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Abstract. A common phenomenon of time-qualified data are tempo-
ral repetitions, i.e., the association of multiple time values with the
same data. In order to deal with finite and infinite temporal repeti-
tions in databases we must use compact representations. There have
been many compact representations proposed, however, not all of them
are equally efficient for query evaluation. In order to show it, we define a
class of simple queries on compact representations. We compare a query
evaluation time on our proposed multi-granular compact representation
GSequences with a query evaluation time on single-granular compact
representation PSets, based on periodical sets. We show experimentally
how the performance of query evaluation can benefit from the compact-
ness of a representation and from a special structure of GSequences.

1 Introduction

A temporal repetition takes place when the same data are associated with mul-
tiple time values. Table 1 shows a temporal repetition of a meeting of DB Group
that takes place every Monday in January 2005.

When a temporal repetition is infinite (or infeasible large), some finite rep-
resenter is used to store it in a database. Table 2 shows a representer for the
temporal repetition from Table 1 with our proposed compact representation
GSequences.

The name of GSequences stands for ‘granularity sequences’, because it consists
of finite sequences of periodicities over granularities.

We assume a point-based representation of time, when the time domain is
a discrete lineary-ordered set of time points forming the ‘bottom granularity’.
Additional granularities are partitionings of the bottom granularity defined with
functions, allowing non-regular granules, when it is necessary.

A periodicity over a granularity is a five-element tuple, where the first el-
ement refers to the granularity and the remaining part defines a periodical
repetition over the granularity. For example, periodicity 〈days, 2, 1, 10, 20〉 de-
fines a repetition of days described by the function f(x) = 2x + 1, where
10 ≤ f(x) ≤ 20.

When two or more periodicities are combined into a sequence, each periodic-
ity, except for the rightmost, is related to the following periodicity. We refer the
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Table 1. Temporal Repetition of DB Group Meeting

Group Room Time
DB Group 204 2005-01-03 14:00
DB Group 204 2005-01-10 14:00
DB Group 204 2005-01-17 14:00
DB Group 204 2005-01-24 14:00
DB Group 204 2005-01-31 14:00

Table 2. Representer of DB Group Meetings using GSequences

Group Room Time
DB Group 204 (〈hours, 1, 0, 14, 16〉, 〈days, 1, 0, 1, 1〉, 〈weeks, 1, 0, ∗, ∗〉,

〈years, 1, 0, 2005, ∗〉)

rightmost periodicity as absolute and the rest of periodicities as relative. Infor-
mally, each relative periodicity is happening during each granule of the following
periodicy. For example, sequence (〈months, 1, 0, 1, 3〉, 〈years, 1, 0, 2005, 2006〉) de-
fines first three months during year 2005 and during year 2006.

If the limits of an absolute periodicity are unset, the represented repetition is
infinite. For relative periodicities, unset limits imply the limits of a granule of the
following periodicity. For example, 〈months, 2, 1, 1, ∗〉 represents an infinite repe-
tition of every second month starting from month 1. Sequence (〈hours, 3, 1, ∗, ∗〉,
〈days, 2, 1, 10, 20〉) is equivalent to (〈hours, 3, 1, 1, 24〉, 〈days, 2, 1, 10, 20〉), be-
cause every day has 24 hours.

There have been many compact representations created during the last two
decades [2, 4, 5, 6, 7, 8, 9, 10]. All of them can be used to store temporal repetitions
in databases, however, depending on a representation, different performance re-
sults might be achieved evaluating the queries. All related works listed do not
explore this particular issue.

Many temporal repetitions use common time granularities (e.g., hours, days,
years) and periodicity (e.g., every 3rd, every 10th starting from 2nd). As a re-
sult, most popular compact representations use periodicity and/or granularities.
Works [2, 5, 7, 8, 9, 10] combine multiple granularities in their proposed represen-
tation, whereas work [6] uses a single time granularity.

Most of the representations were shown to have the expressiveness equal to
eventually periodical sets [5, 6, 7, 8, 10]. An eventually periodical set consists of
a finite non-periodical subset and a periodical subset. A periodical set, conse-
quently, is a possibly infinite set, each element of which can be obtained by
adding or subtracting positive number p from some other element of this set.
For example, eventually periodical set {1, 3, 4, 5, 10, 15, 20, . . .} consists of finite
non-periodical subset {1, 3, 4} and infinite periodical subset {5, 10, 15, 20, . . .}.

Many of compact representations are based on algebraic expressions, where
set operations are most common [2, 4, 7, 8, 9, 10]. Both, compact representation
values and the relations between granularities, are defined with algebraic expres-
sions. As a result, proposed algorithms assume inductive inference which might
badly impact the performance of queries. However, the complexity of algorithms
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has been estimated only at the theoretical level and the real query evaluation
time on different compact representations has never been compared.

Some of the works mentioned address implementation issues, suggest query
evaluation algorithms or describe implemented prototypes. Work [3] describes
an implementation of the representation proposed in [7] in a real database for
use in temporal rules. Work [6] describes algorithms for the evaluation of rela-
tional operations on proposed representations. The work [8] describes an efficient
algorithm for the evaluation of joins on proposed compact representation. Work
[10] describes methods of simplification of representations at the symbolic level.
Work [1] describes a simplification algorithm for minimising representations of
periodical granularities.

We practically show that not all representations are equally efficient for query
evaluation. We use single-granular representation, referred as PSets, with expres-
siveness equal to eventually periodical sets to compare the query evaluation time
with GSequences. We define the compactness property of a representer and we
prove that a representer with GSequences is as much or more compact than a
representer with PSets of the same temporal repetition. The queries we consider
have two boundaries and the target granularity. An example of such a query
on a representer shown in Table 2 is ‘days with meetings between 2005-03-01
and 2005-05-31’. The experiments we run confirm that the structure and the
compactness of GSequences gives an advantage during query evaluation.

Section 2 defines compact representations GSequenses and PSets along with
all necessary concepts we use in these definitions. In section 3 we analyse the
compactness of both representations. Section 4 defines a class of simple queries
on compact representation and gives complexity estimation for query evaluation
algorithms on both compact representation. Section 5 contains the results of our
experiments. Section 6 finishes this article with conclusions and future work.

2 Compact Representations

2.1 Time Domain and Granularities

All related works we refer assume discrete lineary-ordered time domain. For our
representation we use the same assumption.

Definition 1 (time domain). A time domain T is a discrete, lineary ordered
set, infinite in the future and bounded in the past.

Example 1. Sample time values are 1, 3, 10, 55009440.

We define granularities as a partitioning of the time domain T .

Definition 2 (granularity). Let G = IN be an index set and let g ∈ G. A
mapping Mg : IN �→ 2T is a granularity with an index g if

1. ∀i ∈ IN : (Mg(i) 	= ∅);
2. ∀i ∈ IN : Mg(i) is a finite set;
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3. ∀i, j ∈ IN : (i 	= j ⇒ (Mg(i) ∩ Mg(j) = ∅));
4. ∀i, j ∈ IN : (i < j ⇒ (∀m ∈ Mg(i), n ∈ Mg(j) : m < n));
5.

⋃

i

Mg(i) = T .

The first and the second conditions require all partitions to be non-empty and
finite. The third condition disallows partitions to overlap. The fourth and the
fifth conditions require that there are no gaps between the partitions.

Example 2. According to Def. 2, proper granularities are days, weeks, Gregorian
months, Gregorian years, moon months, milliseconds, centuries, summer and
winter time periods, etc. Weekends, leap years, etc., are not granularities, because
they allow gaps.

Definition 3 (base granularity). A granularity Mb : IN �→ 2T is a base gran-
ularity iff ∀i ∈ IN(Mb(i) = {i}).

Example 3. If the base granularity is equal to ‘days’, granularities ‘weeks’ and
‘month’ group the time domain T into the partitions as it is shown in Fig. 1.

Our definition of granularity allows us to specify mapping Mg with function
µg→T : IN → T , or just µg, where µg(x) returns the first element of T of granule
x and µg(x + 1) − 1 returns the last element of T of granule x.

Fig. 1. Granularity as a Partitioning of the Time Domain T

In further sections we use also reverse mapping M−1
g that can be defined with

function µ−1
g→T : T → IN, or just µ−1

g , that returns index i ∈ IN of a granule of
granularity g for given t ∈ T if µg(i) ≤ t < µg(i + 1).

Example 4. For the base granularity equal to ‘days’, function µyears(x) returns
the first day of year x. Function µ−1

years(y) returns a year to which day y belongs.

µyears(x) = 365x + 
x/4� − 
x/100� + 
x/400�
µ−1

years(y) = 400
 y

146097
� +

+100 min(3, 
y mod 146097
36524

�) +

+4
 (y mod 146097) mod 36524
1461

� +

+ min(3, 
 ((y mod 146097) mod 36524) mod 1461
365

�)
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A new granularity g can be defined using one already defined granularity h. In
other words µg(x) = µh(µg→h(x)) and µ−1

g (x) = µ−1
h (µ−1

g→h(x)). In this case to
define g we define only µg→h(x) and µ−1

g→h(x).

Example 5. If months are already defined with functions µmonths(x) and
µ−1

months(x), we can define years with µyears→months(x) = 12(x − 1) + 1 and
µ−1

years→months(x) = 
x/12� + 1.

2.2 Temporal Repetition and Compact Representation

Let A be some combination of non-temporal domains and let a denote some
element of A. Let T be the time domain.

Definition 4 (temporal repetition). A temporal repetition of some data a is
a relation ra ⊆ {a} × T .

Example 6. Table 3 illustrates a temporal repetition of a bus no. 2 in Bozen-
Bolzano. This temporal repetition is infinite, because buses are supposed to go
forever.

Table 3. Bus no. 2 Schedule in Bozen-Bolzano

No. Station Time
2 Stazione 1 2005-01-03 7:48
2 Stazione 1 2005-01-03 8:00
2 Stazione 1 2005-01-03 8:12
... ... ...
2 Stazione 1 2005-01-04 7:48
2 Stazione 1 2005-01-04 8:00
2 Stazione 1 2005-01-04 8:12
... ... ...

Definition 5 (compact representation). Let X be some domain. Let υ :
X → 2T be a function that takes an element of X and returns a subset of time
domain T . A compact representation is pair 〈X, υ〉, where X is called the domain
of the representation and υ is called the unfold operation of the representation.

In sections 2.4 and 2.5 we define two particular compact representations PSets
and GSequences, showing the use of this definition.

Definition 6 (relational unfold). Let r̄a ⊂ {a} × X and R̄ =
⋃

a,i

r̄a,i be a set

of all possible r̄a,i. Let ra ⊂ {a} × T and R =
⋃

a,i

ra,i be a set of all possible ra,i.

A relation operation Υ : R̄ → R is relational unfold operation for the compact
representation 〈X, υ〉, if ∀r̄ ∈ R̄(Υ (r̄) = {〈a, t〉 | ∃x ∈ X(〈a, x〉 ∈ r̄ ∧ t ∈ υ(x))}).

Definition 7 (representer). A relation r̄ ⊂ {a} × X is a representer with the
domain X of a temporal repetition r if there’s such a relational unfold operation
Υ , that Υ (r̄) = r and r̄ is finite and |r̄| ≤ |r|.
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Example 7. Let r̄ = {〈a, x1〉, 〈a, x2〉} be some representer, where x1, x2 ∈ X . Let
υ(x1) = {2, 3, 4} and υ(x2) = {7, 9}. The result of Υ (r̄) is a temporal repetition
{〈a, 2〉, 〈a, 3〉, 〈a, 4〉, 〈a, 7〉, 〈a, 9〉}.

Definition 8 (compactness). The compactness of a representer r̄ ⊂ {a1} ×
. . . × {an} × X is its size in bytes occupied in a database.

Example 8. Having attribute ‘Group’ as a fixed length character string of length
10, having an attribute ‘Room’ as a natural number and having granularity
indexes encoded by natural numbers, the representer given in Table 2 has a
length of 10 + 1 · s + 4 · 5 · s bytes, where s is a size of one natural number in
bytes.

2.3 Periodical Sets and Periodical Granularities

Definition 9 (periodical set). Set S ⊆ IN is a periodical set if there exists
some p ∈ IN, called period, and finite subset S′ ⊆ S, called repeating subset, such
that:

1. ∀i ∈ S \ S′(∃r ∈ S′, x ∈ IN(i = r + xp));
2. ∀i ∈ S(∃r ∈ S′, x ∈ IN(i = r + xp) ⇒ i ∈ S \ S′).

The first condition of the definition ensures that all elements of set S \ S′ can
be obtained by consequently adding period p to the elements of subset S′ of S.
The second condition ensures that S′ is ‘minimal’. In other words, no element of
S′ can be expressed subtracting or adding the same period to another element
of subset S′.

Example 9. Set S = {2, 3, 6, 8, 13, 14, 17, 19, . . . , 46, 47, 50, 52, . . .} is a periodical
set with repeating subset S′ = {2, 3, 6, 8} and period p = 11.

With the appropriate base granularity many other granularities, including Gre-
gorian calendar granularities, are periodical.

Definition 10 (periodical granularity). Granularity Mg is a periodical gran-

ularity if
∞⋃

i=1

µg(i) is a periodical set.

Example 10. If the base granularity is ‘days’, Gregorian years form a periodical
set with a repeating subset of 400 elements (years) and the period equal to
146097 days. Gregorian months form a periodical set with a repeating subset of
400x12 elements (months) and the same period equal to 146097 days.

2.4 PSets

Definition 11 (periodicity). Let IN∗ = IN ∪ ∗. A periodicity is a five tuple
〈g, p, o, l, h〉, where g ∈ G is a granularity index, p, o ∈ IN are respectively a
period and an offset of a linear function f(x) = px + o and l, h ∈ IN∗ are
respectively lower and upper bounds on the value of f(x).
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Example 11. Sample periodicities are 〈minutes, 11, 2, 0, 200〉, 〈seconds, 11, 3, 0, ∗〉
and 〈days, 11, 6, ∗, ∗〉.

Definition 12 (XPS). The domain of the compact representation PSets XPS =
G × IN × IN × IN∗ × IN∗ is a set of all possible periodicities.

Definition 13 (υPS). Let x ∈ XPS and let x = 〈g, p, o, l, h〉.
– for l = ∗ ∧ h = ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈ Mg(f))};
– for l = ∗ ∧ h 	= ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈ Mg(f) ∧ f ≤ h)};
– for l 	= ∗ ∧ h = ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈ Mg(f) ∧ l ≤ f)};
– for l 	= ∗ ∧ h 	= ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈ Mg(f) ∧ l ≤ f ≤ h)}.

Example 12. Table 4 shows a fragment of a representer with PSets of the tem-
poral repetition of the bus no 2 shown in Table 3. The values of the rightmost
column encode a periodical set with a period 1 week = 10080 minutes, and re-
peating subset {7665, 7680, 7695}, where 7665 corresponds to 07:45 of the first
Saturday, 7680 to 08:00, and 7695 to 08:15.

Table 4. Representer of Bus no. 2 Schedule in Bozen-Bolzano using PSets

No. Station XPS

2 Stazione 1 minutes,10080,7665,*,*
2 Stazione 1 minutes,10080,7680,*,*
2 Stazione 1 minutes,10080,7695,*,*
... ... ...

2.5 GSequences

Definition 14 (XGS). Let P be a finite sequence of periodicities. The domain of
the compact representation GSequences XGS =

⋃

i

Pi is a set of all possible Pi.

To define υGS we introduce some helper functions. Function ξ : G × IN × G → IN
takes tuple 〈e, i, g〉, where e and g are granularity indexes and i is an index of a
partition of granularity e, and returns an index of a partition of granularity g:

ξ(e, i, g) =
{

µ−1
g (µe(i)), if µg(µ−1

g (µe(i))) ≥ µe(i);
µ−1

g (µe(i)) + 1, if µg(µ−1
g (µf (i))) < µe(i).

Let x be some element of XGS. Let x′ denote x without the leftmost peri-
odicity and let r1 ∈ x be the leftmost periodicity in x. For example, if x =
(〈days, 1, 0, 1, 1〉, 〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉, 〈years, 1, 0, 2005, 2005〉),
then x′ = (〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉, 〈years, 1, 0, 2005, 2005〉) and
r1 = 〈days, 1, 0, 1, 1〉.
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Let ῡ : XGS → 2G×IN be a function and let ῡ(P ) be defined as follows.

1. if (r1 = 〈g, p, o, l, h〉) ∧ (x′ = ∅):
– for l 	= ∗ ∧ h 	= ∗, ῡ(x) = {〈g, i〉 | l ≤ i ≤ h ∧ ∃j ∈ IN(i = pj + o)};
– for l = ∗ ∧ h 	= ∗, ῡ(x) = {〈g, i〉 | 1 ≤ i ≤ h ∧ ∃j ∈ IN(i = pj + o)};
– for l 	= ∗ ∧ h = ∗, ῡ(x) = {〈g, i〉 | i ≥ l ∧ ∃j ∈ IN(i = pj + o)};
– for l = ∗ ∧ h = ∗, ῡ(x) = {〈g, i〉 | i ≥ 1 ∧ ∃j ∈ IN(i = pj + o)};

2. if r1 = 〈g, p, o, l, h〉 ∧ (x′ 	= ∅):
– for l 	= ∗ ∧ h 	= ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, l + ξ(e, k, g), h + ξ(e, k, g)))}
– for l = ∗ ∧ h 	= ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, 1, h + ξ(e, k, g)))}
– for l 	= ∗ ∧ h = ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, l + ξ(e, k, g), ξ(e, k + 1, g)))}
– for l = ∗ ∧ h = ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, 1, ξ(e, k + 1, g)))}

Finally, υGS(x) = {t ∈ T | ∃〈b, i〉 ∈ ῡ(〈b, 1, 0, ∗, ∗〉∪x)(t = i)}, where b denotes
the base granularity.

Example 13. Let us take x = {〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉} as an exam-
ple. An expression ῡ(months, 1, 0, 1, 1) returns a set of one month {〈months, 1〉}.
An expression ῡ({〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉}) returns a set of weeks
whose index is between ξ(months, 1, weeks) and ξ(months, 1, weeks).

3 Compactness Analysis

As it is shown in [2], periodicity 〈g, p, o, h, l〉 over periodical granularity g with
granularity period pg and granularity repeating subset S′

g forms periodical set
Sf with the period pf = pg and repeating subset S′

f , |S′
f | = |S′

g|/p, if the |S′
g| is

divisible by p.
In other case resulting periodical set Sf has period pf = pg·LCM(|S′

g|,p)
|S′

g| and
repeating subset S′

f , |S′
f | = LCM(|S′

g|, p)/p, where LCM stands for the least
common multiple.

Example 14. A periodicity 〈months, 3, 0, ∗, ∗〉 with the granularity period of
146097 days and the granularity repeating subset of 4800 months forms on T =
‘days’ a periodical set Sf with a period of pf = 146097 days and a repeating
subset of 146097/3 = 48699 elements.

For a periodicity 〈months, 11, 0, ∗, ∗〉 in the same conditions pf = 146097·11 =
1607067 and |S′

f | = (1607067 · 11)/11 = 146097 elements.

Lemma 1. For any representer r̄PS there’s a representer r̄GS of the same tem-
poral repetition, that is as compact as r̄PS.
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Proof. PSets is a trivial case of GSequences, when a sequence of periodicities
contains only one periodicity. Hence, any representer 〈g, p, o, l, h〉 ∈ XPS can be
constructed a representer (〈g, p, o, l, h〉) ∈ XGS of the same temporal repetition
and with the same compactness.

Lemma 2. For any periodical granularities g1, . . . , gm expression ῡGS ((〈g1, p1,
o1, l1, h1〉, . . ., 〈gm, pm, om, lm, hm〉)) returns a periodical set of elements of time
domain T .

The idea of the proof of Lemma 2 is that the resulting periodical set has a period
equal to the least common multiple of the periods of each 〈gi, pi, oi, li, hi〉.

Lemma 3. For any periodical granularities g1, . . . , gm representer r̄GS = {〈a1,
. . . , an, x〉}, where x = (〈g1, p1, o1, l1, h1〉, . . ., 〈gm, pm, om, lm, hm〉, is more com-
pact than a representer of the same temporal repetition with the domain XPS,
if the size of a periodical subset in ῡGS ((〈g1, p1, o1, l1, h1〉, . . ., 〈gm, pm, om, lm,
hm〉)) is bigger than m.

Theorem 1. For any representer r̄PS there’s a representer r̄GS of the same
temporal repetition, which is as compact as r̄PS or even more compact.

Proof. According to Lemma 1 for each representer with PSets there exists a
representer with GSequences which is as compact as the representer with PSets.
According to Lemma 3, if there is a periodical granularity g with periodical
subset |S′

g| > 1, there exists a representer r̄GS which is more compact than any
representer with PSets of the same temporal repetition.

4 Queries on Compact Representations

In this paper we investigate two types of queries on compact representations.
The first type of query has a form

π[ξ(b, time, g)](σ[C1 ≤ time ≤ C2](Υ (r̄))) , (1)

where where σ is a selection operation, r̄ is a compact representation, time is an
attribute of r̄ of compact representation domain, C1 and C2 are some constants of
the time domain, π is a projection operation, b is an index of the base granularity,
g is an index of some given granularity and ξ : G × IN × G → IN is a granularity
convertion function used in previous sections.

The second type of query has a form

σ[C1 ≤ time ≤ C2](Υ (r̄)) . (2)

This type of queries is a specific case of the first type with g = b.
We distinguish two different approaches of the evaluation of queries 1 or 2.

The naive approach is first to evaluate an operation Υ (r̄) and then to proceed
with a regular query on temporal repetition. This naive approach fails in cases
when a temporal repetition is infinite, because Υ (r̄) never stops.
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4.1 Query Evaluation on PSets

The approach we use to evaluate queries on PSets produces a temporal repeti-
tion already inside given bounds. The algorithm contains two nested cycles (see
Listing 1.1). The outer cycle goes through the tuples in a representer and the
inner cycle produces tuples of the resulting temporal repetition. We can evaluate
the complexity of this algorithm as O(ΥPS) = n2.

Listing 1.1. PSets Evaluation Algorithm

1 procedure ΥPS ( r̄ ,C1 ,C2 ,g )
2 f o r each tup le=(someA , p e r i o d i c i t y ) in r̄
3 υPS ( p e r i o d i c i t y , C1 ,C2 ,g ) ;
4 procedure υPS ( p e r i o d i c i t y ,C1 ,C2 ,g )
5 with p e r i o d i c i t y = ( e , p , o , l , h) do
6 [ a ; b ] = i n t e r s e c t i o n ( [ l ; h ] , [ C1 ; C2 ] ) ;
7 xmin = minimum argument value o f p∗x+o in [ a ; b ] ;
8 xmax = maximum argument value o f p∗x+o in [ a ; b ] ;
9 f o r x = xmin to xmax

10 r e s u l t = convert (p∗x+o→g ) ;
11 p r in t r e s u l t ;

4.2 Query Evaluation on GSequences

The query evaluation algorithm for GSequences is shown in Listing 1.2. It con-
sists of two procedures. The first procedure goes sequentially through the input
tuples and calls the second procedure for each tuple. The second procedure gener-
ates the tuples of the resulting temporal repetition recursively going through the
sequence of periodicities. The maximal depth of a recursion is equal to the length
of the sequence. For each periodicity the procedure runs the cycle through its
granularity values. Therefore, we can evaluate the complexity of the algorithm,
as O(ΥGS) = nn.

It seems that the performance of ΥGS should be worse than of ΥPS, however,
(1) the number of input tuples for υPS is normally bigger than for υGS, in order
to produce the same output, (2) we use some specifics from the input to reduce
the number of operations in υGS.

Sequential application of bounds. Because of a sequential structure of
GSequences given bounds C1 and C2 are applied starting from the rightmost
periodicity reducing the range for the following periodicities.

Example 15. Let us take a compact representation shown in Table 2 and a query
σ[2005-01-01 00:00 ≤ time ≤ 2005-01-31 23:59](Υ (r̄)). Evaluating this query the
bounds are applied first to the years and then to the weeks of remaining years
only, etc.
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Listing 1.2. GSequences Evaluation Algorithm

1 procedure ΥGS ( r̄ ,C1 ,C2 ,g )
2 f o r each tup le=(someA , gsequence ) in r̄
3 υGS ( gsequence , C1 ,C2 ,g , n u l l ) ;
4 procedure υGS ( sequence ,C1 ,C2 ,g , parent )
5 with sequence =(X, ( e , p , o , l , h ) ) do
6 i f parent i s s e t then o f f s e t = convert ( parent→e ) ;
7 e l s e o f f s e t = 0 ;
8 [ a ; b ] = i n t e r s e c t i o n ([ l+o f f s e t ; h+o f f s e t ] , [ C1 ;C2 ]) ;
9 i f parent i s s e t then

10 highparent = convert ( parent+1→e ) ;
11 [ a ; b ] = i n t e r s e c t i o n ( [ a ; b ] , [ a ; highparent −1]) ;
12 xmin = minimum argument value o f p∗x+o in [ a ; b ] ;
13 xmax = maximum argument value o f p∗x+o in [ a ; b ] ;
14 f o r x = xmin to xmax
15 i f X i s empty then
16 r e s u l t = convert (p∗x+o→g ) ;
17 p r in t r e s u l t ;
18 e l s e i f e = g then p r i n t r e s u l t ;
19 e l s e υGS (X, C1 ,C2 ,g , p∗x+o ) ;

Hierarchical definition of granularities. We define new granularities using al-
ready defined granularities. This allows us to perform granularity convertion
operations without going to the base granularity (we avoid getting intermediate
results with very big indexes).

Example 16. Let us take a compact representation shown in Table 2 in a
database where the base granularity is equal to milliseconds. If both years and
weeks are defined or transitively defined in terms of days, an index of the first
week of the year can be calculated with the formula µ−1

weeks→days(µyears→days(i)).

Truncating sequences. When the target granularity is present in a sequence of
periodicities, we process a sequence only till this periodicity.

Example 17. Let us take a compact representation shown in Table 2 and a query
π[ξ(time, days)](σ[2005-01-01 00:00 ≤ time ≤ 2005-01-31 23:59](Υ (r̄))). Since
there’s a periodicity over days in the sequence of periodicities, the evaluation
process stops on this periodicity without processing the remaining periodicities.

5 Experiments

In this section we show the results of three experiments in which we compare
the performance of queries to GSequences and PSets representers.

In each experiment the same query (query 1 when the target granularity is
given or query 2 otherwise) is applied to GSequences and PSets representers of
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 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1*106 1*107 1*108 1*109

T
im

e 
(s

ec
.)

Upper bound (min.)

PSets
GSequences

Fig. 2. Results of Experiment 1

the same temporal repetition. According to our assumptions, both representers
might have different number of input tuples, but the query results are always
identical.

Since it is not very convinient to control the number of output tuples through
the query parameters, we compare the query processing time to the given bounds.
In other words, horisontal axis in the following plots represents the difference
C2 − C1, or just C2 (upper bound) with C1 = 0.

In all experiments the base granularity is equal to ‘minutes’.

Experiment 1. A GSequences representer of a temporal repetition is illustrated
in Table 5. A PSets representer of the same repetition consists of 327,000 tu-
ples with a period equal to 210,378,241 minutes. The results of the experiment
show, that the huge size of a representer with PSets gives a big advantage to
GSequences.

Table 5. Representer with GSequences for Experiment 1

Some Domain Time
Some Value (〈minutes, 1, 0, 1, 10〉, 〈hours, 1, 0, 1, 10〉, 〈days, 1, 0, 1, 10〉,

〈months, 11, 0, ∗, ∗〉)

Experiment 2. In this experiment we used a real temporal repetition of a bus
no. 2 of Bozen-Bolzano. A representer with GSequences consists of 51 tuples. A
representer with PSets consists of 456 tuples. From the results of the experiment
showed in Fig. 3 it is obvious that the difference in compactness is not sufficient
for this kind of queries to beat the difference in complexity of the methods.

Experiment 3. For this experiment we took the same temporal repetition as for
Exp.1 and we set the target granularity equal to days. The results illustrated in
Fig. 4 show the advantage of truncating sequences.
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6 Conclusions

Compact representations are used to store temporal repetitions in databases.
It is essential that compact representations can be queried in the same way as
they were temporal repetition, and query evaluation algorithm should take an
advantage of querying compact representations.

In this paper we presented a compact representation of temporal repetitions
GSequences that combines periodicity with a use of multiple temporal granular-
ities. On this representation we showed that a query evaluation can benefit from
a structure of a compact representation. To support this result we experimen-
tally compared GSequences with other compact representation PSets with more
simple structure. We introduced the compactness property of compact represen-
tations. We proved that besides more sophisticated structure of GSequences it
has equal or better compactness than PSets. We also showed and proved experi-
mentally that a compactness of a representer can significantly impact the query
evaluation time.

In the future work we aim to implement more complicated queries containing
joins and aggregation operations.
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