, Y ) = 0 if X and Y are independent.

We need to perturb the probabilities p(x, y), p(x) and p(y) to avoid zero probabili-
ties. For example, we compute p′(x) as follows:

p′(x) = λu + (1 − λ)p(x) (3)

where λ is a constant, 0 < λ < 1, and u is the prior of x and can be the background
distribution of item x.

Algorithm 1 outlines how to learn a Chow-Liu tree structure for a profile Φ. In the
beginning, it computes the mutual information using Equation 2 between any pairs of
items in the profile Φ. In lines 4-10, it repeats until a Chow-Liu tree is discovered. The
algorithm in lines 4-10 aims to find a spanning tree with the maximal mutual informa-
tion, which can be implemented with Kruskal’s algorithm of Prim’s algorithm [8] for
finding minimum spanning tree.

Complexity analysis. In order to compute the mutual information of each pair, we need
to scan the database once to compute the probability. It takes O(f2n), where n is the
number of tuples supporting the profile i.e. Φ.ρ × |DB| and f is the size the largest
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Input: Transaction database DB
Profile Φ = < χ, ρ, θ >

Output: a Chow-Liu tree model.

1. let MI be the set of mutual information I(xi, xj) between any two items xi, xj in Φ.χ;
2. initiate a tree T (V, E), where each item in Φ.χ becomes one node in V and E = ∅;
3. initiate k = 0;
4. while k < |Φ.χ| − 1
5. select pair (xi, xj) such that xi, xj = argmaxxi,xj I(xi, xj);
6. if there is no cycle formed in T then
7. add edge (xi, xj) into T ;
8. E = E ∪ (xi, xj)
9. k = k + 1;
10. MI = MI\{(xi, xj)};
11. return T ;

Fig. 1. Algorithm CLtree

tuple. It takes O(d2) to compute the mutual information, where d is the size of Φ.χ.
If one adopts Kruskal’s algorithm to compute the minimum spanning tree (lines 4-10),
it takes O(d2logd); it takes O(d2 + dlogd) if one uses Prim’s algorithm [8]. Hence,
Algorithm 1 can finish in O(f2n + d2 + d2logd) using Kruskal’s algorithm.

After the Chow-Liu tree model is learned, we can compute p(X |Φ) based on the
chain rule and some specified order of the items in χ:

P (X |Φ) = p(x1, Φ)
∏

p(xi|xi−1, ..., x1, Φ) (4)

p(x1, Φ) is already in the profile Φ and the p(xi|xi−1, ..., x1, Φ), i = 2, ..., d (d is the
size of X) can be computed using the belief propagation algorithm [15]. The belief
propagation algorithm is a message-passing scheme that updates the probability dis-
tributions for each node in a Bayesian network in response to observations of one or
more variables, i.e. to compute the probability of xi after the values of xi−1, ..., x1 are
set as evidence. Hence,

∏
p(xi|xi−1, ..., x1, Φ) can be computed by taking the product

of belief measures. On a polytree (Chow-Liu tree is a polytree), the belief propaga-
tion algorithm converges in time proportional to the number of edges in the tree, i.e.
|Φ.χ| − 1. Note that there is no need to propagate the impact of each instantiation to
the entire polytree; the propagation are transmitted only to those variables in P (X |Φ).
Interested readers can refer to [15] for the algorithm details.

Our second method further approximates the nth-order distribution by replacing the
higher order conditional probabilities with second order ones:

P (X |Φ) = p(x1, Φ)
∏

p(xi|xi−1, Φ) (5)

The above formula approximates p(xi|xi−1, ..., x1, Φ) with p(xi|xi−1, Φ), and thus
learning Bayesian network is not required. The second method will be more efficient
than the first one. As to be shown in experiment, this simplified model can also improve
greatly the independent model in [19].
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The probability model of profiles provides a method of representing a set of patterns
in a compact way and methods of recovering their supports. The remaining problem is
how to group the set of patterns into k profiles.

4 Grouping Patterns

In this section, we first introduce the similarity measures between the profiles and then
describe a clustering algorithm using the similarity measures.

The key of clustering patterns into profiles with high quality is a good distance mea-
sure for the patterns and profiles as well. At the beginning of the clustering, each pattern
can be regarded as a profile with triple elements as described in the previous section.
Hence, one ideal distance measure between two profiles Φp and Φq should consider (1)
the overlapping of master patterns Φp.χ and Φq.χ; (2) the similarity of the probability
distribution of items in the two profiles, which can reflect the correlation between the
transactions that support the two profiles; (3) the support of the two profiles.

These three factors are correlated one another. Kullback-Leibler divergence (KL-
divergence) is widely used to compute the divergence between two probability distri-
butions and is also adopted in [19]. We choose KL-divergence to measure the distance
between two profiles since it considers the three factors, especially the first two, of the
profiles: if two patterns differ greatly in the items (of their master patterns), or the two
probability distributions differ greatly, the KL distance will be large; if the profiles are
similar in master patterns as well as probability, it is highly possible that their supports
are similar (Note that it is not sufficient).

The KL-divergence of two variable can be computed as follows:

KL(x||y) =
∑

x,y

p(x)log
p(x)
p(y)

(6)

When the p(x) and q(x) have zero probability, KL(x||y)= ∞. This can be avoided by
smoothing the p(x) and q(x) as Equation 3.

The smaller KL(x||y) value is, the more similar of the distributions of variables
x and y. In our profile model, there are distributions for pairwise variables and single
variables and they contain overlapping information. We consider three combinations to
compute the KL-divergence of the two profiles.

1. KL(Φp||Φq) =
∑

xi,xj∈C KL(p(xi, xj)||q(xi, xj)),
where C = Φp.χ ∪ Φq.χ;

The formula is simple and computes the KL-divergence using joint distribution for
every pair of items in the union of the master patterns of the two profiles.

2. KL(Φp||Φq) =
∑

xi,xj∈C KL(p(xi, xj)||q(xi, xj)) +
∑

xi∈D KL(p(xi)||q(xi)),
where C = Φp.χ ∩ Φq.χ if |Φp.χ ∩ Φq.χ| > 1; C = ∅ otherwise, and D =
Φp.χ ∪ Φq.χ − C;

The formula computes the KL-divergence using the joint distribution for common
pairs of items in the master patterns of the two profiles, and computes the KL-
divergence using the distribution of single item for items that appear only in one
master pattern of the two profiles.
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3. KL(Φp||Φq) =
∑

xi,xj∈Φp.χ∨xi,xj∈Φp.χKL(p(xi, xj)||q(xi, xj)) +
α × KL(p(Φp.χ)||q(Φp.χ)) + β × KL(p(Φq .χ)||q(Φq.χ)),
where α = 1 if |Φp.χ| = 1; 0 otherwise, and β = 1 if |Φq.χ| = 1; 0 otherwise.

The formula can be regarded as a combination of the above two methods: it employs
the pair wise distribution if a pair appears in at least one of the master patterns; it
employs the distribution for single item if the master pattern is a single item.

We introduce one complementary measure when two patterns have the same
KL-divergence score. This often happens especially when the profile is composed of
one pattern in the beginning of clustering. For example, consider three patterns X1 =
{abcd, 100}, X2 = {abef, 500} and X3 = {ab, 600}, where the pattern and its sup-
port are separated by comma. It is easy to verify that KL(X1||X2) and KL(X1||X3)
are the same whichever the three combination we use. In this example, suppose that
we want to cluster the three patterns into two groups. Intuitively we should group X2
and X3 together but not X1 and X2 although their KL-divergences are the same. This
is because X2 and X3 have similar number of support and thus their transactions that
support them likely have large overlapping. This example implies that KL-divergence
score alone may not be sufficient sometimes.

We can accurately compute the overlapping of two patterns (or profiles) Φp and
Φq by

D(Φp, Φq) = (DBΦp ∩ DBΦq)/(DBΦp ∪ DBΦq)

This measure is proposed in [18] to compute the similarity of patterns. But it takes
O(|DB|) to compute one pair of patterns and thus is relatively expensive. Instead,
we use a simplified score and find it achieves reasonably good results in all our
experiments.

D′(Φp, Φq) = |Φp.ρ − Φq.ρ|/max(Φp.ρ, Φq.ρ) (7)

where Φp.ρ, Φq.ρ are the support of Φp and Φq respectively.
In what follows, we will introduce how to cluster the patterns based on the two

measures introduced above. We adopt hierarchical agglomerative clustering to group
profiles. Hierarchical clustering is shown to obtain stable results in [19] in clustering
frequent patterns. But other clustering methods, such as K-means, can be adopted to
cluster profiles.

Hierarchical clustering can not only produce k profiles, but also generate a dendro-
gram which allows users to explore the k profiles in a top-down manner. Algorithm 2
outlines the hierarchical clustering method for profiles. In line 4, the algorithm com-
putes the pair-wise KL-divergence (Equation 6) and computes the complementary dis-
tance measure (Equation 7) in line 5. Note that we only compute the KL-divergence
score between Φi and Φj using KL(Φi||Φj) (i < j) although the KL score is not
symmetric. We found that the final clustering results are similar even if we compute
KL(Φj ||Φi). In lines 6-12, the algorithm repeats until the number of clusters becomes k.
At each iteration, the algorithm picks two clusters that have the smallest KL-divergence
score; if several pairs of clusters have the same smallest KL-divergence score, it picks
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Input: Transaction database DB
Pattern set X= {X1, X2, ...Xm}
Number of profiles K

Output: a set of pattern profiles Φ1, ..Φk .

1. initialize k = m clusters, each of which contains one pattern;
2. for each Φi

3. for each Φj , j < i
/* compute the pairwise KL divergence between Φi and Φj ;*/

4. DIST1ij = KL(Φi||Φj)
/* compute the complementary distance between Φi and Φj ;*/

5. DIST2ij = D′(Φi, Φj)
6. while k < K
7. select Φp and Φq such that DIST1pq is the smallest among

all DIST1ij and DIST2pq is the smallest among all DIST2ij

whose DIST1ij = DIST1pq;
8. merge clusters Φp and Φq to a new cluster Φr;
9. Φr.χ = Φp.χ ∪ Φq .χ
10. DBΦr = DBΦp ∪ DBΦq

11. update profile of Φr

12. compute similarity scores between Φr and other profiles
13. scan dataset to update the K profiles
14. return Φi (i = 1, ...K)

Fig. 2. Algorithm HCluster

the pair of clusters with the minimum complementary distance. In line 9, the algorithm
updates the master pattern of the new cluster by combining the master patterns from the
two clusters generating the new cluster. In line 10, the algorithm computes the combined
transactions supported by the new profile.

In line 11, the algorithm needs to update the probability of the new profile. One
method is to rebuild the accurate profile after two profiles are combined. However, this
is expensive since computing profile needs to scan the original dataset. Instead, we
approximate the probability p(x,y) of the profiles (we approximate p(x) similarly):

p(x, y|Φr) =
Φp.ρ

Φp.ρ + Φq.ρ
p(x, y|Φp) +

Φq.ρ

Φp.ρ + Φq.ρ
p(x, y|Φq) (8)

Complexity analysis.The initial KL-divergence computation takes O(m2d2), where
m is the number of patterns and d is the size of the maximum master pattern of all
profiles. The computation of initial complementary distance takes O(m2). For each
cluster Φp, we maintain a distance list between Φp and other clusters and sort them
in non-descending order. When a new cluster is generated, we create and sort a dis-
tance list for it in time O(mlogm). Thus the hierarchical clustering itself can be done
in O(m2logm). Since we adopt the approximation as Equation 8 to compute the pro-
file of the merged cluster, and thus we do not need to scan the dataset. It can be up-
dated in O(d2) time. Finally, we scan the dataset to update the K profiles, which takes
d2nK .



180 G. Cong et al.

Quality evaluation. From a high quality profile, one should be able to estimate the sup-
port of a frequent pattern as close as possible. In this paper, we adopt the same quality
measure as that used in [19], namely restoration error:

J =
1

|T |
∑

X∈T

|ŝ(X) − s(X)|
s(X)

(9)

where T is the set of frequent patterns to be evaluated. Restoration error is the aver-
age relative error between the estimate support of a pattern and its real support. It is
desirable that the restoration error is small, and thus profiles can provide an accurate
estimation.

Given a pattern, it may be covered by the master patterns of several profiles. Hence,
we need to estimate these supports for it. However, we only select the maximum one by
following the method in [19].

ŝ(X) = maxΦi ŝ(X |Φi)(i ∈ [1, k]) (10)

We realize that there are other options to make the selection. For example, given a
pattern and several profiles whose master patterns cover the pattern, we can pick the
profile whose master pattern is the most similar to the given pattern to estimate support
for the given pattern.

5 Empirical Study

In this section, we report the performance evaluation of our summarization method.
The algorithms were implemented with C++. All the experiments were conducted on
2.4GhZ, 512M memory Intel PC running Linux.

We used three real-life datasets:

– Mushroom. The Mushroom dataset consists of 8124 hypothetical mushroom sam-
ples with 119 distinct features; each sample has 23 features. This is a dense dataset
and is available from the UCI machine leaning repository 1.

– BMS-Webview1. The BMS-Webview [22] is a web click-stream dataset. The
dataset consists of 59602 web sessions (transactions) with 497 distinct product
pages (items).

– BMS-POS. The BMS-POS [22] contains seven years worth of point-of-sale data
from a large electronic retailer. Each item represents a product category and each
transaction is a customer’s purchase transaction consisting of all the product cat-
egories purchased at one time. The dataset consists of 515597 transactions with
1657 distinct items.

We first evaluate the three combinations of computing KL-divergence given in
Section 4, then compare our methods with the existing method, and finally evaluate
the effect of probability model on clustering results and restoration error. We employed
restoration error as the evaluation metric as [19] does.

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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5.1 Comparison with Existing Method

Before we compare with the exiting summarizing method, we first evaluate the three
combinations in Section 4 of computing the KL-divergence score. We apply the three
combinations to compute the KL divergence in the clustering algorithm while using the
Equation 5 to estimate the supports of frequent patterns. Figure 3 shows the results on
the dataset BMS-Webview1. The combination 2 and combination 3 consistently out-
perform combination 1 while the difference between combination 2 and 3 is trivial. We
have obtained qualitatively similar results on the other two datasets. One possible rea-
son for the worse performance of combination 1 is that it considers some pairs of items
that do not appear in the same profile, i.e. such pairs do not represent any profile, and
thus it is not meaningful to compute the divergence of such pairs.
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Fig. 3. The effect of different combinations to compute KL score on BMS-Webview1

We compare our algorithms against the latest work in [19] in terms of restoration
error. The algorithm summary denotes the summarization method in [19]. According to
the results of comparing three combinations given in Section 4, we use third combina-
tion to compute the KL divergence score for our methods. Furthermore, the algorithm
summary+ denotes the summarization method that uses the Equation 5 to estimate the
support of a pattern; and the algorithm summary++ employs the Equation 4 to estimate
the support of a pattern.

We generated a set of 688 frequent closed patterns from Mushroom dataset by setting
minimum support at 25% (The same set of frequent closed patterns was used in [19]).
The maximum length of frequent patterns is 8. Figure 4 shows the average restora-
tion error over the closed frequent patterns. Compared with the summary [19], both
summary+ and summary++ can reduce the restoration error by at least 50%. The 688
patterns can be successfully summarized into 10 profiles with reasonable good quality:
the average restoration error is less than 0.1.

We generated a set of 4195 frequent closed patterns from BMS-Webview by setting
minimum support at 0.1% (the setting is the same as in [19]) and the maximum length
of pattern is 6. Figure 5 shows the average restoration error over the set of closed fre-
quent patterns. Both summary+ and summary++ outperform the summary by several
times in terms of restoration errors. The summary++ can reduce the restoration error of
summary+ by 50%. The 4195 patterns can be successfully summarized into 50 profiles
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Fig. 4. Restoration Error for Mushroom
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Fig. 5. Restoration Error for BMS-Webview1
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Fig. 6. Restoration Error for BMS-POS

with reasonable good quality: the average restoration error is 0.11 for summary+ and
0.05 for summary++ while it is 0.82 for summary. The restoration error is only 0.20 for
summary+ and 0.09 for summary++ compared with 0.92 for algorithm summary when
we cluster patterns into 10 profiles.

We generated a set of 6646 frequent closed patterns from BMS-POS by setting mini-
mum support at 0.4% and the maximum length of frequent patterns is 6. Figure 6 shows
the average restoration error over the set of closed frequent patterns. Both summary+
and summary++ outperform the summary by several times in terms of restoration er-
rors. The summary++ can reduce the restoration error of summary+ by 50%. The 6646
patterns can be successfully summarized into 50 profiles with reasonable good quality:
the average restoration error is less than 0.1 (0.096 for summary+ and 0.053 for sum-
mary++). The restoration error is only 0.142 for summary+ and 0.077 for summary++
compared with 0.752 for the summary when we summarize patterns into 10 profiles.

5.2 The Effect of Probability Model

In this subsection, we try to distinguish the effect of profile model on the quality of
support restoration (Section 3) and the quality of the clustering results (Section 4) al-
though the support restoration is closely related to clustering quality. We group the set
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of frequent patterns based on the model of algorithm summary, then build our proba-
bility model in each profile by accessing the dataset and use the Equation 5 to restore
the support information. This is a hybrid of summary and summary+. We have found
that it will yield qualitatively similar results if we make a hybrid from summary and
summary++.
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Fig. 7. Mushroom
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Fig. 9. BMS-POS

Figures 7-9 show the comparisons of the hybrid method with the summary and sum-
mary+ on three datasets. We use the same setting for three datasets as that in the last
subsection. The line of hybrid method lies between the those of summary and sum-
mary+. This means that the support estimation methods based on the probability model
in Section 3 alone cannot achieve the improvement of summary+ over summary. This
implies that the clustering based on the probability model in Section 3 results in better
clusters of frequent patterns than [19]. In other words, the probability model of this pa-
per characterizes the frequent patterns better than the model in [19] does, and thus the
calculated distances between clusters based on such model are more effective.

As a summary, both summary+ and summary++ greatly outperform summary. Sum-
mary++ usually can improve summary+ by 50% in terms of restoration accuracy while
summary+ is simple and is fast in terms of computation.
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6 Related Work

Frequent pattern mining has received much attention in the past decade. Many frequent
pattern mining algorithms have been proposed (e.g. [3, 9]). The number of frequent
patterns can be very large and many of these frequent patterns may be redundant. To
reduce the frequent patterns to a compact size, mining frequent closed patterns (e.g.
[13]) has been proposed, which is a lossless compression of frequent patterns. Lossless
here means that all frequent patterns together with their supports can be recovered from
the closed patterns. Another lossless compression patterns of frequent patterns has been
proposed to mine non-derivable frequent patterns [5].

There have been some other proposals to mine a subset of all frequent patterns.
These methods are lossy in the sense that not all information about frequent patterns
can be recovered. Maximal frequent pattern (e.g. [2]) is one of the most typical concepts
in this category. In maximal frequent pattern, all frequent sub-patterns are removed,
and thus the number of patterns is greatly reduced. However, the support information
of all the sub-patterns are lost and maximal patterns can be large in number. Other
lossy compression proposals include error-tolerant patterns [20], top-k patterns [10],
condensed frequent pattern base [16], compressed frequent pattern sets [18].

The closest work to our study is the k approximation frequent sets [1] and k sum-
marizing profiles [19]. The k approximation frequent sets use k frequent itemsets to
cover a collection of frequent itemsets while trying to minimize the negative positive
patterns; the set of frequent patterns can be deducted from the k approximate frequent
sets. However, the support information of patterns is lost. The k summarizing profiles
use a simple independence probability model to represent a set of patterns and cluster
the profiles. One salient feature of k summarizing profiles is that support information
can be restored relatively accurately. In this paper, we improve the probability model to
represent model and propose new methods to derive support using our proposed prob-
ability model. Our profile model is also related to the probabilistic models developed
in [14] for query approximation, where frequent patterns and their supports are used to
estimate query selectivity, and independence model and Chow-Liu tree model are used
for query approximation.

There are also many proposals about mining interesting rules with various interest-
ingness measures [12]: post-processing to remove uninteresting rules [11], mining inter-
esting rules [4], mining non-redundant association rules[21], and mining top-k covering
rule groups [7]. There studies are very different from the pattern summarization.

7 Conclusion and Discussions

In this paper, we have revisited the pattern summarization problem. We proposed a
probability model to represent a set of frequent patterns and two methods of estimating
the support of a pattern from the model. With the model, we can arrange all patterns
into a set of (hierarchial) clusters and thus users can explore the patterns in a top-down
manner. Our methods can successfully summarize patterns into tens of profiles while
the supports of patterns can be recovered reasonably accurately. Empirical studies show
that our method can achieve accurate summarization in real-life data and the supports
of frequent patterns can be restored more accurately than the previous method.
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In future, we plan to investigate the application of other distance measure, such as
Jensen-Shannon divergence, to compute the similarity of profiles and other clustering
methods, such as the co-clustering based on information theory. We also plan to ap-
ply for clustering algorithms and co-clustering algorithm to the transaction database
directly to obtain some clusters of items (one item could be in multiple clusters) and
build a probability model for each cluster. It would be interesting to investigate the
quality of such clusters to estimate the supports of frequent patterns.
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